
APPLICATIONS OF INDEPENDENCE STATISTICS TO GOODNESS-OF-FIT,
MULTIVARIATE CHANGE POINT ESTIMATION AND CLUSTERING OF

VARIABLES

Sebastian Jose Teran Hidalgo

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial ful�llment of the requirements for the degree of Doctor of Philosophy in

the Department of Biostatistics in the Gillings School of Global Public Health.

Chapel Hill
2016

Approved by:

Michael R. Kosorok

Michael C. Wu

Mengjie Chen

Kari North

Donglin Zeng



cO 2016

Sebastian Jose Teran Hidalgo

ALL RIGHTS RESERVED

ii



ABSTRACT

Sebastian Jose Teran Hidalgo: Applications of Independence Statistics to
Goodness-of-Fit, Multivariate Change Point Estimation and Clustering of Variables

(Under the direction of Michael R. Kosorok and Michael C. Wu)

Independence statistics try to evaluate the statistical dependence between two

random vectors of general dimension and type. Independence statistics do not assume

a speci�c form of dependence, but they are sensitive to all forms of departures from in-

dependence. The current manuscript seeks to extend the use of independence statistics

to three settings.

In the �rst part of the dissertation, we developed a goodness-of-�t test for smooth-

ing spline ANOVA models, which are a nonparametric regression methodology with the

useful property that the contribution of the covariates can be decomposed in a ANOVA

fashion. The proposed method derives estimated residuals from the model. Then, sta-

tistical dependence is evaluated between the estimated residuals and the covariates

using independence statistics. If no dependence exists, the model �ts the data well.

Application of the method is demonstrated with a neonatal mental development data

analysis.

In the second part, we develop a method for the change point problem where two

sets of random vectors are observed sequentially over a dimension, but at some unknown

point, the relationship between these two vectors changes. We propose a methodology

to estimate the unknown change point without assuming a model. This is accomplished

by assessing, with an independence statistic, the strength of the association before and
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after possible change points. A test for the hypothesis of existence of the change

point is developed. We demonstrate its use with blood glucose and physical activity

measurements on an individual with type 1 diabetes.

In the third part, we develop a method for hierarchical clustering of variables while

controlling for type I error rate, which is not done in common clustering methods. We

accomplish this by turning the decision of whether to join two clusters into a hypothesis

testing problem. The strength of our method is shown by clustering genes from single

cell data coming from di�erent tumors.

iv



ACKNOWLEDGMENTS

I would like to express my profound gratitude to my advisor Professor Michael

Kosorok for guiding me through this process. Prof. Kosorok has been an inspiration to

me. Because of his example, I have pushed myself to learn more than I ever thought I

could and I have aspired to be a better biostatistician every day. He has shared with

me many of the experiences he had to go through to become a great scientist, from

which I have learned greatly. I have also seen Prof. Kosorok display much patience

and kindness not only to me, but also to others, while teaching statistics. I am really

grateful for the time he spent advising me through this dissertation.

I would also like to thank my co-advisor Michael Wu. Mike has always been

available to provide me with great advice about my research. Many of his advices have

been extremely valuable and have improve my research signi�cantly. He has displayed

great patience with me while going over papers together. Even though he lives on a

di�erent city, he takes the time to read along, during a phone call, my research and

provides detailed suggestions. At times when I might had been discouraged, he has

helped me put things into perspective. He has also been a role model to me. I would

like also to thank my committee members: Dr. Mengjie Chen, Dr. Kari North, and

Dr. Donglin Zeng for their insightful knowledge, and overall support for my research

projects. Dr. North and Dr. Zeng, you were great teachers when I took your courses.

Mengjie, thank you for meeting with me several times and sharing interesting data

applications.

v



I would like to give a special thanks to my family: Ruth Hidalgo, Alfonso Zam-

brano and Cesar Zambrano. This is a small family that has always been around for

me. My mother has always been an inspiration of hard work, resilience and justice. I

would also like to thank Ludmila Janda, who has been by my side during all of my

dissertation adventure and has been very encouraging.

I would like to thank many of the friends that I have made through the Depart-

ment of Biostatistics, and that have made this experience very enjoyable. Thank you my

friends Roy, James, Siying, Yu, Poulami, Matt, Cynthia, Thomas, Habtamu, Sayan,

Guanhua, Susan, PJ, Sean, Steve, Sujatro, Arkopal, Michael, Daniel, Jon, Arianna,

Phoebe, Crystal, Dave, Rachel, Alison, Jennifer and Elizabeth.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1: INTRODUCTION ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

CHAPTER 2: LITERATURE REVIEW ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

2.1 Smoothing Splines ANOVA Models . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 SS-ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Solution to Penalized Least Squares . . . . . . . . . . . . . . . . . . 4

2.1.3 Generalized Cross Validation . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Goodness-of-�t Statistics for SS-ANOVA . . . . . . . . . . . . . . . 6

2.2 Independence Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Distance Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Hilbert-Schmidt Independence Criterion . . . . . . . . . . . . . . . 11

2.3 Resampling-Based Multiple Testing Procedures . . . . . . . . . . . . . . . . 14

2.3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Type I Error Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 minP and maxT Procedures . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Subset Pivotality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Type I Error Rate Control and Choice of Null Distribution . . . . 22

2.3.6 Multiple Testing for Correlation Coe�cients . . . . . . . . . . . . . 25

2.4 Change Point Models and Estimation . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Nonparametric Change Point of Multivariate Data
Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Kullback-Leibler Importance Estimation Procedure . . . . . . . . . 30

vii



CHAPTER 3: GOODNESS-OF-FIT TEST FOR SS-ANOVA MODELS ⋅ ⋅ ⋅ ⋅ 32

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Goodness-Of-Fit in SS-ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 SS-ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 HSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Goodness-Of-Fit Test Based on Residuals . . . . . . . . . . . . . . . 38

3.3.4 Approximation to the Null Distribution of the
Test Statistic with the Bootstrap . . . . . . . . . . . . . . . . . . . . 42

3.3.5 Large Sample Approximation of the Test Statis-
tic and the Bootstrap Procedure . . . . . . . . . . . . . . . . . . . . 44

3.3.6 Illustrative Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Application to Neonatal Psychomotor Development Data . . . . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 4: NONPARAMETRIC MULTIVARIATE CHANGE POINT ⋅ ⋅ ⋅ 59

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Nonparametric Multivariate Change Point . . . . . . . . . . . . . . . . . . . 64

4.3.1 Problem Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Distance Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Unbiased Distance Covariance . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Change Point Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.5 Test Statistic and Null Distribution . . . . . . . . . . . . . . . . . . 72

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



4.5.1 Metabolic Chamber Data . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Changes in the E�ect of EE and IOB on BG . . . . . . . . . . . . . 82

4.5.3 Testing for Change Points and Illustration of the
Time Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.4 Distribution of Insulin and EE . . . . . . . . . . . . . . . . . . . . . 88

4.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 5: NONPARAMETRIC CLUSTERING OF VARIABLES ⋅ ⋅ ⋅ ⋅ ⋅ 93

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Nonparametric Hierarchical Clustering Algorithm . . . . . . . . . . . . . . 96

5.3.1 Distance Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Sketch of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Formal De�nition of NHC . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.4 Algorithm for NHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.5 Matrix of Permuted Statistics DCπ
i . . . . . . . . . . . . . . . . . . 103

5.3.6 Step-down minP Adjusted p-values Algorithm . . . . . . . . . . . . 105

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Clustering RNA-seq Gene Expression of Glioblastoma Tumors . . . . . . 109

5.5.1 Tumor Heterogeneity and Glioblastomas Data Set . . . . . . . . . 109

5.5.2 Clustering of Glioblastomas Genes and Predic-
tion of Tumor Category . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.4 Clustering of Glioblastomas Samples . . . . . . . . . . . . . . . . . . 118

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CHAPTER 6: FUTURE WORK ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 121

6.1 Extension of the Test for SS-ANOVA . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Selection of the number of PCs for Nonparametric PCA Regression . . . 122

6.3 Selection of the number of PCs for Spectral Clustering . . . . . . . . . . . 123

ix



APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 124

A.4 Details on the Bootstrap Algorithm . . . . . . . . . . . . . . . . . . . . . . . 124

A.5 Details on Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.6 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 138

REFERENCES ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 146

x



LIST OF TABLES

3.1 Missing Interactions Beyond the Main E�ects ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 50

3.2 Missing Covariates ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 52

3.3 Missing Interactions Beyond the Within Group Interactions ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 54

3.4 Testing of Goodness-of-�t ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 55

4.1 Linear Association ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 74

4.2 Nonexistent Relationship ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 75

4.3 Quadratic Relationship ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 76

4.4 From Linear to Quadratic Relationship ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 77

4.5 From Nonexistent to Linear Relationship ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 78

4.6 From Quadratic to Cubic Relationship ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 79

4.7 Change Points ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 84

4.8 Linear Model with BGt(60) as Outcome ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 88

4.9 Kolmogorov-Smirnov Tests ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 90

5.1 Simulation Results ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 107

5.2 FWER at the 0.05 Level ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 109

5.3 Classi�cation Rate on the Testing Set ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 117

xi



LIST OF FIGURES

3.1 Variance Adjustment of the Distribution of the Estimated Residuals ⋅ ⋅ ⋅ 48

4.1 Detrended IOB, EE and BG ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 81

4.2 Concurrent BG and EE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 85

4.3 1 Hour Gap Between BG and EE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 86

4.4 2 Hours Gap Between BG and EE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 87

4.5 Coe�cients from the Linear Model ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 89

4.6 Distribution of EE and IOB by Interval ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 90

5.1 MGH 28 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 112

5.2 MGH 29 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 113

5.3 MGH 31 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 114

5.4 Clusters by Tumor ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 115

5.5 PCs of First Pair of Modules ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 116

5.6 PCs of Second Pair of Modules ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 117

5.7 PCs of Third Pair of Modules ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 118

5.8 Clustering of Samples ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 119

xii



CHAPTER 1: INTRODUCTION

Recent developments in tests of statistical independence are Brownian Distance

Covariance (Székely et al. (2007), Székely et al. (2009), Székely and Rizzo (2013)) and

HSIC (Gretton et al. (2005), Song et al. (2012)). Distance Covariance (DC) is de�ned as

the weighted norm between the product of two random vectors' individual characteristic

function and the joint characteristic function of these two vectors. If this norm di�erence

is 0 then these two vectors are statistically independent. The authors developed a

sample version of DC that depends only on the Euclidean distances between the points.

The HSIC is the Cross-Covariance Operator between two reproducing kernel Hilbert

spaces (RKHSs). When this Operator equals 0 for two vectors of random variables that

are de�ned on the domain of two di�erent RKHSs with universal kernels, then these

two vectors are statistically independent. The sample version HSIC is exactly the same

as the one for DC except that Euclidean distances are replaced by kernel distances.

Both DC and HSIC are beautiful results from statistical and machine learning

theory. They can both be standardized to be between 0 and 1, with 1 correspond to

complete statistical dependence between the two vectors being analyzed. Thus, this

dependence statistics allow us to tackle many statistical problems without the need to

specify models in advance or to do fancy modeling. In this dissertation, we extend the

uses of these methods to many statistical problems.

The dissertation is organized as follows. In Chapter 2, we review current literature

on topics related to the three chapters that will follow. A focus will be on independence

1



statistics, change point problems and multiple testing adjustments. In Chapter 3,

we develop a goodness-of-�t test for nonparametric models which we apply to the

smoothing spline ANOVA models. In Chapter 4, we develop an estimator and test

of existence for the change point in the relationship between two multivariate random

vectors. In Chapter 5, we create a hierarchical clustering of variables algorithm that

controls the family wise error rate of clustered variables that are otherwise unrelated. In

chapter 6, we present some other applications where the use of independence statistics

can be used.
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CHAPTER 2: LITERATURE REVIEW

2.1 Smoothing Splines ANOVA Models

The mathematical foundation of smoothing spline ANOVA models (SS-ANOVA)

is the Reproducing Kernel Hilbert Space (RKHS). The main reference for its mathe-

matical theory is Aronszajn (1950). Grace Wahba is one of the major contributors to

the development of SS-ANOVA models (Wahba (1969), Kimeldorf and Wahba (1971),

Wahba (1985), Wahba (1990). Chong Gu, one of Wahba's students, generalized SS-

ANOVA models to exponential families, survival models and distribution estimation

(Gu (2013)).

2.1.1 SS-ANOVA

We assume the observed data consists of (X, Y ), where Y is a dependent variable,

X ∈ [0,1]p is a vector of covariates, and

Y = f(X) + η, (2.1)

for an unknown function f and random residual η, which is independent of X, with

Eη = 0. A sample (X1, Y1),...,(Xn, Yn) is drawn from (2.1). Estimation of f can be

done through minimization of the following penalized least squares:

1

n

n

∑
i=1

(Yi − f(Xi))
2 + λJ(f). (2.2)

3



In the case where p = 1, f(Xi) is just a univariate function and J(f) =
´ 1

0
f (k)(x)2dx,

and f (k) is the k-th derivative of f . In the case where p > 1, f(X) =
p

∑
j=1
fj(Xj) and

J(f) =
p

∑
j=1
θ−1
j

´ 1

0
f
(k)
j (xj)2dxj. This corresponds to an additive model. In the general

case,

f(X) = ∑
j

fj(Xj) +∑
j<k
fj,k(Xj,Xk) +⋯ ,

and J(f) = ∑
α

θ−1
α ∣∣Pαf ∣∣

2
Hα

+∑
αβ

θ−1
αβ ∣∣Pαβf ∣∣

2
Hαβ

+⋯ ,

where λ and θ are tuning parameters which are selected through Generalized Cross

Validation (GCV).

2.1.2 Solution to Penalized Least Squares

The current section will assume that the functional form is additive. Discussion

of more complicated forms, i.e., which include interactions, can be found in Gu, 2013.

The form in (2.2) will be minimized assuming that the data generating mechanism is

(2.1) such that f ∈ H = ⊕
p
β=1Hβ. In this case, J(f) =

p

∑
j=1
θ−1
j

´ 1

0
f
(k)
j (xj)2dxj.

RKHS ⊕
p
j=1Hj

To each fj ∈ Hj corresponds a reproducing kernel. This happens because fj can be

decomposed by Taylor expansion at 0 as

fj(xj) =
k−1

∑
v=0

xvj
v!
f
(v)
j (0) +

ˆ 1

0

(xj − u)k−1
+

(k − 1)!
f
(k)
j (u)du.

Then Hj can be decomposed into a tensor sum Hj = Hj,0 ⊕ Hj,1, where Hj,1 is an

RKHS with the following reproducing kernel

Rj,1(xj, yj) =

ˆ 1

0

(xj − u)k−1
+

(k − 1)!

(yj − u)k−1
+

(k − 1)!
du.
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The space Hj,0 has a polynomial basis of degree k−1 such that φkj = {1, xj, x2
j , ..., x

k−1
j }.

Let φk be the polynomial basis of degree k of the tensor sum ⊕
p
j=1Hj,0, such that

⊕
p
j=1φ

k
j = {φ1, φ2, ..., φk}. Moreover, the reproducing kernel of Hj,1 will be RJ(x, y) =

∑
j=1
θjRj,1(xj, yj).

Solution

By the representer theorem (Wahba (1990), Schölkopf and Smola (2002)) the minimizer

of (2.2) has the form

f(x) =
k

∑
v=1

dvφ
v(x) +

n

∑
i=1

ciRJ(xi, x) = φ
Td + ξTc,

where ξ and φ are vectors of functions, and c and d are vectors of real coe�cients.

Then the estimation reduces to minimizing

(Y − Sd −Qc)T (Y − Sd −Qc) + nλcTQc.

with respect to c and d, where S is n×m with (i, v)th entry φv(xi) and Q is n×n with

the (i, j)th entry RJ(xi, xj). Then by taking derivatives, the solution of (2.2) is of the

form

(Q + nλI)c + Sd =Y,

STc = 0.

From these equations the hat matrix A(λ,θ) can be derived such that ŷ =A(λ,θ)y.
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2.1.3 Generalized Cross Validation

The GCV statistic, as de�ned by Craven and Wahba (1978), corresponds to

GCV(λ,θ) =
n−1∣∣(I −A(λ,θ))y∣∣2

(n−1tr(I −A(λ,θ)))2
,

where ŷ = A(λ,θ)y. λ and θ are chosen to minimize GCV(λ,θ). In the current

research, the model used throughout will be the Cubic SS-ANOVA. This corresponds

to the case where k = 2, or when the integral of the second derivative is being penalized,

namely
´ 1

0
f ′′j (xj)

2dxj.

After �tting an SS-ANOVA model, it is important to do some model diagnostics.

Model diagnostics are statistics that check how well a model �ts to the data. In the

current research, the independence of the estimated residuals with respect to a set of

covariates will be assessed using an independence statistic. The independence statistic

that we will use is HSIC. A formal de�nition will be presented in the next subsection.

2.1.4 Goodness-of-�t Statistics for SS-ANOVA

Gu (Gu (2004), Gu (2013)) developed some goodness-of-�t statistics for SS-

ANOVA based of the Kullback-Leiber distance. Suppose f in (2.1) is estimated by

assuming that f ∈ H for some H . Assume that in fact f ∈ H ∗ ⊂ H . Heuristic

diagnostics based on the Kullback-Leibler (KL) distance can be used in this situation.

Let f̂ be the solution to (2.1) in H , with the smoothing parameters selected through

GCV. Let f̃ be the KL projection of f̂ in H ∗, the minimizer of KL(f̂ , f) for f ∈ H ∗.

Let fc = C be the constant model for some constant C. From this, we can write

KL(f̂ , fc) =KL(f̂ , f̃) +KL(f̃ , fc).
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The ratio

ρ =
KL(f̃ , fc)

KL(f̂ , fc)
,

just like an R2 statistic in the standard least square regression, this indicates how

much of f̂ actually sits in H ∗, and can be used to diagnose the feasibility of the null

hypothesis f ∈ H ∗. The set-up in (2.1) can be generalized to an exponential family.

In such a case, KL(f̂ , f) can be written as

KL(f̂ , f) =
1

n

n

∑
i=1

{µ̂(xi)[θ(f̂(xi)) − θ(f(xi))] − [b(θ(f̂(xi))) − b(θ(f(xi)))]}, (2.3)

where µ((x)) = (db/θ)(x) = E[Y ∣x]. The minimization of (2.3) with respect to f can

be accomplished through Newton-Raphson algorithm. The resulting KL(f̂ , f̃) depends

on the tuning parameters θ. An outer loop of optimization needs to be performed to

minimize KL(f̂ , f̃) with respect to θ. Di�erent H ∗ can be chosen so as to evaluate

goodness-of-�t. A H ∗ such that H ∗ ⊂ H is chosen so that an interaction is missing

or a covariate is missing.

2.2 Independence Statistics

This section will cover generalizations of correlation statistics to the multivariate

setting. Moreover, these statistics can potentially detect any form of dependence.

2.2.1 Distance Covariance

Distance covariance was developed by Székely et al. (2007), and Székely et al.

(2009). An extension to the high dimensional case also exists (Székely and Rizzo
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(2013)). For random variables X ∈ Rp and Y ∈ Rq, let φx, φy and φx,y be the charac-

teristic function of X, Y and (X,Y), respectively. Distance covariance V can be used

to measure the dependence between X and Y through the distance

∣∣φx(t)φy(s) − φx,y(t, s)∣∣.

If X /⊥Y then this distance will be greater than 0. If X ⊥Y then this distance will be

exactly 0. Then, using this distance the following hypotheses can be tested:

H0 ∶ φx,y = φxφy vs. H1 ∶ φx,y ≠ φxφy.

Then, the measure of independence chosen to assess this hypotheses is

V 2(X,Y;w) =∣∣φx,y(t, s) − φx(t)φy(s)∣∣
2
w

=

ˆ
Rp+q

∣φx,y(t, s) − φx(t)φy(s)∣
2w(t, s)dtds

where V 2(X,Y;w) = 0 if and only if X and Y are independent. The weight function

is chosen as

w(t, s) = (cpcq ∣t∣
1+p
p ∣s∣1+qq )−1

with cd =
π(1+d)/2

Γ((1+d)/2) and ∣ ⋅ ∣p being the Euclidean norm in Rp. For �niteness of ∣∣φx,y −

φxφy ∣∣2 it is su�cient that E∣X∣p < ∞ and E∣Y∣q < ∞. Distance variance can be de�ned

as V 2(X;w) = V 2(X,X;w). The distance correlation between random vectors X and

Y with �nite �rst moments is the nonnegative number DC(X,Y) de�ned by

DC(X,Y) =
V 2(X,Y)

√
V 2(X)V 2(Y)
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if V 2(X)V 2(Y) > 0 and equals 0 otherwise. The distance covariance statistics are

de�ned as follows. For an observed random sample (X,Y) = {(Xk,Yk) ∶ k = 1, ..., n}

from the joint distribution of random vectors X ∈ Rp and Y ∈ Rq, de�ne

akl =∣Xk −Xl∣p, āk⋅ =
1

n

n

∑
l=1

akl, ā⋅l =
1

n

n

∑
k=1

akl,

ā⋅⋅ =
1

n2

n

∑
k,l=1

akl, Akl = akl − āk⋅ − ā⋅l + ā⋅⋅

for k, l = 1, ..., n. Similarly, de�ne bkl = ∣Yk − Yl∣q and Bkl = bkl − b̄k⋅ − b̄⋅l + b̄⋅⋅ for

k, l = 1, ..., n.

De�nition

The empirical distance covariance Vn(X,Y) is the nonnegative number de�ned by

V 2(X,Y) =
1

n2

n

∑
k,l=1

AklBkl.

Similarly, Vn(X) is the nonnegative number de�ned by

V 2
n (X) = V 2

n (X,X) =
1

n2

n

∑
k,l=1

A2
kl.

De�nition

The empirical distance correlation DCn(X,Y) is de�ned as

DC2
n(X,Y) =

V 2
n (X,Y)

√
V 2
n (X)V 2

n (Y)
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if V 2
n (X)V 2

n (Y) > 0 and 0 otherwise. For a sample of size n let the empirical charac-

teristic functions of X, Y and (X,Y ) be

φnx(t) =
1

n

n

∑
k=1

exp{i⟨t,Xk⟩}, φny(s) =
1

n

n

∑
k=1

exp{i⟨s,Yk⟩},

and φnx,y(s) =
1

n

n

∑
k=1

exp{i⟨t,Xk⟩ + i⟨s,Yk⟩},

respectively. The following theorems and corollaries come from Székely et al. (2007)

and Székely et al. (2009).

Theorem

If (X,Y) is a sample from joint distribution of (X,Y), then

V 2
n (X,Y) = ∣∣φnx,y(t, s) − φ

n
x(t)φ

n
y(s)∣∣

2.

Theorem

If E∣X∣p < ∞ and E∣Y∣q < ∞, then almost surely

lim
n→∞

Vn(X,Y) = V (X,Y).

Corollary

If E(∣X∣p + ∣Y∣q) < ∞, then almost surely,

lim
n→∞

DCn(X,Y) =DC(X,Y).

Corollary

If E(∣X∣p + ∣Y∣q) < ∞, then:

i) If X and Y are independent, nV 2
n /S2

L
→ Q where Q =

∞
∑
j=1
λjZ2

j , where Zj are inde-

pendent standard normal random variables, {λj} are nonnegative constants that
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dependent on the distribution of (X,Y), and E[Q] = 1.

ii) If X and Y are dependent, then nV 2
n /S2

P
→∞.

2.2.2 Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion is similar to Distance Covariance,

it even has the same form, but with Euclidean norms replaced by kernel distances.

However, the former is developed in an RKHS setting instead of in the context of

distances of characteristic functions (Gretton et al. (2005)).

RKHS Theory

Consider a Hilbert space F of functions from X to R. Then F is a reproducing

kernel Hilbert space if for each x ∈ X , the Dirac evaluation operator δx ∶ F → R,

which maps f ∈ F to f(x) ∈ R, is a bounded linear functional. To each point x ∈ X ,

there corresponds an element φ(x) ∈ F such that ⟨φ(x), φ(x′)⟩F = k(x,x′) where

k ∶ X ×X → R a unique positive de�nite kernel. We require F to be separable. De�ne

a second separable RKHS, G , with kernel k(⋅, ⋅) and feature map ψ, on the separable

space Y .

Hilbert-Schmidt Norm

Let C ∶ G → F be a linear operator. Then, provided the sum converges, the Hilbert-

Schmidt (HS) norm of C is de�ne as

∣∣C ∣∣2HS = ∑
i,j

⟨Cvi, uj⟩
2
F ,

where ui and vj are orthonormal bases F and G , respectively.

Hilbert-Schmidt Operator

A linear operator C ∶ G →F is called a Hilbert-Schmidt operator if its HS norm exists.

The set of Hilbert-Schmidt operators HS(G ,F ) ∶ G →F is a separable Hilbert space
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with inner product

⟨C,D⟩HS = ∑
i,j

⟨Cvi, uj⟩F ⟨Dvi, uj⟩F .

Tensor Product

Let f ∈ F and g ∈ G . Then the tensor product operator f ⊗ g ∶ G →F is de�ned as

(f ⊗ g)h ∶ f⟨g, h⟩G for all f ∈ G .

Moreover, by the de�nition of the HS norm, we can compute the HS norm of f ⊗ g via

∣∣f ⊗ g∣∣2HS =⟨f ⊗ g, f ⊗ g⟩HS = ⟨f, (f ⊗ g)g⟩F

=⟨f, f⟩F ⟨g, g⟩G .

The Cross-Covariance Operator

We assume that (X ,Γ) and (Y ,Λ) are furnished with probability measures Px and

Py respectively. We may now de�ne the mean elements with respect to these measures

as those members of F and G respectively for which

⟨µx, f⟩F ∶=Ex[⟨φ(x), f⟩F ] = Ex[f(x)],

⟨µy, g⟩G ∶=Ey[⟨ψ(y), g⟩G ] = Ey[g(y)],

where φ is the feature map from X to the RKHS F , and ψ maps from Y to G . Finally,

∣∣µx∣∣2F can be computed by applying the expectation twice via

∣∣µx∣∣
2
F = Ex,x′[⟨φ(x), φ(x

′)⟩F ] = Ex,x′[k(x,x
′)].

Cross-Covariance Operator

The cross-covariance operator associated with the joint measure Px,y on (X ×Y ,Γ×Λ)
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is a linear operator Cxy ∶ G →F de�ned as

Cxy ∶= Ex,y[(φ(x) − µx) ⊗ (ψ(y) − µy)] = Ex,y[φ(x) ⊗ φ(y)] − µx ⊗ µy.

De�nition

Given separable RKHSs F , G and a joint measure Pxy over (X × Y ,Γ × Λ), the

Hilbert-Schmidt Independence Criterion (HSIC) is de�ned as the squared HS-norm of

the associated cross-covariance operator Cxy:

HSIC(Pxy,F ,G ) = ∣∣Cxy ∣∣
2
HS. (2.4)

The HSIC(Pxy,X,Y) between X and Y can be expressed in terms of kernels as:

Ex,x′,y,y′[k(x,x
′)l(y,y′)]] +Ex,x′[k(x,x

′)]Ey,y′[l(y,y
′)]

− 2Ex,y[Ex′[k(x,x
′)]Ey′[l(y,y

′)]].

HSIC allows us to evaluate the statistical dependence between two random vectors of

arbitrary dimension.

Theorem

Assume k(⋅, ⋅) and l(⋅, ⋅) are universal kernels (Micchelli et al. (2006)). Then,

HSIC(Pxy,X,Y) = 0 if and only if X and Y are statistically independent, i.e., Px,y =

Px × Py.

