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ABSTRACT 

Mengqian Wang: Anaphora Resolution Based on Semantic Relatedness in the 
Biomedical Domain 

(Under the direction of Katya Perstova) 

  

In Linguistics, an anaphor is an expression whose interpretation depends upon 

another expression in context, namely an antecedent expression. Anaphora resolution 

is a task of identifying the anaphorical relation between the anaphor and its 

antecedent. Anaphora resolution is used in many high-level tasks of Natural Language 

Processing. Traditionally, the rule-based approaches to anaphora resolution rely on 

the syntactic structures and discourse features. In my study, I implement two 

semantic approaches on biomedical texts, ontology-dependent method and ontology-

independent vector semantic method. The ontology-dependent method will be used 

to locate the antecedent for noun phrases with determiners while the ontology-

independent method will be implemented on pronouns. The results show that the 

semantic approaches are promising directions in investigating resolutions for 

anaphora problems in the future. 
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I. Introduction 

 
In Linguistics, an anaphor(Huddleston, 1984) is an expression whose 

interpretation depends upon another expression in context, namely an antecedent 

expression. For example, in the sentence, Sarah had made the decision, but everyone 

thinks she was wrong, the pronoun she is the anaphor which refers back to its 

antecedent Sarah. The terminology “anaphor” in this paper is used slightly differently 

from the one used in traditional Linguistics. The interpretation of some noun phrases 

with definite or demonstrative determiners also depends on their antecedents. And 

practically, the resolution for these phrases are also important.  Thus, in this paper, I 

will also take these noun phrases into account. For convenience, the terminology 

"anaphor" will be used to indicate pronouns and some noun phrases with determiners.   

Anaphora is a common device in daily conversation to avoid repetition and 

help with communication. While identifying the antecedent of an anaphor is intuitive 

for human, it could be challenging for machines. The anaphora resolution(Mitkov, 

2014) is the task of automatically finding the antecedent for an anaphor. This task is 

basic and used in many high-level tasks of Computational Linguistics and Natural 

Language Processing. Without anaphora resolution, the efficiency of information 

extraction could be largely impaired. We take SemRep as a concrete example. 
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SemRep (Rindflesch & Fiszman 2003) is a program that extracts semantic 

predications (subject–relation–object triples) from a biomedical free text. Here is an 

example which is given on the SemRep official website:   

 
(1). 
1. We used hemofiltration to treat a patient with digoxin overdose that was 
complicated by refractory hyperkalemia.  
2. Hemofiltration-TREATS-Patients  

     Digoxin overdose-PROCESS_OF-Patients  
     hyperkalemia-COMPLICATES-Digoxin overdose  
      Hemofiltration-TREATS(INFER)-Digoxin overdose 
 
 

From the sentence in (1)1, SemRep extracts the predications in (1)2.  Previous 

studies have found that the failure of detecting the anaphorical relationship may lead 

to a loss in information extraction. And the failure will thus affect the performance of 

SemRep. An example from Halil et al (2016) is given in (2).  

 
(2).  

  There are currently 3 classes of drugs approved for the treatment of PAH: 
prostacyclin analogues, endothelin receptor antagonists, and 
phosphodiesterase type 5 inhibitors. … 
Although definitive evidence will require randomized and properly controlled 
long-term trials, the current evidence supports the long-term use of these drugs 
for the treatment of patients with PAH. 

 

The concept corresponding to these drugs in the UMLS Metathesaurus is 

“drugs”. Thus, a non-informative relation will be extracted from the concluding 

sentence, as shown in (3). 

 
(3). Drugs-TREATS-PAH 
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However, with a co-reference resolution, these drugs could be substituted by 

Prostacyclin analogues, endothelin receptor antagonists, and phosphodiesterase type 5 

inhibitors. The relations in (4) will be extracted. 

 

(4).  
Prostacyclin analogues-TREATS-PAH 

            Endothelin receptor antagonists-TREATS-PAH 
           Phosphodiesterase type 5 inhibitors-TREATS-PAH 
 
 

Therefore, implementing anaphora resolution will potentially expand the scope 

of information extracted by SemRep. 

Traditionally, the approaches in anaphora resolution rely heavily on syntactic 

features. In my study, I would investigate the anaphora resolution from a perspective 

of semantics. A real human will consider not only the syntactic structure but also the 

semantic meaning of the antecedent and the context of the anaphor when he/she is 

trying to figure out an anaphora relationship. For example, in the sentence (5), “it” 

potentially refers to "a dog" or "an apple”. Human beings can easily deduce the true 

antecedent of “it” is “dog” since apples do not die. That means, “died” is more 

semantically related to “dog” than to “apple”. We may expect to see “dog” and “died” 

co-occur more frequently in texts. 

 
(5). A dog ate an apple. It died. 
 
 
Now let’s change sentence (5) to sentence (5)’. 

 
(5)’ . A dog ate an apple. This poor animal died. 
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The anaphor in (5)’ is “this poor animal". We may find some extra information 

from the anaphor itself in this sentence. Since a dog is a type of animal, we would 

expect the antecedent of the anaphor is “a dog”. Thus, it would make sense to try to 

find the anaphora relationship from a perspective of semantics. In my study, two types 

of semantic approaches will be implemented – ontology-dependent method and 

ontology-independent vector cosine similarity method. Using which one of the 

approaches depends on the type of anaphor. 

In the following parts of the introduction section, I will introduce the types of 

anaphora that I am going to investigate in my study and the semantic approaches that 

I will implement in detail. Then, I will briefly review the previous studies on anaphora 

resolution and I will state the reasons why I think semantics is worth to try. After that, 

I will give detailed descriptions of the database and tools that I will use in the 

experiment. 

