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ABSTRACT 

GINA SONG: Immune Mechanisms Regulating Pharmacokinetics and Pharmacodynamics of 
PEGylated Liposomal Anticancer Agents 

(Under the direction of William C. Zamboni) 
 

Nanotechnology has made significant advances in drug delivery system for the treatment 

of cancer. Among various nanoparticle (NP) platforms, liposomes have been most widely used 

as a NP drug carrier for cancer therapy. High variation in pharmacokinetics (PK) and 

pharmacodynamics (PD) of liposome-based therapeutics has been reported. However, the 

interaction of liposome-based therapeutics with the immune system, specifically the 

mononuclear phagocyte system (MPS), and underlying molecular mechanisms for variable 

responses to liposomal drugs remain poorly understood. The objective of this dissertation was to 

elucidate immune mechanisms for the variable responses to PEGylated liposomal doxorubicin 

(PLD; Doxil®), a clinically relevant NP, in animal models and in patients. In vitro, in vivo and 

clinical systems were investigated to evaluate the effects of chemokines (CCL2 and CCL5), 

heterogeneity of the tumor microenvironment, and genetic variations on PK and PD of PLD.  

Results showed that there was a significantly positive linear relationship between PLD exposure 

(AUC) and total amount of CCL2 and CCL5, most prevalent chemokines in plasma, in patients 

with recurrent ovarian cancer. Consistent with these findings, preclinical studies using mice 

bearing SKOV3 orthotopic ovarian cancer xenografts demonstrated that PLD induced the 

production and secretion of chemokines into plasma. In addition, in vitro studies using human 

monocytic THP-1 cells demonstrated that PLD altered monocyte migration towards CCL2 and 

CCL5. The PK and efficacy studies of PLD in murine models of breast cancer showed that 
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heterogeneous tumor microenvironment was associated with significantly different tumor delivery 

and efficacy of PLD, but not small molecule doxorubicin between two breast tumor models. A 

candidate genetic locus that was associated with clearance of PLD in 23 inbred mouse strains 

contains a gene that encodes for engulfment adapter PTB domain containing 1 (Gulp1). By using 

integrated approaches, we were able to identify the immunological mechanisms at the molecular, 

tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. 

This dissertation research has a potential to make an impact on development of future NP-based 

anticancer therapeutics as well as on clinical use of PLD (Doxil®) and other PEGylated 

liposomal anticancer agents.  
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CHAPTER 1:  

INTRODUCTION 1 

Overview 

Nanotechnology has made significant advances in the drug delivery system for the 

treatment of solid tumors. Abnormal blood and lymphatic vasculature have enabled selective 

delivery and accumulation of nanoparticles (NPs), ranging from 1 to 1000 nm in size, in tumors 

through the enhanced permeability and retention (EPR) effect. NP-based therapy provides 

advantages over conventional medicines including increased half-life, enhanced delivery of the 

encapsulated drug to tumors, and improved therapeutic index. Among various NP platforms, 

liposomes, lipid vesicles formed by a lipid bilayer membrane surrounding an aqueous core, have 

been most widely used as a NP drug carrier. However, individual patient responses to liposomal 

drugs widely vary. Immunological properties of NP may be attributed to the high variation of the 

pharmacokinetics and pharmacodynamics of liposome-based therapeutics. The aim of this 

dissertation research was to elucidate underlying immune mechanisms for variable patient 

responses to liposomal anticancer agents.  

 

 

 

                                                           
1Parts of this chapter previously appeared as an article in the Journal of Liposomal Research. The 
original citation as follows: Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the 
pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res 2012;22(3):177-
192. 
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1.1. Liposome-Based Anticancer Therapeutics 

Liposomes are spherical carriers, usually 0.05 to 5.0 µm in diameter, formed by one or 

several lipid bilayers with inner aqueous core (1, 2). Vesicle formulations are usually based on 

natural and synthetic phospholipids and cholesterol (1, 2). Drugs with widely varying 

lipophilicity can be encapsulated in liposomes, either in the entrapped aqueous volume or at the 

bilayer interface (1, 2). Liposomes have been widely used for selective tumor targeting of 

conventional chemotherapies due to unique properties and capabilities. First, they are composed 

of biocompatible and biodegradable lipids (1, 2). They can encapsulate both hydrophilic and 

hydrophobic therapeutic agents with high efficiency, protecting the cargo from undesired 

degradation during the circulation in the body (1-3). They can also be further engineered with 

ligands, such as antibodies, to promote targeting to specific cells, tissues and organs (1-3). In 

addition, they can be coated with inert polymers, such as poly(ethylene) glycol (PEG) to prolong 

the liposome circulation half-life (1-3). Lastly, like other nanocarriers, liposomes encapsulating 

anticancer drugs can bypass the multi-drug resistance (MDR) transporter-mediated drug efflux 

(i.e., P-glycoprotein) (4, 5).    

There are two drug-targeting approaches that are applicable to liposomes: passive and 

active targeting. Liposomal drugs can be used for various indications, including inflammatory 

and infectious diseases, but oncology applications of liposomes are discussed in my dissertation 

research.   

Passive Targeting. Passive targeting of liposomes can be achieved by taking advantages 

of unique vascular pathophysiology and immune responses in the tumor (6). Rapid and defective 

angiogenesis in the tumor result in increased permeability of the blood vessels compared to 

continuous endothelium in the normal tissues (7). In addition, the impaired lymphatic drainage 
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allows retention of liposomes in the tumor leading to release of drugs from the carrier into the 

tumor cells (6, 7). Thus, drug-loaded liposomes can preferentially extravasate from blood into 

the interstitial spaces and be accumulated in the tumor by the enhanced permeability and 

retention (EPR) effect (6, 7). It has been shown that the size of particles influences the passive 

tumor accumulation of liposomes. Liu et al. have examined the biodistribution of liposomes of 

different size (30-400 nm) to tumors (8). Liposomes with a diameter between 100 and 200 nm 

showed a 4-fold higher tumoral uptake compared to the liposomes greater than 300 nm or less 

than 50 nm in size (8). For very small particles (< 10 nm), they can easily permeate the tumor 

tissue through the gap in the endothelium, but can also be easily pushed out from the tumor into 

the blood (8-10). Thus, liposomes of the optimal size can exhibit increased tumor accumulation 

via EPR effects.       

Active Targeting. The leaky tumor vasculature allows for preferential accumulation of 

liposomes in the tumor, but it is non-selective process because liposomes can be accumulated in 

the liver and spleen primarily due to uptake by tissue resident macrophages (10). In addition, the 

vascular permeability may be heterogeneous in a single tumor and certain tumors may not 

exhibit EPR effects (7). To overcome these limitations, active targeting approach has been used 

to enhance selective binding of liposomes to tumor cells (i.e., Zevalin® and Bexxar®) (4, 5). 

Targeting agents, such as ligands binding to specific receptors on the surface of tumor cells, are 

attached to the surface of the nanocarrier by a wide range of conjugation approaches (4, 5). After 

conjugation with a targeting ligand, liposomes will recognize and bind to target tumor cells 

through specific ligand-receptor interactions leading to increased intracellular delivery of 

liposomes (10, 11). To improve the targeting specificity and efficacy, a surface marker (i.e., 

antigen or receptor) should be uniquely overexpressed on tumor cells relative to normal cells and 
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binding affinity should be optimized to enable the nanocarrier to dissociate from the binding 

targets and penetrate the tumor tissues (4, 5). NP-based anticancer drugs that are currently on the 

market and under clinical development stages are summarized in Table 1. 1 and Table 1. 2, 

respectively.  

 

1.2. Pharmacokinetics and Biodistribution of Liposome-based Anticancer Therapeutics 

Pharmacokinetic Nomenclature. Pharmacokinetics (PK) is the study of the drug 

disposition in various compartments, such as plasma or tissues, of the body over the time. PK 

includes the several processes as a drug is absorbed, distributed throughout the body, 

metabolized, and/or excreted, called ADME (12). When a small molecule drug is administered 

intravenously (i.v.), the drug is usually quickly eliminated from the blood by the renal filtration 

into the urine or by the hepatic metabolism and subsequent excretion into the bile or urine 

depending on hydrophilicity of the drug. The cutoff size for renal clearance is approximately 5.5 

nm according to the study using quantum dots (13).  

In contrast to small molecule agents, the disposition of liposome-based drugs is 

dependent upon the carrier, liposomes, encapsulating the parent drug (1-3). This remains true 

until the small molecule drugs get released from the carrier and follow its classical PK 

disposition (1-3). The drugs encapsulated in the liposomes are protected from metabolizing 

enzymes in the liver before the drugs are released from the liposomes as well as from renal 

clearance due to the relatively large size (1-3, 10). This leads to prolonged blood circulation and 

increased accumulation of liposomal drugs in the target tissues, such as tumor (1-3, 10). The 

nomenclature used to describe the PK disposition of nanocarrier-mediated drugs include: 

encapsulated (the drug within or bound to the carrier), released (active-drug released from the 
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carrier), and sum total (encapsulated drug plus released drug) (Figure 1.1) (14, 15). The released 

drug has also been called the legacy drug, regular drug, or warhead (14, 15). After the drugs get 

released from its carrier, it is pharmacologically active and subject to the same routes of 

metabolism and clearance as the non-carrier form of the drug (14, 15). Thus, the PK profiles of 

the parent drug and the drug encapsulated in the liposomes are different. It would be more 

informative to keep track both encapsulated and released drugs to better characterize the PK of 

drug-loaded liposomes (14, 15).    

Clearance of Liposomes by the Mononuclear Phagocyte System (MPS). Upon 

intravenous administration of NP-based therapeutics including liposomal drugs, NPs encounter 

biological barriers, such as plasma proteins and mononuclear phagocytic cells, which influence 

their clearance from the circulation and accumulation in the target tissues (i.e., tumor) (16, 17). A 

number of the plasma proteins that are adsorbed to the particle surface, called opsonins, have 

been identified including albumin, lipoproteins, complements, and immuglobulin (Ig) (16, 17). 

Complement proteins and Ig are the predominant opsonins contributing to the recognition of NPs 

by the cells of the mononuclear phagocyte system (MPS), including monocytes and macrophages 

(16). Complement activation occurs through the classical, alternative and lectin pathways and it 

has been shown that some activated fragments of complement activation (i.e., C3a, 4a, and 5a) 

by NPs may also result in hypersensitivity reaction (16). In addition to complement activation, 

immunogenic reactions induce the secretion and deposition of Ig (IgM and IgG) on the particle 

surface leading to enhanced clearance of NPs by the MPS (18). The types and extent of the 

protein adsorption, known as opsonization, are dictated primarily by the surface characteristics of 

the particles (i.e., surface charge and size) (17, 18).  
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The MPS consists of monocytes, macrophages and dendritic cells and is mainly 

responsible for antigen presentation, cytokine secretion, and phagocytosis to protect the host 

against pathogens and foreign particles (19). NPs have been shown to be cleared and removed 

from the circulation primarily by monocytes and macrophages (18). Unlike small molecule drugs 

that can easily diffuse through the capillary wall into the tissue, NP-based drugs distribute to 

tissues with the discontinuous endothelium (e.g., tumor, liver, spleen, and bone-marrow) (18). 

Furthermore, the enhanced uptake in these organs is attributed to NP capture by resident 

macrophages in these tissues (18). Thus, the blood clearance of NP-based drugs is primarily 

dependent on the tissue uptake in contrast to extensive renal and/or hepatic elimination of small 

molecule drugs (e.g., glomerular filtration and hepatic metabolism) (10, 18).   

Biodistribution of Liposome-based Anticancer Therapeutics. Liver . The liver 

parenchyma is comprised of lobules containing the hepatocytes and sinusoids, a permeable 

discontinuous capillary network (20). The size of fenestrations in the sinusoidal epithelium 

ranges from 100 to 150 nm leading to unrestricted passage of plasma components to hepatocytes 

in the perisinusoidal space (20). The Kupffer cells, major parts of the MPS, are present inside the 

sinusoid capillaries and play an important role in phagocytosis of liposomes through the 

recognition of opsonins on the surface of liposomes or through the interaction with the scavenger 

receptors on the Kupffer cells (18, 20). It has been demonstrated that the surface characteristics 

of liposomes, such as size, shape, and flexibility and deformability, influence the uptake and 

internalization by the Kupffer cells (2, 10). Optimal interaction and phagocytosis by the Kupffer 

cells occur with the diameter of NP between 1 and 3 µm (18). The increasing dose of empty 

nanocarriers has shown to decrease the uptake of NP by the Kupffer cells presumably due to the 

saturation of phagocytic capacity of the Kupffer cells and depletion of plasma opsonins (21, 22). 
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In addition, NP encapsulating cytotoxic drugs was reported to alter the uptake functions of the 

Kupffer cells due to cytotoxicity (23). The biliary elimination of NPs is relatively slow and 

insignificant (<5-10% of the injected dose over 8 to 48 h) (18). 

Spleen. The spleen is another important MPS organ contributing to liposome uptake by 

macrophages. The fenestrations in the spleen typically do not exceed 200-500 nm in width and 

liposomes less than 200 nm in size exhibited minimal spleen uptake (18, 24). The red pulp of the 

spleen is comprised of a network of reticular fibers containing macrophages responsible for 

filtration of pathogens and old red blood cells from circulation (18). It has been shown that the 

splenic uptake of liposomes is inversely related to hepatic accumulation due to the differences in 

the blood flow (25). Thus, higher amounts of PEG-coating nanocarriers are delivered to the 

spleen as they evade the capture by the Kupffer cells in the liver (10, 18, 25). High rigidity, large 

size (> 200 nm), and irregular shape have been shown to affect liposome permeability through 

the sinusoidal pore and contribute to sequestration of liposomes in the spleen (18). The spleen 

uptake of liposomes can lead to undesirable immunogenic reactions and influence the blood 

clearance of liposomes (18, 26). It has been shown that the interactions between liposomes and B 

cells in the spleen induce antibody secretion, primarily IgMs (26). liposomes administered during 

2 to 4 days after the first liposome dose are opsonized by circulating antibodies and rapidly 

cleared by the macrophages in the liver (26). This phenomenon, enhanced blood clearance of a 

second NP dose after initial sensitization (induction), is known as the accelerated blood clearance 

(ABC) effect (18, 26). Interestingly, PEGylated particles are more affected by the ABC effect 

compared to non-PEGylated counterparts (18, 27). This is probably because grafting PEG 

polymer coating prevents the non-specific capture by the MPS and the presence of specific 

antibodies interacting with PEG polymer greatly enhances their clearance (18).   
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Tumors. Tumor vasculatures are characterized by abnormal architecture, such as pericyte 

deficiency and impaired basement membrane formation, leading to an enhanced vascular 

permeability (7). The size of endothelial pores in the tumor ranges from 10 to 1000 nm and this 

allows for preferential extravasation and accumulation of NPs inside the interstitial space (7, 28). 

In addition, dysfunctional lymphatic vessels in the tumor contribute to impaired drainage of NPs 

from the tumor tissue and increased retention in the tumor (7). This EPR effect plays a key role 

in the selective nanosized and macromolecular drug targeting to the tumor (7, 28).     

Peripheral blood mononuclear cells (PBMC). PBMCs are another compartment in 

which liposomes are deposited (18). Circulating monocytes and dendritic cells are professional 

phagocytes that recognize the opsonized liposomes through specific receptor-ligand interactions 

(i.e., FcR and CR) and phagocytose them (11). After internalization, phagosomes, phagocytic 

vesicles, fuse with lysosomes containing enzymatic proteins (i.e., esterase) and an acidic internal 

condition (pH 5-6.5), form phagolysosomes, and degrade the particles (11). Once the particles 

are degraded, the drugs can be released. If the particles cannot be digested, the PBMC 

sequestering liposomes may act as a drug depot (11). It has been shown that phagocytosis of 

cytotoxic drugs-loaded liposomes may have detrimental effects on macrophages and alter the 

phagocytic capacity (i.e., saturation) (22, 23).  

 

1.3. Cellular Internalization of Liposomes  

Non-phagocytic Endocytosis Pathway for Internalization. There are biological 

barriers at the cellular level that liposomes need to overcome. In addition to phagocytosis 

discussed in the previous section, liposomes can be internalized through non-phagocytic 

pathways by four mechanisms: clathrin-mediated endocytosis, caveolae-mediated endocytosis, 
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macropintocytosis and other clathrin- and caveolae-independent endocytosis (11). Unlike 

phagocytosis, these endocytic mechanisms can occur in all types of cells.  

Clathrin-mediated endocytosis (CME). CME is the predominant mechanism of 

internalization for macromolecules in most cells (29, 30). Clathrin is a main cytosolic coat 

protein and the CME typically takes a place in a membrane region enriched in clathrin (29). 

CME leads to the formation of clathrin-coated endocytic vesicles. This vesicle fuses with 

endosomes and lysosomes, which leads to degradation of the internalized cargo (29, 30). CME 

can take place in either receptor-dependent or receptor-independent manner. Viruses and drug-

loaded nanocarriers conjugated with targeting ligands, such as low-density lipoprotein (LDL), 

transferrin, and epidermal growth factor (EGF), are internalized through receptor-mediated CME 

(29). Compounds displaying non-specific charges and hydrophobic interactions with the cell 

membrane are absorbed by receptor-independent CME, which is slower process compared to 

receptor-mediated CME (30). 

Caveolae-mediated endocytosis (CvME). CvME is a major alternative pathway for 

endocytosis. Caveolae are flask-shaped membrane invaginations and abundant in endothelial 

cells (31). CvME differentiates from CME in that the cytosolic caveolar vesicle does not contain 

any enzymes and are not destined for lysosomal compartment (31). Nanocarriers encapsulating 

drugs highly sensitive to enzymes (i.e., peptides, proteins, nucleic acids, etc.) exploit this 

mechanism to bypass the lysosomal degradation of cargo (18). Ligands including albumin, folic 

acid, and cholesterol have been shown to be internalized through CvME (31). 

Macropintocytosis and other mechanisms. Macropintocytosis is another mode of 

clathrin-independent endocytosis pathway. It occurs in many cells via formation of actin-driven 

membrane protusion (32). Macropinosomes, large endocytic vesicles, are formed and in most 
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cases, they acidify and shrink. They may fuse eventually with lysosomal compartment or recycle 

their content to the surface (32).  Other clathrin- and caveolae- independent endocytosis 

pathways have also been reported recently, but the understanding of their implications in the 

cellular internalization of nanocarriers remains unclear (33).           

      

1.4. Rate of Drug Release from the Liposome and Its Effects on the Efficacy and Toxicities  

The rate of drug release from the liposome is a pivotal parameter because the 

encapsulated drugs must be released to exert pharmacological effects in the site of action, such as 

tumor (10, 14). The bioavailability of the drug to the tumor is more dependent on the rate of drug 

release than high tumor accumulation of liposomes (10). However, it is challenging to maintain 

the stability of a liposome in the circulation while improving the local drug bioavailability in the 

target tissue. For example, PEGylated liposomal doxorubicin, the stable liposomal formulation, 

was shown to have only 40-50% bioavailability in the tumors (34) and release the majority of 

doxorubicin after accumulation in the tumor with one-half of doxorubicin released at more than 

90 hour after administration (35).  

Factors Affecting Drug Release Rate from the Liposome. There are several factors 

that can influence the stability of the liposome and the rate of release of the drug from the 

liposome: drug encapsulation methods, lipid composition and the physicochemical properties of 

the drug (2). The drug encapsulation method plays an important role in determining the 

pharmacokinetics and in vivo drug release rate. Depending on the drug potency (active vs. 

prodrug), drug-to-lipid ratio needs to be carefully determined as decreased drug-to-lipid ratio 

may result in faster clearance of the liposomal therapeutics (2). The most widely used strategy is 

the transmembrane gradient loading method where a trapping agent is used to efficiently load 
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drugs and stabilize the formulation to prevent the premature leakage in the circulation (2). For 

example, ammonium sulfate is used as gradient-forming salt to load doxorubicin and improve the 

formulation stability of liposomes (36). Lipid composition of the liposome or lipidic nanocarrier 

also influences the drug release rate because a liposomally entrapped drug tends to cross the 

liposomal membrane along their own gradients and diffuse out of the liposome (37). The charge, 

phase transition, hydrogen-bonding capacity, and the cholesterol content of the liposome bilayer 

can have impacts on drug retention (2, 15). Physicochemical characteristics of the therapeutic 

agent, such as lipophilicity, water solubility, and weak base or acid, need to be taken into 

consideration to optimize the efficiency of drug loading, the formulation stability, and the drug 

release rate (2, 15).   

Relationship between Drug Release Rate and the Efficacy and Toxicity of Liposomal 

Drugs. In general, it is believed that the liposomally encapsulated drug is delivered more 

selectively to the target tissue, reducing the exposure of drug to the normal tissues and 

minimizing the toxicities. However, it has been shown that liposome-based delivery can result in 

changes in the pharmacokinetics and biodistribution of the entrapped drug and, eventually, the 

efficacy and toxicity profile (2, 10, 18, 38). in vivo drug release rate has been shown to affect 

antitumor activity of encapsulated anticancer agent. It has been demonstrated that increased 

stability of the formulation and slow drug release rate are associated with enhanced tumor-

growth suppression using irinotecan and vinorelbine (39, 40). However, liposomal cisplatin and 

mitoxantrone have shown too slow drug release rate from the liposomes, which resulted in no 

drug bioavailable at the tumor and poor clinical response (41, 42). Thus, optimal formulation 

stability plays a critical role in displaying the antitumor efficacy for non-targeted liposomes and 

targeted liposomes (10, 18).        
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Moreover, the use of doxorubicin and other anthracyclines have been clinically limited 

due to dose-limiting cardiotoxicity. Both PEGylated and non-PEGylated formulation liposomal 

doxorubicin have, however, substantially reduced the cadiotoxicity and increased the cumulative 

dose of doxorubicin that can be administered (43). This is due in part to decreased accumulation 

of liposomal or bioavailable doxorubicin in the heart tissue with continuous, non-fenestrated 

capillaries (44). In addition, incidence of myelosuppression was also decreased by encapsulation 

of doxorubicin in the liposome, but the reducing effect was dependent on the drug release rate 

(45). While many of conventional toxicities associated with doxorubicin were reduced by 

encapsulation, different toxicities appeared as dose-limiting toxicities (DLT) of PEGylated 

liposomal doxorubicin (PLD): mucositis and palmar-plantar erythrodysesthesia (PPE or hand-

foot syndrome) (38). The incidence of PPE is PLD dose- and schedule-dependent and can be 

decreased or managed by reducing the dose or dosing interval (2, 38). It is thought that the 

accumulation of PLD in the skin and slow release rate of doxorubicin may affect the occurrence 

of PPE with PLD in addition to cytokine-mediated inflammation (38, 46). 

Triggered Drug Release. To improve bioavailability of the drug at the site of action, 

such as tumor, several approaches have been employed to activate the site specific release of the 

drug from the liposome: internal and external triggering mechanisms and conjugation of 

targeting ligands on the surface of the liposome.  

Internal triggering mechanisms. Studies of the tumor microenvironment have shown 

that there are several characteristics inherently present in the tumor that can be exploited as 

triggering mechanisms, such as low pH, enhanced activity of a specific enzyme, or high reducing 

potential (7). pH-triggered release can be demonstrated by using an acid-labile PEG-conjugate 

lipid, such as DOPE (dioleoylphosphatidylethanolamine), as the liposome component (47). It has 
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been shown that pH-sensitive liposomes released almost 100% drug content when the pH was 

below 5, while only 10% of the drug was released from the non-pH sensitive liposomes (48). The 

fact that the pH of interstitial space in the tumor does not decline below pH 6.5 needs to be taken 

into account when considering this approach (10). Enzyme-triggered release can also be 

introduced by using overexpressed secretory enzymes in the tumor tissue, such as elastase, 

alkaline phosphatase, phospholipase (PL) A2 and C (2, 10). The drug release in the tumor 

microenvironment remains poorly understood, but it has been suggested that liposomal 

breakdown by extracellular PL, liposome uptake by macrophages, and/or gradual loss of the 

gradient loading agents may play a role in releasing the drug from the liposomes in the tumor (2, 

38).  

External triggering mechanisms. Use of external stimuli, such as light, temperature, 

and ultrasound, has attracted much attention for targeted drug delivery in the clinic (2, 49). 

Release from thermosensitive liposomes (TSL) occurs at temperatures close to the Tm (solid gel 

to liquid disordered phase transition temperature) of the membrane lipids because of the 

increased the membrane permeability at Tm (15, 49). The Tm of the TSLs can be adjusted to the 

clinical attainable temperatures (Tm = 40 to 42°C) by altering the lipid composition (15, 49). 

ThermoDox (TSL doxorubicin; Celsion Corp Yakult Honsha KK) was the first TSL formulation 

to enter phase III clinical trials for the treatment of patients with hepatocellular carcinoma 

(ClinicalTrials.gov Identifier: NCT00617981) (49). Ultrasound was also demonstrated to trigger 

drug release from TSL in vivo (50). However, their use has been limited due in part to 

inaccessibility to metastatic tumors (10, 51).  

Targeting ligands. Lastly, conjugation of targeting ligands (i.e., transferrin and folate) 

on the surface of the liposomes has been used to increase intracellular delivery (2. 5, 10). It has 
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been shown that the intracellular delivery of drugs and antitumor efficacy have been improved 

by coating a targeting ligand on the liposomes (2, 10). However, several challenges, such as 

relatively greater blood clearance due to antibody conjugation and a loss of a great portion of 

drugs in the endosome/lysosome compartment during the cellular endocytosis, need to be 

addressed (2, 5, 10).   

 

1. 5. Factors Affecting the PK and Biodistribution of Liposome-based Anticancer 

Therapeutics 

It has been shown that interpatient PK variability of liposome-mediated drug is 

significantly higher compared with conventional small molecule drugs (52). For example, the 

interindividual PK variability of PEGylated liposomal CKD-602 (S-CKD602), a camptothecin 

analog, was approximately 100-fold at lower doses and 10- to 25-fold at higher doses (53). Thus, 

it is critical to understand the mechanisms for high PK variation in patients to guide the 

development and optimize the use of liposomal drugs. There are several factors that can 

influence the PK and biodistribution of liposomal drugs (15). First, liposome-associated factors, 

such as surface characteristics of liposomes, have been shown to play a key role in determining 

the disposition in vivo. In addition, host-associated factors have also been reported to influence 

the PK and biodistribution of liposomal drugs. Lastly, drug dose and schedule can also affect the 

disposition of liposomal drugs.  

Liposome-Associated Factors. Particle size. When a liposomal drug is introduced into 

the body, the distribution primarily depends on its particle size (2, 10, 15). Unlike conventional 

small molecule drugs which can diffuse freely through the endothelial wall, the transportation of 

intact liposomes is affected by both the particle size and the anatomical structure of the tissue (8, 
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28). The tissues can be classified as non-endocrine organs (heart, lung, kidney, muscle and fat 

tissue), endocrine tissues (liver and adrenocortical), and spleen and lymphatics according to their 

capillaries and extracellular matrices (15).  The accessibility of non-actively targeted liposomes 

to these tissues is normally in this order: spleen and lymphatics > endocrine tissues (liver and 

adrenocortical) > non-endocrine organs (heart, lung, kidney, muscle and fat tissue) (54). In 

addition, particle size also influences the mechanism for cellular internalization and determines 

the fate of the liposomal drug in the subcellular microenvironment (11, 30).   

Particle size also affects the uptake of liposomal drugs by cells of the MPS. The effect of 

liposome size on inactivation or depletion of monocytes was investigated by Golomb group (55). 

In this study, larger liposomes were internalized faster by monocytes compared to smaller 

liposomes. Following 30-min incubation of human monocytes with empty liposomes and the 

alendronate-loaded liposomes with different size, human monocytes internalized 49 ± 5 %, 61 ± 

4 %, 72 ± 3 % and 80 ± 5% of empty liposomes, and liposomes containing alendronate with a 

size of 85 ± 20 nm, 190 ± 24nm, 400 ± 64 nm and 654 ± 124 nm, respectively (55). In addition, 

the increased cellular uptake of larger liposomes resulted in a greater inhibitory effect on 

monocytes and macrophages. in vivo depletion of monocytes following i.v. administration of 

liposomal bisphosphonates was examined using rabbits. Depletion of rabbit monocytes after 

treatments with small liposomes with a size of 55 nm (40±5%) was significantly less than that 

after treatments with larger liposomes (>67%) (55).  

The effect of particle size on the tumor uptake of liposomal drugs has also been 

investigated. Liu et al. showed that liposomes with a size between 100 nm and 200 nm had a 4-

fold higher rate of uptake in the tumor compared to the liposomes with a size less than 50 nm or 

greater than 300 nm (8). Charrois and Allen also demonstrated that liposomes with a size ranged 
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between 80 and 160 nm resulted in a significantly greater accumulation in tumor compared to 

liposomes with a size of 241 nm (46). The lower uptake of larger liposomes in the tumor may be 

explained by the size limited permeability of tumor vasculature (7). The lower accumulation of 

very small liposomes (< 20-30 nm in diameter) may be due in part to their high permeability but 

low retention in tumor. They can easily pass through the leaky capillary wall in the tumor but can 

also be pushed back to circulating blood (10, 56). For rigid and spherical particles, it is thought 

that 100-200 nm in size allows for prolonged circulation because of avoiding uptake in the liver 

and spleen (18, 20). 

Surface charge. In general, neutral liposomes were cleared from the circulation slower 

than either positively or negatively charged liposomes (57). The reduced clearance of uncharged 

liposomes is thought to be the result of reduced opsonization and decreased uptake by the cells of 

the MPS (57). Surface charge can also affect the biodistribution of liposomes. For example, high 

concentrations of anionic lipids increase MPS uptake in the liver (58-60). Cationic liposomes 

often exhibit a rapid blood clearance with a large dose accumulating primarily in the liver, spleen, 

and lung (60, 61). In addition, cationic liposomes were found to be selectively delivered to tumor 

vascular endothelial cell because of the natural affinity of cationic carrier molecules for the 

tumor microvasculature (61, 62). Although utilization of cationic liposome for gene delivery and 

cancer therapy gains increasing interests, the toxic effects of positively charged compounds in 

cationic liposomes (i.e., embolism in the lung due to aggregate formation) and potential rapid 

clearance by the MPS should also be taken into consideration (2, 62). Large amounts of cationic 

liposomes may also cause a tissue inflammatory response (63). However, cationic liposomes can 

be made stable and long circulating by reducing the content of cationic lipid with the inclusion of 

PEG-lipid stabilizers (2, 15). 
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Lipid composition. The surface chemistry can alter the PK of liposomal drug by 

influencing the opsonization process and the drug release rate (discussed in the previous section” 

Factors affecting drug release rate from the liposome”) (16, 17). Once liposomal drugs enter the 

circulation, plasma proteins are adsorbed to the liposome surface to facilitate the recognition and 

uptake by the cells of the MPS (16-18).  The most commonly used strategy to minimize the 

opsonization is to graft a hydrophilic poly(ethylene glycol) (PEG) polymer layer into the surface 

of the liposome (64). PEG is an inert hydrophilic polymer which provides good steric hindrance 

by forming a water shell and preventing the protein binding to the NP (64).  It has been shown 

that PEGylation reduces the rate of MPS uptake and prolongs circulation half-life for various 

types of NPs (65, 66). However, Moghimi, et al., found that PEGylated liposomes can trigger 

complement activation in the absence of anti-PEG antibodies through both C1q-dependent 

classical and mannose-binding lectin-associated serine protease (MBL-MASP)-dependent 

alternative pathways using normal and C1q-depleted human serum (67, 68). This finding 

indicates that the presence of surface mPEG molecules did not affect the opsonin production, but 

may sterically prevent deposition of C3 convertases and/or complement receptor binding, which 

subsequently leads to slower recognition and clearance by the MPS (69).  

