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ABSTRACT 
 

Zachary Leon Schools: Engineering and biophysical analysis of alpha adrenergic receptor 

crystallography constructs 

(Under the direction of Bryan Roth) 

 

 G protein-coupled receptors (GPCRs) are ubiquitously expressed membrane-spanning 

proteins that control all of human physiology. GPCRs are structurally complex and their 

mechanism of activation and signaling is not fully understood. Furthermore, there is a need for 

more subtype-selective and functionally selective drugs. Development of these drugs could be 

accelerated by obtaining crystal structures of GPCRs. One such family that could benefit from 

the structural information in a crystal structure is the Alpha Adrenergic receptors (ADRA). 

ADRA receptors control cardiovascular as well as peripheral and central nervous system 

functions, but lack subtype selective drugs. Thus, the ADRA receptor family was screened in 

parallel for thermostability and likelihood of crystal formation. ADRA1A-nBRIL bound to 

prazosin was found to be the best target for further crystallization efforts. 
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CHAPTER 1: ENGINEERING ALPHA ADRENOCEPTOR CONSTRUCTS 

INTRODUCTION 

G protein-coupled receptors (GPCRs) are membrane-spanning proteins that ubiquitously 

control human physiology. Generally, GPCRs consist of seven transmembrane helices and 

interconnecting extra- and intracellular domains. GPCRs have many ligands including amino 

acids, peptides, nucleotides, lipids, ions, neurotransmitters, exogenous small molecules, and 

light. When activated by these ligands, GPCRs allow cells to respond to extracellular stimuli by 

activating intracellular signal transducers. Many different signal transducers can couple to 

GPCRs, and thus GPCRs must be conformationally disordered enough to facilitate these 

interactions. Upon ligand binding, a subset of receptor conformations are stabilized1. The 

ensemble of conformations stabilized by a ligand will determine what transducers interact with 

the receptor, and furthermore what exact cell response will be elicited. This property of ligand-

unique signaling is termed functional selectivity2.  

Functional selectivity augments the value of GPCRs as drug targets because signaling can 

be finely controlled. However, it is currently poorly understood. Uncovering the structural basis 

of functionally selective signaling would allow for the rational design of new drugs with 

mechanisms distinct from the current clinical pharmacotherapeutic toolkit. Up until recently drug 

development has focused on assaying canonical pathways that represent a narrow sliver of the 

information propagated by a GPCR in response to ligand binding. However, structural studies of 

GPCRs are difficult due to their intricate binding pockets. X-ray crystallography is a technique 
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that addresses this problem by offering atomic-level resolution of receptor conformation and 

ligand interaction. Additionally, GPCRs may have unifying structural mechanisms of activation 

that could be uncovered through attainment of a crystal structure3. 

 In the past decade a wealth of GPCR crystal structures have been solved. This has 

established a workflow that can reliably express and purify large amounts of protein, as well as 

screen crystallization conditions in a high-throughput fashion4-23. This workflow relies on: 

genetic fusion of water-soluble proteins, an insect cell expression system, affinity 

chromatography purification, biophysical analysis, lipidic cubic phase crystallization, and X-ray 

diffraction. The goal of this workflow is to generate thermostable constructs of receptor protein 

and to reduce the infinite possible crystallization conditions using biophysical assays during the 

process. 

 Alpha adrenergic receptors (ADRA) are widely expressed in human tissues, including 

vasculature and the nervous system. ADRAs control smooth muscle contraction, 

vasoconstriction, as well as modulate cognitive functions such as arousal and working memory24. 

