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Abstract

We develop an asymptotically chi-squared test statistic for testing moment condi-
tions E[mt(�

0)] = 0 where scalar components ofmt(�
0) may have an in�nite variance

and mt(�
0) may be weakly dependent. In general E[mt(�

0)] need not exist under the
alternative. A variety of tests can be heavy-tail robusti�ed by our method, including
white noise, GARCH a¤ects, omitted variables, order selection, functional form, cau-
sation, volatility spillover and over-identi�cation. The test statistic is derived from
a tail-trimmed sample version of the moments evaluated at a consistent plug-in �̂T
for �0. Depending on the test in question �̂T may be any consistent estimator like
QML, LAD, GMM, and Empirical Likelihood as well as robust estimators like Least
Trimmed Squares, Least Absolute Weighted Deviations, and Generalized Method of
Tail-Trimmed Moments. Simple rules of thumb for selecting the trimming fractiles
are presented, and in many cases when mt(�

0) has in�nite variance components the
fractiles and/or �̂T can be chosen to ensure �̂T does not in�uence the test statistic�s
limit distribution. Thus, in heavy tailed cases �̂T does not need to have a Gaussian
limit. We apply our statistic to tests of white noise, omitted variables and volatility
spillover and �nd it obtains correct empirical size, while conventional tests exhibit
sharp distortions.

1. INTRODUCTION We propose an asymptotically chi-squared test statistic for
testing moment conditions in the presence of heavy tails. Let mt : �! Rq be parametric
estimating equations on compact � � Rr, where q; r � 1. We assume mt(�) is continuous
and di¤erentiable for simplicity of exposition. The null hypothesis is

H0 : E
�
mt(�

0)
�
= 0 for �0 2 � (1)

with a general alternative
H1 : the null is false: (2)

We allow E[m2
i;t(�

0)] = 1 in general, and do not require E[mt(�)] to exist under H1 for
any �. If mt(�) is integrable uniformly on � then the alternative becomes H1: E[mt(�

0)]
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6= 0. In general � may represent a subset of parameters from a regression model setting,
for example when testing for the autoregression order in an AR-GARCH, or mt(�) = mt

may be parameter-free as in a test of white noise on an observable time series. We present
a variety of examples in Section 2 and augment them with theory details in Section 4.
Moment condition [MC] tests and tests with MC interpretations exhibit a vast his-

tory, covering tests of omitted or instrumental variables, functional form, conditional het-
eroscedasticity, over-identi�cation, causation, volatility spillover, structural change, order
selection and encompassing tests. Notable theory contributions for iid data include Newey
(1985), Tauchen (1985), Ramsey (1969), Hausman (1978), White (1981), Hansen (1982),
Bierens (1990), Imbens et al (1998) and Kitamura et al (2004) to name a few. Moment
equality and inequality tests for time series are developed in de Jong (1996), Floren et
al (1998), Corradi and Swanson (2002), Ghysels and Guay (2003), Ghysels and Andreou
(2003), and Hill (2008) to name a very few.
Evidence for heavy tails across disciplines is substantial, ranging from �nancial, macro-

economic, auction, actuarial, meteorological to network telecommunication data. The
literature is vast, but consider Campbell and Hentschel (1992), Engle and Ng (1993),
Embrechts et al (1997), Resnick (1997), Finkenstadt and Rootzén (2003), and Hill and
Shneyerov (2010). In general, by their sample moment form MC tests require higher mo-
ments on the equationsmt(�

0) to ensure a classic limit distribution, and therefore possibly
very severe moment restrictions on an underlying process that may fail for even mildly
volatile data.
A simple example is a test of mis-speci�ed ARCH order. Consider an ARCH(1)

yt = ht(�
0)ut where h2t (�) = ! + �y2t�1, ut

iid� N(0; 1), ! > 0 and � 2 (0; 1);

with test equations
mi;t(�) =

�
y2t � h2t (�)

�
y2t�i, i = 1; 2; :::; q:

The equations mi;t(�
0) exhibit power-law and not exponential tail decay (Cline 1986,

Mikosch and St¼aric¼a 2000, Hill and Renault 2010a), and have a �nite variance only if ut
and yt have �nite 4th and 8th moments respectively. This is highly unrealistic for many
�nancial and macroeconomic time series in lieu of heavy tailed noise and/or GARCH-like
feedback (Embrechts et al 1997, Finkenstadt and Rootzén 2003, Hall and Yao 2003, Davis
and Mikosch 2009a,b, Linton et al 2010).
In order to conquer the challenge of heavy tails, and arrive at a test statistic that is

easily computed and interpreted due to a standard limit distribution, we negligibly trim
each equation mi;t(�). Let fk1;i;T ; k2;i;T g be integer fractile sequences representing the
number of trimmed left-tailed and right-tailed observations from each sample fmi;t (�)gTt=1
with sample size T . We enforce negligible trimming by assuming fk1;i;T ; k2;i;T g are inter-
mediate order sequences: kj;i;T ! 1 and kj;i;T =T ! 0 (Leadbetter et al 1983). De�ne
tail speci�c observations of mi;t(�) and their sample order statistics:

m
(�)
i;t (�) := mi;t(�)� I (mi;t(�) < 0) and m

(�)
i;(1)(�) � � � � � m

(�)
i;(T )(�) � 0

m
(+)
i;t (�) := mi;t(�)� I (mi;t(�) > 0) and m

(+)
i;(1)(�) � � � � � m

(+)
i;(T )(�) � 0:

If an equation mi;t(�
0) has an in�nite variance, or its higher moments are unknown, we
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trim mi;t(�) between its lower k1;i;T =T th and upper k2;i;T =T th sample quantiles:

m̂�
T;i;t (�) := mi;t (�)� I

�
m
(�)
i;(k1;i;T )

(�) � mi;t (�) � m
(+)
i;(k2;i;T )

(�)
�

(3)

= mi;t (�)� Îi;T;t (�)

m̂�
T;t (�) =

h
mi;t (�)� Îi;T;t (�)

iq
i=1

where Îi;T;t (�) = 1 if equation i is not trimmed,

and I(A) = 1 is A is true, and 0 otherwise.
Denote by �̂T any consistent estimator of �

0. The proposed Tail-Trimmed Moment
Condition [TTMC] test statistic has a quadratic form

ŴT =

 
TX
t=1

m̂�
T;t(�̂T )

!0
Ŝ�1T (�̂T )

 
TX
t=1

m̂�
T;t(�̂T )

!
(4)

where ŜT (�) is a kernel HAC estimator

ŜT (�) :=

TX
s;t=1

k ((s� t) =
T )
�
m̂�
T;s(�)� m̂�

T (�)
	�

m̂�
T;t(�)� m̂�

T (�)
	0
;

and m̂�
T (�) := 1=T

PT
t=1 m̂

�
T;t(�̂T ), k(�) is kernel function and 
T ! 1 is bandwidth.

As long as mt(�) satis�es a mixing condition, the trimming indicators Îi;T;t(�) have
good metric entropy properties, and the rate of convergence �̂T

p! �0 is fast enough relative
to the rate of convergence of

PT
t=1 m̂

�
T;t(�

0) that the data generating process of �̂T does

not over shadow (1), then ŴT is asymptotically chi-squared under (1). Further, under
the same conditions ŴT has non-negligible power against a sequence of local alternatives,
hence ŴT ! 1 under (2) with probability one. This relies closely on the assumption
that �̂T is consistent under either hypothesis. See Section 3.
We investigate tests of white noise, omitted variables and volatility spillover in a

simulation study in Section 5. The control tests for comparisons are an untrimmed version
of ŴT , the Ljung-Box Q-test of white noise, a Wald test of parametric restrictions, and
Hong�s (2001) test of volatility spillover. Our simulations serve two purposes. First, they
demonstrate heavy tails substantially distort empirical size of non-robust tests (Ljung-
Box, Wald, Hong 2001), adding to evidence provided for a variety model speci�cation
tests in de Lima (1997) and elsewhere (e.g. Runde 1997). Second, trimming remarkably
few large mt(�) leads to sharp empirical size, while still permitting substantial power in
many cases, and competitive power in other cases.
If the data generating process of mi;t(�

0) is known to be symmetric then trimming
is symmetric k1;i;T = k2;i;T . Otherwise an asymmetric policy fk1;i;T ; k2;i;T g should be
imposed to ensure identi�cation of the null (1) by the trimmed equation m̂�

T;t(�) as T
! 1. We discuss in Section 3 simple rules of thumb for selecting kj;i;T based on three
possible criteria: test statistic convergence rate, rate of identi�cation, and whether the
plug-in �̂T in�uences the limit distribution of ŴT .
Further, if at least one equation mi;t(�

0) has an in�nite variance then depending
the equation form we can choose fk1;i;T ; k2;i;T g to slow down

PT
t=1 m̂

�
T;t(�

0), or choose

a comparatively fast plug-in �̂T
p! �0 so that �̂T does not a¤ect ŴT . Thus, in some

cases �̂T does not have to have a Gaussian limit. This is possible because
PT

t=1 m̂
�
T;t(�

0)

is O(T 1=2)-convergent while super-T 1=2-convergent �̂T exist for some heavy tailed time
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series, including OLS and LAD with non-Gaussian limits, and HR�s (2010a) GMTTM
and Hill�s (2010a) Least Tail-Trimmed Squares [LTTS] with Gaussian limits.
Our framework is built on the principles of Generalized of Method of Tail-Trimmed

Moments [GMTTM] by Hill and Renault (2010a), denoted HR (2010a). A matching the-
ory of robust inference, however, does not exist, in particular inference via tail-trimmed
equations that are not necessarily used to estimate �0, and with an arbitrary plug-in �̂T
that may not have a Gaussian limit. Valid plug-ins include conventional estimators like
GMM, NLLS, QML, LAD, and the Empirical Likelihood and information-theoretic variety
like CUE-GMM and Exponential Tilting (Hansen et al 1996, Antoine et al 2007, Kitamura
and Stutzer 1997); as well as outlier-robust estimators like Least Trimmed Squares (Rup-
pert and Carroll 1980, µCiµzek 2008); and heavy tail-robust estimators like HR�s (2010a)
GMTTM, Ling�s (2005, 2007) Least Absolute Weighted Deviations [LAWD] and Quasi-
Maximum Weighted Likelihood [QMWL], Hill�s (2010a) LTTS, and R-estimators (Jaeckel
1972, Andrews 2008).
Certainly trimming by a �xed quantile ofmt(�) simpli�es limit theory since kj;i;T =T !

(0; 1) ensures m̂T;t(�
0) has a �nite variance even asymptotically. Fixed quantile trimming

and truncation are primary tools for outlier robust estimation (e.g. Huber 1977; see
Cizek 2008, 2009 and his citation). But there is no guarantee the trimmed equations will
identify the null (1) in the sense 1=T

PT
t=1 m̂T;t(�

0)
p! 0, when the data generating process

is nonlinear. Further, we are not claiming the data are contaminated: we trim only to
induce a standard limiting distribution for a test statistic. Indeed, only tail -trimming
robusti�es against heavy tails and bias in general settings. Bias correction by simulated
method of moments requires knowledge of an underlying distribution (Ronchetti and
Trojani 2001), and otherwise bias is merely assumed away (µCiµzek 2009). See HR (2010a).
Conversely, the lightest trimming case kj;i;T ! kj;i, a �xed integer, results in too few
equations removed to ensure a standard null distribution.
Intermediate order trimming predominantly appears in the central limit theory lit-

erature for iid sequences, with few applications in the econometrics literature and none
concerning robust inference for regression models. See the compendium Hahn et al (1991),
and Hill (2010a, 2010b) and HR (2010) for detailed literature reviews.
The proposed TTMC statistic is generalistic. If a particular context is entertained then

a di¤erent statistic form and therefore tail-trimming strategy may be optimal. A robust
test of white noise, for example, can easily be couched in terms of (1) and therefore tested
by ŴT , but it is also conceivable to tail-trim sample covariances for a robust portmanteau
statistic. The large variety of possible tests makes entertaining speci�c trimming strategies
cases impossible, and is therefore left by-case for future research.
There are at least four major veins of inference in the presence of heavy tails. First,

re-scaled tests obtain non-standard limits like t-ratios, portmanteau statistics, tests of
covariance stationarity, unit roots, cointegration and GARCH (Davis and Resnick 1986,
Chan and Tran 1989, Loretan and Phillips 1991, Davis et al 1992, Runde 1997, Caner
1998, Hall and Yao 2003). Second, tests specialized to heavy tailed data, like tail de-
pendence, obtain Gaussian limits and can in principle be used to test regression model
mis-speci�cation (e.g. Schmidt and Stadtmüller 2006, Davis and Mikosch 2009b). There
are few attempts in the literature to extend such methods to econometric speci�cation
contexts, although tail behavior of regression estimators is used to model breakdown
points (Jureµcková 1981, He et al 1990) and e¢ ciency and majorization (Ibragimov 2007).
The third class is distribution free tests and non-parametric inference, including rank-

order tests of unit roots, correlation integral-based tests of dependence, and bootstrapped
con�dence bands (e.g. Breitung and Gouriéroux 1997, Brock et al 1996, de Lima 1996,
Mason and Shao 2001).
The fourth class includes statistics derived from heavy tail robust methods which
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therefore have standard limits. Examples are Ling�s (2005) and Hill�s (2010a) Wald sta-
tistics respectively for LAWD and LTTS estimators, and Hill�s (2010b) kernel variance
estimator for a tail-trimmed sum. In these cases inference and limit theory are developed
for a particular estimation problem. By contrast, our test equations m̂�

T;t(�) need not be

based on an estimation problem, and if they are the plug-in �̂T need not be based on the
same method. Examples are given in the next section.

We use the following notation conventions. If AT (�) is a matrix function of � we write

AT = AT (�
0):

�min(A) and �max(A) are the minimum and maximum eigenvalues of A. The Lp-norm
is jjxjjp = (

P
i;j Ejxi;j jp)1=p, and the spectral (matrix) norm is jjAjj = (�max(A

0A))1=2.
(z)+ := maxf0; zg: K denotes a positive �nite constant whose value may change from line

to line; � > 0 is a tiny constant; N is a whole number.
p! and d! denote probability and

distribution convergence. [z] denotes the integer part of z.

2. EXAMPLES OF MOMENT CONDITION TESTS Evidently any test
with a moment condition interpretation can be couched within our tail-trimming frame-
work. We give examples of tests of white noise, omitted variables, functional form,
GARCH speci�cation, volatility spillover and over-identi�cation. In Section 4 we com-
plete several examples by showing how the theory developed in Section 3 applies, and
verify the major assumptions.
Unless otherwise speci�ed the model is

yt = f(xt; �) + �t(�); where f : Rp ��! R and � � Rr; (5)

where f(�; �) is continuous and di¤erentiable, �t = �t(�
0) is an idiosyncratic shock for

unique �0, and xt 2 Rp and zt 2 Rs are non-redundant regressors, r; s � 1.

EXAMPLE 1 (White Noise): A test of white noise in the errors is a test of (1)
with equations

mt(�) = �t(�)� [�t�1(�); :::; �t�q(�)]0 :
If �t has an in�nite variance then each mi;t(�

0) = �t�t�i has an in�nite variance, and if
there are GARCH a¤ects E[m2

i;t(�
0)] < 1 may require �t to have up to a �nite fourth

moment.
A test of white noise on zero mean yt uses mt = yt � [yt�1; :::; yt�q]

0; so the test
equations may not depend on a parameter �.

EXAMPLE 2 (Omitted Variables): A simple orthogonality test of omitted vari-
ables zt in an additive form yt = f(xt; �

0) + �0zt + �t checks whether E[mt(�
0)] = E[�tzt]

= 0. A general test of omitted variables can be treated as in Fan and Li (1996): see
Example 4, below.
Consider an AR(1) as a simple example:

yt = �0yt�1 + �t;
���0�� < 1;

with zt = [yt�2; :::; yt�p]0. The error must satisfy E[�2t ] <1 for a score test of E[�tyt�2] =
0 based on OLS or GMM. Notice if �0 6= 0 and E[�2t ] = 1 then E[�t(�)yt�2] = E[�tyt�2]
+ (� � �0)E[yt�1yt�2] does not exist for any � 6= �0, even under the null, so the proper
alternative is indeed (2).
Now assume the error is IGARCH(1,1) yt = �0yt�1 + �t, j�0j < 1, where �t = htut, h2t

= !0 + �0�2t�1 + (1 � �0)h2t�1, �
0 2 (0; 1) and ut

iid� N(0; 1). Then equations likemi;t(�
0)
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= �tyt�i have an in�nite variance E[m2
i;t(�

0)] = 1 and are not integrable anywhere on
�=�0 since jE[mi;t(�)]j = 1 for any � 6= �0. The GARCH parameters ! and � may be
estimated along with �, as in QML. Thus, implicit in our framework are moment condition
tests where � is a subset of parameters.

EXAMPLE 3 (Neural Test of Neglected Nonlinearity): Consider Lee et al�s
(1996) version of Bierens�(1990) celebrated consistent test of functional form. Assume yt
is integrable so it has a conditional expectations by the Radon-Nikodym Theorem. By
hypothesis f(xt; �

0) is a version of E[ytjxt] a:s: for unique �0 2 �. Let �̂T be an estimator
of �0, and �̂t = yt � f(xt; �̂T ). The test statistic is

R̂T (
) =

 
1

T 1=2

TX
t=1

�̂tF (

0 (xt))

!2
=v̂2T (
) with F (u) =

1

1 + exp fug ;

where v̂2T (
) estimates E[f1=T 1=2
PT

t=1 �̂tF (

0 (xt))g2] under the null, 
 2 � � Rp is a

nuisance parameter, and  : Rr ! Rr is a bounded one-to-one function.
De�ne the scalar test equation

mt(�; 
) := �t (�)� F (
0 (xt)):

Under the null E[mt(�
0; 
)] = 0 for every 
 by iterated expectations. The statistic R̂T (
)

is grounded on the fact that if �t is integrable, xt is �nite dimensional, and the null is false
E[�tjxt] 6= 0 then F (
0 (xt)) is "revealing" (Stinchcombe and White 1998: De�nition
2.1). That is E[mt(�

0; 
)] = E[�tF (

0 (xt))] 6= 0 for all 
 on any compact � except for


 in S � � with Lebesgue measure zero (Bierens and Ploberger 1997, Stinchcombe and
White 1998). The result carries over to any non-polynomial real analytic function F : R
! R with a¢ ne argument 
0 (xt) (Stinchcombe and White 1998).
In order for R̂T (
)

d! �2(1) under the null, the gradient (@=@�i)f(xt; �), uniformly
on �, and the error �t must have �nite 4 + �th-moments to ensure v̂2T (
) is consistent for
weakly dependent data (e.g. de Jong 1996, Hill 2008).

EXAMPLE 4 (Hong-White and Fan-Li Tests of Functional Form): Consider
the Example 3 framework and de�ne conditional moments (assumed to exist)

Y(xt) := E [ytjxt] and E(xt) := E [�tjxt] :

Although nuisance parameter indexing within a �exible functional form can consistently
reveal mis-speci�cation, Hong andWhite (1995) note E[mt(�

0)] = E[�t(f(xt; �
0) � Y(xt))]

= E[(f(xt; �
0) � Y(xt))2] = 0 if and only if E(xt) = 0. Thus f(xt; �0) � Y(xt) is revealing

and does not depend on a nuisance parameter. They suggest a non-parametric estimator
of Y(xt) where f(xt; �0) is known by hypothesis.
A similar test for omitted variables and functional form mis-speci�cation is developed

in Fan and Li (1996). They exploit E[(�tE(xt))] = E(E(xt))2 = 0 if and only if E(xt) =
0 a:s., and propose a nonparametric estimator of E(xt). Both approaches suggest an MC
test based on E[�twt] with wt identically f(xt; �

0)� Y(xt) or E(xt).
We do not tackle non-parametric function estimation in this paper: we only allow a

parametric plug-in �̂T to keep arguments tight. It seems apparent, however, that the
methods developed here have a natural analogue for testing the above moments with
nonparametric plug-ins.

