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ABSTRACT
Adrienne N. Sgammato: An Application of Unfolding and Cumulative Iltem Response
Theory Models for Non-Cognitive Scaling: Examining the Assumptions and Appiigaisi
the Generalized Graded Unfolding Model

(Under the direction of Gregory J. Cizek)

This study examined the applicability of a relatively new unidimensional,dinépl
item response theory (IRT) model called the generalized graded unfolding B&Gil¢M;
Roberts, Donoghue, & Laughlin, 2000). A total of four scaling methods were applied. Two
commonly used cumulative IRT models for polytomous data, the Partial Credit Mutlel
the Generalized Partial Credit model were considered. The third scalirgpelppvas the use
of a confirmatory factor analysis. The fourth model, an unfolding IRT model, the
Generalized Graded Unfolding Model was considered. These models were applied t
attitudinal data from 65,031 licensed teachers in North Carolina who responded to a survey
about their working conditions. Two subscales (Empowerment and Leadership) wkre use
and analyzed separately. Items are Likert-type with five response ogiayag from
Strongly Agree to Strongly Disagree.

Analyses focused on examination of the correspondence between the assumptions
that underlie the data and the IRT models, revealing evidence about the stofithér data,

the location of people and items, and the response process governing observed data. The



analyses included graphical representations of person and item estisnatdkas analytical
examination of item characteristic curves (ICCs) for the various models.

Various indices of relative and absolute model fit statistics are peestmtthe IRT models.
Although the two scales were originally built using factor analytidwodg, results suggested
that a single factor model did not fit the Empowerment well, though fit of theetslaig

data was moderate. Tests of IRT model assumptions indicated that cumuksdivgiaens
were meet more often than those that underlie unfolding IRT models. Comparison of item
and person parameter estimates show that, across both scales, cumulative and tR7olding
models functioned very similarly. However, some item on both scales did exhibit ngfoldi
properties. Finally, a summary of potential extensions of the GGUM model and other
contributions of this research including the possibility of using unfolding moaletséle
development and attitude measurement in areas beyond that of working conditions of

teachers or administrators are offered.
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CHAPTER 1

INTRODUCTION

Classical test theory (CTT) approaches to test development and scoming we
predominantly used as early as the start of the 1900s within the context ofentadlig
testing. Contributions by Lawley (1943, 1944), Birnbaum (1957, 1958), Rasch (1960),
Wright (1967), and Lord and Novick (1968) (as cited in Hambleton & Swaminathan, 1985)
to psychometric/test theory evolved into what is known as item response thebryiRIR
measurement models are considered to be more sophisticated than CTT modelRin that
analyses allow for: 1) the estimation of performance on each item of a tasyyfexaminee
who is at a particular point on the underlying trait; 2) more precise measuresi@Eachy
estimating the maximum discrimination of an item at a particular valdesafriderlying
trait; 3) the estimation of error of measurement at each ability lawel4) and estimates that
are not sample dependent (Crocker & Algina, 1986; Hambleton & Swaminathan, 1985). The
added features and functionality of IRT are cited as benefits espdoratheasurement
related tasks such as test development, scoring, scaling, equating, abdrikemng.

IRT models are also useful for assessing educational achievement amadertyc
used for such applications because of the additional measurement precisi@xiarityfl
However, educational measurement is not the only domain in which IRT models have been
applied. The measurement of attitudes, personality, opinions, psychopathology, and other

non-cognitive traits have made use of sophisticated IRT models and have takeagedofint



the benefits of IRT measurement. There is a variety of parameterizatigpsotiications of

IRT models depending upon the theories about the construct being measured, the observed
data, the assumptions that underlie those data, types of items, scoring of itephs s&ze,

and number of items.

Thurstone (1927, 1928) and Likert (1932) can be credited for their contributions to
the measurement of attitudes, opinions, and other non-cognitive constructs. Both Thurstone
and Likert developed methods for scale development for the purpose of measuring non-
cognitive traits, though their methods differ in important ways, namely in the assasnpt
about how people respond to items and criteria for item selection during the scale
construction process. Likert's (1932) method is much more widely used in practitappe
because it is less laborious. Although CTT approaches were initially appkedle
development for cognitive traits, they are also commonly implemented for igoitice
measurement. These approaches are more congruent with the Likert methéatolog
measurement. Despite the fact that cumulative IRT methods wereyrdgakloped for the
measurement of cognitive traits, they have been used for the measurepwsbatlity,
opinion, satisfaction and other non-cognitive latent traits. A specific afasgdels, called
cumulative IRT models are also appropriately applied within the context at bigproach
to scale development and scoring. There are, however, fundamental differeneslibe
assumptions of Likert’'s and Thurstone’s (1927, 1928) approach to the measurement of non-
cognitive traits, which would necessarily influence the consideration of modetisal

Although the introduction and application of IRT models have helped to advance the
field of cognitive and non-cognitive measurement, a disparity seems tdetusten the

assumptions underlying non-cognitive data and some of the classes of IRT thatate



typically applied to such data. Specifically, the IRT models that are comrapplied to
non-cognitive data are probabilistic models defined by monotonic increasingfisct
(Andrich, 1996). The premise behind cumulative IRT models is that the probability of
endorsement (or correct answer) of an item measuring a particular coimgtraases as the
level of the construct an individual possesses increases (Andrich, 1996). Models with such
characteristics are known as cumulative models.

In contrast, data resulting from the measurement of non-cognitive concdptsssuc
personality, attitude, opinion, or satisfaction, have been called “unfolding” data. |
unfolding-type data, direction is not always implied in observed responses to the
agree/disagree items typically found of instruments used to measure suchs;dahespt
data are considered “folded.” In order to appropriately connect these datxtmtiepts
they are intended to measure, the data therefore must be "unfolded” where CH@5ahs (
1964) used the term unfolding to describe the process of ascertaining the diredt®n of t
scale from observed responses.

Folding occurs especially for neutral items (Roberts, Laughlin, & Wetiz99;

Stark, Chernyshenko, Drasgow, & Williams, 2006). For example, an individual askeel to rat
level of agreement with the following item eliciting an opinion about abortion wotnithiex
folding because a response of, say, ‘Disagree’, would not necessarily indatate

individual's position: “Sometimes | am in favor of a woman’s right to abortion, tothar

times | am not (see Roberts et al., 1999, p. 217). An item with a more extreme semiment
either direction, would probably not exhibit folding, as in the case of the following item
“Society has no right to limit a woman’s access to abortion” (Roberts et al., 1999, p. 217). A

observed response of ‘Disagree’ with this item would provide an indication of an indisidual



attitude towards abortion. Cumulative IRT models, by design, cannot accuesehbe
folded data. Unfolding IRT models are however specifically designed to reegetarfor
which direction is not necessarily implicit.

The application of IRT unfolding models is most appropriate when data are folded or
of the unfolding-type. IRT unfolding models for non-cognitive measurement are nad new
the field of measurement where Thurstone’s (1927, 1928) work alluded to such approaches in
his efforts towards measuring attitudes. Coombs (1950, 1964) derived the first unfolding
model within the context of non-cognitive measurement, formally coinedrthe te
“unfolding” and described the process used by respondents when rating level ofeaxjreem
with items that measure constructs like opinion, preference, or attitude. The ptesume
response process in operation is fundamentally different between an itemingeaiitudes
(i.e., non-cognitive) and an item measuring achievement (i.e., cognitive).

The distance between the location of an item and an individual on the latent trait
continuum is the focal point of unfolding models. The premise of these models is that the
probability of endorsing an item increases as the distance betweemtladehe individual
on the latent trait continuum decreases. According to Roberts et al. “unfolding models
operate on the basis of the absolute distance between an individual and an item on the
continuum. . .” (1999, p. 213). The use of unfolding models, however, has not been as
widespread as that of cumulative models, presumably because they are nuex ¢Stark
et al., 2006). Additionally, unfolding IRT models have not endured a lengthy history of
rigorous testing and evaluation that cumulative IRT models have. As a rppligda
research using unfolding models is in its relatively early stage, cechparapplied research

using cumulative IRT models.



Consideration and use of unfolding models warrants attention to address a
methodological issue that has been found to exist in applied research. The problém, whic
could lead to unintended and undesirable consequences is the lack of congruence between the
assumptions that underlie the cumulative IRT models and those that underlie unfolding dat
This can lead to inaccurate results. When decisions are made based on teahgcores
inaccuracies in scores can be problematic. For example, vocational hinsigrkeare
sometimes made based on personality instrument scores (Stark et al., 200¢3; &lurve
satisfaction are commonly administered to recipients of services byaoyar the
purpose of program evaluation, where decisions are made about the quality of and about
efforts for improving or revising such programs. Further investigation into ogniove test
development, scoring, and analyses is worthwhile because of the added accuracy of
measurement, and validity of test score use they can afford in some non-cognitive
measurement situations.

This study contributes to the body of empirical research concerning theadiopliof
unfolding models to non-cognitive data and provides insight into methods for non-cognitive
scale construction and IRT model selection. Methods for examining the dtésrbatween
cumulative and unfolding, unidimensional, parametric models as applied to lijgertata
are employed. The data result from a survey eliciting teachers’ pertepfi their working
conditions. Examination of person and item locations on two separate latentrirdés (
current study, teachers’ perceptions of leadership in their school and percepteachef
empowerment) are made across the different scaling methods. Measurastocbsand
graphical model-data fit are presented for each of the scoring methods aadh of the

two constructs. Relative comparisons of model-data fit across the scardedsnare made



using the information theory based statistics Akaike Information CriteAtsdy Akaike,
1974) and Bayes Information Criterion (BIC; Schwarz, 1978). These can be used as
measures of fit across non-nested models, while taking into consideration ting vamyber
of independently adjusted parameters, or the number of parameters to be estimated.

Finally, other properties of the statistical probabilities of responsésns across
methods are examined to inform decisions about model-data fit. Data come from the 2006
administration of the North Carolina Teacher Working Conditions (NCTWC) survey. An
example Likert item from the NCTWCS reads: “Teachers are held tgohogéssional
standards for delivering instruction.” Respondents are instructed to ratketetiof
agreement with items and response options include: strongly disagree, disatiteeagete
nor disagree, agree, and strongly agree. Data from the NCTWCS are used hyngover
agencies for the purpose of informing educational policy, local school districisppts
and teachers for the purpose of improving teacher working conditions for atthaiohtiee
ultimate goal of improving student learning.

Purpose of Study

The primary purpose of this investigation is to contribute to efforts for the
advancement and improvement of methodologies for the measurement of non-cognitive
constructs. In some measurement situations, unfolding IRT models can offer grea
flexibility and precision over the traditionally employed measurement imsdeh as CTT or
cumulative IRT models. Analytically, person and item estimates froragpkcation of
cumulative and unfolding, unidimensional, parametric IRT models to real, attitsdirvaly
data are examined and compared in order to determine the feasibility anditijexilbhe

application of unfolding IRT models to such data. Two cumulative IRT models for



polytomous data are employed: Masters’ (1982) partial credit model (P@iWlaraki’s
(1992) generalized partial credit (GPCM) model. The unfolding model used is the
parameterization of the generalized graded unfolding model (GGUM) developed é&ysRob
et al. (2000). Additionally, a fourth scaling method, a structural equation modd){S&
commonly implemented procedure in applied, non-cognitive measurement situasailse—i
included.

A secondary purpose of this investigation includes the examination of fit of the
generalized graded unfolding model to the data compared to the other two IRT usuigls
graphical and statistical techniques. Chernyshenko et al. (2001) argued thattembiana
should be given to the fit of a particular model to data for the purpose of accurate
interpretation of results. Their argument for the importance of asselksiagcuracy of
model-data fit is based on the fact that important decisions are often baseu/tesit
analyses and results. Not all researchers share this sentiment, howevenrQosasures of
model-data fit are often in the form of a chi-square statistic, which isigertsitsample size
and number of parameters to be estimated in the model (Hambleton & Swaminathan, 1985;
Roberts et al., 2000). Alternatively, graphical representations of model andtitewef been

described by Hambleton and Swaminathan (1985) and Roberts et al. (2000). For example,

comparisons can be made between expected and observed responses with égsp&ct to

or the difference (i.e., distance) between person and item estimates, wehicbasured on
the same underlying latent trait scale. Roberts et al. (2000) used a sigtti@doiogy in
that for every item-person pair, these differences were distributed irathyesjized,

homogeneous groups. Average observed and expected responses were calculated for ea

n N

group and then plotted against the averdge o for each group. This approach is not a



probabilistic one, but a graphical approach for examining item misfit (Rolexits 2000).

Hambleton and Swaminathan (1985) described several methods to examine modgl-data fi

one which includes evaluation of residuals ag#insto;, at the item, person, or test level.

Due to the limitations of the chi-square statistic including the inhibition aivela
comparisons across non-nested models and the dependency of the hypothesis test on sample
size (i.e., any IRT model will be rejected with a large sample), a paitgntiore useful and
informative statistic will be calculated as a measure of fit that is c@bigeacross the three
IRT models. Two examples of information theory-based statistics are thandl8IC.

These indices are sensitive to “over fitting,” thereby favoring simplerefad#iline, 2005).

Both are appropriate for comparing fit across non-nested models with vawyimger of
parameters when maximum likelihood methods of estimating model parametasedr

(Kang & Cohen, 2007). The BIC differs from the AIC in that the former direcihgiclers

the sample size by “penalizing overparameterization with the use of @&lagarfunction of
sample size” (Kang & Cohen, 2007, p. 333) and generally penalizes models more than the
AIC when the sample is large (Bozdogan, 1987). The information-based statistitera

do not have known distributions, thus significance tests are not possible, aetivnear

using a statistic that is chi-square distributed (Kang & Cohen, 2007). Aglia res
“comparisons are made based on relative magnitude” (Kang & Cohen, 2007, p. 332), where
the model with the smallest AIC or BIC is selected over competing modedsldiition to
information theory-based criteria, graphical depictions of model/itemfddor the three

IRT models are constructed and compared. Specifically, the average obssrveddtes are

plotted with the respective model-based predicted average item scores.



Although not a direct test of model fit, a component of the model-fit examination
should include tests of assumptions of the models (Chernyshenko et al., 2001; Chernyshenko
et al., 2007; Hambleton & Swaminathan, 1985). There are many methods of assessing te
dimensionality within the framework of cumulative IRT models. Methods &tinig the
assumption of unidimensionality for unfolding data do not exist to the extent that their
cumulative counterparts do (Habing, Finch, & Roberts, 2005; Stark et al., 2006). Davison
(1977) described and illustrated the correlational and factor structure of uniginsns
unfolding data, where Maraun and Rossi (2001) and van Schuur and Kiers (1994) further
explained the structure of such data and the statistical consequences of dp@gmigctor
analytic methods to unfolding data. Habing et al. (2005) appear to be the firsthesetoc
derive a method for statistically testing the hypothesis of unidimengipfalidata of the
unfolding type. They suggested a modified version of Yen’s (1984, 1993n(stic
specifically as a method to assess the assumption of unidimensionality in unfotditigadia
conform to the GGUM (i.e., observed graded-response data that describe leveeofead).
The data and initial parameter estimates used in Habing et al. (2005) oanfedberts et al.
(2000). The primary reason that the Habing et al. (2005) modifietiafdstic cannot be
exploited in the current investigation is due to the fact that the GGUM was previously
determined by Roberts et al., (2002) to fit the observed data; a conclusion that cannot be
made in this investigation. Examination of the dimensionality structure of thendata i
investigation is implemented through the application of factor analytic methods.

Finally, to simultaneously examine fit and test the model assumption of local
independence, chi-square statistics for item pairs and triplets (Chenkgsét al., 2001;

Stark et al., 2006) can be used to asses fit between each model and the datao@altulat



chi-square distributed fit statistics is a common approach to examine goodhfigss

although some caution must be exercised because such statistics are serssitiyae size.
Chernyskenko et al. (2001) and Stark et al. (2006) reported that typical chi-sqtistie st

for each item may not be completely accurate because they are noangcafected by

violations of other assumptions of both cumulative and unfolding data (i.e., local item
independence and unidimensionality). Also, when using a one-parameter IRT model, the chi
square statistic may be unreliable if all items are indeed not equallyrdrsating

(Chernyshenko et al., 2001). Thus, Chernyshenko et al. (2001) computed adjusted (to degrees
of freedom) chi-square statistics for item pairs and triplets, whiah approach that is

executed in this study for the purpose of gaining evidence for the appropriaterness of t

application of the three IRT models (i.e., PCM, GPCM, and GGUM).

Research Questions

This empirical study focused on the application of both traditional and relatigaly
IRT measurement models to real attitudinal survey data. The primary purpbse of t
investigation is to examine differences in item parameters estimatbdeleylRT models
(i.e., PCM, GPCM, and GGUM) and differences in person parameters estimatectiacses
models and one SEM (i.e., confirmatory factor analysis) measurement model tieprovi
insight into how both scale construction and construct measurement might be changed or
improved. Graphical and statistical fit of models function as the secondary pofgbse
study. The following four research questions are posed to address these purposes:

(1) Do the three IRT methods of scaling and scoring differ in terms of dieeirg of

item parameters from an attitudinal measure?
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(2) How do the IRT and SEM methods of scaling and scoring compare in terms of the
ordering of person parameters/estimates on the underlying latent traatadtitudinal
measure?

(3) Is the assumption tenable that the responses to the items on the attitedsuaiem
follow from an ideal point response process resulting in single-peaked, non-mon@wnic it
characteristic curves? In other words, do item responses follow an unfoldieignat

(4) How does the generalized graded unfolding model compare in terms of model-

data fit with the partial credit and generalized partial credit models?

Summary

As decisions continue to be made based on measures of personality, attitude, opinion,
satisfaction, or preference, the need exists for reliable methods for @esiriction and
accurate estimates of responses to such measures. Methods for building a sestegnar t
the psychology of survey response must be considered simultaneously and exist in
concordance with one another. Choice of model selection or method of scoring/scalst i
not made separately and independently from all other steps in the measuremest proces
Assumptions that define methods of scale construction, the item response pratess, a
measurement model must ideally be aligned. Unintended consequences of dessonanc
between assumptions can yield inaccurate results, leading to ill-inforecesoahs.

Non-cognitive measurement is and has been conducted within a variety plirtgsci
where often times high stakes decisions are made. The assessmentrafliperso
conducted for diagnostic and assessment purposes as well as for relwaydltats.

Additionally, employers use personality testing to make hiring and othetiooaia
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decisions. Marketing research frequently use surveys to measurepcefér or
satisfaction with particular products; surveys are also used as a tool lfatengasocial
service or educational programs by eliciting attitudes, opinions, and stisfavith
services. The current investigation used data from the North Carolina T&#chHeng
Conditions Survey. This survey data is used by policy makers to change or impstitcits
that determine how administrators are educated and trained. Additionally, the wiagzh
schools are funded rest partially on the survey results.

Within the context of non-cognitive measurement where respondents are asked to rat
their level of agreement with an item, it is argued that the probability ofatetarsement is
high to the extent that the content and/or sentiment of that item closely matchestiment
of the individual. Application of an unfolding IRT model would be a practical approach for
scaling when this response process is responsible for producing the observed datandJnfol
IRT models are flexible, by design, in that they can accommodate the scaliicgrminuum
of item sentiment ranging from extremely negatively, to neutrallgxteemely positively
worded items. Additionally, unfolding IRT models could prove efficient when itents tha
comprise a survey that span the entire spectrum of the latent trait, fronveégaiositive.
Investigation into an arguably feasible, alternative approach for measurin@gitive
constructs seems warranted given the flexibility of unfolding models in scidiagthe
capability of informing the scale construction process, and in some meastiistuations

the superiority over cumulative IRT models in measurement precision.
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CHAPTER 2

LITERATURE REVIEW

A variety of latent trait models have been developed within the context of item
response theory (IRT). These measurement models are not new, with some diettte ear
work and contributions to this theory of measurement dating from the 1930s (Hambleton &
Swaminathan, 1985). These models are often applied to cognitive data like achisesine
data or attitudinal, behavioral, personality or other non-cognitive data. BtRRTlynodels
are mathematical models that permit prediction of examinee test pertiinam an
individual's standing on an attribute or trait and the characteristics of the k&t make up
a test (Hambleton & Swaminathan, 1985). The relationship between observed perormanc
on an individual item or total test and the latent trait of the examinee is spéyifee
particular IRT model and thus by the item characteristic curve (IB&nbleton &
Swaminathan, 1985; Hambleton, Swaminathan & Rogers, 1991). Although there are
numerous IRT models available for estimating person (i.e., latent traitlyushidity) and
item parameters, all unidimensional IRT models rely on the assumptions of
unidimensionality, local independence, and a monotonic (increasing) relationshiproetwe
the probability of answering an item correctly (or endorsing an item) andtént trait being
measured (Hambleton et al., 1991; Hambleton & Swaminathan, 1985). This monotonic
increasing relationship describes the shape of the ICC. The assumption of ngidimakty

means that only a single latent trait (i.e., ability) sufficiently ptedd@aminees’ test



performance, or that only one construct is being measured and only one construts expla
examinee performance (Hambleton & Swaminathan, 1985; Hambleton et al., 1991). In
practice, this assumption does not hold in a strict sense; the unidimensionalitptamsisn
considered to be satisfied when a single primary trait accounts for testpente and when
the relationship between the underlying trait and test performance is théosathe
subpopulations of test takers (Hambleton & Swaminathan, 1985). The assumption that a
person’s response to or performance on one item is not dependent on a response to a different
item, when ability is held constant, describes local independence. In other wepdsises

to individual items are statistically independent from one another when conditionbiitgn a
(Hambleton & Swaminathan, 1985; Hambleton et al., 1991). The nonlinear relationship
between the latent trait and performance on an item is given by the matla¢matton
called the item response function (IRF). The difference between thentRlR@ICC is

slight: the IRF is the mathematical equation or function; the ICC ishjagraphical plot of
the IRF. The assumption that the ICC is always increasing desdréasonotonicity
assumption. In cumulative IRT models, then, it is always assumed that agelrd the

latent trait increases, so does the probability of endorsing (for non-cogtative or
answering correctly (for cognitive items). IRT models differ rmig of the number of item
parameters to be estimated, the scoring of different item types (i.e., aodichusiy-scored
multiple choice item, a polytomously-scored short answer item wherel paeti# is

granted, a polytomously scored Likert-type item with multiple ordered respmt®ns) and

the number of latent traits that explain test performance.
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Cumulative IRT Models
Some of the more commonly applied parametric, unidimensional IRT models for
dichotomously scored data are known as cumulative IRT models. They include: thedras
1-parameter logistic (1PL) model originally developed by Rasch t@ ia Smith & Smith,
2004; Yen & Fitzpatrick, 2004); the two-parameter logistic (2PL) model developed by
Birnbaum in the 1950s (as cited in Hambleton & Swaminathan, 1985); and the three-
parametric logistic (3PL) model (as cited in Hambleton & Swaminathan, 19&ilel@n et
al., 1991). Common unidimensional IRT models for polytomously-scored items include the
following five approaches:
1) the partial credit model (PCM; Masters, 1982) which models the probability of
successfully completing or responding to tidtem response category;
2) the generalized partial credit model (GPCM; Muraki, 1992) which is “forntilate
based on the assumption that the probability of selectind'toatkgory over the k
minus first (k-1) category is governed by the dichotomous response model” (p. 160),
and primarily differs from the PCM in that the discrimination item patamis
estimated in the GPCM,;
3) the rating scale model (Andrich, 1978) which models the probability of selacting
particular ordered category where the same set of response option®eaiess
with each item, that all items are assumed to have the same underlysip kthsefor
those response options, and that all items are equally discriminating (a tdatlire
Rasch or 1PL models) (Masters, 1982; Smith & Smith, 2004). Such a model would be

appropriate for Likert-type items where all items have the same re&spptiens,
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where it is assumed that all items discriminate equally, and that theeisgponse

options are used equally across all respondents for all items;

4) the nominal response model (Bock ,1972) which yields the probability that a

person of a particular level of the latent trait will endorse or respond to autartic

response category. This model has been described as a very general model (Yen &

Fitzpatrick, 2004) where “item scores are irumordered categories and a higher

item score does not necessarily reflect better performance” (p. 17). Tieahom

response model differs only slightly from the partial credit model and bctual

“becomes the PCM when the slope [or discrimination item] parameters are

constrained to increase in steps of unity” (Thissen & Steinberg, 1986, p. 571); and

5) the graded response model (Samejima, 1969) for polytomously scored items with

ordered response categories, which estimates the function that teddigent trait

to each score associated with each response option for each item. Speciiineall

probability of a response in category k or above” (Thissen & Steinberg, 1986, p. 569)

is estimated by the graded response model. That is, similar to the padiahwdel,

the graded response model estimates separate thresholds for each response opt

The graded response model differs slightly from the rating scale model thehat

latter assumes the thresholds for all response categories are aqualst that they

are the same for all items (Yen & Fitzpatrick, 2004).

All of the models just described are categorized as cumulative; the primary
underlying assumption is that the probability that an individual will agrde wstdorse, or

answer correctly an item increases to the extent that that individwaldirsg on the latent

16



trait dominates or is more positive or greater than the content of the item (R&berts
Laughlin, 1996).
Additional Models Appropriate for Attitudinal or Preference Data

Although this study will only address unidimensional IRT models, it is impoxant t
note that there are also several multidimensional IRT models used when more tleardne |
trait is expected or required to endorse or successfully complete an itexardRaggarding
the development of the theory and application of such models can be found in Ackerman
(1992, 1994, 1996), Luecht and Miller (1992), Mislevy and Verhelst (1990), and Reckase
(1985). Additionally, there exist unidimensional nonparametric IRT models for dichatom
and polytomous data, where fewer assumptions are made about the relationship thetwee
probability of item endorsement (or getting an item correct) and the unmdgldyent trait,
and the assumptions that are made are less strict. For example, one assumptionnisMokke
(1997) nonparametric model for dichotomous data is that of monotonic homogeneity, or that
the probability of item endorsement is monotonic non-decreasing. This is letsthatr the
monotonicity assumption of parametric models. The section on nonparametric models in van
der Linden and Hambleton (1997) provides a brief overview of three common nonparametric
IRT models. Finally, social science researchers have used multidomahscaling
techniques to interpret ordinal or “pick any” data. Pick any data refeegddltat result
when an individual is asked to select any number of choices from a list based on some
criterion. For example, people could be asked to select any number of qualitiedulean va
a supervisor, from a list of say 15 descriptors. A company may use pick any datattmas
making marketing decisions with individuals being asked to select fromad psbducts that

they would actually purchase.
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Selecting the most appropriate measurement model depends on the purpose of the
analysis, the sample (i.e., size, characteristics), the construct(8)ethatal test and
component items are purported to measure, the scoring of the items (i.e., dichotomous,
polytomous), the scoring of the total test, other attributes of the items symtedgedness
and probability or opportunity for guessing, and the response process assumed t® underli
observed data.
Responses Processes for Cumulative Models
The parametric, unidimensional, cumulative IRT models previously described sha
an important, underlying mechanism: the “cumulative (monotonic increasing progbabil
response function” (Andrich, 1996, p. 349) and the very closely related dominance response
process assumed to underlie the observed data (Chernyshenko, Stark, Drasgow,s& Robert
2007; Roberts & Laughlin, 1996; and Stark et al., 2006). According to Roberts et al.:
In a dominance response process, an individual endorses an item to the extent that the
individual is located above the item on the underlying continuum. Responses from a
dominance process generally are analyzed with some form of cumulative model i
which the probability of endorsement increases as the signed distance bétveen t
individual and the item on the attitude continuum increases (1999, p. 215).
Data assumed to be produced by a dominance response process, where cumulasve model
examine such data are most appropriately applied, are usually associhtdoewikert
approach to scaling and attitude measurement (Andrich, 1996; Chernyshenko, et al., 2007,
Luo, Andrich, & Styles, 1998; Roberts & Laughlin, 1996; Roberts et al., 1999; Stark et al.,

2006).
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Unfolding IRT Models

A different class of parametric, unidimensional IRT models for dichotomous and/or
polytomous data are known as unfolding models and are sometimes referred to asanodels f
nonmonotonic items (van der Linden & Hambleton, 1997). Some of the earliest contributions
to the theory of such measurement can be traced back to the work of Thurstone (1927, 1928)
and his methods of psychological, attitudinal scaling, which implied a nonmonotonic
response process where individuals are least likely to respond positively or exrditese
as the distance between a person and an item on a latent trait continuumsn@éitease
according to Thurstone (1927, 1928) people are more likely to endorse an item when the item
most closely matches the attitude of the person (i.e., as the distance betwsen amethe
item decreases). Coombs (1952, 1964) built upon the underlying theories of Thurstone (1927,
1928)--formally developed and termed unfolding models--and further developeddhe the
of data and measurement. Other researchers extended Coombs’ (1952, 1964) deterministic
models to define stochastic or probabilistic unfolding models (Andrich, 1988; Andrich, 1996;
Andrich & Luo, 1993; Davison, 1977; Hoijtink, 1990, 1991; Roberts & Laughlin, 1996;
Roberts, Donoghue, & Laughlin, 2000).

Thurstone’s (1927) law of comparative judgment and proposed methods of measuring
attitudes (1928) are credited by many scholars (e.g., Andrich, 1988; Andrich &, S1988;
Coombs, 1950; Stark et al., 2006) as some of the earliest contributions to the underlying
theory of attitudinal or non-cognitive measurement. Thurstone’s (1928) theotiuafiaal
measurement states that a person’s attitude is indicated by theosebé¢a particular
opinion which most nearly represents his own attitude” (p. 539). Essentially, “dssamed

that individuals would agree only with those statements that reflected theittdwiesand
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would disagree with those statements that reflected either a more intees® iatdnse
attitude than their own attitude” (Andrich & Styles, 1998, p. 455).

Coombs (1950, 1964) and Coombs and Avrunin (1979) built upon the idea of
endorsing an attitude item only when the item closely matches that of the intividua
Coombs’s (1964) theory of data describes the relationship of data points, with a point being
both an individual's agreement with or preference for or location in some space or continuum
about a construct, as well as the location of the item in that same space. Tibe tidhe
person in this space or on the construct continuum is what Coombs (1964) termed the
person’sdeal point Thus, the ideal point process is an individual’'s response process and is
in operation when an item that most closely matches the individual’s attitude isezhdors
(Coombs, 1964; Roberts et al., 1999).

One distinguishing characteristic between Coombs’s (1964) and Thurstone’s (1927,
1928) methods is that in the former, the location of individuals and items can be found
concurrently (Andrich & Styles, 1998; Johnson & Junker, 2003; Noel, 1999). The idea of
unfolding is closely related to the defining characteristics of the nonmonotonie; sing
peaked response functions for non-cognitive data, and essentially refers to ldatataee
treated: they must be unfolded. Because a response of say, Strongly Disamree, is
informative in terms of the location of the person (i.e., above or below) in relation to the
location of the item, data must be unfolded so that direction can be made explicitlfAndr
1996). Roberts et al. (1999) “refer to the nonmonotonic behavior [of the ICC] as folding” (p.
216). This is why unfolding models are also referred to as proximity models; tlezijpdes
that the “probability of endorsement is a function of the proximity between an indiiddia

an item on the underlying attitude continuum” (Roberts et al., 1999, p. 213).
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One limitation of Coombs’s (1950, 1964) unfolding or proximity model is that it is
deterministic or non-probabilistic (Andrich, 1988; Andrich & Luo, 1993; Andrich & Styles,
1998; Hoijtink, 1991) such that the probability of an individual endorsing an item can only be
equal to 0 or 1 (Johnson & Junker, 2003). Coombs’s (1964) model is of the form:

Xai=1 if Badi] <7,
Xai=0 if |Ba-3i| >t
where:

Xai= the response to itepby person,;

Ba= the location of persanon the latent trait continuum;

;= the location of item; and

T = the “threshold (of equal size for each item) governing the maximum distance

betweerp,ands; for which a person still renders a positive response” (Hoijtink,

1991, p. 154).

A probabilistic formulation of the item response function (IRF) of Coombs’s (1964) nsodel i
specified as follows:

P(Xai = Xail Bay 8i) = (| Ba - 3i |, Xa) (Hoijtink, 1991).

The benefit of a probabilistic model is that stochastic parameterizatioms of t
mathematical item response functio®)R{llow for statistical inferences to be made about
person and item parameters (Johnson & Junker, 2003). Some parametric, probabilistic
unfolding models developed recently include: Andrich’s (1998) squared simpledogisti
model (SSLM); a hyperbolic cosine latent trait model (HCM) for dichotomous(Aathich
& Luo, 1993); a hyperbolic cosine latent trait model for polytomous data (Andrich, 1996); a

generalized, reparameterized form of the hyperbolic cosine model (Luo, 1998); the
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parallelogram analysis (PARELLA) model for dichotomous data (Hoijtink, 1990, 1991); the
graded unfolding model (GUM) for dichotomous or polytomous data (Roberts & Laughlin,
1996); and the generalized graded unfolding model (GGUM) for dichotomous or polytomous
data (Roberts et al., 2000). Additionally, two nonparametric, probabilistic unfoldingsnodel
for either dichotomous or polytomous data have been developed: the MUDFOLD model by
van Schuur (as cited in Roberts et al., 1999), and an ordinal scaling method (Cliffs,Colli
Zatkin, Gallipeau, & McCormick, 1988). Detailed information on the form and spemiica

of parametric unfolding models is provided in a subsequent section of this chalked enti
“Specifics of Unfolding Models.”

In theorizing how people respond to attitudinal items, Thurstone (1927, 1928)
suggested that people only tend to endorse items that most closely matchréipeictpe.
Coombs (1964) further claimed that people agree with items that match their
attitude/opinion, and disagree with item that contains a very different pevepécteither
direction. The two theories share an important point; that is, a single peaked, as apposed t
“cumulative sigmoid shape[d]” (Andrich, 1988, p. 33) response function explains the
relationship between item responses and the latent trait. To illustrate, cohsittlowing
statement with response options that range from strongly disagree to stigneglythe
number of response options is not important for this example): “This state’s juustiite
system treats criminals fairly.” In response to this statement, 8yrailsagree’ can be given
for two reasons: that punishment is too harsh or too lenient. For a relatively geutraled
item

if the item is located far below the person’s position on the attitude continuum (i.e.,

the item’s content is much more negative than the person’s attitude), then tre pers
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strongly disagrees from above the item. In contrast, if the item is locatelddiae the

person’s position (i.e., the item’s content is much more positive than the person’s

attitude), then the person strongly disagrees from below the item (Rober;2@0@|

p. 4).
Differences Between Cumulative and Unfolding IRT Models

Although dominance and unfolding are both considered IRT models, they do differ
conceptually and structurally. The more traditional IRT models werenatigideveloped for
test items within the framework of educational measurement wherenteasured
underlying cognitive process like achievement or ability (Chernysherddg 2007; van der
Linden & Hambleton, 1997). On these types of tests, there is presumably one correct answ
to each item, so the application of a cumulative model, with its respective unglerlyin
assumption of a dominance response process and monotonic increasing item ciaracteri
curve makes sense for tests designed to measure knowledge, skill, or abéityy&henko
et al., 2007; Roberts et al., 1999; Stark et al., 2006; van der Linden & Hambleton, 1997). On
tests that measure non-cognitive traits like attitude, satisfaction,smmadity, one correct
answer does not exist, so assumptions of monotonicity that describe cumulgresees
functions of dominance models would not hold.

To illustrate the structural differences between cumulative and unfolcbdgls) the
distinction between an item characteristic curve for a cumulative IRTlranden
unfolding model can be seen in Figure 2.1 and Figure 2.2. Figure 1 shows a hypothetical item
characteristic curve within a cumulative IRT framework. Figure 2.2 teepicitem

characteristic curve from the perspective of an unfolding model.
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In cumulative models (see Figure 2.1), it is assumed that as the underlyingtemses, so
does the probability of endorsing the item. In unfolding models (Figure 2.2), also kasown a
proximity models, the difference in distance between the person and the item on the
underlying trait describes the horizontal axis; thus as the distancedretiae two increase,
the smaller the probability of endorsing the item.

Chernyshenko et al. (2007) argued that item analysis results from the tampplida
ideal point process models contain information related to content, where as itemetpesa
from cumulative models do not. For example,lther item difficulty parameter, in
cumulative IRT models describes the difficulty of the item and influeteebtation of the
ICC. Further, for the 1PL and 2PL models, bthgarameter represents the point on the latent
trait (usually denoted) of a 50% probability of correctly answering or endorsing the item
(Hambleton & Swaminathan, 1985). The higher the value d rerameter, the more
difficult the item. In unfolding models, however, item location, denétecpresents the
point on the latent trait where the probability of endorsing an item is gremtesnot just
50% (Chernyshenko et al., 2007). Table 2.1 provides a summary of the important differences
between unidimensional, parametric, IRT cumulative and unfolding models.

The conceptual and structural differences between cumulative IRT and uni&lding
models include the underlying response processes, the specification of the nmatils, a
shape of the item characteristic curves. Another feature of unfolding modeigyudshable
from cumulative models, is the distinction that must be made between the observed and
unobserved response. As alluded to previously, a person may disagree with an item for one
of two reasons, although which reason is not immediately known from the observed

response. Parameterizations of unfolding models explicitly consider the lackafad in
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observed responses where a respondent may disagree with an item because g gentim
too extreme or not extreme enough. The following sections of this chapter provide
descriptions of the more contemporary parametric, unfolding IRT models.
Unfolding Models Specified

Andrich and Luo’s (1993; see also Andrich & Styles, 1998) hyperbolic cosine model
for unfolding dichotomous data assumes that respondents can disagree for twq fieasons
above or below, and agree for only one reason, thus yielding a model for three ordered,
latent, response categories for two possible observed responses. Andrich (1996) develope
generalized hyperbolic cosine model for polytomous data, used with items havirggdorder
response options such as: Strongly Disagree, Disagree, Agree, and Stroegly TAgs
model assumes people can strongly disagree, disagree, and agree from aboveandelow
only strongly agree for one reason (Andrich, 1996). This latter point resultéHeom
assumption that “the response of SA [strongly agree] implies that the peszation is
close to that of the statement” (Andrich, 1996, p. 353). In other words, a response of strongly
agree implies a direction, whereas all other response options do not. Although thgnopderl
theory is basically the same, the graded unfolding model (GUM; Roberts & iiauthdo)
and the generalized graded unfolding model (GGUM; Roberts et al., 2000) are paratet
slightly differently than the hyperbolic cosine models in that there agyaltwo latent
responses, or subjective response categories (SRCs; Roberts et al., 2000) forezaeti obs

response category (ORCs; Roberts et al., 2000).
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Table 2.1

Comparison of Unidimensional, Parametric, IRT Cumulative and Unfolding Models

Characteristic

Cumulative IRT Models

Unfolding IRT Models

Assumption8

Monotonic increasing
relationship between the
observed responses and
underlying trait

Non-monotonic relationshij
between the observed
responses and underlying
trait

OJ

Item Category Response
Functions

Category response functio
are observed and single-
peaked

NSRC: Single-peaked,
symmetric aroun@é;—o;
ORC: Single-peaked, or
bimodal symmetric around
0;—0i

[tem Characteristic Curve

S-shaped, always increa
/ Monotonic

sBiggle-peaked / Non-
monotonic

Underlying Response Dominance Ideal Point
Process
Type of Model Dominance Proximity

Type of data most
appropriate

Cognitive (i.e.,
achievement)

Non-cognitive (i.e.,
attitudinal, personality)

Estimated Item Paramet®rs

;ai) biVl bil dV

a;, Tik, Oj

Appropriate Scaling
Method

Likert scaling method

Thurstone scaling metho

j -

Item Information Function

A single-peaked function
with a maximum aé; = §;

A bi-modal function,
symmetric aboud; - &; with
a maximum atg; =g; | >0

Equal to 0 ab; = §;

Notes:

®Both unfolding and cumulative models assume unidimensionality and local independence.

