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ABSTRACT 

Emma Ciel Bowers: Harnessing Inter-Individual Variability to Identify the Molecular  

Mechanisms Shaping Airway Epithelial Cell Transcriptional Responses to Ozone Exposure 

(Under the direction of David Diaz-Sanchez) 

 

Millions of people are exposed to levels of the ambient air pollutant ozone that are known 

to produce pulmonary inflammation; however, inflammatory responses exhibit extensive inter-

individual variability.    Moreover, during multi-day exposures acute inflammatory responses are 

attenuated, resulting in a phenomenon known as “ozone adaptation.”  The mechanisms 

governing these phenomena are not understood, but their identification is essential in 

understanding the health impacts of air pollutant exposure.  The ozone-mediated induction of 

pro-inflammatory genes is a key step in the release of cytokines and chemokines in the airway.  

Thus, differences in the regulation of transcription may be a potential source of ozone 

inflammatory response inter-individual variability and may explain ozone adaptation.  To model 

ozone associated transcriptional inter-individual variability, primary human bronchial epithelial 

cells (phBECs) were collected from different individuals, cultured at air-liquid-interface, and 

exposed to ozone in vitro.  I then examined the expression of the chemokine IL-8, a central 

mediator of pulmonary inflammation, in addition to other ozone-responsive genes.  I found that 

ozone inductions exhibited inter-individual variability and were reproducible within donors even 

when phBECs were collected, cultured, and exposed at different times.  This suggests that 

ozone-responsive gene induction adheres to a set of biological rules that remain to be defined.  

Recent findings suggest that the MAPKs p38 and ERK1/2 mediate ozone response in phBECs, 
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thus I investigated whether these kinases also controlled gene induction inter-individual 

variability.  I found that phBECs with higher inductions of IL-8 are distinguished by elevated 

activation of ERK1/2, but not p38, following ozone exposure.   Upon repeated ozone exposure, 

ozone-responsive gene expression was suppressed and was paralleled by decreases in ERK1/2 

activation, suggesting that this may be an important adaptive mechanism.  In collaboration with 

other scientists, I also found that epigenetic modifications at pro-inflammatory gene promoters 

were strongly associated with ozone-associated gene expression, suggesting that the epigenome 

is critical part of epithelial cell response ‘programming.’  In summary, this work identifies novel 

molecular mechanisms that dictate responsiveness to ozone exposure.    This information can be 

used to refine definitions of susceptible populations and better predict health outcomes 

associated with air pollutant exposures.  
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CHAPTER 1: INTRODUCTION 

Ozone: a major public health issue 

Air pollutant exposure causes over 12 million deaths each year, and is a major risk factor 

in cardiovascular and pulmonary disease morbidity and mortality.  As a result, air pollutant 

exposure is currently considered to be the largest single environmental health risk (WHO 2014).  

A major air pollutant of concern is ground level ozone.  Ozone exposure is associated with 

thousands of pre-mature deaths from respiratory causes and may play a role in cardiovascular 

mortality (US EPA 2013).   In addition, ozone exposure results in the exacerbation of pulmonary 

diseases (Figure 1-1), which result in increased hospitalizations, emergency room visits, lost 

school days, and lost productivity, all of which are estimated to cost billions of dollars (US EPA 

2011).  One of the key factors precipitating these adverse events is ozone-associated pulmonary 

inflammation (US EPA 2013).  Currently a major problem in the environmental health field is 

understanding how ozone exposure causes inflammation and identifying individuals who are 

especially susceptible to exposure effects.  This dissertation addresses these knowledge gaps by 

investigating the molecular mechanisms underlying the ozone-mediated pro-inflammatory 

response.   
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Figure 1-1.  Health effects and repercussions of ozone exposure.  This material was generated 

by the U.S. EPA and is not copyrighted.  Available at https://www.epa.gov/ozone-pollution-and-

your-patients-health/health-effects-ozone-general-population. 

 

Ozone formation and pollution trends 

Ozone is a ubiquitous oxidant pollutant that is often used to study the inflammatory 

response caused by air pollutant exposure.  Unlike many other ambient air pollutants, ozone is 

not directly emitted, and is instead formed during secondary reactions between sunlight, oxygen, 

and other air pollutants such as volatile organic compounds (VOCs) and nitrogen oxides (NOx).  

Because sunlight and heat catalyze ozone formation, ozone concentrations often parallel sunlight 

intensity, peaking in the afternoon and dissipating in the evening.  Ozone formation also exhibits 

seasonal variation, where high concentrations may occur more frequently during warm, sunny 

seasons such as summer and early fall. In addition to the previously described factors, other 

components such as topography, humidity, and wind patterns can play an important role in 

determining ambient ozone levels (US EPA 2013).     

Ozone is currently a criteria air pollutant regulated by the National Ambient Air Quality 

Standards (NAAQS), which consider ozone exposures exceeding an average of 70 ppb/8 hours to 
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be unhealthy. The number of high ozone days in the past 35 years has steadily declined (US EPA 

2016), likely due to clean technologies and regulations targeting precursor pollutants.  Despite 

this reduction, ozone pollution is still a major public health concern in many areas.  This is 

exemplified in Figure 1-2, which indicates the number of days in which ozone concentrations 

reached unhealthy levels in major United States cities.  While nearly every area experiences 

occasional high ozone levels, some locations are far more likely to have recurring high ozone 

days than others.  Urban areas typically have abundant precursor air pollutants and are therefore 

more conducive to ozone formation.  Urban areas with warm, sunny, dry climate typically have 

the highest number of elevated ozone days, while areas that have cloudy and cool climate often 

have the least.  The tendency of ozone to form in highly populated areas also increases the 

number of individuals who are exposed.  It is estimated that in the United States 108 million 

people live in a county in which ozone exceeds air quality standards (US EPA 2017).  Despite 

the recent decline in ozone concentrations, increasing temperatures and changing weather 

patterns associated with climate change may lead to increases in ozone formation (Ebi and 

McGregor 2008). 
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Figure 1-2.  Number of days reaching unhealthy ozone levels in major U.S cities.  Figure 

indicates the number of days exceeding the ozone NAAQS standard in major U.S. cities.  This 

figure was published by the US EPA (2016) and is not copyrighted.  Available at 

https://www3.epa.gov/airnow/airaware/trends.html. 

 

Health effects of ozone inhalation 

 While ozone can interact with all surfaces of the airway, the tissues receiving the highest 

doses in humans are thought to be the terminal bronchioles and the centriacinar region, which is 

located between the tracheobronchial and gas exchange regions (Plopper et al., 1998).  Ozone 

interacts with extracellular lining fluid as well as the phospholipids comprising cell membranes, 

forming secondary oxidation products such as aldehydes, H2O2, and lipid ozonation products 

(Pryor et al., 1995).  Oxidative stress caused by ozone exposure can also lead to the production 

of pro-inflammatory eicosanoids via enzymatic and non-enzymatic processes (Kafoury et al., 

1998; US EPA 2013).   
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Figure 1-3. Reaction of ozone with organic molecules in the airway lining fluid and cell 

membranes.  Ozone is thought to react with double bonds in polyunsaturated fatty acids 

(PUFA), producing lipid oxidation products, aldehydes, and hydrogen peroxide.  These oxidation 

products mediate many of the health effects associated with ozone exposure.  This image 

previously appeared in US EPA 2013 Integrated Science Assessment for Ozone and Related 

Photochemical Oxidants.  This material is not copyrighted and can be found at 

https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=247492. 

 

These ozonation products and pro-inflammatory eicosanoids are responsible for many of the 

adverse health effects associated with ozone exposure.   Ozonation products activate transient 

receptor potential ankyrin 1 (TRPA1) receptors on vagal pulmonary C-fibers innervating the 

lungs, causing the release of various neurotransmitters including substance P, neurokinin A, and 

calcitonin gene-related peptide (CGRP) (US EPA 2013).  The release of these neurotransmitters 

sensitizes the airway, leading to painful and truncated inspiration and restrictive decrements in 

lung function.  Ozone-mediated lung function decrements are mostly restrictive in nature; 

however, the release of some neurotransmitters such as tachykinins and substance P may also 

cause bronchoconstriction and create obstructive lung function decrements (Verhein et al., 

2011).  Vagal nerve stimulation is also responsible for several autonomic changes in the 

cardiopulmonary system, including changes in breathing rate and altered cardiac 

electrophysiology, which could contribute to cardiovascular morbidity and mortality (Farraj et 

al., 2012). 
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In addition to lung function decrements ozone exposure also causes pulmonary 

inflammation, predominantly characterized by airway neutrophilia.  The ozone inflammatory 

response is mediated by the release of pro-inflammatory mediators into the airway.  These 

include pro-inflammatory eicosanoids as well as a variety of cytokines and chemokines, such as 

IL-8, IL-6, IL-1, and TNFα.  The pathways and receptors that are associated with the release of 

these pro-inflammatory mediators are still being elucidated, and are discussed in subsequent 

sections.  Cytokines and markers of vascular inflammation are also elevated in the blood 

following ozone exposure (Devlin et al., 2012, Thompson et al., 2010).  Although the source of 

these circulating cytokines is unclear, this may be an important finding in determining whether 

there is a relationship between ozone exposure and cardiovascular mortality. 

Airway neutrophil influx typically peaks six hours after exposure, and then declines 18-

24 hours post exposure (Schelegle et al., 1991; US EPA 2013).  Infiltrating neutrophils are 

thought to play an important role in the removal of necrotic debris from the airway (Hu et al., 

1982); however, they may also cause further epithelial injury (Balmes et al., 1996; Vesely et al., 

1999) via the release of bactericidal ROS.  In addition to neutrophils, ozone exposure is also 

associated with the chemotaxis of other leukocytes into the airway, including lymphocytes, 

macrophages, and mast cells, which comprise a secondary component of the ozone inflammatory 

response (US EPA 2013).  While changes in lung function are reversible, repeated episodes of 

inflammation may lead to tissue injury, permanent lung damage, airway remodeling, and 

metaplasia (Harkema et al., 1999).  Given these findings, individuals who are more susceptible 

to ozone-associated inflammation may be at a greater risk of long-term airway damage.   

The connection between ozone-mediated lung function decrements and the inflammatory 

response is unclear.  Currently it is thought that these responses arise from different mechanisms, 
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as they occur within different time frames and don’t necessarily occur in the same individuals 

(Balmes et al., 1996; Blomberg et al., 1999).  Regardless of their origin, their combined effect 

has a substantial impact on public health.  Increases in ambient ozone levels are correlated 

hospitalizations and emergency department visits due to respiratory complications (Burnett et al., 

1997; Moore et al., 2008), and are also associated with increased mortality (Jerrett et al., 2009). 

The health effects of ozone exposure must also be considered in the context of realistic 

exposure scenarios, which often involve multiple pollutants and can result in additive or 

synergistic effects.  Previous ozone exposure sensitizes individuals to the effects of subsequent 

allergen exposure (Jorres et al., 1996; Schelegle et al., 2003), and has an additive effect with a 

variety of other air pollutants such as diesel exhaust, particulate matter, and NO2 (Ehrlich et al., 

1977; Kafoury and Kelley 2005; Madden et al., 2014). 

 

Ozone adaptation 

 Predicting the health effects of ozone exposure is complicated by the fact that outcomes 

are highly dependent on exposure history.  While a single exposure is associated with lung 

function decrements and pulmonary inflammation, these effects are greatly reduced or even 

abolished during repeated exposures, an effect termed “ozone adaptation.”   Ozone adaptation 

can be divided into two distinct components: lung function adaptation and inflammatory 

adaptation.  

Lung function adaptation was first documented in human clinical exposure studies where 

it was observed that subjects who were long-time residents of the Los Angeles area (which 

experiences frequent high ozone days) were less responsive to controlled clinical ozone exposure 

than those who were from areas with better air quality (Hackney et al., 1976, 1977).  Subsequent 
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studies monitoring the effects of repeated daily ozone exposures found that lung function 

decrements occur following one to two exposures, but in subsequent exposures these declines are 

abated or even disappear (Folinsbee et al., 1980, 1994).  Lung function adaptation lasts 

approximately one week, but its persistence varies between individuals (Linn et al., 1982).   

Inflammatory ozone adaptation has been observed in both animal and human clinical 

ozone exposure studies.  In such studies the acute inflammatory response typically peaks after 

one to two exposure days, but after four days of repeated exposures the level of airway 

cytokines, such as IL-8 and IL-6, are reduced as are airway leukocytes (Christian et al., 1998; 

Devlin et al., 1996; Jörres et al., 2000; Schelegle et al., 2003; Van der Wal et al., 1994).  Unlike 

lung function adaptation, the persistence of inflammatory adaptation is more complex.  Some 

inflammatory markers return to baseline levels within a week of exposure, while other markers 

remain altered for over 20 days (Devlin et al., 1996).  

The mechanisms responsible for lung function and inflammatory adaptation are 

unknown.  A long-standing hypothesis is that in antioxidant capacity may be an important 

mechanism.  While some studies support this hypothesis (Rahman et al., 1991; Wiester et al., 

1996, 2000), findings from other studies are contradictory or are inconclusive (Kodavanti et al., 

1995; Nambu and Yokonama 1981; Tepper et al., 1989).  Another important but undefined 

aspect of ozone adaptation is its impact on public health.  While some have dismissed the 

importance of lung function adaptation because it is very short-lived (Linn et al., 1982), the 

health effects of inflammatory adaptation have not been addressed.   A recent epidemiological 

study found that ozone-associated mortality exhibits an adaptive effect, where mortality rates are 

highest at the beginning of the high ozone season and decrease throughout the year, reaching a 

null effect by winter (Zanobetti and Schwartz 2008).  While this pattern could be the result of a 
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‘culling’ effect, the role of adaptation in ozone-associated mortality needs to be further 

investigated.  

 

Inter- and intra-individual variability in the ozone inflammatory response 

Human clinical ozone exposure studies have demonstrated that ozone exposure results in 

an average increase in neutrophil (PMN) influx into the lungs; however, there is substantial inter-

individual variability in this response (Figure 1-4).  Some individuals exhibit no change in 

neutrophil infiltration, or even a reduction, while others have substantial increases.   

 

Figure 1-4.  Inter-individual variability in the ozone inflammatory response.  Twenty-four 

human subjects were exposed to 0.06 ppm ozone or clean air for six hours.  Leukocyte 

infiltration was assessed 16-18 hours post exposure via bronchoalveolar lavage.  The percent 

neutrophils present in the lavage fluid is indicated (“% PMN”). Mean and SEM are shown by 

bars while individual responses are indicated by lines.  Reprinted with permission of the 

American Thoracic Society. Copyright © 2017 American Thoracic Society.   Kim CS, Alexis 

NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC, et al., 2011. Lung function and inflammatory 

responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am J Respir Crit 
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Care Med 183:1215-1221.  The American Journal of Respiratory and Critical Care Medicine is 

an official journal of the American Thoracic Society. 

 

Risk factors such as genotype, age, and disease state (Alexis et al., 2009; Scannell et al., 1996; 

Vancza et al., 2009), appear to be associated with increased inflammatory responses; however, 

they have poor predictive value and the mechanisms by which they exert their effects are 

unknown.  Moreover, inflammatory responses in healthy individuals who don’t exhibit any risk 

factors can exceed those in traditional risk groups (Holz et al., 1999).   While ozone responses 

are extremely variable between individuals, responses within an individual are highly 

reproducible (Figure 1-5), which suggests that the ozone inflammatory response adheres to a set 

of biological rules that remain to be discovered. 

 

Figure 1-5.  Ozone responses within individuals are highly reproducible.  Human subjects 

were exposed to 0.25 ppm ozone/3h at two different times.  Induced sputum was collected before 

exposure and three times after exposure.  The percent change before and after exposure were 

calculated from each collection and percent changes from the first exposure (x-axis) were 

compared to changes from the second exposure (y-axis).  Healthy subjects are indicated by open 

circles while asthmatics are indicated by closed circles.  Reprinted with permission of the 
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American Thoracic Society. Copyright © 2017 American Thoracic Society. Holz O, Jorres RA, 

Timm P, Mucke M, Richter K, Koschyk S, et al., 1999. Ozone-induced airway inflammatory 

changes differ between individuals and are reproducible. Am J Respir Crit Care 159:776-784. 

The American Journal of Respiratory and Critical Care Medicine is an official journal of the 

American Thoracic Society. 

 

IL-8 is a hallmark of the ozone inflammatory response 

Inflammatory responses require the coordinate activity of many different chemical 

messengers and cell types.  A critical mediator in this process is IL-8, a potent neutrophil 

chemokine that is produced in the airway in response to pollutants and other foreign substances.  

Like the ozone-associated neutrophil response, IL-8 levels are increased in the airway following 

ozone exposure and exhibit substantial inter-individual variability (Figure 1-6); however, these 

levels are also reproducible with individuals (Krishna et al., 1998).  Elevated IL-8 is linked to 

increased ozone-associated inflammatory response.  Fry et al., (2012) found that “ozone 

responders” with especially high neutrophil influx following ozone exposure also had elevated 

IL-8 in their sputum, while individuals with minimal neutrophil influx response did not.  

Furthermore, removal of IL-8 from the conditioned media of ozone-exposed epithelial cells 

abolishes neutrophil chemotaxis (Chang et al., 1998).  The importance of IL-8 in neutrophil 

recruitment suggests that the factors controlling IL-8 abundance may help explain inter-

individual variability in the ozone inflammatory response.  
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Figure 1-6.  Inter-individual variability in airway IL-8 levels following ozone exposure.  
Twelve healthy humans were exposed to 0.2 ppm ozone and filtered air.  Bronchoalveolar lavage 

fluid was collected six hours post exposure and IL-8 concentrations were assessed.  Reproduced 

with permission of the European Respiratory Society ©.  European Respiratory Journal Jun 

1998, 11 (6) 1294-1300. 

 

Although multiple cell types produce IL-8, airway epithelial cells may be the most 

important source of this chemokine during ozone exposure (Devlin et al., 1994; Jaspers et al 

1997; Chang et al., 1998).  The induction of the IL-8 gene in response to ozone exposure is a key 

step in the release of IL-8 protein and may be an important source of inter-individual variability.  

While previous studies in epithelial cell lines have attributed ozone-mediated IL-8 induction to 

NFκB, in physiologically-relevant primary human bronchial epithelial cells, the activation of the 

mitogen activated protein kinase (MAPK) pathway appears to be the most important 

(McCullough et al., 2014). The activation of two MAPKs, extracellular related kinase (ERK) 1/2 

and p38, appear to be particularly important in the ozone-mediated induction of pro-

inflammatory genes such as IL-8, IL-1B, and IL-1a.  McCullough et al., (2014) demonstrated in 

polarized phBECs that inhibiting the activity of these kinases significantly reduces the ozone-

associated induction of these genes.   Ozone-associated MAPK activation has also been 

corroborated in other in vitro and in vivo studies (Bauer et al., 2011, Williams et al., 2008).   
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Molecular events linking ozone exposure to pro-inflammatory gene expression 

There are several hypotheses regarding how ozone exposure leads to pro-inflammatory 

gene expression via the MAPK pathway.  Ozone interacts with surface liquids and phospholipid 

membranes leading to the production of reactive oxygen species (ROS) such as hydroxyl 

radicals, aldehydes, and hydrogen peroxide (Pryor et al., 1995).  These ROS are thought to play 

a role in the activation of membrane proteins, specifically the epidermal growth factor receptor 

(EGFR; McCullough et al., 2014; Wu et al., 2015), which signals downstream to ERK1/2.  ROS 

such as H2O2 are known to directly modify EGFR and increase its kinase activity (Paulsen et al., 

2012).  Others have hypothesized that ozone-associated ROS may change lipid membrane raft 

formation (Park et al., 2009), thereby encouraging EGFR receptor dimerization and 

autophosphorylation. ROS are also known to oxidize specific residues within phosphatases, 

thereby inactivating them and removing the ‘brake’ from MAPK pathway activation (Bonini et 

al., 2014; Tal et al., 2006; Yan et al., 2016).   Finally, ozone exposure is also thought to increase 

the production of heat shock proteins, which directly activate ERK1/2 (Bauer et al., 2011).  Less 

is known about the molecular events that lead to ozone-mediated p38 activation, but it is possible 

that the ROS-mediated deactivation of phosphatases is involved.  Moreover, the activation of 

toll-like-receptor 4 (TLR4) may also play an important role (Bauer et al., 2011; Williams et al., 

2007). 

 

The epigenome: a potential source inter-individual variability in gene induction 

While cellular signaling is important in determining the pro-inflammatory signals that 

enter the nucleus, inside the nucleus the epigenome at pro-inflammatory genes is another 
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important regulator of gene induction and a potential source of inter-individual variability.  

Unlike the DNA sequence, the epigenome is malleable- shaped from birth by environmental 

factors such as diet, stress, and chemical exposures, among others (Bowers and McCullough 

2017; Bredfeldt et al., 2010; Dolinoy et al., 2010; Fiel and Fraga 2012).  This duality - the ability 

to shape expression and be shaped by external forces- grants the epigenome predictive and/or 

explanatory power that other fixed predictors (i.e., genotype, sex, age) may not possess.  

The epigenome consists of DNA methylation and chromatin modifications.   DNA is 

packaged into chromatin by coiling around histone proteins, the tails of which are subject to a 

variety of covalent modifications.  These modifications work in concert to regulate gene 

expression by mediating changes in chromatin architecture and thus governing the accessibility 

of DNA to transcription factors (Figure 1-7).   
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Figure 1-7. Histone modifications and DNA methylation: The epigenetic code that 

determines chromatin state.1  Histone modifications and DNA methylation function 

cooperatively to regulate chromatin structure, accessibility to transcription factors, and gene 

expression.  DNA methylation is the addition of a methyl group by a DNA methyltransferase 

(DNMT) to the cytosine residue of CpG dinucleotides in DNA.  Methylation of DNA in gene 

regulatory regions (promoters and enhancers) often results in transcriptional repression; 

however, the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine by the ten-eleven 

translocation (TET) family of methylcytosine dioxygenases is associated with the activation of 

gene expression.  The genome is packaged on a protein scaffolding composed of histone proteins 

arranged into repeating units known as nucleosomes.  The unstructured tails of these histones 

extend outside of the core nucleosome and are subject to numerous modifications such as 

acetylation, methylation, phosphorylation, ubiquitination, et cetera.  These modifications can be 

activating (e.g. H3K4me3 and acetylation) or repressive/silencing (e.g. H3K9me3 and 

                                                 
1 This figure and caption previously appeared in Bowers, E. C., & McCullough, S. D. (2017). Linking the 

Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model. Toxicological Sciences, 

155 (2): 302-314. Used with permission. 
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H3K27me3).  Activating histone acetylation and methylation, modifications made by histone 

acetyltransferases (HATs) and histone methyltransferases (HMTs), facilitate chromatin 

accessibility (euchromatin), recruitment of the transcriptional machinery, including RNA 

polymerase II (RNAPII), and initiation/elongation of transcription.  DNA methylation and 

repressive histone modifications function cooperatively, through proteins such as methyl-CpG 

binding protein 2 (MeCP2), histone deacetylases (HDACs), histone demethylases (HDMs), and 

repressive HMTs, in the recruitment of transcriptional co-repressors and the formation of 

repressed and inactive (heterochromatin) epigenetic states. 