Empirical Criterion

With an i.i.d ,sample (X1,Y1),...,(Xn,Yn) from Pxy, HSIC(X,Y) can be estimated

with

Tn(X,Y) = n−2tr(KHLH), (2.5)
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where H,K,L ∈ Rn×n, Hi,j ∶= δi,j − n−1, Ki,j ∶= k(xi,xj), and Li,j ∶= l(yi,yj). The

statistic can be rewritten as

1

n2

n

∑
i,j

kijlij +
1

n4

n

∑
i,j,q,r

kijlqr − 2
1

n3

n

∑
i,j,q

kijliq.

The kernels kij = exp(−∑
p
k=1(xi,k − xj,k)

2/σ2) and lij = exp(−∑
p
k=1(yi,k − yj,k)

2/σ2) are

called Gaussian and satisfy the universal kernel condition (Micchelli et al. (2006)) and

will be the ones used throughout the current research with σ2 held �x at 1.

2.3 Resampling-Based Multiple Testing Procedures

This section will introduce multiple testing procedures that will useful in the

current research. Most important will be the concept of family wise error rate (FWER)

and how to develop a valid null distribution of the test statistic or p-values in such a

way that the FWER is preserved. Power will also be an important consideration. One

of the earlier references on the subject of multiple testing is the book by Westfall and

Young (1993). This book introduces the maxT and minP procedures for preserving

FWER while at the same providing more power than the Bonferroni approach. The

null distribution of the maxT and minP procedures is obtained through permutation

(Westfall and Young (1993), Ge et al. (2003)).

Criticisms of obtaining the null distribution of the maxT and minP procedures

through permutation can be found in Dudoit et al. (2004), Dudoit and Van Der Laan

(2007), van der Laan et al. (2004), Pollard and van der Laan (2004) and Pollard et al.

(2005). The main reason why the null distribution might not work is that permutation

destroys some of the correlation among p-values, hence does not represent the state of

nature correctly. A permutation based approach can be used instead where the test
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statistic is shift and scaled transformed (Dudoit et al. (2004), Dudoit and Van Der Laan

(2007), Pollard and van der Laan (2004)). This procedure can be used in conjunction

with step-down procedures to control the FWER (van der Laan et al. (2004)).

2.3.1 Set-up

The notation and de�nitions used here will be similar to those presented in the

book by Dudoit and Van Der Laan (2007). Let Xn = {Xi ∶ i = 1, ..., n} denote a random

sample of size n from a data generating mechanism P . Denote as Pn the empirical

distribution based of Xn. In the setting of multiple testing, there exist M pairs of null

and alternative hypothesis. These pairs of hypotheses correspond to some property of

the data generating mechanism P , i.e., means, correlations or other possible parameters

of P . Each pair corresponds to a submodel of P denoted by M (m). Then, the mth

pair of null and alternative hypotheses can be written as

H0(m) ∶ I(P ∈ M (m)) and H1(m) ∶ I(P ∉ M (m)).

This means that H0(m) is true if P belongs to the submodel M (m), and H0(m) is

false otherwise.

2.3.2 Type I Error Rates

Sets of true and false null hypotheses

Let

H0 = H0(P ) ≡ {m ∶H0(m) = 1} = {m ∶ P ∈ M (m)}

denote the set of h0 ≡ ∣H0∣ true null hypotheses, where the longer notation H0(P )

emphasizes the dependence of this set on the data generating distribution P . Likewise,
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let

H1 = H1(P ) ≡ {m ∶H1(m) = 1} = {m ∶ P ∉ M (m)} = H c
0 (P )

be the set of h1 ≡ ∣H1∣ =M − h0 false null hypotheses.

Complete null hypothesis

The complete null hypothesis HC
0 is de�ned as

HC
0 ≡

M

∏
m=1

H0(m) =
M

∏
m=1

I(P ∈ M (m)) = I(P ∈ ∩M (m)).

The complete null hypothesis is true if and only if all M individual null hypotheses

H0(m) are true, i.e, if and only if the data generating distribution P belongs to the

intersection ∩Mm=1M (m) of the M submodels.

Type I and Type II errors

Each pair of null and alternative hypotheses corresponding to submodel M (m) has a

test statistic Tn(m). A given multiple testing procedure will have a rejection region

denoted by Cn(m) for each submodel M (m). This rejection region will be chosen so

that a certain de�nition of type I error rate will be preserved. Rn is the set of submodels

M (m) such that their null hypothesis H0(m) is rejected. A type I error is committed

by rejecting a true null hypothesis (Rn ∩H0). A Type-II error is committed by failing

to reject a false null hypothesis (Rc
n ∩H1). The number of rejected null hypotheses is

Rn ≡ ∣Rn∣ =
M

∑
m=1

I(Tn(m) ∈ Cn(m)),

the number of Type I errors or false positives is

Vn ≡ ∣Rn ∩H0∣ = ∑
m∈H0

I(Tn(m) ∈ Cn(m)),
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the number of Type II errors or false positives is

Un ≡ ∣Rc
n ∩H1∣ = ∑

m∈H1

I(Tn(m) ∉ Cn(m)),

the number of true negatives is

Sn ≡ ∣Rn ∩H1∣ = ∑
m∈H1

I(Tn(m) ∉ Cn(m)).

Type I error rate: FWER

In the multiple testing problem they are many de�nitions of type I error rate of a test

procedure. The current research focuses on one such de�nition: the family-wise error

rate (FWER). FWER is the probability of at least one Type I error,

FWER ≡ Pr(Vn > 0) = 1 − FVn(0).

Adjusted p-values

Adjusted p-values will be used to provide easy to use decision rules on when to reject a

given hypothesis in such a away as to preserve FWER. Consider any multiple testing

procedures with rejection regions Cn(m;α) for submodel M (m). Then, the M-vector

of adjusted p-values, P̃0n = (P̃0n(m) ∶ 1, ...,M), is

P̃0n(m) ≡ inf{α ∈ [0,1] ∶ Reject H0(m) at nominal FWER level α}

= inf{α ∈ [0,1] ∶ Tn(m) ∈ Cn(m;α)}, m = 1, ...,M.

The adjusted p-value P̃0n(m) for the mth test statistic, is the smallest nominal type I

error level of the multiple hypothesis testing procedure, in this case FWER, at which

one would reject H0(m), given Tn. Given this de�nition, we can provide an alternative
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representation to the set of rejected hypotheses given α:

Rn(α) = {m ∶ Tn(m) ∈ Cn(m;α)} = {m ∶ P̃0n(m) ≤ α}.

2.3.3 minP and maxT Procedures

There are several procedures that can control FWER. Setp-down procedures order

the raw p-values or the test statistics starting with the most signi�cant. One such

procedure that will be used in the current research isminP , which starts by ordering the

p-values from smallest to largest andmaxT , which orders the test statistics from largest

to smallest (Dudoit and Van Der Laan (2007), Ge et al. (2003), Westfall and Young

(1993)). LetOn(m) denote the indices for the ordered unadjusted p-values P0n(On(m)),

so that P0n(On(1)) ≤ ... ≤ P0n(On(M)). Also, let Ōn(h) = {On(h), ...,On(M)}. The

step-down minP adjusted p-values are de�ned by

p̃0n(on(m)) = max
h=1,...,m

{Pr( min
l∈Ōn(h)

P0n(l) ≤ p0n(on(h)))}.

Let On(m) denote the indices for the ordered test statistics Tn(On(m)), so that

T (On(1)) ≥ ... ≥ T (On(M)). Also, let Ōn(h) = {On(h), ...,On(M)}. The step-down

maxT adjusted p-values are de�ned by

p̃0n(on(m)) = max
h=1,...,m

{Pr( max
l∈Ōn(h)

Tn(l) ≥ tn(on(h)))}.

For minP and maxT adjusted p-values p̃0n(on(1)) ≤ p̃0n(on(2)) ≤ ... ≤ p̃0n(on(M)),

reject all hypothesis corresponding to M (m) whose adjusted p-value is such that

p̃on(m) ≤ α. The strong control of the FWER for the maxT and minP procedures

can be proven assuming the subset pivotality property (Ge et al. (2003), Westfall and
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Young (1993)).

Usually, the marginals and the join distribution of the test statistics are unknown.

The bootstrap or permutations can be used to estimate the adjusted p-values in the

minP and maxT procedures. These p-values are harder to compute than the raw p-

values because a double permutation algorithm needs to be used. Below is a description

of the permutation algorithm that can be used for the computation of the step-down

maxT adjusted p-values (Ge et al. (2003)).

Permutation algorithm for the step-down maxT adjusted p-values.

Order the test statistics such that tn(on(1)) ≥ tn(on(2)) ≥ ... ≥ tn(on(M)). For the bth

permutation, b = 1, ...,B:

1. Permute the n rows of the data matrix X.

2. Compute the test statistics tn,b(1), ..., tn,b(M) for each hypothesis M (m).

3. Next, compute ui,b = max
l=i,...,M

∣tn,b(on(l))∣, the successive maxima of test statistics by

uM,b = ∣tn,b(on(M))∣

ui, b =max(ui+1,b, ∣tn,b(on(i))∣) for i =M − 1, ...,1.

The above steps are repeated B times and the adjusted p-values are estimated by

p̃0n(on(i)) =
#{b ∶ ui,b ≥ ∣tn(on(1))∣}

B
for i = 1, ...,M,

with the monotonicity constraint enforced by setting

p̃0n(on(1)) ← p̃0n(on(1)), p̃0n(on(i)) ←max(p̃0n(on(i − 1)), p̃0n(on(i)))

19



for i = 2, . . . ,M . There is one caveat with this permutation algorithm. If the test statis-

tics are not identically distributed across hypotheses, the maxT adjusted p-values may

be di�erent from the minP adjusted ones, and may give di�erent weights to di�erent

hypotheses. In such situations, it would be better to use the minP procedure. Below is

a description of the permutation algorithm that can be used to compute the step-down

minP adjusted p-values.

Permutation algorithm for the step-down minP adjusted p-values

0. Compute raw p-values for each hypothesis. Order the raw p-values such that

p0n(on(1)) ≤ p0n(on(2)) ≤ ... ≤ p0n(on(M)).

Set qb(M + 1) = 1 for b = 1, ...,B.

Set i =M .

1. For hypothesis H0(i), compute the B permutation test statistics

tn,1(i), tn,2(i), ..tn,B(i) and use the raw p-values algorithm described below to

get the B raw p-values p0n,1(i), p0n,2(i), ..., p0n,B(i).

2. Update the successive minima qb(i):

qb(i) ←min(qb(i + 1), p0n,b(i)), b = 1, ...,B.

3. Compute the adjusted p-values for the hypothesis H0(i)

p̃0n(i) =
#{b ∶ qb(i) ≤ p0n(i)}

B
.

4. Update i← i − 1. If i = 0, go to step 5, otherwise, go to step 1.
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5.- Enforce monotonicity of p̃0n(i) by

p̃0n(1) ← p̃0n(1), p̃0n(i) ←max(p̃0n(i − 1), p̃0n(i)) for i = 2, ...,M.

Raw p-values algorithm

From the permutation distribution of Tn(i), tn,1(i), tn,2(i), ..., tn,B(i), obtain

p0n,1(i), p0n,2(i), ..., p0n,B(i), simultaneously from

p0n,b(i) =
#{b′ ∶ ∣tn,b′(i)∣ ≥ ∣tn,b(i)∣}

B
.

2.3.4 Subset Pivotality

Procedures based on the maxT and minP adjusted p-values control the FWER

weakly under all conditions. Strong control of the FWER also holds under the as-

sumption of subset pivotality (Dudoit and Van Der Laan (2007), Ge et al. (2003),

Westfall and Young (1993)). The distribution of raw p-values (P (1), ..., P (M)) is

said to have the subset pivotality property if for all subsets K of {1, ...,M} the joint

distributions of the sub-vector {P (i) ∶ i ∈ K } are identical under the restrictions

H0(K ) = ∩i∈K {H0(i) = 0} and H0(M ) = ∩Mi=1{H0(i) = 0}. This property is required

to ensure that the procedure based on adjusted p-values computed under the complete

null provide strong control of the FWER. A practical consequence of it is that resam-

pling for computing the adjusted p-values may be done under the complete null H0(M )

rather than the unknown partial null hypothesis H0(M0). This might be problematic

under situations where subset pivotality does not hold.
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2.3.5 Type I Error Rate Control and Choice of Null Distribution

This section describes how to create a null distribution of the test statistics

through the bootstrap, instead of the permutation approach, such that the FWER

error rate is preserved while using the maxT or minP procedures (Dudoit et al. (2004),

van der Laan et al. (2004), Pollard et al. (2005)). In this section, the error rate of inter-

est will be the FWER and it will be denoted by FWER(Vn) to denote its dependence

on the unknown number of falsely rejected null hypotheses Vn.

General Test Statistics Null Distribution

In a multiple testing setting, a rejection region is de�ned such that the type I error rate

is controlled at a given level α, i.e., such that

FWER(Vn) ≤ α (2.6)

lim sup
n→∞

FWER(Vn) ≤ α. (2.7)

Inequality (2.6) and (2.7) are called �nite sample control and asymptotic control, re-

spectively. The type I error rate FWER(Vn) is de�ned under the true distribution

Qn(P ) of the test statistics Tn, which in turn are functions of the underlying data

generating distribution P . However, P is usually unknown to the statistician or the

researcher and therefore is replaced by an assumed null distribution Q0, or an estimate

of it, denoted by Q0n. The null distribution Q0 has be chosen in such a way that the

type I error rate is controlled under the true distribution Qn(P ) and not only Q0. In

order for this to happen, the error rate under the assumed null distribution Q0 must

be such that it dominates the rate under the true distribution Qn(P ). In other words,
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the following null domination condition must be satis�ed:

FWER(Vn) ≤ FWER(V0),

lim sup
n→∞

FWER(Vn) ≤ FWER(V0).

Here V0 denotes the number of Type I errors under Q0, i.e., for Tn ∼ Q0. Dudoit,

Pollard and van der Laan, in the papers mentioned before, for controlling the type I

error rate, propose a null distribution Q0(P ) which is the asymptotic distribution of

the M-vector Zn of null value shifted and scaled test statistics

Zn(m) ≡

¿
Á
Á
ÁÀmin

⎛

⎝
1,

τ0(m)

V ar[Tn(m)]

⎞

⎠
(Tn(m) + λ0(m) −E[Tn(m)]), m = 1, ...,M.

For the test of single-parameter null hypotheses using the t-statistics, the null values

are λ0(m) = 0 and τ0(m) = 1. For testing the equality of K population means using the

F-statistics, the null values are λ0(m) = 1 and τ0(m) = 2/(K −1), under the assumption

of equal variances in the di�erent populations. Stepwise procedures based on such a

null distribution do indeed provide the desired asymptotic control of the Type I error

rate FWER(Vn), for general data generating distributions, null hypotheses, and test

statistics.

Bootstrap-based multiple testing procedures

The test statistics null distribution Q0 = Q0(P ) depends on the true data generating

distribution P and is therefore typically unknown. It can be estimated with the boot-

strap as explained below.

Bootstrap estimation of the test statistics null distribution Q0

Let P ∗
n denote an estimator of the true data generating distribution P . For the non-

parametric bootstrap, P ∗
n is simply the empirical distribution Pn of the observed data
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Xn = {Xi ∶ i = 1, ..., n}. For the model-based bootstrap, P ∗
n belongs to a model M

for the data generating distribution P , such as a family of multivariate Gaussian dis-

tributions. One then proceeds as follows to generate the bootstrap test statistics null

distribution.

1.- Obtain the bth bootstrap dataset, X b
n = {Xb

i ∶ i = 1, ..., n}, b = 1, ...,B, by generating

n i.d.d. random variables Xb
i with distribution P ∗

n .

2.- For each bootstrap dataset Xb
n, compute the M-vector of test statistics, Tn(⋅, b) =

(Tn(m,b) ∶ m = 1, ...,M), which can be arranged in an M × B matrix, Tn ≡

(Tn(m,b)), with rows corresponding to the M null hypotheses and columns to

the B bootstrap samples.

3.- For each null hypothesis H0(m), compute empirical means

E[Tn(m, ⋅)] ≡ ∑b Tn(m,b)/B and variances

V ar[Tn(m, ⋅)] ≡ ∑b(Tn(m,b) −E[Tn(m, ⋅)])2/B of the B bootstrap test statistics

Tn(m,b) (i.e., row means and variances of the matrix Tn), to yield estimates of

E[Tn(m)] and V ar[Tn(m)], respectively, m = 1, ...M .

4.- Obtain anMXB matrix, Zn ≡ (Zn(m,b)), of null value shifted and scaled bootstrap

statistics Zn(m,b), by row-shifting and scaling the matrix Tn using the bootstrap

estimates of E[Tn(m)] and V ar(Tn(m)) and the user-supplied null values λ0(m)

and τ0(m). That is,

Zn(m,b) ≡

¿
Á
Á
ÁÀmin

⎛

⎝
1,

τ0(m)

V ar[Tn(m, ⋅)]

⎞

⎠
(Tn(m,b) + λ0(m) −E[Tn(m, ⋅)]).

5.- The bootstrap estimate Q0n of the null distribution Q0 is the empirical distribution

of the B columns Zn(⋅, b) of the matrix Zn.
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Bootstrap estimation of common cut-o�s and adjusted p-values for the

single-step maxT procedure:

0.- Apply the previous bootstrap to generate an M × B matrix, Zn = (Zn(m,b)), of

null value shifted and scaled bootstrap statistics Zn(m,b).

1.- Compute the maximum statistic, maxmZn(m,b), b = 1, ...,B, for each bootstrap

dataset X b
n , i.e., each column of the matrix Zn.

2.- For controlling the FWER at nominal level α ∈ [0,1], the bootstrap single-step

maxT common cut-o� c(Q0n, α) is the (1−α)-quantile of the empirical distribu-

tion of the B maxima {maxmZn(m,b) ∶ b = 1, ...,B}.

3.- The bootstrap single-step maxT adjusted p-value for null hypothesis H0(m) is the

proportion of maxima {maxnZn(m,b) ∶ b = 1, ...,B} exceeding the corresponding

observed test statistic Tn(m),

P̃0n(m) ≡
1

B

B

∑
b=1

I(maxmZn(m,b) ≥ Tn(m)), m = 1, ...,M.

2.3.6 Multiple Testing for Correlation Coe�cients

In this section, we will describe two approaches on how to do the testing for

correlation coe�cients, the �rst approach is shown in Westfall and Young (1993). The

second approach corresponds to Dudoit and Van Der Laan (2007), Pollard et al. (2005),

and Van der Laan and Pollard (2003).

Setting

Let X ∼ P = N(0p, σ2), with p-dimensional Gaussian distribution P and covariance
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matrix σ = (σ(j, j′) ∶ j, j′ = 1, ..., p) equal to the corresponding correlation matrix

ρ = (ρ(j, j′) ∶ j, j′ = 1, ..., p).

Let Xn =≡ {Xi ∶ i = 1, ..., n} be an i.i.d. random sample from P . The hypotheses of

interest concern theM ≡ (
p
2
) = p(p−1)/2 distinct entries φ = (φ(m) ∶m = 1, ...,M) of the

p×p correlation matrix ρ. Consider a two-sided test of theM = p(p−1)/2 null hypotheses

H0(m) = I(ψ(m) = ψ0(m)) vs. the alternative hypotheses H1(m) = I(ψ(m) ≠ ψ0(m)),

m = 1, ...,M . We are interest in testing for zero correlation, namely ψ0(m) = 0 for all

m.

The M null hypotheses are tested based on the following t-statistics,

Tn(m) ≡
√
n − 2

ψn(m)
√

1 − ψ2
n(m)

, m = 1, ...,M,

where ψn = (ψ(m) ∶ m = 1, ...,M) is the M-vector of empirical correlation coe�-

cients. Speci�cally, the empirical correlation coe�cient for the pair of random variables

(X(j),X(j′)), corresponding to the mth null hypothesis, is de�ned as

ψn(m) = ρn(j, j
′) ≡

σn(j, j′)
√
σn(j, j)σn(j′, j′)

,

based on the empirical means X̄n(j) and covariances σn(j, j′),

X̄n(j) ≡
1

n

n

∑
i=1

Xi(j), σn(j, j
′) ≡

1

n

n

∑
i=1

(Xi(j) − X̄n(j))(Xi(j
′) − X̄n(j

′)).

Bootstrap Null Distribution

This construction is described in Westfall and Young (1993). It consists of resampling

each component of Xi(j) independently for each j to create bootstrap samples of Xn

such that the columns are independent of each other. This forces the complete null
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where all columns are not correlated with each other. The procedure is as follows for

each bootstrap sample b:

1.- For each variable X(j), j = 1, .., p, sample n j-speci�c entries Xb
i (j), i = 1, ..., n,

at random, with replacement, from the set of n j-speci�c observations {Xi(j) ∶

i = 1, ..., n}. The ith bootstrap p-vectpr Xb
i = (Xb

i (j) ∶ j = 1, ..., p), i = 1, ..., n, is

obtained by combining the p such independently sampled variables. Let X b
n ≡

{Xb
i ∶ i = 1, ..., n} denoted the resulting bootstrap dataset.

2.- Compute the M-vector Tn(⋅, n) = (Tn(m,b) ∶ m = 1, ...,M) of bootstrap test statis-

tics as in Tn(m) above, but based on the bootstrap dataset X b
i .

The test statistics null distribution is the empirical distribution Q0n of the B = 10,000

M-vectors {Tn(⋅, b) ∶ b = 1, ...,B}.

Bootstrap Null Distribution

This bootstrap procedure works by resampling entire p-vectors so as to maintain the

correlation among the vectors, but recreates the null by shifting and scaling the test

statistics for each bootstrap sample (Pollard et al., 2005). For each bootstrap sample

b = 1, ...,B we:

1.- Sample n p-vectors Xb
i at random, with replacement from the set of n observations

Xn = {Xi ∶ i = 1, , , .n}. Let X b
n ≡ {Xb

i ∶ i = 1, ..., n} denote the resulting bootstrap

data set.

2.- Compute an M-vector Tn(cot, b) = (Tn(m,b) ∶m = 1, ...,M) of test statistics Tn(m)

but based on the bootstrap dataset X b
n .

3.- Compute an M-vector Zn(⋅, b) = (Zn(m,b) ∶ m = 1, ..,M) of bootstrap null value
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shifted and scaled test statistics,

Zn(m,b) ≡

¿
Á
Á
ÁÀmin

⎛

⎝
1,

τ0(m)

V ar[Tn(m, ⋅)]

⎞

⎠
(Tn(m,b) −E[Tn(m, ⋅)]),

where E[Tn(⋅,m)] ≡ ∑b Tn(m,b)/B and

V ar[Tn(m, ⋅)] ≡ ∑b(Tn(m,b) − E[Tn(m, ⋅)])2/B denote, respectively, the empir-

ical mean and variance of the B bootstrap test statistics Tn(m,b) for the null

hypothesis H0(m), m = 1, ...,M .

The test statistics null distribution is the empirical distribution Q0n of the B = 10,000

M-vectors {Zn(⋅, b) ∶ b = 1, ..,B}.

2.4 Change Point Models and Estimation

This section will introduce some examples of estimating a change point for mul-

tivariate data nonparametrically. The examples shown look at the distribution of the

data and look for changes over time of this distribution. Later, it will be shown that

this problem can be made more speci�c and instead of looking at any changes in the

distribution, partition the random variables into two groups and see if changes between

the relationship between these two groups changes over time.

2.4.1 Nonparametric Change Point of Multivariate Data Distribution

Set-up

For random variables X,Y ∈ Rp, let φx and φy denote their characteristic functions,

respectively. A divergence measure between multivariate distributions may be de�ned
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as ˆ
Rp

∣φx(t) − φy(t)∣
2w(t)dt,

where w(t) denotes a positive weight function for which the above integral exists. In

this setting, the w(t) function used is

w(t;α) =
⎛

⎝

2πp/2Γ(1 − α/2)

α2αΓ((p + α)/2)
∣t∣p+α

⎞

⎠

−1

,

for some �xed constant α ∈ (0,2). Then, if E∣X ∣α < ∞ and E∣Y ∣α < ∞, a characteristic

function based divergence measure may be de�ned as

D(X,Y ;α) =

ˆ
Rp

∣φx(t) − φy(t)∣
2
⎛

⎝

2πp/2Γ(1 − α/2)

α2αΓ((p + α)/2)
∣t∣p+α

⎞

⎠

−1

dt.

An equivalent measure of divergence which can be used is

E (X,Y ;α) = 2E∣X − Y ∣α −E∣X −X ′∣ −E∣Y − Y ′∣α.

This measure is equally useful because of the fact that D(X,Y ;α) = E (X,Y ;α).

Lemma For any pair of independent random vectors X,Y ∈ Rp such that E(∣X ∣α +

∣Y ∣α) < ∞, and for any α ∈ (0,2), then E (X,Y ;α) = 0 if and only if X and Y are

identically distributed.

Let Xn = {Xi ∶ i = 1, ..., n} and Yn = {Yi ∶ i = 1, ...,m} be independent i.d.d. sam-

ples from the distribution X,Y ∈ Rp, respectively. An empirical analog of E (X,Y ;α)

would be

Ê (X,Y ;α) =
2

mn
∑
i,j

∣Xi − Yj ∣
α − (

n

2
)
−1

∑
i<k

∣Xi −Xk∣
α − (

m

2
)
−1

∑
j<m

∣Yj − Yk∣
α.
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Estimating the Location of a Change Point

Let Z1, ..., ZT ∈ Rp be an independent sequence of observations let 1 ≤ τ ≤ T be a con-

stant. Now de�ne the following sets: Xτ = {Z1, Z2, ..., Zτ} and Yτ = {Zτ+1, Zτ+2, ..., ZT}.

If there exists a point τ where there is a change in the distribution then this τ can be

estimated as

τ̂ = argmax
τ

mn

m + n
Ê (X,Y ;α).

2.4.2 Kullback-Leibler Importance Estimation Procedure

KLIEP (Liu et al. (2013), Nguyen et al. (2010), Sugiyama et al. (2008)) is a

density-ratio estimation algorithm that is suitable for estimating the Kullback-Leibler

(KL) divergence. Let Y,Y ′ ∈ Rp be two random variables with densities p(Y ) and

p′(Y ), respectively. The density ratio

p(X)

p′(Y )

can be modeled using the following kernel model

g(Y;θ) ∶=
n

∑
l=1

θlK(Y,Yl),

where θ ∶= (θ1, ..., θn)T are parameters to be learned from data samples, and K(Y,Y′)

is a kernel basis function. The Gaussian kernel,

K(Y,Y′) = exp
⎛

⎝
−

∣∣Y −Y′∣∣2

σ2

⎞

⎠
,

with σ2 chosen by Cross-Validation, can be used.

KLIEP Algorithm

The parameters θ in the model g(Y;θ) are determined so that the KL divergence from
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p(Y) to g(Ylθ)p′(Y) is minimized:

KL =

ˆ
p(Y)log

⎛

⎝

p(Y)

p′(Y)g(Y;θ)

⎞

⎠
dY

=

ˆ
p(Y)log

⎛

⎝

p(Y)

p′(Y)

⎞

⎠
dY −

ˆ
p(Y)log(g(Y;θ))dY.

The �rst term is ignored because it does not depend on θ. Then the empirical criterion

that optimizes KL is given by

max
θ

1

n

n

∑
i=1

log
⎛

⎝

n

∑
l=1

θlK(Yi,Yl)
⎞

⎠
,

s.t.
1

n

n

∑
j=1

n

∑
l=1

θlK(Y′
j,Yl) = 1 and θ1, ..., θn ≥ 0.

The equality constraint assures that g(Y;θ)p′(Y) is a probability density function.

The inequality constrain comes from the non-negativity of the density-ratio function.

This problem is convex and can be solved by a gradient-projection iteration. Then, the

density-ratio estimator is given as

ĝ(Y) =
n

∑
l=1

θ̂lK(Y,Yl).

This procedure has optimal convergence rates (Nguyen et al. (2010)).