There are two primary types of PEGylated liposome as shown in Figure 1.2. One has 

PEG tether projected on both inside and outside of liposome. This is the PEGylated liposome 

used for Doxil and S-CKD602. Doxil is a PEGylated liposomal formulation of doxorubicin 

which is approved for the treatment of refractory ovarian cancer, Kaposi sarcoma, and multiple 

myeloma (38). S-CKD602 is a PEGylated liposomal formulation of CKD-602, a camptothecin 

analogue which inhibits topoisomerase I (53) . The other type has PEG tether only localized on 

the outer leaflet.  This PEGylated liposome has been used for IHL-305 (70). IHL-305 is a 
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PEGylated liposomal formulation of irinotecan (CPT-11), also a camptothecin analogue. The 

significance of PEGylation on outside alone versus both the inside and outside of liposome is 

unclear. Studies evaluating plasma, tissues, and tumor PK of both types of PEGylated liposomes 

encapsulating the same drug would be helpful to address this question (15). 

Ongoing investigations of alternative polymers have been made to circumvent the 

activation of the immune system by liposomes. These polymers should be soluble, hydrophilic, 

have highly flexible main chain, and high biocompatibility. Synthetic polymers, such as poly 

(vinyl pyrrolidone) (PVP) and poly (acryl amide) (PAA), are most promising examples of other 

possibly protective polymers (71) in addition to PEG. More recent papers report long circulating 

liposomes consisting of poly[N-(2-hydroxypropyl)methacrylamide], amphiphilic poly-N-

vinylpyrrolidones, L-amino-acid-based biodegradable polymer-lipid conjugates, and polyvinyl 

alcohol (72-74).  All groups of polymer-coated liposomes described above have been reported to 

prolong circulation time and reduce the liver uptake. These results are comparable with those for 

PEG-liposomes and the steric effects naturally rely on the quantity of polymer incorporated (75). 

In addition, the synthetic NPs, called leukolike vectors (LLV), were produced by coating with 

cellular membrane purified from leukocytes and shown to evade opsonization, delay uptake by 

the MPS, and enhance accumulation of drugs in tumor (76). Discher, et al., showed that minimal 

“Self” peptides, designed from human CD47 and attached to virus-size particles, were able to 

delay the MPS-mediated clearance of NPs, prolongs the circulation times, and improve the drug 

delivery to tumors (77). 

Host-Associated Factors. Age. Age was reported to be associated with PK of S-

CKD602 and Doxil (53). In PK studies as part of a phase I study of S-CKD602, patients ≥ 60 

years of age had a 2.7-fold higher exposure (AUC) of S-CKD602 compared with patients < 60 
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years of age (P = 0.02). (53). Population PK studies of Doxil were performed as part of phase I 

and II studies in patients with solid tumors (n = 22 and n=12, respectively) and in patients with 

AIDS-related Kaposi’s sarcoma (KS) (n = 37) (78, 79). Doxil clearance (CL) in patients with 

solid tumors who were < 60 yo and ≥ 60 yo were 54.6 ±28.5 and 23.3 ± 10.8 (mean ± SD, 

L/h/m2), respectively (P< 0.0001) (80). Age-related factors such as impaired function of the 

MPS in older patients may also be associated with PK variation of liposomal drugs. 

Gender. Gender was found to be a factor affecting the PK of PEGylated liposomal drugs. 

Gender and age effects were reported in PK studies of PEGylated liposomal drugs including 

Doxil (n=70), S-CKD602 (n=45), and IHL-305 (n=39) (81). Female patients had lower CL of 

Doxil (P <0.001), IHL-305 (P = 0.068), and S-CKD602 (P = 0.67) as compared with male 

patients overall as well as when stratified by age (81). The gender effect on PK of TLI 

(Optisomal Topotecan) and S-CKD602 in rats was also reported (82). In this study, CL of TLI 

and S-CKD602 was 1.2-fold (P = 0.14) and 1.4-fold (P = 0.009) lower in female rats compared 

with male rats, respectively (82). The mechanisms for gender-related difference in PK of 

liposomal drugs remains poorly understood. Sex hormones, such as estrogen and testosterone, 

have been suggested to influence the PK of these formulations in association with the MPS (80). 

Body composition. Body composition is defined as the relative proportion of protein, fat, 

water, and mineral components in the body. It can vary among individual patients as results of 

differences in body density and degree of obesity. Body composition was shown to be associated 

with the PK of S-CKD602 (53). Patients with a total body weight (TBW)/ideal body weight 

(IBW) ratio <1.35 have a higher plasma exposure (AUC) of S-CKD602 (P = 0.02) compared 

with patients with TBW/IBW ratio ≥1.35 (53).  PK studies of Doxil were performed as part of 

phase I and II studies in patients with solid tumors (n=34) and in patients with Kaposi’s sarcoma 
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(n=36) (80). However, there was no relationship between Doxil CL and body composition as 

measured by TBW/IBW ratio or body mass index (BMI) probably due to skewed distribution of 

body disposition in the patient population (80). Body weight was found to be a significant 

covariate affecting the CL and volume of distribution of liposomal daunorubicin and liposomal 

amphotericin B in pediatric patients (71). 

The mononuclear phagocyte system (MPS). The MPS consists of bone-marrow-

derived cells, including monocytes, macrophages, and dendritic cells, which are professional 

phagocytic cells (19). Liposome-based drugs are recognized and ingested by the cells of the MPS, 

primarily circulating monocytes and tissue macrophages (18). Thus, the MPS plays a key role in 

determining the PK and distribution of liposomal drugs (10, 18). Circulating monocytes originate 

in the bone-marrow from a common myeloid progenitor cell and give rise to various tissue 

resident macrophages as well as specialized cells (i.e., dendritic cells) (83). It has been found that 

there is a substantial heterogeneity in the phenotypes (e.g., CD14, CD16, CD64, or CCR2) of 

human monocytes leading to identification of monocyte subsets with differential physiological 

functions (classic inflammatory vs. resident monocyte) (83). For tissue-resident macrophage 

population, anatomical locations and unique tissue microenvironment can result in specialization 

of functions and phenotypes (19, 83). Specialized tissue-resident macrophages include osteoclast 

(bone), microglia (CNS), Langerhans cells (skin), alveolar macrophages (lung), kupffer cells 

(liver), and splenic macrophages (spleen) (19, 83). It is believed that tissue macrophages are 

derived from peripheral blood monocytes and local proliferation self-renews the tissue-resident 

populations under the steady-state-condition (19, 83). However, upon exposure to various 

inflammatory stimuli (i.e., viral and bacterial infections), increased recruitment of circulating 

precursor monocytes contributes to repopulation of tissue-resident macrophages (19, 83). Once 
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monocytes migrate and enter the site of inflammation or infection, they differentiate into a wide 

spectrum of macrophages with the distinct activation state educated by microenvironmental 

signals (19). It is speculated that there is a great plasticity in the activation states of macrophages 

leading to a broad range of functional phenotypes of macrophage (19). Classically-activated 

macrophages (M1) and alternatively-activated macrophages (M2) are most well-characterized 

extremes of a continuum of functional states of macrophages (19). Inflammation-associated 

diseases, such as obesity, atherosclerosis, and cancer, are characterized by recruitment and 

accumulation of abundant macrophages with distinct phenotypes in the site of inflammation (84). 

Infiltrating macrophages can influence the PK and biodistribution of liposome-based therapeutics 

via uptake by macrophages (18). Heterogeneity of tumor microenvironment (i.e., vascular 

permeability, macrophage infiltration, and interstitial fluid pressure) across different tumor types 

has been suggested to contribute to variability in extravasation and accumulation of nanocarrier-

based therapeutics in different tumors; but there are limited clinical and preclinical experimental 

data (7, 28, 85). The heterogeneity of macrophage phenotypes are shown to be conserved 

between human and mice, thus knowledge on macrophage biology can be extrapolated to 

humans and translated to better understanding of interaction between nanocarrier-based delivery 

systems and MPS (83).     

The function of the cells of the MPS was correlated with the CL of PEGylated liposomal 

agents across species (86). PK studies of PEGylated liposomal doxorubicin (PLD), CKD-602 (S-

CKD602), and cisplatin (SPI-077) were performed at the maximal tolerated dose (MTD) in mice, 

rats, and dogs (86). The functions of monocytes (MO) and dendritic cells (DC) were measured 

by phagocytosis and reactive oxygen species (ROS) production (86). It has been shown that there 

is a significantly positive correlation between CL of PEGylated liposomal agents and the 
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function of MO and DC across species (86). In addition, the positive relationship between PLD 

CL and the cell function was also observed in patients with refractory epithelial ovarian cancer 

(EOC) after PLD administration (86). The findings suggest that probes for the function of the 

MPS cells may help predict the CL of PEGylated liposomes across species and in patients with 

EOC (86). In PK studies of S-CKD602 as part of a phase I study in patients with advanced 

malignancies, the presence of tumor cells in the liver was also shown to affect the CL of 

PEGylated liposomal CKD-602 in patients with advanced solid tumors (87). The exact 

mechanisms for involvement of liver tumor in increased CL of S-CKD602 are unknown, but it is 

possible that increased vascular permeability and enhanced activity of infiltrating macrophages 

in the liver may influence the biodistribution and CL of S-CKD-602 in patients with liver tumors 

(87). These findings may have implications in optimal dosing of PEGylated liposomal agents in 

patients, but further investigation is needed.  

 Treatment-Associated Factors. Dose and schedule. Dose- and schedule-dependent PK 

of Doxil has been reported in murine models. When the dose of Doxil was escalated from 2.5 to 

20 mg/kg in tumor-bearing mice, a substantial delay in Doxil CL and a disproportional increase 

of the amount of Doxil accumulation in tumor were observed, indicating a saturation of MPS-

mediated CL (88). In addition, when radiolabeled negatively-charged liposomes were injected 

into mice pretreated with Doxil, liver uptake of liposomes was reduced and liposome circulation 

time was greatly prolonged, suggesting a blockade of the MPS (88). This saturation of liposomal 

drug CL was specifically observed after Doxil administration, but not after administration of the 

same dose of free doxorubicin or similar phospholipid dose in drug-free liposomes (88). 

Repeated doses of Doxil also resulted in increase in the peak plasma concentration presumably 

due to saturation of the MPS-mediated Doxil CL (88).       
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Clinical pharmacokinetic analysis of Doxil has also suggested a dose-dependent PK due 

to saturation of MPS-mediated CL. In patients with Kaposi’s sarcoma, there was a linear 

correlation between dose and AUC and half-lives of Doxil was reported be in the range of 50-55 

hour for dose levels of 10-20 mg/m2 (78). However, half-lives are increased to 60-80 hour for 

dose levels of 30-80 mg/m2 in patients with solid tumors (36). In addition, the half-life is 

approximately 36 h in pediatric patients receiving 40-70 mg/m2, which is significantly shorter 

than adults (89). Gabizon and colleagues also found that Doxil PK is cycle-dependent and prior 

exposure to Doxil may result in inhibition of MPS-mediated liposome CL (79). When comparing 

the 1st cycle to the 3rd cycle of PLD, there was a significant decrease in CL values and 

approximately 43% increase in dose-normalized exposure (AUC) (79). The half-life and 

Cmax/AUC ratio, a parameter for dose proportionality, showed a significant difference for 

repeated treatment cycles, indicating marked inhibition of Doxil CL (79). However, a doubling 

of dose did not affect the PK of Doxil. This may be attributed to the fact that Doxil-induced 

cytotoxicity to macrophages may be delayed (35, 38). The inhibition of Doxil CL may not be 

observed right after initial PLD administration due to several processes involved in the cellular 

internalization of PLD (e.g., Doxil uptake, liposome degradation, and intracellular release of 

doxorubicin); however, slower CL of liposomes can be manifested by delayed damage to the 

MPS upon repeated treatments (35, 79). In PK studies performed as part of phase I and II studies 

of Doxil in patients with solid tumors or Kaposi’s sarcoma, patients with a decrease in monocyte 

count had a larger decrease in Doxil CL as compared with patients who had no change or an 

increase in monocyte count upon cycles of Doxil treatments (P=0.09) (80). Prior exposure to 

Doxil also influenced the exposure of S-CKD602 in patients with advanced malignancies (53). 
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PK studies of S-CKD602 revealed that patients receiving prior Doxil had a 2.2-fold higher 

exposure of S-CKD602 compared with patients not receiving PLD (P = 0.045) (53).  

Drug-drug interaction. Drug-drug interactions were also reported for the PK of 

liposomal drugs. Pazopanib is a small-molecule inhibitor of vascular endothelial growth factor 

(VEGF) and platelet-derived growth factor (PDGF) receptors (90). The administration of 

Pazopanib every day for 8 days prior to Doxil treatment resulted in a significantly reduced 

penetration of Doxil from microvessels into tumor in mice bearing A549 human non-small cell 

lung cancer xenografts (90). However, no significant difference in doxorubicin concentration 

normalized by tumor weight between Pazopanib treated and control tumor was observed (90). 

The effect of Pazopanib on distribution of Doxil may be attributable to altered vessel 

permeability and oncotic pressure gradients which may play an important role in the liposomal 

drug delivery to tumor (15, 90). In addition, PK studies of Doxil, performed as part of a phase I 

study of Doxil and cisplatin combination therapy in patients with advanced malignancies, 

revealed that combination with cisplatin accelerated Doxil CL and reduced the incidence and 

severity of palmar-plantar erythrodysethesia (PPE, hand-foot syndrome) (91). By contrast, in 

another PK study as part of phase I studies of Doxil in combination with paclitaxel or docetaxel 

in patients with advanced malignancies, co-administration of paclitaxel significantly retarded the 

Doxil CL (92). Docetaxel reduced the CL of Doxil but to a lesser extent (92). The mechanisms 

for PK interactions between Doxil and other chemotherapies remain poorly understood, but are 

likely attributed to alteration of the MPS activity with other chemotherapies (91).  
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1.6. Factors Affecting the PD of Liposome-based Anticancer Therapeutics 

Liposome drug delivery systems have been widely used to reduce the drug toxicity while 

improve or maintain the drug efficacy at the same time. Like conventional drugs, efficacy and 

toxicity of liposomal drugs can be accounted for to a great extent by its PK disposition. The 

factors that affect PK of liposomal drugs may also have an effect on PD of liposomal drugs. 

Efficacy. The equivalent or improved efficacy of liposome-encapsulated drugs has been 

reported compared with their small molecule counterparts. In general, high tumor levels of a 

drug are highly correlated with enhanced antitumor activity. Thus, it is believed that prolonged 

circulation time and preferential accumulation of liposomal drugs in the tumor are attributed to 

improved therapeutic index profile of liposomally delivered drugs compared to conventional 

small molecules (2, 3, 10). However, tumor responses to liposomal drugs appear heterogeneous 

clinically. Patients with recurrent ovarian cancer or Kaposi’s sarcoma receiving Doxil showed 

equivalent or significantly higher response rates and survival benefits with less toxic effects than 

patients receiving combination therapy with conventional chemotherapeutic agents (93, 94). 

However, in phase II and III trials of Doxil in patients with metastatic breast cancer, no evidence 

of survival advantage for Doxil treatment was demonstrated despite significant cardiotoxicity-

reducing effects compared to free doxorubicin (95). There is no evidence to suggest clinical 

activity of Doxil in patients with colorectal cancer and other types of cancers (38, 96). Thus, 

different tumor types and the microenvironment may contribute to heterogeneous interaction 

between tumor cells and liposomal drugs leading to different drug release rate and antitumor 

activity.  

In preclinical studies, antitumor activity of Doxil was dose-dependent due presumably to 

saturation of the MPS. Doxil was administered i.v. either with four doses of 2.5 mg/kg (days 7, 8, 
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10, and 11), or with one large dose of 10 mg/kg (day 9) (88). The single large dose showed 

superior advantages in median survival and tumor size inhibition to the multiple split doses (88). 

The dose-dependent antitumor activity may be attributable to dose-dependent blockade of MPS 

(i.e., Kupffer cells) and subsequent reduced clearance of Doxil (22, 23). The role of tumor-

associated macrophages (TAMs) in the antitumor activity of Doxil was investigated in 

comparison with long-circulating liposome-encapsulating prednisolone phosphate in mice 

bearing B16. F10 melanoma (97). This study has suggested that the antitumor activity of Doxil 

was only partially attributed to suppressive effects on pro-angiogenic activities of TAMs and the 

main mechanism of action of Doxil may be cytotoxic effects on tumor cells (97).  

The addition of regional hyperthermia has been shown to improve local efficacy of Doxil 

for the treatment of locally recurrent breast cancer (98). Patients treated with Doxil and radiation 

therapy were concurrently given hyperthermia therapy within 1-2 hour and 72 hours after Doxil 

infusion every 4 weeks for 6 months (98). All patients showed objective measurable response 

with 20% complete response rate. The benefits from hyperthermia may be attributable to 

increased liposome extravasation into the local tumor and enhanced release of doxorubicin from 

liposomes (98).     

Lastly, family history of ovarian cancer was reported to be a factor that may be assoaicted 

with the efficacy of Doxil. The median time to progression was 11.5 months for high-risk 

patients versus 6.5 months for patients with sporadic cancer (P=0.0188) and the median overall 

survival for high-risk patients was 48.7 months compared with 16.2 months for the patients with 

sporadic cancer (P=0.0032) (99). However, high response rates in patients with hereditary 

ovarian cancer and mutations with BRCA1 or BRCA2 may be associated with a better response to 
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chemotherapy and larger clinical trials need to be performed to confirm the response to 

chemotherapy in patients with ovarian cancers associated with BRCA1/2 mutations (99). 

Toxicity . In general, toxicity related to entrapped drug is reduced when using liposomal 

delivery system due to limited accumulations of liposome in normal tissues with continuous and 

tight endothelium in the capillaries. However, liposome-based therapeutics can show altered 

toxicity profile compared to small molecule counterparts (38, 100, 101). Amphotericin B is a 

polyene antibiotic used in the treatment of systemic fungal infection. The use of non-liposomal 

amphotericin B is associated with extensive renal toxicity due to non-specific binding to the 

mammalian cell cholesterol (102). By contrast, liposome formulation of amphotericin B, 

AmBisome, reduces the renal and general toxicity of amphotericin B by reducing or bypassing 

the renal filtration of the drug (18, 25).  

In addition, Doxil has a drastically different toxicity profile compared to doxorubicin, 

while efficacy of Doxil is equivalent or improved compared with non-liposomal counterpart 

(103). There is strong evidence that Doxil is associated with a reduced risk for developing 

cardiac toxicity, which is the major DLT of doxorubicin (25, 102, 103). Histologic examination 

of cardiac biopsies from patients who received cumulative doses of Doxil  from 440 mg/m2 to 

840 mg/m2, and had no prior exposure to anthracyclines, revealed significantly less cardiac 

toxicity than in matched doxorubicin controls (P < 0.001) (104). These results suggest that the 

decreased cardiotoxicity of Doxil may be due to reduced accumulation of doxorubicin in heart. 

However, new adverse effects, palmar-plantar erythrodysesthesia (PPE) (hand-foot syndrome) 

and stomatitis, are found to be the two major DLTs with Doxil (102, 25). The exact mechanisms 

for these toxicities remain poorly understood, but these toxicities were shown to be Doxil 

schedule-and dose-dependent (38, 79). Stomatitis usually occurs after the initial course of 
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treatment and increases in frequency and severity with higher doses (Cmax) (38). The 

relationship between PK of Doxil and PPE incidence was studied by Lyass et al. It was found 

that PPE incidence correlated with shorter dosing interval and prolonged half-life, but not with 

drug dose, maximum plasma concentration (Cmax), nor area under the concentration curve 

(AUC) (38, 91). It was also found that successive Doxil treatment significantly reduced the CL 

of Doxil leading to approximately 40% increase in AUC, which may explain a delayed 

occurrence of PPE along with slow release rate of doxorubicin from PEG-liposomes (38, 79). In 

addition, retrospective cohort studies have shown that there was a possible trend for decreasing 

PPE with increasing body mass index (BMI) (105). Doxil is generally well tolerated with 

improved safety profile compared to free doxorubicin. Proper dosing and monitoring may further 

enhance tolerability while preserving efficacy. 

Preclinical studies have shown that administration of liposomal anticancer drug may 

induce transient depression of MPS activity. Liposome encapsulating doxorubicin exerted toxic 

effects on the liver macrophage population by impairing the phagocytic function and, 

subsequently, reducing the ability of colloid particle CL and bacterial CL (23, 106). PEGylated 

liposomal doxorubicin exhibited similar toxic effects on the liver macrophages but to a lesser 

extent (106). The toxic effects on hepatic macrophages may be correlated to saturation of MPS-

mediated CL and schedule-dependent Doxil PK (38, 79). In addition to Doxil, our group showed 

toxic effects of S-CKD602 on circulating monocytes. In this study, the relationship between 

monocyte count and absolute neutrophil count (ANC) in the blood and PK disposition of S-

CKD602 and non-liposomal CKD-602 (NL-CKD602) in patients were evaluated (107).  For S-

CKD602 in patients <60 years, the percent decrease in ANC and monocytes were 43 ± 31 and 58  

± 26%, respectively (P = 0.001). For S-CKD602 in patients ≥ 60, the percent decrease in ANC 
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and monocytes were 41 ± 31 and 45 ± 36%, respectively (P = 0.50). For NL-CKD602 (n = 42), 

the percent decrease in ANC and monocytes were similar (P > 0.05) (107). These findings 

suggest that monocytes are more sensitive to S-CKD602 as compared with neutrophils and that 

the increased sensitivity is related to the liposomal formulation and not the encapsulated CKD-

602 (107).  The relationship between changes in monocytes and the PK disposition of S-

CKD602 also suggests that monocytes ingest liposomal anticancer agents which cause the 

release of CKD-602 from the liposome and toxicity to the monocytes (107). 

Combination treatment of patients with locally recurrent or metastatic breast cancer (n = 

39) using 10 mg/kg i.v. bevacizumab, a recombinant humanized monoclonal antibody for 

vascular endothelial growth factor –A, and 20 mg/m2 i.v. Doxil once every 2 weeks resulted in 

the premature termination of a single-arm phase II trial because of higher incidence of mucositis 

and skin toxicities than anticipated (108). The most significant toxicity was grade 3 PPE that 

occurred in a high proportion of patients receiving combination therapy (41%), suggesting an 

additive toxic effect of the combination therapy of bevacizumab and Doxil (108). The proposed 

mechanisms for this synergistic toxicity include pharmacological interaction between Doxil and 

bevacizumab, direct effects of bevacizumab on the vasculature of affected tissues and resulting 

enhanced accumulation of Doxil, and bevacizumab-induced impairment of wound healing of 

dermal and mucosal injuries (108). 

 

1.7. Perspective 

Nanotechnology has revolutionized the drug delivery system for treatment of cancer by 

allowing for the enhanced delivery of a drug to the tumor via EPR effects. Among various NP 

platforms, liposomes have been most widely used as a NP drug carrier for cancer therapy. 



                                                                               30 

 

Although liposome-based therapy provides several advantages over conventional medicines, 

high variation in PK and PD of liposome-based therapeutics has been reported. The 

understanding of effects of liposome characteristics on PK and PD of liposome-based 

therapeutics has been established; however, the interaction of liposomes-based therapeutics with 

the immune system in vivo and underlying molecular mechanisms for variable responses to 

liposomal drugs remain poorly understood. Two objectives are critical in optimizing the use of 

liposome-based therapeutics for the treatment of cancer: 1) improve understanding of biological 

interactions of liposomes with the immune system and 2) elucidate immune mechanisms 

underlying the variable responses to liposomal anticancer agents in animal models and in 

patients. To achieve these objectives, my dissertation research takes steps: to evaluate the 

relationship between PLD PK and chemokine ligands CCL2 and CCL5, key mediators for 

monocyte recruitment, in vitro, in animal models, and in patients with EOC (Specific Aim 1); to 

evaluate effects of the tumor microenvironment heterogeneity on tumor delivery and efficacy of 

PLD using murine mammary carcinoma models (Specific Aim 2); and to identify the 

quantitative trait loci associated with the variability in PLD PK using a panel of inbred mouse 

strains (Specific Aim 3). This dissertation research could have profound clinical implications, as 

it could reveal the role of immunological molecules, such as chemokine ligands CCL2 and CCL5, 

in regulating PK and PD of PLD and support the future exploration of these biomarkers as a 

factor for optimizing liposome-based therapy and other nanocarriers for the treatment of cancer 

and other diseases. 
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Specific Aims 

Aim 1. Evaluate the relationship between chemokine ligands CCL2 and CCL5 and 

pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD) in vitro systems, in 

preclinical mouse models, and in patients with recurrent ovarian cancer. 

Hypothesis: High levels of chemokine will result in higher clearance of PLD; however, PLD 

exposure will affect the chemokine system and the mononuclear phagocyte system (MPS).  

Aim 1A. Characterize the relationship between CCL2 and CCL5 and PK of PLD in 

patients with recurrent ovarian cancer. 

Aim 1B. Evaluate effects of CCL2 and CCL5 on PK of PLD using mice bearing SKOV3 

orthotopic ovarian xenografts and chemokine knockout mouse models.  

Aim 1C. Determine effects of PLD on the chemotaxis of monocytes to CCL2 and CCL5 

using human monocytic THP-1 cells.  

Aim 2. Evaluate effects of the tumor microenvironment heterogeneity on tumor delivery 

and efficacy of PLD using murine mammary carcinoma models.  

Hypothesis: Heterogeneity of the tumor microenvironment will affect the tumor delivery and 

efficacy of PLD. 

Aim 2A. Evaluate effects of heterogeneous tumor microenvironment on PK of PLD in 

genetically engineered mouse models of breast cancer.  

Aim 2B. Evaluate effects of heterogeneous tumor microenvironment on efficacy of PLD 

in genetically engineered mouse models of breast cancer.  
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Aim 3. Identify the quantitative trait loci associated with the variability in PK of PLD using 

a panel of inbred mouse strains.  

Hypothesis: Quantitative trait loci (QTL) or genomic regions underlying the high variability in 

PK of PLD will be identified by genome-wide association analysis in a panel of inbred mouse 

strains.  

Aim 3A. Evaluate the plasma disposition of PLD in a panel of inbred mouse strains.  

Aim 3B. Identify the QTL by performing genome-wide association analysis to evaluate 

the genetic basis for the PK variability of PLD. 
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Table 1. 1. Clinically approved nanoparticle (NP)-based anticancer therapeutics 

Composition Trade name Indication Administration Company 

Liposomes and Lipidic Products 

Liposomal 

cytarabine 
Depocyt 

Malignant 

lymphomatous 

meningitis 

i.v. SkyePharma 

Liposomal 

daunorubicin 
DaunoXome 

HIV-related Kaposi’s 

sarcoma 
i.v. Gilead Sciences 

Liposomal 

doxoruicin 
Myocet metastatic breast cancer i.v. Cephalon 

PEGylated 

liposomal 

doxorubicin 

Doxil/Caelyx 

HIV-related Kaposi’s 

sarcoma, metastatic 

breast cancer, refractory 

ovarian cancer 

i.v. 

Johnson & 

Johnson/Schering-

Plough 

Polymer Therapeutics 

Methoxy-

PEG-poly (D,L-

lactide) taxol 

Genexol-PM Metastatic breast cancer i.v. Samyang 

PEG-

asparaginase 
Oncaspar 

Acute-lymphocytic 

leukemia (ALL) 
         i.v./i.m. Enzon 

PEG-hrGCSF Neulasta 
Chemotherapy-induced 

neutropenia 
s.c. Amgen 

Other platforms 
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Albumin-

bound 

paclitaxel 

Abraxane Metastatic breast cancer i.v. Abraxis (Celgene) 

90Y-

ibritumomab 

tiuxetan 

Zevalin* 
Non-Hodgkin 

lymphoma (NHL) 
i.v. 

Spectrum 

Pharmaceuticals 

131I-

tositumomab 
Bexxar* 

NHL refractory to 

rituximab 
i.v. GSK 

*Active targeting liposomes: Mouse anti-CD20 antibody-radioactive element conjugate. 

HIV= human immunodeficiency virus. PEG= poly(ethylene)glycol. 
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Table 1. 2. Nanoparticle (NP)-based anticancer therapeutics in clinical trials 

Composition Product name Indication Administration Stage Company Ref 

Liposomes and Lipidic Products 

Vincristine 

sulfate 
ONCO TCS NHL i.v. 

Phase 

II/III 
Inex/Enzon 

 109 

cisplatin LipoPlatin 
NSCLC and 

pancreatic cancer 
i.v. 

Phase 

II/III 
Regulon Inc. 

110 

Cytarabine and 

daunorubicin 
CPX-351 

AML and first 

relapse AML 
i.v. Phase II 

Celator 

Pharma 111 

Irinotecan and 

floxuridine 
CPX-1 

Colorectal 

cancer 
i.v. Phase II Celator Pharm 

112 

Doxorubicin Sarcodoxome 
Advanced soft 

tissue sarcoma 
i.v. 

Phase 

I/II 
GP Pharm 

113 

Annamycin L-Annamycin ALL/AML i.v. 
Phase 

I/II 

Callisto 

Pharma Inc. 114 

Temperature 

sensitive 

liposomal 

doxorubicin 

ThermoDox 
Hepatocellular 

carcinoma 
i.v. Phase III Celsion 

115 

Polymer Therapeutics 

PEG-arginine 

deaminase 
ADI-PEG 20 

Hepatocellular 

carcinoma 
i.v. 

Phase 

I/II 

Phoenix 

Pharmalogics- 116 

Polymeric Drug Conjugates 
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PEG-irinotecan NKTR-102 
Malignant solid 

tumors 
i.v. Phase II Nektar 

117 

Polyacetal-

camptothecin 

conjugate 

XMT-1001 Various cancers i.v. Phase I Mersna 
118 

Paclitaxel 

block 

copolymer 

micelle 

NK 105 Breast cancer i.v. Phase III 

NanoCarrier 

Co.-Nippon 

Kayaku Co 
119 

Gold coated 

silica 
Auroshell 

Refractory head 

and neck cancer 
i.v. Phase I 

Nanospectra 

Biosciences 120 

Albumin-bound 

rapamycin 
ABI-009 

Non-muscle 

invasive bladder 

cancer 

i.v. 
Phase 

I/II 
Aadi, LLC 

121 

Antibody-Drug Conjugates 

Human mAb to 

GPnMB-

auristatin 

conjugate 

Glembatumu

mab vedotin* 

(CDX-011) 

Metastatic breast 

cancer 
i.v. Phase II 

Celldex 

Therapeutics 122 

*Active targeting liposomes. ALL= acute-lymphocytic leukemia. AML= acute myeloid leukemia. 

NHL= non-hodgkin lymphoma. NSCC= non-small cell lung cancer. GPnMB= glycoprotein 

nonmetastatic melanoma protein B. PEG: poly(ethylene)glycol. 
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Fig. 1. 1. Schematic illustration of PEGylated liposomal doxorubicin (PLD; Doxil®) as an 

example of liposome-based anticancer therapeutics. A lipid bilayer membrane forms an internal 

aqueous compartment encapsulating doxorubicin (10,000-15,000 molecules per liposome) (36). 