EXAMPLE 5 (GARCH Speci�cation): Construction a GARCH model

yt = ht(�
0)�t where h2t (�) = ! + �y2t�1 + �h

2
t�1(�), ! > 0; �; � � 0;
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and �t
iid� (0; 1), with parameter set � = [!; �; �]0. If the true data generating process is

semi-strong GARCH(1,1) then yt=ht(�
0) is white noise, so Example 1 applies.

Otherwise, a test of GARCH(p; q) against GARCH(r; s) can be constructed as a QML
score statistic (see Bollerslev 1986), with equations

mt(�) =

�
y2t

h2t (�)
� 1
�
� h2t (�)�

@

@�
h2t (�):

mt(�
0) =

�
�2th

2
t (�

0)� h2t
�
� @

@�
h2t (�):

Under the null h2t (�
0) = !0 hence E[m2

i;t(�
0)] <1 if and only if E[�4t ] <1; and E[mi;t(�)]

does not exist if the GARCH model is mis-speci�ed and E[�4t ] = 1.
In lieu of recent e¤orts to model volatility with heavy tailed errors (Hall and Yao 2003,

HR 2010a, Linton et al 2010), a robust GARCH speci�cation test is desired.

EXAMPLE 6 (Volatility Spillover): A rich literature has emerged on testing for
market associations and contagion, and stock price/volume relationships during volatile
periods (King et al 1994, Brooks 1998, Comte and Lieberman 2000, Hong 2001, Caporale
et al 2002, Forbes and Rigobon 2002). Let fy1;t; y2;tg be a joint process of interest with
GARCH(1,1) coordinates: each yi;t satis�es under the null

yi;t = hi;t(�
0
i )�i;t, �i;t

iid� (0; 1) and h2i;t (�) = !i + �iy
2
t�1 + �ih

2
i;t�1 (�) :

Hong (2001) argues volatility spillover reduces to testing whether y21;t=h
2
1;t � 1 and

y22;t�j=h
2
2;t�j � 1 are correlated. He proposes a standardized portmanteau statistic and

requires E[�8i;t] < 1, although yi;t may be IGARCH or mildly explosive GARCH, as long
as yi;t is stationary. See the simulation study in Section 5 for details.
De�ne test equations

mj;t(�) =

 
y21;t

h21;t(�1)
� 1
!
�
 

y22;t�j
h22;t�j(�2)

� 1
!
:

Under the compound null of correct marginal strong-GARCH(1,1) and no spillover from
y2;t to y1;t it follows E[mj;t(�

0)] = E[(�21;t � 1)(�22;t�j � 1)] = 0, and E[m2
j;t(�

0)] < 1
requires at least E[�4i;t] < 1. Under tail-trimming we only need the equations mt(�

0)

to be integrable under the null hence E[�2i;t] < 1, a substantial improvement over Hong
(2001).

EXAMPLE 7 (Over-Identi�cation): By construction ŴT can be used as Hansen�s
(1982) test of over-identifying restrictions when mt(�) is used to estimate � by GMM or
GMTTM (Hansen 1982, HR 2010a). The truly interesting aspect of such a test occurs
when some equations mi;t(�

0) have an in�nite variance since we may use a variety of
plug-ins that lead to a consistent test: asymptotic power of one against rejection of over-
identi�cation. See Section 3, below, for theory details.

3. ROBUSTMOMENT CONDITION TESTS Denote by Li(�); Ui(�) 2 [0;1]
equation speci�c support bounds: �Li(�) � mi;t(�) � Ui(�) a:s: The potential problem
with testing (1) is at least one equation may have an unbounded support and in�nite
variance.
Equations mi;t(�

0) known to have a bounded variance are logically untrimmed for the
sake of e¢ ciency. Assume the �rst q 2 f1; :::; qg equations are trimmed:

m̂�
T;t (�) =

h
mi;t (�)� Îi;T;t (�)

iq
i=1

=
hn
mi;t (�)� Îi;T;t (�)

oq
i=1

; fmi;t (�)gqi=q+1
i
:
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Throughout q � 1 since otherwise the following reduces to known results. If the ana-
lyst does not know whether an equation has an in�nite variance than all equations are
trimmed: q = q. Trimming equations with �nite variance may reduce e¢ ciency (HR
2010a), but the obverse is precisely the crux of this paper: not to trim equations with
in�nite variance will result in a non-standard or degenerate limit distribution of ŴT .
In this section we de�ne fractile and threshold sequences, detail plug-in properties,

discuss why a HAC estimator is needed in general for the test statistic scale, state the
main results and conclude with details on fractile choice.

3.1 Threshold and Fractile Sequences

Let positive integer sequences fk1;i;T ; k2;i;T : 1 � i � qg and positive sequences of
threshold functions fli;T (�); ui;T (�) : 1 � i � qg satisfy

kj;i;T !1, kj;i;T =T ! 0, 1 � k1;i;T + k2;i;T < T

li;T (�)! Li(�) and ui;T (�)! Ui(�) uniformly on compact � � Rr,

and (e.g. Leadbetter et al 1983: Theorem 1.7.13),

T

k1;i;T
P (mi;t(�) < �li;T (�)) = 1 and

T

k2;i;T
P (mi;t (�) > ui;T (�)) = 1: (6)

Thus, li;T (�) and ui;T (�) are identically the equation speci�c lower k1;i;T =T th ! 0 and
upper k2;i;T =T th ! 0 tail quantiles. We are guaranteed the existence of such quantiles
fli;T (�); ui;T (�)g on � for any choice of fractile fk1;i;T ; k2;i;T g since we assume mt(�) has
absolutely continuous marginal distributions. See Appendix A for all assumptions and
related discussion.
The TTMC statistic (4) involves m̂�

T;t (�) in (3), but asymptotic theory is grounded
on deterministic trimming with equations

m�
T;i;t (�) := mi;t (�)� I (�li;T (�) � mi;t (�) � ui;T (�)) (7)

= mi;t (�)� Ii;T;t (�) : 1 � i � q

m�
T;t (�) = [mi;t (�)� Ii;T;t (�)]qi=1 where Ij;T;t (�) = 1 for q + 1 � j � q:

In Appendix C we show m̂�
T;t(�

0) is su¢ ciently close to m�
T;t(�

0) in the sense

S
�1=2
T

TX
t=1

�
m̂�
T;t(�

0)�m�
T;t(�

0)
	
= op(1);

where ST is the covariance matrix for
PT

t=1m
�
T;t(�

0), de�ned below. Thus, all asymptotic
arguments are grounded on m�

T;t(�
0), which is much simpler to work with for theory

purposes.
Since trimming may a¤ect inference we can now only say m�

T;t(�) eventually identi�es
�0 under the null:

H0 : E
�
m�
T;t(�

0)
�
! 0: (10)

The condition is easily guaranteed by Lebesgue�s dominated convergence since tail trim-
ming is negligible and mt(�

0) is integrable by construction under H0. Further, if mi;t(�
0)

exhibit power law tail decay then it is easy to characterize arbitrarily many fractile se-
quences fk1;i;T ; k2;i;T g that ensure E

�
m�
T;t(�

0)
�
! 0 arbitrarily fast. See Section 3.7,

below.
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Indeed, (10) is trivial if eachmi;t(�
0) is symmetrically distributed at zero and trimming

is symmetric li;T (�) = ui;T (�) since E[m�
T;t(�

0)] = 0. This is a key distinction between
tail and �xed quantile trimming where bias may arise by the latter.

3.2 Plug-In Properties

In simple contexts mt(�
0) = mt is non-parametric, as in a test of white noise for an

observable process fytg. In parametric contexts we assign to the plug-in �̂T a sequence of
positive de�nite scale matrices f ~VT g, ~VT 2 Rr�r, with diagonal components ~Vi;i;T ! 1,
and assume under either hypothesis

~V
1=2
T

�
�̂T � �0

�
= Op(1):

Under the alternative this translates to ~V 1=2T -consistency for some point �0 2 � (e.g. the
minimizer of the Kullback-Leibler Information Criterion, cf. Akaike 1973, White 1982).
As long as �̂T

p! �0 su¢ ciently fast (i.e. ~V
1=2
T ! 1 fast enough) we do not need to

say anything else about �̂T . Stationarity and thin tails typically rule out this possibility
since both ~V 1=2T � KT 1=2 and

PT
t=1fm�

T;t(�
0) � E[m�

T;t(�
0)]g = Op(T

1=2). But, as we
detail below and in Section 4, in many cases heavy tails introduce a unique advantage for
ensuring some estimators �̂T have no impact on ŴT , allowing �̂T with a non-Gaussian
limit.
In general �̂T may not have T 1=2-convergent components, and it may have components

that converge faster or slower than T 1=2 (cf. Antoine and Renault 2010, Hill 2010a,
HR 2010a). We therefore call ~V 1=2T the compound rate of convergence and jj ~VT jj1=2 the
maximum rate of convergence.
In order to gauge the impact �̂T has on the limit distribution of ŴT , we exploit the

fact that equation di¤erentiability and negligibility of trimming ensure
PT

t=1m
�
T;t(�̂T )

can be asymptotically expanded around �0. We therefore need covariance, Jacobian and
scale matrices associated with the expansion (cf. Newey and McFadden 1994):

ST (�) :=

TX
s;t=1

E
h�
m�
T;s (�)� E[m�

T;s(�)]
	�

m�
T;t (�)� E[m�

T;t(�)]
	0i 2 Rq�q and ST := ST

�
�0
�

JT (�) :=
@

@�
E
�
m�
T;t(�)

�
2 Rq�r and JT = JT (�

0)

VT (�) := T 2
�
J 0T (�)S

�1
T (�) JT (�)

��1 2 Rr�r and VT := VT (�
0):

Under regulatory conditions detailed in Appendix A, ŜT and m̂�
T;t(�) obtain an

asymptotic expansion

Ŝ�1T (�̂T )
TX
t=1

m̂�
T;t(�̂T ) =

(
S�1T

TX
t=1

m�
T;t(�

0) + TS
�1=2
T JT

�
�̂T � �0

�)
�(1 + op (1))+op (1) ;

(8)
where TS�1=2T JT satis�es

fTS�1=2T JT g � V �1T � fTS�1=2T JT g0 ! Iq:

See especially the proof Theorem 3.1 in Appendix B, and see Lemmas C.3-C.6 in Appendix
C. We ensure ŴT actually tests (1) by assuming the plug-in rates ~V

1=2
i;i;T ! 1 su¢ ciently

fast in the sense jjVT ~V �1T jj = O(1), hence

V
1=2
T

�
�̂T � �0

�
= Op(1):
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All conditions concerning f�̂T ; ~VT ; VT g are detailed under P1 and P2 of Appendix A.
A test of GMTTM over-identifying restrictions where mt(�

0) are both estimating and
test equations provides the intuition. If �̂T is the e¢ ciently weighted GMTTM estimator
based on mt(�

0) with trimming fractile fk1;i;T ; k2;i;T g, then V 1=2T is exactly the GMTTM

scale: under (1) and regulatory conditions outlined in Appendix A, below, V 1=2T (�̂T � �0)
d! N(0; Ir). See HR (2010a: Theorem 2.2). Roughly speaking, the general requirement
here V 1=2T (�̂T � �0) = Op(1) forces �̂T to have a compound rate ~V

1=2
T at least as fast as

e¢ cient GMTTM in the sense jjVT ~V �1T jj = O(1).
In practice this requires knowledge of the asymptotic properties of �̂T and mt(�

0),
hence we must have a particular test in mind. Nevertheless, depending on the equation
form when a component mi;t(�

0) has an in�nite variance certain estimators �̂T inherently
satisfy V 1=2T (�̂T � �0)

p! 0, or for a chosen �̂T we can ensure V
1=2
T (�̂T � �0)

p! 0 by

trimming mt(�) enough that TS
�1=2
T JT is slow relative to �̂T

p! �0. See Section 3.7 for
fractile choice details. Thus, depending on the test, plug-in and fractiles, �̂T may not
in�uence ŴT . In such a case �̂T does not have to have a non-Gaussian limit. The general
context is obviously complicated by the fact that mt(�) may be very di¤erent from the
estimating equations used to obtain �̂T .
If the compound rates are proportional ~VT � KVT for some positive de�nite K 2 Rr�r

then we assess the impact of �̂T on ŴT by assuming �̂T is grounded on some array of
parametric estimating equations

f ~mT;t(�; �)g, where ~mT;t(�; �) 2 Rp; p � r, and � 2 Rs;

that may depend on additional parameters �. In general ~mT;t(�; �) is from an estimation
problem like GMM, CUE, QML, LAWD or GMTTM. Thus, � may be a subset of parame-
ters of interest as in Examples 2 and 5. Since � does not play any role here, and treatment
of it merely deviates from the central theme, without too much loss of generality assume1

~mT;t(�; �) = ~mT;t(�):

In this case we assume ~V 1=2T (�̂T � �0) is asymptotically linear in
PT

t=1f ~mT;t(�
0) �

E[ ~mT;t(�
0)]g which satis�es a Gaussian central limit theorem.

This is important to note: if �̂T
p! �0 relatively fast jjVT ~V �1T jj ! 0 then �̂T need not

be asymptotically normal; and otherwise we must assume �̂T is grounded on equations
~mT;t(�

0) that belong to the normal domain of attraction. The latter implies either the
data are su¢ ciently thin tailed that a conventional plug-in like OLS, LAD, QML and
GMM has a normal limit, or �̂T is heavy tailed robust, like LAWD, QMWL, LTTS,
GMTTM and R-estimators. We show in Section 4 how OLS, LAWD, QML, QMWL,
LTTS and GMTTM variously satisfy the required rates of convergence for di¤erent test
environments, and use those estimators in the simulation study in Section 5. A large
variety of estimators can be similarly veri�ed.
We rule out the perverse case jj ~VTV �1T jj ! 0 since that implies some components �̂i;T ,

and therefore ~mT;t(�), are so dominant in the limit the test equations m�
T;t(�) have no

impact on ŴT . Nevertheless, in principle this may not be a problem if ~mT;t(�) satis�es

E [ ~mT;t(�)]! 0 if and only if � = �0:

1This is the same as assuming the "true" value �0 is known. The theory that follows easily allows
for a plug-in �̂n that is consistent �̂n

p! �0 su¢ ciently fast (e.g. no slower than �̂n
p! �0). See plug-in

properties P1-P2 in Appendix A.
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In this case we would replace m�
T;t(�) with ~mT;t(�) and compute the test statistic from

~mT;t(�).
Finally, although we assume mt(�) is continuous and di¤erentiable, we make no such

assumptions on ~mT;t(�). Nevertheless, mT;t(�) and ~mT;t(�) may have shared elements, so
de�ne the total set of unique equationsM�

T;t(�):

M�
T;t(�) 2 Rs where m�

T;t(�); ~mT;t(�) 2M�
T;t(�), s � maxfp; qg: (9)

An extreme example is m�
T;t(�) = ~mT;t(�) for a test of over-identi�cation in GMTTM

(HR 2010a).

3.3 HAC Estimator

A HAC estimator ŜT (�) is not required if the equations mt(�
0) are su¢ ciently orthog-

onal that

ST (�) = T � E
h�
m�
T;s(�)� E

�
m�
T;s(�)

�	 �
m�
T;t(�)� E

�
m�
T;t(�)

�	0i
= T � �T (�) ;

say. In this case ŜT (�̂T ) = T �̂T (�̂T ) su¢ ces, where

�̂T (�̂T ) =
1

T

TX
t=1

n
m̂�
T;t(�̂T )� m̂�

T (�̂T )
on

m̂�
T;t(�̂T )� m̂�

T (�̂T )
o0
:

In general a HAC estimator is preferred even if fmt(�
0);=tg is a martingale di¤erence

for some non-decreasing sigma-�eld =t since m�
T;t(�

0) may not be a martingale di¤erence
for each T . Even asymptotically there are two forces: negligible trimming ensuresm�

T;t(�
0)

becomes like the martingale di¤erence mt(�
0), but as T grows there are more cross terms

in ST relating serial dependence in the trimmed equations. Unless more information
is provided, in general there is no guarantee T�1��1T ST ! Iq fast enough to overcome
dependence across the accumulation of observations T ! 1.

3.4 Main Results

The main results of the paper follow. First, the test statistic is asymptotically chi-
squared under the null. See Appendix A for all assumptions concerning distribution
properties (D), identi�cation and moment smoothness (I), the HAC kernel (K), and the
plug-in (P); and see Appendix B for all proofs.
The simplest case is when mt(�) is non-parametric.

THEOREM 3.1 Suppose mt(�) = mt, and let D1-D6, I1-I4, and K1 hold. Under the

null (1) ŴT
d! �2(q) a chi-squared law with q degrees of freedom.

The general case complicates degrees of freedom.

THEOREM 3.2 Let D1-D6, I1-I4, K1, and P1 or P2 hold. Under the null (1) ŴT
d! �2(�) where degrees of freedom � depends on the rate of convergence of �̂T . In
particular, by case if P1 holds such that �̂T

p! �0 fast enough that jjVT ~V �1T jj ! 0

then � = q the number of estimating equations; and if P2 holds such that ~VT � KVT
for some positive de�nite K 2 Rr�r then � = s � r the di¤erence between the total
number of unique equations and the dimension of �0.

3.5 Degrees of Freedom
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Degrees of freedom � depend on whether mt(�) is parametric, how fast �̂T
p! �0 in

parametric cases, how many unique test and estimating equations there are when �̂T
p!

�0 is relatively slow, and whether over-identifying restrictions are used to estimate �0.
Under plug-in property P2 where ~VT � KVT , the degrees of freedom are exactly � = s

� r = q when estimating and test equations are unique (i.e. s = q + p) and �0 is exactly
identi�ed (r = p). This case applies to many tests and estimators (e.g. white noise with
QMWL; functional form with exactly identi�ed GMTTM), and applies to all cases in our
simulation study of Section 5.

COROLLARY 3.3 Let D1-D6, I1-I4, K1, and P2 hold, and assume all equations are
unique ( s = q + p) and �0 is exactly identi�ed ( r = p). Then under the null (1)

ŴT
d! �2(q).

Otherwise, as in (9) decompose
PT

t=1 m̂
�
T;t(�

0) into components that reveal the impact

of �̂T . The following uses arguments from the proof of Theorem 3.1 and notation developed
in Appendix A. Plug-in case P1 implies jjVT ~V �1T jj ! 0 so TS�1=2T JT (�̂T � �0)

p! 0. The
plug-in �̂T has no impact on ŴT asymptotically:

ŴT =

 
TX
t=1

m�
T;t(�

0)

!0
S�1T

 
TX
t=1

m�
T;t(�

0)

!
(1 + op (1)) + op (1) :

A mixing property then ensures by a tail-trimmed central limit theorem ŴT
d! �2(q).

The more challenging case is plug-in property P2 where VT � K ~VT since we can only
say TS�1=2T JT (�̂T � �0) = Op(1). We therefore assume �̂T is asymptotically a linear
function in ~mT;t(�

0):

~V
1=2
T

�
�̂T � �0

�
= ~AT

TX
t=1

�
~mT;t(�

0)� E[ ~mT;t(�
0)]
	
(1 + op (1)) + op (1) ;

where ~AT 2 Rr�p satis�es ~AT ~ST ~A0T ! Ir and ~ST is the covariance matrix of
PT

t=1 ~mT;t(�
0).

