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ABSTRACT 

Adrienne N. Sgammato: An Application of Unfolding and Cumulative Item Response 

Theory Models for Non-Cognitive Scaling: Examining the Assumptions and Applicability of 

the Generalized Graded Unfolding Model 

(Under the direction of Gregory J. Cizek) 

 

 This study examined the applicability of a relatively new unidimensional, unfolding 

item response theory (IRT) model called the generalized graded unfolding model (GGUM; 

Roberts, Donoghue, & Laughlin, 2000). A total of four scaling methods were applied. Two 

commonly used cumulative IRT models for polytomous data, the Partial Credit Model and 

the Generalized Partial Credit model were considered. The third scaling approach was the use 

of a confirmatory factor analysis. The fourth model, an unfolding IRT model, the 

Generalized Graded Unfolding Model was considered. These models were applied to 

attitudinal data from 65,031 licensed teachers in North Carolina who responded to a survey 

about their working conditions. Two subscales (Empowerment and Leadership) were used 

and analyzed separately. Items are Likert-type with five response options ranging from 

Strongly Agree to Strongly Disagree.  

 Analyses focused on examination of the correspondence between the assumptions 

that underlie the data and the IRT models, revealing evidence about the structure of the data, 

the location of people and items, and the response process governing observed data. The 
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analyses included graphical representations of person and item estimates as well as analytical 

examination of item characteristic curves (ICCs) for the various models.  

Various indices of relative and absolute model fit statistics are presented for the IRT models. 

Although the two scales were originally built using factor analytic methods, results suggested 

that a single factor model did not fit the Empowerment well, though fit of the Leadership 

data was moderate. Tests of IRT model assumptions indicated that cumulative assumptions 

were meet more often than those that underlie unfolding IRT models. Comparison of item 

and person parameter estimates show that, across both scales, cumulative and unfolding IRT 

models functioned very similarly. However, some item on both scales did exhibit unfolding 

properties. Finally, a summary of potential extensions of the GGUM model and other 

contributions of this research including the possibility of using unfolding models for scale 

development and attitude measurement in areas beyond that of working conditions of 

teachers or administrators are offered.   
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CHAPTER 1 

INTRODUCTION 

 

 Classical test theory (CTT) approaches to test development and scoring were 

predominantly used as early as the start of the 1900s within the context of intelligence 

testing. Contributions by Lawley (1943, 1944), Birnbaum (1957, 1958), Rasch (1960), 

Wright (1967), and Lord and Novick (1968) (as cited in Hambleton & Swaminathan, 1985) 

to psychometric/test theory evolved into what is known as item response theory (IRT). IRT 

measurement models are considered to be more sophisticated than CTT models in that IRT 

analyses allow for: 1) the estimation of performance on each item of a test for any examinee 

who is at a particular point on the underlying trait; 2) more precise measures of accuracy by 

estimating the maximum discrimination of an item at a particular value of the underlying 

trait; 3) the estimation of error of measurement at each ability level; and 4) and estimates that 

are not sample dependent (Crocker & Algina, 1986; Hambleton & Swaminathan, 1985). The 

added features and functionality of IRT are cited as benefits especially for measurement 

related tasks such as test development, scoring, scaling, equating, and item banking. 

  IRT models are also useful for assessing educational achievement and are currently 

used for such applications because of the additional measurement precision and flexibility. 

However, educational measurement is not the only domain in which IRT models have been 

applied. The measurement of attitudes, personality, opinions, psychopathology, and other 

non-cognitive traits have made use of sophisticated IRT models and have taken advantage of 
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the benefits of IRT measurement. There is a variety of parameterizations or specifications of 

IRT models depending upon the theories about the construct being measured, the observed 

data, the assumptions that underlie those data, types of items, scoring of items, sample size, 

and number of items.  

Thurstone (1927, 1928) and Likert (1932) can be credited for their contributions to 

the measurement of attitudes, opinions, and other non-cognitive constructs. Both Thurstone 

and Likert developed methods for scale development for the purpose of measuring non-

cognitive traits, though their methods differ in important ways, namely in the assumptions 

about how people respond to items and criteria for item selection during the scale 

construction process. Likert’s (1932) method is much more widely used in practice, perhaps 

because it is less laborious. Although CTT approaches were initially applied to scale 

development for cognitive traits, they are also commonly implemented for non-cognitive 

measurement. These approaches are more congruent with the Likert methodology for 

measurement. Despite the fact that cumulative IRT methods were initially developed for the 

measurement of cognitive traits, they have been used for the measurement of personality, 

opinion, satisfaction and other non-cognitive latent traits. A specific class of models, called 

cumulative IRT models are also appropriately applied within the context of Likert approach 

to scale development and scoring. There are, however, fundamental differences between the 

assumptions of Likert’s and Thurstone’s (1927, 1928) approach to the measurement of non-

cognitive traits, which would necessarily influence the consideration of model selection. 

Although the introduction and application of IRT models have helped to advance the 

field of cognitive and non-cognitive measurement, a disparity seems to exist between the 

assumptions underlying non-cognitive data and some of the classes of IRT models that are 
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typically applied to such data. Specifically, the IRT models that are commonly applied to 

non-cognitive data are probabilistic models defined by monotonic increasing functions 

(Andrich, 1996). The premise behind cumulative IRT models is that the probability of 

endorsement (or correct answer) of an item measuring a particular construct increases as the 

level of the construct an individual possesses increases (Andrich, 1996). Models with such 

characteristics are known as cumulative models.  

In contrast, data resulting from the measurement of non-cognitive concepts such as 

personality, attitude, opinion, or satisfaction, have been called “unfolding” data. In 

unfolding-type data, direction is not always implied in observed responses to the 

agree/disagree items typically found of instruments used to measure such concepts, these 

data are considered “folded.” In order to appropriately connect these data to the concepts 

they are intended to measure, the data therefore must be ”unfolded” where Coombs (1950, 

1964) used the term unfolding to describe the process of ascertaining the direction of the 

scale from observed responses.  

Folding occurs especially for neutral items (Roberts, Laughlin, & Wedell, 1999; 

Stark, Chernyshenko, Drasgow, & Williams, 2006). For example, an individual asked to rate 

level of agreement with the following item eliciting an opinion about abortion would exhibit 

folding because a response of, say, ‘Disagree’, would not necessarily indicate that 

individual’s position: “Sometimes I am in favor of a woman’s right to abortion, but at other 

times I am not (see Roberts et al., 1999, p. 217). An item with a more extreme sentiment, in 

either direction, would probably not exhibit folding, as in the case of the following item: 

“Society has no right to limit a woman’s access to abortion” (Roberts et al., 1999, p. 217). An 

observed response of ‘Disagree’ with this item would provide an indication of an individual’s 
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attitude towards abortion. Cumulative IRT models, by design, cannot accurately describe 

folded data. Unfolding IRT models are however specifically designed to measure data for 

which direction is not necessarily implicit. 

The application of IRT unfolding models is most appropriate when data are folded or 

of the unfolding-type. IRT unfolding models for non-cognitive measurement are not new to 

the field of measurement where Thurstone’s (1927, 1928) work alluded to such approaches in 

his efforts towards measuring attitudes. Coombs (1950, 1964) derived the first unfolding 

model within the context of non-cognitive measurement, formally coined the term 

“unfolding” and described the process used by respondents when rating level of agreement 

with items that measure constructs like opinion, preference, or attitude. The presumed 

response process in operation is fundamentally different between an item measuring attitudes 

(i.e., non-cognitive) and an item measuring achievement (i.e., cognitive).     

The distance between the location of an item and an individual on the latent trait 

continuum is the focal point of unfolding models. The premise of these models is that the 

probability of endorsing an item increases as the distance between the item and the individual 

on the latent trait continuum decreases. According to Roberts et al. “unfolding models 

operate on the basis of the absolute distance between an individual and an item on the 

continuum. . .” (1999, p. 213). The use of unfolding models, however, has not been as 

widespread as that of cumulative models, presumably because they are more complex (Stark 

et al., 2006). Additionally, unfolding IRT models have not endured a lengthy history of 

rigorous testing and evaluation that cumulative IRT models have. As a result, applied 

research using unfolding models is in its relatively early stage, compared to applied research 

using cumulative IRT models.  
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Consideration and use of unfolding models warrants attention to address a 

methodological issue that has been found to exist in applied research. The problem, which 

could lead to unintended and undesirable consequences is the lack of congruence between the 

assumptions that underlie the cumulative IRT models and those that underlie unfolding data. 

This can lead to inaccurate results. When decisions are made based on test scores any 

inaccuracies in scores can be problematic. For example, vocational hiring decisions are 

sometimes made based on personality instrument scores (Stark et al., 2006); surveys of 

satisfaction are commonly administered to recipients of services by an agency for the 

purpose of program evaluation, where decisions are made about the quality of and about 

efforts for improving or revising such programs. Further investigation into non-cognitive test 

development, scoring, and analyses is worthwhile because of the added accuracy of 

measurement, and validity of test score use they can afford in some non-cognitive 

measurement situations. 

This study contributes to the body of empirical research concerning the application of 

unfolding models to non-cognitive data and provides insight into methods for non-cognitive 

scale construction and IRT model selection. Methods for examining the differences between 

cumulative and unfolding, unidimensional, parametric models as applied to Likert-type data 

are employed. The data result from a survey eliciting teachers’ perceptions of their working 

conditions. Examination of person and item locations on two separate latent traits (in the 

current study, teachers’ perceptions of leadership in their school and perceptions of teacher 

empowerment)  are made across the different scaling methods. Measures of statistical and 

graphical model-data fit are presented for each of the scoring methods and for each of the 

two constructs. Relative comparisons of model-data fit across the scoring models are made 
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using the information theory based statistics Akaike Information Criterion (AIC; Akaike, 

1974) and Bayes Information Criterion (BIC; Schwarz, 1978). These can be used as 

measures of fit across non-nested models, while taking into consideration the varying number 

of independently adjusted parameters, or the number of parameters to be estimated.   

Finally, other properties of the statistical probabilities of responses to items across 

methods are examined to inform decisions about model-data fit. Data come from the 2006 

administration of the North Carolina Teacher Working Conditions (NCTWC) survey. An 

example Likert item from the NCTWCS reads: “Teachers are held to high professional 

standards for delivering instruction.” Respondents are instructed to rate their level of 

agreement with items and response options include: strongly disagree, disagree, neither agree 

nor disagree, agree, and strongly agree. Data from the NCTWCS are used by government 

agencies for the purpose of informing educational policy, local school districts, principals 

and teachers for the purpose of improving teacher working conditions for attainment of the 

ultimate goal of improving student learning.   

Purpose of Study 

The primary purpose of this investigation is to contribute to efforts for the 

advancement and improvement of methodologies for the measurement of non-cognitive 

constructs. In some measurement situations, unfolding IRT models can offer greater 

flexibility and precision over the traditionally employed measurement models such as CTT or 

cumulative IRT models. Analytically, person and item estimates from the application of 

cumulative and unfolding, unidimensional, parametric IRT models to real, attitudinal survey 

data are examined and compared in order to determine the feasibility and flexibility of the 

application of unfolding IRT models to such data. Two cumulative IRT models for 
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polytomous data are employed: Masters’ (1982) partial credit model (PCM) and Muraki’s 

(1992) generalized partial credit (GPCM) model. The unfolding model used is the 

parameterization of the generalized graded unfolding model (GGUM) developed by Roberts 

et al. (2000). Additionally, a fourth scaling method, a structural equation model (SEM)—a 

commonly implemented procedure in applied, non-cognitive measurement situations—is also 

included.  

 A secondary purpose of this investigation includes the examination of fit of the 

generalized graded unfolding model to the data compared to the other two IRT models using 

graphical and statistical techniques. Chernyshenko et al. (2001) argued that more attention 

should be given to the fit of a particular model to data for the purpose of accurate 

interpretation of results. Their argument for the importance of assessing the accuracy of 

model-data fit is based on the fact that important decisions are often based on item/test 

analyses and results. Not all researchers share this sentiment, however. Common measures of 

model-data fit are often in the form of a chi-square statistic, which is sensitive to sample size 

and number of parameters to be estimated in the model (Hambleton & Swaminathan, 1985; 

Roberts et al., 2000). Alternatively, graphical representations of model and item fit have been 

described by Hambleton and Swaminathan (1985) and Roberts et al. (2000). For example, 

comparisons can be made between expected and observed responses with respect toij

^^

δθ − , 

or the difference (i.e., distance) between person and item estimates, which are measured on 

the same underlying latent trait scale. Roberts et al. (2000) used a similar methodology in 

that for every item-person pair, these differences were distributed into equally-sized, 

homogeneous groups. Average observed and expected responses were calculated for each 

group and then plotted against the average ij

^^

δθ − for each group. This approach is not a 
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probabilistic one, but a graphical approach for examining item misfit (Roberts et al., 2000). 

Hambleton and Swaminathan (1985) described several methods to examine model-data fit, 

one which includes evaluation of residuals against ij

^^

δθ − , at the item, person, or test level. 

Due to the limitations of the chi-square statistic including the inhibition of relative 

comparisons across non-nested models and the dependency of the hypothesis test on sample 

size (i.e., any IRT model will be rejected with a large sample), a potentially more useful and 

informative statistic will be calculated as a measure of fit that is comparable across the three 

IRT models. Two examples of information theory-based statistics are the AIC and BIC. 

These indices are sensitive to “over fitting,” thereby favoring simpler models (Kline, 2005). 

Both are appropriate for comparing fit across non-nested models with varying number of 

parameters when maximum likelihood methods of estimating model parameters are used 

(Kang & Cohen, 2007). The BIC differs from the AIC in that the former directly considers 

the sample size by “penalizing overparameterization with the use of a logarithmic function of 

sample size” (Kang & Cohen, 2007, p. 333) and generally penalizes models more than the 

AIC when the sample is large (Bozdogan, 1987). The information-based statistics or criteria 

do not have known distributions, thus significance tests are not possible, as they are when 

using a statistic that is chi-square distributed (Kang & Cohen, 2007). As a result, 

“comparisons are made based on relative magnitude” (Kang & Cohen, 2007, p. 332), where 

the model with the smallest AIC or BIC is selected over competing models.  In addition to 

information theory-based criteria, graphical depictions of model/item-data fit for the three 

IRT models are constructed and compared. Specifically, the average observed item scores are 

plotted with the respective model-based predicted average item scores.     



 9

Although not a direct test of model fit, a component of the model-fit examination 

should include tests of assumptions of the models (Chernyshenko et al., 2001; Chernyshenko 

et al., 2007; Hambleton & Swaminathan, 1985). There are many methods of assessing test 

dimensionality within the framework of cumulative IRT models. Methods for testing the 

assumption of unidimensionality for unfolding data do not exist to the extent that their 

cumulative counterparts do (Habing, Finch, & Roberts, 2005; Stark et al., 2006). Davison 

(1977) described and illustrated the correlational and factor structure of unidimensional 

unfolding data, where Maraun and Rossi (2001) and van Schuur and Kiers (1994) further 

explained the structure of such data and the statistical consequences of applying linear factor 

analytic methods to unfolding data. Habing et al. (2005) appear to be the first researchers to 

derive a method for statistically testing the hypothesis of unidimensionality for data of the 

unfolding type. They suggested a modified version of Yen’s (1984, 1993) Q3 statistic 

specifically as a method to assess the assumption of unidimensionality in unfolding data that 

conform to the GGUM (i.e., observed graded-response data that describe level of agreement). 

The data and initial parameter estimates used in Habing et al. (2005) came from Roberts et al. 

(2000). The primary reason that the Habing et al. (2005) modified Q3 statistic cannot be 

exploited in the current investigation is due to the fact that the GGUM  was previously 

determined by Roberts et al., (2002) to fit the observed data; a conclusion that cannot be 

made in this investigation. Examination of the dimensionality structure of the data in this 

investigation is implemented through the application of factor analytic methods.  

Finally, to simultaneously examine fit and test the model assumption of local 

independence, chi-square statistics for item pairs and triplets (Chernyshenko et al., 2001; 

Stark et al., 2006) can be used to asses fit between each model and the data. Calculation of 
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chi-square distributed fit statistics is a common approach to examine goodness-of-fit, 

although some caution must be exercised because such statistics are sensitive to sample size. 

Chernyskenko et al. (2001) and Stark et al. (2006) reported that typical chi-square statistics 

for each item may not be completely accurate because they are not necessarily affected by 

violations of other assumptions of both cumulative and unfolding data (i.e., local item 

independence and unidimensionality). Also, when using a one-parameter IRT model, the chi-

square statistic may be unreliable if all items are indeed not equally discriminating 

(Chernyshenko et al., 2001). Thus, Chernyshenko et al. (2001) computed adjusted (to degrees 

of freedom) chi-square statistics for item pairs and triplets, which is an approach that is 

executed in this study for the purpose of gaining evidence for the appropriateness of the 

application of the three IRT models (i.e., PCM, GPCM, and GGUM).  

 

Research Questions 

This empirical study focused on the application of both traditional and relatively new 

IRT measurement models to real attitudinal survey data. The primary purpose of this 

investigation is to examine differences in item parameters estimated by three IRT models 

(i.e., PCM, GPCM, and GGUM) and differences in person parameters estimated across those 

models and one SEM (i.e., confirmatory factor analysis) measurement model to provide 

insight into how both scale construction and construct measurement might be changed or 

improved. Graphical and statistical fit of models function as the secondary purpose of this 

study. The following four research questions are posed to address these purposes: 

 (1) Do the three IRT methods of scaling and scoring differ in terms of the ordering of 

item parameters from an attitudinal measure?   



 11

(2) How do the IRT and SEM methods of scaling and scoring compare in terms of the 

ordering of person parameters/estimates on the underlying latent trait of the attitudinal 

measure?  

 (3) Is the assumption tenable that the responses to the items on the attitudinal measure 

follow from an ideal point response process resulting in single-peaked, non-monotonic item 

characteristic curves? In other words, do item responses follow an unfolding pattern?  

(4) How does the generalized graded unfolding model compare in terms of model-

data fit with the partial credit and generalized partial credit models?  

 

Summary 

 As decisions continue to be made based on measures of personality, attitude, opinion, 

satisfaction, or preference, the need exists for reliable methods for scale construction and 

accurate estimates of responses to such measures. Methods for building a survey or test and 

the psychology of survey response must be considered simultaneously and exist in 

concordance with one another. Choice of model selection or method of scoring/scaling is also 

not made separately and independently from all other steps in the measurement process. 

Assumptions that define methods of scale construction, the item response process, and 

measurement model must ideally be aligned. Unintended consequences of dissonance 

between assumptions can yield inaccurate results, leading to ill-informed decisions.  

 Non-cognitive measurement is and has been conducted within a variety of disciplines 

where often times high stakes decisions are made. The assessment of personality is 

conducted for diagnostic and assessment purposes as well as for rehabilitation plans. 

Additionally, employers use personality testing to make hiring and other vocational 
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decisions. Marketing research frequently use surveys to measure preference for or 

satisfaction with particular products; surveys are also used as a tool for evaluating social 

service or educational programs by eliciting attitudes, opinions, and satisfaction with 

services. The current investigation used data from the North Carolina Teacher Working 

Conditions Survey. This survey data is used by policy makers to change or institute policies 

that determine how administrators are educated and trained. Additionally, the way in which 

schools are funded rest partially on the survey results.  

Within the context of non-cognitive measurement where respondents are asked to rate 

their level of agreement with an item, it is argued that the probability of item endorsement is 

high to the extent that the content and/or sentiment of that item closely matches the sentiment 

of the individual. Application of an unfolding IRT model would be a practical approach for 

scaling when this response process is responsible for producing the observed data. Unfolding 

IRT models are flexible, by design, in that they can accommodate the scaling of a continuum 

of item sentiment ranging from extremely negatively, to neutrally, to extremely positively 

worded items. Additionally, unfolding IRT models could prove efficient when items that 

comprise a survey that span the entire spectrum of the latent trait, from negative to positive. 

Investigation into an arguably feasible, alternative approach for measuring non-cognitive 

constructs seems warranted given the flexibility of unfolding models in scaling data, the 

capability of informing the scale construction process, and in some measurement situations 

the superiority over cumulative IRT models in measurement precision.  

 
 
 
 
 
 



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

 A variety of latent trait models have been developed within the context of item 

response theory (IRT). These measurement models are not new, with some of the earliest 

work and contributions to this theory of measurement dating from the 1930s (Hambleton & 

Swaminathan, 1985). These models are often applied to cognitive data like achievement test 

data or attitudinal, behavioral, personality or other non-cognitive data. Briefly, IRT models 

are mathematical models that permit prediction of examinee test performance from an 

individual’s standing on an attribute or trait and the characteristics of the items that make up 

a test (Hambleton & Swaminathan, 1985). The relationship between observed performance 

on an individual item or total test and the latent trait of the examinee is specified by a 

particular IRT model and thus by the item characteristic curve (ICC) (Hambleton & 

Swaminathan, 1985; Hambleton, Swaminathan & Rogers, 1991). Although there are 

numerous IRT models available for estimating person (i.e., latent trait, usually ability) and 

item parameters, all unidimensional IRT models rely on the assumptions of 

unidimensionality, local independence, and a monotonic (increasing) relationship between 

the probability of answering an item correctly (or endorsing an item) and the latent trait being 

measured (Hambleton et al., 1991; Hambleton & Swaminathan, 1985). This monotonic 

increasing relationship describes the shape of the ICC. The assumption of unidimensionality 

means that only a single latent trait (i.e., ability) sufficiently predicts examinees’ test 
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performance, or that only one construct is being measured and only one construct explains 

examinee performance (Hambleton & Swaminathan, 1985; Hambleton et al., 1991). In 

practice, this assumption does not hold in a strict sense;  the unidimensionality assumption is 

considered to be satisfied when a single primary trait accounts for test performance and when 

the relationship between the underlying trait and test performance is the same for all 

subpopulations of test takers (Hambleton & Swaminathan, 1985). The assumption that a 

person’s response to or performance on one item is not dependent on a response to a different 

item, when ability is held constant, describes local independence. In other words, responses 

to individual items are statistically independent from one another when conditioned on ability 

(Hambleton & Swaminathan, 1985; Hambleton et al., 1991). The nonlinear relationship 

between the latent trait and performance on an item is given by the mathematical function 

called the item response function (IRF). The difference between the IRF and the ICC is 

slight: the IRF is the mathematical equation or function; the ICC is just the graphical plot of 

the IRF. The assumption that the ICC is always increasing describes the monotonicity 

assumption. In cumulative IRT models, then, it is always assumed that as the level of the 

latent trait increases, so does the probability of endorsing (for non-cognitive items) or 

answering correctly (for cognitive items). IRT models differ in terms of the number of item 

parameters to be estimated, the scoring of different item types (i.e., a dichotomously-scored 

multiple choice item, a polytomously-scored short answer item where partial credit is 

granted, a polytomously scored Likert-type item with multiple ordered response options) and 

the number of latent traits that explain test performance.  
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Cumulative IRT Models 

 Some of the more commonly applied parametric, unidimensional IRT models for 

dichotomously scored data are known as cumulative IRT models. They include: the Rasch, or 

1-parameter logistic (1PL) model originally developed by Rasch (as cited in Smith & Smith, 

2004; Yen & Fitzpatrick, 2004); the two-parameter logistic (2PL) model developed by 

Birnbaum in the 1950s (as cited in Hambleton & Swaminathan, 1985); and the three-

parametric logistic (3PL) model (as cited in Hambleton & Swaminathan, 1985; Hambleton et 

al., 1991). Common unidimensional IRT models for polytomously-scored items include the 

following five approaches:  

1) the partial credit model (PCM; Masters, 1982) which models the probability of 

successfully completing or responding to the kth item response category;  

2) the generalized partial credit model (GPCM; Muraki, 1992) which is “formulated 

based on the assumption that the probability of selecting the kth category over the k 

minus first (k-1) category is governed by the dichotomous response model” (p. 160), 

and primarily differs from the PCM in that the discrimination item parameter is 

estimated in the GPCM;  

3) the rating scale model (Andrich, 1978) which models the probability of selecting a 

particular ordered category where the same set of response options are associated 

with each item, that all items are assumed to have the same underlying thresholds for 

those response options, and that all items are equally discriminating (a feature of all 

Rasch or 1PL models) (Masters, 1982; Smith & Smith, 2004). Such a model would be 

appropriate for Likert-type items where all items have the same response options, 
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where it is assumed that all items discriminate equally, and that the item response 

options are used equally across all respondents for all items;  

4) the  nominal response model (Bock ,1972) which yields the probability that a 

person of a particular level of the latent trait will endorse or respond to a particular 

response category. This model has been described as a very general model (Yen & 

Fitzpatrick, 2004) where “item scores are in mi unordered categories and a higher 

item score does not necessarily reflect better performance” (p. 17). The nominal 

response model differs only slightly from the partial credit model and actually 

“becomes the PCM when the slope [or discrimination item] parameters are 

constrained to increase in steps of unity” (Thissen & Steinberg, 1986, p. 571); and 

5) the graded response model (Samejima, 1969) for polytomously scored items with 

ordered response categories,  which estimates the function that relates the latent trait 

to each score associated with each response option for each item. Specifically, “the 

probability of a response in category k or above” (Thissen & Steinberg, 1986, p. 569) 

is estimated by the graded response model. That is, similar to the partial credit model, 

the graded response model estimates separate thresholds for each response option. 

The graded response model differs slightly from the rating scale model in that the 

latter assumes the thresholds for all response categories are equidistant and that they 

are the same for all items (Yen & Fitzpatrick, 2004).  

All of the models just described are categorized as cumulative; the primary 

underlying assumption is that the probability that an individual will agree with, endorse, or 

answer correctly an item increases to the extent that that individual’s standing on the latent 
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trait dominates or is more positive or greater than the content of the item (Roberts & 

Laughlin, 1996).  

Additional Models Appropriate for Attitudinal or Preference Data 

 Although this study will only address unidimensional IRT models, it is important to 

note that there are also several multidimensional IRT models used when more than one latent 

trait is expected or required to endorse or successfully complete an item. Research regarding 

the development of the theory and application of such models can be found in Ackerman 

(1992, 1994, 1996), Luecht and Miller (1992), Mislevy and Verhelst (1990), and Reckase 

(1985). Additionally, there exist unidimensional nonparametric IRT models for dichotomous 

and polytomous data, where fewer assumptions are made about the relationship between the 

probability of item endorsement (or getting an item correct) and the underlying latent trait, 

and the assumptions that are made are less strict. For example, one assumption in Mokken’s 

(1997) nonparametric model for dichotomous data is that of monotonic homogeneity, or that 

the probability of item endorsement is monotonic non-decreasing. This is less strict than the 

monotonicity assumption of parametric models. The section on nonparametric models in van 

der Linden and Hambleton (1997) provides a brief overview of three common nonparametric 

IRT models. Finally, social science researchers have used multidimensional scaling 

techniques to interpret ordinal or “pick any” data. Pick any data refers to data that result 

when an individual is asked to select any number of choices from a list based on some 

criterion. For example, people could be asked to select any number of qualities they value in 

a supervisor, from a list of say 15 descriptors. A company may use pick any data to assist in 

making marketing decisions with individuals being asked to select from a list of products that 

they would actually purchase.  
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 Selecting the most appropriate measurement model depends on the purpose of the 

analysis, the sample (i.e., size, characteristics), the construct(s) that the total test and 

component items are purported to measure, the scoring of the items (i.e., dichotomous, 

polytomous), the scoring of the total test, other attributes of the items such as speededness 

and probability or opportunity for guessing, and the response process assumed to underlie 

observed data.  

Responses Processes for Cumulative Models  

 The parametric, unidimensional, cumulative IRT models previously described share 

an important, underlying mechanism: the “cumulative (monotonic increasing probability) 

response function” (Andrich, 1996, p. 349) and the very closely related dominance response 

process assumed to underlie the observed data (Chernyshenko, Stark, Drasgow, & Roberts, 

2007; Roberts & Laughlin, 1996; and Stark et al., 2006).  According to Roberts et al.:  

In a dominance response process, an individual endorses an item to the extent that the 

individual is located above the item on the underlying continuum. Responses from a 

dominance process generally are analyzed with some form of cumulative model in 

which the probability of endorsement increases as the signed distance between the 

individual and the item on the attitude continuum increases (1999, p. 215).  

Data assumed to be produced by a dominance response process, where cumulative models to 

examine such data are most appropriately applied, are usually associated with the Likert 

approach to scaling and attitude measurement (Andrich, 1996; Chernyshenko, et al., 2007; 

Luo, Andrich, & Styles, 1998; Roberts & Laughlin, 1996; Roberts et al., 1999; Stark et al., 

2006).  
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Unfolding IRT Models 

 A different class of parametric, unidimensional IRT models for dichotomous and/or 

polytomous data are known as unfolding models and are sometimes referred to as models for 

nonmonotonic items (van der Linden & Hambleton, 1997). Some of the earliest contributions 

to the theory of such measurement can be traced back to the work of Thurstone (1927, 1928) 

and his methods of psychological, attitudinal scaling, which implied a nonmonotonic 

response process where individuals are least likely to respond positively or endorse an item 

as the distance between a person and an item on a latent trait continuum increases. Thus, 

according to Thurstone (1927, 1928) people are more likely to endorse an item when the item 

most closely matches the attitude of the person (i.e., as the distance between a person and the 

item decreases). Coombs (1952, 1964) built upon the underlying theories of Thurstone (1927, 

1928)--formally developed and termed unfolding models--and further developed the theory 

of data and measurement. Other researchers extended Coombs’ (1952, 1964) deterministic 

models to define stochastic or probabilistic unfolding models (Andrich, 1988; Andrich, 1996; 

Andrich & Luo, 1993; Davison, 1977; Hoijtink, 1990, 1991; Roberts & Laughlin, 1996; 

Roberts, Donoghue, & Laughlin, 2000). 

 Thurstone’s (1927) law of comparative judgment and proposed methods of measuring 

attitudes (1928) are credited by many scholars (e.g., Andrich, 1988; Andrich & Styles, 1998; 

Coombs, 1950; Stark et al., 2006) as some of the earliest contributions to the underlying 

theory of attitudinal or non-cognitive measurement. Thurstone’s (1928) theory of attitudinal 

measurement states that a person’s attitude is indicated by the selection of “a particular 

opinion which most nearly represents his own attitude” (p. 539). Essentially, “it was assumed 

that individuals would agree only with those statements that reflected their own attitude and 
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would disagree with those statements that reflected either a more intense or less intense 

attitude than their own attitude” (Andrich & Styles, 1998, p. 455).  

 Coombs (1950, 1964) and Coombs and Avrunin (1979) built upon the idea of 

endorsing an attitude item only when the item closely matches that of the individual. 

Coombs’s (1964) theory of data describes the relationship of data points, with a point being 

both an individual’s agreement with or preference for or location in some space or continuum 

about a construct, as well as the location of the item in that same space. The location of the 

person in this space or on the construct continuum is what Coombs (1964) termed the 

person’s ideal point. Thus, the ideal point process is an individual’s response process and is 

in operation when an item that most closely matches the individual’s attitude is endorsed 

(Coombs, 1964; Roberts et al., 1999).  

One distinguishing characteristic between Coombs’s (1964) and Thurstone’s (1927, 

1928) methods is that in the former, the location of individuals and items can be found 

concurrently (Andrich & Styles, 1998; Johnson & Junker, 2003; Noel, 1999). The idea of 

unfolding is closely related to the defining characteristics of the nonmonotonic, single-

peaked response functions for non-cognitive data, and essentially refers to how the data are 

treated: they must be unfolded. Because a response of say, Strongly Disagree, is not 

informative in terms of the location of the person (i.e., above or below) in relation to the 

location of the item, data must be unfolded so that direction can be made explicit (Andrich, 

1996). Roberts et al. (1999) “refer to the nonmonotonic behavior [of the ICC] as folding” (p. 

216).  This is why unfolding models are also referred to as proximity models; they describe 

that the “probability of endorsement is a function of the proximity between an individual and 

an item on the underlying attitude continuum” (Roberts et al., 1999, p. 213).  
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One limitation of Coombs’s (1950, 1964) unfolding or proximity model is that it is 

deterministic or non-probabilistic (Andrich, 1988; Andrich & Luo, 1993; Andrich & Styles, 

1998; Hoijtink, 1991) such that the probability of an individual endorsing an item can only be 

equal to 0 or 1 (Johnson & Junker, 2003). Coombs’s (1964) model is of the form: 

Xai=1 if |βa-δi| < τ ,  

Xai=0 if |βa-δi| > τ 

where:  

Xai= the response to item i by person a ; 

βa= the location of  person a  on the latent trait continuum; 

δi= the location of item i ; and 

τ = the “threshold (of equal size for each item) governing the maximum distance 

between βa and δi for which a person still renders a positive response” (Hoijtink, 

1991, p. 154).  

A probabilistic formulation of the item response function (IRF) of Coombs’s (1964) model is 

specified as follows: 

P(Xai = xai| βa, δi) = f(| βa - δi |, xai)  (Hoijtink, 1991). 

The benefit of a probabilistic model is that stochastic parameterizations of the 

mathematical item response function P(θ) allow for statistical inferences to be made about 

person and item parameters (Johnson & Junker, 2003). Some parametric, probabilistic 

unfolding models developed recently include: Andrich’s (1998) squared simple logistic 

model (SSLM); a hyperbolic cosine latent trait model (HCM) for dichotomous data (Andrich 

& Luo, 1993); a hyperbolic cosine latent trait model for polytomous data (Andrich, 1996); a 

generalized, reparameterized form of the hyperbolic cosine model (Luo, 1998); the 
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parallelogram analysis (PARELLA) model for dichotomous data (Hoijtink, 1990, 1991); the 

graded unfolding model (GUM) for dichotomous or polytomous data (Roberts & Laughlin, 

1996); and the generalized graded unfolding model (GGUM) for dichotomous or polytomous 

data (Roberts et al., 2000).  Additionally, two nonparametric, probabilistic unfolding models 

for either dichotomous or polytomous data have been developed: the MUDFOLD model by 

van Schuur (as cited in Roberts et al., 1999), and an ordinal scaling method (Cliff, Collins, 

Zatkin, Gallipeau, & McCormick, 1988). Detailed information on the form and specification 

of parametric unfolding models is provided in a subsequent section of this chapter entitled 

“Specifics of Unfolding Models.”  

 In theorizing how people respond to attitudinal items, Thurstone (1927, 1928) 

suggested that people only tend to endorse items that most closely match their perspective. 

Coombs (1964) further claimed that people agree with items that match their 

attitude/opinion, and disagree with item that contains a very different perspective, in either 

direction. The two theories share an important point; that is, a single peaked, as opposed to a 

“cumulative sigmoid shape[d]” (Andrich, 1988, p. 33) response function explains the 

relationship between item responses and the latent trait. To illustrate, consider the following 

statement with response options that range from strongly disagree to strongly agree (the 

number of response options is not important for this example): “This state’s juvenile justice 

system treats criminals fairly.” In response to this statement, ‘strongly disagree’ can be given 

for two reasons: that punishment is too harsh or too lenient. For a relatively neutrally worded 

item  

if the item is located far below the person’s position on the attitude continuum (i.e., 

the item’s content is much more negative than the person’s attitude), then the person 
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strongly disagrees from above the item. In contrast, if the item is located far above the 

person’s position (i.e., the item’s content is much more positive than the person’s 

attitude), then the person strongly disagrees from below the item (Roberts et al., 2000, 

p. 4).  

Differences Between Cumulative and Unfolding IRT Models 

 Although dominance and unfolding are both considered IRT models, they do differ 

conceptually and structurally. The more traditional IRT models were originally developed for 

test items within the framework of educational measurement where items measured 

underlying cognitive process like achievement or ability (Chernyshenko et al., 2007; van der 

Linden & Hambleton, 1997). On these types of tests, there is presumably one correct answer 

to each item, so the application of a cumulative model, with its respective underlying 

assumption of a dominance response process and monotonic increasing item characteristic 

curve makes sense for tests designed to measure knowledge, skill, or ability (Chernyshenko 

et al., 2007; Roberts et al., 1999; Stark et al., 2006; van der Linden & Hambleton, 1997). On 

tests that measure non-cognitive traits like attitude, satisfaction, or personality, one correct 

answer does not exist, so assumptions of monotonicity that describe cumulative response 

functions of dominance models would not hold.  

To illustrate the structural differences between cumulative and unfolding models, the 

distinction between an item characteristic curve for a cumulative IRT model and an 

unfolding model can be seen in Figure 2.1 and Figure 2.2. Figure 1 shows a hypothetical item 

characteristic curve within a cumulative IRT framework. Figure 2.2 depicts an item 

characteristic curve from the perspective of an unfolding model.  
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Figure 2.1. Hypothetical monotonic increasing Item Characteristic Curve (ICC) for a 

cumulative IRT model. 

 

 

Figure 2.2. Hypothetical single-peaked Item Characteristic Curve (ICC) for an unfolding IRT 

model. 
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In cumulative models (see Figure 2.1), it is assumed that as the underlying trait increases, so 

does the probability of endorsing the item. In unfolding models (Figure 2.2), also known as 

proximity models, the difference in distance between the person and the item on the 

underlying trait describes the horizontal axis; thus as the distance between the two increase, 

the smaller the probability of endorsing the item. 

 Chernyshenko et al. (2007) argued that item analysis results from the application of 

ideal point process models contain information related to content, where as item parameters 

from cumulative models do not. For example, the b, or item difficulty parameter, in 

cumulative IRT models describes the difficulty of the item and influences the location of the 

ICC. Further, for the 1PL and 2PL models, the b parameter represents the point on the latent 

trait (usually denoted θ) of a 50% probability of correctly answering or endorsing the item 

(Hambleton & Swaminathan, 1985). The higher the value of the b parameter, the more 

difficult the item. In unfolding models, however, item location, denoted δi, represents the 

point on the latent trait where the probability of endorsing an item is greatest, and not just 

50% (Chernyshenko et al., 2007). Table 2.1 provides a summary of the important differences 

between unidimensional, parametric, IRT cumulative and unfolding models. 

 The conceptual and structural differences between cumulative IRT and unfolding IRT 

models include the underlying response processes, the specification of the models, and the 

shape of the item characteristic curves. Another feature of unfolding models, distinguishable 

from cumulative models, is the distinction that must be made between the observed and 

unobserved response. As alluded to previously, a person may disagree with an item for one 

of two reasons, although which reason is not immediately known from the observed 

response. Parameterizations of unfolding models explicitly consider the lack of direction in 
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observed responses where a respondent may disagree with an item because the sentiment is 

too extreme or not extreme enough. The following sections of this chapter provide 

descriptions of the more contemporary parametric, unfolding IRT models. 