 

Chromatin modifications have been particularly implicated in controlling pulmonary 

inflammation (Adcock et al., 2007; Barnes et al., 2005; Saccani and Natoli 2012) and they are 

highly predictive of gene expression (Heintzman et al., 2007; Karlić et al., 2010; Wang et al., 

2008).  Our lab recently found that patterns of chromatin modifications in unexposed phBECs 

were associated with ozone-associated gene induction, suggesting that pre-exposure chromatin 

states may be an important source of inter-individual variability (Figure 1-8).  While pre-

exposure chromatin modifications may be influential, epigenetic changes occurring as a result of 

ozone exposure may be just as important, as the induction of some genes may be dependent on 

the removal or placement of certain epigenetic modifications. Thus, profiling exposure-

associated changes in chromatin modifications is an important corollary to the previously 

described experiments performed in McCullough et al. (2016).   
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Figure 1-8. Correlations between specific baseline chromatin modification levels and O3-

induced gene expression.2 (A) Induction of the pro-inflammatory genes COX-2, IL-8, and IL-6 

and the oxidative stress gene HMOX-1 were measured in pHBECs following a two hour 

exposure to 0.5 ppm O3. Baseline levels of H3K4me3, H3K27me2/3, and 5-hmC were compared 

to the peak induction of HMOX-1 (B) and COX-2 (C). Fold induction is shown as O3/air and was 

normalized to corresponding fold change in the housekeeping gene ACTB according to the Pffafl 

method. R2 and p-values were determined by simple linear regression.  

 

Model System: Primary human bronchial epithelial cells (phBECs) 

The majority of studies examining inflammatory response inter-individual variability and 

inflammatory adaptation have been human clinical exposure studies.  While highly relevant, 

                                                 
2 This figure and caption previously appeared in McCullough, S. D., Bowers, E. C., On, D. M., Morgan, D. S., 

Dailey, L. A., Hines, R. N., Devlin, R.B., & Diaz-Sanchez, D. (2016). Baseline chromatin modification levels may 

predict interindividual variability in ozone-induced gene expression. Toxicological Sciences 150 (1): 216-224.  Used 

with permission. 
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clinical studies are inefficient and have a limited capacity for mechanistic investigation.  While 

mechanisms are more easily studied in animal models, there is less genetic complexity to model 

inter-individual variability and the question of applicability to human biology is ever present.  

Alternatively, in vitro research using cell lines has a limited capacity to study inter-individual 

variability, as each cell line represents only one genotype.  Moreover, most epithelial cell lines 

do not exhibit contact inhibition, and therefore become over-confluent during multiple days of 

exposures.  Many airway epithelial cell lines also require submersion in media, which 

complicates exposing cell surfaces to ozone gas. 

To overcome these obstacles, I used primary human bronchial epithelial cells (phBECs) 

cultured at air-liquid interface (ALI).  In this model system, cells are collected from healthy 

human donors, expanded several passages, plated on Transwell inserts, and then the apical layer 

of media is removed forming an air-liquid interface.  We added retinoic acid to our ALI cultures 

for 24 days to facilitate differentiation of epithelial cells into a pseudostratified epithelium 

consisting of ciliated, goblet, and basal epithelial cells.  Figure 1-9 depicts epithelial cell cultures 

created at US EPA Human Studies Facility using the collection, culture, and differentiation 

technique used in this dissertation, and previously described by Ross et al., (2007).  These cells 

are especially amenable to studying inter-individual variability because they can be collected 

from many different human donors.  Because these cultures exhibit contact inhibition, they are 

also well-suited for use in multi-day exposure studies required for ozone adaptation research.   
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Figure 1-9. Mucociliary differentiation of phBECs at US EPA using technique described by 

Ross et al., (2007).  ALI cultures were fixed at Day 0 (A–C), Day 6 (D–F), Day 14 (G–I), Day 

21 (J–L), and Day 29 (M–O). Sections were stained with H&E, Alcian blue/PAS reagent, or 

immunostained to label acetylated α-tubulin (red) and MUC5AC (green) with DAPI nuclear 

staining (blue). J, M: Ciliated cells=black arrows; basal cells=black arrowheads. K, N: Cells with 

PAS and Alcian blue staining, indicating the presence of mucins, are indicated with green 

arrows. I, L, O: Acetylated α-tubulin staining indicates ciliated cells (yellow arrows) and mucin 

staining indicates secretory cells (white arrowheads).   Reprinted with permission of the 

American Thoracic Society. Copyright © 2017 American Thoracic Society. Ross et al., 2007. 

Am J Respir Cell Mol Biol Vol 37. pp 169–185.  The American Journal of Respiratory Cell and 

Molecular Biology is an official journal of the American Thoracic Society. 

 

Scope of Dissertation 

Two long-observed but poorly characterized phenomena may hold the key to 

understanding susceptibility to ozone exposure effects: inflammatory response inter-individual 

variability and inflammatory ozone adaptation.  Inflammatory responses to ozone exposure 

exhibit marked heterogeneity where the range of responses in healthy individuals can exceed that 

observed in populations deemed “susceptible” by conventional risk factors. Furthermore, some 

but not all individuals exhibit an ability to suppress inflammatory responses during repeated 
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ozone exposure, which may prevent excessive inflammation and permanent lung damage. These 

phenomena have been observed in human clinical studies and exposed populations for nearly 

fifty years, but is unclear if these responses are a feature of the airway environment specific to 

each individual or they are mediated on a cellular level.  If we can identify the mechanisms that 

dictate inflammatory response inter-individual variability and adaptation, we may be able use 

this information to both engineer protective interventions and also refine predictions of 

susceptible populations. 

The inflammatory response to ozone exposure exhibits extensive inter-individual 

variability, but responses within an individual are highly reproducible.  This indicates that the 

inflammatory ozone response obeys biological rules that have yet to be discovered.   Epithelial 

cells line the airway and are the first to encounter inhaled pollutants.  These cells act as sentinels 

by sensing pollutants and/or tissue damage and releasing pro-inflammatory mediators such as IL-

8.  IL-8, a potent neutrophil chemokine, is an important driver of the ozone-associated neutrophil 

response.  A key step in the release of IL-8 from epithelial cells is the ozone-mediated 

transcription of the IL-8 gene.  By understanding the factors dictating ozone-mediated IL-8 

transcription in epithelial cells, we may be able to understand a critical component of ozone 

inflammatory response ‘programming.’  

Using the phBEC model system, the goal of my dissertation is to understand the 

molecular programming that dictates the expression of IL-8 in airway epithelial cells (Figure 1-

10).  Given the central role of MAPK signaling in polarized phBECs as previously described by 

McCullough et al. (2014), I hypothesize that the activation of the MAPKs ERK1/2 and p38 are 

an important component of this programming in differentiated phBEC cultures.  Furthermore, I 

hypothesize that the differential activation of these kinases shapes IL-8 transcriptional responses 
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to acute ozone exposure (Chapter 2) and may be an important mechanism underlying adaptive 

responses during repeated ozone exposure (Chapter 3).  While ozone-associated MAPK 

activation is an important component of pro-inflammatory signaling, focusing on cellular 

signaling alone does not take into account the role of the epigenome at pro-inflammatory gene 

promoters.  Thus, I also tested the hypothesis that changes in promoter epigenetic modifications 

may explain inter-individual variability in ozone-mediated IL-8 induction (Chapter 4). 

 

 

Figure 1-10. Diagram of dissertation approach.  Chapters 2 and 3 address the contributions of 

cellular signaling in response inter-individual variability and ozone adaptation.  While examining 

MAPK signaling accounts for one of the main pro-inflammatory signals entering the nucleus, it 

does not take into consideration the role epigenome, which is explored in Chapter 4. 

 

The findings from my dissertation provide compelling evidence that phBEC IL-8 

transcriptional responses are indeed ‘programmed,’ and that the MAPKs ERK1/2 and p38 are an 

integral part of this programming.  I found that differences in MAPK activation were critical 

mediators of ozone response inter-individual variability, where high IL-8 responding phBEC 
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cultures had elevated activation of ERK1/2.  Moreover, when phBECs were subjected to 

repeated ozone exposure, many cultures exhibited suppression of ozone-responsive gene 

expression, recapitulating the in vivo adaptive response.  Upon further investigation, I discovered 

that antioxidant capacity is not increased during repeated ozone exposure as was previously 

hypothesized.  Instead, phBECs that exhibited suppressed IL-8 induction showed reductions in 

ERK activation, suggesting this is an important mechanism driving the adaptive response.  While 

MAPK signaling is an important component of the ozone response, epigenetic changes at pro-

inflammatory gene promoters may also shape response inter-individual variability.  I observed 

that the magnitude of pro-inflammatory gene induction is associated with changes in activating 

and repressive chromatin modifications. 

Inflammatory response inter-individual variability and adaptive responses are currently 

major obstacles in anticipating health effects in populations exposed to air pollutants and 

predicting individuals who might be especially susceptible to exposure effects.  This research 

will help overcome these obstacles by providing novel insights into the mechanisms underlying 

these phenomena.   
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CHAPTER 2: OZONE-MEDIATED IL-8 RESPONSIVENESS IS AN INTRINSIC 

PROPERTY OF AIRWAY EPITHELIAL CELLS AND IS DETERMINED BY THE 

ACTIVATION OF THE MAP KINASE ERK1/2  3 

 

Introduction 

Millions of individuals are exposed to levels of the ambient air pollutant ozone that are 

known to produce pulmonary inflammation; however, inflammatory responses exhibit extensive 

inter-individual variability, making it difficult to anticipate health effects of exposed individuals.  

The variability of ozone associated inflammation is not reliably explained by biological factors, 

nor can it be predicted by traditional risk groups; for example, the magnitude of inflammatory 

response in healthy individuals may be greater than that observed in asthmatics (Holtz et al., 

1999; US EPA 2013).   While ozone inflammatory responses are poorly understood and exhibit a 

high degree of inter-individual variability, they also exhibit low intra-individual variability, as 

inflammatory responses are reproducible if the same individual is exposed to ozone at different 

times (Holz et al., 1999 and 2005).  This indicates that there are biological factors dictating the 

ozone inflammatory response that have yet to be defined, and suggests that their discovery could 

facilitate the reliable identification of individuals who may be particularly susceptible to ozone 

exposure.   

                                                 
3 This chapter has been submitted for publication in April of 2017. Bowers, E.C., McCullough, S.D., Morgan, D.S., 

Dailey, L.A., Diaz-Sanchez, D. Ozone-mediated IL-8 responsiveness is an intrinsic property of airway epithelial 

cells and is determined by the activation of the MAP kinase ERK1/2.  
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IL-8 is an important pro-inflammatory chemokine that is a hallmark of environmentally-

induced airway inflammation (Aris et al., 1993; Sundeep et al., 2000).  Multiple studies have 

shown that ozone exposure results in the release of IL-8 protein into the airways and that these 

levels exhibit extensive variation between individuals (Fry et al., 2012; Krisha et al., 1998).  

Given the importance of IL-8 in airway inflammation, we sought to further understand the 

molecular mechanisms driving IL-8 response variability, as these may lead to the discovery of 

novel ozone susceptibility factors.   

We examined in vitro IL-8 response in parallel with the activation of cellular signaling 

pathways that are known to be important in mediating the ozone pro-inflammatory response.  We 

modeled IL-8 expression in epithelial cells as they are one of the first cells to respond to inhaled 

pollutants and are a major source of IL-8 following ozone exposure (Devlin et al., 1994; Jaspers 

et al 1997; Chang et al., 1998). While IL-8-associated gene transcription has previously been 

shown to occur through the NFκB pathway in cell lines, our lab demonstrated that in primary 

human bronchial epithelial cells (phBECs), the mitogen-activated protein kinases (MAPKs) are 

central signaling mediators (McCullough et al., 2014).  These kinases are activated by 

phosphorylation at specific residues and, in turn, phosphorylate other downstream effectors, 

which can include kinases, transcription factors, stress-associated proteins, etc.   Within the 

MAPK pathway, the activity of extracellular-signal related kinases (ERK) 1 and 2, as well as p38 

have an essential role in ozone pro-inflammatory signaling, as inhibiting these signaling 

pathways diminishes ozone-induced pro-inflammatory gene expression in polarized phBECs 

(McCullough et al., 2014).  Thus, we hypothesized ERK and p38 phosphorylation pays an 

equally important role in differentiated phBEC cultures and drives inter-individual variability in 

ozone-induced IL-8 transcription. 
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To determine if IL-8 transcriptional variability occurred in vivo, we first assessed IL-8 

transcription in epithelial cells collected from human subjects following controlled ozone 

exposure.  We then investigated the role of MAPKs in modulating IL-8 transcriptional response 

using differentiated phBECs cultured at air-liquid interface (ALI).   Here we report that both in 

vivo and in vitro, ozone exposure results in inter-individual variability in epithelial cell IL-8 

transcription.  PhBEC IL-8 transcriptional responses from individual donors were consistent 

across repeated collections, suggesting that the magnitude of IL-8 induction is an intrinsic 

property of phBECs and may be donor-specific.  By extension, this epithelial cell ‘programming’ 

could partially explain the reproducibility of ozone responses observed in vivo (Holz et al., 1999 

and 2005).  When we examined ozone-associated pro-inflammatory signaling pathways in 

phBECs, we found that MAPK activity differed between cultures with high and low IL-8 

transcriptional responses, with highly responsive cultures exhibiting elevated ERK1/2 pathway 

activation.  These results suggest that an individual’s epithelial cells have intrinsic properties that 

regulate their response to environmental pollutants, and that one mechanism of this programming 

may be the differential regulation of the ERK1/2 pathway.   
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Materials and Methods 

In vivo epithelial cell ozone responses: Clinical ozone exposures and epithelial cell collection 

Nine subjects participated in a randomized single-blind crossover study as described in 

Devlin et al., (2012).   The median age was 24 years (range 21-32 years) and all were male (1 bi-

racial, 7 Caucasian, 1 Hispanic). Briefly, young healthy volunteers gave a detailed medical 

history and underwent a physical examination.  All subjects were lifetime nonsmokers.  Each 

subject was exposed twice for 2 hours: once to filtered air (FA) and once to 0.3 ppm ozone.  This 

ozone dose is frequently used in human exposure studies and is equivalent to an exposure at the 

2005 National Ambient Air Quality Standard (NAAQS) of 75 ppb over an eight-hour period, 

which is slightly higher than the current NAAQS of 70 ppb/8h.  Exposures were separated by at 

least 2 weeks. During each 2-hour exposure, subjects alternated between 15 minutes of rest and 

15 minutes of exercise on a cycle ergometer and exposure exercise levels were adjusted to obtain 

a target minute ventilation of 25 L·min-1·m-2 body surface area. One hour after the exposure 

concluded, epithelial cells were collected from the bronchi of subjects via bronchial brushing, 

mixed with Trizol (Life Technologies, Carlsbad, CA), and the extracts were stored at -80 °C until 

they were ready for processing. The informed consent and collection protocol were approved by 

the UNC School of Medicine Committee on the Protection of the Rights of Human Subjects and 

by the US EPA. 

 

In vitro epithelial cell ozone responses: Primary cell collection, plating, and ozone exposure 

Primary human bronchial epithelial cells were obtained via bronchial brushing from 

healthy non-smokers with no more than a 1-pack year smoking history.  Donors gave their 

informed consent after being informed of risks and procedures.  The consent and collection 
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protocol were approved by the UNC School of Medicine Committee on the Protection of the 

Rights of Human Subjects and by the US EPA.  To determine if phBECs from the same donor 

had consistent responses to ozone over time we compared IL-8 inductions between cells from the 

same donor that were collected during two different bronchoscopies, which were a minimum of 

three weeks apart.  Cells were cultured and differentiated as described by Ross et al., (2007).  

Briefly, cells were expanded for three passages and then plated on 24 mm Transwell inserts with 

0.4 µm pores (Corning Life Sciences, Tewksbury, MA).  Three inserts per treatment per donor 

were used.  Once confluent, cells were submerged for 48 hours with 500 nM retinoic acid.  

Afterward the apical layer of medium was removed creating an air-liquid interface (ALI).  Cells 

were maintained for 24 days at ALI and supplemented with 100 nM retinoic acid to promote 

differentiation into a pseudostratified columnar epithelium.  Prior to each ozone exposure, the 

basolateral medium was replaced and the apical surface was washed with 500 µL Dulbecco’s 

PBS (Life Technologies, Carlsbad, CA) to remove cellular debris and secretions.  To investigate 

the role of MAPK activity in ozone-associated IL-8 induction, the ERK1/2 and p38 kinase 

inhibitors SCH772984 and LY2228820 (Cayman Chemical, Ann Arbor, MI), respectively, were 

used.  LY2228800 and SCH772984 both inhibit these kinases by competitively binding the ATP 

binding domain, but SCH772984 also induces a conformation change that prevents the 

phosphorylation of ERK1/2 by upstream kinases (Campbell et al., 2014; Morris et al., 2013).  

These inhibitors were added to cell media to a final concentration of 250 nM with 0.2% DMSO 

during media change two hours prior to ozone exposure and remained throughout exposure until 

harvest.  After a two-hour acclimation period cells were exposed to a filtered air (FA) control or 

0.5 ppm ozone for two hours. This dose is conventionally used in vitro and is similar to doses 

used in clinical ozone exposure studies (Hatch et al., 2014).  Immediately following exposure 
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cells designated for MAPK analysis were harvested as described below.  Two hours following 

exposure, cells designated for gene expression analysis were harvested in RNA lysis buffer (Life 

Technologies) and stored at -80° C until they were ready for processing.  As a positive control 

for NFκB pathway activation, primary cells were stimulated with 10 ng/mL TNFα for 20 

minutes. 

 

RT-qPCR 

We used IL-8 transcription as our primary read-out, as protein levels may be influenced 

by further regulatory processes such as degradation.  For in vivo samples, RNA was extracted 

from lysed samples using RNeasy kit (Qiagen, Valencia, CA), while for in vitro samples, an 

RNA Mini Kit (Life Technologies) was used.  RNA was quantified using a Nanodrop ND1000.  

For in vivo and in vitro samples 100 ng and one (1) μg, respectively, was used to synthesize 

cDNA using iScript Reverse Transcription Kits (Bio-Rad, Hercules, CA). Gene expression was 

assessed in technical triplicates using TaqMan RT-qPCR primers and probes (Supplementary 

Methods) and the CFX96 qPCR system (Bio-Rad).  Target gene expression was normalized to β-

actin (ACTB) and then expressed as a fold changes between filtered air and ozone exposure 

treatments using the Pfaffl method (Pfaffl 2001).   

It has been shown that in individuals who have elevated IL-8 protein in the airway after 

ozone exposure also exhibit increased IL-8 protein prior to exposure (Fry et al., 2010); thus, we 

wanted to determine if there was a relationship between baseline IL-8 transcription and ozone-

induced transcription.  To answer this question, we performed absolute quantification of the IL-8 

transcript by generating standard curves with known copy numbers of closed circular pUC57-
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based plasmids (synthesized by Genewiz, Inc.) contained the IL-8 cDNA sequence. The resulting 

values were normalized to the absolute quantity of ACTB transcript in the same PCR reaction. 

 

MAPK Pathway Analysis 

We compared ozone-associated MAPK activation between donors that had high versus 

low IL-8 inductions by examining phosphorylation at specific residues.  Cellular extracts were 

prepared in RIPA buffer (50mM Tris, pH 8.0; 150mM NaCl; 1% Triton X-100; 400μM EDTA; 

10% glycerol; 0.1% SDS; 0.1% deoxycholate) with 1X protease (cOmplete EDTA-free, Roche, 

Indianapolis, IN) and 1X phosphatase (PhosSTOP, Roche) inhibitors.  Cellular debris was then 

centrifuged and aliquots RIPA extract were removed for protein quantification via BCA assay 

(ThermoFisher, Waltham, MA). The remaining supernatant was supplemented with Laemmli 

buffer to a final concentration of 1X (60mM Tris, pH 6.8; 200 mM DTT; 10% glycerol; 2% 

SDS; 0.05% bromophenol blue) incubated at 95°C for five minutes, aliquoted, and stored at -

80°C. For each sample, equal amounts of protein were loaded into SDS-PAGE gels, 

electrophoresed, and transferred to nitrocellulose membranes (Bio-Rad) via tank transfer.  

Following primary antibody binding (Supplementary Methods), horseradish peroxidase (HRP)-

conjugated secondary antibodies and Pierce Enhanced Chemiluminescence (ECL) Western 

blotting substrate (ThermoFisher) were used to generate chemiluminescence.  Immunoblots were 

imaged on a LAS-3000 detection system (Fuji/GE Healthcare, Pittsburgh, PA).  Densitometry 

analysis was performed using ImageJ software (National Institutes of Health, Bethesda, MD).  