Hydrophilic polymers, polyethylene glycol (PEG), are grafted into the liposome surface to 

provide resistance to protein adsorption and rapid clearance. The size of PLD is approximately 

85 nm (36). Encapsulated: drugs within the liposome. Released: drugs released from the 

liposome. Sum total: encapsulated and released drug. HSPC= hydrogenated soy 

phosphatidylcholine. 
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Fig. 1. 2. Structures of PEGylated Liposomes. PEG tether are projected on both the inside and 

outside of liposome for Doxil and S-CKD602. PEG tether are only localized on the outside of 

liposome for IHL-305 (15). 
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CHAPTER 2: 

RELATIONSHIP BETWEEN CHEMOKINE LIGANDS CCL2 AND CCL 5 AND THE 
PHARMACOKINETICS OF PEGYLATED LIPOSOMAL DOXORUBICIN 2 

 
Overview 

Chemokines play a central role in recruitment of macrophages into tumors. Nanoparticles 

(NPs) are recognized and cleared by circulating monocytes and tissue macrophages. However, it 

remains uncertain whether chemokines influence the pharmacokinetics (PK) of NP-based 

therapy, such as PEGylated liposomal doxorubicin (PLD; Doxil). In patients with refractory 

epithelial ovarian cancer (EOC), we found that there was a significantly positive linear 

relationship between plasma encapsulated liposomal doxorubicin exposure and the total amount 

of CCL2 and CCL5, the two most abundant chemokines, secreted in plasma after PLD 

administration. PLD induced CCL2 secretion in tumors from mice bearing SKOV3 orthotopic 

ovarian cancer xenografts and altered the migration of human monocytic THP-1 cells to CCL2 

and CCL5, which may in turn affect the disposition of PLD via a feedback loop. These data 

implicate the important role for chemokines CCL2 and CCL5 in optimizing PLD therapy for the 

treatment of EOC and other malignancies.    

 

2. 1. Introduction 

Nanotechnology has made significant advances in the drug delivery system for the 

treatment of solid tumors (1, 2). Abnormal blood and lymphatic vasculature have enabled 

                                                           
2This chapter will be submitted to the Clinical Cancer Research and is presented in the style of 
the journal. 
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selective delivery and accumulation of nanoparticles (NPs) in tumors through the enhanced 

permeability and retention (EPR) effect (3). Nanomedicines have advantages over conventional 

medicines including prolonged circulation time, selective delivery of entrapped drug to tumors, 

and improved therapeutic index (1-3). There have been great endeavors from the private-public 

partnerships, such as the Alliance for Nanotechnology in Cancer, in advancing nanotechnology 

for the diagnosis, imaging, and treatment of cancer (4). However, so far, there are limited 

numbers of NPs that have translated to clinical successes due to variations in the 

pharmacokinetics (PK) and pharmacodynamics (PD) (i.e., therapeutic outcomes) (4, 5). 

PEGylated liposomal doxorubicin (PLD; Doxil®) is one of the few FDA-approved NP 

agents for the treatment of refractory ovarian cancer (6). However, significant variability in the 

PK of PLD has been reported in preclinical models and patients and its use as second-line 

treatment of platinum and taxane-refractory ovarian cancer has only achieved response rates of 

14% to 20% as a single agent (7, 8). PLD has also been used for the treatment of metastatic 

breast cancer; however, in a phase III trial where cardiotoxicity and efficacy of PLD was 

evaluated compared with free doxorubicin for first-line treatment of metastatic breast cancer, the 

overall survival of PLD was not superior to that of doxorubicin despite significantly reducing 

effects on cardiotoxicity (9). The mechanism underlying the high PK variability and the modest 

impacts on overall survival of PLD remains poorly understood, but likely involves the 

mononuclear phagocyte system (MPS) (10-12). 

NPs are removed from the circulation by the cells of the MPS, circulating monocytes and 

tissue macrophages (i.e., Kupffer cells and splenic macrophages) (13, 14). Once a NP enters the 

bloodstream, the adsorption of immunoglobulin or complement proteins to the particle surface, 

called opsonization, occurs (14). The modification of the surface characteristics of the particles 
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leads to recognition and clearance of NPs by macrophages via phagocytosis (13, 14). The liver 

and spleen are the major parts of the MPS and play a key role in NP removal and clearance (13-

15). In addition, the tumor microenvironment is comprised of abundant infiltrating macrophages, 

called tumor-associated macrophages (TAMs) (16, 17). Homeostatic circulation and induced 

infiltration of monocytes and macrophages into these tissues are orchestrated by an intricate 

network of chemokines (16, 18, 19). 

Chemokines are chemotactic cytokines that cause the directed migration of monocytes 

and stimulate the differentiation into macrophages (18, 19). Mobilization of cells that express the 

cognate receptor occurs along the chemokine gradient, leading to cell movement towards high 

local chemokine concentrations (18, 19). Of approximately 50 known chemokines, CC 

chemokine ligand (CCL) 2, also known as monocyte chemoattractant protein-1 (MCP-1), is 

overexpressed in human ovarian and breast tumors and correlates with the accumulation of 

TAMs (20-23). CCL2, secreted by both malignant and stromal cells, has autocrine actions on 

tumor cell survival and migration as well as paracrine effects on tumor development and 

angiogenesis via TAMs or stromal cells in the tumor microenvironment (20-23). In addition to 

tumor cells, studies have demonstrated that CCL2 is secreted by hepatocytes, Kupffer cells, and 

hepatic stellate cells and involved in inflammation in the liver (24-26). Despite well-

characterized relationship between chemokines and macrophages, a potential role of chemokines 

in macrophages-mediated disposition of NPs has not yet been investigated. Thus, we 

hypothesized that chemokines drive the PK of NP-based therapy and this may be associated with 

the high interpatient variability in the PK of nanomedicines. To test this hypothesis, we explored 

the relationship between the expressions of chemokines and the PK of PLD in patients with 

refractory epithelial ovarian cancer (EOC) and in preclinical models for ovarian cancer. In 
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addition, impacts of PLD on the migration of monocytes to chemokines were investigated using 

human monocytic THP-1 cells. Four CC chemokine ligands, including CCL2, CCL3, CCL4, and 

CCL5, were evaluated based on their chemotactic effects on monocytes and macrophages (27, 

28). 

 

2.2. Materials and Methods 

Chemicals 

PLD (Doxil®) was purchased from Janssen (Horsham, PA). Doxorubicin was purchased 

from Sigma Aldrich (St. Louis, MO). Empty PEGylated liposomes with the same liposomal 

formulation as PLD were kindly provided by TerumoTM. Human CCL2 (MCP-1) and CCL5 

(RANTES) were purchased from Pepro Tech Inc. (Rocky Hill, NJ). 

Human Clinical Study 

Study population. The PK and PD study of PLD was performed as part of a pilot clinical 

study at the University of North Carolina (UNC) at Chapel Hill. Women ≥ 18 years of age that 

were receiving PLD as part of their standard care of treatment for recurrent EOC were eligible 

for enrollment in this study. Exclusion criteria consisted of women who were pregnant or breast 

feeding. This study was approved by the UNC Institutional Review Board and all patients 

provided written informed consent prior to enrollment.  

For evaluation of baseline (pre-dose) chemokine concentrations, plasma samples from 

patients with advanced solid tumors, obtained as part of a phase I clinical study of S-CKD602, 

and from healthy volunteers (HVT) were evaluated (29). HVT were defined as having no history 

of cardiovascular disease, hypertension or diabetes, being non-smokers, having a BMI<30, and 

taking no chronic medications. Subjects were excluded when CRP was >3, or high cholesterol 
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(TC>240, LDL>160, or TG>200) was present, or a BMI was >30. All samples were collected in 

the morning after an overnight fast.  

PLD dosage and administration. PLD (Doxil®) was administered at a dose of 40 

mg/m2 in patients receiving PLD alone or at a dose of 30 mg/m2 in patients receiving concurrent 

carboplatin dosed at a target AUC 5 (Cockcroft-Gault Formula) as standard treatment for 

platinum refractory ovarian cancer as defined by the Gynecologic Oncology Group (GOG). PLD 

was administered as an IV infusion over 1 to 3 hours every 28 days, with or without carboplatin.  

PK studies. Serial PK blood samples on cycle 1 were obtained prior to PLD 

administration, at the end of infusion, and at 2, 6, 24, 48, 72, 96, 168, and 672 hours after PLD 

administration. Plasma was processed immediately to measure encapsulated and released 

doxorubicin using solid phase separation methods as described previously (29, 30). 

Multiplex chemokine assay. The plasma concentrations of CCL2, CCL3, CCL4, and 

CCL5 were evaluated at baseline, and at 48, 96, 168, and 672 hours after PLD administration 

using the Bio-Plex 200 system (BioRad, Hercules, CA) and analyzed using Bio-Plex Manager 

software. Plasma samples were filtered and subsequently diluted with serum to block residual 

non-specific antibody binding. 1000 microspheres were added per chemokine (10 µl/well) in a 

total volume of 60 µl, together with standard and blank samples. The suspension was incubated 

for 1 hour in a 96-well filter plate at room temperature (RT). Then, 10 µl of biotinylated antibody 

mix was added and incubated for 1 hour at RT. After washing with PBS, beads were incubated 

with 50 ng/well streptavidin R-phycoerythrin for 10 minutes. Finally, beads were washed again 

with PBS and the fluorescence intensity was measured in a final volume of 100 µl high 

performance ELISA buffer. The assays used FMAP reagents from R&D Systems (Minneapolis, 

MN). The range of the standard curve for each chemokine ligand is as follows: CCL2 (3.0 - 
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2,140 pg/ml), CCL3 (3.0 – 2,680 pg/ml), CCL4 (8.0 – 5,750 pg/ml), and CCL5 (25.0 – 16,450 

pg/ml). 

In vitro Chemotaxis Assay 

Human THP-1 monocytic cells were obtained from the American Type Culture 

Collection (ATCC) (Rockville, MD). Cells were maintained in RPMI 1640 medium with 5% 

FBS, 100 U/mL of penicillin and 100 mg/mL of streptomycin. 

Cultured cells were resuspended in the assay medium (RPMI 1640 + 0.1% BSA) at 1 x 

106 cells/mL, incubated for 1 hour with assay medium (control), 100 µg/mL of empty liposomes, 

NL-doxorubicin, or PLD for 1 hour, and then labeled with calcein AM (1:1,000) for 30 minutes 

at 37°C, 5% CO2. Chemotaxis of calcein-labeled THP-1 cells into assay medium, CCL2 at 50 

ng/mL, or CCL5 at 100 ng/mL (200 µl/well) was measured using a BD Falcon 96-Multiwell 

Insert System (Becton Dickinson and Co.). Fluorescence emitted from cells that migrated 

through the membrane was measured at an excitation and emission wavelengths of 485 nm and 

530 nm, respectively, every 2 minutes for 4 hours (Fluoroscan, Version 2.6). Each sample was 

assayed in triplicate and each experiment was performed three times. 

In vivo PK Studies 

PK studies in mice bearing SKOV3 orthotopic ovarian cancer xenografts. In vivo 

experiments were performed with the approval of UNC at Chapel Hill’s Institutional Animal 

Care and Use Committee (IACUC). Human SKOV3 ovarian cancer cell lines obtained from the 

ATCC were injected orthotopically under the ovarian bursa of 7- to 8-week-old female CB17 

SCID mice (Taconic Farms, Albany, NY). Mice with tumors with at least 0.5 cm in any 

dimension were administered with PLD at 6 mg/kg IV x1 via a tail vein. Female CB17 SCID 

mice of the same age were also evaluated as non-tumor (NT) bearing control mice. Mice (n=3) 
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were euthanized prior to and at 0.083, 0.5, 1, 3, 6, 24, 48, 72, and 96 hours after administration 

of PLD. Each blood sample was processed to evaluate encapsulated and released doxorubicin in 

plasma as described previously (29, 30). The sum total (encapsulated + released) doxorubicin in 

liver, spleen, and tumors was measured. Doxorubicin concentration was determined using an 

existing high performance liquid chromatography-fluorescence (HPLC-FL) assay (29, 30). 

PK studies in CCL2 and CCL5 knockout (KO) mouse models. Female wild-type (WT) 

C57BL/6 mice, CCL2 -/- mice (CCL2 KO with C57BL/6 background), and CCL5 -/- mice (CCL5 

KO with C57BL/6 background) of 8- to 10-weeks of age were purchased from the Jackson Labs 

(Bar Harbor, ME). PLD was administered to mice at 6 mg/kg IV x1 via a tail vein. Mice (n=3) 

were euthanized prior to and at 0.083, 1, 24, 48, and 96 hours after administration of PLD.  All 

blood and tissue samples were processed for the PK studies as described previously.  

Multiplex chemokine assay. Mouse Cytokine/Chemokine Magnetic Bead Panel was 

purchased from Milipore (Billerica, MA). The 96-well plate kit (Miliplex®) was customized to 

measure CCL2 and CCL5 in plasma and tumor from SCID mice and mice bearing SKOV3 

orthotopic ovarian cancer xenografts. Tumor tissues were weighed and homogenized with pH 7.4 

PBS buffer spiked with a protein inhibitor cocktail (Calbiochem, MA) in 1:3 (tumor weight: PBS 

volume) using a Precellys (13-RD000) 24 bead mill homogenizer (Omni International, Inc.). 

Supernatant was extracted and used for assay. Standards and QC controls were made using 

Assay Buffer provided with the kit. The fluorescence intensity was measured using Luminex-100 

system (Luminex, Austin, TX) and the concentrations were corrected based on dilution factors 

used during procedures. 
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PK and Statistical Analysis  

PK analysis was performed by non-compartmental method using Phoenix WinNonlin® (v. 

6.02, Pharsight Corp., Mountain View, CA). Statistical analyses were carried out using SAS 

v.9.2 (Cary, NC) and Prism5 software (GraphPad Software, Inc., La Jolla, CA). Differences in 

the demographics between HVT and patients with cancer were examined by the Fisher’s exact 

test and Mann-Whitney test. Plasma concentrations of chemokines were tested for normal 

Gaussian distribution and the baseline chemokine data were analyzed using Mann Whitney test 

due to their skewed distribution profiles. Kruskal-Wallis test was performed to test overall 

chemokine exposure (AUC) among different chemokines. Equality of AUC of doxorubicin and 

chemokines between mouse models was tested using Nedelman’s modification of the Bailer 

method for sparse samples, using a two-sample test (31). Simple linear regression was used to 

explore the relationship between chemokines and the PLD PK parameters. Chemokine 

concentrations in plasma and tumors for NT mice and mice bearing SKOV3 ovarian cancer 

xenograft were compared using t-test or paired t-test. P value of less than 0.05 was considered 

statistically significant. All statistical tests were two-sided.  

 

2.3. Results 

Demographics in Healthy Volunteers and Patients with Refractory Solid Tumors 

Healthy volunteer subjects (HVT; n=27), patients with refractory EOC treated with PLD 

(n=10), and patients with refractory solid tumors enrolled in a phase I study of PEGylated 

liposomal CKD-602 (S-CKD602) (n=24) were evaluated for baseline (pre-dose) chemokine 

concentrations in plasma (29). Baseline demographics and laboratory parameters were well 

balanced in our patient cohorts (Table 2. 1).  
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Baseline Chemokine Concentration in Healthy Volunteers and Patients with Refractory 

Solid Tumors 

To evaluate if baseline chemokine expressions vary between HVT and patients with 

refractory solid tumors, baseline plasma concentrations of CCL2, CCL3, CCL4, and CCL5 were 

measured using multiplex array assay (Fig. 2. 1). Patients with refractory EOC and other types of 

solid tumors had significantly higher expressions of CCL2, CCL4, and CCL5 in plasma 

compared to HVT (P<0.0001, P=0.0006, and P=0.028, respectively) (Table 2. 2). Plasma 

concentrations of CCL3 in most HVT and patients with solid tumors were below the limit of 

quantitation (BLQ) (Fig. 2. 1). Among the chemokines tested, CCL5 was the most prevalent 

plasma chemokine followed by CCL2 in both HVT and patients with solid tumors (P<0.0001 for 

both) (Fig. 2. 2). There was no significant difference in the baseline plasma concentrations of all 

chemokines between patients with ovarian cancer and patients with other types of solid tumors 

(Fig. 2. 3).       

Relationship between Chemokines and the PK of PLD in Patients with EOC 

To determine whether chemokine expressions were associated with the disposition of 

PLD in patients with EOC, plasma concentrations of CCL2, CCL3, CCL4, and CCL5 were 

assessed at 48, 96, 168, and 672 hours after administration of PLD or PLD with carboplatin. 

Plasma concentrations of encapsulated (the drug within the liposomal carrier) and released 

(active-drug released from the liposomal carrier) doxorubicin were also measured in the first 

cycle of PLD (5). It was noted that there was a variation in the plasma concentrations of 

chemokines after PLD administration in patients with EOC (Fig. 2. 4A-D). As CCL2 and CCL5 

were the most prevalent baseline chemokines in these patients, they were further explored for the 

relationship with the PK of PLD; however, the baseline plasma concentrations of CCL2 and 
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CCL5 did not correlate with the clearance (CL) of encapsulated doxorubicin in plasma, 

indicating that baseline expression levels of chemokine may not predict the PK of PLD (Fig. 2. 5) 

We next assessed the total amount of plasma chemokines secreted after PLD 

administration. Area-under-the concentration of a chemokine versus time curve (AUC) from 0 to 

96 h, a measured index of the total amount of a chemokine secreted over time, was calculated for 

each chemokine in individual patients (Fig. 2. 6). Among the four chemokines, CCL5 AUC0-96h 

was significantly higher compared to those of other chemokines, indicating that CCL5 is not 

only the most prevalent chemokine at baseline, but may be the major chemokine that responds to 

PLD in patients with EOC (P<0.0001) (21). 

To determine whether the total amount of each chemokine secreted correlated to the 

plasma PLD exposure, we evaluated the relationship between plasma chemokine AUC0-last and 

plasma encapsulated doxorubicin AUC0-last using simple linear regression (Fig. 2. 7A-D). There 

was a significantly positive linear relationship between all chemokine AUC0-last and the plasma 

encapsulated doxorubicin AUC0-last in patients treated with PLD alone, indicating that PLD 

induced the secretion of chemokines. However, the association was not observed in patients 

treated with PLD plus carboplatin, indicating that co-administered carboplatin may have impacts 

on the interaction between PLD and chemokine systems (CCL2: P=0.52, CCL3: P=0.97, CCL4: 

P=0.15, and CCL5: P=0.1) (Fig. 2. 7A-D). 

Chemokines in Non-tumor (NT) Bearing Mice and Mice Bearing SKOV3 Orthotopic 

Ovarian Cancer Xenografts 

To further understand PLD-mediated stimulation of chemokine secretions in vivo, CCL2 

and CCL5 were assessed in plasma from NT bearing severe combined immunodeficient (SCID) 

mice and in plasma and tumors from SCID mice bearing SKOV3 orthotopic ovarian cancer 
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xenografts. Serial blood samples were obtained including prior to and at 24, 48, and 96 hours 

after administration of PLD at 6 mg/kg IV x 1 via tail vein.  

Baseline plasma CCL2 concentrations were higher in mice bearing SKOV3 ovarian 

cancer xenografts compared with NT mice (P=0.07, t-test; Fig. 2. 8A). In addition, baseline 

intratumoral CCL2 concentrations were significantly higher than in plasma in mice bearing the 

SKOV3 ovarian cancer xenografts (P=0.04, paired t-test; Fig. 2. 8A). After PLD administration, 

CCL2 concentrations in plasma and tumors appeared to increase in both mouse models (Fig. 2. 

8A). However, the total amount of plasma CCL2 secreted over 96 hours after administration of 

PLD was significantly greater in mice bearing SKOV3 ovarian cancer xenografts compared with 

NT mice (AUC ± SEM: 118 ± 20 and 37 ± 7 (ng·h/ml), respectively) (P<0.05, t-test). Elevated 

expressions of vascular endothelial growth factors (VEGF)-A after PLD administration also 

confirmed PLD-mediated upregulation of pro-inflammatory cytokine production by the tumor 

cells (Fig. 2. 9). Together, these data suggest that ovarian cancer cells and the stromal cells are 

the primary sources of chemokine secretion at baseline and after administration of PLD (18, 21). 

Although baseline intratumoral CCL5 concentrations were higher than in plasma in mice 

bearing SKOV3 ovarian cancer xenografts (P=0.05, paired t-test; Fig. 2. 8B), plasma CCL5 

concentrations were similar between NT mice and mice bearing SKOV3 ovarian cancer 

xenografts (P=0.63, t-test; Fig. 2. 8B). After PLD administration, there were little changes over 

time in plasma CCL5 concentrations in both mouse models; but intratumoral CCL5 

concentrations were decreased over 96 hours in mice bearing SKOV3 ovarian cancer xenografts 

(Fig. 2. 8B).  
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PLD PK in NT Mice and Mice Bearing SKOV3 Orthotopic Ovarian Cancer Xenografts 

To evaluate the relationship between chemokines and the PLD PK in these mouse models, 

doxorubicin exposures were assessed in plasma, tumor, liver, and spleen, the major organs 

involved in the clearance and tissue distribution of PLD (Fig. 2. 10A-D and Fig. 2. 11). The 

plasma encapsulated and released doxorubicin exposure (AUC) were significantly lower in mice 

bearing SKOV3 ovarian cancer xenografts compared to NT mice (P<0.05, t-test; Fig. 2. 10A, D). 

Conversely, the PLD accumulation (AUC) in the liver was 1.6-fold greater (P<0.05; Fig. 2. 10B, 

D) and was 1.3-fold greater in the spleen (P>0.05; Fig. 2. 10C, D) in mice bearing SKOV3 

ovarian cancer xenografts compared to NT mice. PK parameters in both mouse models are 

summarized in Table 2. 3. 

PLD PK in Wild-type (WT) and Chemokine Ligand Knockout (KO) Mice 

To verify the roles of CCL2 and CCL5 in the PK of PLD, we performed the PLD PK 

studies in WT mice (C57BL/6), CCL2-/- mice (CCL2 KO with C57BL/6 background), and 

CCL5-/- mice (CCL5 KO with C57BL/6 background) purchased from Jackson Laboratory. PLD 

was administered at 6 mg/kg IV x1 via a tail vein. The plasma encapsulated doxorubicin 

exposure (AUC) was significantly greater in CCL5 KO mice compared to WT mice, indicating 

decreased CL of PLD in CCL5 KO mice (P<0.05, t-test; Fig. 2. 12A). However, there was no 

difference in released free doxorubicin exposure between WT mice and KO mice (Fig. 2. 12).  

In addition, the PLD accumulations in the liver and the spleen were significantly 

decreased for CCL2 KO mice and CCL5 KO compared to WT mice (P<0.05) (Fig. 2. 12B). 

Other PK parameters of PLD in these mouse models are summarized in Table 2. 4. 
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Chemotaxis of Human Monocytic THP-1 Cells  

PLD was also shown to affect the migratory responses of monocytes to CCL2 and/or 

CCL5, of which the expressions were shown to be altered by PLD in the mouse models and 

patients with EOC. Chemotactic responses to CCL2 and CCL5 were measured using human 

monocytic THP-1 cells in 96-multiwell plate (32, 33). Cultured THP-1 cells were resuspended in 

the assay medium and incubated with assay medium (control), 100 µg/mL of empty PEGylated 

liposomes, NL-doxorubicin, or PLD for 1 hour. After preincubation with empty PEGylated 

liposomes or NL-doxorubicin, the number of THP-1 cells migrated to CCL2 and CCL5 was 

similar to that of control (P>0.05, t-test; Fig. 2. 13). In contrast, after preincubation with PLD, 

the number of THP-1 cells migrated to CCL2 was decreased by approximately 53% compared to 

control (P=0.13, t-test), but the migration to CCL5 was increased by 130% compared to control 

(P=0.15, t-test) (Fig. 2. 13). These results indicate that PLD suppressed the CCL2-induced 

chemotaxis of monocytes, but enhanced the CCL5-induced migration. 

 

2. 4. Discussion  

We demonstrated for the first time that the secretions of CCL2 and CCL5, the most 

prevalent circulating chemokines in patients with refractory EOC, were stimulated by PLD and 

was associated with the PLD PK. Baseline chemokine levels did not predict the PK of PLD in 

these patients, but, after PLD administration, there was a significantly positive linear relationship 

between total amount of plasma CCL2 and CCL5 and plasma encapsulated doxorubicin exposure. 

Interestingly, this association disappeared in patients for whom carboplatin was co-administered 

with PLD, indicating that carboplatin affects the interaction between PLD and the chemokine 

system. Cisplatin was shown to selectively inhibit chemotaxis of monocytes isolated from 
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venous blood of healthy volunteers and impaired monocyte chemotaxis was also reported in 

cancer patients 20 hours after receiving cisplatin (34, 35). Based on these observations, it is 

possible that carboplatin may impair the migratory responses of monocytes and chemokine 

secretion and, ultimately, affect the PK of PLD (36). 

To determine the important source of CCL2 and CCL5 secretion induced by PLD, mice 

bearing SKOV3 orthotopic ovarian cancer xenografts and NT mice were evaluated. Plasma 

CCL2 concentrations in mice bearing SKOV3 ovarian cancer xenografts were notably greater 

than in NT mice, which was consistent with higher plasma CCL2 concentrations in patients with 

cancer compared to HVT. CCL5 was the most prevalent plasma chemokine in patients with EOC. 

Conversely, the plasma CCL5 concentrations were similar between these mouse models and 

were significantly lower than plasma CCL2 in mice bearing SKOV3 ovarian cancer xenografts, 

suggesting that plasma chemokine profile may vary across different species and/or tumor types 

(37). After PLD administration, in contrast to CCL5, CCL2 expression in plasma and tumors 

increased over 96 hours in both mouse models, indicating that CCL2 is the primary chemokine 

induced by PLD in mice bearing SKOV3 ovarian cancer xenografts and the secretions involve 

the tumor cells and the tumor microenvironments as well as other host cells (18, 20, 21). 

CCL2 is a major monocyte-recruiting chemokine and CCL2 expressions correlated with 

TAM infiltration, elevated angiogenesis, and tumor progression (20, 23, 38, 39). It has been also 

shown that CCL2 plays an important role in monocyte migration to the liver, activation of 

stellate cells, and enhancement of liver blood vessel permeability in response to acute and 

chronic liver inflammation (24-26). Thus, it is possible that upregulated CCL2 expression by the 

tumor cells and the stromal cells as well as PLD-induced CCL2 secretion by the tumor cells and 

the host cells may influence macrophage infiltration to the tumors and the liver, the transvascular 
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transportation of PLD, and, ultimately, PLD uptake by macrophages (15, 24, 10). Significantly 

decreased PLD accumulations in the liver and the spleen of CCL2 KO and CCL5 KO mice 

compared to WT mice confirmed the role of CCL2 and CCL5 in the clearance and 

biodistribution of PLD (41, 42).  

We also demonstrated that PLD may affect the migration of monocytes in a chemokine-

dependent manner. CCL2 was shown to augment apoptotic cell removal (efferocytosis), a critical 

process in the regulation of inflammation, infection, and tissue repair (43). Based on data 

generated by others and our group, monocytes and macrophages were shown to be more 

sensitive to PLD-mediated toxic effects compared with other myeloid-derived cells (i.e., 

neutrophils) (44, 45). These data indicate that PLD-mediated suppression of the chemotaxis of 

monocytes to CCL2 may be due to enhanced phagocytosis of apoptotic monocytes via CCL2.  

We have explored the complex interaction between PLD and chemokines and 

monocytes/macrophages in vitro and in vivo and its effects on the PK of PLD in patients with 

EOC (Fig. 2. 14). However, there are some limitations in our studies and further studies may be 

necessary to translate these findings to optimize NP-based therapy in the clinic. Given that the 

uptake of NPs by monocytes and macrophages may be a saturable process and multiple cycles of 

nanomedicines are administered in combination with other therapies, it is critical to characterize 

the effects on the chemokine system of multiple NP dosing as well as co-administration of 

medications as shown by simvastatin-mediated down-regulation of CCL2 in a time- and dose-

dependent manner (34, 35, 46). In addition, different physicochemical properties of NPs such as 

size, shape, and charge, have been shown to determine the NP compatibility with the immune 

system (13, 14). The heterogeneity of the tumor microenvironment has been reported and 

suggested to be a contributing factor to the variable tumor delivery and responses of 
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nanomedicines (16, 47). Thus, comprehensive profiling of the interaction between different NP 

platforms and the microenvironmental components (i.e., chemokines and macrophages) in mouse 

cancer models and human samples will be a key part of understanding the interplay between NPs 

and the MPS.  

Cancer-related inflammation has emerged as a critical mechanism for cancer 

development (48). Inflammatory CC chemokines, particularly CCL2 (MCP-1), have shown to be 

associated with recruitment of TAMs in tumors, promote M2 polarization and survival of TAM 

(49). The evidence for the involvement of CCL2 in cancer progression and metastasis provides 

important implications for cancer therapy and chemokine-targeting agents have emerged in 

clinical trials (48, 50). We demonstrated that PLD, a NP-based therapy, altered the expressions 

of CCL2 and CCL5 as well as the chemotaxis of monocytes, which was shown to be associated 

with the clearance and biodistribution of PLD in preclinical models and in patients with 

refractory EOC. These data implicate that chemokines are targets not only for anticancer therapy, 

but also for optimization of the NP-based therapy.  
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Table 2. 1. Baseline demographics and laboratory parameters of healthy volunteers (HVT)  

and patients with cancer 

Demographics 

HVT 

(n=27) 

Patients with cancer 

(n=34) P-value* 

Median Range Median Range 

Age (years) 52 46 - 68 55 33 - 78 0.09 

Gender (n, %) 
Male (12, 44%) Male (10, 29%) 

0.29† 
Female (15, 56%) Female (24, 71%) 

Height (cm) 169 150 - 187 167 155 - 196 0.64 

Weight (kg) 72.8 46.3 – 99.4 75.7 48 – 140 0.25 

BMI (kg/m2) 25.9 18.1 – 29.7 26.7 17.4 – 42.6 0.10 

Scr (mg/dL) 0.89 0.64 – 1.06 0.80 0.50 – 1.10 0.09 

*, P-values were calculated using Mann-Whitney test; †, P-values were calculated using Fisher’s 

exact test. Colorectal cancer (n=10), ovarian cancer (n=4 treated with S-CKD602; n=10 treated 

with PLD), sarcoma (n=3), liver cancer (n=2), lung cancer (n=1), Miscellaneous cancer (n=4): 

adenocarcinoma (n=1), prostate cancer (n=1), thyroid cancer (n=1), spindle cell cancer (n=1). 

