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Abstract

STEVEN WEI HO: Learning of Long-Run Risk in International Markets.
(Under the direction of Mariano Croce and Riccardo Colacito.)

I develop a general equilibrium model in which agents from two countries do not observe

directly the long-run growth prospects of their economies. Instead, the agents rationally

learn the hidden components through the Kalman filter applied to international consumption

data. Learning endogenously produces: (i) a rational explanation of international contagion

phenomenon, defined as changes in one country’s asset prices in response to foreign news, that

occurs in the absence of domestic news, (ii) large and time-varying international equity risk

premia, and (iii) a resolution of the forward premium anomaly, defined as the tendency of high

interest rate currencies to appreciate.
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Chapter 1

Introduction

Do agents know the long-run prospect of the economy? I address this question by in-

vestigating the international asset pricing implications of an economy in which agents have

to learn the long-run prospect of the economy from international historical growth data. To

quote from Hansen, Heaton, and Li (2008), “many of the statistical challenges that plague

econometricians presumably also plague market participants. Naive application of rational ex-

pectations equilibrium concepts may endow investors with too much knowledge about future

growth prospects”.

A growing body of the literature has documented that long-run growth prospects influence

both domestic (Bansal and Yaron, 2004) and international asset prices (Colacito and Croce,

2011). All these models are built around the assumption that consumption is exposed to two

sources of shocks perfectly observable to the agents. Specifically, short-run risk is modeled as

an i.i.d shock that only affects the economy for one period, whereas long-run risk is modeled as

a small, but highly persistent autoregressive process, which is thus expected to affect long-run

growth rates. A key question within the long-run risk paradigm is the ability of agents to

perfectly detect such a small long-run component.

Earlier papers have investigated this question in a one-country setting (Ai, 2010; Bansal

and Shaliastovich, 2011; Croce, Lettau, and Ludvigson, 2012; Johannes, Lochstoer, and Mou,

2010). In this article, I study a two-country economy, each populated by one consumer. The

dynamics of consumption growth within each country feature the aforementioned long-run



risks. The agents do not know the actual value of each country’s specific long-run risk, in the

sense that they cannot can accurately break down consumption news into a component which

is going to affect the economy for many periods, and a component which represent short-run

i.i.d shocks that is only going to affect the consumption stream for one period. The long-run

components of the two countries are correlated (Colacito and Croce, 2011), thus innovation in

one country can provide information regarding the long-run component of the other country.

The Bayesian learning mechanism employed in this article is the Kalman filter (Kalman

and Bucy, 1961; Kalman, 1960). Due to the recursive nature of the Kalman filter, it can

also be viewed as the simplest dynamic Bayesian Network (Haykin, 2001; Murphy, 2002).

An intuitive interpretation of the Kalman filter approach is that in each period the agent

forms a prior regarding the joint probability distribution of the two latent variables, which

are the home and foreign long-run risks, and come up with a prediction for the following

period; as time goes by these predictions are compared with the realized observations. The

agent adjusts the estimates of the latent variables and turns her posterior distribution into a

new prior to be used in the subsequent period. Under such a setup, agent from one country

would recursively Bayesian update her estimate of her country-specific long-run component

by utilizing all available historical information in consumption growth in both countries, and

optimizes her asset pricing decisions accordingly. As an extension of the setup, I also investigate

the case of learning from both consumption and dividend stream.

I find that learning can account for prominent features of domestic and international finan-

cial markets. Specifically, the learning model presented in this article offers a solution of the

puzzling contagion phenomenon in the context of a dynamic stochastic equilibrium framework

with complete markets and no arbitrage. Contagion is broadly defined as the propagation of

shocks in excess of what can be explained by fundamentals (Forbes and Rigobon, 2000). There

is no universally accepted explanation for why contagion occurs in equilibrium (Bekaert and

Harvey, 2003; Karolyi and Stulz, 1996). This phenomenon is puzzling as one could potentially

arbitrage when asset prices deviate from fundamentals. Current explanations offered include

investor herding behavior (Cipriani and Guarino, 2008), and the spread of fear or “market
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sentiments” (Fromlet, 2001). However, such psychological arguments do not prevent an agent,

who is perfectly rational and unmoved by sentiments, from undertaking arbitrage. I propose

a rational expectations explanation for why contagion may occur in equilibrium.

I define the true long-run components of each country as the economic fundamentals, which

are unobservable and thus have to be learned, taking the history of the consumption stream

of both countries as observables. The agents of the two countries are endowed with the same

information. When agents learn using Kalman filter, they form an estimate of the entire joint

distribution of the two latent variables characterized by the means and the variance-covariance

matrix. As a result, innovations in consumption streams of both countries, are two sources of

information that will be incorporated into the estimate of the long-run persistent component

of either one country. Since the growth rates of consumption and their long-run components

are correlated across countries, the estimate of home’s economic fundamental will be revised

in response to foreign innovations, even in the absence of any new piece of information in

the home country. Equivalently, Bayesian learning gives rise to contagion as one country

may revise its long-run growth expectations solely in response to news coming from abroad.

Note that at each point in time, equilibrium prices are determined using agents’ estimates of

the distribution of fundamentals given all historical information up to that point. This means

that an econometrician who observes the entire data series may observe temporary mis-pricing,

conditional on her information set which is larger than the agents’.

The model is also able to provide a rational explanation for the forward premium anomaly,

i.e. the well-documented tendency of high interest rate currencies to appreciate (Fama, 1984),

which is at odds with the prediction of the uncovered interest rate parity relationship. The

model in this article can provide a solution due to its ability to endogenously generate time-

varying volatility through learning. Take for example the case in which the home country agent

believes that the estimate of her long-run component is very unreliable, i.e. it features a large

variance. This variance of the estimation error will steadily decrease through learning in the

transition toward the steady-state Kalman filter value. During this process, the consumption

profile of the home agent becomes less uncertain and thus the interest rate in this country gets

3



relatively larger. By no arbitrage, the currency of the home country become more valuable,

being associated to a safer consumption profile, and it is thus expected to appreciate, despite

its higher interest rate.

Furthermore, I show that within each country, learning increases the equity risk premium

by as much as 22%. This finding confirms and extends the analysis of Croce, Lettau, and

Ludvigson (2012) to the case in which investors exploit the cross-sectional dimension of coun-

tries in addition to the domestic time-series of consumption. Additionally, when the Kalman

filter is off steady-state, the model endogenously generates time-varying uncertainty, as the

recursive application of the Bayesian updating changes the accuracy of the estimated long-run

risks through time. This means that the model features a time-varying risk-premium.

The rest of the article is organized as follows. Chapter 2 reviews the related literature. In

Chapter 3, I describe the model setup, the information structure involved, and the learning. In

Chapter 4, I present detailed derivations. In Chapter 5, I present the analytical asset pricing

solutions of learning under different information structures. In Chapter 6, I provide both

the theoretical arguments and numerical simulation results which would explain contagion in

international markets and the forward-premium puzzle. Chapter 7 concludes the article.

4



Chapter 2

Background Literature

In the Bansal and Yaron (2004) model, there is a small but highly persistent predictable

long-run component in consumption growth, which is subject to long-run shocks. They are

called long-run shocks since due to the highly persistent nature of the long-run component,

even small innovations in this component will induce large cash flow movements in a long

time horizon. Thus, the low-frequency movements in consumption growth rates are called the

long-run risk (Bansal, Kiku, and Yaron, 2010).

A notable ingredient of the long-run risk literature, which I also employ here, is the Epstein-

Zin-Weil preference (Epstein and Zin, 1989; Weil, 1989). Under this recursive preference, agents

in each period would optimize the tradeoff between utility of current period and continuation

utility derived from all future periods (Backus, Routledge, and Zin, 2005). The recursive

preference allows the separation of coefficient of relative risk aversion γ and intertemporal

elasticity of substitution (IES) ψ, which can be simultaneously large, whereas in standard

CRRA preference ψ = 1/γ. This feature is desirable as an individual’s willingness to take

financial risk, does not have to be necessarily associated with the inverse of her inclination to

substitute today’s consumption with future consumption in response to change in intertemporal

prices (Chen, Favilukis, and Ludvigson, 2011). When IES is larger than 1/γ, agents prefer

early resolution of uncertainty and exposure to the long-run risk carries high risk premium.

Hansen and Sargent (2010) consider the model in which agents are concerned with model

mis-specification and Bayesian updates the parameters of several different sub-models. The



agent will also update model-mixing probability and decide which sub-model is the most likely.

This setup generates elevated risk premium since agent’s distrust of her model adds to the price

of risk.

Croce, Lettau, and Ludvigson (2012) investigates the role of information in consumption

based long-run risk model and is able to explain the downward slope of equity term structure.