PThe GPCM item parameters are noted in this table for the cumulative model, and the

GGUM item parameters are noted for the unfolding model.

“The test information functions (TIFs) are calculated the same way in both unfafaing

cumulative models (i.e., TIF is the sum of each item information function).
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Figure 2.3. Plot of 8 Subject Response Category Probability Functions for a 4 Response

Option Item (from Roberts et al., 2000, p. 5).

For example, Figure 2.3 depicts an item with four response options that has eigdr®8RC
seven threshold parameters (Roberts et al., 2000, p. 5). The item threshold patameter,
the GUM, GGUM, HCM, and GHCM is defined as “the location of ti&RC threshold on
the attitude continuum relative to the location of thaéeém” (Roberts et al., 2000, p. 5). Of
note is the fact that the two subjective responses associated with a paiR@are
mutually exclusive. As such, for each item, summing the probabilities of the subject
responses yields the probability that an individual will respond using a speRific O
(Roberts et al., 2000). Figure 2.4 shows the graph of the ORCs for the same itéhgaein

2.3 (Roberts et al., 2000 p. 7).
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Figure 2.4. Plot of the 4 ORCs associated with the 8 SRCs in Figure 2.3 (frontsRatlaer,

2000, p. 7).

Following Andrich and Luo (1993), Roberts and Laughlin (1996) modeled the
subjective responses in their GUM with a cumulative IRT model, where theg chos
Andrich’s (1978) rating scale model (Roberts & Laughlin, 1996). In the GGUM, Roberts e
al. (2000) used Muraki’s (1972) GPCM to model the subjective responses. Compared to the
parameterization of the SRCs, in the GUM and GGUM parameterization of the pitgludbil
an observed response to a particular category of a particular itena tharameters lost
their simple interpretation at the observable response level” (RoberisasiQdl, p. 6).

The three equations for Muraki's (1993) GPCM, the GPCM as applied to the subject
responses in the GGUM, and Roberts’ et al. (2000) GGUM are shown in Equations (1), (2),
and (3).

Muraki’'s (1993) GPCM is parameterized as follows:
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RO =_expDy0-by)] | (1)
Ria(®) + P(®) I+ exp[ma(0 —by)]

Pik-1,40) =

where k = 2,3,..imand mis the number of response categories.

The GPCM then is written as

k

exp¥ Z.(0)]
Pi(0) = v=1

m C
2 exp [ Z;(0)]
c=1 v=1
and
Z;(6) = Da(6 —by) = Daj(6 —by + dy) ,
where
D = a scaling constant (D=1.7);
a = the item slope parameter;
by = thev"" category parameter for itejn
by = the item location parameter; and
dy = a category parameter.

Muraki’'s (1992, 1993) GPCM used by Roberts’ et al. (2000) GGUM specifically to model

the subjective response functions (SRFs) follows (Roberts et al., 2000, p. 4-5):

y
exp {a [y (6 — &) P ?Orik] } (2)
P(Yi =y6) = M w
{ exp{a[w®-5)-Zu}}
w=0 k=0
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where
Y; = an observed response to item
y=0(y=0,1,2,...,M)corresponds to the strongest level of disagreement from
below the item;
M = the number of subjective response categories (SRCs) minus 1;
a = the discrimination of itery and
1 = the location of th&" SRC threshold on the attitude continuum relative to the
location of tha™ item.
The statistical parameterization of the GGUM (Roberts et al., 2000, p. 6) for abserve

responses is defined as follows:

exp{a [z (6; — &) —kE ] }+ exp{ & [(M-2 (Oj—&)—Zkrik]}
=0 =0
3)
P(Z=2)|0) = c w w
2 {exp{a[w® —5)-Xt]}+ exp{ a[(M-w) (6 —&)—2 ] }
WO k=0 k=0

where
Zi = the observed response to statement
z=is an index of agreement ranging fram 0 to C, where O corresponds to the strongest
level of disagreement and C corresponds to the strongest level of agreement; and
C = the number of ORCs minus¥ & 2C + 1).

With an explanation of unfolding models, assumptions that underlie them, and the
parameterizations of models, specifically the parameterization of theaizee graded

unfolding model (GGUM), the following section describes the need for and appropssate
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of application of unfolding models to specific types of data (i.e., non-cognitive) and
examines the literature as it relates to application of unfolding modeld emceaimulated
data.
Applications of Unfolding Models for Theory and Model Development

Proponents of the underlying theory of unfolding or ideal point process models have
extended the theoretical work and applied such models to real and/or simulatéddata.
example, Andrich (1988) introduced the squared simple logistic model (SSLM) and applied
it to both real and simulated dichotomous, direct-response data. The items used in Andrich
(1988) elicited information about respondents’ attitudes towards capital punishment.
Similarly, Andrich and Luo (1993) compared analysis results like correlatrmhgeam and
person parameters from the hyperbolic cosine model (HCM) and various paizatietes
of it, and the SSLM using simulated data and the same real data as Andrich (1988). The
focus of both studies was on the development of a new statistical model for thesaofalysi
attitudinal data and on efforts to determine if estimates of the model parameter
possible. Andrich (1988) determined that the variances for both item and person paramete
were always higher for the estimated parameters than for the inigeherating parameters,
thus making estimates somewhat biased. Estimates for people and iternttsefI®8LM
were compared to existing Thurstone scaling estimates of the samenigist and were
deemed to be equivalent (Andrich, 1988). A limitation of the SSLM, however, is such that
the maximum probability of item endorsement is .5, even when the person and item have the
same scale values.

Andrich and Luo (1993) were similarly motivated to derive a probabilistic model f

unfolding data, though they made explicit the derivation of their general HCM, an agfoldi
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model, from a cumulative model (i.e., the Rasch model for ordered response eajeyuti
heavily emphasized one of the item parameters in their model, the unit paréhet
described as a unit of measurement. Their focus was on unfolded models that needed to be
folded in order to be compatible with folded data (Andrich & Luo, 1993). Folded data are
those that result from Likert-type items where direction is not neclysisaplied from the
observed data, and can be easily recognized by a single-peaked respoise fLimetwo
parameterizations of the HCM in Andrich and Luo (1993) were: the simple hyperbsiie
model (SHCM) where the item parameter, called the unit parameter, dénagdueld
constant across all items; and the two-parameter hyperbolic cosine 2BHEN) that

allows the unit parameter to be estimated for each item. The differencsebefndrich’s
(1988) SSLM and Andrich and Luo’s (1993) SHCM is slight: in the SSLM “the squapg of (
— ;) is taken” whereas “the symmetric hyperbolic cosingdpf(;) is taken” in the general
and other parameterizations of the HMC (Andrich & Luo, 1993, p. 261). Andrich and Luo
(1993) describe how the use of the SHCM over the SSLM is a substantive improvement
where the SHCM *“involves analyzing the details of the unfolding response meunhanis
reveal and then model explicitly the two latent responses for a Disagoe@sesand then
bringing them together” where the SSLM “is essentially based on a déwcequare
function) that produces a descriptive model of the required shape” (p. 261).

The characteristic that the two models share, however, is the maximum proladbilit
item endorsement of .5. The simulation study of Andrich and Luo (1993) was conducted to
determine item and person parameter recovery, which were deemed aecéjsady real
data (from Andrich, 1988) comparisons were made between SSLM (Andrich, 1988), SHCM

and 2PHCM parameter estimates where the correlation between the SSLMHEM 2P

33



estimates was equal to .997 and to .999 between the SSLM and SHCM estimates (Andrich &
Luo, 1993). Additionally the ordering of response patterns was compared for the StdCM a
2PHCM where only slight differences were found. Andrich and Luo (1993) did not make
explicit comparisons across the three models for the person locatnparameters.

In related studies, Hoijtink (1990) introduced the probabilistic form of Coombs’s
model (1964), the parallelogram model, called PARELLA, for measuring kagast(i.e.,
attitudes) and tested the model using simulations. Like Andrich (1988), Hoijtink (1990)
intended to determine the feasibility of parameter estimates, though he uaggiream
maximum likelihood (MML) approach (Bock & Aitkin, 1981) for item parameteinesies
and the expected a posteriori (EAP; Bock & Aitkin, 1981) method for person estimates,
whereas Andrich (1988) and Andrich and Luo (1993) used the joint maximum likelihood
(JML; see Andrich & Luo, 1993 and Luo, 2000 for solution equations). Hoijtink’s (1990)
PARELLA model is similar to Andrich’s (1988) SSLM though the models do differ s tw
ways. First, the former model involves an item parameter (in addition to itetmloccalled
the power parameter, denotedand describes the importance (Hoijtink, 1990) of the
distance between the person and item location on the latent trait. In the lattelogioasn
item parameter, the unit paramet@) (s specified. Second, the maximum probability of the
PARELLA model is 1.0 which is not true for the SSLM. Hoijtink (1990) specifically
examined the stability and accuracy of estimates using simulatitimsaviations of the
following parameters: power parameter, shape of the person distribution, width ofsire pe
distribution, number of items, sample size, number of nodes (i.e., quadrature points), and the
distribution of item parameters. A common theme within all results was theiraedshe

difference between the estimated and generating (initial) paraestit@ates in Hoijtink
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(1990) and in his follow up study (1991). A summary of the general trends reported by
Hoijtink (1990) include: biased estimates of the person distribution (uniform and skewed)
due to the restriction of range, although estimates were found to be unbiased forlbi-moda
and normal distributions. Recovery of the person distribution was not accuratafopla s

of 100 people, but was for sample sizes of 300 and 900. Also, the increase from 10 to 16
nodes only improved the recovery of parameters for the person distribution for theotonditi
of a bi-modal generating distribution. Hoijtink (1990) also employed a methoddoriexg
“fit” of the PARELLA model to the data using “the results of the E-step anitheep to
provide a way to evaluate the fit of the data to the expected stimulus chataatens” (p.
653) specifically using the difference between the observed and expected olipdmyle

at a particular quadrature point who selected iteiithough there is no criterion to evaluate
such comparisons to determine statistical fit, this method appears to eptable
descriptive measure.

In his follow-up study using a simulated data set, Hoijtink (1991) again examined the
appropriateness of the PARELLA model and examined model fit using the sum of the
differences between the observed and expected outcomes related to tiespense
functions. The criteria used by Hoijtink (1991) to differentiate between good and fpa@r fi
dependent upon on sample size and number of quadrature points, although for a sample of
300 people and 10 quadrature points “two or more differences between [empirical and
expected values] greater than 4.0, or a sum of differences greater than 2@&ts/endican
inequality between the empirical and expected IRFs” (p. 163). This criteramlyi a rule of
thumb, and Hoijtink (1991) recommended for a relaxation of the criterion for |aggies

and a more stringent criterion for smaller samples. Hoijtink (1991) also @pipdie
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PARELLA model to three real data sets, one of which was used in Andrich (1988ngllowi
some comparisons to be made with Andrich’s (1988) SSLM analyses. For ex® oleler

of the item estimates was found to be the same across both PARELLA and SSLM. model
Application of the PARELLA model was determined to have merit because of theatepli

of Andrich’s (1988) results, the exhibition of good fit according to the above ontand
examination of the weights associated with each quadrature point (the pgratel

structure of the data) (Hoijtink, 1991).

In an attempt to test the assumptions of the ideal point response process for the
purpose of informing and improving personality assessment, Stark et al. (2006) applie
cumulative and two unfolding models to real personality data for the purpose of closel
examining how people respond to personality items. Weekers and Meijer (2008) extended
the work of Stark et al. (2006), although they used a similar methodology to compare
analyses from cumulative and unfolding IRT models applied to surveys developed using
dominance response process assumptions and ideal point response process assumptions.
Chernyshenko et al. (2007) used a cumulative and unfolding model to score three surveys:
one designed using ideal point response process assumptions using the GGUM, one using the
traditional Likert approach (which, by design, assumes a dominance responss)dmce
scale development using CTT, and another using dominance response process assumptions
with a cumulative IRT model (2PL). Real data from a personality inventary weed and
comparisons made between person and item parameters for the scale desigoifijeal
dominance)/IRT statistical model (2PL, GGUM) pairs.

Stark et al. (2006) stated that it is not always apparent which response piaeadss (

point or dominance) is necessarily in operation and responsible for observed data from non-
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cognitive items. Thus, their purpose was to investigate if ideal point process madede
viable alternatives for scale development and scoring to the traditional and almos
exclusively employed Likert-type or dominance IRT methodologies. FounBdels—a
parametric cumulative model (2PL), a nonparametric cumulative model (Levine’s
nonparametric maximum likelihood formula scoring model, MFSM); a parametatpdant
model (GGUM), and a nonparametric ideal point model (Levine’s MFSM with ideal point
constraints)—were applied to real, dichotomously-scored personality data @mhgirit
subscales, and directly compared in terms of chi-square fit statistigsagotdcal fit plots to
determine the appropriateness of each model including the underlying assumpédnst(S
al., 2006). Because examination of the appropriateness of assumptions was a primary
component to their investigation, Stark et al. (2006) calculated chi-squard¢isticgtdor

pairs of items and item triplets, as statistics for a single item are cegsagily sensitive to
violations of the IRT assumptions of unidimensionality and local independence. Tde thre
chi-square statistics for each model were averaged across all seezch of the 16

subscales and directly compared across the four IRT models, where simadiguare

statistics (< 3) was the criterion for good fit. The graphical represamtdtthe ICCs from

the four models was used as a second measure of fit, with specific focus on the extre
values of the underlying latent trait, as nonmonotonicity of ICCs is an indication @éain i
point response mechanism and it is in the extremes of the distribution where cunaudtive
unfolding models tend to diverge the most. Based on the two measures of fit, four of the 16
subscales were found to contain at least four nonmonotonic items. Of these four subscale
Stark et al. (2006) determined, based on the chi-square measure of fit, that the ndriparame

ideal point model (i.e. Levine’s MFSM with ideal point constraints) fit beshi@et and the
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MFSM with dominance constraints fit best for one subscale. The mere faahyhisems
exhibiting nonmonotonicity were found in addition to the fit measures were reasoaror St
et al., (2006) to defend that ideal point models are flexible enough to model non-cognitive
traits and should be considered as an alternative to cumulative or dominance moslels. Thi
conclusion stems from the fact that the data used came frdixtieen Personality Factor
Questionnairg16PF), which was developed using a dominance response methodology
(Stark et al., 2006).

Chernyshenko et al. (2007) pursued an investigation similar to that of Stark et a
(2006) by investigating the flexibility and functionality of a dominance model)(2Rd an
ideal point model (GGUM). Each model was applied to three data sets produced by three
scales; one built using traditional CTT methods, one using dominance IRT (2PL)
methodology, and another using ideal point (GGUM) methodology.
Chernyshenko et al. compared IRT scores in two situations between the 2PL @&like
scores compared when both models were applied to the data resulting fromethrigical
with the 2PL; and the comparison of scores when both models were applied to data resulting
from the scale built with the GGUM. Chernyshenko et al. determined that the GGUM
performed as well in fitting the 2PL data as the 2PL model, as evidenced byoaredation
between the IRT scores, however, results from the application of the 2PL moddlid GG
data were not as favorable. Chernyshenko et al. showed that the item locationgraramet
within the context of ideal point models provide information about item content, where those
parameters from any dominance model are not related to item content. Additionally
correlations with four other measures were used for the purpose of providing ewaflence

criterion, discriminant, and convergent validity, where “the overall criterédated validity
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of scores dropped in every case when 2PLM was used to score the Ideal Point order
[construct measured] items but remained the same when GGUM was used to score the
Dominance IRT order items” (p. 101).The general conclusion made by Chernyskahko et
was that ideal point models should be considered and implemented as a mechanism to
improve non-cognitive measurement. This decision was based on the fact that itkeal poi
models can accurately model data resulting from dominance methodologiesyadd the
provide added measurement precision, especially towards the middle of the &dttét tr
including items that contain neutral sentiments, making them much more flexible.

The study by Chernyshenko et al. (2007) built upon the investigation by Stark et al.
(2006) in that the former constructed various scales according to the model asssintipén
applied the respective and alternative models (i.e., applying the GGUM to &} taddata,
and made efforts to examine validity to empirically determine the fléyibihd efficacy of
ideal point models. Weekers and Meijer (2008) attempted to replicate the findings of
Chernyshenko et al. (2007), measuring a slightly different facet of thenaditg construct,
and using different dominance and ideal point IRT models. Similar to Stark et al. (2006),
Weekers and Meijer (2008) used four types of models (parametric, nonparametric,
dominance, and ideal point) although the specific models differed. The parametric
dominance model used by Weekers and Meijer (2008) was the 1PL, and the nonparametric
dominance model used was Mokken’s (1997) model of monotone homogeneity. The
parametric unfolding model employed was the GGUM and the nonparametric multiple
unidimensional unfolding model (MUDFOLD; van Schuur & Post, 1998, cited in Weekers &
Meijer, 2008) was the nonparametric unfolding model used in the analyses. Like

Chernyshenko et al. (2007), Weekers and Meijer applied a dominance and unfolding model

39



to a data set resulting from a scale built from a dominance perspective amther data set
resulting from a scale build with ideal point assumptions. Weekers and Meijer fouladt sim
results in that the correlation between person estimates (i.e., IRT seasekigh for both

the dominance scale € .988) and for the ideal point developed scake ©71), although

they too found discrepancies between the unfolding and dominance model estimates for the
unfolding data, especially at the upper extreme values of the underlyingttaning the
argument of Stark et al. (2006), Weekers and Meijer confirmed that inapproppétagon

of a model can have implications about decisions based on scores, as the ordering of people
varied at the upper end of the trait between the dominance and unfolding models when
applied to the unfolding data. As a result, inaccurate decisions would be made ifreést inte
was focused on those people located at the upper 5% or 10% of the distribution. Finally,
Weekers and Meijer drew similar conclusions to Chernyshenko et al. (2007) and &tark e
(2006), in that they provided evidence in support of the use of unfolding models with non-
cognitive data, not necessarily to replace cumulative (i.e., dominance) modets, but t
contribute to more precise measurement and improved scale development for certain non
cognitive constructs.

Although they calculated various chi-square fit statistics as one formdeinee in
inform their decision making, a similar methodology was implemented across the
Chernyshenko et al. (2007), Stark et al. (2006) and Weekers and Meijer (2008) studies;
namely the use of a computer program MODFIT to calculate adjusted che-$iqua
statistics. These statistics, denogédf , are adjusted by dividing the value of the chi square
statistic by their degrees of freedom. When building three types of scalgghuge

methodologies, Chernyshenko et al. (2007) used MODFIT for both the 2PL and GGUM to
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calculate adjusted chi-square statistics for items, item pairs,eandriplets. These statistics
were used to examine fit and to help determine which items from the larggvatd should
be retained for the final 20-item scales. This comparison was fadlitat the equal sample
size of 3,000. Weekers and Meijer (2008) used four different models, and four different
software programs that each calculated a chi-square fit statisece WIODFIT was used to
calculate the adjusted chi-square fit statistics as a measure d¥i@taidel-data fit. Finally,
comparisons of statistical fit, in a global sense, between the 2PL and the GGEvhade

by Stark et al. (2006) as calculated with MODFIT, again using the same andaaude

size (i.e., 3,000) as Chernyshenko et al. (2007). The criterion used to evaluate comigarisons
described in Chernyshenko et al. (2007) where it indicated that “previous studiesuraye f
that good model-data fit is associated with adjugtéif of 3 or less” (p. 93). (Chernyshenko
et al. (2007, p. 93) present the derivation of the equation for a chi-square ficdiatiat

single item is as follows:

P 21: [0, (u) - E ()]?

! u=0 E (4)

i(u)

where the expected frequency of selection of a particular responsergdtegemi is

calculated as:

E () =N[PU, =u|0)* f(6)de (5)
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and, finally, the “the expected frequency for a chi-square statistic imgodvpair of items,

for itemsi andi’, in the (u,u’)" cell of a two-way contingency table, is computed as:

E,(uu)=N[PU, =u|0)PU, =ul6)* f (6)do. (6)

To test the feasibility of their newly developed graded unfolding model (GUM),
Roberts and Laughlin (1996) applied the model to simulated and real data pertaining to
attitudes toward capital punishment. This model is an extension of Andrich and 19@3) (
hyperbolic cosine model (HCM) in that the GUM can accommodate either dichotemous
polytomous (i.e., graded) data, as opposed to dichotomous data only. Roberts and Laughlin
(1996) developed the GUM with four guiding principles: 1) that an individual agrees with a
statement to the extent that the statement reflects that individualdirgjaon the construct
being measured; 2) an individual may agree or disagree with an item for seosea
(because the item does (not) express a strong enough sentiment, or that thesit@grotyloe
express too strong or too extreme of a sentiment) called agreeing or eiisg@rem above
or below; 3) the subjective responses (i.e., disagreeing/agreeing fromaatbmlew) are
modeled using a cumulative IRT model; and 4) the subjective category thresheldsi(it
of intersection of the response functions for the subjective responses) “anetsynabout
the point §; — ;) = 0” (p. 235).

To examine the accuracy of the GUM estimates, Roberts and Laughlin (1996) used
both real data and data generated from a simulation study with 30 conditions using the joint
maximum likelihood method for parameter estimations. In the simulation, shedyvaried

sample size with five values ranging from 100 to 1,000 and six values of test lerggtiy ran
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from five to 30 items where items had six response options. Item locatipne(e set
equidistant, the thresholds (denotgdor the point of intersection of the subjective response
functions on the latent trait were held constant at .4, and the person paramete(}),theta
were randomly sampled from a normal distribution (Roberts & Laughlin, 1996). Four
measures of accuracy were computed including the root mean square erg&if)(Rkeach
of the three parametei, 1, andd;, a Pearson product moment correlation between the
simulated (true) and estimated parameters, the ratio of estimated apdraeeter variance,
and the average difference between the estimated and true parametens @&@babhaghlin,
1996). Major findings included that accuracy of theta estimation is largely adnmdtthe
number of items, where accuracy increased with an increase in items. # siffatt was
found with item location for the RMSE and variance ratio measure of accuracytand wi
threshold estimation for the RMSE, average difference and variance rasaresegRoberts
& Laughlin, 1996). Inaccuracies in parameter estimates were almastyeatfunction of the
difference in variance between the generating (true) and estimated fgasanvbich may
have been due to the fact that the JML method of estimation was used (Robert$h8nl.aug
1996). Inaccuracies decreased as the number of items and people increased, though the
decreased effect was more profound with the added items (Roberts & Laughlin, 1996).
Overall, estimation was deemed possible and accurate by Roberts andriLgL@dth) using
the GUM on data that include at least 100 people with 15 to 20 items.

Roberts, Donoghue and Laughlin (1998) and Roberts et al. (2000) extended the work
of Roberts and Laughlin (1996) to develop a probabilistic, unfolding IRT model dedjra
responses allowing both the item discrimination and item threshold parametarg &cross

items, called the GGUM. Data were simulated in Roberts et al. (1998) tmdetdhe
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accuracy of the MML item and EAP person estimates and to examine how wel thd G
recovered such parameters with six levels of test length ranging frertofBO items (each
with six response options) and six levels of sample size ranging from 200 to 2,000 people.
Briefly, Roberts et al. (1998) found that accurate item estimates resititealt Veast
a sample size of 750 and accurate person estimates resulted with at least 1&me.20 i
Roberts et al. (2000) described general, graphical methods to help identsthizt fit
poorly by applying the GGUM to real data about respondents’ attitudes toward abortion
where the final scale consisted of 20 items and the sample included 750 undeegraduat
students. Interesting findings from Roberts et al. (2000) include the difféfatg ef the two
item parameters, discriminatioa)and thresholdz(), on the expected value GGUM
function and item information function. An increase in the discrimination parameles g
more peaked expected value function that approaches its upper bound. The effect ekincreas
in item thresholds (i.e., the distance between the subject responses reldg/mtation of
the item) has a similar effect on the expected value function in that it appsoiés upper
bound, but this increase yields a flatter function (Roberts et al., 2000). AccordinbedR
et al. for item information functions:
The information function becomes larger and more peakadm@seases, but it
becomes smaller and less peaked @isterthreshold distance] increases. Thus,
maximum measurement precision is achieved at two symmetric points (or
regions) on the latent continuum, and items with large discrimination indices and
small interthreshold distances yield the most precision at these points (p. 17)
A final relationship found by Roberts et al. (2000) between the two item parameter

discrimination and threshold, was the quadratic relationship between the twdestima
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where, as item locations tended toward the extremes, the absolute value afsheldhr
estimates increased. Although it is not clear if such a relationship caméralzed beyond
their analysis, Roberts et al. (2000) interpreted this relationship to suggeshoidherate
items distinguished among respondents more than extreme items” (p. 21).

Related to model fit, Roberts et al. (2000) calculated the difference betwsen per
estimates and item location estimates for all item 20) and persom(= 750) pairs for a
total of 15,000 differences. These differences were then grouped into 200 approximately
homogeneous groups of size 75. Roberts et al. (2000) graphically plotted the average
observed and expected responses, calculated Pearson product-moment correlagens betw
these same sets of responses, and product-moment correlations betweed arpecte
observed responses for each item. Based on the overlap of the plotted scores andrtke high (
.995) correlation between the observed and expected responses, Roberts et al. (2000)
concluded that the global fit of the GGUM appeared to be reasonable.
Practical Application of Unfolding Models

The use of unfolding models extends beyond simply testing the feasibility and
capability of these models. Unfolding models have been applied to revisit reBedntgs
of the poor relationship between attitude and behavior as an alternative and pptentiall
valuable way to better understand this relationship. Andrich and Styles (1998) haaat arg
that the poor relationship between attitude and behavior that exists in the ¢etatire
“may be a methodological artifact that is related to the location of statemeatcontinuum
as envisaged by Thurstone, and because Thurstone’s methods are not used routinely in

substantive research on attitude measurement...” (1998, p. 456).
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The application of unfolding models as improved methods of understanding patterns
of change and how people move or progress through developmental stages has received
recent interest and can be found in the literature within a variety of contexts.réralge
argument for the superiority of unfolding models over cumulative models is sucimtiiat s
peaked functions describe stage/developmental data better than monotonicnigcreasi
functions. Noel (1999) succinctly described this point:

Obviously, such a developmental model relies on a different conceptualization of

psychological change than do the better known cumulative models, such as Mokken,

Rasch, or Guttman scaling. Whereas in cumulative models each stage is assumed to

prepare the following in an integrative manner, so that earlier stageis rema

embedded in the later ones, in unfolding developmental models each stage is
preparing the following while inhibiting the previous ones. Otherwise stated, the

unfolding model of change assumes that some processes are relevant in tagesen s

but no longer relevant as one moves along the developmental continuum. (p. 175).

Noel (1999) applied Roberts and Laughlin’s (1996) GUM to test a proposed theory of
cognitive and behavioral change as it related to a sample of cigaretteasmotdéheir
attitudes about smoking in an attempt to investigate the tenability of the propasgdothe
change and the hypothesis that the change process is explained bg-paakgld pattern.

The efficacy of such an inquiry could assist in treatment for smoking ibleliaformation
exists about where people are in the various stages of change.

Another example of measuring progression through stages is provided in aidars
Erwin (2003), where intellectual development of young adults was hypothesized tsprogr

through stages. DeMars and Erwin’s (2003) investigation centered around a developmental
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instrument called th&cale of Intellectual Development X8I1D-XIl), which was developed
using the theoretical model postulating that adult development is stage-likeeffbres

were directed towards validating the underlying theoretical model ($tageytof adult
development) upon which ttf&D-XIl was built, in addition to producing a meaningful and
informative single score on the latent trait, and to assess item fit {[@e/Erwin, 2003).
Motivation and implications of their study were couched within the context of higher
education and improving assessment instruments and methodologies within higheoeducati

The overarching goal of a study by Touloumtzoglou (1999) was very similartto tha
of DeMars and Erwin (2003) in that the purpose was to examine the psychometriagsopert
of a particular scale, elucidate observed scores from an ideal point responss proce
perspective, and generally spawn efforts for improved measurement. &/Deddars and
Erwin (2003) used the GGUM for polytomously scored items about intellectual development
and allowed the discrimination of the items to vary, Touloumtzoglou (1999) employed the
hyperbolic cosine model (HCM) on dichotomously scored items about attitude tahards
visual arts.

Overall, each of the studies noted in the previous sections of this chapter provide
support for the theoretical development and practical application of unfolding models. The
structure of the theory that underlies unfolding models makes substantiversgitse a
application to some non-cognitive data seems appropriate. Empirical stuckgzrdaded
evidence that application of unfolding models to non-cognitive data can indeed be doperior
cumulative models in terms of model flexibility and improved measurement agdora
extreme values of the trait, and more applied researchers are using unfubdielg on real

survey or attitudinal data. Additionally, the theory underpinning unfolding models has eve
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prompted some researchers (i.e., Andrich, 1988; Andrich & Styles, 1998) to re-examine
previous research findings from an ideal point perspective.
Improving Measurement with Unfolding Models

Application of unfolding models to non-cognitive data seems reasonable because of
the characteristics and theoretical components of the unfolding model descrided. Th
assumptions that underlie both the observed data and the unfolding model are more
congruent than the application of cumulative models to unfolding data when items require a
respondent to select a response category that most closely matchescts tledl person’s
attitude (Andrich, 1988, 1996; Chernyshenko et al., 2007; Noel, 1999; Roberts et al., 1999;
Roberts et al., 2000; Stark et al., 2006). Unfortunately, there exists a discrepancgnh cur
research methodologies between the assumptions of the underlying resporssethetce
produce the observed item scores, and how those items are developed and the sangng/scal
of the resulting data, where non-cognitive scales are still typicalglal@ed and scored
using the traditional, Likert methodology (which implies a dominance responsesgyoce
This is particularly problematic for attitudinal and personality dateesesarchers have
shown that the assumption of the ideal point response process (and the application of
unfolding IRT models) better explains such data than the dominance response (SeEess
Andrich, 1996; Andrich & Styles, 1998; Chernyshenko et al., 2007; Roberts et al., 1999;
Stark et al., 2006). Specifically, the problem lies in the interpretation of thiésyeghich
could be inaccurate if a model assuming a dominance response process is@pplied t
unfolding data. The inaccuracies exist especially for individuals whose tateloon the
latent trait is extreme (Chernyshenko et al., 2007; Roberts et al., 1999) whickldan vyi

inaccurate decisions based on the results.
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One of the fundamental differences between cumulative and unfolding mothels is
shape of the ICC, where monotonic increasing, ogive-shaped curves cheedbeeri
dominance response process, and single-peaked bell-shaped curves charactéeiak the i
point response process. Accordingly, there are always two person estimayesddrhe
same probability of item endorsement (Andrich, 1995a) within the context of unfolding
models, and only one person location on the latent trait that is associated with a pyaifabili
a positive response when a cumulative model is applied. It is for this reasdiodbat c
examination and perhaps a change in the way researchers analyze non-cogdaitsve da
warranted. If data are truly of the unfolding type, and a cumulative IRT nsdpplied,
results will be inaccurate. The degree of inaccuracy depends on the releditven of the
items and people.

In summary, Likert-type instruments are built, by design, to only includiévedia
positively and negatively worded items, have high internal consistency, and to hawve ite
with high item-total correlations. By design, relatively neutral iterasaritted, thus
omitting some level of measurement precision on the latent trait. Also, sislteofereverse
scoring negative items, all ICCs should appear to be monotonic increasing. Haeswks
from Meijer and Baneke (2004) in their analysis of data fronMimaesota Multiphasic
Personality Inventory - P’MMPI-2) and the analysis of data from tBiteen Personality
Factor Scalg16PF by Chernyshenko et al. (2001) yielded items with nonmonotonic ICCs.
Existence of some unexpected nonmonotonicty provides support for further consideration of
unfolding models. Additional support for further investigation into the appropriateness of
unfolding models for non-cognitive data was evidenced by Chernyshenko et al. (2007) who

found that the conditional statistic, item information, for Likert-type iterosiged the most
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information towards the middle of the latent continuum. Thus, if a scale is built bsing t
Likert methodology, items require a respondent to select a response categosthat m
closely reflects the person’s attitude, and users of the observed dataesiallysconcerned
with those sample members whose attitudes, opinions, perspectives are neone eXiten
application of unfolding models would at least provide better measuremeniqrdars
respondents than their cumulative counterparts. In many practical sityasens of the data
are most interested in those with extreme attitudes or perspectives. Thmeadearement
situation would be such that survey development reflects the intended purpose of the survey
and intended uses of the scores. Items contained on the survey should reflect the gnuipose
assumed response processes that will govern the observed responses. fahlg, @ the
observed data would be very closely aligned with the assumptions made about the data.
Chernyshenko et al. (2007) emphasized the need for continued, improved personality
measurement and clearly described the problems with commonly used methodstutyeir
focused on scale construction, which should be a first step because methods of, or procedures
for, test development will dictate how data are used and analyzed. Chernyshenko et al.
(2007) highlighted the problem and constraints with using classical test theogctord f
analytic methods for scale construction and applying cumulative models faantagsis
and scoring in the context of personality scale development. An explanation wigsldeta
about the parallel between ideal point processes and unfolding models for test ttonstruc
Because of the greater flexibility that ideal point process or unfoldinglmoffer,
Chernyshenko et al. (2007) noted that:
Constructing scales under ideal point assumptions would therefore allow theoimclusi

of items having a wider range of locations rather than just those tending toward
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extremes. This, in turn, would improve scale precision, reduce inventory development

costs, and offer a relatively straightforward path toward computerized adaptive

tests...” (p. 91).

Support for the claim that application of traditional, parametric, cumulatiVe IR
models may not always be appropriate for non-cognitive survey development and data
analysis comes from a direct comparison of cumulative and unfolding IRT methaed a
as classical test theory (CTT) in terms of measurement precision, finoaetl construct and
criterion validity by Chernyshenko et al. (2007).

The application of an unfolding model to real survey data is considered in the current
investigation because many researchers have argued that responsesttomgdezthotomous
agree/disagree attitudinal items follow from an ideal point response procggsosed to a
dominance response process. Thus, it is argued that the application of unfolding models to
this type of data may be more appropriate than cumulative models because thptiassum
of both unfolding models and data produced from ideal point response process are more
congruent with each other (Andrich, 1988; Andrich, 1996; Andrich & Styles, 1998; Roberts
& Laughlin, 1996; Roberts et al., 1998; 1999; 2000; van Schuur & Kiers, 1994). Roberts et
al. (1998; 1999) detailed the consequences of applying a cumulative model to data of the
unfolding type, where the model and data have competing underlying assumptidnst Sta
al. (2006) also examined and tested which of the two models, cumulative or unfolding, best
described personality data. Andrich (1988) described the inconsistency between data
collection and analysis that many researchers use. For example, theipesdcurvey
design method that is employed is the Likert scaling methodology (as opposed tstarkhur

approach), which implies use of a cumulative model. Observed data collectddgnigy as
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respondents to disagree or agree with an item does not necessarily involvaangdirect
implying an underlying ideal point response process, thus suggesting thetagppbtan
unfolding model.

The body of research that exists within the context of unfolding IRT models $ocuse
on improving the measurement of non-cognitive (preference, attitudinal, perpamalis by
informing scale construction and development methodologies, and appropriate scoring and
scaling procedures. Emphasis on improving measurement using models that hava not bee
traditionally used comes from the fact that non-cognitive measuremenohlsen studied
to the extent that cognitive measurement has, in the context of the ideal point response
process and unfolding models. Non-cognitive measurement has been executetyprimari
through the use of cumulative IRT models and classical test theory models. émpras in
noncogitive measurement would necessarily improve the reliability of sgietded by an
instrument. The enhancement of non-cognitive measurement and scale construction woul
presumably result in an increase in accuracy and validity of decisions thaadedased on
scores. Improved measurement and better informed decisions based on scoregdiave c
implications. Non-cognitive measurement has important roles in a varietycgflitiss
including many facets of psychology (i.e., developmental, industrial/ordgemah social,
and abnormal) and in education. Often times, results from questionnaires and fateys t
measure personality and/or attitude are used to make educational policy dedesreitp
treatment plans for the psychologically ill, or to make hiring decisions ésppctive

employees.
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Alternative Approaches for Assessing Model-Data Fit

It has been recommended by Andrich (1996) and Chernyshenko et al. (2007) that
comparison of the performance of cumulative and unfolding IRT models using suinulate
data and real data from a variety of disciplines would contribute to a greatestandarg of
the generalizability of unfolding models and to methodologies for improved measti@me
non-cognitive constructs. Further, Chernyskenko et al. (2001) and Stark et al. (20@6) arg
for continued investigation into methods, alternative to the Likert methodologydier s
construction and into the consequences of model-data misfit. In all of the intresiga
mentioned in this literature review, either “truth” was known with the génaraf
simulated data, or prior parameter estimates existed for the sameeneasuding a
reference for comparison. Comparisons between the two types of IRT maotelddive
and unfolding) involve person and item parameters, in addition to graphical and analytical
measures of model-data fit. The predominant statistical approach torgsesbcomparing
model fit includes the calculation of a chi-square distributed statitio. l#vel chi-square
distributed fit statistics are also frequently calculated as mesastibmth model assumptions
and statistical fit within the context of cumulative and unfolding IRT modelstiRel
comparisons of model fit using chi-square statistics are not been possible, however, du
the fact that cumulative and unfolding models are not nested, thereby inhibiting thie us
conventional and familiar statistics such as a log-likelihood ratio statisti

The calculation of information theory-based measures (also referred torasatibn
theory-based criteria or statistics) can provide an additional, unique so@wvderice, in
conjunction with other measures of fit, to assist in determining model selectidn. Suc

information theory-based criteria employ a penalty for complicatéidtgtal models such
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that comparison of models with varying number of parameters is possible. @&ibmiof the
widely used chi-square distributed statistics is such that models with maregters to be
estimated are more likely to fit better. These statistics are incorelinghat the fit could
truly be better, or simply an artifact of the number of parameters. Infiomiteria can be
calculated to overcome this limitation of chi-square distributed statisticeoh-nested
model comparison where models vary in complexity.