The second section will be the body of the experimental procedure. By reading 

through this section, you should be able to see how I did my experiment and tested 

my hypothesis. The results and evaluations will be included in section three. I will 

generally discuss the results and the future direction in the last part of the paper.  

The anaphora discussed in this paper include two types, pronouns and some 

noun phrases with determiners. Personal pronouns in English are given in table 1. 

Demonstrative pronouns including this, that, these and those are not shown in table 1 

but will be included in my study. These four pronouns can also be used as determiners 

in noun phrases. For example, in the phrase this dog, “this” functions as a determiner. 

I will also consider the NPs with the definite determiners as anaphora. For example, 

the black cat is a noun phrase composed of a determiner the and a noun phrase black 
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cat. A special case is which. If which shows up by itself, it will be treated as a pronoun 

while if it shows up in a noun phrase, it will be treated as a demonstrated determiner. 

To sum up, the anaphora I will consider include pronouns and some noun phrases 

with definite and demonstrative determiners. Which as a special case will be treated as 

a demonstrative pronoun or demonstrative determiner. 

 
 

 

 

 

 

 

 

 

 

 

Table 1 pronouns in English 

 
 
 
 
 
 
 
 
 

Person Number Case 

Subject Object Possessive 

First Singular I me mine 

Plural we us ours 

Second Singular you yours 

Plural yours 

Third Singular he him his 

she her hers 

it its 

Plural they them theirs 
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II. Previous Studies 

Charniak (1972), Winograd (1972) and Hobbs (1974) introduced first NLP 

approaches to anaphora resolution which are heavily based on commonsense 

knowledge. The chief value of Charniak’s work has been to show how difficult the 

pronoun resolution problem is. He showed in his 1972 paper a large amount of difficult 

cases in understanding children’s stories. For deducing the correct antecedent of a 

pronoun in a child’s story, arbitrarily detailed world knowledge could be required. 

Winograd was the first to write procedures for locating antecedents. He rated all 

possible referents on the basis of syntactic position. A subject is favored over an object 

as an antecedent, while both of them are favored over a complement of a preposition. 

The rating was very similar to the one proposed by Hobbs (1974) in his Naïve 

Algorithm which is the most representative syntax-based algorithm of pronoun 

resolution. Interestingly, in the 1978 paper, Hobbs suggested that this approach was 

very limited and he proposed that semantics could be a possible solution in the future. 

More recent studies focus on statistical and machine learning approaches. ARPA’s 

Message Understanding Conference (MUC, 1992-1997), the first big initiative in 

Information Extraction, changed NLP by producing the first annotated data for tasks 

including “name entity extraction” and “co-reference”. “Coreference chain” is a 

terminology which was created and firstly used by MUC and it indicates a set of 

mentions referring to an entity. Anaphora is a special case of co-reference. They are 

closely related but not exactly the same. While co-reference describes the situation 
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that different entities refer to a same concept, anaphora means that an anaphor is 

referring to its antecedent. An anaphor is semantically empty, which means it is 

practically useless if it fails to refer to an antecedent. These two terms are more or less 

used alternatively in recent years, which causes confusion. Some of the researches I 

take reference in my study use “co-reference” to refer to “anaphora”.  I will be 

consistent with the authors for their usage of these two terms. Without extra 

illustration, both of “co-reference” and “anaphora” refer to “anaphora” in my study. 

More attention has been attracted to anaphora and co-reference resolutions 

since MUC. The earliest works on the co-reference resolution based on machine 

learning are McCarthy & Lehnert (2000) and Soon et al. Haghighi and Klein proposed 

a deterministic co-reference system in their 2009 paper. This system was driven 

entirely by syntactic and semantic compatibility while most of the co-reference 

systems in the same period of time heavily relied on discourse constraints. They 

parsed all sentences with Stanford parser and extracted rich syntactic features that are 

representative for co-reference relations. To get semantic knowledge between 

mentions, they applied the syntactic features to other datasets including WIKI (25k 

English articles from Wikipedia) and BLIPP (1.8 million sentences of newswire parsed 

with the Charniak (2000) parser) and acquired the pairs of words that have 

comparative meanings. These pairs of words were later used for the purpose of 

disambiguation. Their experiment was dealing with the coreference resolution, which 

means they were not only finding the antecedents for anaphora but also finding the 

coreference relationships for entities. In coreference resolution, they were given a 

document which consists of a set of mentions; each mention is a phrase in the 

document and they were asked to cluster mentions according to the underlying 
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referent entity(Charniak, 1972). The combination of syntactic features with semantic 

knowledge, although simple than most of the contemporary approaches, made their 

approach (precision 87.2%, recall 77.3%, F-1 Score 81.9) outperform the best 

unsupervised approach (precision 83.0%, recall 75.8, F-1 Score 79.2) of the day and be 

comparative with the state-of-art supervised approach (precision 89.7%, recall 55.1%, 

F-1 Score 68.3) at that time. However, their study on semantic knowledge was on the 

string level and the semantic knowledge was used only as a tool of disambiguation. By 

looking into the concept and with the help of vector semantics, semantic knowledge 

could play a more important role in the co-reference and anaphora resolution. 