ADRAs also modulate the release of the endogenous agonists epinephrine and norepinephrine 

from the adrenal glands and nerve terminals. ADRA is separated into two families: α1 (ADRA1) 

and α2 (ADRA2). ADRA1 family receptors canonically couple to Gq transducers, activating 

Phospholipase C. ADRA2 family receptors canonically couple to Gi/o transducers, which inhibits 

cellular production of cyclic AMP. Currently, drugs are available that select for either ADRA1 or 

ADRA2, but no drugs are available that can select for subtypes of these families: 1A, 1B, 1D, 

2A, 2B, and 2C. Drugs targeting ADRAs treat hypertension, PTSD induced nightmares, and 

ADHD25 among other diseases and disorders. Because of the lack of subtype selectivity in 

current ADRA1 and ADRA2 drugs, their mechanism of action is obscured. A crystal structure of 
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an ADRA family receptor could reveal differences in binding pockets that may lead to subtype-

selective drugs, and thus better patient treatments and outcomes. Thus, crystallization of an 

ADRA was pursued in a parallel manner through generation of thermostable constructs and 

identification of the most thermostabilizing ligands. 

 

METHODS 

Cloning 

Cloning methods followed standard established protocols. Wild-type receptor was 

amplified out of a Roth Lab TANGO construct26. Fusion proteins were then either inserted N-

terminally or into ICL3 using multiplexed PCR reactions. For N-terminal fusion protein 

constructs, ICL3 was shortened using mutagenesis primers. Restriction sites Asc1 and Fse1 were 

added N-terminally and C-terminally respectfully to receptor-fusion protein constructs through 

primer overhang. The construct was then digested with Asc1 and Fse1 restriction enzymes (New 

England Biolabs) and ligated into an Asc1/Fse1 digested pFastBac (Thermo Fisher Scientific) 

vector. Ligated pFastBac constructs were then transformed into DH10Bac bacteria (Thermo 

Fisher Scientific) and positive clones were picked through blue/white lacZ selection. All primers 

used are shown in Table 1. 

Expression 

Baculoviral plasmids produced from DH10Bac transformations were transfected into 

Spodoptera frugiperda (Sf9) cells cultured in ESF 921 Cell Culture Medium (Expression 

Systems). These transfections were done in 12-well poly-D-lysine treated plates in volumes of 

0.5 mL at a concentration of 1 million cells per mL using Cellfectin II (Thermo Fisher 

Scientific). After 5 day incubation, media was collected and cells removed by centrifugation. 

This media was used as “P0” stock for viral infection of Sf9 cells in larger volumes. Suspension 

cultures of 40 mL were then infected with P0 virus. After 3 day incubation, media was collected 

and cells removed by centrifugation. This media was used as “P1” stock for viral infection in 

volumes large enough for structural studies. An additional iteration of viral infection was used 

for some constructs to generate “P2” stocks if P1 stocks were not competent enough as 
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determined by viral titration. Virus stocks were titered using a CyAn ADP flow cytometer 

(Beckman Coulter) at 488 nm to excite an anti-gp64 antibody with a PE fluorophore27. 

Purification 

Pelleted cells were lysed and homogenized in the presence of protease inhibitors (Roche 

Life Sciences). Membranes were then iteratively ultracentrifuged and homogenized in high-salt 

buffer conditions until membrane pellet supernatant showed <0.1 mg/mL protein. Membranes 

were then resuspended in 100 mM HEPES, 150 mM NaCl, 10 mM MgCl2, 20 mM KCl at pH 

7.5. Reactive cysteines were then alkylated by adding iodoacetamide to resuspended membranes. 

Receptor protein was then solubilized in 2% n-dodecyl-β-D-maltopyranoside (Anatrace), 0.2% 

cholesteryl hemisuccinate (Sigma-Aldrich). Following receptor solubilization membranes were 

centrifuged and supernatant collected. 

Receptor protein was then purified from detergent using immobilized metal affinity 

chromatography (IMAC) with TALON Superflow Metal Affinity Resin (Clontech). Bound 

receptor was eluted from the IMAC column using 250 mM imidazole, then concentrated in 

Vivaspin 20 concentrators (GE Healthcare Life Sciences) and desalted in G-25 MiniTrap 

columns (GE Healthcare Life Sciences). His-tags were then removed by incubation with 

PreScission Protease (GenScript) overnight. Receptor was then flowed over IMAC resin again to 

remove proteins non-specifically binding to the resin. Receptor was then further concentrated in 

Vivaspin 500 concentrators (GE Healthcare Life Sciences). 