When maximum likelihood methods for item parameter estimation are yeaplois
possible to calculate criteria such as the AIC (Akaike, 1974) and the BIC (S¢l1®Z8).
Bayes model selection criteria such as the Bayes Factor (Gelfang,&881), the pseudo-
Bayes Factor (Geisser & Eddy, 1979) or the deviance information crit€l@n 4s cited in
Kang et al., 2005) are appropriately employed when methods for Bayes ctomparta used
for parameter estimation. Perhaps the information theory-basedacatermost visible
within the structural equation modeling literature, namely the AIC wheniakxagn
predictive fit indices (Kline, 2005). They are considered predictive in that iatatjpn of fit
is assessed within the context of how the model would fit data produced by repeated random
samples drawn from the population as the observed sample (Kline, 2005). The AIC is also
considered a parsimony-adjusted measure in that a penalty function for ovefesizang is

incorporated in the equation. Akaike (1974) defined the criterion AKCast

AIC (g?) = (-2) log (observed likelihood) k2 (7)
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“wherek is the number of independently adjusted parameters té”g(@tkaike, 1974, p.
719). An arguably more stringent measure of model fit is the BIC as saxplis directly
considered where the calculation of the BIC criterion follows:

BIC (model) = (-2) log (observed likelihood for a given modeg(logN) (8)

where N is the sample size. Early contributors to research for modelicheidif and
prediction unanimously emphasize the expression of a médek a probability distribution
and consider “fitting a model to the data as estimating the true probabilrijpution from
the data and treat the estimation and the evaluation of a model together as ynatleetit
than separating them” (Bozdogan, 1987, p. 347).

Within the context of IRT measurement models, calculation of information theory-
based statistics has predominantly been used for comparing the fit of lagsnihodels
(Bockenholt & Bockenholt, 1991; Houseman, Coull, & Betensky, 2006; Lin & Dayton,
1997) mixture IRT models (von Davier & Yamamoto, 2004) and penalized latent variable
models (Haberman, 2006; Houseman, Marsit, Karagas, & Ryan, 2007). Interestingly, the
utility of information theory-based statistics for comparing the fiR¥ models to assist in
the determination of model selection in applied research appears largetytivitiealth
sciences literature, specifically for the application of latent ctasdels to presumed high-
dimensionality data with relatively small samples (Houseman et al., 2008ehhan et al.,
2007). Briefly, Houseman et al. (2006) proposed a penalized latent class model that
circumvents the problem of “the number of conditional probabilities that can be codsidere
without overfitting the data” (p. 1063) using latent class models. They proposed a method of

deriving a constraint parameter; a parameter that is a direct functiondfiteesionality of
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the data and the number of classes. Houseman et al. (2006) use both the AIC and BIC, among
other information criteria, to estimate the number of latent classes, oneepaca

component, used in their penalized method. In a follow up study, Houseman et al. (2007)
proposed a very similar methodology for the purpose of “data-driven model selection” (p.
1275), except the models were described as IRT models with the unobserved variables
treated as continuous random, as opposed to categorical random. The AIC was again used t
derive one component of the penalty function. Houseman et al. (2007) conducted a

simulation study assess the functionality of the penalized likelihood models dajyeliie

model and two Bayesian models (including the corresponding Bayes approach to thei
proposed method) to real data.

Finally, Hardouin and Mesbah (2004) extended the AIC to be used with
multidimensional and non-parametric IRT models. They proposed a new multichmans
Rasch-type model, called the multidimensional marginally sufficieatiRenodel
(MMSRM), for the purpose of informed and improved Quality-of-Life scale consiruct
over traditional factor analytic models. Their efforts also focused on the prable
unidimensional, parametric, IRT models exhibiting poor fit to data gewrat® measures
like the Quality-of-Life scale. Implementing simulations to testrthedel, Hardouin and
Mesbah (2004) used the AIC as a measure of fit between their proposed muliigin@ens
IRT model and the Mokken scale procedure. They concluded that regardless of the model
from which data were generated, their model generally performed inettarectly
classifying items to respective subscales than the Mokken scale pe¢dduuin &

Mesbah, 2004).
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The use of information statistics for latent trait model selection witi@rcontext
educational measurement using familiar IRT models such as the PCM, RSHMCM G
(Kang & Cohen, 2007; Kang, Cohen, & Sung, 2005) is visible, though to a seemingly lesser
degree (Ostini & Nering, 2006). Further, Takane (1996) employed the AIC irsiagstee
fit of his proposed multidimensional IRT proximity model for unordered catedalata;
data for which unfolding IRT models would be most appropriately applied. The derivation
and implementation of similar, though more statistically complex, penalty dmsatan be
found in the educational measurement literature in the context of decisiafiteties
accuracy with continuous predictor variables (Haberman, 2006). von Davier and Yamamoto,
(2004) used information criteria (i.e., AIC and BIC) for the comparison of matipgtRT
models with partially missing data using their proposed model which “inésgnaltigroup
IRT models and discrete mixture distribution IRT models into a common family of
psychometric models” (p. 391).

Application of information theory-based criteria is conventional and apprelgriat
used with a range of models (i.e., latent trait IRT, latent class IRT{suequation models
including confirmatory factor analysis). Although researchers fromiptiises such as public
health, educational, and psychological measurement commonly use informagéina asta
tool for model selection, comparison, evaluation, and fit, such criteria are not without
limitations. The AIC is appropriate for use with maximum likelihood estispat®ugh is
criticized for not being “asymptotically consistent since sample sizetidirectly involved
in its calculation” (Lin & Dayton, 1997, p. 251). The AIC criteria also tend to favor complex
models when the sample size is large (Bozdogan, 1987). McDonald and Mok (1995) heavily

criticize the AIC for use with both sufficiently large and small sasmpled claim that “the
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AIC behaves just like the chi-square significance test itself’ (p. 33). Howather
information criteria that account for sample size such as the BIC (Sghi@ai8) or
Bozdogan’s (1987) consistent Akaike information criterion (CAIC) have beereddonv
overcome this problem. Nonetheless, there is a general consensus that adhering to the
principal of parsimony is necessary and that “there is no single criterich will play the
role of a panacea in model selection problems” (Bozdogan, 1987, p. 368).
Summary

Although some advances have been made in the measurement of non-cognitive traits,
more work is necessary as it relates to the application of unfolding models oetya ofar
data sets within a variety of contexts to better understand the processesduet @r
govern observed data. Many scholars agree that research about non-cognitivenmeads
not lacking, however, research that examines non-cognitive data within thet@inte
unfolding models is sparse. Stark et al. (2006) provided a possible explanation &t liset
of IRT models that assume an ideal point response process: “theoretical gudatmmal
complexity has impeded the development and application of ideal point methods” (p. 27).
Following that, Coombs’s (1951, 1964) original analysis for unfolding models was
deterministic and “was laborious for more than four statements” (Andriglylgs, 1998, p.
455). Itis also generally agreed that the Likert methodology has been dominaheover t
Thurstone approach in non-cognitive measurement because the former does nathequire
labor-intensive step of scaling items. To date, parametric models for unfoldaniyaolee
been developed, and computer software is available to analyze data using tssement

models.
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Although data are usually collected through items that ask a respondent toragree
disagree, where often a direction is not inherently obvious, analysis of saalsdat
cumulative IRT models that assume a dominance response process to govermyie obse
data (Andrich, 1988; 1996). For the purpose of increased measurement precision, accurate
scores, valid interpretations of those scores, and appropriate and informézhddiased on
scores, analysis of data presumed to be of the unfolding type must be analyged usin
procedure that makes parallel assumptions. Andrich (1996) argued that comparisons of
cumulative models applied to Likert-type data to analyses using unfolding medeldd
prove instructive in improving the measurement of attitude and similar con5{c3$9).
Finally, there is general consensus among researchers thattapplhé¢aumulative
models to unfolding data can lead to the inaccurate measurement of people amighat m
focused efforts be made in non-cognitive measurement through the use of unfolding models
including Andrich (1988), Andrich (1996), Andrich and Luo (1993), Andrich and Styles
(1998), Chernyshenko et al. (2007), Luo, Andrich, and Styles (1998), Roberts & Laughlin
(1996), Roberts et al. (1999; 2000), Roberts (2003), and Stark et al. (2006). This study
addresses some of the omissions in the non-cognitive measurement li@natass
function to fill this gap, especially given that real survey data are adsea-dpon which
educational policy decisions have been and continue to be made for the purpose of improving
teacher working and student learning conditions. Although the focus of this intiestiga
on the GGUM and the resulting parameter estimates and ICCs, compariddresmalde
between analyses from the application of both cumulative and unfolding IRT models where
the measurement of people and items can be examined across models. Additionally, the

application of information theory-based criteria to three IRT and SEM madels
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conjunction with other recommended statistical and graphical measures of ihad#| f

facilitate model comparisons.
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CHAPTER 3
METHODS
This investigation used data from the 2006 administration of the North Carolina
Teacher Working Conditions Survey (NCTWCS), an attitudinal measure of teacher
perceptions of their working conditions. Eligible participants included all scheeldba
licensed educators in the state of North Carolina including principals aasgsncipals,
teachers, and other teaching professionals like library media speciabstsoot
psychologists.
Participants
Although eligible participants for the NCTWCS included all school-based lidense
educators, principals, assistant principals, and other education professiongibi@.g
media specialists, school counselors), for the purpose of this study, only respomsssiff
identified teachers were used because the questions are geared mats tieaers and
teacher activities (i.e., teaching, preparing lesson plans) rather than psinagsastant
principals, school counselors, or other school personnel. Many items on the NCTWCS are
not applicable to respondents who are not teachers; therefore items could be omitted
systematically by those respondents. Additionally, interpretation of thevdatd be
difficult if self-identified principals, assistant principals, or school celors responded to
items that are targeted towards teaching activities. Finally, thei@®eto restrict the sample

to teachers was made so that the integrity of the relationship between thgingderl



construct (i.e., teachers’ perceptions of their working conditions) and the obsetvésl da
maintained.

The sample used for this study consisted of 65,031 self-identified teachers who
responded to the NCTWCS, which represents 86% of the total sample of respamdents (
75,615) that also included assistant principals, principals, and other educational
professionals. The total number of unique schools in the sample was 2,365, of which 96 were
charter schools and 19 were designated as special schools. The distinction tegwieen r
and special/charter schools is necessary because the response rastyadifferent for
the two types of schools. The average response rate for the 115 special ardchaals
was 19.27%, whereas the average response rate for the other 2,250 schools was 69.07%. Of
the 2,250 regular schools, only 304 schools had a response rate of less than 40%.

Although not used in this investigation, the total number of principals who responded
to the survey was 1392 of 75,615, or 1.84%. Assistant principals accounted for 1,544
(2.04%) of the total respondents and 7,449 (9.85%) of 75,615 self-identified as some other
type of educational professional. It should be noted that a total of 115,105 people were
eligible for the survey, and a total of 75,615 responded, for an overall responseoate, ac
all categories of occupation of 65.69%.

By design, the NCTWCS was administered so that responses would be both
confidential and anonymous. It is therefore not possible to link any response string to a
particular respondent. The data set does contain a single identifier: tipeatiedischool

code to which respondents were assigned at the time of data collection.
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Measure

In 1996, the North Carolina General Assembly established the North Carolina
Professional Teaching Standards Commission. The responsibility of the Caonnsds
determine high standards for North Carolina teachers and the profession. The NalittaCar
Professional Teaching Standards Commission has written the Core Standardls for Al
Teachers in North Carolina, Standards for Working Conditions in North Carolina Schools,
and Professional Development Standards (North Carolina Professional Be@tamdards
Commission, 2006).

In 2001, development of the NCTWCS began as a part of the governor’s Teacher
Working Conditions Initiative. The North Carolina Professional Teaching S@sdar
Commission and the North Carolina State Board of Education conducted research and focus
groups to develop 30 working condition standards for schools in the five overarching
categories of time, empowerment, professional development, leadership, anelsfacid
resources. The categories were named or developed as a result of the focuthgtouge
conducted with more than 500 teachers. In 2002, an original survey, consisting of 29 items
about working conditions within the five categories and in paper format, was destridout
every licensed public school educator in North Carolina.

After some revisions, the survey was administered in the Spring semetste2603-
04 academic school year. The mode of administration changed to self-adeihestdrweb-
based. Additionally, 33 working condition items were added for a total of 72 working
condition items, plus eight demographic questions. The NCTWCS administered in 2006
comprised of a variety of items including: Likert-type with five respomqdgm®ns (Strongly

Disagree, Disagree, Neither Agree Nor Disagree, Agree, and Strdggde), Yes/No,
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Check All That Apply, and frequency items. Various items that elicit infoomatbout
respondent demographics were included at the end of the survey. The mode of ationnistra
of the 2006 survey was the same as the 2004 administration. Anonymity was ensured by
assigning all eligible participants a randomly generated accesshaideas required to

begin the online survey. The scoring procedures for this particular survey gugbholy

available; however, it appears that the scoring method was a simple somaifdke item

scores to yield a total scale score. It was also assumed that no regarggwsas conducted
because no negatively worded items appeared on the survey. A positive response §)e., agre
to any Likert item would indicate a more positive attitude towards teaahr&mg

conditions. The 2006 NCTWCS can be found in Appendix A.

According to available documentation about the NCTWCS, the intent of the survey
was to understand the factors that influence teachers’ perceptions of their working
conditions, as defined by the five domains, as previous research has shown that poor working
conditions (i.e., lack of administrative support, lack of a collaborative atmospbeatapuate
to teacher attrition. The assumption, then, is that improving working conditions duzgre
teacher turnover, and thus improve student learning and achievement. The five ddmains
the NCTWCS were developed as a result of focus groups conducted with more than 500 NC
teachers by the North Carolina Professional Teaching Standards Commis#iomsgiA
statistical measures of validity (i.e., criterion-referencedlitgliconvergent validity) are
not available, estimates of the reliability of the total scale (i.kertitems of the combined
five domains) and of each of the sub-scales using Cronbach’s coefficient alpb¢hftine

raw and standardized item responses were calculated and are reported B1ITable
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Table 3.1

Cronbach Coefficient Alpha for Likert items within the five domains (Total), the
Empowerment and Leadership subscales

Cronbach’s Coefficient Alpha

Number of items Raw Variables Standardized Variables
Scale
Total 52 .966 .966
Empowerment 13 .897 .897
Leadership 21 .959 .959
Models

As described in Chapter 2, a variety of unfolding IRT models exist for examining
non-cognitive data. The GGUM was selected because it models subjeqtivesesof agree
and disagree (and variants of those responses) from above and below, because item
discrimination and category threshold parameters are estimated, and bleeaursbdbility
of item endorsement ranges, theoretically, between zero and one. One oft#tmtimof
Andrich and Luo’s (1993) HCM is that the maximum probability of item endorsemémnt is
even when the person and item location on the latent trait are coincident. In addiidil G
was selected instead of Roberts and Laughlin’s (1996) GUM because an assuraption w
made that the item response options are not interpreted and used equally by the respondent
of the NCTWCS across all items and across all respondents.

The partial credit model was selected over other Rasch models for polytomeus dat
such as Andrich’s (1978) rating scale model because of the similarity o€EtleaRd the
GPCM. The GPCM was chosen over other non-Rasch models for polytomously-scored data
such as Samejima’s graded response model (Samejima, 1969) or Bock’s (1972) nominal

response model because of the association between the GPCM and the generdéded gra
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unfolding model. Although any cumulative IRT model appropriate for polytomous olalth c

be used to estimate the subjective response categories (SRCs) in the GGURNIsMura

(1992) generalized partial credit (GPCM) model was used to parametegeduhetions in

this investigation. To maintain consistency as much as possible, the GPCM was used both a
the model to measure the SRCs within the GGUM, and as the cumulative model for
comparison with the PCM and GGUM.

The decision to implement a fourth scaling method was made so that comparisons of
the IRT analyses could be made to the possible current scoring procedoteal rAw score
scoring method can inhibit score comparisons due to the lack of equal interval data and a
meaningful scale. The items in the NCTWCS are Likert-type which do not aebeggeld
interval data (i.e., the difference between Disagree and Strongly Disagenscessarily
the same as the difference between Agree and Strongly Agree). Additidmalse of raw
scores precludes determining an individual’s standing on the latent trait whaditheual
earns an extreme (i.e., maximum or minimum possible) score on the survey, Finall
measurement precision for extremely scoring respondents is low when wsiscpras.

Thus, the fourth scaling method used was a CFA approach. CFA is a more psychliynetrica
sound approach because the raw, ordinal data are transformed and placed on a more
meaningful scale. Specifically, the products of factor scores that kkfulte the CFA were
used to weight item responses, and then summed across the items for each garseachi

scale (i.e., Empowerment and Leadership).
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Data Analysis

Information about analysis procedures as it relates to each researobngsest
provided in this section. Generally, this study examined the functionality of twolative
and one unfolding IRT model, and where appropriate, comparisons to a fourth model were
made. Although there are multiple sections of the NCTWCS that include vagsousypes,
only 34 of the 52 Likert-type items within two of the five components of working conditions
were considered in the analyses due to concerns of multidimensionalityicigcthe 13
items that measure Empowerment and the 21 items that measure Leademstupedei he
two components were selected based on the substantively most interesting anechimporta
factors to both teachers and to the policy makers who implement changes elitolss
based on the survey data. An example item from the Empowerment subscale reads:
“Teachers are centrally involved in decision making about educational isémesxample
item from the Leadership scale reads: “The school leadership congistefiotices rules for
student conduct.” tems measuring Time, Professional Development, antidsaarid
Resources were not used in this investigation. All items in the selected sgbecalired
respondents to select a response option to indicate strength or level of agreensing
from the five response options: Strongly Disagree, Disagree, NeitregrBesNor Agree,
Agree, and Strongly Agree. All analyses were conducted on each scale (i.ew&mpnt
and Leadership) separately, resulting in two sets of analyses.

Although the total number of respondents was 65,031, the original single sample
could not be used for analyses due to sample size constraints with the GGUM2004 software

(maximum sample is 2,000). As a result, 10 simple random samples of size 2,000, selected
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without replacement from the original sample, were constructed and usédnalgses. The
10 samples were then separated by scale (i.e., Leadership or Empowermesdamplee
selection was executed using the SURVEYSELECT procedure and SRS method in the
statistical software package SAS 9.1 (SAS Institute, 2002).

Estimation Procedures

All IRT analyses required the use of statistical software to esitRat item and
person parameters. The program PARSCALE 4 (Muraki & Bock, 1997) was used for
application of the partial credit and generalized partial credit models.rogeam
GGUM2004 (Roberts et al., 2000; Roberts et al., 2006) was used for the application of the
generalized graded unfolding models. Other software programs exist folativen IRT
calibration, however, PARSCALE was used for both the PCM and GPCM toditeilit
comparisons across models.

With regard to the algorithms used in the IRT estimations, briefly, the margi
maximum likelihood method (MML; Bock & Aitkin, 1981) is implemented in PARSCALE
for item parameter estimation. The Expectation-Maximization (EM; ixen, Laird, &
Rubin, 1977) algorithm is integrated in the derivation of maximum likelihood solutions.
Either maximum likelihood or Bayes estimation is feasible with PARSCHkEstimating
person parameters. Th&pected a posteriofEAP) method was used in this investigation
for estimating the person parametéksi type of prior distribution is necessary for the
estimation o¥; a normal distribution was specified for this investigation. Additional
information on estimation in PARSCALE can be found in du Toit (2003).

The GGUM2004 software also estimates item parameters using a margxmadum

likelihood method. According to the GGUMZ2004 technical manual, “the solution algorithm
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parallels Muraki’'s (1992) procedure used in the generalized rating scale anddslbased
on an expectation-maximization (EM) strategy” (Roberts & Shim, 2008, p. 5). In order t
estimated, specification of a prior distribution is necessary in any analysis wheiteeated
as a random variable. For both the GGUM2004 and PARSCALE analyses, a standatd norma
prior distribution was assumed férThe EAP method faof estimation was also used in the
GGUM analyses. Further details about the software are availableGGb#12004
Technical Reference Manu@oberts & Shim, 2008). Finally, the software used to conduct
the CFAs and calculate factor scores for each sample was LISREL 8skip&eSorbom,
2006). Additional analyses including the calculation of chi-square statistids posaible
combinations of item pairs and item triplets, and principal components analyses, both
necessary for testing model assumptions were conducted using SAS 9.1 (84&®,Inst
2002).
Omitted Data

Omitted item responses for all four models (GGUM, PCM, GPCM, and CFA), were
treated in a similar manner. In order to determine how to proceed with aratygstee
treatment of missing data, it is necessary to establish the extent anesmthssrandomness
of missing data. Missing responses were examined at the item level, vaithisample
across both scales, for systematically missing responses. Within the 10 &mmgoiy
samples, the two most frequently omitted items read: “In this school we tpkdslve
problems” and when prompted to rate how large a role teachers have in: “De\asingge
techniques.” The first of the two items yielded a range of 22 to 36 missing resp@Nsss
the 10 samples, representing 1.1 % to 1.8% of a sample omitting this item, and 20 to 37

people omitting the second item, resulting in 1.0% to 1.85% missing data for that item..
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Three approaches were taken to assess for patterns of systematioramissiin the 10
Empowerment samples. First, those respondents missing both items weateseipam
those not missing both items across the 10 samples. Group means could not be compared due
to the extremely low number of individuals across the 10 samples omitting bothntems (
ranged from one to three respondents). Second, those respondents omitting the first item
were separated from those not omitting that item. The same procedure wasddtowhe
second item. Again group means could not be compared due to the low samples for those
omitting either the first or second item. For example, in the first Empoweisaeple, 24
people omitted the first item and 1,976 did not. In the first Empowerment sample, 31 people
omitted the second item and 1,969 did not. Group comparisons were not made due to the
disparity of sample sizes, as the smaller sample could potentially intrbdiscato the
estimates, and suppress power to detect true differences. Finally, ofassesinverse
relationship of omissions between the two items, each of the 10 Empowerment samples we
subset into two groups: those omitting the first item, and not the second; then sultsetting
sample into those who did not omit the first item but did omit the second. Again, the sample
sizes were vastly different preventing group mean comparisons, in that tmereanefew
(approximately 25 missing item responses across the 10 samples) in the sanaophéttieh
an item. As a result of the above considerations, it was concluded that no sygpeibetic
of omissions existed in the Empowerment samples.

Only one item, “The school leadership makes a sustained effort to addrées teac
concerns about facilities and resources”, was consistently omitted acress the 10
Leadership samples at a rate of between 33 to 45 people in a given sample, negresent

1.65% to 2.25% of the samples, respectively. As a result of the relatively low pegecémat
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the missing data accounted for in both the Empowerment and Leadership samges, thes
omissions were not considered problematic and the decision was made that mtasing da
were not systematic in this investigation.

According to the€GGUM2004 Technical Reference Manuhe GGUM2004
software accommodates missing item responses by treating nds$angs missing at
random giver®. In the context of the GGUM family of models, this means that the any
missing item responses are simply ignored when calculating the likelihogglvema
response vector (e.g., eithes(Vf )or Lj(Vf) in the preceding equations)” (Roberts & Shim,
2008, p. 19). According to the PARSCALE manual, “omitted responses are treated as not-

presented” (DuToit, 2003, p. 336).

Analysis Overview

For all items, item characteristic curves (ICCs) were comparedsatrshree IRT
models. The ordering of item location parameters was examined across thatienand
unfolding models, as it has been argued by Chernyshenko et al. (2007) that the item locati
parameters yield information about item content within the context of unfolding madels
result that does not hold for cumulative IRT analyses. Additionally, spe@atiatt was
given to the shape of the ICCs. Specifically, lack of monotonicity for the cunallRT
results would suggest a disparity between the model and data. The opposite is not true
however, for unfolding models such that if monotonic ICCs are found, the interpretation tha
an unfolding model is inappropriate would not necessarily be true. The GGUM softwdre us
in this investigation is flexible enough to model items with monotonic ICCs, even when a

ideal point response process is responsible for the observed monotonic ICC. Non-
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monotonicity in the ICCs resulting from application of a cumulative model woulcntar
reconsideration about how data should be treated and scored. Finally, for persaegstima
the general locations of person estimates and the ordering of those estierategamined
across the three IRT and the CFA models, with attention to those respondentsrefitie ext
estimates in either direction.
Research Question 1

The first research question related to examining the location of the iteting on
underlying latent traits (i.e., teacher perception of empowerment and lepjlexsbss three
IRT scaling methods (partial credit model, generalized partial credit naotethe
generalized graded unfolding model). Iltem parameters, especially thernocab
parameter, and the ordering of those parameters were compared across. rGetpbusal
representations of item parameters were prepared, along with corretdttbesordering of
items across models. Any gaps where no items existed in a particutar oegnterval on
the latent scale would indicate a lack of measurement precision in those regions.

Examination of item location can yield important information for future survey
development and design. If the items on the attitudinal measure were construadeal usi
Likert methodology and modeled using an unfolding model assuming an ideal point response
process when individuals respond to items, then items will generally be locdtedeats of
the latent trait continuum. Within the Likert methodology for test developmentjaifiber
maintaining items on a scale include high point biserial correlations, high faatbhngs,
and monotonically increasing ICCs. Generally, items that measure moreofral attitude
generally do not meet these criteria. ltems meeting the criteriaddredvworded in more

extreme terms (i.e., items that express both extreme positive and extgatieensentiment
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with respect to the latent trait). The scoring of Likert-type itesqsiires the reverse scoring
of items that reflect a negative attitude.

Close examination of item parameters and the relative ordering of thehiésnhgen
recommended by Andrich (1995a) who has observed that the theoretical ordering tikitems
particularly important when the model, which reflects the response procsisg)léspeaked
because there are always two person locations that give the same pyobldipositive
response” (p. 275). If the items on the attitudinal measure were not construted Ligkert
methodology and more neutral items existed on the survey, then item locations centhe lat
trait will be more similar to each other across all three scoring ahdgo@ethods, than if a
strict Likert methodology were used. Specifically, item locations \eitlegally be more
centrally located, or at least more dispersed across the attitude continuum asl dppos
located towards the extreme values of the latent trait.

Research Question 2

The second research question concerned examination of person estimates on each of
the two scales (i.e., location or theta IRT parameters in the GGUM, PCM, arid GPC
analyses, and the composite score in the CFA analyses) on the underlyingdaseatross
the four methods of scaling. Graphical representations were developed to \egaaliyne
the relationship between the estimated theta distributions across modelsmdiars of the
theta distribution across models were facilitated with the use of scatselogl plotting the
person estimates (i.e., thetas) for the GGUM, and those resulting from eaclG&fGM; the
PCM and the CFA analyses. Because the theta scales are differentteetogsiting IRT,
cumulative IRT and CFA models, simple scatterplots and the nonparameteiaionr for

ranked data, Kendall's Tau, were derived. Finally, for each scaling methoantimeuous
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theta scale was transformed into a discrete scale with the use of quirtiteslldwed for
examination of the person distribution at specified intervals. Using the fiwedattgories,
the calculation of 5 X 5 cross tabulation tables under the combination of GGUM with the
other three models across all samples (n = 10) within each scale (n =ijtéatil
examination of the joint theta distributions. Close attention was given to tlespsmdents
estimated to be located at moderately and very extreme locations on th&ddtterten
comparing across scaling methods. Examination at those levels of the Etestiecessary
because researchers (Roberts et al., 1998, 1999; Stark et al., 2006) have shown that the
greatest disparity between cumulative and unfolding models occurs within thieses 1&g
the latent trait. Therefore, if the assumption that the observed data followedrfrioi@al
point response process was true, it would be hypothesized that a discrepancy wbuld exis
between the cumulative and unfolding models only for respondents with extreme esspons
to moderately positive and moderately negative items.
Research Question 3

The third research question required an examination of the shape and location of the
ICCs to assist in the determination of whether an ideal point or dominance respaess pro
operated in these data. Again, the ends of the ICCs from all analyses usiRg thedels
were examined closely for discrepancies. Specifically evidence afoowtonicity of the
ICCs from the cumulative analyses and evidence of monotonicity of the IQ@gHe
unfolding analyses is especially important in determining if and how outcordessults
would differ across the different scaling methods.

It was hypothesized that item characteristic curves (ICCs) for thendooe IRT

models would be monotonic increasing functions. Further, ICCs associated wittadoeni
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models would exhibit non-monotonicity for items containing neutral or non-extreme
sentiments towards teachers’ perceptions of empowerment and leadershipschibei.
Because most of the 13 items on the Empowerment scale and 21 items on the lpeadershi
scale are seemingly neutrally worded, it was presumed that the majahty IGfCs resulting
from the application of dominance IRT models would exhibit non-monotonicity. With
respect to the unfolding model outcomes, it was presumed that the ICCs would appear non
monotonic, and relatively single-peaked for items of neutral and modegpasative and
negative sentiment about perceptions’ of teacher empowerment and leaderssip. ICC
associated with unfolding models were hypothesized to exhibit monotonicity ohlgdfsa
the large majority of all respondents were located to one side of the item atetitdrait
(i.e., extremely homogeneous sample). Finally, ICCs for both cumulative and unfolding
models should appear monotonic only for extreme responses to items that contaiarae extr
sentiment. However, none of the items used in the current study would be categorized as
extremely positive or extremely negatively worded. Consequently, monotd@&cw&re not
expected for both types of IRT models for a given item.
Research Question 4

The fourth research question had two parts that pertained to: 1) testing model
assumptions within the domain of both cumulative and unfolding models; and 2) statistical
model fit for the generalized graded unfolding model, relative to the othergoathods.
With regard to model assumptions, statistical procedures for summaratiegns of
correlations among item responses (e.g., structural equation modeling tecliSigMgs
principal components analysis (PCA)) are commonly employed for asgésst

dimensionality within the context of both cumulative and unfolding models. Model
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specification differs, however, across the two types of IRT models. A single factor can

be expected to explain a set of observed item responses if data follow from a dominance
response process and two latent factors resulting from a principal companaiytss (PCA)
should result if data follow from an ideal point response process. Based on the proskedures
Davison (1977), Nandakumar, Hotchkiss, and Roberts (2002) and van Schuur and Kiers
(1994), linear factor analytic methods (i.e., PCA) were applied and pattdficieaes of

items were examined to assess unfolding dimensions. Plots of pattern auisfineee
constructed as a visual aid to assist in determining the structure of the dataliAg to

Davison (1977) and Nandakumar et al. (2002), data are presumed to be of the unfolding type
when a PCA of inter-item correlations yields a two-factor structure ameh wlotted, pattern
loadings for those two components form a semi-circle. Additionally, root mearesquar
residuals for each item were calculated to allow for relative conoparecross items, where
smaller values represent better fit. This process was undertaken to exasrfineftthe

model at the item level and to examine the property of local independence.

Pertaining to the component of the fourth research question that addresses the fit of
GGUM relative to the other three scaling methods, information theory-basisticstavere
calculated as opposed to the commonly used chi-square distributed statistisglibea
latter cannot be used for relative non-nested model comparisons. Currently, qoaski-s
distributed fit statistic (i.e., log-likelihood ratio) exists that alloasrelative comparisons of
model-data fit for non-nested cumulative and unfolding IRT models, such as for the three
IRT models used in this investigation. The PCM and GPCM can be compared using a chi-

square fit statistic using the difference in chi-square and degrees of frgatleas because
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they are nested models. However, such a comparison is not warranted anchisalaongais
investigation as the focus is on the monotonicity or non-monotonicity of the ICCs.

The information theory-based fit indices calculated in this investigationtiver&IC
and BIC. Both of these indices consider the non-nested characteristics of the anodbe
additional parameters in the more complicated models (i.e., GGUM, GPCM). Additional
the BIC directly considers sample size and tends to favor simpler models t#d@the

Better fit using these statistics is indicated by smaller AIC a@i\VBlues.

Summary and Limitations

The analyses conducted in this investigation focused on both a relatively new method,
and more familiar IRT approaches for analyzing polytomous attitudinal Adhough
cumulative IRT models have been used extensively in analyzing non-cogpdiy®mous
data, unfolding IRT models warrant attention because of their potential for impsnaley
construction and score interpretation. As a result of recent advances inivhéateof
probabilistic models, and software capabilities, applied research usindiogftRT models
is in its relatively early stages, compared to cumulative models. One purpose of thi
investigation was to contribute to the methodological research surroundingatheshel
novel approach to measurement using unfolding IRT models; models which could prove
useful and informative from both psychometric and practical perspectives.

The appropriateness of the application of several parametric, unidimen&idnal |
models to real survey data from the administration of the NCTWCS was iratedtigy

considering several guiding questions. The first two research questions itle étiew
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location of the respondents and the items on the same, unidimensional latentéraliveaca
components of the original scale were treated as two distinct latesit Titaig approach
allowed for exploration of the functioning of all models across two scales whiiallya
controlling for the confounding effects of multidimensionality. Additionally, 10pdem
random samples were selected from the original sample and all analyseeri@med on
all samples across the two scales. This allowed for the display of samiglinigutions of
outcomes. Other characteristics of the items were examined such aghefsthe ICCs
and category probability plots across the three IRT models. The distributiorsohper
parameters was also examined by making the continuous theta distributretedissing
quintiles. The joint distribution of theta under the GGUM paired with the other gcalin
methods was facilitated using cross tabulations. Finally, model assumptionestedeand
relative fit across the four models were compared using AIC and Bl€tiskti

Results from these analyses could help to inform future versions of NCTWCS. A
close examination of item discrimination, item location on the latent trhitkmcan be
interpreted as a measure of intensity of item content), and item fitmaate. Because the
purpose of the NCTWCS is to ascertain teachers’ perspectives about th@mgwor
environment, efficiency is achieved with the least amount of items that mélasneatire
spectrum of the latent trait. It is usually the case in non-cognitive negasat that
measurement is necessary across the latent trait in its entirety, asdfiposgnitive
measurement where, generally, precision and item (and test) informatioftearéocused on
an interval(s) of the latent trait, usually around one or more cut scoresulGargky

construction could increase the efficiency and efficacy of the measurehtbatlatent trait.
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Within the context of test development in personality measurement, Stark et al.
(2006) note that “inclusion of just a few items that do not meet the assumptions of dominance
models can markedly change the rank order of high-scoring individuals and, thusalbptent
undermine the utility of personality measures in applied settings” (p. 37-38). The
examination and evaluation of item and person location on the latent trait in this svestig
would also inform the survey development process and direct attention to areas orethe scal
that require more precise measurement.

The methodology of this investigation was limited by several factars, Fhe
sample in its entirety, (N = 65,031) could not be used due to software constraints. The
reduction of sample size also prohibited parameter estimates for all pertdoasample.

One advantage of previous research studies by Andrich (1988), Andrich and Luo (1993),
Habing et al., (2005), Hoijtink (1991) and Roberts et al. (2002) is that they had previous
parameter estimates for particular scales allowing for dia@uoparisons between IRT
models and parameter estimates. In this investigation, however, pararmetatessdid not
exist for the NCTWCS, prohibiting any relative comparisons and absolutéotsdis be
made with GGUM parameter estimates.

With regard to the measures, all items have five response options, including the
middle category, Neither Agree nor Disagree. According to researchierdimgcAndrich
and Styles (1998), the middle category does not necessarily function as themhid-poi
between two adjacent response options. According to Andrich (1996) the middle category
intended within the Likert methodology of item writing to function as an
undecided/ambivalent response option--has “consistently posed problems” (p. 362) in

interpreting the meaning of an ambivalent response to a seemingly exeamn the
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current investigation there was no meaningful way to collapse responses anit adl fes
response categories were retained.

Despite these limiting factors, this investigation made use of a réjatie® IRT
model for interpreting real attitudinal data within the context of educationalypehaployed
criteria for determining relative model fit, closely examined thereg@ad latent trait
distributions resulting from application of the four models, across all simpiienasamples
and within scales. Overall, this investigation addressed recommendations pyewiadsl| by
researchers such as: the use of real data when examining the functioning andadpespr
of unfolding IRT models, the implementation and comparison of both cumulative and
unfolding IRT models, and the application of unfolding IRT models within different
contexts, in this case educational policy. Comparisons were further supported witlke thfe
two scales (i.e., Leadership and Empowerment). Although cited as a bmjtide random
sampling involved in this methodology allowed for distributions of outcomes to be
constructed and displayed across the 10 samples for each of the two scales.yEbe anal
involved in this study allow for recommendations of modifications to survey construction
which could presumably shorten the NCTWC survey and increase measurememogffic
Finally, not only are the implications immediate to the survey development procéatures
the NCTWCS, but this investigation could have implications for assessing theckigaw!
skills, and behaviors, necessary to successfully perform a school leadershon gosit

principal) and to identify the critical tasks of a principal as part of aipeaanalysis.
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CHAPTER 4
RESULTS

One unfolding model, two cumulative IRT models, and one structural equation
measurement model were applied to attitudinal data from two subscales of tine Nor
Carolina Teacher Working Conditions Survey (NCTWCS). Model assumptionseséed t
and resulting parameter estimates were examined and compared ustajional analyses,
chi-square fit statistics, information theory-based fit statistuith a focus on the behavior
and functioning of the relatively new generalized graded unfolding modalKG®oberts
et al., 2000). Ten simple random samples of size 2,000 were selected from the fudldampl
65,031 self-identified teachers who completed the (NCTWCS) during the 2005-2006
academic year.