The pixel density from the phosphorylated protein was normalized to the pixel density from total 

protein levels, after which the fold changes between treated and filtered air conditions were 

calculated.   
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Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism 6.07 (GraphPad Software, 

La Jolla, California, USA).  For all analyses a p-value of less than 0.05 was considered 

statistically significant. Simple linear regression was used to relate IL-8 responses between 

repeated bronchoscopies.  To determine if inhibitor treatments significantly reduced IL-8 

induction from the ozone-vehicle (O3-V) control, a two-way ANOVA with Dunnett’s Multiple 

Comparisons was used.  Kinase phosphorylation in high and low responders was compared using 

a non-parametric Mann-Whitney test.   
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Results 

Inter-individual variability in ozone induced epithelial derived IL-8 response 

Epithelial cells collected from human subjects exposed to ozone demonstrated variable 

IL-8 expression following exposure (Table 2-1; Figure 2-1A).  When normalized to matched 

filtered air control exposures, the mean IL-8 induction (± SD) was 1.30 ± 0.69.  In phBEC 

cultures exposed to ozone in vitro (Table 2-2; Figure 2-1 B), the mean IL-8 induction was 4.18 ± 

2.29.   Although the magnitude of IL-8 inductions differed in vitro and in vivo, the coefficients of 

variability were nearly identical between model systems, 53% and 55%, respectively, indicating 

that the data were similarly distributed. For downstream analysis using the phBEC in vitro 

system, we used the arithmetic mean value of 4.2 fold change from FA to separate donor cultures 

into “high responders” and “low responders” depending on whether they fell above or below this 

value. 

In vivo exposure subjects 

Subject Sex Age Ethnicity Mean 

IL-8 

1 M 23 White 0.52 
2 M 26 White 2.55 
3 M 32 White 1.23 
4 M 24 Hispanic 1.27 
5 M 24 White 0.4 
6 M 21 White 1.19 
7 M 23 White 1.86 
8 M 22 Bi-racial 0.88 
9 M 26 White 1.81 

Table 2-1. Characteristics of human subjects who underwent in vivo ozone exposure.  

Donor characteristics from the data depicted in Figure 2-1A.  IL-8 inductions from each subject’s 

bronchial epithelial cells are shown in the last column. 
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phBEC donors 

Donor Sex Age Ethnicity 
Mean 

1XO3  

IL-8 
1 F 35 Black 5.8 
2 M 32 White 7.9 
3 M 39 White 2.8 
4 F 29 White 6.5 
5 M 26 White 2.7 
6 F 18 Black 5.0 
7 M 26 White 9.2 
8 M 20 Black 2.4 
9 M 34 White 2.9 
10 M 21 Asian 1.9 
11 M 27 White 3.1 
12 M 33 Black 2.4 
13 M 39 White 5.7 
14 F 35 White 4.5 
15 M 28 White 1.4 
16 F 21 Black 2.6 

Table 2-2.  Characteristics of phBEC donors.  The characteristics of phBEC donors included 

in figure 2-1B are depicted.  IL-8 inductions from in vitro ozone exposure are included for 

reference.  
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Figure 2-1. Inter-individual variability in epithelial cell IL-8 induction from both controlled 

human ozone exposure studies (in vivo) and primary cell cultures exposure to ozone (in 

vitro). (A) IL-8 induction in bronchial epithelial cells collected from ozone-exposed human 

subjects.  Subjects were exposed to 0.3 ppm ozone for 2h and after a one-hour acclimation period 

subjects underwent bronchoscopy to collect epithelial cells via bronchial brushing. IL-8 

expression was first normalized to β-actin and then expressed as a fold change from matched 

filtered air (control) exposures from the same subjects.  Mean ± SD shown, n=9 subjects. (B) IL-

8 expression in phBECs cultured at ALI exposed to ozone (0.5 ppm/2h). Each data point 

represents a phBEC culture collected from a different human donor. Expression was normalized 

to β-actin and expressed as fold change from filtered air exposures. Mean ± SD shown, n=16 

donors. To further investigate the mechanisms underlying ozone responsiveness using phBECs, 

we classified cultures as being “high” or “low” responders based on whether IL-8 inductions fell 

above or below the group mean (4.2 fold change). 

 

Donor-specificity in the IL-8 response 

PhBECs collected from the same donor over time exhibited donor-specificity in ozone 

associated IL-8 induction (Figure 2-2).  Data were available for seven phBEC donors who had 

two epithelial cell collections.  The time between bronchoscopies ranged from 49-453 days.   

Once again, we used the mean described in Figure 2-1B, 4.2-fold change from FA, to 

differentiate high and low responders.  For all seven donors, responder status was recapitulated 
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between collections as indicated by the data points clustering in the shaded quadrants in Figure 2, 

as well as strength of linear regression (R2=0.78, p=0.009).  In addition, repeated platings from 

cells from the same bronchoscopy that were thawed and plated at different times also 

demonstrated reproducible IL-8 responses (Figure 2-12).  These data suggest that epithelial cell 

IL-8 transcriptional response to ozone is an intrinsic property. 

 

Figure 2-2. Donor-specificity of phBEC IL-8 induction following in vitro ozone exposure.   

We investigated whether phBEC cultures collected from the same cell donors at different times 

had reproducible IL-8 responses. Seven phBEC donors were used (two data points overlap) with 

the time between collections ranging from 49-453 days.  The consistency of ozone response was 

assessed by comparing the first exposure response (X-axis) with the second exposure response 

(Y-axis) via linear regression.  Dotted lines are drawn at X=4.2, Y=4.2, which is the metric by 

which we differentiated high and low in vitro responders.  The shaded areas indicate the 

quadrants the data points would cluster within if cultures were consistent in their response status 

(high or low) in both collections one and two.    
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The influence of ERK1/2 and p38 inhibition on the ozone-IL-8 response 

  The addition of the ERK1/2 and p38 inhibitors SCH772984 and LY2228820, 

respectively, resulted in the reduced induction of IL-8 (Figure 2-3).  In in vitro high responders, 

the addition of either SCH772984 or LY2228820 alone reduced IL-8 induction; however, the 

simultaneous addition of both inhibitors was required to achieve a statistically significant 

reduction from O3-V levels (ANOVA with Dunn’s Multiple Comparisons p=0.008). Mean IL-8 

induction (± SD) for the O3-V treatment was 8.26 ± 4.5, which was reduced to 2.96 ± 1.69 during 

the O3+SCH772984+LY2228820 treatment.  Three low in vitro responders also received the 

inhibitor treatment (Figure 2-12) and no statistically significant changes in IL-8 induction were 

observed.  A representative Western blot depicting MAPK activation after the addition of these 

inhibitors is shown in Figure 2-4. 
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Figure 2-3. The influence of ERK1/2 and p38 inhibition on ozone associated IL-8 induction 

in high responders.  To determine whether the activation of the MAP kinases ERK1/2 and p38 

were required for ozone-mediated IL-8 induction, inhibitors of these kinases (SCH772984 and 

LY2228820, respectively) were added to cell media two hours prior to ozone exposure.  Seven 

donors were used, four high responders (shown above) and three low responders (Figure 2-13). 

IL-8 inductions were normalized to a 0.2% DMSO filtered air vehicle control.  IL-8 inductions 

were compared between the ozone-vehicle control (O3-V) and all other treatments via 2-way 

ANOVA. *p<0.05. 
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Figure 2-4.  Representative Western blot showing the effects of SCH772984 and 

LY2228820 on ERK1/2 and p38 phosphorylation.  The ERK1/2 and p38 inhibitors 

SCH772984 and LY2228820 (respectively, 250 nM each) were added to cell media with 0.2% 

DMSO (V) two hours prior to ozone exposure.  Protein was harvested immediately following 

ozone exposure.  The phosphorylation of ERK1/2, p38 and the downstream kinases RSK and 

MK2, respectively, are shown.  Because LY2228820 does not inhibit p38 from being 

phosphorylated, but prevents p38 kinase activity, changes in MK2 phosphorylation are used as a 

read-out of p38 kinase activity.  Extract from LPS-stimulated phBECs was used as a positive 

control.  The LPS positive control for each mark was run on the same gel, immunoblotted, and 

imaged at the same time as the blots in the adjacent row.  Because the LPS treatments were run 

in different lanes that did not align, the images were adjusted so they could be shown in the same 

lane. 
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Comparison of MAPK phosphorylation in high and low responding cultures 

To test our hypothesis that MAPK phosphorylation might explain the inter-individual 

variability in IL-8 ozone response, we compared ozone-associated IL-8 induction with the 

activation of the ERK1/2 and p38 pathways following ozone exposure.  Using the same cutoff of 

a 4.2-fold change to differentiate high and low in vitro IL-8 responders, we obtained matched 

RIPA extracts and RNA samples from six high- and six low-responding phBEC cultures.  

Ozone-mediated IL-8 induction in these donors (Figure 2-5) ranged from a 1.43-4.06 fold change 

in low responders and 4.53 to 14.45-fold change in high responders.   

A non-parametric Mann-Whitney test was used to assess MAPK phosphorylation 

differences between high and low responders, as several distributions were skewed.  Following 

ozone exposure, the mean fold change from FA (± SD) of ERK1/2 phosphorylation in low 

responders was 1.23 ± 0.21 and 2.39 ± 0.84 in high responders. After finding a significant 

difference in ERK1/2 phosphorylation between these groups (p=0.022), we then examined the 

phosphorylation of the kinases upstream (MEK) and downstream (RSK) from ERK1/2.  MEK 

phosphorylation in low responders and high responders was found to be significantly different, 

with low responders having a mean of 1.43 ± 0.27 and high responders a mean of 2.39 ± 0.61 

(p=0.004). RSK phosphorylation was also significantly different between these groups, with low 

responders having a mean of 1.28 ± 0.67 and high responders having a mean of 3.32 ± 2.01 

(p=0.026).   

  



 

46 

 

 

Figure 2-5. The activation of ERK1/2 and its associated kinases in high and low-responding 

cultures. The phosphorylation of the MAP kinase ERK1/2 and its association with IL-8 response 

variability.  Cells were considered “high responders” if their IL-8 induction was above the group 

mean (4.2 fold change) and low responders were below this group mean.  Protein was collected 

from twelve donors (n=12), six high and six low responders.  The distribution of IL-8 inductions 

as well as the group means ± SD is shown in (A).  (B) Blots from two representative donors (one 



 

47 

 

high, one low) show the phosphorylation of ERK1/2 and an upstream (MEK1) and a downstream 

(RSK) kinase.  (C) Densitometry analysis was used to calculate the fold change in activation 

(normalized to filtered air control) for each donor.  Mean activation (±SD) shown for each group.  

Differences between high and low responders were determined via Mann-Whitney test. *p<0.05.   

 

After determining that high responders had elevated ERK1/2 pathway activation, we then 

assessed the phosphorylation of p38 (Figure 2-6).  Low responders had a mean p38 

phosphorylation of 1.47 ± 0.44 and high responders had a mean of 1.43 ± 0.52.  The 

phosphorylation of p38 was not found to differ between these groups (p=0.94).  As an additional 

check of the p38 pathway, we also examined the phosphorylation of MKK4, which is a MAP 

kinase kinase upstream of p38 that is activated by ozone exposure (McCullough et al., 2014).  

Low responders had a mean MKK4 phosphorylation of 1.20 ± 0.14 and were not significantly 

different from high responders, which had a mean of 1.37 ± 0.29 (p=0.13).  This indicated that 

the activation of the p38 pathway does not differ between high and low IL-8 responders. 

In addition to p38 and ERK1/2 phosphorylation, we also assessed the phosphorylation of 

the p65 NFκB subunit (Figure 2-7).  While the NFκB pathway is not influential in ozone-

mediated IL-8 signaling in polarized phBECs, given its importance in cell lines, we wanted to 

confirm these findings in differentiated phBECs.  We found that p65 phosphorylation did not 

differ between these groups, with low responders having a mean of 0.86 ± 0.26 and high 

responders a mean of 1.26 ± 0.35. 
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Figure 2-6. The activation of p38 and MKK4 in high and low-responding cultures.  In 

addition to ERK1/2, we also examined the phosphorylation of p38 and its upstream kinase 

MKK4 to determine if this pathway was associated with phBEC IL-8 response variability.  Blots 

were generated using the same donors as described in Figure 2-5.  (A) Representative blots from 

one high, one low responding donor- the same donors depicted in 2-5B. (B) Densitometry 

analysis was used to calculate the fold change in phosphorylation (normalized to filtered air 

control) for each donor.  Mean activation (±SD) shown for each group.  No differences between 

high and low responders were found (Mann-Whitney test. p>0.05).   
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Figure 2-7. Comparison of p65 activation in high and low-responding cultures.  Using the 

same panel of donors as Figures 2-5 and 2-6, we examined the p65 phosphorylation at S536, an 

indicator of canonical NFκB activation.  Primary cells were stimulated with 10ng/mL TNFα for 

20 minutes as a positive control. Representative donors shown are the same donors depicted in 

Figures 2-5 and 2-6. Densitometry analysis shows average (± SD) fold change in activation 

(normalized to filtered air control) across 6 high and 6 low responders (n=12).  No significant 

difference was found between these two groups. 

 

Continuous analysis of IL-8 induction and MAPK activation  

In addition to analyzing MAPK activation based on and high and low responder status, 

the data were analyzed in a continuous format in which the ratio of phosphorylated protein (Fold 

change between O3 and FA) was plotted against ozone IL-8 induction (Figure 2-8) and compared 

using simple linear regression.  A significant correlation was observed for ERK1/2 (R2=0.46, 

p=0.016), but not for p38 (R2=0.11, p=0.28). 
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Figure 2-8.  IL-8 expression as a function of ERK1/2 and p38 activation.  ERK1/2 and p38 

phosphorylation was plotted against IL-8 induction for both ERK1/2 (A) as well as p38 (B).  

Figures were created using the same donors as depicted in Figure 2-5 and 2-6 (n=12; 6 high and 

6 low responders).  R2 and p-values shown in each panel. 

 

Baseline versus induced IL-8 expression and MAPK activation 

It has been previously observed that individuals who have relatively higher ozone-

associated neutrophilia and IL-8 release exhibit higher levels of airway IL-8 prior to exposure 

(Fry et al., 2012).  We wanted to determine if a similar relationship existed between basal and 

ozone-associated IL-8 expression.  IL-8 transcript abundance was quantified in FA conditions 

and plotted against the IL-8 transcript abundance in ozone-exposed cells (Figure 2-9A).  We 

found that phBECs with elevated ozone-mediated IL-8 inductions also had higher levels of basal 

transcript (R2=0.32, p=0.014).  We also examined whether there was a similar relationship 

between ERK1/2 and p38 phosphorylation in ozone-exposed and unexposed cells.  Consistent 

with the previously observed pattern in transcript abundance, baseline ERK1/2 and p38 

phosphorylation was positively correlated with phosphorylation following ozone exposure 

(Figures 2-9 B and C; R2=0.76, p<0.0001; R2=0.63, p=0.0007). 
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Figure 2-9.  Comparison of baseline with induced values of IL-8 expression and MAPK 

phosphorylation.   We assessed whether basal levels of IL-8 transcript (A) and MAPK 

phosphorylation (B, C) were predictive response to ozone exposure.  (A) Transcript abundance 

was measured by making a standard curve using known copy numbers of transcript. These were 

then normalized to the number of copies of B-Actin transcript.   (B) To allow for comparison 

across Western Blots samples, the ratio of phosphorylated to total ERK1/2 (B) and p38 (C) were 

calculated and normalized to a reference sample and expressed as a fold change of reference.   

 

Heterogeneity and the effect of MAPK inhibition in other ozone-responsive genes. 

 Response inter-individual variability and the role of MAPK activation in gene induction 

were also assessed in several other ozone-responsive genes: two pro-inflammatory genes (IL-6, 

COX-2) and one oxidative stress associated gene (HMOX-1; Figure 2-10).  Gene expression was 

assess using the same samples that were used to generate Figure 2-1.  The mean (±SD) HMOX-1 
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induction was 4.63 ± 3.45.  IL-6 induction was 6.27 ± 5.0, and COX-2 was 2.82 ± 1.34.  

Response heterogeneity was also observed in the expression of these genes, with approximately 

4-5 donors stratified above the mean.  The donors that had phBEC cultures that were considered 

to be in vitro high IL-8 responders in Figure 2-1 are indicated by the red circles.  As these donors 

are often the highest responders in these other genes, this suggests that IL-8 expression may be 

indicative of responses in other important ozone-responsive genes. 

 We also examined the expression of these three genes after addition of the MAPK 

inhibitors, as detailed in the experiment in Figure 2-3.  Similar to the pattern observed with IL-8, 

HMOX-1 and IL-6 exhibited reduced expression with the addition of both ERK1/2 and p38 

inhibitors, although results were not statistically significant. 
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Figure 2-10.  Induction and MAPK inhibition in other ozone-responsive genes.  (A) Using the 

same donor pool and techniques as previously described in Figure 2-1, the expression of heme 

oxygenase 1 (HMOX-1), IL-6, and prostaglandin-endoperoxide synthase 2- (PTGS2 or COX-2) were 

assessed.  To enable comparison across genes, the donors that were high IL-8 responders are 

indicated by the red circles.   (B) The expression of these genes was assessed in the inhibitor 

treatments as described in Figure 2-3.  No statistically significant differences from the O3-V 

treatment were found. 
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Discussion 

Inter-individual variability in exposure responses makes it difficult to predict the health 

effects of environmental pollutants.  Ozone is one such pollutant, where for unknown reasons 

certain individuals exhibit heightened inflammatory responses compared to their less responsive 

counterparts.   IL-8, a potent chemokine, is elevated in the airways following ozone exposure, 

but its abundance exhibits inter-individual variability, implying that the differential regulation of 

this gene could be an important factor underlying ozone inflammatory response variability.  Here 

we show that an important source of IL-8 variability may be differences in transcriptional 

responses in airway epithelial cells.  Our data suggest that the magnitude of IL-8 induction may 

be due to the intrinsic properties of these cells.  Examination of cellular signaling pathways 

revealed that the level of IL-8 induction was related to the magnitude of ERK1/2 pathway 

activation.  These findings suggest that the ERK1/2 pathway may be regulated differently in high 

and low IL-8 in vitro responders, a finding that may provide important information regarding 

ozone response inter-individual variability. 

Our data indicate that the ozone pro-inflammatory response of cells harvested from a 

particular individual are highly reproducible, which suggests that the ozone-mediated 

inflammatory response adheres to a set of biological rules that have yet to be characterized.  

Respiratory epithelial cells play a key role in eliciting inflammatory responses, and 

understanding their biology may offer unique insights into the factors underlying variability in 

response to ozone exposure.  When we exposed these cells to ozone, we observed inter-

individual transcriptional IL-8 variability both in vitro and in vivo.  These responses were 

similarly distributed but had different magnitudes of induction, which could be explained by 

differences in ozone dosage, the timing of sample collection, or differences in model system.  
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Previous in vivo studies have shown that individuals who have greater inflammatory response to 

ozone exhibit heightened airway IL-8 protein levels compared to their less responsive 

counterparts (Fry et al., 2012).  Thus, epithelial cell transcriptional processes may be an 

important factor in explaining the variability in IL-8 abundance. 

Because cells are sensitive to slight variations in culture environment (Hartung et al., 

2002), we questioned whether the transcriptional variability we observed in the phBEC system 

was the result of intrinsic cellular properties or ‘noise’ introduced by slight variations in culture 

environment.  We confirmed that if IL-8 responses to ozone could be recapitulated in phBECs 

collected and cultured independently, suggesting that epithelial cell responses are intrinsic and 

that these ‘programs’ drive phBEC response variability.  This novel finding supports the growing 

use of primary cells in environmental health research, as it suggests that cells collected from 

various donors can be used to investigate inherent cellular differences underlying inter-individual 

variability.  

While our data suggest that epithelial cell responses are conserved, the basis of this 

‘programming’ needs to be determined. While it may simply reflect genetic variability, it is 

possible that epithelial cells may retain an epigenetic imprint of their donor’s life history that can 

determine future responsiveness (Bowers and McCullough 2017).  Although the factors that 

ultimately determine ozone-associated IL-8 induction in epithelial cells are unclear, our findings 

suggest that the differential activation of the MAPK pathway is likely a part of this 

programming.   

Here we propose a model in which ERK1/2 modulates the level of IL-8 induction (Figure 

2-11).   
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Figure 2-11. Paradigm describing how differences in MAPK signaling lead to inter-

individual variability in phBEC ozone-mediated IL-8 induction.  Previous studies have 

demonstrated that ozone exposure results in the production of ROS, which lead to the activation 

of the MAP Kinases ERK1/2 and p38 by various mechanisms including the activation of the 

EGFR receptor.  PhBEC cultures that have high and low IL-8 transcriptional responses have 

similar levels of p38 activation; however, high responders have increased ERK1/2 pathway 

activation.  Thus we propose a model in which the level of ERK1/2 activation modulates the 

magnitude of the IL-8 response and differentiates high from low IL-8 responding epithelial cells.   

ERK1/2 phosphorylates effector proteins such as RSK and additional kinases, transcription 

factors, and other stress-associated proteins, which ultimately converge on the IL-8 promoter and 

regulate gene transcription. 

 

This model raises important questions regarding why ERK1/2 is differentially activated 

in high and low-responding cultures.  Ozone is known to react with the airway surface and 

generate reactive oxygen species (ROS) such as hydroxyl radicals, aldehydes, and hydrogen 

peroxide (Pryor et al., 1995). These ROS, in turn, may directly or indirectly be responsible for 

activating effectors upstream of ERK1/2.  Such proposed effectors include the activation of the 

EGFR receptor, via the alteration of cell membrane lipid raft composition (Park et al., 2009).  
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Alternatively, EGFR and other MAPKs may become phosphorylated as a result of ROS directly 

deactivating phosphatases, which typically act as a brake on MAPK activation (Tal et al., 2006; 

Yan et al., 2016).  Another proposed mechanism is that ozone exposure results in TLR4 

signaling, which results in the activation of heat shock proteins, which in turn activate ERK1/2 

(Bauer et al., 2011).  Thus, activation of the ERK1/2 pathway may vary between high and low 

responders in vitro due to any number of differences such as cell membrane properties, the 

ability to neutralize ROS, or the balance of kinase and phosphatase activity.   

Our data suggest that the level of ERK1/2 activation modulates the magnitude of IL-8 

induction; however, they also suggest that a basal level of p38 has a synergistic effect.  ERK1/2 

mediates many functions related to proliferation and cell survival while p38 is more commonly 

associated with stress response and apoptosis.  While these kinases have seemingly disparate 

roles, there is substantial crosstalk between these pathways and their coordinate activity is 

required for many cellular functions.  Here we report that the response to the pro-inflammatory 

stimulus ozone is one such function, as evidenced by the fact that simultaneous inhibition of 

ERK and p38 is required to significantly reduce ozone-associated IL-8 induction (Figure 2-3).  