Unfolding Models Specified 

Andrich and Luo’s (1993; see also Andrich & Styles, 1998) hyperbolic cosine model 

for unfolding dichotomous data assumes that respondents can disagree for two reasons, from 

above or below, and agree for only one reason, thus yielding a model for three ordered, 

latent, response categories for two possible observed responses. Andrich (1996) developed a 

generalized hyperbolic cosine model for polytomous data, used with items having ordered 

response options such as: Strongly Disagree, Disagree, Agree, and Strongly Agree. This 

model assumes people can strongly disagree, disagree, and agree from above or below and 

only strongly agree for one reason (Andrich, 1996). This latter point results from the 

assumption that “the response of SA [strongly agree] implies that the person’s location is 

close to that of the statement” (Andrich, 1996, p. 353). In other words, a response of strongly 

agree implies a direction, whereas all other response options do not. Although the underlying 

theory is basically the same, the graded unfolding model (GUM; Roberts & Laughlin, 1996) 

and the generalized graded unfolding model (GGUM; Roberts et al., 2000) are parameterized 

slightly differently than the hyperbolic cosine models in that there are always two latent 

responses, or subjective response categories (SRCs; Roberts et al., 2000) for each observed 

response category (ORCs; Roberts et al., 2000). 
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Table 2.1 

Comparison of Unidimensional, Parametric, IRT Cumulative and Unfolding Models 

Characteristic Cumulative IRT Models Unfolding IRT Models 

Assumptionsa Monotonic increasing 
relationship between the 
observed responses and 
underlying trait 

Non-monotonic relationship 
between the observed 
responses and underlying 
trait 

Item Category Response 
Functions 

Category response functions 
are observed and single-
peaked 

SRC: Single-peaked, 
symmetric around θj–δi   
ORC: Single-peaked, or 
bimodal symmetric around 
θj–δi   

Item Characteristic Curve S-shaped, always increasing 
/ Monotonic 

Single-peaked / Non-
monotonic   

Underlying Response 
Process 

Dominance Ideal Point 

 
Type of Model 
 

 
Dominance 
 

 
Proximity 
 

Type of data most 
appropriate 

Cognitive (i.e., 
achievement) 

Non-cognitive (i.e., 
attitudinal, personality) 

Estimated Item Parametersb ai, biv, bi, dv 
                                                               

ai, τik, δi 
 

Appropriate Scaling 
Method  

Likert scaling method Thurstone scaling method 

Item Information Functionc A single-peaked function 
with a maximum at θj = δi 

A bi-modal function, 
symmetric about θj - δi with 
a maximum at | θj = δi | > 0 
Equal to 0 at θj = δi 

Notes: 

 aBoth unfolding and cumulative models assume unidimensionality and local independence.  

bThe GPCM item parameters are noted in this table for the cumulative model, and the 

GGUM item parameters are noted for the unfolding model.  

cThe test information functions (TIFs) are calculated the same way in both unfolding and 

cumulative models (i.e., TIF is the sum of each item information function).  

 



 28

 

Figure 2.3. Plot of 8 Subject Response Category Probability Functions for a 4 Response 

Option Item (from Roberts et al., 2000, p. 5). 

 

For example, Figure 2.3 depicts an item with four response options that has eight SRCs and 

seven threshold parameters (Roberts et al., 2000, p. 5). The item threshold parameter, τik, in 

the GUM, GGUM, HCM, and GHCM is defined as “the location of the kth SRC threshold on 

the attitude continuum relative to the location of the ith item” (Roberts et al., 2000, p. 5). Of 

note is the fact that the two subjective responses associated with a particular ORC are 

mutually exclusive. As such, for each item, summing the probabilities of the subject 

responses yields the probability that an individual will respond using a specific ORC 

(Roberts et al., 2000). Figure 2.4 shows the graph of the ORCs for the same item as in Figure 

2.3 (Roberts et al., 2000 p. 7).  

 



 29

 

Figure 2.4. Plot of the 4 ORCs associated with the 8 SRCs in Figure 2.3 (from Roberts et al., 

2000, p. 7). 

 

Following Andrich and Luo (1993), Roberts and Laughlin (1996) modeled the 

subjective responses in their GUM with a cumulative IRT model, where they chose 

Andrich’s (1978) rating scale model (Roberts & Laughlin, 1996). In the GGUM, Roberts et 

al. (2000) used Muraki’s (1972) GPCM to model the subjective responses. Compared to the 

parameterization of the SRCs, in the GUM and GGUM parameterization of the probability of 

an observed response to a particular category of a particular item, the “τik parameters lost 

their simple interpretation at the observable response level” (Roberts et al., 2000, p. 6).  

The three equations for Muraki’s (1993) GPCM, the GPCM as applied to the subject 

responses in the GGUM, and Roberts’ et al. (2000) GGUM are shown in Equations (1), (2), 

and (3). 

Muraki’s (1993) GPCM is parameterized as follows:  
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 Pjk|k-1,k(θ) =               Pjk(θ)           =   exp[Daj(θ - bjk)]   ,          (1) 
   Pj,k-1(θ) + Pjk(θ)      1+ exp[Daj(θ – bjk)] 
 

 
where k = 2,3,..mj and mj is the number of response categories.  

 

The GPCM then is written as  

   k 

            exp [Σ  Zjv(θ)] 
Pjk(θ) =                v=1 
                                 _______________________________                                                  
                       mj            c                                    

                       Σ exp [Σ Zjv(θ)] 
          c=1         v=1 
and 
 
Zjv(θ) = Daj(θ – bjv) = Daj(θ – bj + dv) ,  
 
where  

D = a scaling constant (D=1.7); 

aj =  the item slope parameter; 

bjv =  the vth  category parameter for item j; 

bj =  the item location parameter; and 

dv =  a category parameter. 

Muraki’s (1992, 1993) GPCM used by Roberts’ et al. (2000) GGUM specifically to model 

the subjective response functions (SRFs) follows (Roberts et al., 2000, p. 4-5): 

 

              y 

  exp { ai [y (θj – δi) – Σ τik] }             (2) 
            k=0_______  ,                        
P(Yi = y|θj) =   M                                               w 
  Σ { exp { ai [w (θj – δi) – Σ τik] }} 
           w=0         k=0 
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where 

 Yi = an observed response to item i ; 

y = 0 (y = 0, 1, 2, . . . , M) corresponds to the strongest level of disagreement from         

below the item;               

 M = the number of subjective response categories (SRCs) minus 1; 

 ai = the discrimination of item i; and   

τik = the location of the kth SRC threshold on the attitude continuum relative to the 

location of the i th item.  

The statistical parameterization of the GGUM (Roberts et al., 2000, p. 6) for observed 

responses is defined as follows: 

             z              z 
  exp{ ai [z (θj – δi) – Σ τik] } +  exp{  ai [(M – z) (θj – δi) – Σ τik] }    
           k=0             k=0  
                        ________________________________________________________   (3) 
P(Zi = z)|θj) = C         w             w  

  Σ { exp { ai [w(θj – δi) – Σ τik] } +  exp{  ai [(M – w) (θj – δi) – Σ τik] }    
          w=0        k=0          k=0 

 
 

where            

Zi = the observed response to statement i ; 

z = is an index of agreement ranging from z = 0 to  C, where 0 corresponds to the strongest 

level of  disagreement and C corresponds to the strongest level of agreement; and 

C = the number of ORCs minus 1 (M = 2C + 1). 

 With an explanation of unfolding models, assumptions that underlie them, and the 

parameterizations of models, specifically the parameterization of the generalized graded 

unfolding model (GGUM), the following section describes the need for and appropriateness 
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of application of unfolding models to specific types of data (i.e., non-cognitive) and 

examines the literature as it relates to application of unfolding models to real and simulated 

data. 

Applications of Unfolding Models for Theory and Model Development  

Proponents of the underlying theory of unfolding or ideal point process models have 

extended the theoretical work and applied such models to real and/or simulated data. For 

example, Andrich (1988) introduced the squared simple logistic model (SSLM) and applied 

it to both real and simulated dichotomous, direct-response data. The items used in Andrich 

(1988) elicited information about respondents’ attitudes towards capital punishment. 

Similarly, Andrich and Luo (1993) compared analysis results like correlations and item and 

person parameters from the hyperbolic cosine model (HCM) and various parameterizations 

of it, and the SSLM using simulated data and the same real data as Andrich (1988). The 

focus of both studies was on the development of a new statistical model for the analysis of 

attitudinal data and on efforts to determine if estimates of the model parameters were 

possible. Andrich (1988) determined that the variances for both item and person parameters 

were always higher for the estimated parameters than for the initial or generating parameters, 

thus making estimates somewhat biased. Estimates for people and items from the SSLM 

were compared to existing Thurstone scaling estimates of the same instrument and were 

deemed to be equivalent (Andrich, 1988). A limitation of the SSLM, however, is such that 

the maximum probability of item endorsement is .5, even when the person and item have the 

same scale values.  

Andrich and Luo (1993) were similarly motivated to derive a probabilistic model for 

unfolding data, though they made explicit the derivation of their general HCM, an unfolding 
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model, from a cumulative model (i.e., the Rasch model for ordered response categories) and 

heavily emphasized one of the item parameters in their model, the unit parameter (θi) 

described as a unit of measurement. Their focus was on unfolded models that needed to be 

folded in order to be compatible with folded data (Andrich & Luo, 1993). Folded data are 

those that result from Likert-type items where direction is not necessarily implied from the 

observed data, and can be easily recognized by a single-peaked response function. The two 

parameterizations of the HCM in Andrich and Luo (1993) were: the simple hyperbolic cosine 

model (SHCM) where the item parameter, called the unit parameter, denoted θi, is held 

constant across all items; and the two-parameter hyperbolic cosine model (2PHCM) that 

allows the unit parameter to be estimated for each item. The difference between Andrich’s 

(1988) SSLM and Andrich and Luo’s (1993) SHCM is slight: in the SSLM “the square of (βn 

– δi) is taken” whereas “the symmetric hyperbolic cosine of (βn – δi) is taken” in the general 

and other parameterizations of the HMC (Andrich & Luo, 1993, p. 261). Andrich and Luo 

(1993) describe how the use of the SHCM over the SSLM is a substantive improvement 

where the SHCM “involves analyzing the details of the unfolding response mechanism to 

reveal and then model explicitly the two latent responses for a Disagree response, and then 

bringing them together” where the SSLM “is essentially based on a device (the square 

function) that produces a descriptive model of the required shape” (p. 261).  

The characteristic that the two models share, however, is the maximum probability of 

item endorsement of .5. The simulation study of Andrich and Luo (1993) was conducted to 

determine item and person parameter recovery, which were deemed acceptable. Using real 

data (from Andrich, 1988) comparisons were made between SSLM (Andrich, 1988), SHCM 

and 2PHCM parameter estimates where the correlation between the SSLM and 2PHCM 
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estimates was equal to .997 and to .999 between the SSLM and SHCM estimates (Andrich & 

Luo, 1993). Additionally the ordering of response patterns was compared for the SHCM and 

2PHCM where only slight differences were found. Andrich and Luo (1993) did not make 

explicit comparisons across the three models for the person location, or βn, parameters.  

In related studies, Hoijtink (1990) introduced the probabilistic form of Coombs’s 

model (1964), the parallelogram model, called PARELLA, for measuring latent traits (i.e., 

attitudes) and tested the model using simulations. Like Andrich (1988), Hoijtink (1990) 

intended to determine the feasibility of parameter estimates, though he used a marginal 

maximum likelihood (MML) approach (Bock & Aitkin, 1981) for item parameter estimates 

and the expected a posteriori (EAP; Bock & Aitkin, 1981) method for person estimates, 

whereas Andrich (1988) and Andrich and Luo (1993) used the joint maximum likelihood 

(JML; see Andrich & Luo, 1993 and Luo, 2000 for solution equations). Hoijtink’s (1990) 

PARELLA model is similar to Andrich’s (1988) SSLM though the models do differ in two 

ways. First, the former model involves an item parameter (in addition to item location) called 

the power parameter, denoted γ, and describes the importance (Hoijtink, 1990) of the 

distance between the person and item location on the latent trait. In the latter, an analogous 

item parameter, the unit parameter (θi) is specified. Second, the maximum probability of the 

PARELLA model is 1.0 which is not true for the SSLM. Hoijtink (1990) specifically 

examined the stability and accuracy of estimates using simulations with variations of the 

following parameters: power parameter, shape of the person distribution, width of the person 

distribution, number of items, sample size, number of nodes (i.e., quadrature points), and the 

distribution of item parameters. A common theme within all results was the measure of the 

difference between the estimated and generating (initial) parameter estimates in Hoijtink 
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(1990) and in his follow up study (1991). A summary of the general trends reported by 

Hoijtink (1990) include: biased estimates of the person distribution (uniform and skewed) 

due to the restriction of range, although estimates were found to be unbiased for bi-modal 

and normal distributions. Recovery of the person distribution was not accurate for a sample 

of 100 people, but was for sample sizes of 300 and 900. Also, the increase from 10 to 16 

nodes only improved the recovery of parameters for the person distribution for the condition 

of a bi-modal generating distribution. Hoijtink (1990) also employed a method for examining 

“fit” of the PARELLA model to the data using “the results of the E-step and the M-step to 

provide a way to evaluate the fit of the data to the expected stimulus characteristic curve” (p. 

653) specifically using the difference between the observed and expected number of people 

at a particular quadrature point who selected item i. Although there is no criterion to evaluate 

such comparisons to determine statistical fit, this method appears to be an acceptable 

descriptive measure. 

In his follow-up study using a simulated data set, Hoijtink (1991) again examined the 

appropriateness of the PARELLA model and examined model fit using the sum of the 

differences between the observed and expected outcomes related to the item response 

functions. The criteria used by Hoijtink (1991) to differentiate between good and poor fit are 

dependent upon on sample size and number of quadrature points, although for a sample of 

300 people and 10 quadrature points “two or more differences between [empirical and 

expected values] greater than 4.0, or a sum of differences greater than 20 is indicative of an 

inequality between the empirical and expected IRFs” (p. 163). This criterion is only a rule of 

thumb, and Hoijtink (1991) recommended for a relaxation of the criterion for larger samples 

and a more stringent criterion for smaller samples. Hoijtink (1991) also applied the 
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PARELLA model to three real data sets, one of which was used in Andrich (1988) allowing 

some comparisons to be made with Andrich’s (1988) SSLM analyses. For example, the order 

of the item estimates was found to be the same across both PARELLA and SSLM models. 

Application of the PARELLA model was determined to have merit because of the replication 

of Andrich’s (1988) results, the exhibition of good fit according to the above criterion and 

examination of the weights associated with each quadrature point (the parallelogram 

structure of the data) (Hoijtink, 1991).    

In an attempt to test the assumptions of the ideal point response process for the 

purpose of informing and improving personality assessment, Stark et al. (2006) applied two 

cumulative and two unfolding models to real personality data for the purpose of closely 

examining how people respond to personality items. Weekers and Meijer (2008) extended 

the work of Stark et al. (2006), although they used a similar methodology to compare 

analyses from cumulative and unfolding IRT models applied to surveys developed using 

dominance response process assumptions and ideal point response process assumptions. 

Chernyshenko et al. (2007) used a cumulative and unfolding model to score three surveys: 

one designed using ideal point response process assumptions using the GGUM, one using the 

traditional Likert approach (which, by design, assumes a dominance response process) to 

scale development using CTT, and another using dominance response process assumptions 

with a cumulative IRT model (2PL). Real data from a personality inventory were used and 

comparisons made between person and item parameters for the scale design (ideal point, 

dominance)/IRT statistical model (2PL, GGUM) pairs.  

Stark et al. (2006) stated that it is not always apparent which response process (ideal 

point or dominance) is necessarily in operation and responsible for observed data from non-
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cognitive items. Thus, their purpose was to investigate if ideal point process models provide 

viable alternatives for scale development and scoring to the traditional and almost 

exclusively employed Likert-type or dominance IRT methodologies. Four IRT models—a  

parametric cumulative model (2PL), a nonparametric cumulative model  (Levine’s 

nonparametric maximum likelihood formula scoring model, MFSM); a parametric ideal point 

model (GGUM),  and a nonparametric ideal point model (Levine’s MFSM with ideal point 

constraints)–were applied to real, dichotomously-scored personality data comprised of 16 

subscales, and directly compared in terms of chi-square fit statistics and graphical fit plots to 

determine the appropriateness of each model including the underlying assumptions (Stark et 

al., 2006). Because examination of the appropriateness of assumptions was a primary 

component to their investigation, Stark et al. (2006) calculated chi-square fit statistics for 

pairs of items and item triplets, as statistics for a single item are not necessarily sensitive to 

violations of the IRT assumptions of unidimensionality and local independence. The three 

chi-square statistics for each model were averaged across all items for each of the 16 

subscales and directly compared across the four IRT models, where smaller chi-square 

statistics (< 3) was the criterion for good fit. The graphical representation of the ICCs from 

the four models was used as a second measure of fit, with specific focus on the extreme 

values of the underlying latent trait, as nonmonotonicity of ICCs is an indication of an ideal 

point response mechanism and it is in the extremes of the distribution where cumulative and 

unfolding models tend to diverge the most. Based on the two measures of fit, four of the 16 

subscales were found to contain at least four nonmonotonic items. Of these four subscales, 

Stark et al. (2006) determined, based on the chi-square measure of fit, that the nonparametric 

ideal point model (i.e. Levine’s MFSM with ideal point constraints) fit best for three, and the 
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MFSM with dominance constraints fit best for one subscale. The mere fact that any items 

exhibiting nonmonotonicity were found in addition to the fit measures were reason for Stark 

et al., (2006) to defend that ideal point models are flexible enough to model non-cognitive 

traits and should be considered as an alternative to cumulative or dominance models. This 

conclusion stems from the fact that the data used came from the Sixteen Personality Factor 

Questionnaire (16PF), which was developed using a dominance response methodology 

(Stark et al., 2006).         

 Chernyshenko et al. (2007) pursued an investigation similar to that of Stark et al. 

(2006) by investigating the flexibility and functionality of a dominance model (2PL) and an 

ideal point model (GGUM). Each model was applied to three data sets produced by three 

scales; one built using traditional CTT methods, one using dominance IRT (2PL) 

methodology, and another using ideal point (GGUM) methodology.  

Chernyshenko et al. compared IRT scores in two situations between the 2PL and the GGUM: 

scores compared when both models were applied to the data resulting from the scale built 

with the 2PL; and the comparison of scores when both models were applied to data resulting 

from the scale built with the GGUM. Chernyshenko et al. determined that the GGUM 

performed as well in fitting the 2PL data as the 2PL model, as evidenced by a .97 correlation 

between the IRT scores, however, results from the application of the 2PL model to GGUM 

data were not as favorable. Chernyshenko et al. showed that the item location parameters 

within the context of ideal point models provide information about item content, where those 

parameters from any dominance model are not related to item content. Additionally, 

correlations with four other measures were used for the purpose of providing evidence of 

criterion, discriminant, and convergent validity, where “the overall criterion-related validity 
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of scores dropped in every case when 2PLM was used to score the Ideal Point order 

[construct measured] items but remained the same when GGUM was used to score the 

Dominance IRT order items” (p. 101).The general conclusion made by Chernyskenko et al. 

was that ideal point models should be considered and implemented as a mechanism to 

improve non-cognitive measurement. This decision was based on the fact that ideal point 

models can accurately model data resulting from dominance methodologies and they do 

provide added measurement precision, especially towards the middle of the latent trait by 

including items that contain neutral sentiments, making them much more flexible.  

The study by Chernyshenko et al. (2007) built upon the investigation by Stark et al. 

(2006) in that the former constructed various scales according to the model assumptions, then 

applied the respective and alternative  models (i.e., applying the GGUM to 2PL data) to data, 

and made efforts to examine validity to empirically determine the flexibility and efficacy of 

ideal point models.  Weekers and Meijer (2008) attempted to replicate the findings of 

Chernyshenko et al. (2007), measuring a slightly different facet of the personality construct, 

and using different dominance and ideal point IRT models. Similar to Stark et al. (2006), 

Weekers and Meijer (2008) used four types of models (parametric, nonparametric, 

dominance, and ideal point) although the specific models differed. The parametric 

dominance model used by Weekers and Meijer (2008) was the 1PL, and the nonparametric 

dominance model used was Mokken’s (1997) model of monotone homogeneity. The 

parametric unfolding model employed was the GGUM and the nonparametric multiple 

unidimensional unfolding model (MUDFOLD; van Schuur & Post, 1998, cited in Weekers & 

Meijer, 2008) was the nonparametric unfolding model used in the analyses. Like 

Chernyshenko et al. (2007), Weekers and Meijer applied a dominance and unfolding model 
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to a data set resulting from a scale built from a dominance perspective and to another data set 

resulting from a scale build with ideal point assumptions. Weekers and Meijer found similar 

results in that the correlation between person estimates (i.e., IRT scores) was high for both 

the dominance scale (r = .988) and for the ideal point developed scale (r = .971), although 

they too found discrepancies between the unfolding and dominance model estimates for the 

unfolding data, especially at the upper extreme values of the underlying trait. Echoing the 

argument of Stark et al. (2006), Weekers and Meijer confirmed that inappropriate application 

of a model can have implications about decisions based on scores, as the ordering of people 

varied at the upper end of the trait between the dominance and unfolding models when 

applied to the unfolding data. As a result, inaccurate decisions would be made if the interest 

was focused on those people located at the upper 5% or 10% of the distribution. Finally, 

Weekers and Meijer drew similar conclusions to Chernyshenko et al. (2007) and Stark et al. 

(2006), in that they provided evidence in support of the use of unfolding models with non-

cognitive data, not necessarily to replace cumulative (i.e., dominance) models, but to 

contribute to more precise measurement and improved scale development for certain non-

cognitive constructs. 

 Although they calculated various chi-square fit statistics as one form of evidence in 

inform their decision making, a similar methodology was implemented across the 

Chernyshenko et al. (2007), Stark et al. (2006) and Weekers and Meijer (2008) studies; 

namely the use of a computer program MODFIT  to calculate adjusted chi-square fit 

statistics. These statistics, denoted χ
2/df , are adjusted by dividing the value of the chi square 

statistic by their degrees of freedom. When building three types of scales using three 

methodologies, Chernyshenko et al. (2007) used MODFIT for both the 2PL and GGUM to 
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calculate adjusted chi-square statistics for items, item pairs, and item triplets. These statistics 

were used to examine fit and to help determine which items from the larger item pool should 

be retained for the final 20-item scales. This comparison was facilitated by the equal sample 

size of 3,000. Weekers and Meijer (2008) used four different models, and four different 

software programs that each calculated a chi-square fit statistic, where MODFIT was used to 

calculate the adjusted chi-square fit statistics as a measure of GGUM model-data fit. Finally, 

comparisons of statistical fit, in a global sense, between the 2PL and the GGUM were made 

by Stark et al. (2006) as calculated with MODFIT, again using the same and equal sample 

size (i.e., 3,000) as Chernyshenko et al. (2007). The criterion used to evaluate comparisons is 

described in Chernyshenko et al. (2007) where it indicated that “previous studies have found 

that good model-data fit is associated with adjusted χ
2/df of 3 or less” (p. 93). (Chernyshenko 

et al. (2007, p. 93) present the derivation of the equation for a chi-square fit statistic for a 

single item is as follows:     

 

)(

21

0

2 )]()([

ui

ii

u
i E

uEuo −
Σ=
=

χ                (4) 

 

where the expected frequency of selection of a particular response category for item i is 

calculated as: 
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and, finally, the “the expected frequency for a chi-square statistic involving a pair of items, 

for items i and i’, in the (u,u’)th cell of a two-way contingency table, is computed as: 

 

∫ === θθθθ dfuUPuUPNuuE iiii )(*)|'()|()',( '', .                      (6) 

 

To test the feasibility of their newly developed graded unfolding model (GUM), 

Roberts and Laughlin (1996) applied the model to simulated and real data pertaining to 

attitudes toward capital punishment. This model is an extension of Andrich and Luo’s (1993) 

hyperbolic cosine model (HCM) in that the GUM can accommodate either dichotomous or 

polytomous (i.e., graded) data, as opposed to dichotomous data only. Roberts and Laughlin 

(1996) developed the GUM with four guiding principles: 1) that an individual agrees with a 

statement to the extent that the statement reflects that individuals’ standing on the construct 

being measured; 2) an individual may agree or disagree with an item for two reasons 

(because the item does (not) express a strong enough sentiment, or that the item does (not) 

express too strong or too extreme of a sentiment) called agreeing or disagreeing from above 

or below; 3) the subjective responses (i.e., disagreeing/agreeing from above or below) are 

modeled using a cumulative IRT model; and 4) the subjective category thresholds (the point 

of intersection of the response functions for the subjective responses) “are symmetric about 

the point (θj – δi) = 0” (p. 235). 

To examine the accuracy of the GUM estimates, Roberts and Laughlin (1996) used 

both real data and data generated from a simulation study with 30 conditions using the joint 

maximum likelihood method for parameter estimations. In the simulation study, they varied 

sample size with five values ranging from 100 to 1,000 and six values of test length ranging 
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from five to 30 items where items had six response options. Item locations (δi) were set 

equidistant, the thresholds (denoted τk) or the point of intersection of the subjective response 

functions on the latent trait were held constant at .4, and the person parameters, theta (θj), 

were randomly sampled from a normal distribution (Roberts & Laughlin, 1996). Four 

measures of accuracy were computed including the root mean square error (RMSE) for each 

of the three parameters, δi, τk, and θj, a Pearson product moment correlation between the 

simulated (true) and estimated parameters, the ratio of estimated and true parameter variance, 

and the average difference between the estimated and true parameters (Roberts & Laughlin, 

1996). Major findings included that accuracy of theta estimation is largely a function of the 

number of items, where accuracy increased with an increase in items. A similar effect was 

found with item location for the RMSE and variance ratio measure of accuracy and with 

threshold estimation for the RMSE, average difference and variance ratio measures (Roberts 

& Laughlin, 1996). Inaccuracies in parameter estimates were almost entirely a function of the 

difference in variance between the generating (true) and estimated parameters, which may 

have been due to the fact that the JML method of estimation was used (Roberts & Laughlin, 

1996). Inaccuracies decreased as the number of items and people increased, though the 

decreased effect was more profound with the added items (Roberts & Laughlin, 1996). 

Overall, estimation was deemed possible and accurate by Roberts and Laughlin (1996) using 

the GUM on data that include at least 100 people with 15 to 20 items.  

Roberts, Donoghue and Laughlin (1998) and Roberts et al. (2000) extended the work 

of Roberts and Laughlin (1996) to develop a probabilistic, unfolding IRT model for graded 

responses allowing both the item discrimination and item threshold parameters to vary across 

items, called the GGUM. Data were simulated in Roberts et al. (1998) to determine the 
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accuracy of the MML item and EAP person estimates and to examine how well the GGUM 

recovered such parameters with six levels of test length ranging from five to 30 items (each 

with six response options) and six levels of sample size ranging from 200 to 2,000 people. 

 Briefly, Roberts et al. (1998) found that accurate item estimates resulted with at least 

a sample size of 750 and accurate person estimates resulted with at least 15 to 20 items. 

Roberts et al. (2000) described general, graphical methods to help identify items that fit 

poorly by applying the GGUM to real data about respondents’ attitudes toward abortion 

where the final scale consisted of 20 items and the sample included 750 undergraduate 

students. Interesting findings from Roberts et al. (2000) include the differing effect of the two 

item parameters, discrimination (ai) and threshold (τi), on the expected value GGUM 

function and item information function. An increase in the discrimination parameter yields a 

more peaked expected value function that approaches its upper bound. The effect of increases 

in item thresholds (i.e., the distance between the subject responses relative to the location of 

the item) has a similar effect on the expected value function in that it approaches its upper 

bound, but this increase yields a flatter function (Roberts et al., 2000). According to Roberts 

et al. for item information functions: 

The information function becomes larger and more peaked as ai increases, but it 

becomes smaller and less peaked as ψ [interthreshold distance] increases. Thus,  

maximum measurement precision is achieved at two symmetric points (or  

regions) on the latent continuum, and items with large discrimination indices and 

small interthreshold distances yield the most precision at these points (p. 17) 

A final relationship found by Roberts et al. (2000) between the two item parameters, 

discrimination and threshold, was the quadratic relationship between the two estimates, 
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where, as item locations tended toward the extremes, the absolute value of the threshold 

estimates increased. Although it is not clear if such a relationship can be generalized beyond 

their analysis, Roberts et al. (2000) interpreted this relationship to suggest “that moderate 

items distinguished among respondents more than extreme items” (p. 21).  

 Related to model fit, Roberts et al. (2000) calculated the difference between person 

estimates and item location estimates for all item (n = 20) and person (n = 750) pairs for a 

total of 15,000 differences. These differences were then grouped into 200 approximately 

homogeneous groups of size n = 75. Roberts et al. (2000) graphically plotted the average 

observed and expected responses, calculated Pearson product-moment correlations between 

these same sets of responses, and product-moment correlations between expected and 

observed responses for each item. Based on the overlap of the plotted scores and the high (r = 

.995) correlation between the observed and expected responses, Roberts et al. (2000) 

concluded that the global fit of the GGUM appeared to be reasonable.  

Practical Application of Unfolding Models 

 The use of unfolding models extends beyond simply testing the feasibility and 

capability of these models. Unfolding models have been applied to revisit research findings 

of the poor relationship between attitude and behavior as an alternative and potentially 

valuable way to better understand this relationship. Andrich and Styles  (1998) have argued 

that the poor relationship between attitude and behavior that exists in the extant literature 

“may be a methodological artifact that is related to the location of statements on a continuum 

as envisaged by Thurstone, and because Thurstone’s methods are not used routinely in 

substantive research on attitude measurement…” (1998, p. 456).  
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The application of unfolding models as improved methods of understanding patterns 

of change and how people move or progress through developmental stages has received 

recent interest and can be found in the literature within a variety of contexts. The general 

argument for the superiority of unfolding models over cumulative models is such that single-

peaked functions describe stage/developmental data better than monotonic increasing 

functions. Noel (1999) succinctly described this point:  

Obviously, such a developmental model relies on a different conceptualization of 

psychological change than do the better known cumulative models, such as Mokken, 

Rasch, or Guttman scaling. Whereas in cumulative models each stage is assumed to 

prepare the following in an integrative manner, so that earlier stages remain 

embedded in the later ones, in unfolding developmental models each stage is 

preparing the following while inhibiting the previous ones. Otherwise stated, the 

unfolding model of change assumes that some processes are relevant in a given stage 

but no longer relevant as one moves along the developmental continuum. (p. 175). 

Noel (1999) applied Roberts and Laughlin’s (1996) GUM to test a proposed theory of 

cognitive and behavioral change as it related to a sample of cigarette smokers and their 

attitudes about smoking in an attempt to investigate the tenability of the proposed theory of 

change and the hypothesis that the change process is explained by a single-peaked pattern. 

The efficacy of such an inquiry could assist in treatment for smoking if reliable information 

exists about where people are in the various stages of change.  

 Another example of measuring progression through stages is provided in DeMars and 

Erwin (2003), where intellectual development of young adults was hypothesized to progress 

through stages. DeMars and Erwin’s (2003) investigation centered around a developmental 
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instrument called the Scale of Intellectual Development XII (SID-XII), which was developed 

using the theoretical model postulating that adult development is stage-like. Their efforts 

were directed towards validating the underlying theoretical model (stage theory of adult 

development) upon which the SID-XII was built, in addition to producing a meaningful and 

informative single score on the latent trait, and to assess item fit (DeMars & Erwin, 2003). 

Motivation and implications of their study were couched within the context of higher 

education and improving assessment instruments and methodologies within higher education.  

 The overarching goal of a study by Touloumtzoglou (1999) was very similar to that 

of DeMars and Erwin (2003) in that the purpose was to examine the psychometric properties 

of a particular scale, elucidate observed scores from an ideal point response process 

perspective, and generally spawn efforts for improved measurement. Whereas DeMars and 

Erwin (2003) used the GGUM for polytomously scored items about intellectual development 

and allowed the discrimination of the items to vary, Touloumtzoglou (1999) employed the 

hyperbolic cosine model (HCM) on dichotomously scored items about attitude towards the 

visual arts.  

 Overall, each of the studies noted in the previous sections of this chapter provide 

support for the theoretical development and practical application of unfolding models. The 

structure of the theory that underlies unfolding models makes substantive sense and its 

application to some non-cognitive data seems appropriate. Empirical studies have provided 

evidence that application of unfolding models to non-cognitive data can indeed be superior to 

cumulative models in terms of model flexibility and improved measurement accuracy for 

extreme values of the trait, and more applied researchers are using unfolding models on real 

survey or attitudinal data. Additionally, the theory underpinning unfolding models has even 
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prompted some researchers (i.e., Andrich, 1988; Andrich & Styles, 1998) to re-examine 

previous research findings from an ideal point perspective.  

Improving Measurement with Unfolding Models 

Application of unfolding models to non-cognitive data seems reasonable because of 

the characteristics and theoretical components of the unfolding model described. The 

assumptions that underlie both the observed data and the unfolding model are more 

congruent than the application of cumulative models to unfolding data when items require a 

respondent to select a response category that most closely matches or reflects the person’s 

attitude (Andrich, 1988, 1996; Chernyshenko et al., 2007; Noel, 1999; Roberts et al., 1999; 

Roberts et al., 2000; Stark et al., 2006). Unfortunately, there exists a discrepancy in current 

research methodologies between the assumptions of the underlying response process that 

produce the observed item scores, and how those items are developed and the scoring/scaling 

of the resulting data, where non-cognitive scales are still typically developed and scored 

using the traditional, Likert methodology (which implies a dominance response process). 

This is particularly problematic for attitudinal and personality data, as researchers have 

shown  that the assumption of the ideal point response process (and the application of 

unfolding IRT models) better explains such data than the dominance response process (see, 

Andrich, 1996; Andrich & Styles, 1998; Chernyshenko et al., 2007; Roberts et al., 1999; 

Stark et al., 2006).  Specifically, the problem lies in the interpretation of the results, which 

could be inaccurate if a model assuming a dominance response process is applied to 

unfolding data. The inaccuracies exist especially for individuals whose true location on the 

latent trait is extreme (Chernyshenko et al., 2007; Roberts et al., 1999) which can yield 

inaccurate decisions based on the results.  
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One of the fundamental differences between cumulative and unfolding models is the 

shape of the ICC, where monotonic increasing, ogive-shaped curves characterize the 

dominance response process, and single-peaked bell-shaped curves characterize the ideal 

point response process. Accordingly, there are always two person estimates that yield the 

same probability of item endorsement (Andrich, 1995a) within the context of unfolding 

models, and only one person location on the latent trait that is associated with a probability of 

a positive response when a cumulative model is applied. It is for this reason that closer 

examination and perhaps a change in the way researchers analyze non-cognitive data is 

warranted. If data are truly of the unfolding type, and a cumulative IRT model is applied, 

results will be inaccurate. The degree of inaccuracy depends on the relative location of the 

items and people.   

In summary, Likert-type instruments are built, by design, to only include relatively 

positively and negatively worded items, have high internal consistency, and to have items 

with high item-total correlations. By design, relatively neutral items are omitted, thus 

omitting some level of measurement precision on the latent trait. Also, as a result of reverse 

scoring negative items, all ICCs should appear to be monotonic increasing. However, results 

from Meijer and Baneke (2004) in their analysis of data from the Minnesota Multiphasic 

Personality Inventory - 2 (MMPI-2) and the analysis of data from the Sixteen Personality 

Factor Scale (16PF) by Chernyshenko et al. (2001) yielded items with nonmonotonic ICCs. 

Existence of some unexpected nonmonotonicty provides support for further consideration of 

unfolding models. Additional support for further investigation into the appropriateness of 

unfolding models for non-cognitive data was evidenced by Chernyshenko et al. (2007) who 

found that the conditional statistic, item information, for Likert-type items provided the most 
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information towards the middle of the latent continuum. Thus, if a scale is built using the 

Likert methodology, items require a respondent to select a response category that most 

closely reflects the person’s attitude, and users of the observed data are especially concerned 

with those sample members whose attitudes, opinions, perspectives are more extreme, then 

application of unfolding models would at least provide better measurement precision for 

respondents than their cumulative counterparts. In many practical situations, users of the data 

are most interested in those with extreme attitudes or perspectives. The ideal measurement 

situation would be such that survey development reflects the intended purpose of the survey 

and intended uses of the scores. Items contained on the survey should reflect the purpose, and 

assumed response processes that will govern the observed responses. Finally, analysis of the 

observed data would be very closely aligned with the assumptions made about the data.  

Chernyshenko et al. (2007) emphasized the need for continued, improved personality 

measurement and clearly described the problems with commonly used methods. Their study 

focused on scale construction, which should be a first step because methods of, or procedures 

for, test development will dictate how data are used and analyzed. Chernyshenko et al. 

(2007) highlighted the problem and constraints with using classical test theory and factor 

analytic methods for scale construction and applying cumulative models for item analysis 

and scoring in the context of personality scale development. An explanation was detailed 

about the parallel between ideal point processes and unfolding models for test construction. 

Because of the greater flexibility that ideal point process or unfolding models offer, 

Chernyshenko et al. (2007) noted that: 

Constructing scales under ideal point assumptions would therefore allow the inclusion 

of items having a wider range of locations rather than just those tending toward 
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extremes. This, in turn, would improve scale precision, reduce inventory development 

costs, and offer a relatively straightforward path toward computerized adaptive 

tests...” (p. 91).  

Support for the claim that application of traditional, parametric, cumulative IRT 

models may not always be appropriate for non-cognitive survey development and data 

analysis comes from a direct comparison of cumulative and unfolding IRT methods as well 

as classical test theory (CTT) in terms of measurement precision, model fit, and construct and 

criterion validity by Chernyshenko et al. (2007).  

 The application of an unfolding model to real survey data is considered in the current 

investigation because many researchers have argued that responses to graded or dichotomous 

agree/disagree attitudinal items follow from an ideal point response process as opposed to a 

dominance response process. Thus, it is argued that the application of unfolding models to 

this type of data may be more appropriate than cumulative models because the assumptions 

of both unfolding models and data produced from ideal point response process are more 

congruent with each other (Andrich, 1988; Andrich, 1996; Andrich & Styles, 1998; Roberts 

& Laughlin, 1996; Roberts et al., 1998; 1999; 2000; van Schuur & Kiers, 1994). Roberts et 

al. (1998; 1999) detailed the consequences of applying a cumulative model to data of the 

unfolding type, where the model and data have competing underlying assumptions. Stark et 

al. (2006) also examined and tested which of the two models, cumulative or unfolding, best 

described personality data. Andrich (1988) described the inconsistency between data 

collection and analysis that many researchers use. For example, the predominant survey 

design method that is employed is the Likert scaling methodology (as opposed to a Thurstone 

approach), which implies use of a cumulative model. Observed data collected by asking 
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respondents to disagree or agree with an item does not necessarily involve a direction, 

implying an underlying ideal point response process, thus suggesting the application of an 

unfolding model.  

The body of research that exists within the context of unfolding IRT models focuses 

on improving the measurement of non-cognitive (preference, attitudinal, personality) traits by 

informing scale construction and development methodologies, and appropriate scoring and 

scaling procedures. Emphasis on improving measurement using models that have not been 

traditionally used comes from the fact that non-cognitive measurement has not been studied 

to the extent that cognitive measurement has, in the context of the ideal point response 

process and unfolding models. Non-cognitive measurement has been executed primarily 

through the use of cumulative IRT models and classical test theory models. Improvements in 

noncogitive measurement would necessarily improve the reliability of scores yielded by an 

instrument. The enhancement of non-cognitive measurement and scale construction would 

presumably result in an increase in accuracy and validity of decisions that are made based on 

scores. Improved measurement and better informed decisions based on scores have certain 

implications. Non-cognitive measurement has important roles in a variety of disciplines 

including many facets of psychology (i.e., developmental, industrial/organizational, social, 

and abnormal) and in education. Often times, results from questionnaires and surveys that 

measure personality and/or attitude are used to make educational policy decisions, develop 

treatment plans for the psychologically ill, or to make hiring decisions for prospective 

employees.   
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Alternative Approaches for Assessing Model-Data Fit 

 It has been recommended by Andrich (1996) and Chernyshenko et al. (2007) that 

comparison of the performance of cumulative and unfolding IRT models using simulated 

data and real data from a variety of disciplines would contribute to a greater understanding of 

the generalizability of unfolding models and to methodologies for improved measurement of 

non-cognitive constructs. Further, Chernyskenko et al. (2001) and Stark et al. (2006) argue 

for continued investigation into methods, alternative to the Likert methodology, for scale 

construction and into the consequences of model-data misfit. In all of the investigations 

mentioned in this literature review, either “truth” was known with the generation of 

simulated data, or prior parameter estimates existed for the same measure, providing a 

reference for comparison. Comparisons between the two types of IRT models (cumulative 

and unfolding) involve person and item parameters, in addition to graphical and analytical 

measures of model-data fit. The predominant statistical approach to assessing and comparing 

model fit includes the calculation of a chi-square distributed statistic. Item level chi-square 

distributed fit statistics are also frequently calculated as measures of both model assumptions 

and statistical fit within the context of cumulative and unfolding IRT models. Relative 

comparisons of model fit using chi-square statistics are not been possible, however, due to 

the fact that cumulative and unfolding models are not nested, thereby inhibiting the use of 

conventional and familiar statistics such as a log-likelihood ratio statistic.  