As with any parametric, probabilistic measurement model, certain mexiehations
should be met in order to increase confidence in the accuracy of resultingearame
estimates. Testing of these assumptions is always a first step itaastycal analysis. Here,
three different types of models were used: confirmatory factor analysisiative IRT
models, and an unfolding IRT model, all of which rest on assumptions. In the following
sections, results will be presented and discussed for the Empowermentrsgaleefsecond

half of this chapter contains all analyses and results related to the Leadeedhi



Empowerment Scale

Testing Dimensionality Assumptions for Cumulative Models

Although presented first, the fourth research question investigated had to do with
model assumptions and model fit. In practice, any investigation should begin witf test
models assumptions. To test model assumptions, various procedures were condudted for al
four scaling methods and are reported in this section for the Empowerment data.thithi
context of CFA, assumptions include a linear relationship between observed vdriahles
item responses) and unobserved factors (i.e., latent construct, or theta). Twemeqtsrof
CFA analyses include model identification and specification. Model idetitiicansures
unique parameter estimates for all free model parameters. Two basremesntis must be
met for a model to be identified: the number of moments must exceed the number of free
parameters, and each latent factor must be assigned a scale (Kline, 2005). Model
specification is more theoretical and deals with the direction of associstween
variables. In the current investigation, a one-factor model was specifiectinsihg items
that measured the construct, teachers’ perceptions of teacher empowerthemtschool.
For model identification purposes, the factor loading was fixed at 1.0 in the analytes f
item that possessed the largest measure of variation. In the empowermysis amatl item
was “Teachers are centrally involved in decision making about educatiares.iss

Numerous model-data fit indices (predictive, parsimony-adjusted, inctabnare
calculated for each analysis including, but not limited to the root mean squareferr
approximation (RMSEA), root mean square residual (RMR), goodness of fit ind&x (GF
comparative fit index (CFl), Akaike information criterion (AIC), expeatenss-validation

index (ECVI), normed fit index (NFI) and the non-normed fit index (NNFI).
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Model fit results from the single factor confirmatory analysis usindethpowerment
items are reported in Table 4.1. As shown in the Table, the statisticallffcsigh{p < .05)
model chi-square statistic and the RMSEA indicate that a single factor duesehot fit
well. The RMR, SRMR, and GFl also indices indicate less than adequate fit. The only
indication of moderately good model fit is the GFI index. Finally, the matrix afiteen
correlations for the 13 items is presented in Table 4.2. Multiple indices, such as those
reported, must be considered simultaneously in determining model fit, and for the
Empowerment data, a single factor model with 13 items does not appear td fitedk a
Several methods exist for assessing test dimensionality within the cohtexhulative IRT
models. One common approach is the application of factor analytic methods. Ttee resul
presented indicate that the assumption of unidimensionality within the context of the

cumulative IRT models (CFA, PCM, and GPCM) may be violated to some extent.

Table 4.1

Fit Indices for the One Factor Empowerment Model: Full Sample (n = 65,031)

Model y? df 2 1df RMSEA RMR SRMR NFI GFlI Model AIC

68348.838* 65 1051.52 .148 .075 .075 914 .820 85394.63

Notes:RMSEA = Root Mean Square Error of ApproximatiodWIR = Root Mean Square Residual;

SRMR = Standardized Root Mean Square Residual AN¥drmed Fit Index; GFI = Goodness of Fit Index,
Model AIC = Akaike Information Criterion

*p<.05

Local Independence
Related to the unidimensionality assumption, cumulative IRT models pose an

associated assumption: local item independence. To examine this assumptionaroot me
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square residual at the item level was calculated. This was tested on thsamipie for the
PCM and GPCM models on both the Empowerment and Leadership samples. Smaller

residual values are interpreted as better relative fit.

Table 4.2

Item Level Residuals from PCM and GPCM Models: Empowerment Scale

ltem PCM  GPCM ltem PCM  GPCM
1 10.460 5.279 8 6.114 3.914
2 8.156  40.762 9 7.005  5.209
3 9.722  5.389 10 2.846  4.048
4 8.466  5.557 11 5.676  5.663
5 5916 6.141 12 2.561 4.280
6 5.822  6.548 13 6.950 5.712
7 4910 5.585

Table 4.2 displays the root mean square residuals at the item level from be@Mhend
GPCM models. Because of the sample size restriction and other softwactiagast chi-
square item level likelihood-ratio fit statistics were used as a proxyreeasure of local
independence for the GGUM. These chi-square distributed statistics weriateal for
measures of model fit and are reported and interpreted in Table 4.15 in the rikenetéa
Estimates section for the GGUM analyses, by sample, on the Empowermeifiiodata
summarize the results shown in Table 4.3, items 1, 3, 4, 8, and 13 fit statistically meHt
of the GGUM analyses, although these statistics and assogiaéddes, must be interpreted

with caution. At the scale level, the GGUM did not fit statistically wellng analysis.
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Table 4.3

Pearson Product Moment Inter-item Correlations between the 13 Empowerment Item

ltem 1 2 3 4 5 6 7 8 910 11 12 13
1 -

2 674 -

3 .697 .603 -

4 .628 .567 .766 -

5 402 365 405 .392 -

6 430 429 378 .361 .273 -

7 392 488 .358 .361 .242 .587 -

8 306 .368 .270 .267 .201 .439 .561 -

9 464 393 446 .412 .330 .434 371 .365

10 333 .265 .303 .286 .221 .298 .224 .192 401 -

11 479 408 470 .469 .312 .367 .348 .301 .465 .427 -

12 419 317 .392 .363 .261 .361 .267 .220 .451 .482 .476 -

13 498 402  .489 .462 .305 .430 .365 .274 .472 .374 .487 .517 -

Item

Mean 3.20 3.64 3.33 3.51 3.33 3.43 3.70 3.40 2.61 1.80 2.60 2.02 3.12
sSD. 1.13 1.07 1.10 1.05 1.08 1.00 .99 1.11 1.06 .97 1.10 1.00 1.04
Var. 1.27 1.15 1.22 1.11 1.17 99 98 123111 94 121 1.00 1.08

Investigation of model assumptions, and to some extent, model fit, revealed that the
CFA and cumulative IRT models exhibited moderately good fit, and the assumption of
unidimensionality was reasonably met. Although absolute interpretations cannadde ma
using the RMSEA statistics, they revealed, at the item level, that thefiPRetter for half
of the items, and the GPCM fit better (than the PCM) for the other half of the Emmpemte
items.
Unidimensionality under Unfolding Models

Assessing the dimensionality of the data from the ideal point response pees@ec

principal components analysis was conducted on the entire sampi&5(031) to assess
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dimensionality. The methods used to examine the dimensionality of each data set
(Leadership and Empowerment) included examination of eigenvalues, final contynunali
estimates, pattern coefficients, and plots of pattern coefficientsingsilé application of
principal components analyses with two components. Assessment and determination of
dimensionality structure within the context of unfolding models is similar grmatation
within the context of cumulative models in that consideration of a variety of nesasur
necessary, where there are established criteria for some measdrgsnaral heuristics for
others. Generally, if an item level communality, generated from the flostdwponents, is
> .3, then that item is not likely violating the assumption of unidimensionality (Fsodteat.,
2000). Item level final communality estimates derived from a two factmponent model
for the Empowerment sample are reported in Table 4.4. Communalities for all items
comprising the Empowerment scale were greater than .3.

The first two eigenvalues of the PCA should be larger than the remainingaigenv
when the data are unidimensional, of the unfolding type. This criterion is a rule-df;sthum
no formal criterion exists to strictly quantify “large.” The first fiigenvalues from the

Empowerment analysis, in descending order were: 5.889, 1.254, 1.163, .732, and .604.

Table 4.4

Final Communality Estimates for the Empowerment items (i = 13)

tem 1 2 3 4 5 6 7 8 9 10 11 12 13

.654 550 .667 .614 .308 .614 .756 .683 .478 .340 .507 .459 .514

86



The second eigenvalue was not substantially larger than the third eigenvalus. This i
evidence that the assumption of unidimensionality within the context of cumuRiive
models is supported, as opposed to unidimensionality within the context of unfolding models.
A third procedure for examining dimensionality within the context of unfolding
models is to plot the pattern coefficients that result from a PCA with two $acter,
components). A semi-circular pattern (i.e., simplex pattern) of the coeffigreattwo-factor
space is evidence that two linear principal components explain the pattern of idaitativg
context of unfolding IRT models, there are two linear principal components for each
unfolding dimension. The pattern coefficients from the two component PCA with the
Empowerment samples are reported in Table 4.5. Figure 4.1 displays the pltgrof pat
coefficients for the Empowerment scale. A distinct semi-circularnpagenot evident for the
13 Empowerment items, suggesting that two linear components are not responsible for
producing the observed pattern of responses. All of the procedures for assessing
unidimensionality within the context of unfolding data reveal that the responses do not

unfold, and that application of unfolding IRT models may be unnecessary.

Table 4.5

Factor Pattern Coefficients Derived from Two Principal Components: Empowerment

Item Factorl Factor2 Item Factorl Factor2

1 .755 .289 8 112 .819
2 .593 445 9 .586 .368
3 .790 .206 10 577 .088
4 .756 .205 11 672 .235
5 534 .149 12 .665 126
6 .338 .707 13 .668 .262
7 221 .841
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Figure 4.1

Plot of Factor Pattern Coefficients for the Empowerment Scale

Factor Pattern Coefficients

Empowerment Items (i= 13)

Factor 1
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Factor 2

Development of the CFA Scale

The single factor CFA analyses were implemented as scalifgpdseand were
selected to mirror the scaling methodology frequently used in current sesearch.
According to documentation in reference to the NCTWCS development and data
manipulation, (Center for Teaching Quality, 2006), results from factor analygesused to
create domain averages across the sections, including but not limited to those of
Empowerment and Leadership. To maintain a close resemblance to curriggy/scaling
methodology, an assumption was made that a single latent trait, Empowerment, was
measured by the 13 empowerment items. In the empowerment analysis, ttieattem
consistently yielded the highest standard deviation reads: “Teacheentnaly involved in

decision making about educational issues”, with the standard deviation rangint Iffrto
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1.147 across the 10 empowerment samples. As a result, the factor loading ahtbistite
the Empowerment factor was fixed at 1.0 for all 10 Empowerment analyses.

The measures of the latent trait were transformed into observed variaklasioyng
the products of the factor scores and item responses per respondent. The summadion acros
the 13 Empowerment items functioned as the CFA Empowerment theta or measure of
Empowerment trait per respondent. Various measures of model/data fit for the 10

empowerment samples are shown in Table 4.6.

Table 4.6

Fit Indices for the One Factor Empowerment Model by Sample (nh = 10 samples)

Sample Modely®> df y2/df RMSEA RMR SRMR NFI GFI Model AIC
1 2152.176  6533.110 .146 .075 .075 .915 .819  2690.97
2 2248426 6534591 152 .078 .078 .912 .808 2889.7
3 2096.821  6532.259 .145 .077 .077 .907 .821 2643.81
4 2188376  6533.667 .147 .075 .075 911 .817 2723.15
5 2182586  6533.578 .147 .075 .075 .914 .817 2721.22
6 2325526  6535.777 .155 .080 .080 .900 .801  3024.7
7 2568.795  6539.520 .144 .073 .073 917 .824 2620.8
8 2026.286  6531.174 .145 .075 .075 916 .822  2603.62
9 2054.238  6531.604 .145 .073 .073 916 .822 2592.43
10 2233.273 6534358 .149 .077 .077 .913 .813 2828.364

Notes: RMSEA = Root Mean Square Error of Approximati®NR = Root Mean Square Residual;
SRMR = Standardized Root Mean Square Residual A\N¥fdrmed Fit Index; GFI = Goodness of Fit Index,
Model AIC = Akaike Information Criterion

The preceding results indicate that a single factor model did not fit theveht

therefore the assumption of unidimensionality within the context of cumulativeniiRiEls
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was not satisfied. Further, it can be concluded that the 13 items do not measure thetconstr
Empowerment in the CFA model well either. Unidimensionality within the context of
unfolding IRT models was also not met given that two components did not explain the data,

and that the plots of the pattern coefficients did not form a semi-circular.shape

IRT Parameter Estimates

Item Locations

The second research question focused on the item location estimates generated
from the three IRT models, as it was hypothesized that locations may beftengndiacross
the two types of IRT models (cumulative, unfolding), if the survey was construsteg a
method that assumed a dominance response process. To investigate this, IRibnoalibra
were performed on all 10 Empowerment data sets with the application of the PCWI, GP
and GGUM models. Item parameter estimates, including the location estiamf@esented
in this section.

The items as they appear on the NCTWC survey are presented in Table 4.7.
The underlying trait, Empowerment, and the respective scale upon which both item and
person estimates are located are different for the cumulative (PCM, GRCENGGUM
models. PCM and GPCM estimates may be interpreted similarly, though carthicdbly
interpreted relative to the GGUM parameter estimates, both item and pensanerage
item location estimate and average standard error of the location estiaggiegjated across
the 10 samples are presented in Table 4.8 for the Empowerment scale. Itemn lacdds by
IRT model are also tabled. All item location estimates generated from th&6 MG

analyses on the Empowerment items were moderadely=(2.743) to highly extremey( =
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5.048). Within unfolding analyses, the order of item locations and the content of items should
be consistent. Item content, may, to some extent be associated with thetgxtfeem
location in that item parameters are estimated relative to the location oé p@ogn that
the location parameters from GGUM analyses are estimated and centemthelative to
theta, the item locations can be interpreted as corresponding to the point on thealatent
where the average item response would lie. However, if a sample is rglatwebgeneous
in their attitude, say neutral, then moderately negative (or positive) itdhappear
extremely negative (or positive).

The relative extremity of the observed average item locations estirfitatn the
GGUM could be an indication that the distribution of responses may be skewed intilgat ma
people agreed or strongly agreed to most of the items. Additionally, extramatestsuch
as those presented in Table 4.8 could also result from scale drift that occurs when only
portion of the latent trait is measured. The signs of the item locations arargrithin
unfolding analyses, therefore interpretation of an extreme location sueimasttfor

example (averagé, = 5.048) must include consideration of relative location of people, the

items content and the content of the rest of the items on the scale. ltem 10R&=e “
indicate how large a role teachers at your school have in hiring new teachais anguably
does not contain extreme content in either direction. Considering that the majority of
respondents disagreed with this item, the extremity of the location of Itesrlik@ly due to
the homogeneity of attitudes among respondents with respect to this padicegton.

Table 4.9 displays the percentage of respondents who endorsed each category for each

Empowerment item.
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Table 4.7

Empowerment Items (i = 13)

Empowerment

Please rate your level of agreement with the following statements:

1. Teachers are centrally involved in decision making about educational issues
2. Teachers are trusted to make sound professional decisions about instruction
3. The faculty has an effective process for making group decisions and solvingnsroble
4. In this school we take steps to solve problems
5. Opportunities for advancement within the teaching procession (other than adnanjstrat
are available to me
Please indicate how large a role teachers at your school have in each dbwirda@reas:
6. Selecting instructional materials and resources
7. Devising teaching techniques
8. Setting grading and student assessment practices
9. Determining the content of in-service professional development programs
10. Hiring new teachers
11. Establishing and implementing policies about student discipline
12. Deciding how the school budget will be spent
13. School improvement planning

Within the PCM and GPCM analyses, the majority of the item location essimate
produced from the PCM and GPCM analyses were moderately negative, exceph$a® it
through 12, which were consistently estimated to be positive. The scale for iamepar
estimates (and person parameter estimates) within IRT analysesltypanges between -3
and +3. For example, application of the PCM for item 7 resulted in an averagatedtitem
location value of -.936 which indicates that it was generally easy for respgenideendorse
item 7. Alternatively, the average location estimate for item 10 resutbngthe application
of the GPCM was 2.39; this value is interpreted to indicate that a relatively gpoditve
attitude toward Empowerment is required for respondents to endorse this itechoBase
these results, item 10 can be interpreted as difficult to agree with, or enddraeother

way, it would take a very high degree of or very positive attitude about teacher
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Empowerment to endorse item 10. The PCM and GPCM results are similar to eact other
the item level in terms of both the location and standard error of the estimategnfsdigit
the order of the location of items on the latent trait was almost identicadretive PCM
and GPCM analyses.

The large standard errors associated with the GGUM estimates forjtréyad the
Empowerment items would generally be expected for such extreme iteiorioestimates.
The large standard errors may be an indication that these items are reut inche same
general region on the unidimensional latent trait as the majority of thencesqts (i.e.,
thetas). Further, the general average location of the Empowerment imrdirag to the
GGUM analyses indicate that the items are located in one region of the laitestale, and
not dispersed across the spectrum of the latent trait.

The average correlation between the Kendall's b @parameter estimates across the
10 samples between the PCM and GPCM for estimated item locations was .938.r&be ave
correlation between the PCM and GGUM was .231 and the correlation between GPCM and
GGUM item estimates was .180. Across the 10 Empowerment samples, all icoiselat
between the PCM and GPCM location estimates were statisticallyicagmip < .05). None
of the 10 correlations between the PCM and GGUM location estimates werteatbtis
significant, and none correlations between the GPCM and GGUM estimatestatestically
significant. These correlations and associatedlues, along with the nearly identical rank
ordering of item locations are further evidence that the PCM and GPCNbfusachilarly,

as expected.

93



Table 4.8

Average Item Locations, Standard Errors, and Rank Order of Item Locations across 10
Samples: Empowerment

Average Item Location Rank Order of Average Item Locations
(Standard Error)

ltem PCM GPCM GGUM PCM GPCM GGUM

7 -0.936 -1.034 -4.613 13 13 3
(0.039)  (0.048) (3.735)

2 -0.633 -0.574 -2.795 12 10 11
(0.038)  (0.031) (0.727)

6 -0.627 -0.671 -4.301 11 12 6
(0.037)  (0.042) (3.181)

4 -0.499 -0.441 -2.743 10 9 12
(0.041)  (0.030) (0.542)

8 -0.436 -0.589 -4.994 9 11 2
(0.036)  (0.057) (5.030)

3 -0.278 -0.255 -2.847 8 7 10
(0.041)  (0.028) (0.743)

5 -0.274 -0.289 -3.769 7 8 9
(0.035)  (0.046) (1.861)

1 -0.110 -0.120 -2.738 6 6 13
(0.038)  (0.028) (0.463)

13 -0.037 -0.034 -3.836 5 5 8
(0.036)  (0.035) (2.429)

11 0.670 0.691 -4.328 4 4 5
(0.035)  (0.036) (3.921)

9 0.695 0.724 -4.097 3 3 7
(0.035)  (0.037) (3.374)

12 1.543 1.708 -4.473 2 2 4
(0.037)  (0.047) (6.601)

10 1.823 2.390 -5.048 1 1 1

(0.038)  (0.072)  (10.601)

Note: The parameter estimates for the PCM and GPCMtsearg not directly comparable to the GGUM
estimates as theta and the resulting scale aeretiff.

The item location estimates, and the correlation between IRT models, tieatehie
cumulative IRT models rank ordered the items differently than the unfolding model.

However, none of the models estimated items to be evenly distributed acr@dsrih&ait.
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Table 4.9

Percentage of Category Endorsement by Empowerment Item: Full S@np65,008)

G6

y

g o

e

C

Item

1 2 3 4 5 6 7 8 9 10 11 12 13

Strongly Disagree
Disagre

Neither Agree Nor
Disagree

Agree

Strongly Agree

81 54 68 51 71 29 25 6.1 169 187 379 7

225129 193 144 16.1 15 9.5 151 28.6 26.5 28.9 32.1 20.6

17.810.3 17.9 17.1 23.7 31.6 243 26.7 32.3 15.3 28.5 20.3 31.7

42.8 545 455 49.6 42.7 36.1 415 355 188 6.5 20.1 8.2 334

8 16299 125 101 135 21 154 26 06 31 09 6.6




The discriminating characteristics of the Empowerment items ardlusgsbere for
the three IRT models. Presented in Table 4.10 are the average item dismimei@at
parameters) and standard errors across the 10 samples. As shown in Table 4.1@&dlué val
the discrimination parameters generally range from 0 (no discrimmatnong examinees)
to about 3.0 (item discriminates well among examinees) and these pararewysparable
across the three IRT models. Because the PCM is a Rasch model, the disonmina

parameter is a fixed item parameter.

Table 4.10

Average Item Discrimination and Standard Errors across 10 Empowerment Samples

Average Item Discrimination Average Standard Error
Item PCM GPCM GGUM PCM GPCM GGUM
1 0.626 1.373  2.349 0.005 0.051 0.102
2 0.626 1.010 1.710 0.005 0.032 0.072
3 0.626 1433 2451 0.005 0.055 0.107
4 0.626 1.228 2.088 0.005 0.045 0.089
5 0.626 0.383 0.647 0.005 0.015 0.033
6 0.626 0.531 0.891 0.005 0.020 0.051
7 0.626 0.488 0.824 0.005 0.021 0.055
8 0.626 0.309 0.513 0.005 0.014 0.039
9 0.626 0.591 1.003 0.005 0.023 0.045
10 0.626 0.371 0.636 0.005 0.021 0.038
11 0.626 0.602  1.020 0.005 0.023 0.046
12 0.626 0.513 0.875 0.005 0.025 0.044
13 0.626 0.673 1.138 0.005 0.024 0.052

The PCM analyses were run using the PARSCALE software, where item
discrimination parameters were necessarily fixed. The constraiptsed on these

parameters included a mean of 1.0 and a standard deviation of .0001. A real value prior mean
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of 1 is generally an accepted value when constraining discrimination garanterger
values of the standard deviation, such as .01, are not tight and should be decreased to
contribute to constraining the slopes to 1.0. A tighter and smaller value for the dtandar
deviation like .0001 was necessary in the current investigation. In the applietlitéerhere
command files are available, values as small as .0000001 are used as the standiard devia
of the discrimination parameters for Rasch type IRT models (Kang & Chen, 2008gllibe
of .0000001 was used on a single Empowerment sample, and had no impact on item level fit
statistics, number of E-M iterations, and the discrimination parametersedrég only .002.
Therefore, the value of .0001 was deemed appropriate and sufficient in this instiga

Across the PCM analyses on the 10 Empowerment samples, each took about 50
iterations of the E-M cycle to converge. Generally, many iterations esbjfar convergence
is indicative of some problem or a potentially ill-fitting model. The relagilaige number
of E-M iterations coupled with the values of .626 fordhgarameter, indicate that, given the
data and the model, forcing tagarameters to a distribution of (1, .0001) was difficult and
that the PCM does not fit the data well. Althoughdhmarameters did not match completely,
the GPCM and GGUM analyses ordered the 13 items identically in terms of meesstto |
discriminating. For example, both models estimated that item 3 was mosndisting and
that item 8 was least discriminating. The average Kendall'sbi@urelation between the
GPCM and GGUM models, across the 10 Empowerment samples was .995. These
correlations, across the 10 samples were all statistically sigrtifiga .05).

Because the majority of the sample either agreed or strongly agteetem 10, this
item also was associated with a low discrimination parameter. This itenotidiscriminate

well among respondents, as most people agreed regardless of their standingtentttraita
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Items 1 and 3, for example had relatively high discrimination parameteagstirmeaning
that these items differentiate well between those respondents with low andviighofehe
latent trait, attitude towards teacher Empowerment. Another contributirag tadhe high
discrimination estimates was the use of all 5 response categoriespbpaents.

The final item parameters estimated using the IRT models were dgoat
probability thresholds. Because there were five categories or resporse aptithe
NCTWCS, four threshold parameters were estimated for each item. Averagergat
threshold parameters across the 10 samples are presented in Table 4.11 for trelPCM
GPCM models. The average values in Table 4.11 are dedptédrepresenting item
category) and often referred to as threshold parameters. Within the PCM aMl GPC
specificationsp;, andd, are always equal to 0. According to the PCM and GPCM, in order
to identify the point of intersection on the latent trait scale, between the griybaibi
endorsing category 1 (Strongly Disagree) and for endorsing categorya@(&a3,

calculation of the item step parametéts, is necessary. Item step parameters are simply the
difference between item locatids, and the threshold parametgy,

Within the GGUM, somewhat analogous to the PCM and GPCM, are item category

threshold parameters, denotegd. Unlike the interpretation of the item step parameters

within the PCM and GPCM models, the category threshold parameters within the GGUM
denote the intersection of the subjective response category (SRC) functitwe telthe

item location. The threshold parameters within GGUM are not interpretbé asint of
intersection of the observed response categories, although they are aromaitctite

variation across response options by the respondents. Table 4.12 presents the average PCM

and GPCM item step parameters and the average GGUM item categehpltingarameters.
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Table 4.11

Average Category Threshold Parameters Across 100&mpnent Samples

PCM GPCM
tem d, d, d, d, d, d, d, ds

1 1.792 0.072 0.588 -2.452 1.414 0.273 0.167 -1.853
2 1.393 -0.168 1.047 -2.272 1.245 0.048 0587 -1.881
3 1.710 0.154 0.540 -2.404 1.363 0.313 0.129 -1.804
4 1.605 0.245 0.529 -2.379 1.352 0.335 0.174 -1.862
5 1.483 0.624 0.227 -2.334 1.722 0.772 0.578 -3.072
6 2.162 0586 -0.510 -2.239 2.305 0.624 -0.516 -2.413
7 1.705 0.638 -0.278 -2.065 1.828 0.709 -0.241 -2.296
8 1.488 0.591 -0.174 -1.905 1.915 0.829 -0.029 -2.714
9 1.851 0.910 -0.334 -2.427 1.891 0.960 -0.323 -2.527
10 1.415 0.890 -0.076 -2.228 1550 1.214 0.113 -2.876
11 1.717 0.713 -0.129 -2.301 1.741 0.749 -0.109 -2.381
12 1.688 0.833 -0.199 -2.323 1.800 0.940 -0.174 -2.567
13 1916 0.722 -0.198 -2.440 1.858 0.714 -0.185 -2.387

Notes: d , = threshold parameter for category 2 (Disagrei%),: threshold parameter for category 3 (Neither

Agree Nor Disagree)d4 = threshold parameter for category 4 (Agred-g;= threshold parameter for category
5 (Strongly Agree)
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Table 4.12
Average Category Step and Threshold Parameterssact® Empowerment Samples

_PCM GPCM GGUM
Item b, b by, bjs b, bj; by, bjs Tiz Tis Tia Tis
1 -1902 -182 -698 2.342 -1533 -393 -286 1.733 -4.277 -3.138 -3.030 -.999
2 -2.026 -465 -1.679 1.639 -1.820 -623 -1.161 1.306 -4.638 -3.400 -3.978 -1.471
3 -1989 -432 -818 2125 -1.617 -568 -384 1549 -4.475 -3.424 -3.228 -1.293
4 -2104 -744 -1.028 1.880 ~-1.793 -776 -615 1.422 -4548 -3.527 -3.369 -1.310
5 -1.757 -898 -501 2.060 -2.010 -1.061 -.867 2.783 -5.790 -4.845 -4.650 -.759
6 -2.789 -1.214 -117 1.611 -2.976 -1.295 -155 1.742 -7.291 -5.610 -4.475 -2.486
7 -2.641 -1.574 -658 1.130 -2.862 -1.743 -793 1.262 -7.479 -6.376 -5.435 -3.282
- 8 -1.924 -1.027 -262 1469 -2.504 -1418 -560 2.125 -7.593 -6.455 -5.580 -2.592
© 9 -115 -215 1.029 3.123 -1.167 -236 1.047 3.251 -5.282 -4.341 -3.064 -.742
° 10 .408 933 1899 4.051 .840 1176 2.277 5.266 -4.219 -3.903 -2.736 .400
11 -1.047 -.043 799 2971 -1.051 -058 .800 3.072 -5.384 -4.403 -3.521 -1.173
12 -145 710 1.742 3.866 -092 .768 1.882 4.275 -4.570 -3.733 -2.620 .002
13 -1.953 -.759 162 2403 -1.892 -748 152 2.353 -5.749 -4.581 -3.705 -1.396




The average (across the 10 samples) points on the latent trait scalehevbategory
1 (Strongly Disagree) and category 2 (Disagree) probabilitiesedewithin the PCM and

GPCM models are given in the column labeted . Likewise, the point of intersection of the

category probabilities on the latent trait between the adjacent categdbesagree) and 3

(Neither Agree Nor Disagree) is found in thg column. The same interpretation is made

for the points on the latent trait where the probability of selecting cat8gdigither Agree

Nor Disagree) and category 4 (Agree) is the samgdolumn) and for the point where the
probability of selecting category 4 (Agree) and category (Stronglge)ds the sameb(; ).

For example, across the averaged parameters estimated within the H@dsarhe point
on the latent trait (Empowerment) scale, where the probability of endaaiegory 1
(Strongly Disagree) and category 2 (Disagree) intersect, is tboataverage, at -1.902.
The similarities of the averaged step parameters between the PCM @il 8¢
evident in that there is a general progression across categories. dtifmbon the latent

trait within b,,, b;;, andb,,are relatively near each other, whereas a gap on the latent exists
between those values and the valueb,pf The relatively high positive values from both
PCM and GPCM analyses withly, can be interpreted as a relatively high or positive

attitude required to strongly agree or agree with the Empowerment items.9, 10, 11,

and 12 exemplify this point. The clustering of the first three step parametefgeand t
separation of the fourth step parameter may be an indication that respondantsianeg

the categories equally in that a disproportionate number of respondents are erldersing
lower (i.e., Strongly Disagree and Disagree) response options for items 9, 10, 11, and 12.

These results are consistent with the item location parameter estimales within the
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PCM and GPCM analyses, eight of the 13 items were located between -1 and O @mthe lat
trait scale. For those five items generally located between 0 and 2,glpasteneters were
also located in that interval on the latent trait. For example, the averageridoaitem 10
within the PCM analyses was 1.823. The associated step parameters ranged B8/and
4.051, suggesting that this item requires a very positive attitude towards the &meoxvof

teachers, and that even those respondents who have a moderately positive b iaties(

=.408) are still likely to strongly disagree or disagree.

The threshold parameters within the GGUM analyses are not directly @tezt @t
the observed response level. Examination of the category probability plots isfos#ial
interpretation of item parameter estimates for GGUM analyses. Denatd examination
of the probability plots were the focus of the third research question, as it wakdsyped
that, for the items that contained relatively neutral content, the plots would display
characteristics of the ideal point response process (i.e., single-peakedonoionic). It was
also hypothesized that the two types of IRT models would function similahg dttitudes
possessed by the sample were located on one side of the items (i.e., homogeneeussampl
measured well by items). Figures 4.2 through 4.14 display the category ptgliabdtions
for the 13 Empowerment items from application of the PCM on the first simple random
sample. Figures 4.15 through 4.27 display the category probability functions for the 13
Empowerment items from application of the GPCM on the first simple randomesaangl
Figures 4.28 through 4.40 display the category probability plots for the 13 Empowerment

items resulting from the GGUM analyses on the first sample.
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Figure 4.2

Category Probability Plot for Item 1 with PCM: Salmfd, Empowerment Scale

Probability

Figure 4.3

Item Characteristic Curve: ltem 1

Theta

Category Probability Plot for Item 2 with PCM: Sale@d, Empowerment Scale

Probability

Item Characteristic Curve: ltem 2

Theta
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Figure 4.4

Category Probability Plot for Item 3 with PCM: Salmfd, Empowerment Scale

Item Characteristic Curve: ltem3

Probability
(o))

Theta

Figure 4.5

Category Probability Plot for Item 4 with PCM: Sale@d, Empowerment Scale

[tem Characteristic Curve: Item 4

Probability

Theta
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Figure 4.6

Category Probability Plot for Item 5 with PCM: Salmfd, Empowerment Scale

Item Characteristic Curve: ltem 5
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Figure 4.7

Category Probability Plot for Item 6 with PCM: Salm@d, Empowerment Scale

Item Characteristic Curve: Item 6
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Figure 4.8

Category Probability Plot for Item 7 with PCM: Salmfd, Empowerment Scale

Item Characteristic Curve: ltem 7

Probability

Theta

Figure 4.9

Category Probability Plot for Item 8 with PCM: Sale@d, Empowerment Scale

Item Characteristic Curve: Item 8

Probability
(o))

Theta
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Figure 4.10

Category Probability Plot for Item 9 with PCM: Salmfd, Empowerment Scale

Probability

Figure 4.11

Item Characteristic Curve: Item 9

Theta

Category Probability Plot for Item 10 with PCM: Spi® 1, Empowerment Scale

Probability

Item Characteristic Curve: Item 10
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Figure 4.12

Category Probability Plot for Item 11 with PCM: Spia 1, Empowerment Scale

Probability

Figure 4.13

Item Characteristic Curve: ltem 11

Theta

Category Probability Plot for Item 12 with PCM: Spi® 1, Empowerment Scale

Probability

[tem Characteristic Curve: Item12

Theta

108



Figure 4.14

Category Probability Plot for Item 13 with PCM: Spia 1, Empowerment Scale

Item Characteristic Curve: Item 13
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Figure 4.15

Category Probability Plot for Item 1 with GPCM: Spim 1, Empowerment Scale

Item Characteristic Curve: ltem 1
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Figure 4.16

Category Probability Plot for Item 2 with GPCM: Spla 1, Empowerment Scale

[tem Characteristic Curve: Item 2
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Figure 4.17

Category Probability Plot for Item 3 with GPCM: Spim 1, Empowerment Scale

Item Characteristic Curve: Item 3
)
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Figure 4.18

Category Probability Plot for Item 4 with GPCM: Spla 1, Empowerment Scale

Item Characteristic Curve: ltem 4
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Figure 4.19

Category Probability Plot for Item 5 with GPCM: Spim 1, Empowerment Scale

Item Characteristic Curve: ltem 5
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Figure 4.20

Category Probability Plot for Item 6 with GPCM: Spla 1, Empowerment Scale

Item Characteristic Curve: ltem 6
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Figure 4.21

Category Probability Plot for Item 7 with GPCM: Spia 1, Empowerment Scale

[tem Characteristic Curve: Item 7
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Figure 4.22

Category Probability Plot for Item 8 with GPCM: Spla 1, Empowerment Scale

Item Characteristic Curve: ltem 8
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Figure 4.23

Category Probability Plot for Item 9 with GPCM: Spim 1, Empowerment Scale

Item Characteristic Curve: Item 9
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Figure 4.24

Category Probability Plot for Item 10 with GPCM:8ple 1, Empowerment Scale

Probability

Figure 4.25

Item Characteristic Curve: Item 10

Theta

Category Probability Plot for Item 11 with GPCM:18ple 1, Empowerment Scale

Probability

Item Characteristic Curve: ltem 11

Theta
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Figure 4.26

Category Probability Plot for Item 12 with GPCM:8ple 1, Empowerment Scale

Item Characteristic Curve: ltem 12
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Figure 4.27

Category Probability Plot for Item 13 with GPCM:18ple 1, Empowerment Scale

Item Characteristic Curve: ltem 13
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Figure 4.28

Category Probability Plot for Item 1 with GGUM: Spla 1, Empowerment Scale

Prab.
o

Figure 4.29

Category Probability Plot for Item 2 with GGUM: Spla 1, Empowerment Scale

Prab.
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Figure 4.30

Category Probability Plot for Item 3 with GGUM: Spla 1, Empowerment Scale

Prab.
o

Figure 4.31

Category Probability Plot for Item 4 with GGUM: Spla 1, Empowerment Scale

Prab.
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Figure 4.32

Category Probability Plot for Item 5 with GGUM: Spla 1, Empowerment Scale

Prab.

Figure 4.33

Category Probability Plot for Item 6 with GGUM: Spla 1, Empowerment Scale

Prab.
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Figure 4.34

Category Probability Plot for Item 7 with GGUM: Spla 1, Empowerment Scale

Prab.

1
Figure 4.35

Category Probability Plot for Item 8 with GGUM: Spla 1, Empowerment Scale

Prob.
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Figure 4.36

Category Probability Plot for Item 9 with GGUM: Spla 1, Empowerment Scale

Prob.

Figure 4.37

Category Probability Plot for Item 10 with GGUM: i@ale 1, Empowerment Scale

Prab.
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Figure 4.38

Category Probability Plot for Item 11 with GGUM: i@ale 1, Empowerment Scale

Prab.

Figure 4.39

Category Probability Plot for Item 12 with GGUM: i8ale 1, Empowerment Scale

Prob.
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Figure 4.40

Category Probability Plot for Item 13 with GGUM: i®8ale 1, Empowerment Scale

Prob.

To interpret the preceding figures, it is important to recall that withicesdigory
probability plots across the three IRT models, category 1 always refg&teongly
Disagree and category 5 always represents Strongly Agree. Thesarplgtaphical
representations of the item parameters previously reported. For examapleeapondents
either agreed or strongly agreed with item 7 in sample 1 (see Figures 4.8, 4.2ar 4.34 f
PCM, GPCM, and GGUM, respectively). This item had a low discrimination panamete
across all three IRT models, had a moderately negative average valueldoattos
parameterl{ = -.936,b = -1.034 for PCM and GPCM, respectively), meaning that this item
was relatively easy to agree with, even for respondents with a modeegelyve attitude

towards teacher Empowerment. All of these components can be seen in the category
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probability plot of item 7, and for the rest of the items. Note that item discrimmigtia
constant or fixed parameter within the PCM, therefore only the location and steeas
affect the shape of the category probability plots within those analyses.

The category probability plots resulting from the GGUM analyses dé@came
item characteristics. A characteristic of the GGUM model is that thexr\adas category
probability function of, say, Strongly Disagree is the summation of the prolesbilit
associated with the two subject response category probabilities (Stizegtyree from
above and Strongly Disagree from below). The category response functiociatasswith
the strongest level of agreement will peak around the point of the items estiotatisahl.
The response functions that represent Strongly Disagree and Disagmseakiflrthest, in
either direction, from the item’s location. For example, Figure 4.37 depictstdgooa
probability function resulting from the application of GGUM to item 10, in sample lern it
with which very few respondents agreed or strongly agreed. According to thM3Gis
item displayed a low discrimination and was the most extreme item in terowatbh ¢ =
5.066) on the latent trait (Empowerment). The response function in Figure 4.37 associated
with category 5 (Strongly Agree) is nearly non-existent because itsyueaét be located
around the item location. Because the item location is so extreme and most pegptéedjsa
the category response function associated with strongly disagree is moalbtat@creasing.
It can be determined for item 10, according to the GGUM, that respondents greaiisg
for one reason. A more discriminating=< 2.363) and less extremé (= 2.271) item than
item 10 in the first sample, according to GGUM is item 3. The response function for the
Strongly Agree category peaks near the item’s location. The highly disating nature of

item 3 is evidenced by the more distinct and peaked category functions, compasd10.it
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Within the GGUM analyses, the Agree and Strongly Agree response categories f
the first five items exhibit characteristics of an unfolding type item, anafem to which
the ideal point response process was used to answer. For example, an individual wdnose thet
value is 3, is highly likely to strongly agree, and highly unlikely to agrele itain 1.

However, if an individual’s value of theta is 2 or 4, then the probability of agreeing or
strongly agreeing is approximately the same. This is characteristicadflingf models; there

are always two person estimates that yield the same probability ofntimmsement. This
pattern of probability is only evident for the categories of Agree and Syréwggée and for

the first five items. It is difficult to distinguish between the cumulative @nfolding models,
based on the category plots for the rest of the items (6 through 13). The mean steme Tor i
in sample 1 was 3.168, and the GGUM location for item1 in sample 1 was 2.779, therefore
the category probability function that corresponds to Strongly Agree peaksdas.