In this case Ŝ�1=2T

PT
t=1 m̂

�
T;t(�̂T ) reduces to

Ŝ
�1=2
T (�̂T )

TX
t=1

m̂�
T;t(�̂T ) = S

�1=2
T

TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	

+ TS
�1=2
T JT ~V

�1
T

~AT

TX
t=1

�
~mT;t(�

0)� E[ ~mT;t(�
0)]
	
(1 + op (1)) + op (1) :

Degrees of freedom are therefore governed by the over-lap of m�
T;t(�

0) and ~mT;t(�
0), and

the dimensions of JT and ~AT which depend upon over-identifying conditions.
One extreme is a test of over-identifying restrictions in GMTTM: ~mT;t(�) = m�

T;t(�)

hence ~VT = VT , ~ATST ~A0T ! Ir and

Ŝ
�1=2
T (�̂T )

TX
t=1

m̂�
T;t(�̂T )

=
n
S
�1=2
T + TS

�1=2
T JTV

�1
T

~AT

o TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	
(1 + op (1)) + op (1)

= BT
TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	
(1 + op (1)) + op (1) ;
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say. Since JT 2 Rq�r, VT 2 Rr�r, ~AT 2 Rr�p and q = p = s, there are only q � r = s

� r linearly independent columns in BT ; hence ŴT
d! �2(s� r). See also Hansen (1982)

and Newey and McFadden (1994: Section 9).
The other extreme is no shared elements. Then [Iq; TJT ~V

�1=2
T

~S
�1=2
T ] contains q +

p � r = s � r linearly independent columns, hence ŴT
d! �2(s � r). Finally, apply

Corollary 3.3 to deduce s � r = q when there are no over-identifying conditions (p = r).

3.6 Local Alternative

Now consider a class of local alternatives with so-called Pitman drift:

H1;L : TS
�1=2
T E [mt (�)]! v 2 Rq, v0v 2 [0;1), if and only if � = �0:

We assume mt(�
0) is geometrically �-mixing in Appendix A, so if all mi;t(�

0) have �nite
variances then ST � T � S for some positive de�nite matrix S 2 Rq�q. In this case H1;L

represents a sequence of T 1=2-local alternatives.
Otherwise H1;L captures non-degenerate yet o(T 1=2)-alternatives. This follows from

three observations. First, jjST jj=T ! 1 some mi;t(�
0) has an in�nite variance. Second,

ST has an upper bound by Lemma C.2 in Appendix C:

ST = o
�
T 2max

n
1;


E �m�

T;t

�
�0
��

2o� :

Third, apply Lebesgue�s dominated convergence to deduce lim supT�1 jjE[m�
T;t

�
�0
�
]jj �

K under H1;L. Together H1;L captures a sequence of TS
�1=2
T -convergent alternatives

where TS�1=2T ! 1 and TS�1=2T = o(T 1=2). This is worth highlighting: the sequence of
alternatives converges slower than T 1=2 when the equations have an in�nite variance, and
monotonically slower with heavier tails since in general jjST jj ! 1 monotonically faster.

THEOREM 3.4 Let D1-D6, I3-I4, K1, P1 or P2 if a plug-in is required, and H1;L

hold. Then ŴT
d! �2�(v

0v) an noncentral chi-squared law with � degrees of freedom
characterized in Theorems 3.1 and 3.2, and noncentrality parameter v0v 2 [0;1).

Remark 1: Theorem 3.4 ensures ŴT is consistent against arbitrary non-local de-
viations (2) from the null (1). Under a global alternative where E [mt (�)] may not exist
for any �, or TS�1=2T E [mt (�)] ! 1 for any �, then P (ŴT > w) ! 1 for all w > 0 under
H1.
Remark 2: Consistency is not without a price. We must have a consistent plug-

in �̂T ! �0 under null and global alternative. In robust tests of omitted variables or
functional form, for example, this implies consistency when variables are omitted, or when
the functional form is mis-speci�ed. In the former case we must implicitly correctly specify
an encompassing model as in Example 2 of Section 2. In the latter case �̂T ! �0 even if
the Example 3 regression model error E[�tjxt] 6= 0 with positive probability. Evidently the
literature on regression model estimation for heavy tailed data nearly universally imposes
independence or E[�tjxt] = 0 (e.g. Davis et al 1992, Ling 2005, 2007, Hall and Yao 2003,
Linton et al 2010). HR�s (2010a) GMTTM estimator is a notable exceptions since only
a mixing condition on the estimating equations is required, implicitly covering regression
models with non-martingale di¤erence errors. This topic, however, is well beyond the
focus of the present paper.

3.7 Optimal Fractile Selection

Any intermediate order sequences fkj;i;T g in principle are valid for trimming. In
general choosing between policies fk1;i;T ; k2;i;T g requires information about the data gen-
erating process, and a criterion for de�ning an "optimal" policy. Even if mi;t(�

0) is
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symmetrically distributed under the null, where E[m�
T;t

�
�0
�
] = 0 and any k1;i;T = k2;i;T ,

the question of how fast ki;T ! 1 still remains.
In the following we discuss rules of thumb for selecting rates kj;i;T ! 1 and relation-

ships between k1;i;T and k2;i;T . We begin with a natural analogue based on GMTTM.

GMTTM Rate: If m�
T;t(�) are the tail-trimmed estimating equations for GMTTM,

HR (2010a) characterize policies fk1;i;T ; k2;i;T g that optimize the e¢ ciently weighted
GMTTM compound rate of convergence V 1=2T and expedite the rate of identi�cation
E[m�

T;t

�
�0
�
] ! 0. They focus on equations with Paretian tails if they have an in�nite

variance, and on AR, ARCH and AR-ARCH models. Although they only consider a small
set of models, the rules appear to apply in general: heavy trimming kj;i;T � T=L(T ) for
any slowly varying L(T ) ! 1 when stochastic regressors are not available (e.g. a model
of location), or error-regressor feedback exists (e.g. GARCH, ARMA-GARCH); and light
trimming kj;i;T � L(T ) when stochastic regressors exist without feedback with errors (e.g.
ARMA with iid errors).
But the test equationsmt(�) may not be the same as the estimating equations ~mT;t(�),

and the fractiles used to compute the GMTTM �̂T do not have to be the same as those
used to trim the test equations. This holds even if mt(�

0) are identical to those used to
estimate �̂T , as in a test of over-identifying conditions: we may use one set fk1;i;T ; k2;i;T g
to estimating �̂T and another fractile set for the TTMC statistic.
Although the rules of thumb developed in HR (2010a) appear to apply in general, test-

ing moment conditions and using an arbitrary plug-in �̂T provide several unique challenges
and advantages inherently neglected in GMTTM. We therefore discuss three criteria for
selecting fk1;i;T ; k2;i;T g that are fundamentally distinct from optimizing the GMTTM
rate.

Test Statistic Rate under H0: Expansion (9) reveals the accuracy and e¢ ciency
of ŴT depend on the rate of convergence of �̂T , the rate of identi�cation E[m�

T;t

�
�0
�
] !

0 for asymmetric equations, and the rate of convergence of m�
T (�

0) := 1=T
PT

t=1m
�
T;t(�

0)

under the null. We �rst consider m�
T (�

0) and E[m�
T;t

�
�0
�
] separately from the choice of

plug-in �̂T , then simultaneously with the plug-in choice.

Test Equation Rate: Since the rate of convergence of m�
T (�

0) is TS�1=2T =
O(T 1=2), in order to optimize the rate the policy should imply ST ! 1 slowly hence
kj;i;T ! 1 quickly. The fastest allowed rate is kj;i;T � T=L(T ) for slowly varying L(T )
! 1, for example kj;i;T = [�jT= ln(T )] for �j > 0. Similarly, kj;i;T = [T�j ] for large �j
2 (0; 1) augments the rate of convergence of m�

T (�
0). The sluggish rate of convergence of

a tail-trimmed mean TS�1=2T = O(T 1=2) is well known in the literature for iid (e.g. Hahn
et al 1991) and weakly dependent data (Hill 2010b).

Identi�cation Rate: Although policies [�jT= ln(T )] or [T�j ] optimize or augment
the rate of convergence of m�

T (�
0), the nuisance parameters �j and �j must be chosen.

Further, augmenting the rate for m�
T (�

0) does not implicitly expedite the rate of identi�-
cation E[m�

T;t

�
�0
�
] ! 0 under H0 for asymmetric equations.

Suppose mi;t(�
0) is asymmetrically distributed. HR (2010a: Section 4) characterize

a relationship between k1;i;T and k2;i;T based on the equation power law tail parameters
that ensures identi�cation E[m�

T;t

�
�0
�
] ! 0 arbitrarily fast under the null. In Appendix

A we impose power law tail decay under condition D1, so assume mt = mt(�
0) is scalar

with an exact Paretian tail on mt to simplify exposition: for all m � M and some M � 1

P (mt < �m) = d1m
��1 and P (mt > m) = d2m

��2 ;
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where di > 0 and minf�ig > 1. We impose minf�ig > 1 to ensure the equation is
integrable under the null. Then any policy fk1;i;T ; k2;i;T g that satis�es

k
1�1=�2
2;T

k
1�1=�1
1;T

= T 1=�1�1=�2
d
1=�1
1

d
1=�2
2

(1� 1=�2)
(1� 1=�1)

(10)

ensures E[m�
T;t

�
�0
�
] � 0 arbitrarily close for each T .

Relation (10) implies the heavier tail (e.g. d2 > d1 and/or �2 < �1) is trimmed less
(e.g. k2;T < k1;T ). The intuition is easily grasped by assuming a heavier right tail d2 > d1
and/or �1 > �2 but with symmetric trimming k1;T = k2;T . There are a disproportionate
number of large positive values produced and therefore trimmed, resulting in E

�
m�
T;t

�
< 0.

The solution is to decrease the number of trimmed right-tail equations k2;T < k1;T .
In practice plug-ins for dj and �j can be used to enforce (10). A large variety of

estimators d̂j;T and �̂j;T are available in the literature, with only some theory supporting
consistency for weakly dependent data in general. Estimators by Hill (1975) and Hall
(1982) respectively for �j and dj are consistent for a massive array of dependent, het-
erogeneous data (Hill 2009a,2010c), but the data sample fmt(�

0)g in general requires a
plug-in for �0. It is well beyond the scope of the present paper to develop these details,
but it is relatively easy to show a plug-in will not a¤ect consistency. See also HR (2010a:
Section 4).

Plug-In and Fractile Relation: If the DGP is thin tailed and all available plug-
ins are T 1=2-convergent, then there is no leverage with which to reduce expansion (9)
to

Ŝ�1T

TX
t=1

m̂�
T;t(�̂T ) = S�1T

TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	
+ op (1) : (11)

In heavy tailed cases, however, we can �ne tune the choice of test equation fractiles
fk1;i;T ; k2;i;T g to slow down TS�1=2T JT ! 1 relative to the rate �̂T ! �0 to allow (11).
We do not necessarily defend (11) as an objective. Rather, it is certainly a criterion of

interest since it removes plug-in in�uence on the TTMC limit law, and therefore makes
asymptotic arguments very simple2 . Further, it implicitly permits a consistent test of over-
identifying restrictions in GMTTM when somemi;t(�

0) have an in�nite variance. See Hall
(2000) for a discussion related to the HAC matrix, and see Newey and McFadden (1994).
How to choose fk1;i;T ; k2;i;T g and �̂T simultaneously to ensure (11), however, requires

a speci�cation for mt(�
0) and knowledge of the data generating process since we must

know the diagonal components of ~VT and VT . A variety of examples based on speci�c
tests are presented in the next section. As a brief example, consider an in�nite variance
stationary AR(1) with Paretian innovations:

yt = �0yt�1 + �t, �t is iid and symmetric, P (j�tj > �) = d��� (1 + o (1)) ; � 2 (1; 2);

with one test equation, the exactly identi�ed GMM estimating equation:

mt (�) =
�
yt � �0yt�1

�
yt�1:

Assume symmetric trimming with one fractile kT . In this case the scalar V
1=2
T is exactly

the GMTTM scale. The OLS plug-in �̂T has a rate ~V
1=2
T � KT 1=� (Davis et al 1992). The

2 In the examples of Section 2, Hong�s (2001) test of volatility spillover with QML plug-in has this
property, but not Bierens�(1990) test of functional form with NLLS plug-in. If some test equation has an
in�nite variance then our TTMC statistic can always be assured to have this property simply by trimming
more equations.
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GMTTM rate is V 1=2T � KT 1=� if the trimming fractile kT � L(T ) for slowing varying
L(T ) ! 1, and otherwise VT =T 2=� ! 0 for non-slowly varying kT (e.g. kT � T�, � 2
(0; 1)). See Lemma 3.1 and Example 5 in HR 2010a). Therefore the OLS plug-in will not
in�uence the test statistic limit if we choose kT � T� for any � 2 (0; 1) since VT = ~VT !
0. By increasing the equation trimming rate above L(T ) to T� we literally slow down
TS

�1=2
T JT relative to �̂T ! �0, hence (11) applies.
If some other class of test equations is used for testing then the �nal analysis may

change. The point here is a case-by-case study of ~VT and how fk1;i;T ; k2;i;T g relates to
VT can be used to enforce (11) for heavy tailed data.

4. EXAMPLES CONTINUED We now apply Theorem 3.2 under the null to
Examples 1, 2, 3 and 6 by fully developing the background theory, and verifying the major
assumptions presented in Appendix A. The remaining examples follow similarly.
Since our examples involve both test equation trimming, and GMTTM with estimating

equation trimming and LTTS with least squares criterion trimming, we distinguish the
possible sets of fractiles for clarity. We use as always fk1;i;T ; k2;i;;T g for the test equations
mt(�). We use f~kT g to denote fractiles for trimming GMTTM estimating equations
~mT;t(�) and the LTTS criterion. In all cases GMTTM is e¢ ciently weighted.
We make frequent use of the following properties. Under D1-D6 the gradient of the

tail-trimmend equation moment JT is proportion to the mean tail-trimmed gradient (HR
2010a: Lemma C.4):

JT = E

�
@

@�
mt (�) j�0IT;t

�
�0
��
� (1 + o(1)) : (JAC)

In the special case mt(�
0) = utxt�1 for iid zero mean ut 2 R with symmetric distribution,

and xt 2 Rq, then symmetrically trimmed fm�
T;t(�

0);=tg forms an adapted martingale
di¤erence array with =t = �(fu� ; x�g : � � t) since

E
�
m�
i;T;t(�

0)j=t�1
�
= xi;t�1E

�
utI(jutxi;t�1j � cT;i(�

0))j=t�1
�
= 0: (MDA)

EXAMPLES 1 and 2 (White Noise and Omitted Variables): Consider testing
for omitted variables in a stationary AR(p) model by testing white noise. The model is

yt =

pX
i=1

�0i yt�i + �t = �00xt + �t; �t � iid, E [�t] = 0:

Assume �t has a symmetric and absolutely continuous distribution and bounded density
on R. If E[�2t ] = 1 assume �t exhibits power-law tail decay:

P (j�tj > �) = d��� (1 + o (1)) where d > 0 and � 2 (1; 2] : (12)

We want to test whether a subset of 1 � r � p parameters �(r) := f�i1 ; :::; �irg = 0

by removing the associated regressors x(r)t := fyt�i1 ; :::; yt�irg and testing the resulting
residuals for white noise. A test of AR order p � 1 against p is a test of �p = 0 against

�p 6= 0, hence �(1) = f�pg; and a test of white noise in yt tests all slopes � = 0, hence

�(p) = f�1; :::; �pg.
De�ne the remaining parameters � := �=�(r) 2 Rp�r, regressors wt := xt=x

(r)
t , and

associated error
ut(�) := yt � �0wt and ut = ut(�

0):
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By convention ut = yt if r = p. The null hypothesis is

H0 : E [utut�i] = 0 for i = 1; 2; :::

The test equations and trimmed version are

mt(�) = [ut(�)ut�i(�)]
r
i=1 and m̂T;t(�) =

h
ut(�)ut�i(�)Îi;T;t(�)

ir
i=1

:

Notice independence of the errors �t implies E[mi;t(�
0)] = 0 under the null requires a

�nite mean � > 1, and E[m2
i;t(�

0)] < 1 if and only if E[�2t ] < 1.
Impose common symmetric trimming across equations k1;i;T = k2;i;T = kT sincemt(�

0)
are identically and symmetrically distributed under the null. The indicators are simply

Îi;T;t(�) = I
�
jmi;t(�)j � m

(a)
i;(kT )

(�)
�
where m(a)

i;t (�) := jmi;t(�)j :

Let �̂T be the OLS, LTTS, LAWD or GMTTM estimator, and de�ne �̂T = �̂T =�̂
(r)

T .
All assumptions detailed in Appendix A hold by nearly trivial arguments. Identi�ca-

tion by mt(�
0) I1 holds given error independence and � > 1. Under symmetry identi�-

cation by m�
T;t(�

0) I2 is trivial given I1. Non-degeneracy and positive de�niteness I3 and
moment smoothness I4 both hold given the stationary autoregressive DGP with smoothly
distributed iid error.
Error distribution smoothness ensures D1.i. Power-law tail (12) and the functional

form of mi;t(�
0) imply tail property D1.ii holds by a convolution tail result due to Cline

(1986). Equation di¤erentiability D2 holds by construction of mt(�). Since yt is geomet-
rically �-mixing by a result in Pham and Tran (1985) and �t is iid, mixing property D3
holds by construction of mt(�). Envelope bound D4 holds since � is compact and yt is
integrable. Jacobian rank D5.i holds by construction, and Jacobian smoothness D.5.ii can
be shown to hold by the same argument in HR (2010a: Section 5.1).
Metric entropy with L2-bracketing D6 follows if we show an L2-norm Lipschitz prop-

erty 


Ii;T;t(�)� Ii;T;t(~�)


 � K



� � ~�


 :

See Giné and Zinn (1984), Pollard (1984, 2002) and van der Vaart and Wellner (1996). The
�nite dimensional distributions ofmt(�) are absolutely continuous and bounded uniformly
on �, so we can always assume lT (�) = uT (�) is continuous and di¤erentiable on �.
Combine this with distribution continuity and density uniform boundedness to deduce
the above Lipschitz property.
Finally consider plug-in properties P1 or P2. Let L(T ) be a slowly varying func-

tion, L(T ) ! 1, that may change from place to place. OLS in general, and LTTS and
GMTTM with slowly varying trimming fractiles ~kT � L(T ), all have scale elements ~V 1=2i;i;T

� KT 1=�=L(T ), KT 1=2L(T ), or KT 1=2 respectively if � < 2, � = 2 and � > 2 (Davis et
al 1992, Hill 2010a, HR 2010a). Further, LAWD is T 1=2-convergent for any � > 1 (Ling
2005).
We will show VT � KT if � > 2 and VT � KT (T=kT )

2=��1 for any � 2 (1; 2]. Thus,
LAWD does not satisfy either P1 or P2 if E[�2t ] = 1, and OLS, LTTS and GMTTM
satisfy P1 or P2 if E[�2t ] = 1 or E[�2t ] < 1.
Assume p = q = 1 to simplify notation, the general cases being identical. Apply

properties (MDA) and (JAC) to deduce under the null ST = T � E[�2t �
2
t�1IT;t(�

0)] and

JT = E
�
f�tyt�2 + �t�1yt�1g IT;t(�0)

�
�(1 + o (1)) = E

�
�2t�1I (j�t�t�1j � cT )

�
�(1 + o (1)) :
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If � > 2 then by independence of the errors ST = KT and JT = K, hence VT � KT .
Otherwise consider � < 2, where � = 2 is similar. Tail (12) implies cT = K(T=kT )

1=�,
and by independence and (12) the product convolution �t�t�1 has tail (12) with the same
index � (Cline 1986). An application of Karamata�s Theorem (Resnick 1987: Theorem
0.6; cf. Problem 4.2.8) therefore implies

E
�
�2t �

2
t�1I (j�t�t�1j � cT )

�
� Kc2TP (j�t�t�1j > cT ) = K(T=kT )

2=��1

Similarly, use independence, distribution continuity and Karamata�s Theorem to deduce

JT � E
�
�2t�1I (j�t�t�1j � cT )

�
= E

�
E
�
�2t�1I (j�t�t�1j � cT ) j�t�1

��
� Kc2T

Z 1

�1
��2P (j�t�j > cT ) f (d�) = Kc2��T

Z 1

�1
���2f (d�) = K (T=kT )

2=��1
:

Therefore

VT = T 2J 0TS
�1
T JT � KT

�
(T=kT )

2=��1
�2

(T=kT )
2=��1 = KT (T=kT )

2=��1
:

Therefore LAWD satis�es neither P1 or P2 because it is only T 1=2 convergent and
V
1=2
T =T 1=2 ! 1. Conversely, if we maximally trim the test equations kT � T=L(T )

then VT � T � L(T ), hence OLS, LTTS and GMTTM all satisfy P1: V
1=2
T = ~V

1=2
i;i;T ~

T�(1=��1=2)L(T ) ! 0. If we trim slightly less kT � T� for � 2 (0; 1) then V 1=2T = ~V
1=2
i;i;T �

KT 1=2�1=�+(1��)(2=��1) ! 0 if � > 1=2 hence again P1 holds.