Change-Point Detection KLIEP

Once the ĝ(Y) is obtained, an approximation of the KL divergence is given as

K̂L ∶=
1

n

n

∑
i=1

logĝ(Yi).

As in the previous example, this KLIEP-based KL-divergence estimator has been ap-

plied to change-point detection (Kawahara and Sugiyama (2012)).
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CHAPTER 3: GOODNESS-OF-FIT TEST FOR SS-ANOVA MODELS

3.1 Summary

Smoothing spline ANOVA models are a nonparametric regression methodology

with the useful property that the contribution of the covariates can be decomposed

into main e�ects, two-way interactions, and all other higher-level interactions. Despite

the popularity of this methodology, little has been done to develop diagnostic statis-

tics. In the current research, we propose a goodness-of-�t test for a smoothing spline

ANOVA model with a continuous predictor. The test can consider two sources of lack-

of-�t: whether covariates that are not currently in the model need to be included, and

whether the current model �ts the data well. The proposed method derives estimated

residuals from the model. Then, statistical dependence is assessed between the esti-

mated residuals and the covariates using the HSIC. If dependence exists, the model

does not capture all the variability in the outcome associated with the covariates. If

no dependence exists, the model �ts the data well. This dependence statistic is the

foundation for the proposed goodness-of-�t test, and the bootstrap is used to obtain

p-values. Application of the method is demonstrated with a neonatal mental develop-

ment data analysis. Our major contributions to the literature include: developing a

goodness-of-�t test for the smoothing spline ANOVA model, creating a �nite sample

variance adjustment to the bootstrap, providing theoretical justi�cation the use of the

HSIC, and demonstrating correct type I error as well as power performance through

simulations.
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3.2 Introduction

Nonparametric regression models are an attractive alternative to parametric mod-

els; they provide greater �exibility, thus, can provide a better �t when parametric as-

sumptions are too restrictive (e.g., linearity of the mean). Smoothing spline ANOVA

models (SS-ANOVA) are a popular nonparametric regression alternative (Craven and

Wahba (1978); Golub et al. (1979); Gu (2013); Kimeldorf and Wahba (1971); Wahba

(1990)). SS-ANOVA models estimate the mean of an outcome Y as a smooth function

f . Their ANOVA decomposition partitions the variation of the outcome attributed to

the covariates into main e�ects, two-way interactions, and all other higher-level inter-

actions, but as functions, not constants, as with classical ANOVA. Therefore, f is a

multivariate function that can be written as a summation of many functions, each being

either a main e�ect or an interaction of a given order. An element of this summation

is a main e�ect if it is a univariate function, and if it is a k term multivariate function,

then it is considered to be an interaction term of order k. The SS-ANOVA methodology

estimates these mean functions by assuming that the integral of their derivatives of a

certain degree to be �nite. The function is estimated by minimizing a least squares

term plus a penalty that controls the degree of smoothness of each function from the

decomposition. Gu also extends the SS-ANOVA methodology to exponential families,

density estimation, survival analysis, semiparametric models and mixed e�ects models.

SS-ANOVA models provide greater interpretability and structure than similar

nonparametric models found in the machine learning literature, such as kernel ridge

regression (Liu, Lin and Gosh, 2007; Shawe-Taylor and Cristianini, 2004). However, in-

ference can be di�cult with nonparametric models. After �tting an SS-ANOVA model,

the researcher may want to investigate the quality of their model. Methodologies exist
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for diagnostics of speci�c components of the SS-ANOVA model based on the Kullback-

Leiber distance and cosine angles (Gu (1992), Gu (2004)). These methodologies are

useful for running diagnostics on speci�c components of the ANOVA decomposition,

but do not evaluate the overall goodness-of-�t of the model. Moreover, the methods

o�er rules of thumb, but do not provide a p-value to inform a decision regarding the

goodness-of-�t. Moreover, the method suggests which terms that have been included

may be unnecessary, but does not provide information on how good the overall �t is.

This paper resolves these issues by proposing a goodness-of-�t test for the SS-

ANOVA model. The assessment of goodness-of-�t will be accomplished by �tting the

model of interest and obtaining estimated residuals. The residuals contain the leftover

information that remains unexplained by the model. Statistical dependence is then

assessed between the estimated residuals and the covariates in the model, with the

Hilbert-Schmidt independence criterion (HSIC). If dependence exists, the model does

not capture all the variability in the outcome associated with the covariates. If no

dependence exists, the model �ts the data well. This process can also be used with

covariates that are not in the model, in order to assess whether their absence contributes

to lack-of-�t. A test statistic is created from the HSIC between residuals and covariates

to test for lack-of-�t. The bootstrap is used to derive p-values. The major contributions

we make to the literature include: identifying the need for assessing goodness-of-�t in

a smoothing spline ANOVA model, developing a test statistic, creating a variance

adjustment to the bootstrap to improve the �nite sample performance of the method,

providing theoretical justi�cation the use of the HSIC, and demonstrating correct type

I error as well as power performance through numerical simulations.

This chapter is organized as follows. In section 3.3 the method for goodness-of-�t

in SS-ANOVA is introduced. Section 2 includes a formal de�nition of SS-ANOVA, a de-

scription of the evaluation of goodness-of-�t using the HSIC, the bootstrap for deriving
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p-values for the test statistic, and illustrative cases of lack-of-�t. In section 3.4, simula-

tion results are presented, in section 3.5 application of the method is demonstrated with

a neonatal mental development data analysis, and section 3.6 is a concluding discussion

of the proposed method.

3.3 Goodness-Of-Fit in SS-ANOVA

This section describes the SS-ANOVA, the HSIC, the goodness-of-�t test based on

residuals, and the bootstrap approximation to the null distribution. Then, theoretical

results and illustrative cases are discussed.

3.3.1 SS-ANOVA

We assume the observed data consists of (Y,X), where Y is a dependent variable,

X ∈ [0,1]p is a vector of covariates, and

Y = f(X) + η, (3.1)

for an unknown function f and random residual η, which is independent ofX, with Eη =

0. A sample of size n denoted by (X1, Y1),...,(Xn, Yn) is drawn from 3.1. Estimation of

f can be done through minimization of the following penalized least squares:

1

n

n

∑
i=1

(Yi − f(Xi))
2 + λJ(f). (3.2)

In the case where p = 1, then f(x) is just a univariate function and J(f) =
´ 1

0
f (k)(x)2dx,

and f (k) is the k-th derivative of f . In the case where p > 1, then f(X) = ∑
p
j=1 fj(X(j)),
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where X(j) is the j-th element of X, and J(f) = ∑
p
j=1 θ

−1
j

´ 1

0
f
(k)
j (x)2dx. This corre-

sponds to an additive model. In the general case

f(X) = ∑
j

fj(X(j)) +∑
j<k
fj,k(X(j),X(k)) +⋯

and J(f) = ∑
α

θ−1
α ∣∣Pαf ∣∣

2
Hα

+∑
αβ

θ−1
αβ ∣∣Pαβf ∣∣

2
Hαβ

+⋯ ,

where λ and θ are tuning parameters which are selected through Generalized Cross

Validation (GCV). The GCV statistic is de�ned as

GCV(λ, θ) =
n−1∣∣(I −A(λ, θ))y∣∣2

(n−1tr(I −A(λ, θ)))2
,

where ŷ =A(λ, θ)y. λ and θ are chosen to minimize GCV(λ, θ). In the current research,

the model used throughout will be the Cubic SS-ANOVA. This corresponds to the case

where k = 2, or when the integral of the second derivatives is being penalized, namely
´ 1

0
f ′′j (x)

2dx.

After �tting an SS-ANOVA model, it is important to conduct some model diag-

nostics. Model diagnostics are statistics that assess how well a model �ts the data.

In the current research, the independence of the estimated residuals with respect to a

set of covariates will be assessed using an independence statistic. The independence

statistic that we will use is the HSIC.

3.3.2 HSIC

Recent developments in tests of statistical independence are Brownian Distance

Covariance (Székely et al. (2007); Székely et al. (2009), Székely and Rizzo (2013))

and HSIC (Gretton et al. (2005); Song et al. (2012)). Distance Covariance (DC) is
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de�ned as the weighted norm between the product of two random vectors' individual

characteristic function and the joint characteristic function of these two vectors. If this

normed di�erence is 0 then these two vectors are statistically independent. The authors

developed a sample version of DC that depends only on the Euclidean distances between

the points. The HSIC is the Cross-Covariance Operator between two reproducing

kernel Hilbert spaces (RKHSs). When this operator equals 0 for two vectors of random

variables that are de�ned on the domain of two di�erent RKHSs with universal kernels,

then these two vectors are statistically independent. The sample version HSIC is exactly

the same as the one for DC except that Euclidean distances are replaced by kernel

distances.

The HSIC allows us to evaluate the statistical dependence between two random

vectors of arbitrary dimensions. The goodness-of-�t statistic is based on the HSIC,

because it can evaluate the statistical dependence between the estimated residuals and

a set of covariates.

Let X and Y be vectors of random variables on the domain X and Y , respec-

tively, with X ⊂ Rp and Y ⊂ Rq, and with joint probability measure Pxy. Let F and G

be RKHSs on X and Y with reproducing universal kernel functions k and l. Gaussian

kernels ful�ll this requirement (Micchelli et al. (2006)). The HSIC(Pxy,X,Y ) between

X and Y is de�ned as

Ex,x′,y,y′[k(X,Y
′)l(Y,Y ′)]] +Ex,x′[k(X,X

′)]Ey,y′[l(Y,Y
′)]

− 2Ex,y[Ex′[k(X,X
′)]Ey′[l(Y,Y

′)]].

We will rely on the following theorem (Gretton et al. (2005)):
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Theorem 3.3.1. HSIC(Pxy,X,Y ) = 0 if and only if X and Y are statistically inde-

pendent, i.e., Px,y = Px × Py.

With an i.d.d sample (Xn,Xn) = {(X1, Y1),...,(Xn, Yn)} from Pxy,HSIC(Pxy,X,Y )

can be estimated consistently with

Tn(Xn,Yn) ∶= n
−2tr(KHLH),

where H,K,L ∈ Rn×n, Hi,j ∶= δi,j − n−1, Ki,j ∶= k(Xi,Xj), and Li,j ∶= l(Yi, Yj). The

statistic can be rewritten as

1

n2

n

∑
i,j

KijLij +
1

n4

n

∑
i,j,q,r

KijLqr − 2
1

n3

n

∑
i,j,q

KijLiq.

The kernels k(Xi,Xj) = exp(−∣∣Xi −Xj ∣∣
2/σ2) and l(Yi, Yj) = exp(−∣∣Yi − Yj ∣∣2/σ2)

are called Gaussian and satisfy the universal kernel conditions and will be the ones

used throughout this paper with σ2 held �x at 1 and ∣∣ ⋅ ∣∣ being the Euclidean norm.

In the next subsection it will be shown how the ability of HSIC to discover arbitrary

statistical dependencies can be used in conjunction with the estimated residuals from

the SS-ANOVA model and a set of covariates to form a goodness-of-�t statistic.

3.3.3 Goodness-Of-Fit Test Based on Residuals

This subsection introduces the proposed goodness-of-�t test. After �tting an

SS-ANOVA model, the goodness-of-�t of the model can be evaluated by looking at

the relationship between a set of covariates and the estimated residuals. If dependence

exists, the model does not capture all the variability in the outcome associated with the
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covariates and further terms are needed. If no dependence is detected, all information

in the covariates that is present in the response has been explained through the model.

The test can consider two sources of lack-of-�t: whether the current model �ts the data

well, (i.e, whether the model captures all the variation in the outcome associated to

the covariates,) and whether covariates that are not currently in the model need to be

included.

We assume that the same data generating mechanism as 3.1 holds. It is assumed

that the model depends on main e�ects only such that

f(X) = ∑
j

fj(X(j)).

To assess the goodness-of-�t of the main e�ects only model we de�ne

ε ∶= Y −∑
j

fj(X(j)),

and test the following hypotheses:

H0 ∶HSIC(Px,ε,X, ε) = 0

HA ∶HSIC(Px,ε,X, ε) > 0.

(3.3)

If the the null holds, we have that ε = η, the true model error. Hence, ε is independent

of X and HSIC(Px,ε,X, ε) = 0. If the alternative holds, then ε ≠ η and there is a

lack-of-�t. Hence, ε is dependent on X and HSIC(Px,ε,X, ε) > 0.

The alternative can hold because the assumption of main e�ects only model is

incorrect, and in reality we have

ε = ∑
j<k
fj,k(X(j),X(k)) +⋯ + η,
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which still depends on X. Naturally, not all the terms of the decomposition have to

exist under the alternative.

Let (Yn,Xn) = {(Y1,X1), ..., (Yn,Xn)} be a random sample from the data gener-

ating mechanism described in 3.1, we can test the null and alternative hypotheses in

3.3. To accomplish this, we de�ne

ε̂i ∶= Yi −∑
j

f̂j(Xi(j)),

for i = 1, . . . , n, where ∑j f̂j is the solution to 3.2 under the assumption of main e�ects

only and let ε̂n = {ε̂1, . . . , ε̂n}. Then, the statistic

nTn(Xn, ε̂n), (3.4)

is used to test the hypotheses. This test procedure is intuitive, since Tn(Xn, ε̂n) is an

estimate of HSIC(Px,ε,X, ε), and later we show it is consistent both under the null

and the alternative hypothesis.

We can also test whether covariates that are currently not in the model should be

included. We assume that the data generating mechanism in 3.1 holds, and that f , the

function that speci�es the relationship between Y and X is correctly speci�ed. There

exists another set of covariates, which is denoted by Z. To assess whether Z should

be included in the model, in other words, if there is a lack-of-�t with respect to Z, we

de�ne

ε ∶= Y − f(X),
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and test the following hypotheses:

H0 ∶HSIC(Pz,ε, Z, ε) = 0

HA ∶HSIC(Pz,ε, Z, ε) > 0.

(3.5)

If the the null holds, then ε = η, the true model error. Hence, ε is independent of Z,

and HSIC(Pz,ε, Z, ε) = 0. This means the model has no terms that depend on Z. If

the alternative holds, ε ≠ η, and there is a lack-of-�t. Hence, ε is dependent on Z,

HSIC(Pz,ε, Z, ε) > 0, and the model has terms that depend on Z.

With an i.d.d. sample (Yn,Xn,Zn) = {(Y1,X1, Z1), ..., (Yn,Xn, Zn)} from the

data generating mechanism described in 3.1, we can test the null and alternative hy-

potheses in 3.3. To accomplish this, we de�ne

ε̂i ∶= Yi − f̂(Xi),

for i = 1, . . . , n, where f̂ is the solution to 3.2 and let ε̂n = {ε̂1, . . . , ε̂n}. Then, the

statistic

nTn(Zn, ε̂n). (3.6)

is used to test the hypotheses. This makes sense since Tn(Zn, ε̂n) is an estimate of

HSIC(Pz,ε, Z, ε), and later we show it is consistent both under the null and the alter-

native hypothesis.

The test statistic in 3.4 and 3.6 is the proposed statistic to test the goodness-of-�t

of the SS-ANOVA. The model �t can be easily assessed by �rst estimating the residuals

and then calculating the test statistic in 3.4 or 3.6 to check for a lack-of-�t, with respect

to a set of covariates Xn or Zn, respectively.

To perform the test, we need a valid distribution of 3.4 and 3.6 under the null
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hypothesis. An approximation to the null distribution is used. Details are shown in

the next section.

3.3.4 Approximation to the Null Distribution of the Test Statistic with the

Bootstrap

The di�culty in using 3.4 as a test statistic is that it is hard to derive analytically

a distribution under the null hypothesis that will provide the critical values for a given

signi�cance level. One obvious �rst approach would be to randomly permute the vector

ε̂n to obtain ε̂π, calculate nTn(Xn, ε̂π) and repeat this process many times to obtain

a distribution under the null. This approach happens to be �awed. When the vector

ε̂n is permuted with respect to Xn, complete independence between the two is created.

Under the null, ε and X are independent. However, even under the null, ε̂n and Xn are

not independent because of the simple fact that ε̂n is a statistic based onXn. Under the

null, ε̂n is just a good approximation of ε. Therefore, a di�erent procedure is needed.

A model based bootstrap, which needs to address the following issues: the boot-

strap generating process must account for the fact that under the null X and η are

independent, and the bootstrap samples X∗
n and ε

∗
n must be correlated in a similar way

that Xn and ε̂n are correlated. A bootstrap that ful�lls these requirements, and which

will be used to derive a p-value for the test statistic, is described below.
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Bootstrap Algorithm

Step 1

Calculate the estimated residuals ε̂i = Yi − f̂(Xi) and create an empirical distribu-

tion Pn,eo of the residuals with mass 1/n at each eoi = σ̂
σ̂′ (ε̂i − ε̄), where ε̄ = ∑

n
i=1

ε̂i
n ,

σ̂′2 = ∑
n
i=1(ε̂i−ε̄)2

n and σ̂2 =
∣∣Y−AY∣∣2
Tr(I−A) . Below it will be explained why the term σ̂

σ̂′ is present

in the empirical distribution Pn,eo .

Step 2

Draw a bootstrap sample η∗ from the empirical distribution Pn,eo and draw a bootstrap

sample X∗
n from the empirical distribution Pn,X of the Xn's independently of η∗. Then

set Y ∗
i as

Y ∗
i = f̂(X∗

i ) + η
∗
i for i = 1, . . . , n.

Step 3

We estimate f̂∗ from Y∗
n and from X∗

n, and create new bootstrap residuals as

ε∗i = Y
∗
i − f̂

∗(X∗
i ) for i = 1, . . . , n.

Step 4

Calculate the test statistic as nTn(X∗
n,ε

∗
n).

Step 5

Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics

nTn(X∗
n,ε

∗)b, for b = 1, . . . ,B. This distribution approximates the distribution of

nTn(Xn, ε̂n) under the null. The p-value is then calculated as

p-value =
1

B

B

∑
i=1

I(nTn(Xn, ε̂n) ≤ nTn(X
∗
n,ε

∗
n)b).
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Remark: If hypotheses in 3.5 need to be tested using test statistic in 3.6 the same

bootstrap can be used with small changes. Details are shown in Appendix A.

The variance of a random draw from the empirical distribution of the estimated

residuals ε̂i, i = 1, ..., n, in Step 1, is σ̂′2. Under the null-hypothesis model, σ̂′2
p
→ σ2, the

true error variance. However, σ̂′2 underestimates σ2 whenever p increases relative to n,

in �nite samples. Hence, if we draw from the distribution of the estimated residuals,

our sample will have lower variance than what we want. One simple solution is to

use an estimator of σ2 that takes into account p. The estimator we use is σ̂2 whose

denominator takes into account p. Whenever we rescale the empirical distribution of

the estimated residuals by σ̂
σ̂′ then a random draw from this empirical distribution will

have variance equal to σ̂2, which does not underestimate σ2. Asymptotically, there is

no di�erence in rescaling or not because σ̂
σ̂′

p
→ 1, but simulations show that it makes

an important di�erence for small and moderate sample sizes in estimating the null-

hypothesis appropriately even when p is only moderately big. This is an improvement

over the bootstrap procedure in Sen and Sen (2014), which was used in the goodness-

of-�t setting too, but for linear models. This �nite sample variance adjustment is a key

contribution of our approach.

3.3.5 Large Sample Approximation of the Test Statistic and the Bootstrap

Procedure

The rationale of using Tn(Xn, ε̂n) is that it approximates HSIC(X,ε). The fol-

lowing theorem helps to justify this choice. Assume the data generating mechanism in

3.1. A function f is assumed for the relationship between Y and X. Estimated residu-

als are obtained by �nding a solution to 3.2 and setting ε̂i = Yi − f̂(Xi) for i = 1, . . . , n.

44



Theorem 3.3.2. Under H0,

Tn(Xn, ε̂n)
p
→HSIC(X,η) = 0.

Under HA,

Tn(Xn, ε̂n)
p
→HSIC(X,ε) > 0.

Under both H0 and HA,

Tn(X
∗
n, ε

∗
n)

p
→ 0.

The proof of this result can be found in Appendix A. Under the null ε = η,

in its turn η is independent of X, and hence HSIC(X,η) = 0. Thus under the null,

Tn(Xn, ε̂n) approximates 0. Under the alternative, ε depends on X, and HSIC(X,ε) >

0. Thus under the alternative, Tn(Xn, ε̂n) will be greater than 0. This is the behavior

needed for the test statistic in 3.4 to work. Moreover, the bootstrapped version of

the test statistic Tn(X∗
n,ε

∗
n) converges to 0 in probability under both the null and the

alternative. This is what the behavior of the bootstrap needs to be, since it must

re�ect the situation where the correct model is being speci�ed and there is no leftover

information in the residuals.

Remark: The theorem also holds when (X∗
n,Xn,X) is replaced by (Z∗

n,Zn, Z).

3.3.6 Illustrative Cases

The framework presented here is a test for the Goodness-of-�t of the SS-ANOVA

model. The test is very versatile and can detect any possible lack-of-�t. The versatility

of the test comes from the fact that HSIC can detect any form of statistical depen-

dence. However, since lack-of-�t can happen in many ways, the general case is not
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particularly illuminating, and hence three cases of lack-of-�t will be used as illustra-

tions for the method both in the theory and the simulation results. In all three cases,

the null-hypothesis will correspond to the situation where the current model �ts the

data properly, and under the alternative hypothesis the model is misspeci�ced in some

way.

Case I: Missing Interactions Beyond the Main E�ects

After �tting a main e�ects only model with p covariates, a goodness-of-�t test is run.

In terms of the SS-ANOVA model, the hypotheses are

H0 ∶Y =

p

∑
j=1

fj(X(j)) + η

HA ∶Y =

p

∑
j=1

fj(X(j)) + f1,...,p(X(1), ...,X(p)) + η,

where f1,...,p(X1, ...,Xp) is an unspeci�ed function that could be in any functional space

except for the main e�ects only space from the SS-ANOVA decomposition. Under the

alternative assumption, the test will pick up any possible interactions that exist beyond

the main e�ects. This case is relevant because in most situations it is hard to know

which interactions to include among the combinations of main e�ects, but it is very

possible that interactions exist even when they are hard to conceptualize.

Case II: Missing Interactions Beyond the Within Group Interactions

Two groups of variables indexed by the sets A and B exist. The sets A and B are dis-

joint and their union is equal to {1, ..., p}. An SS-ANOVA model is �t which includes

all p main e�ects and all possible interactions between variables with indexes in set A
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and B, separately. In terms of the SS-ANOVA model the hypotheses are

H0 ∶Y = fA(X(A)) + fB(X(B)) + η

HA ∶Y = fA(X(A)) + fB(X(B)) + fA,B(X(A ∪B)) + η.

Here, fA(X(A)) includes main e�ects and all possible interactions among the variables

indexed by the set A. The same holds for fB(X(B)) but over the set B. The form

fA,B(X(A ∪ B)) remains unspeci�ed and includes any possible interactions between

variables in group A and B. Under the alternative assumption, the test should detect

any possible interactions between covariates in group A and covariates in group B not

included in the model described in H0. This case is relevant because it is possible

to know two groups of covariates that are known to be interacting and hence all the

interactions are included. However, some cross interactions could also happen.

Case III: Missing Covariates

We can test whether a model that includes covariates X needs also to include covariates

Z. In terms of the SS-ANOVA model, the hypotheses are

H0 ∶Y = f(X) + η

HA ∶Y = f(X,Z) + η.

Here, f(X) includes main e�ects and could also include interactions, among the ele-

ments of X, if they are believed to exist. The same de�nition holds for f(X,Z), but

over the set both X and Z. However, the form of f(X,Z) remains unspeci�ed, but

covariates Z are speci�ed. Under the alternative assumption, the test will detect any

covariate Z that is present in f(X,Z). This case is relevant because many situations

arise where the interest comes in detecting a set of covariates which a�ect the outcome
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beyond a previously de�ned set of variables.

In all three cases shown above, in order to perform the test, the model under

H0 is �tted and a vector of estimated residuals ε̂ is obtained. For the �rst two cases,

nTn(Xn, ε̂) is calculated as the test statistic. For the third case the test statistic is

nTn(Xn(B), ε̂). These three cases represent possible departures of �tness, but they do

not exhaust all possibilities. However, no matter what the departure is, the goodness-

of-�t can always be assessed with respect to an Xn (either the matrix used to �t the

model or a completely new set of covariates), by checking its independence from the

estimated residuals.

Figure 3.1: Variance Adjustment of the Distribution of the Estimated Residuals

Variance of the estimated residuals over 500 simulations. The variance is shown as the number of
variables p in the model increases. The left panel shows the variance without adjustment, the right
panel shows the variance with adjustment. The true variance is 1, which corresponds to the horizontal
line.
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3.4 Simulation Studies

This section will present simulation results comparing the variance of the empir-

ical measure of the estimated residuals before and after the adjustment described in

the previous section on the bootstrap. Also, it will present type I error and power

results of the goodness-of-�t test under the three illustrative cases described above. It

is important to reiterate that, for all three cases, a speci�c lack-of-�t has been speci�ed

under the alternative hypothesis, but that this is not known nor speci�ed previously

by the researcher. The only objective of the test is to know if the current model under

the null is su�cient.

Variance Adjustment to the Bootstrap

The left panel of �gure 3.1 shows the box plots of σ̂
′2 for 2000 simulations of the null

hypothesis for varying p and with a �xed sample size of 100. The right panel shows

the same simulation scenarios but for σ̂2. The true variance for all the simulations is

σ2 = 1 denoted by the horizontal line. It can be seen that for moderate increments in

dimension σ̂
′2 underestimates the actual variance, whereas σ̂2 on average estimates σ2

correctly.

In all cases shown below we simulated η as N(0,1) and all X(j) as Uniform(0,1)

independent of η. Speci�c details of all simulations can be found in Appendix A of the

supplementary materials.

Case I: Missing Interactions Beyond the Main E�ects

Simulations were created where the null hypothesis only includes main e�ects. There-

fore, we have f(X) = ∑
p
j=1 fj(X(j)), and under the alternative f1,...,p(X(1), ...,X(p))
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is an interaction between covariates. Our hypotheses then become

H0 ∶ Y = f(X) + η

HA ∶ Y = f(X) + f1,...,p(X(1), ...,X(p)) + η.

When p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the interaction added

under the alternative is f1,2(X(1),X(2)) = 0.75cos(π(X(1) −X(2))). When p = 4,6

similar models were used.

Table 3.1: Missing Interactions Beyond the Main E�ects

Type I Error

Var. Sig. n=100 n=300 n=500
2 0.01 0.008 0.009 0.009
2 0.05 0.045 0.049 0.046
4 0.01 0.008 0.008 0.009
4 0.05 0.049 0.046 0.048
6 0.01 0.006 0.007 0.009
6 0.05 0.047 0.047 0.049

Power

Var. Sig. n=100 n=300 n=500
2 0.01 0.019 0.152 0.512
2 0.05 0.106 0.493 0.886
4 0.01 0.008 0.0724 0.21
4 0.05 0.051 0.264 0.568
6 0.01 0.066 0.015 0.034
6 0.05 0.054 0.085 0.17

Var. corresponds to the number of variables
used in the null model and Sig. corresponds
to the signi�cance level used in the test.

A model of this nature would be hard to �t with a linear model given that the

response depends sinusoidally on X1 and depends quadratically on X2, hence the hand-

iness of SS-ANOVA. This simulation setting demonstrate how the ANOVA decompo-

sition can be useful in picking up signals from interactions. After �tting a main e�ects

50



only model, if the goodness-of-�t test is signi�cant, then this would mean that main

e�ects are insu�cient and possibly some interactions exist. When the alternative is

f1,2(X(1),X(2)) = 0.75cos(π(X(1) −X(2))), the user of the test does not know be-

tween which covariates the interaction is happening. However, when the test is rejected,

it is known that the main e�ects only model is not su�cient and extra interactions might

be needed. Thus, the test can be useful in �nding interactions. From the simulation

results in table 3.1 it can be seen that the method preserves the correct type I error

both at the 0.01 and 0.05 signi�cance levels. The size of the test gets sharper with

increasing sample size. This happens because the bootstrap is a large sample method

and will work best for larger sample size. For a given number of covariates, it can be

seen that the power increases with larger sample size. Moreover, when more covariates

are present in the main e�ects only model, the power decreases. This is due to the fact

that the more main e�ects are included, the greater the number of possible interactions,

and hence the alternative space becomes larger.