To address the third research question, the probability functions were geverall
similar across the two types of IRT models, indicating little different@d®n cumulative
and unfolding IRT models. Some items, did however, exhibit unfolding properties, especiall
for the Strongly Agree and Agree response options for the first four Empontateres.

These properties were also evidenced by the slight non-monotonicity of thge@€&ated
from the GGUM analyses.

The second part of the fourth research question investigated in this study had to do
with the fit of each model to the data. This was examined by calculating bothtatend
relative fit statistics. Fit statistics are presented and discuskeu. lBoth PARSCALE 4 and
GGUM2004 calculate chi-square distributed (i.e., the likelihood ratio fit §tati&’) at the

item and scale level. The PARSCALE 4 software collapses celegfiéncies are less than 5
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(du Toit, 2003). Table 4.13 displays the item and scale (i.e., total) level fitistapioduced
by the PCM for the 13 Empowerment items for each of the 10 samples. Table 4.14 contains
the item and scale level fit statistics resulting from application of €Ng and Table 4.15
displays the item and scale level fit statistics estimated by GGU®Iniith hypothesis for
each of these tests is that observed and expected frequencies are thersasn@aw score
groups (10 groups were specified for all analyses). The asterisks in Tehlddble 4.14,
and Table 4.15 denote those items that show good fit to the particular model (i.e., observed
and expected cell frequencies do not differ statistically).

According to the PCM results, the only item that consistently displayed good model
fit across all 10 samples was item 12 (“Please indicate how large aaolets at your
school have in deciding how the school budget will be spent”). Item 10, fit well in three
samples. Fit of the PCM model for the whole Empowerment scale is given atttima bbt
Table 4.13, where, across all 10 samples, the PCM does not fit these data well. Thd item a
scale level chi-square distributed fit statistics for all 10 Empowernanples produced by
the GPCM are given in Table 4.14. Within the GPCM analyses, only two items, 8 and 10
exhibited statistically good fit within more than half the samples. Iteea8s: “Please
indicate how large a role teachers at your school have in setting gradingd@erat st
assessment practices” and item 10 reads “Please indicate how larg¢eacbers at your
school have in hiring new teachers.” Within the PCM analyses, item 12 consistently
exhibited good statistical fit, where as in the GPCM analyses item 12 aghpeditevell in
four samples. Similar to the PCM analyses, however, the GPCM did not appear to fit the

Empowerment data, in any analysis at the item or scale level.
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Table 4.13

Item and Scale Level Chi-Square Fit Statistics for Each Empowerment SR@ple

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem y? df p y? df p y? df p y? df p ¥y df p
1 222477 29 .000 181.763 28 .000 241538 28 .000 267.479 27 .000 193.426 28 .000
2 139416 26 .000 146.097 26 .000 155472 28 .000 149.755 26 .000 137.680 26 .000
3 205651 27 .000 206.508 27 .000 192.113 28 .000 171.452 28 .000 215.036 27 .000
4 155227 27 .000 151.227 28 .000 164.895 28 .000 170.657 27 .000 203.529 28 .000
5 96.288 28 .000 126.454 27 .000 122.194 28 .000 136.241 28 .000 150.527 28 .000
6 66.055 28 .000 80.243 28 .000 63.690 28 .000 71.423 29 .000 103.770 28 .000
=7 53.793 27 .002 50581 27 .004 63.337 27 .000 38.665 27 .062*346 27 .000
Vg 97530 28 .000 94938 27 .000 102.864 28 .000 103.352 27 .000 106.681 28 .000
@ 9 36.400 30 .195* 66.726 31 .000 75512 31 .000 41945 30 .07B4.216 30 .000
10 47.715 28 .012 58816 28 .001 39.659 28 .07136.385 28 .001 42222 28 .041
11 54501 29 .003 76.242 29 .000 80531 31 .000 63631 30 .000 63.158 30 .000
12 33.265 30 .311* 33.854 29 .244* 36.759 30 .184* 35424 30 .227* 31.086 30 .411*

13 81.156 29 .000 106.804 29 .000 85.967 29 .000 82.396 28 .000 50.829 28 .005
Total 1289.474 366 .000 1380.254 364 .000 1424531372 .000 1388.804365 .000 1444.505366 .000

Note: * denotes observed and expected frequencies amdatistically differentd > .01)



Table 4.13 Con't

Item and Scale Level Chi-Square Fit StatisticsHach Empowerment Sample: PCM

Sample 6
Item df
1 214.337 28
2 109.484 28
3 201.712 27
4 126.479 27
5 155.425 27
6 86.789 27
=7 55.452 27
N8 81.918 27
~N 9 55.493 30
10 40.161 28
11 61.168 30
12 27.223 29
13 95.758 29

Total 1311.398 364

P
.000

.000

.000

.000
.000
.000

.001

.000

.003
.064*
.001
.56*

.000

Sample 7

237.393
140.448
216.961
178.440
130.925
58.427
82.342
125.177
67.482
56.015
68.815
25.935
79.646

df
28
26
27
28
27
27
27
27
31
29
30
30
28

Sample 8

p df
.000 221.992
.000 151.995
.000 192.382
.000 153.887
.000 138.761
.000 75.030
.000 55.034
.000 91.533
.000 52.372
.002  50.806
.000 54.360
.679*35.744 30
.000 87.523

Sample 9
df
27 .000 204.884
26 .000 128.983
27 .000 209.092
27 .000 132.435
27 .000 139.105
27 .000 57.118
27 .001 60.419
27 .000 117.110
31 .010 71.274
29 .007 36.833
30 .004 89.740
216 28.255 30
29 .000 85.675

.000 1468.006 365 .000 1361.417 364 .000 1360.922 362

P
28

26
27
27
27
27
27
27
30
28
29

Sample 10
df
.000 234.098
.000 137.386
.000 212.145
.000 183.542
.000  149.307
.001 90.275
.000 68.924
.000 127.326
.000 75.751
.1284.533 28
.000 55.835

.557* 49.395 29

29

.000

.000 82.193

P
29

26
27
28
28
28
27
28
31

.000

30

011

29

1530.710 368.000

.000
.000
.000
.000
.000

.000
.000

.000

.000

.003

.000

Note: * denotes observed and expected frequencies agatistically differentdq > .01)



The log-likelihood fit statistics (€ for each item on the Empowerment scale resulting from
GGUM analyses are presented in Table 4.15G6&M2004 Technical Reference Manual
(Roberts & Shim, 2008) cautions users of fit statistics:
Users should be aware that these fit statistics and their associateesdafgreedom
have been logically generalized (not mathematically deduced) fromootimedative
IRT applications (which themselves may be suspect). Therefore, little islatmout
the distribution of these statistics, their Type | error rates, and thearpates under

the GGUM (p. 34).
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Table 4.14

Item and Scale Level Chi-Square Fit StatisticsHach Empowerment Sample: GPCM

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem 7’ df p 7’ df p 1’ df p 7’ df p ¥ df p
1 59.747 23 .000 51903 24 .001 50.115 22 .001 58615 20 .000 44587 22 .003
2 79.990 24 .000 100.27624 .000 92.049 23 .000 66.907 21 .000 108.528 .000
3 69.357 22 .000 63561 23 .000 73.339 22 .000 68522 22 .000 48427 21 .001
4 61.722 23 .000 60.492 23 .000 84358 22 .000 68821 22 .000 50.140 22 .001
T 5 83.258 32 .000 135.97731 .000 105.417 32 .000 142.810 31 .000 140.929 31 .000
M o6 73.863 28 .000 65.388 29 .000 97.055 29 .000 72392 28 .000 114Z%0 .000
R 64.884 27 .000 57880 28 .001 73.728 28 .000 50.48 27 .004 67.883 27 .000
8 36.321 33 .316* 30.354 34 .647* 55740 32 .006 32562 31 .39* 52389 31 .010
9 45770 31 .042 41519 31 .098* 45280 30 .036 52521 30 .007 65.329 30 .000
10 43.765 33 .099* 55.350 33 .009 45629 35 .108*74550 34 .000 36.896 33 .293*
11 49243 30 .015 65.172 31 .000 82921 30 .000 85.662 31 .000 84.327 32 .000
12 66.028 32 .000 75.153 32 .000 63.228 33 .001 42612 32 .099810 31 .014
13 50.684 28 .005 77495 28 .000 90.662 30 .000 44.017 28 .028 49.043 28 .008
Total 784.633 366 .000 880.519 371 .000 959.519 368 .000 860.477 357 .000 913.588 359 .000

Note * denotes observed and expected frequenciencargatistically differento( > .01)



Table 4.14 Con't

Item and Scale Level Chi-Square Fit StatisticsHach Empowerment Sample: GPCM

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
ltem 7’ df 7’ df p 7’ df p 7’ df p ¥ df p
1 56.737 22 .000 42.049 22 .006 52.885 22 .000 51.380 21 .@8®90 22 .001
2 81.814 24 000 66.261 21 .000 65430 21 .000 82936 23 .68B71 24 .000
3 50.205 22 .001 45.184 20 .001 49.819 22 .001 64.011 21 .@85m034 21 .001
4 31.781 23 .105* 68.188 22 .000 63.315 20 .000 73.138 22 .0084.744 21 .000
= 5 123.105 31 .000 148.907 31 .000 124.812 32 .000 103.070 31 .000142.404 32 .000
w 6 94.887 27 .000 87.247 29 .000 87.090 27 .000 70.378 29 10®318 29 .000
© 7 60.867 27 .000 82.625 27 .000 74.545 28 .000 49.320 27 .6@4692 29 .000
8 37.707 31 .189* 46.055 31 .040 38.393 32 .202* 48461 31 .02388.481 33 .004
9 68.500 30 .000 87.038 30 .000 67.078 31 .000 55.032 29 .0@3x55 30 .000
10 42.684 34 .146* 47.717 33 .047 48.075 35 .069* 53.739 33 .0180.592 33 .026
11 54656 28 .002 50938 29 .007 53252 30 .006 82.395 29 .66(B46 30 .000
12 44052 31 .060 62.688 30 .000 68.252 33 .000 48.784 30 .85P60 32 .000
13 61.602 27 .000 53.651 27 .002 47459 28 .012 55.658 28 .601588 29 .001
Total 808.598 357 .000 888.547 352 .000 840.405 361 .000 838.302 354.000 916.175 365 .000

Note * denotes observed and expected frequenciescaratistically differentd > .01)



Just like in the PCM and GPCM analyses, within the GGUM analyses, 10 fit greups w
specified for the calculation of item and scale level model fit statiSties GGUM2004
software collapses cells if the expected value of any response cdtgmigroup is zero.
Collapsing of cells occurs separately at the item level. According to &lGLOM analyses,
although the GGUM model fit statistically well for items 1, 3, and 4, the numbirgobups
used and thus the degrees of freedom were very low for these fit analyses. i@bosidé
this point should be made when interpreting these results. The GGUM app€é@reeiio
for item 2 in half of the samples, though the same caution should be noted as those for items
1, 3, and 4. Finally, item 8 fit well in 4 of the 10 the samples. Overall, according to the result
in Table 4.15, the goodness of fit of the GGUM for the Empowerment scale across 10
samples was not good.

Model fit was also examined for the Empowerment scale as a whole acr&$SNhe
GPCM, and GGUM models by calculating AIC and BIC fit criteria. Table 4.J@alis

those fit statistics estimated by the PCM, GPCM, and GGUM models.
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Table 4.15

Item and Scale Level Chi-Square Fit StatisticsHach Empowerment Sample: GGUM

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem y* df p fit ? df p fit »*> df p fit y* df p fit x* df p fit
aps. arps. arps. grps. arps.
1 1304 4 861*1 0899 4 925*1 1.033 4 .905*1 5833 4 .212*r1 3.026 4 553* 1
2 32.455 12 .001 3 34.008 16 .005 4 40597 16 .001 4 17.663 8 .024 2 37.111 16 .002 4
3 1519 4 823*1 1403 4 .844*1 1.019 4 9071 13437 8 .098* 2 1849 4 .763* 1
4 5742 8 .676*2 9439 8 .307*2 1826 8 .986*2 19849 8 .011 2 1861 4 .761* 1
5 61.358 36 .005 9 87.276 36 .000 9 72.888 36 .000 9 63.724 32 .001 8 92.634 36 .000 9
6 4325 20 .002 5 51.872 24 .001 6 60.668 24 .000 6 6842 24 .000 6 90.325 24 .000 6
N 50.221 24 001 6 41.325 24 .015 6 49.663 28 .007 7 58.779 24 .000 6 63.763 24 .000 6
Y 542 36 .026 9 35.303 36 .501* 9 53.028 36 .033 9 51.999 36 .041 9 62.455 36 .004 9
o9 20.621 20 .419* 5 40453 20 .004 5 33989 20 .026 5 49.728 20 .000 5 52.721 20 .000 5
10 24629 12 017 3 23.881 12 .021 3 29.053 16 .024 4 33.249 12 .001 3 16.18 12 .183* 3
11 36.288 20 .014 5 48.367 20 .000 5 51.969 20 .000 5 55.819 20 .000 5 57.821 24 .000 6
12 5231 16 .000 4 39.338 16 .001 4 29.269 12 .004 3 37.949 16 .002 4 25.706 12 .012 3
13 38.03 20 .009 5 39.305 20 .006 5 70.672 24 .000 6 3556 20 .017 5 40.372 24 .020 6
Total 421.93 58 .000 452.87 60 .000 495.67 62 .000 512.01 58 .000 545.82 60 .000

Note * denotes observed and expected frequenciescaratistically differentd > .01)



Table 4.15 Con't

Item and Scale Level Chi-Square Fit StatisticsHach Empowerment Sample: GGUM

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
ltem x* df p fit ? df p fit x> df p fit y* df p fit y* df p fit
os. arps. grps. arps. grps.

1 1745 4 782*1 209 4 .718* 1 0.791 4 .939* 1 1272 4 .866* 1 21 4 717 1

2 40.305 16 .001 4 3.083 8 .929* 2 6.161 12 .908* 3 22.167 16 .138* 4 13.872 12 .309* 3

3 10986 8 .202* 2 1582 4 .812* 1 0909 4 .923* 1 132 4 .858* 1 2995 4 559* 1

4 2196 8 974*2 1455 4 .834* 1 9.155 8 .329* 2 12699 8 .123* 2 2015 4 .733* 1

5 88.33 36 .000 9 94.721 36 .000 9 94936 36 .000 9 89.621 36 .000 9 114.76 36 .000 9

6 62.709 24 000 6 53.933 24 .000 6 5879 24 .000 6 57.658 24 .000 6 89.208 24 .000 6

= 7 41.759 24 .014 6 95.203 28 .000 7 47.125 24 .003 6 38.157 24 .033 6 65.852 28 .000 7

w 8 25924 36 .893* 9 45.443 36 .134* 9 56.336 36 .017 9 50.231 36 .058* 9 60.315 36 .007 9

w 9 35.357 20 .018 5 49.121 20 .000 5 43.977 20 .002 5 49.22 20 .000 5 46.687 20 .001 5

10 20.428 16 .201* 4 14.989 12 .242* 3 19431 12 .079* 3 26.392 12 .009 3 20.972 12 .051* 3

11 40.063 20 .005 5 63.014 20 .000 5 37.671 20 .010 5 77.418 20 .000 5 59.334 20 .000 5

12 28.298 12 .005 3 8.319 8 .403* 2 55.746 12 .000 3 33.717 12 .001 3 37.147 12 .000 3

13 62.401 24 .000 6 36.465 20 .014 5 31.614 20 .048 5 43584 20 .002 5 44826 24 .006 6
Total 460.5 62 .000 469.42 56 .000 462.64 58 .000 503.46 59 .000 560.08 59 .000

Note * denotes observed and expected frequenciescaratistically differentd > .01)



Table 4.16

AIC and BIC criteria for each Empowerment SampbefPCM, GPCM, and GGUM models

Sample PCM GPCM GGUM

AlIC BIC AIC BIC AIC BIC
1 62220.041 62584.1 61307.64561744.515 34865.542 35895.127
2 62266.819 62136.819 61365.618 61802.488 34946.166 35975.282
3 62188.445 62058.445 61310.701 61747.571 34903.493 35932.922
4 62256.564 62126.564 61416.119 61852.989 34948.076 35977.661
5 62342.067 62212.067 61415.376 61852.246 34954.672 35984.256
6 62875.969 62745.969 62026.278 62463.148 35574.157 36603.585
7 61769.049 61639.049 60793.885 61230.755 34350.537 35380.200
8 62003.826 61873.826 61060.273 61497.143 34615.964 35645.392
9 62213.792 62083.792 61368.296 61805.166 34927.587 35957.249

[EEN
o

62342.181 62212.181

61351.74 61788.61

34955.23385984.352

models. AIC and BIC statistics were also calculated for the CFA modelsybwlee factor

The AIC and BIC criteria are calculated in the same manner across théRfre

analytic and IRT models, and the methods used to calculate AIC, are too distmepant

directly compare the AIC values, and therefore are not presented for the Clfgeandhe

discrepancy lies in the fact that IRT models are models for response ptasaaiid factor

analytic models are models for covariance and correlation matrices. ThendIBIC

criteria are directly comparable for the GPCM and GGUM analysbsth employed

maximum likelihood methods for estimation, no priors were imposed on items, and the same

prior (i.e., normal) was assumed for theta. However, a prior distribution of thirdnsdron

(i.e., slope) parameter was necessary for the PCM analyses, where anhadypraor

distribution was specified in all PCM analyses. No priors were imposed fopdaeameters
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in the GGUM analyses. As a result, AIC and BIC criteria would be more camislistween
the PCM and GGUM if Bayes estimation was employed.

Based on the results on Table 4.16, the GGUM analyses were consistertigtads
with the smallest criteria values, implying superior fit over the cunvalatiodels. As for the
cumulative models, the GPCM fit better than the PCM as evidenced by the #@lknd
BIC values. Because no significance test exists for these statiségsare to be interpreted
as measures of relative differences between model outcomes. Theref@&UM
appeared to fit relatively much better than the GPCM, though the superiority oP @&l G
over the PCM is not as prominent. In summary, analyses conducted to answer khe fourt
research question reveal that, across the three IRT models, the itenadlygedoeanot fit well
and neither do the models according to the chi-square statistics. According tQ thedA
BIC criteria, the GGUM fit relatively better than the GPCM, though norariteexists to

measure ‘how much’ better.

Person Locations

The focus of the second research question had to do with the location of the sample
on the latent trait and the ordering of respondents on the latent trait acras®¢RIE. IRT
calibrations were conducted for the PCM, GPCM, and GGUM on the 10 Empowerment
samples and person parameters are provided in this section. Rank-ordetimusratal
scatterplots of the person parameters are presented to address resetochtgyoeSimilar
to the item location estimates, the theta estimates produced by the unfolding ataticam
IRT models are not analogous, and therefore comparisons cannot be direct and absolute.

However, examination of correlations and distributions are appropriate. Table 4.1ysdispla
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Kendall’'s Taub correlations of the person trait estimates across the 10 Empowerment
samples for each pair of scaling methods. Correlations are presentechfeamguie, as a
single mean may not capture small changes in rank ordering. This point istéldistra able
4.17 and the figures of scatterplots that follow. These correlations revealdtetRL M
showed lower correlations with other scaling methods and the GGUM gerntbsalgyed
higher correlations.

The high Taus correlation between the GPCM and GGUM models indicates that the
rank ordering of respondents is essentially the same between models. Slye@fieading
the GGUM, the lowest average Thuworrelation was with the PCM (Tdu= .888),
indicating some inconsistency in terms of the rank ordering of people. However, all
correlations in each of the 10 samples, in any scaling method combination wstieadtyat
significant < .01). Scatterplots in Figures 4.41, 4.42, and 4.43 depict the correspondence of
trait estimates between the GGUM and the PCM, GPCM, and CFA models, inespect
from sample 1.

The majority of the cases within the first sample fell within the 95% camfele
ellipse for the GGUM and PCM trait correlations indicating a fairlgrgirrelationship
between the two scaling methods. The GGUM and GPCM trait estimatdmast entirely
coincident suggesting that the two models are essentially identical ingsouatividuals.
Although the Taus correlation between the GGUM and CFA models was relatively high, in
the first sample (Tau = .957), the scatterplot in Figure 4.43 shows a slight non-linear
relationship between the trait estimates and disagreement between tis towdrds the

middle of the distribution.
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Table 4.17

Kendall's Tau-b Correlations among Person TraitiEsttes by Sample and Scaling Method

Sample PCM, GPCM, PCM, CFA, CFA, CFA,
GGUM GGUM GPCM PCM GPCM GGUM

1 .891 .998 .892 .879 .957 .957
2 .889 .998 .891 874 .960 .959
3 .884 .998 .884 .873 .957 .957
4 .892 .996 .892 875 .952 951
5 .892 997 .892 .876 .958 957
6 .880 .998 .881 .870 .956 .955
7 .887 .998 .888 .869 .962 .962
8 .886 .998 .887 .873 .950 .950
9 .900 .998 .900 .878 .950 .950
10 .878 .998 .878 .865 .958 .959
Mean .888 .998 .888 .873 .956 .956

The relationship between the GGUM and CFA trait estimates is not entirely
surprising given the assumption of a linear relationship between item resjgmasthe latent
trait that underlies the CFA model and the non-linearity that exists betwaeabgity of
item endorsement and the latent trait within IRT models. The slight nontineaar the
center of the each latent trait shows the CFA results yield higher tizgsvinan the GGUM.

A closer examination of the trait distribution was facilitated by makingdméinuous
trait distribution discrete by partitioning the trait distribution into quasté&ind using 5 X 5
cross tabulation tables and using statistical measures of association iappfopordinal
data. Results presented here correspond to the trait (i.e., person) estimatesiyr

reported, in that cross tabulations for sample 1 are presented. The overlap ircfesqoien

137



respondents within each quintile between the PCM, GPCM, and CFA methods with the

GGUM are presented in Tables 4.18, Table 4.19, and Table 4.20.

Figure 4.41

Scatterplot of Trait Estimates for PCM and GGUM migdSample 1 Empowerment Scale

GGUM

T T T T
-2 Q 2 4
PCM

Nots: Dashed [ine demotes 3% prediction confidsnce sllipse
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Figure 4.42

Scatterplot of Trait Estimates for GPCM and GGUMdeis: Sample 1 Empowerment Scale

GGUM

-2 0 2 4
GPCM

Note. Dashed line denotes 93% prediction confidence ellipse
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Figure 4.43

Scatterplot of Trait Estimates for CFA and GGUM mrlsdSample 1 Empowerment Scale

GGUM

CFA

Note, Dashed line denotes 93% prediction corfidence ellipse

The statistics presented in Tables 4.18, Table 4.19 and Table 4.20 are measures of
association between the respective pairs of scaling methods. Kendalbsisawcorrelation
that corrects for ties among data points, Stuart’s Tau-c also accommasatexitadjusts
for the size of the table. Additionally, the Pearson correlation coefficienhand t
nonparametric Spearman rank correlation coefficient are tabled. The=sedaplct the

discrepancies in the trait distribution across the pairs of scaling methoddsided
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information of the graphical representations in the scatterplots. Fopéxahable 4.18
shows some dispersion of the trait estimates between the GGUM and PCM in dkguinti
Specifically, 43 people fell into the second PCM quintile, though were found to tathiet
first quintile according to the GGUM distribution. Likewise, 42 trait estasaaccording to
the PCM distribution were located in the first quintile, while those 42 werestbaathe
second GGUM quintile. Table 4.19 depicts the nearly identical trait distributioede the
GGUM and GPCM, also as seen in Figure 4.42. The slightly higher trait valliesigehby
the CFA over the GGUM seen towards the center of the distribution in the gcattErgure
4.43) are more specifically differentiated in the cross-tabulation shown ia .
Additionally, there were nine observations where the GGUM yielded laagevalues than

the CFA (i.e., two estimates fell within th& &GUM quintile and theLCFA quintile).

Table 4.18

Cross Tabulation Table of GGUM and PCM Quintileanfple 1, Empowerment Scale

PCM
1 2 3 4 5  Total Statistic ~ Value ASE
1 3% 43 O 0 0 399 Taub 905 .004
s 2 42 296 62 0 0 400 Tauc 905 .004
5 3 0 59 285 56 0 400 Pearson  .950 .003
o 4 0 0 73 294 33 400 Spearman .950 .003
o 5 0 0 0 32 367 399

Total 398 398 420 382400 1998

Note: ASE = Asymptotic Standard Error; Thu= Kendall's Taub; Tau< = Stuart’s Tale
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Table 4.19

Cross Tabulation Table of GGUM and GPCM Quintil8ample 1, Empowerment Scale

GPCM

1 2 3 4 5 Total

1 398 1 0 0 0 399

= 2 0 399 1 0 0 400
- 3 0 0 399 1 0 400
O 4 0 0 0 399 1 400
O g 0 0 0 0 399 399
Total 398 400 400 400400 1998

Statistic Value ASE
Tahb- 999 .001
Tao- 999 .001

Pearson 999 .000
Spearman .999 .000

Note.ASE = Asymptotic Standard Error; Téu= Kendall’'s Taub; Tau< = Stuart’s Tawe

Table 4.20

Cross Tabulation Table of GGUM and CFA Quintileantple 1, Empowerment Scale

CFA

1 2 3 4 5 Total

1 388 11 0 0 0 399

= - 7 366 27 0 0 400

o 3 2 21 349 28 0 400
O g4 1 2 20 358 19 400

O g5 0 0 4 14 381 399

Total 398 400 400 400400 1998

Statistic Value ASE
Tao- 957 .004
Tat- 957 .004

Pearson 977 .002
Spearman .976 .002

Note.ASE = Asymptotic Standard Error; Téu= Kendall's Taub; Tauc = Stuart’s Taw:

Summary of Empowerment Analyses

Although determination of dimensionality includes some amount of subjectivity,

there was more supporting evidence that the assumptions of the cumulative nevdetsety
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compared to the unfolding models. Specifically, the data do not appear to be of the unfolding
type based on the structure of the data in that two components did not emerge. Abditional
the plot of pattern coefficients that resulted from the PCA with two components did not
produce a circumplex-like (i.e., semi-circular) structure. Although noit alidices produced

by the CFA were supportive of excellent model fit, most indices did indicate timgfla s

factor structure was adequate in explaining the empowerment data. This sthgoorts
assumptions of cumulative IRT models and the CFA method of scaling.

As for the item parameters, the PCM and GPCM performed similarly aaitdt&sn
parameters estimated. Both models indicated that most of the Empowermeniéee easy
to endorse, and that there are gaps on the latent trait that are not being megath@se 13
items. The GGUM analyses estimated all Empowerment items to haveext@ation
estimates and very large standard errors. According to the GGUM analysesns were
clustered in an extreme region of the latent trait scale. The itemsetlvesdo not appear to
be extremely worded in either direction, therefore the extremity ofpemaimeter estimates
could be an outcome of relative homogeneity of respondents’ attitudes. Because item
location estimates and signs of those estimates are also associatiéelwitontent,
according to the GGUM analyses, moderate and negative attitudes towahds tea
Empowerment are not well-measured by these 13 items. The category lixopkits
produced from the GGUM for the first four items show unfolding properties for the §trong
Agree and Agree response categories. The category probability plotsqudchra the
PCM, GPCM, and GGUM for the remainder of the items are generally veitgrsiand

imply that the three IRT models are functioning similarly.
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Per the chi-square item level fit statistics, the PCM had few item#tthatl, with
the GPCM showing only slightly more statistically well-fitting itenAt the scale level, both
the PCM and GPCM models appeared to be statistically ill-fitting. Thétsdsom the
GGUM item level chi-square fit statistics are inconclusive because notust they be
interpreted with caution, but the results are only indicators of gross itefity emsl not
absolute statistical fit. Although the GGUM appeared to be the model that fit most
Empowerment items, these statistically significant results could bectdiof the small
number of fit groups. At the scale level, the GGUM also did not fit well acrodthe
samples. The final measures of fit, the AIC and BIC, indicated that the GG bkttt than
the GPCM, and that the GPCM fit better than the PCM.

Finally, the least amount of agreement between the person trait parastetates
was found between the CFA and PCM scaling methods. The model that exhibited the least
amount of agreement with the GGUM was the PCM, while the GPCM and GGUM were
basically identical in estimating person parameters based on the rank ordiatioois and

scatterplots.

Leadership Scale
Testing Dimensionality Assumptions for Cumulatived®ls
The first part of the fourth research question had to do with model assumptions and
model fit. In practice testing model assumptions should precede analyses.modebkt
assumptions, such as dimensionality and independence, various procedures weredconducte
for all four scaling methods and are reported in this section for the Empowermeiithdata

same procedures used for analysis of the Empowerment scale data were used on the
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Leadership data to assess model assumptions. A single factor model wasdsfoedifie
entire sample using the 21 items that measured the construct teachenstipescof the
leadership in their school. For model identification purposes, the factor loadirfxedhat
1.0 for the item that possessed a large measure of variation. That item @aatall; the
school leadership in my school is effective.”

Results from the single factor confirmatory analysis using the 21 Lskagétems are
reported in Table 4.21. The statistically significgn&(.05) model chi-square statistic and
the RMSEA indicate that a single factor model does not fit well, however the BRIAR,
and NFI indicate reasonably good fit. The GFl is lower than 1.0, though with a value of .751
fit could be considered moderate. The large chi-square value is at leasafiamtltable to
the large sample size. Inter-item correlations are helpful to considetihigh correlations
could also contribute to a relatively high chi-square value. The inter-itematmmnematrix
of the 21 Leadership items contained correlations that were moderately higthevi
majority of correlations ranging between .3 and .7. Overall, the singte facdel does not

appear to fit the Leadership data very well.

Table 4.21

Fit Indices for the One Factor Leadership ModelllIFeample (n = 65,031)

Model y? df z?ldf  RMSEA RMR SRMR NFI GFI Model AIC

164815.747* 189  872.041  .135 .056 .056 954 751 205850.205

Notes: RMSEA = Root Mean Square Error of Approximati®NR = Root Mean Square Residual;
SRMR = Standardized Root Mean Square Residual AN¥drmed Fit Index; GFI = Goodness of
Fit Index, Model AIC = Akaike Information Criterion

*p<.05
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Local Independence

Just as in the Empowerment analyses, the RMSEA for each item was edlaslat
measure of relative fit at the item level. Local independence is cladated to the
assumption of unidimensionality, and methods of assessing both overlap with measures of
model fit. Table 4.22 displays the root mean square residuals at the item levbbfiothe
PCM and GPCM models where smaller values are interpreted as bettee félaBased on
these results, the smallest item residuals were associated with@i, G8npared to the
PCM model. The same statistic (i.e., chi-square item level likelihood-rasi@fistics) for
assessing local item independence was calculated for the GGUM modeal asedan the
Empowerment analyses. To summarize, items fit well in most of the GGidMsas,
although the fit statistics and associgbedhlues must be interpreted with caution. At the

scale level, the GGUM did not fit statistically well in any analysis

Table 4.22

Item Level Residuals from PCM and GPCM Models: kestip Scale

Iltem PCM GPCM Item PCM GPCM

1 5.056 4.900 12 9.062 7.759

2 9.695 9.112 13 8.297 7.579

3 9.781 5.548 14 7.810 6.637

4 5.552 5.818 15 4.979 5.760

5 6.912 6.655 16 6.896 6.078

6 8.217 7.842 17 5.042 5.965

7 6.139 7.262 18 10.605 5.289

8 12.957 4.807 19 12.055 5.429
9 8.775 7.626 20 5.305 6.870

10 8.550 5.533 21 14.954 22.274
11 27.996 11.193
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Unidimensionality under Unfolding Models

Assessing the dimensionality of the data from the ideal point response peespec
one principal components analysis was conducted on the Leadership data using the entire
sample § = 65,031) to assess dimensionality. Dimensionality of the Leadership data
included the examination of eigenvalues, final communality estimates;npatefficients,
and plots of pattern coefficients resulting from the application of principal comfzone
analyses. Generally, if an item level communality, generated frofirshéwvo components,
is >.3, then that item is not likely violating the assumption of unidimensionality (Raderts
al., 2000). Item level final communality estimates derived from a two faotaponent
model for the 21 Leadership items are found in Table 4.23. Communalities for all items

comprising were greater than .3.

Table 4.23
Final Communality Estimates for the Leadership EénF 21)

Item 1 2 3 4 5 6 7 8 9 10 11
0.593 0.39 0.645 0.589 0.615 0.642 0.392 0.726 0.596 0.623 0.573

Item 12 13 14 15 16 17 18 19 20 21
0.775 0.762 0.718 0.565 0.649 0.542 0.745 0.754 0.537 0.509

If the data are of the unfolding type and unidimensional, the first two eigenvaltesRCA

should be larger than the remaining eigenvalues. However, a prescribadrcdbes not

exist as a measure for “large.” The first five eigenvalues from thddrship analysis were:

11.700, 1.238, 1.049, .910, and .652. The second eigenvalue was not substantially larger than

the third eigenvalue. This is at least in part, supporting evidence that the assumption of
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unidimensionality within the context of cumulative IRT models is supported, as apjpose
unidimensionality within the context of unfolding models.

Finally, the plot of pattern coefficients produced from the PCA with two facters (i
components) was examined to determine the structure of the Leadership skata- A
circular pattern of the coefficients in a two-factor space would bereeddat two linear
principal components explain the pattern of data. This is because within the context of
unfolding IRT models, there are two linear principal components for each unfolding
dimension. Reported in Table 4.24 are the pattern coefficients from the two compoAent PC
with the Leadership samples and the plot of pattern coefficients for the 21 lepderss
is displayed in Figure 4.44. In Figure 4.44, two linear components are also not edidenc
from the pattern coefficients, suggesting that the structure of the kbguldata does not
conform to that of the unfolding type (i.e., the responses to the 21 Leadership items do not

unfold). These results suggest that application of unfolding models may not be necessa

Table 4.24

Factor Pattern Coefficients Derived From 2 Prindi@@omponents: Leadership

Factor Factor Factor Factor
ltems 1 2 Item 1 2

1 627 447 12 .302 .827
2 .264 .566 13 .308 .817
3 .654 467 14 .365 .764
4 .686 344 15 701 270
5 .701 352 16 .769 239
6 716 .358 17 .683 275
7 425 459 18 .810 297
8 .743 417 19 .810 312
9 .641 431 20 .652 334
10 592 522 21 .647 .300
11 .286 .700
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Figure 4.44
Plot of Factor Pattern Coefficients for the LeadepsScale

Factor Pattern Coefficients
Leadership Items (i=21)
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Factor 2

Development of the CFA Scale
The factor analytic scoring method and procedures used to create the Empuveeatee
were mirrored for the Leadership data to transform the latent tradetsap, into an
observed measure. It was assumed that a single latent trait was meatsutieel 21
leadership items. Across the 21 items, the item that consistently displeyedn@asures of
variation was: “Overall, the school leadership in my school is effectivee”standard
deviation for this item ranged from 1.177 to 1.207, and the item’s factor loadingxedsfi
1 across all 10 samples. The factor scores resulting from the CFA anaéysassed to
weight item responses, and then those products were summed to create the obsebled varia

Leadership for each respondent for all 10 samples. Various measures of modeiofatiaefi
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10 leadership samples are shown in table 4.25. Although the RMSEA values are slightly
high, and GFl indices are moderately low, overall these fit statistics taditcaderately good
fit of the CFA model.

The preceding results indicate that, for most of the fit statistics, & $axjbr model
fit moderately well; therefore the assumption of unidimensionality withircoiméext of
cumulative IRT models was likely not violated. Further, it can be concluded&éat titems
measured the construct, Leadership in the CFA model reasonably well also.
Unidimensionality within the context of unfolding IRT models was not met giveriioat
components did not explain the data, and that the plots of the pattern coefficients did not

form a semi-circular shape.

Table 4.25
Fit Indices for the One Factor Leadership Model3ample (n = 10)

Sample Modely® df y2/df RMSEA RMR SRMR NFI GFI Model AIC

1 5632.244 189 29.800 138 .058 .058 .948 .739 6861.829
2 5556.350 189 29.399 140 .059 .059 951 .733 7151.897
3 5605.735 189 29.660 138  .061 .061 945 .738 6857.273
4 5701.966 189 30.169 140 .060 .060 .947 .734 7085.787
5 5356.682 189 28.342 135 .058 .058 .952 .746 6556.885
6 5268.387 189 27.875 134 055 055 951 .750 6451.392
7 5471.779 189 28.951 135  .058 .058 .949 746 6574.815
8 5462.469 189 28.902 138 .061 .061 .948 .738 6878.166
9 5392.454 189 28.532 136 .056 .056 .951 .743 6690.514
10 5061.434 189 26.780 131 .054 .054 956 .757 6298.652

Notes: RMSEA = Root Mean Square Error of ApproximatiodIR = Root Mean Square Residual;
SRMR = Standardized Root Mean Square Residual AN¥drmed Fit Index; GFI = Goodness of Fit Index,
Model AIC = Akaike Information Criterion
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IRT Parameter Estimates

Item Locations

The second research question focused on the item location estimates generated from
the three IRT models, as it was hypothesized that locations may be vermgrdiéfeross the
two types of IRT models (cumulative, unfolding), if the survey was constructegl asi
method that assumed a dominance response process. To investigate this, IRibnoalibra
were performed on all 10 Leadership data sets with the application of the PQW, @Rd
GGUM models. Item parameter estimates, including the location estjraateesented in
this section.

The Leadership items as they appear on the NCTWC survey are preserabliéin T
4.26. Presented in Table 4.27 are the item location estimates averaged acrossipe$) sa
with the average standard errors by IRT model, and the order in which each modéieanks t
average item location estimates. As in the Empowerment analyses, the ngdeaiyi
Leadership, and the respective scale upon which both item and person estimateseate loc
are not directly comparable for the cumulative (PCM, GPCM) and GGUM models.