These results recapitulate earlier findings from our lab, which assessed the role of p38 and 

ERK1/2 activation in polarized phBECs (phBECs that have not been differentiated) using a 

different set of MAPK inhibitors (McCullough et al, 2014).  While these early studies established 

the importance of MAPKs in ozone response, it was unknown whether these findings would also 

be observed in fully differentiated phBECs and whether MAPKs played a role in ozone 

responsiveness.  In addition to the phBEC system, other model systems have reported similar 

findings using inhibitors of ERK1/2 and p38.  Cytokine expression from the ex vivo stimulation 

of human alveolar macrophages with lipopolysaccharide (LPS) is partially reduced with the 
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addition of either a p38 or ERK1/2 inhibitor; however, the addition of both inhibitors is 

necessary to achieve a near abrogation of expression (Carter et al., 1999).  The same observation 

was noted during LPS stimulation of the monocyte cell line THP-1 (Rutault et al., 2000).  The 

requirement for the activation of both kinases for full IL-8 induction could be explained by the 

fact that p38 has an essential role in the stabilization of IL-8 mRNA.  The 3’ untranslated region 

(UTR) of IL-8 mRNA contains several AUUUA motifs which confer instability and result in its 

rapid degradation; however, the activation of the p38 pathway results in the stabilization of the 

IL-8 mRNA transcript by increasing the binding of stabilization factors to these AU-rich regions, 

thus facilitating the accumulation of IL-8 mRNA (Winzen et al., 1999; Jijon et al., 2002; 

Suswam et al., 2005).  Thus, p38 and ERK1/2 work in a coordinated fashion to both transcribe 

IL-8 and stabilize its transcript.    

While coordinate activity may be important for full ozone mediated IL-8 induction, our 

data suggest that there is a component distinct to the ERK1/2 pathway, which determines the 

magnitude of response and is differentially regulated in high responders.  A unique feature of the 

ERK1/2 downstream signaling is the activation of a family of p90 ribosomal S6 kinases (RSKs).  

RSKs have a multitude of cellular functions relating to growth, proliferation, translation, and also 

phosphorylate additional transcription factors (Anjum and Blenis 2008).  Additionally, RSKs 

have been shown to bind and enhance the function of activating chromatin-modifying complexes 

(Nakajima et al., 1996) and can phosphorylate immediate early gene products such as serum 

response factor (SRF), Fos, and Jun, promoting their stability (Anjum and Blenis 2008).  Thus, 

the activation of downstream targets such as RSKs may augment ozone signaling, leading to 

greater transcriptional IL-8 induction in high responders. 
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While RSK activation may be an important component of ozone responsiveness, there are 

other important molecular factors likely shaping IL-8 transcriptional response.  This is suggested 

by the fact that even when both p38 and ERK1/2 inhibitors were used, we did not achieve a 

complete reduction of expression; moreover, IL-8 inductions in low responders were not 

influenced by kinase inhibition.  This residual IL-8 induction may be due to low-level inputs 

from other cellular effectors, such as NRF2 (Zhu et al., 2016).  Moreover, IL-8 induction in other 

model systems has been associated with DNA methylation levels as well as post-exposure 

changes in histone acetylation and methylation (Angrisano et al., 2010, Saccani and Natoli 

2002).  Together epigenetic factors and other signaling pathways may also influence IL-8 

induction and may account for expression that cannot be explained by MAPK activation. 

Here we present an in vitro model of IL-8 expression inter-individual variability that is 

linked to differential activation of the ERK1/2 pathway.  This model can be used to further the 

understanding of molecular factors driving variability in the pro-inflammatory response to ozone, 

and could be used to investigate implications of the ozone pro-inflammatory response.  However, 

this work is not without limitations.  Our use of inhibitors was essential in this investigation, as 

fully differentiated phBECs are recalcitrant to transfection/transduction; yet off-target effects are 

always possible when using these compounds.  We attempted to minimize this possibility by 

using SCH772984 and LY2228820, which are novel compounds noted for their specificity and 

efficacy even in nanomolar concentrations (Campbell et al., 2014, Morris et al., 2013).  Here we 

use a phBEC model to examine molecular mechanisms underlying differences in IL-8 

expression.  While our use of phBEC allowed us to model epithelial cell responses across many 

individuals, inflammatory responses in vivo involve complex interactions with many different 

cell types. Future studies could utilize co-culture techniques to assess these relationships and 
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whether similar patterns of ERK1/2 activation are observed in other cell types, such as 

neutrophils, macrophages, fibroblasts, etc.  Future studies will also be required to address 

whether donors who exhibit heightened inflammatory responses in vivo also produce phBEC 

cultures that are high IL-8 responders in vitro. It is possible that donor characteristics such as 

genotype, age, sex, and ethnicity may play a role in shaping ozone responses; however we were 

unable to detect the influence of these factors with only 16 subjects. Relative to many other in 

vitro toxicity studies we have a large number of primary cell donors; however if the 

characteristics of the phBEC donors are considered, we do not have adequate numbers to 

conduct this type of analysis. This study also has some unique strengths: whereas previous 

studies have relied heavily on cell lines, we have used the phBEC system which is more 

physiologically relevant, facilitates the exploration of inter-individual variability, which formerly 

was only possible using in vivo exposure studies.    
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Conclusions 

Epithelial cells exposed to ozone exhibit inter-individual variability in IL-8 

transcriptional responses, which likely contribute to the inter-individual variability in 

inflammatory response observed in human clinical ozone exposure studies.   The level of ozone-

induced IL-8 transcription is reproducible in phBECs from the same individuals even when 

collected and cultured at different times, suggesting that IL-8 response is an intrinsic property of 

epithelial cells.  This finding suggests that we may be able to better understand inflammatory 

response inter-individual variability by further defining the basis of this programming, and that 

primary cell models are an effective approach.  As a first step to describing the molecular 

mechanisms underlying these differences, we propose a model where ERK1/2 activation acts as 

a modulator of IL-8 induction.  Because many different susceptibility factors may ultimately 

converge on the ERK1/2 pathway, our model could be used to synthesize previous work and 

streamline the understanding of susceptibility to ozone as well as many other pollutants. 
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Supplementary Figures 

 

 
 

Figure 2-12. In vitro ozone IL-8 induction in cells collected from single bronchoscopy and 

exposed to ozone at two different times.  To assess whether in vitro ozone response was an 

inherent property of cells we performed ozone exposures on cells that were collected from the 

same bronchoscopy but thawed, plated, and exposed to ozone at different times; The consistency 

of ozone response was related by plotting the first exposure response on the X-axis and the 

second on the Y-axis and applying linear regression.  n=9 
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Figure 2-13. The influence of ERK1/2 and p38 inhibition on ozone associated IL-8 

induction in low responders.  To determine whether the activation of the MAP kinases ERK1/2 

and p38 were required for ozone-mediated IL-8 induction, inhibitors of these kinases 

(SCH772984 and LY2228820, respectively) were added to cell media two hours prior to ozone 

exposure.  Seven donors were used, four high responders (Figure 2-3) and three low responders 

(Figure 2-13). IL-8 inductions were normalized to a 0.2% DMSO filtered air vehicle control.  IL-

8 inductions were compared between the ozone-vehicle control (O3-V) and all other treatments 

via 2-way ANOVA. *p<0.05. 
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CHAPTER 3: USING PRIMARY EPITHELIAL CELLS TO MODEL OZONE 

ADAPTATION: INVESTIGATING THE ROLE OF ANTIOXIDANT CAPACITY AND 

MAP KINASE SIGNALING 

 

Introduction 

Ground-level ozone is formed from precursor ambient air pollutants during UV-catalyzed 

reactions.  As a result, ozone levels typically parallel sunlight intensity, peaking in early 

afternoon and dissipating in the evening. Ambient ozone concentrations are regulated on an 

eight-hour basis, focusing on the concentrations that occur within a given day.  The frequency of 

high ozone days, however, is also of public health concern because sporadic and repeated daily 

ozone exposures can produce different health effects.  A single, acute ozone exposure causes 

decrements in lung function, nonspecific airway reactivity, and pulmonary inflammation 

characterized by increased cytokine levels and leukocyte infiltration (EPA 2013). Paradoxically, 

repeated daily ozone exposure results in “ozone adaptation” in which many acute exposure 

effects are reduced or abolished.  During inflammatory ozone adaptation, airway cytokine levels 

and leukocyte infiltration are suppressed (Christian et al., 1998; Devlin et al., 1996; Jörres et al., 

2000; Schelegle et al., 2003; Van der Wal et al., 1994).  Inflammatory ozone adaptation has been 

observed in both human clinical exposure studies and various animal models, but despite its 

extensive observation very little is known about its causal mechanisms and health implications.   

Previous studies have hypothesized that ozone adaptation may be mediated by increases 

in the antioxidant capacity of the airway.  This is proposed to occur either by the upregulation of 
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oxidative stress related genes (Rahman et al., 1991) or by the increased abundance of 

antioxidants, particularly ascorbic acid, in the fluids lining the airway (Wiester et al., 1996, 

2000).  While some studies support these hypotheses, findings from other studies are 

contradictory or are inconclusive (Kodavanti et al., 1995; Nambu and Yokonama 1981; Tepper 

et al., 1989); thus the role of oxidant/antioxidant balance in ozone adaptation remains unclear.   

In the time since inflammatory adaptation was first described, there have been significant 

advances in the understanding of how ozone initiates pro-inflammatory responses, which could 

provide promising leads in the search for the adaptive mechanism.  Epithelial cells are the 

sentinel cells of the airway, as they are the first to encounter pollutants and play a key role in 

initiating inflammatory responses.  Our lab recently found that in primary bronchial human 

epithelial cells (phBECs), an in vitro model of the airway epithelium, the ozone-mediated 

induction of pro-inflammatory genes such as IL-8 occurred primarily through the mitogen-

activated protein kinase (MAPK) pathway (McCullough et al., 2014).  Two MAPKs, 

extracellular-signal related kinases (ERK) 1/2 and p38 are critical for this signaling, as inhibition 

of these kinases greatly reduces pro-inflammatory gene induction in polarized phBECs 

(McCullough et al., 2014) and fully differentiated phBECs (Chapter 2).  While previous studies 

using cell lines identified NFκB activation as the central mediator of ozone-associated pro-

inflammatory signaling, in the more physiologically-relevant phBEC model system, inhibiting 

NFkB activation does not influence the induction of these genes (McCullough et al., 2014).   

Because the airway epithelium plays an integral role in mediating pro-inflammatory 

responses, it is possible that ozone adaptation may be due to changes in how these cells respond 

to ozone exposure.  Moreover, given the importance of ERK1/2 and p38 in mediating the 

induction of pro-inflammatory genes, the alteration of MAPK signaling might play an important 
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but undefined role in differential responses between single and repeated ozone exposure.  We 

therefore hypothesized that inflammatory adaptation can be attributed to reduced ozone 

responsiveness in airway epithelial cells, which may be mediated by alteration of MAPK 

signaling. 

To investigate both old and new hypotheses regarding adaptive mechanisms, we modeled 

single and repeated ozone exposures in differentiated phBECs cultured at air liquid interface.  As 

a read-out of pro-inflammatory response we monitored the expression of interleukin 8 (IL-8), a 

potent neutrophil chemokine and hallmark of pulmonary inflammation, which is predominantly 

regulated by p38 and ERK1/2 in the phBEC ozone-exposure model. We also examined the 

expression of other genes that are known to contribute to ozone response to determine if 

transcriptional changes may also occur in these genes.  These genes include prostaglandin-

endoperoxide synthase 2- (PTGS2 or COX-2), heme oxygenase 1 (HMOX-1), and IL-6.  In 

parallel with gene expression, we also assessed whether repeated ozone exposure is associated 

with changes in MAPK activation, as well as increases in antioxidant capacity, measured both by 

oxidative stress gene expression and the antioxidant capacity of cellular secretions.   

We observed peak inductions of all genes following a single ozone exposure and then 

suppression following repeated exposure, a response that mimics in vivo ozone adaptation. We 

examined both oxidative stress-related gene expression and the total antioxidant capacity of cell 

secretions and found no increases in cells repeatedly exposed to ozone.  We did find, however, 

that cells exhibiting adaptation had reductions in ERK1/2 activation, which was not observed in 

non-adapted cells.    
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Materials and Methods 

Cell Culture and Ozone Exposure 

Primary human bronchial epithelial cells were obtained via bronchial brushing from 

healthy, non-smoking donors ages 18-40 with no more than a one pack-year smoking history 

(Figure 3-1A; Table 3-1).  Donors gave their informed consent after being informed of risks and 

procedures.  The consent and collection protocol were approved by the UNC School of Medicine 

Committee on the Protection of the Rights of Human Subjects and by the US EPA.  Cells were 

cultured as previously described (Ross et al., 2007).  Briefly, cells were expanded three passages 

and then plated on 24 mm Transwell inserts with 0.4 µm pores (Corning Life Sciences, 

Tewksbury, MA).  Once cells were confluent, the medium was supplemented with 500 nM 

retinoic acid for two days to initiate differentiation of polarized cells into a pseudostratified 

columnar epithelium.   The apical layer of media was then removed forming an air-liquid-

interface (ALI).  One hundred (100) nM retinoic acid was then added to the medium and cells 

were cultured for 24 days to allow differentiation to occur.  Exposures began on ALI day 24 and 

occurred daily for four days (Figure 3-1B).  All treatments were harvested on the same day, 

exposure day four, to normalize for the number of days in culture. Prior to each daily exposure, 

the basolateral medium was replaced and the apical surface was washed with 500 uL Dulbecco’s 

PBS (DPBS, Life Technologies, Carlsbad, CA) to remove cellular secretions.  After a two-hour 

acclimation period, cells were exposed for two hours to a filtered air (FA) control or 0.5 ppm 

ozone, which has been used for other in vitro and in vivo studies and is 1.8 times the current 

safety standard (70 ppb/8h).  On the day of harvest, cells designated for protein analysis were 

harvested immediately after exposure.  Cells designated for gene expression analysis were 
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allowed to incubate for an additional two hours before being harvested using PureLink RNA 

Mini Kit (Life Technologies).  Samples were stored in -80° C until ready for processing.   

 

 

Figure 3-1.  Collection, culture, and exposure of primary human bronchial epithelial cells. 
(A) Cells were collected from healthy human volunteers, expanded, and plated on Transwell 

inserts.  After becoming confluent, the apical layer of media was removed forming an air-liquid 

interface (ALI).  Cells were differentiated at ALI over 24 days to allow the formation of a 

pseudostratified columnar epithelium.  On the 24th day, cells were used for exposures. (B) Cells 

from each donor were exposed to four days of FA (FA), three days of FA and a single ozone 

exposure (1XO3), or four days of repeated ozone exposures (4XO3).  RNA and protein were 

harvested on day four of exposure. 
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TEER Measurement 

Transepithelial electrical resistance (TEER), a measure of epithelial monolayer integrity, 

was assessed using an epithelial volt/ohm meter at the time of RNA harvest, two hours post 

exposure (World Precision Instruments, Sarasota, FL).  Briefly, one mL of DPBS was added to 

the apical surface and electrical resistance was measured between the apical and basolateral 

compartments using a clean, calibrated probe tip.   Each condition had a total of nine readings 

(three readings from three inserts per donor per treatment).  Final TEER was calculated by 

subtracting the resistance of an empty Transwell insert from the reading of each cultured insert.  

A two-way ANOVA was used to compare mean FA, 1XO3, and 4XO3 TEER readings and 

Tukey’s multiple comparisons use to measure donor-specific changes 

 

Gene Expression Analysis 

Gene expression was assessed using three Transwell inserts per treatment for each donor.  

RNA was extracted from lysed samples (Life Technologies), and quantified using a 

NanodropND1000.  One μg of RNA was then used to synthesize cDNA using iScript Reverse 

Transcription Kits (BioRad, Hercules, CA).  Target gene cDNA was quantified using TaqMan 

RT-qPCR primers and probes and the CFX96 qPCR system in triplicate reactions (BioRad).  

Target gene expression was normalized to the abundance of β-Actin (ACTB) and then fold 

changes between FA and ozone exposure treatments were calculated via the Pfaffl method 

(Pfaffl, 2001).  An Oxidative Stress and Antioxidant Defense Prime PCR Assay (BioRad) was 

used to assess the expression of oxidative stress-related genes in six donors.  For each donor, 

cDNA from three biological replicates from each treatment (FA, 1XO3, or repeated ozone) was 
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combined into one sample.  Target gene expression was normalized to ACTB and a fold change 

between ozone and FA was calculated using the delta-delta Ct method.  Genes that were not 

detected were excluded from analysis.  A repeated measures ANOVA was used to identify genes 

that were differentially expressed between a single and repeated ozone exposure and had a 

greater than ±1.5 fold change from FA.  

 

Assessing the Antioxidant Capacity of Cellular Secretions 

Apical secretions were collected from cells during medium change prior to day four 

exposure and had therefore had been exposed to either three days of FA or three days of ozone.  

The apical surface of each Transwell was washed with 400 uL warm DPBS (Life Technologies).  

Cells and debris were centrifuged at 4°C at 1,000 rpm for 5 minutes.  The resulting supernatant 

was supplemented to 5% glycerol, and frozen at -80° C until ready for processing.  The 

antioxidant capacity of apical washes was quantified using an oxygen radical antioxidant 

capacity assay (ORAC) according to the manufacturer protocol (Cell Biolabs, San Diego, CA).  

This technique was chosen because it assesses total antioxidant capacity of all moieties present in 

the washes (e.g. proteins, lipids, glutathione, ascorbic acid, etc.), thus avoiding a priori decisions 

about which constituents to examine, which is a short-coming of previous studies.    Antioxidant 

content from the apical washes of six donors was assessed.  From each donor, each treatment 

(FA, repeated ozone) was assessed in triplicate.   

 

Immunoblotting 

We collected protein from ten phBEC cultures following single and repeated ozone 

exposures.  Cellular extracts were prepared in RIPA buffer (50mM Tris, pH 8.0; 150mM NaCl; 
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1% Triton X-100; 400μM EDTA; 10% glycerol; 0.1% SDS; 0.1% deoxycholate) with 1X 

protease (cOmplete EDTA-free, Roche, Indianapolis, IN) and 1X phosphatase (PhosSTOP, 

Roche) inhibitors and incubated on ice for 20 minutes.  Cellular debris was then precipitated via 

centrifugation and RIPA extract aliquots were removed for protein quantification via BCA assay 

(ThermoFisher, Waltham, MA). The remaining supernatant was then supplemented with 

Laemmli buffer to a final concentration of 1X (60 mM Tris, pH 6.8; 200 mM DTT; 10% 

glycerol; 2% SDS; 0.05% bromophenol blue), incubated at 95°C for five minutes, aliquoted, and 

stored at -80°C.  Equal amounts of protein were loaded into SDS-PAGE gels, electrophoresed, 

and transferred to nitrocellulose membranes (BioRad).  Following primary antibody binding, 

HRP-conjugated secondary antibodies and Pierce ECL Western blotting substrate 

(ThermoFisher) were used to generate chemiluminescence.  Antibodies are detailed in Appendix 

1.  Immunoblots were imaged on a LAS-3000 detection system (Fuji/GE Healthcare, Pittsburgh, 

PA).  Densitometric analysis was performed using ImageJ software (National Institutes of 

Health, Bethesda, MD).  The pixel density from the phosphorylated protein was normalized to 

the pixel density of the total parent protein.  The fold change between FA and ozone treatments 

was then calculated. 

 

Statistical Analysis 

With the exception of the PCR Panel analysis, all statistical analyses were conducted 

using GraphPad Prism 6.07 (GraphPad Software, La Jolla, California, USA).  PCR Panel 

analyses and heat map generation was performed in Partek Genomics Suite 6.0 (Partek Inc., St. 

Louis, MO).  Mean differences between single and repeated ozone exposures were assessed 

using a Wilcoxon matched-pairs signed rank test.  Linear regression was used to assess the 
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relationship between the magnitude of a single ozone exposure and the adaptive effect.  A 2-way 

ANOVA was used to compare mean TEER between treatments and Tukey’s multiple 

comparisons used to identify significant differences within individual donors.  We used a 2-way 

ANOVA to identify genes that were differentially expressed between single and repeated ozone 

exposures in the oxidative stress PCR panel.  To compare changes in the antioxidant capacity of 

secretions from ozone and FA-exposed cells, we used a 2-way ANOVA with Sidak’s multiple 

comparisons.  To assess differences in protein activation between cells exhibiting adaptation and 

those that did not, an ANOVA with Dunnett’s multiple comparisons was used. 
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Results 

Ozone-responsive gene induction following single and repeated ozone exposure 

The inductions of four ozone-responsive genes were examined after single and repeated 

ozone exposure using cultures from 13 different donors (Figure 3-2).  We found that in all four 

genes, mean inductions were higher following a single ozone exposure (1XO3) compared to 

repeated ozone exposure (4XO3; p<0.05, Wilcoxon matched-pairs signed rank test).  The mean 

(±SD) IL-8 induction following a single ozone exposure was 4.63 ± 2.45, which then declined to 

2.49 ± 0.85 upon repeated exposure.  HMOX-1 induction declined from 4.63 ± 3.45 to 2.88 ± 

0.52.  The induction of IL-6 declined from 6.27 ± 5.00 to 3.803 ± 2.00.  The induction of COX-2 

declined from 2.82 ± 1.34 to 1.82 ± 0.51. 

 

Donor Sex Age Ethnicity 

Mean 

1XO3 

IL-8 

1 F 35 Black 5.8 

2 M 32 White 7.9 

3 M 39 White 2.8 

4 F 29 White 6.5 

5 M 26 White 2.7 

6 F 18 Black 5.0 

7 M 26 White 9.2 

8 M 20 Black 2.4 

9 M 34 White 2.9 

10 M 21 Asian 1.9 

11 M 27 White 3.1 

12 M 33 Black 2.4 

13 M 39 White 5.7 

 

Table 3-1.  Donor characteristics for phBECs depicted in Figure 3-2.  Age, sex, ethnicity, 

and mean IL-8 in vitro inductions are shown for reference.   
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Figure 3-2.  Ozone-responsive gene induction following single and repeated ozone exposure. 
The expression of IL-8, HMOX-1, IL-6, and COX-2 was assessed via RT-qPCR.  Target genes 

were first normalized to β-Actin and then expressed as a fold change from the FA (FA) control.  