 The calculation of information theory-based measures (also referred to as information 

theory-based criteria or statistics) can provide an additional, unique source of evidence, in 

conjunction with other measures of fit, to assist in determining model selection. Such 

information theory-based criteria employ a penalty for complicated statistical models such 
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that comparison of models with varying number of parameters is possible. A limitation of the 

widely used chi-square distributed statistics is such that models with more parameters to be 

estimated are more likely to fit better. These statistics are inconclusive in that the fit could 

truly be better, or simply an artifact of the number of parameters. Information criteria can be 

calculated to overcome this limitation of chi-square distributed statistics for non-nested 

model comparison where models vary in complexity.    

 When maximum likelihood methods for item parameter estimation are employed, it is 

possible to calculate criteria such as the AIC (Akaike, 1974) and the BIC (Schwarz, 1978). 

Bayes model selection criteria such as the Bayes Factor (Gelfand & Dey, 1994), the pseudo-

Bayes Factor (Geisser & Eddy, 1979) or the deviance information criterion (DIC; as cited in 

Kang et al., 2005) are appropriately employed when methods for Bayes computation are used 

for parameter estimation. Perhaps the information theory-based criteria are most visible 

within the structural equation modeling literature, namely the AIC when examining 

predictive fit indices (Kline, 2005). They are considered predictive in that interpretation of fit 

is assessed within the context of how the model would fit data produced by repeated random 

samples drawn from the population as the observed sample (Kline, 2005). The AIC is also 

considered a parsimony-adjusted measure in that a penalty function for overparameterizing is 

incorporated in the equation. Akaike (1974) defined the criterion AIC of θ as: 

 

AIC (
∧

θ ) = (-2) log (observed likelihood) + 2k       (7) 
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“where k is the number of independently adjusted parameters to get 
∧

θ ” (Akaike, 1974, p. 

719). An arguably more stringent measure of model fit is the BIC as sample size is directly 

considered where the calculation of the BIC criterion follows: 

BIC (model) = (-2) log  (observed likelihood for a given model) + p(logN)   (8) 

 

where N is the sample size. Early contributors to research for model identification and 

prediction unanimously emphasize the expression of a model, θ , as a probability distribution 

and consider “fitting a model to the data as estimating the true probability distribution from 

the data and treat the estimation and the evaluation of a model together as one entity rather 

than separating them” (Bozdogan, 1987, p. 347).  

Within the context of IRT measurement models, calculation of information theory-

based statistics has predominantly been used for comparing the fit of latent class models 

(Bockenholt & Bockenholt, 1991; Houseman, Coull, & Betensky, 2006; Lin & Dayton, 

1997) mixture IRT models (von Davier & Yamamoto, 2004) and penalized latent variable 

models (Haberman, 2006; Houseman, Marsit, Karagas, & Ryan, 2007). Interestingly, the 

utility of information theory-based statistics for comparing the fit of IRT models to assist in 

the determination of model selection in applied research appears largely within the health 

sciences literature, specifically for the application of latent class models to presumed high-

dimensionality data with relatively small samples (Houseman et al., 2006; Houseman et al., 

2007). Briefly, Houseman et al. (2006) proposed a penalized latent class model that 

circumvents the problem of “the number of conditional probabilities that can be considered 

without overfitting the data” (p. 1063) using latent class models. They proposed a method of 

deriving a constraint parameter; a parameter that is a direct function of the dimensionality of 
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the data and the number of classes. Houseman et al. (2006) use both the AIC and BIC, among 

other information criteria, to estimate the number of latent classes, one parametric 

component, used in their penalized method. In a follow up study, Houseman et al. (2007) 

proposed a very similar methodology for the purpose of “data-driven model selection” (p. 

1275), except the models were described as IRT models with the unobserved variables 

treated as continuous random, as opposed to categorical random. The AIC was again used to 

derive one component of the penalty function. Houseman et al. (2007) conducted a 

simulation study assess the functionality of the penalized likelihood models, applied their 

model and two Bayesian models (including the corresponding Bayes approach to their 

proposed method) to real data.  

Finally, Hardouin and Mesbah (2004) extended the AIC to be used with 

multidimensional and non-parametric IRT models. They proposed a new multidimensional 

Rasch-type model, called the multidimensional marginally sufficient Rasch model 

(MMSRM), for the purpose of informed and improved Quality-of-Life scale construction 

over traditional factor analytic models. Their efforts also focused on the problem of 

unidimensional, parametric, IRT models exhibiting poor fit to data generated from measures 

like the Quality-of-Life scale. Implementing simulations to test their model, Hardouin and 

Mesbah (2004) used the AIC as a measure of fit between their proposed multidimensional 

IRT model and the Mokken scale procedure. They concluded that regardless of the model 

from which data were generated, their model generally performed better in correctly 

classifying items to respective subscales than the Mokken scale procedure (Harouin & 

Mesbah, 2004). 
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The use of information statistics for latent trait model selection within the context 

educational measurement using familiar IRT models such as the PCM, RSM, or GPCM 

(Kang & Cohen, 2007; Kang, Cohen, & Sung, 2005) is visible, though to a seemingly lesser 

degree (Ostini & Nering, 2006). Further, Takane (1996) employed the AIC in assessing the 

fit of his proposed multidimensional IRT proximity model for unordered categorical data; 

data for which unfolding IRT models would be most appropriately applied. The derivation 

and implementation of similar, though more statistically complex, penalty functions can be 

found in the educational measurement literature in the context of decision/classification 

accuracy with continuous predictor variables (Haberman, 2006). von Davier and Yamamoto, 

(2004) used information criteria (i.e., AIC and BIC) for the comparison of multi-group IRT 

models with partially missing data using their proposed model which “integrates multigroup 

IRT models and discrete mixture distribution IRT models into a common family of 

psychometric models” (p. 391).  

 Application of information theory-based criteria is conventional and appropriately 

used with a range of models (i.e., latent trait IRT, latent class IRT, structural equation models 

including confirmatory factor analysis). Although researchers from disciplines such as public 

health, educational, and psychological measurement commonly use information criteria as a 

tool for model selection, comparison, evaluation, and fit, such criteria are not without 

limitations. The AIC is appropriate for use with maximum likelihood estimates, though is 

criticized for not being “asymptotically consistent since sample size is not directly involved 

in its calculation” (Lin & Dayton, 1997, p. 251). The AIC criteria also tend to favor complex 

models when the sample size is large (Bozdogan, 1987). McDonald and Mok (1995) heavily 

criticize the AIC for use with both sufficiently large and small samples and claim that “the 
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AIC behaves just like the chi-square significance test itself” (p. 33).  However, other 

information criteria that account for sample size such as the BIC (Schwarz, 1978) or 

Bozdogan’s (1987) consistent Akaike information criterion (CAIC) have been derived to 

overcome this problem. Nonetheless, there is a general consensus that adhering to the 

principal of parsimony is necessary and that “there is no single criterion which will play the 

role of a panacea in model selection problems” (Bozdogan, 1987, p. 368). 

Summary  

Although some advances have been made in the measurement of non-cognitive traits, 

more work is necessary as it relates to the application of unfolding models on a variety of 

data sets within a variety of contexts to better understand the processes that produce or 

govern observed data. Many scholars agree that research about non-cognitive measurement is 

not lacking, however, research that examines non-cognitive data within the context of 

unfolding models is sparse. Stark et al. (2006) provided a possible explanation for limited use 

of IRT models that assume an ideal point response process: “theoretical and computational 

complexity has impeded the development and application of ideal point methods” (p. 27). 

Following that, Coombs’s (1951, 1964) original analysis for unfolding models was 

deterministic and “was laborious for more than four statements” (Andrich & Styles, 1998, p. 

455).  It is also generally agreed that the Likert methodology has been dominant over the 

Thurstone approach in non-cognitive measurement because the former does not require the 

labor-intensive step of scaling items. To date, parametric models for unfolding data have 

been developed, and computer software is available to analyze data using these measurement 

models.  
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Although data are usually collected through items that ask a respondent to agree or 

disagree, where often a direction is not inherently obvious, analysis of such data use 

cumulative IRT models that assume a dominance response process to govern the observed 

data (Andrich, 1988; 1996). For the purpose of increased measurement precision, accurate 

scores, valid interpretations of those scores, and appropriate and informed decisions based on 

scores, analysis of data presumed to be of the unfolding type must be analyzed using a 

procedure that makes parallel assumptions. Andrich (1996) argued that comparisons of 

cumulative models applied to Likert-type data to analyses using unfolding models “should 

prove instructive in improving the measurement of attitude and similar constructs” (p. 359). 

 Finally, there is general consensus among researchers that application of cumulative 

models to unfolding data can lead to the inaccurate measurement of people and that more 

focused efforts be made in non-cognitive measurement through the use of unfolding models 

including Andrich (1988), Andrich (1996), Andrich and Luo (1993), Andrich and Styles 

(1998), Chernyshenko et al. (2007), Luo, Andrich, and Styles (1998), Roberts & Laughlin 

(1996), Roberts et al. (1999; 2000), Roberts (2003), and Stark et al. (2006). This study 

addresses some of the omissions in the non-cognitive measurement literature and can 

function to fill this gap, especially given that real survey data are used--data upon which 

educational policy decisions have been and continue to be made for the purpose of improving 

teacher working and student learning conditions. Although the focus of this investigation is 

on the GGUM and the resulting parameter estimates and ICCs, comparisons will be made 

between analyses from the application of both cumulative and unfolding IRT models where 

the measurement of people and items can be examined across models. Additionally, the 

application of information theory-based criteria to three IRT and SEM models, in 
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conjunction with other recommended statistical and graphical measures of model fit, will 

facilitate model comparisons.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

 

CHAPTER 3 

METHODS 

 This investigation used data from the 2006 administration of the North Carolina 

Teacher Working Conditions Survey (NCTWCS), an attitudinal measure of teacher 

perceptions of their working conditions. Eligible participants included all school-based 

licensed educators in the state of North Carolina including principals, assistant principals, 

teachers, and other teaching professionals like library media specialists or school 

psychologists.  

Participants 

Although eligible participants for the NCTWCS included all school-based licensed 

educators, principals, assistant principals, and other education professionals (e.g., library 

media specialists, school counselors), for the purpose of this study, only responses from self-

identified teachers were used because the questions are geared more towards teachers and 

teacher activities (i.e., teaching, preparing lesson plans) rather than principals, assistant 

principals, school counselors, or other school personnel. Many items on the NCTWCS are 

not applicable to respondents who are not teachers; therefore items could be omitted 

systematically by those respondents. Additionally, interpretation of the data would be 

difficult if self-identified principals, assistant principals, or school counselors responded to 

items that are targeted towards teaching activities. Finally, the decision to restrict the sample 

to teachers was made so that the integrity of the relationship between the underlying 



 62

construct (i.e., teachers’ perceptions of their working conditions) and the observed data is 

maintained.  

The sample used for this study consisted of 65,031 self-identified teachers who 

responded to the NCTWCS, which represents 86% of the total sample of respondents (n = 

75,615) that also included assistant principals, principals, and other educational 

professionals. The total number of unique schools in the sample was 2,365, of which 96 were 

charter schools and 19 were designated as special schools. The distinction between regular 

and special/charter schools is necessary because the response rates are vastly different for  

the two types of schools. The average response rate for the 115 special and charter schools 

was 19.27%, whereas the average response rate for the other 2,250 schools was 69.07%. Of 

the 2,250 regular schools, only 304 schools had a response rate of less than 40%.  

Although not used in this investigation, the total number of principals who responded 

to the survey was 1392 of 75,615, or 1.84%. Assistant principals accounted for 1,544 

(2.04%) of the total respondents and 7,449 (9.85%) of 75,615 self-identified as some other 

type of educational professional. It should be noted that a total of 115,105 people were 

eligible for the survey, and a total of 75,615 responded, for an overall response rate, across 

all categories of occupation of 65.69%.  

By design, the NCTWCS was administered so that responses would be both 

confidential and anonymous. It is therefore not possible to link any response string to a 

particular respondent. The data set does contain a single identifier: the designated school 

code to which respondents were assigned at the time of data collection.  
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Measure 

In 1996, the North Carolina General Assembly established the North Carolina 

Professional Teaching Standards Commission. The responsibility of the Commission is to 

determine high standards for North Carolina teachers and the profession. The North Carolina 

Professional Teaching Standards Commission has written the Core Standards for All 

Teachers in North Carolina, Standards for Working Conditions in North Carolina Schools, 

and Professional Development Standards (North Carolina Professional Teaching Standards 

Commission, 2006).  

In 2001, development of the NCTWCS began as a part of the governor’s Teacher 

Working Conditions Initiative. The North Carolina Professional Teaching Standards 

Commission and the North Carolina State Board of Education conducted research and focus 

groups to develop 30 working condition standards for schools in the five overarching 

categories of time, empowerment, professional development, leadership, and facilities and 

resources. The categories were named or developed as a result of the focus groups that were 

conducted with more than 500 teachers. In 2002, an original survey, consisting of 29 items 

about working conditions within the five categories and in paper format, was distributed to 

every licensed public school educator in North Carolina.  

After some revisions, the survey was administered in the Spring semester of the 2003-

04 academic school year. The mode of administration changed to self-administered and web-

based. Additionally, 33 working condition items were added for a total of 72 working 

condition items, plus eight demographic questions. The NCTWCS administered in 2006 

comprised of a variety of items including: Likert-type with five response options (Strongly 

Disagree, Disagree, Neither Agree Nor Disagree, Agree, and Strongly Agree), Yes/No, 
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Check All That Apply, and frequency items. Various items that elicit information about 

respondent demographics were included at the end of the survey. The mode of administration 

of the 2006 survey was the same as the 2004 administration. Anonymity was ensured by 

assigning all eligible participants a randomly generated access code that was required to 

begin the online survey. The scoring procedures for this particular survey are not publicly 

available; however, it appears that the scoring method was a simple summation of the item 

scores to yield a total scale score. It was also assumed that no reverse scoring was conducted 

because no negatively worded items appeared on the survey. A positive response (i.e., agree) 

to any Likert item would indicate a more positive attitude towards teacher working 

conditions. The 2006 NCTWCS can be found in Appendix A.   

According to available documentation about the NCTWCS, the intent of the survey 

was to understand the factors that influence teachers’ perceptions of their working 

conditions, as defined by the five domains, as previous research has shown that poor working 

conditions (i.e., lack of administrative support, lack of a collaborative atmosphere) contribute 

to teacher attrition. The assumption, then, is that improving working conditions may reduce 

teacher turnover, and thus improve student learning and achievement. The five domains of 

the NCTWCS were developed as a result of focus groups conducted with more than 500 NC 

teachers by the North Carolina Professional Teaching Standards Commissions. Although 

statistical measures of validity (i.e., criterion-referenced validity, convergent validity)  are 

not available, estimates of the reliability of the total scale (i.e., Likert items of the combined 

five domains) and of each of the sub-scales using Cronbach’s coefficient alpha for both the 

raw and standardized item responses were calculated and are reported in Table 3.1.  
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Table 3.1  

Cronbach Coefficient Alpha for Likert items within the five domains (Total), the 
Empowerment and Leadership subscales 
 
                Cronbach’s Coefficient Alpha 
   Number of items Raw Variables  Standardized Variables      
Scale                   
Total    52   .966   .966 
Empowerment   13   .897   .897 
Leadership    21   .959   .959 
 
 

Models 

As described in Chapter 2, a variety of unfolding IRT models exist for examining 

non-cognitive data. The GGUM was selected because it models subjective responses of agree 

and disagree (and variants of those responses) from above and below, because item 

discrimination and category threshold parameters are estimated, and because the probability 

of item endorsement ranges, theoretically, between zero and one. One of the limitations of 

Andrich and Luo’s (1993) HCM is that the maximum probability of item endorsement is .5, 

even when the person and item location on the latent trait are coincident. In addition, GGUM 

was selected instead of Roberts and Laughlin’s (1996) GUM because an assumption was 

made that the item response options are not interpreted and used equally by the respondents 

of the NCTWCS across all items and across all respondents.  

The partial credit model was selected over other Rasch models for polytomous data 

such as Andrich’s (1978) rating scale model because of the similarity of the PCM and the 

GPCM. The GPCM was chosen over other non-Rasch models for polytomously-scored data 

such as Samejima’s graded response model (Samejima, 1969) or Bock’s (1972) nominal 

response model because of the association between the GPCM and the generalized graded 
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unfolding model. Although any cumulative IRT model appropriate for polytomous data could 

be used to estimate the subjective response categories (SRCs) in the GGUM, Muraki’s 

(1992) generalized partial credit (GPCM) model was used to parameterize these functions in 

this investigation. To maintain consistency as much as possible, the GPCM was used both as 

the model to measure the SRCs within the GGUM, and as the cumulative model for 

comparison with the PCM and GGUM. 

 The decision to implement a fourth scaling method was made so that comparisons of 

the IRT analyses could be made to the possible current scoring procedure.  A total raw score 

scoring method can inhibit score comparisons due to the lack of equal interval data and a 

meaningful scale. The items in the NCTWCS are Likert-type which do not necessarily yield 

interval data (i.e., the difference between Disagree and Strongly Disagree is not necessarily 

the same as the difference between Agree and Strongly Agree). Additionally, the use of raw 

scores precludes determining an individual’s standing on the latent trait when the individual 

earns an extreme (i.e., maximum or minimum possible) score on the survey. Finally, 

measurement precision for extremely scoring respondents is low when using raw scores. 

Thus, the fourth scaling method used was a CFA approach. CFA is a more psychometrically 

sound approach because the raw, ordinal data are transformed and placed on a more 

meaningful scale. Specifically, the products of factor scores that resulted from the CFA were 

used to weight item responses, and then summed across the items for each person within each 

scale (i.e., Empowerment and Leadership).   
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Data Analysis 

 

 Information about analysis procedures as it relates to each research question is 

provided in this section. Generally, this study examined the functionality of two cumulative 

and one unfolding IRT model, and where appropriate, comparisons to a fourth model were 

made. Although there are multiple sections of the NCTWCS that include various item-types, 

only 34 of the 52 Likert-type items within two of the five components of working conditions 

were considered in the analyses due to concerns of multidimensionality. Specifically, the 13 

items that measure Empowerment and the 21 items that measure Leadership were used. The 

two components were selected based on the substantively most interesting and important 

factors to both teachers and to the policy makers who implement changes within schools 

based on the survey data. An example item from the Empowerment subscale reads: 

“Teachers are centrally involved in decision making about educational issues.” An example 

item from the Leadership scale reads: “The school leadership consistently enforces rules for 

student conduct.” Items measuring Time, Professional Development, and Facilities and 

Resources were not used in this investigation. All items in the selected subscales required 

respondents to select a response option to indicate strength or level of agreement choosing 

from the five response options: Strongly Disagree, Disagree, Neither Disagree Nor Agree, 

Agree, and Strongly Agree. All analyses were conducted on each scale (i.e., Empowerment 

and Leadership) separately, resulting in two sets of analyses. 

Although the total number of respondents was 65,031, the original single sample 

could not be used for analyses due to sample size constraints with the GGUM2004 software 

(maximum sample is 2,000). As a result, 10 simple random samples of size 2,000, selected 
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without replacement from the original sample, were constructed and used in all analyses. The 

10 samples were then separated by scale (i.e., Leadership or Empowerment). The sample 

selection was executed using the SURVEYSELECT procedure and SRS method in the 

statistical software package SAS 9.1 (SAS Institute, 2002). 

Estimation Procedures 

All IRT analyses required the use of statistical software to estimate IRT item and 

person parameters. The program PARSCALE 4 (Muraki & Bock, 1997) was used for 

application of the partial credit and generalized partial credit models. The program 

GGUM2004 (Roberts et al., 2000; Roberts et al., 2006) was used for the application of the 

generalized graded unfolding models. Other software programs exist for cumulative IRT 

calibration, however, PARSCALE was used for both the PCM and GPCM to facilitate 

comparisons across models.  

With regard to the algorithms used in the IRT estimations, briefly, the marginal 

maximum likelihood method (MML; Bock & Aitkin, 1981) is implemented in PARSCALE 

for item parameter estimation. The Expectation-Maximization (EM; Dempster, Laird, & 

Rubin, 1977) algorithm is integrated in the derivation of maximum likelihood solutions. 

Either maximum likelihood or Bayes estimation is feasible with PARSCALE for estimating 

person parameters. The expected a posteriori (EAP) method was used in this investigation 

for estimating the person parameters, θ. A type of prior distribution is necessary for the 

estimation of θ; a normal distribution was specified for this investigation. Additional 

information on estimation in PARSCALE can be found in du Toit (2003).  

The GGUM2004 software also estimates item parameters using a marginal maximum 

likelihood method. According to the GGUM2004 technical manual, “the solution algorithm 
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parallels Muraki’s (1992) procedure used in the generalized rating scale model and is based 

on an expectation-maximization (EM) strategy” (Roberts & Shim, 2008, p. 5). In order to 

estimate θ, specification of a prior distribution is necessary in any analysis where θ is treated 

as a random variable. For both the GGUM2004 and PARSCALE analyses, a standard normal 

prior distribution was assumed for θ. The EAP method for θ estimation was also used in the 

GGUM analyses. Further details about the software are available in the GGUM2004 

Technical Reference Manual (Roberts & Shim, 2008). Finally, the software used to conduct 

the CFAs and calculate factor scores for each sample was LISREL 8.8 (Joreskog & Sorbom, 

2006). Additional analyses including the calculation of chi-square statistics for all possible 

combinations of item pairs and item triplets, and principal components analyses, both 

necessary for testing model assumptions were conducted using SAS 9.1 (SAS Institute, 

2002). 

Omitted Data 

Omitted item responses for all four models (GGUM, PCM, GPCM, and CFA), were 

treated in a similar manner. In order to determine how to proceed with analyses and the 

treatment of missing data, it is necessary to establish the extent and to assess the randomness 

of missing data. Missing responses were examined at the item level, within each sample 

across both scales, for systematically missing responses. Within the 10 Empowerment 

samples, the two most frequently omitted items read: “In this school we take steps to solve 

problems” and when prompted to rate how large a role teachers have in: “Devising teaching 

techniques.” The first of the two items yielded a range of 22 to 36 missing responses across 

the 10 samples, representing 1.1 % to 1.8% of a sample omitting this item, and 20 to 37 

people omitting the second item, resulting in 1.0% to 1.85% missing data for that item.. 
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Three approaches were taken to assess for patterns of systematic omissions within the 10 

Empowerment samples. First, those respondents missing both items were separated from 

those not missing both items across the 10 samples. Group means could not be compared due 

to the extremely low number of individuals across the 10 samples omitting both items (n 

ranged from one to three respondents). Second, those respondents omitting the first item 

were separated from those not omitting that item. The same procedure was followed for the 

second item. Again group means could not be compared due to the low samples for those 

omitting either the first or second item. For example, in the first Empowerment sample, 24 

people omitted the first item and 1,976 did not. In the first Empowerment sample, 31 people 

omitted the second item and 1,969 did not. Group comparisons were not made due to the 

disparity of sample sizes, as the smaller sample could potentially introduce bias into the 

estimates, and suppress power to detect true differences. Finally, to assess for an inverse 

relationship of omissions between the two items, each of the 10 Empowerment samples were 

subset into two groups: those omitting the first item, and not the second; then sub-setting the 

sample into those who did not omit the first item but did omit the second. Again, the sample 

sizes were vastly different preventing group mean comparisons, in that there were very few 

(approximately 25 missing item responses across the 10 samples) in the sample that omitted 

an item. As a result of the above considerations, it was concluded that no systematic pattern 

of omissions existed in the Empowerment samples.  

Only one item, “The school leadership makes a sustained effort to address teacher 

concerns about facilities and resources”, was consistently omitted across nine of the 10 

Leadership samples at a rate of between 33 to 45 people in a given sample, representing 

1.65% to 2.25% of the samples, respectively. As a result of the relatively low percentage that 
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the missing data accounted for in both the Empowerment and Leadership samples, these 

omissions were not considered problematic and the decision was made that missing data 

were not systematic in this investigation.  

According to the GGUM2004 Technical Reference Manual, “the GGUM2004 

software accommodates missing item responses by treating missing data as missing at 

random given θ. In the context of the GGUM family of models, this means that the any 

missing item responses are simply ignored when calculating the likelihood of a given 

response vector (e.g., either Ls(Vf ) or Lj(Vf) in the preceding equations)” (Roberts & Shim, 

2008, p. 19). According to the PARSCALE manual, “omitted responses are treated as not-

presented” (DuToit, 2003, p. 336).   

 

Analysis Overview 

For all items, item characteristic curves (ICCs) were compared across the three IRT 

models. The ordering of item location parameters was examined across the cumulative and 

unfolding models, as it has been argued by Chernyshenko et al. (2007) that the item location 

parameters yield information about item content within the context of unfolding models, a 

result that does not hold for cumulative IRT analyses. Additionally, special attention was 

given to the shape of the ICCs. Specifically, lack of monotonicity for the cumulative IRT 

results would suggest a disparity between the model and data. The opposite is not true, 

however, for unfolding models such that if monotonic ICCs are found, the interpretation that 

an unfolding model is inappropriate would not necessarily be true. The GGUM software used 

in this investigation is flexible enough to model items with monotonic ICCs, even when an 

ideal point response process is responsible for the observed monotonic ICC. Non-
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monotonicity in the ICCs resulting from application of a cumulative model would warrant 

reconsideration about how data should be treated and scored. Finally, for person estimates, 

the general locations of person estimates and the ordering of those estimates were examined 

across the three IRT and the CFA models, with attention to those respondents with extreme 

estimates in either direction.  

Research Question 1 

 The first research question related to examining the location of the items on the 

underlying latent traits (i.e., teacher perception of empowerment and leadership) across three 

IRT scaling methods (partial credit model, generalized partial credit model, and the 

generalized graded unfolding model). Item parameters, especially the location, or b 

parameter, and the ordering of those parameters were compared across methods. Graphical 

representations of item parameters were prepared, along with correlations of the ordering of 

items across models. Any gaps where no items existed in a particular region or interval on 

the latent scale would indicate a lack of measurement precision in those regions.  

Examination of item location can yield important information for future survey 

development and design. If the items on the attitudinal measure were constructed using a 

Likert methodology and modeled using an unfolding model assuming an ideal point response 

process when individuals respond to items, then items will generally be located at the ends of 

the latent trait continuum. Within the Likert methodology for test development, criteria for 

maintaining items on a scale include high point biserial correlations, high factor loadings, 

and monotonically increasing ICCs. Generally, items that measure more of a neutral attitude 

generally do not meet these criteria. Items meeting the criteria tend to be worded in more 

extreme terms (i.e., items that express both extreme positive and extreme negative sentiment 
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with respect to the latent trait).  The scoring of Likert-type items requires the reverse scoring 

of items that reflect a negative attitude.  

Close examination of item parameters and the relative ordering of the items has been 

recommended by Andrich (1995a) who has observed that the theoretical ordering of items “is 

particularly important when the model, which reflects the response process, is single-peaked 

because there are always two person locations that give the same probability of a positive 

response” (p. 275). If the items on the attitudinal measure were not constructed using a Likert 

methodology and more neutral items existed on the survey, then item locations on the latent 

trait will be more similar to each other across all three scoring and scaling methods, than if a 

strict Likert methodology were used. Specifically, item locations will generally be more 

centrally located, or at least more dispersed across the attitude continuum as opposed to 

located towards the extreme values of the latent trait.   

Research Question 2 

 The second research question concerned examination of person estimates on each of 

the two scales (i.e., location or theta IRT parameters in the GGUM, PCM, and GPCM 

analyses, and the composite score in the CFA analyses) on the underlying latent traits across 

the four methods of scaling. Graphical representations were developed to visually examine 

the relationship between the estimated theta distributions across models. Examinations of the 

theta distribution across models were facilitated with the use of scatterplots by plotting the 

person estimates (i.e., thetas) for the GGUM, and those resulting from each of the GPCM, the 

PCM and the CFA analyses. Because the theta scales are different across the unfolding IRT, 

cumulative IRT and CFA models, simple scatterplots and the nonparametric correlation for 

ranked data, Kendall’s Tau, were derived. Finally, for each scaling method, the continuous 
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theta scale was transformed into a discrete scale with the use of quintiles. This allowed for 

examination of the person distribution at specified intervals. Using the five theta categories, 

the calculation of 5 X 5 cross tabulation tables under the combination of GGUM with the 

other three models across all samples (n = 10) within each scale (n = 2) facilitated 

examination of the joint theta distributions. Close attention was given to those respondents 

estimated to be located at moderately and very extreme locations on the latent trait when 

comparing across scaling methods. Examination at those levels of the latent trait is necessary 

because researchers (Roberts et al., 1998, 1999; Stark et al., 2006) have shown that the 

greatest disparity between cumulative and unfolding models occurs within these regions of 

the latent trait. Therefore, if the assumption that the observed data followed from an ideal 

point response process was true, it would be hypothesized that a discrepancy would exist 

between the cumulative and unfolding models only for respondents with extreme responses 

to moderately positive and moderately negative items.  

Research Question 3 

 The third research question required an examination of the shape and location of the 

ICCs to assist in the determination of whether an ideal point or dominance response process 

operated in these data. Again, the ends of the ICCs from all analyses using the IRT models 

were examined closely for discrepancies. Specifically evidence of non-monotonicity of the 

ICCs from the cumulative analyses and evidence of monotonicity of the ICCs from the 

unfolding analyses is especially important in determining if and how outcomes and results 

would differ across the different scaling methods.  

It was hypothesized that item characteristic curves (ICCs) for the dominance IRT 

models would be monotonic increasing functions. Further, ICCs associated with dominance 
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models would exhibit non-monotonicity for items containing neutral or non-extreme 

sentiments towards teachers’ perceptions of empowerment and leadership in their school. 

Because most of the 13 items on the Empowerment scale and 21 items on the Leadership 

scale are seemingly neutrally worded, it was presumed that the majority of the ICCs resulting 

from the application of dominance IRT models would exhibit non-monotonicity. With 

respect to the unfolding model outcomes, it was presumed that the ICCs would appear non-

monotonic, and relatively single-peaked for items of neutral and moderately positive and 

negative sentiment about perceptions’ of teacher empowerment and leadership. ICCs 

associated with unfolding models were hypothesized to exhibit monotonicity only if at least 

the large majority of all respondents were located to one side of the item on the latent trait 

(i.e., extremely homogeneous sample). Finally, ICCs for both cumulative and unfolding 

models should appear monotonic only for extreme responses to items that contain an extreme 

sentiment. However, none of the items used in the current study would be categorized as 

extremely positive or extremely negatively worded. Consequently, monotonic ICCs were not 

expected for both types of IRT models for a given item.  

Research Question 4 

The fourth research question had two parts that pertained to: 1) testing model 

assumptions within the domain of both cumulative and unfolding models; and 2) statistical 

model fit for the generalized graded unfolding model, relative to the other scaling methods. 

With regard to model assumptions, statistical procedures for summarizing patterns of 

correlations among item responses (e.g., structural equation modeling techniques (SEM), 

principal components analysis (PCA)) are commonly employed for assessing test 

dimensionality within the context of both cumulative and unfolding models. Model 
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specification differs, however, across the two types of IRT models. A single latent factor can 

be expected to explain a set of observed item responses if data follow from a dominance 

response process and two latent factors resulting from a principal components analysis (PCA) 

should result if data follow from an ideal point response process. Based on the procedures of 

Davison (1977), Nandakumar, Hotchkiss, and Roberts (2002) and van Schuur and Kiers 

(1994), linear factor analytic methods (i.e., PCA) were applied and pattern coefficients of 

items were examined to assess unfolding dimensions. Plots of pattern coefficients were 

constructed as a visual aid to assist in determining the structure of the data. According to 

Davison (1977) and Nandakumar et al. (2002), data are presumed to be of the unfolding type 

when a PCA of inter-item correlations yields a two-factor structure and, when plotted, pattern 

loadings for those two components form a semi-circle. Additionally, root mean square 

residuals for each item were calculated to allow for relative comparisons across items, where 

smaller values represent better fit. This process was undertaken to examine the fit of the 

model at the item level and to examine the property of local independence.  

Pertaining to the component of the fourth research question that addresses the fit of 

GGUM relative to the other three scaling methods, information theory-based statistics were 

calculated as opposed to the commonly used chi-square distributed statistic, because the 

latter cannot be used for relative non-nested model comparisons. Currently, no chi-square 

distributed fit statistic (i.e., log-likelihood ratio) exists that allows for relative comparisons of 

model-data fit for non-nested cumulative and unfolding IRT models, such as for the three 

IRT models used in this investigation. The PCM and GPCM can be compared using a chi-

square fit statistic using the difference in chi-square and degrees of freedom values because 
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they are nested models. However, such a comparison is not warranted and is tangential to this 

investigation as the focus is on the monotonicity or non-monotonicity of the ICCs.  

The information theory-based fit indices calculated in this investigation were the AIC 

and BIC. Both of these indices consider the non-nested characteristics of the models and the 

additional parameters in the more complicated models (i.e., GGUM, GPCM). Additionally 

the BIC directly considers sample size and tends to favor simpler models than the AIC. 

Better fit using these statistics is indicated by smaller AIC and BIC values.   

   

 

Summary and Limitations  

 The analyses conducted in this investigation focused on both a relatively new method, 

and more familiar IRT approaches for analyzing polytomous attitudinal data. Although 

cumulative IRT models have been used extensively in analyzing non-cognitive, polytomous 

data, unfolding IRT models warrant attention because of their potential for improving scale 

construction and score interpretation. As a result of recent advances in the derivation of 

probabilistic models, and software capabilities, applied research using unfolding IRT models 

is in its relatively early stages, compared to cumulative models. One purpose of this 

investigation was to contribute to the methodological research surrounding the relatively 

novel approach to measurement using unfolding IRT models; models which could prove 

useful and informative from both psychometric and practical perspectives.  

The appropriateness of the application of several parametric, unidimensional IRT 

models to real survey data from the administration of the NCTWCS was investigated by 

considering several guiding questions. The first two research questions dealt with the 
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location of the respondents and the items on the same, unidimensional latent trait scale. Two 

components of the original scale were treated as two distinct latent traits. This approach 

allowed for exploration of the functioning of all models across two scales while partially 

controlling for the confounding effects of multidimensionality. Additionally, 10 simple 

random samples were selected from the original sample and all analyses were performed on 

all samples across the two scales. This allowed for the display of sampling distributions of 

outcomes. Other characteristics of the items were examined such as the shape of the ICCs 

and category probability plots across the three IRT models. The distribution of person 

parameters was also examined by making the continuous theta distribution discrete using 

quintiles. The joint distribution of theta under the GGUM paired with the other scaling 

methods was facilitated using cross tabulations. Finally, model assumptions were tested and 

relative fit across the four models were compared using AIC and BIC statistics. 

Results from these analyses could help to inform future versions of NCTWCS. A 

close examination of item discrimination, item location on the latent trait (which can be 

interpreted as a measure of intensity of item content), and item fit were made. Because the 

purpose of the NCTWCS is to ascertain teachers’ perspectives about their working 

environment, efficiency is achieved with the least amount of items that measure the entire 

spectrum of the latent trait. It is usually the case in non-cognitive measurement that 

measurement is necessary across the latent trait in its entirety, as opposed to cognitive 

measurement where, generally, precision and item (and test) information are often focused on 

an interval(s) of the latent trait, usually around one or more cut scores. Careful survey 

construction could increase the efficiency and efficacy of the measurement of the latent trait.  
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Within the context of test development in personality measurement, Stark et al. 

(2006) note that “inclusion of just a few items that do not meet the assumptions of dominance 

models can markedly change the rank order of high-scoring individuals and, thus, potentially 

undermine the utility of personality measures in applied settings” (p. 37-38). The 

examination and evaluation of item and person location on the latent trait in this investigation 

would also inform the survey development process and direct attention to areas on the scale 

that require more precise measurement.  

 The methodology of this investigation was limited by several factors. First, the 

sample in its entirety, (N =  65,031) could not be used due to software constraints. The 

reduction of sample size also prohibited parameter estimates for all persons in the sample. 

One advantage of previous research studies by Andrich (1988), Andrich and Luo (1993), 

Habing et al., (2005), Hoijtink (1991) and Roberts et al. (2002) is that they had previous 

parameter estimates for particular scales allowing for direct comparisons between IRT 

models and parameter estimates. In this investigation, however, parameter estimates did not 

exist for the NCTWCS, prohibiting any relative comparisons and absolute decisions to be 

made with GGUM parameter estimates.  

 With regard to the measures, all items have five response options, including the 

middle category, Neither Agree nor Disagree. According to researchers including Andrich 

and Styles (1998), the middle category does not necessarily function as the mid-point 

between two adjacent response options. According to Andrich (1996) the middle category--

intended within the Likert methodology of item writing to function as an 

undecided/ambivalent response option--has “consistently posed problems” (p. 362) in 

interpreting the meaning of an ambivalent response to a seemingly extreme item. In the 
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current investigation there was no meaningful way to collapse responses and as result all five 

response categories were retained.  

Despite these limiting factors, this investigation made use of a relatively new IRT 

model for interpreting real attitudinal data within the context of educational policy, employed 

criteria for determining relative model fit, closely examined the estimated latent trait 

distributions resulting from application of the four models, across all simple random samples 

and within scales. Overall, this investigation addressed recommendations previously made by 

researchers such as: the use of real data when examining the functioning and appropriateness 

of unfolding IRT models, the implementation and comparison of both cumulative and 

unfolding IRT models, and the application of unfolding IRT models within different 

contexts, in this case educational policy. Comparisons were further supported with the use of 

two scales (i.e., Leadership and Empowerment). Although cited as a limitation, the random 

sampling involved in this methodology allowed for distributions of outcomes to be 

constructed and displayed across the 10 samples for each of the two scales. The analyses 

involved in this study allow for recommendations of modifications to survey construction 

which could presumably shorten the NCTWC survey and increase measurement efficiency 

Finally, not only are the implications immediate to the survey development procedures for 

the NCTWCS, but this investigation could have implications for assessing the knowledge, 

skills, and behaviors, necessary to successfully perform a school leadership position (i.e., 

principal) and to identify the critical tasks of a principal as part of a practice analysis.  

 
 
 
 
 
 



 

 
 
 

 
 

CHAPTER 4 
 

RESULTS 
 
 One unfolding model, two cumulative IRT models, and one structural equation 

measurement model were applied to attitudinal data from two subscales of the North 

Carolina Teacher Working Conditions Survey (NCTWCS). Model assumptions were tested 

and resulting parameter estimates were examined and compared using correlational analyses, 

chi-square fit statistics, information theory-based fit statistics, with a focus on the behavior 

and functioning of the relatively new generalized graded unfolding model (GGUM, Roberts 

et al., 2000). Ten simple random samples of size 2,000 were selected from the full sample of 

65,031 self-identified teachers who completed the (NCTWCS) during the 2005-2006 

academic year.  