Not only in general literature, the co-reference resolution has also been an 

important task in biomedical natural language processing. In the BioNLP shared task 

2011, co-reference was launched as a supporting task. The goal was to find the 

gene/protein co-reference relations. 6 teams submitted their results while the 

champion team successfully grabbed 22.18% relations with a precision of 73.26%. Their 

approaches, as well as an approach developed by a team after the shared task, was 

mostly based on the syntactic structure and discourse salience. However, with the rich 

biomedical ontology system and a large number of biomedical texts, implementing 

semantic method would be potentially improving the performance. In my study, I will 

implement both ontology-dependent and ontology-independent methods on the data 

provided by the BioNLP shared task 2011. The data was well-annotated and released to 

the public. 
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III.  The Semantic Approaches 

 
There are two types of semantic approaches going to be used in my study, 

ontology-dependent method and ontology-independent vector semantic method. The 

ontology-dependent method relies on the biomedical ontology relations stored in the 

Unified Medical Language System (UMLS) (see section 1.4.1) and the ontology-

independent method is based on vector semantics which relies on the words co-

occurrence frequency in the biomedical texts (see section 1.3.1). 

Also, as mentioned before, there are two types of anaphora I am going to 

examine in my study, pronouns and noun phrases with determiners. Since pronouns 

are semantically empty, looking at their semantic relations with other ontology is 

meaningless. Instead, I would acquire the semantic information from the context of 

them using vector semantic method. The vector semantic method will be introduced 

in 1.3.1. I will talk about the ontology-dependent method which is used to deal with the 

cases of the noun phrases with determiners in 1.3.2. 

 

3.1 Vector Semantics 

As Firth (1957) said in Studies in Linguistic Analysis, you shall know a word by 

the company it keeps.  Words that occur in similar contexts tend to have similar 

meanings. It is reasonable to assume that an entity is semantically related to its 

context. We shall also assume that the antecedent of the anaphor has semantic 
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relatedness with the context of the anaphor since an anaphor is semantically empty 

and its interpretation depends upon its antecedent. 

For example, in (5), “it” potentially refers to “dog” or “apple”. Human beings can 

easily deduce the true antecedent of “it” is “dog” since apples do not die. That means, 

“died” is more semantically related to “dog” than to “apple”. We may expect to see 

“dog” and “died” co-occur more frequently in texts. 

 
(5). A dog ate an apple. It died. 
 

In the sentence above, “dog” will be assigned as the true antecedent of the 

anaphor because “dog” has a higher semantic relatedness with the context of the 

anaphor. In example (5), the context contains one word, “died”. 

The way I calculated the semantic relatedness is called vector semantics. Vector 

semantics works with distributional methods, in which the meaning of a word is 

computed from the distribution of words around it. These words are generally 

represented as a vector or array of numbers related in some way to counts (Jurafsky & 

Martin, 2016). Table 2 shows a word-word matrix. Each row represents the vector of 

the word that we examine while each column represents the frequency of a word co-

occurring with the examined word.  

 

Table 2 an example word-word matrix from Jurafsky & Martin (2016) 

 
Each row of numbers will be represented as a vector in the vector space, the 

smaller the angle between the vectors is, the similar the two vectors are. That is to say, 
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the words represented by the two vectors that have a small angle are more likely to 

show up in the same context, namely, they are more semantically similar. The way we 

decide the angle between the vectors is by calculating the cosine score. The higher the 

cosine score is, the smaller the angle is. Figure 1 shows a simplified two-dimensional 

vector space for words “digital” and “information”.   

 

Figure 1 an example vector space from Jurafsky & Martin (2016) 

 
The vector semantic method has been integrated into an open source software 

UMLS::Similarity (Mclnnes, Pedersen & Pakhomov, 2009). The true antecedent will be 

the one that has the highest cosine score with the context of the anaphor, which 

means the true antecedent will be semantically most related to the context of the 

anaphor.  

 

3.2 The Ontology-Dependent Semantic Approach 

For noun phrases (NPs) with determiners, the ontology-dependent method will 

be used since the N’ under the NP gives us extra information. For example, in sentence 

(5)’, which is a modified version of sentence (5), the anaphor is the NP “this poor 

animal” instead of the pronoun “it”, we shall know the antecedent of the anaphor is 
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“dog” rather than “apple” because “apple” is not a type of “animal”.  To achieve this 

goal, I will take advantage of the Semantic Network in the UMLS. An illustration for 

the Semantic Network could be found in section 1.4.1.  

 
(5)’.  A dog ate an apple. This poor animal died. 
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IV.  Database and Tools 

 
In this section, I will introduce the detail of the database and tools and the 

ways I am going to implement them.  

Generally, I am trying to find the true antecedent of an anaphor from a 

semantic perspective. First of all, If the anaphor is a personal pronoun or a 

demonstrative pronoun, I would calculate the semantic relatedness between the 

potential antecedents and the context of the anaphor by vector cosine similarity 

method. The method has been integrated into an open source software called 

UMLS::Similarity.  

Secondly, if the anaphor is in some of the noun phrases with demonstrative or 

definite determiners, I will look up the concept relationship between the potential 

antecedents and the anaphor in the UMLS Semantic Network. They will be assigned as 

co-referenced if they have an is-a or a parent-child relationship. These relationships 

will be introduced in section 1.4.1.   

The data used for evaluation are 83 annotated abstracts from the co-reference 

supporting task of BioNLP’s shared task 2011. The anaphora are marked in the data. 

The potential antecedents and the entities in the context of the anaphor will be 

extracted by MetaMap, a supporting program that takes a plain text as input and 

returns a set of biomedical entities. The data source that backs up the MetaMap is the 
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UMLS Metathethurus. The UMLS Metathethurus will be introduced in section 1.4.1 

while the MetaMap will be illustrated in section 1.4.2.  

 

4.1 UMLS 

According to the official website, the purpose of the Unified Medical Language 

System(UMLS) is to facilitate the development of computer systems that behave as if 

they "understand" the meaning of the language of biomedicine and health. There are 

three knowledge sources that mainly support the functioning of the UMLS, the 

Metathesaurus, the Semantic Network and the SPECIALIST Lexicon & Lexical Tools.  