Case II: Missing Covariates

Simulations were created where the null hypothesis includes only main e�ects and the

alternative adds covariates to the model. Therefore, we have f(X) = ∑
p
j=1 fj(X(j))

and fp+1,...,p+q(Z(1), ..., Z(q)), where fp+1,...,p+q(Z(1), ..., Z(q)) are variables leftover not

included in f(X). Our hypotheses then becomes

H0 ∶ Y = f(X) + η

HA ∶ Y = f(X) + fp+1,...,p+q(Z(1), ..., Z(q)) + η.

When p = 2, the null model is f(X) = 5sin(πX(1)) + 2X(2)2 and the covariate added

under the alternative is f3(Z(1)) = sin(π(Z(1))). When p = 4 similar models were

used. Under the alternative, the model �tted under the null is insu�cient because
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Table 3.2: Missing Covariates

Type I Error

Var. Sig. n=100 n=300 n=500
2 0.01 0.008 0.011 0.010
2 0.05 0.054 0.057 0.057
4 0.01 0.014 0.010 0.011
4 0.05 0.063 0.053 0.050

Power

Var. Sig. n=100 n=300 n=500
2 0.01 0.014 0.034 0.072
2 0.05 0.077 0.154 0.321
4 0.01 0.240 0.828 1
4 0.05 0.464 0.944 1

Var. corresponds to the number of variables
used in the null model and Sig. corresponds
to the signi�cance level used in the test.

f3(X(3)) = sin(π(X(3))) also belongs in the model. However, this might not be

known to the researcher or he/she might want to investigate this question precisely,

i.e., through testing. This simulation setting shows that this can de done and that the

goodness-of-�t test can be used as an omnibus test of the likes of Liu et al. (2007),

and Wu et al. (2011) where a set of covariates is tested to see if it is related to the

outcome after a set of covariates have already being included in the model. From the

simulation results in table 3.2, it can be seen that the test has the appropriate size

and power increases with sample size. In this simulation scenario, the setting with 4

covariates included in the model had more power compared to the setting with only 2

variables included in the model. This happened because under the former, 2 covariates

were missing under the alternative whereas under the latter only 1 is missing. However,

unlike Case I, in this scenario the number of variables included in the model under the

null does not a�ect the power of the test, only the covariates added under the alterna-

tive a�ect the power.
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Case III: Missing Interactions Beyond the Within Group Interactions

Simulations were created where the null hypothesis includes two distinct groups of

variables which contain all the main e�ects and all the interactions within each group,

and the alternative adds interactions across the groups. Therefore, we have f(X) =

fA(X(A)) + fB(X(B)) and fA,B(X(A ∪B)), where fA,B(X(A ∪B)) contains interac-

tions between variables in group A and B. The hypotheses then become

H0 ∶ Y = f(X) + η

HA ∶ Y = f(X) + fA,B(X(A),X(B)) + η.

The �rst simulation has as null model fA(X(A)) = 5sin(πX(1)) + 2X(2)2 and

fB(X(B)) = 2sin(πX(3)) +X(4)2, and the interaction between group A and B added

under the alternative is fA,B(X(A ∪ B)) = 0.75cos(π(X(1) − X(3))). Under the al-

ternative, there exists an interaction across group A and B between variables X(1)

and X(3). In the second simulation setting, similar models were used. This setting is

similar to Case I, but here under the null model, interactions have been included as

well as main e�ects. The simulation results in table 3.3 show that the methodology has

correct type I error and good power performance. In the �rst scenario, a model with 4

covariates with two sets of variables of size 2 each was �tted to the data. The two-way

interaction between the 2 covariates in each group was included. The second scenario,

denoted by a 4∗ on the table 3.3, corresponds to the same set-up de�ned previously of

a model with 4 covariates and two groups of variables, but now in the �rst group there

is only one covariate and in the second one there are 3 covariates. The model includes

all the 3 two-way interactions and the 1 three-way interaction which corresponds to all

the possible interactions between the 3 covariates in the second group. We see that

power performance is comparable in either scenario. Moreover, comparing this to Case
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Table 3.3: Missing Interactions Beyond the Within Group Interactions

Type I Error

Var. Sig. n=100 n=300 n=500
4 0.01 0.010 0.0120 0.0120
4 0.05 0.050 0.048 0.052
4∗ 0.01 0.011 0.011 0.010
4∗ 0.05 0.052 0.0531 0.051

Power

Var. Sig. n=100 n=300 n=500
4 0.01 0.033 0.138 0.366
4 0.05 0.088 0.302 0.601
4∗ 0.01 0.035 0.144 0.375
4∗ 0.05 0.098 0.305 0.622
Var. corresponds to the number of variables
used in the null model and Sig. corresponds
to the signi�cance level used in the test.

I we see that including extra interactions under the null-hypothesis increases power

of the test. This is because it reduces the number of possible interactions under the

alternative.

3.5 Application to Neonatal Psychomotor Development Data

The Mount Sinai Children's Environmental Health Cohort samples a prospec-

tive multiethnic cohort of primiparous women who presented for prenatal care with

singleton pregnancies at the Mount Sinai prenatal clinic or two private practices (En-

gel et al. (2011)). The target population was �rst-born infants with no underlying

health conditions that might independently result in serious neurodevelopmental im-

pairment. The continuous outcome of interest is the Psychomotor Development Index

at age 2 (PDI), obtained by administration of the Bayley scales of infant development

version 2. It is believed that PDI is a�ected by chemical exposures that can be assessed
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through urine and blood samples. Potentially, PDI could be a�ected by the mother's

age (AGE), and certain chemical exposures, such as the amount of Bisphenol A (BPA),

uM/L of di-2-ethylhexyl phthalate (DEHP) phthalate metabolites, and the amount of

dialkylphosphate metabolites (DAP). Maternal exposure biomarkers were collected to

asses the magnitude of exposure to the compounds. The data set consists of a sample

of 237 maternal-child dyads. An SS-ANOVA model is built with PDI as the outcome

and the four predictors variables as follows:

PDI = f1(BPA) + f2(DEHP ) + f3(DAP ) + f4(AGE) + ε. (3.7)

The following paragraph provides an investigation into whether the model in 3.7 �ts

the data. A series of tests are conducted to evaluate the goodness-of-�t of this model,

as well as possible alternative models. All p-values are shown in table 3.4. The �rst

column of table 3.4 shows the null hypotheses that are tested, the second column shows

the interaction terms that have been added to the basic model in 3.7, and the third

column shows the p-value for each null hypothesis. Any p-value less than 0.05 is deemed

as evidence of lack-of-�t.

Table 3.4: Testing of Goodness-of-�t

Null Added Interactions p-value

H0 0.044
H1,2 f1,2 0.158
H1,3 f1,3 0.077
H2,3 f2,3 0.029
H1,2+1,3 f1,2 + f1,2 0.114

P-values less than 0.05 are thought
as evidence of lack-of-�t.

Initially, we test the null hypothesis H0, which corresponds to testing if the model

in 3.7 �ts the data well. The p-value of H0 is 0.044, hence we detect a lack-of-�t. Since
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the model in 3.7 is not su�cient, it is possible that interactions need to be considered.

Three models are possible extensions, and they only di�er from 3.7 with the addi-

tion of one of the following two-way interactions, respectively: f1,2(BPA,DEHP ),

f1,3(BPA,DAP ), and f2,3(DEHP,DAP ). These additions to each model correspond

to interactions between the chemical exposures. It is theoretically unlikely that inter-

actions exist between the exposures and the mother's age, or that there is a three-way

interaction among the exposures; hence models that include such interactions are not

considered. Testing null hypotheses H1,2, H1,3 and H2,3 corresponds to testing the

goodness-of-�t of these three models, which include three di�erent two-way interac-

tions between exposures. We detected lack-of-�t in the model with the interaction f2,3,

but we did not detect lack-of-�t for the models with the other two interactions: f1,2 and

f1,3. We want to include all interactions that could potentially explain the outcome, so

we include f1,2 and f1,3 in the model, since both models with those interactions do not

show a lack-of-�t. As a last step, we check the goodness-of-�t of the model that includes

the two relevant two-way interactions among exposures, and this corresponds to the

null hypothesis H1,2+1,3. The p-value of this hypothesis is 0.114. Thus, we do not have

enough evidence for lack-of-�t of the model that includes both two-way interactions.

The �nal form of our model is:

PDI =f1(BPA) + f2(DEHP ) + f3(DAP ) + f4(AGE)

+f1,2(BPA,DEHP ) + f1,3(BPA,DAP ) + ε.
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3.6 Discussion

In this article we have developed a general Goodness-of-�t statistic and test for

nonparametric regression in the setting of the SS-ANOVA model with continuous out-

come. The method developed works by �tting a model currently of interest and tests

for independence between the estimated residuals and the covariates used to �t the

model, or covariates not yet in the model. A model based bootstrap is used to get

critical values that preserve the correct type I error. The test developed can deal with

a useful variety of lack-of-�t settings. The major contributions we make to the liter-

ature include: identifying the need for assessing goodness-of-�t in a smoothing spline

ANOVA model, developing a test statistic, creating a variance adjustment to the boot-

strap to improve the �nite sample performance of the method, providing theoretical

justi�cation of the use of the HSIC, and demonstrating correct type I error as well as

power performance through numerical simulations.

Some caveats of the method are that when dimension increases and not many in-

teractions have already been included in the model, the power decreases. This method

might only be suitable for small models when the need is to detect any possible in-

teractions among main e�ects. Once extra interactions are included, power increases

and the problem becomes more manageable. On the other hand, when testing if extra

variables not yet included in the model need to be included, there is no such problem

with the power. This is of importance because the test can be used as an omnibus or

global test for testing signi�cance of variables. One possible criticism of the method

is that it rests on the assumption of homogeneity of variance. If this assumption is

violated, then the test will pick up the lack-of-�t corresponding to the heterogeneous

variance, and it will be more di�cult to identify where the lack-of-�t is coming from.
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Another problem could arise if there exists a missing confounder correlated with a co-

variate in the current model. If the goodness-of-�t test were performed in this setting,

with su�cient power it would reject the null, but it would be di�cult to assess where

the lack-of-�t is coming from, since the confounder is not available.

One of the possible extensions of this test would be to allow for heterogeneity

of variance in the SS-ANOVA model, where the variance could be dependent on the

covariates. In this way, whenever the homogeneity of variance is violated, the test

would still have correct type I error and would be more powerful. Another aspect left

unaddressed in the current research is how to choose the degree of the derivative being

integrated in to the penalty term. We have used the second derivative in our examples.

Other choices are possible too. Further research could extend this method to deal with

dichotomous outcomes. Also, the Gaussian kernel in the HSIC has a parameter that

has been �xed to 1 in the current report. However, further research could elucidate

how to best choose this parameter following a suitable optimality criterion.
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CHAPTER 4: NONPARAMETRIC MULTIVARIATE CHANGE
POINT

4.1 Summary

Understanding the dynamics between physical activity and blood glucose in type

I diabetes patients is an important yet di�cult task. Physical activity is one of the

major disruptors of blood glucose levels in type I individuals and could potentially drive

them to a dangerous state of hypoglycemia. Understanding these dynamics is of great

importance to the development of an arti�cial pancreas system. One of the challenges

of modeling blood glucose and physical activity is that their relationship is not stable,

this means that the relationship will vary depending on what time of the day it is,

and even if the individual is doing a high intensity exercise. Blood glucose level and

energy expenditure data were collected every 5 minutes on one individual over 23 hours

in a metabolic chamber. A statistical method is proposed that estimates the change

between blood glucose and energy expenditure nonparametrically. That is, no model or

parametric form is assumed between the multivariate relationship of blood glucose and

energy expenditure. The relationship is multivariate because we assume that several

future values of blood glucose depend on many lagged values of energy expenditure.

Two major change points are estimated from the metabolic chamber data, creating three

time intervals for our data. We �t three models within each time interval and �nd that

the relationship is in fact quite di�erent. Changes in the relationship correspond to

time intervals where the subject of study incur in high exercise activity.
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4.2 Introduction

Individuals with type 1 diabetes (T1D) have to take into account diet and exercise

when deciding to take extra insulin doses beyond the daily baseline amounts, in order

to control their blood glucose (BG) level. If not controlled correctly, T1D individuals

can easily su�er hypoglycemia, or low levels of glucose in the blood. Recently, progress

has been made towards the creation of an arti�cial pancreas system that replicates the

physiology that is lost in diabetes (Kowalski (2015)). Developing an arti�cial pancreas

has many di�culties, one of which is to model the relationship between BG and physical

activity (PA) (van Bon et al. (2011)). The objective of the current article is to evaluate,

for individuals with T1D, how the relationship between PA and BG changes throughout

a day, in order to better understand their dependence and dynamics. We have developed

a change point estimation methodology to accomplish this. Our methodology estimates

and tests for possible change points in the relationship between two sets of random

variables, which in the current set up are PA and BG. With our method we wish to

understand the changing relationship of PA and BG, while accounting for insulin use.

We believe that this will be a contribution to the arti�cial pancreas, since it will increase

understanding of the dynamics of PA and BG. If changes can be pinpointed, then this

will ease the di�culty of modeling BG in terms of PA.

The reason for doing a change point analysis, is that, for T1D individuals, the

relationship between PA and BG is subject to many changes depending on many cir-

cumstances. For instance, BG can �uctuate depending on the type, intensity and

duration of PA. Light-to-moderate intensity areobic PA usually results in a fast drop

in glucose in T1D subjects which could potentially results in hyplogycemia (Camacho

et al. (2005), Tonoli et al. (2012), Kudva et al. (2014),Yardley et al. (2012), Yardley

et al. (2013)). On the contrary, intense arerobic-anaerobic PA will frequently result
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in hyperglycemia (Turner et al. (2015),Purdon et al. (1993)). Moreover, PA can also

a�ect BG several hours after exercise (Maran et al. (2010), Iscoe and Riddell (2011)).

In addition, the normal reduction in insulin secretion at the onset of exercise, either

moderate or vigorous, cannot easily be emulated in T1D (Riddell et al. (2015)). In

addition, exercise may increase insulin absorption rates from the subcutaneous depot,

causing circulating levels to rise even if pump infusion rates remains constant or stop

(Mallad et al. (2015)). There is some evidence that that the risk of hypoglycemia dur-

ing and soon after exercise is not high when exercise is performed while plasma insulin

levels are close to basal levels, particularly when exercise intensity is elevated (Shetty

et al. (2016)). We have to our disposal data that will help us estimate change points

in the relationship between PA and BG.

We collected data on energy expenditure (EE) and BG on one participant who

stayed 23 hours in a metabolic chamber. The chamber recorded EE while the BG was

collected through continuous glucose monitoring (CGM). Recordings were done every

5 minutes for a total of 271 observations. This setup is ideal to discover some of the

dynamics between BG and EE. Speci�cally, our goal is to discover if the relationship

between BG and EE changes over the course of these 23 hours. If changes do occur, we

are interested in evaluating if these changes happen along with changes in the distri-

bution of insulin on board (IOB) or PA, which is predicted by the literature previously

mentioned. However, present and future values of BG can potentially dependent on

present and past values of PA. Hence, the relationship is multivariate in nature. Also,

it is not clear if the relationship will be at all linear or includes interactions between

the lagged values. Our change point methodology is nonparametric, hence it does not

require the speci�cation of a model between the two multivariate vectors and can po-

tentially detect changes in interactions. Our method will allow us to evaluate if the

metabolic chamber data is consistent with the current knowledge in the literature and
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also if we can discover new patterns that can be used in the development of an arti�cial

pancreas.

Many approaches to the change point problems exist in either a nonparametric or

multivariate context. For example, Zou et al. (2014) developed a nonparametric maxi-

mum likelihood approach to detecting multiple change points, with no assumptions on

the distribution of the data. However, their method only works for the univariate case

and thus only looks at changes in distribution. Similarly, Killick et al. (2012) create

a method called PELT that detects multiple change points, but only in a univariate

set up. Another approach was developed by Fryzlewicz et al. (2014) where a binary

segmentation algorithm was used to select the change points, but it only works in the

univariate case too. On the multivariate front, there are methodologies that detect

change points in the joint distribution of a multivariate vector observed over time (or

location), among these there are Song et al. (2012), Sugiyama et al. (2008). One such

method that has received a lot of attention recently is the method of Matteson and

James (2014) called energy change point (ECP) where a change point is selected by

maximizing the di�erence between two sample characteristic functions. The main lim-

itations of these methods for solving the question of interest in the current article are

that existing methods do not look at changes in the relationship between two multi-

variate vectors, but instead look at changes in the distribution of a single multivariate

vector. This methods will detect any changes in distribution, that might or might not

be related to the change in relationship between BG and PA that we are interested in.

Hence, these methods try to solve a problem that is more general and not �tted for our

purpose.

For this reason, we developed a method to estimate nonparametrically the change

point in the relationship between two multivariate vectors of general dimension. Our

method works by evaluating nonparametrically the strength of the relationship between
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the two multivariate vectors before and after a given time point, using a form of gener-

alized correlation. If the correlation is highly di�erent before and after this time point,

then this would indicate that at this time point there has been a change in the strength

of the relationship, i.e., a change point. If for all time points we inspect the di�erence in

correlations before and after, then the point most likely to be a change point would be

the one where the di�erence is the largest. This is exactly how our method will proceed.

The estimator of the change point will be the time point where the largest di�erence

in pre and post correlation occurs. The method �ts well the current setup where it is

believed that the relationship between BG and EE is dynamic but changes along time,

depending on many factors. We analyze the relationship between BG and EE in two

stages. First, using metabolic chamber data, we look at change points corresponding

to when the relationship between EE and BG changes. This strategy will provide us

with time intervals that, we hypothesize, correspond to periods of di�erent PA intensity

and type. At a second stage, we look at the distribution of EE, insulin and diet, and

evaluate if they signi�cantly change from interval to interval estimated, so that we can

assess if the changes in the relationship between BG and EE are accompanied with

changes in these distributions.

The remainder of the article is organized as follows. Section 4.3 proposes a gen-

eral statistical method for estimating and testing a multivariate change point in the

relationships between to vectors. Section 4.4 presents simulations results. Section 4.5

presents how the method will be applied to the metabolic chamber data. Section 4.6

concludes with some discussion.
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4.3 Nonparametric Multivariate Change Point

4.3.1 Problem Set Up

As noted earlier, PA, and therefore EE, can a�ect BG after a certain amount of

time, potentially an hour or more. The relationship can be very dynamic in nature

and therefore we believe that, BG will depend on lagged values of EE. Moreover, we

want to know how EE and its lagged values a�ect BG an hour into the future and its

consecutive values after 5 and 10 minutes. Hence, we want to look at the relationship

between a vector of lagged values of EE and a vector of future values of BG. Thus,

our problem is multivariate in nature and we wish to estimate a change point in the

relationship between these 2 vectors. We develop a method to solve this problem. The

set up is described below.

We are interested in a sequence of a pair of multivariate vectors (Yt,Xt) for

t = 1, . . . , T , where X ∈ Rp and Y ∈ Rq. The pair (Yt,Xt) are observed sequentially

along a dimension denoted by the index t. In our context t can denote time, and Yt

can be several values of BG and Xt can be several values of EE, at time t. The change

point problem that we are interested is characterized in the following data generating

mechanism:

Yt =f1(Xt, ηt) for t = 1, . . . , τ,

Yt =f2(Xt, ηt) for t = τ + 1, . . . , T,

(4.1)

where ηt and Xt are i.d.d for each t, and are independent of each other. Thus, Yt

depends on Xt through a function f1. However, as t advances, a point τ is reached

where Yt depends on Xt through f2. It is of interest to estimate τ and test whether
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this change-point actually exists. The hypotheses that we are interested in are

H0 ∶f1 = f2,

HA ∶f1 ≠ f2,

(4.2)

and note that under the null hypothesis τ vanishes. Possible approaches in testing

(4.2) would require estimating f2 and f2. It can be di�cult to explicitly model the

multivariate relationship between random X and Y parametrically; this becomes more

di�cult if Y is categorical, or if each element of Y is categorical of di�erent type, i.e.

ordinal, nominal or count; for estimating the change-point, a model is estimated at

each (time) point and this can be computationally intensive; and there are approaches

that model the change-point nonparametrically for the joint distribution of (X,Y ), but

not for the relationship between Y and X, and thus this approach is too general for

our purpose.

In the current research, we avoid the complications of modeling f1 and f2. Instead,

we will test (4.2) by creating a test statistic based on the distance covariance (DC). The

DC statistic, denoted by V 2(X,Y ) for the DC between X and Y , can evaluate how

strong the statistical dependence between two random vectors is. The larger the value

the stronger the dependence. A value of DC of exactly 0 is equivalent to statistical

independence. In the current context, we will construct two DCs between two random

vectors, one before and one after a given potential change point τ∗. If the di�erence

between these two DCs is large for this speci�c τ∗, then this will provide evidence that

τ∗ constitutes a change-point. We will look at all such di�erences, times a rate, across

all possible τ 's and select the one position that maximizes this di�erence and denoted

this τ̂ ; this will be our estimator of the change-point.

One caveat is that, while looking at changes of sample DC before and after a
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change point τ∗, if the distribution of X changes while its relationship to Y remains

intact, then this will generate slight di�erences in the sample DC that are not at-

tributable to changes in the relationship between Y and X before and after τ∗. Hence,

for the sake of stability, while evaluating if a given τ∗ constitutes a true change point,

the marginals of all the sample data of X and Y before τ∗ will be transformed to be

discrete uniform. The same will be done for all data marginals of X and Y after τ∗.

Then, for this τ∗, the di�erence in DC will be assessed by using this uniformly trans-

formed data instead of the original data. The uniform transformation will be performed

anew for each potential change point and τ̂ will be chosen to be the one that maximizes

the di�erence in DC. This will allow the estimator τ̂ to be less sensitive to changes in

marginal distribution that are not related to changes in the relationship of X and Y .

We will give more details of the transformation in Section 4.3.4.

Once an estimate τ̂ of the change point is attained, it is important to evaluate if

it constitutes a true change point. The reason is that change point estimators always

provide a change point regardless of whether one exists or not. Then, a test of the

existence of the change point should be performed. One can test a similar set of

hypotheses as (4.2) to accomplish this by testing instead

H0 ∶V
2(X1, Y1) = ⋯ = V 2(XT , YT ),

HA ∶⋯ = V 2(Xτ , Yτ) ≠ V 2(Xτ+1, Yτ+1) = ⋯,

(4.3)

for some unknown τ . Our main assumption is that, if the change-points described in

(4.1) exists, then V 2(Xτ , Yτ) ≠ V 2(Xτ+1, Yτ+1), meaning that, if a change-point exist

then, that change-point will be accompanied with a di�erence in DC before and after

the change-point.

A test can be performed by permuting the order of the sequence (Yt,Xt) for
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t = 1, . . . , T and recalculating the test statistic many times to create a null distribution.

Among the virtues of this estimation and testing procedure are that no form for f1 and

f2 need ever be speci�ed, that the test statistics is easy to compute and requires no

regularization, and that it can accommodate any kind of data of any dimension.

4.3.2 Distance Covariance

Distance covariance was developed by Székely et al. (2007), Székely et al. (2009),

and Székely and Rizzo (2013). For random variables X ∈ Rp and Y ∈ Rq, let φx,

φy and φx,y be the characteristic function of X, Y and (X,Y ), respectively. Assume

that E∣X ∣p < ∞ and E∣Y ∣q < ∞. Distance covariance (V ) can be used to measure the

dependence between X and Y through the distance

V 2(X,Y ) =∣∣φx,y(t, s) − φx(t)φy(s)∣∣
2

=

ˆ
Rp+q

∣φx,y(t, s) − φx(t)φy(s)∣
2(cpcq ∣t∣

1+p
p ∣s∣1+qq )−1dtds

with cd =
π(1+d)/2

Γ((1+d)/2) and ∣ ⋅ ∣p is the Euclidean norm in Rp. If X /⊥ Y then V 2(X,Y ) will

be greater than 0. otherwise if X ⊥ Y then it will be exactly 0. Distance variance can

be de�ned as V 2(X) = V 2(X,X). The distance correlation between X and Y is the

nonnegative number DC(X,Y ) de�ned by

DC(X,Y ) =
V 2(X,Y )

√
V 2(X)V 2(Y )

if V 2(X)V 2(Y ) > 0 and equals 0 otherwise. The distance covariance statistic are

de�ned as follows. For an observed random sample {(Xk, Yk) ∶ k = 1, ..., n} from the
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joint distribution of random vectors (X,Y ) ∈ Rp ×Rq, de�ne

akl =∣Xk −Xl∣p, āk⋅ =
1

n

n

∑
l=1

akl, ā⋅l =
1

n

n

∑
k=1

akl,

ā⋅⋅ =
1

n2

n

∑
k,l=1

akl, Akl = akl − āk⋅ − ā⋅l + ā⋅⋅

for k, l = 1, ..., n. Similarly, de�ne bkl = ∣Yk − Yl∣q and Bkl = bkl − b̄k⋅ − b̄⋅l + b̄⋅⋅ for k, l =

1, ..., n. The empirical distance covariance Vn(X,Y ) and distance variance Vn(X) are

the nonnegative numbers de�ned by

V 2
n (X,Y ) =

1

n2

n

∑
k,l=1

AklBkl and V 2
n (X) = V 2

n (X,X) =
1

n2

n

∑
k,l=1

A2
kl.

The empirical distance correlation DCn(X,Y ) is de�ned as

DC2
n(X,Y ) =

V 2
n (X,Y )

√
V 2
n (X)V 2

n (Y )

if V 2
n (X)V 2

n (Y ) > 0 and 0 otherwise. Both V 2
n (X,Y ) and DC2

n(X,Y ) are a.s. consis-

tent for V 2(X,Y ) and DC2(X,Y ), respectively.

4.3.3 Unbiased Distance Covariance

The estimator V 2
n (X,Y ) is a V-statistic which is biased for V 2(X,Y ), with bias

disappearing asymptotically. Below we present an unbiased estimator of V 2(X,Y ) in

the form of a U-statistic.

Theorem 4.3.1 (U-Statistic). The statistic de�ned as

U 2
n (X,Y ) =

1

n(n − 3)
[Tr(KL) +

1TK11TL1

(n − 1)(n − 2)
−

2

n − 1
1TKL1],

where K and L are n×n matrices with Ki,j = ∣Xi −Xj ∣p and Li,j = ∣Yi −Yj ∣q, is unbiased
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for V 2(X,Y ) and is a U-statistic.

Proof: This follows immediately from Theorem 1 and 2 of Bounliphone et al.

(2014), which follows Song et al. (2012) very closely, by replacing the Gaussian kernels

with Euclidean distances instead.2.

We choose to use the estimator U 2
n (X,Y ) because from our numerical results it

performs better than V 2
n (X,Y ) in the context of the change point problem.

4.3.4 Change Point Estimator

We will consider the data mechanism described in 4.1 where are pair of multi-

variate data (Yt,Xt) is observed sequentially over an index t = 1, . . . , T . For all τ̃ ∈

{1, . . . , T}, let X∗(τ̃−) = {X1, ...,Xτ̃}, Y ∗(τ̃−) = {Y1, ..., Yτ̃}, X∗(τ̃+) = {Xτ̃+1, . . . ,XT},

and Y ∗(τ̃+) = {Yτ̃+1, . . . , YT}. Note that X∗(τ̃−), Y ∗(τ̃−),X∗(τ̃+), Y ∗(τ̃+) ∈ Rτ̃×p,Rτ̃×q,

RT−τ̃×p and RT−τ̃×q, respectively. The data X∗(τ̃−), X∗(τ̃+), Y ∗(τ̃−), and Y ∗(τ̃+) will

be transformed so that all their marginals are discrete uniform. This is always possible

to do whenever (Yt,Xt) are continuous. This is described below.