When investors can identify both the short-run and long-run components of consumption risk,

the standard long-run risk model can generate a sizable equity market risk premium only if the

equity term structure slopes up. However, when investors cannot distinguish short-run and

long-run components of consumption risk, the model is able to generate both a large equity

market risk premium and a downward sloping equity term structure, which is what we observe

in data.

Bansal and Shaliastovich (2011) focuses on the endogenous choice in learning. The agents

may either pay a cost to learn the true long-run component or use Kalman filtering based

on historical data. The actions of investors to learn about the true state can explain the

asset-price jumps. The model implies income volatility can predict future jumps in returns.

Ai (2010) studies the implication of public information quality about persistent productivity

shocks in a model with Kreps-Porteus preferences. The production-based long-run risk model

with learning implies that when information quality is low equity premium is high and volatility

of the risk-free rate is low.
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Chapter 3

Model Setup

3.1 Preferences

There are two countries in the economy which are denoted home and foreign. Markets are

complete. As in Colacito and Croce (2011), perfect home bias is imposed in the setup so that

representative agent of each country would only consume the goods that she is endowed with.

Since markets are complete, agents can still trade Arrow-Debreu securities and they have no

home bias over financial assets. The first order conditions with respect to the purchase of

those financial assets (No-Arbitrage equations) pin down the value of all assets and the growth

rate of the exchange rate. For compactness of representation, only home’s preferences and

prices are characterized in this section. The foreign counterparts are denoted with identical

expression with a superscript “*” added to designate the variables as foreign.

Following the long-run risk literature which emphasizes the importance of long-run eco-

nomic growth prospects (Bansal and Yaron, 2004), the home representative agent has the

Epstein-Zin-Weil (1989) preference:

Ut =

{
(1− δ)C

1− 1
ψ

t + δ
(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

}
1

1−1/ψ

A noteworthy feature of the Epstein-Zin-Weil preference is the separation of the coefficient

of intertemporal elasticity of substitution (IES) ψ and the coefficient of relative risk aversion γ

, which can be simultaneously larger than one; whereas in standard CRRA preference ψ = 1/γ.



When IES > 1/γ, agents prefer early resolution of uncertainty(Epstein and Zin, 1991). For

convenience, we can define composite parameter θ = 1−γ
1−1/ψ . Denote the ex-dividend price

dividend ratio of an asset that pays a consumption stream Ct at end of period t as Wc,t =

PCt /Ct . Also denote the ex-dividend price dividend ratio of an asset that pays a consumption

stream Dt at end of period t as Wd,t = PDt /Dt. Mt+1 is the pricing kernel and Rf,t is the

return on a one-period risk-free asset at time t. Given the Epstein-Zin-Weil preference, the

optimal consumption choice yields the following asset pricing equations:

Et[Mt+1Rc,t+1] = 1 Rc,t+1 = (PCt+1 + Ct+1)/PCt (3.1)

Et[Mt+1Rd,t+1] = 1 Rd,t+1 = (PDt+1 +Dt+1)/PDt

Mt+1 =

(
δ

[
Ct+1

Ct

]−1/ψ
)θ

Rθ−1
c,t+1 (3.2)

Rf,t = (Et[Mt+1])−1

One can show the log pricing kernel is a function of log consumption growth ∆ct, and the

log return on an asset which pays the consumption stream rc,t+1:

(3.3)mt+1 =
1− γ

1− 1/ψ
logδ − 1− γ

ψ − 1
∆ct+1 +

1/ψ − γ
1− 1/ψ

rc,t+1

The Epstein-Zin-Weil preference and its basic asset pricing implications are shared by the

three information structures describe below.

3.2 Full Information

Let the lower-case letters denote the variables in logarithms. The processes for log con-

sumption and log dividend growth in the case of full information are specified as follows:

8



∆ct = µ+ zt + σc,h · εc,t (3.4)

∆c∗t = µ+ z∗t + σc,f · ε∗c,t

zt = ρ · zt−1 + σz,h · εz,t

z∗t = ρ · z∗t−1 + σz,f · ε∗z,t

∆dt = µd + λ · zt + σd,h · εd,t

∆d∗t = µd + λ · z∗t + σd,f · ε∗d,t

(εc,t, ε
∗
c,t, εz,t, ε

∗
z,t, εd,t, ε

∗
d,t) ∼ N.i.i.d(0,Ωc)

Ωc =



1 ρc 0 0 0 0

ρc 1 0 0 0 0

0 0 1 ρz 0 0

0 0 ρz 1 0 0

0 0 0 0 1 ρd

0 0 0 0 ρd 1


The small persistent predictable components zt, z

∗
t capture the small but persistent com-

ponent of expected consumption and dividend growth rate in home and foreign countries,

respectively. Note the timing convention here is that the predictive component zt enters the

consumption growth at time t rather than time t+1. In Bansal and Yaron (2004), zt is the

conditional expectation of consumption of next period, whereas in this timing convention the

conditional expectation of consumption of next period is ρzt. Let εc,t, ε
∗
c,t denote the short-run

shocks to home and foreign consumption. εz,t, ε
∗
z,t are the long-run shocks to the highly per-

sistent component. They are called the long-run shocks because due to the highly persistent

nature of zt, even a small innovation can impact cash flows for a very long time and thus

agents demand a high risk premia for the long-run shocks when IES > 1/γ. εd,t, ε
∗
d,t are the

dividend shocks and λ can be interpreted as the leverage ratio (Abel, 1999). As in Bansal and

9



Yaron (2004), dividend is not exposed to short-run shock. Indeed, for the short-run, long-run,

dividend shocks within one country, εc,t, εz,t, εd,t, each type of shock is orthogonal to any other

type of shock. On the other hand, the cross-country correlations short-run, long-run, dividend

shocks are denoted as ρc, ρz, and ρd, respectively.

In the full information case, agents observe all variables of interest and fully take equation

3.4 into account when making asset pricing decisions.

3.3 Limited Information-Learning from Consumption

Under the information structure of limited information with learning from consumption

stream, agents are assumed to observe all historical data of consumption growth, however

the agents do not observe the underlying long-run persistent components zt and z∗t . As a

consequence of limited information, the agents do not know if the innovation in consumption

is due to εc,t or εz,t. Because the linear state space of equation 3.4 is jointly Gaussian, the

agents can use the Kalman filter (Harvey, 1989) to infer the underlying latent variables, namely

zt and z∗t . The Kalman filter is the optimal linear filter for Gaussian systems. Due to the

recursive nature of the Kalman filter, it can also be viewed as the simplest dynamic Bayesian

Network (Haykin, 2001; Murphy, 2002).

Under this information structure the agent is only learning from consumption stream but

not dividend stream, the case of learning from both consumption and dividend stream would

be investigated in the next section. It would still be interesting to price dividend under the

current scenario, however, a question arises as to how to specify the exogenous dividend growth

process. Suppose the dividend process is as in equation 3.4, then the agent must be able to

infer the latent variables not only from the consumption stream, but also the dividend stream

which contains additional information regarding true values of the latent variables. In order

to achieve internal consistency with the information structure, dividend processes equation 3.4

is replaced with the following:

10



∆dt = µd + λ · (∆ct − µ) (3.5)

∆d∗t = µd + λ · (∆c∗t − µ)

The setup of the exogenous endowment processes are otherwise identical to the full in-

formation case. Note that the dividend process does not add any additional information for

the filtering as it is a linear transformation of the consumption process, thus the agent only

updates the filtered latent variable in response to consumption innovation.

As in Bansal and Shaliastovich (2011), I assume that Ωcis known by the agent. In addition

to knowledge about the structure of cash flow processes, agents of both countries share the

same information set at time t which is:

Ict =
{
{∆ct−i} i=0,1,...,

{
∆c∗t−i

}
i=0,1,...,Ωc

}
Note that Ωc is not time-varying. In fact, learning with off-steady-state Kalman filter can

generate endogenous time-varying volatility; more details on this and the Forward Premium

Anomaly can be found in section 6.2.

Let the filtered state vector for the case of learning from consumption stream be denoted

by ẑt, ẑ∗t

ẑt = Et[zt|Ict ] (3.6)

ẑ∗t = Et[z
∗
t |Ict ]

The variance covariance matrix of the filtering errors is:

P ct =

 Phhct Phf ct

Phf ct Pff ct



11



Phhct = Et[(zt − ẑt)2|Ict ] (3.7)

Phf ct = Et[(zt − ẑt)(z∗t − ẑ∗t )|Ict ]

Pff ct = Et[(z
∗
t − ẑ∗t )2|Ict ]

Given the filtered latent variables, the structure of the cash flow process implies the fol-

lowing innovation representation:

∆ct = µ+ ẑt + νc,t (3.8)

∆c∗t = µ+ ẑ∗t + ν∗c,t

∆dt = µd + λ · (∆ct − µ)

∆d∗t = µd + λ · (∆c∗t − µ)

where the innovations in consumption in home and foreign countries are defined as:

(3.9)


νc,t = σc,h · εc,t + zt − ẑt

ν∗c,t = σc,f · ε∗c,t + z∗t − ẑ∗t

The filtering problem and its solutions are solved in section 4.1.