The Metathesaurus is a large, multi-purpose, and multi-lingual vocabulary 

database that contains information about biomedical and health related concepts, 

their various names, and the relationships among them. Concept Unique Identifier 

(CUI) is used to identify concept in the database. 

The Semantic Network consists of semantic types and semantic relationships. 

There are 133 semantic types and 54 semantic relationships in the Semantic Network. 

The primary link between most semantic types is the is-a relationship. The is-a 

relationship is a type of semantic relationship in the Semantic Network of the UMLS. 

It can be illustrated as “is an instance of”. Part of the Semantic Network is shown in 

figure 1.  
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Figure 2 Part of the Semantic Network (from the UMLS basic tutorials) 

 
The is-a relationship establishes the hierarchy of types within the Semantic 

Network and is used for deciding on the most specific semantic type available for 

assignment to a Metathesaurus concept. For example, in figure 2 (Liu et al, 2o12) 

doctor and physician have an is-a relationship, i. e. a physician is an instance of a 

doctor.  

 

 

 

 

 

 

 

 

Figure 3 A sample hierarchical structure in the Semantic Network (from Liu et al, 2012) 
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Parent-child (broader/narrower) is another important relationship in the 

Semantic Network. Child (narrower) concept can be seen as a subtype of the Parent 

(broader) concept. Here is an example from the UMLS basic tutorials. The semantic 

type Biologic Function is the parent of, or broader than, the semantic type of 

Physiologic Function.  

One thing to be noted is that a parent-child relationship only works for the 

concepts that are immediately connected in the Semantic Network. For example, in 

figure 2, "doctor" is the parent of "physician" while "physician" has two child concepts – 

pulmonologist and cardiologist. We do not say "doctor" is the parent of pulmonologist 

and cardiologist. However, pulmonologist and cardiologist each has an is-a 

relationship with "doctor", i.e. pulmonologist/cardiologist is an instance of "doctor". 

The UMLS Metathesaurus and the Semantic Network are accessible through a 

wrapper of Python. 

The SPECIALIST Lexicon & Lexical Tools are in another part of UMLS which 

allows users to develop Natural Language Processing programs. However, the main 

parts of the UMLS used in this experiment are the Metathesaurus and the Semantic 

Network. 

The UMLS is accessed through a Python wrapper called PyMedTermino which 

is an open source software developed by Lamy, Venot and Duclos (2015). 

 

4.2 MetaMap 

MetaMap is a supporting program for mapping the terms to the concepts in the 

UMLS. It takes raw texts as input and returns a set of concepts and the terms of which 



  17 

the corresponding concepts have been found. MetaMap is a program built on Java. It 

is accessible by command-line and also has Java API and wrapper of Python developed 

by Anthony Rios (https://github.com/AnthonyMRios/pyMetaMap). 

 

4.3 Semantic Relatedness and UMLS::Similarity  

The ontology-independent method implemented in this study is vector cosine 

similarity which has been introduced in section 1.3.1. 

This method is implemented and available in UMLS::Similarity (Mclnnes, Pedersen & 

Pakhomov, 2009), an open source software package written in Perl which integrates 

several well-tested methods of computing semantic similarity and relatedness between 

concepts in the UMLS. UMLS::Similarity needs UMLS::interface as a foundation 

package. The latter provides an API to a local installation of the UMLS in a MySQL 

database, as well as command line programs to allow a user to interactively explore 

the UMLS. 
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V. The Procedure of the Experiment 

 
The data used for testing comes from BioNLP’s shared task 2011. Annotations of 

co-reference relations are available under their co-reference supporting tasks. Figure 5 

shows an annotated example in its training set. Arrows indicate the co-reference 

relation. 

 

Figure 4 Coreference annotation from BioNLP’s shared task 2011 

A detailed illustration of the procedure of my experiment is given below. Figure 

5 shows a visual illustration of the procedure of the experiment. A close examination 

of the example in figure 4 could be found in Appendix I. The example in Appendix I 

shows that the antecedent of the anaphora has semantic relatedness with the context 

of the anaphora. And calculating the semantic relatedness by the method of second-

order cosine similarity is a feasible way to figure out the anaphorical relationship.  
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As a reminder, MetaMap is a supporting program which takes the plain text as 

input and returns a set of terms that could be mapped to the concept of the UMLS. I 

will use the term “extraction” in the following section to indicate this process of 

MetaMap. 

The data in my experiment comes from the training data of the co-reference 

supporting task of the BioNLP’s shared task 2011. The anaphora and the co-reference 

relationship between anaphora and antecedents were annotated by a group of experts 

from the shared task. The annotations of the anaphora and the coreference 

relationships were produced based on the GENIA-MedCo coreference corpus, which is 

a product of collaboration between GENIA project and MedCo Annotation Project 

(from http://2011.bionlp-st.org/home/protein-gene-coreference-task). I did not use the 

testing data from the shared task for the following reasons.  First of all, the goal of the 

shared task was to find the co-reference and anaphorical relations for gene and 

protein name entities, which means in the test data, only gene and protein relations 

were marked. However, since I was working on the general anaphorical relations in 

the biomedical text, the annotations in the testing data were not appropriate for me. 

Secondly, the main purpose of my study is to figure out whether an anaphorical 

relationship could be decided by semantic relatedness between an anaphor and its 

antecedent. An additional task of recognizing anaphor would be a distraction and 

would be beyond the scope of this study.  