The parameter estimation for the PCM and GPCM results in Table 4.27 are not
directly comparable to the GGUM estimates as theta and the resultie@szdifferent. All
item location parameters generated from the 10 GGUM analyses on theshgadems
were located in the same general, and relatively extreme regionlafehetrait ranging

from o, =3.314 (item 21) t&, = 4.041 (item 19). This clustering of items indicates that

the full range of the latent trait (attitudes towards or about Leaggismot well measured,
only a narrow interval. As in the Empowerment analyses, items with extr&odG

estimates also had the largest standard errors.
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Table 4.26
Leadership Items (i = 21)

Leadership

Please rate your level of agreement with the following statements:

1. There is an atmosphere of trust and mutual respect within the school

2. The faculty are committed to helping every student learn

3. The school leadership communicates clear expectations to students and parents
4. The school leadership shields teachers from disruptions, allowing teaclunsstorh
educating students

5. The school leadership consistently enforces rules for student conduct

6. The school leadership support teachers’ efforts to maintain discipline im$iseodm
7. Opportunities are available for members of the community to activelylmatetio this
school’s success

8. The school leadership consistently supports teachers

Please rate your level of agreement with the following statements:

9. The school improvement team provides effective leadership at this school
10. The faculty and staff have a shared vision

11. Teachers are held to high professional standards for delivering instruction
12. Teacher performance evaluations are handled in an appropriate manner
13. The procedures for teacher performance evaluations are consistent

14. Teachers receive feedback that can help them improve teaching

The school leadership makes a sustained effort to address teacher concerns about:

15. Facilities and resources

16. The use of time in my school

17. Professional development

18. Empowering teachers

19. Leadership issues

20. New teacher support

21. Overall, the school leadership in my school is effective
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Table 4.27

Average Item Location, Standard Errors, and Ran#léds of Item Locations across 10
Samples: Leadership (i=21)

Average Item Location
(Standard Error)

Rank Order of Average Item Locations

ltem PCM GPCM GGUM PCM GPCM GGUM

1 -0.376 -0.380 3.827 6 6 4
(030) (.031) (3.108)

2 -1.136 -1.366 3.378 21 21 15
(.032) (.043) (2.025)

3 -0.661 -0.636 3.576 15 15 12
(030) (.029) (7.814)

4 -0.331 -0.337 3.723 3 4 5
(029) (.030) (2.914)

5 -0.218 -0.220 3.901 1 1 3
(031) (.032) (3.862)

6 -0.498 -0.488 3.634 10 10 9
(032) (.031) (5.391)

7 -0.984 -1.093 3.294 19 19 17
(032) (.037) (1.714)

8 -0.552 -0.517 3.718 12 11 6
(031) (.028) (33.504)

9 -0.431 -0.429 3.711 8 7 7
(.031)  (.030) (3.449)

10  -0.571 -0.555 3.649 14 13 8
(.030) (.030) (5.195)

11  -1.029 -1.099 3.111 20 20 20
(031) (.036) (2.016)

12 -0.839 -0.839 3.137 18 18 19
(.035)  (.039) (2.587)

13 -0.762 -0.788 3.157 16 17 18
(035)  (.039) (2.425)

14  -0.770 -0.775 3.298 17 16 16
(.032) (.034) (3.058)

15  -0.524 -0.533 3.444 11 12 14
(031) (.033) (2.466)

16  -0.359 -0.355 3.621 5 5 10
(031) (.031) (3.540)

17  -0.566 -0.574 3.456 13 14 13
(032) (.033) (2.523)

18  -0.332 -0.319 3.996 4 3 2
(033)  (.029) (26.151)

19  -0.317 -0.294 4.041 2 2 1
(.033)  (.029) (42.119)

20  -0.443 -0.457 3.599 9 9 11
(.030) (.032) (2.538)

21 0395 -0.435 3.314 7 8 21
(.030) (.038)  (1.940)
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As in the Empowerment analyses, the PCM and GPCM functioned similarly is term
of the average item locations and the ranking of those estimates. In the Pigdé¢srthe
average item locations ranged frans -1.136 (item 21) tbd = -.218 (item 1). Average item
estimates for most of the 21 items were nearly identical between the twtatvenmodels.
The location estimates reveal that all of the Leadership items wezealigreasy to endorse,
with item 21 being the easiest, on average. According to the PCM and GPCM analyses, none
of the items on the Leadership scale required a strong positive attitude tbeadasship.

The average correlation across the 10 samples between the PCM and GPCM for
estimated item locations was .953. The average correlation between the PCRW@kd G
was .611 and the correlation between GPCM and GGUM item estimates was .641. Across
the 10 Leadership samples, all correlations between the PCM and GPCM lodatiatess
were statistically significanip(< .05). All of the correlations between the PCM and GGUM,
and between the GPCM and GGUM location estimates were statisticailifycsigt (o < .05).
These correlations, associafestalues and comparable rank ordering of item locations
indicate that the PCM and GPCM functioned similarly.

The discriminating characteristics of the Leadership items arelisgaext for the
three IRT models. Presented in Table 4.28 are the average item discrimiations
parameters) and standard errors across the 10 samples. In the Lpadeabisies, the item
discrimination &) parameter was fixed to have a mean of 1.0 and a standard deviation of
.0001 for the PCM calibration, just as in the Empowerment analyses. The diséaminat
parameter is estimated in the GPCM models, and calibration converged witlEtdiver

iterations than the PCM models.
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Table 4.28

Average Item Discrimination and Standard Errors@ss 10 Leadership Samples

Average Item Discrimination Average Standard Error
Item PCM GPCM GGUM PCM GPCM GGUM
1 1.053 1.018 1.668 0.005 0.031 0.062
2 1.053 0.608 0.96 0.005 0.02  0.055
3 1.053 1.373 2.255 0.005 0.045 0.088
4 1.053 0.974 1.589 0.005 0.032 0.061
5 1.053 1.008 1.651 0.005 0.035 0.061
6 1.0563 1.229 2.015 0.005 0.042 0.076
7 1.063 0.758 1.212 0.005 0.024 0.059
8 1.0563 1.782  2.937 0.005 0.062 0.113
9 1.0563 1.142 1.871 0.005 0.036 0.065
10 1.053 1.28 2.098 0.005 0.041 0.076
11 1.053 0.836 1.336 0.005 0.027 0.067
12 1.053 1.043 1.677 0.005 0.045 0.074
13 1.053 0.992 1.607 0.005 0.043 0.068
14 1.0563 1.065 1.725 0.005 0.039 0.073
15 1.053 1.008 1.633 0.005 0.032 0.065
16 1.053 1.148 1.87 0.005 0.038 0.068
17 1.0563 1.025 1.662 0.005 0.032 0.065
18 1.0563 1.624 2.678 0.005 0.058 0.099
19 1.0563 1.761 2.902 0.005 0.063 0.105
20 1.053 0.905 1.469 0.005 0.028 0.058
21 1.053 0.6 0.989 0.005 0.014 0.032

However, the Leadership PCM analyses across the 10 samples took approximately 80
iterations, while the GPCM generally required about 50 E-M iterations to gm\Ry
comparison, in the Empowerment analyses, each PCM analysis took approxtfately
iterations of the E-M cycle to converge while the GPCM analyses reqabad 25 cycles.
Although the PCM required more iterations overall, the Leadership data required more
iteration regardless of IRT model, in part due to the increased number of i@mepans to

be estimated.
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Just as in the Empowerment analyses, the GPCM and GGUM ordeged the
parameters almost identically. Item 8 (“The school leadership conbistapports
teachers”) was the most discriminating, on average, and items 2 (“The fa@ittommitted
to helping every student learn”) and 21 (“Overall, the school leadership in my school is
effective”) exhibited the lowest discrimination parameters. The agdfagdall’'s Taus
correlation between the GPCM and GGUM discrimination parameter estinaaross the 10
Leadership samples was .899. These correlations, across the 10 sampldsstetistieally
significant < .05).

Relative to the other 20 Leadership items, item 2 exhibited low discrimination due t
the fact that just under 84% of the entire sample agreed or strongly agredusaigm.

This item did not discriminate well among respondents, as most people agredtkssgair
their standing on the latent trait. For example, items 8, 18, and 19 had relatively high
discrimination parameter estimates, meaning that these items rliiézd well between
those respondents with low and high levels of the latent trait, attitude towards/dimmit sc
Leadership. Although these three items had discrimination estimates thdtighererelative
to the other items (see Table 4.29), the majority of the sample either agréedglys
agreed with all of the Leadership items.

The final item parameters estimated using the IRT models were dgoat

probability thresholds. The four category threshold paramegrayeraged across the 10
samples for the PCM and GPCM models are given in Table 4.30. Item step pasdmet

were also calculated in the Leadership analyses for the PCM and GPCM mddeh
represent the point on the latent trait where two adjacent category proldahbititipns

intersect. These average item step parameters are presented in Tableall3iréz IRT
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models. Just as for the Empowerment data, category 1 in the Leadership arphgsets

Strongly Disagree and category 5 represents Strongly Agree.

Table 4.30

Average Category Threshold Parameters across 1drship Samples

PCM GPCM
tem d, d, d, d d, d, d, d,
1 1.098 0.142 0.432 -1.67 1.118 0.135 0.452 -1.71
2 1.241 0.012 0.437 -1.69 1.472 -0.24 0.901 -2.13
3 1073 0.14 0.368 -1.58 1.036 0.195 0.25 -1.48
4 116 0.1160.309 -1.58 1.196 0.097 0.345 -1.64
5  1.053 0.087 0.382 -1.52 1.07 0.08 0.406 -1.56
6  0.982 0.198 0.38 -1.56 0.9730.225 0.312 -1.51
7 1.326 0.551 0.084 -1.96 1.445 0.606 0.194 -2.25
8  1.021 0.256 0.233 -1.51 0.958 0.304 0.084 -1.35
9  1.239 0.705 -0.07 -1.88 1.2420.689 -0.08 -1.86
10 1.187 0.419 0.215 -1.82 1.163 0.423 0.153 -1.74
11  0.943 0.18 0.487 -1.61 0.981 0.128 0.654 -1.76
12 0.917 0.253 0.414 -1.58 0.938 0.248 0.423 -1.61
13 0.99 0.2850.314 -1.59 1.016 0.278 0.339 -1.63
14 1.024 034 028 -1.64 1.0420.339 0.274 -1.66
15  1.282 0.423 0.359 -2.06 1.314 0.421 0.38  -2.12
16  1.395 0.36 0.298 -2.05 1.381 0.373 0.266 -2.02
17 1.244 0.446 0.386 -2.08 1.27 0.4450.398 -2.11
18 1.217 0.477 0.214 -1.91 1.147 0.48 0.106 -1.73
19  1.283 0.551 0.199 -2.03 1.193 0.539 0.086 -1.82
20 1116 0.484 021 -1.81 1.16 0.4930.266 -1.92
21 0.792 0.312 0.386 -1.49 0.786 0.274 0.761 -1.82

Notes: d , = threshold parameter for category 2 (Disagrd:é),: threshold parameter for category 3 (Neither

Agree Nor Disagree)d4 = threshold parameter for category 4 (Agrdég;: threshold parameter for category
5 (Strongly Agree)
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Table 4.31

Average Category Step and Threshold Parameterssact® Leadership Samples

PCM GPCM GGUM
ltem b, b b, bis b, b b, b Tio Ti3 Tia Tis
1 -1.475 -0.518 -0.808 1.295 -1.498 -0.515 -0.832 1.326 -5.393  -4.369 -4.700 -2.459
2 -2.377 -1.148 -1.573 0.554 -2.839 -1.124 -2.267 0.764 -6.455 -4.545 -5.805 -2.513
3 -1.734  -0.801 -1.028 0.921 -1.672 -0.831 -0.886 0.845 -5.322 -4.446 -4.502 -2.712
4 -1.491 -0.447 -0.640 1.253 -1.533 -0.433 -0.682 1.301 -5.326 -4.178 -4.442 -2.375
5 -1.271 -0.305 -0.600 1.303 -1.291 -0.300 -0.626 1.336 -5.250 -4.219 -4.559 -2.524
6 -1.480 -0.695 -0.877 1.062 -1.461 -0.714 -0.800 1.021 -5.161 -4.383 -4.472 -2.586
7 -2.310 -1.534 -1.067 0.977 -2.538 -1.699 -1.287 1.152 -6.010 -5.075 -4.659 -2.054
- 8 -1.574 -0.808 -0.786 0.958 -1.475 -0.820 -0.601 0.828 -5.258 -4.578 -4.347 -2.874
o 9 -1.670 -1.137 -0.365 1.446 -1.671 -1.118 -0.353 1.426 -5.458 -4.879 -4.086 -2.243
@ 10 -1.757 -0.990 -0.786 1.250 -1.718 -0.977 -0.708 1.184 -5.444 -4.671 -4.392 -2.434
11 -1.972 -1.209 -1.516 0.581 -2.081 -1.228 -1.754 0.665 -5.307 -4.393  -4.968 -2.399
12 -1.756 -1.092 -1.253 0.745 -1.778 -1.087 -1.262 0.770 -5.006 -4.279 -4.471 -2.339
13 -1.752 -1.047 -1.076 0.828 -1.804 -1.066 -1.127 0.846 -5.044 -4.266 -4.342 -2.264
14 -1.793 -1.109 -1.049 0.874 -1.816 -1.114 -1.049 0.881 -5.202 -4.464 -4.402 -2.385
15 -1.806 -0.947 -0.883 1.540 -1.847 -0.954 -0.913 1.582 -5.381 -4.442 -4.407 -1.794
16 -1.754 -0.719 -0.657 1.694 -1.735 -0.728 -0.621 1.665 -5.436 -4.383 -4.276 -1.902
17 -1.810 -1.012 -0.952 1.509 -1.844 -1.019 -0.972 1.539 -5.389 -4.522 -4.480 -1.854
18 -1.549 -0.809 -0.546 1.576 -1.466 -0.799 -0.425 1.414 -5.526 -4.832 -4.443 -2.551
19 -1.601 -0.868 -0.517 1.716 -1.488 -0.833 -0.381 1.524 -5.594  -4.912 -4.442 -2.484
20 -1.559 -0.927 -0.653 1.366 -1.617 -0.951 -0.723 1.462 -5.295 -4.595 -4.364 -2.074
21  -1.187 -0.707 -0.782 1.094 -1.221 -0.709 -1.196 1.386 -4.583 -4.046  -4.569 -1.800




The average (across the 10 samples) points on the latent trait scale h&here t
category 1 (Strongly Disagree) and category 2 (Disagree) probahititesect within the

PCM and GPCM models are given in the column labéledn Table 4.31. The same

interpretation is made for the points on the latent trait where the intersettie rest of the
adjacent probability functions intersect in the columns labeledb,,, andb,,. For
example, across the averaged parameters estimated within the PCMsafaaliteen 1, the
point on the latent trait (Leadership) scale, where the probability of endoasegpry 1
(Strongly Disagree) and category 2 (Disagree) intersect, is tboataverage, at -1.475.
The average step parameters were not evenly distributed across thedatemthat

the middle two average step parameters generated by the PCM and GRCb],) were

estimated to be very close. Also, the point of intersection between strongyaagragree

(b;,), across all 21 items was generally higher than the adjacent step pardimste
discrepancy betweeb,, andb,, in the Leadership analyses was, however, much less

pronounced than that within the Empowerment analyses. These results support thel observe
responses by category in Table 4.29 that respondents did not use the five respornsescatego

evenly; a disproportionate percentage of the respondents agreed with all the item
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Table 4.29

Percentage of Category Endorsement by Leadership: [Eull Samplén = 65,012)

9

y

e gor

t

a

y

e gor

t

a

Iltem 1 2 3 4 5 6 I 8 9 10 11
Strongly Disagree 74 1.3 4.5 8 109 6.7 14 56 4.5 4 21
Disagree 165 58 114 189 205 132 51 13 12 11.3 54
Neither Agree Nor Disagree  14.1 8.1 128 153 138 143 168 156 274 185 85
Agree 459 528 489 423 394 46.5 55.2 45 43 49.7 53.9
Strongly Agree 154 31 219 153 149 189 211 20.2 126 159 29.9
Iltem 12 13 14 15 16 17 18 19 20 21
Strongly Disagree 34 3.6 34 37 49 3.4 6 56 54 9.1
Disagree 7.3 8.4 85 113 158 103 147 143 122 13
Neither Agree Nor Disagree  11.3135 14.2 16.2 187 16.4 209 224 199 149
Agree 52.3 50.4 50.8 544 49 557 46 46.5 475 444
Strongly Agree 255 238 226 123 105 133 116 104 14.1 183




Plots of the threshold parameters within the PCM, GPCM and GGUM analyses are
useful for interpretation of the item parameter estimates previoustyibled. Derivation and
examination of the probability plots were the focus of the third research questibwas
hypothesized that, for the items that contained relatively neutral content, thevqlibds
display characteristics of the ideal point response process (i.e., ggaked, non-
monotonic). It was also hypothesized that the two types of IRT models wouldfuncti
similarly if the attitudes possessed by the sample were located on erté gid items (i.e.,
homogeneous sample not measured well by items). Figures 4.45 through 4.65 display the
category probability functions for the 21 Leadership items from applicatited?CM on
the first simple random sample. Figures 4.66 through 4.86 display the category probabili
functions for the 21 Leadership items from application of the GPCM on the firsiesimpl
random sample, and Figures 4.87 through 4.107 display the category probability plots for the
21 Leadership items resulting from the GGUM analyses on the first sahmgleategory
probability plots for the 21 Leadership items are displayed in Figures 4.66 through 4.86

resulting from the application of the GPCM.
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Figure 4.45
Category Probability Plot for Item 1 with PCM: Saled, Leadership Scale

Item Characteristic Curve: ltem 1
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Figure 4.46

Category Probability Plot for Item 2 with PCM: Salmfd, Leadership Scale

[tem Characteristic Curve: Item 2

1,
8
2 6
3
S 4
o
2
03 2 1 0 1 2 3

Theta

162



Figure 4.47

Category Probability Plot for Item 3 with PCM: Salmfd, Leadership Scale

Item Characteristic Curve: ltem 3
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Figure 4.48

Category Probability Plot for Item 4 with PCM: Saled, Leadership Scale

Item Characteristic Curve: ltem 4
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Figure 4.49

Category Probability Plot for Item 5 with PCM: Salmfd, Leadership Scale

Item Characteristic Curve: Iltem 5
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Figure 4.50

Category Probability Plot for Item 6 with PCM: Saled, Leadership Scale

Item Characteristic Curve: ltem 6
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Figure 4.51

Category Probability Plot for Item 7 with PCM: Salmf, Leadership Scale

Item Characteristic Curve: ltem 7
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Figure 4.52

Category Probability Plot for Item 8 with PCM: Salefd, Leadership Scale

Item Characteristic Curve: Item 8
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Figure 4.53

Category Probability Plot for Item 9 with PCM: Salmfd, Leadership Scale

Item Characteristic Curve: Item 9
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Figure 4.54

Category Probability Plot for Item 10 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 10
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Figure 4.55
Category Probability Plot for Item 11 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: ltem 11
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Figure 4.56

Category Probability Plot for Item 12 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: ltem 12
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Figure 4.57

Category Probability Plot for Item 13 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: [tem 13
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Figure 4.58

Category Probability Plot for Item 14 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 14

1,
8
>
= 6
3
8 4
a0
2
03 2 1 0 1 2 3

Theta

168



Figure 4.59

Category Probability Plot for Item 15 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 15
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Figure 4.60

Category Probability Plot for Item 16 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 16
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Figure 4.61

Category Probability Plot for Item 17 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 17
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Figure 4.62

Category Probability Plot for Item 18 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: [tem 18
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Figure 4.63

Category Probability Plot for Item 19 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 19
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Figure 4.64

Category Probability Plot for Item 20 with PCM: Spla 1, Leadership Scale
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Figure 4.65

Category Probability Plot for Item 21 with PCM: Spla 1, Leadership Scale

Item Characteristic Curve: ltem 21
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Figure 4.66

Category Probability Plot for Item 1 with GPCM: Spim 1, Leadership Scale

Item Characteristic Curve: Item 1
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Figure 4.67

Category Probability Plot for Item 2 with GPCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 2
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Figure 4.68

Category Probability Plot for Item 3 with GPCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 3
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Figure 4.69

Category Probability Plot for Item 4 with GPCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 4
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Figure 4.70

Category Probability Plot for Item 5 with GPCM: Spim 1, Leadership Scale

Item Characteristic Curve: ltem 5
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Figure 4.71

Category Probability Plot for Item 6 with GPCM: Spla 1, Leadership Scale

[tem Characteristic Curve: ltem 6
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Figure 4.72

Category Probability Plot for Item 7 with GPCM: Spim 1, Leadership Scale

Item Characteristic Curve: ltem 7
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Figure 4.73

Category Probability Plot for Item 8 with GPCM: Spla 1, Leadership Scale

Item Characteristic Curve: Item 8
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Figure 4.74

Category Probability Plot for Item 9 with GPCM: Spim 1, Leadership Scale

Item Characteristic Curve: Item 9
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Figure 4.75

Category Probability Plot for Item 10 with GPCM:8ple 1, Leadership Scale

Item Characteristic Curve: Item 10
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Figure 4.76

Category Probability Plot for Item 11 with GPCM:18ple 1, Leadership Scale

Item Characteristic Curve: ltem 11
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Figure 4.77

Category Probability Plot for Item 12 with GPCM:8ple 1, Leadership Scale

Item Characteristic Curve: Item 12
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Figure 4.78

Category Probability Plot for Item 13 with GPCM:18ple 1, Leadership Scale

Item Characteristic Curve: Item 13

Probability

Theta
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Figure 4.79

Category Probability Plot for Item 14 with GPCM:8ple 1, Leadership Scale

Item Characteristic Curve: Item 14
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Figure 4.80

Category Probability Plot for Item 15 with GPCM:18ple 1, Leadership Scale
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Figure 4.81

Category Probability Plot for Item 16 with GPCM:8ple 1, Leadership Scale

Item Characteristic Curve: ltem 16
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Figure 4.82

Category Probability Plot for Item 17 with GPCM:18ple 1, Leadership Scale

Item Characteristic Curve: Item 17
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Figure 4.83

Category Probability Plot for Item 18 with GPCM:8ple 1, Leadership Scale

Item Characteristic Curve: Item 18
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Figure 4.84

Category Probability Plot for Item 19 with GPCM:18ple 1, Leadership Scale

Item Characteristic Curve: Item 19
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Figure 4.85

Category Probability Plot for Item 20 with GPCM:8ple 1, Leadership Scale

Probability

Figure 4.86

Item Characteristic Curve: Item 20

Theta

Category Probability Plot for Item 21 with GPCM:18ple 1, Leadership Scale

Probability

Item Characteristic Curve: ltem 21

Theta
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Figure 4.87

Category Probability Plot for Item 1 with GGUM: Spla 1, Leadership Scale

Prob.

Figure 4.88

Category Probability Plot for Item 2 with GGUM: Spla 1, Leadership Scale

Prob.
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Figure 4.89

Category Probability Plot for Item 3 with GGUM: Spla 1, Leadership Scale

Prob.

Figure 4.90

Category Probability Plot for Item 4 with GGUM: Spla 1, Leadership Scale

Prob,
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Figure 4.91

Category Probability Plot for Item 5 with GGUM: Spla 1, Leadership Scale
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Figure 4.92

Category Probability Plot for Item 6 with GGUM: Spla 1, Leadership Scale
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Figure 4.93

Category Probability Plot for Item 7 with GGUM: Spla 1, Leadership Scale

Prob,

Figure 4.94

Category Probability Plot for Item 8 with GGUM: Spla 1, Leadership Scale

Prob.
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Figure 4.95

Category Probability Plot for Item 9 with GGUM: Spla 1, Leadership Scale

Prab.

Figure 4.96

Category Probability Plot for Item 10 with GGUM: i®&gale 1, Leadership Scale

Prob,
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Figure 4.97

Category Probability Plot for Item 11 with GGUM: i®@gale 1, Leadership Scale

Prob.

Figure 4.98

Category Probability Plot for Item 12 with GGUM: i8ale 1, Leadership Scale

Prob.
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Figure 4.99

Category Probability Plot for Item 13 with GGUM: i@gale 1, Leadership Scale

Proh.

Figure 4.100

Category Probability Plot for Item 14 with GGUM: i8ale 1, Leadership Scale

Prob.
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Figure 4.101

Category Probability Plot for Item 15 with GGUM: i®@gale 1, Leadership Scale

Prob,

Figure 4.102

Category Probability Plot for Item 16 with GGUM: i@gale 1, Leadership Scale

Prob.
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Figure 4.103

Category Probability Plot for Item 17 with GGUM: i®@gale 1, Leadership Scale

Frob.

Figure 4.104

Category Probability Plot for Item 18 with GGUM: i8ale 1, Leadership Scale

Prob,
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Figure 4.105

Category Probability Plot for Item 19 with GGUM: i@gale 1, Leadership Scale

Prob.

Figure 4.106

Category Probability Plot for Item 20 with GGUM: i@gale 1, Leadership Scale

Proh.
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Figure 4.107

Category Probability Plot for Item 21 with GGUM: i8ale 1, Leadership Scale

Prob,

Theta

Just as in the Empowerment analyses, category 1 represented StronglgeDesapr
category 5 represented Strongly Agree in all category probability plotse plus are
graphical representations of and reflect the item location, discriminationteguithseshold
item parameters. Because, on average, most respondents agreed with aéofghiedcause
all 21 items were generally located in a very narrow region of the ladéniaind because the
majority of the items discriminated similarly, the category probalilibgtions across most
of the 21 items looked very similar within and between analyses by IRT model.

Of note are the similarities between the cumulative and unfolding modeési Bas
examination of the category probability plots, there appears to be little ddéebetween the
two type of IRT models, with the exception of item 21. That item was leastndisating

across the GPCM and GGUM models, though the rank order of the item’s location was very
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different across the two model types. The GGUM estimated item 21 to bexaashe
relative to the other items, and the cumulative models estimated this itermtudbeate.
Across all analyses, the category probability plot for item 21 is the only onehiaited
distinct unfolding properties. Specifically, the observed Strongly Agree resporg®h is
unidmodal and the observed other response functions are or approach bimodal. Interpretation
of the Neither Agree Nor Disagree observed response function (i.e., categone8gssarily
imprecise. This observed response function is the result of the two subjeqtiveses
functions: Neither Agree Nor Disagree from above and Neither Agree Nagige from
below. Theoretically and practically, it is difficult to understand what an\at@sit response
from above or from below mean. For item 21 in sample 1, the Neither Agree Nordeisag
operates similar to the Disagree response function. Items 7, and 11 througio Exhabit
some unfolding properties, though only for the Agree response category, and shigtitey f
Strongly Agree category.

To address the third research question, the probability functions were genenall
similar across the two types of IRT models, indicating little differdseteveen cumulative
and unfolding IRT models. Some items, did however, exhibit unfolding properties, especiall
for the Strongly Agree and Agree response options, generally, for items Todghhi5 and
21. These properties were also evidenced by the slight non-monotonicity of the ICCs
generated from the GGUM analyses for the two response options.

The second part of the fourth research question investigated in this study had

to do with the fit of each model to the data. This was examined by calculating botheabsolut

and relative fit statistics. Fit statistics are presented and discoskav.
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ltem and scale level chi-square distributed fit statistiés\{@re calculated across the
three IRT models. Results from the PCM analyses are reported in Table 4.3hfof tee
10 samples. Table 4.33 presents the fit statistics from the GPCM analyseaptnd.34
displays the fit statistics from the GGUM analyses. Ten fit groups wecdisgden all
analyses. Thp-values associated with an asterisk (*) indicate a statistically gaimg) fitem
at the .01 level. In the PCM analyses, item 1 showed significant fit in two of thentplesa
and item 4 exhibited good fit in a single sample. Across all analyses, the PCMitineer
survey statistically well as a whole. Based on the results in Table 4.32, thesR@MI4
fitting model to this Leadership data. At the survey level, the fit of theNGRGdel to the
Leadership was not improved. Item level fit was marginally improved with B@\NG
compared to the PCM, with item 8 showing good fit in 5 of 10 analyses. Overall, results in

Table 4.34 indicate that the GPCM is also an ill-fitting model for these data.
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Table 4.32

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sar@le: P

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem  y° 7’ af  p 7’ aof  p yF df p yF df
1 61.924 23 .00 40.492 21 .01 48.923 22 .0p3.716 20 .00 57.801 21 .00
2 239.075 18 .00244.923 18 .00 159432 18 .0@79.428 18 .00266.817 18 .00
3 110.603 21 .00133.353 22 .00 99.433 21  .0®5.667 19 .00 82.972 19 .00
4 48.462 23 .00 31.768 22 .08* 60.313 21 .0063.050 21 .00 46.697 21 .00
5 67.569 23 .0097.385 25 .00 47.708 21  .0%12.277 21 .00 90.786 21 .00
6 87.549 21 .0067.194 22 .00 65.954 22 .063.168 19 .00 103.596 21 .00
T 83.167 20 .00 85.550 20 .00 76.615 19 .003.931 18 .00149.802 18 .00
© 8 204553 22 .00178.663 22 .00 184.111 22 .0@92.598 19 .00197.778 21 .00
? 9 77.925 23 .00109.119 24 .00 62.795 21 .0®0.912 22 .00 70.221 22 .00
10 96.768 23 .0087.111 22 .00 74.597 21 .0®4.522 20 .00 64.769 21 .00
11 227.497 19 .00163.646 19 .00 139.076 18 .0050.577 18 .00175.591 19 .00
12 94.444 20 .0054.438 20 .00 90.227 18 .0(89.302 19 .00 86.350 18 .00
13 76.184 20 .0061.209 21 .00 90.581 20 .00r7.307 19 .00 61.119 18 .00
14 66.695 20 .0075.971 21 .00 56.172 20 .0089.125 19 .00 57.163 18 .00
15 54.846 23 .0087.684 22 .00 56.824 22 .0066.017 22 .00 40.928 22 .01
16 87.640 23 .0099.367 24 .00 80.408 23 .066.694 23 .00 69.568 23 .00
17 85.888 23 .0042.308 22 .01 64.091 22 .0013.308 21 .00 45.631 21 .00
18 108.753 23 .00114.282 24 .00 135375 23 .0a18.059 23 .00180.510 23 .00
19 135.323 23 .00187.295 24 .00 153.039 23 .0@71.377 23 .00177.980 23 .00
20 69.049 23 .0057.552 23 .00 105.441 22 .0@18.646 21 .00 83.070 22 .00
21 252.141 22 .00287.101 21 .00 212.003 22 .0@18.718 21 .00252.603 21 .00
Total 2336.055 456 .00 2306.409 459 .00 2063.117 441 .00 2178.400 426 .00 2361.751 431 .00

Note: * denotes observed and expected frequencies astatistically differentd > .01)



Table 4.32 Con't
Item and Scale Level Chi-Square Fit Statistics for Each Leadership Sar@le: P

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
ltem x° df  p x° df p x° df p x° af p  x° df p
1 32.211 22 .07* 48.193 21 .00 43.782 22 .00 28.853 22 .14 59.008 22 .00
2 169.632 17 .00 271451 17 .00 195.103 18 .00 208.211 18 .00 257.876 17 .00
3 86.637 21 .00 105.259 19 .00 109.265 21 .00 71.565 21 .00 129330 21 .00
4 62.048 22 .00 41981 21 .00 69.241 21 .00 68.818 22 .00 55.399 22 .00
5 63.421 25 .00 79.400 22 .00 62.327 21 .00 49.842 23 .00 42.423 23 .01
6 57.590 22 .00 77.447 20 .00 98.234 22 .00 87.238 22 .00 66.188 22 .00
N 65.470 19 .00 107.411 19 .00 136.248 20 .00 130.263 19 .00 113.652 20 .00
© 8 168.413 22 .00 171917 21 .00 171818 22 .00 196.091 22 .00 205.305 22 .00
N9 83.463 23 .00 79.934 23 .00 95.494 24 .00 106.355 23 .00 102.079 24 .00
10 75.633 21 .00 102.960 21 .00 69.435 21 .00 93.579 21 .00 90.926 23 .00
11 116.479 18 .00 210.734 18 .00 172475 18 .00 136.158 20 .00 227.998 18 .00
12 72.784 21 .00 77.835 19 .00 107.959 20 .00 84.076 20 .00 130.018 19 .00
13 69.909 21 .00 80.554 19 .00 106.821 21 .00 81.388 21 .00 104.790 21 .00
14 64.994 21 .00 78.290 19 .00 88.711 21 .00 59.805 21 .00 108.787 21 .00
15 60.268 22 .00 68.363 23 .00 55.803 22 .00 64.432 22 .00 79.483 22 .00
16 73.375 23 .00 54.274 23 .00 92.628 23 .00 69.026 23 .00 67.423 23 .00
17 41.615 22 .01 67.532 22 .00 54.462 22 .00 51.341 22 .00 57.110 22 .00
18 124271 23 .00 140.822 23 .00 125.929 23 .00 137.039 23 .00 130.573 23 .00
19 197.342 23 .00 213933 23 .00 160.255 23 .00 192287 23 .00 158.397 24 .00
20 48.881 23 .00 85.244 22 .00 81.378 22 .00 53.423 23 .00 128.005 23 .00

21 206.831 21 .00 283.086 21 .00 201.157 22 .00 268.308 21 .00 236.876 21 .00
Total 1941.265 452 .00 2446.619436 .00 2298.526 449 .00 2238.100 452 .00 2551.646 453 .00

Note: * denotes observed and expected frequencies astatistically differentd > .01)



Table 4.33

Item and Scale Level Chi-Square Fit statistics for each Leadership S8aBRCM

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem x° af p  x° af p x° i p  x° aof p  y*  df p
1 48.287 23 .00 43.948 22 .00 49.120 23 .00 49.864 23 .@3.686 23 .00
2 142438 21 .00175.938 24 .00 100.649 23 .00 119481 23 .087.388 22 .00
3 58.051 18 .00 68.461 18 .00 51.355 18 .00 50.362 18 .@2@.824 18 .00
4 55.977 23 .0037.679 21 .01* 72.570 23 .00 63.586 23 .018.974 21 .00
5 55.614 23 .00 80.899 21 .00 57.889 22 .00 76.554 22 .@9.497 21 .00
6 56.572 19 .0051.791 22 .00 54.310 22 .00 62.888 21 .@®.621 19 .00
I 71.594 22 .0062.833 22 .00 77.834 20 .00 95.764 20 .0a8.640 23 .00
© 8 48.868 18 .00 65.262 17 .00 45.640 17 .00 43.595 17 .@1.372 17 .00
@ 9 76.961 24 .0059.212 20 .00 38.721 21 .01* 74.084 21 .06.371 21 .00
10 40.608 21 .0140.363 19 .00 49.939 21 .00 80.750 19 .@@.304 21 .00
11 226.643 21 .00168.727 20 .00 138554 21 .00 158.347 19 .0@5.720 19 .00
12 105.190 20 .0064.873 20 .00 97.642 18 .00 105507 18 .002.347 20 .00
13 84.642 20 .0080.771 21 .00 99.675 22 .00 91.149 19 .0a3.146 22 .00
14 103.623 22 .0073.151 19 .00 62.377 20 .00 78.380 20 .0®.102 20 .00
15 61.211 23 .00102.286 22 .00 60.218 22 .00 61.537 22 .@8.906 22 .00
16 98.039 23 .0060.786 20 .00 77.610 23 .00 61.449 22 .G3.124 21 .00
17 98.927 23 .0063.063 22 .00 75.573 23 .00 48.799 22 .G%.036 21 .00
18 51.107 22 .0035.702 20 .01* 55.510 20 .00 62.037 20 .(Bp.787 18 .00
19 40.550 21 .0165.295 19 .00 43.690 20 .00 44551 18 .@3.565 18 .00
20 78.642 25 .0096.780 24 .00 108.856 24 .00 73.190 23 .009.790 23 .00
21 509.716 25 .00673.659 27 .00 457924 26 .00 573.654 25 .604.407 26 .00
Total 2113.258 457 .00 2171.479 440 .00 1875.653 449 .00 2075.527 435 .00 2187.608 436 .00

Note: * denotes observed and expected frequencies astatistically differentd > .01)



Table 4.33 Con't

Item and Scale level chi-square fit statistics for each Leadership SaaiGM

Sample 6 Sample 7 Sample 8 Sample 9 e 1Bampl
ltem z° i p z° df r° 2 d p Z df p
1 49.826 23 .00 58551 23 .00 49578 22 .00 45.602 23 .00 56.311 22 .00
2 106.662 23 .00 134.946 23 .00 152.163 24 .00 158.505 23 .00 177507 22 .00
3 54.355 21 .00 54.098 18 .00 53.409 18 .00 33.428 20 .63*736 19 .00
4 71.004 24 .00 47.489 21 .00 79.588 23 .00 71.506 23 .00 74.857 23 .00
5 81.141 25 .00 90.243 21 .00 90.971 23 .00 62.720 24 .00 71.572 25 .00
6 45.938 21 .00 71.256 20 .00 92.297 22 .00 47.168 21 .00 46.762 22 .00
=7 44.604 21 .00 97.483 23 .00 87.714 24 .00 97.870 22 .00 80.483 24 .00
© 8 13.620 17 .69* 26.056 15 .03* 52.990 17 .00 29.445 18 .G£:326 18 .00
© 9 107.594 24 .00 74.383 20 .00 60.285 21 .00 106.763 23 .00 105.765 22 .00
10 48.399 21 .00 73.541 21 .00 33.404 21 .086.119 21 .00 48.487 21 .00
11 110.168 19 .00 160.211 20 .00 164.765 21 .00 129.745 20 .00 208.038 22 .00
12 53.262 20 .00 72.035 18 .00 118.604 20 .00 82.861 20 .00 129.960 20 .00
13 67.116 21 .00 77.240 21 .00 106.896 22 .00 87.965 21 .00 108507 21 .00
14 66.587 21 .00 72.772 19 .00 91.409 21 .00 50.987 20 .00 99.461 20 .00
15 67.505 23 .00 85.753 22 .00 67.115 22 .00 77.548 22 .00 93.119 22 .00
16 74.717 23 .00 48.257 22 .00 87.692 23 .00 81.862 23 .00 64.904 22 .00
17 45.321 22 .00 86.478 22 .00 66.531 22 .00 59.681 22 .00 72962 22 .00
18 23.684 20 .25* 50.918 19 .00 33.500 19 .021.784 20 .35* 26.767 20 .14*
19 17.098 19 .58* 58.668 18 .00 64.196 19 .00 45.954 20 .00 35.824 20 .02*
20 49.899 24 .00 99.217 24 .00 96.461 23 .00 87.571 24 .00 118.127 24 .00
21 521.610 26 .00 570.885 25 .00 569.606 27 .00 627.478 26 .00 538.006 26 .00
Total 1720.112 458 .00 2110.480 435.00 2219.175 454.00 2086.563 456.00 2272.484 457 .00

Note: * denotes observed and expected frequencies astatistically differentd > .01)



Table 4.34 displays the chi-square distributed fit statisti€sft@m the GGUM
analyses. The same caution as in the Empowerment analyses must be exercised whe
interpreting the fit results produced from the GGUM, patrticularly for thesesitassociated
with few fit groups. Few fit groups logically are associated with fedegrees of freedom,
which will influence the chi-square statistic. Clearly more items Wieerad to fit better
within the GGUM analyses; however, determination of fit based on these @sunkswould
be inappropriate because good fit could be a function of the reduced degrees of freedom.
Nonetheless, some patterns did emerge from the GGUM fit results, namebndistent
lack of fit of items 2, 11, and 21 across the 10 samples. According to the GGUM analyses
items 2 and 21 had the two lowest discrimination estimates and items 11 and 21 had the most
modest item location estimates. Items 2 and 11 ask respondents to rate thefr level
agreement with the statements: “The faculty are committed to helpingstudent learn”
and “Teachers are held to high professional standards for delivering instrutgonZ1

reads “Overall, the school leadership in my school is effective.”
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Table 4.34

Item and Scale Level Chi-Square Fit Statistics for Each Leadership Saaplév

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
ltem 7’ df  p fit x* df p fit x> df p fit y* df fit x> df p fi

1Ps. grps. grps. grps. grps.