3.4 Limited Information-Learning from Consumption and Div-
idend

The setup of the exogenous endowment processes are identical to the full information case.

Notably the dividend process is :

12



∆dt = µd + λ · zt + σd,h · εd,t (3.10)

∆d∗t = µd + λ · z∗t + σd,f · ε∗d,t

Both the consumption process and the dividend process provide information for the filtering

of the state vector. The agents use Kalman filter to update the filtered latent variables in

response to both consumption innovation and dividend innovation. Agents of both countries

share the same information set at time t which is:

(3.11)Idt =
{
{∆ct−i} i=0,1,...,

{
∆c∗t−i

}
i=0,1,..., {∆dt−i} i=0,1,...,

{
∆d∗t−i

}
i=0,1,...,Ωc

}
Let the filtered state vector for the case of learning from both consumption and dividend

stream be denoted by z̃t, z̃∗t

z̃t,= Et[zt|Idt ] (3.12)

z̃∗t = Et[z
∗
t |Idt ]

The variance covariance matrix of the filtering errors is:

P dt =

 Phhdt Phfdt

Phfdt Pff cdt



Phhdt = Et[(zt − z̃t)2|Idt ] (3.13)

Phfdt = Et[(zt − z̃t)(z∗t − z̃∗t )|Idt ]

Pffdt = Et[(z
∗
t − z̃∗t )2|Idt ]

Given the filtered latent variables, the structure of the cash flow process implies the fol-

lowing innovation representation:

13



∆ct = µ+ z̃t + νc,t (3.14)

∆c∗t = µ+ z̃∗t + ν∗c,t

∆dt = µd + λ · z̃t + νd,t

∆d∗t = µd + λ · z̃∗t + ν∗d,t

where the innovations in consumption and dividend, in home and foreign countries are

defined as:

(3.15)



νc,t = σc,h · εc,t + zt − z̃t

ν∗c,t = σc,f · ε∗c,t + z∗t − z̃∗t

νd,t = σd,h · εd,t + λ · (zt − z̃t)

ν∗d,t = σd,f · ε∗d,t + λ ·
(
z∗t − z̃∗t

)
The filtering problem and its solutions are solved in section 4.2

14



Chapter 4

Derivations

4.1 Kalman Filter Derivation-Learning from Consumption

The consumption and dividend processes are assumed to be the following:

∆ct = µ+ zt + σc,h · εc,t (4.1)

∆c∗t = µ+ z∗t + σc,f · ε∗c,t

zt = ρ · zt−1 + σz,h · εz,t (4.2)

z∗t = ρ · z∗t−1 + σz,f · ε∗z,t (4.3)

∆dt = µd + λ · (zt + σc,h · εc,t)

∆d∗t = µd + λ ·
(
z∗t + σc,f · ε∗c,t

)

V ar



σc,h · εc,t

σc,f · ε∗c,t

σz,h · εz,t

σz,f · ε∗z,t


=



σ2
c,h ρc · σc,hσc,f 0 0

ρc · σc,hσc,f σ2
c,f 0 0

0 0 σ2
z,h ρz · σz,hσz,f

0 0 ρz · σz,hσz,f σ2
z,f


Define:



Ac =

 ρ 0

0 ρ

 Hc =

 1 0

0 1


Qc =

 σ2
c,h ρc · σc,hσc,f

ρc · σc,hσc,f σ2
c,f

 Rc =

 σ2
z,h ρz · σz,hσz,f

ρz · σz,hσz,f σ2
z,f


The state vector is (zt, z

∗
t ), and the measurement vector is (∆ct,∆c

∗
t ). In addition, the

filtered state vector for the case of learning from consumption process is (ẑt, ẑ∗t ).

The variance covariance matrix of the filtering errors is:

P ct =


Phhct Phf ct

Phf ct Pff ct


Then by applying the standard Kalman filter update equation

P ct = AcP ct−1A
c′ −AcP ct−1H

c′ [HcP ct−1H
c′ +Rc]−1HcP ct−1A

c′ +Qc

One can show the one-step-ahead evolution equations for the variances of the filtering errors

are:

Phhct

=

(
ρ2σc,h

2
(
Phhct−1

(
−ρc2σc,f 2 + Pffct−1 + σc,f

2
)
− Phfct−1

2
))(

σc,f 2
(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
− 2ρcPhfct−1σc,hσc,f + Pffct−1

(
Phhct−1 + σc,h2

)
− Phfct−1

2
) + σz,h

2

(4.4)

Phfct =

(
ρ2σc,hσc,f

((
ρc

2 − 1
)
Phfct−1σc,hσc,f + ρc

(
Phfct−1

2 − Pffct−1Phh
c
t−1

)))(
−σc,f 2

(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
+ 2ρcPhfct−1σc,hσc,f − Pffct−1

(
Phhct−1 + σc,h2

)
+ Phfct−1

2
)

+ ρzσz,fσz,h

(4.5)

Pffct =

(
ρ2σc,f

2
((
ρc

2 − 1
)
Pffct−1σc,h

2 − Pffct−1Phh
c
t−1 + Phfct−1

2
))(

−σc,f 2
(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
+ 2ρcPhfct−1σc,hσc,f − Pffct−1

(
Phhct−1 + σc,h2

)
+ Phfct−1

2
)

+ σz,f
2

(4.6)

One can derive the 2 by 2 Kalman gains in this case:

16



Kc
,t =

 Kc
11,t Kc

12,t

Kc
21,t Kc

22,t


where

Kc
11,t =

(
Phf ct−1(−Phf ct−1 − ρcσc,hσc,f )

)
+
(
Phhct−1

(
σc,f

2 + Pff ct−1

))((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (4.7)

Kc
12,t =

(
Phf ct−1

(
σc,h

2 + Phhct−1

))
+
(
Phhct−1(−Phf ct−1 − ρcσc,hσc,f )

)((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (4.8)

Kc
21,t =

(
Pff ct−1(−Phf ct−1 − ρcσc,hσc,f )

)
+
(
Phf ct−1

(
σc,f

2 + Pff ct−1

))((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (4.9)

Kc
22,t =

(
Pff ct−1

(
σc,h

2 + Phhct−1

))
+
(
Phf ct−1(−Phf ct−1 − ρcσc,hσc,f )

)((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (4.10)

Or, in the innovation presentation, let νLC,t =

 νc,t

ν∗c,t


The innovations in consumption in home and foreign countries are defined as:

(4.11)


νc,t = σc,h · εc,t + zt − ẑt

ν∗c,t = σc,f · ε∗c,t + z∗t − ẑ∗t

We have,

∆ct = µ+ ẑt + νc,t (4.12)

∆c∗t = µ+ ẑ∗t + ν∗c,t (4.13)

∆dt = µd + λ · (∆ct − µ) (4.14)

∆d∗t = µd + λ · (∆c∗t − µ) (4.15)
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And the one-step-ahead state evolution equations for the filtered home and foreign long-run

persistent components are:

ẑt = ρ · ẑt−1 +Kc
11,t · νc,t +Kc

12,t · ν∗c,t (4.16)

ẑ∗t = ρ · ẑ∗t−1 +Kc
21,t · νc,t +Kc

22,t · ν∗c,t (4.17)

The steady state Kalman filter is the solution to the following Discrete Algebraic Riccati

Equation:

(4.18)Ac.P css.A
cT −Ac.P css.HcT .

[
Hc.P css.H

cT +Rc
]−1

.Hc.P css.A
cT +Qc
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4.2 Kalman Filter Derivation-Learning from Consumption and
Dividend

The consumption and dividend processes are assumed to be the following:

∆ct = µ+ zt + σc,h · εc,t (4.19)

∆c∗t = µ+ z∗t + σc,f · ε∗c,t

zt = ρ · zt−1 + σz,h · εz,t

z∗t = ρ · z∗t−1 + σz,f · ε∗z,t

∆dt = µd + λ · zt + σd,h · εd,t

∆d∗t = µd + λ · z∗t + σd,f · ε∗d,t

Ω = V ar


σc,h · εc,t
σc,f · ε∗c,t
σz,h · εz,t
σz,f · ε∗z,t
σd,h · εd,t
σd,f · ε∗d,t

 =



σ2
c,h ρcσc,hσc,f 0 0 0 0

ρcσc,hσc,f σ2
c,f 0 0 0 0

0 0 σ2
z,h ρzσz,hσz,f 0 0

0 0 ρzσz,hσz,f σ2
z,f 0 0

0 0 0 0 σ2
d,h ρdσd,hσd,f

0 0 0 0 ρdσd,hσd,f σ2
d,f


Define:

Ad =
[
ρ 0
0 ρ

]
Hd =

[
1 0
0 1
λ 0
0 λ

]

Qd =

[
σ2
c,h ρc · σc,hσc,f

ρc · σc,hσc,f σ2
c,f

]
Rd =


σ2
z,h ρz · σz,hσz,f 0 0

ρz · σz,hσz,f σ2
z,f 0 0

0 0 σ2
z,h ρz · σz,hσz,f

0 0 ρz · σz,hσz,f σ2
z,f



The state vector is
(
zt
z∗t

)
.
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The measurement vector is

 ∆ct
∆c∗t
∆dt
∆d∗t

.