I divided the documents in the training data of the shared task into training 

and testing set. I manually examined the data in the training set and decided the rules 

that are implemented in steps a to c. The steps marked in red in figure 5 require 

human intervention And the steps from a to c can be done automatically. After 
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implementing my method and acquiring the results, I calculated the precision for 

evaluation and investigated the results for further analysis.  

 

Figure 5 Visual illustration for the procedure of the experiment 
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First of all, my system pre-processed the text. In the pre-processing step, the 

anaphora which are marked in the dataset were divided into two groups. Group P 

included pronouns and group N included noun phrases with determiners. This step 

was done with the help of MetaMap. The anaphor would be considered as a noun 

phrase with a determiner if it had one or more corresponding concepts in the UMLS 

that could be extracted by MetaMap. Otherwise, the anaphor would be considered as 

a pronoun because a single pronoun does not have a corresponding concept stored in 

the UMLS. Some of the noun phrases in my dataset did not have corresponding 

concepts in the UMLS. These noun phrases were added to group P by my algorithm 

and treated as pronouns. The pre-processing step corresponding to the step a in figure 

5 was done in Python automatically. 

After the pre-processing, the two semantic approaches were implemented 

separately according to the type of anaphor. The steps under c correspond to the 

ontology-dependent method which was applied to group N (noun phrases with 

determiners). The steps under b were, on the contrary, illustrating the ontology-

independent vector semantic method, which was applied to group P (pronouns). In 

practice, the steps under c were less time-consuming than steps under b, thus, I 

worked on the ontology-dependent part first in my experiment. I will keep the same 

order when I illustrate in the paper.  

Group N: 

A noun phrase is not semantically empty and at least one concept would be 

extracted from the anaphor by MetaMap. To make the result accurate, I got rid of the 

complement of the noun phrase. Everything in the anaphor that was after a 

proposition or a complementizer "that"was considered as a complement. “That” would 
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be seen as a complementizer if it did not show up at the beginning of the phrase. Then 

for the rest of the anaphor, I took the concept that was extracted from the rightmost 

of the phrase as the main concept because, in English, a noun phrase is usually right-

headed if there is no complement.   

I used the ontology-dependent method for these anaphora in group N. Firstly, I 

considered the text before the anaphor as the source of potential antecedents. I input 

the source text into MetaMap. MetaMap returned me a set of concepts and the 

phrases in the text that triggered the extraction. I checked the phrases to see if any of 

them has exactly the same string of the anaphor. If an exact match had been found, 

the phrase would be assigned as the true antecedent. Otherwise, through the semantic 

network in the UMLS, I would check if any the phrases have concepts that are parents 

or children of the concept of the anaphor. If no such a relation existed, I would expand 

the scope to is-a relation which allows a longer distance between the two concepts. If I 

found that more than one phrase had the parent-child or is-a relation with the 

anaphor, I would search for the phrase that partially matched the anaphor or 

randomly chose one if I failed to find a partial match. The anaphor that failed to get an 

antecedent from the above steps will be added to group P. The steps for noun phrases 

with determiners that correspond to the steps under c were done in Python 

automatically. 

Group P: 

The group P included personal pronouns, demonstrative pronouns and the 

noun phrases with determiners which I failed to find their antecedents by an 

ontology-dependent method. The ontology-independent vector semantic method was 

implemented on Group P. The first step of getting potential antecedents was as the 
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same as the ontology-dependent method. However, instead of getting the concept of 

the anaphor, I extracted the concepts from the context of the anaphor. The window of 

the context was the text after the anaphor but within the same sentence.  By 

MetaMap, a set of concepts were extracted from the text. Also, MetaMap returned the 

entities that trigger the extraction. Till this point, I had a set of potential antecedents 

and a set of context concepts and entities for each anaphor. Next, I got cross products 

for the antecedents and the entities. The cross products were stored in a set S of pairs, 

for example, (potential antecedent [a1], context entity [e1]), (potential antecedent [a1], 

context entity [e2]), etc. I output the pairs in the format of the script which was 

readable by Perl since the open software UMLS::Similarity is a program written in Perl. 

The similarity scores were calculated in Perl and were output in .txt files again so that 

the results could be input back and analyzed by Python. At this point, I had the scores 

between the potential antecedents (a1, a2, …an) and the context entities (e1, e2…en). 

After that, I put the pairs that contained the same ai in one subset Si, For example, S1 = 

{(a1, e1), (a1, e2), …, (a1, en)}. Then, for each subset Si, I averaged the scores over the 

number of entities ei. The reason why I did the average was to make sure that each 

entity in the context had an even contribution. The potential antecedent that achieved 

the highest score of similarity was assigned as the true antecedent.  
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VI. Results and Evaluation 

 
The data of my experiment came from the data of BioNLP’s Shared Task 2011. 

The anaphora were annotated and my task was finding the true antecedents for those 

anaphora. The results are shown in table3 through table5. In this experiment, all the 

cases (anaphor-antecedent relations) were positive and I calculated the precision (the 

percentage of true positive) for evaluation. 

 

Table 3 Results for the ontology-dependent method on Group N  

 

There were 83 abstracts among which 270 anaphora were annotated. 42 of them 

were noun phrases with determiners, 30 antecedents were correctly found in my 

experiment. The precision value was 71%. Among all the cases, 11 of them were found 

by exact string match and 31 of them were found by looking up the semantic 

relationship. Most of the true positive antecedents were the ones that are partially 

matched and semantically related to the anaphora. 