 As with any parametric, probabilistic measurement model, certain model assumptions 

should be met in order to increase confidence in the accuracy of resulting parameter 

estimates. Testing of these assumptions is always a first step in any statistical analysis. Here, 

three different types of models were used: confirmatory factor analysis, cumulative IRT 

models, and an unfolding IRT model, all of which rest on assumptions. In the following 

sections, results will be presented and discussed for the Empowerment scale first; the second 

half of this chapter contains all analyses and results related to the Leadership scale.  
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Empowerment Scale 

Testing Dimensionality Assumptions for Cumulative Models 

Although presented first, the fourth research question investigated had to do with 

model assumptions and model fit. In practice, any investigation should begin with testing 

models assumptions. To test model assumptions, various procedures were conducted for all 

four scaling methods and are reported in this section for the Empowerment data. Within the 

context of CFA, assumptions include a linear relationship between observed variables (i.e., 

item responses) and unobserved factors (i.e., latent construct, or theta). Two requirements of 

CFA analyses include model identification and specification. Model identification ensures 

unique parameter estimates for all free model parameters. Two basic requirements must be 

met for a model to be identified: the number of moments must exceed the number of free 

parameters, and each latent factor must be assigned a scale (Kline, 2005). Model 

specification is more theoretical and deals with the direction of association between 

variables. In the current investigation, a one-factor model was specified using the 13 items 

that measured the construct, teachers’ perceptions of teacher empowerment in their school. 

For model identification purposes, the factor loading was fixed at 1.0 in the analyses for the 

item that possessed the largest measure of variation. In the empowerment analysis that item 

was “Teachers are centrally involved in decision making about educational issues.”  

Numerous model-data fit indices (predictive, parsimony-adjusted, incremental) are 

calculated for each analysis including, but not limited to the root mean square error of 

approximation (RMSEA), root mean square residual (RMR), goodness of fit index (GFI), 

comparative fit index (CFI), Akaike information criterion (AIC), expected cross-validation 

index (ECVI), normed fit index (NFI) and the non-normed fit index (NNFI). 
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Model fit results from the single factor confirmatory analysis using the Empowerment 

items are reported in Table 4.1. As shown in the Table, the statistically significant (p < .05) 

model chi-square statistic and the RMSEA indicate that a single factor model does not fit 

well. The RMR, SRMR, and GFI also indices indicate less than adequate fit. The only 

indication of moderately good model fit is the GFI index. Finally, the matrix of inter-item 

correlations for the 13 items is presented in Table 4.2. Multiple indices, such as those 

reported, must be considered simultaneously in determining model fit, and for the 

Empowerment data, a single factor model with 13 items does not appear to fit at all well. 

Several methods exist for assessing test dimensionality within the context of cumulative IRT 

models. One common approach is the application of factor analytic methods. The results 

presented indicate that the assumption of unidimensionality within the context of the 

cumulative IRT models (CFA, PCM, and GPCM) may be violated to some extent. 

 

Table 4.1 

Fit Indices for the One Factor Empowerment Model: Full Sample (n = 65,031) 

             
Model 2χ        df         2χ /df       RMSEA    RMR     SRMR     NFI     GFI   Model AIC     

 
68348.838* 65        1051.52        .148    .075      .075        .914    .820     85394.63 
 
Notes: RMSEA = Root Mean Square Error of Approximation; RMR = Root Mean Square Residual;  
SRMR = Standardized Root Mean Square Residual, NFI = Normed Fit Index; GFI = Goodness of Fit Index, 
Model AIC = Akaike Information Criterion 
* p < .05 
 

Local Independence 

 Related to the unidimensionality assumption, cumulative IRT models pose an 

associated assumption: local item independence. To examine this assumption, root mean 
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square residual at the item level was calculated. This was tested on the entire sample for the 

PCM and GPCM models on both the Empowerment and Leadership samples. Smaller 

residual values are interpreted as better relative fit. 

 

Table 4.2 

Item Level Residuals from PCM and GPCM Models: Empowerment Scale            

Item PCM GPCM  Item PCM GPCM 
       

1 10.460 5.279  8 6.114 3.914 
2 8.156 40.762  9 7.005 5.209 
3 9.722 5.389  10 2.846 4.048 
4 8.466 5.557  11 5.676 5.663 
5 5.916 6.141  12 2.561 4.280 
6 5.822 6.548  13 6.950 5.712 
7 4.910 5.585     

 __________________________________________________________________________     
 

Table 4.2 displays the root mean square residuals at the item level from both the PCM and 

GPCM models. Because of the sample size restriction and other software restrictions, chi-

square item level likelihood-ratio fit statistics were used as a proxy for a measure of local 

independence for the GGUM. These chi-square distributed statistics were calculated for 

measures of model fit and are reported and interpreted in Table 4.15 in the Item Parameter 

Estimates section for the GGUM analyses, by sample, on the Empowerment data. To 

summarize the results shown in Table 4.3, items 1, 3, 4, 8, and 13 fit statistically well in most 

of the GGUM analyses, although these statistics and associated p-values, must be interpreted 

with caution. At the scale level, the GGUM did not fit statistically well in any analysis.   
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Table 4.3  

Pearson Product Moment Inter-item Correlations between the 13 Empowerment Items          

   
Item              
Mean 3.20 3.64 3.33 3.51 3.33 3.43 3.70 3.40 2.61 1.80 2.60 2.02 3.12 
S.D. 1.13 1.07 1.10 1.05 1.08 1.00 .99 1.11 1.06 .97 1.10 1.00 1.04 
Var. 1.27 1.15 1.22 1.11 1.17 .99 .98 1.23 1.11 .94 1.21 1.00 1.08 

                                                                                                                                              
 

 Investigation of model assumptions, and to some extent, model fit, revealed that the 

CFA and cumulative IRT models exhibited moderately good fit, and the assumption of 

unidimensionality was reasonably met. Although absolute interpretations cannot be made 

using the RMSEA statistics, they revealed, at the item level, that the PCM fit better for half 

of the items, and the GPCM fit better (than the PCM) for the other half of the Empowerment 

items.  

Unidimensionality under Unfolding Models 

 Assessing the dimensionality of the data from the ideal point response perspective, a 

principal components analysis was conducted on the entire sample (n = 65,031) to assess 

Item     1     2       3     4     5    6    7    8  9 
       
10 

     
11   12 13 

 
1   -             
2 .674 -               
3 .697 .603        -           
4 .628 .567 .766 -             
5 .402 .365 .405 .392  -         
6 .430 .429 .378 .361 .273    -        
7 .392 .488 .358 .361 .242 .587      -       
8 .306 .368 .270 .267 .201 .439 .561     -      
9 .464 .393 .446 .412 .330 .434 .371 .365 -       
10 .333 .265 .303 .286 .221 .298 .224 .192 .401  -    
11 .479 .408 .470 .469 .312 .367 .348 .301 .465 .427  -   
12 .419 .317 .392 .363 .261 .361 .267 .220 .451 .482 .476    -  
13 .498 .402 .489 .462 .305 .430 .365 .274 .472 .374 .487 .517     - 
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dimensionality. The methods used to examine the dimensionality of each data set 

(Leadership and Empowerment) included examination of eigenvalues, final communality 

estimates, pattern coefficients, and plots of pattern coefficients resulting the application of 

principal components analyses with two components. Assessment and determination of 

dimensionality structure within the context of unfolding models is similar to determination 

within the context of cumulative models in that consideration of a variety of measures is 

necessary, where there are established criteria for some measures, and general heuristics for 

others. Generally, if an item level communality, generated from the first two components, is 

> .3, then that item is not likely violating the assumption of unidimensionality (Roberts et al., 

2000). Item level final communality estimates derived from a two factor component model 

for the Empowerment sample are reported in Table 4.4. Communalities for all items 

comprising the Empowerment scale were greater than .3. 

 The first two eigenvalues of the PCA should be larger than the remaining eigenvalues 

when the data are unidimensional, of the unfolding type. This criterion is a rule-of-thumb;  

no formal criterion exists to strictly quantify “large.” The first five eigenvalues from the 

Empowerment analysis, in descending order were: 5.889, 1.254, 1.163, .732, and .604. 

 

Table 4.4 

Final Communality Estimates for the Empowerment items (i = 13)                                           

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 
              
 .654 .550 .667 .614 .308 .614 .756 .683 .478 .340 .507 .459 .514 
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The second eigenvalue was not substantially larger than the third eigenvalue. This is 

evidence that the assumption of unidimensionality within the context of cumulative IRT 

models is supported, as opposed to unidimensionality within the context of unfolding models.   

 A third procedure for examining dimensionality within the context of unfolding 

models is to plot the pattern coefficients that result from a PCA with two factors (i.e., 

components). A semi-circular pattern (i.e., simplex pattern) of the coefficients in a two-factor 

space is evidence that two linear principal components explain the pattern of data. Within the 

context of unfolding IRT models, there are two linear principal components for each 

unfolding dimension. The pattern coefficients from the two component PCA with the 

Empowerment samples are reported in Table 4.5.  Figure 4.1 displays the plot of pattern 

coefficients for the Empowerment scale. A distinct semi-circular pattern is not evident for the 

13 Empowerment items, suggesting that two linear components are not responsible for 

producing the observed pattern of responses. All of the procedures for assessing 

unidimensionality within the context of unfolding data reveal that the responses do not 

unfold, and that application of unfolding IRT models may be unnecessary.  

 

Table 4.5 

Factor Pattern Coefficients Derived from Two Principal Components: Empowerment 
    

Item Factor1 Factor2  Item Factor1 Factor2 
1 .755 .289       8  .112  .819 
2 .593 .445  9 .586 .368 
3 .790 .206  10 .577 .088 
4 .756 .205  11 .672 .235 
5 .534 .149  12 .665 .126 
6 .338 .707  13 .668 .262 
7 .221 .841     
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Figure 4.1 

Plot of Factor Pattern Coefficients for the Empowerment Scale 
 

 
Development of the CFA Scale 

The single factor CFA analyses were implemented as scaling methods and were 

selected to mirror the scaling methodology frequently used in current survey research. 

According to documentation in reference to the NCTWCS development and data 

manipulation, (Center for Teaching Quality, 2006), results from factor analyses were used to 

create domain averages across the sections, including but not limited to those of 

Empowerment and Leadership. To maintain a close resemblance to current scoring/scaling 

methodology, an assumption was made that a single latent trait, Empowerment, was 

measured by the 13 empowerment items. In the empowerment analysis, the item that 

consistently yielded the highest standard deviation reads: “Teachers are centrally involved in 

decision making about educational issues”, with the standard deviation ranging from 1.114 to 
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1.147 across the 10 empowerment samples. As a result, the factor loading of this item onto 

the Empowerment factor was fixed at 1.0 for all 10 Empowerment analyses.  

 The measures of the latent trait were transformed into observed variables by summing 

the products of the factor scores and item responses per respondent. The summation across 

the 13 Empowerment items functioned as the CFA Empowerment theta or measure of 

Empowerment trait per respondent. Various measures of model/data fit for the 10 

empowerment samples are shown in Table 4.6.   

 

 

Table 4.6 

Fit Indices for the One Factor Empowerment Model by Sample (n = 10 samples) 
___________________________________________________________________________ 
Sample   Model 2χ    df     2χ /df    RMSEA    RMR     SRMR     NFI     GFI   Model AIC 
 
1 2152.176 65 33.110 .146 .075 .075 .915 .819 2690.97 
2 2248.426 65 34.591 .152 .078 .078 .912 .808 2889.7 
3 2096.821 65 32.259 .145 .077 .077 .907 .821 2643.81 
4 2188.376 65 33.667 .147 .075 .075 .911 .817 2723.15 
5 2182.586 65 33.578 .147 .075 .075 .914 .817 2721.22 
6 2325.526 65 35.777 .155 .080 .080 .900 .801 3024.7 
7 2568.795 65 39.520 .144 .073 .073 .917 .824 2620.8 
8 2026.286 65 31.174 .145 .075 .075 .916 .822 2603.62 
9 2054.238 65 31.604 .145 .073 .073 .916 .822 2592.43 
10 2233.273 65 34.358 .149 .077 .077 .913 .813 2828.364 

 
                                                                                                                                                       
Notes:  RMSEA = Root Mean Square Error of Approximation; RMR = Root Mean Square Residual;  
SRMR = Standardized Root Mean Square Residual, NFI = Normed Fit Index; GFI = Goodness of Fit Index, 
Model AIC = Akaike Information Criterion 

 

 

 The preceding results indicate that a single factor model did not fit the data well; 

therefore the assumption of unidimensionality within the context of cumulative IRT models 
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was not satisfied. Further, it can be concluded that the 13 items do not measure the construct, 

Empowerment in the CFA model well either. Unidimensionality within the context of 

unfolding IRT models was also not met given that two components did not explain the data, 

and that the plots of the pattern coefficients did not form a semi-circular shape. 

 

IRT Parameter Estimates 

Item Locations 

 The second research question focused on the item location estimates generated 

from the three IRT models, as it was hypothesized that locations may be very different across 

the two types of IRT models (cumulative, unfolding), if the survey was constructed using a 

method that assumed a dominance response process. To investigate this, IRT calibrations 

were performed on all 10 Empowerment data sets with the application of the PCM, GPCM, 

and GGUM models. Item parameter estimates, including the location estimates, as presented 

in this section.   

 The items as they appear on the NCTWC survey are presented in Table 4.7.  

The underlying trait, Empowerment, and the respective scale upon which both item and 

person estimates are located are different for the cumulative (PCM, GPCM) and GGUM 

models. PCM and GPCM estimates may be interpreted similarly, though cannot be directly 

interpreted relative to the GGUM parameter estimates, both item and person. The average 

item location estimate and average standard error of the location estimates, aggregated across 

the 10 samples are presented in Table 4.8 for the Empowerment scale. Item location ranks by 

IRT model are also tabled. All item location estimates generated from the 10 GGUM 

analyses on the Empowerment items were moderately (iδ   = 2.743) to highly extreme (iδ   = 



 91

5.048). Within unfolding analyses, the order of item locations and the content of items should 

be consistent. Item content, may, to some extent be associated with the extremity of item 

location in that item parameters are estimated relative to the location of people. Given that 

the location parameters from GGUM analyses are estimated and center the item relative to 

theta, the item locations can be interpreted as corresponding to the point on the latent trait 

where the average item response would lie. However, if a sample is relatively homogeneous 

in their attitude, say neutral, then moderately negative (or positive) items will appear 

extremely negative (or positive).   

The relative extremity of the observed average item locations estimated from the 

GGUM could be an indication that the distribution of responses may be skewed in that many 

people agreed or strongly agreed to most of the items. Additionally, extreme estimates such 

as those presented in Table 4.8 could also result from scale drift that occurs when only a 

portion of the latent trait is measured. The signs of the item locations are arbitrary within 

unfolding analyses, therefore interpretation of an extreme location such as item 10 for 

example (average iδ   = 5.048) must include consideration of relative location of people, the 

items content and the content of the rest of the items on the scale. Item 10 reads: “Please 

indicate how large a role teachers at your school have in hiring new teachers” which arguably 

does not contain extreme content in either direction. Considering that the majority of 

respondents disagreed with this item, the extremity of the location of Item 10 is likely due to 

the homogeneity of attitudes among respondents with respect to this particular question. 

Table 4.9 displays the percentage of respondents who endorsed each category for each 

Empowerment item.  
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Table 4.7  

Empowerment Items (i = 13) 

Empowerment 

   Please rate your level of agreement with the following statements:                                          

1. Teachers are centrally involved in decision making about educational issues 
2. Teachers are trusted to make sound professional decisions about instruction 
3. The faculty has an effective process for making group decisions and solving problems 
4. In this school we take steps to solve problems 
5. Opportunities for advancement within the teaching procession (other than administration)      
are available to me 
   Please indicate how large a role teachers at your school have in each of the following areas: 
6. Selecting instructional materials and resources 
7. Devising teaching techniques 
8. Setting grading and student assessment practices 
9. Determining the content of in-service professional development programs  
10. Hiring new teachers 
11. Establishing and implementing policies about student discipline  
12. Deciding how the school budget will be spent 
13. School improvement planning 
                                                                                                                                                    

Within the PCM and GPCM analyses, the majority of the item location estimates 

produced from the PCM and GPCM analyses were moderately negative, except for items 9 

through 12, which were consistently estimated to be positive. The scale for item parameter 

estimates (and person parameter estimates) within IRT analyses typically ranges between -3 

and +3. For example, application of the PCM for item 7 resulted in an average estimated item 

location value of -.936 which indicates that it was generally easy for respondents to endorse 

item 7. Alternatively, the average location estimate for item 10 resulting from the application 

of the GPCM was 2.39; this value is interpreted to indicate that a relatively good or positive 

attitude toward Empowerment is required for respondents to endorse this item. Based on 

these results, item 10 can be interpreted as difficult to agree with, or endorse. Put another 

way, it would take a very high degree of or very positive attitude about teacher 
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Empowerment to endorse item 10. The PCM and GPCM results are similar to each other at 

the item level in terms of both the location and standard error of the estimates. Additionally, 

the order of the location of items on the latent trait was almost identical between the PCM 

and GPCM analyses.  

The large standard errors associated with the GGUM estimates for the majority of the 

Empowerment items would generally be expected for such extreme item location estimates. 

The large standard errors may be an indication that these items are not located in the same 

general region on the unidimensional latent trait as the majority of the respondents (i.e., 

thetas). Further, the general average location of the Empowerment items according to the 

GGUM analyses indicate that the items are located in one region of the latent trait scale, and 

not dispersed across the spectrum of the latent trait.   

The average correlation between the Kendall’s Tau-b parameter estimates across the 

10 samples between the PCM and GPCM for estimated item locations was .938. The average 

correlation between the PCM and GGUM was .231 and the correlation between GPCM and 

GGUM item estimates was .180.  Across the 10 Empowerment samples, all correlations 

between the PCM and GPCM location estimates were statistically significant (p < .05). None 

of the 10 correlations between the PCM and GGUM location estimates were statistically 

significant, and none correlations between the GPCM and GGUM estimates were statistically 

significant. These correlations and associated p values, along with the nearly identical rank 

ordering of item locations are further evidence that the PCM and GPCM function similarly, 

as expected.   
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Table 4.8 

Average Item Locations, Standard Errors, and Rank Order of Item Locations across 10 
Samples: Empowerment  
 
            Average Item Location       Rank Order of Average Item Locations   
 (Standard Error)                            
Item     PCM          GPCM        GGUM                       PCM        GPCM  GGUM                  

7 -0.936 -1.034 -4.613  13 13 3 

 (0.039) (0.048) (3.735)     

2 -0.633 -0.574 -2.795  12 10 11 

 (0.038) (0.031) (0.727)     

6 -0.627 -0.671 -4.301  11 12 6 

 (0.037) (0.042) (3.181)     

4 -0.499 -0.441 -2.743  10 9 12 

 (0.041) (0.030) (0.542)     

8 -0.436 -0.589 -4.994  9 11 2 

 (0.036) (0.057) (5.030)     

3 -0.278 -0.255 -2.847  8 7 10 

 (0.041) (0.028) (0.743)     

5 -0.274 -0.289 -3.769  7 8 9 

 (0.035) (0.046) (1.861)     

1 -0.110 -0.120 -2.738  6 6 13 

 (0.038) (0.028) (0.463)     

13 -0.037 -0.034 -3.836  5 5 8 

 (0.036) (0.035) (2.429)     

11 0.670 0.691 -4.328  4 4 5 

 (0.035) (0.036) (3.921)     

9 0.695 0.724 -4.097  3 3 7 

 (0.035) (0.037) (3.374)     

12 1.543 1.708 -4.473  2 2 4 

 (0.037) (0.047) (6.601)     

10 1.823 2.390 -5.048  1 1 1 

 (0.038) (0.072) (10.601)     
Note: The parameter estimates for the PCM and GPCM results are not directly comparable to the GGUM 
estimates as theta and the resulting scale are different.  
 
The item location estimates, and the correlation between IRT models, reveal that the 

cumulative IRT models rank ordered the items differently than the unfolding model. 

However, none of the models estimated items to be evenly distributed across the latent trait. 



 

Table 4.9  

Percentage of Category Endorsement by Empowerment Item: Full Sample (n = 65,008)                        
___________________________________________________________________________ 
                                                                                                                      

  Item 1 2 3 4 5 6 7 8 9 10 11 12 13 

                

 y Strongly Disagree  8.1 5.4 6.8 5.1 7.1 2.9 2.5 6.1 16.9 50 18.7 37.9 7 

 r               

 o Disagre 22.5 12.9 19.3 14.4 16.1 15 9.5 15.1 28.6 26.5 28.9 32.1 20.6 95 g               

 e Neither Agree Nor 
Disagree 17.8 10.3 17.9 17.1 23.7 31.6 24.3 26.7 32.3 15.3 28.5 20.3 31.7 

 t               

 a Agree 42.8 54.5 45.5 49.6 42.7 36.1 41.5 35.5 18.8 6.5 20.1 8.2 33.4 

 C
 

              

  Strongly Agree 8 16.2 9.9 12.5 10.1 13.5 21 15.4 2.6 0.6 3.1 0.9 6.6 
 

________________________________________________________________________________________________________ 
                                                                                                                     



 96

The discriminating characteristics of the Empowerment items are described here for 

the three IRT models. Presented in Table 4.10 are the average item discriminations (a 

parameters) and standard errors across the 10 samples. As shown in Table 4.10, the values of 

the discrimination parameters generally range from 0 (no discrimination among examinees) 

to about 3.0 (item discriminates well among examinees) and these parameters are comparable 

across the three IRT models. Because the PCM is a Rasch model, the discrimination 

parameter is a fixed item parameter. 

 

Table 4.10 

Average Item Discrimination and Standard Errors across 10 Empowerment Samples 

          Average Item Discrimination    Average Standard Error                             

Item PCM    GPCM    GGUM                         PCM    GPCM   GGUM                  

1 0.626      1.373      2.349         0.005     0.051   0.102  
2 0.626      1.010      1.710         0.005     0.032   0.072 
3 0.626      1.433      2.451         0.005     0.055   0.107  
4 0.626       1.228      2.088         0.005     0.045   0.089 
5 0.626      0.383      0.647         0.005     0.015   0.033  
6 0.626      0.531      0.891         0.005     0.020   0.051 
7 0.626      0.488      0.824         0.005     0.021   0.055  
8 0.626      0.309      0.513         0.005     0.014   0.039 
9 0.626      0.591      1.003         0.005     0.023   0.045  
10 0.626      0.371      0.636         0.005     0.021   0.038 
11 0.626      0.602      1.020         0.005     0.023   0.046  
12 0.626      0.513      0.875         0.005     0.025   0.044 
13 0.626      0.673      1.138         0.005     0.024   0.052  
___________________________________________________________________________ 
 
 
 

The PCM analyses were run using the PARSCALE software, where item 

discrimination parameters were necessarily fixed. The constraints imposed on these 

parameters included a mean of 1.0 and a standard deviation of .0001. A real value prior mean 
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of 1 is generally an accepted value when constraining discrimination parameters. Larger 

values of the standard deviation, such as .01, are not tight and should be decreased to 

contribute to constraining the slopes to 1.0. A tighter and smaller value for the standard 

deviation like .0001 was necessary in the current investigation. In the applied literature where 

command files are available, values as small as .0000001 are used as the standard deviation 

of the discrimination parameters for Rasch type IRT models (Kang & Chen, 2008). The value 

of .0000001 was used on a single Empowerment sample, and had no impact on item level fit 

statistics, number of E-M iterations, and the discrimination parameter increased by only .002. 

Therefore, the value of .0001 was deemed appropriate and sufficient in this investigation.  

Across the PCM analyses on the 10 Empowerment samples, each took about 50 

iterations of the E-M cycle to converge. Generally, many iterations required for convergence 

is indicative of some problem or a potentially ill-fitting model. The relatively large number 

of E-M iterations coupled with the values of .626 for the a parameter, indicate that, given the 

data and the model, forcing the a parameters to a distribution of (1, .0001) was difficult and 

that the PCM does not fit the data well. Although the a parameters did not match completely, 

the GPCM and GGUM analyses ordered the 13 items identically in terms of most to least 

discriminating. For example, both models estimated that item 3 was most discriminating and 

that item 8 was least discriminating. The average Kendall’s Tau-b correlation between the 

GPCM and GGUM models, across the 10 Empowerment samples was .995. These 

correlations, across the 10 samples were all statistically significant (p < .05). 

 Because the majority of the sample either agreed or strongly agreed with item 10, this 

item also was associated with a low discrimination parameter. This item did not discriminate 

well among respondents, as most people agreed regardless of their standing on the latent trait. 
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Items 1 and 3, for example had relatively high discrimination parameter estimates, meaning 

that these items differentiate well between those respondents with low and high levels of the 

latent trait, attitude towards teacher Empowerment. Another contributing factor to the high 

discrimination estimates was the use of all 5 response categories by respondents.  

 The final item parameters estimated using the IRT models were the category 

probability thresholds. Because there were five categories or response options on the 

NCTWCS, four threshold parameters were estimated for each item. Average category 

threshold parameters across the 10 samples are presented in Table 4.11 for the PCM and 

GPCM models. The average values in Table 4.11 are denoted kd  (k representing item 

category) and often referred to as threshold parameters. Within the PCM and GPCM 

specifications, 1jb  and 1d  are always equal to 0. According to the PCM and GPCM, in order 

to identify the point of intersection on the latent trait scale, between the probability of 

endorsing category 1 (Strongly Disagree) and for endorsing category 2 (Disagree), 

calculation of the item step parameters,jkb , is necessary. Item step parameters are simply the 

difference between item location,jb  and the threshold parameter,kd .  

Within the GGUM, somewhat analogous to the PCM and GPCM, are item category 

threshold parameters, denoted jkτ . Unlike the interpretation of the item step parameters 

within the PCM and GPCM models, the category threshold parameters within the GGUM 

denote the intersection of the subjective response category (SRC) functions relative to the 

item location. The threshold parameters within GGUM are not interpreted as the point of 

intersection of the observed response categories, although they are an indication of the 

variation across response options by the respondents. Table 4.12 presents the average PCM 

and GPCM item step parameters and the average GGUM item category threshold parameters.  
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Table 4.11 

Average Category Threshold Parameters Across 10 Empowerment Samples  

                PCM      GPCM        

Item   2d     3d       4d         5d    2d     3d        4d           5d  

1 1.792 0.072 0.588 -2.452  1.414 0.273 0.167 -1.853 

2 1.393 -0.168 1.047 -2.272  1.245 0.048 0.587 -1.881 

3 1.710 0.154 0.540 -2.404  1.363 0.313 0.129 -1.804 

4 1.605 0.245 0.529 -2.379  1.352 0.335 0.174 -1.862 

5 1.483 0.624 0.227 -2.334  1.722 0.772 0.578 -3.072 

6 2.162 0.586 -0.510 -2.239  2.305 0.624 -0.516 -2.413 

7 1.705 0.638 -0.278 -2.065  1.828 0.709 -0.241 -2.296 

8 1.488 0.591 -0.174 -1.905  1.915 0.829 -0.029 -2.714 

9 1.851 0.910 -0.334 -2.427  1.891 0.960 -0.323 -2.527 

10 1.415 0.890 -0.076 -2.228  1.550 1.214 0.113 -2.876 

11 1.717 0.713 -0.129 -2.301  1.741 0.749 -0.109 -2.381 

12 1.688 0.833 -0.199 -2.323  1.800 0.940 -0.174 -2.567 

13 1.916 0.722 -0.198 -2.440  1.858 0.714 -0.185 -2.387 
Notes: 2d  = threshold parameter for category 2 (Disagree); 3d = threshold parameter for category 3 (Neither 

Agree Nor Disagree); 4d  = threshold parameter for category 4 (Agree); 5d  = threshold parameter for category 

5 (Strongly Agree) 



 

Table 4.12  
Average Category Step and Threshold Parameters across 10 Empowerment Samples  

                     PCM           GPCM         GGUM 

Item       2jb         3jb          4jb           5jb            2jb            3jb           4jb          5jb                 2iτ            3iτ            4iτ          5iτ  

____________________________________________________________________________________________________________   

1 -1.902 -.182 -.698 2.342  -1.533 -.393 -.286 1.733  -4.277 -3.138 -3.030 -.999   

2 -2.026 -.465 -1.679 1.639  -1.820 -.623 -1.161 1.306  -4.638 -3.400 -3.978 -1.471   

3 -1.989 -.432 -.818 2.125  -1.617 -.568 -.384 1.549  -4.475 -3.424 -3.228 -1.293   

4 -2.104 -.744 -1.028 1.880  -1.793 -.776 -.615 1.422  -4.548 -3.527 -3.369 -1.310   

5 -1.757 -.898 -.501 2.060  -2.010 -1.061 -.867 2.783  -5.790 -4.845 -4.650 -.759   

6 -2.789 -1.214 -.117 1.611  -2.976 -1.295 -.155 1.742  -7.291 -5.610 -4.475 -2.486   

7 -2.641 -1.574 -.658 1.130  -2.862 -1.743 -.793 1.262  -7.479 -6.376 -5.435 -3.282 1  

8 -1.924 -1.027 -.262 1.469  -2.504 -1.418 -.560 2.125  -7.593 -6.455 -5.580 -2.592 0  

9 -1.156 -.215 1.029 3.123  -1.167 -.236 1.047 3.251  -5.282 -4.341 -3.064 -.742 0  

10 .408 .933 1.899 4.051  .840 1.176 2.277 5.266  -4.219 -3.903 -2.736 .400   

11 -1.047 -.043 .799 2.971  -1.051 -.058 .800 3.072  -5.384 -4.403 -3.521 -1.173   

12 -.145 .710 1.742 3.866  -.092 .768 1.882 4.275  -4.570 -3.733 -2.620 .002   

13 -1.953 -.759 .162 2.403  -1.892 -.748 .152 2.353  -5.749 -4.581 -3.705 -1.396 
 
____________________________________________________________________________________________________________
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           The average (across the 10 samples) points on the latent trait scale, where the category 

1 (Strongly Disagree) and category 2 (Disagree) probabilities intersect within the PCM and 

GPCM models are given in the column labeled 2jb  . Likewise, the point of intersection of the 

category probabilities on the latent trait between the adjacent categories 2 (Disagree) and 3 

(Neither Agree Nor Disagree) is found in the 3jb  column. The same interpretation is made 

for the points on the latent trait where the probability of selecting category 3 (Neither Agree 

Nor Disagree) and category 4 (Agree) is the same (4jb  column) and for the point where the 

probability of selecting category 4 (Agree) and category (Strongly Agree) is the same (5jb ). 

For example, across the averaged parameters estimated within the PCM analyses, the point 

on the latent trait (Empowerment) scale, where the probability of endorsing category 1 

(Strongly Disagree) and category 2 (Disagree) intersect, is located on average, at -1.902. 

 The similarities of the averaged step parameters between the PCM and GPCM are 

evident in that there is a general progression across categories. The locations on the latent 

trait within 2jb , 3jb , and 4jb are relatively near each other, whereas a gap on the latent exists 

between those values and the values of 5jb . The relatively high positive values from both 

PCM and GPCM analyses within 5jb can be interpreted as a relatively high or positive 

attitude required to strongly agree or agree with the Empowerment items. Items 9, 10, 11, 

and 12 exemplify this point. The clustering of the first three step parameters and the 

separation of the fourth step parameter may be an indication that respondents are not using 

the categories equally in that a disproportionate number of respondents are endorsing the 

lower (i.e., Strongly Disagree and Disagree) response options for items 9, 10, 11, and 12. 

These results are consistent with the item location parameter estimates, in that within the 
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PCM and GPCM analyses, eight of the 13 items were located between -1 and 0 on the latent 

trait scale. For those five items generally located between 0 and 2, the step parameters were 

also located in that interval on the latent trait. For example, the average location for item 10 

within the PCM analyses was 1.823. The associated step parameters ranged between .408 and 

4.051, suggesting that this item requires a very positive attitude towards the Empowerment of 

teachers, and that even those respondents who have a moderately positive attitude (2jb value 

= .408) are still likely to strongly disagree or disagree.    

 The threshold parameters within the GGUM analyses are not directly interpreted at 

the observed response level. Examination of the category probability plots is useful for the 

interpretation of item parameter estimates for GGUM analyses. Derivation and examination 

of the probability plots were the focus of the third research question, as it was hypothesized 

that, for the items that contained relatively neutral content, the plots would display 

characteristics of the ideal point response process (i.e., single-peaked, non-monotonic). It was 

also hypothesized that the two types of IRT models would function similarly if the attitudes 

possessed by the sample were located on one side of the items (i.e., homogeneous sample not 

measured well by items). Figures 4.2 through 4.14 display the category probability functions 

for the 13 Empowerment items from application of the PCM on the first simple random 

sample. Figures 4.15 through 4.27 display the category probability functions for the 13 

Empowerment items from application of the GPCM on the first simple random sample, and 

Figures 4.28 through 4.40 display the category probability plots for the 13 Empowerment 

items resulting from the GGUM analyses on the first sample. 
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Figure 4.2 

Category Probability Plot for Item 1 with PCM: Sample 1, Empowerment Scale 

 

Figure 4.3 

Category Probability Plot for Item 2 with PCM: Sample 1, Empowerment Scale  
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Figure 4.4 

Category Probability Plot for Item 3 with PCM: Sample 1, Empowerment Scale  

 

Figure 4.5 

Category Probability Plot for Item 4 with PCM: Sample 1, Empowerment Scale  
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Figure 4.6 

Category Probability Plot for Item 5 with PCM: Sample 1, Empowerment Scale  

 

 

Figure 4.7 

Category Probability Plot for Item 6 with PCM: Sample 1, Empowerment Scale  
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Figure 4.8 

Category Probability Plot for Item 7 with PCM: Sample 1, Empowerment Scale  

 

Figure 4.9 

Category Probability Plot for Item 8 with PCM: Sample 1, Empowerment Scale  
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Figure 4.10 

Category Probability Plot for Item 9 with PCM: Sample 1, Empowerment Scale  

 

 

Figure 4.11 

Category Probability Plot for Item 10 with PCM: Sample 1, Empowerment Scale  
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Figure 4.12 

Category Probability Plot for Item 11 with PCM: Sample 1, Empowerment Scale  

 

 

Figure 4.13 

Category Probability Plot for Item 12 with PCM: Sample 1, Empowerment Scale  
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Figure 4.14 

Category Probability Plot for Item 13 with PCM: Sample 1, Empowerment Scale  

 

 

Figure 4.15 

Category Probability Plot for Item 1 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.16 

Category Probability Plot for Item 2 with GPCM: Sample 1, Empowerment Scale  

 

 

Figure 4.17 

Category Probability Plot for Item 3 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.18 

Category Probability Plot for Item 4 with GPCM: Sample 1, Empowerment Scale  

 

 

Figure 4.19 

Category Probability Plot for Item 5 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.20 

Category Probability Plot for Item 6 with GPCM: Sample 1, Empowerment Scale  

 

 

Figure 4.21 

Category Probability Plot for Item 7 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.22 

Category Probability Plot for Item 8 with GPCM: Sample 1, Empowerment Scale  

 

Figure 4.23 

Category Probability Plot for Item 9 with GPCM: Sample 1, Empowerment Scale  

 

 

  
 

0

.2 

.4 

.6 

.8 

1 

-3 -2 -1 0 1 2 3

1 2 3
4 

5

Theta

P
ro

ba
bi

lit
y 

Item Characteristic Curve: Item 8 
 

  
 

0

.2 

.4 

.6 

.8 

1. 

-3 -2 -1 0 1 2 3

1 

2 

3 
4 

5

Theta

P
ro

ba
bi

lit
y 

Item Characteristic Curve: Item 9 
 



 114

Figure 4.24 

Category Probability Plot for Item 10 with GPCM: Sample 1, Empowerment Scale  

 

Figure 4.25 

Category Probability Plot for Item 11 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.26 

Category Probability Plot for Item 12 with GPCM: Sample 1, Empowerment Scale  

 

Figure 4.27 

Category Probability Plot for Item 13 with GPCM: Sample 1, Empowerment Scale  
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Figure 4.28 

Category Probability Plot for Item 1 with GGUM: Sample 1, Empowerment Scale 

 

Figure 4.29 

Category Probability Plot for Item 2 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.30 

Category Probability Plot for Item 3 with GGUM: Sample 1, Empowerment Scale  

 

Figure 4.31 

Category Probability Plot for Item 4 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.32 

Category Probability Plot for Item 5 with GGUM: Sample 1, Empowerment Scale  

 

Figure 4.33 

Category Probability Plot for Item 6 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.34 

Category Probability Plot for Item 7 with GGUM: Sample 1, Empowerment Scale  

 

Figure 4.35 

Category Probability Plot for Item 8 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.36 

Category Probability Plot for Item 9 with GGUM: Sample 1, Empowerment Scale  

 

Figure 4.37 

Category Probability Plot for Item 10 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.38 

Category Probability Plot for Item 11 with GGUM: Sample 1, Empowerment Scale  

 

Figure 4.39 

Category Probability Plot for Item 12 with GGUM: Sample 1, Empowerment Scale  
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Figure 4.40 

Category Probability Plot for Item 13 with GGUM: Sample 1, Empowerment Scale  

 

 

 To interpret the preceding figures, it is important to recall that within all category 

probability plots across the three IRT models, category 1 always represents Strongly 

Disagree and category 5 always represents Strongly Agree. These plots are graphical 

representations of the item parameters previously reported. For example, most respondents 

either agreed or strongly agreed with item 7 in sample 1 (see Figures 4.8, 4.21, 4.34 for 

PCM, GPCM, and GGUM, respectively). This item had a low discrimination parameter 

across all three IRT models, had a moderately negative average value for the location 

parameter (b = -.936, b = -1.034 for PCM and GPCM, respectively), meaning that this item 

was relatively easy to agree with, even for respondents with a moderately negative attitude 

towards teacher Empowerment. All of these components can be seen in the category 
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probability plot of item 7, and for the rest of the items. Note that item discrimination is a 

constant or fixed parameter within the PCM, therefore only the location and step parameters 

affect the shape of the category probability plots within those analyses.  

The category probability plots resulting from the GGUM analyses depict the same 

item characteristics. A characteristic of the GGUM model is that the observed category 

probability function of, say, Strongly Disagree is the summation of the probabilities 

associated with the two subject response category probabilities (Strongly Disagree from 

above and Strongly Disagree from below). The category response functions associated with 

the strongest level of agreement will peak around the point of the items estimated location. 

The response functions that represent Strongly Disagree and Disagree will peak furthest, in 

either direction, from the item’s location. For example, Figure 4.37 depicts the category 

probability function resulting from the application of GGUM to item 10, in sample 1, an item 

with which very few respondents agreed or strongly agreed. According to the GGUM, this 

item displayed a low discrimination and was the most extreme item in terms of location (δ  = 

5.066) on the latent trait (Empowerment).  The response function in Figure 4.37 associated 

with category 5 (Strongly Agree) is nearly non-existent because its peak would be located 

around the item location. Because the item location is so extreme and most people disagreed, 

the category response function associated with strongly disagree is monotonically decreasing. 

It can be determined for item 10, according to the GGUM, that respondents are disagreeing 

for one reason. A more discriminating (a = 2.363) and less extreme (δ   = 2.271) item than 

item 10 in the first sample, according to GGUM is item 3. The response function for the 

Strongly Agree category peaks near the item’s location. The highly discriminating nature of 

item 3 is evidenced by the more distinct and peaked category functions, compared to item 10.  
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Within the GGUM analyses, the Agree and Strongly Agree response categories for 

the first five items exhibit characteristics of an unfolding type item, or of an item to which 

the ideal point response process was used to answer. For example, an individual whose theta 

value is 3, is highly likely to strongly agree, and highly unlikely to agree with item 1. 