LEMMA 4.1 (White Noise/Omitted Variables in AR) The above AR data gen-
erating process satis�es I1-I4 and D1-D6. Further, LAWD does not satisfy either
P1 or P2 if variance is in�nite, and OLS, LTTS, and GMTTM satisfy P1 if E[�2t ]
= 1 and kT � T=L(T ) or kT � T� for any � 2 (1=2; 1).

EXAMPLE 3 (Neural Test of Neglected Nonlinearity): Recall yt = f(xt; �) +
�t(�), f : Rp � �! R, assume yt is integrable, �t = �t(�

0) has power-law tail (12) if E[�2t ]
=1, and �t(�) has an absolutely continuous distribution with uniformly bounded density
on �. Assume f(�; �) is continuous and twice di¤erentiable, f(x; �) is Borel measurable,
and f�t; xtg are geometrically �-mixing.
The null states f(xt; �

0) is a version of E[ytjxt] for unique interior point �0 of compact
�. Examples include testing for omitted nonlinearity in the conditional mean of an
AR(1)-ARCH(1)

yt = �0yt�1 + �t,
���0�� < 1, (13)

�t =
�
!0 + �0�2t�1

�1=2
ut, !0 > 0, �0 2 [0; 1) and ut

iid� (0; 1)

Under mild regulatory conditions fyt; �tg are geometrically �-mixing with regularly vary-
ing tails (Borkovec and Klüppelberg 2001, Cline 2007).
Assume the test weight F : R ! R is non-polynomial, real analytic, and uniformly

bounded on any compact subset of R, covering exponential, logistic and trigonometric
functions (see Stinchcombe and White 1998, cf. Bierens 1990 and Bierens and Ploberger
1997). The argument of F (
0 (xt)) is based on any bounded one-to-one  : Rp ! Rp.
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Now de�ne a scalar test equation

mt(�; 
) := �t(�)F (

0 (xt))

with trimmed version

m̂�
T;t(�̂T ; 
) = �t(�̂T )F (


0 (xt)) ÎT;t(�̂T ):

Since F (
0 (xt)) is uniformly bounded given boundedness of  and �, and �t is sym-
metrically distributed, the indicator symmetrically trims only according to large values of
�t(�):

ÎT;t(�) = I
�
j�t(�)j � �

(a)
(kT )

(�)
�

A tail-trimmed version of Lee et al�s (1993) version of Bierens�(1990) test is

ŴT (
) =

 
1

Ŝ
1=2
T (�̂T ; 
)

TX
t=1

m̂�
T;t(�̂T ; 


!2

where ŜT (�̂T ; 
) is the HAC estimator of E[(
PT

t=1 m̂
�
T;t(�̂T ; 
))

2]. Lee et al (1993) argue
for randomly selecting 
 on compact � in a way independent of the sample fyt; xtg.
A power-optimal test, as in Bierens (1990), Andrews and Ploberger (1994) and Hill

(2008), uses sup
2� ŴT (
) or
R

2� ŴT (
)d�(
) for some absolutely continuous measure

�(
) on �. This requires weak limit theory for tail-trimmed arrays that is beyond the
scope of the present paper. The theory developed here can only cover randomization or
arbitrary selection of 
.
Identi�cation I1 holds by error integrability and weight boundedness. I2 automatically

follows if the error distribution is symmetric, or asymmetric with Paretian tails and the
fractiles are chosen to satisfy (11). I4 follows from smoothness of the response function
and error distribution.
Distribution properties D1.i, D2-D4 and D6 all follow since �t(�) is geometrically �-

mixing with a continuous and bounded distribution, and F (
0 (xt)) is continuous and
bounded with measurable and uniformly bounded derivative.
The remaining properties covering power-laws for heavy tailed equations D1.ii, Ja-

cobian non-degeneracy and smoothness D5, covariance positive de�niteness and non-
degeneracy I3, and plug-in rate P1 or P2 are all regulatory and depend upon response
function and error distribution speci�cs. We verify the conditions for the AR-ARCH
model (13) below.

EXAMPLE 3 (Neural Test for AR-ARCH): Assume the plug-in �̂T is Ling�s
(2007) QMWL, or HR�s (2010a: Sections 3 and 6) GMTTM with QML estimating equa-
tions. Assume the iid ARCH innovation ut is symmetrically distributed with absolutely
continuous distribution. If E[u4t ] = 1 assume ut has Paretian tail (12) with index
�u 2 (2; 4]. Both fyt; �tg have power-law tail (12) with index �� that satis�es Ej�0 +
(�0)1=2utj�� = 1 (Cline 2007: Example 3..2). Assume yt is integrable �� > 1, e¤ectively
assuming �0 and �0 are su¢ ciently small3 .
Since the error �t is symmetrically distributed under the null the equation mt(�; 
) is

symmetrically trimmed with fractile kT that satis�es

T

kT
P (j�t (�)j > cT ) = 1:

3Simulation experiments can be used to compute the solution to �(�; �; �) := Ej� + �1=2utj� = 1.
We used 100,000 iid draws ut � N(0; 1) to estimate �(�; �; �) for � = :5 and � = :9, and � 2 K =
f:01; :02; :::; 5:0g. The solution argmin�2K j�̂(:5; :9; �) � 1j is 1:16. Similarly, argmin�2K j�̂(:6; :9; �) �
1j = 1:03 and argmin�2K j�̂(:35; :97; �) � 1j = 1:05.
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Properties D1.ii, D5 and I3 follow instantly from linearity, error distribution smooth-
ness, error power-law tail (12) and convolution tail theory due to Cline (1986). See also
HR (2010a: Section 5).
Plug-in properties P1 or P2 require the scale VT . Use (MDS) to deduce ST = T �

E[m�2
T;t(�

0; 
)]. Further, (@=@�)mt(�; 
)j�0 = �ytF (
0 (yt�1)) is integrable since yt is and
F (
0 (yt�1)) is bounded, hence (JAC) implies JT � �E[ytF (
0 (yt�1))]. The scale is
therefore

VT � KT �
�
E
�
�2tF (


0 (xt))
2I (j�tj � cT )

���1
:

If �� > 2 then E[m�2
T;t(�

0; 
)] ! K hence VT � KT . Otherwise, regular variation (12)
and boundedness of F (
0 (yt�1)) ensure by an application of Karamata�s Theorem

�� < 2 : VT � KT
�
c2T (kT =T )

��1
= KT (kT =T )

2=���1 = o(T )

�� = 2 : VT � T=L(T ) = o(T:)

QMWL is T 1=2-convergent under mild additional regulatory conditions (Ling 2007).
Therefore P2 holds if �t has a �nite variance, and otherwise P1 applies.
QML is T 1=2-convergent if E[u4t ] < 1, and T 1�2=�u=L(T )-convergent if E[u4t ] = 1

by Theorem 2.1 of Hall and Yao (2003). Verifying P1 or P2 for QML therefore requires
knowledge of ��, �u and a policy fkT g. If kT � T=L(T ) then VT � T=L(T ) so QML
satis�es neither P1 nor P2. If we trim fewer equations with kT � T� then QML satis�es
P1 if � 2 (0; 1 � 2=[�u(2=�� � 1)]) and P2 if � = 2=[�u(2=�� � 1)]. Heavier tailed iid or
ARCH errors (respectively �u & 2 or �� & 1) imply less trimming of the test equations
to ensure QML satis�es P1. QML is so slow to converge we must trim few equations
since that augments the trimmed equation sample volatility and therefore slows its rate
of convergence.
GMTTM based on QML-estimating equations is T 1=2-convergent if E[u4t ] < 1, and

maximally T 1=2=L(T )-convergent if E[u4t ] = 1 and the GMTTM fractiles ~kT � T=L(T ).
See HR (2010a: Sections 3.3-3.4). Therefore GMTTM satis�es P1 if ut has an in�nite
fourth moment, and P2 otherwise.

LEMMA 4.2 (Functional Form for AR-ARCH) The above AR-ARCH data gener-
ating process satis�es I1-I4 and D1-D6. QML satis�es P1 or P2 if su¢ ciently few
observations are trimmed, e.g. kT � T� with � 2 (0; 1 � 2=[�u(2=�� � 1)]). QMWL
satis�es P1 if �t has an in�nite variance, and P2 otherwise. GMTTM satis�es P1
if ut has an in�nite fourth moment, and P2 otherwise.

EXAMPLE 6: Volatility Spillover: Hong (2001) uses QML to estimate univariate
GARCH(1,1) models

yi;t = �i;thi;t(�
0
i ) where h

2
i;t(�i) = !i + �iy

2
i;t�1 + �ih

2
i;t�1(�):

Under the null of no volatility spillover �i;t
iid� (0; 1), and Hong�s alternative is spillover of

a CCC-GARCH form:

h2i;t(�i) = !i + �i;iy
2
i;t�1 + �i;ih

2
i;t�1(�) + �i;jy

2
j;t�1 + �i;jh

2
j;t�1(�):

De�ne the moment supremum �i := supf� > 0 : Ej�i;tj� < 1g.
Impose E[ln(�0i �

2
i;t + �0i )] < 0 to ensure stationarity under the null, and assume

the distributions of �i;t are su¢ ciently smooth to ensure yi;t have Paretian tails (12) with
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indices �yi > 0 (Mikosch and St¼aric¼a 2000, Basrak et al 2002, Ferdández and Muriel 2009).
Further, similar to Hall and Yao (2003) and HR (2010a), if E[�4i;t] = 1 assume �i;t has
tail (12) with index �i 2 (2; 4]: Under the stated conditions fy1;t; y2;tg are geometrically
�-mixing (Boussama 1998, Comte and Leiberman 2003).
De�ne test equations

mt(�) =

" 
y21;t

h21;t(�)
� 1
!
�
 

y22;t�j
h22;t�j(�)

� 1
!#q

i=1

: (14)

Although Hong (2001) requires E[�8i;t] < 1 due to his standardize portmanteau statistic
form (see section 5, below), clearly if E[�4i;t] = 1 then tail-trimming is appropriate with
trimmed equations

m̂�
T;t(�) =

" 
y21;t

h21;t(�)
� 1
!
�
 

y22;t�j
h22;t�j(�)

� 1
!
� Îi;T;t(�)

#q
i=1

:

In general mj;t(�
0) has the same tail thickness for each j, so the same fractiles fk1;T ; k2;T g

are used for each equation. Further, mj;t(�
0) are skewed right by construction hence

asymmetric trimming k1;T > k2;T is imposed. If �i;t have Paretian tails then the recom-
mendations of Section 3.7 can be followed for selecting fk1;T ; k2;T g to optimize the rate
of identi�cation E[m�

T;t(�
0)] ! 1 under the null.

All conditions are veri�ed as in Examples 1 and 2. The only steps that slightly di¤er
concern VT . If either E[�4i;t] = 1 then mj;t(�

0) = (�21;t � 1)(�22;t�j � 1) has tail (12) with
index �=2 := minf�1; k2g=2 � 2, cf. Breiman (1965) and Cline (1986). Assume � < 4, the
case � = 4 being similar. De�ne ci;T = maxfli;T (�0); ui;T (�0)g and kT = minfk1;T ; k2;T g,
and apply Karamata�s Theorem to deduce

E
�
m�2
T;i;t(�

0)
�
� Kc2i;TP

�����21;t � 1� ��22;t�i � 1��� > ci;T
�
= K(T=kT )

4=��1;

hence by (MDS) Si;i;T � KT (T=kT )
4=��1.

The Jacobian is analyzed as in Example 1. De�ne xi;t := [1; y21;t�1; h
2
1;t�1]+�

0(@=@�)h21;t�1j�0 ,
and observe under the null

Jj;t :=
@

@�
mj;t(�)j�0 = ��21;t

x1;t
h21;t

�
�
�22;t�j � 1

�
� �22;t

x2;t�j
h22;t�j

�
�21;t � 1

�
:

If there are GARCH e¤ects then under the null Jj;t is integrable since �2i;t is iid and
integrable and jjxi;tjj=h2i;t � K a:s: If there are no GARCH e¤ects then h2i;t = K, and
y2i;t�1 = �2i;t�1 is independent of �

2
i;t, hence again Jj;t is integrable. Therefore JT � E[Jt]

� (1 + o(1)) by (JAC).
Together the scale components Vi;i;T � KT (kT =T )

4=��1 = o(T ). QMWL is T 1=2-
convergent so it satis�es P1 if either E[�4i;t] = 1, and otherwise P2. GMTTM with
estimating equation fractiles ~kT � T=L(T ) has a rate jj ~VT jj � T=L(T ) if E[�4i;t] = 1
hence P1 applies, and jj ~VT jj � KT otherwise hence P2.
QML is T 1=2-convergent if both E[�4i;t]<1, and otherwiseKT 1�2=�i=L(T )-convergent

(Hall and Yao 2003: Theorem 2.1). Thus, whether and if QML satis�es P1 or P2 de-
pends on error tail thickness �i and equation policy fk1;T ; k2;T g. Speci�cally, Vi;i;T �
T=(T=kT )

4=��1 < T 1�2=�i=L(T ) � ~Vi;i;T holds when we trim less, exactly as in Lemma
4.2. Consider kT � T� for any � 2 (0; 1 � 2=�=(4=� � 1)].
Notice the substantial improvement of higher moments over Hong (2001): we only

need �i;t
iid� (0; 1) for test equation integrability under the null (1), while Hong (2001)

needs E[�8i;t] < 1.
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LEMMA 4.3 (Volatility Spillover in GARCH) The above GARCH data generating
process satis�es I1-I4 and D1-D6. Further, QMWL and GMTTM satisfy P1 if
either E[�4i;t] = 1, and P2 otherwise. QML satis�es P1 or P2 if su¢ ciently few
observations are trimmed, for example kT � T� for any � 2 (0; 1 � 2=�=(4=� �
1)].

5. SIMULATION STUDY We now use the TTMC test statistic, its untrimmed
version, and conventional statistics to perform tests of white-noise, omitted variables,
and volatility spillover. The data generating processes are IID, AR(2), and bivariate
GARCH(1,1). We simulate 1000 samples of each process for a sample size T = 1000.
Let P� denote a symmetric Pareto distribution: if �t � P�� then P (j�tj > �) = :5(1 +

�)��� . Random draws from P�� with �� > 2 are standardized to ensure �t
iid� (0; 1). The

IID and AR models have iid innovations �t � P�� with index �� 2 f1:5; 2:5g.
The bivariate Constant Conditional Correlation GARCH process fy1;t; y2;tg has coor-

dinate speci�cation

yi;t = �i;thi;t where �i;t
iid� P2:5 or �i;t

iid� N(0; 1)

h2i;t = !i + �i;iy
2
i;t�1 + �i;ih

2
i;t�1 + �i;jy

2
j;t�1 + �i;jh

2
j;t�1, !i > 0, �i;j ; �i;j > 0:

In each model we use one of two possible errors. One error is heavy tailed enough that
the conventional statistics used here have non-standard limit distributions under the null.
The other error has thin enough tails to promote standard limit distributions. See Table
1 for all model speci�cations and tail indices.
Each process is stationary geometrically ergodic (Pham and Tran 1985, Boussama

1998, Comte and Lieberman 2003) and therefore geometrically �-mixing (Doukhan 1994).
Further, each process has symmetric power-law tails (Hannan and Kanter 1977, Cline
1989, Borkovec and Klüppelberg 2001, Fernández and Muriel 2009). In the IID and AR
cases yt has the same index as �t. The CCC-GARCH process exhibits power-law tail
decay due to Markov-type feedback, and the underlying error when it is Paretian.

TABLE 1 - Data Generating Processes
Model Type Process Speci�cation for yt �a� �by
IID yt = �t �� 2 f1:5; 4:5g �y 2 f1:5; 4:5g
AR(2) yt = :8� yt�1 + :4� yt�2 + �t �� 2 f1:5; 4:5g �y 2 f1:5; 4:5g
C-G NULLc h2i;t = :3 + :3�21;t�1 + :6h

2
1;t�1 for both i = 1; 2 �� 2 f2:5;1g �y 2 f1:5; 2:9g

C-G ALT1 h21;t = :3 + :3y21;t�1 + :6h
2
1;t�1 + :1y

2
2;t�1 + :3h

2
2;t�1 �� 2 f2:5;1g 1 < �y1 � �y2

h22;t = :3 + :3y22;t�1 + :6h
2
2;t�1 �� 2 f2:5;1g �y2 2 f1:5; 2:9g

C-G ALT2 h21;t = :3 + :3y21;t�1 + :6h
2
1;t�1 + :3y

2
2;t�1 + :6h

2
2;t�1 �� 2 f2:5;1g 1 < �y1 � �y2

h22;t = :3 + :3y22;t�1 + :6h
2
2;t�1 �� 2 f2:5;1g �y2 2 f1:5; 2:9g

a. Moment supremum for �t. If �t is Paretian this is the tail index.
b. Tail index for IID and AR yt , and tail indices for CCC-GARCH (y1,t ,y2,t)

4 ,5 .
c. C-G = CCC-GARCH. The hypotheses are NULL: no spillover; ALT1: weak spillover from y to x;
ALT2: strong spillover from y to x.

4De�ne a GARCH(1,1) yt = ht�t with iid �t and h2t = ! + �y2t�1 + �h2t�1. By exploiting a result

due to Kesten (1973), Basrak et al (2002: eq. 2.10) show under regulatory conditions E[(��2t + �)�=2]
= 1. The conditions are necessarily satis�ed by our C-G NULL model for either Paretian or Gaussian
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5.1 TTMC Test Equations and Control Tests

We now construct test equations for the TTMC statistic and detail conventional tests
for comparisons. In all relevant cases a Bartlett kernel k(�) is used. Summaries of trimming
policies, the number of trimmed equations when T = 1000, HAC bandwidths and tail
indices for mi;t(�

0) under the null are presented in Table 2. The test of omitted variables
requires a fractile class ki;T � �T= ln(T ) to ensure OLS and GMTTM apply (Lemma 4.2).
We therefore use ki;T � �T= ln(T ) for all tests.
In all cases estimating and test equations are unique (there are no common compo-

nents), and all estimators are exactly identi�ed, so TTMC degrees of freedom are q in
all cases (Corollary 3.3). Plug-in choices are summarized in Table 3. Throughout �̂ de-
notes any plug-in, where �̂LS = OLS, �̂QW = QMWL, and �̂GT = GMTTM. In all cases
GMTTM is based on an e¢ cient weight.