PhBEC cultures with an IL-8 induction above the mean are designated by red circles to allow for 

comparison across genes. A Wilcoxon matched-pairs signed rank test was used to compare 

means between single and repeated ozone exposures *p<0.05. Mean and SD shown.  n=13 cell 

donors. 

 

PhBEC responses to ozone exposure exhibited considerable donor-to-donor heterogeneity. In all 

four genes, the inductions of five to six cultures were distributed above the mean (approximately 

40% of donors) while the rest of the cultures were clustered below the mean.  For all genes the 

donor cultures that were the most highly responsive were typically from the same donors 

(indicated by the red dots in Figure 3-2).  The widest response range was associated with a single 

ozone exposure, yet following repeated exposure the range of responses narrowed.  We made the 
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observation that this reduction in range appeared to be driven by cultures with the highest 1XO3 

inductions exhibiting reductions following repeated ozone exposure.  To quantify this 

relationship, we assessed the correlation between single exposure gene inductions and the 

magnitude of the adaptive response, as measured by the fold change between single and repeated 

exposures (Figure 3-3).  In all genes, there was a significant relationship between these two 

variables.  The strongest relationships were found for IL-8 (r2=0.607, p=0.002) and HMOX-1 

(r2=0.853, p<0.001).  IL-6 and COX-2 both exhibited significant correlations (r2=0.547, p=0.003; 

r2=0.720, p=0.002, respectively); however, these distributions both contained an extreme data 

point that influenced these correlations.  Although the Grubb’s test identified these data points as 

‘outliers,’ we did not omit them from our analysis because they represent responses that are 

physiologically possible.  Thus cultures with elevated IL-8, HMOX-1, COX-2, and IL-6 

inductions to ozone exposure are likely to have decreased inductions following repeated 

exposure while less-responsive cultures will likely undergo little change. 
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Figure 3-3.  Relationship between single ozone exposure induction (1XO3) and the 

magnitude of the adaptive effect.  Linear regression was used to correlate single exposure 

induction (1XO3) with the magnitude of the adaptive response, which was calculated by taking 

the ratio between a single and repeated exposure inductions (1XO3/4XO3).  IL-6 and COX-2 

both contained outliers as identified by the Grubbs Test. n=13 donors, the same donor set as 

depicted in Figure 3-2. 

 

To ensure that the patterns we were observing were not a byproduct changes in 

monolayer integrity, we monitored transepithelial electrical resistance (TEER, in Ohms Ω; 

Figure 3-4).  We compared TEER measurements between single and repeated ozone exposure in 

cells from seven different donors.  These cultures had 1XO3 IL-8 inductions ranging from 7.85-

2.09.  The mean (±SD) TEER following FA exposures across all donors was 304 ± 20.55.  TEER 

declined to 109.9 ± 30.06 following a single ozone exposure and was 140.1 ± 29.6 following 
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four days of repeated exposure.   Although the mean TEER of both single and repeated ozone 

exposures were significantly different from FA (p <0.05), there was no difference between single 

and repeated ozone exposures.  In addition to comparing the mean TEER between treatment 

groups, we also analyzed changes within specific donor cultures.  Of the seven donors, all had 

significant reductions in TEER between FA and 1XO3 and FA and 4XO3.  Only one culture, 

Donor 5, differed between 1XO3 and 4XO3 exposures (p<0.05). 

 

Figure 3-4. TEER after single and repeated ozone exposures.  Transepithelial resistance 

(TEER), a measure of cell monolayer integrity, was measured 2 hours after ozone or FA 

exposures.  Cultures from 7 donors were used (n=7) which had IL-8 inductions ranging from 

7.85-2.09.  Treatment effects were compared using a 2-way ANOVA. The mean TEER 

following both 1XO3 and 4XO3 ozone exposures were significantly different from FA (*p<0.05); 

however, 1XO3 and 4XO3 were not significantly different from each other.  Post-hoc multiple 

comparisons were used to compare TEER within individual donors.  All donors had significant 

TEER reductions between FA and 1XO3 and FA and 4XO3; however only one donor, Donor 5, 

exhibited a difference in TEER between 1XO3 and 4XO3. 
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Assessing differences in antioxidant capacity in ozone-adapted cells 

To test the hypothesis that oxidative stress and antioxidant genes are upregulated during 

repeated ozone exposure we examined the inductions of 86 antioxidant and oxidative-stress 

genes following single and repeated ozone exposures using cultures from six donors (Figure 3-

5). These donors had 1XO3 IL-8 inductions ranging from 9.26-3.25 fold change from FA.  We 

were able to detect the expression of 75 genes. We expressed inductions as fold-changes between 

FA and 1XO3 and FA and 4XO3 and then compared inductions between single and repeated 

ozone exposures using a repeated measures ANOVA in Partek Genomics Suite.  We identified 

five genes, nitric oxide synthase 2 (NOS2), heme oxygenase 1 (HMOX1), metallotheionein 3 

(MT3), prostaglandin-endoperoxide synthase 2 (PTGS2 or COX2), scavenger receptor class A 

member 3 (SCARA3), and heat shock protein family A (Hsp70) member 1A (HSPA1A), that were 

differentially regulated (p<0.05, FC>±1.5).  All genes were down regulated less than three-fold 

change between single and repeated ozone exposure (Table 3-2).  These findings indicate that 

many genes commonly associated with oxidative stress response are not upregulated as a result 

of repeated ozone exposure.  Moreover, the majority of the genes we assessed exhibited no 

change in induction, indicating that reductions in our candidate genes are not the result of global 

gene expression declines.   
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Figure 3-5. Comparing oxidative stress and antioxidant gene expression in single and 

repeated ozone exposures.   To test the hypothesis that genes involved in the oxidative-stress 

response are upregulated during repeated ozone exposure, we used a PCR panel to examine the 

inductions of 86 oxidative stress and antioxidant genes following single and repeated ozone 

exposures.  Six primary cell donors (noted as Donors 1 – 6) were used.  For both single and 

repeated ozone exposures, target gene expression was normalized to β-Actin and expressed as a 

fold change from FA.  Fold change values were then log2 transformed to show positive (red) and 

negative (blue) changes.  In the top half of the heatmap donors were ranked in descending 1XO3 

IL-8 responses (9.26-3.25 fold change from FA).  The same donor order was repeated in the 

bottom half of the heatmap, which shows inductions following repeated ozone exposure (4XO3; 

ranging from 2.68-3.57).  A two-way ANOVA was used to identify genes that were differentially 

expressed between 1XO3 and 4XO3 exposures. Six genes had >±1.5 fold change between 

treatments and all were downregulated.  These genes are indicated by the black arrows in the top 

panel (Table 3-2).   
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Gene Name P-Value Log2 Fold 

Change 

Direction 

NOS2 Nitric Oxide Synthase 2 4.30E-05 -2.68 1X up vs 4X 

HMOX1 Heme Oxygenase 1 0.00616858 -1.97 1X up vs 4X 

MT3 Metallothionein 3 7.36E-05 -1.72 1X up vs 4X 

PTGS2 Prostaglandin-

Endoperoxide Synthase 

2 

0.0428888 -1.68 1X up vs 4X 

SCARA3 Scavenger Receptor 

Class A Member 3 

0.00514513 -1.62 1X up vs 4X 

HSPA1A Heat Shock Protein 

Family A (Hsp70) 

Member 1A 

0.0148525 -1.49 1X up vs 4X 

EPHX2 Epoxide Hydrolase 2 6.43E-05 -1.43 1X up vs 4X 

 

Table 3-2. Oxidative stress and antioxidant genes with differing expression between single 

(1X) versus repeated (4X) ozone exposure.   

 

Next we assessed whether repeated ozone exposure could increase the antioxidant 

capacity of cellular secretions, which could putatively provide protection from ozone-generated 

ROS.   To avoid making a priori decisions about which secreted components to examine, a 

potential drawback of previous studies, we used an oxygen radical absorbance capacity (ORAC) 

assay to measure total antioxidant potential.  We performed this assay using phBECs from six 

donors, which ranged in 1XO3 IL-8 inductions from 4.63 to 2.09 (Figure 3-6).  Of the six 

cultures we assessed, cultures from only two donors had significant differences between FA and 

ozone treatments.  Donor 2 was reduced from (in Troxlox Equivalents, the positive assay 

control) 12.32 to 6.62 and the second was reduced from 12.55 to 6.72 (p<0.05, 2-way ANOVA 

with Sidak’s multiple comparisons).  These results demonstrate that the antioxidant capacity of 

epithelial secretions are decreased, not increased, as a result of repeated ozone exposure. 
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Figure 3-6.  Antioxidant potential of apical cell secretions measured before Day 4 exposure.  

Apical washes were collected during the day four media change prior to exposure to assess if 

cells that had been exposed to ozone had increased antioxidant potential in their secretions.  

Antioxidant potential was assessed using the oxygen radical absorbance capacity (ORAC) assay 

and expressed in Trolox (antioxidant) µM equivalents.  For comparison, donors are ordered on 

the X-axis from greatest to least 1XO3 IL-8 induction (ranging from 4.63-2.09).  Washes from 

three cell inserts per donor were assessed in duplicate. Mean ±SD shown.  Differences in FA and 

O3-exposed cells were assessed via 2-Way ANOVA with Sidak’s multiple comparisons 

(*p<0.05).  n=6 donors. 

 

MAPK pathway activation following single versus repeated ozone exposure 

We collected protein from 10 primary cell cultures that underwent single and repeated 

ozone exposures.  Because ozone-associated IL-8 induction is predominantly regulated by p38 

and ERK1/2 activation in phBECs, we subdivided these cultures based on whether they exhibited 

IL-8 adaptation to determine whether adapting and non-adapting cultures exhibited different 

patterns of MAPK activation. IL-8 adaptation was determined by t-test (p<0.05) comparing 
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1XO3 and 4XO3 IL-8 inductions.  Four donors exhibited a statistically significant reduction in IL-

8 induction between single and repeated ozone exposures, while six donors did not.  

Representative Western blots depicting a phBEC culture exhibiting IL-8 adaptation and one that 

did not are shown in Figure 3-7A.  ERK1/2 and p38 activation for each phBEC culture is shown 

by the line graphs in Figure 3-7B, and suggest that indeed IL-8 adapted and non-adapted cells 

exhibit different patterns of MAPK activation during single and repeated exposures.   We then 

compared the mean phosphorylation of ERK1/2 and p38 in both of these groups following single 

and repeated ozone exposures using a 2-way ANOVA with Dunnett’s Multiple Comparisons.  

We observed that in cultures exhibiting IL-8 adaptation, mean ERK1/2 phosphorylation 

significantly increased 2.6 fold (± SD, 1.0) from FA following a single ozone exposure, but then 

decreased to 1.45 fold (± 0.12) following repeated ozone exposure.  ERK1/2 activation following 

repeated exposed was significantly different from both FA and single exposure levels.  

Alternatively, in donors that did not exhibit IL-8 adaptation ERK1/2 activation significantly 

increased 1.99 (± 0.41) fold change from FA and then increased to 2.30 (± 0.54) following 

repeated exposure.  Although for this group both single and repeated exposure activation levels 

were significantly different from FA, they were not significantly different from each other.  

We also examined the mean activation of p38 in these groups.  In the cultures exhibiting 

IL-8 adaptation, p38 activation significantly increased to 1.28 (± 0.19) fold change from FA 

following a single ozone exposure. Following repeated exposure, activation fell to 1.16 fold 

change (± 0.14), which was not significantly different from FA levels.  In cultures that did not 

exhibit adaptation, mean p38 activation following a single exposure was 1.22 (± 0.07) and 

following repeated exposure it was 1.25 (± 0.13), both of which were significantly greater than 

FA levels. 
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Figure 3-7.  MAPK pathway activation after single and repeated ozone exposures. 

We collected protein from 10 primary cell cultures (n=10 donors) that underwent single and 

repeated ozone exposures. Because ozone-associated IL-8 induction is predominantly regulated 

by p38 and ERK1/2 activation in phBECs, we subdivided these cultures based on whether they 

exhibited IL-8 adaptation to determine whether adapting and non-adapting cultures exhibited 

different patterns of MAPK activation. IL-8 adaptation was determined by t-test (p<0.05) 

comparing 1XO3 and 4XO3 IL-8 inductions.  (A) Representative western blots showing ERK1/2 

and p38 activation.  (B) Four donors exhibited a statistically significant reduction in IL-8 

induction between single and repeated ozone exposures (shown in red), while six donors did not 

(grey).   The bar graphs depict the mean (± SD) change in ERK and p38 activation in both of 

these groups following single and repeated ozone exposures.  Group means were compared using 

a 2-way ANOVA with Dunnett’s multiple comparisons.  The * indicates treatments that are 

significantly different from FA (p<0.05), while # indicates significant differences between 1XO3 

and 4XO3 (p<0.05). 
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Discussion 

Health outcomes resulting from exposure to the model air pollutant ozone are highly 

dependent on exposure history.  An isolated exposure to ozone results in elevated inflammation, 

whereas repeated daily exposure results in inflammatory suppression, which has unknown health 

implications.  Inflammatory ozone adaptation has been repeatedly observed in controlled human 

and animal exposure studies, yet it remains poorly understood due to a lack of efficient 

exploratory models.  To overcome this obstacle, we modeled single and repeated ozone 

exposures using phBECs cultured at ALI and tested old and new hypotheses regarding adaptive 

mechanisms.  Our findings suggest that inflammatory adaptation may be mediated by reduced 

pro-inflammatory gene expression in airway epithelial cells.  While ozone adaptation was 

previously attributed to increases in antioxidant capacity, we did not observe this association.  

Instead, we found that suppression in ozone-responsive gene expression was paralleled by 

decreases in ERK1/2 activation, which is a central mediator of ozone-responsive gene induction. 

Interestingly, not all cultures exhibited pro-inflammatory suppression, suggesting that adaptation 

may be part of a more complex ozone response phenotype and could be an important component 

of air pollutant susceptibility.  

One of the best ways to gain insight into the health implications of inflammatory 

adaptation is to understand its underlying mechanisms.  Using the in vitro phBEC model, we 

discovered that reduced induction of pro-inflammatory genes in airway epithelial cells may be an 

important component of this response.  We investigated two potential adaptive mechanisms: 

antioxidant capacity and MAPK activation.   

A major theme within ozone research is the role of antioxidants in counterbalancing 

reactive oxygen species (ROS) and protecting against adverse exposure effects.  Indeed, previous 
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studies have found that antioxidant supplementation can reduce the severity of ozone-mediated 

lung function impairment, albeit with a less-clear effect on inflammation (Romieu et al., 1998; 

Samet et al., 2001, Sienra-Monge et al., 2004).  Moreover, associations between repeated ozone 

exposure and the increased abundance of certain antioxidants in the airway lining fluid have been 

observed (Rahman et al., 1991; Wiester et al., 1996, 2000).  In our model we failed to observe 

any increases in the expression of oxidative stress and antioxidant response genes following 

repeated ozone exposure. Moreover, the majority of surveyed gene inductions were unchanged, 

indicating that the effects we observed were not an artifact of global gene expression declines.  

Because analyzing gene expression may not account for changes in the amount or composition of 

cellular secretions, we also assessed the total antioxidant capacity of apical secretions and again, 

found no increases.  While these findings are contrary to past hypotheses, they are corroborated 

by the observation that during repeated ozone exposure oxidative damage continues to 

accumulate in the lung, suggesting that ozone-generated ROS are not counterbalanced (Tepper et 

al., 1989).  Even if antioxidant capacity changes were contributing to inflammatory adaptation in 

a way not predicted by our findings, our results suggest that other mechanisms are involved with 

the inflammatory adaptive response which may be equally important.   

While we did not find evidence of increased antioxidant capacity, we did find that MAPK 

activation was associated with inflammatory adaptation.  The MAP kinases ERK1/2 and p38 are 

associated with a variety of essential cellular functions including proliferation, differentiation, 

survival, stress response, motility, and apoptosis.  These kinases also have a critical role in 

regulating inflammatory responses.   When we compared the activation of these kinases in our 

model, we found that ozone-adapted cells had reductions in ERK1/2 and p38 activation, while 

non-adapted cells did not. Previous studies in the phBEC model have shown that during ozone 
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exposure the induction of IL-8 is predominantly controlled by the dual activity of p38 and 

ERK1/2, suggesting that the mechanism of IL-8 adaptation is likely the reduced activation of 

these kinases.  Given the critical role of IL-8 in attracting neutrophils and activating immune 

cells, this finding offers mechanistic insight into an important component of inflammatory ozone 

adaptation.  Although the mechanisms controlling the ozone-mediated induction of our other 

candidate genes are not as well characterized in the phBEC model, studies in other systems have 

demonstrated that p38 and ERK1/2 signaling have central roles in the induction of IL-6 (Heinrich 

et al., 2003), COX-2 (Tsatsanis et al., 2006), and HMOX-1 (Alam & Cook 2006).  Thus, the 

reduced activation of p38 and ERK1/2 likely have regulatory implications in these genes as well.   

Inflammatory ozone adaptation has been long-observed but critical questions remain 

regarding its mechanism and health implications.  Part of the reason for this knowledge gap may 

be the fact that inflammatory ozone adaptation research was overshadowed by earlier findings on 

lung function adaptation, which some downplayed as a significant public health issue in the mid-

1980`s.  While regaining lung function is beneficial in the short term, researchers dismissed the 

overall importance of lung function adaptation (Linn et al., 1982) because it does not prevent 

oxidative damage from occurring in the lung (Tepper et al., 1989) and it is also relatively brief, 

lasting less than one week (Linn et al., 1982).  Moreover, it is thought that ozone-associated lung 

function impairment and inflammation arise from different mechanisms, as they occur within 

different time frames and don’t necessarily occur in the same individuals (Blomberg et al., 1999; 

Balmes et al., 1996), thus researchers should be cautious about combining these distinct 

phenomena under the umbrella term “ozone adaptation.” 

The suppression of inflammation could be important in modulating the health effects of 

ozone exposure.  Ozone-mediated increases in airway cytokines, such as IL-8 and IL-6, can 
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exacerbate diseases such as asthma and COPD and lead to increased hospitalizations (Burnett et 

al., 1997; Moore et al., 2008).  Elevated levels of certain cytokines in the blood are also a risk 

factor for cardiovascular disease.  IL-6, for example, has been found to promote atherosclerosis, 

hypertension, and can alter endothelial physiology (Yudkin et al., 2006).  While the source of 

increased circulating ozone-associated IL-6 is not clear, it is possible that IL-6 produced from 

airway epithelial cells could be an important contributor.  Several of the pro-inflammatory 

mediators implicated in cardiopulmonary disease exacerbation also show adaptation during 

repeated ozone exposure, both in the airway (Jörres et al., 2000; Devlin et al., 1996), and 

putatively the blood (Thompson et al., 2010).  Thus, it could be hypothesized that ozone 

inflammatory adaptation could protect cardiovascular health and prevent pulmonary disease 

exacerbation by tempering the expression of pro-inflammatory genes which might otherwise be 

continually elevated.  A recent epidemiological study supporting this hypothesis found that 

ozone-associated cardiopulmonary mortality exhibited adaptation, where the highest mortality 

rates occurred at the beginning of the high ozone season but then continuously declined, reaching 

a null effect by early fall (Zanobetti and Schwartz 2008).  In addition to those with pre-existing 

diseases, inflammatory adaptation could benefit otherwise healthy individuals by limiting airway 

remodeling or lung damage caused by excessive or repeated bouts of inflammation.    

While inflammatory adaptation could have cardiopulmonary benefits, it may also have 

detrimental health effects.  Exposure to ozone damages respiratory tissue, which infiltrating 

leukocytes help to clear and heal.  Inflammatory mediators and immune cells are also essential in 

host defense, thus individuals who exhibit inflammatory adaptation may be less able to remove 

and repair damaged tissue and may be more susceptible to infection.   It is currently unknown 

whether inflammatory adaptation may have negative effects in individuals with impaired 
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mucociliary clearance or reduced host defense capability.  Thus, the health effects of 

inflammatory ozone adaptation should be carefully weighed and susceptible subpopulations 

should be given special consideration. 

Chronic inflammatory diseases such as asthma, COPD, Crohn’s Disease, rheumatoid 

arthritis, and Alzheimer’s disease have been associated with elevated MAPK activation, and can 

be treated by using clinically approved MAPK inhibitors (Bhavsar et al., 2010; Hommes et al., 

2002; Kaminska 2005; Underwood et al., 2000). While clinical intervention may be required in 

individuals with poorly controlled inflammation, there are inherent negative feedback systems 

for controlling MAPK activity. Ozone adaptation is likely a phenotype resulting from the actions 

of these systems, which reduce potentially excessive inflammation.  Suppression of MAPKs and 

other pro-inflammatory pathways has been observed in other adaptive responses, for example, 

lipopolysaccharide (LPS) tolerance.  LPS exposure induces a potent pro-inflammatory response, 

which is then attenuated during repeated exposure.  LPS tolerance has been observed for decades 

on both cellular and organismal levels and unlike inflammatory ozone adaptation, many 

mechanisms underlying LPS tolerance have been identified.  These repressive mechanisms target 

both the MAPK pathway and pro-inflammatory genes and include: the upregulation of 

microRNAs, alterations in the activity or abundance of cellular signaling proteins and receptors, 

and epigenetic alterations at pro-inflammatory gene promoters (Biswas and Lopez-Collazo 2009; 

Fan and Cook 200; Foster et al., 2007).  Borrowing from this literature, we are currently 

investigating how these mechanisms contribute to the adaptive response.  Epigenetic alterations 

at target gene promoters may be of particular importance in this model, as our lab has previously 

shown that histone modifications can influence the induction of ozone-responsive genes 

(McCullough et al., 2016).   
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Using the phBEC model system we have made the novel observation that pro-

inflammatory ozone adaptation can be modeled in vitro and, furthermore, we are among the first 

to explore its associated mechanisms.  This research, however, is not without limitations.   