Discrete Uniform Transformation

Let X∗
t,j(τ̃−) and Y

∗
t,j(τ̃−) be the t × j entry of X∗(τ̃−) and Y ∗(τ̃−), respectively. For

a �xed τ̃ and j, let O(X∗
t,j(τ̃−)) be the rank of X∗

t,j(τ̃−) among all the τ̃ observations

in the j-th column vector of X∗(τ̃−). For a �xed τ̃ and j, let O(X∗
t,j(τ̃+)) be the

rank of X∗
t,j(τ̃+) among all the T − τ̃ observations in the j-th column vector of X∗(τ̃+).

Similar de�nitions follow for O(Y ∗
t,j(τ̃−)) and O(Y ∗

t,j(τ̃+)). Then, we de�ne the uniform

transformed data of X∗(τ̃−) and X∗(τ̃+) as

Xt,j(τ̃−) =
O(X∗

t,j(τ̃−))

τ̃
and Xt,j(τ̃+) =

O(X∗
t,j(τ̃+))

T − τ̃
,
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for all j = 1, . . . , p. Similarly, the uniform transformed data of Y ∗(τ̃−) and Y ∗(τ̃+) is

Yt,j(τ̃−) =
O(Y ∗

t,j(τ̃−))

τ̃
and Yt,j(τ̃+) =

O(Y ∗
t,j(τ̃+))

T − τ̃
,

for all j = 1, . . . , q. Following this transformation, we work exclusively with X(τ̃−),

X(τ̃+), Y (τ̃−) and Y (τ̃+).

The reason to do the transformation is that we care about the dependence between

Yt and Xt, but not the marginal distributions and so we do not want to be sensitive to

changes in them. One can see that the change point estimator (4.5) could be a�ected by

changes in the marginal distribution ofXt or Yt along t, were the uniform transformation

is not applied, even though the relationship between Yt and Xt remains intact. While

using the transformation, changes in the marginals cannot perturb the estimate τ̂ . This

is the reason for the use of X(τ̃−), X(τ̃+), Y (τ̃−) and Y (τ̃+).

We de�ne the absolute di�erence between two DCs, one using only data up to τ̃

and the other one using only data after τ̃ as

∆U 2
n (X,Y ; τ̃) = ∣U 2

n (X(τ̃−), Y (τ̃−)) −U 2
n (X(τ̃+), Y (τ̃+))∣. (4.4)

Intuitively, the statistic ∆V 2
n (X,Y ; τ̃) will tend to be very small if the sample DC

between Yt and Xt changes little before and after τ̃ . This will tend to happen if

the relationship between Yt and Xt remains unchanged before and after τ̃ . On the

other hand, ∆V 2
n (X,Y ; τ̃) will tend to be big if the sample DC between Yt and Xt

changes signi�cantly before and after τ̃ , and this will tend to happen if the relationship

between Yt and Xt changes substantially before and after τ̃ . Therefore, large values of

∆U 2
n (X,Y ; τ̃) provide evidence that τ̃ is a change point.

If a change point is believed to exist, it makes sense to estimate the change point
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as the τ̃ that maximizes ∆U 2
n (X,Y ; τ̃) (times a rate). In such a procedure, we would

be selecting the τ̃ that has the greatest evidence to be a change point. We will show

in Theorem 4.3.2 that a(τ̃) ⋅∆U 2
n (X,Y ; τ̃) will attain its maximum at the true change

point τ , with probability tending to 1 under some conditions and as T increases, where

a(τ̃) =
√
τ̃(T − τ̃)/T . Then, our estimator of the change point is

τ̂ = arg max
τ∈{1,...,T}

a(τ) ⋅∆U 2
n (X,Y ; τ). (4.5)

Then, τ̂ is the point along the sequence that maximizes the di�erence in DC between

Yt and Xt. Hence, if a di�erence in the relationship between Yt and Xt happens, it will

translate into a di�erence in DC, and thus it will correspond to a maximum di�erence

at τ̂ .

The following theorem shows that as the number of observation along the sequence

increases (T →∞), the estimator in (4.5) is consistent for the true change point.

Theorem 4.3.2 (Consistency). Assume the data mechanism describe in (4.1). Let

DC1 = DC(Xt, Yt) for t = 1, . . . , τ , and DC2 = DC(Xt, Yt) for t = τ + 1, . . . , T . Assume

DC1 ≠DC2. Moreover, let {δT} be a sequence such that δT ∈ [0,1], δT → 0 and TδT →∞

as T →∞. Then, as T →∞ and for all ε > 0,

Pr(∣
τ

T
−
τ̂

T
∣ > ε) = 0.

Proof: Similar to the proof of theorem 1 of Matteson and James (2014) and it is given

in Appendix B.

The assumption that DC1 ≠DC2 is our identi�ability assumption, meaning that di�er-

ences in f1 and f2 will translated into di�erences in DC1 ≠DC2. The case DC1 =DC2

would correspond to the null hypothesis in (4.3). In which case τ̂ is not consistent
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because the true τ vanishes. This is why it is important to test (4.3).

4.3.5 Test Statistic and Null Distribution

As it is common in change point problems, we want to test whether the change

point estimated τ̂ actually exists. This is so because, by using (4.5), we will always get

an estimate of the change point, whether or not one exists. Testing for the existence of

the change point is equivalent to testing (4.3). The test statistics to be used will be

max
τ∈{1,...,T}

a(τ) ⋅∆U 2
n (X,Y ; τ). (4.6)

Under the alternative that there exist a change point, (4.6) will grow large as T →∞. To

derive a null distribution for (4.6) a permutation strategy is used. Let πb for b = 1, . . . ,B,

denote random permutations of the ordered indices {1, . . . , T}. Let (Yπb(t),Xπb(t)) be

the pair of multivariate observations observed sequentially over the index t, but with

the index permuted by πb. Then, B such permuted statistics are calculated as

max
τ∈{1,...,T}

a(τ) ⋅∆U 2
n (Xπb , Yπb ; τ), for b = 1, . . . ,B. (4.7)

The B permuted statistics in (4.7) will form the null distribution for the test statistic in

(4.6). If a change point τ exists, but we permute the data (Yt,Xt) along the sequence

t with πb, we are e�ectively simulating the null hypothesis, because we are destroying

the di�erences that exist before and after τ . By permuting by πb any di�erences will

be averaged out by the permutation, and the relationship between Yt and Xt will be
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on average the same across all t. The p-value of the test can be calculated as

p-value =
1

B

B

∑
b=1

I(∣ max
τ∈{1,...,T}

a(τ) ⋅∆U 2
n (X,Y ; τ)∣ ≤ ∣ max

τ∈{1,...,T}
a(τ) ⋅∆U 2

n (Xπb , Yπb ; τ)∣),

(4.8)

which corresponds to calculating the proportion of times the B permuted statistics in

(4.7) were larger than the observed statistic in (4.6).

If the null hypothesis in (4.3) is rejected at α level with estimated change point τ̂1,

then we can test whether there exist further change points within the new 2 intervals

created before and after τ̂1, namely {1, . . . , τ̂1} and {τ̂1 + 1, . . . , T}. Each test can be

performed at the α/2 level. This preserves the family-wise error rate. Further partitions

can be created and change points can be estimated in this hierarchical fashion.

4.4 Simulation Results

4.4.1 Type I Error

To evaluate the type I error and the power of the test and the estimation error of

the change point estimator, we carried out simulation studies under 3 major con�gu-

rations. For all simulations scenarios, let ηT×2 be a matrix of dimension T × 2, XT×3 be

a matrix of dimension T × 3, YT×2 be a matrix of dimension T × 2, where T denotes the

number of samples observed in a sequence. The tth row of each matrix will be denoted

by a subscript t as ηt, Xt and Yt. Each (i, j)th entry of ηT×2 is an i.i.d sample from a

standard normal distribution. T will take as values 100, 200 and 300. For the power

calculations, τ will have as values 0.3T , 0.5T and 0.7T , and will be allowed to vary as

T varies. Each scenario was simulated 10,000 times. We provide 3 simulation scenarios

that represent a variety of possible applications, for both type I error and power. We
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mainly focus on the mean absolute error (MAE) to assess the estimation error and on

power to assess the test performance.

Linear Relationship The entries of XT×3 are i.i.d. samples from a standard uniform

distribution. The rows of YT×2 are generated given the following mechanism:

Yt,1 = { Xt,1 +Xt,2 + ηt,1 for t = 1, ..., T,

Yt,2 = { Xt,2 +Xt,3 + ηt,2 for t = 1, ..., T.

In this scenario, Yt remains linear in Xt throughout and no change happens along

t = 1, . . . T . It can be seen that it would be di�cult to evaluate this situation for

a change point if it was not known in advance that the relationship is linear. From

table (4.1) we see that the method performs well. The MAE decreases and the power

increases as the sample size increases.

Table 4.1: Linear Association

Type I Error

T α = 0.01 α = 0.05

100 0.0127 0.0501
200 0.0108 0.0512
300 0.0102 0.0523

T is the sample size.

Nonexistent Relationship The entries of XT×3 are i.i.d. samples from a standard normal

distribution. The rows of YT×2 are generated given the following mechanism:

Yt,1 = { ηt,1 for t = 1, ..., T,
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Yt,2 = { ηt,2 for t = 1, ..., T.

This scenario is important because it exempli�es many situations where a change point

is believed to exist but the two sets of random variables are actually independent. This

can happen in an applied set-up where many pairs of random variables are evaluate for

change points, and many have no relationship at all. From table 4.2 we see that the

method preserves the correct type I error within Monte Carlo error.

Table 4.2: Nonexistent Relationship

Type I Error

T α = 0.01 α = 0.05

100 0.0116 0.0527
200 0.0109 0.0520
300 0.0107 0.051

T is the sample size.

Quadratic Relationship The entries of XT×3 are i.i.d. samples from a standard normal

distribution. The rows of YT×2 are generated given the following mechanism:

Yt,1 = { Xt,1 +Xt,2 + 2X2
t,1 + 2X2

t,2 + ηt,1 for t = 1, ..., T,

Yt,2 = { Xt,2 +Xt,3 + 2X2
t,2 + 2X2

t,3 + ηt,2 for t = 1, ..., T.

This scenario is relevant because it shows a situation where it would be di�cult to

model parametrically the relationship between Y and X without knowing a priori the

their relationship. From table (4.3) we see that the method performs well.
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Table 4.3: Quadratic Relationship

Type I Error

T α = 0.01 α = 0.05

100 0.0109 0.0521
200 0.0113 0.0478
300 0.0114 0.0491

T is the sample size.

4.4.2 Power

From Linear to a Quadratic Relationship The entries of XT×3 are i.i.d. samples from

a standard uniform distribution. The rows of YT×2 are generated given the following

mechanism:

Yt,1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Xt,1 +Xt,2 + ηt,1 for t = 1, ..., τ

Xt,1 +X2
t,1 +Xt,2 +X2

t,2 +Xt,1Xt,2 + ηt,1 for t = τ + 1, ..., T,

Yt,2 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Xt,2 +Xt,3 + ηt,2 for t = 1, ..., τ

Xt,2 +X2
t,2 +Xt,3 +X2

t,3 +Xt,2Xt,3 + ηt,2 for t = τ + 1, ..., T,

for di�erent τ . In this scenario, the relationship changes from being linear to quadratic

plus an interaction. This represents a situation where the relationship starts o� simply,

but after a change point, it becomes more complex and stronger (in terms of distance

correlation). This is a typical set-up for a change point problem. However, it can be seen

that it would be di�cult to evaluate this situation using a change point methodology

that uses a linear regression to model the data. Even though before τ the relationship

between the Y and X is linear, but after it has multiple quadratic terms plus an

interaction. This would be di�cult to model using linear regression when estimating
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the change point if it is not known a priori that the change will take this form. This is

even more problematic in the current scenario where what we are really interested in

is a multivariate relationship. From table (4.4) we see that the method performs well.

The MAE decreases and the power increases as the sample size increases.

Table 4.4: From Linear to Quadratic Relationship

T τ MAE Power 0.01 Power 0.05

100 30 11.4% 0.29 0.541
100 50 7.3% 0.43 0.66
100 70 6.3% 0.34 0.53
200 60 10.3% 0.62 0.84
200 100 6.8% 0.76 0.92
200 140 5.1% 0.70 0.86
300 90 8.7% 0.84 0.95
300 150 4.9% 0.93 0.98
300 210 4.4% 0.88 0.96
T is the sample size, τ is the change point,

and MAE is the mean absolute error.

From a Nonexistent Relationship to a Linear Relationship The entries of XT×3 are i.i.d.

samples from a standard normal distribution. The rows of YT×2 are generated given the

following mechanism:

Yt,1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ηt,1 for t = 1, ..., τ

0.5Xt,1 + 0.5Xt,2 + ηt,1 for t = τ + 1, ..., T,

Yt,2 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ηt,2 for t = 1, ..., τ

0.5Xt,2 + 0.5Xt,3 + ηt,2 for t = τ + 1, ..., T,

for di�erent τ 's. This scenario is important because it exempli�es many situations where
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two random variables are initially independent, but after a change point, a relationship

now exists. In this scenario, the relationship after the τ is linear, but our method would

be able to detect all other forms of deviations from statistical independence between

Y and X. This makes our method ideal for applications where the a priori assumption

is that there exists no dependence between the 2 vectors of interest. From table (4.5)

we see that the method performs well. Moreover, it seems to have greater power and

lower MAE than the other 2 scenarios presented here.

Table 4.5: From Nonexistent to Linear Relationship

T τ MAE Power 0.01 Power 0.05

100 30 13.6% 0.44 0.64
100 50 8.1% 0.64 0.79
100 70 3.8% 0.60 0.72
200 60 12.9% 0.74 0.91
200 100 7.9% 0.89 0.97
200 140 3.3% 0.87 0.95
300 90 9.8% 0.84 0.93
300 150 7.5% 0.95 0.99
300 210 2.4% 93 0.98
T is the sample size, τ is the change point,

and MAE is the mean absolute error.

From a Quadratic to a Cubic Relationship The entries of XT×3 are i.i.d. samples from

a standard normal distribution. The rows of YT×2 are generated given the following

mechanism:

Yt,1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Xt,1 +Xt,2 + 2X2
t,1 + 2X2

t,2 + ηt,1 for t = 1, ..., τ

2X3
t,1 + 2X3

t,2 + ηt,1 for t = τ + 1, ..., T,
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Yt,2 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Xt,2 +Xt,3 + 2X2
t,2 + 2X2

t,3 + ηt,2 for t = 1, ..., τ

2X3
t,2 + 2X3

t,3 + ηt,2 for t = τ + 1, ..., T,

for di�erent τ 's. This scenario is relevant because it shows a situation where it would

be di�cult to model parametrically the relationship between Y and X without knowing

a priori the their relationship. Therefore, if one were to estimate a change point by

creating a parametric model, all this information would be required before hand. The

situation becomes more dire if the relationship happens to be multivariate as it is in

this scenario. Even though in this case the relationship goes from quadratic to cubic,

our method can potentially capture any form of change in relationship. From table

(4.6) we see that the method performs well.

Table 4.6: From Quadratic to Cubic Relationship

T τ MAE Power 0.01 Power 0.05

100 30 11.6% 0.49 0.73
100 50 7.0% 0.62 0.81
100 70 3.1% 0.52 0.71
200 60 10.6% 0.86 0.96
200 100 6.2% 0.93 0.98
200 140 3.5% 0.88 0.96
300 90 9.1% 0.97 0.99
300 150 4.8% 0.99 0.99
300 210 3.1% 0.99 0.99
T is the sample size, τ is the change point,

and MAE is the mean absolute error.

General Comments on Power Simulations From all 3 simulation scenarios, we see that

the test of existence of the change point is most powerful when the change point is

located closest to the the middle of the sequence. In other words, whenever τ = 0.5/T ,

the test is more powerful compared to the other cases (i.e., τ = 0.3T and τ = 0.7T ).
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This makes intuitive sense, because whenever τ/T ≈ 0.50, there is the same amount of

observations before and after τ . On the contrary, when one side has more data than

the other, this a�ects the ability of the test statistic to estimate the changes in distance

covariance.

Another important observation is that, the estimation error evaluated by MAE

is smallest whenever τ/T ≈ 0.7. This is in part because of how our simulations were

created. If we look at the distance correlation between Y and X before and after

τ , distance correlation is always lower before the change point compared to after the

change point. For instance, in the second scenario, the distance correlation between

Y and X was 0 before the change point, whereas after the change point it was > 0.

Therefore, MAE would be smallest whenever more data is available to estimate a weak

relationship before the change point, and this happens whenever τ = 0.7T compared to

our other simulation parameters. However, had we had done the reverse, meaning that

the relationship between Y and X was stronger before τ but weaker after it, we would

have also observed the reverse: a smaller MAE whenever τ = 0.3T .

4.5 Data Analysis

4.5.1 Metabolic Chamber Data

Measurements of BG, insulin on board (IOB) and EE on a male subject with

T1D were conducted in a metabolic chamber. The participant arrived at the metabolic

chamber at night and measurements started at 8:33 pm on Day 1 and lasted until 7:13

pm the next day, denoted by Day 2. Measurements were taken at 5 minutes intervals

for a total of 273 observations. A similar proof of concept study was developed in

Maahs et al. (2012), but instead of EE, accelerometer data was collected. The data for
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detrended BG, IOB and EE is displayed in �gure 4.1. This is the data we will work

with. We detrended the data so that the mean of the times series would be 0. This

makes the data satisfy the i.i.d. assumption at each time point.

Figure 4.1: Detrended IOB, EE and BG

The three time series were detrended so that that they can ful�ll the i.i.d. assumption.

The present value of BG can be a�ected by the present value of EE and IOB,

but also by past or lagged values of EE and IOB. Moreover, it is known that there

is a delayed e�ect of EE on BG, meaning EE really a�ects BG in the future and not

immediately. Also, IOB has a lasting e�ect on BG. However, it can be di�cult to

know exactly how long this delayed e�ect is and at what time gap it is strongest, for

both IOB and EE. In addition to these complicated time dynamics, the relationships

between BG and EE, and between IOB and BG, are not necessarily linear and can

include interactions among the lagged values. All these dynamics will be accounted for

and dealt with by our method.
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4.5.2 Changes in the E�ect of EE and IOB on BG

We are going to use metabolic chamber data to establish if changes in the e�ect

of EE and IOB on BG exist. Because we are uncertain on the time delay of the e�ect

of both EE and IOB on BG, and the number of possible lagged values involved, we will

incorporate into our analysis multiple values of EE, IOB and BG from di�erent time

points. Speci�cally, we will use the present values of EE, IOB and BG, as well as the

values of EE and IOB every 20 minutes going back up to 1 hour into the past, and

the values of BG every 20 minutes going forward up to 1 hour into the future. Our

analysis will be performed jointly on EE and IOB and their lagged values, and on BG

and its future values. This strategy allows us to evaluate the e�ect of EE and IOB

on BG while capturing delayed e�ects up to 2 hours, lagged values, and interactions

among lagged values, without specifying them explicitly. Moreover, this is accomplished

nonparametrically, meaning that we never specify the relationship between EE and BG,

or between IOB and BG. This is possible because our methodology makes use of DC,

which can capture dependencies of any type between multivariate random vectors.

We denote by BGt(0), BGt(+20), BGt(+40) and BGt(+60), the value of BG at

time t, and 20, 40, and 60 minutes into the future from t, respectively. We denote by

EEt(0), EEt(−20), EEt(−40) and EEt(−60), the value of EE at time t, and 20, 40,

and 60 minutes into the past from t, respectively. We ascribe the same meaning to

IOBt(0), IOBt(−20), IOBt(−40) and IOBt(−60). We de�ne three vectors as

BGt ={BGt(0),BGt(+20),BGt(+40),BGt(+60)},

EEt ={EEt(0),EEt(−20),EEt(−40),EEt(−60)},

IOBt ={IOBt(0), IOBt(−20), IOBt(−40), IOBt(−60)}.
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We are interested if any change points exist in the relationship between {EEt, IOBt}

and BGt. The hypotheses that we will perform are as follow:

H0 ∶V
2({EE1, IOB1},BG1) = ⋯ = V 2({EET , IOBT},BGT ),

HA ∶⋯ = V 2({EEτ , IOBτ},BGτ) ≠ V 2({EEτ+1, IOBτ+1},BGτ+1) = ⋯,

(4.9)

for some unknown change point τ . We also believe that there can be multiple change

points, and we test for multiple points hierarchically. At a �rst stage, we test for the

existence of any change point in the whole period of stay in the metabolic chamber. If

the null is rejected, then at a second stage, we test if there exist a change point before

and after the �rst change point discovered on the �rst stage. We continue until we are

not able to reject the null anymore. This strategy will generate separate time intervals.

Each interval will correspond to a section of time where the e�ect of EE and IOB on

BG is di�erent from the other time intervals. However, our goal is to hone in into the

e�ect that EE has on BG, and how this e�ect changes.

Consequently, we will examine the relationship between EE and BG within each

time interval discovered. For each time interval, a smoothing spline will be �tted with

BG as outcome and EE as independent variable. This will be performed at di�erent

time gaps between EE and BG: concurrent values (no time gap), 1 hour time gap, and

2 hours time gap. If we see that the �tted smoothing spline is di�erent within each time

interval, this will help us visualize how the relationship between EE and BG changes.

The result of this is shown in �gures 4.2 to 4.4 in the next subsection. We will create a

series of linear models within of the time intervals found at di�erent time gaps where

the outcome is BG and the variables are IOB and EE. Moreover, we expect IOB and

EE to have di�erent coe�cients within each time intervals discovered by our change

point methodology. If there is a di�erence in the coe�cient of EE across time intervals,

this will indicate that its e�ect on BG is in fact di�erent.
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Hereafter, we will evaluate if there exist changes in the distribution of EE or IOB

across the time intervals found. Theory predicts that changes in IOB and intensity of

EE can modify the relationship between BG and EE. We will evaluate changes in EE

and IOB between time intervals using the Kolmogorov-Smirnov test. If changes exist,

then it is possible that the change points occur because of this reason.

4.5.3 Testing for Change Points and Illustration of the Time Intervals

We start by testing if there exists a change point for the e�ect of {EEt, IOBt} on

EEt. We applied the estimator (4.5) and detected a change point at 3:33 pm on day

2. This change point has a signi�cant p-value as shown on table 4.7. We performed a

test of existence of a change point in the time interval 8:33 pm on day 1 to 3:33 pm on

day 2. We �nd a signi�cant change point at 9:58 am on day 2. We did a further test

between 8:33 pm on day 1 and 9:58 am on day 2. We estimate a change point at 4:13

am on day 2, but this change point is not statistically signi�cant. Therefore, we found

a total of 2 change points which provides us with 3 separate time intervals: from 8:33

pm on day 1 to 9:58 am on day 2, from 10:03 am to 3:33 pm on day 2 , and from 3:38

pm to 7:13 pm on day 2.

Table 4.7: Change Points

Stage p-value Sign. Time(τ̂) Time Range
I 0.00001∗ 0.05 3:33 pm on day 2 8:33 pm on day 1 to 7:13 pm on day 2
II 0.006∗ 0.025 9:58 am on day 2 8:33 pm on day 1 to 3:33 pm on day 2
III 0.694 0.0125 4:13 am on day 2 8:33 pm on day 1 to 9:58 am on day 2

In �gures 4.2 through 4.4, BG is represented on the y-axis and EE on the x-axis.

Each �gure has three plots corresponding to the three time intervals created by splitting

the 23 hours of stay in the chamber where the change points are signi�cant as given
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in table 4.7. For each of the time intervals discovered, BG and EE are standardized

to be discrete uniform. Thus within each interval, there are no di�erences in the

marginal distributions of BG and EE. For each of the three time intervals, the results

of a smoothing spline �t where the transformed BG and EE are used as dependent

and independent variable are displayed. Figures 4.2 to 4.4correspond to di�erent time

gaps between BG and EE, concurrent values, 1 hour time gap and 2 hours time gap,

respectively.

Figure 4.2: Concurrent BG and EE

Each plot corresponds to a time interval found by the change point estimator. The lines are smoothing
splines �t to the data which has been standardized to be uniform within each interval.

In �gure 4.2, corresponding to concurrent values of BG and EE, we see that in the

�rst time interval the relationship between BG and EE seems to be linear and negative,

but very weak. However, on the next time interval the relationship almost disappears.

On the last time interval, the relationship becomes overall positive, quadratic and

strong. In �gure 4.3, corresponding to the 1 hour gap between BG and EE, in the

�rst time interval the relationship is linear, positive, but almost nonexistent. In the

second time interval the relationship becomes negative and stronger compared to the

�rst time interval. On the last time interval, the relationship remains negative but

stronger compared to the two previous time intervals. Figure 4.4 corresponds to a time

gap of 2 hours. In the �rst time interval, the relationship is overall negative, sinusoidal
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and very strong. In the next two intervals the relationship becomes linear, but remains

negative, with the relationship being stronger on the last time interval. From �gure

4.2 to 4.4, we can derive some interesting observations. The relationship between BG

and EE seem to be strongest in the last time interval across the three time gaps shown.

Moreover, the relationship seems to be overall linear, even though there are a couple of

instances, that seems to be quadratic and even sinusoidal. Moreover, it seems that the

relationship is strongest between BG and EE at 2 hour gap, even though it seems also

to be strong in the third time interval for concurrent values.

Figure 4.3: 1 Hour Gap Between BG and EE

Each plot corresponds to a time interval found by the change point estimator. The lines are smoothing
splines �t to the data which has been standardized to be uniform within each interval.

Nevertheless, given that the use of IOB also a�ects BG and is correlated with EE,

it is hard to arrive at a conclusion from these �gures. Consequently, there is a need to

adjust for IOB. We created three linear models within each of the three time intervals

created by the change points estimated in table 4.7 with BGt(60) as outcome and as

independent values all the lagged values of IOB and EE. We choose the farthest value

in the future of BG because this seems to be when the relationship was strongest with

EE by inspection of the smoothing spline plots in �gures 4.2 to 4.4. The models are
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Figure 4.4: 2 Hours Gap Between BG and EE

Each plot corresponds to a time interval found by the change point estimator. The lines are smoothing
splines �t to the data which has been standardized to be uniform within each interval.

de�ned as

BGt(60) = β0,i + β1,iEEt(0) + β2,iEEt(−20) + β3,iEEt(−40) + β4,iEEt(−60)

+ β5,iIOBt(0) + β6,iIOBt(−20) + β7,iIOBt(−40) + β8,iIOBt(−60) + εt,

with t ∈ J(i), i = 1,2,3, and each J(i) represents the three time interval found by our

change point estimator. The results are shown on table (4.8).

It can be seen that the coe�cients related to EEt change from interval to interval,

even after adjusting for IOBt. In terms of absolute value of their coe�cients, all four

lagged values of EE seem to be important. However, this importance changes from

interval to interval. In �gure 4.5, we displayed the coe�cients of EEt over the three

intervals, the y-axis denotes the value of the coe�cient, and each line corresponds to

a sequence of coe�cients associated with one of the lagged values of EE as it changes

from time interval to the next. Larger boxes indicate more signi�cant (smaller p-values)

results. From Figure 4.5 some interesting observations can be made. Moving from the

�rst time interval to the second one, half the coe�cients decreased in value, while the

other half increased in value. However, the coe�cients that decreased in value were not
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very signi�cant and were close to 0 at the �rst time interval. More interesting, going

from the second time interval to the third, all the coe�cients associated with EEt

decreased in value. These results are interesting given that in the �rst time interval,

not much activity was happening, in the second time interval activity rises and the

coe�cients change, and on the third time interval the coe�cients drop once again after

activity has receded.