Biophysical Assays 

 Analytical size-exclusion HPLC was used to assess purified receptor homogeneity. 

Receptor thermostability was measured by heating purified detergent-solubilized receptor in the 

presence of N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM)28. Purified 

receptor was heated in 96-well plate wells using a thermocycler in 2° C increments. CPM 

fluorescence was read using a Mithras LB 940 (Berthold Technologies) with emission 

wavelength set to 463 nm after every temperature increment. 
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RESULTS 

Construct generation 

Wild-type ADRA protein was modified to reduce disorder and facilitate crystallization. 

The N- and C-terminal domains of each ADRA were truncated. Position of truncation for all six 

receptors was based on sequence alignment with previously solved GPCRs ranked by sequence 

homology to each receptor. Exact locations of truncation for each receptor are shown in Table 1. 

In addition to the terminal regions, the third intracellular loop (ICL3) was also truncated. ICL3 

extensively interacts with signaling transducers, and is thus highly disordered and would likely 

inhibit crystallization. The strategy applied to terminal region truncation was also used for ICL3, 

and locations of these truncations are shown in Table 1. 

Crystallization was further facilitated through genetic fusion of a water-soluble protein in 

the N-terminal or ICL3 regions. Fusion proteins assist in crystallization through improvement of 

receptor packing in the crystallization medium (source 48 from grant). These fusion proteins 

include T4 lysozyme (T4L), and cytochrome b562RIL (BRIL); both have been used previously by 

many other groups to solve GPCR crystal structures. Constructs containing BRIL have N-

terminal and ICL3 insertion locations. Constructs using T4L have an ICL3 insertion location. 

 Upon truncation of disordered regions and insertion of fusion proteins, receptor 

constructs were then shuttled into a pFastBac vector (Thermo Fisher Scientific) containing an N-

terminal HA signal sequence as well as a C-terminal His-tag (HHHHHHHHHH) for purification 

of receptor by immobilized metal affinity chromatography. 
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Analytical size-exclusion chromatography 

 Receptor homogeneity increases likelihood of crystal formation, and thus purified 

receptor constructs were assayed for homogeneity by analytical size-exclusion chromatography 

(SEC) immediately after purification as well as after room temperature incubation for multiple 

days. Homogeneity was measured by observing the width of the receptor elution peak from the 

size-exclusion column. For each receptor construct, SEC was performed with different ligands to 

identify which would be used for crystallization. Figures 1-6 show ultraviolet absorption profiles 

during elution of purified receptor from the column. All receptors indicated refer to the N-

terminal BRIL fusion constructs. 

 For ADRA1A, incubation with prazosin resulted in much higher protein yield as 

compared to other ligands or apoprotein (Figure 1). For this reason, ADRA1A ligand selection 

ceased here and prazosin was selected as the ADRA1A co-crystallization ligand. For ADRA1B 

ligands appeared equally stabilizing during the initial run (Figure 2), so purified protein was 

incubated at room temperature for one week before a SEC re-run. Incubation with prazosin was 

most effective at preventing accumulation of ADRA1B aggregate peaks, and thus it was selected 

as co-crystallization ligand. For ADRA1D (Figure 3), prazosin appeared to result in the most 

homogeneous peaks immediately after purification, but terguride prevented accumulation of 

aggregate during room temperature incubation. 

 ADRA2 family receptors showed smaller differences in homogeneity, which made it 

difficult to determine ideal co-crystallization ligands. ADRA2A initial SEC showed lisuride 

causing an earlier elution than all other ligands (Figure 4), however it was not attempted to 

reproduce this. Room temperature incubation did cause intended aggregation accumulation as 

indicated by the increased size in the earlier peaks, but no one ligand preserved homogeneity 
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more than others. Lisuride and MK912 prevented aggregation the most. ADRA2B showed 

similar results, indicating asenapine, rauwolscine, and lisuride as candidate ligands (Figure 5). 