 

 Exact string 
matches 

Partial string 
matches with the 
is_a relationship 

No string match 
but with the is_a 
relationship 

Number in 
total 

Number of 
all 
members 

11 21 10 42 

Number of 
true 
positive 

5 18 7 30 

Percentage 
of precision 

45% 86% 70% 71% 
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Table 4 Results for ontology-independent vector semantic method on Group P 

 

 

Table 5 Results for Further Analysis on Group P 

 

However, in the rest 228 pronouns, only 42 of the assigned antecedents 

matched the true antecedents. The precision was as low as 18%. The antecedents were 

assigned according to the similarity score with the context of the anaphor. To get a 

further insight of my results, for each anaphor, I tried to compare the similarity score 

of the annotated antecedent and the scores of other potential antecedents. The results 

showed that 77% of the scores of the annotated antecedents fell in the top 5% of all 

the potential antecedents (p < 0.05), which means that, although not the top one, 

most of the true antecedents were in the top range. Just to clarify, in my dataset, the 

amount of the potential antecedents for one anaphor is usually in a range of 30 to 50.  

The results are shown in table 4. 

  

Anaphor Number of 
anaphora 

Number of 
antecedents that are 
correctly assigned 

Percentage of 
precision 

pronouns 228 42 18% 

anaphor Number of the true 
antecedents that achieve 
the top 5% scores among 
all potential antecedents 

percentage 

pronouns 176 77% 
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VII. Discussion and Future Study 

 
While the results of the study did not perfectly support my hypothesis, they do 

show ontology-dependent and ontology-independent vector semantics are possible 

solutions for anaphora resolution.  

The ontology-dependent method which looks at string match and the semantic 

relationship between the concept of the anaphor and the concept of its antecedent is 

reliable. The anaphor with a Noun Phrase is usually in the same semantic category of 

its antecedent. Moreover, I also found that the concept extracted from the anaphor is 

usually broader than the one extracted from its antecedent, which means the 

antecedent is usually the hyponym of the anaphor. This could be a reason why most of 

the true antecedents were not the exact string matches with the anaphor. If the two 

phrases are identical, they should correspond to the same concept in the UMLS. Also, 

one of the important usage of anaphora is to avoid repetition. It is unlikely for people 

to use exact the same string of words as an anaphor of a phrase.  

As in Haghighi and Klein’s (2009), the coreference relationships were located 

by applying rich syntactic features with semantic knowledge for disambiguation. On 

the contrary, in my study, I tried to figure out the antecedents of the anaphora by 

mainly looking at the semantic relatedness. Unfortunately, my system does not 

perform as good as Haghighi and Klein’s (2009) in terms of precision. One possible 

way to improve the performance of the ontology dependent method would be doing a 

syntactic parsing for the anaphor before extracting the concept. The structure of 
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complement is more complex than simply proceeding by a proposition or a 

complementizer “that”.   

Vector semantics has been largely used in document classification. I am not 

aware of any anaphora resolution in the biomedical literature based on vector 

semantics. The ontology-independent method was imperfect by itself.  However, the 

further analysis showed that the true antecedent has a high semantic relatedness with 

the context of the anaphor although not always the highest. The semantic relatedness 

is definitely a useful parameter that should be taken into account in the future study 

of anaphora resolution, especially in a domain with specific domain language. The 

domain language and terminologies are usually defined by human beings and are with 

less ambiguity compared to general language. For example, in the domain of 

biomedicine, the domain knowledge provided by the well-maintained dictionaries 

could be an advantage. 

In my experiment, for each potential antecedent of an anaphor, I averaged the 

scores between that potential antecedent and entities in the context of the anaphor to 

make sure that every entity contributes evenly to the meaning of the context. 

However, in fact, some of the entities should be more contributive than the others. It 

was unfair to consider them as the same. Finding a way to weight the entities is a 

possible direction for my further study. Nevertheless, the window of the source text 

from which the context entities were extracted should be tackled. I originally planned 

to use the smallest main clause that contains the pronoun because the smallest main 

clause represents the smallest integrate semantic domain. The limitation of this study 

does not allow a syntactic parsing so that the main clause was not tagged.  
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The results are not possible to compare with the other teams’ results in the 

shared task because I did not use the testing data for evaluation. The reasons have 

been mentioned in section II. First of all, the goal of the shared task was to find the co-

reference and anaphorical relations for gene and protein name entities, which means 

in the test data, only gene and protein relations were marked. However, since I was 

working on the general anaphorical relations in the biomedical text, the annotations 

in the testing data were not appropriate for me. Secondly, the main purpose of my 

study is to figure out whether an anaphorical relationship could be decided by 

semantic relatedness between an anaphor and its antecedent. An additional task of 

recognizing anaphora would be a distraction and would be above the scope of this 

study. As mentioned in the overview of the shared task, locating the real anaphor is 

challenging especially for the definite noun phrases. Most of the teams gave up on 

finding those noun phrases even though those phrases took the largest part of the 

anaphora. Although on different datasets, if we look at the precision, my 

approach(71% precision of ontology-dependent method and 18% precision of 

ontology-independent vector semantic method) is still too simple and too coarse to 

outperform the teams(best at 73.26% precision) in the shared task.  

My study shows that, for getting the full information of a word or a text, the 

string itself is not the only thing to investigate. We should take into account the words 

or texts surrounding it as well as the knowledge behind it. The ontology-dependent 

semantics and the ontology-independent vector semantics are promising approaches 

in dealing with anaphora problems and other topics under Linguistics and Natural 

Language Processing. 

  



  29 

Appendix I 

The example abstract is quoted in A.I.(1) with four sentences marked as 1, 2, 3 and 4. 

A.I.(1). 
1. The active nuclear form of the NF-Kappa B transcription factor complex is 

composed of two DNA binding subunits, NF-kappa B p65 and NF-kappa B 
p50, both of which share extensive N-terminal sequence homology with the 
v-rel oncogene product. 