White Noise: Let fytg denote the IID or AR(2) process, or the GARCH compo-
nent fy1;tg . We test each yt for serial correlation with equations

mt = [ytyt�i]
q
i=1 ; q 2 f1; 5; 10g :

Under the null, IID and AR equations mi;t are integrable since yt is iid with a �nite mean,
so (1) is valid. Under the null mi;t = ytyt�i is Paretian with the same index �m = � as
yt (Cline 1986).
Only the GARCH model C-G NULL with Gaussian shocks has integrable equations

mi;t since the errors are independent and �y = 2:9. Thus we only test IID, AR and C-G
NULL for white noise. All GARCH models NULL, ALT1 and ALT2 have in�nite variance
equations.
All equationsmi;t are symmetrically distributed under the null, so symmetric trimming

is used with one fractile kT = [:2T= ln(T )] for IID and AR, and kT = [:45T= ln(T )] for
GARCH. Simulation evidence not reported here suggests kT � �T= ln(T ) with � < :10
or � > :30 leads to less sharp empirical size for IID and AR data. Evidently only a few
large equation observations from IID and AR data need to be trimmed to ensure the test
statistic under the null is approximately chi-squared.
The GARCH model exhibits volatility feedback, hence substantially more trimming is

required to ensure sharp empirical size. This simply replicates simulation results in HR

error (Basrak et al 2002: Theorem 3.1). The index � is computed as �̂ = argmin�2Kfj1=N
PN
t=1(��

2
t +

�)�=2 � 1jg over K 2 f:01; :02; :::; 10g based on N = 100; 000 iid random draws �t from N(0; 1) or P2:5.
The 1% bands are less than .001 in all cases.

5Fernández and Muriel (2009) exploit the same result by Kesten (1973) to show bivariate CCC-GARCH
have regularly varying tails. A moment condition based on a matrix values stochastic recurrence equation
reveals the tail indices, but for CCC-GARCH with spillover we have not found a tractable method for
simulating the tail indices. We therefore only give the index for the component y2;t without spillover,
where �y1 � �y2 necessarily follows by the additional feedback. The lower bound �y1 > 1 is deduced
from simulating 10,000 series fy1;tg1000t=1 and computing the Hill (1975) two-tailed tail index estimator

�̂yi;�kT = 1=�kT
P�kT
j=1 ln(y

(a)
i;(i)

=y
(a)

j;(�kT+1)
), y(a)j;t := jyj;tj, with Hill�s (2010c) kernel estimator v̂2�kT of the

mean-squared-error v2�kT
= E[�k

1=2
T (�̂yi;�kT � �yi )

2]. We use a Bartlett kernel with bandwidth T :225. The

CCC-GARCH process satis�es the conditions of asymptotic normality of �̂yi;�kT and consistency of v̂2�kT
since yi;t is geometrically �-mixing with Paretian tail (Boussama 1998, Fernández and Muriel 2009, Hill

2010c): �k1=2T (�̂yi;�kT � �)=v̂�kT
d! N(0; 1). The asymptotic 95% con�dence bands �̂yi;�kT � 1:96v̂�kT =

�k
1=2
T

are above 1 for over 80% of �kT 2 f5; :::; 400g, and over 90% of �kT 2 f5; :::; 300g. Results are available
upon request.
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(2010a) concerning GMTTM for GARCH models. We �nd kT � �T= ln(T ) with � 2 [:4; :5]
is optimal: too little trimming in small samples results in too many large observations
allowed, and too much trimming overwhelms the test statistic�s ability to detect white
noise by introducing spurious bias in the equations.
Finally, we use a small HAC bandwidth since under the null mt(�

0) is a product of
iid symmetrically distribution random variables, hence m�

T;t is a martingale di¤erence
with respect to =t = �(y� : � � t): E[m�

i;T;tj=t�1] = yt�iE[ytI(jytyt�ij � cT )j=t�1] = 0.
Simulation experiments not reported here suggest 
T = [T

:25] is optimal.
Clearly there is a challenge in pinpointing both an optimal bandwidth 
T and trim-

ming fractile kT . Simulation experiments uniformly suggest a small bandwidth 
T is
optimal irrespective of kT since fm�

T;t;=tg is a martingale di¤erence under the null, while
conversely a small (large) kT for IID and AR (GARCH) for any 
T .
As control tests we compute both an untrimmed version of the TTMC statistic ŴT

with the same bandwidth 
T , and the Ljung-Box Q-statisitic T (T + 2)
P5

i=1 �̂(i)
2=(T �

i). Note �̂(i) is the sample serial correlation coe¢ cient of yt at lag i.

Omitted Variable: We estimate an AR(2) model yt =
P2

i=1 �
0
i yt�i + �t = �00xt

+ �t for IID and AR data and test for omitted variables. The plugs-in are OLS or
GMTTM. See Section 5.2 for all plug-in details. De�ne � = �1 and generate errors ut(�)
= yt � �yt�1 by dropping yt�2. We test ut(�) for white noise as a test of omitted yt�2.
The equations are therefore

mt (�) = [ut (�)ut�i (�)]
q
i=1 ; q 2 f1; 5; 10g :

A �nite mean and independence of the errors ut(�
0) = �t under the null ensures (1) is

valid. Under the null mi;t(�
0) = �t�t�i is Paretian with the same index �m = � as �t

(Cline 1986).
The equations mi;t(�

0) are symmetrically distributed under the null, so symmetric
trimming is used. In lieu of Lemma 4.1 we use a trimming policy kT = [:015T= ln(T )].
Simulation experiments again support the use of a small HAC bandwidth 
T = [T :25]
since under the null m�

i;T;t(�
0) is a martingale di¤erence with respect to =t = �(�� : � �

t).
The control tests are an untrimmed version of ŴT , and Wald statistics WT based on

OLS or GMTTM:

WT = (R�̂)
0[Rb~V �1T R0]�1(R�̂) where R = [0; 1];

and b~V T estimates the plug-in scale ~VT . Recall for OLS b~V T = (x0x)�̂�2T with �̂2T =

1=T
PT

t=1(yt � �̂
0
LSxt)

2. In the case of GMTTM de�ne estimating equations ~mt (�) = (yt

� �0xt)xt, a trimmed version b~mT;t(�) = [ ~mi;t (�)
b~Ii;T (�)]pi=1 where b~Ii;T (�) are trimming

indicators de�ned in Section 5.2, below. The sample e¢ ciently weighted GMTTM scale
is b~V T = T 2b~J 0T b~S�1T b~JT
where

b~J i;j;T = "� 1
T

TX
t=1

yt�iyt�j
b~Ii;T (�̂GT )#p

i;j=1

and b~ST = TX
s;t=1

k((s�t)=
T )b~mT;s(�̂GT )b~mT;t(�̂GT )
0:

See also HR (2010a: Sections 2 and 3). We use a Bartlett kernel k(�) and the same
bandwidth HAC 
T = [T

:25] for simplicity.
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Volatility Spillover: Similar to Hong (2001), for the bivariate GARCH process
fy1;t; y2;tg we estimate univariate GARCH(1,1) models

yi;t = �i;thi;t(�
0) and h2i;t(�) = ! + �y2i;t�1 + �h

2
i;t�1(�);

and build test equations

mt(�) =

" 
y21;t

h21;t(�)
� 1
!
�
 

y22;t�j
h22;t�j(�)

� 1
!#q

i=1

; q 2 f1; 5; 10g :

We only use a QMWL plug-in for �0 for ease of comparison with Hong�s (2001) test
detailed below. Under the null mj;t(�

0) = (�21;t � 1)(�22;t�j � 1), a product of independent
mean zero �2i;t � 1. We therefore require ��i > 2 to ensure (1) is valid. Since �1;t are
Gaussian or Paretian, under the nullmj;t(�

0) has tail index �m =1 or �m = 2:5=2 = 1:25
(Cline 1986).
The equations under the null mj;t(�

0) = (�21;t � 1)(�22;t�j � 1) are skewed right be-
cause each �2i;t � 1 is skewed right with support [�1;1), hence we trim more left tail
observations on mj;t(�

0) then right. Experiments not reported here reveal fk1;T ; k2;T g =
f[:03T= ln(T )]; [:01T= ln(T )]g is optimal based on empirical size.
A comparatively large HAC bandwidth is required to absorb the incidental serial

association that appears in the residuals y2i;t=h
2
i;t(�̂) � 1. Evidently this is caused by

iterative recursions associated with maximizing the QMWL criterion. We �nd 
T = [T
& ]

with & 2 [:30; :40] works best, so we use 
T = [T :35] = 116 .
The control tests are an untrimmed version of ŴT , and Hong�s (2001) test with a

QMWL plug-in. Hong�s theory is designed for QML with a T 1=2-rate of convergence, but
QML is o(T 1=2)-convergent if E[�4i;t] =1. His theory and method clearly extend to heavy
tail robust and T 1=2-convergent QMWL.
Hong (2001: eq. (22)) speci�es a centered portmanteau statistic

Q̂T =
T
PT�1

i=1 k
2(i=M)�̂21;2(i)�

PT�1
i=1 (1� i=T ) k2(i=M)n

2
PT�1

i=1 (1� i=T ) (1� (i+ 1) =T ) k4(i=M)
o1=2

where k(�) is a Bartlett kernel, M = 20 and �̂1;2(i) is the sample correlation between

�21;t(�̂) � 1 and �22;t�i(�̂) � 1.
Under the null and Hong�s regulatory conditions, including E[�8i;t] <1, the statistic is

asymptotically normal Q̂T
d! N(0; 1). Conversely, large positive values are indicative of

spillover, so a one-sided test is performed. Hong uses M 2 f10; 20; 30g in his simulations
with sample sizes T 2 f300; 800g, and �nds little di¤erence in empirical size, but power is
sensitive to choice of M for a given design. We simply use the middle of his three values.

6This is further supported by separate simulations not displayed here where the true value �0 under
the null is used, rather than a plug-in. In this case 
T = [T :25] = 6 again works exceptionally well.
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Table 2: kT ; 
T , �m
Trimming Policy kT � �T= ln(T ) and HAC Bandwidth 
T � T &

White Noisea Omitted Variables Volatility Spillover

IID and AR GARCH IID and AR GARCHb

kT .20 (3c) .45 (65) .015 (2) .03, .01 (4,1)

T .25 (6d) .25 (6) .25 (6) .35 (22)

Equation Tail Indexe �m Under H0

White Noise Omitted Variables Volatility Spillover

IID and AR GARCH IID and AR GARCH
�m 1.5, 2.5 2.9 1.5, 2.5 1.25, 1

a. TTMC tests of white noise and omitted variables use symmetric trimming kT � �T= ln(T ).
b. The TTMC test of volatility spillover uses asymmetric fk1;T ; k1;T g � f�1T= ln(T ); �1T= ln(T )g:
c. � and [�1000/ln(1000)]. d. & and [1000& ].
e. In all cases under null the equations mi;t(�

0) are a product of independent random variables with
tail index identical to either variable. The GARCH model uses Gaussian errors in one case, hence �m =1.

5.2 Plug-In

Plug-in choices for all tests are summarized in Table 3. We do not require a plug-in for
the test of white-noise on yt, while the tests of omitted variables and volatility spillover
are respectively based on AR and GARCH residuals. We therefore use OLS �̂LS and
GMTTM �̂GT for AR model estimation, and QMWL �̂QW for the GARCH model.
In each case test and estimating equations have similar structures, so they either both

have in�nite variances or both have �nite variances. Background theory developed in
Section 4 shows the slow convergence plug-in property P2 applies if test equations have
�nite variances, and rapid convergence P1 applies in the in�nite variance case by our
choice of test equation fractile type kT � T 
 .
Complete details follow. Throughout z(a)t := jztj.

OLS for AR (omitted variables): Least squares �̂LS satis�es P1 or P2 if equa-
tions mi;t(�

0) have in�nite or �nite variances, hence if E[�2t ] = 1 or E[�2t ] < 1. See
Lemma 4.1.

GMTTM for AR (omitted variables): GMTTM equations are exactly iden-
ti�ed least squares-type

~mt (�) =
�
yt � �0xt

�
xt where xt = [yt�1; yt�2]0:

Each ~mi;t(�
0) = �txt is mean zero with iid �t, and symmetrically distributed. We there-

fore impose symmetric trimming with one common estimating equation fractile ~kT =
[T= ln(T )], hence

~mi;T;t (�) = ~mi;t (�)� I
�
j ~mi;t (�)j � ~m

(a)

i;(~kT+1)
(�)
�
= ~mi;t (�)� b~Ii;T (�):

The e¢ ciently weighted two-step GMTTM criterion is

QGT;T (�) :=

 
TX
t=1

~mi;T;t (�)

!0 b~S�1T
 

TX
at=1

~mi;T;t (�)

!

26



with �rst stage HAC b~ST = PT
s;t=1 k((s � t)=
T )b~mT;s(�̂NGT )b~mT;t(�̂NGT )

0 based on the

naively weighted GMTTM �̂NGT = argmin�2�f(
PT

t=1 ~mi;T;t (�))
0 � (

PT
at=1 ~mi;T;t (�))g,

Bartlett k(�) and bandwidth 
T = [T :25].
The fractile class ~kT = [T= ln(T )] optimizes the e¢ ciently weighted GMTTM rate,

hence �̂GT is T 1=2, T 1=2=L(T ) or T 1=�=L(T ) convergent if �� > 2, �� = 2 or �� < 2 (HR
2010a: Section 3.1). Similar to the OLS case, �̂GT satis�es P1 or P2 if mi;t(�

0) have
in�nite or �nite variances, hence if E[�2t ] = 1 or E[�2t ] < 1 (Lemma 4.1).

QMWL for GARCH (volatility spillover): Ling�s (2007) criterion is QML
with a smooth weight wi;t:

QQW;T (�) :=
TX
t=1

wi;t ln

�
1

hi;t (�)
exp

�
�:5�2i;t=h2i;t (�)

	�
:

Ling (2007) proposes a weight based on Huber�s (1977) in�uence function evaluated at
the 5th two-tailed percentile y(a)i;([:05T ]):

wi;t =

0@max
8<:1; 1

y
(a)
i;([:05T ])

jyi;t�1j I
�
jyi;t�1j > y

(a)
i;([:05T ])

�9=;
1A�4

:

Since �i;t have �nite variances the rate of convergence of �̂QW = arg sup�2�fQQW;T (�)g is
T 1=2. Thus P1 or P2 apply depending on whether test equations mi;t(�

0) have an in�nite
variance, which depends on whether �i;t have in�nite fourth moments: if E[�4i;t] =1 then
P1, else P2 applies. See Lemma 4.3.

Table 3: Plug-In �̂

Omitted Var Vol Spill

IID and AR GARCH

TTMC OLS, GMTTM QMWL
MC OLS, GMTTM QMWL
WALD OLS, GMTTM -
Hong - QMWL

5.4 Simulation Results

Simulation results are presented in Tables 4 and 5. In the case of in�nite variance
equations each untrimmed MC test displays empirical size distortions from the nominal
sizes of 1%, 5% and 10%. In all cases the null is strongly under-rejected demonstrating a
deviation from the chi-squared limit distribution.
The Ljung-Box Q-test of white noise, Wald test of omitted variables and Hong�s test

of volatility spillover all demonstrate size distortions in the presence of heavy tails. Notice
the Q-test for strong-GARCH(1,1) data with index �y = 2:9 substantially over-rejects the
null of white noise (see Table 4: top panel, 4th column). Hong�s (2001) test of volatility

spillover over-rejects the null even when �i;t
iid� N(0; 1) such that his required regulatory

conditions hold (see Table 6: top panel, 5th column).
The TTMC statistic exhibits sharp size for each test under the null. This alone

provides compelling evidence that removing a negligible number of large equation obser-
vations can sharpen a variety of moment condition tests in the presence of heavy tails.
The TTMC statistic has excellent empirical power for tests of white noise and omitted
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variables, while the untrimmed MC statistic has very weak power as a test of omitted
variables, and no power as a test of volatility spillover. Indeed, empirical power is less
than the nominal size, revealing a radical scale defect when tails are heavy. Finally,
both Hong�s test and the TTMC test for volatility spillover exhibit weak empirical power,
although the TTMC dominates for both thin-tailed and heavy-tailed data.

6. CONCLUSION We develop a moment condition test statistic that is robust to
heavy tails by tail-trimming a sample version of the tested moment E[mt(�

0)]. Although
E[mt(�

0)] = 0 under the null, E[mt(�)] does not have to exist under the alternative
for any �. Under fairly general conditions on the data generating process the resulting
test statistic is asymptotically chi-squared, and obtains non-negligible power against a
sequence of local alternatives that depends on tail thickness. Hypotheses covered are
essentially any testable moment condition, including at least those appearing in tests of
omitted variables, functional form, order selection, volatility spillover, white noise, and
over-identifying restrictions.
The statistic uses as plug-in a large array of potential estimators �̂T that need not be

T 1=2-convergent nor asymptotically normal, including conventional M- and MM-estimators,
and robust versions based on weighting and trimming like GMM or least squares with tail-
trimming. In many cases, depending on heavy tails and the test equation form, plug-ins
without Gaussian limits are allowed. Thus, OLS and QML are viable candidates in many
cases for very heavy tailed data. This is possible precisely because in the presence of heavy
tails super-T 1=2-convergent estimators exist, and equation trimming can be exploited to
slow down the test equation rate of convergence relative to the plug-in. Both possibilities
fail to exist for thin-tailed, stationary data.
We only scratch the surface of possibilities through examples and a simulation study.

The TTMC format works very well as a heavy tail robust test of white noise and omit-
ted variables, but exhibits relatively low power as a test of volatility spillover. Although
Hong�s (2001) test exhibits even lower power, extensions of the methods here may reason-
ably include a tail-trimmed portmanteau statistic, a task left for future research.

APPENDIX A: Assumptions

Assume L(T ) is a slowly varying function, L(T ) ! 1, whose value and rate may
change with the context. Write compactly throughout

ci;T (�) := max fli;T (�) ; ui;T (�)g , cT (�) = max
1�i�q

fci;T (�)g

ki;T = max fk1;i;T ; k2;i;T g and kT = max
1�i�q

fki;T g

m̂�
T (�) :=

1

T

TX
t=1

m̂�
T;t(�) and m�

T (�) :=
1

T

TX
t=1

m�
T;t(�)

Asymptotic arguments require the following constructions, some of which are already
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de�ned above. Estimating equation instantaneous and long run covariance matrices are

�T (�) = E
h�
m�
T;t (�)� E[m�

T;t(�)]
	�

m�
T;t (�)� E[m�

T;t(�)]
	0i

and �T = �T
�
�0
�
2 Rq�q

ST (�) :=
TX

s;t=1

E
h�
m�
T;s (�)� E[m�

T;s(�)]
	�

m�
T;t (�)� E[m�

T;t(�)]
	0i

and ST = ST
�
�0
�

~�T (�) = E
h�
~m�
T;t (�)� E[ ~m�

T;t(�)]
	�

~m�
T;t (�)� E[ ~m�

T;t(�)]
	0i

and ~�T = ~�T
�
�0
�

~ST (�) :=
TX

s;t=1

E
h�
~m�
T;s (�)� E[ ~m�

T;s(�)]
	�

~m�
T;t (�)� E[ ~m�

T;t(�)]
	0i

and ~ST = ~ST
�
�0
�
,

and

S�T (�) :=
TX

s;t=1

E
h�
M�

T;s(�)� E[M�
T;s(�)]

	�
M�

T;t(�)� E[M�
T;t(�)]

	0i
. (15)

We abuse notation since ~�T (�), ~ST (�) and S�T (�), which depict covariance in ~m�
T;t(�),

may not exist for any �. See conditions P1-P2 below. Population and sample Jacobia are

JT (�) :=
@

@�
E
�
m�
T;t(�)

�
2 Rq�r and JT = JT (�

0)

J�T;t(�) :=

�
@

@�
mi;t(�)� Ii;T;t (�)

�q
i=1

and J�T (�) :=
1

T

TX
t=1

J�T;t(�);

and a scale matrix is

VT (�) := T 2J 0T (�)S
�1
T (�) JT (�) 2 Rr�r and VT := VT (�

0):

Four sets of assumptions ensure �̂T estimates �
0;
PT

t=1 m̂
�
T;t(�) is su¢ ciently close toPT

t=1m
�
T;t(�) uniformly on �; S

�1=2
T (�0)

PT
t=1fm�

T;t(�
0) � E[m�

T;t(�
0)]g is asymptotically

normal; and Ĵ�T (�̂T ) and ŜT (�̂T ) are consistent.
The �rst portrays the plug-in �̂T . De�ne a sequence of matrices f ~VT g on Rr�r, with

divergent diagonal components ~Vi;i;T ! 1.