HVT: healthy volunteers. BMI: body mass index. Scr: serum creatinine.  
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Table 2. 2. Baseline plasma chemokine concentrations in patients with cancer 

Baseline 

chemokines 

HVT 

(n=27) 

Patients with cancer 

(n=34) P-value* 

Median Range Median Range 

CCL2 

(pg/mL) 
141.4 108.6 – 318.9 265.9 57.12 – 841.2 <0.0001 

CCL3 

(pg/mL) 
29.31 20.90 – 37.72 37.72 20.90 – 97.3 0.41† 

CCL4 

(pg/mL) 
35.59 2.99 – 58.63 64.42 2.99 – 200.3 0.0006 

CCL5 

(pg/mL) 
18,308 3,857– 23,479 19,653 8,969– 28,237 0.028 

*,  P-values were calculated using Mann-Whitney test. †n=3 for HVT and n=11 for patients with 

cancer were included for analysis because plasma concentrations were mostly below the limit of 

quantitation (BLQ) of the multiplex chemokine assay. The range of the standard curve for each 

chemokine ligand is as follows: CCL2 (3.0 - 2,140 pg/ml), CCL3 (3.0 – 2,680 pg/ml), CCL4 (8.0 

– 5,750 pg/ml), and CCL5 (25.0 – 16,450 pg/ml). HVT: healthy volunteers.  
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Table 2. 3. PK parameters* after administration of PLD at 6 mg/kg IV x1 in non-tumor bearing 

mice (NT) and mice bearing SKOV3 orthotopic ovarian cancer xenografts 

Model NT mice 
Mice bearing SKOV3 orthotopic 

ovarian cancer xenografts 

Plasma 

Encapsulated Released Encapsulated Released 

AUC 

(µg·h/mL) 

Cmax 

(µg/mL) 

CL 

(mL/h/kg) 

AUC 

(µg·h/mL) 

Cmax 

(µg/mL) 

AUC 

(µg·h/mL) 

Cmax 

(µg/mL) 

CL 

(mL/h/kg) 

AUC 

(µg·h/mL) 

Cmax 

(µg/mL) 

3,967 

± 150 
137 1.5 

83 

± 5.9 
2.6 

1,676† 

± 89 
140 3.4 

31† 

± 2.1 
2.7 

Liver 

Sum total doxorubicin Sum total doxorubicin 

AUC 

(µg·h/g) 

Cmax 

(µg/g) 

Tmax 

(h) 
AUC (µg·h/g) Cmax (µg/g) 

Tmax 

(h) 

856 ± 42 15.7 24 1,344† ± 118 21.3 48 

Spleen 

Sum total doxorubicin Sum total doxorubicin 

AUC (µg·h/g) Cmax (µg/g) 
Tmax 

(h) 
AUC (µg·h/mL) Cmax (µg/g) 

Tmax 

(h) 

2,217 ± 314 35.4 48 1,792 ± 187 36.1 48 

Tumor  

Sum total doxorubicin 

AUC (µg·h/g) Cmax (µg/g) 
Tmax 

(h) 

324 ± 37 8.5 24 

*, The PK of PLD was analyzed by noncompartmental analysis using Phoenix v.6.2. AUC= area-

under the concentration versus time curve from 0 h to 96 h (presented as mean ± SEM); Cmax 
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(µg/mL)= maximum observed concentration; CL= clearance; Tmax= time for maximum observed 

concentration. †, P <0.05 (NT mice versus mice bearing SKOV3 orthotopic ovarian cancer 

xenografts). Equality of AUC was tested using Nedelman’s modification for the Bailer method, 

using a two-sample test (31). 
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Table 2. 4. Doxorubicin exposure (AUC ± SEM)* after administration of PLD at 6 mg/kg IV x1 

in wild-type (WT) and chemokine ligand knockout (KO) mice 

Model WT CCL2 KO CCL5 KO 

Plasma 
Encapsulated Released Encapsulated Released Encapsulated Released 

2,673 ± 234 34.9 ± 3.7 3,147 ± 380 31.2 ± 7.5 4,862† ± 450 40 ± 3.6 

Liver 
Sum total doxorubicin Sum total doxorubicin Sum total doxorubicin 

487 ± 17 385† ± 29 449 ± 21 

Spleen 
Sum total doxorubicin Sum total doxorubicin Sum total doxorubicin 

1,194 ± 64 541† ± 46 944† ± 48 

*, The PK of PLD was analyzed by noncompartmental analysis using Phoenix v.6.2. AUC= area-

under the concentration versus time curve from 0 to 96 h (µg/mL·h for plasma or µg/g·h for liver 

and spleen). AUC are presented as mean ± SEM. †, P<0.05 (WT versus CCL2 KO or WT versus 

CCL5 KO). P-values were calculated using Nedelman’s modification of the Bailer method for 

sparse samples, using a two-sample test (31). WT: wild-type (C57/BL6J), KO: knockout. 
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Fig. 2. 1. Baseline plasma CCL2, CCL3, CCL4, and CCL5 chemokine concentration in healthy 

volunteers (HVT) and patients with cancer. Plasma concentrations of (A) CCL2, (B) CCL3, (C) 

CCL4, and (D) CCL5. Plasma concentrations of CCL2, CCL4, and CCL5 were significantly 

increased in patients with cancer (n=34) compared to HVT (n=27). Plasma concentrations of 

CCL3 were undetectable from most samples. CCL2 and CCL5 were the most prevalent baseline 

chemokines in both HVT and patients with cancer. P-values were calculated using Mann-

Whitney test (HVT versus patients with cancer). Individual and median data are presented. 
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Fig. 2. 2. Baseline plasma CCL2, CCL3, CCL4, and CCL5 concentrations in healthy volunteers 

(HVT) and patients with cancer. CCL5 was the most prevalent plasma chemokine followed by 

CCL2 in (A) HVT and in (B) patients with cancer. P-values were calculated using Kruskal-

Wallis test. 
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Fig. 2. 3. Baseline plasma (A) CCL2, (B) CCL3, (C) CCL4, and (D) CCL5 concentrations in 

patients with different types of primary cancer. There was no significant difference in plasma 

chemokine concentrations at baseline among different cancer types. Colorectal cancer (n=10), 

ovarian cancer (n=14), sarcoma (n=3), liver cancer (n=2), lung cancer (n=1), and miscellaneous 

cancer (n=4): adenocarcinoma (n=1), prostate cancer (n=1), thyroid cancer (n=1), spindle cell 

cancer (n=1). P-values were calculated using Kruskal-Wallis test. 
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Fig. 2. 4. Plasma chemokine concentrations versus time profile after administration of PLD alone 

or PLD plus carboplatin in patients with refractory ovarian cancer (EOC). There was high inter-

patient variability in (A) CCL2, (B) CCL3, (C) CCL4, and (D) CCL5 plasma concentrations 

after PLD alone or PLD with carboplatin. Solid line represents patients treated with PLD alone at 

40 mg/m2 (n=6) and dashed line represents PLD 30 mg/m2 with carboplatin (AUC=5) (n=4) 
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Fig. 2. 5. The relationship between baseline chemokine concentration and the PK of PLD. The 

most prevalent plasma chemokines, (A) CCL2 and (B) CCL5, were selected for further 

evaluation of association with the PLD PK. There was no association between baseline CCL2 

and CCL5 concentrations and the CL of encapsulated doxorubicin after administration of PLD in 

patients with EOC (P>0.05, not significant). R2 and p-values were calculated using simple linear 

regression. 
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Fig. 2. 6. Total chemokine exposure (AUC0-96h) in plasma after administration of PLD alone n=6) 

or in combination with carboplatin (n=4; patient 104, 106, 107, and 109) in patients with EOC. 

CCL5 AUC was significantly greater compared to other chemokines AUC in all patients (*P 

<0.0001, Kruskal-Wallis test).  
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Fig. 2. 7. Relationship between total amount of chemokine (AUC) and encapsulated doxorubicin 

plasma exposure (AUC) in patients with EOC after administration of PLD alone. The association 

between (A) CCL2, (B) CCL3, (C) CCL4, and (D) CCL5 plasma AUC and encapsulated 

doxorubicin plasma AUC. There was a significantly positive linear relationship between all 

chemokine AUC values and the encapsulated doxorubicin AUC in patients treated with PLD 

alone; however, no association was observed in patients treated with PLD plus carboplatin 

(P>0.05, data are not shown). R2 and p-values are calculated using linear regression.  
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Fig. 2. 8. Plasma chemokine concentrations in non-tumor bearing (NT) mice and mice bearing 

SKOV3 orthotopic ovarian cancer xenografts after administration of PLD at 6 mg/kg IV x1 via 

tail vein. (A) CCL2 and (B) CCL5 concentration versus time profiles in plasma and tumors after 

administration of PLD. Baseline plasma CCL2 concentrations in mice bearing SKOV3 ovarian 

cancer xenografts were greater compared to NT mice (P=0.077, t-test); however, there was no 

difference in baseline plasma CCL5 concentrations between NT mice and mice bearing SKOV3 

ovarian cancer xenografts. Baseline intratumoral CCL2 and CCL5 concentrations were 

significantly higher than in plasma in mice bearing SKOV3 xenografts (P=0.04 and P=0.05, 

respectively; paired t-test). CCL2 concentrations in plasma and tumors tended to increase after 

administration of PLD in NT mice and mice bearing SKOV3 ovarian cancer xenografts. There 

was little change in plasma CCL5 concentrations after administration of PLD whereas 

intratumoral CCL5 concentrations decreased after administration of PLD in mice bearing 

SKOV3 ovarian cancer xenografts. Data are presented as mean ± SEM (n=3 or 4). 
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Fig. 2. 9. The intratumoral VEGF-A concentrations after administration of PLD at 6 mg/kg IV 

x1 via tail vein in mice bearing SKOV3 orthotopic ovarian cancer xenografts. The secretions of 

VEGF-A by SKOV3 tumor cells were increased over 96 hours, indicating that PLD induced the 

productions of proinflammatory cytokines, such as VEGF-A, by the tumor cells and the stromal 

cells. Data are presented as mean ± SEM (n=3).  
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Fig. 2. 10. Concentration vs. time profiles of doxorubicin in plasma and tissues in non-tumor 

bearing (NT) mice and mice bearing SKOV3 orthotopic ovarian xenografts after administration 

of PLD at 6 mg/kg IV x1 via tail vein. Concentration versus time profiles of doxorubicin in (A) 

plasma, (B) liver, and (C) spleen in NT mice and mice bearing SKOV3 ovarian cancer 

xenografts. (D) Encapsulated and released doxorubicin exposure (AUC) in plasma, and sum total 

doxorubicin in the liver and spleen. Equality of AUC was tested using Nedelman’s modification 

of the Bailer method for sparse samples, using a two-sample test (31). There was a significantly 

lower plasma exposure of both encapsulated and released doxorubicin in mice bearing SKOV3 

ovarian cancer xenografts. The accumulation of sum total doxorubicin in the liver and spleen 

was lower in NT mice. Samples (n=3 mice) were obtained at each time point. Data are presented 

as mean ± SD (A-C) and mean ± SEM (D). 
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Fig. 2. 11. Sum total doxorubicin concentration versus time profile in tumors after administration 

of PLD at 6 mg/kg IV x1 in mice bearing SKOV3 orthotopic ovarian cancer xenografts. 
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Fig. 2. 12. The PK of PLD in wild-type (WT), CCL2 knockout (KO), and CCL5 KO mice after 

administration of PLD at 6 mg/kg IV x1 via tail vein. (A) AUC0-96h of plasma encapsulated and 

released doxorubicin in WT (C57BL/6), CCL2 KO, and CCL5 KO mice. (B) Sum total 

doxorubicin AUC0-96h in liver and spleen in WT, CCL2 KO, and CCL5 KO mice. *P<0.05; 

equality of AUC was tested using Nedelman’s modification for the Bailer method, using a two-

sample test (31). 
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Fig. 2. 13. In vitro migration assay of THP-1 cells after incubating with medium (control), empty 

PEGylated liposomes, NL-doxorubicin or PLD. The migration of THP-1 cells preincubated with 

empty PEGylated liposomes and NL-doxorubicin to CCL2 and CCL5 was similar to that of 

control. However, PLD reduced CCL2-mediated chemotaxis of THP-1 cells by approximately 53 

to 62% compared to control cells and other treatments (P>0.05, t-test). In contrast, PLD 

treatment has increased THP-1 cell migration to CCL5 by approximately 70 to 130% compared 

to control and other treatments (P>0.05, t-test) Data are presented as mean ± SEM of three 

individual experiments with triplicates for each treatment arm in each run. NL-doxorubicin: non-

liposomal doxorubicin. 
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Fig. 2. 14. Feedback loop between PLD and monocytes/macrophages and chemokines. A 

complex interaction between PLD and monocytes and macrophages and chemokines may affect 

the clearance and biodistribution of PLD via a ‘feedback loop’.  
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CHAPTER 3: 

EFFECTS OF TUMOR MICROENVIRONMENT HETEROGENEITY ON 
NANOPARTICLE DISPOSITION AND EFFICACY  

IN BREAST CANCER TUMOR MODELS 3 
 

Overview 

Purpose: Tumor cells are surrounded by a complex microenvironment comprised of 

immune cells, chemokines and cytokines, and abnormal blood and lymphatic vasculature. The 

purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in 

the variability of nanoparticle (NP) delivery and efficacy.  

Experimental designs: C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) 

and T11/TP53Null orthotopic syngeneic murine transplant model (T11) representing human breast 

tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the 

pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or PEGylated liposomal 

doxorubicin (PLD) was administered at 6 mg/kg IV x1. Area-under-the concentration versus 

time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of 

vasculature were assessed by immunohistochemistry. Chemokines and cytokines were measured 

by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg IV weekly x6 in 

efficacy studies. Analyses of intermediary tumor response and overall survival were performed.  

Results: Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin were 

similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-

                                                           
3This chapter has been submitted to the Clinical Cancer Research and is presented in the style of 
the journal. 
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TAg compared with T11 (P<0.05). T11 tumors showed significantly higher expression of CCL2 

and VEGF-a, greater vascular quantity, and decreased expression of VEGF-c compared to C3-

TAg (P<0.05). PLD was more efficacious compared to NL-doxo in both models.  

Conclusion: The tumor microenvironment and/or tumor cell features of breast cancer 

affected NP tumor delivery and efficacy, but not the small molecule drug. Our findings reveal 

the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes.   

 

3. 1. Introduction  

There have been major advances in nanotechnology for targeted delivery of 

pharmacologic agents to sites of disease, such as cancer (1, 2). In oncology, nanoparticle (NP)-

based therapies exploit the enhanced permeability and retention (EPR) effect caused by the 

unique vascular structure of solid tumors (i.e., hypervasculature and defective lymphatic 

drainage) (3). The EPR effect is a key rationale that advances the use of NPs for treatment of 

cancer and renders the preferential delivery and accumulation of NPs to the tumor cells (3). This 

allows nanomedicines to have advantages over conventional medicines including prolonged 

circulation, selective delivery of entrapped drug to tumor, and improved therapeutic index (4). 

There is, however, limited data to understand the heterogeneity and factors affecting the EPR in 

tumors and, more importantly, correlate them to highly variable clinical responses of NP-based 

therapies (5).   

It has been shown that NPs have immunological properties that may stimulate or suppress 

the immune system (6). NPs can interact with immune components in blood, which influences 

the uptake and clearance by the mononuclear phagocyte system (MPS), and potentially 

biodistribution and delivery to the targeted site such as tumors (7, 8). Previously, we have 
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reported that the variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of 

nanomedicines such as Doxil® (PEGylated liposomal doxorubicin; PLD) and S-CKD602 

(PEGylated liposome of CKD-602, a camptothecin analog) is associated with patient age, 

gender, and the function of circulating monocytes in plasma of patients with solid tumors (9-11). 

We also showed a bidirectional interaction between SCKD-602 and circulating monocytes in 

patients with solid tumors (12). However, these factors may not sufficiently explain the high 

variability in the PK and PD of NP-based therapies in patients with solid tumors.                                                                                                  

Solid tumors are characterized by a complex and unique microenvironment that consists 

of infiltrating immune cells such as tumor-associated macrophages (TAMs), a variety of growth 

factors, chemokines and cytokines, dense interstitial matrix, and the abnormal blood and 

lymphatic vascular architecture (13, 14). These factors interplay with the tumor cells to modify 

the tumor microenvironment and promote tumor progression (13, 14). It has been reported that 

there is intra- and inter-tumor variability in the tumor cells and the microenvironment that results 

in the heterogeneity of molecular, pathological, and clinical features of each tumor type (15-17). 

Studies have revealed that abnormal vascular architecture and dense collagen matrix can act as 

environmental barriers hindering the delivery of NPs and result in suboptimal clinical outcomes 

(17). Previously, we have also reported that increased tumor delivery and release of CKD-602 

from S-CKD602 in SKOV-3 ovarian xenografts compared with A375 melanoma xenografts 

correlated with increased expression of CD11c positive dendritic cells (DCs) in the tumors, 

suggesting that the variability in NP tumor disposition may be associated with the phagocytic 

cells (i.e., DC and TAMs) (18). Given the heterogeneity of the tumor microenvironment between 

and within different human cancer types and its potential impacts on the tumor delivery and 

therapeutic outcomes of NP-based therapy, it is imperative to evaluate the roles of the 
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microenvironment factors and their interaction with NPs in a systemic manner for the optimal 

delivery and efficacy of nanomedicines (5, 17).  

Genetically engineered mouse models (GEMMs) and orthotopic syngeneic murine 

transplant (OST) have proven to be valuable experimental models for discovery of biomarkers 

and prediction of chemotherapy responses in human cancers (19, 20). RNA expression profiling 

of 13 distinct GEMMs of breast cancer identified mouse models that faithfully represent human 

intrinsic breast tumor subtypes including Basal-like (C3(1)-T-Antigen (C3-TAg)) (21) and 

Claudin-low (T11/TP53-/- (T11)) (22). No single claudin-low GEMM was found, but orthotopic 

syngeneic transplantable tumors from a BALB/c TP53Null mouse was shown to faithfully 

recapitulate the human claudin-low expression phenotype (22). Basal-like subtype (C3-TAg) is 

characterized by high expression of basal gene expression features and the proliferation signature 

(19, 21). The majority of these tumors are clinically estrogen receptor (ER) negative, 

progesterone receptor (PR) negative, and HER2-negative (triple negative breast cancer), which 

leads to lack of validated biological targets and poor responses to current chemotherapies (19, 

21). The majority of claudin-low (T11) tumors are also triple negative breast tumors with poor 

prognosis but were shown to have lower pathological complete response (pCR) rate to 

anthracycline/taxane-based chemotherapies compared to basal-like tumors (23). Claudin-low 

T11 tumors exhibited distinguished gene expression characteristics (i.e. more enriched in 

immune system responses and endothelial cell-like signature) as well as histological phenotypes 

(i.e. endothelial/tube-like morphology and high vascular permeability) compared to basal-like 

C3-TAg tumors (23, 24).        

Here, we used the genomically validated basal-like C3-TAg and claudin-low T11 murine 

breast tumor models to test our hypothesis that the heterogeneity of the tumor cells and the tumor 
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microenvironment between breast tumor subtypes affect the tumor delivery and therapeutic 

outcomes of NP. We evaluated PEGylated liposomal doxorubicin (PLD; Doxil®) which has 

been used for treatment of metastatic breast cancer and non-liposomal doxorubicin (NL-doxo; 

Adriamycin®) as a comparator (25). Furthermore, we examined the dynamic modulation of the 

tumor physiology, such as TAMs, collagen, tumor vasculature, and chemokines, after treatment 

with both agents in these mouse models. 

 

3. 2. Materials and Methods 

Treatments. PLD was purchased from FormuMax Scientific (Palo Alto, CA) (Table 3. 

1) and diluted with 5% dextrose to 1.2 mg/mL prior to injection. NL-doxo was purchased from 

Sigma Aldrich (St. Louis, MO) and diluted with 0.9% NaCl to 1.2 mg/mL prior to injection.  

Animal Models. In vivo experiments were performed with the approval of University of 

North Carolina at Chapel Hill’s Institutional Animal Care and Use Committee (IACUC). GEMM 

of strain of FVB/n carrying a transgene for C3(1)SV40 T-antigen (C3-TAg) were bred in-house 

and observed until the tumor size was met (> 0.5 cm) in any dimension (19). Tumors derived 

from BALB/c TP53-/- orthotopic mammary gland transplant line (T11) was transplanted into the 

inguinal mammary fat pad of 12 week old wild-type BALB/c mice (Jackson Labs, strain 000651) 

(19). Mice were housed in the UNC Lineberger Comprehensive Cancer Center's Mouse Phase I 

Unit (MP1U) and observed for tumors as per standard practice (22). Mice were randomized to 

treatment cohorts and therapy began once a tumor reached 60-100 mm3. 

PK Studies in Plasma, Tissues, and Tumor. NL-doxo and PLD were administered at 6 

mg/kg IV x1 via a tail vein. Mice (n=3) were euthanized prior to and at 0.083, 0.5, 1, 3, 6, 24, 48, 

72, and 96 h after administration of each drug. Each blood sample was processed to evaluate 
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encapsulated and released doxorubicin in plasma as described previously (18, 26). In the same 

mice, liver, spleen, lung, and tumors were collected, preserved by snap freezing, and stored at – 

80°C. To measure the sum total (encapsulated and released) doxorubicin in tumors and tissue 

samples, samples were thawed on ice, weighed, and homogenized with pH 7.4 PBS buffer (1g 

tissue: 3mL PBS) using a Precellys (13-RD000) 24 bead mill homogenizer (Omni International, 

Inc.). Doxorubicin concentration was determined using an existing high performance liquid 

chromatography-fluorescence (HPLC-FL) assay (18, 26).  Noncompartmental PK analysis of 

NL-doxo and PLD in plasma, tumor, and tissues were performed using Phoenix v.6.2 (Pharsight 

Corp., CA). The area under the concentration versus time curve from 0 to t (AUC0-t) was 

calculated using the linear up and log down rule.  

Immunohistochemistry (IHC) and Digital Imaging. Tumor samples were collected at 

necropsy, fixed overnight in 10% neutral-buffered formalin, processed routinely, and stained 

with hematoxylin and eosin (H&E). IHC for F4/80 (TAM), collagen IV, and CD31 (endothelial 

cells) were performed as well (27). Rat monoclonal antibody against F4/80 and rabbit polyclonal 

antibodies against CD31 and collagen IV (Col IV) were from eBioscience (San Diego, CA), 

Abcam (Cambridge, MA), and EMD Millipore (Billerica, MA), respectively. IHC for F4/80 

(murine macrophage marker), collagen IV, and CD31 (endothelial cells) was performed on an 

automated Bond II immunostainer (Leica Microsystems, Norwell, MA).78-84 Tumor slides were 

dewaxed in Bond Dewax solution (AR9222) and hydrated in Bond Wash solution (AR9590). 

Antigen retrieval for F4/80 was done for 20 min and for 30 min for CD31 and Col IV in Bond-

Epitope Retrieval solution1 pH-6.0 (AR9961). Slides were incubated for 45 min with F4/80 

(1:100), for 1h with CD31 (1:200), and for 30min with Col IV (1:200). Stained slides were 

dehydrated and coverslipped. Detection of the antibodies was performed using the Bond Polymer 
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Refine Detection System without post primary step (DS9800). Positive and negative controls (no 

primary antibody) were included for each antibody. Stained slides were digitally imaged at 20X 

apparent magnification using the Aperio ScanScope XT (Aperio Technologies, Vista, CA). The 

Aperio ImageScope positive pen tool was used to create the different annotation layers (capsule, 

viable tumor, and necrotic) for each tumor section under the guidance of board-certified 

veterinary pathologist (A.B.R.) in a blinded manner. Medium to high magnification fields (10X - 

20X) were marked for subsequent image analysis. 

Morphometric Quantitation of Macrophages, Collagen, and Microvessel Density 

(MVD). Whole tumor images were captured using an Aperio slide scanner at the UNC 

Translational Pathology Laboratory. F4/80+ macrophages were classified into three groups: (a) 

peritumoral/peripheral - capsule; (b) intratumoral - viable; and (c) intratumoral – necrotic (28, 

29). Morphology and identification of subregions were determined in consultation with a board-

certified veterinary pathologist (A.B.R.). For semi-quantification of F4/80 immunoreactivity, H-

scores were generated by The Aperio Membrane v9 algorithm. Staining intensity was graded as 

undetectable (1), weak (2), medium (3), or strong (4), and the percentage of positive cells per 

each intensity level was evaluated. The intensity score and the percentage of positive cells were 

then multiplied to give an H-score (possible range, 0-400) within each annotation layer (27, 28).  

For scoring collagen IV semi-quantitatively, H-scores were generated by the Aperio color 

deconvolution methods. Staining intensity was graded as weak (1), moderate (2), and strong (3), 

and % of positive pixel per each intensity level was evaluated to calculate H-score (0-300) (27).  

MVD was calculated by number of vessels divided by stained areas (mm2) using the 

Definien Tissue Studio software (Munich, Germany) (30). The physiologic state of the 
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vasculature including the size and open lumen status was assessed in representative vascularized 

areas within tumor (30). Collagen and MVD were assessed in capsule and viable tumor only. 

Multiplex-bead Array Assay. Mouse Cytokine/Chemokine Magnetic Bead Panel was 

purchased from Milipore (Billerica, MA). The 96-well plate kit was customized to measure CC 

chemokine ligand (CCL) 2, also known as monocyte chemoattractant protein-1 (MCP-1), and 

CC chemokine ligand (CCL) 5, also known as regulated on activation, normally T-cell expressed 

and secreted (RANTES), in plasma and tumor and vascular endothelial growth factor-a (VEGF-

a) and VEGF-c in tumor (14, 30). Tumor tissues were weighed and homogenized with pH 7.4 

PBS buffer spiked with a protein inhibitor cocktail (Calbiochem, MA) in 1:3 (tumor weight: PBS 

volume) using a Precellys (13-RD000) 24 bead mill homogenizer (Omni International, Inc.). 

Supernatant was extracted and used for assay. Standards were made using Assay Buffer provided 

with the kit. Standards and QC controls were placed to appropriate wells and samples diluted 

with Assay Buffer were placed to designated sample wells. The resulting raw data were collected 

using Luminex-100 system (Luminex, Austin, TX) and the concentration was corrected based on 

dilution factor used during procedures. 

Efficacy Studies. Once tumor mass reached 60-100 mm3, mice were randomized into 

treatment groups.  NL-doxo and PLD were administered at 6 mg/kg x1 weekly for 6 weeks. 

Tumors were measured using calipers daily and tumor volume was calculated as (Volume = 

[(width)2 x length]/2). Treatment outcome was assessed as intermediary tumor volume and tumor 

growth inhibition (TGI %) (31). TGI was calculated from the following formula: TGI (%) = (1-

T/C) x 100, where T indicates the mean final tumor volume (mm3) of the treatment group and C 

indicates the mean final tumor volume (mm3) of the control group (31). Survival was monitored 
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individually and mice were euthanized for tumor ulceration, tumor size of 2 cm in any dimension 

with single tumor, or 1.3 cm in any dimension with multiple tumors.  

Statistical Analysis. Statistical analyses were carried out using SAS v.9.2 (Cary, NC) 

and Prism5 software (GraphPad Software, Inc.). Equality of AUC between C3-TAg model and 

T11 model was tested Nedelman’s modification of the Bailer method for sparse samples, using a 

two-sample t-test (32). Analysis of covariance (ANCOVA) with baseline tumor volume as 

covariate was performed followed by adjustment for multiple comparison using Holm test to test 

intermediary tumor volume among treatment groups (33). Kaplan-Meier (KM) survival curves 

were plotted, and the difference in overall survival between the groups was analyzed by the log-

rank test. P value of less than 0.05 was considered statistically significant. All statistical tests 

were two-sided.  

 

3. 3. Results 

Plasma, Tissue, and Tumor Disposition of NL-doxo and PLD. To predict plasma, 

tissue, and tumor disposition of NL-doxo and PLD in human basal-like and claudin-low breast 

tumor subtypes, we performed the PK studies of NL-doxo and PLD in their murine counterparts, 

C3-TAg model and T11 model, respectively. Plasma, tissues, and tumor doxorubicin 

concentration versus time profiles after administration of NL-doxo or PLD at 6 mg/kg IV x 1 are 

presented in Fig. 1. AUC from 0 to 96 h, a measured index of the total doxorubicin exposure 

over time, was calculated by noncompartmental PK analysis. PK parameters for both treatments 

are presented in Table 3. 2.  

The doxorubicin AUC0-96h in plasma, tissues, and tumors after NL-doxo administration 

were similar between two models (P>0.05) (Fig. 3. 1A, 1C, 1D, 1E, and 1F). In PLD treated 
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mice, both plasma encapsulated (the drug within the liposomal carrier) and released (active-drug 

released from the liposomal carrier) doxorubicin AUC0-96h were similar in the two models (Fig. 

3. 1B). However, after PLD administration, the sum total (encapsulated + released) doxorubicin 

AUC0-96h in tumors was 2-fold greater in C3-TAg compared to T11 (480 ± 71 versus 210 ± 30 

µg·h/g, respectively; P<0.05) (Fig. 3. 1C). The doxorubicin accumulation in the liver was 1.5-

fold higher in T11 compared to C3-TAg after PLD administration (687 ± 61 versus 438 ± 18 

µg·h/g, respectively; P<0.05) (Fig. 3. 1D). The doxorubicin accumulation in the spleen and the 

lung was similar between C3-TAg and T11 after NL-doxo and PLD administration (Fig. 3. 1E 

and F). These data suggest that heterogeneity of the tumor microenvironment and/or tumor cell 

features between C3-TAg and T11 models affected PLD tumor delivery and distribution to the 

liver, but not NL-doxo. 

Tumor-Associated Macrophages (TAMs). To evaluate the effects of TAMs on the 

delivery of NL-doxo and PLD and characterize the interaction with these drugs, C3-TAg tumors 

and T11 tumors from the PK studies were stained for F4/80 (Fig. 3. 2). At baseline, most TAMs 

were located in the hypoxic necrotic area and the periphery (capsule) with lower numbers present 

in viable tumor in both models (Table 3. 3). There was no significant difference in the baseline 

level of TAMs in all sub-regions between two models. 

However, the time profile of TAMs over 96 h was distinguished between after NL-doxo 

or PLD administration (Fig. 3. 3). The changes in the TAM infiltration after NL-doxo 

administration were inconsistent between C3-TAg and T11 models (Fig. 3. 3A and 3C). In 

contrast, after PLD, a nadir occurred at 24 h followed by TAM infiltration in both models (Fig. 

3. 3B and 3D). The % decrease at nadir (24 h) in TAMs localized in the vial tumors was greater 

in T11 compared to C3-TAg (37.2% vs. 6.6%) (Fig. 3. 3B and 3D). The AUC0-96h of F4/80 H-
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score, an indicator of total influx of TAMs, was similar between C3-TAg model and T11 model 

after administration of NL-doxo and PLD (Table 3. 2).  

CCL2 and CCL5 in Tumors and Plasma. CCL2 and CCL5 are overexpressed in 

human and murine breast tumors and play a central role in mobilization of monocytes into 

tumors and differentiation into TAMs (14, 34). To evaluate whether these chemokines are 

associated with tumor delivery of PLD or NL-doxo in vivo, we measured intratumoral 

concentrations of CCL2 and CCL5 at 0, 24, 48, and 96 h after PLD or NL-doxo administration 

using multiplex chemokine assay.  

Baseline CCL2 concentration was 5-fold higher in T11 tumors than C3-TAg tumors (18 

± 1.5 versus 3.8 ± 0.5 ng/g: mean ± SEM, respectively) (P<0.0001) (Fig. 3. 4A). CCL2 

concentration in tumors increased over 96 h to a greater extent after PLD compared to NL-doxo 

in both models (Fig. 3. 4A). Interestingly, it was noted that the time profile of CCL2 in tumors 

resembled the time course of TAMs after NL-doxo and PLD in T11 (Fig. 3. 3C, D, and 4A). In 

plasma, baseline CCL2 concentrations were 2-fold higher in T11 compared to C3-TAg (148 ± 49 

versus 74 ± 8 ng/mL, respectively) (P=0.19) (Fig. 3. 4B). Plasma CCL2 concentration was 

significantly increased at 96 h after PLD in C3-TAg model (P=0.023), but little was changed in 

T11 model (Fig. 3. 4B).  

In contrast to CCL2, there was no difference in baseline CCL5 tumor concentrations 

between two models (0.5 ± 0.1 versus 0.4 ± 0.1 ng/g: mean ± SEM) (Fig. 3. 4C). After PLD 

administration, there was a noticeable increase in CCL5 tumor concentrations at 96 h in T11 

model (P=0.002), but a high variability was observed at 96 h in C3-TAg model (P=0.24) (Fig. 3. 

4C). In plasma, baseline CCL5 concentrations were similar between two models. Little change 
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was observed in plasma CCL5 concentration after PLD or NL-doxo administration in both 

models (Fig. 3. 4D).   

Next, we assessed the total amount of chemokine produced in tumors after PLD or NL-

doxo administration by calculating the AUC from 0 to 96 h, a measured index of the total 

amount of a chemokine produced over time. CCL2 AUC0-96h was significantly greater in T11 

model compared with C3-TAg model after PLD administration (707 ± 119 versus 2,332 ± 235 

ng·h/g: mean ± SEM; P<0.05) and NL-doxo (406 ± 76 versus 1,505 ± 218 ng·h/g; P<0.05). 