Perhaps the greatest restriction is that we are only able to model part of the adaptive response, 

inflammatory adaptation, as lung function changes cannot be assessed by an in vitro model.  

Moreover, we are unable to model other potential contributors to the adaptive response, such as 

changes in breathing habits and the role of other cell types. Epithelial cells are among the first 

cells to encounter ozone and initiate immune responses; however, inflammatory responses 

involve a complex interplay with other cell types such as fibroblasts, neutrophils, macrophages, 

etc.  While it is unclear what role these other cells may play in inflammatory adaptation, other 

models (i.e. LPS tolerance) have shown that adaptive responses are conserved across many cell 

types.  Thus, many of the observations we have described could also apply to other cells in the 

airway.  Future studies could examine this possibility using a combination of monoculture and 

co-culture techniques.  Additional questions remain regarding how demographics such as age, 

sex, genotype, may influence responses to repeated ozone exposure and adaptation.  

Unfortunately we did not have a large enough sample size to conduct such as investigation.  

Here we have taken the first steps toward investigating an adaptive mechanism, the 

reduction of MAPK signaling.  However, further steps are required to discover why ERK 

activation is reduced.  The LPS tolerance literature indicates that a number of overlapping 

mechanisms could be responsible, including altered expression of signaling proteins, microRNA-

mediated inhibition, or epigenetic modulation.  Future work can examine the relative 

contributions of these mechanisms to inflammatory ozone adaptation. 
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Conclusions 

Taken together, our results demonstrate that inflammatory ozone adaptation is may be 

mediated by reduced pro-inflammatory gene expression in airway epithelial cells.  The reduced 

activation of MAPKs likely mediates the adaptation of IL-8 and possibly other ozone-responsive 

genes.  Inflammatory adaptation may be an important yet unappreciated factor in determining 

how those with pre-existing diseases respond to ozone exposure.  The in vitro model presented 

here can be used to further investigate the heterogeneity, mechanisms, and health implications of 

this response.   
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CHAPTER 4: OZONE-ASSOCIATED HISTONE MODIFICATION CHANGES AT 

BIVALENT GENE PROMOTERS ARE ASSOCIATED WITH THE MAGNITUDE OF 

GENE INDUCTION4 

 

Introduction 

Ozone is an ambient air pollutant that produces pulmonary inflammation; however, the 

extent of this inflammatory response exhibits wide inter-individual variability, which is currently 

not well understood.  Traditional risk factors such as age, disease state, sex, and genotype are 

poor predictors of susceptibility to exposure effects.  Ozone-induced inflammation is propagated 

by the release of cytokines and chemokines into the airway, thus an important source of ozone 

inflammatory response variability may be differences in the induction of pro-inflammatory 

genes.  Recently we described an application of primary human bronchial epithelial cell (phBEC) 

cultures in which responses across different human donors are compared to identify mechanisms 

of inter-individual variability.  Using this system, we found that the epigenome may play an 

important but poorly characterized role in determining variability in the pro-inflammatory 

response to ozone exposure (McCullough et al., 2016).     

 The epigenome – a suite of covalent modifications to DNA and its histone protein 

scaffolding – dictates chromatin structure, interactions between the transcriptional machinery 

                                                 
4 Portions of this chapter previously appeared in Bowers, E. C., & McCullough, S. D. (2017). Linking the 

Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model. Toxicological Sciences, 

155 (2): 302-314. Used with permission. 
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and DNA, and ultimately gene expression.  While epigenetic modification of DNA is limited to 

methylation, histone proteins are decorated with a broad range of covalent modifications, 

including methylation, acetylation, phosphorylation, ubiquitination, and many others 

(Kouzarides, 2007).  Patterns of activating modifications facilitate an open chromatin structure 

(“euchromatin”) where DNA is accessible to transcription factors, while patterns of repressive 

modifications lead to compaction.  Some genes contain both activating and repressive histone 

modifications in their promoters.  Genes with these “bivalent” promoter regions can switch 

between active, poised, repressed, or silenced states depending on the balance of these 

modifications (Bernstein et al., 2006, Mikkelsen et al., 2007; Figure 4-1).  While bivalency is 

often associated with developmental genes, many inducible genes also exhibit bivalent 

promoters, including the ozone responsive genes interleukin (IL) -8, IL-6, heme oxygenase 1 

(HMOX-1), and prostaglandin-endoperoxide synthase 2- (PTGS2 or COX-2) (Figure 4-2).   
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Figure 4-1. Bivalent gene promoters regulate expression based on the balance of activating 

and repressive histone modifications. 5Bivalent modifications occur in gene promoters 

(H3K4me3/H3K27me3) and enhancers (H3K27ac/5mC) in both stem and somatic cells. The 

balance of otherwise opposing modifications determines whether a gene is repressed, poised 

(contains a paused polymerase ready to initiate transcription), or actively expressed.  This figure 

is a representation of the generalized functions of certain epigenetic factors; however, the 

functionality of epigenetic modifications can vary based on the specific context in which they 

exist. 

 

 

                                                 
5 This figure and caption previously appeared in Bowers, E. C., & McCullough, S. D. (2017). Linking the 

Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model. Toxicological Sciences, 

155 (2): 302-314. Used with permission. 
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Figure 4-2.  ENCODE ChIP-seq data showing selected epigenetic features of the promoter 

regions of ozone-responsive genes.  Figures were generated using the Roadmap Epigenome 

Browser v 1.19 and the WashU Epigenome Browser (http://epigenomegateway.wustl.edu). 

Features include binding sites of TATA-Binding Protein (TPB), which is proximal to the 

transcription start site, as well two stress-associated transcription factors, c-Jun and c-Fos, which 

are known to be down stream of pathways activated by ozone exposure.  Also shown are two 

chromatin modifications which are often present at bivalent promoters: H3K27me3, which is 

commonly associated with repression or silencing, and H3K4me3, an activating mark.  We also 

examined the acetylation of Histone H4, but information regarding H4 acetylation is unavailable 

in the Epigenomics roadmap data.  The binding sites of primers used in this study are indicated 

by yellow arrows. 

 

Based on this premise, we hypothesized that changes in the abundance of activating or 

repressive modifications shape the transcriptional response to ozone exposure and may explain 

transcriptional inter-individual variability.  To test this hypothesis, we collected phBECs from 

http://epigenomegateway.wustl.edu/
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different donors and performed in vitro ozone exposures.  We used chromatin 

immunoprecipitation (ChIP) – qPCR to examine two marks that are commonly found at bivalent 

gene promoters, activating trimethyl histone H3 lysine 4 (H3K4me3) and repressive 

H3K27me2/3 (Bernstein et al., 2006, Mikkelsen et al., 2007).  We also examined the abundance 

of pan-acetyl histone H4 (H4Ac), an activating modification that has been shown to be important 

in the regulation of pro-inflammatory genes (Foster et al., 2007).  We calculated the fold change 

in abundance of these modifications between ozone and filtered air exposures and then compared 

these values with the peak transcriptional responses of the four aforementioned genes.  If our 

hypotheses is correct, then we would expect that phBECs with higher gene inductions would 

exhibit greater fold changes in the abundance of either activating (increases) or repressive 

(decreases) histone modifications.  Because important regulatory epigenetic changes could 

putatively precede or co-occur with peak gene expression, we compared epigenetic changes 

during peak gene induction and one hour prior to peak induction (Figure 4-3).   

 We discovered that peak gene expression of COX-2 and IL-6 peak (2H) was associated 

with increases in activating histone modifications either directly before or coinciding with peak 

gene expression.  Alternatively, we observed that peak IL-8 expression was associated with 

reduction of repressive H3K27me2/3.  We did not observe any associations with HMOX-1.  

These results suggest that ozone-associated changes in the chromatin landscape may be an 

important determinant of transcriptional response in pro-inflammatory genes; however, in other 

genes, such as HMOX-1, other regulatory factors may be more important. 
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Figure 4-3.  Exposure design: comparing ozone-associated changes in the chromatin 

landscape with peak gene induction. PhBECs were exposed to two hours of filtered air (FA) or 

ozone.  Fixed cells for ChIP were collected after one and two hours of exposure (1H O3, 2H O3).  

Peak gene expression for all genes occurred at 2H O3.  To assess whether post-exposure 

chromatin modifications were related to the magnitude of gene induction, we compared peak 

gene induction (occurring after 2h of exposure) with changes in histone modifications occurring 

prior to and directly coinciding with peak induction (1H O3, 2H O3).    
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Materials and Methods 

Cell Culture 

Primary human bronchial epithelial cells were obtained via bronchial brushing from 

healthy, non-smoking donors ages 18-40. Donors gave their informed consent after being 

informed of procedures and associated risks. The consent and collection protocol were approved 

by the University of North Carolina School of Medicine Committee on the Protection of the 

Rights of Human Subjects and by the U.S. Environmental Protection Agency. After collection, 

cells were expanded three passages and plated at air-liquid interface (ALI) on 24 mm uncoated 

Transwell inserts with 0.4 μm pores (Corning) as previously described (Ross et al., 2007). Cells 

were maintained in ALI culture for four days during which they became confluent and polarized. 

 

In vitro Ozone Exposure  

Two hours prior to exposure, the apical surface of Transwells were washed with 

Dulbecco’s phosphate buffered saline (DPBS; Life Technologies) and the cell medium was 

replaced with ALI growth medium lacking hydrocortisone. Cells were then placed in in vitro 

exposure chambers and exposed to either a FA or 0.5 ppm ozone for two hours as previously 

described. At the indicated time points, cells designated for gene expression analysis were 

removed from the chambers and total RNA was harvested with using RNA Lysis buffer (Life 

Technologies) and stored at 80 °C until ready for processing.   

 

Chromatin Immunoprecipitation (ChIP) qPCR 

The constituents of all the following buffer can be found in Appendix 1.  Cells designated 

for ChIP were detached from Transwells by the addition of Trypsin-EDTA (Life Technologies) 
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for five minutes followed by the addition of soybean trypsin inhibitor (Sigma-Aldrich). Cells 

from each condition were pooled, washed, and resuspended in DPBS.  Cells were then fixed in 

1% formaldehyde (Sigma), followed by quenching with 125 mM glycine.  The cells were 

washed in 1X protease inhibitor mixture, and collected by centrifugation.  The supernatant was 

aspirated, and the pellets were frozen in liquid nitrogen and storage at -80 °C. ChIP was 

performed as previously described (McCullough et al., 2016).  Briefly, cell pellets were 

sonicated in ChIP Lysis Buffer to shear the chromatin into approximately 500 base pair 

fragments. Following sonication, insoluble material removed via centrifugation and soluble 

chromatin was transferred to a clean tube and diluted in ChIP dilution buffer.  The diluted 

soluble chromatin was subjected to immunoprecipitation overnight with Protein A agarose beads 

(Millipore) that had been conjugated with antibodies targeting H3K4me3, H3K27me2/3, H4ac, 

or total H3 (Appendix 1). The next morning beads were washed with each of the following 

buffers: Low Salt Wash Buffer, High Salt Wash Buffer, LiCl Wash Buffer, and TE Wash Buffer.  

After the final wash, the beads were resuspended in TE, transferred to a new tube, and subjected 

to RNaseA (Life Technologies) digestion.  DNA-protein complexes were eluted from the beads 

with ChIP elution buffer.  The crosslinks between DNA and chromatin proteins were reversed 

via four hour incubation at 65°C during which proteins were degraded with Proteinase K 

(Sigma-Aldrich).  DNA was purified and precipitated by phenol-chloroform-isoamyl alcohol 

extraction and resuspended in TE Buffer.  The abundance of target gene promoter DNA was 

quantified by TaqMan quantitative real time quantitative PCR (qPCR) in triplicate reactions 

(sequences in Appendix 1).  The relative abundance of specific chromatin modifications at the 

promoters of target genes was normalized to the input material from the chromatin 
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immunoprecipitation (“% Input”).  ChIP data was expressed as a fold change between filtered air 

and ozone treatments (% Input O3 / % Input FA). 

 

RT-qPCR  

For each donor, total RNA was extracted and purified from three inserts per time point 

per condition using a Purelink RNA Kit (Life Technologies). RNA was quantified using a 

Nanodrop ND-1000. Complementary DNA (cDNA) was synthesized using 1000 ng of purified 

total RNA and an iScript cDNA synthesis kit (Bio-Rad).  Transcript abundance was then 

quantified by TaqMan qPCR using a CFX96 Touch (Bio-Rad). Gene induction was determined 

by first normalizing to β-Actin transcript and then calculating the fold change between O3 and 

FA treatments (Pfaffl 2001). Primer sequences for gene expression and ChIP-qPCR analysis are 

included in Appendix 1. 

 

Statistical Analysis  

Gene inductions were compared to FA treatments via paired t-test.  Changes in histone 

H3 occupancy were assessed using a one-sample t-test.  The relationship between the abundance 

of the indicated chromatin modifications and gene expression was determined by simple linear 

regression. All statistical analyses were conducted using GraphPad Prism software.  
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Results 

The induction of ozone-responsive genes 

We collected gene expression data after one and two hours of ozone exposure, as well as 

one hour post-exposure (Figure 4-4).  We did not extend the time course further because we were 

primarily interested in peak gene expression and not resolution.  Across donors the mean (±SD) 

IL-8 induction after one hour of ozone exposure was 1.88 ± 0.42, which peaked at 4.86 ± 1.97 

after two hours of exposure and then decreased to 3.13 ± 1.02 one hour post exposure.  These 

inductions were all significantly different from FA induction (p<0.05).   After one hour of ozone 

exposure, IL-6 was induced 1.23 fold ± 0.36, which further increased to 2.78 ± 1.94 after two 

hours of exposure, and then subsequently declined to 1.52 ± 0.81 one hour post exposure.  While 

the induction after one hour post exposure was not significantly elevated, inductions at two hours 

of exposure and one hour post exposure were significantly different from FA induction (p<0.05).  

COX-2 was induced 1.57 fold ± 0.32 after one hour of ozone exposure, which further increased 

to 3.66 ± 0.93 after two hours, and then declined to 2.92 ± 1.02 one hour post exposure.  All 

three inductions were significantly different from FA induction (p<0.05).  After one hour of 

ozone exposure HMOX-1 was induced 1.16 fold ± 0.27, which increased to 3.77 ± 1.41 after two 

hours of exposure and then slightly decreased to 3.44 ± 1.34 one hour post exposure.  HMOX-1 

inductions after two hours of ozone exposure and one hour post exposure were significantly 

different from FA (p<0.05).   
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Figure 4-4. Inductions of ozone-responsive genes during ozone exposure and 1 hour post 

exposure.  Cells were exposed to ozone (0.5 ppm) or filtered air for two hours and RNA was 

collected at the indicated time points.  Target gene expression was calculated by normalization to 

β-Actin transcript levels and then calculating the fold change between ozone and FA exposures.  

Each data point is cultured from a different human donor (n=11 donors).  Mean ± SD shown.  

For all genes, peak expression occurred at two hours of ozone exposure.  *Indicates mean is 

significant different from FA (t-test; p<0.05). 

 

Histone H3 occupancy at candidate gene promoters and negative control (IgG) 

We performed a histone H3 ChIP to assess whether histone occupancy changed as a 

result of ozone exposure (Figure 4-5).  We did not observe any instances in which histone H3 

was significantly altered from FA (t-test).  The mean fold changes across all gene promoters and 
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treatments ranged from 0.89 to 1.64, with a maximum standard deviation of ± 0.67.  To verify 

that background genomic DNA levels were not confounding our ChIP results, we also performed 

immunoprecipitations using an IgG antibody.  Fixed cell pellets from seven different donors 

were used.  For all four genes, percent inputs were less than 0.02% (data not shown). 

 

Figure 4-5.  The abundance of total histone H3 at candidate gene promoters.  To determine 

if changes in histone occupancy occurred with ozone exposure we examined histone H3 levels 

via ChIP-qPCR and expressed these levels as a fold change between ozone filtered air.   No 

significant changes from FA exposures were found (t-test).  Mean ± SD shown; n=5 donors.  

 

Relationship between chromatin modifications and peak gene induction 

To assess the relationship between the magnitude of peak gene expression and chromatin 

states, we performed simple linear regression comparing peak gene expression at two hours of 
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ozone exposure with chromatin modifications directly preceding (1H O3) or coinciding (2H O3) 

with this time point.  R2 values from these regressions ranged from 5.6x10-7 to 0.83 and are 

shown in the heat maps in Figure 4-6.  The regressions with the highest R2 values are depicted in 

Figure 4-7.  Of the six regressions featured, four had p-values that were below 0.05.    Peak IL-8 

expression was positively correlated with the abundance of the repressive mark K27me2/3after 

one hour of ozone exposure (R2=0.71, p=0.018, y=0.27x + 0.02).  Peak IL-6 expression was 

positively correlated with the abundance of H4Ac (R2=0.73, p=0.007, y=0.21x + 0.54) after one 

hour of ozone exposure.  Peak COX-2 expression was correlated with the abundance of K4me3 

(R2=0.83, p=0.012, y=0.12x + 0.57) after two hours of ozone exposure.   

 

Figure 4-6.  The magnitude of ozone-responsive gene expression is related to post-exposure 

chromatin modifications.  ChIP-qPCR was used to assess the abundance of repressive 

H3K27me2/3 and activating K4me3 and H4Ac at candidate gene promoters.  ChIP results at one 

and two hours of exposure were expressed as a fold change between ozone and filtered air and 

then compared to peak gene induction (2H O3) using simple linear regression.    The resulting R2 

values are shown in the heat maps above.  A minimum of six donors were used for each 

comparison. 
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Figure 4-7.  Relationships between peak gene induction and post-exposure chromatin 

modifications.  Correlations from Figure 4-6 with the highest R2 values are shown.  
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IL-8 promoter K27me2/3 is associated with the magnitude of induction 

We observed that the magnitude of IL-8 induction was associated with the abundance of 

K27me2/3 after one hour of ozone exposure.  This was unexpected because K27 methylation is 

typically associated with gene repression or silencing.  We hypothesized that perhaps this 

relationship could be explained by the removal of this mark after the one hour time point.  To 

test this hypothesis, we quantified the change in K27me2/3, which we termed “ΔK27me,” 

between one and two hours of ozone exposure (2H O3/1 H O3) and determined if ΔK27me2/3 

was correlated with peak IL-8 expression (Figure 4-8).  We observed that phBEC cultures with 

higher IL-8 inductions had ΔK27me2/3 levels less than one (indicating a reduction), while 

cultures with lower IL-8 inductions had ΔK27me2/3 greater than one (an increase; R2=0.57, 

p<0.05, y= -0.15x + 1.83).  These results suggest that removal of repressive K27me2/3 may 

facilitate higher IL-8 induction.  

 

Figure 4-8.  Changes in K27 methylation from 1H to 2H O3 are associated with the 

magnitude of IL-8 induction.  We calculated the removal of K27me2/3 between one and two 

hours of ozone exposure, “ΔK27me,” (2H O3/1 H O3) and compared this value to peak gene 

induction.  n=6 
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Figure 4-9.  Summary of relationships between post-exposure chromatin modifications and 

gene expression.  This figure summarizes the significant (p>0.05) correlations between post 

exposure chromatin modification changes and gene expression.  The general pattern of gene 

expression is indicated for reference in the background.  Green boxes indicate an association 

with an activating modification (H4Ac or K4me3) and the red boxes indicate an association with 

repressive K27me2/3.  An up arrow indicates the mark is positively associated with gene 

expression, while a down arrow indicates the mark is negatively associated with gene expression.  

No relationships were identified for HMOX-1. 
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Discussion 

 The ozone-mediated induction of pro-inflammatory genes is a key step in the release of 

cytokines and chemokines in the airway and a potential source of ozone inflammatory response 

inter-individual variability.   Transcriptional responses to ozone are reproducible (Chapter 2), 

which suggests that ozone-mediated gene induction adheres to an undiscovered set of biological 

rules.  While the activation of MAPK signaling may be one important component of response 

inter-individual variability, the epigenome is also an important regulator of gene induction.  We 

previously demonstrated that epigenetic states present prior to exposure may influence 

transcriptional ozone responses, but epigenetic changes occurring as a result of ozone exposure 

may also be an important response modulator.   We used a panel of phBECs with varying ozone-

associated gene inductions and epigenetic changes to determine if these two variables were 

related.  We found that peak IL-6 and COX-2 expression were associated with increases in 

H3K4me3 and H4Ac after either one or two hours of ozone exposure (Figure 4-9).  

Alternatively, the removal of the repressive mark H3K27me2/3 was associated with increased 

IL-8 expression.  Our results suggest that differences in exposure-mediated epigenetic changes 

could be an important source of ozone response inter-individual variability.   

The epigenome is a critical regulator of gene expression, but its role in environmental 

health is still developing.  Currently many toxicoepigenetic studies explore how basal epigenetic 

states may be related to disease state or gene expression patterns.  We recently published such a 

study in which we found that baseline epigenetic states in unexposed phBECs were associated 

with ozone-mediated gene induction (McCullough et al., 2016; Figure 1-8).  The aforementioned 

study suggests that the epigenome can be a predictor of exposure effects; however, the addition 

or removal of epigenetic modifications occurring during response propagation may be just as 
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important as those present prior to exposure.  This principle is especially applicable to bivalent 

promoters where the balance of activating and repressive modifications ultimately determine 

gene expression patterns.  Many ozone-responsive genes have bivalent promoters, thus the 

removal of repressive marks and/or the placement of activating modifications may drive ozone 

inductions and be an important source of inter-individual variability.  The present study explores 

this principle by profiling exposure-associated changes in activating and repressive histone 

modifications at ozone-responsive gene promoters.   