Table 4.8: Linear Model with BGt(60) as Outcome

First Interval Second Interval Third Interval

Variables Estimate p-value Estimate p-value Estimate p-value

Intercept 0.162 0.598 -0.018 0.977 -0.054 0.909
EEt(−60) -8.271 0.021∗ -2.7827 0.001∗ -4.321 0.157
EEt(−40) 0.677 0.847 -0.8149 0.334 -2.336 0.538
EEt(−20) -1.774 0.513 2.8372 0.001∗ -8.140 0.053
EEt(0) 0.470 0.721 -1.739 0.056 -6.689 0.042∗

IOBt(−60) -0.630 0.646 0.073 0.880 -0.821 0.079
IOBt(−40) 0.734 0.600 -0.693 0.157 -0.827 0.098
IOBt(−20) -2.462 0.074 0.031 0.948 -0.354 0.444
IOBt(0) 0.567 0.669 -0.264 0.553 0.671 0.368

P-values signi�cant at the 0.05 level are denoted by an asterisk.

4.5.4 Distribution of Insulin and EE

It is believed that the relationship between BG and EE is a�ected by the intensity

of EE and the level of IOB in a T1D subject. While estimating change points in the

e�ect of EE and IOB on BG, we have created three separated time intervals. We

previously hypothesized that these change points discovered could potentially be due

to changes in the intensity of EE and IOB, which would translate in changes in their

distribution. Figure 4.6 shows the histograms of EE (left column) and IOB (right

column) for the three time intervals (rows). There is a general pattern where the
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Figure 4.5: Coe�cients from the Linear Model

Each partition of the graph corresponds to one time interval, and each square corresponds to a co-
e�cient shown on table 4.8. A line connecting several squares symbolizes the same coe�cient as it
changes from time interval to the next. Coe�cients with smaller p-values are represented with larger
symbols. The coe�cients represented are those of the present value EE and its lagged values every 20
minutes going back an hour.

distribution of both EE and insulin in the second time interval (second row) have

greater variance than the �rst or third time intervals (�rst and third rows). Hence, it

seems that at the second time interval there was a surge of EE and IOB.

We performed a series of Kolmogorov-Smirnov tests between the distributions of

�rst and second time interval, and the second and third time intervals of both EE and

IOB. A signi�cant Kolmogorv-Smirnov test would indicate that there exists a change

in distribution between these time intervals. The results are shown in Table 4.9. We

see that for both EE and insulin, their distribution had a signi�cant change between

the �rst and second time interval at 3:33 pm on the day 2. Moreover, the distributions

in the second and third time interval were also statistically di�erent, which can be seen
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on the histograms where they appear quite di�erent.

Table 4.9: Kolmogorov-Smirnov Tests

Test p-value Test p-value
EEI vs EEII 0.0001∗ IOBI vs IOBII 0.0001∗

EEII vs EEIII 0.0001∗ IOBII vs IOBIII 0.0001∗

Figure 4.6: Distribution of EE and IOB by Interval

Each color represents a di�erent interval of time. The intervals were created by separating time when
a change point was statistically signi�cant.

4.6 Conclusion and Discussion

We have developed a nonparametric change point methodology for the detection

of the change in the relationship between two multivariate vectors and applied it to

the analysis of metabolic chamber measurements on a T1D individual to gain insight

into the dynamics between EE and BG, while adjusting for IOB. The results show
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that changes in the e�ect EE has on BG do happen throughout the metabolic chamber

time series. These changes happen whenever the intensity of EE along with IOB use

increase, which happens at the same time in our data set. This supports the literature

that says the relationship between PA and BG is variable for a T1D individual.

In addition to this, we tried to reproduce our �ndings with another set of data on

the metabolic chamber, but with a shorter stay of only 8 hours. Our change point test

did not �nd any signi�cant change points. Nevertheless, we inspected the distributions

of both IOB and EE and we �nd similar patterns where there is an increase in both

IOB and EE after the change point estimated. Also, the distributions were signi�cantly

di�erent with respect to the Kolmogorov-Smirnov test. Even though it was not sig-

ni�cant, using the �rst change point estimated shows the same pattern found in the

analysis of the longer metabolic chamber stay.

Our methodology is nonparametric in the sense that we did not have to specify

explicitly the e�ect of EE and IOB on BG. In addition to this, we included a variety

of lagged values of IOB and EE that could potentially a�ect several values of BG into

the future. This allowed us to estimate change points without specifying the time gap

at which BG is a�ected most by EE, given that this is hard to know a priori. We set

up our estimation problem such that delayed e�ects of EE on BG of up to 2 hours can

be detected. After detecting two change points in the metabolic chamber time series,

creating three separated intervals, we perform an exploratory analysis where we look

at the relationship between EE and BG within each of the three time intervals, and

at di�erent time gaps. It seems that the relationship between EE and BG is strongest

whenever the time gap increases. We decided to inspect this further by creating a

linear model, within each time interval, with future BG as outcome, and several lagged

values EE and IOB as outcomes. We see that in fact, the coe�cients associated with

the lagged values of EE are quite di�erent from interval to interval.
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These results can be useful in the development of wearable technology and an

arti�cial pancreas. In such settings, it can be hard to model PA and BG dynamics, but

are incredibly important to the success of such devices. From the results of the current

article we can arrive at several recommendations for such devices. Lagged values of

PA are important, rigorously estimating the number needed would be bene�cial. More

importantly, it seems that the increase in PA is important in modifying the relationship

of PA and BG. Thus, it is important to include an interaction between an indicator

variable for PA past a certain threshold and the lagged values of PA. This would

capture the changes in relationship between PA and BG. A similar approach was used

in Colmegna et al. (2016) where their model incorporates many thresholds.

However, we want to emphasize that our method is very general and can be

applied to the analysis of other data sets where there is a need to �nd a change point

but it is di�cult to model the relationship between the data explicitly. Hence, this

methodology could be easily extended to genomics or environmental data sets where

change point problems tend to arise naturally.
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CHAPTER 5: NONPARAMETRIC CLUSTERING OF VARIABLES

5.1 Summary

In cancer research, it is important to correctly classify di�erent types of cancer

cells. A common practice for classi�er creation, is to aggregate variables in clusters and

summarize them using principal components. One popular way to create clusters of

variables is to do hierarchical clustering and select a prede�ned number of subgroups.

A notable drawback of existing hierarchical clustering of variables methods is that they

do not control the type I error rate which can lead to falsely joining variables that

are otherwise uncorrelated. More importantly, current methods have a bias towards

creating large groups variables, whereas it might be possible that the true hierarchy

has numerous clusters containing a small number of variables. We propose a statistical

approach that can cluster variables while preserving a prede�ned family wise error

rate. We accomplish this by turning the decision of whether joining clusters into a

hypothesis testing problem. We use a generalized version of correlation to be able

to test if two clusters are statistically independent or not. We demonstrate that the

error rate is preserved through simulations. The strength of our method is shown by

clustering gene expressions from single cell data coming from �ve primary glioblastoma

tumors. In particular, our method con�rms the variability in gene expression in di�erent

tumors, and principal components derived from our clusters classify single cells to their

corresponding tumor with good accuracy.
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5.2 Introduction

Hierarchical clustering is an extremely popular tool for detecting structure of data

in both samples and variables. This method has been used extensively in the �eld of

genomics, for classifying samples in subgroups but also detecting clusters of genes. In

this setting, hierarchical clustering has been used to detect meaningful subgroups of

genes within a cancer type that are associated with survival outcomes (Bhattacharjee

et al. (2001), Sørlie et al. (2001), Shen et al. (2007)). Hierarchical clustering algorithms

work in an agglomerative fashion meaning that, in the case of gene expressions, they

join individual genes one by one until all genes belong to the hierarchy. Unfortunately,

this type of analysis does not allow for genes to be uncorrelated with all other genes in

the data set. Also, hierarchical clustering analysis is biased towards aggregating genes

in very large groups, whereas the true structure could be small to medium size gene

clusters. This is particularly troublesome given that the number of genes that are truly

associated with survival may be in fact small. Another drawback is the measure used

to create the clusters of genes, for example average linkage and others. These measures

do not estimate a theoretical parameter, but are an ad hoc solution to the problem of

creating distance measures between groups of variables. Thus, these measure do not

really capture nonlinear dependency or interactions that could happen between groups

of variables.

Traditional strategies for selecting subgroups or clusters of variables while using

hierarchical clustering are to de�ne before hand a number of groups to be selected.

This requires providing the algorithm with knowledge not available in advance which

is usually chosen based on convenience, which can create potential biases. Another ap-

proach is to use the elbow rule which consists of drawing average linkage as a function

of the numbers of clusters and stop whenever an elbow shape is observed. Again, this
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has no theoretical guarantees and is biased towards large clusters of variables. Another

approach is to �nd a cut-o� to determine where the hierarchy should stop, but knowl-

edge of the appropriate cut-o� is required too (Langfelder and Horvath (2008)). The

bootstrap has been used to guide the decision of which clusters of variables to keep.

It can be used to to establish the reproducibility of the clusters by �xing the cluster

centers and to report for each gene the cluster-speci�c proportion of times it falls in

that cluster out of many samples (Van Der Laan and Bryan (2001), Van der Laan and

Pollard (2003)). A simpler approach is to create multiple replicates of the dendrogram

by repeatedly applying the cluster analysis to the bootstrap samples and a probability

value of a cluster is created as the frequency that it appears in the bootstrap repli-

cates (Suzuki and Shimodaira (2006)). Options other than the bootstrap are possible.

Another method improves the detection of outlying members of each cluster by identi-

fying preliminary clusters as branches that satisfy a minimum number of variables, and

variables too far from a cluster are excluded. Then, all previously unassigned genes are

assigned to the nearest cluster (Langfelder et al. (2008)). Unfortunately, none of these

methods deal with the problems discussed in the previous paragraph.

The current article aims to improve previous methodology on hierarchical cluster-

ing of variables. Our method deals with some of the issues with the current methodology

using several strategies. First, the output of our method is not required to be a com-

plete dendrogram. By complete dendrogram it is meant that all clusters join at the top

of the tree to form one big cluster. Secondly, our method does not use heuristics to

select cluster of variables, but instead relies on hypothesis testing in order to discover

groups of coexpressed genes, while controlling for the type I error rate. Thirdly, our

method does not have a bias towards large groups because it has control over the errors.

Lastly, our method uses distance covariance which evaluates the statistical dependence
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between clusters of groups, instead of relying on ad-hoc measures from the linkage fam-

ily. We call our method the Nonparametric Hierarchical Clustering (NCH) algorithm.

Our method then tackles the problems discussed previously by

� turning the decision of whether to create a cluster into a hypothesis testing prob-

lem,

� letting groups of variables come together into groups by discarding clusters that

are not signi�cant, and

� replacing average linkage by distance covariance which is a generalized version of

correlation.

Moreover, this whole procedure will be performed by controlling the FWER. This will

be accomplished by using the minP procedure with a modi�cation on the permutation

approach.

The rest of this article is organized as follow. In section 5.3, we describe our

algorithm. In section 5.4, we present our simulation studies that evaluate if the NHC

preserves the type I error rate. In section 5.5, we apply our method to a RNA-seq

single cell data set. We end with a discussion in section 5.6.

5.3 Nonparametric Hierarchical Clustering Algorithm

5.3.1 Distance Covariance

Here we present the the distance covariance (DC) statistic and test. DC was

developed by Székely et al. (2007), Székely et al. (2009), and Székely and Rizzo (2013).

For random variables X ∈ Rp and Y ∈ Rq, let φx, φy and φx,y be the characteristic

function of X, Y and (X,Y ), respectively. Assume that E∣X ∣p < ∞ and E∣Y ∣q < ∞.
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Distance covariance (V 2) can be used to measure the dependence between X and Y

through the distance

V 2(X,Y ) =∣∣φx,y(t, s) − φx(t)φy(s)∣∣
2

=

ˆ
Rp+q

∣φx,y(t, s) − φx(t)φy(s)∣
2(cpcq ∣t∣

1+p
p ∣s∣1+qq )−1dtds

with cd =
π(1+d)/2

Γ((1+d)/2) and ∣ ⋅ ∣p is the Euclidean norm in Rp. If X /⊥ Y then V 2(X,Y ) will

be greater than 0. otherwise if X ⊥ Y then it will be exactly 0. The DC statistic are

de�ned as follows. For an observed random sample {(Xk, Yk) ∶ k = 1, ..., n} from the

joint distribution of random vectors (X,Y ) ∈ Rp ×Rq, de�ne

akl =∣Xk −Xl∣p, āk⋅ =
1

n

n

∑
l=1

akl, ā⋅l =
1

n

n

∑
k=1

akl,

ā⋅⋅ =
1

n2

n

∑
k,l=1

akl, Akl = akl − āk⋅ − ā⋅l + ā⋅⋅

for k, l = 1, ..., n. Similarly, de�ne bkl = ∣Yk−Yl∣q and Bkl = bkl− b̄k⋅− b̄⋅l+ b̄⋅⋅ for k, l = 1, ..., n.

The empirical distance covariance V 2
n (X,Y ) is the nonnegative numbers de�ned by

V 2
n (X,Y ) =

1

n2

n

∑
k,l=1

AklBkl,

which is a.s. consistent for V 2(X,Y ). To test the hypotheses of independence between

X and Y de�ned as

H0 ∶ φxφy = φx,y and HA ∶ φxφy ≠ φx,y

the test statistic nV 2
n (X,Y ) can be used with a null distribution calculated by permu-

tation.
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5.3.2 Sketch of the Algorithm

Here we present a brief description of the algorithm before giving extensive details

on each of its components. The input of the algorithm will be a sample of size n of

p random variables, Xn
1 , ...,X

n
p . Common hierarchical agglomerative algorithms join

clusters one by one. Even though NHC is also an agglomerative algorithm, it does not

join clusters one by one, but instead proceeds by levels, and the collection of levels will

be called a tree. Each level corresponds to a collection of clusters. At the bottom of

the tree, level 0, each of the p variables are considered to be in p individual clusters.

Next, at level 1, individual clusters start coming together into bigger clusters. Many

clusters can come together at the same time to form a bigger cluster. This is the main

di�erence from current methods, that instead of clusters joining one by one, here, in

a given level, many clusters can come together as one. Individual clusters join into

bigger clusters whenever they are statistically correlated with other members already

present in the cluster, given a speci�ed signi�cance level. Next, at level 2, and in all

subsequent levels, the same happens, any clusters formed in the previous level that

are statistically correlated with other clusters are joined together to form a bigger

cluster. This continues to happen until there are no more signi�cant correlations or the

algorithm has reached a maximum number of levels speci�ed by the user. A sketch of

the procedure is shown below.

Sketch of NHC: The input of the algorithm will be Xn = {Xn
1 , ...,X

n
p }, the maximum

number of levels L, and the family wise error rate allowed at each level αl, for l = 1, ..., L,

satisfying αl > 0 and
L

∑
l=1
αl = α. Start with level 0 which includes p clusters each with

one variable. The iteration and level index are denoted both by i. Also, DC here will

be used for distance covariance test statistic de�ned in section 5.3.1 by nV 2
n (X,Y).

Moreover, DC(Xn
i ,X

n
j ) ≡ nV 2

n (Xn
i ,X

n
j ). DC or the plural DCs will be also used to

denote DC(Xn
i ,X

n
j ).
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Initialize i = 0.

Step 1.- Increase the level index i by 1.

Step 2.- Calculate all pairwise DCs among all the clusters in level i − 1.

Step 3.- All pairs of clusters which have a DC that is statistically signi�cant will be

joined together into one cluster. This cluster now belongs to the collection of

clusters at level i.

Step 4.- All other clusters will remain intact and be included as they were in level

i − 1 in level i.

Step 5.- If i = L stop the procedure. Otherwise, if no new clusters were created in the

current iteration, in other words, if the ith level is exactly the same as level i− 1,

stop the procedure and all the levels up to i − 1 will form the hierarchical tree.

Otherwise go back to the Step 1.

At Step 3, p-values for corresponding DCs will be adjusted in such a way that the

FWER can be preserved at the overall α level. Thus, it can be seen that variables

are only joined together in clusters if they happen to be statistically dependent with

each other, after adjusting for the error rate. The clusters generated by the algorithm

account for the uncertainty of the random data and contain variables that are related

to each other after a conservative error adjustment which is FWER. Moreover, since

our algorithm proceeds by levels, we can easily visualize which variables join together

in clusters at which level. At the �rst level we can visualize the variables that were

statistically dependent to other variables. At later levels, we will start to see which

groups of variables were dependent on other groups of variables. This will allow us to

see associations between individual variables as as well as among group of variables.

99



5.3.3 Formal De�nition of NHC

Here we present a detailed description of our method. The output of the NHC

algorithm is a tree structure with a hierarchy. The tree structure will be represented

by a set denoted by T . Each element of T is, in its turn, a collection of sets. Each

element of T represents a level of the tree hierarchy which will be denoted by Li, with

i = 0, ...K representing the levels. The ith level set, Li, is a collection of sets, each

representing a cluster, i.e., Li = {C1
i ,C

2
i , ...,C

Ki
i }, Ki is the number of clusters in this

level and Ck
i represents the kth cluster for the ith level. The lowest level of the tree, L0,

corresponds to the base of the tree, where there are p clusters with each including only

one variable, i.e., L0 = {C1
0 ,C

2
0 , ...,C

p
0} and Ck

0 = {Xk}. Clusters in higher levels are

always either exactly equal to some cluster in the previous level or a union of clusters

in the previous level. Hence, for level i and cluster Ck
i ∈ Li, we have C

k
i = ∪l∈∆C

l
i−1, for

C l
i−1 ∈ Li−1 for all l ∈ ∆ and some ∆.

For any given level i of the tree, the union of all its member clusters makes the full

set of variables, i.e, ∪Kik=1C
k
i = {X} = {X1, ...,Xp}, and all clusters are pairwise disjoint,

i.e, Ck
i ∩ C

l
i = {∅} for all k ≠ l. Also, for any two levels i and i′ such that i < i′, the

cardinality of the higher level is smaller than the lower one, i.e. ∣Li∣ ≥ ∣Li′ ∣.

An example will help illustrate how this works. Let's say there is a sample of size

n for 7 variables Xn
1 , ...,X

n
7 ; a possible output of the NHC is described as follow. The

bottom of the tree corresponds to L0 = {C1
0 ,C

2
0 , ...,C

7
0} where C

k
0 = {Xk} for k = 1, ...,7.

At the second level we could have L1 = {C1
1 ,C

2
1 ,C

3
1 ,C

4
1}, with C1

1 = {X1,X2,X3},

C2
1 = {X4,X5}, C3

1 = {X6} and C4
1 = {X7}. So we see that clusters at this level are

unions of clusters in the previous level, namely C1
1 = C1

0 ∪ C
2
0 ∪ C

3
0 , C

2
1 = C4

0 ∪ C
5
0 ,

C3
1 = C6

0 and C4
1 = C7

0 . At the third level we could have L2 = {C1
2 ,C

2
2 ,C

3
2}, with

C1
2 = {X1,X2,X3}, C2

2 = {X4,X5,X6} and C3
2 = {X7}. Again, the clusters at this level
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are unions of clusters from the previous level, namely C1
2 = C1

1 , C
1
2 = C2

1 ∪ C
3
1 and

C3
2 = C

4
1 . After this level, no further clusters are selected, hence the �nal tree hierarchy

corresponds to T = {L0, L1, L2}. The image depicting this tree is shown below:

X1 X2 X3 X4 X5 X6 X7L
.0
-
L
.1
-
L
.2

An investigator can readily see from the display of the tree hierarchy that there

is a natural arrangement of variables into groups and subgroups. They are three major

groups C1
2 = {X1,X2,X3}, C2

2{X4,X5,X6} and C3
2 = {X7}. The second group has two

subgroups, namely C2
1 = {X4,X5} and C3

1 = {X6}. Hence, the investigator does not

have to choose groups and subgroups based on some heuristic but they are available

explicitly from the output of the NHC algorithm. Moreover, variables that do not

belong to a group do not a enter cluster, i.e, X7. This procedure can be accomplished

by retaining a FWER less than a speci�ed α.

5.3.4 Algorithm for NHC

The algorithm will go through several iterations, each indexed by i. Each iteration

corresponds to a level of the tree hierarchy. At the initial level i = 0, T = {{L0}}, where

L0 = {C1
0 ,C

2
0 , ...,C

p
0} and Ck

0 = {Xk} for each k. At the ith iteration, Li is the ith level

of the tree, with each element of Li representing a cluster of variables at that level.

Denote the number of clusters in the ith level by Ki and K
(2)
i ≡ (

Ki
2
). Denoted by nTi

an ordered vector of DCs, the cardinality of nTi is K
(2)
i and its elements correspond

to all the pairwise DCs between clusters in the previous level Li−1. Denote by P ∗
i the
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ordered vector of raw p-values corresponding to each DC in nTi. Denote by AdjPi a

vector of adjusted p-values corresponding to the adjusted versions of P ∗
i .

Inputs: the number of permutations B, the maximum number of levels L, the error

rates αl such that
L

∑
l=1
αl = α, and the matrix Xn.

Initialize i = 1.

Step 1.- Calculate all the pairwise DCs between all clusters in level Li−1. This will

make the vector nTi of cardinality K
(2)
i−1. Also, calculate their corresponding raw

p-values P ∗
i .

Step 2.- For the current set of DCs in nTi and corresponding set of raw p-values

P ∗
i each with cardinality K

(2)
i−1, calculate B permutations of all such K

(2)
i−1 DCs.

This gives a matrix DCπ
i of dimension K

(2)
i−1 ×B. Use the permutation procedure

described in the section Matrix of Permuted Statistics DCπ
i .

Step 3.- Use the minP step-down algorithm to derive adjusted p-values for all K
(2)
i−1

test statistics from DCπ
i , nTi and P

∗
i . This makes a vector AdjPi of length K

(2)
i−1 of

adjusted p-values. The permutation procedure is described in Step-down minP

Adjusted p-values Algorithm.

Step 4.- Each element nTi(j) ∈ nTi corresponds to a DC between a pair of clusters in

Li−1, say Ci−1
j1

and Ci−1
j2

. If adjPi(j) ≤ αi, then add the union to level Li, so now

Ci
j ≡ C

i−1
j1

∪Ci−1
j2

∈ Li. If there exist a j′ such that Ci−1
j1

∩Ci
j′ ≠ ∅ or Ci−1

j2
∩Ci

j′ ≠ ∅

and adjPi(j) ≤ αi, then �rst add Ci
j′′ ≡ C

i
j∪j′ = C

i−1
j1

∪ Ci−1
j2

∪ Ci
j′ to Li and then

remove Ci
j′ from Li.

Step 5.- If no new clusters were created in the previous step, meaning Li = Li−1, then

the last level of the tree is Li−1, T = {{L0},{L1}, ...,{Li−1}}. If i = L then stop

the procedure and T ∶= T ∪ {Li} = {{L0},{L1}, ...,{Li−1},{Li}}. Otherwise,
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T ∶= T ∪ {Li} = {{L0},{L1}, ...,{Li−1},{Li}}, i = i + 1 and return to Step 1.

Remark: The second phrase in Step 4 says that, at the ith iteration, a cluster Ci
j

currently existing in Li will include new terms, or become larger, if there is a signi�cant

correlation between a cluster from the previous level Li−1 and any subset of Ci
j. This

subset would have to correspond to some cluster in Li−1.

5.3.5 Matrix of Permuted Statistics DCπ
i

In Step 2 of the algorithm permutation was used. Typically done in permutation

procedures for multiplicity adjustment, each test is permuted independently of one

another. Our permutation procedure proceeds di�erently. Each DC evaluates the

strength of the relationship of between two groups of variables. For each permutation

iteration b, our procedure permutes one group of variables out of the two used in each

of the DC tests. This preserves most of the correlation across tests, because one group

of variables remains unpermuted and the other group is permuted similarly to all other

tests. Below is a more detailed explanation of how the permutation proceeds.

For each permutation iteration indexed by b, there is a corresponding permutation

denoted by πb. Let Ci−1
n,j denote the jth sample cluster of level Li−1. The subscript n

denotes that we are talking about a certain subset of the columns of the data matrix

Xn, i.e., Ci−1
n,j = {Xn

k ∶ for some k ∈ ∆}. Moreover, πb(Ci−1
n,j ) denote the permuted version

of Ci−1
n,j by πb. Below is a matrix with each entry representing a distance covariance test.

At the jth row of the matrix, all DC test statistics of the form DC(Ci−1
n,j ,C

i−1
n,k ) with
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j < k are represented. This matrix representation includes all the K
(2)
i−1 combinations.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

DC(Ci−1
n,1 ,C

i−1
2 ) DC(Ci−1

n,1 ,C
i−1
3 ) DC(Ci−1

n,1 ,C
i−1
4 ) ⋯ DC(Ci−1

n,1 ,C
i−1
n,Ki−1

)

DC(Ci−1
n,2 ,C

i−1
n,3 ) DC(Ci−1

n,2 ,C
i−1
n,4 ) ⋯ DC(Ci−1

n,2 ,C
i−1
n,Ki−1

)

DC(Ci−1
n,3 ,C

i−1
n,4 ) ⋯ DC(Ci−1

n,3 ,C
i−1
n,Ki−1

)

⋱ ⋮

DC(Ci−1
Ki−1−1,C

i−1
Ki−1

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For each bth permutation, a new set of K
(2)
i−1 statistics will be calculated from only

one permutation πb. For the jth row in the matrix above the cluster corresponding to

that row, i.e, Ci−1
n,j , will be permuted by πb for each entry of the jth row. The clusters

corresponding to the columns remain unchanged. Hence, for each row j and all pairs

j < k we calculate the permuted statistic as DC(πb(Ci−1
n,j ),C

i−1
n,k ). The same permutation

πb is used for all j rows. This situation is depicted in the matrix below

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

DC(πb(Ci−1
n,1 ),C

i−1
2 ) DC(πb(Ci−1

n,1 ),C
i−1
3 ) ⋯ DC(πb(Ci−1

n,1 ),C
i−1
n,Ki−1

)

DC(πb(Ci−1
n,2 ),C

i−1
n,3 ) ⋯ DC(πb(Ci−1

n,2 ),C
i−1
n,Ki−1

)

⋯ DC(πb(Ci−1
n,3 ),C

i−1
n,Ki−1

)

⋱ ⋮

DC(πb(Ci−1
n,Ki−1−1),C

i−1
n,Ki−1

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These K
(2)
i−1 permuted statistics make one set of permutations. They will be a total of

B sets. These permutations will constitute the entries in the matrix DCπ
i of dimension

K
(2)
i−1 ×B. To each column corresponds only one permutation πb.
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5.3.6 Step-down minP Adjusted p-values Algorithm

In Step 3 of the algorithm, adjusted p-values are derived from the raw p-values

and the permutation matrix. The raw p-values are denoted by p∗j , and assume without

loss of generality that p∗1 ≤ p∗2 ≤ ⋯ ≤ p∗
K
(2)
i−1

. Otherwise, rearrange the order of the K
(2)
i−1

statistics such that it matches the order of the raw p-values. Next, three matrices will

be needed to be de�ned. First, a matrix of permuted distance covariance test statistics

DCπ
i = (DCπ

i (j, b)) ,

a matrix of raw p-values

P = (pj,b) ,

and a matrix of minima of raw p-values

Q = (qj,b) ,

where qj,b = min
l=j,...,qi

pl,b and the bth column of these matrices corresponds to each permu-

tation πb. With these de�nitions the minP algorithm is as follow:

0.- Compute raw p-values for each hypothesis. Assume p∗1 ≤ p∗2 ≤ ⋯ ≤ p∗
K
(2)
i−1

without

loss of generality. Otherwise sort the K
(2)
i−1 test statistics and corresponding raw

p-values according to the ordered p∗j .