However, if an individual’s value of theta is 2 or 4, then the probability of agreeing or 

strongly agreeing is approximately the same. This is characteristic of unfolding models; there 

are always two person estimates that yield the same probability of item endorsement. This 

pattern of probability is only evident for the categories of Agree and Strongly Agree and for 

the first five items. It is difficult to distinguish between the cumulative and unfolding models, 

based on the category plots for the rest of the items (6 through 13). The mean score for item 1 

in sample 1 was 3.168, and the GGUM location for item1 in sample 1 was 2.779, therefore 

the category probability function that corresponds to Strongly Agree peaks around 3.   

To address the third research question, the probability functions were generally very 

similar across the two types of IRT models, indicating little difference between cumulative 

and unfolding IRT models. Some items, did however, exhibit unfolding properties, especially 

for the Strongly Agree and Agree response options for the first four Empowerment items. 

These properties were also evidenced by the slight non-monotonicity of the ICCs generated 

from the GGUM analyses. 

 The second part of the fourth research question investigated in this study had to do 

with the fit of each model to the data. This was examined by calculating both absolute and 

relative fit statistics. Fit statistics are presented and discussed below. Both PARSCALE 4 and 

GGUM2004 calculate chi-square distributed (i.e., the likelihood ratio fit statistics (G2) at the 

item and scale level. The PARSCALE 4 software collapses cells if frequencies are less than 5 
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(du Toit, 2003). Table 4.13 displays the item and scale (i.e., total) level fit statistics produced 

by the PCM for the 13 Empowerment items for each of the 10 samples. Table 4.14 contains 

the item and scale level fit statistics resulting from application of the GPCM, and Table 4.15 

displays the item and scale level fit statistics estimated by GGUM. The null hypothesis for 

each of these tests is that observed and expected frequencies are the same across raw score 

groups (10 groups were specified for all analyses). The asterisks in Table 4.13, Table 4.14, 

and Table 4.15 denote those items that show good fit to the particular model (i.e., observed 

and expected cell frequencies do not differ statistically).  

According to the PCM results, the only item that consistently displayed good model 

fit across all 10 samples was item 12 (“Please indicate how large a role teachers at your 

school have in deciding how the school budget will be spent”). Item 10, fit well in three 

samples. Fit of the PCM model for the whole Empowerment scale is given at the bottom of 

Table 4.13, where, across all 10 samples, the PCM does not fit these data well. The item and 

scale level chi-square distributed fit statistics for all 10 Empowerment Samples produced by 

the GPCM are given in Table 4.14. Within the GPCM analyses, only two items, 8 and 10 

exhibited statistically good fit within more than half the samples. Item 8 reads: “Please 

indicate how large a role teachers at your school have in setting grading and student 

assessment practices” and item 10 reads “Please indicate how large a role teachers at your 

school have in hiring new teachers.” Within the PCM analyses, item 12 consistently 

exhibited good statistical fit, where as in the GPCM analyses item 12 appeared to fit well in 

four samples. Similar to the PCM analyses, however, the GPCM did not appear to fit the 

Empowerment data, in any analysis at the item or scale level. 



 

Table 4.13 

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: PCM           

 
      Sample 1             Sample 2     Sample 3       Sample 4        Sample 5 
     Item    2χ        df       p          2χ        df       p           2χ        df       p              2χ        df       p           2χ        df       p 
  

1 222.477 29 .000 181.763 28 .000 241.538 28 .000 267.479 27 .000 193.426 28 .000  

2 139.416 26 .000 146.097 26 .000 155.472 28 .000 149.755 26 .000 137.680 26 .000  

3 205.651 27 .000 206.508 27 .000 192.113 28 .000 171.452 28 .000 215.036 27 .000  

4 155.227 27 .000 151.227 28 .000 164.895 28 .000 170.657 27 .000 203.529 28 .000  

5 96.288 28 .000 126.454 27 .000 122.194 28 .000 136.241 28 .000 150.527 28 .000  

6 66.055 28 .000 80.243 28 .000 63.690 28 .000 71.423 29 .000 103.770 28 .000 1 

7 53.793 27 .002 50.581 27 .004 63.337 27 .000 38.665 27 .068* 62.346 27 .000 2 

8 97.530 28 .000 94.938 27 .000 102.864 28 .000 103.352 27 .000 106.681 28 .000 6 

9 36.400 30 .195* 66.726 31 .000 75.512 31 .000 41.945 30 .072* 84.216 30 .000  

10 47.715 28 .012 58.816 28 .001 39.659 28 .071* 56.385 28 .001 42.222 28 .041  

11 54.501 29 .003 76.242 29 .000 80.531 31 .000 63.631 30 .000 63.158 30 .000  

12 33.265 30 .311* 33.854 29 .244* 36.759 30 .184* 35.424 30 .227* 31.086 30 .411*  

13 81.156 29 .000 106.804 29 .000 85.967 29 .000 82.396 28 .000 50.829 28 .005 
Total 1289.474 366 .000 1380.254 364 .000 1424.531 372 .000 1388.804 365 .000 1444.505 366 .000 

 
____________________________________________________________________________________________________________ 
Note: * denotes observed and expected frequencies are not statistically different (α > .01) 

 



 

Table 4.13 Con’t 

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: PCM           

 

  Sample 6   Sample 7   Sample 8   Sample 9   Sample 10   

 Item df  p  df p  df p  df p  df p 

 1 214.337 28 .000 237.393 28 .000 221.992 27 .000 204.884 28 .000 234.098 29 .000 

 2 109.484 28 .000 140.448 26 .000 151.995 26 .000 128.983 26 .000 137.386 26 .000 

 3 201.712 27 .000 216.961 27 .000 192.382 27 .000 209.092 27 .000 212.145 27 .000 

 4 126.479 27 .000 178.440 28 .000 153.887 27 .000 132.435 27 .000 183.542 28 .000 

 5 155.425 27 .000 130.925 27 .000 138.761 27 .000 139.105 27 .000 149.307 28 .000 

 6 86.789 27 .000 58.427 27 .000 75.030 27 .000 57.118 27 .001 90.275 28 .000 

1 7 55.452 27 .001 82.342 27 .000 55.034 27 .001 60.419 27 .000 68.924 27 .000 

2 8 81.918 27 .000 125.177 27 .000 91.533 27 .000 117.110 27 .000 127.326 28 .000 

7 9 55.493 30 .003 67.482 31 .000 52.372 31 .010 71.274 30 .000 75.751 31 .000 

 10 40.161 28 .064* 56.015 29 .002 50.806 29 .007 36.833 28 .122* 64.533 28 .000 

 11 61.168 30 .001 68.815 30 .000 54.360 30 .004 89.740 29 .000 55.835 30 .003 

 12 27.223 29 .56* 25.935 30 .679* 35.744 30 .216* 28.255 30 .557* 49.395 29 .011 

 13 95.758 29 .000 79.646 28 .000 87.523 29 .000 85.675 29 .000 82.193 29 .000 

                 

 Total 1311.398 364 .000 1468.006 365 .000 1361.417 364 .000 1360.922 362 .000 1530.710 368 .000 
____________________________________________________________________________________________________________ 
Note: * denotes observed and expected frequencies are not statistically different (α > .01) 
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The log-likelihood fit statistics (G2) for each item on the Empowerment scale resulting from 

GGUM analyses are presented in Table 4.15.The GGUM2004 Technical Reference Manual 

(Roberts & Shim, 2008) cautions users of fit statistics:  

 Users should be aware that these fit statistics and their associated degrees of freedom  

 have been logically generalized (not mathematically deduced) from other cumulative  

 IRT applications (which themselves may be suspect). Therefore, little is known about  

 the distribution of these statistics, their Type I error rates, and their power rates under  

the GGUM (p. 34). 

 



 

Table 4.14 

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: GPCM 

             Sample 1         Sample 2          Sample 3          Sample 4                        Sample 5    

    Item          2χ         df         p           2χ         df         p          2χ         df        p            2χ         df        p        2χ          df        p  

 

1 59.747 23 .000 51.903 24 .001 50.115 22 .001 58.615 20 .000 44.587 22 .003  

2 79.990 24 .000 100.276 24 .000 92.049 23 .000 66.907 21 .000 108.578 23 .000  

3 69.357 22 .000 63.561 23 .000 73.339 22 .000 68.522 22 .000 48.427 21 .001  

4 61.722 23 .000 60.492 23 .000 84.358 22 .000 68.821 22 .000 50.140 22 .001 1 

5 83.258 32 .000 135.977 31 .000 105.417 32 .000 142.810 31 .000 140.929 31 .000 2 

6 73.863 28 .000 65.388 29 .000 97.055 29 .000 72.392 28 .000 114.250 28 .000 9 

7 64.884 27 .000 57.880 28 .001 73.728 28 .000 50.485 27 .004 67.883 27 .000  

8 36.321 33 .316* 30.354 34 .647* 55.740 32 .006 32.562 31 .39* 52.389 31 .010  

9 45.770 31 .042 41.519 31 .098* 45.280 30 .036 52.521 30 .007 65.329 30 .000  

10 43.765 33 .099* 55.350 33 .009 45.629 35 .108* 74.550 34 .000 36.896 33 .293*  

11 49.243 30 .015 65.172 31 .000 82.921 30 .000 85.662 31 .000 84.327 32 .000  

12 66.028 32 .000 75.153 32 .000 63.228 33 .001 42.612 32 .099* 50.810 31 .014  

13 50.684 28 .005 77.495 28 .000 90.662 30 .000 44.017 28 .028 49.043 28 .008  

                 

Total 784.633 366 .000 880.519 371 .000 959.519 368 .000 860.477 357 .000 913.588 359 .000 
___________________________________________________________________________________________________________ 
Note: * denotes  observed and expected frequencies  are not statistically different (α > .01)                 



 

Table 4.14 Con’t  
 
Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: GPCM 

             Sample 6         Sample 7          Sample 8          Sample 9                     Sample 10    

Item          2χ         df         p           2χ         df         p           2χ         df        p            2χ         df        p        2χ          df        p  

 1 56.737 22 .000 42.049 22 .006 52.885 22 .000 51.380 21 .000 48.290 22 .001 

 2 81.814 24 .000 66.261 21 .000 65.430 21 .000 82.936 23 .000 58.871 24 .000 

 3 50.205 22 .001 45.184 20 .001 49.819 22 .001 64.011 21 .000 45.934 21 .001 

 4 31.781 23 .105* 68.188 22 .000 63.315 20 .000 73.138 22 .000 54.744 21 .000 

1 5 123.105 31 .000 148.907 31 .000 124.812 32 .000 103.070 31 .000 142.404 32 .000 

3 6 94.887 27 .000 87.247 29 .000 87.090 27 .000 70.378 29 .000 106.318 29 .000 

0 7 60.867 27 .000 82.625 27 .000 74.545 28 .000 49.320 27 .006 64.592 29 .000 

 8 37.707 31 .189* 46.055 31 .040 38.393 32 .202* 48.461 31 .024 58.481 33 .004 

 9 68.500 30 .000 87.038 30 .000 67.078 31 .000 55.032 29 .003 74.055 30 .000 

 10 42.684 34 .146* 47.717 33 .047 48.075 35 .069* 53.739 33 .013 50.592 33 .026 

 11 54.656 28 .002 50.938 29 .007 53.252 30 .006 82.395 29 .000 65.346 30 .000 

 12 44.052 31 .060 62.688 30 .000 68.252 33 .000 48.784 30 .017 85.960 32 .000 

 13 61.602 27 .000 53.651 27 .002 47.459 28 .012 55.658 28 .001 60.588 29 .001 

                 

 Total 808.598 357 .000 888.547 352 .000 840.405 361 .000 838.302 354 .000 916.175 365 .000 
____________________________________________________________________________________________________________ 
Note: * denotes observed and expected frequencies are not statistically different (α > .01)
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Just like in the PCM and GPCM analyses, within the GGUM analyses, 10 fit groups were 

specified for the calculation of item and scale level model fit statistics. The GGUM2004 

software collapses cells if the expected value of any response category for a group is zero. 

Collapsing of cells occurs separately at the item level. According to all 10 GGUM analyses, 

although the GGUM model fit statistically well for items 1, 3, and 4, the number of fit groups 

used and thus the degrees of freedom were very low for these fit analyses. Consideration of 

this point should be made when interpreting these results. The GGUM appeared to fit well 

for item 2 in half of the samples, though the same caution should be noted as those for items 

1, 3, and 4. Finally, item 8 fit well in 4 of the 10 the samples. Overall, according to the results 

in Table 4.15, the goodness of fit of the GGUM for the Empowerment scale across 10 

samples was not good.  

Model fit was also examined for the Empowerment scale as a whole across the PCM, 

GPCM, and GGUM models by calculating AIC and BIC fit criteria. Table 4.16 displays 

those fit statistics estimated by the PCM, GPCM, and GGUM models. 

 

 

 

 

 

 

 

 

 



 

Table 4.15 

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: GGUM 

             Sample 1            Sample 2                  Sample 3           Sample 4             Sample 5         

    Item       2χ       df       p    fit        2χ        df       p       fit      2χ       df      p       fit      2χ       df        p      fit      2χ       df        p      fit 
        grps.                           grps.                   grps.                      grps.                grps. 
  

1 1.304 4 .861* 1 0.899 4 .925* 1 1.033 4 .905* 1 5.833 4 .212* 1 3.026 4 .553* 1  

2 32.455 12 .001 3 34.008 16 .005 4 40.597 16 .001 4 17.663 8 .024 2 37.111 16 .002 4  

3 1.519 4 .823* 1 1.403 4 .844* 1 1.019 4 .907* 1 13.437 8 .098* 2 1.849 4 .763* 1  

4 5.742 8 .676* 2 9.439 8 .307* 2 1.826 8 .986* 2 19.849 8 .011 2 1.861 4 .761* 1  

5 61.358 36 .005 9 87.276 36 .000 9 72.888 36 .000 9 63.724 32 .001 8 92.634 36 .000 9  

6 43.25 20 .002 5 51.872 24 .001 6 60.668 24 .000 6 68.42 24 .000 6 90.325 24 .000 6 1 

7 50.221 24 .001 6 41.325 24 .015 6 49.663 28 .007 7 58.779 24 .000 6 63.763 24 .000 6 3 

8 54.2 36 .026 9 35.303 36 .501* 9 53.028 36 .033 9 51.999 36 .041 9 62.455 36 .004 9 2 

9 20.621 20 .419* 5 40.453 20 .004 5 33.989 20 .026 5 49.728 20 .000 5 52.721 20 .000 5  

10 24.629 12 .017 3 23.881 12 .021 3 29.053 16 .024 4 33.249 12 .001 3 16.18 12 .183* 3  

11 36.288 20 .014 5 48.367 20 .000 5 51.969 20 .000 5 55.819 20 .000 5 57.821 24 .000 6  

12 52.31 16 .000 4 39.338 16 .001 4 29.269 12 .004 3 37.949 16 .002 4 25.706 12 .012 3  

13 38.03 20 .009 5 39.305 20 .006 5 70.672 24 .000 6 35.56 20 .017 5 40.372 24 .020 6  

Total  421.93 58 .000  452.87 60 .000  495.67 62 .000  512.01 58 .000  545.82 60 .000  
____________________________________________________________________________________________________________ 
Note: * denotes observed and expected frequencies are not statistically different (α > .01) 



 

Table 4.15 Con’t 

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment Sample: GGUM 

             Sample 6            Sample 7                  Sample 8           Sample 9             Sample 10         

         Item      2χ       df       p    fit        2χ        df       p       fit      2χ       df      p       fit      2χ     df        p      fit      2χ    df       p      fit 
               grps.                                grps.                      grps.                         grps.                grps. 
 

 1 1.745 4 .782* 1 2.096 4 .718* 1 0.791 4 .939* 1 1.272 4 .866* 1 2.1 4 .717* 1 

 2 40.305 16 .001 4 3.083 8 .929* 2 6.161 12 .908* 3 22.167 16 .138* 4 13.872 12 .309* 3 

 3 10.986 8 .202* 2 1.582 4 .812* 1 0.909 4 .923* 1 1.32 4 .858* 1 2.995 4 .559* 1 

 4 2.196 8 .974* 2 1.455 4 .834* 1 9.155 8 .329* 2 12.699 8 .123* 2 2.015 4 .733* 1 

 5 88.33 36 .000 9 94.721 36 .000 9 94.936 36 .000 9 89.621 36 .000 9 114.76 36 .000 9 

 6 62.709 24 .000 6 53.933 24 .000 6 58.79 24 .000 6 57.658 24 .000 6 89.208 24 .000 6 

1 7 41.759 24 .014 6 95.203 28 .000 7 47.125 24 .003 6 38.157 24 .033 6 65.852 28 .000 7 

3 8 25.924 36 .893* 9 45.443 36 .134* 9 56.336 36 .017 9 50.231 36 .058* 9 60.315 36 .007 9 

3 9 35.357 20 .018 5 49.121 20 .000 5 43.977 20 .002 5 49.22 20 .000 5 46.687 20 .001 5 

 10 20.428 16 .201* 4 14.989 12 .242* 3 19.431 12 .079* 3 26.392 12 .009 3 20.972 12 .051* 3 

 11 40.063 20 .005 5 63.014 20 .000 5 37.671 20 .010 5 77.418 20 .000 5 59.334 20 .000 5 

 12 28.298 12 .005 3 8.319 8 .403* 2 55.746 12 .000 3 33.717 12 .001 3 37.147 12 .000 3 

 13 62.401 24 .000 6 36.465 20 .014 5 31.614 20 .048 5 43.584 20 .002 5 44.826 24 .006 6 

 Total 460.5 62 .000  469.42 56 .000  462.64 58 .000  503.46 59 .000  560.08 59 .000  
____________________________________________________________________________________________________________ 
Note: * denotes observed and expected frequencies are not statistically different (α > .01) 
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Table 4.16 

AIC and BIC criteria for each Empowerment Sample from PCM, GPCM, and GGUM models       

Sample         PCM            GPCM                                        GGUM 

 AIC          BIC    AIC           BIC     AIC  BIC 

1 62220.041 62584.1  61307.645 61744.515  34865.542 35895.127 
2 62266.819 62136.819  61365.618 61802.488  34946.166 35975.282 
3 62188.445 62058.445  61310.701 61747.571  34903.493 35932.922 
4 62256.564 62126.564  61416.119 61852.989  34948.076 35977.661 
5 62342.067 62212.067  61415.376 61852.246  34954.672 35984.256 
6 62875.969 62745.969  62026.278 62463.148  35574.157 36603.585 
7 61769.049 61639.049  60793.885 61230.755  34350.537 35380.200 
8 62003.826 61873.826  61060.273 61497.143  34615.964 35645.392 
9 62213.792 62083.792  61368.296 61805.166  34927.587 35957.249 
10 62342.181 62212.181  61351.74 61788.61  34955.237 35984.352 

___________________________________________________________________________ 
                                                                                                                                                  
                                                                                          
 

The AIC and BIC criteria are calculated in the same manner across the three IRT 

models. AIC and BIC statistics were also calculated for the CFA models, however, the factor 

analytic and IRT models, and the methods used to calculate AIC, are too discrepant to 

directly compare the AIC values, and therefore are not presented for the CFA analyses. The 

discrepancy lies in the fact that IRT models are models for response probabilities and factor 

analytic models are models for covariance and correlation matrices. The AIC and BIC 

criteria are directly comparable for the GPCM and GGUM analyses as both employed 

maximum likelihood methods for estimation, no priors were imposed on items, and the same 

prior (i.e., normal) was assumed for theta. However, a prior distribution of the discrimination 

(i.e., slope) parameter was necessary for the PCM analyses, where a log-normal prior 

distribution was specified in all PCM analyses. No priors were imposed for item parameters 
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in the GGUM analyses. As a result, AIC and BIC criteria would be more consistent between 

the PCM and GGUM if Bayes estimation was employed.   

 Based on the results on Table 4.16, the GGUM analyses were consistently associated 

with the smallest criteria values, implying superior fit over the cumulative models. As for the 

cumulative models, the GPCM fit better than the PCM as evidenced by the smaller AIC and 

BIC values. Because no significance test exists for these statistics, they are to be interpreted 

as measures of relative differences between model outcomes. Therefore, the GGUM 

appeared to fit relatively much better than the GPCM, though the superiority of the GPCM 

over the PCM is not as prominent. In summary, analyses conducted to answer the fourth 

research question reveal that, across the three IRT models, the items generally do not fit well 

and neither do the models according to the chi-square statistics. According to the AIC and 

BIC criteria, the GGUM fit relatively better than the GPCM, though no criterion exists to 

measure ‘how much’ better. 

 

Person Locations 

 The focus of the second research question had to do with the location of the sample 

on the latent trait and the ordering of respondents on the latent trait across IRT models. IRT 

calibrations were conducted for the PCM, GPCM, and GGUM on the 10 Empowerment 

samples and person parameters are provided in this section. Rank-order correlations and 

scatterplots of the person parameters are presented to address research question two. Similar 

to the item location estimates, the theta estimates produced by the unfolding and cumulative 

IRT models are not analogous, and therefore comparisons cannot be direct and absolute. 

However, examination of correlations and distributions are appropriate. Table 4.17 displays 



 136

Kendall’s Tau-b correlations of the person trait estimates across the 10 Empowerment 

samples for each pair of scaling methods. Correlations are presented for each sample, as a 

single mean may not capture small changes in rank ordering. This point is illustrated in Table 

4.17 and the figures of scatterplots that follow. These correlations revealed that the PCM 

showed lower correlations with other scaling methods and the GGUM generally displayed 

higher correlations.  

The high Tau-b correlation between the GPCM and GGUM models indicates that the 

rank ordering of respondents is essentially the same between models. Specifically regarding 

the GGUM, the lowest average Tau-b correlation was with the PCM (Tau-b = .888), 

indicating some inconsistency in terms of the rank ordering of people. However, all 

correlations in each of the 10 samples, in any scaling method combination were statistically 

significant (p < .01). Scatterplots in Figures 4.41, 4.42, and 4.43 depict the correspondence of 

trait estimates between the GGUM and the PCM, GPCM, and CFA models, respectively, 

from sample 1. 

The majority of the cases within the first sample fell within the 95% confidence 

ellipse for the GGUM and PCM trait correlations indicating a fairly strong relationship 

between the two scaling methods. The GGUM and GPCM trait estimates are almost entirely 

coincident suggesting that the two models are essentially identical in scoring individuals. 

Although the Tau-b correlation between the GGUM and CFA models was relatively high, in 

the first sample (Tau = .957), the scatterplot in Figure 4.43 shows a slight non-linear 

relationship between the trait estimates and disagreement between the models towards the 

middle of the distribution. 
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Table 4.17 

Kendall’s Tau-b Correlations among Person Trait Estimates by Sample and Scaling Method                            

 
Sample          PCM,        GPCM,          PCM,         CFA,          CFA,            CFA, 
         GGUM    GGUM         GPCM         PCM   GPCM         GGUM 
 

1 .891 .998 .892 .879 .957 .957 
2 .889 .998 .891 .874 .960 .959 
3 .884 .998 .884 .873 .957 .957 
4 .892 .996 .892 .875 .952 .951 
5 .892 .997 .892 .876 .958 .957 
6 .880 .998 .881 .870 .956 .955 
7 .887 .998 .888 .869 .962 .962 
8 .886 .998 .887 .873 .950 .950 
9 .900 .998 .900 .878 .950 .950 
10 .878 .998 .878 .865 .958 .959 

       
Mean .888 .998 .888 .873 .956 .956 

___________________________________________________________________________                                                                                                                             
 
 

The relationship between the GGUM and CFA trait estimates is not entirely 

surprising given the assumption of a linear relationship between item responses and the latent 

trait that underlies the CFA model and the non-linearity that exists between probability of 

item endorsement and the latent trait within IRT models. The slight nonlinearity near the 

center of the each latent trait shows the CFA results yield higher trait values than the GGUM.   

A closer examination of the trait distribution was facilitated by making the continuous 

trait distribution discrete by partitioning the trait distribution into quintiles and using 5 X 5 

cross tabulation tables and using statistical measures of association appropriate for ordinal 

data. Results presented here correspond to the trait (i.e., person) estimates previously 

reported, in that cross tabulations for sample 1 are presented.  The overlap in frequencies of 
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respondents within each quintile between the PCM, GPCM, and CFA methods with the 

GGUM are presented in Tables 4.18, Table 4.19, and Table 4.20. 

 

Figure 4.41 

Scatterplot of Trait Estimates for PCM and GGUM models: Sample 1 Empowerment Scale       
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Figure 4.42 

Scatterplot of Trait Estimates for GPCM and GGUM models: Sample 1 Empowerment Scale     
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Figure 4.43 

Scatterplot of Trait Estimates for CFA and GGUM models: Sample 1 Empowerment Scale      

   

The statistics presented in Tables 4.18, Table 4.19 and Table 4.20 are measures of 

association between the respective pairs of scaling methods. Kendall’s Tau-b is a correlation 

that corrects for ties among data points, Stuart’s Tau-c also accommodates ties and adjusts 

for the size of the table. Additionally, the Pearson correlation coefficient and the 

nonparametric Spearman rank correlation coefficient are tabled. These tables depict the 

discrepancies in the trait distribution across the pairs of scaling methods and tabled 
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information of the graphical representations in the scatterplots. For example, Table 4.18 

shows some dispersion of the trait estimates between the GGUM and PCM in all quintiles. 

Specifically, 43 people fell into the second PCM quintile, though were found to fall into the 

first quintile according to the GGUM distribution. Likewise, 42 trait estimates, according to 

the PCM distribution were located in the first quintile, while those 42 were located in the 

second GGUM quintile. Table 4.19 depicts the nearly identical trait distribution between the 

GGUM and GPCM, also as seen in Figure 4.42. The slightly higher trait values generated by 

the CFA over the GGUM seen towards the center of the distribution in the scatterplot (Figure 

4.43) are more specifically differentiated in the cross-tabulation shown in Table 4.20. 

Additionally, there were nine observations where the GGUM yielded larger trait values than 

the CFA (i.e., two estimates fell within the 3rd GGUM quintile and the 1st CFA quintile). 

 

Table 4.18 

Cross Tabulation Table of GGUM and PCM Quintiles: Sample 1, Empowerment Scale 
_________________________________________________________________________ 
    PCM        
            
  1 2 3 4 5 Total  Statistic Value ASE 
 1 356 43 0 0 0 399  Tau-b .905 .004 

M
 

2 42 296 62 0 0 400  Tau-c .905 .004 

U
 3 0 59 285 56 0 400  Pearson .950 .003 

G
 4 0 0 73 294 33 400  Spearman .950 .003 

G
 5 0 0 0 32 367 399     

            
 Total  398 398 420 382 400 1998     

__________________________________________________________________________ 
Note:  ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c   
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Table 4.19 
 
Cross Tabulation Table of GGUM and GPCM Quintiles: Sample 1, Empowerment Scale 
__________________________________________________________________________ 

    GPCM        
            
  1 2 3 4 5 Total  Statistic Value ASE 
 1 398 1 0 0 0 399  Tau-b .999 .001 

M
 

2 0 399 1 0 0 400  Tau-c .999 .001 

U
 

3 0 0 399 1 0 400  Pearson .999 .000 

G
 

4 0 0 0 399 1 400  Spearman .999 .000 

G
 

5 0 0 0 0 399 399      

            

 Total  398 400 400 400 400 1998     
___________________________________________________________________________ 
Note. ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c  
 
 
 
Table 4.20 
 
Cross Tabulation Table of GGUM and CFA Quintiles: Sample 1, Empowerment Scale 
___________________________________________________________________________ 
    CFA        
            
  1 2 3 4 5 Total  Statistic Value ASE 
 1 388 11 0 0 0 399  Tau-b .957 .004 

M
 

2 7 366 27 0 0 400  Tau-c .957 .004 

U
 

3 2 21 349 28 0 400  Pearson .977 .002 

G
 

4 1 2 20 358 19 400  Spearman .976 .002 

G
 

5 0 0 4 14 381 399     

            

 Total 398 400 400 400 400 1998     
 
Note. ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c 
 

Summary of Empowerment Analyses 

 Although determination of dimensionality includes some amount of subjectivity, 

there was more supporting evidence that the assumptions of the cumulative models were met, 
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compared to the unfolding models. Specifically, the data do not appear to be of the unfolding 

type based on the structure of the data in that two components did not emerge. Additionally 

the plot of pattern coefficients that resulted from the PCA with two components did not 

produce a circumplex-like (i.e., semi-circular) structure. Although not all fit indices produced 

by the CFA were supportive of excellent model fit, most indices did indicate that a single 

factor structure was adequate in explaining the empowerment data. This supports the 

assumptions of cumulative IRT models and the CFA method of scaling.  

 As for the item parameters, the PCM and GPCM performed similarly across all item 

parameters estimated. Both models indicated that most of the Empowerment items were easy 

to endorse, and that there are gaps on the latent trait that are not being measured by these 13 

items. The GGUM analyses estimated all Empowerment items to have extreme location 

estimates and very large standard errors. According to the GGUM analyses, all items were 

clustered in an extreme region of the latent trait scale. The items themselves do not appear to 

be extremely worded in either direction, therefore the extremity of item parameter estimates 

could be an outcome of relative homogeneity of respondents’ attitudes. Because item 

location estimates and signs of those estimates are also associated with item content, 

according to the GGUM analyses, moderate and negative attitudes towards teacher 

Empowerment are not well-measured by these 13 items. The category probability plots 

produced from the GGUM for the first four items show unfolding properties for the Strongly 

Agree and Agree response categories. The category probability plots produced from the 

PCM, GPCM, and GGUM for the remainder of the items are generally very similar, and 

imply that the three IRT models are functioning similarly. 
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 Per the chi-square item level fit statistics, the PCM had few items that fit well, with 

the GPCM showing only slightly more statistically well-fitting items. At the scale level, both 

the PCM and GPCM models appeared to be statistically ill-fitting. The results from the 

GGUM item level chi-square fit statistics are inconclusive because not only must they be 

interpreted with caution, but the results are only indicators of gross item misfit, and not 

absolute statistical fit. Although the GGUM appeared to be the model that fit most 

Empowerment items, these statistically significant results could be a function of the small 

number of fit groups. At the scale level, the GGUM also did not fit well across the 10 

samples. The final measures of fit, the AIC and BIC, indicated that the GGUM fit better than 

the GPCM, and that the GPCM fit better than the PCM. 

 Finally, the least amount of agreement between the person trait parameter estimates 

was found between the CFA and PCM scaling methods. The model that exhibited the least 

amount of agreement with the GGUM was the PCM, while the GPCM and GGUM were 

basically identical in estimating person parameters based on the rank order correlations and 

scatterplots.  

 

Leadership Scale 

Testing Dimensionality Assumptions for Cumulative Models 

 The first part of the fourth research question had to do with model assumptions and 

model fit. In practice testing model assumptions should precede analyses. To test model 

assumptions, such as dimensionality and independence, various procedures were conducted 

for all four scaling methods and are reported in this section for the Empowerment data. The 

same procedures used for analysis of the Empowerment scale data were used on the 
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Leadership data to assess model assumptions. A single factor model was specified for the 

entire sample using the 21 items that measured the construct teachers’ perceptions of the 

leadership in their school. For model identification purposes, the factor loading was fixed at 

1.0 for the item that possessed a large measure of variation. That item reads: “Overall, the 

school leadership in my school is effective.” 

Results from the single factor confirmatory analysis using the 21 Leadership items are 

reported in Table 4.21. The statistically significant (p < .05) model chi-square statistic and 

the RMSEA indicate that a single factor model does not fit well, however the RMR, SRMR, 

and NFI indicate reasonably good fit. The GFI is lower than 1.0, though with a value of .751 

fit could be considered moderate. The large chi-square value is at least partly attributable to 

the large sample size. Inter-item correlations are helpful to consider in that high correlations 

could also contribute to a relatively high chi-square value. The inter-item correlation matrix 

of the 21 Leadership items contained correlations that were moderately high, with the 

majority of correlations ranging between .3 and .7. Overall, the single factor model does not 

appear to fit the Leadership data very well.   

 

 

Table 4.21 

Fit Indices for the One Factor Leadership Model: Full Sample (n = 65,031) 

             
Model 2χ        df         2χ /df      RMSEA RMR   SRMR     NFI     GFI    Model AIC     

 
164815.747* 189      872.041      .135 .056    .056        .954    .751    205850.205 
 
Notes:  RMSEA = Root Mean Square Error of Approximation; RMR = Root Mean Square Residual;  
SRMR = Standardized Root Mean Square Residual, NFI = Normed Fit Index; GFI = Goodness of 
Fit Index, Model AIC = Akaike Information Criterion 
* p < .05 
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Local Independence 

 Just as in the Empowerment analyses, the RMSEA for each item was calculated as a 

measure of relative fit at the item level. Local independence is closely related to the 

assumption of unidimensionality, and methods of assessing both overlap with measures of 

model fit. Table 4.22 displays the root mean square residuals at the item level from both the 

PCM and GPCM models where smaller values are interpreted as better relative fit. Based on 

these results, the smallest item residuals were associated with the GPCM, compared to the 

PCM model. The same statistic (i.e., chi-square item level likelihood-ratio fit statistics) for 

assessing local item independence was calculated for the GGUM model as was used in the 

Empowerment analyses. To summarize, items fit well in most of the GGUM analyses, 

although the fit statistics and associated p-values must be interpreted with caution. At the 

scale level, the GGUM did not fit statistically well in any analysis. 

 

Table 4.22 

Item Level Residuals from PCM and GPCM Models: Leadership Scale            

Item PCM  GPCM  Item PCM  GPCM 
         
1 5.056  4.900  12 9.062  7.759 
2 9.695  9.112  13 8.297  7.579 
3 9.781  5.548  14 7.810  6.637 
4 5.552  5.818  15 4.979  5.760 
5 6.912  6.655  16 6.896  6.078 
6 8.217  7.842  17 5.042  5.965 
7 6.139  7.262  18 10.605  5.289 
8 12.957  4.807  19 12.055  5.429 
9 8.775  7.626  20 5.305  6.870 
10 8.550  5.533  21 14.954  22.274 
11  27.996             11.193      

___________________________________________________________________________ 
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Unidimensionality under Unfolding Models 

 Assessing the dimensionality of the data from the ideal point response perspective, 

one principal components analysis was conducted on the Leadership data using the entire 

sample (n = 65,031) to assess dimensionality. Dimensionality of the Leadership data 

included the examination of eigenvalues, final communality estimates, pattern coefficients, 

and plots of pattern coefficients resulting from the application of principal components 

analyses. Generally, if an item level communality, generated from the first two components, 

is > .3, then that item is not likely violating the assumption of unidimensionality (Roberts et 

al., 2000). Item level final communality estimates derived from a two factor component 

model for the 21 Leadership items are found in Table 4.23. Communalities for all items 

comprising were greater than .3. 

 

Table 4.23 

Final Communality Estimates for the Leadership Items (i = 21) 

 

Item 1 2 3 4 5 6 7 8 9 10 11 
 0.593 0.39 0.645 0.589 0.615 0.642 0.392 0.726 0.596 0.623 0.573 

            
Item 12 13 14 15 16 17 18 19 20 21  
 0.775 0.762 0.718 0.565 0.649 0.542 0.745 0.754 0.537 0.509  

 

If the data are of the unfolding type and unidimensional, the first two eigenvalues of the PCA 

should be larger than the remaining eigenvalues. However, a prescribed criterion does not 

exist as a measure for “large.” The first five eigenvalues from the Leadership analysis were:  

11.700, 1.238, 1.049, .910, and .652. The second eigenvalue was not substantially larger than 

the third eigenvalue. This is at least in part, supporting evidence that the assumption of 
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unidimensionality within the context of cumulative IRT models is supported, as opposed to 

unidimensionality within the context of unfolding models.   

Finally, the plot of pattern coefficients produced from the PCA with two factors (i.e., 

components) was examined to determine the structure of the Leadership data. A semi-

circular pattern of the coefficients in a two-factor space would be evidence that two linear 

principal components explain the pattern of data. This is because within the context of 

unfolding IRT models, there are two linear principal components for each unfolding 

dimension. Reported in Table 4.24 are the pattern coefficients from the two component PCA 

with the Leadership samples and the plot of pattern coefficients for the 21 Leadership items 

is displayed in Figure 4.44. In Figure 4.44, two linear components are also not evidenced 

from the pattern coefficients, suggesting that the structure of the Leadership data does not 

conform to that of the unfolding type (i.e., the responses to the 21 Leadership items do not 

unfold). These results suggest that application of unfolding models may not be necessary. 

 

Table 4.24 

Factor Pattern Coefficients Derived From 2 Principal Components: Leadership 

Items 
Factor 

1 
Factor 

2  Item 
Factor 

1 
Factor 

2 
1 .627 .447  12 .302 .827 
2 .264 .566  13 .308 .817 
3 .654 .467  14 .365 .764 
4 .686 .344  15 .701 .270 
5 .701 .352  16 .769 .239 
6 .716 .358  17 .683 .275 
7 .425 .459  18 .810 .297 
8 .743 .417  19 .810 .312 
9 .641 .431  20 .652 .334 
10 .592 .522  21 .647 .300 
11 .286 .700     

___________________________________________________________________________ 
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Figure 4.44 

Plot of Factor Pattern Coefficients for the Leadership Scale 

 
 

Development of the CFA Scale 

The factor analytic scoring method and procedures used to create the Empowerment scale 

were mirrored for the Leadership data to transform the latent trait, Leadership, into an 

observed measure.  It was assumed that a single latent trait was measured with the 21 

leadership items. Across the 21 items, the item that consistently displayed large measures of 

variation was: “Overall, the school leadership in my school is effective.” The standard 

deviation for this item ranged from 1.177 to 1.207, and the item’s factor loading was fixed at 

1 across all 10 samples. The factor scores resulting from the CFA analyses were used to 

weight item responses, and then those products were summed to create the observed variable, 

Leadership for each respondent for all 10 samples. Various measures of model/data fit for the 
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10 leadership samples are shown in table 4.25. Although the RMSEA values are slightly 

high, and GFI indices are moderately low, overall these fit statistics indicate moderately good 

fit of the CFA model. 

The preceding results indicate that, for most of the fit statistics, a single factor model 

fit moderately well; therefore the assumption of unidimensionality within the context of 

cumulative IRT models was likely not violated. Further, it can be concluded that the 21 items 

measured the construct, Leadership in the CFA model reasonably well also. 

Unidimensionality within the context of unfolding IRT models was not met given that two 

components did not explain the data, and that the plots of the pattern coefficients did not 

form a semi-circular shape. 

 

 

Table 4.25 

Fit Indices for the One Factor Leadership Model by Sample (n = 10) 
            ___ 
Sample   Model 2χ    df     2χ /df    RMSEA    RMR     SRMR     NFI     GFI   Model AIC     

 

1 5632.244 189 29.800 .138 .058 .058 .948 .739 6861.829 
2 5556.350 189 29.399 .140 .059 .059 .951 .733 7151.897 
3 5605.735 189 29.660 .138 .061 .061 .945 .738 6857.273 
4 5701.966 189 30.169 .140 .060 .060 .947 .734 7085.787 
5 5356.682 189 28.342 .135 .058 .058 .952 .746 6556.885 
6 5268.387 189 27.875 .134 .055 .055 .951 .750 6451.392 
7 5471.779 189 28.951 .135 .058 .058 .949 .746 6574.815 
8 5462.469 189 28.902 .138 .061 .061 .948 .738 6878.166 
9 5392.454 189 28.532 .136 .056 .056 .951 .743 6690.514 
10 5061.434 189 26.780 .131 .054 .054 .956 .757 6298.652 

___________________________________________________________________________ 
Notes:  RMSEA = Root Mean Square Error of Approximation; RMR = Root Mean Square Residual;  
SRMR = Standardized Root Mean Square Residual, NFI = Normed Fit Index; GFI = Goodness of Fit Index, 
Model AIC = Akaike Information Criterion 
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IRT Parameter Estimates 

Item Locations 

The second research question focused on the item location estimates generated from 

the three IRT models, as it was hypothesized that locations may be very different across the 

two types of IRT models (cumulative, unfolding), if the survey was constructed using a 

method that assumed a dominance response process. To investigate this, IRT calibrations 

were performed on all 10 Leadership data sets with the application of the PCM, GPCM, and 

GGUM models. Item parameter estimates, including the location estimates, as presented in 

this section. 