Here we show that, indeed, post exposure changes in the abundance of these marks is 

associated with both the magnitude of ozone-associated gene transcription.  While our findings 

are novel with respect to ozone exposure, other model systems have found similar results using 

other pro-inflammatory stimuli.  Angrisano et al., (2010) stimulated intestinal epithelial cells 

with lipopolysaccharide (LPS) and examined changes in histone modifications at the IL-8 

promoter 30 minutes to 24 hours post exposure.  They found that peak IL-8 expression occurred 

one hour post exposure, and was accompanied by increases in activating pan-acetyl H3 and 

H3K4me2 and concomitant decreases in repressive H3K9 and H3K27 methylation.  Decreases in 

IL-8 induction also coincided with increased levels of H3K27me3.  Other studies have observed 

similar epigenetic changes at gene promoters following pro-inflammatory stimulation (Saccani & 

Natoli 2002).  Moreover, exposure to other air pollutants such as inhaled metals, diesel exhaust 

particles, and benzo-a-pyrene is associated with both global and locus-specific changes in the 

abundance of activating histone acetylation and methylation (Cantone et al., 2011; Cao et al., 

2007; Liang et al., 2011).  A strong association has also been made between the severity of 

inflammatory lung diseases and increased histone acetylation at pro-inflammatory gene 

promoters (Ito et al., 2005; Adcock et al., 2007). 
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Our findings in combination with evidence presented by other studies suggest that the 

ozone-mediated induction of pro-inflammatory genes may be mediated by the placement of 

activating histone modifications and/or the removal of repressive modifications.  This suggests 

that individuals with particularly elevated pro-inflammatory responses to ozone exposure may 

undergo unique epigenetic changes that may differentiate them from their less responsive 

counterparts.   Discovering the underlying reasons for these differences could provide unique 

insights into response inter-individual variability.    

While this general framework could be used to explain stimulus-induced transcription, 

our results demonstrate that this explanation does not apply to all inducible genes and for each 

modification the importance, kinetics of placement/removal, and functional implications may 

vary gene-to-gene.  For example, we did not observe any post-exposure associations with 

HMOX1.  Moreover, we observed that IL-6 and COX-2 had increases in activating modifications, 

but no changes in repressive H3K27me2/3.  Alternatively, IL-8 induction was associated with the 

removal of H3K27me2/3 but no associations with activating modifications were noted.  

Our observations may offer novel insights into the transcriptional regulation of these 

genes; however this work is not without limitations.  This research was designed to be a pilot 

study to identify important epigenetic modifications and time points that could be used in more 

expansive future studies.   Given the limited abundance of primary cell material, a relatively 

small number of donors were used, thus sample size is a limitation.   While were able to identify 

several significant associations, it is possible that we may have missed important relationships 

due to time point selection.  We collected samples hourly; however, some chromatin changes 

may have occurred more rapidly than predicted could have been overlooked by our analysis.  

Alternatively, key events could have occurred in between time points.  Another important caveat 
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is that we only examined one location within the promoter region near the transcription start site 

of each gene.  We selected this region because this is where many transcription factors bind and 

epigenetic changes occur, which are important regulators of gene transcription; however, these 

areas can also be less nucleosome dense.  Low nucleosome density could result in low ChIP 

signal or a lack of detection of epigenetic changes.  This could be corrected in future studies by 

the incorporation of additional primer sets targeting more proximal or distal promoter regions.   

While the epigenetic changes we describe are associated with ozone induction and agree 

with current literature regarding the activation of bivalent genes, further studies are required to 

determine whether these changes are associative or causal.  Characterizing the complexes that 

place and/or remove these marks during ozone exposure will facilitate this process, as the 

identified proteins can be overexpressed, knocked-out, have their activity inhibited, etc. to 

determine the effect on the placement of histone modifications during ozone exposure.  This may 

be more easily accomplished for some histone modifications than others because some marks 

(e.g. H3K27me2/3) have fewer writers/erasers than others (e.g., H4Ac).   

While we have identified several epigenetic changes associated with ozone exposure, the 

molecular processes linking these two phenomena are currently unknown.  Previous findings 

have established that ozone exposure activates cellular signaling cascades such as the MAPK 

pathway (Chapters 2, 3; McCullough et al., 2014).  The activation of MAP kinases leads to 

histone phosphorylation and acetylation at target genes by the direct phosphorylation of histone 

substrates, the activation of chromatin modifying enzymes such as CBP/p300, and the activation 

of transcription factors that bind to target gene promoters and, in turn, recruit additional 

chromatin modifying complexes (Cargnello and Roux 2011; Liu et al., 1999).  Future studies can 

identify specific transcription factors and chromatin modifiers that are recruited to pro-
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inflammatory gene promoters as a result of ozone exposure.  This information can then be used 

in the aforementioned mechanistic investigations.   

 

Conclusions 

We observed that phBEC cultures undergo epigenetic changes during ozone exposure 

which may be important drivers of pro-inflammatory response inter-individual variability.  

Higher pro-inflammatory gene inductions are associated with increases in activating marks 

and/or a reduction in repressive modifications.  These results are consistent with current models 

of bivalent gene regulation in which induction is controlled by the balance of activating and 

repressive histone modifications.  Our findings also demonstrate there is gene-to-gene variation 

in the types changes that occur, kinetics of placement/removal, and the relative importance of 

each modification.  While these findings suggest that susceptible individuals could have unique 

epigenetic responses to environmental exposures, additional questions remain regarding the 

molecular events leading to these changes and the functional role of the epigenetic alterations 

described. 
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CHAPTER 5: ADDITIONAL EXPERIMENTS 

 

Cytotoxicity Assessment of Multiple Ozone Exposures 

Introduction/Purpose:   

Although inspection via light microscopy revealed that tissue monolayers and cilia 

appeared to be intact over four days of repeated ozone exposure, I wanted to perform a more 

quantitative assessment of cytotoxicity.  I initially experimented with a Live/Dead (Invitrogen) 

flow cytometry-based technique; however, the sensitivity of this assay was confounded by the 

variability and complexity of the phBEC cell suspension. Others in the field have used the lactate 

dehydrogenase (LDH) assay, however I was skeptical about the information this assay would 

provide, given that ozone could damage the cell membrane and cause LDH release but may not 

necessarily cause cell death.  I eventually used the classic trypan blue exclusion assay, which has 

previously been used by others assess exposure-associated phBEC toxicity (Hellerman et al., 

2002; Takeshi et al., 2001). 

 

Methods: 

Cells at ALI Day 24 were exposed to ozone and filtered air on a daily basis for four days.  

Twenty-four hours following each ozone exposure, primary cell cultures were removed from 

Transwell inserts via trypsinization for approximately 5-7 minutes.  Trypsin was inactivated with 

cell media and cells were centrifuged, washed with PBS, and resuspended in PBS.  Cells were 

diluted and trypan blue was added according to the manufacturer’s protocol (ThermoFisher).  
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Cells were counted using a hemocytometer. The number of trypan blue positive cells was 

expressed as a percentage of total counted cells.  For each condition 6-8 hemocytometer fields 

were counted per treatment.  Prior to cell counts, I was blinded to treatment conditions. A 2-way 

ANOVA was used to compare FA to ozone-exposed cells for each exposure day.   

 

Results:  

 
Figure 5-1. Cytotoxicity assessment of repeated ozone exposures using trypan blue 

exclusion assay.  Mean ± SE. *Significantly different from FA (p<0.05). 

 

 

Discussion/Conclusions: 

During the initial days of exposure (Days 1-3), the number of trypan positive cells 

trended slightly higher in FA than ozone treatments; however, after four days of exposure, this 

trend was reversed.  Initial increases in cytotoxicity in filtered air conditions may be explained 

by a ‘culling effect,’ where weakened/dying cells may be forced into apoptosis by ozone 

exposure prior to counting.  Increased ozone-associated cytotoxicity on the fourth day is likely 

due to treatment effect; however, this effect appeared to be limited to a 5% increase, which 

argues that cytotoxicity is not a driver of the effects observed in this dissertation.  An important 
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finding to note is that the background of trypan positive cells is higher than would be expected 

compared to the background in many cell lines.  I think that this is because differentiated 

phBECs within a pseudostratified epithelium are more difficult to trypsinize than many cell lines, 

thus the mechanical action of washing and pipetting may be more likely to tear membranes, 

which would allow dye to enter the cells and create a higher background.  I anticipate this effect 

would be uniform across days and treatments, thus the cytotoxic effect of ozone may still be 

discriminated.  
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Comparison of in vitro IL-8 induction and the in vivo inflammatory response 

Introduction/Purpose: 

This dissertation presents evidence that the phBEC model may be useful in studying the 

mechanisms that control IL-8 transcription.  IL-8 is an important chemokine regulating 

neutrophil chemotaxis, which is a hallmark ozone exposure.  However, a compelling question is 

whether phBEC cultures are predictive of ozone-mediated neutrophil responses in the donors that 

they are collected from.  To investigate this question, I selected samples from a clinical ozone 

exposure study in which subjects had matched phBEC collections and bronchoalveolar lavages 

following ozone and FA exposure.  I compared phBEC ozone-mediated IL-8 inductions with 

previously recorded neutrophil recruitment data, hypothesizing that donors with elevated 

neutrophil influx would have higher phBEC ozone-mediated IL-8 inductions. 

 

Methods: 

In the aforementioned clinical study, bronchoalveolar lavage fluid (BALF) was collected 

18 post exposure from both filtered air and ozone treatments.  Treatments were separated by at 

least two weeks.  EPA Human Studies Facility staff performed the BALF cell differential 

analysis.   From this donor pool I selected eight donors that had varying levels of neutrophil 

(polymorphonuclear cells - PMNs) influx following ozone exposure.  For these eight donors, 

epithelial cells collected after the in vivo FA exposure were cultured and differentiated.  At ALI 

Day 24, I carried out the phBEC in vitro ozone and filtered exposures and performed RNA 

extraction and RT-qPCR as previously described.  To prevent unintentional bias, phBEC 

exposures were performed under a double-blind.  After the RT-qPCR results were obtained, the 
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blind was removed and comparisons were made between phBEC IL-8 inductions (indicated in 

orange in Table 5-1) and infiltration (blue) via simple linear regression. 

 

Results: 

 
Table 5-1. Comparison of in vitro phBEC IL-8 responses to in vivo acute inflammatory 

responses.  The top panel shows PMN influx following filtered air exposure, while the bottom 

panel shows responses following ozone exposure.  The bottom panel also contains fold change 

calculations (from FA) with respect to raw PMN number and percent PMNs.   

 

 

 

Subject Exposure

Total Cells    

(x 106) % PMNs Raw PMNs

1 Air 1.60               1.00               0.02               

2 Air 5.40               2.00               0.11               

3 Air 3.20               3.00               0.10               

4 Air 3.70               0.10               0.00               

5 Air 5.70               5.00               0.29               

6 Air 2.80               0.10               0.00               

7 Air 2.90               0.10               0.00               

8 Air 3.70               3.00               0.11               

In vitro

Subject Exposure

phBEC IL-8 

induction 

Total Cells    

(x 10
6
) % PMNs

PMN FC 

(O3/FA) Raw PMNs

Raw PMN FC 

(O3/FA)

1 Ozone 3.92 1.70 3.00 3.00 0.05 3.19

2 Ozone 2.59 3.60 19.00 9.50 0.68 6.33

3 Ozone 2.3 3.20 12.00 4.00 0.38 4.00

4 Ozone 2.42 2.10 15.00 150.00 0.32 85.14

5 Ozone 2.09 5.10 20.00 4.00 1.02 3.58

6 Ozone 3.1 4.30 6.00 60.00 0.26 92.14

7 Ozone 4.63 2.60 8.00 80.00 0.21 71.72

8 Ozone 6.18 5.20 1.00 0.33 0.05 0.47

In vivo - Collected from BALF

In vivo - Collected from BALF
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Figure 5-2. Relationship between in vitro IL-8 induction and PMN infiltration.  Percent 

PMN infiltration is inversely related to in vitro IL-8 induction. n =8 

 

Discussion/Conclusions: 

I observed that in vitro IL-8 inductions were inversely related to in vivo neutrophil influx 

following ozone exposure.  This pattern hold if IL-8 inductions are compared with both percent 

PMNs (Figure 5-2) and raw PMNs (R2=0.48, p=0.056; data not shown).  These findings oppose 

my original hypothesis.  

 While phBEC IL-8 inductions and neutrophil influx may be inversely related 18 hours 

post exposure, it is possible that a different relationship could be observed if BALF had been 

collected at a different time point.  Ozone associated neutrophil influx typically peaks around six 

hours post exposure, and begins to dissipate 18-24 hours post exposure (US EPA, 2013; 

Schelegle et al., 1991).  Thus, the inflammatory phenotypes observed are likely more 

representative of resolution phenotype than peak expression.   

If earlier time points were assessed (i.e. during peak neutrophil recruitment) and this 

inverse trend continued to be observed, the phBEC model could still be used to study factors 
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dictating IL-8 response, and it is still predictive of in vivo responses, but not in the way originally 

anticipated (low IL-8 in vitro responses would predict high in vivo responders).   

 In order to make a conclusion regarding the phBEC-in vivo response relationship, a study 

should be designed in which respiratory inflammation can be assessed at multiple time points.   

While BALF collection may be too invasive for repeated collections, induced sputum may be a 

viable option. 
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Additional Characterization of Ozone Adaptation 

 

Introduction/Purpose:   

In Chapter 3 the concept of in vitro ozone adaptation is introduced and potential 

mechanisms are explored; however, the characterization of in vitro ozone adaptation is limited to 

four repeated days of ozone exposure.  Additional questions remain regarding the acquisition and 

persistence of in vitro ozone adaptation.   Two important questions are: how many ozone 

exposures are required to produce ozone adaptation; and 2) if adapted cells are withheld from 

ozone exposure for several days, do they regain their responsiveness?  The following 

experiments were performed to address these questions. 

 

Methods: 

 PhBECs were used for exposures after 24 Days of differentiation at ALI as previously 

described in Chapter 3.  Cells were exposed to ozone and filtered air according to the exposure 

schemes included with each figure.  In the recovery experiment, phBEC cultures that exhibited 

IL-8 adaptation after four days of repeated exposure (defined by significant t-test comparing 

1XO3 and 4XO3 p<0.05) were withheld from exposures to see if they regained responsiveness to 

ozone.  Cells had their media changed and washed each day that they were withheld from 

exposure.  In both experiments, all exposures are compared to responses from a single ozone 

exposure control (1XO3) to determine whether adaptation was present.  Instead of fold change 

values, the ozone inductions in the recovery experiment were expressed as a percent inhibition.  

Percent inhibition was calculated by equating the induction of the cells that were re-exposed to 

ozone as a percentage of the daily 1XO3 control, and then subtracting that value from 100% (e.g. 
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if previously exposed cells had an induction that was equal to the 1XO3 control, they would have 

0% inhibition).   

 

Results: 
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Figure 5-3. Number of exposure days required for ozone responsive genes to exhibit 

suppression.  Cells were exposed to 0.5 ppm O3 and filtered air as previously described.  Cells 

were harvested for gene expression analysis on a daily basis.  A 2-way ANOVA was used to 

compare all inductions to induction the first day of exposure (Day 1).  The asterisks indicate the 
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donors that had a significant (p<0.05) declines from Day 1 ozone response, which would indicate 

that suppression had occurred (2-way ANOVA).   

 

 

 
Figure 5-4.  Do ‘adapted’ cells regain responsiveness? Cells that were exposed to ozone for 

four days and were ‘IL-8 adapted’ were withheld from exposure for one or three days before 

being re-exposed to ozone.   For each indicated day a 2-way ANOVA was used to compare the 
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single ozone exposure control (1XO3) to each treatment.  *Indicates significant reduction from 

1XO3, while † indicates a significant increase from 1XO3 (p<0.05). 

 

 

Because gene inductions in this dissertation are expressed as a fold change from filtered 

air, there was a conundrum of what FA control to use for cells that were re-exposed to ozone: 

cells that had been only exposed to filtered air, or those that were previously exposed to ozone 

(4XO3), and then were not exposed to ozone again (and were only exposed to FA) during the 

recovery assessment (e.g., 4XO3→3D Rec → FA).  For the calculations presented above, the FA 

only treatment was used; however, I used the 4XO3→ Rec → FA treatment to check if previous 

ozone exposure altered baseline expression of any of the above genes.  To do this, I normalized 

all FA treatments to the “pre-exposure” value.  Across all donors, baseline expression of these 

genes was either unchanged or exhibited a slight reduction (no more than 0.75 FC from pre-

exposure; data not shown).  This indicates that shifts in baseline expression do not account for 

the trends observed here. 

 

Discussion/Conclusion: 

The results depicted in Figures 5-3 and 5-4 are consistent with those presented in Chapter 

3, where the most responsive donors had the most substantial reductions in expression.  In 

donors exhibiting gene suppression, this reduction was often evident after two exposure days 

(Figure 5-3).  Some phBECs, however, did not exhibit statistically significant reductions in gene 

induction until the fourth day of exposure.  Many of the phBECs did not exhibit IL-6 and COX-2 

adaptation; moreover, there was actually a U-shaped trend in gene expression patterns.  

Recovery of responsiveness varied from donor-to-donor, where two of the five phBEC 

cultures regained responsiveness after a three-day recovery window.  Not only did these donors 
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regain responsiveness, but their inductions actually exceeded the responses of the 1XO3 control 

cells.  This trend was evident for several other genes, including HMOX-1 and COX-2.  No donors 

regained IL-6 responsiveness.   

These findings indicate that the dynamics of in vitro ozone adaptation are highly 

dependent on both the phBEC donor as well as the gene being examined.  If phBECs are going 

to adapt to ozone exposure, most will do so after two exposure days.  Among phBECs exhibiting 

adaptation, 40% (2/5) may regain responsiveness after several days of recovery, and could even 

have enhanced responses.   While it is unclear whether these findings mimic in vivo adaptation 

dynamics, they suggest that in vivo inflammatory adaptation may exhibit a high level of inter-

individual variability which could play an important role in ozone response susceptibility.   
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The Influence of phBEC Donor Characteristics on IL-8 Induction 

Introduction: 

Previous epidemiological and in vivo studies have shown that characteristics such as age, 

sex, and genotype can influence the inflammatory response to air pollutant exposure (US EPA 

2013).  It is unclear, however, whether these factors can also influence pro-inflammatory 

responses in phBECs.  If these relationships did exist, they could provide additional insight into 

response inter-individual variability and create new avenues for mechanistic phBEC research.  

To determine if donor characteristics are related to ozone responsiveness, phBEC IL-8 inductions 

were stratified according to the characteristics of their donors.  A brief background on each trait 

as it relates to air pollutant exposure is given below: 

GSTM1 genotype: Approximately 40% of the population is homozygous for a 

polymorphism that prevents the expression of a gene called glutathione S-transferase mu 1 

(GSTM1; Garte et al., 2001).  These GSTM1 null individuals exhibit greater inflammatory 

response to ozone exposure then their wild type counterparts, which is thought to be due to a 

decreased ability to neutralize ozone-associated ROS (Alexis et al., 2009).   

Sex: Many studies have reported sex differences in air pollutant exposure responses.    

Although the outcomes of such studies are variable, the majority have reported that women are 

more susceptible to the adverse effects of air pollutant exposure (Clougherty 2010).  Female 

mice exhibit more pronounced inflammatory responses following ozone exposure and are more 

susceptible to ozone-associated mortality and secondary infection (Mikerov et al., 2008; Silveyra 

et al., 2015). 

Age: Air pollutant exposure effects are known to vary with age; however, the nature of 

this relationship is still being characterized.  Young children and juvenile rodents are especially 
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susceptible to ozone exposure (Gunnison et al., 1992; Silverman and Ito 2010).  Age-dependent 

changes in exposure-associated inflammatory responses are highly dependent on genetics, and 

evidence suggests that once in adulthood inflammatory responses to air pollutants increase with 

age (Elder et al., 2000; Vancza et al., 2008). 

 

Methods: 

 The phBECs used in experiments in this dissertation were cultured as they became 

available and were not pre-selected based on donor characteristics.  These characteristics were 

requested from the EPA Clinical Research Branch upon the conclusion of experiments.  GSTM1 

genotyping was performed by the EPA Human Studies Facility staff using PCR.  Given that 

several distributions were skewed and were therefore not Gaussian, non-parametric analyses 

were used to compare IL-8 inductions between groups. 

 

Results: 
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Figure 5-5. Ozone inductions in GSTM1 wild type and GSMT1 null phBEC donors.  IL-8 

inductions are shown for nine wild type “WT” and nine null donors. The line in the middle of the 

box indicates the median, while the box represents the inter-quartile range, and the whiskers 

indicate the minimum and maximum values. A Mann-Whitney test was used to compare null and 

WT distributions.  No significant differences were found. 

 

 

Figure 5-6. PhBEC IL-8 induction in different donor age groups.  Ozone-mediated IL-8 

inductions are shown.  PhBEC donors were binned by age group.  For 18-24 n=7; 25-29 n=11; 

30-34 n=4; 35-40 n=3. A non-parametric ANOVA (Kruskall-Wallace) was used to compare 

groups.  No significant differences were found. 
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Figure 5-7. PhBEC IL-8 induction in male and female donors.   Ozone-mediated IL-8 

inductions are shown.  Inductions between sexes were compared using a Mann-Whitney test.  No 

of airway epithelial cells and is determined by the activation of the MAP kinases p38 and 

ERK1/2 significant differences were found. n=6 females and 19 males.   

 

Discussion/Conclusions: 

While this examination revealed no statistically significant findings, this is not entirely 

unexpected given the small number of donors included.  If analyzing responsiveness according to 

demographic traits had been a central focus of the dissertation, I may have been able to recruit 

donors based on specific characteristics in order to balance subject demographics.  For example, 

there were far more donors ages 25-29 (11) than 35-40 (3).  Moreover, for unknown reasons the 

majority of phBEC donors are male (19 males versus 6 females).  While I did observe several 

trends, it is difficult to tell if these trends are accurate representations or artifacts of unequal 

sample sizes.   

With this important qualifier in mind, several of the observed trends are consistent with 

observations in epidemiological and/or in vivo studies.  For example, GSTM1 null phBEC donors 

had a much wider variation in IL-8 induction, and the median induction was higher than in wild 

type cells.  This agrees with the observation that GSTM1 null individuals have higher 

inflammatory responses to ozone exposure compared to their wild type counterparts.  Females 

have a wider range of IL-8 induction than males and have a higher median response, which is 

concordant with prior findings regarding the ozone inflammatory response in mouse models.  

With respect to age, it appears that 18-24 year olds are the least responsive to ozone exposure 

and have the narrowest range in IL-8 induction.  Above this age group IL-8 inductions are more 

widely distributed and have higher medians.  This is consistent with observations in animal 
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studies that suggest that among adult mice, ozone-induced inflammation increases with age 

(Elder et al., 2000; Vancza et al., 2008). 