However, there was no difference in plasma CCL2 AUC0-96h, plasma CCL5 AUC0-96h, and tumor 

CCL5 AUC0-96h between two models. Together, these data indicate that there was an inverse 

relationship between the levels of intratumoral CCL2 expression and tumor delivery of PLD. 

Moreover, PLD showed to induce CCL2 expression in tumors to a greater extent than NL-doxo 

and the increase was more pronounced in T11 model compared to C3-TAg model.   

Collagen and the Vasculature in Tumors. To assess the effects of tumor physiology on 

the tumor delivery of NL-doxo and PLD, tumors at baseline were stained for extracellular 

collagen matrix (collagen IV) and the quantity and physiologic state of the vasculature (CD31) 

(Fig. 3. 2) (17). We also evaluated the changes from baseline at 96 h after NL-doxo or PLD 

administration to characterize the interaction between the drugs and these factors.  

H-score of collagen at baseline was 1.5-fold greater in C3-TAg than T11 (82 ± 13 versus 

53 ± 24, respectively; P>0.05). Collagen expression tended to modestly increase after 

administration of NL-doxo and PLD in both models except in T11 tumors treated with NL-doxo 

(P>0.05) (Fig. 3. 5).  

The baseline vascular quantity measured by MVD score was significantly greater in T11 

tumors compared to C3-TAg tumors (933 ± 65 versus 691 ± 67 mean MVD ± SEM, 
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respectively) (P=0.04) (Fig. 3. 6A). Most of the blood vessels identified were small (~87%), 

followed by medium (12%) and large (1%) in both models (Fig. 3. 7). In addition, a significantly 

greater number of blood vessels in T11 tumors were shown to have open lumen compared to C3-

TAg tumors (P=0.01), indicating hyperperfusion and hyperpermeability of the vasculature in 

T11 tumors (Fig. 3. 6B). After administration of NL-doxo or PLD, the vascular quantity in C3-

TAg tumors did not change over time (Fig. 3. 6C); however, there was a 31 % decrease in MVD 

score from baseline to 96 h after PLD in T11 tumors (933 ± 65 at 0 h versus 555 ± 69 at 96 h: 

mean MVD ± SEM; P>0.05) (Fig. 3. 6D). 

Vascular Endothelial Growth Factors (VEGF) in Tumors. VEGF-a and VEGF-c are 

known for their central role in angiogenesis and lymphangiogenesis in the tumor 

microenvironment, respectively (30). As these growth factors play a crucial role in determining 

vascular permeability, lymphatic drainage of fluid from tumors, and EPR effects, intratumoral 

VEGF-a and VEGF-c were measured to examine the impacts on transvascular transport of NL-

doxo and PLD. At baseline, VEGF-a was approximately 7-fold higher in T11 tumors than C3-

TAg tumors (11 ± 1.6 versus 1.5 ± 1.2 ng/g: mean ± SEM; P=0.003) (Fig. 3. 8A). VEGF-c was 

2-fold higher in C3-TAg tumors compared to T11 tumors at baseline (2.3 ± 0.4 versus 1.1 ± 0.1 

ng/g) (P=0.03) (Fig. 3. 8B).   

To explore the effects of PLD and NL-doxo on angiogenesis in different breast tumor 

subtypes, we evaluated the modulation of these pro-angiogenic factors over time after each drug 

treatment. Surprisingly, the effects of PLD and NL-doxo on expression of VEGF-a and VEGF-c 

appeared to vary with breast tumor subtypes. After PLD administration, VEGF-a in T11 tumors 

was steadily decreased in T11 but increased in C3-TAg tumors (P=0.02) (Fig. 3. 8A). This 

finding was consistent with the changes seen in the MVD score after PLD administration (Fig. 3. 
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4E and F). PLD significantly reduced VEGF-c in C3-TAg tumors (P=0.02), but elevated it in 

T11 tumors (P=0.05) (Fig. 3. 8B). NL-doxo also altered the expression of VEGF-a and VEGF-c 

in both models, but to a lesser extent compared to PLD (Fig. 3. 8A and B). These results suggest 

that T11 tumors exhibit hypervascularization and impaired lymphatic functions compared to C3-

TAg tumors as demonstrated by higher VEGF-a and lower VEGF-c, which may hamper the 

tumor delivery of PLD (13, 17). In addition, PLD demonstrated anti-angiogenic effects and pro-

lymphangiogenic effects on T11 tumors, which may return the vasculature to more normal 

phenotype over 96 hour, but not on C3-TAg tumors (17, 35).    

Efficacy. In order to evaluate the effectiveness of PLD or NL-doxo in C3-TAg and T11 

breast tumors, we performed the efficacy studies using no treatment (NT), NL-doxo, and PLD. 

With a null hypothesis of equal tumor growth with a chemotherapeutic agent in two groups of 

murine tumor models of breast cancer, 15 mice per group give 80% power to detect a difference 

of 1.06 SD at two-sided α level of 0.05 based on error estimates from previous study results (20). 

We tested 20 mice per treatment group for each mouse model to have an appropriate power to 

detect a difference in responses. 

Intermediary tumor volume at 21 days for C3-TAg model and at 14 days for T11 model 

was used to quantify the therapeutic responses. The 21 day and 14 day response for each model 

was chosen as the primary response endpoint based on the fact that 50% of the untreated animals 

did not survive past 21 days for C3-TAg model and 14 days for T11 model. The median and 

range of survival days of untreated C3-TAg and T11 mice were 20 (12-47) and 15 (14-20), 

respectively (20).  

Mean tumor growth is presented in Fig. 3. 9A and B. Mean tumor volume comparison 

indicated that PLD was more efficacious at inhibiting the growth of both breast tumors compared 
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to no treatment or NL-doxo (P=0.013 and P<0.0003, respectively). TGI% of NL-doxo and PLD 

was 34.6 and 56.8 in C3-TAg model, and 29.6 and 76.3 in T11 model, respectively, which 

indicates that T11 tumors may be slightly more responsive to PLD compared to C3-TAg tumors 

(Fig. 3. 9C and D). KM plots are presented in Fig. 6E and 6F. PLD significantly prolonged the 

survival of C3-TAg models (P<0.0001), but modestly in T11 models (P=0.083) compared with 

no treatment and NL-doxo. However, it should be noted that T11 tumors treated with PLD 

became ulcerative in 18 days post treatment and were terminated in accordance to IACUC 

guidelines as a humane endpoint for the study. Ulceration is a lesion typified by a necrosis of 

tissues, which may reflect responses of T11 tumors to PLD (36). Thus, the results of overall 

survival for T11 mice treated with PLD may not reflect the accurate survival outcomes.  

 

3. 4. Discussion 

Heterogeneity in tumor cells and/or the tumor microenvironment observed within and 

between tumor types is suggested to be a contributing factor to inefficient transport of 

nanomedicines to tumors, but there are limited preclinical and clinical data to understand the 

mechanisms and correlate the varying clinical responses to nanomedicines (5, 9, 11).     

We used genomically validated murine breast tumor models and demonstrated that tumor 

delivery of PLD was significantly greater in the basal-like C3-TAg model compared to the 

claudin-low T11 model (P<0.05), whereas the difference in tumor delivery was not seen with 

NL-doxo. In addition, claudin-low T11 tumors were more responsive to PLD compared to basal-

like C3-TAg tumors. To evaluate which tumor-associated factors may contribute to the variable 

tumor delivery and efficacy of PLD in breast tumor subtypes, we assessed the physiological 

factors that have shown to be associated with NP transportation into and within tumors, 
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including TAMs, collagen, and blood and lymphatic vasculature as well as chemokines (13, 14, 

17) 

TAMs are major leukocytes recruited into murine and human tumors by chemoattractants 

and educated by the tumor microenvironment to promote tumor progression (13, 29). 

Macrophages have been shown to be involved in phagocytosis and clearance of NPs (7, 8, 10, 

11) and to promote delivery of NPs into tumors serving as a “Trojan Horse” (37). Based on the 

evidence, we evaluated TAMs in association with tumor delivery and efficacy of PLD compared 

to NL-doxo in two breast tumor subtypes. The baseline level of TAMs were similar between two 

models, which indicates that the level of TAMs may not account for the variable tumor delivery 

of PLD in these breast tumor subtypes (38, 39). However, the different changes of TAMs over 

time after NL-doxo or PLD in two models implicate the drug- and tumor-dependent interaction 

between TAMs and drugs. Consistent with data generated in studies by our group and others, our 

finding indicates that uptake of PLD by TAMs may lead to cytotoxicity and cause a temporal 

decrease in the number of TAMs (12, 40). 

Recruitment of TAMs to solid tumors is regulated by chemokines, in particular CCL2, 

secreted by both malignant and stromal cells (14, 41). Hence, the system of CCL2 and its major 

receptor CCR2 has been shown to promote tumor cell survival and motility (42), metastasis (43), 

and angiogenesis (41). In addition, induction of CCL2 expression and CCL2-mediated 

monocyte/myeloid cell recruitment have shown to mediate therapeutic anticancer immune 

response elicited by immunogenic chemotherapy (i.e. doxorubicin) (44) and counteract the 

antitumor effects of vascular-targeted therapies (i.e. VEGF inhibitor) as a compensatory 

mechanism (45, 46). In consistent with these observations, the expression of CCL2 in both C3-

TAg tumors and T11 tumors was increased after NL-doxo and, to a greater extent, after PLD, 



                                                                               105 

 

suggesting that PLD is more immunogenic compared to NL-doxo (6, 7). In addition, in T11 

tumors where PLD exhibited anti-angiogenic effects, PLD-mediated induction of CCL2 

expression was significantly greater compared to C3-TAg tumors (45, 46).     

In addition to cancer, CCL2 is also well studied for its chemotactic effects, activation of 

stellate cells, and angiogenesis in acute and chronic liver inflammation (47). Given that cancer 

can be considered as a chronic inflammatory disease, it is possible that elevated plasma CCL2 

may serve as an inflammatory stimulus to monocytes and influence the migration and infiltration 

of macrophages to liver, spleen, and other organs (48). NP transport may be enhanced via 

increased angiogenesis, which influences the uptake by macrophages in the affected organs (8, 

39, 47, 48). This may explain the greater accumulation of PLD in the liver and spleen from the 

T11 model compared to the C3-TAg model. However, to confirm this possibility, further 

experiments to assess hepatic blood vessels and the function of macrophages in these organs 

before and after PLD administration are needed.  

The tumor interstitial spaces comprise a densely interconnected network of collagen 

fibers that interact with proteoglycans and glycosaminoglycans (17). The interstitial transport of 

liposomes via diffusion is determined by collagen content and substantially blocked due to 

interactions with collagen matrix (17). In our studies, the baseline level of collagen was similar 

between two breast tumor subtypes and the changes in collagen after NL-doxo and PLD were not 

noticeable, indicating that collagen matrix does not interact with PLD or NL-doxo in these breast 

tumor models.   

The ratio of tumor to plasma AUC0-96h of PLD in C3-TAg model and T11 model was 0.30 

and 0.15, respectively, which suggests that the efficiency of transvascular transportation of PLD 

into tumor is 2-fold higher in C3-TAg model. These findings led us to measure the amount and 
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physiologic state of the vasculature and pro-angiogenic factors for blood microvascular 

endothelial cells (VEGF-a) and lymphatic endothelial cells (VEGF-c) in these models. 

Interestingly, Claudin-low T11 tumors exhibit features of hypervascularization and inefficient 

lymphatic networks, which may increase interstitial fluid pressure (IFP) (17) and hamper the 

transvascular transport of PLD (17, 49). Consistent with our findings, RNA expression profiling 

of more than 3,000 human breast tumors showed that claudin-low tumors had the highest 

vasculature signature expression compared to any of the other breast tumor subtypes (24). In 

addition, claudin-low tumor cell lines exhibited endothelial cell-like tube morphology with high 

vascular permeability compared to other breast tumor subtypes (24).   

The interactions between PLD and the tumor vasculature are different between two breast 

tumor subtypes. PLD exhibited normalizing effects on the blood and lymphatic vessels over 96 h 

and decreased the vascular density (MVD score) by 30% in claudin-low T11 tumors; however, 

no such changes were observed in basal-like C3-TAg tumors. Consistent with our finding, it has 

been reported that Doxil treatment exerted strong tumor growth inhibitory effects in B16.F10 

melanoma-bearing mice as well as strongly reduced the intratumoral level of VEGF-a, which is 

produced in high amounts by melanoma cells (38). After clodronate-containing long circulating 

liposome (LCL), known for its TAM-suppressive effects, a significantly strong additional 

antitumor effect was observed with additional Doxil administration compared to that induced by 

clodronate-LCL alone; however, there was no additional reduction in VEGF-a expression after 

administration of combination of Doxil and clodronate-LCL compared to that after 

administration of clodronate-LCL alone (38). This indicated that Doxil mainly acts via direct 

cytotoxic effects on tumor cells with slightly suppressing effects on TAM-mediated angiogenesis 

(38). Based on this observation, T11 tumor-specific VEGF-a suppressing effect of PLD may be 
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associated with greater responsiveness of T11 tumors to PLD. In vitro studies assessing IC50 of 

PLD in human basal-like cells and claudin-low cells would further confirm the different 

sensitivity to PLD between two breast tumor types.    

The fact that T11 is an OST model compared to C3-TAg GEMM may play a role as 

confounding factor in our study despite the conserved gene expression features between murine 

T11 OST tumors and human claudin-low tumors (19, 23, 24). However, the clinical relevance of 

our results from T11 OST models can be justified on the basis of the evidence showing that gene 

expression signatures derived from chemotherapy-treated T11 models successfully predicted the 

pathological complete response to anthracycline/taxane therapy in human patients with breast 

cancer (20, 23). Our findings may not be applicable to other NP platforms with different 

targeting strategies and/or surface characteristics (i.e., passive targeting vs. active targeting, lipid 

versus polymeric) (1, 2, 4, 17). Jain et al reported that vessel normalization with anti-angiogenic 

therapies improved the delivery and effectiveness of small NP (diameter, 12 nm) but not large 

NP (125 nm), emphasizing the importance of optimization of both NP and the tumor 

microenvironment (50). Thus, it is critical to profile the tumor microenvironment within and 

between tumor types and select patients with tumors that are likely to respond to NP-based 

therapies (5, 17).      

Studies have reported that breast tumor classification based on gene expression profiling 

adds significant prognostic and predictive information to standard parameters (i.e. hormone 

receptor status, tumor size and grade, and node status etc.) for patients with breast cancer (16, 

19-24). Intrinsic human and murine breast tumor subtypes have shown different sensitivities to 

chemotherapies including neoadjuvant anthracycline/taxane-based treatment (19, 20, 23). In line 

with that, we demonstrated that the biologic heterogeneity of breast tumors may affect the 
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delivery and efficacy of NP-based therapies in murine models and not all breast tumors may be 

uniformly conducive to NP therapies. Our findings suggest that PLD and other NP-based 

therapies for breast cancer need to be evaluated with respect to the heterogeneity of breast 

tumors in the retrospective and prospective studies.  
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Table 3. 1. Product information on DoxovesTM-Liposomal Doxorubicin from FormuMax 
Scientific, Inc. 

Description DoxovesTM-Liposomal Doxorubicin HCl 

Catalogue # F30204B-D 

Lipid composition HSPC/CHOL/Mpeg2000-dspe (56.3:38.4:5.3 mol%) 

Active Doxorubicin HCl 

Analytical data 

Lipid concentration 40.5 ± 0.5 Mm (29.7 ± 0.4 mg/ml) (Stewart assay) 

Drug concentration 4.00 ± 0.07 mg/ml (UV)   

Free drug concentration 0.02 mg/ml (filtration/UV) 

Drug encapsulation efficiency 
> 99.0%  

(calculated from free drug and total drug concentration) 

Hydration solution (battery) 250 mM ammonium sulfate 

External buffer solution 10 wt% sucrose, 10 mM histidine pH6.5 

Particle size (ZetaPALS) Mean diameter: 79.1 ± 0.5 nm; Half-width:20.5 ± 1.0 nm, 

Polydispersity: 0.07 ± 0.01 

Zeta potential (ZetaPALS) -36.1 ± 1.0 mV(measured in 1 mM NaCl) 

Form/color 
Translucent, red and free flow liposomal dispersion, no 

visible particles/aggregates 

Stability Product is sterile filtered and filled in autoclaved vials 

a: HSPC: fully hydrogenated phosphatidylcholine 

b: CHOL: cholesterol,  

c: mPEG2000-DSPE: 1,2-distearoyl-sn-glycero-3-phophoethanolamine-N-methoxy(polyethylene 

glycol)-2000] 
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Table 3. 2. Doxorubicin AUC0-96h in plasma, tissues, and tumor in the C3-TAg model and the 

T11 model after PLD or NL-doxo administration at 6 mg/kg I.V. x 1 via tail vein 

Model C3-TAg  T11 

Drug PLD NL-doxo PLD NL-doxo 

Plasma 
Encapsulated Released 

0.56 ± 0.03 
Encapsulated Released 

0.87 ± 0.06 
1,610 ± 111 31 ± 3 1,449 ± 57 27 ± 1.6 

Tumor 
Sum total doxorubicin Doxorubicin Sum total doxorubicin Doxorubicin 

480 ± 71* 57 ± 10 210 ± 30* 61 ± 12 

Liver 
Sum total doxorubicin Doxorubicin Sum total doxorubicin Doxorubicin 

438 ± 18* 199 ± 17 687 ± 61* 247 ± 15 

Spleen 
Sum total doxorubicin Doxorubicin Sum total doxorubicin Doxorubicin 

153 ± 35 145 ± 32 306 ± 86 111 ± 17 

Lung 
Sum total doxorubicin Doxorubicin Sum total doxorubicin Doxorubicin 

255 ± 16 133 ± 7 248 ± 19 208 ± 21 

NOTE: AUC0-t of NL-doxo and PLD was calculated by noncompartmental analysis using 

Phoenix v.6.2. Data are presented as mean ± standard error of the mean (SEM).  

a:*,  P <0.05 (C3-TAg vs. T11). P-values were calculated using Nedelman’s modification of the 

Bailer method for sparse samples, using a two-sample test (32).  

b: NL-doxo: NL-doxorubicin.  

c: AUC0-96h (µg·h/mL and µg·h/g for plasma and tissues, respectively) = area-under the 

concentration versus time curve from 0 h to 96 h. 
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Table 3. 3. Baseline and total influx of F4/80+ TAMs in the C3-TAg model and the T11 model 

after PLD or NL-doxo administration at 6 mg/kg I.V. x 1 via tail vein 

Model  C3-TAg T11 

Regions Of 

Interest 

(ROI) 

Baseline 
AUC0-96h 

post PLD 

AUC0-96h 

post NL-doxo 
Baseline 

AUC0-96h 

post PLD 

AUC0-96h 

post NL-doxo 

Capsule 191 ± 4.3 16,356 ± 703 16,473 ± 604 166 ± 95.6 17,304 ± 274 15,855 ± 1,099 

Viable 61 ± 9.2 9,855 ± 1182 8,605 ± 951 90 ± 21.9 12,821 ± 428 10,185 ± 1,679 

Necrotic 199 ± 3.3 18,764 ± 645 18,946 ± 562 189 ± 8.1 17,656 ± 1,098 15,664 ± 1,518 

NOTE: TAMs were measured by F4/80 in tumor from individual mouse via IHC. The expression 

of F4/80 at baseline and AUC0-96h of F4/80, an indicator of total influx of macrophages, after 

PLD or NL-doxo administration was represented as mean ± SEM of three to four mice. AUC0-96h 

was calculated by non-compartmental analysis using Phoenix v.6.2.  

a: AUC0-96h = area-under the H-score of F4/80 versus time curve from 0 h to 96 h. 
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Fig. 3. 1. Concentration versus time profiles of doxorubicin after administration of PLD or NL-

doxo at 6 mg/kg I.V. x 1 via tail vein in (A and B) plasma, (C) tumor, (D) liver, (E) spleen, and 

(F) lung in basal-like C3-TAg and claudin-low T11 breast tumor models. Samples (n=3 mice at 

each time point) were obtained at 0.083, 0.5, 1, 3, 6, 24, 48, 72, and 96 hours following PLD or 

NL-doxo administration. Encapsulated and released doxorubicin after administration of PLD in 

plasma (B) and sum total (encapsulated and released) doxorubicin in tumor and tissues (C-F) are 

presented. Each time point is represented as the mean ± standard deviation (SD). *P<0.05 

(AUC0-96h in the C3-TAg model versus AUC0-96h in the T11 model). Equality of AUC was tested 

using Nedelman’s modification of the Bailer method for sparse samples, using a two-sample test 
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(32). LLOQ for encapsulated doxorubicin: 300 ng/mL, released doxorubicin: 10 ng/mL, and sum 

total doxorubicin in tissue: 10 ng/g. NL-doxo= NL-doxorubicin. LLOQ= lower limit of 

quantification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                               

 

Fig. 3. 2. Hematoxylin & Eosin (H&E), and immunostaining of F4/80, Collagen IV, and CD31 

in tumor from basal-like C3-TAg and claudin

staining of tumors (brown staining in positive cells) at baseline in the C3

models are shown at 20X apparent magnification. (

stained for (i) H&E, (ii) F4/80, (iii) Collagen IV and (iv) CD31. (

sections stained for (i) H&E, (ii) F4/80, (iii) Collagen IV and (iv) CD31. (

(i) F4/80-, (ii) Collagen IV-, and (iii) CD31

Aperio Membrane v9 algorithm and color deconvolutio

respectively, and the Definiens Tissue Studio software for CD31. Digital image of each stained 

slide was scanned using the Aperio ScanScope XT at 20X magnification. 
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Hematoxylin & Eosin (H&E), and immunostaining of F4/80, Collagen IV, and CD31 

TAg and claudin-low T11 breast tumor models

tumors (brown staining in positive cells) at baseline in the C3-TAg and the T11 

models are shown at 20X apparent magnification. (A) Representative C3-TAg tumor sections 

stained for (i) H&E, (ii) F4/80, (iii) Collagen IV and (iv) CD31. (B) Representative T1

sections stained for (i) H&E, (ii) F4/80, (iii) Collagen IV and (iv) CD31. (C) Digital images of 

, and (iii) CD31-stained T11 tumor sections after analysis through the 

Aperio Membrane v9 algorithm and color deconvolution methods for F4/80 and Collagen IV, 

respectively, and the Definiens Tissue Studio software for CD31. Digital image of each stained 

slide was scanned using the Aperio ScanScope XT at 20X magnification.  

 

Hematoxylin & Eosin (H&E), and immunostaining of F4/80, Collagen IV, and CD31 

low T11 breast tumor models. Representative 

TAg and the T11 

TAg tumor sections 

) Representative T11 tumor 

) Digital images of 

stained T11 tumor sections after analysis through the 

n methods for F4/80 and Collagen IV, 

respectively, and the Definiens Tissue Studio software for CD31. Digital image of each stained 
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Fig. 3. 3. F4/80 H-score in tumor versus time profiles in basal-like C3-TAg and claudin-low T11 

breast tumor models after administration of PLD or NL-doxo at 6 mg/kg I.V. x 1 via tail vein. 

F4/80 H-score over time in the C3-TAg tumors following (A) NL-doxo and (B) PLD 

administration. F4/80 H-score over time in the T11 tumors following (C) NL-doxo and (D) PLD 

administration. NL-doxo and PLD affected the infiltration of TAMs over time in a drug- and 

tumor type-dependent manner. Each time point is represented as mean ± SD (n=3). Capsule: 

Peritumoral/Peripheral tumor; Viable tumor: Intratumoral viable tumor; Necrotic: Intratumoral 

necrotic tumor. NL-doxo= NL-doxorubicin. TAMs= tumor-associated macrophages. 
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Fig. 3. 4. Profiling of chemokine ligands CCL2 and CCL5 in basal-like C3-TAg and claudin-low 

T11 breast tumor models after administration of PLD or NL-doxo at 6 mg/kg I.V. x 1 via tail 

vein. (A) Intratumoral CCL2 concentrations versus time profiles and (B) plasma CCL2 

concentration versus time profiles after PLD or NL-doxo administration in the C3-TAg and the 

T11 models. The baseline intratumoral expressions of CCL2 were significantly higher in the T11 

compared to the C3-TAg (P<0.0001). PLD strongly induced the secretion of CCL2 over 96 h in 

the C3-TAg (P=0.07) and the T11 tumors (P=0.05) when compared to the slightly increased 

CCL2 secretion after NL-doxo administration in both models. In plasma, baseline CCL2 

concentrations were 2-fold higher in the T11 model compared to the C3-TAg model (P=0.19). 

Plasma CCL2 concentration was significantly increased at 96 h after PLD in the C3-TAg model 

(P=0.02), but little was changed in the T11 model. (C) Intratumoral CCL5 concentrations versus 

time profiles and (D) plasma CCL5 concentrations versus time after PLD or NL-doxo 

administration in the C3-TAg and the T11 models. There was no difference in the baseline 

intratumoral CCL5 concentrations between the two models. After PLD administration, T11 
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tumors showed significantly increased CCL5 concentrations at 96 hour (P=0.002), but a high 

variability was observed at 96 hour in the C3-TAg model (P=0.24). In plasma, the baseline 

CCL5 concentrations were similar between the two models and little change was observed after 

PLD or NL-doxo administration in both models. Data are presented as mean ± SEM (n=3 per 

each time point). P-values were calculated using t-test for the baseline comparison and for the 

change from baseline to 96 h after PLD or NL-doxo administration. 
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Fig. 3 5. Profiling of collagen in basal-like C3-TAg model and claudin-low T11 model at 

baseline and at 96 h after administration of PLD or NL-doxo at 6 mg/kg I.V. x 1 via tail vein. 

Data are presented as mean ± SEM of collagen H-score (n=3 or 4) in (A) the C3-TAg and (B) the 

T11 tumors. The baseline collagen content was similar between the two models. There was no 

significant change at 96 h after NL-doxo or PLD administration in both models. Collagen in the 

tumor capsule and the viable tumor were assessed for analysis. 
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Fig. 3. 6. The amount of vasculature and the levels of VEGF-a and VEGF-c in basal-like C3-

TAg and claudin-low T11 breast tumor models at baseline and at 96 h after administration of 

PLD or NL-doxo at 6 mg/kg I.V. x 1 via tail vein. (A) MVD score (number of CD31-positive 

objects per unit area) at baseline in the C3-TAg and the T11 tumors. The T11 tumors had a 

significantly greater amount of the blood vessel endothelial cells (BECs) compared to the C3-

TAg tumors (P=0.04). BECs in the tumor capsule and the viable tumor were assessed for 

analysis. (B) Open lumen analysis of baseline tumor blood vessels in the C3-TAg and the T11 

tumors showed a significantly higher number of blood vessels with lumen in the T11 tumors 

compared to the C3-TAg tumors (P=0.01). MVD score at baseline and at 96 h after NL-doxo or 

PLD in (C) the C3-TAg and (D) the T11 tumors. Note that there was little change in the amount 

of the vasculature in the C3-TAg tumors after NL-doxo or PLD, but a 30% decrease in the MVD 

score was observed in the T11 tumors after PLD administration. Five most vascularized areas 
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within the tumors (‘hotspot’/0.74 mm2) were chosen for evaluation of the presence of lumen in 

the blood vasculature. Each of these five areas was analyzed and the mean was calculated per 

slide.  
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Fig. 3. 7. Size distribution of baseline blood vessels in the C3-TAg tumors and the T11 tumors. 

Most of the vessels identified were small (~87%), followed by medium (12%) and large (1%) in 

the both tumors. The vascular size was defined as small < 40 µm2, medium >40 µm2 and < 400 

µm2, and large > 400 µm2. Five most vascularized areas within the tumors (‘hotspot’/0.74 mm2) 

were chosen for evaluation of the size distribution. Each of these five areas was analyzed and the 

mean was calculated per slide. Data are presented as mean ± SEM (n= 3 or 4).  
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Fig. 3. 8. Intratumoral levels of VEGF-a and VEGF-c in basal-like C3-TAg and claudin-low T11 

breast tumor models at baseline and at 96 h after administration of PLD or NL-doxo at 6 mg/kg 

I.V. x 1 via tail vein. (A) VEGF-a and (B) VEGF-c versus time profiles after administration of 

PLD or NL-doxo in the C3-TAg and T11 tumors. T11 tumors had significantly higher levels of 

VEGF-a (P=0.003) and decreased levels of VEGF-c (P=0.03) compared to C3-TAg tumors. PLD 

had greater impacts on the levels of VEGF-a (P=0.02) and VEGF-c (P=0.02 and P=0.05) 
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compared to NL-doxo and the effects appeared to vary with breast tumor subtypes. Data are 

presented as mean ± SEM (n=3 or 4). P-values were calculated using unpaired t-test. VEGF= 

vascular endothelial growth factor. 
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Fig. 3. 9. Efficacy studies of no treatment, NL-doxo, and PLD in basal-like C3-TAg and claudin-

low T11 breast tumor models after administration of PLD or NL-doxo at 6 mg/kg I.V. every 

week for 6 weeks. Mean tumor growth curves in (A) the C3-TAg and (B) the T11 models. Data 

are presented as the mean ± SD. Intermediary tumor volumes at (C) 21 days post treatment for 

the C3-TAg model and at (D) 14 days post treatment for the T11 model. Mean tumor volume 

comparison indicated that PLD was more efficacious at suppressing tumor growth in the C3-TAg 

compared to no treatment (P=0.013) and in the T11 compared to no treatment or NL-doxo 

(P<0.0003 for both). P-values were calculated based on adjusted tumor volume, using analysis of 

covariance (ANCOVA) followed by adjustment for multiple comparison using Holm test. 

Baseline tumor volume was considered as covariate. Kaplan-Meier (KM) analysis of survival 
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after no treatment, NL-doxo, or PLD administration in (E) the C3-TAg and (F) the T11 models. 

P-values were calculated using two-sided log-rank test. Survival was measured from the first day 

of drug treatment. 7/7 (no treatment), 17/20 (NL-doxo), and 20/20 (PLD) of the C3-TAg mice 

were analyzed for the efficacy studies. 11/11 (no treatment), 20/20 (NL-doxo), and 19/20 (PLD) 

of T11 mice were analyzed for the efficacy studies. 
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CHAPTER 4:  

QUANTITATIVE TRAIT LOCUS CONTAINING GULP1 GENE IS ASSOCIATED 
WITH ENHANCED CLEARANCE OF PEGYLATED LIPOSOMAL DOXO RUBICIN 

(PLD) IN INBRED MOUSE STRAINS 4 
 

Overview 

Purpose: High variability in the pharmacokinetics (PK) of PEGylated liposomal doxorubicin 

(PLD) has been reported. We hypothesized that genetic variations may be associated with the 

variable disposition of PLD. Methods: We characterized the plasma disposition of encapsulated 

and released doxorubicin after administration of PLD 6 mg/kg IV x1 via tail vein in 23 different 

male inbred mouse strains. Non-compartmental PK analysis was performed to find the best PK 

parameter to discriminate the mouse strains. We carried out genome wide analyses to identify the 

quantitative trait loci linked to the phenotype using haplotype associated mapping (SNPster) and 

the efficient mixed-model association (EMMA) algorithm. Results: An approximately 13-fold 

difference in the plasma clearance (CL) of PLD was observed across strains. A locus containing 

engulfment adapter PTB domain containing 1 (Gulp1) on chromosome 1 was identified by both 

SNPster and EMMA linking the PLD CL to the genetic variations in 23 inbred strains. The gene 

expression analysis demonstrated that Gulp1 expression was differentially regulated in various 

tissues with the highest expression in adipose tissue. In addition, there was a significantly 

positive relationship between Gulp1 expression in adipose tissue and the CL of PLD among 

these inbred strains. Conclusions: Our finding suggests that genetic variations implicated in the 

                                                           
4This chapter will be submitted to the Journal of Pharmacology and Experimental Therapeutics 
and is presented in the style of the journal.   
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phagocytosis, specifically Gulp1 in adipose tissue, may contribute to the variability in the PK of 

PLD.  