ADRA2C ligands appeared identical after initial purification, but MK912, rauwolscine, and 

terguride preserved homogeneity the most after room temperature incubation (Figure 6). 

Construct thermostability 

Due to the inconclusive nature of the SEC results, an additional method of assaying 

ligand stabilization of receptor constructs was used. Purified receptor was incrementally heated 

in the presence of CPM, a compound that binds free sulfhydryl groups. As the receptor unfolds 

in increased temperatures, CPM binds free cysteines and becomes fluorescent28. In the present 

study, only ADRA2A and ADRA2B were assayed using this technique. Neither ADRA2A nor 

ADRA2B showed shifts in thermostability between ligands (Figure 7). 

 

DISCUSSION 

The goal of the present study was to produce ADRA constructs for crystallization, and 

determine ideal co-crystallization ligands to begin the pursuit of a solved crystal structure. 

Construct generation was a success. N-terminal and ICL3 BRIL constructs as well as ICL3 T4 

lysozyme constructs have been cloned into a vector amenable to baculoviral plasmid production. 

Continuation of ADRA structural studies should be trivial. Figure 1 shows the current status of 

N-terminal BRIL constructs. ADRA1A is the most promising target, due to the higher yield seen 

when compared to other ligands incubating identical volumes.  

However, constructs may still require extensive modification beyond their current status. 

Truncation positions of ICL3 may need to be shuffled, as well as N-terminal linker 

length.ADRA2 family constructs also still retain their entire intracellular helix, which may need 
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to be removed to improve crystal packing. Interestingly, ADRA1D differed in its preferred 

ligand from ADRA1A and ADRA1B. This may hint at some minor differences in the binding 

pocket that could be further revealed by a crystal structure. 
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Primer (Amino Acid Number) Sequence 