The filtered state vector for the case of learning from both consumption and dividend processes is(
z̃t
z̃∗t

)
. Both the consumption process and the dividend process provide information for the filtering

of the state vector.

The variance covariance matrix of the filtering errors is:

P dt =


Phhdt Phfdt

Phfdt Pff cdt


Then by applying the standard Kalman filter update equation

P dt = AdP dt−1A
d′ −AdP dt−1H

d′ [HdP dt−1H
d′ +Rd]−1HdP dt−1A

d′ +Qd

One can show the one-step-ahead evolution equations for the variances of the filtering errors

are:

Phhdt =
[
Pffdt−1

(
Phhdt−1ρ

2σd,h
2σc,h

2 (− (ρc2 − 1
)
λ2σc,f

2 −
(
ρd

2 − 1
)
σd,f

2)
+ σz,h

2λ2
(
σd,h

2σc,f
2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
− 2ρcρdPhh

d
t−1σd,fσd,hσc,hσc,f + Phhdt−1σd,f

2σc,h
2
)

+ σz,h
2
(
−
(
ρc

2 − 1
)
λ4Phhdt−1σc,h

2σc,f
2 −

(
ρd

2 − 1
)
σd,f

2σd,h
2
(
Phhdt−1 + σc,h

2
)))

+ Phfdt−1

2 (
ρ2σd,h

2σc,h
2 ((ρc2 − 1

)
λ2σc,f

2 +
(
ρd

2 − 1
)
σd,f

2)
+σz,h

2 ((ρc2−1
)
λ4σc,h

2σc,f
2−λ2 (−2ρcρdσd,fσd,hσc,hσc,f+σd,f

2σc,h
2+σd,h

2σc,f
2)+(ρd2−1

)
σd,f

2σd,h
2))

+ 2Phfdt−1σd,fσd,hσc,hσc,fσz,h
2 ((ρc2 − 1

)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ σd,f

2σc,f
2
((
ρc

2 − 1
) (
ρd

2 − 1
)
Phhdt−1ρ

2σd,h
2σc,h

2

+ σz,h
2
(
−
(
ρd

2 − 1
)
σd,h

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
−
(
ρc

2 − 1
)
λ2Phhdt−1σc,h

2
))]

÷
[
−
(
ρd

2 − 1
)
σd,f

2σd,h
2
(
σc,f

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
+ Pffdt−1

(
Phhdt−1 + σc,h

2
))

+ Phfdt−1

2 ((
ρc

2 − 1
)
λ4σc,h

2σc,f
2 − λ2 (−2ρcρdσd,fσd,hσc,hσc,f + σd,f

2σc,h
2 + σd,h

2σc,f
2)

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ λ2

(
σc,f

2
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
)
σc,h

2
(
Pffdt−1σd,h

2 + Phhdt−1σd,f
2
))

− 2ρcρdPff
d
t−1Phh

d
t−1σd,fσd,hσc,hσc,f +Pffdt−1Phh

d
t−1σd,f

2σc,h
2
)
−
(
ρc

2 − 1
)
λ4Pffdt−1Phh

d
t−1σc,h

2σc,f
2
]
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Phfdt =
[
ρzσz,fσz,h

(
−
(
ρd

2 − 1
)
σd,f

2σd,h
2
(
σc,f

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
+ Pffdt−1

(
Phhdt−1 + σc,h

2
))

+Phfdt−1

2 ((
ρc

2−1
)
λ4σc,h

2σc,f
2−λ2 (−2ρcρdσd,fσd,hσc,hσc,f+σd,f

2σc,h
2+σd,h

2σc,f
2)+(ρd2−1

)
σd,f

2σd,h
2)

+ 2Phfdt−1σd,fσd,hσc,hσc,f
((
ρc

2 − 1
)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ λ2σc,f

2
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
)
σc,h

2
(
Pffdt−1σd,h

2 + Phhdt−1σd,f
2
))

+ λ2
(
−2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,hσc,f + Pffdt−1Phh

d
t−1σd,f

2σc,h
2
)

−
(
ρc

2 − 1
)
λ4Pffdt−1Phh

d
t−1σc,h

2σc,f
2
)

+ ρ2σd,fσd,hσc,hσc,f
((
ρd

2 − 1
)
σd,fσd,h

((
ρc

2 − 1
)
Phfdt−1σc,hσc,f + ρc

(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

))
+
(
ρc

2 − 1
)
ρdλ

2σc,hσc,f
(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

))]
÷
[
−
(
ρd

2 − 1
)
σd,f

2σd,h
2
(
σc,f

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
+ Pffdt−1

(
Phhdt−1 + σc,h

2
))

+ Phfdt−1

2 ((
ρc

2 − 1
)
λ4σc,h

2σc,f
2 − λ2 (−2ρcρdσd,fσd,hσc,hσc,f + σd,f

2σc,h
2 + σd,h

2σc,f
2)

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ λ2

(
σc,f

2
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
)
σc,h

2
(
Pffdt−1σd,h

2 + Phhdt−1σd,f
2
))

− 2ρcρdPff
d
t−1Phh

d
t−1σd,fσd,hσc,hσc,f +Pffdt−1Phh

d
t−1σd,f

2σc,h
2
)
−
(
ρc

2 − 1
)
λ4Pffdt−1Phh

d
t−1σc,h

2σc,f
2
]

Pffdt =
[
Pffdt−1

(
ρ2σd,f

2σc,f
2
(
−
(
ρd

2 − 1
)
σd,h

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
−
(
ρc

2 − 1
)
λ2Phhdt−1σc,h

2
)

+ σz,f
2λ2

(
σd,h

2σc,f
2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
− 2ρcρdPhh

d
t−1σd,fσd,hσc,hσc,f + Phhdt−1σd,f

2σc,h
2
)

+ σz,f
2
(
−
(
ρc

2 − 1
)
λ4Phhdt−1σc,h

2σc,f
2 −

(
ρd

2 − 1
)
σd,f

2σd,h
2
(
Phhdt−1 + σc,h

2
)))

+ Phfdt−1

2 (
ρ2σd,f

2σc,f
2 ((ρc2 − 1

)
λ2σc,h

2 +
(
ρd

2 − 1
)
σd,h

2)
+σz,f

2 ((ρc2−1
)
λ4σc,h

2σc,f
2−λ2 (−2ρcρdσd,fσd,hσc,hσc,f+σd,f

2σc,h
2+σd,h

2σc,f
2)+(ρd2−1

)
σd,f

2σd,h
2))

+ 2Phfdt−1σd,fσd,hσc,hσc,fσz,f
2 ((ρc2 − 1

)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ σd,f

2σc,f
2σz,f

2
(
−
(
ρd

2 − 1
)
σd,h

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
−
(
ρc

2 − 1
)
λ2Phhdt−1σc,h

2
)]

÷
[
−
(
ρd

2 − 1
)
σd,f

2σd,h
2
(
σc,f

2
(
−ρc2σc,h2 + Phhdt−1 + σc,h

2
)
+ Pffdt−1

(
Phhdt−1 + σc,h

2
))

+ Phfdt−1

2 ((
ρc

2 − 1
)
λ4σc,h

2σc,f
2 − λ2 (−2ρcρdσd,fσd,hσc,hσc,f + σd,f

2σc,h
2 + σd,h

2σc,f
2)

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdλ

2σc,hσc,f + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ λ2

(
σc,f

2
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
)
σc,h

2
(
Pffdt−1σd,h

2 + Phhdt−1σd,f
2
))

− 2ρcρdPff
d
t−1Phh

d
t−1σd,fσd,hσc,hσc,f +Pffdt−1Phh

d
t−1σd,f

2σc,h
2
)
−
(
ρc

2 − 1
)
λ4Pffdt−1Phh

d
t−1σc,h

2σc,f
2
]

One can derive the 2 by 4 Kalman gains in this case:

Kd
,t =

 Kd
11,t Kd

12,t Kd
13,t Kd

14,t

Kd
21,t Kd

22,t Kd
23,t Kd

24,t


where
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Kd
11,t =

[
σd,h

((
ρd

2 − 1
)
σd,h

(
Phfdt−1

2
+ ρcσc,hσc,fPhf

d
t−1 − Phhdt−1

(
σc,f

2 + Pffdt−1

))
σd,f

2

+
(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σc,f (ρcρdσd,fσc,h − σd,hσc,f )λ

2
)]

÷
[
−
(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Kd
12,t =

[
σd,hσc,h

((
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
(ρcσd,hσc,f − ρdσd,fσc,h)λ

2

−
(
ρd

2 − 1
)
σd,f

2σd,h(Phf
d
t−1σc,h − ρcPhh

d
t−1σc,f )

)]
÷
[
−
(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Kd
13,t =

[
σc,hλ

((
ρc

2 − 1
) (
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σc,hσc,f

2λ2

− σd,f
(
ρc

2 − 1
)
(Phhdt−1σd,f − ρdPhf

d
t−1σd,h)σc,hσc,f

2

+
(
σd,fρcρd

(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σd,hσc,f +

(
Pffdt−1Phh

d
t−1 − Phfdt−1

2
)
σd,fσc,h

))]
÷
[
−
(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]
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Kd
14,t =

[
σd,hσc,h

(
−
(
ρc

2 − 1
)
(ρdPhh

d
t−1σd,f −Phfdt−1σd,h)σc,hσc,f

2 + ρc
(
Phfdt−1

2 −Pffdt−1Phh
d
t−1

)
σd,hσc,f

+ ρd
(
Pffdt−1Phh

d
t−1 − Phfdt−1

2
)
σd,fσc,h

)
λ
]
÷
[(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

−
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

(
−
(
ρc

2 − 1
)
ρdσc,hσc,fλ

2 − ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 (− (ρc2 − 1
)
σc,h

2σc,f
2λ4 +

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Kd
21,t =

[
σd,fσc,f

((
ρd

2 − 1
)
σd,f (ρcPff

d
t−1σc,h − Phfdt−1σc,f )σd,h

2

+
(
Phfdt−1

2−Pffdt−1Phh
d
t−1

)
(ρcσd,fσc,h−ρdσd,hσc,f )λ2

)]
÷
[
−
(
ρc

2−1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Kd
22,t =

[
σd,f

((
ρd

2 − 1
)
σd,fσd,h

2
(
Phfdt−1

2
+ ρcσc,hσc,fPhf

d
t−1 − Pffdt−1

(
σc,h

2 + Phhdt−1

))
−
(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σc,h(σd,fσc,h − ρcρdσd,hσc,f )λ

2
)]

÷
[
−
(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]
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Kd
23,t =

[
σd,fσc,f

(
ρc
(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σd,fσc,h

+
((
ρc

2 − 1
)
(Phfdt−1σd,f − ρdPff

d
t−1σd,h)σc,h

2 + ρd
(
Pffdt−1Phh

d
t−1 − Phfdt−1

2
)
σd,h

)
σc,f

)
λ
]

÷
[(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

−
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

(
−
(
ρc

2 − 1
)
ρdσc,hσc,fλ

2 − ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 (− (ρc2 − 1
)
σc,h

2σc,f
2λ4 +

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Kd
24,t =

[
σc,fλ

((
ρc

2 − 1
) (
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σc,h

2σc,fλ
2

+ ρcρd
(
Phfdt−1

2 − Pffdt−1Phh
d
t−1

)
σd,fσd,hσc,h

+ σd,h
(
−σd,hPhfdt−1

2
+
(
ρc

2 − 1
)
(ρdPhf

d
t−1σd,f − Pffdt−1σd,h)σc,h

2 + Pffdt−1Phh
d
t−1σd,h

)
σc,f

)]
÷
[
−
(
ρc

2 − 1
)
Pffdt−1Phh

d
t−1σc,h

2σc,f
2λ4

+
(
Pffdt−1Phh

d
t−1σd,f

2σc,h
2 − 2ρcρdPff

d
t−1Phh

d
t−1σd,fσd,hσc,fσc,h

+
(
Pffdt−1Phh

d
t−1σd,h

2 −
(
ρc

2 − 1
) (
Phhdt−1σd,f

2 + Pffdt−1σd,h
2
)
σc,h

2
)
σc,f

2
)
λ2

−
(
ρd

2 − 1
)
σd,f

2σd,h
2
((

−ρc2σc,h2 + σc,h
2 + Phhdt−1

)
σc,f

2 + Pffdt−1

(
σc,h

2 + Phhdt−1

))
+ 2Phfdt−1σd,fσd,hσc,hσc,f

((
ρc

2 − 1
)
ρdσc,hσc,fλ

2 + ρc
(
ρd

2 − 1
)
σd,fσd,h

)
+ Phfdt−1

2 ((
ρc

2 − 1
)
σc,h

2σc,f
2λ4 −

(
σd,f

2σc,h
2 − 2ρcρdσd,fσd,hσc,fσc,h + σd,h

2σc,f
2)λ2

+
(
ρd

2 − 1
)
σd,f

2σd,h
2)]

Or, in the innovation presentation, let νLCD,t =



νc,t

ν∗c,t

νd,t

ν∗d,t


The innovations in consumption and dividend, in home and foreign countries are defined

as:

(4.20)



νc,t = σc,h · εc,t + zt − z̃t

ν∗c,t = σc,f · ε∗c,t + z∗t − z̃∗t

νd,t = σd,h · εd,t + λ · (zt − z̃t)

ν∗d,t = σd,f · ε∗d,t + λ ·
(
z∗t − z̃∗t

)
We have,
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∆ct = µ+ ẑt + νc,t (4.21)

∆c∗t = µ+ ẑ∗t + ν∗c,t (4.22)

∆dt = µd + λ · ẑt + νd,t (4.23)

∆d∗t = µd + λ · ẑ∗t + ν∗d,t (4.24)

And the one-step-ahead state evolution equations for the filtered home and foreign long-run

persistent components are:

z̃t = ρ · z̃t−1 +Kd
11,t · νc,t +Kd

12,t · ν∗c,t +Kd
13,t · νd,t +Kd

14,t · ν∗d,t (4.25)

z̃∗t = ρ · z̃∗t−1 +Kd
21,t · νc,t +Kd

22,t · ν∗c,t +Kd
23,t · νd,t +Kd

24,t · ν∗d,t (4.26)

The steady state Kalman filter is the solution to the following Discrete Algebraic Riccati

Equation:

(4.27)Ad.P dss.A
dT −Ad.P dss.HdT .

[
Hd.P dss.H

dT +Rd
]−1

.Hd.P dss.A
dT +Qd
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4.3 Derivation of Pricing Kernel

In this section I elaborate the asset pricing results obtained from log-linearization of the

Epstein-Zin Utility. This exercise was performed to provide some intuition through analytical

solutions. I used numerical third order approximations in the simulations and plots and did

not use the analytical first order approximation results presented in this section.

4.3.1 Cash Flow Model

The baseline linear state space representation is

∆ct = µ+ zt + ηc,t

∆c∗t = µ+ z∗t + η∗c,t

zt = ρ · zt−1 + ηz,t

z∗t = ρ · z∗t−1 + η∗z,t

∆dt = µd + λ · zt + ηd,t

∆d∗t = µd + λ · z∗t + η∗d,t (4.28)

where

(4.29)ηt =



ηc,t

η∗c,t

ηz,t

η∗z,t

ηd,t

η∗d,t


v N.i.i.d.(0, S)
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4.3.2 Log-Linearization

I follow (Croce, Lettau, and Ludvigson, 2012). This implementation involves two-countries

and the results are similar to the standard long-run risk literature, up to a difference in the

timing convention in the long-run persistent component. Define the price dividend ratio of

an asset that pays a consumption stream Ct at end of period t as Wc,t = PCt /Ct , Rc,t+1 =

(PCt+1 + Ct+1)/PCt , then the Campbell-Shiller log-linearization yields:

(4.30)wc,t = wc +
∞∑
i=0

κcEt[∆ct+1+i]−
∞∑
i=0

κicEt[rc,t+1+i]

(4.31)κc =
exp(wc)

1 + exp(wc)

The first order condition of the Epstein-Zin Utility yields:

mt+1 = m− 1

ψ
zt+1 − κc

γ − 1/ψ

1− ρκc
ηz,t+1 − γηc,t+1 (4.32)

rc,t+1 = rc +
1

ψ
zt+1 + κc

1− 1/ψ

1− ρκc
ηz,t+1 + ηc,t+1 (4.33)

rf,t = rf +
1

ψ
zt+1 (4.34)

wc,t = wc +
1− 1/ψ

1− κcρ
zt+1 (4.35)