P1 (fast plug-in convergence). ~V 1=2T (�̂T � �0) = Op(1) and jjVT ~V �1T jj ! 0 where ~�2T
and ~ST may not exist.

P2 (slow plug-in convergence).

a. ~VT � KVT for some positive de�nite K 2 Rr�r;

b: ~V
1=2
T (�̂T � �0) = ~AT

PT
t=1f ~mT;t(�

0) � E[ ~mT;t(�
0)]g � (1 + op (1)) + op (1) for unique

�0 2 � where non-stochastic ~AT 2 Rr�p satis�es ~AT ~S�1T ~A0T ! Ip;

c: The limiting �nite dimensional distributions for S�T
�
�0
��1=2 fM�

T;t(�
0) � E[M�

T;t(�
0)]g

belong to the same class as those for S�1T fm�
T;t(�) � E[m�

T;t(�)]g.

Remark 1: P1 states �̂T is consistent with a compound rate of convergence ~V
1=2
T

faster than GMTTM V
1=2
T in the sense jjVT ~V �1T jj ! 0 for given fractile sequences fk1;i;T ; k2;i;T g.

In this case the plug-in estimating equations f ~mT;t(�
0)g have no in�uence on the test sta-

tistic, hence we need say nothing further.
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Under stationarity jjVT jj � KT if m2
i;t(�

0) and (@=@�)mt(�)j�0 are integrable. Simi-
larly, a wide range of minimum distance estimators under standard standard regulatory
conditions satisfy jj ~VT jj � KT for su¢ ciently thin-tailed data. Thus, for stationary data
P1 evidently can only occur when a test equation mi;t(�

0) has an in�nite variance. In
heavy tailed cases, however, we can always choose fk1;i;T ; k2;i;T g to slow down jjVT jj =
o(jj ~VT jj), so conventional M-, Method of Moments and Empirical Likelihood estimators
may have property P1, including untrimmed NLLS, LAD, QML, GMM, and CUE-GMM,
as well as heavy tail robust estimators like QMWL, LAWD and GMTTM.
Consider simple examples of testing error orthogonality in AR(1) and GARCH(1,1)

models. The AR model is yt = �0yt�1 + �t with iid �t and Paretian tail

P (j�tj > �) = d��� (1 + o(1)) , d > 0; � 2 (1; 2):

Assume the test equation is mt(�) = (yt � �yt�1)yt�1 under symmetric trimming with
fractile kT . Thus, VT is identically the exactly identi�ed GMTTM scale. If � is estimated
by least squares then ~V

1=2
T � KT 1=�=L(T ) (Davis et al 1992). The GMTTM scale,

however, cannot have a faster rate due to trimming jjVT jj � Kjj ~VT jj, and jj ~VT jj=jjVT jj
! 1 unless the test equation fractile kT is slowly varying (e.g. kT � ln(T )). See HR
(2010a).
Another example is Ling�s (2007) Quasi-Maximum Weighted Likelihood [QMWL] es-

timator for GARCH(1,1). The estimator is T 12-convergent while GMTTM is at best
T 12=L(T )-convergent when kj;i;T � T=L(T ), cf. HR (2010a). By comparison the un-
weighted QML rate of convergence for GARCH is strictly dominated by T 12=L(T ) when
the underlying iid error has an in�nite fourth moment (Hall and Yao 2003). Thus, for
GARCH models QML satis�es neither P1 or P2 when test equation fractiles kj;i;T �
T=L(T ) are chosen. See Section 4 for speci�c plug-in details for speci�c models.
Remark 2: P2 imposes proportionality ~VT � KVT . In this case since �̂T

p! �0

slowly enough that �̂T e¤ects the test statistic we assume �̂T is asymptotically linear in
equations ~mT;t(�

0) in P2.b. Since the test equationsmt(�
0) are geometrically �-mixing by

D3, below, the tail-trimmed equations m�
T;t(�

0) satisfy a Gaussian central limit theorem
(Hill 2010b, HR 2010a). Thus, property P2.c ensures ~mT;t(�

0) has the same central limit
property, and together P2.b and P2.b imply ~mT;t(�

0) may be estimating equations from
conventional and outlier robust M- and MM-estimators under thin tails, and heavy-tailed
robust estimators like LAWD and QMWL (Ling 2005, 2007), GMTTM (HR 2010a) and
LTTS (Hill 2010a).
Remark 3: The omitted case jj ~VT jj=jjVT jj ! 0 is unsatisfactory since the plug-in

equations ~mT;t(�
0) dominate, so a test of (1) cannot be performed. We therefore restrict

attention to P1 or P2.

The second set promotes local identi�cation of �0.

I1 (integrability). mt(�
0) is integrable under the null (1).

I2 (identi�cation). Under the null (1) the thresholds fli;T (�0); ui;T (�0)g satisfy a se-
quence of �xed point bounds: E[m�

T;t(�
0)] = o(jjST jj1=2=T ).

I3 (covariance). sup� jjAT (�)jj < 1 and lim infT�N inf�f�min(AT (�))g > 0 for each
AT (�) 2 f�T (�); ~�T (�); ~ST (�);S�T (�)g if ~�T (�) and S�T (�) exist.

I4 (moment smoothness). lim infT�N supjj���0jj��fjjE[m�
T;t (�)]jjg > jjE[m�

T;t

�
�0
�
]jj

for some N � 1 and any � > 0.

Remark 1: I1 formally ensures the null (1) makes sense. I2 is required due to
the quadratic test statistic form. In general E[m�

T;t(�
0)] ! 0 by Lebesgue�s dominated
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convergence under the null; E[m�
i;T;t(�

0)] = 0 for any thresholds li;T (�
0) = ui;T (�

0) if
mi;t(�

0) is symmetrically distributed; and E[m�
i;T;t(�

0)] � 0 arbitrarily close for any T by
relating the left- and right-tail fractiles k1;i;T and k2;i;T . See Section 3.7. In turn jjST jj=T 2
= o(1) under the null and mixing D3 by Lemma C.2 in Appendix C.
Remark 2: Positive de�niteness I3 is standard, although we must assume it for

su¢ ciently large T to overcome the small sample impact of trimming.

The third set concerns properties of mt(�) and J�T;t(�).

D1 (distribution).

i: The �nite dimensional distributions of mt(�) are strictly stationary and absolutely con-
tinuous with respect to Lebesgue measure on �.

ii. If sup� E[m
2
i;t(�)] =1 then m2

i;t(�) have for each t a common power-law tail P (jmi;t(�)j
> m) = di(�)m

��i(�)(1 + o(1)) where inf� �i(�) > 0, �i(�
0)> 1 and sup�fd�1i (�)m�i(�)P (jmi;t(�)j

> m)g ! 1.

D2 (di¤ erentiability). mt(�) is continuous and di¤erentiable on �-a.e:

D3 (mixing). M�
T;t(�) is for each T strictly stationary over 1 � t � T , and geometri-

cally �-mixing: �l : = supA�=+1t+l
EjP (Aj=t�1) � P (A)j = o(�l) for � 2 (0; 1), where

f=tg is some sequence of �-�elds adapted to fM�
T;t(�)g, and =t does not depend on T

or �.

D4 (moment envelopes). sup� jmi;t(�)j and sup� j(@=@�j)mi;t(�)j are L�-bounded 8i; j:
D5 (Jacobia rank and smoothness).

i: sup� jjAT (�)jj < 1 and AT (�) has full column rank for each AT (�) 2 fJT (�); J�T (�);
E[J�T;t(�)]g.
ii. For all f�T g, �T ! 0, supjj���0jj��T fjjJT (�)jj=jjJT jjg = 1 + o(1).

D6 (indicator class). fIi;T;t(�) : � 2 �g satis�es metric entropy with L2-bracketing
H[ ](";�; jj � jj2) = O(ln(")), " 2 (0; 1).
Remark 1: D1-D6 are essentially identical to conditions imposed in HR (2010a:

D1-D6) for GMTTM. See that source for complete details and examples. Distribution
continuity D1 greatly simpli�es asymptotics in lieu of the trimming indicators Ii;T;t(�),
cf. µCiµzek (2008, 2009). Equation di¤erentiability D2 simpli�es the discourse and can
be removed by borrowing arguments from Pakes and Pollard (1989) and Newey and
McFadden (1994).
Remark 2: Mixing D3 and indicator metric entropy property D67 ensure partial

sums of Ii;T;t(�) satisfy a uniform central limit theorem (Pakes and Pollard 1989, Doukhan
et al 1995, van der Vaart and Wellner 1994). This is used to prove m̂�

T;t(�) uniformly
approximates m�

T;t(�) su¢ ciently fast.
Remark 3: Jacobian D5 ensures jjJT (�)jj has the same rate as jjJT jj for � "close

to" �0 with a distance vanishing in T .

The last concerns kernel properties for the HAC kernel estimator.

7The brackets fl; ug of an index function class F satis�es l � f � u for every member f 2 F ,
where fl; ug may not be members of F ; an "-L2-bracket fl; ug satis�es jjl � ujj � "; the L2-bracketing
numbers N[ ](";B; jj � jj2) are the number of "-L2-brackets required to cover F , and metric entropy with
L2-bracketing is H[ ](";B; jj � jj2) = ln(N[ ](";B; jj � jj2)). See Pollard (1984), van der Vaart and Wellner
(1996) and Dudley (1999). Since H[ ](";�; jj � jj2) = O(j ln(")j) clearly

R 1
0 H

1=2
[ ]
(";�; jj � jj2)d" <1 hence a

required stochastic equiconuity condition for weak convergence of a partial sum of IT;t(�) applies (Dudley
1978, Doukhan set al 1995).
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K1 (kernel). k(�) is a member of class K, where

K= fk : R! [�1; 1] j k(0) = 1; k(x) = k(�x) 8x 2 R;Z 1

�1
jk(x)jdx <1;

Z 1

�1
j$(�)jd� <1;

k(�) is continuous at 0 and all but a �nite number of pointsg;

and $(�) = (2�)�1
R1
�1 k(x)ei�xdx < 1. Further

PT
s;t=1 jk((s � t)=
T )j = o(T 2);

max1�s�T
PT

t=1 k((s � t)=
T ) = o(T ) and bandwidth 
T = o(T ).

Remark : Class K includes Bartlett, Parzen, Quadratic Spectral, Tukey-Hanning
and other kernels. See Davidson and de Jong (2000) and the citations therein.

APPENDIX B: Proofs of Main Results

The following arguments exploit Lemmas C.1-C.8 in Appendix C. Throughout frT g is
a sequence of positive numbers, rT ! 0 arbitrarily fast, whose rate may change from line
to line. For example, we may write T � rT = rT . Further, matrix inverses exist under
the positive de�niteness and rank properties I3 and D5 for large T .

Proof of Theorem 3.1. Let H0 hold. We prove the claim by case according to plug-in
property P1 or P2. De�ne

M�
T;t := m�

T;t(�
0)� E

�
m�
T;t(�

0)
�
and ~M�

T;t := ~m�
T;t(�

0)� E
�
~m�
T;t(�

0)
�

�ST (�) =
TX

s;t=1

E
��
m̂�
T;s(�)� E[m̂�

T;s(�)]
	�

m̂�
T;t(�)� E[m̂�

T;t(�)]
	�

We require the following properties under either case. The plug-in is consistent:

�̂T � �0 = Op

�
jj ~VT jj�1=2

�
= Op

�
jjV �1=2T jj

�
= op (1) :

Identi�cation I2 states under the null

S
�1=2
T E

�
m�
T;t(�

0)
�
= o(T�1);

hence under the null

S�1T

TX
t=1

m�
T;t(�

0) = S�1T

TX
t=1

M�
T;t + o (1) : (16)

Further, asymptotic expansion Lemma C.4.a coupled with Jacobian consistency Lemma
C.5 and �̂T

p! �0 imply for some non-stochastic rT ! 0 arbitrarily fast

1

T

TX
t=1

m̂�
T;t(�̂T ) =

1

T

TX
t=1

m̂�
T;t(�

0) + JT

�
�̂T � �0

�
(1 + op (1)) + op (rT ) : (17)

Finally, by approximation Lemma C.3.a

S
�1=2
T

TX
t=1

�
m̂�
T;t(�

0)�m�
T;t(�

0)
	
= op (1) : (18)
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Case 1 (P1): In this case jj ~VT jj=jjVT jj !1; and by construction fTS�1=2T JT gV �1T fJ 0TS
�1=2
T Tg

! Iq, hence the plug-in satis�es

TS
�1=2
T JT

�
�̂T � �0

�
=
n
TS

�1=2
T JT ~V

�1=2
T

o
~V
1=2
T

�
�̂T � �0

�
= op(1) (19)

since jjTS�1=2T JT ~V
�1=2
T jj � jjVT jj1=2=jj ~VT jj1=2 ! 0. Further ŜT (�̂T ) = ST (1 + op(1)) by

HAC consistency Lemma C.6. Since rT ! 0 in (17) is arbitrarily fast, combine (16)-(19)
to obtain

ŴT = T 2

 
1

T

TX
t=1

m̂�
T;t(�̂T )

!0
Ŝ�1T (�̂T )

 
1

T

TX
t=1

m̂�
T;t(�̂T )

!
(20)

= T 2

 
1

T

TX
t=1

m̂�
T;t(�

0) + JT

�
�̂T � �0

�
(1 + op (1)) + op (rT )

!0

�S�1T

 
1

T

TX
t=1

m̂�
T;t(�

0) + JT

�
�̂T � �0

�
(1 + op (1)) + op (rT )

!
� (1 + op(1))

=

 
S
�1=2
T

TX
t=1

M�
T;t + TS

�1=2
T JT

�
�̂T � �0

�
(1 + op (1)) + op (1)

!

�
 
S
�1=2
T

TX
t=1

M�
T;t + TS

�1=2
T JT

�
�̂T � �0

�
(1 + op (1)) + op (1)

!
� (1 + op(1)) + op (1)

=

 
S
�1=2
T

TX
t=1

M�
T;t + op (1)

!0
�
 
S
�1=2
T

TX
t=1

M�
T;t + op (1)

!
� (1 + op(1)) + op (1)

= Z 0TZT � (1 + op(1)) + op (1) ;

say. Invoke central limit theorem Lemma C.7 to deduce

ZT =
 
S
�1=2
T

TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	!0

+ op (1)
d! N (0; Iq)

hence ŴT = Z 0TZT � (1 + op(1)) + op (1)
q! �2(q) by the mapping theorem.

Case 2 (P2): In this case some non-stochastic sequence f ~AT g, ~AT 2 Rr�p, satis�es
~AT ~ST ~A

0
T ! Ip and

~V
1=2
T

�
�̂T � �0

�
= ~AT

TX
t=1

~M�
T;t � (1 + op (1)) + op (1) ;

where ~VT � KVT for positive de�nite K 2 Rr�r. Further, HAC consistency Lemma C.6
states

ŜT (�̂T ) = �ST (�̂T )� (1 + op(1)): (21)
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Substitute for �̂T � �0 in (17), and invoke properties (16) and (18) in Case 1 to obtain

TX
t=1

m̂�
T;t(�̂T ) =

TX
t=1

m̂�
T;t(�

0) + TJT

�
�̂T � �0

�
(1 + op (1)) + op (rT )

=
TX
t=1

m�
T;t(�

0) + TJT ~V
�1=2
T

~AT

TX
t=1

~M�
T;t � (1 + op (1)) + op

�
kST k1=2

�

=
TX
t=1

M�
T;t + S

1=2
T

n
TS

�1=2
T JT

o
~V
�1=2
T

� ~AT

TX
t=1

~M�
T;t � (1 + op (1)) + op

�
kST k1=2

�

=
TX
t=1

M�
T;t + ~BT

TX
t=1

~M�
T;t � (1 + op (1)) + op

�
kST k1=2

�
;

say, where ~BT 2 Rq�p. The second equality substitutes for �̂T � �0, and uses the facts that
rT ! 0 arbitrarily fast and lim infT�N jjST jj > 0 under I3 ensure op (rT ) = op(jjST jj1=2).
By construction of V 1=2T , and ~VT � KVT under P2, there exists positive de�nite C 2 Rq�q
that satis�es

E

 
S
�1=2
T

~BT
TX
t=1

~M�
T;t

! 
S
�1=2
T

~BT
TX
t=1

~M�
T;t

!0
= S

�1=2
T

~BT ~ST ~B0TS
�1=2
T

=
n
TS

�1=2
T JT

o
~V
�1=2
T

n
~AT ~ST ~A

0
T

o
~V
�1=2
T

n
TJ 0TS

�1=2
T

o
�
n
TS

�1=2
T JT

o
V
�1=2
T

n
V
1=2
T

~V �1T V
1=2
T

o
V
�1=2
T

n
TJ 0TS

�1=2
T

o
! C � Iq;

hence

E

 
~BT

TX
t=1

~M�
T;t

! 
~BT

TX
t=1

~M�
T;t

!0
� CST :

RecallM�
T;t(�

0) 2 Rs contains all unique equations in m�
T;t(�

0) 2 Rq and ~mT;t(�
0) 2

Rp, s � maxfp; qg. Let the non-stochastic selection matrix RT 2 Rq�s satisfy

RT

�
M�

T;t(�
0)� E

�
M�

T;t(�
0)
�	
=M�

T;t + ~BT ~M�
T;t;

hence

TX
t=1

m̂�
T;t(�̂T ) =

TX
t=1

RT

�
M�

T;t(�
0)� E

�
M�

T;t(�
0)
�	
(1 + op (1)) + op

�
kST k1=2

�
: (22)

Now de�ne ST :=RTS
�
TR0

T 2 Rq�q whereS�T is the covariance matrix for
PT

t=1M�
T;t(�

0)

de�ned in (15) in Appendix A. By construction jjS�1T ST jj = O(1), hence by central limit
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theorem Lemma C.7

(23)

S�1=2T

TX
t=1

m̂�
T;t(�̂T ) = S

�1=2
T

TX
t=1

RT

�
M�

T;t(�
0)� E

�
M�

T;t(�
0)
�	
(1 + op (1)) + op (1)

d! N (0; Iq) ;

where RTS�1T R0
T has rank s � r.