The fact that the trends agree with prior published research is encouraging because this 

suggests that the mechanisms driving these associations may be able to be explored using the 

phBEC in vitro model.  If indeed phBEC responses are influenced by donor age, this would be a 

particularly interesting finding because this effect would have to be epigenetically mediated.  

Donor age could be an important factor dictating the epigenetic patterns previously noted 

(McCullough et al., 2016) and those discussed in Chapter 4.   

The aforementioned trends will need to be verified in future studies in which the number 

of phBEC donors is increased and subject characteristics are balanced throughout the donor pool.  

The preliminary data presented here could be useful in designing future studies because they 

could be used to conduct power calculations. 
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CHAPTER 6: CONCLUSIONS, PERSPECTIVES, AND FUTURE DIRECTIONS 

While ozone mediated inflammatory responses exhibit extensive inter-individual 

variability, responses within individuals are highly reproducible.   One of the key findings from 

this dissertation is that this reproducibility can be recapitulated on a cellular level, as the 

response status of a particular individual’s phBECs can be recapitulated even if cultures are 

collected up to a year apart.  This provides evidence that fundamental differences in an 

individual’s airway epithelial cells may play a major role in ozone inflammatory response.  This 

finding is exciting because it suggests that there are discrete rules governing epithelial cell 

responses, and that the identification of these rules can be accomplished by examining epithelial 

cell biology.  Here I used phBEC ozone response inter-individual variability as a tool to describe 

how two novel susceptibility factors, MAPK signaling and epigenetic patterns, are important 

aspects of epithelial cell programming.   

 

Epithelial cell programming: genetic and epigenetic considerations 

While this dissertation makes many novel insights regarding ozone response inter-

individual variability, the origin of these differences in phBEC cultures remains to be 

determined.  Genetics likely play a major role, but it is also possible that epigenetic imprints 

could be retained from the phBEC donor’s life history.  

 The human genome contains approximately 20,000 genes that encode the proteins which 

serve as building blocks and perform the tasks necessary for life.  Variations in DNA sequences 

within protein-coding and non-coding regions likely account for a considerable amount of the 
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inter-individual variability in the inflammatory response to ozone exposure.  Epidemiological 

studies, human clinical exposure studies, and model systems such as the collaborative cross have 

found that certain polymorphisms are associated with the severity of the ozone inflammatory 

response (Bauer and Kleeberger 2010).  

A gene that is frequently discussed in the context of the ozone inflammatory response is 

GSTM1.  Multiple epidemiological and human clinical exposure studies have demonstrated that 

individuals who are GSTM1 null are more susceptible to ozone-associated lung function 

decrements and inflammation (Alexis et al., 2009; Romieu et al., 2006).  Consistent with this 

finding, I found that GSTM1 null phBEC cultures may also have slightly higher pro-

inflammatory gene inductions than wild type cultures (Figure 5-5).  The influence of GSTM1 

and the central role of MAPK signaling as demonstrated in this dissertation suggest that one of 

the ways GSTM1 could influence the pro-inflammatory response is by modulating the activation 

of the MAPK pathway.  Indeed, it has been shown that GSTM1 impinges on the MAPK pathway 

by its interactions with apoptosis signal-regulating kinase 1 (ASK1).  Under normal cellular 

conditions, GSTM1 binds to ASK1 thereby inhibiting its activity; however, during conditions of 

oxidative stress, GSTM1 dissociates from ASK1, freeing ASK1 to activate MKK3, 4 and/or 6, 

which are upstream of p38 (Brancho et al., 2003; Dolado et al., 2007; Kennedy et al., 2007).  

TRAF6 and TRAF2, which are downstream effectors of TLR4 can also phosphorylate and 

activate ASK1 (Matsuzawa et al., 2008; Nagai et al., 2007).  The information provides a putative 

link between ozone exposure, GSTM1, MAPK signaling, and toll-like receptor signaling, which 

are all known to have central roles in the ozone inflammatory response.   

While GSTM1 status can be influential, it may be unrealistic to attribute response 

variability to one polymorphism alone.  Instead the overlap of many different polymorphisms is 
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a much more powerful explanatory factor.  Based on this logic, GSTM1 has been proposed to be 

a ‘gatekeeper’ during conditions of oxidative stress, where wild type individuals will be 

protected, but null individuals may be much more susceptible to polymorphisms in other genes 

associated with stress responses (David et al, 2003; Romeiu et al., 2006).  This could explain the 

fact that in the phBEC model, pro-inflammatory response variability was wider in the GSTM1 

null donors (Figure 5-5).  Other genes that have been implicated as modulators of the ozone 

inflammatory response include detoxification enzymes such as glutathione S-transferase Pi 1 

(GSTP1), nicotinamide adenine dinucleotide (phosphate) reduced: quinone oxidoreductase 

(NQO1), and catalase (CAT) (Bauer and Kleeberger 2010; David et al., 2003; Romeiu et al., 

2006).  Genome-wide association studies (GWAS) in mice have identified that polymorphisms 

within Jnk1 and genes upstream of MAPKs such as Tnfa, Tlr2, Tlr4, and Myd88 are also 

important modulators of inflammation (Bauer and Kleeberger 2010). 

Further experiments using the phBEC model system may be able to investigate how these 

polymorphisms are linked to MAPK signaling through mediators such as ASK1.  Moreover, it 

would be informative to model ozone responses in phBECs possessing particular polymorphism 

combinations.  While one approach could be finding phBEC donors possessing particular 

polymorphisms, genes could also be knocked out using recently developed gene editing 

techniques (i.e. CRISPR).  

While the genome is akin to fixed hardware, the epigenome is the software that dictates 

where, when, and the extent to which genes will be expressed.  Unlike the genome, the 

epigenome is malleable and can be influenced by a variety of intrinsic properties such as age, 

sex, genotype and extrinsic factors such as environmental exposures (Bowers and McCullough et 

al., 2017).   Given the ability of environmental exposures to alter the epigenome, an important 
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question is whether exposures incurred by donors prior to phBEC collection could influence the 

responses of phBEC cultures to ozone via an epigenetic mechanism. 

During the phBEC culture process, epithelial cells are collected and then basal epithelial 

cells undergo several divisions and eventually differentiate into the various cell types found in 

fully differentiated phBEC cultures.  In order for prior exposures to impact in vitro phBEC 

responses, epigenetic imprinting would have to remain intact throughout all of these stages.   

Currently, it is unknown how persistent exposure-associated epigenetic changes may be, 

but there are several experiments that could be performed to answer these questions.  EPA 

currently possesses phBECs that were collected from the same individual following exposures to 

both FA and ozone.  Both the FA and ozone-exposed phBECs could be cultured, exposed to 

ozone and filtered air in vitro.  RNA samples could be collected to assess exposure-associated 

gene inductions and ChIP material could be collected prior to exposure to determine if the 

baseline epigenome differed as a result of prior in vivo exposure.  While it is possible that a 

single exposure to ozone may not leave a detectable epigenetic imprint in phBECs, this same 

experimental approach could be used to assess outcomes from more extensive exposures, such as 

comparing the epigenomes of phBECs collected from smokers and non-smokers, or comparing 

outcomes in individuals who have different diets. 

 

Additional characterization of the adaptive mechanism 

This dissertation demonstrates that the reduction of ERK1/2 activation is an important 

component of in vitro ozone adaptation.  Reductions in MAPK activation are also a central 

mediator of a similar phenomenon called LPS tolerance, which is characterized by inflammatory 

suppression during repeated exposure to LPS.   LPS tolerance literature suggests that reduced 
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MAPK activation is accomplished by the increased expression of microRNAs targeting MAPK 

proteins, increased phosphatase abundance and activity, as well as decreased expression of 

MAPK proteins, receptors, and co-receptors (Biswas and Lopez-Collazo 2009; Fan and Cook 

200; Foster et al., 2007).  While my current research has been based on a candidate gene 

approach, a more objective hypothesis-generating approach would useful to identify unknown 

mediators of the adaptive response. In such an analysis I would perform RNA-seq on both FA, 

1XO3, and 4XO3 samples to determine which genes were alternatively regulated.  If the results of 

this analysis identified genes that were related to MAPK regulation, this would be highly 

supportive of the findings in this dissertation and provide novel insights regarding how the 

MAPK is regulated during ozone adaptation. 

The LPS tolerance literature suggests that adaptive responses are mediated by multiple 

overlapping mechanisms that target both MAPK signaling and the epigenome.  At the beginning 

of my dissertation research I hypothesized that a central mechanism of ozone adaptation was the 

alteration of epigenetic modifications at pro-inflammatory gene promoters.  As a first step to 

addressing this hypothesis, I needed to identify epigenetic modifications that were associated 

with ozone responsiveness so that I could then see if the abundance of these marks changed 

during adaptation.  These initial steps consumed most of my time and resources, so unfortunately 

I didn’t get the opportunity to investigate epigenetic contributions to in vitro ozone adaptation.  If 

I were able to continue this research, I would use the information I had previously obtained 

regarding epigenetic modifications and time points to conduct ChIP-seq on cells that had been 

exposed to FA, 1XO3, and 4XO3.  In such an experiment, RNA would be collected at the time of 

peak gene expression, and ChIP material would be collected prior to exposure (to see if repeated 
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ozone exposure altered baseline chromatin modifications), as well as during peak expression (to 

see if adaptation is related to a lack of a certain mark being placed).   

While this analysis could just be focused on the four candidate genes described in this 

dissertation, performing ChIP-seq and RNA-seq would facilitate a more objective approach and 

could be used to grant a more global view of ozone adaptation.  Other studies have noted that 

epigenetically-mediated suppression during repeated exposure can vary by gene function; for 

example, during repeated LPS stimulation, inflammatory genes are suppressed due to a lack of 

histone acetylation, while the acetylation and induction of antimicrobial response genes are 

unchanged (Foster et al., 2007).  It would be of interest to see if the same patterns could be 

observed during repeated ozone exposure. 

 

Epigenetic influences: association vs. causation 

While the epigenetic studies presented in this dissertation represent an initial screening to 

identify epigenetic modifications and time points that may be important, a short-coming of this 

work is that the data presented are predominantly associative.  While it is known that many 

chromatin modifications play an active role in controlling gene transcription by altering 

nucleosome conformation and providing docking sites for effector proteins; the role of specific 

modifications may not always be straightforward and can be highly locus dependent (Berger et 

al., 2007; Kouzarides et al., 2007).  Thus, future studies using the phBEC model system will 

need to establish if chromatin modifications play a functional role in the ozone-mediated 

induction of each gene.   

An epigenetic modification that I am particularly interested in is H3K27 methylation.  

Previous work suggests that the removal of H3K27 methylation at inducible gene promoters is 
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important for transcriptional elongation (Chen et al., 2012).  Indeed, the data presented in 

Chapter 4 suggests that the removal of H3K27 methylation may facilitate IL-8 induction during 

ozone exposure.  I considered, but did not have time to implement, an experiment in which 

phBEC cultures were treated with an inhibitor of a K27 demethylase, jumonji domain containing 

protein (JMJD3), to determine if an inability to remove this mark influenced ozone-associated 

transcription.  Alternatively, overexpressing enhancer of zeste homolog 2 (EZH2), the catalytic 

component of the polycomb repressive complex 2 (PRC2) that confers H3K27 methylation, may 

be a way to determine if the enrichment of this mark decreases ozone-associated gene induction.  

Placement of activating histone modifications, such as histone acetylation, may be equally as 

important as the removal of repressive modifications.  Similar experiments could be undertaken 

to assess the impact of HDAC/HAT inhibitors on ozone induction. 

Unfortunately, such experiments in the phBEC model system require the use of small 

molecular inhibitors, as these cells are recalcitrant to transfection and transduction.  Although 

valuable information may be obtained by the use of such inhibitors, off-target effects are always 

a concern.  Despite previous difficulties in genetically manipulating phBECs, recent advances 

suggest that this may be possible using the CRISPR-Cas9 system, which would be a powerful 

tool in answering many of the questions posed in this chapter.  We could potentially use this 

system to study the effect of the gene polymorphisms discussed earlier in this chapter.  

Moreover, we have considered tethering epigenetic effectors to dead Cas9, which could be then 

be targeted to a specific location within the genome (e.g. the IL-8 promoter). This would be an 

ideal way to assess the role of certain epigenetic effectors while minimizing off-target effects.   
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Considerations in modeling the ozone pro-inflammatory response 

Airway neutrophilia is a hallmark of ozone exposure. While neutrophils may help clear 

tissue damaged by exposure, they can also cause further damage to the epithelium by releasing 

bactericidal ROS.  Inflammation is an important physiological process that must be tightly 

regulated, as too much or too little can be pathological.  Thus it is important to emphasize that 

inflammation should not immediately be considered negative; however excessive, uncontrolled, 

or repeated bouts of inflammation can be detrimental as it can cause squamous cell metaplasia, 

airway remodeling, and permanent damage to the lung (US EPA 2013).   

The transcriptional control of IL-8 has been a major focus in this dissertation because IL-

8 is an important mediator of neutrophil chemotaxis following ozone exposure.  As stated above, 

the induction of IL-8 in phBECs does not necessarily equate to a negative health outcome, rather 

we are trying to understand the factors controlling IL-8 induction because, putatively, if IL-8 

induction is excessive or prolonged, this could lead to an excessive neutrophil response.  In this 

context, the adaptive response could be beneficial because it could prevent excessive 

inflammation.   

While IL-8 is a crucial pro-inflammatory cytokine, there are other mediators that are 

released as a part of the ozone pro-inflammatory response.  While we were able to attribute a 

large component of IL-8 induction to ERK1/2 and p38 activation, the pathways upstream of 

other genes such as IL-6 and COX-2 are less characterized in the phBEC model.  Future 

experiments could explore the role of other receptors and pathways ouch as Akt, and NFkB.   

In addition to epithelial cells, other cell types contribute to the ozone inflammatory 

response, such as fibroblasts, macrophages, mast cells, dendritic cells, etc.  Future experiments 

could utilize co-culture techniques to determine the role that these cells may play in modulating 
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inter-individual variability and ozone adaptation.  While the phBEC system used in this 

dissertation grants insight into the pro-inflammatory response, it does not permit the study of 

lung function changes, which is a critical aspect of the ozone response.   

While modeling the mechanics of lung function in vitro may not be a viable approach, 

decrements in lung function could be inferred by examining the ozone-mediated release of 

certain compounds.  Ozone exposure causes the activation of TRPA1 receptors on C-fibers 

which then release compounds such as substance P, neurokinin A, and CGRP.  These 

compounds then lead to painful inspiration and bronchial smooth muscle reactivity, which are 

the predominant causes of ozone-associated lung function decrements (US EPA 2103).  It may 

be possible to use a neuronal cell line to study how ozone could lead to the release of these 

substances. With advancing iPSC technology, it may also be possible to differentiate fibroblasts 

collected from different individuals into neuronal cells, which could then be used to study inter-

individual variability in the ozone-mediated release of these neurotransmitters. 

While the primary goal of this dissertation was to examine the mechanisms that shape 

pro-inflammatory gene expression, an important aspect, which we were unable to address is the 

effect of phBEC donor characteristics on ozone responsiveness.   The results depicted in Chapter 

5 suggest that factors such as age, sex, and genotype may be important contributing factors, yet 

we were unable to identify statistically significant trends due to limitations in sample size.  

Future studies could use the data collected in this dissertation to conduct power calculations.  

Furthermore the donor pool described here could then expand upon and donors with specific 

characteristics could be recruited.    
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Conclusions: The MAPK-epigenome axis 

The goal of this dissertation was to discover the basis of the molecular programming that 

shapes epithelial pro-inflammatory responses to ozone exposure.  Using the phBEC model I 

discovered two important components of this programming: differences in MAPK pathway 

activation and patterns of epigenetic modifications at pro-inflammatory gene promoters.  While 

it may be easy to think of these as discrete units, they are actually part of the same system, which 

allows cells to respond to their external environment by converting extracellular signals into 

gene induction.  The activation of membrane receptors and cellular signaling cascades, such as 

ERK1/2, represents the top of this axis and epigenetic changes at gene promoters represents the 

bottom, which is the mechanism by which signaling leads to transcription.  While the extreme 

ends of this system have been described in this dissertation, further research is required to 

describe events occurring in between, in particular the involvement of other kinases, 

transcription factors, chromatin-modifying complexes, etc.  Conceptualizing this system as an 

interrelated axis is amenable to environmental health research because factors that shape ozone 

associated gene inductions can be easily incorporated (Figure 6-1).  For example, the GSTM1 

protein can influence the MAPK pathway as previously described, as can prior ozone exposures 

(Chapter 3).  These factors may reprogram epigenetic patterns at pro-inflammatory gene 

promoters, which we have been shown to be highly associated with ozone induction 

(McCullough et al., 2016; Chapter 4).   

The more we understand about this system, the more insight we will have into the 

mechanisms governing exposure response inter-individual variability.  With this information we 

may be able to refine predictions of susceptible individuals and understand health effects in 
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exposed populations.  This may be particularly helpful in understanding the health effects of real 

world exposures and complex responses such as ozone adaptation.   

 
 

Figure 6-1. Bringing it all together: the MAPK-epigenetic axis.  This dissertation has 

provided evidence that the activation of ERK1/2 and epigenetic patterns at pro-inflammatory 

genes may be important in mediating variability ozone-associated gene inductions.  This 

‘ERK1/2-epigenetic axis’ could also be influence by a variety of intrinsic factors, such as 

genotype and sex, and extrinsic factors, such as prior ozone exposure.    
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APPENDIX 1: SUPPLEMENTARY METHODS 

Target Antibody Manufacturer Product Number 

GAPDH Cell Signaling 5174 

α-ERK1/2 Cell Signaling 4695 

α-ERK1/2 p(T202/Y204) Cell Signaling 4370 

α-MEK1/2 p(S217/221) Cell Signaling 9121 

α-MEK1/2 Cell Signaling 9126 

α-MKK4/SEK1 p(S257/T261) Cell Signaling 9156 

α-MKK4/SEK1 Cell Signaling 9152 

α-p38 Cell Signaling 9212 

α-p38 p(T180/Y182) Cell Signaling 4511 

α-p65 p(S536) Cell Signaling 3033 

α-p65 Cell Signaling 8242 
Total H3 Active Motif 39163 

H3K4me3 Active Motif 39915 

H3K27me2/3 Active Motif 39535 

H4ac Active Motif 39925 

Normal Mouse IgG Santa Cruz Biotechnology SC-2025 

Table A1-1. Antibodies used for Western blotting and ChIP. 

 

 

 

Solution Composition 

Protease Inhibitor 

Mixture 

1X cOmplete protease inhibitor cocktail (Roche), 20 mM butryric acid, 

25 mM NaF, 1mM Na4P2O7  

ChIP Lysis Buffer 50 mM Tris, pH 8.1; 10 mM EDTA; 1% SDS; 20 mM butryic acid; 1 

mM PMSF; 1X cOmplete protease inhibitor 

ChIP Dilution 

Buffer 

16.7 mM Tris, pH 8.1; 167 mM NaCl; 1.2 mM EDTA; 1.1% Triton X-

100; 0.01% SDS; 20 mM butyric acid; 1 mM PMSF; 1X cOmplete 

protease inhibitor 

Low Salt Wash 

Buffer 

20 mM Tris, pH 8.1; 150 mM NaCl; 2 mM EDTA; 1% Triton X-100; 

0.1% SDS 

High Salt Wash 

Buffer 

20 mM Tris, pH 8.1; 500 mM NaCl; 2 mM EDTA; 1% Triton X-100; 

0.1% SDS 

LiCl Wash Buffer 10 mM Tris, pH 8.1; 1 mM EDTA; 1% IGEPAL CA-630 (NP-40) 250 

mM LiCl; 1% sodium deoxycholate 

TE Wash Buffer 10 mM Tris, pH 8.0; 1 mM EDTA 

ChIP Elution Buffer 1% SDS, 0.1 M NaHCO3 

Table A1-2. ChIP buffer formulations. 
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ChIP Primer and Probe Sets 

Gene and Target Sequence (5’ to 3’) 

IL-8 Forward CATCAGTTGCAAATCGTGGA 

        Reverse  GAAGCTTGTGTGCTCTGCTG 

        Probe  AAAGCCACCGGAGCACTCCA 

IL-6 Forward AGCCTCAATGACGACCTAAGCT 

        Reverse ATTGTGCAATGTGACGTCCTTT 

        Probe CACTTTTCCCCCTAGTTGTGTCTTGCCA 

COX-2 Forward CTGGGTTTCCGATTTTCTCATT 

        Reverse GTACCCCCCACAAATTTTTCC 

        Probe TGGGTAAAAAACCCTGCCCCCACC 

HMOX-1 Forward GACATTTTAGGGAGCTGGA 

        Reverse  TCCCAGAAGGTTCCAGAAAGC 

        Probe CTGATGTTGCCCACCAGGCTATTGC 

Table A1-3. Primer and probe sequences used for detection of ChIP DNA. 

 

 

Gene Expression (cDNA) Primer and Probe Sets 

Gene and Target Sequence (5’ to 3’) 

IL-8 Forward TTGGCAGCCTTCCTGATTTC 

        Reverse  TATGCACTGACATCTAAGTTCTTTAGCA 

        Probe  CCTTGGCAAAACTGCACCTTCACACA 

IL-6 Forward GGTACATCCTCGACGGCATCT 

        Reverse GTGCCTCTTTGCTGCTTTCAC 

        Probe TGTTACTCTTGTTACATGTCTCCTTTCTCAGGGCT 

COX-2 Forward GAATCATTCACCAGGCAAATTG 

        Reverse TCTGTACTGCGGGTGGAACA 

        Probe TCCTACCACCAGCAACCCTGCCA 

HMOX-1 Forward CAGCAACAAAGTGCAAGATTCTG 

        Reverse  AGTGTAAGGACCCATCGGAGAAG 

        Probe AGGGAAGCCCCCACTCAACACCC 

B-Actin Forward CTGGCACCCAGCACAATG  

        Reverse GCCGATCCACACGGAGTACT  

        Probe ATCAAGATCATTGCTCCTCCTGAGCGC 

Table A1-4.  Primer and probe sequences used for quantification of expression 

 