 

4. 1. Introduction 

Nanocarrier-based drug delivery systems have advanced diagnosis, imaging, and 

treatment of diseases, such as inflammation and cancer (1). The use of nanoparticles (NPs), 

particles ranging from 1 to 1000 nm in size, has enabled conventional small molecule agents to 

overcome the limiting factors, such as poor solubility, limited bioavailability, and unwanted 

toxicity (2). A number of NP-based diagnostic and therapeutic agents have been investigated 

under various stages of preclinical and clinical development (3, 4). For diagnostic and imaging 

applications, studies have shown that NP-based imaging contrasts allow for the molecular 

imaging of the target site (i.e., tumors) as well as improve sensitivity and specificity of the 

imaging due to favorable physicochemical and pharmacokinetic properties of NPs (4). Moreover, 

more than 20 NP-based therapeutic agents have been approved by the U.S. Food and Drug 

Administration (FDA) and successfully translated into the clinic (3, 5). Among various NP 

platforms, liposomal drugs are one of the most commonly used NPs for therapeutics purposes (3, 

5).   

 The mononuclear phagocyte system (MPS) consists of monocytes, macrophages and 

dendritic cells and is mainly responsible for antigen presentation, cytokine secretion, and 

phagocytosis that protects the host against pathogens and foreign particles (6). NPs have been 

shown to be cleared and removed from the circulation by the MPS, primarily the monocytes and 

macrophages (7). The pharmacokinetics (PK) of NPs is dependent on the carrier until the drug 

gets released from the carrier (2, 8). After the drug is released from the carrier, the PK of the 

drug will be the same as that of the small molecule drug (2, 9). We have previously shown that 
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the variability in the PK and pharmacodynamics (PD) of nanomedicines such as Doxil® 

(PEGylated liposomal doxorubicin; PLD) and S-CKD602 (PEGylated liposome of CKD-602, a 

camptothecin analog) is associated with patient’s age, gender, and the function of circulating 

monocytes in plasma of patients with solid tumors (10-12). However, the molecular mechanisms 

underlying this relationship have not yet been investigated and remain poorly understood. 

Genome-wide association studies (GWAS) have advanced the field of human genetics 

and play a key role in embracing personalized medicine in the clinic by enhancing molecular 

understanding of human diseases and prediction of patients’ response to therapies (13). The 

identification of the quantitative trait loci (QTLs) and/or genetic variants, such as single 

nucleotide polymorphisms (SNPs) for various phenotypes and diseases in human has positively 

influenced the health care in many ways, such as disease susceptibility (i.e., BRCA1 and BRCA2 

for breast and ovarian cancer) (14) and pharmacogenomics (i.e., CYP2C9 and VKORC1 for 

warfarin treatment) (15). However, only a limited number of clinically useful biomarkers have 

been identified by human GWAS and implemented into the clinic due to challenges including 

small size population with genetic variant(s) of interest, inaccessibility to relevant tissues, and 

uncontrolled environmental factors (13).     

As alternative strategies to overcome these barriers present in human GWAS, increasing 

efforts have been made to advance the genetic mapping studies using model organisms, such as  

mice (16). Advances in microarray and sequencing technology have made it possible to yield an 

almost complete map of genetic variation in numerous laboratory mouse strains (17). Studies 

have shown that candidate gene(s) for quantitative phenotypic traits identified by GWAS in 

commonly used laboratory strains successfully translated to identification of the genetic basis of 

disease and traits in humans (16, 18-20). Thus, these mice can serve as valuable experimental 
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tools to model the phenotypic variation within the human population and potentially identify the 

genes implicated in the phenotype in humans (16).         

PLD has been approved for the treatment of Kaposi’s sarcoma, multiple myeloma, and 

refractory ovarian cancer (5). However, it is noted that significant variability in the 

pharmacokinetics (PK) of PLD has been reported in preclinical models and patients (21). Thus, it 

is imperative to elucidate the mechanisms underlying the high interpatient variability in the PK 

and, ultimately, modest efficacy of PLD (22). In this study, we aimed to investigate the 

molecular basis of variable disposition of PLD using a panel of inbred mouse strains through 

GWAS.     

 

4. 2. Materials and Methods 

Mice. All animal experiments were performed with the approval of University of North 

Carolina (UNC) at Chapel Hill’s Institutional Animal Care and Use Committee (IACUC). The 

23 inbred strains used were purchased from the Jackson Laboratories (Bar Harbor, ME): 

129S1/SvlmJ, A/J, BALB/cByJ, C57BLKS/J, C58/J, CBA/J, CE/J, KK/HIJ, LG/J, LP/J, 

MA/MyJ, NOD/ShiLtJ, NON/ShiLtJ, NZO/HILtJ, NZW/LacJ, PL/J, RIIIS/J, SJL/J, SM/J, 

SWR/J and three wild-derived inbred strains: PERA/EiJ, PWD/PhJ, WSB/EiJ.  Ten to twelve 

week old mice were used in the study. Mice were housed in a pathogen free facility at the 

Genetic Medicine Building of the UNC at Chapel Hill. Animals were fed an irradiated NIH-31 

modified 6% mouse/rat Sterilizable Diet (Teklad/Harlan Laboratories, Inc.) consisting of 18.0% 

crude protein, 6.0% crude fat, and 5.0% crude fiber and had access to water ad libitum (reverse 

osmosis, 1 ppm Cl). Mice were housed on irradiated Enrich-o’cobs laboratory enrichment 

bedding (bed-o’cobs/The Andersons, Inc.) in static microisolators on an alternating 12-hour 
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light/dark cycle at 21ºC to 22ºC and 40% to 60% humidity. All experiments were approved by 

the IACUC and conducted in agreement with the NIH policy.  

PK Studies. PLD (Doxil®) used for PK studies in mice was purchased from Janssen 

(Horsham, PA). PLD was administered at 6 mg/kg IV x1 via a tail vein. Mice (n=4 per inbred 

strain) were euthanized at 0.083, 3, 24, and 48 hours after administration of PLD. Blood was 

collected via terminal cardiac puncture using lithium heparin as an anticoagulant under 

ketamine/DexDomitor anesthesia and processed for plasma by centrifugation (1,500 g for 5 

minutes). Plasma was processed immediately to measure encapsulated and released doxorubicin 

using solid phase separation methods as described previously (23). Doxorubicin concentration 

was determined using an existing high performance liquid chromatography-fluorescence (HPLC-

FL) assay (23). PK analysis of encapsulated and released doxorubicin was performed by non-

compartmental method using Phoenix WinNonlin® (v. 6.02, Pharsight Corp. - Mountain View, 

CA). Area-under- the concentration versus time curve (AUC) from 0 to the last measurable 

sample (AUC0-last), clearance (CL), Cmax, and Tmax were calculated. The area under the 

concentration versus time curve (AUC) was calculated using the linear up and log down rule. 

Quantitative Trait Loci (QTL) Mapping. We performed a genome-wide association 

mapping study using two different algorithms: EMMA (Efficient Mixed-Model Association; 24) 

and SNPster (25). We used the Mouse Diversity Array (MDA) SNPs which contains 

approximatley 356,596 SNPs expected to cover most of genetic variation in the 23 inbred strains 

(genotypes available from http://cgd.jax.org/cgdsnpdb/) (26).  

The EMMA algorithm is based on the mixed-model in which the population structure and 

genetic relatedness in strains are corrected and an F-test is performed at each SNP to test 

association with the phenotype (24). The SNPster software performs ANOVA tests using 
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haplotypes inferred from 3 consecutive SNPs based on SNP data available from the MDA (26). 

Each inferred haplotype is tested for the association with input traits by calculating an F statistics 

with ANOVA. A weighted bootstrap method is used to detect association peaks based on the 

population structure in the mouse diversity panel (25). For the phenotype, we used the log-

transformed values of the plasma clearance (CL) of encapsulated doxorubicin.     

PK and Statistical Analysis. PK analysis was performed by non-compartmental method 

using Phoenix WinNonlin® v. 6.02 (Pharsight Corp., Mountain View, CA). Statistical analyses 

were carried out using Prism5 software (GraphPad Software, Inc.). Simple linear regressions 

were used to explore the linear relationship between Gulp1 gene expression and the CL of PLD 

and between the CL of the plasma encapsulated doxorubicin and the number of monocytes in 

blood. Genome wide significance threshold (-Log10P score) with a conservative Bonferroni 

correction was 6.7 and 6.0 for the EMMA and the SNPster, respectively, in the genome wide 

association mapping with the CL phenotype (24, 25). The false discovery rate (FDR) for the 

EMMA was 19% for the SNPs with - Log10P score >4.3. P value of less than 0.05 was 

considered statistically significant. All statistical tests were two-sided.  

 

4. 3. Results 

Characterization of the PK of PLD in 23 different mouse strains 

To identify the genetic basis for the variability in the PK of PLD, a panel of 23 inbred 

mouse strains was used to model genetic diversity. As a phenotypic measure, we evaluated the 

plasma PK of PLD in male mice from each of 23 inbred mouse strains.  

The PK Analysis of PLD in 23 Inbred Mouse Strains. To determine whether genetic 

factors influence the PK of PLD, 23 inbred mouse strains representing broad genetic variation 

across the mouse genome were evaluated for the PK of PLD. Plasma encapsulated (the drug 
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within the liposomal carrier) and released (active-drug released from the liposomal carrier) 

doxorubicin concentration versus time profiles after administration of PLD at 6 mg/kg IV x 1 are 

presented in Fig. 4. 1. A distinct interstrain variation in the plasma disposition of PLD 

components was observed. SJL/J mice displayed the highest plasma clearance (CL) of PLD, 

whereas 129S1/SvlmJ mice had the lowest plasma CL PLD (Fig. 4. 1). Consistent with high 

variation seen in the encapsulated doxorubicin, there was a notable difference in release of 

doxorubicin from liposome carriers among inbred mouse strains (Fig. 4. 1).   

To characterize the dispositions of plasma encapsulated and released components of PLD 

in 23 inbred mouse strains, non-compartmental PK analysis was performed. As the PK of NPs 

are dependent on the carrier and prolongation of NP circulation in blood stream is critical for 

distribution to target tissues (i.e., sites of inflammation and tumor cells), plasma clearance (CL) 

of encapsulated doxorubicin was assessed. The CL of encapsulated doxorubicin showed robust 

discrimination between the different strains (Fig. 4. 2A). There was an approximately 13-fold 

difference between strains with the highest and lowest CL of PLD. We also evaluated the 

exposure (AUC) of free doxorubicin in plasma to assess the variability in the rate of release of 

doxorubicin from the liposome carriers. There was approximately 5-fold difference between 

strains with the highest and lowest exposure of free doxorubicin in plasma after administration of 

PLD (Fig. 4. 2B). The PK parameters of plasma encapsulated and released doxorubicin 

following administration of PLD in 23 inbred mouse strains are summarized in Table 4. 1.  

Confirmatory PK Studies in Inbred Mouse Strains with low, intermediate, and high 

CL . To confirm this strain-specific plasma PK profile of encapsulated and released components 

of PLD, three inbred mouse strains displaying low, intermediate, and high CL of PLD were 

selected for a second set of independent confirmatory PK studies. The concentrations versus time 
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profiles of plasma encapsulated and released doxorubicin after administration of PLD were 

reproducibly observed with low intrastrain variability (n=3 per time point) in this confirmatory 

PK studies (Fig. 4. 3, Table 4. 2). 

The Relationship between the CL of PLD and the Number of Monocytes in Blood. 

NPs are removed from the circulation by the cells of the MPS, such as circulating monocytes. 

However, it is not known whether variability in the monocyte levels in blood contributes to 

differential PK between individuals. Thus, we used the monocyte cell count in the blood as a 

phenotype for the number of MPS cells. These data were obtained from the Jackson Laboratory 

Mouse Phenome Database web site (phenotypes are available from http://phenome.jax.org; 27). 

All 23 strains had phenotype values available for the circulating monocyte cell count (n/µL x 

103). The monocyte cell counts were measured across on average 13 different individual mice 

per strain. The distribution of the plasma CL of encapsulated doxorubicin with respect to the 

monocyte cell counts in blood showed that there is no correlation between the PLD CL and the 

monocyte counts across different inbred strains (Fig. 4. 4A and B). In addition, there was no 

relationship between monocyte counts in blood and the exposure (i.e., AUC) of released 

doxorubicin in plasma (Fig. 4. 4C and D).  

 

Identification of Candidate Genes for the Variability in the CL of PLD 

Quantitative Trait Loci (QTL) Mapping. To uncover the QTL associated with the 

variability of the PK of PLD, we performed genome wide association mapping studies using two 

SNPster and EMMA. For phenotypes, we used the CL of encapsulated doxorubicin after 

administration of PLD as trait based on the robust discrimination between the different strains 

(Fig. 4. 2A). The haplotype association mapping algorithm using SNPster software infers 
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haplotypes from three adjacent SNPs across the genome and calculates the strength of genetic 

associations between genotype and phenotype pairings (25). At each genetic locus, the 

association score is represented as the negative Log10 transformed P value (-Log10P score). 

SNPster analysis was performed for the encapsulated doxorubicin CL phenotype across 23 

strains using 356,596 informative SNPs. We found the QTL with the highest -Log10P score of 

3.60 on chromosome 1 (44261431-44834919bp) (Fig. 4. 5A, 5C and 6). Due to the conservative 

algorithm and limited power of the study, the strongest signals were not genome wide significant. 

To address the conservative algorithm and limited power of the study, a second analysis 

using EMMA was performed. The locus identified with the SNPster analysis was confirmed by 

EMMA mapping algorithm (24). The QTL identified through EMMA was at position between 

44273428 and 45015110bp and the highest -Log10P score of SNP was 5.40 (Fig. 4. 5B, 5C, and 

7). Although the SNP at the position 44296740bp (rs33510908) has -Log10P score of 5.40, which 

is slightly below the genome wide significance threshold with a conservative Bonferroni 

correction, it was overlapped with the locus identified by the SNPster algorithm (Fig. 4. 5).  

Gene Expression Analysis of Gulp1. The QTL for the CL of PLD identified by two 

separate genome wide association mapping methods was found to be approximately 200 kb away 

from the Gulp1 gene (44608516-44845719bp, GeneID: 51454, MGI: 1920407). Gulp1 gene 

encodes phosphotyrosine-binding (PTB) domain containing engulfment adapter protein 1 

(GULP1), which is mammalian homologue of Caenorhabditis elegans CED-6 (28). Studies have 

shown that GULP1/CED-6 plays a critical role as an adapter protein in phagocytosis of apoptotic 

cells and this function has been conserved in C. elegans, rodents, and human GULP1/CED-6 

proteins (28, 29). Based on the mechanistic link between phagocytes-mediated PLD CL and the 

function of Gulp1 gene, we assessed the relationship between the available expression data of 
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Gulp1 and the plasma CL of encapsulated doxorubicin after administration of PLD. The Gulp1 

RNA expression data from the liver, lung, spleen (the general primary MPS organs), and in 

adipose tissues in untreated inbred mouse strains were evaluated from the BioGPS portal (30, 31). 

The expression of Gulp1 was significantly higher in adipose tissue of mouse strains compared to 

other tissues (Fig. 4. 8A). In addition, there was a significant positive relationship between 

Gulp1 gene expression levels and plasma CL of PLD (R2=0.40, P=0.027). However, the 

association was not observed in other tissues (Fig.  4. 8B, C, and D).      

 

4. 4. Discussion 

The application of nanotechnology to medicine, known as nanomedicine, offers the 

potential to revolutionize various fields of medicines including diagnosis and treatment due to 

enhanced delivery of drug to the target site (4). Advances in understanding of NP pharmacology, 

however, have revealed that there are several biological barriers to overcome and the underlying 

mechanisms for the molecular interaction of NP with cells and tissues remain poorly understood 

(8). Here, we are the first to use a GWAS approach using a panel of inbred mouse strains to 

uncover the genetic variant(s) linked to the PK of PLD and identified that a locus containing 

Gulp1 is associated with the enhanced plasma CL of PLD.  

Inbred mouse strains have several advantages for use in the genetic association studies 

compared with the human population. Due to unique breeding strategies designed to carry out 

GWAS, these recombinant inbred strains are homozygous at each locus, thereby increasing the 

power of the association approaches (26, 32). In addition, classical inbred strains can model a 

larger amount of genetic diversity with most strains genotyped or sequenced completely (17, 26, 

32). Finally, they are completely reproducible due to identical genetic structure within 

individuals of the same strain (16, 26). Consistent with these known benefits, 23 male inbred 
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mouse strains consisting of 21 classical inbred strains and 2 wild-derived inbred strains 

successfully demonstrated a differential plasma CL of PLD across different strains. In addition, 

the CL of encapsulated doxorubicin after administration of PLD was reproducible in an 

independent confirmatory PK studies with low variability within a strain.  

NPs are removed from the circulation by the cells of the MPS, primarily monocytes and 

macrophages (7, 9). Once a NP enters the bloodstream, the adsorption of immunoglobulin or 

complement proteins to the particle surface, called opsonization, occurs (33). The opsonized 

particles are rapidly recognized and ingested by monocytes and macrophages via phagocytosis 

(34). Thus, the capture of NPs by the phagocytes plays a pivotal role in determining the 

disposition and therapeutic effects of nanomedicines. SJL/J strain displayed the most rapid 

plasma clearance (CL) of encapsulated doxorubicin after administration of PLD. In addition, the 

difference in the CL of PLD was approximately 13-fold compared to that of 129S1/SvlmJ with 

the lowest CL. This indicates that there is a substantial variability in NP uptake by the 

phagocytes across inbred mouse strains.   

The rate of in vivo drug release is also an important parameter as it dictates the 

pharmacological activity of the drug at the target site and toxicities (35). We also measured the 

exposure (AUC) of released doxorubicin in plasma after administration of PLD and assessed the 

variability in the drug release from the liposome carrier in these mouse strains. Moderate 

variation (~5-fold difference) between strains was observed with this phenotype and there was 

no correlation between the CL of encapsulated doxorubicin and the exposure of released 

doxorubicin in plasma. This may be due in part to the complex intracellular interaction of 

phagolysosome containing NPs with environmental factors, such as pH and enzymes for 

degradation of carriers (34, 35). In addition, the metabolism of released doxorubicin may be 
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different across the mouse strains (16). It has also been reported that the majority of doxorubicin 

release after administration of PLD does not occur until after accumulation in the tissues (i.e., 

tumors) (36).   

We also investigated the effects of monocyte cell counts on the PK of PLD, including the 

PLD CL and the exposure (AUC) of released doxorubicin. There was, however, no observed 

correlation between the number of circulating monocytes and the PK of PLD, indicating that the 

disposition of PLD is not likely affected by the number of monocytes in the blood, but rather by 

the function of the cells (11). This is consistent with the findings in our prior studies in patients 

with recurrent ovarian cancer. The phagocytosis of monocytes (MO) and dendritic cells (DC) 

and the production of reactive oxygen species (ROS) were evaluated in patients with recurrent 

epithelial ovarian cancer (EOC) administered PLD (11). There were significant associations 

between PLD CL and phagocytosis and ROS production in blood MO/DC in these patients, 

suggesting that probes of MPS function may help predict PLD CL in patients with EOC.  

We mapped the association of CL of PLD to a locus containing Gulp1 on chromosome 1 

using two genomewide analyses, SNPster and EMMA. Gulp1 encodes an engulfment adapter 

protein with an N-terminal phosphotyrosine-binding (PTB) domain and C-terminal proline-rich 

region (29). Adapter protein GULP1 has been shown to physically interact with CED-1/CD91 

and transduce the recognition signal inside the phagocyte to trigger the cytoskeletal 

rearrangements required for phagocytosis (37). GULP proteins have shown to be involved in 

phagocytosis of apoptotic cells through Classical B scavenger receptor type I (SR-BI) in vitro 

and ex vivo (28, 38). Given a key role of phagocytes in the CL of NP, our finding of a candidate 

locus containing Gulp1 from GWAS of the PLD CL strengthens the mechanistic link between 

the dispositions (PK) of NPs and the phagocytes, such as monocytes and macrophages.  
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We assessed the association of Gulp1 gene expression in different tissues with the PLD 

PK in these mouse strains. Interestingly, Gulp1 expression was differentially regulated in various 

tissues with the highest expression in adipose tissue. In addition, there was a significantly 

positive relationship between Gulp1 expression in adipose tissue and the CL of PLD among 

these inbred strains. Adipose tissue is involved in not only metabolism, but also inflammation 

and immune system, especially the MPS (39). It has been shown that adipose tissue in obese 

patients is infiltrated by immune cells, predominantly macrophages, and these adipose tissue 

macrophages (ATMs) mediate chronic inflammation responsible for obesity-induced insulin 

resistance and pathogenesis of type-2 diabetes (40). Interestingly, ATMs in obese animals exhibit 

distinct cellular localization and inflammatory phenotypes (41). It has been shown that obesity 

stimulates the recruitment of monocytes and triggers ATMs from resident into classically-

activated macrophages, which display a pro-inflammatory M1 phenotype and are primarily 

found around dying adipocytes (40, 41). Upon exposure to various inflammatory stimuli (i.e., 

viral and bacterial infections), increased recruitment of circulating precursor monocytes 

contributes to repopulation of tissue-resident macrophages (39). Thus, different activation states 

and consequential functions of macrophages in adipose tissue may result in distinct Gulp1 

expression and positive correlation with the CL of PLD compared to other tissues (i.e., liver, 

lungs, and spleen). In addition, human adipocytes have shown to significantly upregulate the 

mRNA expression of Gulp1 upon the treatment of superparamagnetic iron oxide nanoparticles 

(SPIONs), supporting our observation of the positive correlation between Gulp1 expression in 

adipose tissues and the CL of PLD after PLD administration in 23 inbred strains (42). 

Because the probability scores (-Log10P values) in the haplotype mapping analysis 

(SNPster) and EMMA are based in part on the number of strains sharing the phenotype, adding 



                                                                               144 

 

more strains may increase the genetic diversity and the power to detect the peak(s) with genome 

wide significance (24, 25). In addition, some of the smaller peaks on other chromosomes may 

prove to be important and biologically related to the phenotype (i.e., obesity). QTL analyses of 

crosses between other mouse strains with high and low CL of PLD may provide additional 

information on importance of multiple genes and gene-gene interaction in the PLD PK (Flint and 

Eskin, 2012). In addition, further functional characterizations of Gulp1 (i.e., knockout mice) 

would validate the relationship between Gulp1 and the PLD PK observed in our pioneering 

works (43). However, Gulp1 knockout mice are not currently available.  

In summary, we performed the first GWAS using a panel of inbred mouse strains to 

uncover the genetic variant(s) linked to the PK of PLD and identified a locus containing Gulp1 

that is associated with the plasma CL of PLD. Our data implicate that the genetic variations may 

play a role in the variability in the PLD PK. Further studies are needed to validate the 

relationship between Gulp1 and the PK of PLD and translate these findings to obese and non-

obese humans for personalized PLD therapy and other nanomedicines.   
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Table 4. 1. PEGylated liposomal doxorubicin plasma PK parameters in a panel of inbred mouse 

strains. The mouse strains were grouped according to their ancestry (44). 

Strain 

Encapsulated Released 

Cmax 

(µg/ml) 

tmax 

(h) 

Vd 

(ml/kg) 

t1/2 

(h) 

AUC 

(µg /ml·h) 

CL 

(ml/kg/h) 

Cmax 

(µg/ml) 

tmax 

(h) 

AUC 

(µg·h/ml) 

Group 1: Bagg albino derivatives 

A/J 140.92 0.083 46.54 26 3,481 1.23 0.85 3 31.17 

BALB/cByJ 127.29 0.083 64.18 84 3,612 0.53 2.96 3 41.94 

CBA/J 192.64 0.083 52.61 47 3,940 0.77 1.60 3 42.40 

CE/J 197.77 0.083 32.10 34 5,715 0.66 1.29 3 37.04 

LG/J 212.41 0.083 26.63 24 6,047 0.78 1.88 0.083 42.44 

PL/J 278.14 3 17.10 17 7,543 0.69 1.77 0.083 43.38 

Group 2: Swiss mice 

NOD/ShiLtJ 204.39 0.083 37.72 14 2,958 0.31 1.27 3 19.35 

MA/MyJ 226.85 0.083 28.40 36 6,841 0.54 1.64 0.083 49.03 

RIIIS/J 180.14 0.083 38.35 30 4,558 0.89 2.53 0.083 85.12 

SJL/J 176.55 0.083 37.81 14 2,958 1.82 1.27 3 19.35 

SWR/J 143.94 0.083 46.3 19 2,951 1.70 0.85 0.083 24.16 

Group 3: Japanese and New Zealand inbred strains 

KK/HIJ 155.95 0.083 35.93 33 5,242 0.75 2.30 3 92.98 

NON/ShiLtJ 173.58 0.083 48.59 41 4,257 0.79 2.64 0.083 73.45 

NZO/HILtJ 192.79 3 27.98 27 5,971 0.72 2.76 3 83.69 

NZW/LacJ 221.77 0.083 27.20 21 5,269 0.90 1.65 0.083 34.11 
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Group 4: C57/C58 strains 

C57BLKS/J 171.35 0.083 45.08 31 3,509 1.0 3.90 3 46.58 

C58/J 170.04 3 30.52 24 5,160 0.89 1.50 0.083 33.87 

Group 5: Castle’s mice 

129S1/SvlmJ 188.53 0.083 33.00 164 8,165 0.14 1.41 0.083 46.13 

LP/J 239.69 0.083 28.22 26 6,090 0.74 2.32 0.083 46.52 

Group 6: C.C. Little’s DBA & related strains  

SM/J 146.53 0.083 56.63 39 3,225 0.98 2.75 0.083 59.57 

Group 7: Wild-derived strains 

PERA/EiJ 144.64 0.083 48.07 145 5,113 0.23 1.46 3 57.14 

WSB/EiJ 113.90 0.083 50.61 52 4,379 0.68 1.61 24 63.10 

PWD/PhJ 165.34 0.083 38.08 16 3,342 1.59 1.59 0.083 35.23 
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Table 4. 2. Concentrations versus time values of encapsulated and released doxorubicin in 

plasma after administration of PEGylated liposomal doxorubicin (PLD) in inbred mouse strains 

(n=3 mice per time point per each strain) with low (129S1/SvlmJ), intermediate (SWR/J), and 

high (SJL/J) clearance of PLD. 

Strain Doxorubicin 

Concentration  in plasma 

Mean ± SD, µg/ml (CV %) 

0.083 (h) 3 (h) 24 (h) 48 (h) 

129S1/SvlmJ 
Encapsulated 199 ± 8.1 (4) 182 ± 5.8 (3) 156 ± 9.5 (6) 136 ± 12 (9) 

Released 1.0 ± 0.1 (14) 1.1 ± 0.08 (7) 0.7 ± 0.2 (34) 0.6 ± 0.1 (16) 

SWR/J 
Encapsulated 150 ± 8.1 (5) 99 ± 5.4 (5) 64 ± 2.8 (4) 25 ± 4.8 (19) 

Released 0.9 ± 0.1 (12) 0.9 ± 0.2 (23) 0.6 ± 0.1 (16) 0.2 ± 0.1 (43) 

SJL/J 
Encapsulated 133 ± 26 (19) 89 ± 22 (25) 46 ± 3.5 (8) 15 ± 7.5 (65) 

Released 0.9 ± 0.08 (8) 0.8 ± 0.04 (4) 0.4 ± 0.1 (20) 0.2 ± 0.1 (50) 

CV: Coefficient of variance 
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Fig. 4. 1. Plasma concentration versus time profile of encapsulated and released doxorubicin 

after administration of PLD 6 mg/kg IV x1 in 23 inbred mouse strain males. In the PK studies, 

individual samples (n=1 per time point) were obtained at 0.083, 3, 24, and 48 hours after 

administration of PLD. The inbred mouse strains had distinct concentration vs. time profiles of 

encapsulated and released doxorubicin in plasma.  
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Fig. 4. 2. Summary of phenotypes measured by the PLD PK. (A) Clearance (CL) of encapsulated 

doxorubicin and (B) released doxorubicin exposure (AUC) in plasma after administration of 

PLD 6 mg/kg IV x1 in 23 inbred mouse strain males. The CL of plasma encapsulated 

doxorubicin showed 13-fold difference between mouse strain with the lowest CL of PLD 

(129S1/SvlmJ) and the highest CL of PLD (SJL/J). 
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Fig. 4. 3. Plasma concentration vs. time profiles of encapsulated and released doxorubicin after 

PLD administration at 6 mg/kg IV x1 in an independent confirmatory PK studies. In the 

confirmatory PK studies in mouse strains with low (129S1/SvlmJ), intermediate (SWR/J), and 

high (SJL/J) CL of PLD, mice (n=3) were evaluated at each time point. The strain-specific 

plasma profiles of encapsulated and released components of PLD were reproducibly observed in 

independently performed confirmatory PK studies with low variability within a strain. Data are 

presented as mean ± SD. 
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Fig. 4. 4. The relationship between the PK of PLD and the monocyte cell counts in blood in 

inbred mouse strains. R2 and p-values are calculated using linear regression. (A and B) The 

correlation between the CL of encapsulated doxorubicin and the number of monocytes in blood 

was assessed in inbred mouse strains. There was no association between the CL of encapsulated 

doxorubicin and the number of monocytes in blood. (C and D) There was no association between 

the exposure (AUC) of released doxorubicin and the number of monocytes in blood in inbred 

mouse strains. AUC: area under the concentration versus time profile. 

 



                                                                               

 

Fig. 4. 5. Genome wide analyses of the plasma CL of encapsulated doxorubicin from 23 mouse 

strains. The chromosomes numbers are indicated on the 

(A) A genome wide scan with the haplotype associated mapping (SNPster) algorithm using the 

CL of encapsulated doxorubicin as a phenotype. A locus with the highest peak of 

of 3.60 was found on chromosome 1 (arrow). (

doxorubicin as a phenotype identified and confirmed a locus with 

chromosome 1 (arrow). (C) Magnification of the locus on the chromosome 1 identified by 

SNPster and EMMA analyses shows the underlying gene, 

positions. The threshold for genome wide significance is 

discovery rate of 19%.  CL: clearance.
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Genome wide analyses of the plasma CL of encapsulated doxorubicin from 23 mouse 

. The chromosomes numbers are indicated on the x-axis and –Log10P scores on the y

) A genome wide scan with the haplotype associated mapping (SNPster) algorithm using the 

CL of encapsulated doxorubicin as a phenotype. A locus with the highest peak of 

chromosome 1 (arrow). (B) EMMA using the CL of encapsulated 

doxorubicin as a phenotype identified and confirmed a locus with –Log10P score of 5.40 on 

) Magnification of the locus on the chromosome 1 identified by 

alyses shows the underlying gene, Gulp1, and their chromosome 

positions. The threshold for genome wide significance is –Log10P score of 6.7 with a false 

discovery rate of 19%.  CL: clearance. 

 

Genome wide analyses of the plasma CL of encapsulated doxorubicin from 23 mouse 

P scores on the y-axis. 