1 28.274 16 .029* 4 17.701 16 .342* 4 14133 16 .589* 4 29.098 20 .086* 5 30.655 20 0.060* 5

2 44135 16 .000 4 59698 20 .000 5 38.878 16 .001 4 46.235 16 .000 4 53.189 16 .000 4

3 8.981 8 343* 215731 8 .046* 2 17.744 12 .124* 3 21.561 12 .043* 3 6.252 8 .619* 2

4 25.280 16 .065* 4 9.516 16 .891* 4 47.160 24 .003 6 36.794 24 .046* 6 27.683 16 .035* 4

5 15924 20 .721* 5 33.108 20 .033* 5 29.830 20 .073* 5 28.884 20 .090* 5 37.487 20 .010* 5

6 9.102 12 694* 3 14976 12 .243* 3 27.172 16 .040* 4 19.856 16 .227* 4 11.054 12 524* 3

D 29.066 16 .023* 4 30.885 16 .014* 4 15.894 12 .196* 3 33.691 12 .001 3 47.832 16 .000 4
© g 0.497 4 973* 10.228 4 994+ 1 20802 8 .008 2 0.411 4 ,982* 1 0.323 4 .988* 1
o9 26.592 12 .008* 3 14516 8 .069* 2 12.436 12 .411* 3 14.765 12 .255* 3 8.086 12 778 3
10 6.257 8 .618* 28.254 8 .409* 2 2.823 8 945 2 12748 8 .121*2 10.891 8 .208* 2

11 99.036 16 .000 4 73.102 16 .000 4 91668 16 .000 4 88.370 12 .000 3 65.116 16 .000 4

12 16.737 12 .160* 3 9.266 12 .680* 3 18.727 12 .095* 3 19.485 12 .078* 3 36.466 16 .003 4

13 10.100 12 .607* 3 19.887 12 .069* 3 26.471 16 .048* 4 26.945 12 .008 3 10534 12 569* 3

14 18.165 12 .111* 3 20.599 12 .057* 3 23.924 12 .028* 3 29.731 12 .003 3 9.190 12 687 3

15 18.526 16 .294* 4 4.792 8 .780* 2 20.548 16 .197* 4 36.712 16 .002 4 5.421 8 712 2

16 23.799 12 .022* 3 9.575 8 .296* 2 24.408 12 .018* 3 12288 12 .423* 3 16930 8 .031* 2

17 32.260 16 .009 4 20.319 16 .206* 4 15.003 12 .241* 3 4.302 12 977 3 6.927 8 .b45* 2

18 0.543 4 969* 10.231 4 994 1 0.243 4 993* 1 0.230 4 .994* 1 0.280 4  991* 1

19 0.732 4 947 10.384 4 .984* 1 0.448 4 978* 1 0.439 4 979* 1 0.563 4 967 1

20 33.955 20 .026* 5 36.687 20 .013* 5 48.360 20 .000 5 27.343 20 .126* 5 30.998 16 .014* 4

21 698.81 24 .00 6 1020.80 32 .00 8 77297 32 .00 8 898.31 32 .00 8 94558 32 .00 8

Total 1146.78 69 .00 1420.26 68 .00 1269.64 75 .00 1388.20 73 .00 1361.46 67 .00

Note: * denotes observed and expected frequencies agatistically differentdq > .01)



Table 4.34 Con't

Item and Scale Level Chi-Square Fit Statistics for Each Leadership San@ilimMG

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
ltem y® df  p it > df  p fit oy df p fit x> df p fit x> df fit

ps. grps. grps. grps. grps.

1 24588 20 .218* 5 24,268 20 .231* 5 25.008 16 .070* 4 9.200 16 .905* 4 5.640 12 .933* 3

2 36.946 16 .002 4 53.822 16 .000 4 54.414 20 .000 5 90.737 16 .000 4 65.946 16 .000 4

3 10.739 12 551* 3 0.848 4 932* 1 11.710 12 .469* 3 10.484 12 .574* 3 16585 8 .035* 2

4 26.387 24 .334* 6 9.943 16 .869* 4 43.684 24 008 6 21.771 16 .151* 4 26.963 16 .042* 4

5 29.250 20 .083* 5 28.125 16 .031* 4 35.868 20 .016* 5 23.420 16 .103 4 35.825 20 .016* 5

6 27.239 16 .039* 4 12,225 12 .428* 3 29.439 16 .021* 4 6.532 8 .588* 2 26.079 16 .053* 4

D 27.670 12 .006 3 25.452 16 .062* 4 17979 16 .325* 4 32.842 12 .001 3 39.082 16 .001 4
© g 0.337 4 987 1 0.408 4 .982*1 12928 8 .114* 2 0.301 4 .989* 1 0.514 4 972* 1
M9 14.263 12 .284* 3 14943 12 .245* 3 13966 12 .303* 3 33.843 12 .001 3 14.277 12 .283* 3
10 9.986 8 .266* 2 26.377 12 .009 3 7.599 8 474 216948 8 .031* 2 8.101 8 .424* 2

11 63.200 12 .000 3 122.848 16 .000 4 37.123 16 .002 4 51.791 12 .000 3 137.341 16 .000 4

12 26.527 12 .009 3 13.574 12 .329* 3 17.165 12 .144* 3 10.499 12 572* 3 21909 12 .038* 3

13 29.817 12 .003 3 17.149 12 .144* 3 19.102 12 .086* 3 17.565 12 .129* 3 26.503 12 .009 3

14 35.228 12 .000 3 19.532 12 .076* 3 16.447 12 .172* 3 13.058 12 .364* 3 24.072 12 .020* 3

15 23.135 16 .110* 4 13.989 12 .301* 3 11.871 12 .456* 3 16.386 16 .426* 4 23700 8 .003 2

16 18.349 12 .106* 3 5.815 8 .668* 2 19.250 12 .083* 3 7.508 12 .822* 3 22038 8 .005 2

17 15.897 12 .196* 3 22.640 12 .031* 3 4.957 8 .762* 2 21.835 12 .039* 3 20903 8 .007 2

18 0.291 4 990* 1 0.400 4 .983* 1 0.226 4 994* 1 0.219 4 994* 1 0.454 4 978* 1

19 0.580 4 965* 1 0.605 4 .963* 1 0.430 4 .98* 1 0.441 4  979* 1 0.680 4 954* 1

20 25.251 20 .192* 5 33.455 20 .030* 5 36.547 12 .000 3 19.896 20 .465* 5 80.506 20 .000 5

21 833.62 28 .00 7 957.81 32 .00 8 886.45 32 .00 8 957.67 32 .00 8 803.09 28 .00 7

Total 1279.30 72 .00 1404.22 68 .00 1302.16 72 .00 1362.94 67 .00 1400.21 65 .00

Note: * denotes observed and expected frequencies agatistically differentd > .01)



Another approach used for assessing model fit was the calculation of AIC and BIC

statistics with the application of the IRT models to the Leadership datie. 4.85 displays

those fit statistics estimated by the PCM, GPCM, and GGUM models. Téggts mimic

those of the Empowerment analyses in that the GGUM was associated with mlieh sma

AIC and BIC values than the GPCM, and the differences between the GPCM and PCM

solutions were small. Based on these results, the GGUM exhibited the best fit to the

Leadership data, while GPCM fit the data better than the PCM. In sum, araysiested

to answer the fourth research question reveal that, across the three IRS, tinadiééms

generally do not fit well and neither do the models according to the chi-sqakstcst

According to the AIC and BIC criteria, the GGUM fit relatively bettean the GPCM,

though no criterion exists to measure ‘how much’ better.

Table 4.35

AIC and BIC Results for Each Leadership Sample ff@M, GPCM, and GGUM models

Sample PCM GPCM GGUM
AIC BIC AlIC BIC AIC BIC
1 85275.831 85863.926 84442.372 85148.086 57900.66 59563.71
2 85692.078 86280.173 84611.837 85317.551 59563.71 59832.398
3 85566.826 86154.921 84840.242 85545.956 58169.602 60046.716
4 84823.419 85411.514 84061.782 84767.496 59832.398 59253.97
5 83862.589 84450.684 82839.962 83545.676 56370.513 58033.562
6 84556.071 85144.166 83715.5 84421.214 57243.101 58905.897
7 84715443 85303.538 83672.425 84378.139 57205.395 58868.57
8 85700.59 86288.685 84749.879 85455.593 58268.865 59932.04
9 84171.773 84759.868 83244.731 83950.445 56781.012 58444.061
10 83506.736 84094.831 82572.435 83278.149 56122.599 57785.522
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Person Locations

The focus of the second research question had to do with the location of the sample
on the latent trait and the ordering of respondents on the latent trait acras®¢RIE. IRT
calibrations were conducted for the PCM, GPCM, and GGUM on the 10 Leadership samples
and person parameters are provided in this section. Rank-order correlations arngateatte
of the person parameters are presented to address research question twatidrshie
between the rank ordering of the person parameter trait estimates prbgubedCM,
GPCM, and CFA scaling methods and the GGUM was examined with simple Kenddall Tau
correlations. Kendall's Tab-correlations of the person trait estimates across the 10
Leadership samples for each pair of scaling methods are presented in Tabledd3ajtal

the average correlation across samples.

Table 4.36

Kendall's Tau-b Correlations among Person Traitiisttes by Sample and Scaling Method

Sample PCM, GPCM, PCM, CFA, CFA, CFA,
GGUM GGUM GPCM PCM GPCM GGUM

1 973 .994 974 942 .955 .956

2 .969 .999 .970 941 .959 .959

3 971 .999 972 940 .955 .955

4 972 .999 973 942 .956 .956

5 .963 .999 .964 929 951 .952

6 970 .999 971 939 .952 .952

7 .966 .999 .966 .935 .955 .956

8 .968 .999 .969 .938 .955 .955

9 .970 .999 971 .965 .982 .982

10 971 .999 971 .940 957 .957

Mean .969 .998 .970 941 .958 .958
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Two trends visible in Table 4.36 were also apparent in the Empowerment analyses.
First, the greatest measure of association between the trait estiveest found between the
GPCM and GGUM models, indicating nearly identical ordering of person esing¢cond,
the smallest correlations were consistently found between the CFA and PCI.nurde
difference between the Leadership and Empowerment results is found iretfgthsof
association in that all correlations (and average correlations) wereitothe Empowerment
analyses. For example, the smallest mean correlation in the Empowermgsgabatween
the PCM and CFA was lower (Tau = .873) than the average correlation betweendghe sam
scaling methods in the Leadership analysis (Tau = .941). The inconsistencyankioeder
of person estimates between the PCM and CFA models is less pronounced in thénipeaders
analyses. Finally, all correlations in each of the sample, for all cominsatf scaling
methods were statistically significamt € .01).

Graphical representations of the relationship between the trait etiaratfound in
the form of scatterplots in Figures 4.108, 4.109, and 4.110. These plots show the association
of trait estimates between the GGUM and the PCM, GPCM, and CFA models, redpecti
from sample 1.

The trait estimates produced by the PCM and GGUM were very similarheith t
exception of some outliers at the upper end of the distribution. Those casestivetedgo
have higher GGUM values than PCM trait values. The relationship between the GICM a
GGUM trait estimates shown in Figure 4.109 was nearly linear, with thetextef outliers

at the upper end of the trait.
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Figure 4.108

Scatterplot of Trait Estimates for PCM and GGUM migdSample 1 Leadership Scale
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Figure 4.109

Scatterplot of Trait Estimates for GPCM and GGUMdals: Sample 1 Leadership Scale
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Note. Dashed line denotes 93% pradiction covfidence interval
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Figure 4.110

Scatterplot of Trait Estimates for CFA and GGUM mrlsdSample 1 Leadership Scale

GGUM

CFA

Note. Dashed line denotes 93% prediction confidence ellipse

Finally, the nonlinear relationship between the CFA and GGUM trait esgnaa¢
shown in Figure 4.110. Towards the middle of the distribution the CFA model generates
higher estimates than the GGUM, and closer to the positive end of the trait, thd GG
appears to yield higher trait estimates than the CFA model. Outliersesenpat both ends
of the latent trait, and even along most of the continuum. Across the three (PCM, GRCM, a

CFA) models, the CFA functions most inconsistently with the GGUM.
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Another approach used to examine the estimated trait distributions and to further
detect discrepancies in trait estimates between models, was thetmaicul4 5 cross-
tabulation tables. The procedures used were identical to those of the Empoweatysig.an
Results are presented again only for the first Leadership sample. Thenfrgad
respondents within given quintiles for each pair of models with the GGUM are megent

Table 4.37 for the PCM, Table 4.38 for the GPCM, and Table 4.39 for the CFA model.

Table 4.37

Cross Tabulation Table of GGUM and PCM Quintileantple 1 Leadership Scale

PCM
1 2 3 4 5 Total Statistic Value ASE
= 1 386 13 0 0 0 399 Tab- 971 .003
> 2 11 374 15 0 0 400 Tauw- 971 .003
O 3 0 13 377 9 0 399 Pearson 985 .001
O 4 0 0 44 349 7 400 Spearman .985 .001

5 0 0 0 6 393 399
Total 397 400 436 364 400 1997

Notes:ASE = Asymptotic Standard Error; Téu= Kendall's Taub; Tau< = Stuart’s Taws

The frequencies within each quintile by model reveal that, across thesfiveatiegories, the
GGUM consistently produced higher estimates within the fourth quintile. Whenhie ot
models estimated higher person traits, those also fell into the fourth quintiiehevit

exception of the CFA model.
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Table 4.38

Cross Tabulation Table of GGUM and GPCM Quintil8ample 1 Leadership Scale

GPCM
1 2 3 4 5 Total Statistic Value ASE
= 1 396 3 0 0 0 399 Tau-b 995 .001
> 2 1 397 2 0 0 400 Tau-c 995 .001
O 3 0 0O 393 6 0 399 Pearson .998 .001
O 4 0 0 5 393 2 400 Spearman998 .001

5 0 0 0 1 398 399
Total 397 400 400 400 400 1997

Notes: ASE = Asymptotic Standard Error; Thu= Kendall's Taub; Tau< = Stuart’s Tawe

For example, the GGUM estimated 44 respondents within the fourth quintile, while
the PCM categorized those 44 people into the third quintile. The CFA categorized 30 people
in the fourth quintile, while the GGUM estimated those 30 to fall into the third quintile.
Further, as seen in Table 4.37, the GGUM resulted in higher trait estimdteshaher end

(i.e., 4" and ' quintiles) of the trait scale.

Table 4.39

Cross Tabulation Table of GGUM and CFA Quintileanfple 1 Leadership Scale

CFA
0 1 2 3 4  Total Statistic Value ASE
0 383 16 0 0 0 399 Taw- .956 .004
= 1 10 365 25 0 0 400 Taw- 956 .004
> 2 2 16 351 30 0 399 Pearson 975 .003
O 3 2 2 23 357 16 400 Spearman975 .003
O 4 0 1 1 13 384 399

Total 397 400 400 400 400 1997

Notes ASE = Asymptotic Standard Error; Tau= Kendall's Taub; Tau< = Stuart’'s Taws
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Summary of Leadership Analyses

Results reveal that the dimensionality assumptions of the cumulative models wer
met, and that assumption of unidimensionality within the context of unfolding models was
not. The data do not appear to be of the unfolding type (i.e., responses do not unfold) based
on the structure of the data. Further, the plot of pattern coefficients that resuftetthé
PCA with two components did not produce a circumplex-like (i.e., semi-circulacjste.
Most of the fit indices produced by the CFA were supporting of excellent model fihainal t
single factor structure was adequate in explaining the leadership datdl,@tivesa results
support the assumptions of cumulative IRT models.

As for the item parameters, the PCM and GPCM performed similarly aadtdt&sn
parameters estimated. Both models indicated that most of the Leadersisipvitee
moderately easy to endorse. The GGUM analyses estimated all Lepdtersisito have
extreme location estimates and were associated with very largergtanaas. According to
the GGUM, all items were clustered in a narrow and extreme region ofe¢hetiait. The
Leadership items are not extremely worded in either direction, thetbBextremity of item
parameter estimates could be an outcome of relative homogeneity of attitudesaoh tie.
Because item location estimates and signs of those estimates arsa@isated with item
content, according to the GGUM analyses, moderate and negative attitudels towa
Leadership were not measured by these 21 items. The similarity acrdaz®eHRIl models
is that the 21 items are closely clustered in a small region of the latent eiefore, much
of the latent trait is not being measured by the 21 Leadership items. Therggaedpability
plot produced from the GGUM for item 21 showed characteristics of an unfolding item

across the five response options. More moderate unfolding characterestecsegn in the
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category probability plots for items 7, and 11 through 17 for the Agree and Strongly Ag
response options. The category probability plots produced from the PCM, GPCM, and
GGUM for the remainder of the items are similar, implying that the tiR€anodels
function similarly.

Across the 10 PCM analyses, almost none of the items fit the Leadership llata we
according to the item level chi-square fit statistics. The GPCM arsadlysplayed only few
items that fit well, and both cumulative models fit statistically poorlyatscale level.

The GGUM item level fit statistics reveal that many items fit tha,daut with some items
using as few as 1 or 2 or 3 fit groups to calculate the chi-square statistits, agsul
guestionable. At the scale level, however, the GGUM also did not fit well across the 10
samples. The AIC and BIC measures of fit indicated that the GGUM fit treetsap data
better than the GPCM, and that the GPCM fit better than the PCM.

Finally, in examining person parameter estimates and distributions, tkestvea
relationship between the person trait parameter estimates was foundrbgtey€FA and
PCM scaling methods. The model that exhibited the least amount of agreement with the
GGUM was the CFA, while, just as in the Empowerment analyses, the GPCM and GGUM
were essentially indistinguishable in person parameter estimates bakedamktorder

correlations and scatterplots.
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CHAPTER FIVE

CONCLUSIONS AND DISCUSSION

The measurement of non-cognitive constructs such as attitudes, prefepgnio,
and psychological constructs including personality has been undertaken by psgtholog
market researchers, across a variety of fields, such as industrialZzatgaral psychology,
personality psychology and even within the armed services. Examination of change i
behavior and developmental/stage processes, and the relationship betweses attit
behaviors have certainly been of interest to developmental and educational psgtdholog
Traditionally, cumulative IRT models have been applied to non-cognitive datatas s
models were originally developed for the measurement of cognitive cosdtkect
achievement and aptitude. Through the early contributions of Thurstone (1927, 1928),
Coombs (1950, 1961), and more recently Andrich (1978, 1988, 1995, 1996,) Luo (1998,
2000), Roberts and colleagues (1996, 1998, 1999, 2000, 2002, 2003), and Chernyshenko,
Stark, Drasgow and colleagues (2001, 2006, 2007), theory development underlying how
people respond to attitudinal Likert-type items and the development of sofonamalyze
such data have enabled the application of the relatively less familiar mgf®éRII models.

In the literature there are generally three perspectives from w&pped researchers

come when employing unfolding IRT models. The first, and that taken in this oatesti,



is for the purpose of informing non-cognitive scale construction. Closelgdekatd

perhaps a natural result of improved or better informed scale construction issihecpee

of improved accuracy and measurement precision, supporting the use of unfolding IRT
models over cumulative IRT models. Third, unfolding models have been applied as a novel
approach for examining and explaining the relationship between attitudes and behaviors
(Andrich & Styles, 1998; Noel, 1999). This contemporary way of thinking about the
attitude-behavior relationship has changed the way attitudes and behaviorasuiecche

with the application of models that accommodate single-peaked functions to entbasur
association and the way in which behaviors change over time.

Unfolding IRT models have been shown not only to function as “viable alternatives”
(Stark et al., 2006, p. 25) to cumulative models, but in some measurement situations, they
are superior to traditionally used cumulative models in more accurately nmgason-
cognitive latent constructs, and in developing scales for measuring suchuictsn@®oberts
et al., 1999). These measurement situations include those in which an ideal point response
process is responsible for producing the observed data. The problem with using the
traditional cumulative IRT models to measure non-cognitive constructsreddsy Likert-
type items) is that, theoretically, people use an ideal point response processkeketo a
rate their level of agreement with an item. The argument against the usawéatve
models in these situations is that there exists a discrepancy betwessuimgt#ons that
underlie the data generated from the ideal point response process and those that@derli
model (that is, cumulative IRT models that assume a dominance response)process

The approach used in this investigation was to examine how unfolding IRT models

function compared to traditional, cumulative IRT models. Because some degaitding
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the development of the NCTWCS were not available, careful and close examination of a
the factors related to model assumptions, model fit, and characteristes @it person
parameters was undertaken. Whereas much of the applied research usingqutiRdidi
models has focused on attitudes of college students towards capital punishment amd aborti
the intent of this investigation was to inform scale construction and anaysiglifferent
construct and population — teachers’ perception of and attitudes about school Ipadershi
(Leadership) and teacher empowerment (Empowerment).

In the following sections of this chapter, the limitations to this investigation.
Following that, important findings are reviewed and interpreted. Potentiahsefs the
findings are proposed by scale (Empowerment and Leadership), and implicatioas of

findings and suggestions for future research are suggested.

Limitations

Six limitations of the methodology used in this investigation are apparestt.the
nesting of teachers within schools was not considered in this analysis. Thisas only
limitation because the entire sample could not be used. If the entire sample veubedia
used, nesting would not pose a threat, as the intent of the NCTWCS was to examine
leadership practices, and make decisions at the school/principal leveloBgegvere not
made at the individual teacher level. Accommodation of the nested structure of tbeulihta
have been accounted for by employing hierarchical IRT models and hiera@hfca
models. Observations in hierarchical or nested data (i.e., teachers nestedoidhbls)sare
dependent and tend to be more similar to each other in terms of the outcome variable (i.e.,

measure of Leadership or Empowerment) than they do to those in a different group (i.e
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school). These dependencies result in problems when the focus is on the individual level
observations that are nested within groups. Second, it is possible that bias could have bee
introduced into the estimates of as a result of survey non-response, as dlge agponse

rate, acrosschoolswas approximately 66%. It could be possible that non-response occurred
for similar reasons among individuals who did not participate. If those individualssposse
common attributes that directly relate to the construct being measureaiésttoward

teacher working conditions), then systematic non-response would not be captured in the
analyses. Further, a sub-sample of the total population omitted could contribute to a
relatively homogeneous effective sample. However, if the occurrences ofspamses were
random, then bias would not be a concern. Given that the NCTWCS has only been
administered three times (2002, 2004, and 2006), that the prior years' data werdatdeavai
and that individual teachers (and their characteristics) could not be tracked lukeie to t
anonymity and confidentiality built into the data collection procedures, it was nablpdss

use auxiliary data to examine or statistically adjust for non-resporsefbilird key

limitation in this investigation was that the “true” attitudes towardhiteaEmpowerment and
Leadership were not known, therefore an absolute decision of a best or correct model in
terms of measurement precision and accuracy could not be made.

A fourth limitation concerns model selection. This investigation used a common
Rasch cumulative model (the PCM), a common cumulative IRT model for polytonmaus da
(the GPCM), and an unfolding IRT model for polytomous data (the GGUM). All of these
models are also parametric models. Other models could have been selecteal]yekpeci
this kind of attitudinal data. Nonparametric cumulative IRT models were notruied |

study, although their use in the field of cognitive and non-cognitive measureament i
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perfectly acceptable. Some researchers argue their superiorityanasrgiric IRT models
simply because the strict assumptions that underlie parametric IRTs@oddalifficult to
meet.

Competing theories in the context of psychological measurement include thieatlea t
nonparametric cumulative IRT models are more appropriate and more etiaant
parametric IRT models (Cliff et al., 1998; Collins et al., 2006; Meijer & Baneke, 2004;
Nandakumar et al., 2002; Rabe-Hesketh & Skrondal, 2007). There are also proponents of the
application of nonparametric unfolding IRT models to non-cognitive constructs including
Cliff et al. (1988) and van Schuur (1984). The argument supporting nonparametric models is
that these models provide more flexibility because less strict statisisumptions are
required. This claim is certainly valid, however, the purpose of the survey and useltsf re
and future administrations must be determined prior to selection of analykmsdmiéthe
benefits of IRT are sought, then nonparametric IRT models may not allow fgrethiest
advantage as the latent space is not completely specified thereforenghhmtisatisfaction
of the assumptions item independence and invariance. Complete specificity térthe la
space refers to a measurement model that “completely specifies tfaretween person
location, stimulus location and choice probability” (Hoijtink, 1990, p. 642). However, if stric
adherence to assumptions of IRT models cannot be met, or are believed to be taolate
some degree, the use of nonparametric measurement models is likely more @pphapria
parametric models. In his chapter on locally dependent conjunctive IRT modelaralze
(1997) claims that “from formal and practical viewpoints, therefore, the ledapendence
axiom stands in the way of interesting extensions to test theory and appli¢pti472). The

argument for the use of nonparametric IRT models for analyzing non-coglaties
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warranted especially given the little empirical research on applicatioongfarametric
unfolding IRT models to such data.

A fifth feature of this study that arguably poses limitations is that becaukievel
IRT and SEM modeling were not employed, teacher-level trait estiwatesnot or could
not be aggregated to the school level. School level measures would have been useful as the
NCTWCS data are used to make decisions about schools, or the principals within schools,
based on teacher level responses. If the teacher level trait estimatdsas@ulsken
aggregated to the school level in this investigation, then further comparisons coutegbave
made between model results and the school level decisions that were made by therGove
office of North Carolina. This last point was also inhibited due to the fact thantine
sample could not have been used in the GGUM analyses due to software constraints and t
for all analyses in this investigation.

Finally, in all the applied research that use unfolding IRT models, datalgre
dichotomous (agree/disagree), or have an even number of response options, such that a
middle category, (e.g., Neither Agree nor Disagree), is not included as an opgon. T
inclusion of the middle category on the NCTWCS could not be collapsed, and is therefore
presented as a limitation because the category parameter estissateated with the middle
response option, especially for the unfolding model, are difficult to inteaipthé subjective
level(i.e., neither agree nor disagree from above, neither agree nor disagréelvam

Ideally, in any measurement situation, test construction should be guided, ayriori,

a clear definition of the construct, the intended purpose of the survey, scoring methods, and
intended use of test scores. Model selection for scaling/scoring requicestigeration of

the assumptions that underlie the data, the assumptions that underlie the respossetipeoce
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item response categories (i.e., yes/no or a gradation of categorieseas tin@scurrent
investigation), the relationship between the categories (i.e., ordered, @wuhidezrval), the
intended uses of the scores, and to a lesser extent, sample size. Data to whicldliaug unf
IRT model is appropriately applied, would be generated from a test builbvhihi
Thurstone framework where items, measure the entire spectrum ofea slegrly defined,
non-cognitive construct. Items written in the Thurstone framework, naturally, dochade
ambivalent (i.e., neither agree nor disagree, or no opinion) response options. Futtiser, if i
assumed, a priori, that an ideal point response process would guide respondents when
answering items, then application of a model that holds the same assumptions gigingunf
IRT models) would be ideal. Items that measure attitudes, opinions, and peespdoti
which a response can be provided for two reasons (i.e., agree from below or agree from
above) would necessitate the use of unfolding models. When observed responses to all items
are plausibly provided for a single reason (i.e., there is no ambiguity surroungiogses)
then application of an unfolding model would not be superior in measuring the construct over
other scaling/scoring methods. Rather, unfolding models would likely not be dedscte
scoring method because it would violate the principal of parsimony, and would ditificia
appear to fit the data better than other scoring methods simply due to over-peratie.
Summary and Interpretation of Results

The first research question related to examining the location of the itering on t
underlying latent traits (i.e., teacher perception of Empowerment and Ebgjexrcross
three IRT scaling methods (partial credit model, generalized partchat oredel, and the
generalized graded unfolding model). Item location can yield information about the

comprehensiveness of latent trait measurement. It has also been ar@rexiyshenko et
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al. (2007), that unfolding IRT item parameters are directly associatiedtevt content,
whereas the item location parameters generated from cumulatived&disrare not.
Regardless of the model used, item parameter estimates have implicatieced ¢
development.

In addressing the first research question, it was presumed that ifntiseoitethe
attitudinal measure were constructed using a Likert methodology and modeledrnusing
unfolding model assuming an ideal point response process when individuals respond to
items, that items would generally be located at the ends of the lateabt@nuum. Neutral
items would not appear on the NCTWCS; items meeting the Likert artesrd to be worded
in more extreme terms (i.e., items that express both strong positive andnetgatige
sentiment with respect to the latent trait). It was hypothesized tinat ifems were not
constructed using a Likert methodology, then item locations on the latent trait lveomidre
similar to each other across all three scoring and scaling methods, ttsndtf Bikert
methodology were used. Specifically, item locations would generally becaotally
located, or at least more dispersed across the attitude continuum as opposed to located
towards the extreme values of the latent trait.

In the Empowerment analyses, there was some dispersion of the item locations
generated from the PCM and GPCM models with a range of the averaged (aert3s t
samples) locations of between -.936 to 1.823 and -1.034 to 2.390, respectively. Likewise, the
locations of the items resulting from the GGUM (reversing the initial digineoitem
locations during item parameter estimation) were slightly dispersddawénge of the
averaged item locations between 2.738 to 5.048. The GGUM location estimates were all

relatively extreme and had very large associated standard errors for athlldcation
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parameter estimates. In the Leadership analyses, the item locatiensare tightly
clustered in one region of the latent trait by all three IRT models, eBpécaGGUM.

Based on item location estimates, it is clear that only a portion of the attitude
continuum is being measured by the 21 Leadership items. The 13 Empowerment items
measure a slightly broader range of the latent trait. It is importargptikemind that,
especially for the 21 Leadership items, more than half of the over 65,000 respondents agre
or strongly agreed with each of the Leadership items. Again, as evidenteslriggative
item locations (for the cumulative IRT models) combined with the descripfiwenation
for these items, it was easy for the respondents to agree with the bgaderas, and most
of them did. Generally, results from all three IRT models reveal that onlyiarpof the
latent traits Leadership and Empowerment are being measured by theseBasdd on the
rank order correlations, the two cumulative models ordered the Empowerment items
identically, but both cumulative models produced highly dissimilar rank orderingsof it
locations when compared to the GGUM location estimates. The Leadership, ieswever,
revealed that the item location estimates from all three IRT modeldwgtilg correlated.
Both the PCM and the GPCM location estimates correlated highly and signyfigethtithe
GGUM estimates, meaning that Leadership items were ordered vergrgiradross the
three IRT models. However, all IRT models estimated the items to be locatethirow
region of the trait. This point should be considered concurrently with the high rank order
correlations.

A final word on the interpretation of the relative extremity of the item location
estimates, especially those generated from the GGUM. To reiterate, thiel GGU

proximity based model, and the extremity of items is relative to the docatithe attitude of
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the sample. It is possible that the Empowerment and Leadership items aratetgpder
positive in content, but appear more extremely located if the respondents haveutiae n
attitudes relative to the items. In essence, homogeneity of the sampte gféeextremity of
item locations in proximity (i.e., unfolding) models.

The item discrimination parameters are useful to examine for the purpose of
examining measurement precision and for future scale construction. Iltermghiation
parameters usually fall between values of 0.0 and 2.0 (Hambleton & Swaminathan, 1985).
On average, most of the Empowerment items had very low discrimination valueggnea
that they did not differentiate well among respondents of varying levels otéiné tiait.

The Leadership items yielded generally higher discrimination values cagavdtem
threshold/step parameters are useful because they demonstrate or prowgdedc sew well
respondents are using the response categories. Threshold parameters thaséave cl
estimates, like those in the Leadership analyses for the DisagréefNsifree Nor Disagree
and the Neither Agree Nor Disagree/Agree, are evidence that thesedtageries were not
used equally across respondents. The Empowerment items showed better catdbary use
the Leadership items.

The second research question dealt with the person trait estimates resurtiigef
three IRT and the CFA models. The intended plan of analysis was to focus on the bads of t
latent trait scale, as this is where cumulative and unfolding models are swspédnt.
Analysis results revealed however that it was not completely necéssanphasize so
much on the estimates at the ends of the latent trait scale across modeise BeedRT
models functioned very similarly for most of the items on both the Leadership and

Empowerment scales, it was not necessary to focus so much on the extremes. This
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functioning can be seen in the scatterplots of the trait estimates (and to senehext
category probability plots as well). The scatterplots of the person tiamaéss with the

GGUM revealed that the PCM and GGUM were mostly consistent in thiemagss with a
linear relationship. The GGUM and GPCM estimates were almost perfeety bnd
coincident. The GGUM and CFA person estimates were slightly nonlinear. None of the
scatterplots displayed what would typically be seen if indeed the NCTWC®eliadruly

of the unfolding-type and measured with a cumulative-type model. If dataoiviére

unfolding type, then the scatterplots of the person estimates would have revediaitshat
generated from the cumulative-type models would be depressed, or show ke extr
estimates, than the GGUM parameters. Specifically if the GGUM producettub&pgerson
estimate, then the expected scatterplot of the GGUM and CFA (or PCM, GéxiMates
would have appeared to be “an elongated S-shaped function relating the two measures”
(Roberts et a., 1999, p. 221). Further, the GGUM would have yielded more extreme person
estimates than the CFA or cumulative IRT methods at the ends of the distribudimeh anly

if the true estimates were produced from the ideal point response process, and if &nd only
the entire continuum of the latent trait was measured (i.e., scale constructimkeal a
Thurstone approach to development). .Consequently, there was little to examine and pay
close attention to at the extremes of the latent trait distributions. Wheepdiacres did

exist, they did so along the trait scale, not just at the ends. In reviewing tiieepdcts and
cross tabulation tables, the GGUM only yielded higher person trait estimbatn compared
to the PCM with the Leadership data. Specifically, as tabled in Chapter 4 fostlsafirple
only, GGUM clustered 44 respondents into tRegdintile, where those same people were

categorized as falling into th&3according to the PCM.
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Examination of the probability function plots was the focus of the third research
guestion. Any evidence of non-monotonicity of the probability functions from the cuweulat
IRT models would support the possibility that the ideal point response process was
operational. Any monotonicity of the probability functions from the GGUM would indicate
that either the cumulative and unfolding models are measuring the constriet\gimi that
the items are extremely located relative to the respondents. It was hypedieat, because
the items on both scales seemed to contain relatively neutral content, the proplaislity
generated from the unfolding model would be single-peaked. Because the items on both
scales did not appear to be extremely worded, or require an extreme (irliegbton)
attitude towards the latent trait for endorsement, it was hypothesized thaCthassociated
with the neutral items would exhibit folding, and this single-peaked nature wouldied
in the GGUM analyses. This was not the case, however. The category prolpédisityom
all three IRT models were characteristic of cumulative IRT modelsofityetems that
showed unfolding characteristics, based on the GGUM analyses, were tfaifirst
Empowerment items, and items 7, 11 through 17, and 20 in the Leadership analyses at the
upper end of the latent trait. The plots for these items, however, show only minimal
unfolding properties for the categories of Strongly Agree and Agree. Acrdssdadés,
there was only a single item that exhibited unfolding properties acrossegjbdas, and that
was the last item on the Leadership scale. That item reads: “Overatthtied leadership in
my school is effective.” Further investigation as to why only this item Imaag generated
data that needed “unfolding” is warranted. On average, across the 10 samplesnthiast
the second least discriminating, compared to the other 21 items. Of the 65,031 total

respondents, 64,845 (99.7%) answered this question where 9.1% strongly disagreed, 13.0%
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disagreed, 14.9% neither agreed nor disagreed, 44.4% agreed, and 18.3% strongly agreed.
Although the plots from the first sample are tabled in Chapter 4, category plotthie

other nine samples actually reveal a less marked display for item 21, whetleeo8trongly
Agree and Agree response options exhibit unfolding characteristics. Tgerggteobability

plots for Leadership item 21 from the nine samples are presented in Appendix B.

It was also hypothesized that the probability plots generated from cumulative and
unfolding models would be the same for extremely worded items or would resalafr
homogeneous sample. This claim was supported, especially in the Leaderstapsamaly
that across the GPCM, PCM, and GGUM analyses, the Leadership items weratatptier
extremely located on the latent trait, because most people agreed or sigregly with the
items. Also the large standard errors associated with the GGUM locaiimatestimply a
homogeneous sample relative to the item location. Therefore, the cumulative adagnfol
models generated probability plots that were very similar.

The fact that most of the category probability plots were difficult to dissigui
between the cumulative and unfolding models does not necessarily mean that the ideal point
process was not in operation or responsible for the observed data. However, the findings
from the first two research questions, coupled with the category probabilitysptpgests
that the two types of IRT models functioned similarly enough not to warrant close
examination of the extreme ends of the probability functions. Such attention would bave be
warranted if discrepancies were found between the cumulative and unfolding models,
however, this was not the case for the Empowerment and Leadership data.

The ICCs generated from the GGUM analyses were monotonic for the last nine

Empowerment items and for all Leadership items, except item 21. As eaptet non-
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monotonicity for the four Empowerment items and one Leadership item wadigatyas
the upper end of the latent trait. According to Roberts et al. (1999) when refgrenci
unfolding IRT models, “the degree of monotonicity inherent in the ICCs will beyhighl
dependent on the relative locations of persons and items on the attitude continuum, and the
range of person locations can obviously change from sample to sample” (p. 231). Furthe
Roberts et al. (1998) demonstrated that items with truly inherent non-monotonic
characteristics exhibit monotonic features when the sample of respondénideatis
restricted. Given the Leadership analyses (and to a large extent plosvErment analyses)
reported in Chapter 4, most people agreed with the items and the category prgtlatslity
across the three IRT models were similar with the exception of a fes.ifEnhis
demonstrates that the sample was very homogeneous. Additionally, the items on the
Leadership scale were estimated to be located in narrow region of therkateithese
results indicate that attitudes of the sample members were homogeneous tredldtent
trait is not estimated well. Neither items nor people were disbursed doedasent trait, So
even if an ideal point response process were responsible for the observed data, the
homogeneity of the sample would preclude overt evidence of unfolding properties. The
results presented in Chapter 4 support the notion that “a restricted sample ramgaska
the nonmonotonic response characteristics of a given item so that its aistracierve
appears to be monotonically related to attitude” (Roberts et al., 1998, p. 1).