Define the price dividend ratio of an asset that pays a consumption stream Dt at end

of period t as Wd,t = PDt /Dt , Rd,t+1 = (PDt+1 + Dt+1)/PDt , then the Campbell-Shiller log

linearization yields:

wd,t = wd +
λ− 1/ψ

1− κdρ
zt+1 (4.36)

κd =
exp(wd)

1 + exp(wd)
(4.37)

rd,t+1 = rd +
1

ψ
zt+1 + κd

λ− 1/ψ

1− ρκd
ηz,t+1 + ηd,t+1 (4.38)
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Thus, in vector form, we have that for the home country:

mt+1 = m− 1

ψ
zt+1 + Γmηt+1 (4.39)

Γm =

[
−γ 0 −κc γ−1/ψ

1−κcρ 0 0 0

]
(4.40)

rc,t+1 = rc +
1

ψ
zt+1 + Γcηt+1 (4.41)

Γc =

[
1 0 κc

1−1/ψ
1−κcρ 0 0 0

]
(4.42)

rd,t+1 = rd +
1

ψ
zt+1 + Γdηt+1 (4.43)

Γd =

[
0 0 κd

λ−1/ψ
1−κdρ 0 1 0

]
(4.44)
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Similarly, for the foreign country:

m∗t+1 = m∗ − 1

ψ
z∗t+1 + Γ∗mηt+1 (4.45)

Γ∗m =

[
0 −γ 0 −κc γ−1/ψ

1−κcρ 0 0

]
(4.46)

r∗c,t+1 = rc
∗ +

1

ψ
z∗t+1 + Γ∗cηt+1 (4.47)

Γ∗c =

[
0 1 0 κc

1−1/ψ
1−κcρ 0 0

]
(4.48)

r∗d,t+1 = rd
∗ +

1

ψ
z∗t+1 + Γ∗dηt+1 (4.49)

Γ∗d =

[
0 0 0 κd

λ−1/ψ
1−κdρ 0 1

]
(4.50)

Since

Et[r
ex
c,t+1] = −cov (mt+1 − Et[mt+1], rc,t+1 − Et[rc,t+1])− 1

2
V ar (rc,t+1 − Et[rc,t+1]) (4.51)

Et[r
ex
d,t+1] = −cov (mt+1 − Et[mt+1], rd,t+1 − Et[rd,t+1])− 1

2
V ar (rd,t+1 − Et[rd,t+1]) (4.52)

We have

Et[r
ex
c,t+1] = −ΓmSΓ

′
c −

1

2
ΓcSΓ

′
c (4.53)

Et[r
ex∗
c,t+1] = −Γ∗mSΓ∗

′
c −

1

2
Γ∗cSΓ∗

′
c (4.54)

Et[r
ex
d,t+1] = −ΓmSΓ

′
d −

1

2
ΓdSΓ

′
d (4.55)

Et[r
ex∗
d,t+1] = −Γ∗mSΓ∗

′
d −

1

2
Γ∗dSΓ∗

′
d (4.56)
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4.3.3 Coefficients

By definition of the pricing kernel:

(4.57)E[rf ] = −logδ +
1

ψ
µ+

1− θ
θ

(
−ΓmSΓ

′
c −

1

2
ΓcSΓ

′
c

)
− 1

2θ
ΓmSΓ

′
m

where θ = 1−γ
1−1/ψ

Thus, the intercept can be shown to be

(4.58)m = θlogδ − θ

ψ
µ+ (θ − 1)(E[rexc ] + E[rf ])

Since the Euler Equations holds for all values of the long-run persistent component, plug-in

the case zt+1 = 0 can pin down expressions for κc and κd

(4.59)κc = δe

(
1− 1

ψ

)(
µ− 1

2
(γ−1)V ar

[
ηc,t+1+

κcηz,t+1
1−κcρ

])

(4.60)κd = em+µ+ 1
2
V ar[(Γm+Γd)ηt+1]
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4.4 Mapping of Information Structure

The asset pricing results obtained from log-linearization of Epstein-Zin preference shown

in section 4.3 can be readily applied to different information structures, as long as they are

expressed in terms of the baseline linear state space representation of equation (4.28). To

achieve this, I derive the mappings from innovation space representation into the baseline

linear state space representation of consumption, long-run component, and dividend shocks.

4.4.1 Full Information

It is trivial to transform the full information case into the baseline linear state space

representation

(4.61)



ηc,t

η∗c,t

ηz,t

η∗z,t

ηd,t

η∗d,t


=



σc,h 0 0 0 0 0

0 σc,f 0 0 0 0

0 0 σz,h 0 0 0

0 0 0 σz,f 0 0

0 0 0 0 σd,h 0

0 0 0 0 0 σd,f





εc,t

ε∗c,t

εz,t

ε∗z,t

εd,t

ε∗d,t


In other words

(4.62)ηt = ΣFIεt

(4.63)SFI = Ω

4.4.2 Learning from Consumption

The following mapping allows the transformation of the innovation space representation for

the case of learning from consumption stream into the baseline linear state space representation.
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(4.64)



ηc,t

η∗c,t

ηz,t

η∗z,t

ηd,t

η∗d,t


=



1 0

0 1

Kc
11,t Kc

12,t

Kc
21,t Kc

22,t

λ 0

0 λ



 νc,t

ν∗c,t



In other words

(4.65)ηt = ΣLCνLC,t

Thus

(4.66)SLC = ΣLCPLCΣ
′
LC

where Kc
ij are the elements Kalman Gain matrix for the case of learning from consumption

stream. PLC = E[νLCν
′
LC ] is a non-linear transformation of the Ω matrix obtained by solving

the steady state Kalman filtering problem.

4.4.3 Learning from Consumption and Dividend

The following mapping allows the transformation of the innovation space representation

for the case of learning from consumption stream and dividend stream into the baseline linear

state space representation.

(4.67)



ηc,t

η∗c,t

ηz,t

η∗z,t

ηd,t

η∗d,t


=



1 0 0 0

0 1 0 0

Kd
11,t Kd

12,t Kd
13,t Kd

14,t

Kd
21,t Kd

22,t Kd
23,t Kd

24,t

0 0 1 0

0 0 0 1





νc,t

ν∗c,t

νd,t

ν∗d,t



In other words

(4.68)ηt = ΣLCDνLCD,t

Thus
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(4.69)SLCD = ΣLCDPLCDΣ
′
LCD

where Kc
ij are the elements Kalman Gain matrix for the case of learning from consumption

and dividend stream. PLCD = E[νLCDν
′
LCD] is a non-linear transformation of the Ω matrix

obtained by solving the steady state Kalman filtering problem.
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Chapter 5

Analytical Model Solution

5.1 Full Information

The Euler equations 3.2 yield the policy function for price-consumption and price-dividend

ratio as a function of the true long-run persistent components zt, z
∗
t . Section 4.3 derives the

log-linearized solutions for full information. In vector form, we have that for the home country:

mt+1 = m− 1

ψ
zt+1 + Γmηt+1 (5.1)

Γm =

[
−γ 0 −κc γ−1/ψ

1−κcρ 0 0 0

]
(5.2)

rc,t+1 = rc +
1

ψ
zt+1 + Γcηt+1 (5.3)

Γc =

[
1 0 κc

1−1/ψ
1−κcρ 0 0 0

]
(5.4)

rd,t+1 = rd +
1

ψ
zt+1 + Γdηt+1 (5.5)

Γd =

[
0 0 κd

λ−1/ψ
1−κdρ 0 1 0

]
(5.6)

Et[r
ex
c,t+1] = −ΓmSΓ

′
c −

1

2
ΓcSΓ

′
c (5.7)

Et[r
ex
d,t+1] = −ΓmSΓ

′
d −

1

2
ΓdSΓ

′
d (5.8)

where ηt = (σc,h · εc,t, σc,f · ε∗c,t, σz,h · εz,t, σz,f · ε∗z,t, σd,h · εd,t, σd,f · ε∗d,t)
′

is the vector of the



shocks.