) A genome wide scan with the haplotype associated mapping (SNPster) algorithm using the 

CL of encapsulated doxorubicin as a phenotype. A locus with the highest peak of –Log10P score 

) EMMA using the CL of encapsulated 

P score of 5.40 on 

) Magnification of the locus on the chromosome 1 identified by 

, and their chromosome 

P score of 6.7 with a false 
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Fig. 4. 6. Haplotype distribution on the locus on chromosome 1 identified by the haplotype 

association mapping algorithm (SNPster). The CLs of encapsulated doxorubicin from 23 mouse 

strains were used as phenotypes, and genotypes were downloaded from the Mouse Diversity 

Array (Yang et al., 2011). Strain names are positioned above the alleles, which are listed and 

arranged according to the CL of encapsulated doxorubicin. Each haplotype is indicated by a 

number and corresponding color. The positions (mm9) of the SNPs on chromosome 1 are listed 

on the left, and –Log10P scores for the haplotype are given on the right. The position of the 

identified quantitative trait locus (QTL), Gulp1, is highlighted. 
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Fig. 4. 7.  Genotype distribution on the locus on chromosome 1 identified by the efficient mixed-

model for association (EMMA). The CLs of encapsulated doxorubicin from 23 mouse strains 

were used as phenotypes, and genotypes were downloaded from the Mouse Diversity Array 

(Yang et al., 2011). Strain names are positioned above the alleles, which are listed and arranged 

according to the CL of encapsulated doxorubicin. The positions (mm9) of the SNPs on 

chromosome 1 are listed on the left, and –Log10P scores for each position are given on the right. 

The position of the identified quantitative trait locus (QTL), Gulp1, is highlighted. Gray and 

black block represent A allele and C allele, respectively. White block represents missing allele. 

CL: clearance. 
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Fig. 4. 8. Evaluation of association between Gulp1 gene expression in tissues and the CL of 

encapsulated doxorubicin after administration of PLD in 23 male inbred mouse strains. R2 and p-

values are calculated using linear regression. Gulp1 was significantly more highly expressed in 

(A) adipose tissues compared to other tissues associated with the mononuclear phagocyte system 

(MPS), such as (B) liver, (C) spleen, and (D) lung. In addition, there was a significantly positive 

relationship between Gulp1 gene expression in adipose tissues and PLD CL. CL: clearance. 
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CHAPTER 5:  

CONCLUSION 

Overview 

The application of nanotechnology to drug delivery system has made remarkable impacts 

on pharmaceutical and biotechnology industries as well as treatment of human diseases. The 

development of nanotechnology products offers a wide range of advantages over conventional 

small molecule drugs including: (1) protection of drugs from a premature degradation due to 

interaction with biological barriers; (2) enhanced cell- or tissue-specific targeted delivery of 

drugs; (3) delivery of macromolecule drugs to intracellular sites of action; (4) delivery of poorly 

water-soluble drugs; (5) improved pharmacokinetics and tissue distribution of drug; (6) 

improved therapeutic index (1, 2). Indeed, nanoparticles, particles ranging from 1 to 1000 nm in 

size, are emerging as a class of therapeutics for solid tumors (1). The development of 

nanotechnology platforms hold promise for cancer therapy in that the nanotechnology-based 

therapeutics can enable pharmaceutically suboptimal drugs with biological activity to be revived 

and commercialized (1-3). Moreover, nanotechnology has been useful for increasing intracellular 

delivery of drugs with low membrane permeability, such as DNA or siRNA, which are emerging 

as new classes of bioactive macromolecules (4, 5). Although nanotechnology has the potential to 

revolutionize drug delivery and advance the treatment of cancer, to date, only a few nanoparticle 

(NP)-based therapeutics are clinically approved and this technology has not made a significant 

clinical impact on cancer therapy (1, 2). Moreover, when compared to conventional small 

molecule drugs, significantly high and clinically relevant inter-individual variation in the 
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pharmacokinetics (PK) and pharmacodynamics (PD) of NP-based anticancer drugs has been 

reported (6, 7).  

There has been increasing effort to characterize and optimize physicochemical 

characteristics of the NPs, such as surface size, charge, and hydrophilicity, which can influence 

the biocompatibility, circulating half-life and biodistribution to tissues (3, 5, 8, 9). In parallel, the 

understanding of pathophysiology of cancer, in particular solid tumors, has advanced. 

Consequently, currently approved NP-based therapeutic products for cancer therapy exploit the 

enhanced permeability and retention (EPR) effect caused by abnormal tumor blood and 

lymphatic vasculature for simple passive extravasation of NPs (10). However, it still remains 

poorly understood how involvement of the mononuclear phagocyte system (MPS), including 

monocytes and macrophages, in PK and biodistribution of NPs influence the therapeutic 

responses of NP-based therapeutics (6). Like conventional drugs, “one-size-fits-all approach” 

may not be appropriate for the application of nanotechnology for cancer therapy, as complex and 

heterogeneous tumor biology as well as the immune system may contribute to variable 

interaction with NPs and, eventually, heterogeneous clinical responses to NP-based therapeutics. 

 The overall goal of this dissertation research was to elucidate underlying immune 

mechanisms for variable patient responses to liposomal anticancer agents, the most common 

class of NPs that have been approved for clinical use. To achieve these goals, three hypothesis-

driven aims were developed and investigated in the context of use of PEGylated liposomal 

doxorubicin (PLD; Doxil®), a clinically relevant NP. PLD, is the first liposome-based therapeutic 

approved by the U.S. Food and Drug Administration (FDA) in 1995 for the treatment of HIV-

related Kaposi’s sarcoma (11). It was subsequently approved for the treatment of recurrent 

ovarian cancer and multiple myeloma based on enhanced efficacy and reduced cardiotoxicity 
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compared to free doxorubicin (11). Although PLD has been used in clinic for more than 20 years, 

the mechanisms for variable responses and modest efficacy in patients remain unknown. In vitro, 

in vivo and clinical systems were investigated to elucidate the immunological mechanisms 

underlying inter-individual variation in PK and PD of PLD. Major findings, novelties, potential 

clinical impacts of these findings, limitations, and areas of future investigations in each aim are 

discussed. 

 

5. 1. Discussion 

Aim 1. Evaluate the relationship between chemokine ligands CCL2 and CCL5 and 

pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD) in vitro systems, in 

preclinical mouse models, and in patients with recurrent ovarian cancer. 

Liposomes are removed from the circulation by the cells of the MPS, peripheral blood 

monocytes and tissue resident macrophages. Liver and spleen are the major parts of the MPS (i.e., 

Kupffer cells and splenic macrophages and play a key role in the recognition and clearance of 

opsonized liposomes (5, 12, 13). In addition, the tumor microenvironment is comprised of 

abundant infiltrating macrophages, called tumor-associated macrophages (TAMs) (14, 15). 

Homeostatic circulation and recruitment of peripheral circulating monocytes into these tissues 

are orchestrated by an intricate network of chemokines (14, 16, 17). Chemokines are chemotactic 

cytokines that cause the directed migration of monocytes along the chemokine gradient and 

stimulate the differentiation into macrophages (16, 17). CC chemokine ligand (CCL) 2, also 

known as monocyte chemoattractant protein-1 (MCP-1), is overexpressed in human ovarian and 

breast tumors and correlates with the amount of infiltrating TAMs (18-20). CCL2 is also 
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involved in inflammation in the liver via secretion from hepatocytes, Kupffer cells, and hepatic 

stellate cells (21, 22).  

Despite well-characterized relationship between chemokines and macrophages, a 

potential role of chemokines in macrophages-mediated clearance of liposomal drugs has not been 

investigated yet. Thus, we hypothesized that chemokines drive the pharmacokinetics (PK) of 

nanoparticles (NP) and this may be associated with high interpatient variability in the PK of NP-

based therapy. To test this hypothesis, we investigated the relationship between the expressions 

of chemokine ligands and the PK of PLD in patients with refractory epithelial ovarian cancer 

(EOC), in preclinical models for ovarian cancer, and in human monocytic THP-1 cells in vitro in 

Chapter 2.  

Plasma concentrations of CCL2, CCL3, CCL4, and CCL5 were assessed from serial 

blood samples at prior to and post PLD administration alone and in combination with carboplatin. 

CCL2 and CCL5 were the most prevalent baseline chemokines in these patients, and the baseline 

plasma concentrations of CCL2 and CCL5 did not correlate with the clearance (CL) of 

encapsulated doxorubicin in plasma, indicating that baseline levels of chemokine may not predict 

the PK of PLD. We then assessed the total amount (AUC) of plasma chemokines secreted after 

PLD administration. There was a significantly positive linear relationship between all chemokine 

AUC0-last and PLD AUC0-last in plasma in patients treated with PLD alone, indicating that PLD 

induced the production and secretion of chemokines into plasma. However, there was not an 

association in patients treated with PLD plus carboplatin, indicating that co-administration of 

carboplatin may influence the interaction between PLD and the chemokine systems (23, 24). In 

preclinical studies using mice bearing SKOV3 orthotopic ovarian cancer xenografts, ovarian 

cancer cells were found to be the primary source for PLD-mediated stimulation of secretions of 
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CCL2 and CCL5. In vivo studies using CCL2 KO and CCL5 KO mice verified that these 

chemokines have a significant impact on plasma clearance and biodistribution of PLD. In 

addition, in vitro studies using human monocytic THP-1 cells demonstrated that PLD impaired 

monocyte migration towards CCL2, but enhanced CCL5-induced migration.  

Collectively, we demonstrated for the first time that PLD, a NP-based therapy, altered the 

expressions of CCL2 and CCL5 as well as monocyte chemotaxis, which was shown to be 

associated with the clearance and biodistribution of PLD in preclinical models and in patients 

with refractory EOC. These data implicate that chemokines can be targets not only for 

development of new anticancer therapy, but also for optimization of NP-based therapy.  

Based on the implications of these studies, the following future directions are suggested 

as follows:  

[1] It has been reported that the MPS-mediated clearance of NPs is a saturable process 

and the PK of PLD is dose- and schedule-dependent (25, 26). NP-based anticancer drugs are 

administered via multiple cycles and often in combination with other chemotherapies. Thus, it is 

critical to characterize the effects of multiple doses of NP-based therapy as well as potential 

interaction between NP-based therapy and other co-medications via the chemokine system. It has 

been shown that simvastatin down-regulated the expression of CCL2 in a time- and dose-

dependent manner in patients (27, 28).  

[2] It is known that physicochemical properties of NPs play a significant role in 

determining the PK and biodistribution of NPs (3, 5, 8, 9). In addition, heterogeneity of the 

tumor microenvironment across different tumor types has been reported and suggested to be a 

contributing factor to inter-individual variability in the tumor delivery and clinical responses of 

NP-based therapy (14, 29). Thus, comprehensive profiling of the interaction between different 
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NP platforms and the microenvironment factors (i.e., chemokines and TAMs) in mouse cancer 

models and human samples will be a key part to advancing our understanding of the interplay 

between NPs and the tumor microenvironment and subsequent effects on the PK and PD 

(efficacy and toxicity) of NP-based therapy.  

 

Aim 2. Evaluate effects of the tumor microenvironment heterogeneity on tumor delivery and 

efficacy of PLD using murine mammary carcinoma models. 

Solid tumors are characterized by unique tumor microenvironment that consists of 

infiltrating immune cells, such as TAMs, a variety of growth factors, chemokines and cytokines, 

dense interstitial matrix, and the abnormal blood and lymphatic vasculature (14, 30). 

Microenvironmental factors interplay with the tumor cells to modify the tumor 

microenvironment and promote tumor progression (14, 30). It has been reported that there is 

intra- and inter-tumor variability in the tumor cells and the microenvironment that results in the 

heterogeneity of molecular, pathological, and clinical features of each tumor type (31, 32). In 

addition, we also found that tumor cells and/or stromal cells are the primary source for PLD-

induced secretion of CCL2 and CCL5 in Chapter 2. Thus, we hypothesized that the heterogeneity 

of the tumor cells and the tumor microenvironment between breast tumor subtypes affect the 

tumor delivery and therapeutic outcomes of PLD in Chapter 3. To test our hypothesis, we used 

the genomically validated C3(1)-T-Antigen (C3-TAg) and T11/TP53-/- (T11) murine breast tumor 

models that faithfully represent human intrinsic breast tumor subtypes, basal-like and claudin-

low, respectively (33-35). We evaluated PLD, which has been used for treatment of metastatic 

breast cancer, and non-liposomal doxorubicin (NL-doxo; Adriamycin®) as a comparator (36).  
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The PK studies showed that the ratio of tumor to plasma AUC0-96h of PLD in C3-TAg 

model and T11 model was 0.30 and 0.15, respectively, suggesting that the efficiency of 

transvascular transportation of PLD into the tumor is 2-fold higher in C3-TAg model compared 

to T11 model. However, the difference in tumor delivery between two models was not seen with 

NL-doxo. These findings led us to measure tumor-associated factors and found that claudin-low 

T11 tumors exhibited features of hypervascularization and inefficient lymphatic networks, which 

may increase interstitial fluid pressure (IFP) and hamper the transvascular transport of PLD (29). 

In addition, the interactions between PLD and the tumor microenvironment factors (e.g., the 

vascular density, VEGF-A, VEGF-C, and CCL2) were different between two breast tumor 

subtypes. PLD significantly prolonged the survival of C3-TAg models (P<0.0001), but modestly 

in T11 models (P=0.083) compared with no treatment and NL-doxo. However, it was noted that 

T11 tumors treated with PLD became ulcerative in 18 days post treatment, which may reflect 

responses of T11 tumors to PLD, but were terminated in accordance to IACUC guidelines (37).  

Thus, the results of overall survival for T11 mice treated with PLD may not represent the 

accurate survival outcomes. 

 Collectively, this is the first report that heterogeneous tumor microenvironment and/or 

tumor cell features between two intrinsic breast tumor subtypes correlated with significantly 

different tumor delivery and efficacy of PLD, but not small molecule doxorubicin, using 

validated murine models. Our findings implicate that profiling of the tumor and the 

microenvironment and selection of patients with tumors conducive to the NPs are required for 

the optimal delivery and therapeutic outcomes of NP-based therapy.    

 Limitations in our studies and future investigations as a follow-up to our experiments are 

as follows:  
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[1] First, the fact that T11 is a transplant model compared to C3-TAg genetically 

engineered mouse models (GEMM) may play a role as confounding factor in our study despite 

the conserved gene expression features between murine T11 OST tumors and human claudin-low 

tumors (33-35). Although the clinical relevance of our study results can be justified on the basis 

of the evidence showing that gene expression signatures derived from chemotherapy-treated T11 

models successfully predicted the pathological complete response to anthracycline/taxane 

therapy in human patients with breast cancer, additional studies using the same mouse model 

(i.e., T11 OST or C3-TAg OST) would be helpful to rule out any effects of model-derived 

physiology on the tumor delivery and efficacy of PLD (33).  

[2] It has been reported that the primary mode of antitumor efficacy of PLD is via direct 

cytotoxic effects on tumor cells with slight suppressing effects on TAM-mediated angiogenesis 

(38). In this study, administration of PLD in addition to clodronate-containing long circulating 

liposome (LCL) exhibited a significantly additional antitumor inhibition compared to that 

induced by clodronate-LCL, an agent with strong TAM-suppressing effects (38). However, there 

was no additional reduction in VEGF-a expression after administration of combination of PLD 

and clodronate-CLC compared to that after administration of clodronate-LCL alone. These data 

indicate that PLD mainly acts via direct cytotoxic effects on tumor cells with slight suppressing 

effects on TAM-mediated angiogenesis (38). Consistent with these findings, we also 

demonstrated that T11 tumor-specific VEGF-a suppressing effect of PLD may be associated with 

greater responsiveness of T11 tumors to PLD. However, in vitro studies assessing IC50 of PLD 

in human basal-like cells and claudin-low cells would further confirm the different sensitivity to 

PLD between two breast tumor types.  
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[3] The vessel normalization strategies using anti-angiogenic therapies showed 

improvement of the tumor delivery and effectiveness of NP in a size-dependent manner, 

emphasizing the importance of optimization of both surface properties of NPs and the tumor 

microenvironment (39). Thus, it is critical to profile the interaction of other NP platforms (i.e., 

polymers) with the tumor microenvironment within and between tumor types. 

 

Aim 3. Identify the quantitative trait loci associated with the variability in PK of PLD using a 

panel of inbred mouse strains. 

 NPs are cleared by the mononuclear phagocytes, primarily monocytes and macrophages 

(13). Thus, PK and biodistribution of NPs are dependent on the clearance (CL) of the carrier 

until the drug gets released from the carrier (5, 40). We have previously shown that the 

variability in the PK and PD of nanomedicines such as Doxil® (PEGylated liposomal 

doxorubicin; PLD) and S-CKD602 (PEGylated liposome of CKD-602, a camptothecin analog) is 

associated with patient age, gender, and the function of circulating monocytes in plasma of 

patients with solid tumors (41-43). However, molecular mechanisms underlying this relationship 

have not yet been investigated and remain poorly understood. In Chapter 4, we aimed to 

investigate the molecular basis of high inter-patient variability in the PK of PLD using a panel of 

inbred mouse strains. Previous studies have shown that candidate gene(s) for the quantitative 

phenotypic trait identified by GWAS in commonly used laboratory strains successfully translated 

to identification of the genetic basis of disease and traits in humans (44-46). Thus, these mice can 

serve as valuable experimental tools to model the phenotypic variation within the human 

population and identify the genes implicated in the human phenotypes (44).  
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 We used 23 inbred mouse strains representing the genetic variation present within the 

human population were evaluated for the PK of PLD. A distinct inter-strain variation in the 

plasma disposition of encapsulated and released doxorubicin was observed and reproduced with 

low intra-strain variability (n=3 per time point) in a second set of inbred mouse strains that were 

independently administered the same dose of PLD. The PK analysis revealed that the plasma CL 

of PLD showed the robust discrimination between the different strains and there was no 

correlation between the PLD CL and the circulating monocyte counts across different inbred 

strains.  

Genome wide association mapping studies (GWAS) were performed to uncover the 

quantitative trait loci (QTL) associated with the variability of PLD CL using two different 

analysis methods, haplotype association mapping algorithm (SNPster) and the efficient mixed-

model for association (EMMA) mapping algorithm (47, 48). Interestingly, both SNPster and 

EMMA analysis identified and confirmed a QTL on chromosome 1 (44273428-45015110bp) 

with the highest -Log10P score of 3.60 and 5.40, respectively. In addition, this plausible 

association explained 59% of the phenotypic variance for the CL of PLD in males of 23 inbred 

mouse strains. The QTL for the CL of PLD identified by two GWAS mapping methods above 

was found to be approximately 200 kb away from the Gulp1 gene (44608516-44845719bp, 

GeneID: 51454, MGI: 1920407). Gulp1 gene encodes phosphotyrosine-binding (PTB) domain 

containing engulfment adapter protein 1 (GULP1), which is mammalian homologue of 

Caenorhabditis elegans CED-6 (49). GULP1/CED-6 plays a critical role as an adapter protein in 

phagocytosis of apoptotic cells and this function has been conserved in C. elegans, rodents, and 

human GULP1/CED-6 proteins (49, 50). Based on the mechanistic link between phagocyte-

mediated CL of PLD and the function of Gulp1 gene, we assessed the relationship between the 
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available Gulp1 expression data and the plasma CL of PLD. Gulp1 was found to be highly 

expressed in adipose tissue of mouse strains compared to other tissues. In addition, Gulp1 gene 

expression levels were significantly correlated with plasma CL of PLD (R2=0.40, P=0.027); 

however, the correlation was not observed in other tissues.  

This was the first study using a GWAS approach to uncover the genetic variant(s) linked 

to the PK of PLD. We identified a candidate locus containing Gulp1 associated with the plasma 

CL of PLD using a panel of inbred mouse strain, indicating that the genetic variations may play a 

role in the variability in the PLD PK. Based on the implications and limitations of these studies, 

further studies are recommended as follows:  

[1] Because the power of GWAS to detect the QTL is primarily dependent on the number 

of mouse strains sharing the phenotype, adding more strains may increase the genetic diversity 

and the power to detect the QTL with genome wide significance (47, 48). Thus, it would be 

critical to validate the study finding in an independent set of inbred mouse strains with 

appropriate power.  

[2] In addition, some of the smaller peaks on other chromosomes identified by GWAS 

analyses may prove to be important and biologically related to the phenotype (i.e., obesity). Thus, 

QTL analyses of crosses between mouse strains with high and low CL of PLD may provide 

additional information on importance of multiple genes and gene-gene interaction in the PLD PK 

(44).  

[3] Finally, functional characterizations of Gulp1 (i.e., knockout mice) are required to 

validate the relationship between Gulp1 and the PLD PK observed in our pioneering works (51). 

However, Gulp1 knockout mice are not currently available, but need to be developed to address 

these issues.  
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5. 2. Perspective 

This dissertation research has the potential to make an impact on development of future 

NP-based anticancer therapeutics as well as on clinical use of PLD (Doxil®) and other 

PEGylated liposomal agents. Dynamic bi-direnctional interaction between PLD and the 

mononuclear phagocyte system (MPS) and chemokines and subsequent effects on the PK and 

PD of PLD in recurrent ovarian cancer and breast cancer are major findings in this dissertation 

research. The feedback loop associated with chemokines, such as CCL2 and CCL5, can be a 

target for optimizing NP-based therapy and provide guidance on careful selection of appropriate 

tumor models (xenografts versus GEMM) and human cancer types (i.e., ovarian cancer versus 

prostate cancer) at various preclinical and clinical stages for development of NP-based 

therapeutics. This research can also make an impact on clinical use of PLD. Given the 

heterogeneity of tumor cells and tumor microenvironment within breast cancer, optimal selection 

of patients with a breast tumor subtype responsive to PLD (i.e., claudin-low subtype) could 

maximize patients’ benefits from PLD or other PEGylated liposomal drugs. Inbred mouse strain-

dependent CL of PLD also highlights the challenges in translating the basic research on NP-

based medicines to the clinic. The interaction of NPs with the immune system, in particular the 

MPS, can make a profound effect on the circulating time, tumor accumulation, and therapeutic 

outcomes of NP-based anticancer drugs. There is limited understanding of which preclinical 

models can recapitulate tumors in patients which represent a complex interaction between the 

immune system and a particular NP-based drug. Therefore, further research is required to 

improve our understanding of NP behavior in humans and determine optimal tumor models for 

translating to patients.    
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Based on recent scientific advances in nanotechnology, NP-based drug delivery is 

expected to have a continued substantial impact on tumor targeting therapy. Despite the promise, 

this technology has not made a significant clinical impact on cancer therapy. Collaborative 

efforts from experts in immunology, oncology, biotechnology, pharmacology, and medicine will 

enhance our knowledge of NP behavior in humans, optimize the use of NP-based therapeutics, 

and maximize patients’ benefit.   
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APPENDIX A: EFFECT OF GENDER ON PHARMACOKINETIC DIS POSITION OF 
PEGYLATED LIPOSOMAL CKD-602 (S-CKD602) AND OPTISOMA L TOPOTECAN 

(TLI) IN RATS 5 
 

INTRODUCTION   

S-CKD602 is a PEGylated liposomal formulation of CKD-602, a camptothecin analogue 

(1). Optisomal Topotecan (TLI) is a sphingomyelin-stabilized liposomal formulation of 

topotecan (2). The cytotoxicity of CKD-602, topotecan, and other camptothecin analogues is 

related to the duration of exposure. PEGylated and sphingomyelin liposomal formulations have 

been designed to prolong drug circulation time, increase tumor delivery, and improve the 

therapeutic index (3). The pharmacokinetics (PK) of liposomal agents is highly variable in 

patients (4). Moreover, the factors associated with this variability are unknown. Thus, we 

evaluated the plasma PK disposition of TLI and S-CKD602 in male and female rats. 

 

METHODS   

PK studies in plasma. TLI was administered at 0.93mg/kg IV x1 and S-CKD602 at 0.6 

mg/kg IV x1 to male and female Sprague-Dawley rats via a bilateral jugular vein cannula. 

Plasma samples for TLI were obtained in 6 cohorts (n= 3 rats per cohort, total = 18 rats per 

gender): 1) pre, 1, and 3 min; 2) 5, 10, and 20 min; 3) 0.5, 1, and 2 hr; 4) 4, 8, and 12 hr; 5) 24, 

36, and 48 hr; 6) 60 and 72 h post dose. Plasma samples (n= 3 rats per time point per gender) for 

S-CKD602 were obtained prior to the end of the infusion, and at 4, 8, 24, 48, and 72 hr after 

                                                           
5 Parts of this appendix 1 previously appeared in the Proceeding of 2010 AACR Annual Meeting. 
The original citation is as follows: Song G, Wu H, La-Beck NM, Zamboni BA, Strychor S, 
Zamboni WC. Effect of gender on pharmacokinetic disposition of Pegylated liposomal CKD-602 
(S-CKD602) and optisomal topotecan (TLI) in rats. : AACR; 2010.   



                                                                               181 

 

administration. Total (lactone and hydroxyl acid) form of sum total (encapsulated and released) 

CKD-602 and topotecan were measured via LC/MS.  

Pharmacokinetic analysis. The pharmacokinetics of TLI and S-CKD602 were evaluated 

by non-compartmental methods using WinNonlin® (v5.2.1, Pharsight Corp., Mountain View, 

CA). The maximum concentration (Cmax) and time to reach Cmax (tmax) were obtained directly 

from the concentration-time profile. The terminal elimination rate constant (λz) was estimated by 

log-linear regression of at least three data points in the terminal phase. The terminal half-life (t½) 

was calculated as 0.693/λz. The AUC from time 0 to infinity (AUCinf) was determined by adding 

AUClast and Clast/λz.. Below limit of quantification (BLQ) concentrations were excluded from 

the data analysis. 

Statistical analysis. Statistical analyses were carried out using SAS v.9.2 (Cary, NC). 

Two-way analysis of variance (ANOVA) was performed to test the effects of gender on the 

clearance of TLI and S-CKD602. P value of less than 0.05 was considered statistically 

significant. All statistical tests were two-sided.  

 

RESULTS  

Plasma concentration versus time profiles of sum total after administration of S-CKD602 

at 0.6 mg/kg or TLI at 0.93 mg/kg IV x 1 are presented in Fig. A. 1. Clearances (CLs) of TLI 

were 0.026 ± 0.0038 and 0.021 ± 0.0015 L/h/kg in male and female rats, respectively. The CLs 

of S-CKD602 were 0.0037 ± 0.0004 and 0.0027 ± 0.0001 L/h/kg in male and female rats, 

respectively. The CL was 1.2-fold (p=0.14) and 1.4-fold (p=0.009) lower in female rats 

compared with male rats for TLI and S-CKD602, respectively. PK parameters of S-CKD602 and 

TLI in male and female rats were summarized in Table A. 1.  
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CONCLUSION  

The CL of TLI and S-CKD602 was lower in female rats as compared with male rats. 

These studies suggest that gender may affect the disposition of liposomal formulations of drugs 

and may play a role in the high PK variability reported in patients treated with liposomal 

formulations of anticancer agents. Further studies evaluating the physiological difference 

between male and female which may affect the liposomal disposition are warranted. 
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Table A.1. PK parameters after administration of TLI at 0.93 mg/kg or S-CKD602 at 0.6 mg/kg 

IV x1 to male and female Sprague-Dawley rats via a bilateral jugular vein cannula 

 
Cmax 

(µg/mL) 

T1/2 

(h) 

AUCinf/Dose 

(µg·h/mL/mg/kg) 

CL 

(mL/h/kg) 

Vdss 

(mL/kg) 

TLI 

(Male) 
16.81 ± 2.45 1.25 ± 0.14 39.88 ± 4.93 26 ± 3.8 67 ± 1.1 

TLI 

(Female) 
13.09 ± 2.36 1.20 ±0.09 48.68 ± 6.69 21 ± 1.5 63 ± 8 

S-CKD602 

(Male) 
15.07 ± 2.97 15.10 ± 1.18 271.39 ± 27.01 3.7 ± 0.4 68 ± 7 

S-CKD602 

(Female) 
12.67 ± 0.60 15.32 ± 2.11 371.21 ± 7.67 2.7 ± 0.1 56 ± 5 

Cmax; maximum concentration; t½, terminal half-life; AUCinf/Dose, area the curve from time 

zero to infinity normalized by dose; CL: clearance; Vdss: volume of distribution at steady-state 
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Fig. A. 1. Plasma concentration versus time profiles of (A) sum total CKD602 after 

administration of S-CKD602 at 0.6 mg/kg and (B) sum total topotecan after administration of 

TLI at 0.93 mg/kg I.V. x 1 via a bilateral jugular vein. Plasma samples for TLI were obtained in 

6 cohorts (n= 3 rats per cohort, total = 18 rats per gender). Plasma samples for S-CKD602 were 

obtained in n= 3 rats per time point per gender. Each time point is represented as the mean ± 

standard deviation (SD). Concentrations of sum total topotecan at 36, 48, 60, and 72 hr after TLI 

administration were BLQ. BLQ: below limit of quantitateon.    
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APPENDIX B: COMPARTMENTAL PHARMACOKINETIC MODEL FOR  NON-
LIPOSOMAL CKD-602 AND PEGYLATED LIPOSOMAL CKD-602 ( S-CKD602) IN 

MICE BEARING A375 HUMAN MELANOMA XENOGRAFTS 
 

Overview 

Purpose: To develop a pharmacokinetic (PK) model for non-liposomal CKD-602 and 

pegylated liposomal CKD-602 (S-CKD602) in mice bearing A375 human melanoma xenografts 

that can be used in prediction of biodistribution of pegylated liposomal anticancer agents in mice. 

Methods: Non-liposomal CKD-602 PK data after single I.V. administration of CKD-602 

at 30 mg/kg and encapsulated, released, and sum total (encapsulated and released) CKD-602 

pharmacokinetic data following single I.V. administration of S-CKD602 at 1 mg/kg to mice 

bearing A375 human melanoma xenografts were used from the previous PK study. Initial PK 

analysis of CKD-602 and S-CKD602 was performed by non-compartmental analysis using 

WinNonlin® 5.2.1. Plasma and tumor data from the previous PK study was simultaneously fit 

using stepwise strategy. Various compartmental models with linear or nonlinear elimination were 

evaluated for encapsulated CKD-602 after S-CKD602 administration. The PK parameters 

associated with released CKD-602 were determined from the PK model of CKD-602 after 

administration of non-liposomal CKD-602 and fixed in the final PK model for S-CKD602. 

Sensitivity analysis was performed for various PK parameters to determine the effect of each 

parameter on the S-CKD602 model solution.           

Results: The PK of non-liposomal CKD-602 in plasma and tumor after administration of 

CKD-602 was better described by a three-compartment model with linear clearance compared 

with other compartmental models. The PK of encapsulated CKD-602 in plasma after 

administration of S-CKD602 was better described by one-compartmental model with linear 

clearance compared with other models. However, the prediction of released CKD-602 
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concentration in tumor from the final PK model for S-CKD602 was not accurate. The final PK 

model for S-CKD-602 was shown to be most sensitive to CLencapsulated and CLreleased for 

encapsulated CKD-602 AUC in plasma and released CKD-602 AUC in tumor, respectively.     

Conclusion: Compartmental modeling approach can be used to describe the 

pharmacokinetics of encapsulated drugs, but caution should be used to predict released drugs in 

tissues after administration of liposomal formulations drugs. Development of more sophisticated 

PK models is warranted to accurately predict the disposition of both encapsulate and released 

drugs in plasma, tissues, and tumor after administration of pegylated liposomal formulation of 

anticancer agents.    

Key words: CKD-602, S-CKD602, modeling, pharmacokinetics, tumor 
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INTRODUCTION 

S-CKD602 is a pegylated liposomal formulation (STEALTH®) of CKD-602, a 

camptothecin analog that inhibits topoisomerase I (1). Non-liposomal CKD-602 administered i.v. 

at 0.5mg/m2/day for 5 consecutive days repeated 21 days is approved in Korea for the treatment 

of newly diagnosed SCLC and for relapsed ovarian cancer (1). The pegylated liposome 

formulation is characterized by better PK profiles including prolonged plasma exposure and 

superior tumor delivery of encapsulated active drug compared with conventional liposome. The 

disposition of encapsulated drug is governed by characteristics of the liposome and it results in 

the alteration of pharmacokinetic profile and biodistribution of the drug (2). Once the drug is 

released from the liposome, the pharmacokinetics of the drug will be the same as after 

administration of the nonliposomal dug (2). In animal models, a 3- to 10-fold increase in 

therapeutic index was observed with S-CKD602 compared with nonliposomal CKD-602 (3). The 

cytotoxicity of camptothecin analaogues has been reported to be related to the duration of time 

the concentration is above a critical threshold (3).  