The fourth research question pertained to two related issues: those of model
assumptions and model fit. The assumption of unidimensionality within the context of
cumulative IRT models was tested on the entire sample with a confirmatboy &nalysis

with one factor. The results and fit statistics can be interpreted aseligtoor fit with
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higher than acceptable values for measures like the RMSEA, RMR, SRMR, anddew va
for the GFI and NFI for the Empowerment data. The single factor structposed on the
Leadership data yielded statistics that showed better fit than the Empowelateewith
RMR, SRMR, and NFI values hovering at their respective cut-points. However, t8&ERM
was higher than acceptable and the GFI was lower than acceptable. Detemnahtne
model fit (i.e., a single factor model including 13 Empowerment or 21 Leadership, iterds
thus unidimensionality, and to some extent item independence, included the computation of
the root mean square residuals for each item. Smaller values represenitbBtieed on the
possible comparisons, the GPCM fit equally as well at the item level as @R @e
Empowerment data, but showed much better fit of the Leadership data. Overall,
unidimensionality was likely violated in the Empowerment analyses, but appedreadrtet
with the Leadership data according to most of the fit indices.

Testing the unidimensionality assumption within the context of unfolding models
requires different methods than those used for cumulative IRT models. In thet gtady,
the principal components analyses with two components did not fit well for eitheetata s
The structure of the data was examined by plotting the factor pattericiere$ resulting
from the PCA. The plots did not reveal that the data “unfold” because they did not form a
semi-circular pattern. For both the Leadership and Empowerment data, éme patt
coefficients associated with items were generally clustered imvthguadrants and did not
form a fan-like configuration that would indicate that two linear principal comysne
explain the pattern of data, and that the data unfold. A semi-circular plot of the pattern
coefficients is evidence of unidimensionality within the context of unfolding models

Examination of the eigenvalues from the PCA also did not indicate that two components
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explained the data well. However, all final communality estimates weegegrthan 3.
Considering all results, the unidimensionality assumption required for confideoit tinge
GGUM also did not appear to be met for either data set.

Item and scale level chi-square distributed statistics are commonlyndegparted
in the educational and psychological measurement literature to test madét-d&&ich
statistics were computed at the item scale level for both the Empoweantebéadership
measures, across all three IRT models. Two additional measures of maedigl\date
calculated that do not demand absolute interpretations and are either insensits@ntoobr
for sample size. The first was through the calculation of the root mean squduelssfor
each item and the second was with the calculation of the Akaike Informationd@r{i&IC)
and the Bayes Information Criterion (BIC). Both are measures of refatared smaller
values are interpreted as better fitting. According to the chi-squagistatneither the
PCM, the GPCM, nor the GGUM fit the Leadership or Empowerment data well. bising t
root mean square residuals at the item level, the GPCM appeared to fit theshgpeadata
better than the PCM. For the Empowerment data, however, the GPCM fit the ddita equa
relative to the PCM. According to the AIC and BIC criteria, the GGUM fit both skt
relatively better than the GPCM, which fit both data sets relativelyrlibtie the PCM,
though not by much. The question still remains, however, what “how much” means for these
statistics and for differences between them.

Empowerment

Information on how the NCTWCS was developed in terms of the decision making

rules that governed how items eventually were determined to appear on the sdicetes

that the NCTWCS 2006 responses were scored using confirmatory factor amakytars
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to create domain scores for each sub-scale, including Empowerment and Leg@z¥ster
for Teaching Quality, n.d.). If the sub-scales were also built using suahaapps, then,
presumably, the CFA analyses would have yielded better fit statetscially for the
Empowerment scale. Further, the cumulative IRT assumption of unidimensionality
presumably would have been met, again, especially for the Empowerment data.

It seems reasonable to conclude that results from the Empowerment anayses a
guestionable. This is because the single factor model using the CFA scaliogcapgid not
fit; the assumption of unidimensionality was not met well (i.e., lack of goad &tsingle
factor structure) for the two cumulative IRT models; and because the agsuofpt
unidimensionality within the context of IRT unfolding models also was not met. The
potential consequences of violations of IRT model assumptions include biased item
parameters and inaccurate person parameter estimates. This obviously has negat
consequences for the reliability of estimates and validity of decisions bashdse
estimates. Further, violations prohibit or interfere with the comparison of indisiduodl
individual differences on the latent trait, although this was not an intended drueseiuc
these data.

An interesting finding did emerge, however, with the Empowerment analyses. The
first four items, and to a lesser extent, the fifth, exhibited some unfolding pespientithe
strongly agree and agree response options. Respondents were instructed to iateltbe
agreement with the first five items on the Empowerment scale. For thelatst e
Empowerment items, teachers were instructed to indicate how large a cblersdlaave, and
then were presented with a list of tasks. The response options associated widgtitose

items are: No role at all, small role, moderate role, large role, and tharpriate. These
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options measure frequency more than level of satisfaction with or attitudegradoout
construct. Therefore, these eight items probably require a dominance responsg proces
which is more than likely what respondents used to answer these items. Measures of
frequency are most appropriately measured with cumulative IRT modeldéastamodels
that assume a dominance process). In this case, then, because unfolding modsign by de
can adequately measure cumulative-type data (i.e., fit monotonicakagicg item

response functions) as well as non-monotonic item response functions, the unfolding IRT
model could theoretically be used for the Empowerment data. However, consalkeoing

the results and that the presence of unfolding properties was not marked ist tineefir

items, a model that presumes a dominance response process may be apfoofirese 13
Empowerment items.

Because questions about attitude and questions about frequency arguably measure
different constructs, one consideration for future versions of the NCTWCSaentay b
carefully define the construct of interest and perhaps use separasefecabparate
constructs. The “mixed” data resulting from the two types of questions (iiedat
frequency) is likely the reason for the poor model-fit. Further, a two-dimehsioneture
was probably not evident either because a total of 13 items comprised the entire
Empowerment scale, where five measured attitude and eight measured fyegitbocagh
there is no absolute criterion for minimum (or maximum) number of items, in research
investigations using real and simulated data, the number of items measammie
dimension (i.e., construct) is rarely less than 10. A small number of items megassingle
construct yield low reliability. Another suggestion, then, would be to include ewlaliti

items on the Empowerment survey, especially on the sub-scale that metdudesa
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Method of scoring is necessarily an important, and must be considered in conjundtion wit
the construct, purpose of the survey, and intended uses of survey scores.
Leadership

A single factor confirmatory factor analytic model fit the Leadgrslata reasonably
well, whereas the principal components analysis with two factors did not. However, t
cumulative and unfolding models functioned quite similarly in terms of the rankroycsr
Leadership item location and discrimination parameters, and in the rank orderoof pers
parameter estimates. The correspondence between the GGUM and GPCMfHetathe t
estimates was also quite high. Chi-square distributed statistics fooddisrat the scale level
would suggest that none of the models fit well, but according to the information theedy-bas
statistics, the GGUM fit better than the GPCM. It would be necessary tiexpltry to
understand why the fit at the item and scale level was poor for all IRT snéutedsibilities
include the inappropriateness of the models for the data; the construct of “teacher
perceptions of school leadership,” is not measured well by the collection sftliain
comprise this scale; or that the sample size of 2,000 increased the degreedarhfto the
point of model rejection. The chi-square statistics should not be ignored, althougbrdecisi
should not rest solely on these statistics. Although the CFA model cannot be directl
compared with IRT models, given all of the findings, IRT models could reasdmably
considered for at least the Leadership data. Reasons for preferringoli®€lsrover factor
analytic models include the fact that the former estimate item chastics like
discrimination, location, and category thresholds. Further, although not discussed in thi
study, IRT models yield an index called information. This index is closkitecketo the

discrimination parameters and provides an indication where on the latent trdatitdest the
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item best measures, conditioned on theta. Information at the item level acanrbed for a
total test information index. So, although a determination cannot be made from this
investigation which model is correct (CFA, PCM, GPCM, GGUM), at the vast fer
reliable and efficient scale construction, IRT models would be favored. The PCiW, or a
Rasch IRT model may not be preferred for this Leadership data because @fdhkydn
fitting the PCM, and the associated layparameters. Because of the rather homogeneous
sample of attitudes and general clustering of item locations in a @giahrof the latent
trait, the GGUM parameter estimates were generally extreme apdag&vciated with high
standard errors. As a result, for these 21 Leadership items, the GPCM migéfieledr
over the PCM and the GGUM.
Implications

This investigation was conducted after NCTWC scale construction and data
collection. This approach is not entirely ideal, however. Researchers such agséako
et al., (2007), Meijer and Baneke (2004), Stark et al., (2006) have applied unfolding IRT
models to scales constructed using Likert-type approaches as a way to batieexa
cumulative IRT model assumptions and to investigate the applicability and apfenpss
of unfolding IRT models. Argument supporting such an approach is that unfolding IRT
models are flexible and versatile enough to model constructs that were edleasing
instruments designed using cumulative methods. If the NCTWCS was constructea using
Likert-type approach then presumably no items should exhibit unfolding properties.
However, some unfolding attributes were evident in both Leadership and Empowerme
analyses, specifically for the Strongly Agree and Agree response optihsrall five

response options in the last Leadership item.
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One question that this investigation attempted to answer is whether or not unfolding
IRT models would be an appropriate alternative to CFA or cumulative IRT snfaulehe
current 13 Empowerment and 21 Leadership items. It appears that the data atbenot of
unfolding type based on the results when examining unfolding IRT assumptions and the
structure of the Leadership and Empowerment data. Model assumptions were ated viol
using the Empowerment data for the CFA and cumulative IRT models. As a getesral r
when considering the application of any mathematical model, if assumptiorielated,
analyses should be conducted to determine why the violations occurred and appropriate
actions taken.

The results in this investigation can contribute to future versions of the NCTWCS.
There were no items on either scale that contained extreme content irdiegbeon (e.g., “I
would not change a single aspect about the leadership in my school” or “The pecshgad
in my school contributes to difficulties in retaining teachers”). The itemns n@ necessarily
ambivalent either (e.g., “Sometimes | agree with the decisions and pooapssed by the
leadership in my school and sometimes | do not”). Across both scales, items did not@ppear
tap the entire spectrum of a highly positive attitude towards current school lepders
(empowerment) or include items that would require disenchantment with leadership
(empowerment) and low levels of attitude towards the construct. At the itenaleNRT
models generally estimated the Leadership items to be located in onal gegien of the
scale with slight dispersion of the Empowerment items. The NCTWCS was devealoped t
understand how the population of teachers in North Carolina perceive their work
environment, and to gain insight as to what is not working well in that environment. The

intention of the Office of the Governor was using the data to make the necdsmages to
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school leadership to improve working conditions. Improvement of working conditions was
assumed to be directly related to increased student learning and achievement, and b
improving teacher working conditions, improved student learning and achievement would
follow.

According the model results, and even the descriptive information (i.e., percehtage
people responding to each category of each item) it appears that the Leeitiershare
easy to endorse, that most people agreed or strongly agreed with them, and &t the it
locations were estimated to be clustered closely together. Ladodfagtegory response
option usage is an undesired consequence as a data set that consists of steenghdagr
agree responses results in a lack of variability across respondentg sralkith differences in
person trait estimates difficult to find. Further, and perhaps a more unfavoraldeguemnse
of a lack of variability is the suppression of information about respondents standing on the
latent trait. Such items are not useful for reliably measuring an indivedstahding on the
latent trait, and for finding individual differences among respondents on the fatent t

For future revisions of the NCTWCS it may be more efficient to add items that do

indeed measure characteristics of school leadership (empowerment) thaitrbayso

positive, and perhaps remove some of the current items, as there is so much overlap among

them. The items currently comprising these two scales still do not meassagsfiaction
with school leadership (Empowerment), an apparent contributing factor of teaciovet.
The results give the Office of the Governor little to “improve.”

The implications of this investigation stretch beyond the NCTWCS dataltale
implications for survey development (for the assessment of non-cognitiveuots)stand for

methodologies typically used to assess the appropriateness and functioning of utiRilding
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models. As for survey development, some of the initial considerations in the development
process should include a clear purpose of the survey and a clear definitionafstraat to

be measured. The processes that people use to respond to items must also be taken into
account during the item writing process. Further, consideration of scoetipds should be
concurrent with the initial steps of the test development process. Becausetihéd$ was
presumably constructed using a Likert methodology, because the items did not read as
though they could be endorsed for two reasons, and because items did not meagerefa ran
the underlying traits, a cumulative approach likely would be the most appraprthte
consistent scaling method. Use of a survey with known psychometric propeditsta
development strategies that are aligned with the scaling method (i.e. ingi®d model)
would have facilitated appropriate model selection.

The consideration of scoring methods during the test development process is related
to the implications for methodologies for research the surrounds the functioning and
applicability of unfolding IRT models. In the present study, scoring modeks aygied
post-hoc. However, this is not typically the case; rather, the scoring modkdated prior to
test construction. A more sound approach for assessing the functioning and appexwiate
of unfolding IRT models would be to construct a scale within the Thurstone framework,
(given that this method for scale construction is aligned with the purpose ofvieg)s then
apply the appropriate scoring model.

Suggestions for Future Research

The report detailing the findings of the 2006 NCTWCS data (Hirsch, Emerick,

Church, & Fuller, 2006) opens with assertions regarding the importance and influgnce tha

teachers have on students. The issue of teacher turnover is immediately noted @vetidescr
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as a problem, and negative consequences of turnover are explained. The intent of the
NCTWCS was to get a sense of how teachers feel about their work environmentthel f
purpose of helping teachers help students learn. The effect would be increasad stude
achievement. Based on publicly available documentation regarding the surveykshe |
between teachers’ perceptions of working conditions and improved student achiewvement a
such that, if teachers are happy and comfortable in their working environhegngre apt to
stay in that environment. If teachers are happy in their jobs and the climhg&sahbol,
they are likely to be satisfied. A satisfied teacher is assumed to be matitrats leading to
more effective teaching as evidenced by the teacher having a positive ansctient
achievement. Compared to teachers who leave a school or the profession, telacistay w
have a positive impact on the classroom environment, reduce disruption, and retaining
teachers can yield economic benefits for a school district.

If the purpose of a scale or survey is to elicit attitudes towards some cotsgaeta
better sense about attitudes of a sample, the scale needs different itemesathae the full
spectrum of the latent trait. This would more than likely increase the vasiabiiong
respondents allowing as much information as possible to be gained from eachetes. |
that measure a range of attitudes certainly would increase the effiakthe survey
because little is achieved if most items are only measuring one reglonfofltlatent trait
spectrum. Several items that measure the same exact point on the lateotirauum are
not entirely useful or informative; they are not a good use of time for thoseguhe items,
responding to the items, and for those scoring the items. As it stands, modteddieeship
items were easy to endorse. This yields little variation among respondentsantiadly

inhibits any conclusions about which aspects of Leadership can be improved to improve
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teachers’ perceptions of the leadership in their school, reduce teacher tuamovienprove
student learning and achievement.

One component that seemingly was not considered in the original data collection and
use nor in the current investigation is that of nested data. Teachers were suiltieyagh a
decisions were made at the school level. The results of the 2006 NCTWCS adtionistr
were used to name and award 10 schools across the state. The North Carolin@irabfessi
Teaching Standards Commission and the Governor’s Teachers Advisory Committee
designated these as 2006 Real D.E.A.L (Dedicated Administrators, Eduaatbtsearners)
schools which were determined to function as exemplars for best practice falisthets
in terms of teacher working conditions. Therefore, aside from modifying the NEST#Y
include items that measure more of the latent trait and eliminate redutedast i
methodologically, it makes sense to either examine the consequences of igm®rniegting
or to proceed with future survey administrations and analyses that accommoadest¢e
structure of the data.

The hypothesis described previously regarding how satisfied employeesenvho a
happy and comfortable in their occupation and place of employment are likely tode mor
productive and efficient is probably true of most employees, regardless ofgpiptitl
requirements, or field. Although the data used here were from the NCTWCS, amyempl
seeking to make improvements in the work environment with the intent of increased
employee productivity and efficiency would be best served by doing so using ahstas
comprehensive and efficient in its measurement. The purpose of the scale arehthexlint
use of the scores should necessarily guide the scale development and scorisgprobes

point could not be investigated in the current study because the NCTWCS was not
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constructed using a Thurstone-type approach. However, if the purpose of themassess
to ascertain individual level information about individual attitudes or preferensegnts
feasible--theoretically and practically--that unfolding IRT modaelslid be used.

Aside from making decisions about educational policy or employee satisfacti
another potential practical application of unfolding models for preference or atatalas
for making decisions about or informing occupational decisions with the use of practice
analyses. A practice analysis (sometimes referred to as job anayhis examination of
knowledge, skills, and abilities required of a particular occupation in a particdigtry. A
practice analysis begins with a survey of the importance and relevancé ctib@nt
requirements of an occupation and perhaps additional and novel capabilities introduced to the
profession. Not only is the importance of each skill, ability, or task measunsdybgf
rating scales, but so are other characteristics such as frequench tdsédskill. Practice
analyses are often conducted as a way to examine such things as conteni¥alidity
educational and training programs for particular occupations. Because nonveogniti
constructs like importance and critical nature of tasks are measurduetogéh cognitive
aspects like frequency of those skills/tasks, it seems that applicationeafsaim@ment model
than can accommodate these types of measurement situations would be most sppropria
date, parametric and non-parametric unfolding IRT models have been shown to reliably
accommodate response processes that produce observed data when measuring both types of
constructs with dichotomous and/or polytomous items.

For unfolding IRT models, more research is useful and necessary in an appleed sens
(i.e., measuring different constructs, populations, instruments), the paucisgafaie that

focuses on the technical aspects of the structure of unfolding data is@aadddd scrutiny,
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investigation, testing, and understanding, if unfolding IRT models are tawbgorated into
applied research situations. Explanations have been provided by Davison (1977), van Schuur
and Kiers (1994) and Mauran and Rossi (2001) as to how and why application of linear
factor analytic methods to unidimensional, unfolding-type data reveals acdtoo-$&ructure.
Davison (1977) further explained and showed what the inter-item correlation aat part
correlation matrices look like for unidimensional data that fit an unfolding mbDdgh
structure is necessary to consider and understand as it is directlgt teltte assumption of
dimensionality. Future research should address the structure of unidimensianahdahe
relationship between item responses within an ideal-point framework as condeesumt
exist among researchers regarding the issue of dimensionality structunfelding-type

data and methods for assessing (uni)dimensionality of unfolding-type datx&fople,
according to Roberts et al. (1996), Roberts et al. (2000), and Nandakumar et al. (2002) if
two-factor structure results from the application of a principal componealgsss, and if
item level communalities are greater than .3 (from the first 2 componentsjhthdata are
considered unidimensional, of the unfolding type. On the other hand, the methods (and
criteria) used to assess dimensionality within the cumulative framewdtkérnyshenko et
al. (2007) were also used for assessing and determining dimensionality iéhinfolding
framework. They used linear factor analytic methods to assess dimeitgiandlif a single
factor model fit the data, then unidimensionality was assumed from both a duenatat
ideal-point perspective. Their reasoning rests on the fact that they couldchani
simulation studies that tested the accuracy of the former approach and @reertwo factor
structure resulting from PCA, item level communalities greater tBa A greater

understanding of unfolding-type data structure (inter-item correlation andawa
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matrices), and a resolution to this methodological issue would be facilitatedinulation
studies. Such efforts could further inform the development of statisticafoestetermining
the dimensionality structure of unfolding-type data. Once a better unungjaf
unidimensional unfolding data is gained, endeavors should be extended to the
multidimensional measurement situation. Currently, little is known aboutltztavould be
appropriate for multidimensional, unfolding, IRT models. Further, far fewer
multidimensional models exist for measuring multidimensional non-cognitive dag¢aew
multidimensional, unfolding, IRT models are still to be developed.
Conclusion

Similar to what some researchers have found in examining characsenistiems on
attitudinal surveys, the results from this investigation show that some itemshaattitote
scales possessed unfolding-type properties. On the Empowerment scale, eniyethsshat
measured attitude displayed such properties, while those that measured frestposved
cumulative-type properties. On the Leadership scale, close to one-third teinisedisplayed
some unfolding characteristics. These findings provide some indication thatahpaote
response process may be, at least in part, responsible for the observed dataliigiss f
not necessarily a reason to suggest the immediate implementation of unfol@impdRls
in scoring future administrations of the NCTWCS, but this does have implicatiosisri@y
design and scoring. In the presumed current scoring method, a sum score is used. This
implies a cumulative framework where a higher score implies more of thewin higher
is not more, for some items, then a simple summation is inaccurate and wouldhfikedty

Survey scores.
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Due to the clustering of items on both scales, and considering the purpose of the
survey and the policy decisions that are made using the survey scores, it mafyb® us
remove redundant items, add more items that measure different attitudedstoxweding
conditions, use separate scales for different constructs, and carefully ctmsideth the
survey development and scoring procedures. Because of the frequency with wiegis sur
are administered eliciting individuals’ opinions for the purpose of making variousotscis
(hiring, production/sales/marketing, assessing symptoms of psychiaggses, evaluating
programs and services), considering that the surveys contain Likert-tygeaitehemploy a
Likert-type procedure for scoring, recommendations for the simultaneous catisidef
the construct, scale development, and scoring procedures are not unique to the NCTWCS, but

to all related surveys with similar intentions.
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APPENDIX A

2006 North Carolina Teacher Working Conditions

Thank you in advance for your time and willingnessto share your views on working
conditionsin your school.

Research has demonstrated that teacher working conditions a@ twiihcreasing student
achievement and retaining teachers. North Carolina policymakers andi@astakeholders have
expressed great interest in using your collective responses ouarirgg 8 help improve working
conditions in schools and districts across the state.

Please know that your anonymity is guaranteed.

No one in your school, the district or state will be able to view indivisuialeys, and reports on the
results will not include data that could identify individuals. You aradasked demographic
information to learn whether teachers from different backgrounds ancediffeharacteristics look at
working conditions differently.

Access Code

You have been assigned an anonymous access code to ensure that we can idscttidplive which
you work and to ensure the survey is taken only once by each respondent. The cotielmmosed
to identify a school, and not an individual. The effectiveness of the sisrdeypendent upon your
honest completion.

Pleaseindicate your position:

Teacher (including intervention specialist, vocational, literacyialig¢ special education, etc.)
Principal

Assistant Principal

Other Education Professional (school counselor, school psychologist, sodiat ibrary media
specialist, etc.)

Time
Please rate how strongly you agree or disagree with the following staseat®ut the use of time in
your school.

Pleaseindicate your level of agreement with the following statements.
a. Teachers* have reasonable class sizes, affording them time to meet theiedaicaceds of all

students.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree
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b. Teachers have time available to collaborate with their colleagues
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. Teachers are protected from duties that interfere with their iesel# of educating students.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. School leadership tries to minimize the amount of routine administizdiperwork required of
teachers.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. Thenon-instructional time* provided for teachers in my school is sufficient.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

*'Teachers" means a majority of teachers in your school.

*"Non-instructional time” refers to any structured time during the work aeyaork individually or
collaboratively on instructional issues.

In an average week of teaching, how many hoursdo you havefor non-instructional time during
theregular school day?

None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours
More than 5 hours but less than or equal to 10 hours
More than 10 hours

In an aver age week of teaching, how much non-instructional time do teachers have available?

None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours
More than 5 hours but less than or equal to 10 hours
More than 10 hours

Of those hours, how many are availablefor individual planning?

None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours
More than 5 hours but less than or equal to 10 hours
More than 10 hours

And how many hoursare available for structured collabor ative planning?

None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours
More than 5 hours but less than or equal to 10 hours
More than 10 hours
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In an average week of teaching, how many hours do you spend on school related activities
outside theregular school work day (before or after school, and/or on the weekend)?
None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours

More than 5 hours but less than or equal to 10 hours

More than 10 hours

In an average week of teaching, how many hour s do teacher s spend on school-related activities
outside of theregular school work day?

None

Less than 3 hours

More than 3 hours but less than or equal to 5 hours
More than 5 hours but less than or equal to 10 hours
More than 10 hours

Facilities and Resour ces

Please rate how strongly you agree or disagree with the following staseat®ut your school
facilities and resources.

a. Teachers have sufficient access to appropridteuctional materials* and resources.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

b. Teachers have sufficient access to instructional technology, imglcoimputers, printers,
software, and internet access.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. Teachers have sufficient access to communications technologyjnggiibnes, faxes, email, and
network drives.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. Teachers have sufficient access to office equipment and suppliessstmpy machines, paper,
pens, etc.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. The reliability and speed of Internet connections in this school ar@enifto support
instructional practices.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

f. Teachers have adequate professional space to work productively.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

g. Teachers and staff work in a school environment that is clean and wethimed.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

h. Teachers and staff work in a school environment that is safe.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree
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*Instructional materials include items such as textbooks, curriculum rabtecontent references,
etc.

Teacher Empower ment

Please rate how strongly you agree or disagree with the following staseat®ut teacher
empowermenin your school.

Please rate your level of agreement with the following statements.
a. Teachers are centrally involved in decision making about educatiares.iss
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

b. Teachers are trusted to make sound professional decisions about amstructi
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. The faculty has an effective process for making group decisions aimygmioblems.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. In this school we take steps to solve problems.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. Opportunities for advancement within the teaching profession (otheadhanistration) are
available to me.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Please indicate how large arole teachers at your school havein each of the following areas:

a. Selecting instructional materials and resources.
Noroleat all Small role ModerateroleLargerole Theprimary role

b. Devising teaching techniques.
Noroleat all Small role ModerateroleLargerole Theprimary role

c. Setting grading and student assessment practices.
Noroleat all Small role ModerateroleLargerole Theprimary role

d. Determining the content of in-service professional development pregra
Noroleat all Small role ModerateroleLargerole Theprimary role

e. Hiring new teachers.
Noroleat all Small role ModerateroleLargerole Theprimary role

f. Establishing and implementing policies about student discipline.
Noroleat all Small role Moderaterole Largerole Theprimary role

g. Deciding how the school budget will be spent.
Noroleat all Small role Moderaterole Largerole Theprimary role

h. School improvement planning.
Noroleat all Small role Moderaterole Largerole Theprimary role
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Member s of the school improvement team ar e elected.
Yes

No

Don't know

L eader ship
Please rate how strongly you agree or disagree with the followimgrsats about
leadershipn your school.

Please rate your level of agreement with the following statements.

a. There is an atmosphere of trust and mutual respect within the school.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

b. The faculty are committed to helping every student learn.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. The school leadership communicates clear expectations to students ated paren
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. The school leadership shields teachers from disruptions, allowing tetcfargs on educating
students.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. The school leadership consistently enforces rules for student conduct
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

f. The school leadership support teachers' efforts to maintain disciplthe classroom.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

g. Opportunities are available for members of the community to activelylmdstto this school's
success.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

h. The school leadership consistently supports teachers.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

i. The school improvement team provides effective leadershipsag¢hool.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

j- The faculty and staff have a shared vision.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

k. Teachers are held to high professional standards for delivering iimstruct
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

I. Teacher performance evaluations are handled in an appropriate manner.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree
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m. The procedures for teacher performance evaluations are consistent
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

n. Teachers receive feedback that can help them improve teaching.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

The school leader ship makes a sustained effort to addr essteacher concer ns about:

a. facilities and resources
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

b. the use of time in my school
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. professional development
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. empowering teachers
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. leadership issues
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

f. new teacher support.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Overall, the school leadership in my school is effective.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Which position best describesthe per son who most often providesinstructional leader ship at
your school ?

principal or school head

assistant or vice principal

department chair or grade level chair

school-based curriculum specialist

director of curriculum and instruction or other central office basezbpael

Other teachers

None of the above.

Professional Development
Please rate how strongly you agree or disagree with the followingstaiie about your own

professional development and professional developmsmuinschool.
Please indicate your level of agreement with the following statements.
a. Sufficient funds and resources are available to allow teacheksetadvantage of professional

development activities.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree
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b. Teachers are provided opportunities to learn from one another.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

c. Adequate time is provided for professional development.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

d. Teachers have sufficient training to fully utilize instructiorahhology.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

e. Professional development provides teachers with the knowledge asdnslgtineeded to teach
effectively.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

In which of thefollowing areas, if any, do you believe teachers need additional support to
effectively teach students?

Special education (students with disabilities)
Special education (academically gifted students)
Limited English Proficiency (LEP)

Closing the achievement gap

Your content area

Methods of teaching

Student assessment

Classroom management techniques

Reading strategies

In which of the following areas, if any, do you need additional support to effectively teach your
students? Check all that apply.

Special education (students with disabilities)
Special education (academically gifted students)
Limited English Proficiency (LEP)

Closing the achievement gap

Your content area

Methods of teaching

Student assessment

Classroom management techniques

Reading strategies

In the past 2 years, have you had 10 hoursor more of professional development in any of the
following areas? Check all that apply.

Special education (students with disabilities)
Special education (academically gifted students)
Limited English Proficiency (LEP)

Closing the achievement gap

Your content area

Methods of teaching

Student assessment

Classroom management techniques

Reading strategies
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Did the professional development you received in special education for students with disabilities
provide you with strategies that you have incorporated into your instructional delivery
methods?

Yes

No

Did the professional development you received in special education for academically gifted
studentgrovide you with strategiesthat you haveincorporated into your instructional delivery
methods?

Yes

No

Did the professional development you received in LEP provide you with strategiesthat you have
incor porated into your instructional delivery methods?

Yes

No

Did the professional development you received in closing the achievement gapovide you with
strategiesthat you have incorporated into your instructional delivery methods?

Yes

No

Did the professional development you received in your content areprovide you with strategies
that you haveincorporated into your instructional delivery methods?

Yes

No

Did the professional development you received in methods of teachingrovide you with
strategiesthat you have incor porated into your instructional delivery methods?

Yes

No

Did the professional development you received in student assessmeprtovide you with strategies
that you haveincorporated into your instructional delivery methods?

Yes

No

Did the professional development you received in classroom management technigpesvide you
with strategiesthat you have incor porated into your instructional delivery methods?

Yes

No

Did the professional development you received in reading strategigsr ovide you with strategies
that you haveincorporated into your instructional delivery methods?

Yes

No

Werethese strategies you learned in your professional development in special education for
students with disabilitiegseful for your effortsto improve student achievement?

Yes

No
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Werethese strategies you learned in your professional development in special education for
academically giftediseful for your effortsto improve student achievement?

Yes

No

Werethese strategies you learned in your professional development in LEP useful for your
effortstoimprove student achievement?

Yes

No

Werethese strategies you learned in your professional development in closing the achievement
gapuseful for your effortsto improve student achievement?

Yes

No

Werethese strategies you learned in your professional development in your content areaseful
for your effortsto improve student achievement?

Yes

No

Werethese strategies you learned in your professional development in methods of teaching
useful for your effortsto improve student achievement?

Yes

No

Werethese strategies you learned in your professonal development in student assessmeudeful
for your effortsto improve student achievement?

Yes

No

Werethese strategies you learned in your professional development in classroom management
techniquesuseful for your effortstoimprove student achievement?

Yes

No

Werethese strategies you learned in your professonal development in reading strategiesseful
for your effortsto improve student achievement?

Yes

No

In the past two year s, have you enrolled or participated in any of the following professional
development activities?

online learning opportunities
YesNo

local in-service program
YesNo

state-sponsored in-service program
YesNo
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Was the Online learning opportunity required?
YesNo

The Online learning opportunities activities | participated in wereie
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Was the local in-service program required?
Yes
No

The local in-service program activities | participated in vedfective.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Was the state-sponsored in-service program required ?
Yes
No

The state-sponsored in-service program activities | participatedrim effective.
Strongly Disagree Disagree Neither Disagree Nor Agree Agree Strongly Agree

Do you teach students who have an Individualized Education Plan or 504 Plan?
Yes
No

Do you teach students who are Limited English Proficient?
Yes
No

Core Questions

Which aspect of your work environment most affects your willingness to keep teaching at
your school?

Time during the work day

School facilities and resources

School leadership

Teacher empowerment

Professional Development

Which aspect of your school's work environment most affects teachers' willingness to keep
teaching at your school?

Time during the work day
School facilities and resources
School leadership

Teacher empowerment
Professional Development

251



Which aspect of working conditions is most importan t to you in promoting student learning?

Time during the work day
School facilities and resources
School leadership

Teacher empowerment
Professional Development

Overall, my school is a good place to teach and lea  rn
Strongly Disagree

Disagree

Neither Agree Nor Disagree

Agree

Strongly Agree

At thisschool, we utilize results from the Teacher Working Conditions survey asatool for
Improvement.

Strongly Disagree

Disagree

Neither Agree Nor Disagree
Agree

Strongly Agree

Which BEST DESCRIBES your futureintentionsfor your professional career?

Continue teaching at my current school

Continue teaching at my current school until a better opportunity comes along.
Continue teaching but leave this school as soon as | can

Continue teaching but leave this district as soon as | can

Leave the profession all together

Demographics
Pleasetell us more about your self. No demographic infor mation that could be used to
identify individual educatorswill be shared. All questionsin this section are optional.

Please indicate your ethnicity.
American Indian or Alaska Native
Asian or Pacific Islander

Black or African American
Hispanic

White

Mixed or multiple ethnicity

Some other race or ethnicity

Please indicate your gender.

Female
Male
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How did you train to become an educator ?
Bachelor's degree

Master's degree

Alternative route

Highest degree attained

Bachelor's

Master's

Doctorate

Other

Areyou certified by National Board for Professional Teaching Standards (NBPTS)?
Yes
No

How many year s have you been employed as an educator ?
First Year

2 -3 Years

4 -6 Years

7 -10 Years

11 - 20 Years

20+ Years

How many year s have you been employed in the school in which you are currently working?
First Year

2 -3 Years

4 -6 Years

7 -10 Years

11 - 20 Years

20+ Years

Have you served asa mentor in North Carolina schoolsin the past five years?
Yes
No

Mentoring

Have you been formally assigned a mentor in your first AND second year teaching in North
Caroalina?

Yes

No

Answer questionsfor aformal mentor assigned at the school where you now work. If you had
multiple year s of formal mentors, answer questionsfor your most recent mentor experience.

My mentor was effective in providing support in the following areas

a. Instructional strategies
Of nohelp at all Hashelped alittle Has helped some Hashelped alot Help wascritical

b. Curriculum and the subject content | teach
Of nohelp at all Has heped alittle Hashelped some Has helped alot Help wascritical
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c. Classroom management/discipline strategies
Of nohelp at all Has helped alittle Has helped some Hashelped alot Help wascritical

d. School and/or district policies and procedures
Of nohelp at all Has heped alittle Hashelped some Has helped alot Help wascritical

e. Completing products or documentation required of new teachers
Of nohelp at all Has helped alittle Hashelped some Has helped alot Help wascritical

f. Completing other school or district paperwork
Of nohelp at all Has helped alittle Hashelped some Has helped alot Help wascritical

g. Social support and general encouragement
Of nohelp at all Has heped alittle Hashelped some Has helped alot Help wascritical

h. Other

Of nohelp at all Has helped alittle Hashelped some Has helped alot Help wascritical
Please indicate whether each of the following were true for you and your mentor

a. My mentor and | were in the same building(or school)

Yes

No

b. My mentor and | taught in the same content area
Yes
No

c. My mentor and | taught the same grade level
Yes
No

On average, how often did you engage in each of the  following activities with your mentor?
a. Planning during the school day with my mentor

Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

b. Being observed teaching by my mentor
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

c. Observing my mentor's teaching
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

d. Planning instruction with my mentor
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

e. Having discussions with my mentor about my teaching
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

f. Meeting with my mentor outside of the school day
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily
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How important has your mentoring experience been in your decision to continue teaching at
this school?

Made no difference at all
Only slightly important
Somewhat important
Important

Very important

If you have served as mentor in the past three years, please answer the following questionsfor
YOUR MOST RECENT mentoring experience

Areyou afull time mentor?
Yes
No

How many teachersdid/do you mentor?
1

2

3

4-6

7- 10

10 +

On aver age, how often did/do you meet with your menteg(s)
Never

Less than once per month

Once a month

Several times a month

Once a week

Almost daily

Please indicate which best describes you and your mentee(s)

a. My mentor and | were in the same building
None of them Some of them All of them

b. My mentor and | taught in the same content area
None of them Someof them All of them

c. My mentor and | taught the same grade level
None of them Some of them All of them

On average, how often did you engage in each of the following activitieswith your menteg(s)?
a. Planning during the school day with my mentee(s)
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

b. Observing my mentee(s)' teaching
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily
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c. Being observed by my mentee(s)
Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

d. Planning instruction with my mentee(s)

Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily
e. Having discussions with my mentee(s) about teaching

Never Lessthan once/ month Onceamonth Several times/ month Onceaweek Almost daily

Please indicate which of the following kinds of support, if any, you received asa formally
assigned mentor. (Check all that apply).

Release time to observe your mentee(s)

Release time to observe other mentors

Reduced teaching schedule

Reduced number of preparations

Common planning time with teachers you are mentoring

Specific training to serve as a mentor (e.g. seminars or classes)

Regular communication with principals, other administrator or departrhait c
Other

Thank you for sharing your valuable time, thoughts and
perspectives on this survey. We value the work you do to
provide a quality education to the children of NC. Survey
results will be available at http://www.northcaroli natwc.org

by June 1, 2006.
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APPENDIX B

CATEGORY PROBABILTIY PLOTS FOR LEADERSHIP ITEM 21: SAMPLES10

Category Probability Plot for Item 21 with GGUM: i®8gale 2, Leadership Scale

Prah.
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Category Probability Plot for Item 21 with GGUM: i@ale 3, Leadership Scale

Prob.

Theta

Category Probability Plot for Item 21 with GGUM: i8ale 4, Leadership Scale

Prob,
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Category Probability Plot for Item 21 with GGUM: i@ale 5, Leadership Scale

Proh.

Theta

Category Probability Plot for Item 21 with GGUM: i8ale 6, Leadership Scale

Proh.
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Category Probability Plot for Item 21 with GGUM: i®gale 7, Leadership Scale

Frob.

Theta

Category Probability Plot for Item 21 with GGUM: i8ale 8, Leadership Scale

Prob,
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Category Probability Plot for Item 21 with GGUM: i®&ale 9, Leadership Scale

Prob.

Prob.
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