FWD CGAT  + Asc1 + ADRA1A (A19) CGATGGCGCGCCGGCTCCGGTGAACATTAGTAAG 

REV ADRA1A (G349) + Fse1 + ATGC ATGCGGCCGGCCGCCCTCCACTGCCTGGCTGGGGGGATG 

FWD CGAT  + Asc1 + ADRA1B (S35) CGATGGCGCGCCGAGCACTCTGCCACAGTTGGATATCACG 

REV ADRA1B (G369) + Fse1 + ATGC ATGCGGCCGGCCTCCCCGGCATTGACAGCCCAGGATGCG 

FWD CGAT  + Asc1 + ADRA1D (A86) CGATGGCGCGCCGGCCGTAGGCGGTCTGGTTGTGAG 

REV ADRA1D (R422) + Fse1 + ATGC ATGCGGCCGGCCCCTGCACTGACACCGAAGGAGTCTAAGG 

FWD CGAT  + Asc1 + ADRA2A (G15) CGATGGCGCGCCGGGCACCGAAGCGCCCGGTGGAGGGGCTC 

REV ADRA2A (V465) + Fse1 + ATGC ATGCGGCCGGCCAACGATTCGTTTCCTATCGCCTCTGC 

FWD CGAT  + Asc1 + ADRA2B (D2) CGATGGCGCGCCGGATCATCAGGATCCCTATTCTG 

REV ADRA2B (W450) + Fse1 + ATGC ATGCGGCCGGCCCCATGCAGTCTGGGTCCACGGCCTGC 

FWD CGAT  + Asc1 + ADRA2C (A33) CGATGGCGCGCCGGCATCAGGCGCCTCATGGGGCCCTCC 

REV ADRA2C (Q462) + Fse1 + ATGC ATGCGGCCGGCCCTGTCGGAAGCCCCTTCGCCTGCGCC 

FWD CGAT  + Asc1 + nBRIL CGATGGCGCGCCGGCTGATCTGGAAGACAATTG 

FWD nBRIL + ADRA1A (A19) ATTCAGAAGTACCTGGCTCCGGTGAACATTAGTAAG 

FWD nBRIL + ADRA1B (S35) ATTCAGAAGTACCTGAGCACTCTGCCACAGTT 

FWD nBRIL + ADRA1D (A86) ATTCAGAAGTACCTGGCCGTAGGCGGTCTG 

FWD nBRIL + ADRA2A (R24) TGCATACATTCAGAAGTACCTGCGGGCTACCCCATATTCTC 

FWD nBRIL + ADRA2B (D2) TGCATACATTCAGAAGTACCTGGATCATCAGGATCCCTATTCTG 

FWD nBRIL + ADRA2C (G44) TGCATACATTCAGAAGTACCTGGGCCAGTATAGCGCAGG 

FWD ADRA1A ΔICL3 (D225 – T253) AATCTGGGCTCAAGACCGATACCAAGACCCACTTTTCTGTCC 

REV ADRA1A ΔICL3 (D225 – T253) GGACAGAAAAGTGGGTCTTGGTATCGGTCTTGAGCCCAGATT 

FWD ADRA1B ΔICL3 (E244 – R276) GCCGGGGTCATGAAGGAGCGCAGTAGCATTGCCGTGAAGC 

REV ADRA1B ΔICL3 (E244 – R276) GCTTCACGGCAATGCTACTGCGCTCCTTCATGACCCCGGC 

FWD ADRA1D ΔICL3 (R296 – S331) GGCCGGCGTGAAACGGGAGCGCTCATCCCTGTCCGTAC 

REV ADRA1D ΔICL3 (R296 – S331) GTACGGACAGGGATGAGCGCTCCCGTTTCACGCCGGCC 

FWD ADRA2A ΔICL3 (T246 – G364) CCCCCCGGAGGCACAGGCAGACAAAACCGGGAAAAAAG 

REV ADRA2A ΔICL3 (T246 – G364) CTTTTTTCCCGGTTTTGTCTGCCTGTGCCTCCGGGGGG 

FWD ADRA2B ΔICL3 (Q220 – A358) AGGGGGAATCCAAGCAGGCACAGCTGACCAGAGAAAAG 

REV ADRA2B ΔICL3 (Q220 – A358) CTTTTCTCTGGTCAGCTGTGCCTGCTTGGATTCCCCCT 

FWD ADRA2C ΔICL3(T260 – V372) GCGCTTCCCCGACCACAGTCGCACAGGCGCGGG 

REV ADRA2C ΔICL3(T260 – V372) CCCGCGCCTGTGCGACTGTGGTCGGGGAAGCGC 

Table 1. Complete list of all primers used in cloning of crystallization constructs, as well as 

truncation locations. 
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Figure 1. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. 
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Figure 2. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. Above, immediately after 

purification. Below, after one week incubation at room temperature. 
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Figure 3. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. Above, immediately after 

purification. Below, after one week incubation at room temperature. 
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Figure 4. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. Above, immediately after 

purification. Below, after one week incubation at room temperature. 
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Figure 5. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. Above, immediately after 

purification. Below, after one week incubation at room temperature. 
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Figure 6. Ultraviolet absorbance in arbitrary units over time starting at Time = 0 when purified 

receptor was injected into the size-exclusion column by HPLC. Above, immediately after 

purification. Below, after one week incubation at room temperature. 
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Figure 7. Melting curves for purified receptor obtained by heating purified receptor in the 

presence of CPM. A, ADRA2A-NBRIL. B, ADRA2B-NBRIL. 
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Receptor 

(n-BRIL) 
Cloning Ligand Screen Thermostability LCP Crystals 

ADRA1A  Prazosin   

ADRA1B  Prazosin   

ADRA1D  Terguride   

ADRA2A  Inconclusive Inconclusive  

ADRA2B  Inconclusive Inconclusive  

ADRA2C  Inconclusive   

Table 2. Current progress of N-terminal BRIL ADRA constructs in the crystallization workflow. 
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