 The Leadership items as they appear on the NCTWC survey are presented in Table 

4.26.  Presented in Table 4.27 are the item location estimates averaged across the 10 samples, 

with the average standard errors by IRT model, and the order in which each model ranks the 

average item location estimates. As in the Empowerment analyses, the underlying trait, 

Leadership, and the respective scale upon which both item and person estimates are located, 

are not directly comparable for the cumulative (PCM, GPCM) and GGUM models. 

The parameter estimation for the PCM and GPCM results in Table 4.27 are not 

directly comparable to the GGUM estimates as theta and the resulting scale are different. All 

item location parameters generated from the 10 GGUM analyses on the Leadership items 

were located in the same general, and relatively extreme region of the latent trait ranging 

from iδ   = 3.314 (item 21) to iδ   = 4.041 (item 19). This clustering of items indicates that 

the full range of the latent trait (attitudes towards or about Leadership) is not well measured, 

only a narrow interval. As in the Empowerment analyses, items with extreme GGUM 

estimates also had the largest standard errors.  
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Table 4.26  

Leadership Items (i = 21) 

Leadership 

      Please rate your level of agreement with the following statements: 

1. There is an atmosphere of trust and mutual respect within the school 
2. The faculty are committed to helping every student learn 
3. The school leadership communicates clear expectations to students and parents 
4. The school leadership shields teachers from disruptions, allowing teachers to focus on 
educating students 
5. The school leadership consistently enforces rules for student conduct 
6. The school leadership support teachers’ efforts to maintain discipline in the classroom 
7. Opportunities are available for members of the community to actively contribute to this 
school’s success 
8. The school leadership consistently supports teachers 
 
      Please rate your level of agreement with the following statements: 
 
9. The school improvement team provides effective leadership at this school 
10. The faculty and staff have a shared vision 
11. Teachers are held to high professional standards for delivering instruction 
12. Teacher performance evaluations are handled in an appropriate manner 
13. The procedures for teacher performance evaluations are consistent 
14. Teachers receive feedback that can help them improve teaching 
 
   The school leadership makes a sustained effort to address teacher concerns about: 
 
15. Facilities and resources 
16. The use of time in my school 
17. Professional development 
18. Empowering teachers 
19. Leadership issues 
20. New teacher support 
21. Overall, the school leadership in my school is effective                                                             
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Table 4.27 

Average Item Location, Standard Errors, and Rank Orders of Item Locations across 10 
Samples: Leadership (i=21) 
 
            Average Item Location              Rank Order of Average Item Locations 
     (Standard Error)                             
Item PCM   GPCM   GGUM                           PCM               GPCM              GGUM                  
1 -0.376    -0.380    3.827                      6              6        4             

(.030)    (.031)    (3.108)             
2 -1.136    -1.366    3.378         21                    21       15                     

(.032)    (.043)    (2.025) 
3 -0.661    -0.636    3.576                     15             15       12 

(.030)    (.029)    (7.814)          
4 -0.331    -0.337    3.723                     3        4       5  

(.029)    (.030)    (2.914) 
5 -0.218   -0.220     3.901                     1        1       3 

(.031)    (.032)    (3.862) 
6 -0.498    -0.488    3.634                    10       10       9 

(.032)    (.031)    (5.391) 
7 -0.984    -1.093    3.294                    19       19       17 

(.032)    (.037)    (1.714) 
8 -0.552    -0.517    3.718                    12       11        6 

(.031)    (.028)    (33.504) 
9 -0.431    -0.429    3.711                     8        7        7 

(.031)    (.030)    (3.449) 
10 -0.571    -0.555    3.649                    14       13        8 

(.030)    (.030)    (5.195) 
11 -1.029    -1.099    3.111                    20        20        20 

(.031)    (.036)    (2.016) 
12 -0.839    -0.839    3.137                    18        18        19 

(.035)    (.039)    (2.587) 
13 -0.762    -0.788    3.157                    16        17        18 

(.035)    (.039)    (2.425) 
14 -0.770   -0.775     3.298                    17        16        16 

(.032)    (.034)    (3.058) 
15 -0.524    -0.533    3.444                    11        12        14  

(.031)    (.033)    (2.466) 
16 -0.359    -0.355    3.621                     5        5        10 

(.031)    (.031)    (3.540) 
17 -0.566   -0.574     3.456                    13        14        13 

(.032)    (.033)    (2.523) 
18 -0.332    -0.319    3.996                    4        3        2  

(.033)    (.029)   (26.151) 
19 -0.317    -0.294    4.041                    2        2        1 

(.033)    (.029)   (42.119) 
20 -0.443    -0.457    3.599                    9        9        11 

(.030)    (.032)   (2.538) 
21 -0.395    -0.435    3.314                    7        8        21 

(.030)   (.038)     (1.940) 
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As in the Empowerment analyses, the PCM and GPCM functioned similarly in terms 

of the average item locations and the ranking of those estimates. In the PCM analyses, the 

average item locations ranged from b = -1.136 (item 21) to b = -.218 (item 1). Average item 

estimates for most of the 21 items were nearly identical between the two cumulative models. 

The location estimates reveal that all of the Leadership items were generally easy to endorse, 

with item 21 being the easiest, on average. According to the PCM and GPCM analyses, none 

of the items on the Leadership scale required a strong positive attitude towards Leadership.  

The average correlation across the 10 samples between the PCM and GPCM for 

estimated item locations was .953. The average correlation between the PCM and GGUM 

was .611 and the correlation between GPCM and GGUM item estimates was .641. Across 

the 10 Leadership samples, all correlations between the PCM and GPCM location estimates 

were statistically significant (p < .05). All of the correlations between the PCM and GGUM, 

and between the GPCM and GGUM location estimates were statistically significant (p < .05). 

These correlations, associated p-values and comparable rank ordering of item locations 

indicate that the PCM and GPCM functioned similarly. 

The discriminating characteristics of the Leadership items are described next for the 

three IRT models. Presented in Table 4.28 are the average item discriminations (a 

parameters) and standard errors across the 10 samples. In the Leadership analyses, the item 

discrimination (a) parameter was fixed to have a mean of 1.0 and a standard deviation of 

.0001 for the PCM calibration, just as in the Empowerment analyses. The discrimination 

parameter is estimated in the GPCM models, and calibration converged with fewer E-M 

iterations than the PCM models. 
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Table 4.28 

Average Item Discrimination and Standard Errors across 10 Leadership Samples 

                 Average Item Discrimination         Average Standard Error                             
Item        PCM       GPCM     GGUM                       PCM       GPCM   GGUM                  

1 1.053 1.018 1.668  0.005 0.031 0.062 
2 1.053 0.608 0.96  0.005 0.02 0.055 
3 1.053 1.373 2.255  0.005 0.045 0.088 
4 1.053 0.974 1.589  0.005 0.032 0.061 
5 1.053 1.008 1.651  0.005 0.035 0.061 
6 1.053 1.229 2.015  0.005 0.042 0.076 
7 1.053 0.758 1.212  0.005 0.024 0.059 
8 1.053 1.782 2.937  0.005 0.062 0.113 
9 1.053 1.142 1.871  0.005 0.036 0.065 

10 1.053 1.28 2.098  0.005 0.041 0.076 
11 1.053 0.836 1.336  0.005 0.027 0.067 
12 1.053 1.043 1.677  0.005 0.045 0.074 
13 1.053 0.992 1.607  0.005 0.043 0.068 
14 1.053 1.065 1.725  0.005 0.039 0.073 
15 1.053 1.008 1.633  0.005 0.032 0.065 
16 1.053 1.148 1.87  0.005 0.038 0.068 
17 1.053 1.025 1.662  0.005 0.032 0.065 
18 1.053 1.624 2.678  0.005 0.058 0.099 
19 1.053 1.761 2.902  0.005 0.063 0.105 
20 1.053 0.905 1.469  0.005 0.028 0.058 
21 1.053 0.6 0.989  0.005 0.014 0.032 
However, the Leadership PCM analyses across the 10 samples took approximately 80 

iterations, while the GPCM generally required about 50 E-M iterations to converge. By 

comparison, in the Empowerment analyses, each PCM analysis took approximately 50 

iterations of the E-M cycle to converge while the GPCM analyses required about 25 cycles. 

Although the PCM required more iterations overall, the Leadership data required more 

iteration regardless of IRT model, in part due to the increased number of item parameters to 

be estimated.  
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Just as in the Empowerment analyses, the GPCM and GGUM ordered the a 

parameters almost identically. Item 8 (“The school leadership consistently supports 

teachers”) was the most discriminating, on average, and items 2 (“The faculty are committed 

to helping every student learn”) and 21 (“Overall, the school leadership in my school is 

effective”) exhibited the lowest discrimination parameters. The average Kendall’s Tau-b 

correlation between the GPCM and GGUM discrimination parameter estimates, across the 10 

Leadership samples was .899. These correlations, across the 10 samples were all statistically 

significant (p < .05). 

 Relative to the other 20 Leadership items, item 2 exhibited low discrimination due to 

the fact that just under 84% of the entire sample agreed or strongly agreed with this item. 

This item did not discriminate well among respondents, as most people agreed regardless of 

their standing on the latent trait. For example, items 8, 18, and 19 had relatively high 

discrimination parameter estimates, meaning that these items differentiated well between 

those respondents with low and high levels of the latent trait, attitude towards/about school 

Leadership. Although these three items had discrimination estimates that were higher relative 

to the other items (see Table 4.29), the majority of the sample either agreed or strongly 

agreed with all of the Leadership items.   

 The final item parameters estimated using the IRT models were the category 

probability thresholds. The four category threshold parameters,kd , averaged across the 10 

samples for the PCM and GPCM models are given in Table 4.30. Item step parameters, jkb , 

were also calculated in the Leadership analyses for the PCM and GPCM models, which 

represent the point on the latent trait where two adjacent category probability functions 

intersect. These average item step parameters are presented in Table 4.31 for all three IRT 
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models. Just as for the Empowerment data, category 1 in the Leadership analyses represents 

Strongly Disagree and category 5 represents Strongly Agree.  

 

Table 4.30 

Average Category Threshold Parameters across 10 Leadership Samples  

                PCM      GPCM        
Item   2d     3d       4d         5d    2d    3d      4d        5d  

1 1.098 0.142 0.432 -1.67  1.118 0.135 0.452 -1.71 
2 1.241 0.012 0.437 -1.69  1.472 -0.24 0.901 -2.13 
3 1.073 0.14 0.368 -1.58  1.036 0.195 0.25 -1.48 
4 1.16 0.116 0.309 -1.58  1.196 0.097 0.345 -1.64 
5 1.053 0.087 0.382 -1.52  1.07 0.08 0.406 -1.56 
6 0.982 0.198 0.38 -1.56  0.973 0.225 0.312 -1.51 
7 1.326 0.551 0.084 -1.96  1.445 0.606 0.194 -2.25 
8 1.021 0.256 0.233 -1.51  0.958 0.304 0.084 -1.35 
9 1.239 0.705 -0.07 -1.88  1.242 0.689 -0.08 -1.86 
10 1.187 0.419 0.215 -1.82  1.163 0.423 0.153 -1.74 
11 0.943 0.18 0.487 -1.61  0.981 0.128 0.654 -1.76 
12 0.917 0.253 0.414 -1.58  0.938 0.248 0.423 -1.61 
13 0.99 0.285 0.314 -1.59  1.016 0.278 0.339 -1.63 
14 1.024 0.34 0.28 -1.64  1.042 0.339 0.274 -1.66 
15 1.282 0.423 0.359 -2.06  1.314 0.421 0.38 -2.12 
16 1.395 0.36 0.298 -2.05  1.381 0.373 0.266 -2.02 
17 1.244 0.446 0.386 -2.08  1.27 0.445 0.398 -2.11 
18 1.217 0.477 0.214 -1.91  1.147 0.48 0.106 -1.73 
19 1.283 0.551 0.199 -2.03  1.193 0.539 0.086 -1.82 
20 1.116 0.484 0.21 -1.81  1.16 0.493 0.266 -1.92 
21 0.792 0.312 0.386 -1.49  0.786 0.274 0.761 -1.82 

___________________________________________________________________________ 
Notes: 2d  = threshold parameter for category 2 (Disagree); 3d = threshold parameter for category 3 (Neither 

Agree Nor Disagree); 4d  = threshold parameter for category 4 (Agree); 5d  = threshold parameter for category 

5 (Strongly Agree) 
 

 

 



 

Table 4.31 

Average Category Step and Threshold Parameters Across 10 Leadership Samples  

                       PCM             GPCM      GGUM 

         Item       2jb          3jb        4jb          5jb          2jb           3jb            4jb           5jb               2iτ            3iτ            4iτ         5iτ  

 

1 -1.475 -0.518 -0.808 1.295  -1.498 -0.515 -0.832 1.326  -5.393 -4.369 -4.700 -2.459  

2 -2.377 -1.148 -1.573 0.554  -2.839 -1.124 -2.267 0.764  -6.455 -4.545 -5.805 -2.513  

3 -1.734 -0.801 -1.028 0.921  -1.672 -0.831 -0.886 0.845  -5.322 -4.446 -4.502 -2.712  

4 -1.491 -0.447 -0.640 1.253  -1.533 -0.433 -0.682 1.301  -5.326 -4.178 -4.442 -2.375  

5 -1.271 -0.305 -0.600 1.303  -1.291 -0.300 -0.626 1.336  -5.250 -4.219 -4.559 -2.524  

6 -1.480 -0.695 -0.877 1.062  -1.461 -0.714 -0.800 1.021  -5.161 -4.383 -4.472 -2.586  

7 -2.310 -1.534 -1.067 0.977  -2.538 -1.699 -1.287 1.152  -6.010 -5.075 -4.659 -2.054 1 8 -1.574 -0.808 -0.786 0.958  -1.475 -0.820 -0.601 0.828  -5.258 -4.578 -4.347 -2.874 5 9 -1.670 -1.137 -0.365 1.446  -1.671 -1.118 -0.353 1.426  -5.458 -4.879 -4.086 -2.243 8 10 -1.757 -0.990 -0.786 1.250  -1.718 -0.977 -0.708 1.184  -5.444 -4.671 -4.392 -2.434  

11 -1.972 -1.209 -1.516 0.581  -2.081 -1.228 -1.754 0.665  -5.307 -4.393 -4.968 -2.399  

12 -1.756 -1.092 -1.253 0.745  -1.778 -1.087 -1.262 0.770  -5.006 -4.279 -4.471 -2.339  

13 -1.752 -1.047 -1.076 0.828  -1.804 -1.066 -1.127 0.846  -5.044 -4.266 -4.342 -2.264  

14 -1.793 -1.109 -1.049 0.874  -1.816 -1.114 -1.049 0.881  -5.202 -4.464 -4.402 -2.385  

15 -1.806 -0.947 -0.883 1.540  -1.847 -0.954 -0.913 1.582  -5.381 -4.442 -4.407 -1.794  

16 -1.754 -0.719 -0.657 1.694  -1.735 -0.728 -0.621 1.665  -5.436 -4.383 -4.276 -1.902  

17 -1.810 -1.012 -0.952 1.509  -1.844 -1.019 -0.972 1.539  -5.389 -4.522 -4.480 -1.854  

18 -1.549 -0.809 -0.546 1.576  -1.466 -0.799 -0.425 1.414  -5.526 -4.832 -4.443 -2.551  

19 -1.601 -0.868 -0.517 1.716  -1.488 -0.833 -0.381 1.524  -5.594 -4.912 -4.442 -2.484  

20 -1.559 -0.927 -0.653 1.366  -1.617 -0.951 -0.723 1.462  -5.295 -4.595 -4.364 -2.074  

21 -1.187 -0.707 -0.782 1.094  -1.221 -0.709 -1.196 1.386  -4.583 -4.046 -4.569 -1.800 
 
____________________________________________________________________________________________________________
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The average (across the 10 samples) points on the latent trait scale, where the 

category 1 (Strongly Disagree) and category 2 (Disagree) probabilities intersect within the 

PCM and GPCM models are given in the column labeled 2jb  in Table 4.31. The same 

interpretation is made for the points on the latent trait where the intersection of the rest of the 

adjacent probability functions intersect in the columns labeled 3jb , 4jb , and 5jb . For 

example, across the averaged parameters estimated within the PCM analyses for item 1, the 

point on the latent trait (Leadership) scale, where the probability of endorsing category 1 

(Strongly Disagree) and category 2 (Disagree) intersect, is located on average, at -1.475. 

 The average step parameters were not evenly distributed across the latent trait, in that 

the middle two average step parameters generated by the PCM and GPCM (3jb , 4jb ) were 

estimated to be very close. Also, the point of intersection between strongly agree and agree 

( 4jb ), across all 21 items was generally higher than the adjacent step parameter. This 

discrepancy between 5jb  and 4jb  in the Leadership analyses was, however, much less 

pronounced than that within the Empowerment analyses. These results support the observed 

responses by category in Table 4.29 that respondents did not use the five response categories 

evenly; a disproportionate percentage of the respondents agreed with all the items.  

 

 

 

 

 

 

 



 

Table 4.29 

Percentage of Category Endorsement by Leadership Item: Full Sample (n = 65,012)                      
___________________________________________________________________________________________________________  

 Item 1 2 3 4 5 6 7 8 9 10 11  

              

y Strongly Disagree  7.4 1.3 4.5 8 10.9 6.7 1.4 5.6 4.5 4 2.1  

r              

o Disagree 16.5 5.8 11.4 18.9 20.5 13.2 5.1 13 12 11.3 5.4  

g              

e Neither Agree Nor Disagree 14.1 8.1 12.8 15.3 13.8 14.3 16.8 15.6 27.4 18.5 8.5  

t             1 a Agree 45.9 52.8 48.9 42.3 39.4 46.5 55.2 45 43 49.7 53.9 6 C
 

            0  Strongly Agree 15.4 31 21.9 15.3 14.9 18.9 21.1 20.2 12.6 15.9 29.9  

              

 Item 12 13 14 15 16 17 18 19 20 21   

              

y Strongly Disagree  3.4 3.6 3.4 3.7 4.9 3.4 6 5.6 5.4 9.1   

r              

o Disagree 7.3 8.4 8.5 11.3 15.8 10.3 14.7 14.3 12.2 13   

g              

e Neither Agree Nor Disagree 11.3 13.5 14.2 16.2 18.7 16.4 20.9 22.4 19.9 14.9   

t              

a Agree 52.3 50.4 50.8 54.4 49 55.7 46 46.5 47.5 44.4   

C
 

             

 Strongly Agree 25.5 23.8 22.6 12.3 10.5 13.3 11.6 10.4 14.1 18.3  
_______________________________________________________________________________________________________ 
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 Plots of the threshold parameters within the PCM, GPCM and GGUM analyses are 

useful for interpretation of the item parameter estimates previously described. Derivation and 

examination of the probability plots were the focus of the third research question, as it was 

hypothesized that, for the items that contained relatively neutral content, the plots would 

display characteristics of the ideal point response process (i.e., single-peaked, non-

monotonic). It was also hypothesized that the two types of IRT models would function 

similarly if the attitudes possessed by the sample were located on one side of the items (i.e., 

homogeneous sample not measured well by items). Figures 4.45 through 4.65 display the 

category probability functions for the 21 Leadership items from application of the PCM on 

the first simple random sample. Figures 4.66 through 4.86 display the category probability 

functions for the 21 Leadership items from application of the GPCM on the first simple 

random sample, and Figures 4.87 through 4.107 display the category probability plots for the 

21 Leadership items resulting from the GGUM analyses on the first sample. The category 

probability plots for the 21 Leadership items are displayed in Figures 4.66 through 4.86 

resulting from the application of the GPCM. 
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Figure 4.45  

Category Probability Plot for Item 1 with PCM: Sample 1, Leadership Scale 

 

Figure 4.46  

Category Probability Plot for Item 2 with PCM: Sample 1, Leadership Scale 
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Figure 4.47  

Category Probability Plot for Item 3 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.48  

Category Probability Plot for Item 4 with PCM: Sample 1, Leadership Scale 

 

  
 

0

.2 

.4 

.6 

.8 

1. 

-3 -2 -1 0 1 2 3

1 

2 

3 
4 

5

Theta

P
ro

ba
bi

lit
y 

Item Characteristic Curve: Item 3  
   

  
 

0

.2 

.4 

.6 

.8 

1. 

-3 -2 -1 0 1 2 3

1 

2 

3 4 
5

Theta 

P
ro

ba
bi

lit
y 

Item Characteristic Curve: Item 4  



 164

Figure 4.49  

Category Probability Plot for Item 5 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.50  

Category Probability Plot for Item 6 with PCM: Sample 1, Leadership Scale 
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Figure 4.51  

Category Probability Plot for Item 7 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.52  

Category Probability Plot for Item 8 with PCM: Sample 1, Leadership Scale 
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Figure 4.53  

Category Probability Plot for Item 9 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.54  

Category Probability Plot for Item 10 with PCM: Sample 1, Leadership Scale 
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Figure 4.55 

Category Probability Plot for Item 11 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.56  

Category Probability Plot for Item 12 with PCM: Sample 1, Leadership Scale 
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Figure 4.57  

Category Probability Plot for Item 13 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.58  

Category Probability Plot for Item 14 with PCM: Sample 1, Leadership Scale 
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Figure 4.59  

Category Probability Plot for Item 15 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.60  

Category Probability Plot for Item 16 with PCM: Sample 1, Leadership Scale 
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Figure 4.61  

Category Probability Plot for Item 17 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.62  

Category Probability Plot for Item 18 with PCM: Sample 1, Leadership Scale 
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Figure 4.63  

Category Probability Plot for Item 19 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.64  

Category Probability Plot for Item 20 with PCM: Sample 1, Leadership Scale 
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Figure 4.65  

Category Probability Plot for Item 21 with PCM: Sample 1, Leadership Scale 

 

 

Figure 4.66  

Category Probability Plot for Item 1 with GPCM: Sample 1, Leadership Scale 
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Figure 4.67  

Category Probability Plot for Item 2 with GPCM: Sample 1, Leadership Scale 

 

 

Figure 4.68  

Category Probability Plot for Item 3 with GPCM: Sample 1, Leadership Scale 
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Figure 4.69  

Category Probability Plot for Item 4 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.70  

Category Probability Plot for Item 5 with GPCM: Sample 1, Leadership Scale 
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Figure 4.71  

Category Probability Plot for Item 6 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.72  

Category Probability Plot for Item 7 with GPCM: Sample 1, Leadership Scale 
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Figure 4.73  

Category Probability Plot for Item 8 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.74  

Category Probability Plot for Item 9 with GPCM: Sample 1, Leadership Scale 
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Figure 4.75  

Category Probability Plot for Item 10 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.76  

Category Probability Plot for Item 11 with GPCM: Sample 1, Leadership Scale 
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Figure 4.77  

Category Probability Plot for Item 12 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.78  

Category Probability Plot for Item 13 with GPCM: Sample 1, Leadership Scale 
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Figure 4.79  

Category Probability Plot for Item 14 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.80  

Category Probability Plot for Item 15 with GPCM: Sample 1, Leadership Scale 
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Figure 4.81  

Category Probability Plot for Item 16 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.82  

Category Probability Plot for Item 17 with GPCM: Sample 1, Leadership Scale 
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Figure 4.83  

Category Probability Plot for Item 18 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.84  

Category Probability Plot for Item 19 with GPCM: Sample 1, Leadership Scale 
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Figure 4.85  

Category Probability Plot for Item 20 with GPCM: Sample 1, Leadership Scale 

 

Figure 4.86  

Category Probability Plot for Item 21 with GPCM: Sample 1, Leadership Scale 
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Figure 4.87 

Category Probability Plot for Item 1 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.88 

Category Probability Plot for Item 2 with GGUM: Sample 1, Leadership Scale 
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Figure 4.89 

Category Probability Plot for Item 3 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.90 

Category Probability Plot for Item 4 with GGUM: Sample 1, Leadership Scale 
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Figure 4.91 

Category Probability Plot for Item 5 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.92 

Category Probability Plot for Item 6 with GGUM: Sample 1, Leadership Scale 
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Figure 4.93 

Category Probability Plot for Item 7 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.94 

Category Probability Plot for Item 8 with GGUM: Sample 1, Leadership Scale 
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Figure 4.95 

Category Probability Plot for Item 9 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.96 

Category Probability Plot for Item 10 with GGUM: Sample 1, Leadership Scale 
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Figure 4.97 

Category Probability Plot for Item 11 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.98 

Category Probability Plot for Item 12 with GGUM: Sample 1, Leadership Scale 
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Figure 4.99 

Category Probability Plot for Item 13 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.100 

Category Probability Plot for Item 14 with GGUM: Sample 1, Leadership Scale 
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Figure 4.101 

Category Probability Plot for Item 15 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.102 

Category Probability Plot for Item 16 with GGUM: Sample 1, Leadership Scale 
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Figure 4.103 

Category Probability Plot for Item 17 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.104 

Category Probability Plot for Item 18 with GGUM: Sample 1, Leadership Scale 
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Figure 4.105 

Category Probability Plot for Item 19 with GGUM: Sample 1, Leadership Scale 

 

Figure 4.106 

Category Probability Plot for Item 20 with GGUM: Sample 1, Leadership Scale 
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Figure 4.107 

Category Probability Plot for Item 21 with GGUM: Sample 1, Leadership Scale 

 

Just as in the Empowerment analyses, category 1 represented Strongly Disagree and 

category 5 represented Strongly Agree in all category probability plots. These plots are 

graphical representations of and reflect the item location, discrimination, and step/threshold 

item parameters. Because, on average, most respondents agreed with all of the items, because 

all 21 items were generally located in a very narrow region of the latent trait, and because the 

majority of the items discriminated similarly, the category probability functions across most 

of the 21 items looked very similar within and between analyses by IRT model.  

Of note are the similarities between the cumulative and unfolding models. Based on 

examination of the category probability plots, there appears to be little difference between the 

two type of IRT models, with the exception of item 21. That item was least discriminating 

across the GPCM and GGUM models, though the rank order of the item’s location was very 
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different across the two model types. The GGUM estimated item 21 to be least extreme 

relative to the other items, and the cumulative models estimated this item to be moderate. 

Across all analyses, the category probability plot for item 21 is the only one that exhibited 

distinct unfolding properties. Specifically, the observed Strongly Agree response function is 

unidmodal and the observed other response functions are or approach bimodal. Interpretation 

of the Neither Agree Nor Disagree observed response function (i.e., category 3) is necessarily 

imprecise. This observed response function is the result of the two subjective response 

functions: Neither Agree Nor Disagree from above and Neither Agree Nor Disagree from 

below. Theoretically and practically, it is difficult to understand what an ambivalent response 

from above or from below mean. For item 21 in sample 1, the Neither Agree Nor Disagree 

operates similar to the Disagree response function. Items 7, and 11 through 17, also exhibit 

some unfolding properties, though only for the Agree response category, and slightly for the 

Strongly Agree category.  

To address the third research question, the probability functions were generally very 

similar across the two types of IRT models, indicating little difference between cumulative 

and unfolding IRT models. Some items, did however, exhibit unfolding properties, especially 

for the Strongly Agree and Agree response options, generally, for items 7, 11 through 15 and 

21. These properties were also evidenced by the slight non-monotonicity of the ICCs 

generated from the GGUM analyses for the two response options. 

 The second part of the fourth research question investigated in this study had 

to do with the fit of each model to the data. This was examined by calculating both absolute 

and relative fit statistics. Fit statistics are presented and discussed below. 
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 Item and scale level chi-square distributed fit statistics (G2) were calculated across the 

three IRT models. Results from the PCM analyses are reported in Table 4.32 for each of the 

10 samples. Table 4.33 presents the fit statistics from the GPCM analyses, and Table 4.34 

displays the fit statistics from the GGUM analyses. Ten fit groups were specified in all 

analyses. The p-values associated with an asterisk (*) indicate a statistically good fitting item 

at the .01 level. In the PCM analyses, item 1 showed significant fit in two of the ten samples, 

and item 4 exhibited good fit in a single sample. Across all analyses, the PCM never fit the 

survey statistically well as a whole. Based on the results in Table 4.32, the PCM is an ill-

fitting model to this Leadership data. At the survey level, the fit of the GPCM model to the 

Leadership was not improved. Item level fit was marginally improved with the GPCM, 

compared to the PCM, with item 8 showing good fit in 5 of 10 analyses. Overall, results in 

Table 4.34 indicate that the GPCM is also an ill-fitting model for these data. 

  

 

 

 

 

 

 

 



 

Table 4.32 

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sample: PCM 

          Sample 1     Sample 2   Sample 3    Sample 4            Sample 5  

         Item         2χ         df        p           2χ           df        p           2χ           df        p          2χ         df        p          2χ         df        p     

1 61.924 23 .00 40.492 21 .01 48.923 22 .00 53.716 20 .00 57.801 21 .00  

2 239.075 18 .00 244.923 18 .00 159.432 18 .00 179.428 18 .00 266.817 18 .00  

3 110.603 21 .00 133.353 22 .00 99.433 21 .00 85.667 19 .00 82.972 19 .00  

4 48.462 23 .00 31.768 22 .08* 60.313 21 .00 53.050 21 .00 46.697 21 .00  

5 67.569 23 .00 97.385 25 .00 47.708 21 .00 42.277 21 .00 90.786 21 .00  

6 87.549 21 .00 67.194 22 .00 65.954 22 .00 53.168 19 .00 103.596 21 .00 1 

7 83.167 20 .00 85.550 20 .00 76.615 19 .00 103.931 18 .00 149.802 18 .00 9 

8 204.553 22 .00 178.663 22 .00 184.111 22 .00 192.598 19 .00 197.778 21 .00 6 

9 77.925 23 .00 109.119 24 .00 62.795 21 .00 90.912 22 .00 70.221 22 .00  

10 96.768 23 .00 87.111 22 .00 74.597 21 .00 94.522 20 .00 64.769 21 .00  

11 227.497 19 .00 163.646 19 .00 139.076 18 .00 150.577 18 .00 175.591 19 .00  

12 94.444 20 .00 54.438 20 .00 90.227 18 .00 89.302 19 .00 86.350 18 .00  

13 76.184 20 .00 61.209 21 .00 90.581 20 .00 77.307 19 .00 61.119 18 .00  

14 66.695 20 .00 75.971 21 .00 56.172 20 .00 89.125 19 .00 57.163 18 .00  

15 54.846 23 .00 87.684 22 .00 56.824 22 .00 66.017 22 .00 40.928 22 .01  

16 87.640 23 .00 99.367 24 .00 80.408 23 .00 56.694 23 .00 69.568 23 .00  

17 85.888 23 .00 42.308 22 .01 64.091 22 .00 43.308 21 .00 45.631 21 .00  

18 108.753 23 .00 114.282 24 .00 135.375 23 .00 118.059 23 .00 180.510 23 .00  

19 135.323 23 .00 187.295 24 .00 153.039 23 .00 171.377 23 .00 177.980 23 .00  

20 69.049 23 .00 57.552 23 .00 105.441 22 .00 48.646 21 .00 83.070 22 .00  

21 252.141 22 .00 287.101 21 .00 212.003 22 .00 318.718 21 .00 252.603 21 .00  

Total  2336.055 456 .00 2306.409 459 .00 2063.117 441 .00 2178.400 426 .00 2361.751 431 .00 
Note:  * denotes observed and expected frequencies are not statistically different (α > .01) 



 

Table 4.32 Con’t 

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sample: PCM 

Sample 6     Sample 7      Sample 8        Sample 9                    Sample 10  

Item          2χ           df        p            2χ          df         p           2χ            df         p             2χ           df        p          2χ          df         p    

 

1 32.211 22 .07* 48.193 21 .00  43.782 22 .00  28.853 22 .14* 59.008 22 .00  

2 169.632 17 .00 271.451 17 .00  195.103 18 .00  208.211 18 .00 257.876 17 .00  

3 86.637 21 .00 105.259 19 .00  109.265 21 .00  71.565 21 .00 129.330 21 .00  

4 62.048 22 .00 41.981 21 .00  69.241 21 .00  68.818 22 .00 55.399 22 .00  

5 63.421 25 .00 79.400 22 .00  62.327 21 .00  49.842 23 .00 42.423 23 .01  

6 57.590 22 .00 77.447 20 .00  98.234 22 .00  87.238 22 .00 66.188 22 .00 1 

7 65.470 19 .00 107.411 19 .00  136.248 20 .00  130.263 19 .00 113.652 20 .00 9 

8 168.413 22 .00 171.917 21 .00  171.818 22 .00  196.091 22 .00 205.305 22 .00 7 

9 83.463 23 .00 79.934 23 .00  95.494 24 .00  106.355 23 .00 102.079 24 .00  

10 75.633 21 .00 102.960 21 .00  69.435 21 .00  93.579 21 .00 90.926 23 .00  

11 116.479 18 .00 210.734 18 .00  172.475 18 .00  136.158 20 .00 227.998 18 .00  

12 72.784 21 .00 77.835 19 .00  107.959 20 .00  84.076 20 .00 130.018 19 .00  

13 69.909 21 .00 80.554 19 .00  106.821 21 .00  81.388 21 .00 104.790 21 .00  

14 64.994 21 .00 78.290 19 .00  88.711 21 .00  59.805 21 .00 108.787 21 .00  

15 60.268 22 .00 68.363 23 .00  55.803 22 .00  64.432 22 .00 79.483 22 .00  

16 73.375 23 .00 54.274 23 .00  92.628 23 .00  69.026 23 .00 67.423 23 .00  

17 41.615 22 .01 67.532 22 .00  54.462 22 .00  51.341 22 .00 57.110 22 .00  

18 124.271 23 .00 140.822 23 .00  125.929 23 .00  137.039 23 .00 130.573 23 .00  

19 197.342 23 .00 213.933 23 .00  160.255 23 .00  192.287 23 .00 158.397 24 .00  

20 48.881 23 .00 85.244 22 .00  81.378 22 .00  53.423 23 .00 128.005 23 .00  

21 206.831 21 .00 283.086 21 .00  201.157 22 .00  268.308 21 .00 236.876 21 .00  

Total  1941.265 452 .00 2446.619 436 .00  2298.526 449 .00  2238.100 452 .00 2551.646 453 .00 
Note:  * denotes observed and expected frequencies are not statistically different (α > .01) 



 

Table 4.33 

Item and Scale Level Chi-Square Fit statistics for each Leadership Sample: GPCM 
                Sample 1         Sample 2          Sample 3         Sample 4                       Sample 5       

Item          2χ           df        p         2χ          df        p          2χ          df        p         2χ            df        p         2χ         df         p  

1 48.287 23 .00 43.948 22 .00 49.120 23 .00 49.864 23 .00 68.686 23 .00  

2 142.438 21 .00 175.938 24 .00 100.649 23 .00 119.481 23 .00 157.388 22 .00  

3 58.051 18 .00 68.461 18 .00 51.355 18 .00 50.362 18 .00 44.824 18 .00  

4 55.977 23 .00 37.679 21 .01* 72.570 23 .00 63.586 23 .00 48.974 21 .00  

5 55.614 23 .00 80.899 21 .00 57.889 22 .00 76.554 22 .00 89.497 21 .00  

6 56.572 19 .00 51.791 22 .00 54.310 22 .00 62.888 21 .00 66.621 19 .00 1 

7 71.594 22 .00 62.833 22 .00 77.834 20 .00 95.764 20 .00 118.640 23 .00 9 

8 48.868 18 .00 65.262 17 .00 45.640 17 .00 43.595 17 .00 61.372 17 .00 8 

9 76.961 24 .00 59.212 20 .00 38.721 21 .01* 74.084 21 .00 46.371 21 .00  

10 40.608 21 .01 40.363 19 .00 49.939 21 .00 80.750 19 .00 44.304 21 .00  

11 226.643 21 .00 168.727 20 .00 138.554 21 .00 158.347 19 .00 175.720 19 .00  

12 105.190 20 .00 64.873 20 .00 97.642 18 .00 105.507 18 .00 112.347 20 .00  

13 84.642 20 .00 80.771 21 .00 99.675 22 .00 91.149 19 .00 113.146 22 .00  

14 103.623 22 .00 73.151 19 .00 62.377 20 .00 78.380 20 .00 76.102 20 .00  

15 61.211 23 .00 102.286 22 .00 60.218 22 .00 61.537 22 .00 43.906 22 .00  

16 98.039 23 .00 60.786 20 .00 77.610 23 .00 61.449 22 .00 54.124 21 .00  

17 98.927 23 .00 63.063 22 .00 75.573 23 .00 48.799 22 .00 55.036 21 .00  

18 51.107 22 .00 35.702 20 .01* 55.510 20 .00 62.037 20 .00 52.787 18 .00  

19 40.550 21 .01 65.295 19 .00 43.690 20 .00 44.551 18 .00 43.565 18 .00  

20 78.642 25 .00 96.780 24 .00 108.856 24 .00 73.190 23 .00 109.790 23 .00  

21 509.716 25 .00 673.659 27 .00 457.924 26 .00 573.654 25 .00 604.407 26 .00  

Total 2113.258 457 .00 2171.479 440 .00 1875.653 449 .00 2075.527 435 .00 2187.608 436 .00 
________________________________________________________________________________________________________________________________ 
Note:  * denotes observed and expected frequencies are not statistically different (α > .01) 



 

Table 4.33 Con’t  

Item and Scale level chi-square fit statistics for each Leadership Sample: GPCM 

                Sample 6        Sample 7                      Sample 8             Sample 9                          Sample 10       

        Item          2χ              df        p          2χ             df        p          2χ              df        p          2χ             df        p           2χ         df         p  

1 49.826 23 .00 58.551 23 .00 49.578 22 .00 45.602 23 .00 56.311 22 .00  

2 106.662 23 .00 134.946 23 .00 152.163 24 .00 158.505 23 .00 177.507 22 .00  

3 54.355 21 .00 54.098 18 .00 53.409 18 .00 33.428 20 .03* 62.736 19 .00  

4 71.004 24 .00 47.489 21 .00 79.588 23 .00 71.506 23 .00 74.857 23 .00  

5 81.141 25 .00 90.243 21 .00 90.971 23 .00 62.720 24 .00 71.572 25 .00  

6 45.938 21 .00 71.256 20 .00 92.297 22 .00 47.168 21 .00 46.762 22 .00 1 7 44.604 21 .00 97.483 23 .00 87.714 24 .00 97.870 22 .00 80.483 24 .00 9 8 13.620 17 .69* 26.056 15 .03* 52.990 17 .00 29.445 18 .04* 52.326 18 .00 9 9 107.594 24 .00 74.383 20 .00 60.285 21 .00 106.763 23 .00 105.765 22 .00  

10 48.399 21 .00 73.541 21 .00 33.404 21 .04* 80.119 21 .00 48.487 21 .00  

11 110.168 19 .00 160.211 20 .00 164.765 21 .00 129.745 20 .00 208.038 22 .00  

12 53.262 20 .00 72.035 18 .00 118.604 20 .00 82.861 20 .00 129.960 20 .00  

13 67.116 21 .00 77.240 21 .00 106.896 22 .00 87.965 21 .00 108.507 21 .00  

14 66.587 21 .00 72.772 19 .00 91.409 21 .00 50.987 20 .00 99.461 20 .00  

15 67.505 23 .00 85.753 22 .00 67.115 22 .00 77.548 22 .00 93.119 22 .00  

16 74.717 23 .00 48.257 22 .00 87.692 23 .00 81.862 23 .00 64.904 22 .00  

17 45.321 22 .00 86.478 22 .00 66.531 22 .00 59.681 22 .00 72.962 22 .00  

18 23.684 20 .25* 50.918 19 .00 33.500 19 .02* 21.784 20 .35* 26.767 20 .14*  

19 17.098 19 .58* 58.668 18 .00 64.196 19 .00 45.954 20 .00 35.824 20 .02*  

20 49.899 24 .00 99.217 24 .00 96.461 23 .00 87.571 24 .00 118.127 24 .00  

21 521.610 26 .00 570.885 25 .00 569.606 27 .00 627.478 26 .00 538.006 26 .00  

Total 1720.112 458 .00 2110.480 435 .00 2219.175 454 .00 2086.563 456 .00 2272.484 457 .00 
_______________________________________________________________________________________________________________________________ 

Note:  * denotes observed and expected frequencies are not statistically different (α > .01)
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Table 4.34 displays the chi-square distributed fit statistics (G2) from the GGUM 

analyses. The same caution as in the Empowerment analyses must be exercised when 

interpreting the fit results produced from the GGUM, particularly for those items associated 

with few fit groups. Few fit groups logically are associated with fewer degrees of freedom, 

which will influence the chi-square statistic. Clearly more items were found to fit better 

within the GGUM analyses; however, determination of fit based on these results alone would 

be inappropriate because good fit could be a function of the reduced degrees of freedom. 