Equation (23) implies E(S�1=2T

PT
t=1 m̂

�
T;t(�̂T )) ! 0 arbitrarily fast by the Helly-Bray

theorem, hence

S�1=2T

TX
t=1

n
m̂�
T;t(�̂T )� E

h
m̂�
T;t(�̂T )

io
= S�1=2T

TX
t=1

RT

�
M�

T;t(�
0)� E

�
M�

T;t(�
0)
�	
(1 + op (1)) + op (1)

d! N (0; Iq) :

But this ensures by HAC consistency (21) and the de�nition of �ST (�̂T ),

ST = �ST (�̂T )� (1 + op(1)) = ŜT (�̂T )� (1 + op(1)) ; (24)

therefore by (21)-(24) it follows

Ŝ
�1=2
T (�̂T )

TX
t=1

m̂�
T;t(�̂T ) (25)

= S�1=2T

TX
t=1

RT

�
M�

T;t(�
0)� E

�
M�

T;t(�
0)
�	
(1 + op (1)) + op (1)

d! N (0; Iq)

Now combine (25) with rank s � r of RTS�1T R0
T and invoke the mapping theorem to

prove the claim:

ŴT =

 
TX
t=1

m̂�
T;t(�̂T )

!0
Ŝ�1T (�̂T )

 
TX
t=1

m̂�
T;t(�̂T )

!
d! �2(s� r):

Proof of Theorem 3.2. Notice H1;L does not a¤ect the supporting Lemmas C.1-C.8
since none require null identi�cation I2. The proof of Theorem 3.1 therefore carries over
with only minor changes.
Under H1;L the equations satisfy TS

�1=2
T E

�
mt(�

0)
�
! v where v0v 2 [0;1). The

trimmed equations have the same limit by Lebesgue�s dominated convergence:

TS
�1=2
T E

�
m�
T;t(�

0)
�
! v: (26)

Under plug-in rate P1 and H1;L, apply (17), (19), (26) and CLT Lemma C.7 to deduce

S
�1=2
T

TX
t=1

m�
T;t(�̂T ) = S

�1=2
T

TX
t=1

m�
T;t(�

0) + op(1)

= S
�1=2
T

TX
t=1

�
m�
T;t(�

0)� E
�
m�
T;t(�

0)
�	
+ v (1 + op(1))

d! N (v; Iq) ;
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and so on.

APPENDIX C: Supporting Lemmata

In order to prove Theorem 3.1 we require limit theory for the tail-trimmed arrays
fm̂�

T;t(�);m
�
T;t(�)g and the Jacobian and HAC estimators ĴT (�) and ŜT (�). Throughout

rT , op(1), Op(1), o(1) and O(1) do not depend on � and t, where rT ! 0 arbitrarily fast.
In order to simplify notation assume all equations are trimmed: q = q.
All of the following come directly from, or after slight adjustments are consequences

of, theory developed in HR (2010a,b: Appendices C-E). We present proofs here for the
sake of completeness and ease of reference.
First, we bound the maximum threshold cT (�), and relate and bound the instanta-

neous and long run covariances �T (�) and ST (�).

LEMMA C.1 (threshold bound) Under D1 sup�fcT (�)=jj�T (�)jj1=2g = o(T 1=2) and
sup�fcT (�)=jjST (�)jj1=2g = o(1).

LEMMA C.2 (covariance propreties) Under D3, I3, and lim infT�N inf�f�min(�T (�))g
> 0:

a: lim supT�N sup� jjT�1��1T (�)ST (�)jj � K;

b: jj�T (�)jj = o(T �maxf1; jjE[m�
T;t((�))]jjg) and sup� jj�T (�)jj = o(T �maxf1; sup� jjE[m�

T;t((�))]jjg);

c: If additionally I2 holds then jjST jj = o(T 2).

Next, the stochastically trimmed m̂�
T;t(�) is su¢ ciently close to the deterministically

trimmed m�
T;t(�).

LEMMA C.3 (approximations) Under D1-D4, D6, and P1 or P2:

a:



PT

t=1

�
m̂�
T;t(�)�m�

T;t(�)
	


 = op

�
kST (�)k1=2

�
for any � 2 �

b: sup�

n


1=TPT
t=1fm̂�

T;t(�)�m�
T;t(�)g




o = op
�
sup�



E[m�
T;t(�)]



� :
Recall the kernel function kT;s;t, and de�ne �̂

�
T;t(�) := m̂�

T;t(�) � m̂�
T (�) and �

�
T;t(�)

:= m�
T;t(�) � m�

T (�). If additionally moment smoothness I4 and kernel property K1
hold then:

c: sup�2U0(�T )

�
km̂�

T (�)�m�
T (�)k =

�
1 + kJT k �



� � �0

�	 = op (1) 8� > 0:

d:



S�1T PT

s;t=1 kT;s;t

n
�̂�T;s(�̂T )�̂

�
T;t(�̂T )

0 � ��T;s(�
0)��T;t(�

0)0
o


 = op(1):

Further, mT;t(�) can be expanded around � essentially as a �rst-order asymptotic
Taylor expansion.

LEMMA C.4 (expansions) Under D1-D6:

a: m�
T (�) = m�

T (
~�) + J�T (��)(� � ~�) + rT � op(1) and m̂�

T (�) = m̂�
T (
~�) + Ĵ�T (��)(�

� ~�) + rT � jj� � ~�jj1=� � op(1) for jj�� � �jj � jj� � ~�jj that may be di¤erent in
di¤erent in each case, and tiny � > 0.

b: E[m�
T;t(�)] � E[m�

T;t(
~�)] = JT (~�)(� � ~�) + o(jjJT (~�)jj � jj� � ~�jj) for any �; ~� 2

�.
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The sample Jacobian of the trimmed equations is consistent.

LEMMA C.5 (Jacobian) Under D1-D6, and P1 or P2 Ĵ�T (�̂T ) = JT (1 + op(1)).

The HAC estimator is consistent for ST and �ST (�).

LEMMA C.6 (HAC estimator) Under D1-D6, K1, I3, and P1 or P2 ŜT (�̂T ) = ST (1

+ op(1)) and ŜT (�̂T ) = �ST (�̂T )(1 + op(1)).

The test equations satisfy a Gaussian central limit theorem.

LEMMA C.7 (CLT) Under D1 and D3 r0S�1=2T (�0)
PT

t=1fm�
T;t(�

0) � E[m�
T;t(�

0)]g d!
N(0; 1) for any conformable r0r = 1. If P2 also holds then r0S�1=2T (�0)

PT
t=1fM�

T;t(�
0)

� E[M�
T;t(�

0)]g d! N(0; 1).

De�ne

�ST (�) :=
TX

s;t=1

E
h�
m̂�
T;s(�)� E[m̂�

T;s(�)]
	�

m̂�
T;s(�)� E[m̂�

T;s(�)]
	0i

:

Finally, m�
T �) satis�es a stochastic di¤erentiability property.

LEMMA C.8 (Stochastic Di¤ erentiability) Under D1-D6 and I3 for any � � 0

sup
�2U0(�)

(

�m̂�
T (�)� m̂�

T (�
0)
	
�
�
E
�
m�
T;t(�)

�
� E

�
m�
T;t(�

0)
�	



1 + kJT k �


� � �0



)

= sup
�2U0(�)

�
kJ�T (�)� JT k

kJT k

�
+ op(1):

Proof of Lemma C.1. The bound sup�fcT (�)=jj�T (�)jj1=2g = o(T 1=2) is Lemma C.1
of HR (2010a): under power law tail decay D1.ii

sup
�

(
max1�i�q fci;T (�)g

k�T (�)k1=2

)
� K � sup

�

8><>: max1�i�q fci;T (�)g�Pq
i=1 c

2
i;T (�)(ki;T =T )

�1=2
9>=>;

= O

 
T 1=2

min1�i�q fki;T g1=2

!
= o

�
T 1=2

�
:

The second bound sup�fcT (�)=jjST (�)jj1=2g = o(1) follows from covariance relation Lemma
C.2.a.

Proof of Lemma C.2. De�ne zT;t(�; r) := r0T�1=2�
�1=2
T (m�

T;t(�) � E[m�
T;t(�)]) for

any conformable r0r = 1; where ��1=2T exists by I3 for su¢ ciently large T .

Claim (a): By �-mixing D3 variance bound Lemma E.1 in HR (2010b) applies:
E[(
PT

t=1 z
2
T;t(�; r)]�K

PT
t=1E[z

2
T;t(�; r)] =K. An identical argument reveals sup� E[(

PT
t=1 z

2
T;t(�; r)]

� K sup�
PT

t=1E[z
2
T;t(�; r)] = K, hence sup� jj��1T (�)ST (�)jj � K.

Claim (b): If jj�T (�)jj < 1 the claim is trivial, so assume at least one E[m2
i;t(�)]
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= 1, and assume without loss of generality mi;t(�) is symmetrically trimmed with two-
tailed thresholds ci;T (�) and fractiles ki;T : (T=ki;T )P (jmi;t(�)j > ci;T (�)) = 1. Power-law
tail D1.ii implies ci;T (�) = d(�)1=�i(�)(T=ki;T )

1=�i(�) for some �i(�) 2 (0; 2]. Coupled with
properties of trimmed variances for regularly varying tails if �i(�) 2 (1; 2) then8

E
h�
m�
i;T;t(�)

�2i � Kc2i;T (�)P (jmi;t(�)j > ci;T (�)) � Kc2i;T (�)(ki;T =T ) = K(T=ki;T )
2=�i(�)�1:

It is easy to show (T=ki;T )2=�i(�)�1 = o(T ) for all �i(�) � 1. Similarly if �i(�) = 2 then
E[(m�

i;T;t(�))
2] � L(T )!1 a slowly varying function which is trivially o(T ). Now invoke

the Cauchy-Schwartz inequality to deduce �T (�) = o(T ) = o(T �maxf1; jjE[m�
i;T;t(�)]jjg).

If �i(�) < 1 then jE[m�
i;T;t(�)]j � ci;T (�)(ki;T =T ) = K(T=ki;T )

1= inf�2�2;i �i(�)�1, hence

E
h�
m�
i;T;t(�)

�2i���E hm�
i;T;t(�)

i���2 � K(T=ki;T ) = o(T ):

The uniform case is identical in lieu of uniform power law tail property D1.ii.

Claim (c): Under I2 claims (a) and (b) together imply the claim.

Proof of Lemma C.3. Assume � and mt(�) are scalars and mt(�) is symmetrically
trimmed for notational convenience, and write �IT;t(�) := 1 � IT;t(�). Assume � and
mt(�) are scalars and mt(�) is symmetrically trimmed for notational convenience, and
write �IT;t(�) := 1 � IT;t(�).

Claim (a): Let � 2 � be arbitrary, and write mt = mt(�); cT = cT (�), m̂�
T;t =

m̂�
T;t (�), m

�
T;t = m�

T;t (�), �IT;t = 1 � IT;t(�), ÎT;t = ÎT;t(�), and ST := ST (�). First
bound 






TX
t=1

�
m̂�
T;t �m�

T;t

	




 � max
1�t�T

n


mt

n
ÎT;t � IT;t

o


o� TX
t=1




ÎT;t � IT;t


 :
By construction jjmtfÎT;t � IT;tgjj � 2jjm(a)

(kT )
� cT jj, where m(a)

(kT )
=cT = 1 + Op(k

�1=2
T )

follows under D1-D4 and D6 by Lemma D.2.1 of HR (2010a). Now use threshold bound
Lemma C.1 and covariance relation Lemma C.2.a to deduce

max
1�t�T

n


mt

n
ÎT;t � IT;t

o


o � 2


m(a)
(kT )

� cT



 = 2cT 


m(a)

(kT )
=cT � 1




 = op

�
kST k1=2 (T=kT )1=2

�
:

Next, by construction and the triangle inequality

TX
t=1




ÎT;t � IT;t


 � k
1=2
T






 1

k
1=2
T

TX
t=1

�
�IT;t � E

�
�IT;t
�	




+ k1=2T





k1=2T

�
T

kT
E
�
�IT;t
�
� 1
�





which is Op(k
1=2
T ) by the threshold construction (6) and an application of HR�s (2010a:

Lemma D.4) uniform indicator law. Therefore
PT

t=1fm̂�
T;t �m�

T;tg= op(jjST jj1=2(T=kT )1=2k
1=2
T )

= op(jjST jj1=2T 1=2).
Claim (b): De�ne

M�
T := max

1�t�T

�
sup
�




mt (�) fÎT;t (�)� IT;t (�)g



� :

8The trimmed moment property follows directly from Karamata�s Theorem. See Resnick (1987: The-
orem 0.6; Exercise .0.4.2.8).
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and repeat the above argument to reach

sup
�






 1T
TX
t=1

�
m̂�
T;t (�)�m�

T;t (�)
	




 � M�

T �
k
1=2
T

T
sup
�






 1

k
1=2
T

TX
t=1

�
�IT;t (�)� E

�
�IT;t (�)

�	





+M�

T �
k
1=2
T

T
sup
�





k1=2T

�
T

kT
E
�
�IT;t (�)

�
� 1
�



 :

Uniform indicator law Lemma D.4 in HR (2010a) and threshold construction (4) imply
the right-hand-side is Op(M�

T k
1=2
T =T ).

We need only prove M�
T = op(sup� jjE[m�

T;t(�)]jjT=k
1=2
T ) to complete the proof. Since���mt (�)

n
ÎT;t (�)� IT;t (�)

o��� � 2cT (�) ���m(a)
(kT )

(�)=cT (�)� 1
��� ;

and sup� jm
(a)
i;(kT )

(�)=ci;T (�) � 1j = Op(k
�1=2
i;T ) by Lemma D.2.1 of HR (2010a), use thresh-

old bound Lemma C.1, and covariance bound Lemma C.2.b to deduce

M�
T � K sup

�
cT (�) sup

�

���m(a)
(kT )

(�)=cT (�)� 1
��� � o

�
sup
�
k�T (�)k1=2 T 1=2=k1=2T

�

= o

�
sup
�



E �m�
T;t(�)

�

T=k1=2T

�
:

Claim (c): The claim follows from (b) and Jacobian smoothness sup�2U0(�) jjJT (�)jj=jjJT jj
= O(1) under D5.ii, since by the de�nition of a derivative

sup
�2U0(�)

( 

E �m�
T;t(�)

�


1 + kJT k �



� � �0


)

� sup
�2U0(�)

(

E �m�
T;t(�

0)
�

+ kJT (�)k � 

� � �0



1 + kJT k �


� � �0



)

� sup
�2U0(�)

( 

E �m�
T;t(�

0)
�



1 + kJT k �


� � �0



)
+K:

Under the null jjE[m�
T;t(�

0)]jj ! 0, while under the alternative use moment smoothness I4
to deduce sup�2U0(�) jjE[m�

T;t(�)]jj > jjE[m�
T;t(�

0)]jj. Under either hypothesis, therefore,

sup
�2U0(�)

( 

E �m�
T;t(�)

�


1 + kJT k �



� � �0


)
+K:

Claim (d): We will prove the simpler result




S�1T
TX

s;t=1

kT;s;t

n
m̂�
T;s(�̂T )m̂

�
T;t(�̂T )�m�

T;s(�
0)m�

T;t(�
0)0
o




 = op(1):

A proof of the claim




S�1T
TX

s;t=1

kT;s;t

n
�̂�T;s(�̂T )�̂

�
T;t(�̂T )

0 � ��T;s(�0)��T;t(�0)0
o




 = op(1)

is similar, but with tedious added steps to handle stochastic centering �̂�T;t(�̂T ) = m̂�
T;t(�̂T )

� 1=T
PT

t=1 m̂
�
T;t(�̂T ).

39



Write mt = mt(�
0), ÎT;t = ÎT;t(�

0), IT;t = IT;t(�
0), �IT;t := 1 � IT;t, m̂�

T;t = mtÎT;t,

and m�
T;t = mtIT;t. We prove jjT�1S�1T

PT
s;t=1 kT;s;tfm̂�

T;sm̂
�
T;t � m�

T;sm
�
T;tgjj = op(1)

and jjT�1S�1T
PT

s;t=1 kT;s;tfm̂�
T;s(�̂T )m̂

�
T;t(�̂T ) � m̂�

T;sm̂
�
T;tgjj = op(1) in two steps. The

claim then follows by the triangle inequality.

Step 1: Observe




S�1T
TX

s;t=1

kT;s;t
�
m̂�
T;sm̂

�
T;t �m�

T;sm
�
T;t

	





� 2






S�1T
TX

s;t=1

kT;s;tms

�
ÎT;s � IT;s

�
m�
T;t







+






S�1T
TX

s;t=1

kT;s;tms

�
ÎT;s � IT;s

�
mt

�
ÎT;t � IT;t

�




 = A1;T +A2;T :
We only bound A1;T since A2;T is similar. De�ne for any � > 0

�� (x) :=
1�

2�2�
�1=2 exp��x2��2=2	 and ��;T;j := �� (j=
T )

A1;T;� :=
2TX

t=�T+1

 
1



1=2
T

T�tX
l=1�t

k (l=
T )S
�1=2
T mt+l

�
Î�T;t+l � I�T;t+l

�
I (0 � l � [
T =�])

!

�

0@ 1



1=2
T

T�tX
j=1�t

��;T;jS
�1=2
T m�

T;t+jI (0 � j � [
T =�])

1A� (1 + op (1)) :
By CLT Lemma C.7 




S�1=2T

TX
t=1

m�
T;t







2

= O(1):

Similarly, approximation Lemma C.3.a coupled with CLT Lemma C.7 and the Helly-Bray
theorem imply 




 1

T 1=2
S
�1=2
T

TX
t=1

m�
T;t

�
Î�T;t � I�T;t

�





2

= O(1):

Now imitate Davidson and de Jong�s (2000: Lemmas A.2-A.3) arguments to deduce9

lim
�!0

lim sup
T!1

kA1;T �A1;T;� � (1 + op (1))k1 = 0: (27)

Next, consider the components of A1;T;�. It is straightforward to generalize approx-
imation Lemma C.3.a to a weighted version with k(t=
T ) under K1. Speci�cally, de�ne
NT (�) := minfT; [
T =�] + 1g and note by construction and variance non-degeneracy I3

lim sup
T�N

NT (�)


T
� K and sup


2�

n
SNT (�)=N

1=2
T (�)

on
ST =T

1=2
o�1

= O(1):

9De�ne XT;t := S
�1=2
T m�

T;t. Davidson and de Jong (2000: p. 414) invoke E(
PT
t=1XT;t)

2 = O(1)

under their Lemma A.1, which holds by a mixingale property and McLeish�s (1975: Theorem 1.6) maximal
inequality. Their proofs reveal E(

PT
t=1XT;t)

2 = O(1) and kernel property K1 need only hold.
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Now use stationarity to deduce for any �

T 1=2 max
�T+1�t�2T






 1



1=2
T

S
�1=2
T

T�tX
l=1�t

k (l=
T )
�
m̂�
T;t+l �m�

T;t+l

	
I (0 � l � [
T =�])







2

�





N1=2

T (�)



1=2
T

n
SNT (�)=N

1=2
T (�)

on
ST =T

1=2
o�1






1=2






S�1=2NT (�)

NT (�)X
t=1

k (t=
T )
�
m̂�
T;t �m�

T;t

	






2

! 0 as T !1:

Similarly, by a straightforward generalization of CLT Lemma C.7 for any �

T 1=2 max
�T+1�t�2T







 1



1=2
T

T�tX
j=1�t

��;T;j
1

T 1=2
S
�1=2
T m�

T;t+jI (0 � j � [
T =�])








2

�





N1=2

T (�)



1=2
T

n
SNT (�)=N

1=2
T (�)

on
ST =T

1=2
o�1






1=2

�







S�1=2[
T =�]

NT (�)X
t=1

��;T;jm
�
T;t








2

+ o (1)

! 0 as T !1:

Therefore
lim
�!0

lim sup
T!1

kA1;T;�k1 = 0: (28)

Combine (27) and (28) to conclude A1;T = op (1).