5.2 Limited Information-Learning from Consumption

As derived in section 4.1, one can show the one-step-ahead evolution equations for the

variances and covariances of the filtering errors are:

Phhct

=

(
ρ2σc,h

2
(
Phhct−1

(
−ρc2σc,f 2 + Pff ct−1 + σc,f

2
)
− Phf ct−1

2
))(

σc,f 2
(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
− 2ρcPhf ct−1σc,hσc,f + Pffct−1

(
Phhct−1 + σc,h2

)
− Phf ct−1

2
)

+ σz,h
2

Phf ct

=

(
ρ2σc,hσc,f

((
ρc

2 − 1
)
Phf ct−1σc,hσc,f + ρc

(
Phf ct−1

2 − Pffct−1Phh
c
t−1

)))(
−σc,f 2

(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
+ 2ρcPhf ct−1σc,hσc,f − Pffct−1

(
Phhct−1 + σc,h2

)
+ Phf ct−1

2
)

+ ρzσz,fσz,h

Pffct

=

(
ρ2σc,f

2
((
ρc

2 − 1
)
Pffct−1σc,h

2 − Pffct−1Phh
c
t−1 + Phf ct−1

2
))(

−σc,f 2
(
−ρc2σc,h2 + Phhct−1 + σc,h2

)
+ 2ρcPhf ct−1σc,hσc,f − Pffct−1

(
Phhct−1 + σc,h2

)
+ Phf ct−1

2
)

+ σz,f
2

As shown in section 4.1, one can derive the 2 by 2 Kalman gains in this case:

Kc =

 Kc
11,t Kc

12,t

Kc
21,t Kc

22,t


where

Kc
11,t =

(
Phf ct−1(−Phf ct−1 − ρcσc,hσc,f )

)
+
(
Phhct−1

(
σc,f

2 + Pff ct−1

))((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (5.9)

Kc
12,t =

(
Phf ct−1

(
σc,h

2 + Phhct−1

))
+
(
Phhct−1(−Phf ct−1 − ρcσc,hσc,f )

)((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (5.10)

Kc
21,t =

(
Pff ct−1(−Phf ct−1 − ρcσc,hσc,f )

)
+
(
Phf ct−1

(
σc,f

2 + Pff ct−1

))((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (5.11)

Kc
22,t =

(
Pff ct−1

(
σc,h

2 + Phhct−1

))
+
(
Phf ct−1(−Phf ct−1 − ρcσc,hσc,f )

)((
σc,h2 + Phhct−1

) (
σc,f 2 + Pff ct−1

)
− (Phf ct−1 + ρcσc,hσc,f )2

) (5.12)
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the one-step-ahead state evolution equations for the filtered home and foreign long-run persis-

tent components have the following expressions:

ẑt = ρ · ẑt−1 +Kc
11,t · (σc,h · εc,t + zt − ẑt) +Kc

12,t · (σc,f · ε∗c,t + z∗t − ẑ∗t ) (5.13)

ẑ∗t = ρ · ẑ∗t−1 +Kc
21,t · (σc,h · εc,t + zt − ẑt) +Kc

22,t · (σc,f · ε∗c,t + z∗t − ẑ∗t ) (5.14)

The Kalman Gains in equation 5.13-5.14 can be steady-state Kalman Gain calculated by

solving the Riccati Equation 4.18, or they could be off-steady-state in which case the Kalman

Gains themselves are “state” variables, evolving according to equations 5.9-5.12from initial

conditions.

Under limited information, the Euler equations 3.2 yield the policy function for price-

consumption and price-dividend ratio as a function of the filtered long-run persistent com-

ponents ẑt, ẑ∗t . Utilizing the mapping machinery in section 4.4, one could show that once we

define

ηct =



νc,t

ν∗c,t

Kc
11,tνc,t +Kc

12,tν
∗
c,t

Kc
21,tνc,t +Kc

22,tν
∗
c,t

λ · νc,t

λ · ν∗c,t


and SLC = ΣLCPLCΣ

′
LC (4.66), we have the following asset

pricing results:
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mt+1 = m− 1

ψ
ẑt+1 − γνc,t+1 −

(
γ − 1

ψ

)
κc
(
νc,t+1K

c
11,t+1 +Kc

12,t+1ν
∗
c,t+1

)
1− ρκc

(5.15)

rc,t+1 = rc +
1

ψ
ẑt+1 + νc,t+1 +

(
1− 1

ψ

)
κc
(
νc,t+1K

c
11,t+1 +Kc

12,t+1ν
∗
c,t+1

)
1− ρκc

rd,t+1 = rd +
1

ψ
ẑt+1 + λνc,t+1 −

(
λ− 1

ψ

)
κd
(
νc,t+1K

c
11,t+1 +Kc

12,t+1ν
∗
c,t+1

)
1− ρκd

Et[r
ex
c,t+1] = −ΓmSLCΓ

′
c −

1

2
ΓcSLCΓ

′
c

Et[r
ex
d,t+1] = −ΓmSLCΓ

′
d −

1

2
ΓdSLCΓ

′
d

5.3 Limited Information-Learning from Consumption and Div-
idend

The expressions for the evolution equation of Kalman Gain and filtering error are quite

involved, and are included in section 4.2.

The one-step-ahead state evolution equations for the filtered home and foreign long-run

persistent components are:

z̃t = ρ · z̃t−1 +Kd
11,t · νc,t +Kd

12,t · ν∗c,t +Kd
13,t · νd,t +Kd

14,t · ν∗d,t (5.16)

z̃∗t = ρ · z̃∗t−1 +Kd
21,t · νc,t +Kd

22,t · ν∗c,t +Kd
23,t · νd,t +Kd

24,t · ν∗d,t (5.17)

The Kalman Gains in equation 5.16-5.17 can be steady-state Kalman Gain calculated by

solving the Riccati Equation 4.27, or they could be off-steady-state and evolve from initial

conditions according to the dynamics derived in section 4.2.

Under limited information, the Euler equations 3.2 yields the policy function for price-

consumption and price-dividend ratio as a function of the filtered long-run persistent com-

ponents ẑt, ẑ∗t . Utilizing the mapping machinery in section 4.4, one could show that once we

define
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ηdt =



νc,t

ν∗c,t

Kd
11,tνc,t +Kd

13,tνd,t +Kd
12,tν

∗
c,t +Kd

14,tν
∗
d,t

Kd
21,tνc,t +Kd

23,tνd,t +Kd
22,tν

∗
c,t +Kd

24,tν
∗
d,t

νc,t + νd,t

ν∗c,t + ν∗d,t


and SLCD = ΣLCDPLCDΣ

′
LCD (4.69),

we have the following asset pricing results:

mt+1 = m− 1

ψ
z̃t+1 − γνc,t+1

−

(
γ − 1

ψ

)
κc
(
Kd

11,t+1νc,t+1 +Kd
13,t+1νd,t+1 +Kd

12,t+1ν
∗
c,t+1 +Kd

14,t+1ν
∗
d,t+1

)
1− ρκc

(5.18)

rc,t+1 = rc +
1

ψ
z̃t+1 + νc,t+1

+

(
1− 1

ψ

)
κc
(
Kd

11,t+1νc,t+1 +Kd
13,t+1νd,t+1 +Kd

12,t+1ν
∗
c,t+1 +Kd

14,t+1ν
∗
d,t+1

)
1− ρκc

(5.19)

rd,t+1 = rd +
1

ψ
z̃t+1 + νc,t+1 + νd,t+1

−

(
λ− 1

ψ

)
κd
(
νc,t+1K

d
11,t+1 +Kd

13,t+1νd,t+1 +Kd
12,t+1ν

∗
c,t+1 +Kd

14,t+1ν
∗
d,t+1

)
1− ρκd

(5.20)

and the conditional expectations of excess returns are given by

Et[r
ex
c,t+1] = −ΓmSLCDΓ

′
c −

1

2
ΓcSLCDΓ

′
c

Et[r
ex
d,t+1] = −ΓmSLCDΓ

′
d −

1

2
ΓdSLCDΓ

′
d
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Chapter 6

Results

6.1 Contagion

In this section I will present both theoretical and simulation results. By utilizing the

mapping machinery in section 4.4 and the log-linearization results developed in section 4.3,

one can derive the following theoretical expressions for the pricing kernel as in section 5,

For the information structure of learning from consumption stream, we have:

mt+1 = m− 1

ψ
ẑt+1 − γνc,t+1 −

(
γ − 1

ψ

)
κc
(
νc,t+1K

c
11,t+1 +Kc

12,t+1ν
∗
c,t+1

)
1− ρκc

(6.1)

m∗t+1 = m∗ − 1

ψ
ẑt+1

∗ − γν∗c,t+1 −

(
γ − 1

ψ

)
κc
(
νc,t+1K

c
21,t+1 +Kc

22,t+1ν
∗
c,t+1

)
1− ρκc

For the information structure of learning from consumption and dividend stream, we have:

(6.2)

mt+1 = m− 1

ψ
z̃t+1 − γνc,t+1

−

(
γ − 1

ψ

)
κc
(
νc,t+1K

d
11,t+1 +Kd

13,t+1νd,t+1 +Kd
12,t+1ν

∗
c,t+1 +Kd

14,t+1ν
∗
d,t+1

)
1− ρκc

m∗
t+1 = m∗ − 1

ψ
z̃t+1

∗ − γν∗c,t+1

−

(
γ − 1

ψ

)
κc
(
νc,t+1K

d
21,t+1 +Kd

23,t+1νd,t+1 +Kd
22,t+1ν

∗
c,t+1 +Kd

24,t+1ν
∗
d,t+1

)
1− ρκc



There is no unique definition in international asset pricing literature as to what contagion

is. It can be viewed as foreign influence on US equity risk premium (Chan, Karolyi, and Stulz,

1992). It can be viewed as the documented phenomenon that shocks to Nikkei Index can

impact S&P 500 and vice-versa (Karolyi and Stulz, 1996). It can be defined as how regional

markets respond to information in one country, such as the crisis Asia in 1997 and Latin

American in 1994 (Bekaert and Harvey, 2003). However, Bekaert, Harvey, and Ng (2005)

maintains that contagion should be more than just what is revealed as increased correlation

during crisis, since statistically it is natural for correlation to go up when volatility is high

(Ang and Bekaert, 2002). The preferred definition of contagion is the propagation of shocks

in excess of what can be explained by fundamentals (Forbes and Rigobon, 2000). This is the

definition of contagion I use in this article, and I define economic fundamentals as the long-run

persistent components.