Zamboni et al. evaluated the plasma, tissues, and tumor disposition of S-CKD602 and 

non-liposomal CKD-602 in female SCID mice bearing A375 human melanoma xenografts (4). 

The encapsulated and released CKD-602 in plasma after administration of S-CKD602 was 

measured with the new sample processing methods. The determination of the tumor ECF 

disposition of released CKD-602 was also evaluated by microdialysis methods (4). The results 

suggested that S-CKD602 provides pharmacokinetic advantages in plasma and tumors when 

compared with the non-liposomal formulation of CKD-602 at 1/30th the dose. The sum total 

(encapsulated and released) CKD-602 plasma exposure following S-CKD602 administration was 

found to be 25-fold greater than CKD-602 plasma exposure after non-liposomal CKD-602 
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administration (4). After administration of S-CKD602, 82% of CKD-602 was found to remain 

encapsulated in plasma over 72 hour. The overall tumor delivery, as measured by the exposure of 

sum total CKD-602 was similar after administration of non-liposomal CKD-602 and S-CKD602. 

However, the duration of exposure was 3-fold longer for S-CKD602 compared with non-

liposomal CKD-602 (4).  

The purpose of this study is to develop a compartmental pharmacokinetic model for non-

liposomal CKD-602 following CKD-602 administration and encapsulated and released CKD-

602 after administration of S-CKD602 in order to evaluate the disposition of pegylated liposomal 

formulation of anticancer agents in plasma and tumor. 

 

METHODS 

Pharmacokinetic data following I.V. administration of 30 mg of non-liposomal CKD-602 and 10 

mg of S-CKD602 into mice bearing A375 human melanoma xenografts were obtained from 

Zamboni et al (4).  

Noncompartmental analysis. Initial pharmacokinetic analysis of non-liposomal CKD-

602 and encapsulated and released CKD-602 was performed by non-compartmental analysis 

(NCA) using WinNonlin® 5.2.1. Initial PK parameters were obtained from NCA.  

Compartmental analysis. CKD-602 data in plasma and tumor after administration of 

non-liposomal CKD-602 was fit using model A-D (4) with stepwise nonlinear least-square 

regression approach. To predict the concentration in tumor ECF, sub-compartment in tumor was 

evaluated with plasma and tumor ECF data fitting to the final model E (Fig. B. 1).  

Sum total (encapsulated and released) CKD-602 data in plasma and tumor following S-CKD602 

administration was fit using model F-I (Fig. B.2). To predict the concentration in tumor ECF, 
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sub-compartment in tumor was evaluated with sum total CKD-602 plasma and tumor ECF CKD-

602 data fitting to the final model J after administration of S-CKD602 (Fig. B. 2).   

Encapsulated CKD-602 in plasma after administration of S-CKD602 was fit using model K-L 

(Fig. B. 3). Then, based on the best models for non-liposomal CKD-602, both encapsulated 

CKD-602 in plasma and released CKD-602 in tumor were simultaneously fit using model M and 

fixing parameters associated with released CKD-602.   

All computer model fittings were conducted using WinNonlin 5.2.1. (Pharsight®) with 

Gauss-Newton (Levenberg and Hartley) method selected for minimization algorithm. The initial 

estimates for compartmental modeling were derived from those obtained from the 

noncompartmental analysis. Criteria for goodness-of-fit of modeling included visual inspections, 

model convergence, parameter variances (%CV), correlation between parameters, and Akaike’s 

information criterion (AIC).  

Sensitivity analysis. To determine the effect of the various parameters on model solution, 

sensitivity analysis was performed for parameters based on the final PK model of S-CKD602. 

The value of each parameter was 50% decreased and 100% increased, and the model simulations 

were repeated using WinNonlin® 5.2.1. The new AUC of encapsulated CKD-602 in plasma and 

the new AUC of released CKD-602 in tumor were evaluated from noncompartmental analyses of 

each simulation. The relative sensitivity coefficients for significant parameters were calculated 

using the following equation and plotted.      

Relative sensitivity coefficient =  dAUC/dP 

 

i.e., the percentage change in the AUC  divided by the percentage change in the parameter value 

(P).         

AUC/P 
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RESULTS 

Non-compartmental pharmacokinetic analysis. Concentrations of CKD-602 in plasma, 

tumor and tumor ECF as a function of time following I.V. administration of non-liposomal 

CKD-602 and S-CKD602 were obtained from a previous study (4). Descriptive pharmacokinetic 

parameters for non-liposomal CKD-602 and for S-CKD602 are presented in Table B. 1. After 

administration of non-liposomal CKD-602, the plasma concentration-time profile of CKD-602 

peaked at 0.083 (h) after administration, had a multi-phasic decline, and no longer detectable 

after 16 h. After administration of S-CKD602, the plasma concentration-time profile of CKD-

602 peaked at 0.083 (h) after administration and had a single-phase elimination profile and was 

detectable at 72 h after administration. The concentration of CKD-602 in tumor ECF after non-

liposomal CKD-602 administration was consistent with the profile of sum total CKD-602 in 

tumor homogenates. The concentration of CKD-602 in tumor ECF after administration of S-

CKD602 was consistent with the profile of sum total CKD-602 in tumor homogenates. 

Compartmental modeling approach. Pharmacokinetic models A-D (Fig. B. 1) were 

used to fit CKD-602 plasma concentration-versus time data obtained from the previous PK study 

in mice. Linear elimination was assumed in all these models. Three compartment models with 

linear elimination (Model C and D) fit the data better than one- or two-compartment models of 

CKD-602. With the exception of clearance from the central compartment, all parameters 

associated with CKD-602 disposition obtained during the fitting of the CKD-602 concentration-

time data were held constant. A three-compartment model for CKD-602 provided a good 

description of concentration-time profile in plasma and tumor (Fig. B. 4A and B). For anticancer 

agents encapsulated in liposome to exert their anti-tumor activity in the system, the active form 

of the anticancer agent must be released from the liposome into tumor ECF and then penetrate 
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into the cell (2). However, when incorporating the sub-compartment in the tumor to describe 

tumor ECF concentration into three-compartment model of CKD-602 (Model E), prediction was 

not accurate (Fig. B. 4E and F).     

The same approach was used to fit sum total CKD-602 plasma concentration-versus time 

data after administration of S-CKD602 using Model F-I (Fig. B. 2). Linear elimination was 

assumed in all these models due to predictive results of Model J. Two compartment models with 

linear elimination using Model G and H (Fig. B. 2) fit the data better than one- or three-

compartment models of sum total CKD-602. With the exception of clearance from the central 

compartment, all parameters associated with sum total CKD-602 disposition obtained during the 

fitting of the sum total CKD-602 concentration-time data were held constant. A two-

compartment model with tissue clearance for sum total CKD-602 provided a good description of 

concentration-time profile in plasma and tumor after administration of S-CKD602. Incorporating 

the sub-compartment in the tumor to describe tumor ECF concentration into two-compartment 

model of CKD-602 (Model I) was not fit to observed tumor ECF concentration (Fig. B. 4E and 

F).    

Pharmacokinetic models K-L (Fig. B. 3) were used to fit encapsulated CKD-602 in 

plasma concentration-versus time data after administration of S-CKD602. One compartment 

model with linear elimination (Model K) fit the data better than Model L with non-linear 

elimination (Fig. B. 4C and D). Based on the best model (Model K) for encapsulated CKD-602, 

both encapsulated CKD-602 plasma concentration-versus time data and sum total tumor CKD-

602 concentration-versus time data were simultaneously fit using Model M and fixing 

parameters associated with released CKD-602. The predicted released CKD-602 concentration in 

tumor from Model M was not fit to sum total CKD-602 concentration in tumor after S-CKD602 
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administration (Fig. B. 4C and D). Comparison of model performance was presented in Table B. 

2 and final PK parameter estimates from the final Model M was presented in Table B. 3. 

Sensitivity analysis. The results showed that CLencapsulated and CLreelased are most sensitive 

for encapsulated CKD-602 plasma exposure and CKD-602 tumor exposure in the final PK model 

for S-CKD602 (Fig. B. 5A and B).  

 

DISCUSSION 

In this study, compartmental pharmacokinetic models were developed and evaluated to 

describe the distribution of non-liposomal CKD-602 and S-CKD602 in plasma and tumor of 

mice bearing A375 human melanoma xenografts. The disposition of CKD-602 after 

administration of non-liposomal CKD-602 in plasma and tumor was better described by a three-

compartment model (Model D) with linear clearance, which was consistent with the previous 

study (1, 3). For anticancer agents encapsulated in liposome to exert their anti-tumor activity in 

the system, the active form of the anticancer agent must be released from the liposome into 

tumor ECF and then penetrate into the cell (2). Facilitated liposome extravasations through leaky 

capillary membrane of tumor microvasculature has been proposed and investigated to elucidate 

the mechanism of more selective tumor delivery compared with the active drugs and higher 

interstitial accumulation of liposomal formulations (5, 6). Thus, subcompartment in tumor tissues 

was incorporated into the model to evaluate any limiting effect of tumor microvasculature 

permeability on disposition of encapsulated and released active drug. However, when 

incorporating the subcompartment in the tumor to describe tumor ECF concentration to three-

compartment model of CKD-602 (Model E), prediction was not accurate (Fig. B. 4E and F), 
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which indicates diffusion into the capillary membrane is not limiting factor for disposition of 

CKD-602 in tumor ECF.  

For sum total (encapsulated and released) CKD-602, a two compartment model with 

tissue clearance better described the disposition of the plasma sum total CKD-602. Incorporating 

the sub-compartment into tumor was able to describe the general characteristics of disposition of 

CKD-602 in tumor ECF. However, it failed to describe the peak concentration at early time 

points and careful caution should be used due to high variability in concentration in tumor ECF 

at individual time point in extrapolating this result.   

For encapsulated CKD-602 after administration of S-CKD602, one compartment model 

with linear clearance better described the disposition of encapsulated CKD-602 in plasma 

compared with the same model with non-linear elimination. However, in the phase I study which 

evaluated the dispositions of encapsulated, released, and sum total CKD-602 using 

compartmental analysis, non-linear pharmacokinetics was demonstrated among patients treated 

with high dose (7). In the PK study using mice bearing A375 human melanoma xenografts (4), 

the dose for S-CKD602 was maximum tolerable dose for mice (1 mg/kg), but the sampling time 

points (tlast= 72h) were relatively short compared to those in phase I study (tlast= 336h) (7).             

When one compartment model for encapsulated CKD-602 was combined with the best 

model for CKD-602 (Model D) using stepwise approach, the disposition of predicted released 

CKD-602 following S-CKD602 administration was not fit to the sum total CKD-602 

concentration-versus time profile available from the mouse PK study (Fig. B. 4C and D). This is 

in part due to the incorrect model assumption (Model M) that encapsulated CKD-602 would be 

either cleared by the major RES organs such liver and spleen (CLencapsulated) or all degraded 

to release the active drug, CKD-602 into tissues over the sampling duration (tlast= 72h). However, 
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82% of CKD-602 following S-CKD602 administration was found to remain encapsulated in 

plasma over 72 hour. Therefore, the difference between predicted released CKD-602 and 

observed sum total CKD-602 in tumor may be attributable to encapsulated CKD-602 which 

extravasate tumor microvasculature and accumulate in the interstitial fluid.  

The clearance of pegylated liposomes has been suggested by many studies to take place 

via the mononuclear phagocyte system (MPS). The MPS cells such macrophage and dendritic 

cells are highly distributed in liver, spleen and bone marrow (8). Based on this hypothesis, the 

sensitivity analyses was performed to evaluate in which elimination step (CL) has effects on the 

disposition of active, released CKD-602 in plasma and tumor. The result showed that 

CLencapsulated and CLreleased are most sensitive parameters for encapsulated CKD-602 

exposure in plasma and released CKD-602 exposure in tumor following S-CKD602 

administration, respectively. However, given the fact that the compartmental models developed 

were not validated due to lack of data, caution should be used to extrapolate the results.  

Considering complex and unknown mechanism for disposition of liposomal formulations, 

development of more sophisticated pharmacokinetic models such as PBPK models are warranted 

to predict the disposition of non-pegylated and pegylated liposomal anticancer agents and 

improve the therapeutic index.  
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Table B. 1. Pharmacokinetic parameters from noncompartmental analysis for non-liposomal 

CKD-602 and S-CKD602 after administration of non-liposomal CKD-602 and S-CKD 602 at a 

single I.V. dose of 30mg/kg and 10 mg/kg, respectively 

Parameters CKD-602 Sum total CKD-602 

Tmax (h) 0.08 0.08 

Cmax (ng/mL) 7344.2 18246.75 

T ½ (h) 0.8 8.88 

AUC inf (ng/mL*h) 9717.85 203502.84 

CL (mL/h/kg) 3087.10 4.91 

V (mL/kg) 3918.03 62.94 
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Table B. 2. Comparison of model performance 

Models Major Characteristics AIC 

CKD-602 

Model A 1 compartment, linear 82.00 

Model B 2 compartment, linear 107.40 

Model C 3 compartment, linear 107.97 

Model D 
3 compartment, 

with tissue clearance 
250.95 

Model E 

3 compartment with 

sub-compartment in 

tumor 

64.10 

Sum total CKD-602 

Model F 1 compartment, linear 149.92 

Model G 2 compartment, linear 149.44 

Model H 
2 compartment, 

with tissue clearance 
123.18 

Model I 3 compartment 297.65 

Model J 
2 compartment with sub-

compartment in tumor 
102.32 

Encapsulated and released CKD-602 

Model K 1 compartment, linear 152.81 

Model L 
1 compartment, non-

linear 
160.61 
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Model M 
Encapsulated and 

released CKD-602 
125.75 
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Table B. 3. Final PK parameter estimates and CV% from the final PK Model M for encapsulated 

and released CKD-602 with linear clearance of encapsulated CKD-602 

Parameters Parameter Estimates 

Mean % CV 

Vreleased1 (mL/kg) 3677.64 7.81 

Vreleased2 (mL/kg) 4128.86 10.66 

Vreleased3(mL/kg) 2913 106.31 

Vencapsulated (mL/kg) 74.17 4.79 

CLencapsulated(mL/h/kg) 6.154 8.4 

CLencap-released (mL/h/kg) 2.15 24.67 

CL released (mL/h/kg) 3125.4 8.8 

CLd (mL/h/kg) 14408.74 22.72 

CLd2( mL/h/kg) 514.03 109.82 
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Fig. B. 1. Pharmacokinetic models of non-liposomal CKD-602 
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Fig. B. 2. Pharmacokinetic models of sum total CKD-602 after administration of S-CKD602 
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Fig. B. 3. Pharmacokinetic models of encapsulated CKD-602 and released CKD-602 after 

administration of S-CKD602 
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Fig. B. 4. Concentration versus time profile of (A) CKD-602 concentration in plasma and (B) 

tumor after non-liposomal CKD-602 administration IV x 1, (C) encapsulated CKD-602 

concentration in plasma and (D) released CKD-602 in tumor after S-CKD602 administration, IV 

x1, (E) CKD-602 concentration in tumor ECF after non-liposomal CKD-602 or (F) S-CKD602 

administration IV x1. 
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Fig. B. 5. Sensitivity analysis for released CKD-602 exposure in tumor from the final PK model 

of S-CKD602 and for encapsulated CKD-602 exposure in plasma from the final PK model of S-

CKD602 
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NOTE 

The following differential equations, based on the scheme displayed in Figure 5 (Model M), 
were fit to encapsulated and released CKD-602 concentration-time data after S-CKD602 I.V. 
administration. 
DZ(1) = ((-CLen/V1)*Z(1))-((CLen2/V1)*Z(1))  
DZ(2) = (CLen2/V1)*Z(1)-(CLrel/V2)*Z(2)-(CLD/V2)*Z( 2)-  
        (CLD2/V2)*Z(2)+(CLD/V3)*Z(3)+(CLD2/V4)*Z(4)  
DZ(3) = (CLD/V2)*Z(2)-(CLD/V3)*Z(3) 
DZ(4) = (CLD2/V2)*Z(2)-(CLD2/V4)*Z(4),  
Where V1 is the volume of the central compartment for encapsulated CKD-602, V2, V3, and V4 
are peripheral compartments for released CKD-602. CLen is eliminating clearance for 
encapsulated CKD-602. CLen2 is formation clearance for released CKD-602 from encapsulated 
CKD-602. CLd and CLd2 are the distributional clearances.   
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APPENDIX C: PHARMACOKINETIC STUDIES OF PEGYLATED LI POSOMAL 
DOXORUBICIN (PLD) IN CC CHEMOKINE LIGAN RECEPTOR CC R2 KNOCKOUT 

(KO) AND CCR5 KO MICE 
 

METHODS 

PK studies in CCR2 and CCR5 knockout (KO) mouse models. Female wild-type (WT) 

C57BL/6 mice, CCR2 -/- mice (CCR2 KO with C57BL/6 background), and CCR5 -/- (CCR5 KO 

with C57BL/6 background) mice of 8- to 10-weeks of age were purchased from the Jackson 

Labs (Bar Harbor, ME). PLD was administered to mice at 6 mg/kg IV x1 via a tail vein. Mice 

(n=3) were euthanized prior to and at 0.083, 1, 24, 48, and 96 hour after administration of PLD.  

Sample processing. Blood and tissue samples were processed as described in Chapter 2.  

Pharmacokinetic analysis. The pharmacokinetics of encapsulated and released 

doxorubicin were evaluated by non-compartmental methods using WinNonlin® (v5.2.1, 

Pharsight Corp., Mountain View, CA). The maximum concentration (Cmax) and time to reach 

Cmax (tmax) were obtained directly from the concentration-time profile. The terminal 

elimination rate constant (λz) was estimated by log-linear regression of at least three data points 

in the terminal phase. The terminal half-life (t½) was calculated as 0.693/λz. The AUC from time 

0 to last (AUC0-last) was determined using the trapezoidal rule with linear interpolation.  

Statistical analysis. Statistical analyses were carried out using SAS v.9.2 (Cary, NC) and 

Prism5 software (GraphPad Software, Inc.). Equality of AUC of doxorubicin between mouse 

models was tested using Nedelman’s modification of the Bailer method for sparse samples, using 

a two-sample test (1). P value of less than 0.05 was considered statistically significant. All 

statistical tests were two-sided.  
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RESULTS 

To verify the roles of CCR2 and CCR5 in the PK of PLD, we performed the PLD PK 

studies in WT mice, CCR2 KO mice, and CCL5 KO mice. PLD was administered at 6 mg/kg IV 

x1 via a tail vein. The plasma encapsulated doxorubicin exposure was significantly greater in 

CCR5 KO mice compared to WT mice, indicating decreased CL of PLD in CCR5 KO mice 

(P<0.05, t-test; Fig. C. 1A and D). However, there was no difference in released free 

doxorubicin exposure (AUC) between WT mice and KO mice (Fig. C. 1A and D). The PLD 

accumulations in the liver were significantly decreased for both CCR2 KO mice and CCR5 KO 

compared to WT mice (P<0.05) (Fig. C. 1B and E). Knockout of CCR2 and CCR5, however, 

did not influence the accumulation of PLD in the spleen compared to WT mice (Fig. C. 1C and 

E). PK parameters of PLD in these mouse models are summarized in Table C. 1.  
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Fig. C. 1. The PK of PLD in wild-type (WT), CCR2 knockout (KO), and CCR5 KO mice after 

administration of PLD at 6 mg/kg IV x1 via tail vein. Concentration versus time profiles of 

doxorubicin in (A) plasma, (B) liver, and (C) spleen in WT mice, CCR2 KO and CCR5 KO mice. 

(D) Encapsulated and released doxorubicin exposure (AUC) in plasma, and (E) sum total 

doxorubicin in the liver and spleen. Equality of AUC was tested using Nedelman’s modification 

of the Bailer method for sparse samples, using a two-sample test (1). Samples (n=3 mice) were 

obtained at each time point. Data are presented as mean ± SD (A, B, and C) and mean ± SEM (D 

and E). 
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Table C. 1. PK parameters after administration of PLD at 6 mg/kg IV x1 in WT, CCR2 KO, and 

CCR5 KO mice 

 Plasma 

 Encapsulated doxorubicin Released doxorubicin 

 
Cmax 

(µg/ml) 

T1/2 

(h) 

CL 

(mL/h/kg) 

AUC0-last 

(µg·h/ml) 

Cmax 

(µg/ml) 

Tmax 

(h) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

WT 90.8 18.5 2.2 2,673 ± 233 1.2 1 20.5 35 ± 3.7 

CCR2 

KO 
152.9 21.6 1.4 4,125 ± 467 1.1 0.083 28.1 43 ± 7.4 

CCR5 

KO 
155.4 21.2 1.4 4,065 ± 353 0.8 0.083 39.8 34 ± 4.8 

 Liver Spleen 

 Sum total doxorubicin 

 
Cmax 

(µg/ml) 

Tmax 

(h) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

Cmax 

(µg/ml) 

Tmax 

(h) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

WT 8.6 24 N/A 487 ± 17 16.1 6 108 1,194 ± 63 

CCR2 

KO 
6.6 24 N/A 272 ± 17 11.8 24 N/A 857 ± 47 

CCR5 

KO 
4.0 1 39.4 262 ± 14 14.9 48 N/A 941 ± 131 

Note: Cmax; maximum concentration; Tmax: time to reach Cmax; T½, terminal half-life; AUC0-

last: area under the curve from time zero to last measurable concentration; CL: clearance; Vdss: volume 

of distribution at steady-state; N/A: non-available.  
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In the liver and spleen, as three data points in the terminal phase were not available, the terminal 

elimination rate (λz) was not estimable. AUC0-last of PLD was calculated by noncompartmental 

analysis using Phoenix v.6.2. Data are presented as mean ± standard error of the mean (SEM).  
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APPENDIX D: EVALUATION OF EFFECTS OF DOSE AND REPEA TED DOSES ON 
CLEARANCE SATURATION OF PLD IN MURINE BREAST CANCER  MODEL 

 

METHODS  

Treatments. PLD was purchased from FormuMax Scientific (Palo Alto, CA) and diluted 

with 5% dextrose to 1.2 mg/mL prior to injection. 

Animal models. In vivo experiments were performed with the approval of University of 

North Carolina at Chapel Hill’s Institutional Animal Care and Use Committee (IACUC). 

T11/TP53Null orthotopic syngeneic murine transplant model (T11) representing human breast 

tumor claudin-low subtype was evaluated. Tumors derived from BALB/c TP53-/- orthotopic 

mammary gland transplant line (T11) was transplanted into the inguinal mammary fat pad of 12 

week old wild-type BALB/c mice (Jackson Labs, strain 000651) (1). Mice were housed in the 

UNC Lineberger Comprehensive Cancer Center's Mouse Phase I Unit (MP1U) and observed for 

tumors as per standard practice (2). Mice were randomized to treatment cohorts and therapy 

began once a tumor reached 60-100 mm3.  

PK studies in the plasma and tumors. To evaluate effects of dose on the plasma 

clearance and tumor accumulation of PLD, PLD was administered at 1 mg/kg IV x1 via a tail 

vein as compared to 6 mg/kg used in the previous studies (See Chapter 3). Mice (n=3) were 

euthanized prior to and at 0.083, 1, 6, 24, 48, and 96 h after administration of PLD. To 

investigate the effect of repeated injections of PLD on the plasma and tumor levels of PLD, the 

dosing interval for 3 multiple injections was 5 days, or approximately 5-6 half-lives (PLD t1/2 in 

mice, 15- 20 hr), which would allow for clearance of 95 % of the injected dose. The levels of 

sum total (encapsulated and released) doxorubicin in the plasma and tumor were measured at a 

fixed time (96 hr) after the last injection. Each blood sample was processed to evaluate 
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encapsulated and released doxorubicin in plasma as described previously (18, 26). In the same 

mice, tumors were collected, preserved by snap freezing, and stored at – 80°C to measure the 

sum total (encapsulated and released) doxorubicin in tumor. The procedures for sample 

processing are described in detail in Chapter 3.   

PK analysis. See Chapter 3. 

Statistical analysis. Statistical analyses were carried out using Prism5 software 

(GraphPad Software, Inc.). Analysis of variance (ANOVA) was performed to compare the levels 

of doxorubicin in the plasma and tumors after repeated doses of PLD. P value of less than 0.05 

was considered statistically significant. All statistical tests were two-sided. 

 

RESULTS 

Effects of dose on plasma clearance and tumor accumulation of PLD. When the dose 

of PLD was escalated from 1 mg/kg to 10 mg/kg, plasma levels (Cmax) increased by, 

approximately, the same factor (6-fold) of the dose escalation (Table D. 1). Consistent with 

Cmax, there was a proportional increase in the plasma exposure (AUC) of PLD and the plasma 

clearance (CL) of PLD remained the same after administration of PLD at doses of 1 mg/kg and 6 

mg/kg (Fig. D. 1, Table D. 1). The amount of released doxorubicin from the carrier in the 

plasma was also increased proportionally, indicating that he dose range from 1 mg/kg to 6 mg/kg 

does not result in a saturation of the MPS-mediated clearance of PLD. However, dose escalation 

resulted in a disproportionate increase in tumor uptake of PLD which increased by 10-fold when 

the dose of PLD is raised 6-fold (Fig. D. 2, Table D. 1).         

Effects of repeated doses of PLD on plasma clearance and tumor accumulation of 

PLD. We also investigated the effect of repeated doses of PLD on the plasma and tumor levels 
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of PLD at a fixed time (96 h) after the last injection. After 3 doses of PLD at the interval of 96 h, 

there were no changes in the plasma levels of PLD (Fig. D. 2A) indicating no saturation 

phenomenon takes place under this particular dose-schedule (6 mg/kg doses with an interval 

limited to 5 days). When we compared the tumor accumulation of PLD after a single dose of 6 

mg/kg to that after 3rd injection of 6 mg/kg, a 1.6-fold increment was observed, but the difference 

was not significant (Fig. D. 2B). 

 

CONCLUSION  

The saturation of the MPS-mediated clearance of PLD has been reported in murine 

models and patients. It has been shown that dose escalation from 2.5 mg/kg to 10 mg/kg of PLD 

resulted in a saturation of PLD clearance and a disproportional increase of the amount of PLD 

accumulating in the tumor due to a partial blockade of the MPS with relative reduction of liver 

uptake and greater prolongation of liposome circulation (3). In the same study, repeated doses of 

4 mg/kg PLD with an interval 4 days also caused a saturation phenomenon (3). PK studies of 

PLD were performed in patients (n=12) receiving successive doses of 60, 30, 45 mg/m2 (arm A) 

or 30, 60, 45 mg/m2 (arm B) every 4 weeks. In contrast to animal studies, there was no 

significant difference in the PK parameters with doubling doses; however, there was a gradual 

and significant inhibition of clearance from the 1st through the 3rd cycle of PLD (4).  

In our preclinical studies using dose escalation from 1 mg/kg to 6 mg/kg of PLD, there 

was no significant change in clearance and a linear correlation between dose and plasma 

exposure (AUC) was observed. When repeated doses of 6 mg/kg PLD with an interval 5 days 

were administered, no saturation effect was observed in the plasma levels of PLD upon multiple 

injections. However, a disproportional increase in tumor uptake (AUC) of PLD with dose 
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escalation and non-significant 58% increase in the tumor levels of PLD when going from 1st to 

3rd cycles of PLD occurred. These findings suggest that dose escalation of PLD within the 

therapeutic dose range does not cause significant saturation of the MPS (i.e., Kupffer cells in the 

liver), but the tumor uptake of PLD may interact with the tumor cells and/or tumor 

microenvironment (i.e., VEGF-A) leading to altered extravasation of PLD from the capillaries to 

tumor as discussed in Chapter 3. Difference in dosing interval (4 days vs. 5 days) used in the 

repeated dose study, rapid replenishment of bone marrow-derived macrophage population in the 

liver in mice, and distinct immune competency in different mouse models (xenografts vs. 

GEMMs) may also account for different effects of dose and repeated doses of PLD (5). 
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Table D.1. PK parameters of PLD after administration of PLD at 1 mg/kg or 6 mg/kg IV x1 in 

claudin-low T11 breast tumor model.   

 Plasma 

 Encapsulated doxorubicin Released doxorubicin 

PLD 

Dose 

Cmax 

(µg/ml) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

CL 

(mL/h/kg) 

Cmax 

(µg/ml) 

Tmax 

(h) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

1 

mg/kg  
18 9.2 246 ± 31 4.1 0.2 0.083 13.4 4 ± 0.1 

6 

mg/kg  
117 17.0 1,449 ± 57 4.0 3.3 0.083 19.4 27 ± 1.6 

 Tumor 

 Sum total (encapsulated + released) doxorubicin 

PLD 

Dose 

Cmax 

(µg/ml) 

Tmax 

(h) 

T1/2 

(h) 

AUC0-last 

(µg·h/ml) 

1 

mg/kg  
0.3 24 N/A 20 ± 2 

6 

mg/kg  
2.6 16 157 210 ± 30 

 Cmax; maximum concentration; Tmax: time to reach Cmax; T½, terminal half-life; AUC0-last: 

area under the curve  from time zero to last measurable concentration; CL: clearance; Vdss: volume of 

distribution at steady-state; N/A: non-available. In the tumor, the terminal elimination rate (λz) was 

not estimable due to lack of data points in the in the terminal phase.   
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Fig. D. 1. Concentration versus time profiles of doxorubicin after administration of PLD at 1 

mg/kg or 6 mg/kg I.V. x 1 via tail vein in (A) plasma and (B) tumor in claudin-low T11 breast 

tumor models. Samples (n=3 mice at each time point) were obtained at 0.083, 1, 6, 24, 48, and 

96 hours following PLD administration. Each time point is represented as the mean ± SD. LLOQ 

for encapsulated doxorubicin: 300 ng/mL, released doxorubicin: 10 ng/mL, and sum total 

doxorubicin in tissue: 10 ng/g. 
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Fig. D. 2. Sum total (encapsulated and released) doxorubicin concentrations in (A) plasma and 

(B) tumor at 96 h post last-injection of PLD in claudin-low T11 breast tumor models. T11 mice 

were injected with PLD I.V. at dose of 6 mg/kg x 3. The dosing interval was 96 h. Plasma and 

tumor levels of PLD were measured 96 h after the last injection. Data are presented as mean ± 

SEM.  

 



                                                                               220 

 

REFERENCES 

(1) Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification 
of conserved gene expression features between murine mammary carcinoma models and 
human breast tumors. Genome Biol 2007;8(5):R76. 

 
(2) Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D, et al. Comparative 

oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. 
Proceedings of the National Academy of Sciences 2012;109(8):2778-2783. 

 
(3) Gabizon A, Tzemach D, Mak L, Bronstein M, Horowitz AT. Dose dependency of 

pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) 
in murine models. J Drug Target 2002;10(7):539-548. 

 
(4) Gabizon A, Isacson R, Rosengarten O, Tzemach D, Shmeeda H, Sapir R. An open-label 

study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated 
liposomal doxorubicin. Cancer Chemother Pharmacol 2008;61(4):695-702. 

 
(5) Sharpless NE, DePinho RA. The mighty mouse: genetically engineered mouse models in 

cancer drug development. Nature Reviews Drug Discovery 2006;5(9):741-754.  
 

 

 