Nonetheless, some patterns did emerge from the GGUM fit results, namely the consistent 

lack of fit of items 2, 11, and 21 across the 10 samples. According to the GGUM analyses 

items 2 and 21 had the two lowest discrimination estimates and items 11 and 21 had the most 

modest item location estimates. Items 2 and 11 ask respondents to rate their level of 

agreement with the statements: “The faculty are committed to helping every student learn” 

and “Teachers are held to high professional standards for delivering instruction.” Item 21 

reads “Overall, the school leadership in my school is effective.”  

 

 

 

 

 

 

 



 

Table 4.34 

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sample: GGUM 
             Sample 1            Sample 2                                Sample 3            Sample 4                              Sample 5         

      Item            2χ           df       p       fit        2χ         df       p        fit       2χ         df      p       fit      2χ       df        p        fit       2χ      df       p       fit 
                      grps.                   grps.                  grps.                                  grps.                             grps.  

1 28.274 16 .029* 4 17.701 16 .342* 4 14.133 16 .589* 4  29.098 20 .086* 5 30.655 20 0.060* 5  

2 44.135 16 .000 4 59.698 20 .000 5 38.878 16 .001 4  46.235 16 .000 4 53.189 16 .000 4  

3 8.981 8 .343* 2 15.731 8 .046* 2 17.744 12 .124* 3  21.561 12 .043* 3 6.252 8 .619* 2  

4 25.280 16 .065* 4 9.516 16 .891* 4 47.160 24 .003 6  36.794 24 .046* 6 27.683 16 .035* 4  

5 15.924 20 .721* 5 33.108 20 .033* 5 29.830 20 .073* 5  28.884 20 .090* 5 37.487 20 .010* 5  

6 9.102 12 .694* 3 14.976 12 .243* 3 27.172 16 .040* 4  19.856 16 .227* 4 11.054 12 .524* 3 2 

7 29.066 16 .023* 4 30.885 16 .014* 4 15.894 12 .196* 3  33.691 12 .001 3 47.832 16 .000 4 0 

8 0.497 4 .973* 1 0.228 4 .994* 1 20.802 8 .008 2  0.411 4 .982* 1 0.323 4 .988* 1 1 

9 26.592 12 .008* 3 14.516 8 .069* 2 12.436 12 .411* 3  14.765 12 .255* 3 8.086 12 .778* 3  

10 6.257 8 .618* 2 8.254 8 .409* 2 2.823 8 .945* 2  12.748 8 .121* 2 10.891 8 .208* 2  

11 99.036 16 .000 4 73.102 16 .000 4 91.668 16 .000 4  88.370 12 .000 3 65.116 16 .000 4  

12 16.737 12 .160* 3 9.266 12 .680* 3 18.727 12 .095* 3  19.485 12 .078* 3 36.466 16 .003 4  

13 10.100 12 .607* 3 19.887 12 .069* 3 26.471 16 .048* 4  26.945 12 .008 3 10.534 12 .569* 3  

14 18.165 12 .111* 3 20.599 12 .057* 3 23.924 12 .028* 3  29.731 12 .003 3 9.190 12 .687* 3  

15 18.526 16 .294* 4 4.792 8 .780* 2 20.548 16 .197* 4  36.712 16 .002 4 5.421 8 .712* 2  

16 23.799 12 .022* 3 9.575 8 .296* 2 24.408 12 .018* 3  12.288 12 .423* 3 16.930 8 .031* 2  

17 32.260 16 .009 4 20.319 16 .206* 4 15.003 12 .241* 3  4.302 12 .977* 3 6.927 8 .545* 2  

18 0.543 4 .969* 1 0.231 4 .994* 1 0.243 4 .993* 1  0.230 4 .994* 1 0.280 4 .991* 1  

19 0.732 4 .947* 1 0.384 4 .984* 1 0.448 4 .978* 1  0.439 4 .979* 1 0.563 4 .967* 1  

20 33.955 20 .026* 5 36.687 20 .013* 5 48.360 20 .000 5  27.343 20 .126* 5 30.998 16 .014* 4  

21 698.81 24 .00 6 1020.80 32 .00 8 772.97 32 .00 8  898.31 32 .00 8 945.58 32 .00 8  

Total  1146.78 69 .00  1420.26 68 .00  1269.64 75 .00   1388.20 73 .00  1361.46 67 .00  
Note: * denotes observed and expected frequencies are not statistically different (α > .01) 



 

Table 4.34 Con’t 

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sample: GGUM 
             Sample 6            Sample 7                                Sample 8            Sample 9                              Sample 10         

       Item          2χ        df       p        fit           2χ        df       p      fit         2χ        df      p     fit       2χ       df        p      fit        2χ        df       p         fit 
                    grps.                                    grps.                grps.                             grps.                                grps. 
  

1 24.588 20 .218* 5  24.268 20 .231* 5 25.008 16 .070* 4 9.200 16 .905* 4  5.640 12 .933* 3  

2 36.946 16 .002 4  53.822 16 .000 4 54.414 20 .000 5 90.737 16 .000 4  65.946 16 .000 4  

3 10.739 12 .551* 3  0.848 4 .932* 1 11.710 12 .469* 3 10.484 12 .574* 3  16.585 8 .035* 2  

4 26.387 24 .334* 6  9.943 16 .869* 4 43.684 24 .008 6 21.771 16 .151* 4  26.963 16 .042* 4  

5 29.250 20 .083* 5  28.125 16 .031* 4 35.868 20 .016* 5 23.420 16 .103 4  35.825 20 .016* 5  

6 27.239 16 .039* 4  12.225 12 .428* 3 29.439 16 .021* 4 6.532 8 .588* 2  26.079 16 .053* 4 2 7 27.670 12 .006 3  25.452 16 .062* 4 17.979 16 .325* 4 32.842 12 .001 3  39.082 16 .001 4 0 8 0.337 4 .987* 1  0.408 4 .982* 1 12.928 8 .114* 2 0.301 4 .989* 1  0.514 4 .972* 1 2 9 14.263 12 .284* 3  14.943 12 .245* 3 13.966 12 .303* 3 33.843 12 .001 3  14.277 12 .283* 3  

10 9.986 8 .266* 2  26.377 12 .009 3 7.599 8 .474* 2 16.948 8 .031* 2  8.101 8 .424* 2  

11 63.200 12 .000 3  122.848 16 .000 4 37.123 16 .002 4 51.791 12 .000 3  137.341 16 .000 4  

12 26.527 12 .009 3  13.574 12 .329* 3 17.165 12 .144* 3 10.499 12 .572* 3  21.909 12 .038* 3  

13 29.817 12 .003 3  17.149 12 .144* 3 19.102 12 .086* 3 17.565 12 .129* 3  26.503 12 .009 3  

14 35.228 12 .000 3  19.532 12 .076* 3 16.447 12 .172* 3 13.058 12 .364* 3  24.072 12 .020* 3  

15 23.135 16 .110* 4  13.989 12 .301* 3 11.871 12 .456* 3 16.386 16 .426* 4  23.700 8 .003 2  

16 18.349 12 .106* 3  5.815 8 .668* 2 19.250 12 .083* 3 7.508 12 .822* 3  22.038 8 .005 2  

17 15.897 12 .196* 3  22.640 12 .031* 3 4.957 8 .762* 2 21.835 12 .039* 3  20.903 8 .007 2  

18 0.291 4 .990* 1  0.400 4 .983* 1 0.226 4 .994* 1 0.219 4 .994* 1  0.454 4 .978* 1  

19 0.580 4 .965* 1  0.605 4 .963* 1 0.430 4 .98* 1 0.441 4 .979* 1  0.680 4 .954* 1  

20 25.251 20 .192* 5  33.455 20 .030* 5 36.547 12 .000 3 19.896 20 .465* 5  80.506 20 .000 5  

21 833.62 28 .00 7  957.81 32 .00 8 886.45 32 .00 8 957.67 32 .00 8  803.09 28 .00 7  

Total  1279.30 72 .00   1404.22 68 .00  1302.16 72 .00  1362.94 67 .00   1400.21 65 .00  
Note: * denotes observed and expected frequencies are not statistically different (α > .01)
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Another approach used for assessing model fit was the calculation of AIC and BIC 

statistics with the application of the IRT models to the Leadership data. Table 4.35 displays 

those fit statistics estimated by the PCM, GPCM, and GGUM models. These results mimic 

those of the Empowerment analyses in that the GGUM was associated with much smaller 

AIC and BIC values than the GPCM, and the differences between the GPCM and PCM 

solutions were small. Based on these results, the GGUM exhibited the best fit to the 

Leadership data, while GPCM fit the data better than the PCM. In sum, analyses conducted 

to answer the fourth research question reveal that, across the three IRT models, the items 

generally do not fit well and neither do the models according to the chi-square statistics. 

According to the AIC and BIC criteria, the GGUM fit relatively better than the GPCM, 

though no criterion exists to measure ‘how much’ better.  

 

Table 4.35  

AIC and BIC Results for Each Leadership Sample from PCM, GPCM, and GGUM models       

Sample         PCM            GPCM                                        GGUM 

  AIC               BIC    AIC               BIC     AIC     BIC 

1 85275.831  85863.926  84442.372  85148.086  57900.66  59563.71 
2 85692.078  86280.173  84611.837  85317.551  59563.71  59832.398 
3 85566.826  86154.921  84840.242  85545.956  58169.602  60046.716 
4 84823.419  85411.514  84061.782  84767.496  59832.398  59253.97 
5 83862.589  84450.684  82839.962  83545.676  56370.513  58033.562 
6 84556.071  85144.166  83715.5  84421.214  57243.101  58905.897 
7 84715.443  85303.538  83672.425  84378.139  57205.395  58868.57 
8 85700.59  86288.685  84749.879  85455.593  58268.865  59932.04 
9 84171.773  84759.868  83244.731  83950.445  56781.012  58444.061 
10 83506.736  84094.831  82572.435  83278.149  56122.599  57785.522 
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Person Locations 

The focus of the second research question had to do with the location of the sample 

on the latent trait and the ordering of respondents on the latent trait across IRT models. IRT 

calibrations were conducted for the PCM, GPCM, and GGUM on the 10 Leadership samples 

and person parameters are provided in this section. Rank-order correlations and scatterplots 

of the person parameters are presented to address research question two. The relationship 

between the rank ordering of the person parameter trait estimates produced by the PCM, 

GPCM, and CFA scaling methods and the GGUM was examined with simple Kendall Tau-b 

correlations. Kendall’s Tau-b correlations of the person trait estimates across the 10 

Leadership samples for each pair of scaling methods are presented in Table 4.36, along with 

the average correlation across samples. 

 

Table 4.36 

Kendall’s Tau-b Correlations among Person Trait Estimates by Sample and Scaling Method                            

 
Sample          PCM,           GPCM,          PCM,             CFA,            CFA,          CFA, 
         GGUM       GGUM         GPCM             PCM           GPCM        GGUM 
 
1 .973 .994 .974 .942 .955 .956 
2 .969 .999 .970 .941 .959 .959 
3 .971 .999 .972 .940 .955 .955 
4 .972 .999 .973 .942 .956 .956 
5 .963 .999 .964 .929 .951 .952 
6 .970 .999 .971 .939 .952 .952 
7 .966 .999 .966 .935 .955 .956 
8 .968 .999 .969 .938 .955 .955 
9 .970 .999 .971 .965 .982 .982 
10 .971 .999 .971 .940 .957 .957 

 
Mean .969 .998 .970 .941 .958 .958 

__________________________________________________________________________ 
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Two trends visible in Table 4.36 were also apparent in the Empowerment analyses. 

First, the greatest measure of association between the trait estimates was found between the 

GPCM and GGUM models, indicating nearly identical ordering of person estimates. Second, 

the smallest correlations were consistently found between the CFA and PCM models. One 

difference between the Leadership and Empowerment results is found in the strength of 

association in that all correlations (and average correlations) were lower in the Empowerment 

analyses. For example, the smallest mean correlation in the Empowerment analyses between 

the PCM and CFA was lower (Tau = .873) than the average correlation between the same 

scaling methods in the Leadership analysis (Tau = .941). The inconsistency in the rank order 

of person estimates between the PCM and CFA models is less pronounced in the Leadership 

analyses. Finally, all correlations in each of the sample, for all combinations of scaling 

methods were statistically significant (p < .01). 

 Graphical representations of the relationship between the trait estimates are found in 

the form of scatterplots in Figures 4.108, 4.109, and 4.110. These plots show the association 

of trait estimates between the GGUM and the PCM, GPCM, and CFA models, respectively, 

from sample 1. 

The trait estimates produced by the PCM and GGUM were very similar with the 

exception of some outliers at the upper end of the distribution. Those cases were estimated to 

have higher GGUM values than PCM trait values. The relationship between the GPCM and 

GGUM trait estimates shown in Figure 4.109 was nearly linear, with the exception of outliers 

at the upper end of the trait. 
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Figure 4.108 

Scatterplot of Trait Estimates for PCM and GGUM models: Sample 1 Leadership Scale       
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Figure 4.109 

Scatterplot of Trait Estimates for GPCM and GGUM models: Sample 1 Leadership Scale 
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Figure 4.110 

Scatterplot of Trait Estimates for CFA and GGUM models: Sample 1 Leadership Scale 

 Finally, the nonlinear relationship between the CFA and GGUM trait estimates are 

shown in Figure 4.110. Towards the middle of the distribution the CFA model generates 

higher estimates than the GGUM, and closer to the positive end of the trait, the GGUM 

appears to yield higher trait estimates than the CFA model. Outliers are present at both ends 

of the latent trait, and even along most of the continuum. Across the three (PCM, GPCM, and 

CFA) models, the CFA functions most inconsistently with the GGUM.  
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 Another approach used to examine the estimated trait distributions and to further 

detect discrepancies in trait estimates between models, was the calculation 5 X 5 cross-

tabulation tables. The procedures used were identical to those of the Empowerment analysis. 

Results are presented again only for the first Leadership sample. The frequency of 

respondents within given quintiles for each pair of models with the GGUM are presented in 

Table 4.37 for the PCM, Table 4.38 for the GPCM, and Table 4.39 for the CFA model. 

 

Table 4.37 

Cross Tabulation Table of GGUM and PCM Quintiles: Sample 1 Leadership Scale 

 
    PCM        
  1 2 3 4 5 Total  Statistic Value ASE 

M
 

1 386 13 0 0 0 399  Tau-b .971 .003 

U
 

2 11 374 15 0 0 400  Tau-c .971 .003 

G
 

3 0 13 377 9 0 399  Pearson .985 .001 

G
 

4 0 0 44 349 7 400  Spearman .985 .001 

 5 0 0 0 6 393 399     
 Total 397 400 436 364 400 1997     

 
Notes: ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c  
 
 
The frequencies within each quintile by model reveal that, across the five trait categories, the 

GGUM consistently produced higher estimates within the fourth quintile. When the other 

models estimated higher person traits, those also fell into the fourth quintile, with the 

exception of the CFA model. 
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Table 4.38 
 
Cross Tabulation Table of GGUM and GPCM Quintiles: Sample 1 Leadership Scale 

     GPCM       
  1 2 3 4 5 Total  Statistic Value ASE 

M
 

1 396 3 0 0 0 399  Tau-b .995 .001 

U
 

2 1 397 2 0 0 400  Tau-c .995 .001 

G
 

3 0 0 393 6 0 399  Pearson .998 .001 

G
 

4 0 0 5 393 2 400  Spearman .998 .001 

 5 0 0 0 1 398 399     
 Total 397 400 400 400 400 1997     

 
Notes:  ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c 
 
 
 

For example, the GGUM estimated 44 respondents within the fourth quintile, while 

the PCM categorized those 44 people into the third quintile. The CFA categorized 30 people 

in the fourth quintile, while the GGUM estimated those 30 to fall into the third quintile. 

Further, as seen in Table 4.37, the GGUM resulted in higher trait estimates at the higher end 

(i.e., 4th and 5th quintiles) of the trait scale.  

 
Table 4.39  
 
Cross Tabulation Table of GGUM and CFA Quintiles: Sample 1 Leadership Scale 
___________________________________________________________________________ 
    CFA        
  0 1 2 3 4 Total  Statistic Value ASE 
 0 383 16 0 0 0 399  Tau-b .956 .004 

M
 

1 10 365 25 0 0 400  Tau-c .956 .004 

U
 

2 2 16 351 30 0 399  Pearson .975 .003 

G
 

3 2 2 23 357 16 400  Spearman .975 .003 

G
 

4 0 1 1 13 384 399     
 Total 397 400 400 400 400 1997     

___________________________________________________________________________ 
Notes:  ASE = Asymptotic Standard Error; Tau-b = Kendall’s Tau-b; Tau-c = Stuart’s Tau-c  
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Summary of Leadership Analyses 

 Results reveal that the dimensionality assumptions of the cumulative models were 

met, and that assumption of unidimensionality within the context of unfolding models was 

not. The data do not appear to be of the unfolding type (i.e., responses do not unfold) based 

on the structure of the data. Further, the plot of pattern coefficients that resulted from the 

PCA with two components did not produce a circumplex-like (i.e., semi-circular) structure. 

Most of the fit indices produced by the CFA were supporting of excellent model fit and that a 

single factor structure was adequate in explaining the leadership data. Overall, these results 

support the assumptions of cumulative IRT models.  

 As for the item parameters, the PCM and GPCM performed similarly across all item 

parameters estimated. Both models indicated that most of the Leadership items were 

moderately easy to endorse. The GGUM analyses estimated all Leadership items to have 

extreme location estimates and were associated with very large standard errors. According to 

the GGUM, all items were clustered in a narrow and extreme region of the latent trait. The 

Leadership items are not extremely worded in either direction, therefore the extremity of item 

parameter estimates could be an outcome of relative homogeneity of attitudes of the sample. 

Because item location estimates and signs of those estimates are also associated with item 

content, according to the GGUM analyses, moderate and negative attitudes towards 

Leadership were not measured by these 21 items. The similarity across the three IRT models 

is that the 21 items are closely clustered in a small region of the latent trait. Therefore, much 

of the latent trait is not being measured by the 21 Leadership items. The category probability 

plot produced from the GGUM for item 21 showed characteristics of an unfolding item 

across the five response options. More moderate unfolding characteristics were seen in the 
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category probability plots for items 7, and 11 through 17 for the Agree and Strongly Agree 

response options. The category probability plots produced from the PCM, GPCM, and 

GGUM for the remainder of the items are similar, implying that the three IRT models 

function similarly. 

 Across the 10 PCM analyses, almost none of the items fit the Leadership data well 

according to the item level chi-square fit statistics. The GPCM analyses displayed only few 

items that fit well, and both cumulative models fit statistically poorly at the scale level.   

The GGUM item level fit statistics reveal that many items fit the data, but with some items 

using as few as 1 or 2 or 3 fit groups to calculate the chi-square statistic, results are 

questionable. At the scale level, however, the GGUM also did not fit well across the 10 

samples. The AIC and BIC measures of fit indicated that the GGUM fit the Leadership data 

better than the GPCM, and that the GPCM fit better than the PCM. 

 Finally, in examining person parameter estimates and distributions, the weakest 

relationship between the person trait parameter estimates was found between the CFA and 

PCM scaling methods. The model that exhibited the least amount of agreement with the 

GGUM was the CFA, while, just as in the Empowerment analyses, the GPCM and GGUM 

were essentially indistinguishable in person parameter estimates based on the rank order 

correlations and scatterplots.  

 

 

 
 
 
 
 
 



 

 

 

 

CHAPTER FIVE 

 

CONCLUSIONS AND DISCUSSION 

 

 

The measurement of non-cognitive constructs such as attitudes, preference, opinion, 

and psychological constructs including personality has been undertaken by psychologists, 

market researchers, across a variety of fields, such as industrial/organizational psychology, 

personality psychology and even within the armed services. Examination of change in 

behavior and developmental/stage processes, and the relationship between attitudes and 

behaviors have certainly been of interest to developmental and educational psychologists. 

Traditionally, cumulative IRT models have been applied to non-cognitive data as such 

models were originally developed for the measurement of cognitive constructs like 

achievement and aptitude. Through the early contributions of Thurstone (1927, 1928), 

Coombs (1950, 1961), and more recently Andrich (1978, 1988, 1995, 1996,) Luo (1998, 

2000), Roberts and colleagues (1996, 1998, 1999, 2000, 2002, 2003), and Chernyshenko, 

Stark, Drasgow and colleagues (2001, 2006, 2007), theory development underlying how 

people respond to attitudinal Likert-type items and the development of software to analyze 

such data have enabled the application of the relatively less familiar unfolding IRT models.  

In the literature there are generally three perspectives from which applied researchers 

come when employing unfolding IRT models. The first, and that taken in this investigation, 
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is for the purpose of informing non-cognitive scale construction. Closely related, and 

perhaps a natural result of improved or better informed scale construction is the perspective 

of improved accuracy and measurement precision, supporting the use of unfolding IRT 

models over cumulative IRT models. Third, unfolding models have been applied as a novel 

approach for examining and explaining the relationship between attitudes and behaviors 

(Andrich & Styles, 1998; Noel, 1999).  This contemporary way of thinking about the 

attitude-behavior relationship has changed the way attitudes and behaviors are measured 

with the application of models that accommodate single-peaked functions to measure this 

association and the way in which behaviors change over time. 

Unfolding IRT models have been shown not only to function as “viable alternatives” 

(Stark et al., 2006, p. 25) to cumulative models, but in some measurement situations, they 

are superior to traditionally used cumulative models in more accurately measuring non-

cognitive latent constructs, and in developing scales for measuring such constructs (Roberts 

et al., 1999). These measurement situations include those in which an ideal point response 

process is responsible for producing the observed data. The problem with using the 

traditional cumulative IRT models to measure non-cognitive constructs (measured by Likert-

type items) is that, theoretically, people use an ideal point response process when asked to 

rate their level of agreement with an item. The argument against the use of cumulative 

models in these situations is that there exists a discrepancy between the assumptions that 

underlie the data generated from the ideal point response process and those that underlie the 

model (that is, cumulative IRT models that assume a dominance response process).  

The approach used in this investigation was to examine how unfolding IRT models 

function compared to traditional, cumulative IRT models. Because some details regarding 
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the development of the NCTWCS were not available, careful and close examination of all 

the factors related to model assumptions, model fit, and characteristics of item and person 

parameters was undertaken. Whereas much of the applied research using unfolding IRT 

models has focused on attitudes of college students towards capital punishment and abortion, 

the intent of this investigation was to inform scale construction and analysis for a different 

construct and population – teachers’ perception of and attitudes about school leadership 

(Leadership) and teacher empowerment (Empowerment).  

In the following sections of this chapter, the limitations to this investigation. 

Following that, important findings are reviewed and interpreted. Potential reasons for the 

findings are proposed by scale (Empowerment and Leadership), and implications of the 

findings and suggestions for future research are suggested.   

 

Limitations 

 Six limitations of the methodology used in this investigation are apparent. First, the 

nesting of teachers within schools was not considered in this analysis. This is only a 

limitation because the entire sample could not be used. If the entire sample could have been 

used, nesting would not pose a threat, as the intent of the NCTWCS was to examine 

leadership practices, and make decisions at the school/principal level. Decisions were not 

made at the individual teacher level. Accommodation of the nested structure of the data could 

have been accounted for by employing hierarchical IRT models and hierarchical CFA 

models. Observations in hierarchical or nested data (i.e., teachers nested within schools) are 

dependent and tend to be more similar to each other in terms of the outcome variable (i.e., 

measure of Leadership or Empowerment) than they do to those in a different group (i.e., 
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school). These dependencies result in problems when the focus is on the individual level 

observations that are nested within groups. Second, it is possible that bias could have been 

introduced into the estimates of as a result of survey non-response, as the average response 

rate, across schools was approximately 66%. It could be possible that non-response occurred 

for similar reasons among individuals who did not participate. If those individuals possess 

common attributes that directly relate to the construct being measured (attitudes toward 

teacher working conditions), then systematic non-response would not be captured in the 

analyses. Further, a sub-sample of the total population omitted could contribute to a 

relatively homogeneous effective sample. However, if the occurrences of non-responses were 

random, then bias would not be a concern. Given that the NCTWCS has only been 

administered three times (2002, 2004, and 2006), that the prior years' data were not available, 

and that individual teachers (and their characteristics) could not be tracked due to the 

anonymity and confidentiality built into the data collection procedures, it was not possible to 

use auxiliary data to examine or statistically adjust for non-response bias. A third key 

limitation in this investigation was that the “true” attitudes toward teacher Empowerment and 

Leadership were not known, therefore an absolute decision of a best or correct model in 

terms of measurement precision and accuracy could not be made.  

 A fourth limitation concerns model selection. This investigation used a common 

Rasch cumulative model (the PCM), a common cumulative IRT model for polytomous data 

(the GPCM), and an unfolding IRT model for polytomous data (the GGUM). All of these 

models are also parametric models. Other models could have been selected, especially for 

this kind of attitudinal data. Nonparametric cumulative IRT models were not used in this 

study, although their use in the field of cognitive and non-cognitive measurement is 
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perfectly acceptable. Some researchers argue their superiority over parametric IRT models 

simply because the strict assumptions that underlie parametric IRT models are difficult to 

meet.  

Competing theories in the context of psychological measurement include the idea that 

nonparametric cumulative IRT models are more appropriate and more efficient than 

parametric IRT models (Cliff et al., 1998; Collins et al., 2006; Meijer & Baneke, 2004; 

Nandakumar et al., 2002; Rabe-Hesketh & Skrondal, 2007). There are also proponents of the 

application of nonparametric unfolding IRT models to non-cognitive constructs including 

Cliff et al. (1988) and van Schuur (1984). The argument supporting nonparametric models is 

that these models provide more flexibility because less strict statistical assumptions are 

required. This claim is certainly valid, however, the purpose of the survey and use of results 

and future administrations must be determined prior to selection of analysis method. If the 

benefits of IRT are sought, then nonparametric IRT models may not allow for the greatest 

advantage as the latent space is not completely specified therefore inhibiting the satisfaction 

of the assumptions item independence and invariance. Complete specificity of the latent 

space refers to a measurement model that “completely specifies the relation between person 

location, stimulus location and choice probability” (Hoijtink, 1990, p. 642). However, if strict 

adherence to assumptions of IRT models cannot be met, or are believed to be violated to 

some degree, the use of nonparametric measurement models is likely more appropriate than 

parametric models. In his chapter on locally dependent conjunctive IRT models, Jannarone 

(1997) claims that “from formal and practical viewpoints, therefore, the local independence 

axiom stands in the way of interesting extensions to test theory and application” (p. 472). The 

argument for the use of nonparametric IRT models for analyzing non-cognitive data is 
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warranted especially given the little empirical research on application of nonparametric 

unfolding IRT models to such data.   

A fifth feature of this study that arguably poses limitations is that because multilevel 

IRT and SEM modeling were not employed, teacher-level trait estimates were not or could 

not be aggregated to the school level. School level measures would have been useful as the 

NCTWCS data are used to make decisions about schools, or the principals within schools, 

based on teacher level responses. If the teacher level trait estimates could have been 

aggregated to the school level in this investigation, then further comparisons could have been 

made between model results and the school level decisions that were made by the Governor’s 

office of North Carolina. This last point was also inhibited due to the fact that the entire 

sample could not have been used in the GGUM analyses due to software constraints, and thus 

for all analyses in this investigation.   

 Finally, in all the applied research that use unfolding IRT models, data are only 

dichotomous (agree/disagree), or have an even number of response options, such that a 

middle category, (e.g., Neither Agree nor Disagree), is not included as an option. The 

inclusion of the middle category on the NCTWCS could not be collapsed, and is therefore 

presented as a limitation because the category parameter estimates associated with the middle 

response option, especially for the unfolding model, are difficult to interpret at the subjective 

level (i.e., neither agree nor disagree from above, neither agree nor disagree from below).  

Ideally, in any measurement situation, test construction should be guided, a priori, by 

a clear definition of the construct, the intended purpose of the survey, scoring methods, and 

intended use of test scores. Model selection for scaling/scoring requires the consideration of 

the assumptions that underlie the data, the assumptions that underlie the response process, the 
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item response categories (i.e., yes/no or a gradation of categories as those in the current 

investigation), the relationship between the categories (i.e., ordered, unordered, interval), the 

intended uses of the scores, and to a lesser extent, sample size. Data to which an unfolding 

IRT model is appropriately applied, would be generated from a test built within the 

Thurstone framework where items, measure the entire spectrum of a single, clearly defined, 

non-cognitive construct. Items written in the Thurstone framework, naturally, do not include 

ambivalent (i.e., neither agree nor disagree, or no opinion) response options. Further, if it is 

assumed, a priori, that an ideal point response process would guide respondents when 

answering items, then application of a model that holds the same assumptions (i.e., unfolding 

IRT models) would be ideal. Items that measure attitudes, opinions, and perspectives, for 

which a response can be provided for two reasons (i.e., agree from below or agree from 

above) would necessitate the use of unfolding models. When observed responses to all items 

are plausibly provided for a single reason (i.e., there is no ambiguity surrounding responses) 

then application of an unfolding model would not be superior in measuring the construct over 

other scaling/scoring methods. Rather, unfolding models would likely not be selected as a 

scoring method because it would violate the principal of parsimony, and would artificially 

appear to fit the data better than other scoring methods simply due to over-parameterization. 

Summary and Interpretation of Results 

The first research question related to examining the location of the items on the 

underlying latent traits (i.e., teacher perception of Empowerment and Leadership) across 

three IRT scaling methods (partial credit model, generalized partial credit model, and the 

generalized graded unfolding model). Item location can yield information about the 

comprehensiveness of latent trait measurement. It has also been argued by Chernyshenko et 
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al. (2007), that unfolding IRT item parameters are directly associated with item content, 

whereas the item location parameters generated from cumulative IRT models are not. 

Regardless of the model used, item parameter estimates have implications for scale 

development.     

In addressing the first research question, it was presumed that if the items on the 

attitudinal measure were constructed using a Likert methodology and modeled using an 

unfolding model assuming an ideal point response process when individuals respond to 

items, that items would generally be located at the ends of the latent trait continuum. Neutral 

items would not appear on the NCTWCS; items meeting the Likert criteria tend to be worded 

in more extreme terms (i.e., items that express both strong positive and strong negative 

sentiment with respect to the latent trait). It was hypothesized that if the items were not 

constructed using a Likert methodology, then item locations on the latent trait would be more 

similar to each other across all three scoring and scaling methods, than if a strict Likert 

methodology were used. Specifically, item locations would generally be more centrally 

located, or at least more dispersed across the attitude continuum as opposed to located 

towards the extreme values of the latent trait.   

In the Empowerment analyses, there was some dispersion of the item locations 

generated from the PCM and GPCM models with a range of the averaged (across the 10 

samples) locations of between -.936 to 1.823 and -1.034 to 2.390, respectively. Likewise, the 

locations of the items resulting from the GGUM (reversing the initial sign of the item 

locations during item parameter estimation) were slightly dispersed, with a range of the 

averaged item locations between 2.738 to 5.048. The GGUM location estimates were all 

relatively extreme and had very large associated standard errors for all 13 item location 
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parameter estimates. In the Leadership analyses, the item locations were more tightly 

clustered in one region of the latent trait by all three IRT models, especially the GGUM.  

Based on item location estimates, it is clear that only a portion of the attitude 

continuum is being measured by the 21 Leadership items. The 13 Empowerment items 

measure a slightly broader range of the latent trait. It is important it keep in mind that, 

especially for the 21 Leadership items, more than half of the over 65,000 respondents agreed 

or strongly agreed with each of the Leadership items. Again, as evidenced by the negative 

item locations (for the cumulative IRT models) combined with the descriptive information 

for these items, it was easy for the respondents to agree with the Leadership items, and most 

of them did. Generally, results from all three IRT models reveal that only a portion of the 

latent traits Leadership and Empowerment are being measured by these scales. Based on the 

rank order correlations, the two cumulative models ordered the Empowerment items 

identically, but both cumulative models produced highly dissimilar rank orderings of item 

locations when compared to the GGUM location estimates. The Leadership results, however, 

revealed that the item location estimates from all three IRT models were highly correlated. 

Both the PCM and the GPCM location estimates correlated highly and significantly with the 

GGUM estimates, meaning that Leadership items were ordered very similarly across the 

three IRT models. However, all IRT models estimated the items to be located in a narrow 

region of the trait. This point should be considered concurrently with the high rank order 

correlations.   

A final word on the interpretation of the relative extremity of the item location 

estimates, especially those generated from the GGUM. To reiterate, the GGUM is a 

proximity based model, and the extremity of items is relative to the location of the attitude of 
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the sample. It is possible that the Empowerment and Leadership items are moderately 

positive in content, but appear more extremely located if the respondents have more neutral 

attitudes relative to the items. In essence, homogeneity of the sample effects the extremity of 

item locations in proximity (i.e., unfolding) models. 

The item discrimination parameters are useful to examine for the purpose of 

examining measurement precision and for future scale construction. Item discrimination 

parameters usually fall between values of 0.0 and 2.0 (Hambleton & Swaminathan, 1985). 

On average, most of the Empowerment items had very low discrimination values, meaning 

that they did not differentiate well among respondents of varying levels of the latent trait. 

The Leadership items yielded generally higher discrimination values on average. Item 

threshold/step parameters are useful because they demonstrate or provide a sense of how well 

respondents are using the response categories. Threshold parameters that have close 

estimates, like those in the Leadership analyses for the Disagree/Neither Agree Nor Disagree 

and the Neither Agree Nor Disagree/Agree, are evidence that these three categories were not 

used equally across respondents. The Empowerment items showed better category use than 

the Leadership items.    

 The second research question dealt with the person trait estimates resulting from the 

three IRT and the CFA models. The intended plan of analysis was to focus on the ends of the 

latent trait scale, as this is where cumulative and unfolding models are most discrepant. 

Analysis results revealed however that it was not completely necessary to emphasize so 

much on the estimates at the ends of the latent trait scale across models. Because the IRT 

models functioned very similarly for most of the items on both the Leadership and 

Empowerment scales, it was not necessary to focus so much on the extremes. This 
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functioning can be seen in the scatterplots of the trait estimates (and to some extent the 

category probability plots as well). The scatterplots of the person trait estimates with the 

GGUM revealed that the PCM and GGUM were mostly consistent in their estimates with a 

linear relationship. The GGUM and GPCM estimates were almost perfectly linear and 

coincident. The GGUM and CFA person estimates were slightly nonlinear. None of the 

scatterplots displayed what would typically be seen if indeed the NCTWCS data were truly 

of the unfolding-type and measured with a cumulative-type model. If data were of the 

unfolding type, then the scatterplots of the person estimates would have revealed that traits 

generated from the cumulative-type models would be depressed, or show less extreme 

estimates, than the GGUM parameters. Specifically if the GGUM produced the “true” person 

estimate, then the expected scatterplot of the GGUM and CFA (or PCM, GPCM) estimates 

would have appeared to be “an elongated S-shaped function relating the two measures” 

(Roberts et a., 1999, p. 221). Further, the GGUM would have yielded more extreme person 

estimates than the CFA or cumulative IRT methods at the ends of the distribution if, and only 

if the true estimates were produced from the ideal point response process, and if and only if 

the entire continuum of the latent trait was measured (i.e., scale construction mimicked a 

Thurstone approach to development). .Consequently, there was little to examine and pay 

close attention to at the extremes of the latent trait distributions. When discrepancies did 

exist, they did so along the trait scale, not just at the ends. In reviewing the scatterplots and 

cross tabulation tables, the GGUM only yielded higher person trait estimates when compared 

to the PCM with the Leadership data. Specifically, as tabled in Chapter 4 for the first sample 

only, GGUM clustered 44 respondents into the 4th quintile, where those same people were 

categorized as falling into the 3rd, according to the PCM.    
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Examination of the probability function plots was the focus of the third research 

question. Any evidence of non-monotonicity of the probability functions from the cumulative 

IRT models would support the possibility that the ideal point response process was 

operational. Any monotonicity of the probability functions from the GGUM would indicate 

that either the cumulative and unfolding models are measuring the construct similarly, or that 

the items are extremely located relative to the respondents. It was hypothesized that, because 

the items on both scales seemed to contain relatively neutral content, the probability plots 

generated from the unfolding model would be single-peaked. Because the items on both 

scales did not appear to be extremely worded, or require an extreme (in either direction) 

attitude towards the latent trait for endorsement, it was hypothesized that the ICCs associated 

with the neutral items would exhibit folding, and this single-peaked nature would be marked 

in the GGUM analyses. This was not the case, however. The category probability plots from 

all three IRT models were characteristic of cumulative IRT models. The only items that 

showed unfolding characteristics, based on the GGUM analyses, were the first four 

Empowerment items, and items 7, 11 through 17, and 20 in the Leadership analyses at the 

upper end of the latent trait. The plots for these items, however, show only minimal 

unfolding properties for the categories of Strongly Agree and Agree. Across both scales, 

there was only a single item that exhibited unfolding properties across all categories, and that 

was the last item on the Leadership scale. That item reads: “Overall, the school leadership in 

my school is effective.” Further investigation as to why only this item may have generated 

data that needed “unfolding” is warranted. On average, across the 10 samples, this item was 

the second least discriminating, compared to the other 21 items. Of the 65,031 total 

respondents, 64,845 (99.7%) answered this question where 9.1% strongly disagreed, 13.0% 
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disagreed, 14.9% neither agreed nor disagreed, 44.4% agreed, and 18.3% strongly agreed. 

Although the plots from the first sample are tabled in Chapter 4, category plots from the 

other nine samples actually reveal a less marked display for item 21, where only the Strongly 

Agree and Agree response options exhibit unfolding characteristics. The category probability 

plots for Leadership item 21 from the nine samples are presented in Appendix B. 

It was also hypothesized that the probability plots generated from cumulative and 

unfolding models would be the same for extremely worded items or would result from a 

homogeneous sample. This claim was supported, especially in the Leadership analyses, in 

that across the GPCM, PCM, and GGUM analyses, the Leadership items were moderately to 

extremely located on the latent trait, because most people agreed or strongly agreed with the 

items. Also the large standard errors associated with the GGUM location estimates imply a 

homogeneous sample relative to the item location. Therefore, the cumulative and unfolding 

models generated probability plots that were very similar.  