Initialize q
K
(2)
i−1+1,b

= 1 for b = 1, ..,B.

Initialize j =K
(2)
i−1.

1.- For the jth test statistic nTi(j) use the quick sort algorithm to get the B raw

p-values pj,1, ..., pj,B from the matrix of permuted statistics DCπ
i .
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2.- Update the successive minima qj,b

qj,b =min(qj+1,b, pj,b), b = 1, ...,B.

3.- Compute the adjusted p-values for jth test statistic nTi(j)

p̃∗j =
#{b ∶ qj,b ≤ p∗j }

B
.

4.- Do j ← j − 1. If j = 0, go to step 5, otherwise go to step 1.

5.- Enforce monotonicity of p∗j :

p̃∗1 ← p̃∗1, p̃∗j ←max(p̃∗j−1, p̃
∗
j ) for j = 2, ...,K

(2)
i−1.

6.- Set AdjPi = {p∗1, p
∗
2,⋯, p

∗
K
(2)
i−1

}.

Remember that the order of the K
(2)
i−1 test statistics has been made to match the order

of the raw p-values.

5.4 Simulation Results

Simulation studies were performed to evaluate if our permutation strategy actually

preserves the FWER. The simulation were performed in the following two scenarios with

varying sample size. A matrix Xn×p was generated as n sample vectors of size p from

a multivariate normal distribution, with mean vector 0p, and covariance matrix Σp×p.

The covariance matrix is block diagonal, with each block corresponding to a subset of

correlated variables out of the p variables. The block diagonal nature of the covariance
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matrix creates clusters of variables corresponding to each block. The �rst scenario is

for the case p = 20, and Σp×p is made from 2 blocks each of size 10×10. In this scenario

there exist 2 groups of clusters of variables. The second scenario, is for the case where

p = 40, and Σp×p is made from 3 blocks, one of size 20 × 20, and two of size 10 × 10.

Thus, this scenario incorporates three clusters of variables with di�erent cluster sizes.

The sample size will take as values n = 15,30,45. Note that this set up incorporates

both true nulls and true alternative hypotheses.

To assess if our proposed minP permutation procedure preserves the FWER,

10,000 simulations were created. The FWER was calculated as the proportion of times

one or more null hypothesis were incorrectly rejected out of all the 10,000 simulations.

Each simulation iteration will correspond to one level of the tree. If the procedure

controls correctly the FWER for each level, then it should control it correctly for the

whole tree. This is because we control the FWER of the tree by controlling it at

each level. Each row of the table 5.1 represents a simulation scenario with di�erent

samples sizes. From table 5.1 it can be seen that for the case p = 20 the method seems

Table 5.1: Simulation Results

FWER at the 0.05 level
n p q Sign. n p q Sign.
15 20 190 0.030 15 40 780 0.040
30 20 190 0.031 30 40 780 0.043
45 20 190 0.035 45 40 780 0.051
n is sample size, p is the number of variables,

and q is the number of tests.

conservative with a calculated FWER of 0.030 when the sample size is 15. The method

becomes less conservative as the sample size increases, reaching 0.035 when sample size

is 45. For the case p = 40, the calculated FWER is closer to its prespeci�ed value of

0.05 across all simulated sample sizes, compared to the case p = 20. Moreover, as the
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sample size increases, the calculated FWER is very similar to the requested FWER of

0.05: in the case of n = 45 the calculated FWER is 0.051. The reason the calculated

FWER is closer to the requested FWER, when the number of tests increases, is because

our proposed procedure takes advantage of the correlation among tests by preserving

the order of the samples among some of the tests while permuting them, as described

in section 5.3.5. When p = 40, our simulation scenario generates a much larger number

of pairs of variables that happen to be correlated. Hence, the amount of correlation

that our procedure can use to become less conservative increases, and this makes the

true FWER be closer to its speci�ed value of 0.05.

Now, we wouldn't want to use our proposed permutation approach if it did not

provide an improvement with respect to the permutation approach of Westfall and

Young (1993) which permutes the data to create a null distribution of a given test,

independent of other tests. Thus, we also created a simulation study where p = 15

and we vary the sample size as n = 15,30,45,100,150. In this numerical study the

data generated is still multivariate normal and the covariance matrix is block diagonal

with one block of size 10 and another one of size 5, which generates two clusters of

dependent variables. We present in table 5.2 the results of this simulation study. The

Complete Null left side of the table corresponds to the results using the method in

Westfall and Young (1993) and the right side corresponds to our proposed permutation

method. Across all sample sizes, our method is closer to the desired FWER of 0.05.

Consequently, our method has more power than the permutation minP of Westfall

and Young (1993) for correlation coe�cients. The reason of this is that our method

incorporates some of the correlation among tests.
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Table 5.2: FWER at the 0.05 Level

Complete Null Proposed Permutation
n p Actual FWER n p Actual FWER
15 15 0.014 15 15 0.032
30 15 0.024 30 15 0.033
45 15 0.026 45 15 0.035
100 15 0.035 100 15 0.039
150 15 0.033 150 15 0.042

5.5 Clustering RNA-seq Gene Expression of Glioblastoma Tumors

5.5.1 Tumor Heterogeneity and Glioblastomas Data Set

Tumor heterogeneity poses a big barrier to develop cancer treatments. This het-

erogeneity can manifest as variability between tumors, which is associated with distinct

clinical outcomes. For example, patients with glioblastoma multiforme with a speci�c

gene mutation had an increase in overall survival (Parsons et al. (2008)). Moreover,

cells from the same tumor can have di�erent mutations. In a study that used renal

carcinomas it was shown that intratumor heterogeneity can present major challenges

to personalized-medicine (Gerlinger et al. (2012)). For this reason, intratumoral het-

erogeneity plays a determinant role in treatment failure and disease recurrence (Bedard

et al. (2013)).

Glioblastoma is a heterogeneous lethal brain cancer. Intratumor heterogeneity is

the key to understanding treatment failure. Most patients display di�erent glioblas-

toma subtypes within the same tumor, which a�ects treatment design (Sottoriva et al.

(2013)). In order to examine the heterogeneity of glioblastoma tumors, single cell RNA-

seq pro�les of 430 cells from �ve primary glioblastomas were performed. It was found

that these brain tumors are inherently diverse in their expression (Patel et al. (2014),

Verhaak et al. (2010)). Moreover, it was shown that established glioblastoma subtypes
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are variably expressed across individual cells within a tumor.

To illustrate our method we will use the data set of Patel et al. (2014) on single

cell transcriptome analysis by RNA-seq (Ramsköld et al. (2012)). The authors isolated

individual cells from �ve human glioblastoma tumors, which resulted in 6,000 genes in

430 cells. The �ve tumors analyzed consisted of heterogeneous mixtures of individual

cells corresponding to di�erent glioblastoma subtypes de�ned by the Cancer Genome

Atlas Verhaak et al. (2010). They found that individual cells coming from the same

tumor were more correlated to each other than cells from di�erent tumors, but even

within the same tumor was a large variation in correlations. This is consistent with the

idea of intratumoral heterogeneity. Our method will be applied to the single cell data

set to further analyze the heterogeneity across the �ve di�erent tumors.

5.5.2 Clustering of Glioblastomas Genes and Prediction of Tumor Cate-

gory

To assess the di�erence in RNA-seq pro�les across three primary glioblastomas

tumors, denoted by MGH 28, 29 and 31, we will apply our NHC algorithm to each of

these tumors. The two other tumors, MGH 26 and 30, will not be analyzed initially,

but will be used in later stage as comparisons on the classi�cation rate. The data will

be partitioned into training and testing set, with 70% and 30% of the data, respectively,

and using all �ve glioblastoma tumors. The analysis will be performed on the training

set, whereas the classi�cation rate is calculated using the test set. We selected the

100 RNA-seq gene expressions with the greatest variation across all tumors from 6,000

genes. We will cluster RNA-seq expression of genes, for each of the three tumors

separately and investigate if di�erent clustering patterns occur. If there exist di�erences

in clustering patterns, this will indicate across tumor variability in gene expression
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pro�les. We will perform the algorithm with three levels (L = 3). Also, we want to

control the overall FWER to be no more than 0.05, thus we set each level to have an

overall FWER of no more than 0.05/3, as de�ned in Section 5.3.4. After clustering

the gene expressions for each tumor, coexpression modules will be created from groups

of genes that cluster together. We will consider a module a set of genes, such that

each gene belongs to the same cluster at level 3 (L = 3) of the algorithm. Modules

will not be constructed from genes that did not cluster with any other genes at the

end of the algorithm. Let T28, T29 and T31 be the tree constructed using the NHC

algorithm from the training set of the tumors MGH 28, 29 and 31, respectively. Then,

a module will be a set of genes that belong to a cluster at the third level, say C3
j , such

that ∣C3
j ∣ > 1. Many modules will be constructed out of the three glioblastoma tumors.

Thus, modules across tumors might overlap on the gene expressions they contain.

Once modules are selected, the principal component (PC) with the largest eigen-

value on each module will be derived (Shen et al. (2007), Langfelder and Horvath

(2007), Alter et al. (2000)). Thus, we will be able to represent each cluster of vari-

ables by using one variable that represents the direction of largest variance of that

cluster. Given q modules of variables across all 3 glioblastoma tumors, we will denote

the principal components obtained by M1, . . . ,Mq. After the q PCs are obtained, we

will calculate the distance correlation between all the q choose 2 combinations of PCs

and the indicator variables for the �ve di�erent tumors. Then, we rank the resulting

combinations from lowest to largest distance correlation (with a larger number denot-

ing greater dependence), and we pick the top 5 pairs that give the greatest association

with the indicator variables of di�erent tumors. This will allow us to select the most

meaningful PCs for tumor classi�cation. Moreover, since distance correlation can pick

up nonlinearities and possible interactions, we believe this approach will be useful in
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Figure 5.1: MGH 28

Application of NHC to 100 gene expressions of tumor MGH 28. Each row of the �gure correspond to
one of the three levels of the tree. Each cluster at each level is represented by a dendrogram created
with average linkage and using distance correlation as the distance measure. Di�erent colors denote
di�erent clusters at the �rst level. Clusters at higher levels are in black color.

detecting classi�cation patterns that would be missed by linear and parametric meth-

ods. These pairs of PCs will be displayed in a series of �gures, with each member

of a pair in each axis. Each �gure will help us visualize if the pair of PCs is highly

associated with the indicator variables of tumor category. This strategy will allow us

to investigate if our NHC method can derive a meaningful pattern from the RNA-seq

single cell data. Moreover, it will help us visualize the intratumoral heterogeneity if

cells of one tumor are present on the same space of cells from another tumor. This

analysis will be performed only on the training set.

We will use all the PCs that had the strongest association as pairs with the tumor

categories to create 5 separate logistic smoothing spline SNOVA models on the training
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Figure 5.2: MGH 29

Application of NHC to 100 gene expressions of tumor MGH 29. Each row of the �gure correspond to
one of the three levels of the tree. Each cluster at each level is represented by a dendrogram created
with average linkage and using distance correlation as the distance measure. Di�erent colors denote
di�erent clusters at the �rst level. Clusters at higher levels are in black color.

set, each corresponding to an indicator variable of a tumor (i.e. MGH 26, 28, 29, 30

and 31) as outcome. Then, the test set will be use to evaluate the classi�cation rate of

the 5 models created. The overall classi�cation rate will be calculated as well as the

classi�cation rate within each of the binary classes. If a relative high classi�cation rate

exists, then this will constitute evidence that the NHC algorithm is in fact capturing

important structure that can di�erentiate one tumor cell from another.

5.5.3 Results

The results of the NHC algorithm are displayed in �gures 5.1 to 5.3, each corre-

sponding to a glioblastoma MGH 28, 29 and 31, respectively. The �gures have 3 rows,
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Figure 5.3: MGH 31

Application of NHC to 100 gene expressions of tumor MGH 31. Each row of the �gure correspond to
one of the three levels of the tree. Each cluster at each level is represented by a dendrogram created
with average linkage and using distance correlation as the distance measure. Di�erent colors denote
di�erent clusters at the �rst level. Clusters at higher levels are in black color.

each corresponding to a level of the NHC algorithm. We can see by a �rst look at each

of the three �gures that there exist a big di�erence in the outcome of the clustering

algorithm across the three tumors. Figure 5.2 shows that they are 34 out of the 100

genes of MGH 29 that happen to be correlated with each other, all of which cluster

together in one big group at the last step of the algorithm. From �gure 5.3 we see that

21 genes were correlated with other genes, and that most of them happen to fall within

2 big clusters of genes, while there exist 2 other small clusters. This pattern of genes

aggregating mostly in larger groups seems not to be followed by MHG 28. Figure 5.1

shows that the 21 genes that were correlated fall into 7 small groups. Hence, we have

some evidence that the genes of MGH 28 are overall less correlated as a group than
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MGH 29 and MGH 31, and form smaller groups of gene clusters.

Figure 5.4: Clusters by Tumor

The x-axis represents 100 genes. A bar on top of a gene denotes that that gene was clustered with
some other gene (not shown) for that tumor. Bars of di�erent color denote di�erent tumors. Many
genes were not clustered with one another, and only a few clustered for all three tumors.

Moreover, �gure 5.4 shows which of the 100 gene expressions analyzed were cor-

related to other genes in the 3 tumors. We see that there is a great number of gene

expressions that did not happen to be correlated to each other. Moreover, there are

only 4 genes which happen to be dependent to other genes in all 3 tumors, there are

20 genes which happen to be dependent on others in 2 tumors out of 3, and there

are 26 genes which are dependent in only 1 tumor. Also, MGH 29 has the largest

amount of genes that are dependent which are not dependent in the other 2 tumors.

The NHC algorithm shows that there exist a variability in the dependence structure of

gene expressions in cells coming from di�erent glioblastoma tumors.

Using our de�nition of modules, we constructed out of the 100 genes expressions,

7 modules for the MGH 28 tumor, 1 module for the MGH 29 tumor, and 4 modules

for the MGH 31 tumor. From these modules representing groups of dependent gene
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Figure 5.5: PCs of First Pair of Modules

Figure 1 : Eigenvectors Figure 2 : Contour Plot

expressions, we derived PCs corresponding to the largest eigenvalue within each module.

Even though the modules were created using only data for each tumor type, we created

the PCs using all �ve tumor types in the training set. The reason for this is that we

want to use these modules for predicting all of the 5 indicator variables of glioblastoma

tumors, and thus we need to use all of the training data. From the 12 PCs we found,

we chose the 5 pairs out of the possible 66 pairwise combinations, that were the most

dependent on the tumor category. We display 3 scatter plots in �gure 5.5 to 5.7 of some

of the most illustrative pairs. From these �gures, it is obvious that the PCs created

separate quite well the 5 di�erent glioblastoma tumors. Also, certain combinations of

PCs are better at segregating di�erent tumors from others. For example, in �gure 5.5,

the cells from the MGH 31 tumor are better separated from cells from MGH 30 than

in the other 2 plots, where they share the same space.

The top 5 pairs strongly associated with tumor category have 6 unique PCs. We

use these 6 PCs to train 5 di�erent logistic smoothing spline ANOVA models, each

corresponding to a tumor category. The main e�ects of the model are the 6 PCs. We

train these models on the training data and test the classi�cation rate on the test set.
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Figure 5.6: PCs of Second Pair of Modules

Figure 1 : Eigenvectors Figure 2 : Contour Plot

The results are shown on table 5.3. The gene expressions for the tumors MGH 26 and

30, were not clustered and PCs were not derived from their clusters of genes. However,

in the case of MGH 26 we see that the three types of classi�cation rate are really high.

MGH 30 performed well with an overall rate of 88.3%, and with a class 1 rate of 91.3%

which was larger than the same classi�cation rate for tumors MGH 28, 29, and 31.

From table 5.3 we can conclude that PCs generated from clusters of genes generated by

the NHC algorithm can derive meaningful structure and classify tumors on the testing

set very accurately.

Table 5.3: Classi�cation Rate on the Testing Set

MGH 26 MGH 30 MGH 28 MGH 29 MGH 31

Overall 95.3% 88.3% 86.8 % 94.5% 91.4%
Class 1 97.1% 91.3% 88.4 % 88% 85%
Class 0 94.6% 87.7% 86.4% 96.1% 92.6%
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Figure 5.7: PCs of Third Pair of Modules

Figure 1 : Eigenvectors Figure 2 : Contour Plot

5.5.4 Clustering of Glioblastomas Samples

In the research by Patel et al. (2014), there was evidence of great intratumor

heterogeneity. This heterogeneity was translated into glioblastomas being mostly cor-

related with samples of the same tumor type, but also of samples from di�erent tumors.

To evaluate this intratumoral heterogeneity, we apply the NHC algorithm on the sam-

ples. However, it is important to note that the basic assumption of our method is that

the row of the data matrix are i.i.d. In the previous section we saw that many genes are

correlated, so this assumption will be violated. Nevertheless, we proceed to see what

type of results we obtain. We apply the NHC algorithm using the 200 genes with the

most variance as rows, but now we use as columns 50 tumor cells sampled randomly

from all the 430 �ve primary glioblastoma cells. The result of the clustering algorithm

is displayed in �gure 5.8.

Figure 5.8 shows that cells from tumor MGH 31, clustered together and were not

dependent on cells from other tumors. Another cell type that remained almost com-

pletely independent of other types was MGH 28. Cells from this tumor were clustered
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Figure 5.8: Clustering of Samples

Clustering of samples of �ve primary glioblastomas. Colors indicate di�erent tumors, with MGH 26
magenta, MGH 28 red, MGH 29 green, MGH 30 light blue and MGH 31 dark blue.

to cells of the same type until level 2, after which some cells of MGH 26 were joined to

the cluster. Also, all of MGH 29 and most of MGH 26 cells were clustered together in

one group. There are two cells from MGH 26 that clustered alone with no other type.

At level 2 of the algorithm, all of MGH 30 cells were clustered together, but at level

3 one MGH 26 cell joined the group. This indicates that there is great heterogeneity

within tumor types. Some tumors, like MGH 31 are very homogeneous, whereas tumors

MGH 26 and MGH 29 seem to be similar.

5.6 Discussion

In this paper, we introduced the NCH algorithm, a statistical framework and its

implementation, to cluster variables while preserving a prede�ned FWER. Compared

with existing methods, NHC uses a hypothesis testing framework to decide whether to

join variables together to form larger clusters. NHC uses distance covariance, instead of

average linkage or other forms of linkage, for clustering. This is an advantage because
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distance covariance can detect non linearities and interactions among groups of vari-

ables, something that is impossible to detect using other forms of linkage. Our method

detected clusters of genes within di�erent tumors and con�rmed the heterogeneity that

exist between tumors. Moreover, our clusters of genes were used to generate principal

components to predict tumor category which was done with signi�cant accuracy.

A potential shortcoming of the NHC method is that, in its current form, it is

computationally intensive. All the examples we have presented are limited in both

samples size as well as the number of gene expressions. Therefore, NHC is applicable

only if a screening procedure has been applied before hand. Although NHC works well

in this set up, there is the open question of whether the NHC can be extend to a higher

dimensional set up. We believed that this can be done by using other type I error rate

adjustment methods, that while implementing them will make the method considerably

faster, but also less powerful.
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CHAPTER 6: FUTURE WORK

6.1 Extension of the Test for SS-ANOVA

One possible extension of the �rst chapter is to devise a test for importance of

speci�c components of the SS-ANOVA model. For instance, if we start with two models

that we are interested in comparing that look like this,

Y =f1(X1) + f2(X2) + ε,

Y =f1(X1) + f2(X2) + f1,2(X1,X2) + ε,

where the �rst model has only main e�ects and the second has an interaction. Thus,

we really want to know if f1,2(X1,X2) = 0. One way to set this up is by using the HSIC,

and testing the following hypotheses

H0 ∶HSIC(Y, f1(X1) + f2(X2) + f1,2(X1,X2)) ≤HSIC(Y, f1(X1) + f2(X2))

HA ∶HSIC(Y, f1(X1) + f2(X2) + f1,2(X1,X2)) >HSIC(Y, f1(X1) + f2(X2))

The test statistic would be n(Tn(Y, f̂1(X1) + f̂2(X2) + f̂1,2(X1,X2)) − Tn(Y, f̂1(X1) +

f̂2(X2))) and the null distribution would be derived also using the same bootstrap

used in Chapter 3. Other terms of interest can be tested similarly.
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6.2 Selection of the number of PCs for Nonparametric PCA Regression

Another possible extension of the bootstrap methodology is test for signi�cant

PCs to be included in a nonparametric PCA regression model for prediction (Hastie

et al. (2005)). For example, if we denote PC1, . . . , PCp the PCs available from the

variables data matrix, we can test, consecutively if more PCs are need in the regression.

For example if we have two models like

Y =f1(PC1) + ε,

Y =f1(PC1) + f2(PC2) + ε,

and we want to decide which one is better, then we can test,

H0 ∶HSIC(Y,{PC1, PC2}) ≤HSIC(Y,{PC1}),

HA ∶HSIC(Y,{PC1, PC2}) >HSIC(Y,{PC1}).

The test statistic would be n(Tn(Y,{PC1, PC2}) − Tn(Y,{PC1})) and the null distri-

bution would be derived also using the same bootstrap used in Chapter 3, but where

f is replaced by PC1. If this null hypothesis is rejected, then we can test if the third

PC provides an increase in HSIC compared to only using the �rst two PCs, and so

forth. Each test can be tested at some α level. Once a null is not rejected the sequence

of tests is stopped. Thus, we keep rejecting the tests until one test is not signi�cant

anymore. This will preserve the family wise error rate. This is convenient because each

of the p-values of the tests are compared at the α level. This means each test can have

signi�cant power.
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6.3 Selection of the number of PCs for Spectral Clustering

Spectral clustering is an algorithm that uses graph representation of similarity

matrices by converting them into a graph Laplacian and use k of its principal compo-

nents to run k-means clustering on them (Von Luxburg (2007), Shi and Malik (2000),

Ng et al. (2002)). Another way to decide the maximum number of clusters is to select

only those that are not independent of each other. Non independence of PCs is useful

while doing spectral clustering and if you have an upper bound on the number of PCs

that are dependent, this is useful when deciding what k to choose in the the k-means

clustering. One way you can go about it too is to do the following hypothesis testing

H0 ∶HSIC(PC1, PC2) = 0,

HA ∶HSIC(PC1, PC2) > 0,

where the PCs come from the graph Laplacian. The null hypothesis correspond to

the case where the �rst two PCs are independent. If we reject this null, then we can

move to test independence between {PC1, PC2} and {PC3}, and so forth. We can

keep testing until a null hypothesis is not rejected anymore. Then, if q components

are dependent, we wouldn't want to do k-means clustering with k > q. The test would

be nTn(PC1, PC2) and we can derive the null by a modi�ed version of the bootstrap

approach shown in chapter 3.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

A.4 Details on the Bootstrap Algorithm

If hypotheses in 3.5 need to be tested using the test statistic in 3.6, the following

bootstrap variation can be used:

Bootstrap Algorithm

Step 1

Calculate the estimated residuals ε̂i = Yi − f̂(Xi) and create an empirical distribu-

tion Pn,eo of the residuals with mass 1/n at each eoi = σ̂
σ̂′ (ε̂i − ε̄), where ε̄ = ∑

n
i=1

ε̂i
n ,

σ̂′2 = ∑
n
i=1(ε̂i−ε̄)2

n and σ̂2 =
∣∣Y−AY∣∣2
Tr(I−A) .

Step 2

Draw a bootstrap sample η∗ from the empirical distribution Pn,eo and draw a bootstrap

sample (X∗
n,Z

∗
n) from the empirical distribution Pn,X,Z of the (Xn,Zn)'s independently

of η∗. Then set Y ∗
i as

Y ∗
i = f̂(X∗

i ) + η
∗
i for i = 1, . . . , n.

Step 3

We estimate f̂∗ from Y∗
n and from X∗

n, and create new bootstrap residuals as

ε∗i = Y
∗
i − f̂

∗(X∗
i ) for i = 1, . . . , n.

Step 4

Calculate the test statistic as nTn(Z∗
n,ε

∗
n).
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Step 5

Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics

nTn(Z∗
n,ε

∗)b, for b = 1, . . . ,B. This distribution approximates the distribution of

nTn(Zn, ε̂n) under the null. The p-value is then calculated as

p-value =
1

B

B

∑
i=1

I(nTn(Zn, ε̂n) ≤ nTn(Z
∗
n,ε

∗
n)b).

A.5 Details on Simulation Studies

In this section, speci�c details on each simulation study of section 3.4 of the main

text are provided. We simulated η as N(0,1), and all X(j) and Z(i) as Uniform(0,1)

independent of each other. Three simulation cases are described. First, the general case

is described, and then, for each subcase, the corresponding true model used under the

null and under the alternative are shown. The form shown under the null is the model

that was used both under the null and under the alternative. Hence, the alternative

simulates lack-of-�t in the model.

Case I

This case corresponds to the simulation results shown in table 3.1 of the main text.

Simulations were created where the null hypothesis only includes main e�ects. We have

f(X) = ∑
p
j fj(X(j)) and f1,...,p(X(1), ...,X(p)) is any interaction between covariates.

The hypotheses then become

H0 ∶ Y = f(X) + η,

HA ∶ Y = f(X) + f1,...,p(X(1), ...,X(p)) + η.
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Below are shown all the instances of Case I.

Case I.1, p=2

f(X) = 5sin(πX(1)) + 2X(2)2,

f1,2(X(1),X(2)) = 0.75cos(π(X(1) −X(2))).

Case I.2, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

f1,...,4(X(1), ...,X(4)) = 0.5cos(π(X(1) −X(2))) + 0.5cos(π(X(3) −X(4))).

Case I.3, p=6

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2 + 2sin(πX(5)) + 3X(6)3,

f1,...,6(X(1), ...,X(6)) =0.75cos(0.5π(X(1) −X(2))) + 0.5X(2)X(3)

+0.5cos(π(X(4) −X(5) + 2X(6))).

Case II

This case corresponds to the simulation results shown in fable 3.2 of the main text.

Simulation were created where under the null hypothesis the model only includes

main e�ects, and under the alternative, covariates are added to the model. Therefore,

we have f(X) = ∑
p
j fj(X(j)) and fp+1,...,p+q(Z(1), . . . , Z(q)), where

fp+1,...,p+q(Z(1), . . . , Z(q)) are covariates not yet included in f(X). The hypotheses

then become

H0 ∶ Y = f(X) + η,

HA ∶ Y = f(X) + fp+1,...,p+q(Z(1), . . . , Z(q)) + η.
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Below are shown all the instances of Case II.

Case II.1, p=2

f(X) = 5sin(πX(1)) + 2X(2)2,

f3(Z(3)) = sin(πZ(3)).

Case II.2, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

f5,6(Z(1), Z(2)) = 0.5Z(1) + sin(Z(2)).

Case III

This case corresponds to the simulation results shown in table 3.3 of the main text.

Simulations were created where two distinct groups of covariates, A and B, exist.

Under the null hypothesis the model contains all main e�ects, and all the interactions

within each group. Under the alternative, interactions across both groups also exist.

De�ne f(X) = fA(X(A)) + fB(X(B)) and fA,B(X(A ∪X(B)), where

f(X) = fA(X(A)) + fB(X(B)) contains all main e�ects and all possible interactions

within A and B, but not between A and B, and fA,B(X(A ∪B)) are any interactions

between covariates in group A and B. Our hypotheses then become

H0 ∶ Y = f(X) + η,

HA ∶ Y = f(X) + fA,B(X(A ∪B) + η.

Below are shown all the instances of Case III.

Case III.1, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

127



fA,B(X(A ∪B)) = 0.75cos(π(X(1) −X(3))),

with A = {X1,X2} and B = {X3,X4}.

Case III.2, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2 + 0.75cos(π(X(2) −X(3))),

fA,B(X(A ∪B)) = 0.75cos(π(X(1) −X(4))),

with A = {X1} and B = {X2,X3,X4}.