Step 2: Note




S�1T
TX

s;t=1

kT;s;t

n
m̂�
T;s(�̂T )m̂

�
T;t(�̂T )� m̂�

T;sm̂
�
T;t

o





� 2






S�1T
TX

s;t=1

kT;s;t

n
m̂�
T;s(�̂T )� m̂�

T;s

o
m̂�
T;t







+






S�1T
TX

s;t=1

kT;s;t

n
m̂�
T;s(�̂T )� m̂�

T;s

on
m̂�
T;t(�̂T )� m̂�

T;t

o




 :
We will bound the �rst term, the second is similar. Use the Taylor expansion argument
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in the proof of expansion Lemma C.4.a to deduce for some jj�T;� � �0jj � jj�̂T � �0jj




S�1T
TX

s;t=1

kT;s;t

n
m̂�
T;s(�̂T )� m̂�

T;s

o
m̂�
T;t







�





S�1T

TX
s;t=1

kT;s;tĴT;s(�T;�)m̂
�
T;t






� 


�̂T � �0



+






S�1T
TX

s;t=1

kT;s;tJs(�T;�)
n
ÎT;s (�T;�)� ÎT;s

�
�0
�o
m̂�
T;t






� 


�̂T � �0



+






S�1T
TX

s;t=1

kT;s;tJs(�T;�)
n
ÎT;s

�
�̂T

�
� ÎT;s

�
�0
�o
m̂�
T;t






� 


�̂T � �0



+






S�1T
TX

s;t=1

kT;s;tms(�
0)
n
ÎT;s

�
�̂T

�
� ÎT;s

�
�0
�o
m̂�
T;t







=

4X
i=1

Bi;T :

The gist of Davidson and de Jong�s (2000: p. 419-420) Fourier inversion argument
applies. Extend their equation (A.51) to our environment to obtain

B1;T � K

Z 1

�1

 
kJT k�1






 1T
TX
s=1

e�i�s=
T ĴT;s(�T;�)






�





T�1=2S�1=2T

TX
t=1

ei�t=
T m̂�
T;t







!
j$ (�)j d�

= K

Z 1

�1
CT (�)DT (�) j$ (�)j d�;

where $(�) is de�ned under K1. Lemma C.3.a and Lemma C.7 render DT (�) = Op(1).
Further, Jacobian consistency Lemma C.5 with jj�T;� � �0jj � jj�̂T � �0jj=Op(T�1=2jjST jj1=2
� jjJT jj�1) under P1 or P2, and K1 properties

PT
s;t=1 jkT;s;tj= o(T 2),max1�s�T

PT
t=1 jkT;s;tj

= o(T ) and 
T = o(T ) imply CT (�) = op(1). Therefore
R1
�1 CT (�)DT (�) j$ (�)j d� =

op (1) by dominated convergence and K1. Similar arguments extend to the remaining
terms.

Proof of Lemma C.4.

Claim (a): Assume � and mt(�) are scalars and mt(�) is symmetrically trimmed to
simplify notation.
We only expand m�

T (�) since m̂
�
T (�) is similar. Write m

�
T;t(�) = mt(�) � IT;t(�) where

IT;t(�) = I(jmt(�)j � cT (�)), and choose jj� � ~�jj � � for any � > 0. Use di¤erentiability
D2 to deduce by Taylor�s theorem

m�
T;t(�) =

n
mt(~�) + Jt(�T;�)(� � ~�)

o
� IT;t (�)

where jj�T;� � ~�jj � jj� � ~�jj, and Jt(�) := (@=@�)mt(�). Therefore

m�
T (�)�m�

T (
~�) = J�T (�T;�)� (� � ~�) +

1

T

TX
t=1

mt(�)�
n
IT;t (�)� IT;t(~�)

o
(29)

+
1

T

TX
t=1

Jt(�T;�)� fIT;t (�)� IT;t(�T;�)g � (� � ~�):
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We will show the second and third terms are op(rT � jj� � ~�jj1=�).
Consider the second term in (29) and use IT;t (�) � IT;t(~�) 2 f�1; 0; 1g to bound����� 1T
TX
t=1

mt(�)
n
IT;t (�)� IT;t(~�)

o����� � 1

T 1=2

TX
t=1

���mt(�)
n
IT;t (�)� IT;t(~�)

o���
� 1

T 1=2

TX
t=1

���IT;t (�)� IT;t(~�)��� = AT (�; ~�)�BT (�; ~�):

The threshold construction (6), IT;t(�) 2 f0; 1g and triangle inequality imply for any p >
0

sup
�;~�2�

E
���IT;t (�)� IT;t(~�)���p = O (kT =T )

where O(�) is not a function of �. Combined with D1.i continuity and boundedness of the
�nite dimensional distributions of mt(�) and the mean-value-theorem, it follows EjIT;t (�)
� IT;t(~�)jp = O((kT =T )) � jj� � ~�jj. Now invoke stationarity D1.i, envelope bound D4
and the Cauchy-Schwartz inequality to deduce for tiny � > 0�
E
h
AT (�; ~�)

�
i�1=�

� T 1=2
h
E
���mt(�)

n
IT;t (�)� IT;t(~�)

o����i1=� = O
�
T 1=2 (kT =T )

1=�
�
�



� � ~�


1=� :

Since � > 0 can be chosen arbitrarily small and kT =T ! 0 by tail trimming, invoke
Markov�s inequality to conclude for some rT ! 0 arbitrarily fast and op(�) not a function
of �

AT (�; ~�) = op

�
T 1=2

�
k
1=2
T =T

�1=� 


� � ~�


1=�� = op (rT )�



� � ~�


1=� :

Since EjBT (�; ~�)j � T 1=2 follows trivially from jIT;t (�) � IT;t(~�)j 2 f0; 1g we have
shown for some rT ! 0 arbitrarily fast����� 1T

TX
t=1

mt(�)
n
IT;t (�)� IT;t(~�)

o����� � AT (�; ~�)�BT (�; ~�) = op (rT )�



� � ~�


1=� :

Repeat the argument for the third term in (29) by invoking envelope bound D4 for Jt(�).

Claim (b): Apply Jacobian existence D5.i and the de�nition of a derivative.

Proof of Lemma C.5. Recall JT = JT (�
0) = (@=@�)E[m�

T;t(�)]j�0 and write m̂�
T (�) =

1=T
PT

t=1 m̂
�
T;t(�).

Denote by ei 2 Rr the unit vector (e.g. e2 = [0; 1; 0; :::; 0]0), de�ne a sequence of
bounded positive numbers f"T g that satis�es lim infT�1 "T jjJT jj > 0 and jj~�T � �0jj="T
p! 0. This is always possible in lieu of the plug-in rate and Lemma C.2.c: jj~�T � �0jj="T
= Op(T

�1=2jjST jj1=2) = op(1). De�ne

�J�i;j;T (�; "T ) :=
1

2"T
� 1

T

TX
t=1

�
m̂�
j;T;t(� + ei"T )� m̂�

j;T;t(� � ei"T )
	
:

Minkowski�s inequality implies for arbitrary �


Ĵ�T (~�T )� JT


 � 


Ĵ�T (~�T )� �J�T (�; "T )



+ 

 �J�T (�; "T )� JT
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Apply asymptotic expansion Lemma C.4.a to deduce for some ~�T;� 2 f~�T � ei"T ; ~�T +
ei"T g

Ĵ�T (
~�T ) = �J�i;j;T (

~�T;�; "T ) + op (kJT k) ; hence



Ĵ�T (~�T )� �J�T (�; "T )




 = op (kJT k) :

Since jj~�T;� � �0jj � jj~�T � �0jj = op(1) it remains to show jj �J�T (~�T ; "T ) � JT jj =
op(jjJT jj) for any jj~�T � �0jj p! 0. De�ne

U0 (�1; �2) :=
�
� 2 � : �1 �



� � �0

 � �2
	
for 0 � �1 � �2

JT (�1; �2) := sup
�2U0(�1;�2)

�
kJ�T (�)� JT k

kJT k

�
Stochastic di¤erentiability Lemma C.8 and the fact that U0(�1; �2) � U0 (0; �2), and
consistency ~�T

p! �0 imply for large K and any non-zero constant vector a 2 Rr=0


nm̂T (~�T + a"T )� m̂T

�
�0
�o
�
n
E
h
m�
T;t

�
~�T + a"T

�i
� E

�
m�
T;t

�
�0
��o




� K
n
1 + kJT k �




~�T + a"T � �0


o� op (1)� (JT (�1; �2) + op (1))
� K

n
1 + kJT k �




~�T � �0


+ kJT k � ka"T ko� (JT (�1; �2) + op (1))
= op ("T kJT k) +Op ("T kJT k � JT (�1; �2)) :

Similarly, by di¤erentiability of E[m�
T;t(�)],







E
h
m�
T;t(

~�T + a"T )
i
� E

�
m�
T;t

�
�0
��

"T
� aJT








=



JT "�1T �

~�T + a"T � �0
�
� aJT + op

�
kJT k "�1T

�
~�T + "T � �0

��



=



JT "�1T �

~�T � �0
�


+ op (kJT k) = op (kJT k) :

Replace ~�T + a"T with ~�T � a"T to deduce the same bounds. Therefore


 �J�T (~�T ; "T )� JT


 =





m̂�

T (
~�T + "T )� m̂�

T (
~�T � "T )

2"T
� JT






 = op (kJT k)+Op (kJT k � JT (�1; �2))

hence we have shown Ĵ�T (~�T ) = JT (1 + op(1)) + Op(jjJT jj � JT (�1; �2)).
Since 0 � �1 < �2 are arbitrary, the proof is complete if we show for some sequence of

positive numbers f�1;T g, �1;T ! 0 and �2;T = 2�1;T :

JT (�1;T ; �2;T )
p! 0:

De�ne
mT (�1; �2) = sup

�2U0(�1;�2)



E �m�
T;t (�)

�

 :
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The required limit follows from expansion Lemma C.4.a, and HR�s (2010a: Lemma D.3)
uniform law of large numbers restricted to U0 (�1; �2). For each � 2 U0 (�) we can always
�nd a sequence f�T;�g 2 U0 (�1; �2), �T;� 6= �0 for each �nite T � N , such that

E
�
m�
T;t (�T;�)

�
� E

�
m�
T;t

�
�0
��

�T;� � �0

 =

m�
T (�T;�)�m�

T

�
�0
�

�T;� � �0

 + op (1)�

mT (�1; �2)

�T;� � �0


= J�T (�)�

�
�T;� � �0

�

�T;� � �0

 � (1 + op (1)) + op (1)� mT (�1; �2)

�T;� � �0

 ;
where each op(1) term does not depend on �. Moreover, by moment expansion Lemma
C.4.b

E
�
m�
T;t (�T;�)

�
� E

�
m�
T;t

�
�0
��

�T;� � �0

 = JT �

�
�T;� � �0

�

�T;� � �0

 � (1 + o (1)) :
Further, by construction jj�T;� � �0jj � �2;T =2. Together it follows

sup
�2U0(�)

�
kJ�T (�)� JT k

kJT k

�
= op (1) + op

�
mT (�1; �2)

�2;T kJT k

�
:

Therefore JT (�1;T ; �2;T )
p! 0 if mT (�1;T ; �2;T )=[�2;T jjJT jj] = O(1). By the de�nition

of a derivative, the construction U0(�1;T ; �2;T ) � U0(0; �2;T ) = U0(�2;T ) and moment
smoothness I4

mT (�1;T ; �2;T ) � K�2;T sup
�2U0(�2;T )

kJT (�)k � (1 + o (1))

Now invoke Jacobian smoothness D5.ii to conclude

mT (�1; �2)

�2;T kJT k
� K�2;T kJT k (1 + o(1)) + o(1)

�2;T kJT k
= O(1):

Proof of Lemma C.6. We will only prove ŜT (�̂T ) = ST (1 + op(1)), the remaining
claim being similar. De�ne �̂�T;t(�) := m̂�

T;t(�) � m̂�
T (�), �

�
T;t(�) := m�

T;t(�) � m�
T (�) and

A1;T := S�1T

TX
s;t=1

kT;s;t

n
�̂�T;s(�̂T )�̂

�
T;t(�̂T )� ��T;s(�0)��T;t(�0)

o

A2;T := S�1T

TX
s;t=1

kT;s;t�
�
T;s(�

0)��T;t(�
0)� Iq:

By the triangle inequality we must show each Ai;T (
)
p! 0. Uniform cross-product

approximation Lemma C.3.d states A1;T
p! 0.

Next, we apply Theorem 2.1 of Davidson and de Jong (2000), denoted DJ, to prove
A2;T

p! 0. It su¢ ces to verify their Assumptions 1-3. DJ�s Assumption 1 holds by K1.
Their Assumptions 2 and 3 impose Near Epoch Dependence and relate the property to

bandwidth 
T . Both conditions are only used to promote partial sum variance bounds for
a standardized process by invoking McLeish�s (1975: Theorem 1.6) maximal inequality.
De�ne ZT;t : = S�1T m�

T;t(�
0). Under geometric �-mixing D3 fm�

T;t(�
0);=tg forms a

geometric L2-mixingale with constants eT;t (cf. McLeish 1975: Theorem 2.1). Therefore
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fZT;t;=tg forms a geometric L2-mixingale with constants ET;t := T�1=2�
�1=2
T eT;t. By

Lemma C.2.a jj��1T ST jj � K hence E(
PT

t=1ZT;t)2 � K without any reference to McLeish
(1975) or therefore a NED supposition. A careful inspection of DJ�s proof of their Theorem
2.1 reveals E(

PT
t=1ZT;t)2 � K su¢ ces in place of their Assumption 2.

Finally, Assumption 3 states 
T �max1�t�T fE2T;tg= o(1) and is used, like Assumption
2, only to ensure partial sum bounds for L2-mixingale functions of ZT;t. See especially the
proofs of their Lemmas A.3 and A.4. Covariance bound Lemma C.2.a, however, implies
we can always side-step the use of mixingale coe¢ cients in partial sum variance bounds
for geometrically �-mixing data, in particular we can always replace eT;t with Kjj�T jj1=2,
hence ET;t = T�1=2�

�1=2
T eT;t with T�1=2. Therefore 
T � T�1 = o(T=T ) under K1.

Proof of Lemma C.7. De�ne

zT (�) =
TX
t=1

zT;t (�) = �0S
�1=2
T

TX
t=1

�
m�
T;t

�
�0
�
� E[m�

T;t

�
�0
�
]
	

for conformable �0� = 1. Since jzT;t(�)j � c�;T jjST jj�1=2, under mixing and tail decay
properties D1 and D3 fzT;t(�)g satis�es the conditions of central limit theorem Lemma
D.7 in Hill and Renault (2010). This su¢ ces to prove convergence in �nite dimensional

distributions zT (�)
d! N(0; 1), hence S�1=2T

PT
t=1fm�

T;t

�
�0
�
� E[m�

T;t

�
�0
�
]g d! N(0; Iq)

by the Crámer-Wold theorem. See also Theorems 3.2 and 5.1 of Hill (2009b).
Under slow plug-in convergence P2.c and the above argument, the �nite dimensional

distributions of �0S�1=2T (�0)fM�
T;t(�

0) � E[M�
T;t(�

0)]g are asymptotically normal. The
claim now follows by the Crámer-Wold theorem.

Proof of Lemma C.8. Apply Minkowski�s inequality and the Lemma C.3.c uniform
approximation to obtain

sup
�2U0(�)

(

�m̂�
T (�)� m̂�

T (�
0)
	
�
�
E
�
m�
T;t(�)

�
� E

�
m�
T;t(�

0)
�	



1 + kJT k �
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)

� sup
�2U0(�)

(

�m�
T (�)�m�

T (�
0)
	
�
�
E
�
m�
T;t(�)

�
� E

�
m�
T;t(�

0)
�	



1 + kJT k �
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)

+ 2 sup
�2U0(�)

(
km̂�

T (�)�m�
T (�)k

1 + kJT k �
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)

= sup
�2U0(�)

(

�m�
T (�)�m�

T (�
0)
	
�
�
E
�
m�
T;t(�)

�
� E

�
m�
T;t(�

0)
�	



1 + kJT k �
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)
+ op (1)

Equation and moment expansions Lemma C.4.a,b imply the last line is bounded by
sup�2U0(�)fjjJ�T (�) � JT jj=jjJT jjg + op (1).
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Table 4 - White Noise, Volatility Spillover
T = 1000, Heavy-Tailed Dataa

White Noiseb

IID (�t � P1:5)c G(1,1) (�t � N0;1) AR (�t � P1:5)
TTMC .01,.04,.09d .01,.06,.10 .85,.93,.95
MCe .00,.02,.05 .00,.03,.07 .75,.85,.90
Q-testf .04,.06,.08 .26,.41,.49 1.0,1.0,1.0

Volatility Spilloverg (QMWL)
C-G H0 (�t � P2:5) C-G H11 (�t � P2:5) C-G H21 (�t � P2:5)

TTMC .01,.05,.09 .18,.30,.34 .30,.43,.55
MC .00,.00,.04 .00,.01.,02 .00,.01,.02
Hongh .01,.01,.01 .22,.24,.24 .25,.25,.27

a. All test equations have an in�nite variance and �nite mean. In particular, tails are heavy enough that the
Ljung-Box Q-statistic and Hong�s centered Q-statistic have non-normal or degenerate limits under the null.

b. Test of white noise for IID, AR and G(1,1) = GARCH(1,1): mi;t = ytyt�i, i = 1; :::; 5:
c. P� denotes a Pareto law with index �.
d. Values are rejection frequencies at the1%, 5% and 10% levels.

e. The untrimmed version of ŴT .
f. Ljung-Box Q-test with 5 lags for white noise; Wald test for omitted variables.
g. Test of volatility spillover for C-G = CCC-GARCH: mi;t(�) = (y

2
1;t=h

2
1;t(�)� 1)(y22;t�i=h22;t�i(�)� 1);

with lags i = 1; :::; 5: The hypotheses are H0: no spillover and H1: strong spillover from y to x.
The plug-in is QMWL.

h. Hong�s (2001) centered portmanteau test of volatility spillover with QMWL plug-in.

Table 5 - Omitted Variables
T = 1000, Heavy-Tailed Dataa

Omitted Variablesb (OLS) Omitted Variables (GMTTM)
IID (�t � P1:5) AR (�t � P1:5) IID (�t � P1:5) AR (�t � P1:5)

TTMC .01,.05,.10 .84,.94,.97 TTMC .01,.05,.09 .86,.93.96
MC .00,.01,.03 .35,.54,.66 MC .00,.00,.02 .33,.52,.62
Wald .02,.03,.05 1.0,1.0,1.0 Wald .01, .04, .09 .89,.96,.99

a. All test equations have an in�nite variance and �nite mean, and tails are heavy enough that the Wald
statistic has a non-normal or degenerate limit under the null.

b. Test of omitted variables for IID and AR: mi;t(�) = (yt � �0xt)(yt�i � �0xt�i), i = 1; :::; 5:
The plug-in is either OLS or GMTTM.

Table 6- White Noise, Volatility Spillover, Omitted Variables
T = 1000, Thin-Tailed Dataa

White Noiseb (�t � P4:5) Volatility Spillover (QMWL �t � N0;1)c

IID (�t � P4:5) AR C-G H0 C-G H11 C-G H21
TTMC .01,.06,.10 1.0,1.0,.10 TTMC .01,.06,.10 .17,.46,.57 .24,.51,.68
MC .01,.05,.09 1.0,1.0,.10 MC .01,.03,.07 .06,.14.,26 .11,.25,.40
Q-test .01,.04,.10 1.0,1.0,.10 Hongh .03,.09,.12 .24,.24,.30 .41,.42,.43

Omitted Variables (OLS, �t � P2:5) Omitted Variables (GMTTM, �t � P1:5)
IID AR IID AR

TTMC .01,.05,.09 1.0,1.0,1.0 TTMC .01,.05,.10 1.0,1.0,1.0
MC .01,.04,.08 .98,.99,1.0 MC .00,.03,.07 .96,.99,1.0
Wald .01,.05,.10 .99,.99,1.0 Wald .01, .05, .11 1.0,1.0,1.0
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a. All test equations have a �nite variance, and all processes are thin-tailed enough that the Lung-Box,
Wald and Hong statistics have standard limits under the null.

b. Since all CCC-GARCH models studied here have in�nite variance equations for the test of white noise,
we only test IID and AR data for white noise.

c. N0;1 denotes a standard normal law.
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