2. The NF-Kappa B p65 subunit provides the transactivation activity in this 
complex and serves as an intracellular receptor for a cytoplasmic inhibitor 
of NF-kappa B, termed I kappa B. 

3. In contrast, NF-kappa B p50 alone fails to stimulate kappa B-directed 
transcription, and based on prior in vitro studies, is not directly regulated 
by I kappa B. 

4. To investigate the molecular basis for the critical regulatory interaction 
between NF-kappa B and I kappa B/MAD-3 a series of human NF-kappa B 
p65 mutants was identified that functionally segregated DNA binding, I 
kappa B-mediated inhibition, and I kappa B-induced nuclear exclusion of 
this transcription factor. 
 

The potential antecedents are found by inputting the raw text into MetaMap. 

The function of MetaMap has been illustrated in section 1.4.2. The result is shown in 

table 3. The leftmost column shows the term and the middle column shows the 

concept to which the term corresponds. In the rightmost column, the semantic type is 

given.  

 

The original term in 
the text 

The corresponding 
term in the UMLS 

The Semantic Type of the 
UMLS 

nuclear transcription 
factor complex 

nuclear transcription 
factor complex 

Cell component 

NF-kappa B NF-kappa B Amino Acid, Peptide, or 
Protein,Immunologic Factor 

NF-kappa B p65 Transcription Factor 
RelA 

Amino Acid, Peptide, or 
Protein,Biologically Active 
Substance 

NF-kappa B p50 Transcription Factor 
RelA 

Amino Acid, Peptide, or 
Protein,Biologically Active 
Substance 

DNA Binding DNA Binding dna binding 

Sequence homology Homology, sequence Quantitative concept 

v-rel Oncogene REL gene Gene or Genome 
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Table 6 The entities that map to the concepts in UMLS 

 

The next step is distinguishing pronouns and NPs with determiners. There are 

three anaphora found in the sample text as underlined in (7), which in sentence 1, this 

complex in sentence 2 and this transcription factor in sentence 3.  

 

 

 

Protein Subunit Protein Subunits Amino Acid, Peptide, or 
Protein 

NF-kappa B p65 Subunit Transcription Factor 
RelA 

Amino Acid, Peptide, or 
Protein,Biologically Active 
Substance 

Transactivation Trans-Activation, 
Genetic 

Genetic Function 
 

intracellular  Protoplasm Cell Component 

Receptor receptor Amino Acid, Peptide, or 
Protein,Receptor 

NF-Kappa B Inhibitor  I-kappa B Proteins Amino Acid, Peptide, or 
Protein,Immunologic Factor 

Inhibitor of Kappa B  I-kappa B Proteins Amino Acid, Peptide, or 
Protein,Immunologic Factor 

Cytoplasmic Cytoplasm Cell Component 

Term Term Birth Organism Function 
IKappaB I-kappa B Proteins Amino Acid, Peptide, or 

Protein,Immunologic Factor 
Transcription  Transcription, Genetic Genetic Function 

IKappaB/MAD-3 NFKBIA protein, human Amino Acid, Peptide, or 
Protein,Biologically Active 
Substance 

Human Homo sapiens Human 
mutants mutant Cell or Molecular Dysfunction 

segregations Racial Segregation Social Behavior 

Inhibition Metabolic Inhibition Molecular Function 

I- Iodides Inorganic Chemical 

Nuclear Factor kappa B NF-kappa B Amino Acid, Peptide, or 
Protein,Immunologic Factor 

Nuclear Factor I/B NFIB gene Amino Acid, Peptide, or 
Protein,Immunologic Factor 
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Which 

Which works as a pronoun while the other two are noun phrases with 

determiners. For which in the sentence 1, every entity within the same main clause 

have been extracted as eis. Thus, we have e1 v-rel Oncogene and e2 sequence 

homology. In this experiment, every entity before the pronoun is considered to be 

potentially co-referenced with the pronoun. I calculated the semantic relatedness 

between each of the potential antecedents and entities. I show the result in table 4.  

Table 7 The score of semantic relatedness for mention >which< in the first sentence 

 

NF-kappa B achieved the top one. It is considered as the true antecedent of 

which. However, this is not in accordance with figure 5. The true antecedent should be 

NF-kappa B P65 and NF-kappa B p50 which is a combination of two entities. If we read 

the sentence 1 carefully we may see that the whole pronoun should be both of which 

instead of which by itself. However, the dataset fails to give this information. For the 

scope limit of this study, we will not consider the condition of antecedents containing 

more than one entities in the method of measuring semantic relatedness. The result 

still makes sense since NF-kappa B p65 and NF-kappa B p50 are subtypes of NF-kappa 

B.  

Entities before 
the mention 
which 
(Potential co-
referenced 
entities) 

The score of 
relatedness with 
e1 v-rel Oncogene 

The score of 
relatedness with 
e2 sequence 
homology  

Average 

Nuclear 
transcription factor 
complex 

0.836 0.2399 0.538 

NF-kappa B 0.8108 0.3437 0.5772 
NF-kappa B p65 0.6493 0.3255 0.4874 

NF-kappa B p50 0.6732 0.2924 0.4828 

DNA Binding 0.2099 0.2624 0.4743 
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This Complex 

The anaphor this complex is a noun phrase with a demonstrative determiner. 

Entity nuclear transcription factor complex contains the string complex. The concept 

of the entity nuclear transcription factor complex is nuclear transcription factor 

complex. According to the UMLS database, complex has a child protein complex which 

is the parent of transcription factor complex. Moreover, transcription factor complex is 

the parent of nuclear transcription factor complex. From the above, there are three 

paths between complex and nuclear transcription factor complex. All of them indicate 

a parent-child (narrower/broader) relationship. Therefore, the entity nuclear 

transcription factor complex is the antecedent of this complex. This is half true 

according to figure 5. In the original text, the true antecedent of this complex should 

be the NF-kappa B transcription factor complex. After analyzing the phrase 

syntactically, I got the structure in A.I.(2). 