A.6 Theoretical Results

The main purpose of this section is to provide a justi�cation for Theorem 3.7. This

theorem shows that under the null and alternative Tn(Xn, ε̂n) and Tn(Zn, ε̂n)

converge to the population HSIC, and that the bootstrap version Tn(X∗
n, ε̂

∗
n) and

Tn(Z∗
n, ε̂

∗
n) converge to 0 under both the null and the alternative. To simplify the

theoretical results, it is assumed that the alternative corresponds to the case were

covariates are missing from the model, and goodness-of-�t is assessed with respect to

Zn. Other cases where interactions are missing from the model, and where the

goodness-of-�t is assessed with respect to Xn follow a similar proof and are omitted.

Next, we present the setting and Lemmas needed for the proof of Theorem 3.7.

Set-Up

The theoretical results presented here are for the estimation of f in 3.1 through the

solution of the penalized least squares in 3.2. For simplicity, it will be assumed
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throughout that f is additive. Let the metric ∣∣ ⋅ ∣∣n be de�ned by

∣∣f ∣∣2n =
1

n

n

∑
i=1

∣f(Xi)∣
2.

Let Fj = {fj ∶ [0,1] → R,
´
∣f (m)∣2 <Mj}, M1 ≥ 1, and F =

p
⊕
j=1

Fj. Let

(Y1,X1), ..., (Yn,Xn) ∈ R × [0,1]p be a sample from

Yi =
p

∑
j=1

fj(X(j)) + ηi, i = 1, ..., n,

where
p

∑
j=1
fj(X(j)) ∈ F . Moreover, we have

Zj,n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 X1(j) ... X1(j)m−1

⋮ ⋮ ... ⋮

1 Xn(j) ... Xn(j)m−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let Σj = lim
n→∞

1
nZ

T
j,nZj,n, where we assume this limit exists in probability, and let φ2

j,1 be

the smallest eigenvalue of Σj.

Assumptions

A.1 We assume φ2
j,1 > 0 for all j.

A.2 Uniform subgaussianity of the residuals: there exist β > 0 and Γ > 0 such that

sup
n
max
1≤k≤n

E[exp∣βηk∣
2] ≤ Γ < ∞.

Lemma A.6.1. If we solve the penalized least squares model de�ned in 3.2 over the

RKHS F , and A.1 and A.2 hold, then we have that

∣∣f − f̂ ∣∣2n = Op(n
−2m/(2m+1))

provided n2m/(2m+1)λ ≥ 1.
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Proof:

Fix δ > 0. We know that Nn(
δ
p ;σ,Fj) ≤ exp (A(

Mj

δ/p)
(1/m)), where Nn(

δ
p ;σ,Fj) is the

smallest number of δ balls needed to cover the open ball

B(f0,j, σ) = {fj ∈ Fj ∶ ∣∣f0,j − fj ∣∣ ≤ σ} with respect to the ∣∣ ⋅ ∣∣n norm, as de�ned in

Lemma 2.1 in Van de Geer (1990). Let f0 = f0,1 +⋯ + f0,p ∈ F and let fj be the

function in the δ/p-covering such that ∣∣f0,j − fj ∣∣n < δ/p. Then,

∣∣f0 − (f1 + ... + fp)∣∣n

≤∣∣f0,1 − f1∣∣n +⋯ + ∣∣f0,p − fp∣∣n

≤δ/p +⋯ + δ/p = δ.

Hence, we have that

Nn(δ;σ,F ) ≤ Nn(δ/p;σ,F1)⋯Nn(δ/p;σ,Fp)

≤exp(pA(
Mp

δ
)(1/m)) with M =max{M1, ...,Mp}.

From here the proof of Theorem 6.2 in Van de Geer (1990) follows for the additive

model, hence proving the result. 2

As stated before the proof shown here corresponds to the alternative where covariates

are missing from the model.

Lemma A.6.2. We �t the following model using penalized least squares in 3.2 in the

main text:

Yi = f(Xi) + εi, i = 1, ..., n,

where f(Xi) =
p

∑
j=1
fj(Xi(j)). Under the alternative, the model is misspeci�ed by

several additive terms, in other words εi =
p+q
∑

j=p+1
fj(Zi(j − p)) + ηi. Under this situation,
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we still have convergence of the properly speci�ed terms fj, j = 1, .., p, namely

∣∣

p

∑
j=1

fj −
p

∑
j=1

f̂j ∣∣
2
n = Op(n

−2m/(2m+1)),

provided that ε follows subgaussianity in A.2 and that

(X(1), ...,X(p)) ⊥ (Z(1), ..., Z(q)).

Proof:

If the εi are uniform subgaussian and (X(1), ...,X(p)) ⊥ (Z(1), ..., Z(q)) then Lemma

A.6.1 holds in this situation. 2

Lemma A.6.3. We �t an additive model by minimizing the penalized least squares in

3.2. Under the assumptions A.1-2 we have that

sup
x∈[0,1]p

∣f̂(x) − f(x)∣ = Op(n
−m(2m−2)/(2m+1)(2m−1)).

Proof:

By Lin (2000), we know that ∣∣f̂ − f ∣∣22 = Op(n−2m/(2m+1)) where ∣∣ ⋅ ∣∣2 is the L2 norm.

By applying Lemma A.6.4 we conclude that

∣∣f̂ − f ∣∣∞ = Op(n
−m(2m−2)/(2m+1)(2m−1)).

Lemma A.6.4. Let f ∶ [0,1] → R such that
´ 1

0
(f (k)(u))2du < ∞, then

∣∣f ∣∣∞ = O(∣∣f ∣∣
(2k−2)/(2k−1)
2 ).

Proof:

Let f ∶ [0,1] → R and J2
k(f) =

´ 1

0
(f (k)(u))2du < ∞ for some integer 1 ≤ k < ∞. Let
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∆ = 1/m for some integer 1 ≤m < ∞. Let f̃ be an approximation to f such that

f̃(x) =
m

∑
j=1

f̃j(x − (j − 1)∆)1{(j − 1)∆ ≤ x < j∆}

with f̃j = f((j − 1)∆) + f (1)((j − 1)∆)x +⋯ +
f(k−1)((k−1)∆)xk−1

(k−1)! for x ∈ [0,∆].

For x ∈ [0,∆] we have that,

∣f̃j(x) − f(x + (j − 1)∆)∣ ≤ ∣

ˆ (j−1)∆+x

(j−1)∆

ˆ (j−1)∆+uk−1

(j−1)∆
⋯

ˆ (j−1)∆+u1

(j−1)∆
f (k)(w)dwdu1⋯duk−1∣

=
Γ(3/2)

Γ(k + 1/2)
xk−1/2Jk(f).

We also have that

∣∣f ∣∣∞ ≤ ∣∣f̃ ∣∣∞ + ∣∣f − f̃ ∣∣∞

≤ ∣∣f̃ ∣∣∞ +
Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f).

For x ∈ [0,∆],

∣∣f̃j ∣∣∆,∞ = sup
x∈[0,∆]

∣f̃j(x)∣ ≤ sup
x∈[0,∆]

∣
k−1

∑
l=0

aj,lx
l∣,

where aj,l =
f(l)((j−1)∆)

l! . Now,

sup
x∈[0,∆]

∣
k−1

∑
l=0

aj,lx
l∣ = sup

u∈[0,1]
∣
k−1

∑
l=0

aj,l∆
lul∣

≤ (
k−1

∑
l=0

(aj,l)
2∆2l)1/2

where the last inequality follows from Cauchy-Schwarz inequality and setting u = 1.
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Now let,

Mk(u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 u u2 ... uk−1

u u2 u3 ... uk

⋮ ⋮ ⋮ ⋱ ⋮

uk−1 uk uk+1 ... u2k−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where u is a uniform [0,1] random variable. Now let Ck be the smallest eigenvalue of

E[Mk(u)] and if Ck > 0 then we have, by change of variables,

∣∣f̃j ∣∣
2
∆,2 =

ˆ ∆

0

(f̃j(x))
2dx = ∆

ˆ 1

0

(f̃j(∆u))
2du

= ∆E

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aj,0

aj,1∆

⋮

aj,k−1∆k−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

Mk(u)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aj,0

aj,1∆

⋮

aj,k−1∆k−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≥ Ck∆
k−1

∑
l=0

a2
j,l∆

2l.

With this we can see that

∣∣f̃j ∣∣∆,∞ ≤ C
−1/2
k ∆−1/2∣∣f̃j ∣∣∆,2,

and ∣∣f̃j ∣∣∞ ≤ C
−1/2
k ∆−1/2(max

j
∣∣f̃j ∣∣∆,2)

1/2

≤ C
−1/2
k ∆−1/2∣∣f̃ ∣∣2

≤ C
−1/2
k ∆−1/2(∣∣f ∣∣2 +

Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f)).

This implies that,

∣∣f ∣∣∞ ≤ C
−1/2
k ∆−1/2∣∣f ∣∣2 +

Γ(3/2)

Γ(k + 1/2)
C
−1/2
k ∆k−1Jk(f) +

Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f).
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If we let a = C
−1/2
k ∣∣f ∣∣2 and b =

Γ(3/2)
Γ(k+1/2)C

−1/2
k Jk(f) and we choose

∆ = ( a
(2k−1)b)

2/(2k−1) ∧ 1, then we have for some 0 < C∗ < ∞ that only depends on k that

∣∣f ∣∣∞ ≤ C∗(∣∣f ∣∣2 ∨ (∣∣f ∣∣
2k−2
2k−1
2 J

2
2k−1

k (f)) + Jk(f) ∧ (∣∣f ∣∣
2k−2
2k−1
2 J

1
2k−1

k (f)) + Jk(f) ∧ ∣∣f ∣∣2).

Hence, if ∣∣f ∣∣2 → 0 and Jk(f) = O(1), then

∣∣f ∣∣∞ = O(∣∣f ∣∣
2k−2
2k−1
2 ).

Lemma A.6.5. Under the same assumptions as Lemma A.6.2 and using the notation

from Theorem 3.7 we have that

ε∗1 − η
∗
1

p
→ 0 and ε̂1 − ε1

p
→ 0.

Proof:

Since, f̂∗ is an estimator of f̂ , and f̂ has the same properties as f , with probability

going to 1 as n increases, we can apply Lemma A.6.3 and conclude that

∣∣f̂ − f̂∗∣∣∞
p
→ 0. Thus we have

sup
x∈[0,1]q

∣f̂∗(x) − f̂(x)∣ ≥ max
X∗

i ∈X∗
n

∣f̂∗(X∗
i ) − f̂(X

∗
i )∣ = max

X∗

i ∈X∗
n

∣Y ∗
i + f̂

∗(X∗
i ) − Y

∗
i − f̂(X

∗
i )∣

=max
i∈Nn

∣ε∗i − η
∗
i ∣,

where max
X∗

i ∈X∗
n

denotes that we are taking the maximum over a �nite bootstrap sample

X∗
n. Hence, sup

i∈Nn
∣ε∗i − η

∗
i ∣

p
→ 0 and we can also say that ε∗1 − η

∗
1

p
→ 0. The same argument

follows for ε̂1 − ε1
p
→ 0 by replacing f̂∗ with f̂ and f̂ with f . 2

Proof of Theorem 3.7:

134



We write Tn(Zn, ε̂n) =
1
n2 ∑

n
i,jKijL̂ij +

1
n4 ∑

n
i,j,q,rKijL̂qr − 2 1

n3 ∑
n
i,j,qKijL̂iq, where

L̂ij = exp(−(ε̂i − ε̂j)2), Li,j = exp(−(εi − εj)2) and Kij = exp(−∣∣Zi −Zj ∣∣2). Let

HSIC(X,η) =A1 +A2 −A3

and

Tn(Zn, ε̂n) =Â1 + Â2 − Â3 +O(n−1),

where

Â1 =
1

n2∑
i≠j
KijL̂ij,

Â2 =
1

n4 ∑
i≠j,q≠r

KijL̂qr

Â3 =
2

n4 ∑
i≠j≠q

KijL̂iq,

A1 = Ez1,ε1,z2,ε2[K1,2L1,2],

A2 = Ez1,z2[K1,2]Eε1,ε2[L1,2],

A3 = 2Ez1,ε1[Ez2[K1,2]Eε2[L1,2]].

First, it will be shown that

Â1 −A1 =
1

n2∑
i≠j
Ki,jL̂i,j −E[K1,2L̂1,2]

p
→ 0.
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By Markov's inequality we have that

Pr(∣
1

n2∑
i≠j
Ki,jL̂i,j −E[K1,2L̂1,2]∣ > ε)

≤
1

n2ε2
Var(K1,2L̂1,2 −E[K1,2L̂1,2])+

1

n4ε2
∑
i≠j
∑
p≠q

Cov(Ki,jL̂i,j −E[Ki,jL̂i,j],Kp,qL̂p,q −E[Kp,qL̂p,q])

=
1

n2ε2
O(1) +O(1)E[(K1,2L̂1,2 −E[K1,2L̂1,2])(K3,4L̂3,4 −E[K3,4L̂3,4])].

The �rst O(1) term comes from the fact that the variance is bounded because

∣Ki,jL̂i,j ∣ is bounded by 1. The second O(1) term comes from the fact that the

number of elements in the double summation compared to n4 is of magnitude O(1).

Under H0, it holds that
p+q
∑

j=p+1
fj(Zi(j)) = 0 for all i. Then, it holds that εi = ηi for all i.

Now, by applying Lemma A.6.5 we know that

(ε̂1, ε̂2, ε̂3, ε̂4) − (η1, η2, η3, η4)
p
→ 0,

and by the continuous mapping theorem we have that

K1,2L̂1,2 −K1,2L1,2
p
→ 0.

Since K1,2L̂1,2 is bounded it is also uniformly integrable, thus

E[K1,2L̂1,2] → E[K1,2L1,2].

Moreover,

E[K1,2L̂1,2K3,4L̂3,4] → E[K1,2L1,2K3,4L3,4] = E[K1,2L1,2]E[K3,4L3,4].
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Hence, the covariance will go to 0 as n→∞. Then, we can conclude that

1
n2 ∑

i≠j
Ki,jL̂i,j −E[K1,2L̂1,2]

p
→ 0.

Above we have already shown that E[K1,2L̂1,2] → E[K1,2L1,2] so we can conclude that

1
n2 ∑

i≠j
Ki,jL̂i,j −E[K1,2L1,2]

p
→ 0.

Similar arguments follow for A2 − Â2 and A3 − Â3. Hence, we have that

Tn(Zn, ε̂n)
p
→HSIC(Z, η) = 0.

Under HA the same result holds by Lemma A.6.2 and Lemma A.6.5 except that η is

replaced by ε and HSIC(Z, ε) > 0, since ε depends on Z. Hence, we have that

Tn(Zn, ε̂n)
p
→HSIC(Z, ε) > 0.

Under H0 and HA, HSIC(Z∗
n,η

∗
n) = 0 since X∗

n and η
∗
n were sampled independently.

From Lemma A.6.5 we have that ε∗1 − η
∗
1

p
→ 0 and hence from the same arguments as

above we have that

Tn(Z∗
n,ε

∗
n) −HSIC(Z∗

n,η
∗
n)

p
→ 0.

2
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

Before proving Theorem 4.3.2, we will prove Lemma B.0.6. In the results that follow,

the change point τ will be assume to arise as the results of some true proportion γ

such that τ = ⌊γT ⌋.

Lemma B.0.6. Let {δT} be a sequence of positive numbers such that δT → 0 and that

TδT →∞. Let T be such that γ ∈ [δT ,1 − δT ], then for any γ̃ ∈ [δT ,1 − δT ], let

X(γ̃−) = {X1, ...,X⌊γ̃T ⌋}, Y (γ̃−) = {Y1, ..., Y⌊γ̃T ⌋}, X(γ̃+) = {X⌊γ̃T ⌋+1, . . . ,XT}, and

Y (γ̃+) = {Y⌊γ̃T ⌋+1, . . . , YT}. De�ne r̃ = ⌊γ̃T ⌋, s̃ = T − ⌊γ̃T ⌋, r = ⌊γT ⌋ and s = T − ⌊γT ⌋.

The U-statistic converges to

∣U 2
n (X(γ̃−), Y (γ̃−)) −U 2

n (X(γ̃+), Y (γ̃+))∣
a.s
→ Q(X,Y, γ; γ̃),

and

Q(X,Y, γ;γ) = ∣U 2(X(γ−), Y (γ−)) −U 2(X(γ+), Y (γ+))∣,

where Q(X,Y, γ; γ̃) is de�ned in the proof.

Proof: The statistic U 2
n (X(γ̃−), Y (γ̃−)) can be written as

1

r̃(r̃ − 3)

⎛

⎝
2
r̃−1

∑
j=1

r̃

∑
k=j+1

∣Xk(γ̃) −Xj(γ̃)∣∣Yk(γ̃) − Yj(γ̃)∣

+
1

(r̃ − 1)(r̃ − 2)
(2

r̃−1

∑
j=1

r̃

∑
k=j+1

∣Xj(γ̃) −Xk(γ̃)∣)(2
r̃−1

∑
j=1

r̃

∑
k=j+1

∣Yj(γ̃) − Yk(γ̃)∣)

−
2

r̃ − 2

r̃

∑
l=1

(
r̃

∑
j=1

∣Xl(γ̃) −Xj(γ̃)∣)(
r̃

∑
k=1

∣Yl(γ̃) − Yk(γ̃)∣)
⎞

⎠
.

First assume that γ < γ̃. The �rst term converges by the strong law of large number
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for U-statistics: Ser�ing (2009)

2

r̃(r̃ − 3)

r̃−1

∑
j=1

r̃

∑
k=j+1

∣Xk(γ̃) −Xj(γ̃)∣∣Yk(γ̃) − Yj(γ̃)∣

a.s
→
γ2

γ̃2
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y ′(τ−)∣

+ 2
γ(γ̃ − γ)

γ̃2
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y (τ+)∣

+
(γ̃ − γ)2

γ̃2
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y ′(τ+)∣

= A(γ̃−).

The second term converges to

2

r̃(r̃ − 1)

r̃−1

∑
j=1

r̃

∑
k=j+1

∣Xj(γ̃) −Xk(γ̃)∣
2

(r̃ − 2)(r̃ − 3)

r̃−1

∑
j=1

r̃

∑
k=j+1

∣Yj(γ̃) − Yk(γ̃)∣

a.s
→ B(γ̃−) ⋅C(γ̃−)

= (B1(γ̃−) +B2(γ̃−) +B3(γ̃−))(C1(γ̃−) +C2(γ̃−) +C3(γ̃−)),

where we de�ne

B1(γ̃−) =
γ2

γ̃2
E∣X(τ−) −X ′(τ−)∣, C1(γ̃−) =

γ2

γ̃2
E∣Y (τ−) − Y ′(τ−)∣,

B2(γ̃−) =2
γ(γ̃ − γ)

γ̃2
E∣X(τ−) −X(τ+)∣, C2(γ̃−) =2

γ(γ̃ − γ)

γ̃2
E∣Y (τ−) − Y (τ+)∣,

B3(γ̃−) =
(γ̃ − γ)2

γ̃2
E∣X(τ+) −X ′(τ+)∣, C3(γ̃−) =

(γ̃ − γ)2

γ̃2
E∣Y (τ+) − Y ′(τ+)∣.
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The third term converges to

2

r̃(r̃ − 2)(r̃ − 3)

r̃

∑
l=1

(
r̃

∑
j=1

∣Xl(γ̃) −Xj(γ̃)∣)(
r̃

∑
k=1

∣Yl(γ̃) − Yk(γ̃)∣)

a.s.
→

2γ3

γ̃3
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y ′′(τ−)∣,

+ 2
(γ̃ − γ)3

γ̃3
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y ′′(τ+)∣,

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y ′(τ+)∣

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ+) −X(τ−)∣ ⋅ ∣Y (τ+) − Y ′(τ+)∣

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y (τ−)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y (τ+)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y ′(τ−)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ+) −X(τ−)∣ ⋅ ∣Y (τ+) − Y ′(τ−)∣.

=D(γ̃−).

If γ̃ ≤ γ, then we have that

U 2
n (X(γ̃−), Y (γ̃−))

a.s.
→ V 2(X(τ−), Y (τ−)).

Now, the statistic U 2
n (X(γ̃+), Y (γ̃+)) can be written as

1

(T − r̃)(T − r̃ − 3)

⎛

⎝
2
T−1

∑
j=r̃+1

T

∑
k=j+1

∣Xk(γ̃) −Xj(γ̃)∣∣Yk(γ̃) − Yj(γ̃)∣

+
1

(T − r̃ − 1)(T − r̃ − 2)
(2

T−1

∑
j=r̃+1

T

∑
k=j+1

∣Xj(γ̃) −Xk(γ̃)∣)(2
T−1

∑
j=r̃+1

T

∑
k=j+1

∣Yj(γ̃) − Yk(γ̃)∣)

−
2

(T − r̃ − 2)

T

∑
l=r̃+1

(
T

∑
j=r̃+1

∣Xl(γ̃) −Xj(γ̃)∣)(
T

∑
k=r̃+1

∣Yl(γ̃) − Yk(γ̃)∣)
⎞

⎠
.
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The U-statistic will be decomposed in several terms. First, assume that γ̃ < γ. The

�rst term converges to

2

(T − r̃)(T − r̃ − 3)

T−1

∑
j=r̃+1

T

∑
k=j+1

∣Xk(γ̃) −Xj(γ̃)∣∣Yk(γ̃) − Yj(γ̃)∣

a.s
→

γ2

(1 − γ̃)2
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y ′(τ−)∣

+ 2
(1 − γ)(γ̃ − γ)

(1 − γ̃)2
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y (τ+)∣

+
(γ̃ − γ)2

(1 − γ̃)2
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y ′(τ+)∣

= A(γ̃+).

The second term is

2

(T − r̃)(T − r̃ − 1)

T−1

∑
j=r̃+1

T

∑
k=j+1

∣Xj(γ̃) −Xk(γ̃)∣

2

(T − r̃ − 2)(T − r̃ − 3)

T−1

∑
j=r̃+1

T

∑
k=j+1

∣Yj(γ̃) − Yk(γ̃)∣

a.s.
→ B(γ̃+) ⋅C(γ̃+)

= (B1(γ̃+) +B2(γ̃+) +B3(γ̃+))(C1(γ̃+) +C2(γ̃+) +C3(γ̃+)),
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with

B1(γ̃+) =
(γ − γ̃)2

(1 − γ̃)2
E∣X(τ−) −X ′(τ−)∣,

C1(γ̃+) =
(γ − γ̃)2

(1 − γ̃)2
E∣Y (τ−) − Y ′(τ−)∣,

B2(γ̃+) =2
(1 − γ)(γ − γ̃)

(1 − γ̃)2
E∣X(τ−) −X(τ+)∣,

C2(γ̃+) =2
(1 − γ)(γ − γ̃)

(1 − γ̃)2
E∣Y (τ−) − Y (τ+)∣,

B3(γ̃+) =
(1 − γ)2

(1 − γ̃)2
E∣X(τ+) −X ′(τ+)∣,

C3(γ̃+) =
(1 − γ)2

(1 − γ̃)2
E∣Y (τ+) − Y ′(τ+)∣.

The third term converges to

2

(T − r̃)(T − r̃ − 2)(T − r̃ − 3)

T

∑
l=r̃+1

(
T

∑
j=r̃+1

∣Xl(γ̃) −Xj(γ̃)∣)(
T

∑
k=r̃+1

∣Yl(γ̃) − Yk(γ̃)∣)

a.s.
→

2γ3

γ̃3
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y ′′(τ−)∣,

+ 2
(γ̃ − γ)3

γ̃3
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y ′′(τ+)∣,

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y ′(τ+)∣

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ+) −X(τ−)∣ ⋅ ∣Y (τ+) − Y ′(τ+)∣

+
2γ(γ̃ − γ)2

γ̃3
E∣X(τ+) −X ′(τ+)∣ ⋅ ∣Y (τ+) − Y (τ−)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ−) −X ′(τ−)∣ ⋅ ∣Y (τ−) − Y (τ+)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ−) −X(τ+)∣ ⋅ ∣Y (τ−) − Y ′(τ−)∣

+
2γ2(γ̃ − γ)

γ̃3
E∣X(τ+) −X(τ−)∣ ⋅ ∣Y (τ+) − Y ′(τ−)∣

=D(γ̃+).
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If γ ≤ γ̃, then we have that

U 2
n (X(γ̃+), Y (γ̃+))

a.s.
→ V 2(X(γ̃+), Y (γ̃+)).

De�ne

Q(X,Y, γ; γ̃) = 1{γ ≤ γ̃}∣A(γ̃−) +B(γ̃−)C(γ̃−) −A(γ̃−) − V 2(X(τ+), Y (τ+))∣

+ 1{γ > γ̃}∣A(γ̃+) +B(γ̃+)C(γ̃+) −A(γ̃+) − V 2(X(τ−), Y (τ−))∣.

It is clear that

∣U 2
n (X(γ̃−), Y (γ̃−)) −U 2

n (X(γ̃+), Y (γ̃+))∣
a.s
→ Q(X,Y, γ; γ̃),

and that when γ̃ = γ we have that

Q(X,Y, γ;γ) = ∣V 2(X(γ−), Y (γ−)) − V 2(X(γ+), Y (γ+))∣

2.

Theorem B.0.7. Suppose the assumptions of the previous lemma hold. Let τ̂ denote

the change point estimator. Then for T large enough, γ ∈ [δT ,1 − δT ], and

furthermore, for all ε > 0

lim
T→∞

P(∣γ −
τ̂

T
∣ ≥ ε) = 0.

Proof: Let T be such that γ ∈ [δT ,1 − δT ], then for any γ̃ ∈ [δT ,1 − δT ] we have that

∣V 2
n (X(γ̃−), Y (γ̃−)) − V 2

n (X(γ̃+), Y (γ̃+))∣
a.s
→ Q(X,Y, γ; γ̃)

as T →∞, because of Lemma B.0.6. The maximum of
√
γ̃(1 − γ̃)Q(X,Y, γ; γ̃) is
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attained when γ̃ = γ. Now, de�ne

τ̂T = argmax
τ∈⌈TδT ⌉,⌈TδT ⌉+1,...,⌊T (1−δT )⌋

a(τ)V 2
n (X,Y ; τ),

and in the interval Γ̂T as

τ̂T = argmax
γ̃∈[δT ,1−δT ]

a(τ)V 2
n (X,Y ; τ),

with τ̂T
T ∈ Γ̂. Since τ̂T is the argmax, we have that

1
√
T
a(τ̂T )V

2
n (X,Y ; τ̂T ) ≥

1
√
T
a(γT )V 2

n (X,Y ;γT ),

and thus we have

1
√
T
a(τ̂T )V

2
n (X,Y ; τ̂T ) ≥

√
γ(1 − γ)Q(X,Y ;γ, γ) − op(1).

Now, let γ̂ = τ̂/T , we have that

0 ≤
√
γ(1 − γ)Q(X,Y, γ;γ) −

√
γ̂(1 − γ̂)Q(X,Y, γ; γ̂)

≤
1

√
T
a(γ̂T )V 2

n (X,Y ; γ̂T ) + op(1) −
√
γ̂(1 − γ̂)Q(X,Y, γ; γ̂)

p
→ 0.

For every ε > 0, there exists a η such that ∣γ̃ − γ∣ ≥ ε implies that

√
γ̃(1 − γ̃)Q(X,Y, γ; γ̃) <

√
γ(1 − γ)Q(X,Y, γ;γ) − η.
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Thus, we have that

lim
T→∞

P(∣γ̂ − γ∣ ≥ ε) ≤ lim
T→∞

P(
√
γ̂(1 − γ̂)Q(X,Y, γ; γ̂) <

√
γ(1 − γ)Q(X,Y, γ;γ) − η)

p
→ 0

2.
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