 The fact that most of the category probability plots were difficult to distinguish 

between the cumulative and unfolding models does not necessarily mean that the ideal point 

process was not in operation or responsible for the observed data. However, the findings 

from the first two research questions, coupled with the category probability plots suggests 

that the two types of IRT models functioned similarly enough not to warrant close 

examination of the extreme ends of the probability functions. Such attention would have been 

warranted if discrepancies were found between the cumulative and unfolding models, 

however, this was not the case for the Empowerment and Leadership data. 

The ICCs generated from the GGUM analyses were monotonic for the last nine 

Empowerment items and for all Leadership items, except item 21. As expected, the non-
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monotonicity for the four Empowerment items and one Leadership item was very slight at 

the upper end of the latent trait.  According to Roberts et al. (1999) when referencing 

unfolding IRT models, “the degree of monotonicity inherent in the ICCs will be highly 

dependent on the relative locations of persons and items on the attitude continuum, and the 

range of person locations can obviously change from sample to sample” (p. 231). Further 

Roberts et al. (1998) demonstrated that items with truly inherent non-monotonic 

characteristics exhibit monotonic features when the sample of respondents’ attitudes is 

restricted. Given the Leadership analyses (and to a large extent the Empowerment analyses) 

reported in Chapter 4, most people agreed with the items and the category probability plots 

across the three IRT models were similar with the exception of a few items. This 

demonstrates that the sample was very homogeneous. Additionally, the items on the 

Leadership scale were estimated to be located in narrow region of the latent trait. These 

results indicate that attitudes of the sample members were homogeneous and that the latent 

trait is not estimated well. Neither items nor people were disbursed across the latent trait, so 

even if an ideal point response process were responsible for the observed data, the 

homogeneity of the sample would preclude overt evidence of unfolding properties. The 

results presented in Chapter 4 support the notion that “a restricted sample range may mask 

the nonmonotonic response characteristics of a given item so that its characteristic curve 

appears to be monotonically related to attitude” (Roberts et al., 1998, p. 1).  

The fourth research question pertained to two related issues: those of model 

assumptions and model fit. The assumption of unidimensionality within the context of 

cumulative IRT models was tested on the entire sample with a confirmatory factor analysis 

with one factor. The results and fit statistics can be interpreted as relatively poor fit with 
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higher than acceptable values for measures like the RMSEA, RMR, SRMR, and low values 

for the GFI and NFI for the Empowerment data. The single factor structure imposed on the 

Leadership data yielded statistics that showed better fit than the Empowerment data with 

RMR, SRMR, and NFI values hovering at their respective cut-points. However, the RMSEA 

was higher than acceptable and the GFI was lower than acceptable. Determination of the 

model fit (i.e., a single factor model including 13 Empowerment or 21 Leadership items), and 

thus unidimensionality, and to some extent item independence, included the computation of 

the root mean square residuals for each item. Smaller values represent better fit. Based on the 

possible comparisons, the GPCM fit equally as well at the item level as the PCM on the 

Empowerment data, but showed much better fit of the Leadership data. Overall, 

unidimensionality was likely violated in the Empowerment analyses, but appeared to be met 

with the Leadership data according to most of the fit indices.  

Testing the unidimensionality assumption within the context of unfolding models 

requires different methods than those used for cumulative IRT models. In the present study, 

the principal components analyses with two components did not fit well for either data set. 

The structure of the data was examined by plotting the factor pattern coefficients resulting 

from the PCA. The plots did not reveal that the data “unfold” because they did not form a 

semi-circular pattern. For both the Leadership and Empowerment data, the pattern 

coefficients associated with items were generally clustered in the two quadrants and did not 

form a fan-like configuration that would indicate that two linear principal components 

explain the pattern of data, and that the data unfold. A semi-circular plot of the pattern 

coefficients is evidence of unidimensionality within the context of unfolding models. 

Examination of the eigenvalues from the PCA also did not indicate that two components 
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explained the data well. However, all final communality estimates were greater than 3. 

Considering all results, the unidimensionality assumption required for confident use of the 

GGUM also did not appear to be met for either data set.  

 Item and scale level chi-square distributed statistics are commonly used and reported 

in the educational and psychological measurement literature to test model-data fit. Such 

statistics were computed at the item scale level for both the Empowerment and Leadership 

measures, across all three IRT models. Two additional measures of model-data fit were 

calculated that do not demand absolute interpretations and are either insensitive to or control 

for sample size. The first was through the calculation of the root mean square residuals for 

each item and the second was with the calculation of the Akaike Information Criterion (AIC) 

and the Bayes Information Criterion (BIC). Both are measures of relative fit and smaller 

values are interpreted as better fitting. According to the chi-square statistics, neither the 

PCM, the GPCM, nor the GGUM fit the Leadership or Empowerment data well. Using the 

root mean square residuals at the item level, the GPCM appeared to fit the Leadership data 

better than the PCM. For the Empowerment data, however, the GPCM fit the data equally 

relative to the PCM. According to the AIC and BIC criteria, the GGUM fit both data sets 

relatively better than the GPCM, which fit both data sets relatively better than the PCM, 

though not by much. The question still remains, however, what “how much” means for these 

statistics and for differences between them.  

Empowerment 

Information on how the NCTWCS was developed in terms of the decision making 

rules that governed how items eventually were determined to appear on the survey indicates  

that the NCTWCS 2006 responses were scored using confirmatory factor analytic methods 
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to create domain scores for each sub-scale, including Empowerment and Leadership (Center 

for Teaching Quality, n.d.). If the sub-scales were also built using such approaches, then, 

presumably, the CFA analyses would have yielded better fit statistics, especially for the 

Empowerment scale. Further, the cumulative IRT assumption of unidimensionality 

presumably would have been met, again, especially for the Empowerment data.  

It seems reasonable to conclude that results from the Empowerment analyses are 

questionable. This is because the single factor model using the CFA scaling approach did not 

fit; the assumption of unidimensionality was not met well (i.e., lack of good fit of a single 

factor structure) for the two cumulative IRT models; and because the assumption of 

unidimensionality within the context of IRT unfolding models also was not met. The 

potential consequences of violations of IRT model assumptions include biased item 

parameters and inaccurate person parameter estimates. This obviously has negative 

consequences for the reliability of estimates and validity of decisions based on those 

estimates. Further, violations prohibit or interfere with the comparison of individuals and 

individual differences on the latent trait, although this was not an intended or actual use of 

these data.   

An interesting finding did emerge, however, with the Empowerment analyses. The 

first four items, and to a lesser extent, the fifth, exhibited some unfolding properties for the 

strongly agree and agree response options. Respondents were instructed to rate their level of 

agreement with the first five items on the Empowerment scale. For the last eight 

Empowerment items, teachers were instructed to indicate how large a role teachers have, and 

then were presented with a list of tasks. The response options associated with those eight 

items are: No role at all, small role, moderate role, large role, and the primary role. These 
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options measure frequency more than level of satisfaction with or attitudes about the 

construct. Therefore, these eight items probably require a dominance response process, 

which is more than likely what respondents used to answer these items. Measures of 

frequency are most appropriately measured with cumulative IRT models (or at least models 

that assume a dominance process). In this case, then, because unfolding models, by design, 

can adequately measure cumulative-type data (i.e., fit monotonically increasing item 

response functions) as well as non-monotonic item response functions, the unfolding IRT 

model could theoretically be used for the Empowerment data. However, considering all of 

the results and that the presence of unfolding properties was not marked in the first five 

items, a model that presumes a dominance response process may be appropriate for these 13 

Empowerment items.  

Because questions about attitude and questions about frequency arguably measure 

different constructs, one consideration for future versions of the NCTWCS may be to 

carefully define the construct of interest and perhaps use separate scales for separate 

constructs. The “mixed” data resulting from the two types of questions (i.e., attitude, 

frequency) is likely the reason for the poor model-fit. Further, a two-dimensional structure 

was probably not evident either because a total of 13 items comprised the entire 

Empowerment scale, where five measured attitude and eight measured frequency. Although 

there is no absolute criterion for minimum (or maximum) number of items, in research 

investigations using real and simulated data, the number of items measuring a single 

dimension (i.e., construct) is rarely less than 10. A small number of items measuring a single 

construct yield low reliability. Another suggestion, then, would be to include additional 

items on the Empowerment survey, especially on the sub-scale that measures attitudes. 
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Method of scoring is necessarily an important, and must be considered in conjunction with 

the construct, purpose of the survey, and intended uses of survey scores.  

Leadership 

A single factor confirmatory factor analytic model fit the Leadership data reasonably 

well, whereas the principal components analysis with two factors did not. However, the 

cumulative and unfolding models functioned quite similarly in terms of the rank ordering of 

Leadership item location and discrimination parameters, and in the rank order of person 

parameter estimates. The correspondence between the GGUM and GPCM for the theta 

estimates was also quite high. Chi-square distributed statistics for all models at the scale level 

would suggest that none of the models fit well, but according to the information theory-based 

statistics, the GGUM fit better than the GPCM. It would be necessary to explain or try to 

understand why the fit at the item and scale level was poor for all IRT models. Possibilities 

include the inappropriateness of the models for the data; the construct of “teachers 

perceptions of school leadership,” is not measured well by the collection of items that 

comprise this scale; or that the sample size of 2,000 increased the degrees of freedom to the 

point of model rejection. The chi-square statistics should not be ignored, although decisions 

should not rest solely on these statistics. Although the CFA model cannot be directly 

compared with IRT models, given all of the findings, IRT models could reasonably be 

considered for at least the Leadership data. Reasons for preferring IRT models over factor 

analytic models include the fact that the former estimate item characteristics like 

discrimination, location, and category thresholds. Further, although not discussed in this 

study,  IRT models yield an index called information. This index is closely related to the 

discrimination parameters and provides an indication where on the latent trait distribution the 
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item best measures, conditioned on theta. Information at the item level can be summed for a 

total test information index. So, although a determination cannot be made from this 

investigation which model is correct (CFA, PCM, GPCM, GGUM), at the very least for 

reliable and efficient scale construction, IRT models would be favored.  The PCM, or any 

Rasch IRT model may not be preferred for this Leadership data because of the difficulty in 

fitting the PCM, and the associated low a parameters. Because of the rather homogeneous 

sample of attitudes and general clustering of item locations in a small region of the latent 

trait, the GGUM parameter estimates were generally extreme and were associated with high 

standard errors. As a result, for these 21 Leadership items, the GPCM might be preferred 

over the PCM and the GGUM.   

Implications 

This investigation was conducted after NCTWC scale construction and data 

collection. This approach is not entirely ideal, however. Researchers such as Chernyskenko 

et al., (2007), Meijer and Baneke (2004), Stark et al., (2006) have applied unfolding IRT 

models to scales constructed using Likert-type approaches as a way to both examine 

cumulative IRT model assumptions and to investigate the applicability and appropriateness 

of unfolding IRT models. Argument supporting such an approach is that unfolding IRT 

models are flexible and versatile enough to model constructs that were measured using 

instruments designed using cumulative methods. If the NCTWCS was constructed using a 

Likert-type approach then presumably no items should exhibit unfolding properties. 

However, some unfolding attributes were evident in both Leadership and Empowerment 

analyses, specifically for the Strongly Agree and Agree response options and for all five 

response options in the last Leadership item.  
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One question that this investigation attempted to answer is whether or not unfolding 

IRT models would be an appropriate alternative to CFA or cumulative IRT models for the 

current 13 Empowerment and 21 Leadership items. It appears that the data are not of the 

unfolding type based on the results when examining unfolding IRT assumptions and the 

structure of the Leadership and Empowerment data. Model assumptions were also violated 

using the Empowerment data for the CFA and cumulative IRT models. As a general rule 

when considering the application of any mathematical model, if assumptions are violated, 

analyses should be conducted to determine why the violations occurred and appropriate 

actions taken.  

The results in this investigation can contribute to future versions of the NCTWCS. 

There were no items on either scale that contained extreme content in either direction (e.g., “I 

would not change a single aspect about the leadership in my school” or “The poor leadership 

in my school contributes to difficulties in retaining teachers”). The items were not necessarily 

ambivalent either (e.g., “Sometimes I agree with the decisions and processes imposed by the 

leadership in my school and sometimes I do not”). Across both scales, items did not appear to 

tap the entire spectrum of a highly positive attitude towards current school leadership 

(empowerment) or include items that would require disenchantment with leadership 

(empowerment) and low levels of attitude towards the construct. At the item level all IRT 

models generally estimated the Leadership items to be located in one general region of the 

scale with slight dispersion of the Empowerment items. The NCTWCS was developed to 

understand how the population of teachers in North Carolina perceive their work 

environment, and to gain insight as to what is not working well in that environment. The 

intention of the Office of the Governor was using the data to make the necessary changes to 
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school leadership to improve working conditions. Improvement of working conditions was 

assumed to be directly related to increased student learning and achievement, and by 

improving teacher working conditions, improved student learning and achievement would 

follow.  

According the model results, and even the descriptive information (i.e., percentage of 

people responding to each category of each item) it appears that the Leadership items are 

easy to endorse, that most people agreed or strongly agreed with them, and that the item 

locations were estimated to be clustered closely together. Lack of good category response 

option usage is an undesired consequence as a data set that consists of strongly agree and 

agree responses results in a lack of variability across respondents making small differences in 

person trait estimates difficult to find. Further, and perhaps a more unfavorable consequence 

of a lack of variability is the suppression of information about respondents standing on the 

latent trait. Such items are not useful for reliably measuring an individual’s standing on the 

latent trait, and for finding individual differences among respondents on the latent trait..  

For future revisions of the NCTWCS it may be more efficient to add items that do 

indeed measure characteristics of school leadership (empowerment) that may not be so 

positive, and perhaps remove some of the current items, as there is so much overlap among 

them. The items currently comprising these two scales still do not measure dissatisfaction 

with school leadership (Empowerment), an apparent contributing factor of teacher turnover. 

The results give the Office of the Governor little to “improve.”  

 The implications of this investigation stretch beyond the NCTWCS data to include 

implications for survey development (for the assessment of non-cognitive constructs), and for 

methodologies typically used to assess the appropriateness and functioning of unfolding IRT 
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models. As for survey development, some of the initial considerations in the development 

process should include a clear purpose of the survey and a clear definition of the construct to 

be measured. The processes that people use to respond to items must also be taken into 

account during the item writing process. Further, consideration of scoring methods should be 

concurrent with the initial steps of the test development process. Because the NCTWCS was 

presumably constructed using a Likert methodology, because the items did not read as 

though they could be endorsed for two reasons, and because items did not measure a range of 

the underlying traits, a cumulative approach likely would be the most appropriate and 

consistent scaling method. Use of a survey with known psychometric properties and test 

development strategies that are aligned with the scaling method (i.e., unfolding IRT model) 

would have facilitated appropriate model selection. 

The consideration of scoring methods during the test development process is related 

to the implications for methodologies for research the surrounds the functioning and 

applicability of unfolding IRT models. In the present study, scoring models were applied 

post-hoc. However, this is not typically the case; rather, the scoring model is selected prior to 

test construction. A more sound approach for assessing the functioning and appropriateness 

of unfolding IRT models would be to construct a scale within the Thurstone framework, 

(given that this method for scale construction is aligned with the purpose of the survey), then 

apply the appropriate scoring model.  

Suggestions for Future Research 

The report detailing the findings of the 2006 NCTWCS data (Hirsch, Emerick, 

Church, & Fuller, 2006) opens with assertions regarding the importance and influence that 

teachers have on students. The issue of teacher turnover is immediately noted and described 
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as a problem, and negative consequences of turnover are explained. The intent of the 

NCTWCS was to get a sense of how teachers feel about their work environment, all for the 

purpose of helping teachers help students learn. The effect would be increased student 

achievement. Based on publicly available documentation regarding the survey, the links 

between teachers’ perceptions of working conditions and improved student achievement are 

such that, if teachers are happy and comfortable in their working environment, they are apt to 

stay in that environment. If teachers are happy in their jobs and the climate of the school, 

they are likely to be satisfied. A satisfied teacher is assumed to be motivated, thus leading to 

more effective teaching as evidenced by the teacher having a positive impact on student 

achievement. Compared to teachers who leave a school or the profession, teachers who stay 

have a positive impact on the classroom environment, reduce disruption, and retaining 

teachers can yield economic benefits for a school district.  

If the purpose of a scale or survey is to elicit attitudes towards some construct to get a 

better sense about attitudes of a sample, the scale needs different items that measure the full 

spectrum of the latent trait. This would more than likely increase the variability among 

respondents allowing as much information as possible to be gained from each item.  Items 

that measure a range of attitudes certainly would increase the efficiency of the survey 

because little is achieved if most items are only measuring one region of the full latent trait 

spectrum. Several items that measure the same exact point on the latent trait continuum are 

not entirely useful or informative; they are not a good use of time for those writing the items, 

responding to the items, and for those scoring the items. As it stands, most of the Leadership 

items were easy to endorse. This yields little variation among respondents and essentially 

inhibits any conclusions about which aspects of Leadership can be improved to improve 
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teachers’ perceptions of the leadership in their school, reduce teacher turnover, and improve 

student learning and achievement.  

One component that seemingly was not considered in the original data collection and 

use nor in the current investigation is that of nested data. Teachers were surveyed, although 

decisions were made at the school level. The results of the 2006 NCTWCS administration 

were used to name and award 10 schools across the state. The North Carolina Professional 

Teaching Standards Commission and the Governor’s Teachers Advisory Committee 

designated these as 2006 Real D.E.A.L (Dedicated Administrators, Educators, and Learners) 

schools which were determined to function as exemplars for best practice for other districts 

in terms of teacher working conditions. Therefore, aside from modifying the NCTWCS to 

include items that measure more of the latent trait and eliminate redundant items, 

methodologically, it makes sense to either examine the consequences of ignoring the nesting 

or to proceed with future survey administrations and analyses that accommodate the nested 

structure of the data.  

The hypothesis described previously regarding how satisfied employees who are 

happy and comfortable in their occupation and place of employment are likely to be more 

productive and efficient is probably true of most employees, regardless of job title, job 

requirements, or field. Although the data used here were from the NCTWCS, any employer 

seeking to make improvements in the work environment with the intent of increased 

employee productivity and efficiency would be best served by doing so using a scale that is 

comprehensive and efficient in its measurement. The purpose of the scale and the intended 

use of the scores should necessarily guide the scale development and scoring processes. This 

point could not be investigated in the current study because the NCTWCS was not 
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constructed using a Thurstone-type approach.  However, if the purpose of the assessment is 

to ascertain individual level information about individual attitudes or preferences, it seems 

feasible--theoretically and practically--that unfolding IRT models could be used.    

Aside from making decisions about educational policy or employee satisfaction, 

another potential practical application of unfolding models for preference or attitude data, is 

for making decisions about or informing occupational decisions with the use of practice 

analyses. A practice analysis (sometimes referred to as job analysis) is the examination of 

knowledge, skills, and abilities required of a particular occupation in a particular industry. A 

practice analysis begins with a survey of the importance and relevance of both current 

requirements of an occupation and perhaps additional and novel capabilities introduced to the 

profession. Not only is the importance of each skill, ability, or task measured by way of 

rating scales, but so are other characteristics such as frequency of each task/skill. Practice 

analyses are often conducted as a way to examine such things as content validity of 

educational and training programs for particular occupations. Because non-cognitive 

constructs like importance and critical nature of tasks are measured together with cognitive 

aspects like frequency of those skills/tasks, it seems that application of a measurement model 

than can accommodate these types of measurement situations would be most appropriate. To 

date, parametric and non-parametric unfolding IRT models have been shown to reliably 

accommodate response processes that produce observed data when measuring both types of 

constructs with dichotomous and/or polytomous items.  

For unfolding IRT models, more research is useful and necessary in an applied sense 

(i.e., measuring different constructs, populations, instruments), the paucity of research that 

focuses on the technical aspects of the structure of unfolding data is cause for added scrutiny, 
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investigation, testing, and understanding, if unfolding IRT models are to be incorporated into 

applied research situations. Explanations have been provided by Davison (1977), van Schuur 

and Kiers (1994) and Mauran and Rossi (2001) as to how and why application of linear 

factor analytic methods to unidimensional, unfolding-type data reveals a two-factor structure. 

Davison (1977) further explained and showed what the inter-item correlation and partial 

correlation matrices look like for unidimensional data that fit an unfolding model. Data 

structure is necessary to consider and understand as it is directly related to the assumption of 

dimensionality.  Future research should address the structure of unidimensional data, and the 

relationship between item responses within an ideal-point framework as consensus does not 

exist among researchers regarding the issue of dimensionality structure of unfolding-type 

data and methods for assessing (uni)dimensionality of unfolding-type data. For example, 

according to Roberts et al. (1996), Roberts et al. (2000), and Nandakumar et al. (2002) if a 

two-factor structure results from the application of a principal components analysis, and if 

item level communalities are greater than .3 (from the first 2 components), then the data are 

considered unidimensional, of the unfolding type. On the other hand, the methods (and 

criteria) used to assess dimensionality within the cumulative framework by Chernyshenko et 

al. (2007) were also used for assessing and determining dimensionality within the unfolding 

framework. They used linear factor analytic methods to assess dimensionality and if a single 

factor model fit the data, then unidimensionality was assumed from both a cumulative and 

ideal-point perspective. Their reasoning rests on the fact that they could not find any 

simulation studies that tested the accuracy of the former approach and criteria (i.e., two factor 

structure resulting from PCA; item level communalities greater than .3).  A greater 

understanding of unfolding-type data structure (inter-item correlation and covariance 
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matrices), and a resolution to this methodological issue would be facilitated with simulation 

studies. Such efforts could further inform the development of statistical tests for determining 

the dimensionality structure of unfolding-type data. Once a better understanding of 

unidimensional unfolding data is gained, endeavors should be extended to the 

multidimensional measurement situation. Currently, little is known about data that would be 

appropriate for multidimensional, unfolding, IRT models. Further, far fewer 

multidimensional models exist for measuring multidimensional non-cognitive data, where 

multidimensional, unfolding, IRT models are still to be developed. 

Conclusion 

 Similar to what some researchers have found in examining characteristics of items on 

attitudinal surveys, the results from this investigation show that some items on both attitude 

scales possessed unfolding-type properties. On the Empowerment scale, only those items that 

measured attitude displayed such properties, while those that measured frequency showed 

cumulative-type properties. On the Leadership scale, close to one-third of the items displayed 

some unfolding characteristics. These findings provide some indication that the ideal point 

response process may be, at least in part, responsible for the observed data. This finding is 

not necessarily a reason to suggest the immediate implementation of unfolding IRT models 

in scoring future administrations of the NCTWCS, but this does have implications for survey 

design and scoring. In the presumed current scoring method, a sum score is used. This 

implies a cumulative framework where a higher score implies more of the construct. If higher 

is not more, for some items, then a simple summation is inaccurate and would likely inflate 

survey scores.   
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Due to the clustering of items on both scales, and considering the purpose of the 

survey and the policy decisions that are made using the survey scores, it may be useful to 

remove redundant items, add more items that measure different attitudes towards working 

conditions, use separate scales for different constructs, and carefully consider the both the 

survey development and scoring procedures. Because of the frequency with which surveys 

are administered eliciting individuals’ opinions for the purpose of making various decisions 

(hiring, production/sales/marketing, assessing symptoms of psychiatric illnesses, evaluating 

programs and services), considering that the surveys contain Likert-type items and employ a 

Likert-type procedure for scoring, recommendations for the simultaneous consideration of 

the construct, scale development, and scoring procedures are not unique to the NCTWCS, but 

to all related surveys with similar intentions.   
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APPENDIX A 

 

2006 North Carolina Teacher Working Conditions   
 
Thank you in advance for your time and willingness to share your views on working 
conditions in your school. 
Research has demonstrated that teacher working conditions are critical to increasing student 
achievement and retaining teachers. North Carolina policymakers and education stakeholders have 
expressed great interest in using your collective responses on this survey to help improve working 
conditions in schools and districts across the state. 
Please know that your anonymity is guaranteed. 
No one in your school, the district or state will be able to view individual surveys, and reports on the 
results will not include data that could identify individuals. You are being asked demographic 
information to learn whether teachers from different backgrounds and different characteristics look at 
working conditions differently. 
Access Code 
You have been assigned an anonymous access code to ensure that we can identify the school in which 
you work and to ensure the survey is taken only once by each respondent. The code can only be used 
to identify a school, and not an individual. The effectiveness of the survey is dependent upon your 
honest completion. 
 
Please indicate your position: 
 
Teacher (including intervention specialist, vocational, literacy specialist, special education, etc.) 
Principal  
Assistant Principal  
Other Education Professional (school counselor, school psychologist, social worker, library media 
specialist, etc.) 
 

Time 
Please rate how strongly you agree or disagree with the following statements about the use of time in 
your school. 
 
Please indicate your level of agreement with the following statements. 
 
a. Teachers* have reasonable class sizes, affording them time to meet the educational needs of all 
students. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
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b. Teachers have time available to collaborate with their colleagues. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
 
c. Teachers are protected from duties that interfere with their essential role of educating students. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. School leadership tries to minimize the amount of routine administrative paperwork required of 
teachers. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. The non-instructional time* provided for teachers in my school is sufficient. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
*"Teachers" means a majority of teachers in your school. 
 
*"Non-instructional time” refers to any structured time during the work day to work individually or 
collaboratively on instructional issues. 
 
In an average week of teaching, how many hours do you have for non-instructional time during 
the regular school day? 
 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  
 
In an average week of teaching, how much non-instructional time do teachers have available? 
 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  
 
Of those hours, how many are available for individual planning? 
 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  
 
And how many hours are available for structured collaborative planning? 
 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  



 244

In an average week of teaching, how many hours do you spend on school related activities 
outside the regular school work day (before or after school, and/or on the weekend)? 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  
 
In an average week of teaching, how many hours do teachers spend on school-related activities 
outside of the regular school work day? 
 
None  
Less than 3 hours  
More than 3 hours but less than or equal to 5 hours  
More than 5 hours but less than or equal to 10 hours  
More than 10 hours  
 
 

Facilities and Resources 
Please rate how strongly you agree or disagree with the following statements about your school 
facilities and resources. 
 
 
a. Teachers have sufficient access to appropriate instructional materials* and resources. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
b. Teachers have sufficient access to instructional technology, including computers, printers, 
software, and internet access. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
c. Teachers have sufficient access to communications technology, including phones, faxes, email, and 
network drives. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. Teachers have sufficient access to office equipment and supplies such as copy machines, paper, 
pens, etc. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. The reliability and speed of Internet connections in this school are sufficient to support 
instructional practices. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
f. Teachers have adequate professional space to work productively. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
g. Teachers and staff work in a school environment that is clean and well maintained. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
h. Teachers and staff work in a school environment that is safe.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
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*Instructional materials include items such as textbooks, curriculum materials, content references, 
etc. 

 
Teacher Empowerment 
Please rate how strongly you agree or disagree with the following statements about teacher 
empowerment in your school. 
 
Please rate your level of agreement with the following statements. 
a. Teachers are centrally involved in decision making about educational issues. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
b. Teachers are trusted to make sound professional decisions about instruction. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
c. The faculty has an effective process for making group decisions and solving problems. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. In this school we take steps to solve problems.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. Opportunities for advancement within the teaching profession (other than administration) are 
available to me. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
Please indicate how large a role teachers at your school have in each of the following areas: 
 
a. Selecting instructional materials and resources. 
No role at all  Small role  Moderate role Large role The primary role 
 
b. Devising teaching techniques.  
No role at all  Small role  Moderate role Large role The primary role 
 
c. Setting grading and student assessment practices.  
No role at all  Small role  Moderate role Large role The primary role 
 
d. Determining the content of in-service professional development programs. 
No role at all  Small role  Moderate role Large role The primary role 
 
e. Hiring new teachers.  
No role at all  Small role  Moderate role Large role The primary role 
 
f. Establishing and implementing policies about student discipline.  
No role at all  Small role  Moderate role Large role The primary role 
 
g. Deciding how the school budget will be spent.  
No role at all  Small role  Moderate role Large role The primary role 
 
h. School improvement planning.  
No role at all  Small role  Moderate role Large role The primary role 
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Members of the school improvement team are elected. 
Yes  
No  
Don't know  

 
Leadership 
Please rate how strongly you agree or disagree with the following statements about 
leadership in your school. 
 
Please rate your level of agreement with the following statements. 
 
a. There is an atmosphere of trust and mutual respect within the school. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
b. The faculty are committed to helping every student learn.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
c. The school leadership communicates clear expectations to students and parents. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. The school leadership shields teachers from disruptions, allowing teachers to focus on educating 
students. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. The school leadership consistently enforces rules for student conduct. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
f. The school leadership support teachers' efforts to maintain discipline in the classroom. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
g. Opportunities are available for members of the community to actively contribute to this school's 
success. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
h. The school leadership consistently supports teachers.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
i. The school improvement team provides effective leadership at this school. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
j. The faculty and staff have a shared vision.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
k. Teachers are held to high professional standards for delivering instruction. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
l. Teacher performance evaluations are handled in an appropriate manner. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
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m. The procedures for teacher performance evaluations are consistent. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
n. Teachers receive feedback that can help them improve teaching. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
The school leadership makes a sustained effort to address teacher concerns about: 
 
a. facilities and resources 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
b. the use of time in my school  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
c. professional development  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. empowering teachers  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. leadership issues  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
f. new teacher support.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
Overall, the school leadership in my school is effective. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
 
Which position best describes the person who most often provides instructional leadership at 
your school? 
principal or school head  
assistant or vice principal 
department chair or grade level chair  
school-based curriculum specialist  
director of curriculum and instruction or other central office based personnel  
Other teachers  
None of the above.  
 

Professional Development 
Please rate how strongly you agree or disagree with the following statements about your own 
professional development and professional development in your school. 
 
 
Please indicate your level of agreement with the following statements. 
 
a. Sufficient funds and resources are available to allow teachers to take advantage of professional 
development activities. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
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b. Teachers are provided opportunities to learn from one another.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
c. Adequate time is provided for professional development.  
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
d. Teachers have sufficient training to fully utilize instructional technology. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
e. Professional development provides teachers with the knowledge and skills most needed to teach 
effectively. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
In which of the following areas, if any, do you believe teachers need additional support to 
effectively teach students? 
 
Special education (students with disabilities)  
Special education (academically gifted students)  
Limited English Proficiency (LEP)  
Closing the achievement gap  
Your content area  
Methods of teaching  
Student assessment  
Classroom management techniques  
Reading strategies  
 
In which of the following areas, if any, do you need additional support to effectively teach your 
students? Check all that apply. 
 
Special education (students with disabilities)  
Special education (academically gifted students)  
Limited English Proficiency (LEP)  
Closing the achievement gap  
Your content area  
Methods of teaching  
Student assessment  
Classroom management techniques  
Reading strategies  
 
In the past 2 years, have you had 10 hours or more of professional development in any of the 
following areas? Check all that apply. 
 
Special education (students with disabilities)  
Special education (academically gifted students)  
Limited English Proficiency (LEP)  
Closing the achievement gap  
Your content area  
Methods of teaching  
Student assessment  
Classroom management techniques  
Reading strategies  
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Did the professional development you received in special education for students with disabilities 
provide you with strategies that you have incorporated into your instructional delivery 
methods? 
Yes  
No  
 
Did the professional development you received in special education for academically gifted 
students provide you with strategies that you have incorporated into your instructional delivery 
methods? 
Yes  
No  
 
Did the professional development you received in LEP provide you with strategies that you have 
incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in closing the achievement gap provide you with 
strategies that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in your content area provide you with strategies 
that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in methods of teaching provide you with 
strategies that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in student assessment provide you with strategies 
that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in classroom management techniques provide you 
with strategies that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Did the professional development you received in reading strategies provide you with strategies 
that you have incorporated into your instructional delivery methods? 
Yes  
No  
 
Were these strategies you learned in your professional development in special education for 
students with disabilities useful for your efforts to improve student achievement? 
Yes  
No  
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Were these strategies you learned in your professional development in special education for 
academically gifted useful for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in LEP useful for your 
efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in closing the achievement 
gap useful for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in your content area useful 
for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in methods of teaching 
useful for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in student assessment useful 
for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in classroom management 
techniques useful for your efforts to improve student achievement? 
Yes  
No  
 
Were these strategies you learned in your professional development in reading strategies useful 
for your efforts to improve student achievement? 
Yes  
No  
 
In the past two years, have you enrolled or participated in any of the following professional 
development activities? 
 
online learning opportunities 
Yes No 
 
local in-service program  
Yes No 
 
state-sponsored in-service program  
Yes No  
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Was the Online learning opportunity required? 
Yes No 
 
The Online learning opportunities activities I participated in were effective. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
  
Was the local in-service program required? 
Yes 
No 
 
The local in-service program activities I participated in were effective. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
Was the state-sponsored in-service program required ? 
Yes  
No  
 
The state-sponsored in-service program activities I participated in were effective. 
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree 
 
Do you teach students who have an Individualized Education Plan or 504 Plan? 
Yes  
No  
 
Do you teach students who are Limited English Proficient? 
Yes  
No  
 

Core Questions 
 
Which aspect of your work environment most affects your willingness to keep teaching at 
your school? 
Time during the work day  
School facilities and resources  
School leadership  
Teacher empowerment  
Professional Development  
 
Which aspect of your school's work environment most  affects teachers' willingness to keep 
teaching at your school? 
 
Time during the work day  
School facilities and resources  
School leadership  
Teacher empowerment  
Professional Development  
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Which aspect of working conditions is most importan t to you in promoting student learning? 
 
Time during the work day  
School facilities and resources  
School leadership  
Teacher empowerment  
Professional Development  
 
Overall, my school is a good place to teach and lea rn 
Strongly Disagree  
Disagree  
Neither Agree Nor Disagree  
Agree  
Strongly Agree  
 
At this school, we utilize results from the Teacher Working Conditions survey as a tool for 
Improvement. 
 
Strongly Disagree  
Disagree  
Neither Agree Nor Disagree  
Agree  
Strongly Agree  
 
Which BEST DESCRIBES your future intentions for your professional career? 
 
Continue teaching at my current school  
Continue teaching at my current school until a better opportunity comes along.  
Continue teaching but leave this school as soon as I can 
Continue teaching but leave this district as soon as I can 
Leave the profession all together 
 

Demographics 
Please tell us more about yourself. No demographic information that could be used to 
identify individual educators will be shared. All questions in this section are optional. 
 
Please indicate your ethnicity. 
American Indian or Alaska Native  
Asian or Pacific Islander  
Black or African American  
Hispanic  
White  
Mixed or multiple ethnicity  
Some other race or ethnicity  
 
Please indicate your gender. 
 
Female  
Male  
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How did you train to become an educator? 
Bachelor's degree  
Master's degree  
Alternative route  
Highest degree attained 
Bachelor's  
Master's  
Doctorate  
Other  
 
Are you certified by National Board for Professional Teaching Standards (NBPTS)? 
Yes  
No  
 
How many years have you been employed as an educator? 
First Year  
2 - 3 Years  
4 - 6 Years  
7 - 10 Years  
11 - 20 Years  
20+ Years  
 
How many years have you been employed in the school in which you are currently working? 
First Year  
2 - 3 Years  
4 - 6 Years  
7 - 10 Years  
11 - 20 Years  
20+ Years  
 
Have you served as a mentor in North Carolina schools in the past five years? 
Yes  
No  

 
Mentoring 
Have you been formally assigned a mentor in your first AND second year teaching in North 
Carolina? 
Yes  
No  
 
Answer questions for a formal mentor assigned at the school where you now work. If you had 
multiple years of formal mentors, answer questions for your most recent mentor experience. 
 
My mentor was effective in providing support in the following areas 
 
a. Instructional strategies 
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
b. Curriculum and the subject content I teach  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
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c. Classroom management/discipline strategies  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
d. School and/or district policies and procedures  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
e. Completing products or documentation required of new teachers  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
f. Completing other school or district paperwork  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
g. Social support and general encouragement  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
 
h. Other  
Of no help at all   Has helped a little  Has helped some  Has helped a lot  Help was critical 
Please indicate whether each of the following were true for you and your mentor 
a. My mentor and I were in the same building(or school) 
Yes 
No 
 
b. My mentor and I taught in the same content area  
Yes 
No 
 
 
c. My mentor and I taught the same grade level  
Yes 
No 
 
On average, how often did you engage in each of the  following activities with your mentor? 
 
a. Planning during the school day with my mentor 
 

Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
b. Being observed teaching by my mentor  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
c. Observing my mentor's teaching  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
d. Planning instruction with my mentor  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
e. Having discussions with my mentor about my teaching  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
f. Meeting with my mentor outside of the school day  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
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How important has your mentoring experience been in your decision to continue teaching at 
this school? 
 
Made no difference at all  
Only slightly important  
Somewhat important  
Important  
Very important 
 
If you have served as mentor in the past three years, please answer the following questions for 
YOUR MOST RECENT mentoring experience 
 
Are you a full time mentor? 
Yes  
No  
 
How many teachers did/do you mentor? 
1  
2  
3  
4 - 6  
7- 10  
10 +  
 
On average, how often did/do you meet with your mentee(s) 
Never  
Less than once per month  
Once a month  
Several times a month  
Once a week  
Almost daily  
 
Please indicate which best describes you and your mentee(s) 
 
a. My mentor and I were in the same building 
None of them   Some of them   All of them 
 
b. My mentor and I taught in the same content area  
None of them   Some of them   All of them 
 
c. My mentor and I taught the same grade level  
None of them   Some of them   All of them 
 
On average, how often did you engage in each of the following activities with your mentee(s)? 
 
 
a. Planning during the school day with my mentee(s) 
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
b. Observing my mentee(s)' teaching  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
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c. Being observed by my mentee(s)  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
d. Planning instruction with my mentee(s)  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
e. Having discussions with my mentee(s) about teaching  
Never  Less than once/ month  Once a month  Several times / month  Once a week  Almost daily 
 
Please indicate which of the following kinds of support, if any, you received as a formally 
assigned mentor. (Check all that apply). 
 
 
Release time to observe your mentee(s)  
Release time to observe other mentors  
Reduced teaching schedule  
Reduced number of preparations  
Common planning time with teachers you are mentoring  
Specific training to serve as a mentor (e.g. seminars or classes)  
Regular communication with principals, other administrator or department chair  
Other  
 

Thank you for sharing your valuable time, thoughts and 
perspectives on this survey. We value the work you do to 
provide a quality education to the children of NC. Survey 
results will be available at http://www.northcaroli natwc.org 
by June 1, 2006. 
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APPENDIX B 

CATEGORY PROBABILTIY PLOTS FOR LEADERSHIP ITEM 21: SAMPLES 2-10 

 

Category Probability Plot for Item 21 with GGUM: Sample 2, Leadership Scale 

 
 
 

 

 

 

 

 

 

 



 258

Category Probability Plot for Item 21 with GGUM: Sample 3, Leadership Scale 

 
 
Category Probability Plot for Item 21 with GGUM: Sample 4, Leadership Scale 
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Category Probability Plot for Item 21 with GGUM: Sample 5, Leadership Scale 

 
 
Category Probability Plot for Item 21 with GGUM: Sample 6, Leadership Scale 
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Category Probability Plot for Item 21 with GGUM: Sample 7, Leadership Scale 

 
 
Category Probability Plot for Item 21 with GGUM: Sample 8, Leadership Scale 
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Category Probability Plot for Item 21 with GGUM: Sample 9, Leadership Scale 

 
 
 
Category Probability Plot for Item 21 with GGUM: Sample 10, Leadership Scale 
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