 

A.I.(2) 
[[determiner the] [[modifier NF-kappa B] [NP transcription factor complex]]] 

 
 

NF-kappa B is a modifier of the NP transcription factor complex and thus 

syntactically congregated with the NP. However, in the UMLS, the phrase has been 

mapped to two separate concept NF-kappa B and transcription factor complex, which 

makes it impossible to automatically recognize the phrase as a single entity co-

referencing with the anaphor. It is reasonable for the next step to combine the method 

of semantic relatedness with syntax-based algorithms. For the scope limit, we may 

consider these possibilities in the further studies. 
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This Transcription factor 

Same as this complex, this transcription factor is a noun phrase in which a 

demonstrative determiner this. However, the entity nuclear transcription factor 

complex which partially matches the string “transcription factor” does not have any 

eligible path linking to transcription factor in the UMLS. The result makes sense from 

the syntactic point of view. The head of the phrase this transcription factor is 

transcription factor. The semantic meaning of a phrase is determined by its head. 

Thus, this transcription factor is a transcription factor. The only potential antecedent 

containing the sequence “transcription factor” is nuclear transcription factor complex. 

The head of this potential antecedent is complex instead of either nuclear transcription 

factor or transcription factor, which means this potential antecedent refers to a 

complex rather than a transcription factor. Hence, we will speculate the antecedent by 

calculating the semantic relatedness. The entities in the same main clause are 

extracted. The entities include segregations, dna binding, IKappaB, Inhibition, I-, 

Nuclear Factor kappa B, Nuclear Factor I/B and Transcription. The semantic 

relatedness is calculated and shown in table 5 and table 6. Due to the space limitation, 

the column of average is shown in table 7.  

 

 e3 
segregations 

e4 
dna binding 

e5 
IKappaB 

e6 
Inhibition 

nuclear 
transcription 
factor complex 

0.0336 0.4948 0.8679 0.4055 

NF-kappa B 
p65 

0.0816 0.5595 0.8172 0.4194 

NF-kappa B 
p50 

0.039 0.4157 0.7705 0.394 

v-rel Oncogene 0.0018 0.2099 0.8385 0.326 
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Table 8 The score of semantic relatedness for mention >with< in the fourth sentence (part1) 

 
 

 
 
 
 
 

Protein 
Subunit 

0.1379 0.371 0.2704 0.7195 

NF-kappa B 
p65 Subunit 

0.0816 0.5595 0.8172 0.4194 

Transactivation 0.029 0.2324 0.5052 0.2305 

intracellular  0.1628 0.0919 0.6231 0.3226 
Receptor 0.0683 0.3541 0.7075 0.5234 

Cytoplasmic 0.044 0.1766 0.6522 0.2573 

Term 0.122 0.1413 0.1089 0.257 

IKappaB/MAD-
3 

0.0123 0.2844 0.9259 0.2208 

Human 0.1081 0.1598 0.5103 0.2906 

mutants 0.2337 0.13 0.2665 0.206 

 e7 
 I- 

e8 
Nuclear 
Factor kappa 
B 

e9 
Nuclear 
Factor I/B 

e10 
Transcription 

nuclear 
transcription 
factor complex 

0.1866 0.9106 0.6676 0.6373 

NF-kappa B 
p65 

0.1986 0.8988 0.8155 0.7992 

NF-kappa B 
p50 

0.1812 0.8753 0.7049 0.7103 

v-rel Oncogene 0.1812 0.8108 0.5634 0.4887 

Protein 
Subunit 

0.1992 0.4295 0.4973 0.4374 

NF-kappa B 
p65 Subunit 

0.1986 0.8988 0.8155 0.7992 

Transactivation 0.1271 0.5738 0.5646 0.6835 

intracellular  0.3863 0.5677 0.0965 0.0914 

Receptor 0.3071 0.7318 0.4076 0.3574 

Cytoplasmic 0.2609 0.6254 0.1748 0.1642 

Term 0.1469 0.1849 0.136 0.1503 

IKappaB/MAD-
3 

0.1854 0.8291 0.5729 0.5198 

Human 0.3743 0.414 0.3248 0.1895 

mutants 0.4446 0.2998 0.2387 0.3548 

Table 9  The score of semantic relatedness for mention >with< in the fourth sentence (part2) 
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In this case, NF-kappa B p65 and NF-kappa B p65 Subunit are in tie and achieve 

the highest score. The reason for this scenario is that NF-kappa B p65 and NF-kappa B 

p65 Subunit are mapped to the same concept in the UMLS. According to figure 5, NF-

kappa B p65 (or NF-kappa B p65 Subunit) and this transcription factor have a co-

reference relation. 

  

Entities before the mention this not 
including e1 and e2 
(Potential co-referenced entities) 

Average 

nuclear transcription factor complex 0.5255 

NF-kappa B p65 0.5737 

NF-kappa B p50 0.5114 
v-rel Oncogene 0.4275 

Protein Subunit 0.3827 
NF-kappa B p65 Subunit 0.5737 

Transactivation 0.3683 
intracellular  0.2928 

Receptor 0.4322 

Cytoplasmic 0.2944 

Term 0.1559 

IKappaB/MAD-3 0.4438 

Human 0.2964 

mutants 0.2718 

Table 10 The score of semantic relatedness for mention >with< in the fourth sentence (part3) 
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