Under full information, the pricing kernel of home only depends on home’s long-run com-

ponent. Under limited information with learning, one could readily see how contagion occurs

by observing equation 6.1 and equation 6.2. The home pricing kernel will respond to foreign

innovation in consumption ν∗c,t+1, and when learning from dividend stream as well, home pric-

ing kernel will also respond to foreign innovation in dividend ν∗d,t+1. Similarly, foreign pricing

kernel will respond to home innovations. Since markets are complete and there is no arbitrage,

all assets are priced using the pricing kernel. Thus home asset price will drop in response to

foreign bad news and rise in response to foreign good news, even when there is no shock to

home fundamental.

From simulation results, the Impulse Response Functions (IRF) plots can be used to il-

lustrate this point. Figure 1 shows that under full information, home pricing kernel, and

associated asset prices such as risk premium and risk free rate does not respond at all to

foreign shock. However, when there is learning involved, both figure 2 and figure 3 show that

either short-run or long-run or dividend shock from foreign country can impact home’s pricing

kernel and returns for an extended period of time.

From the point of view of an agent who uses Kalman filtering to Bayesian update the
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fundamentals, when innovation in consumption stream occurs, the agent does not know the

current economic fundamental and cannot break down the innovation into a short-run com-

ponent which would affect the economy for only one-period and a long-run component which

would affect the economy for many periods. The agent can only optimize asset pricing deci-

sions using her belief of the distribution of the fundamental, formed through using all historical

information up to that point in time. However, from the point of view of an econometrician

who observe the entire data series and estimate the underlying economic fundamentals at each

point in time, she is in a better position to tell if the shock was short term or long term.

In other words, there is arbitrage to eyes of the econometrician but not to the agents, since

the information set of the econometrician who observe the entire history is larger than the

information set of the rational agents who at each point in time observe information only up

to that point.

6.2 Forward Premium Puzzle

For compactness of presentation, I will focus on the information structure of learning from

consumption stream; all the results also follow for the case of learning from consumption and

dividend stream. To solve the Forward Premium Puzzle, we need to establish the relationship

between P chh and the off-steady-state Kalman Gains. It can be shown in the comparative

statics results that
∂Kc

11,t

∂P chh
is positive and orders of magnitude larger than

∂Kc
12,t

∂P chh,t−1
,

∂Kc
21,t

∂P chh,t−1
,

∂Kc
22,t

∂P chh,t−1
. This is intuitive because off steady-state, P chh,t−1 is the agent’s belief of the variance

of the filtering error of ẑt−1. P chh,t−1 has the largest effect on Kc
11,t which measures how

the agent update her estimate of home long-run persistent component in response to home

consumption innovation. The intuition behind
∂Kc

11,t

∂P chh,t−1
> 0 is that if P chh,t−1 is high, then the

agent doesn’t trust her previous estimate ẑt−1 as much, thus there is a need to revise it based

on new innovation, and the Kalman Gain Kc
11,t is high for next period; conversely, if P chh,t−1

is low, then the agent is already quite confident with her estimate ẑt−1 which is based on all

historical information, and therefore there is little need to revise it, thus Kc
11,t is low.
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Suppose the agents of both countries start off at an off steady-state prior regarding the

filtering error variance of home country’s, but not foreign country’s long-run persistent compo-

nent. Let P chh,t0 = 150%× P chh,ss, where P chh,ss is the steady state prior obtained from Riccati

equation 4.18. Since the agents are learning rationally, through Kalman filter the agents will

find out this prior was set to be too high. The consequence of the Kalman filter dynamics is

that limt−>∞P
c
hh,t =P chh,ss . In other words, P chh,t is decreasing over time on a deterministic

path. We can see from how this generates endogenous time-varying volatility in the pricing

kernel from equation 6.1. From section 5.2, we also have the following analytical log-linearized

asset pricing equations:

rc,t+1 = rc +
1

ψ
ẑt+1 + νc,t+1 +

(
1− 1

ψ

)
κc
(
νc,t+1K

c
11,t+1 +Kc

12,t+1ν
∗
c,t+1

)
1− ρκc

(6.3)

r∗c,t+1 = rc
∗ +

1

ψ
ẑt+1

∗ + ν∗c,t+1 +

(
1− 1

ψ

)
κc
(
νc,t+1K

c
21,t+1 +Kc

22,t+1ν
∗
c,t+1

)
1− ρκc

(6.4)

The expected change of next period’s exchange rate growth is : Et[∆et+1] = Et[m
∗
t+1 −

mt+1], which by properties of log-normal distribution and equation 6.1 is:

(6.5)

Et[∆et+1] = m∗ −m+ Et

 1

ψ

(
ẑt+1

∗ − ẑt+1

)

−

(
γ − 1

ψ

)
κc
(
νc,t+1

[
Kc

21,t+1 −Kc
11,t+1

]
+ ν∗c,t+1

[
Kc

22,t+1 −Kc
12,t+1

])
1− ρκc


+

1

2
Vt

 1

ψ

(
ẑt+1

∗ − ẑt+1

)

−

(
γ − 1

ψ

)
κc
(
νc,t+1

[
Kc

21,t+1 −Kc
11,t+1

]
+ ν∗c,t+1

[
Kc

22,t+1 −Kc
12,t+1

])
1− ρκc



(6.6)

= m∗ −m+
1

ψ
Et
[(
ẑt+1

∗ − ẑt+1

)]
+

1

2
Vt

 1

ψ

(
ẑt+1

∗ − ẑt+1

)

−

(
γ − 1

ψ

)
κc
(
νc,t+1

[
Kc

21,t+1 −Kc
11,t+1

]
+ ν∗c,t+1

[
Kc

22,t+1 −Kc
12,t+1

])
1− ρκc


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I include the second order terms as well for the forward premium ft − st = rf,t − r∗f,t

(Backus, Foresi, and Telmer, 2002).

rf,t+1 − r∗f,t+1 (6.7)

= rf − rf ∗ +
1

ψ
Et (ẑt+1 − ẑt+1

∗) +
1

2ψ2
(Vt[ẑt+1

∗]− Vt[ẑt+1]) (6.8)

= rf − rf ∗ +
1

ψ
Et (ẑt+1 − ẑt+1

∗) +
1

2ψ2

(
P cff,t − P chh,t

)
(6.9)

The βUIP coefficient is obtained from the following regression: ∆et+1 = α+ βUIP · (rf,t −

r∗f,t) + εt. Notice the 1
ψEt (ẑt+1 − ẑt+1

∗) term which appears in both rf,t+1 − r∗f,t+1 and

Et[∆et+1]; one can readily see that without time-varying volatility, the βUIP coefficient is

equal to one (Backus, Foresi, and Telmer, 2002).

Since the comparative statics results show the predominant effect of P chh,t−1 is on Kc
11,t,

I will group the nuisance terms as Yt+1 and simplify the above expression as:

Et[∆et+1] = m∗ −m+
1

ψ
Et (ẑt+1 − ẑt+1

∗) + Vt

−
(
γ − 1

ψ

)
κc
(
−νc,t+1K

c
11,t+1

)
1− ρκc

+ Yt+1


Thus we can see as time goes by, P chh,t−1 is decreasing, Kc

11,t is also decreasing, and

thereforeEt[∆et+1] is decreasing. The intuition is that as the estimate ẑt gets more reliable,

there is less risk in home, and home’s currency appreciates. For the interest rate differential

however, since P chh,t is decreasing, rf,t+1 − r∗f,t+1 is increasing. The intuition is that as the

estimate ẑt gets more reliable, home has less incentive to invest and demands higher risk free

rate.

Thus the above dynamics generates negative βUIP coefficient. This provides a solution to

the forward premium puzzle.

6.3 Numerical Results

I performed third order numerical approximations for 25 chains of simulations, each with

700 periods. The parameters used in the calibrations are listed in table 1. Variables of interest
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have the following symbols: zt is the long-run persistent component; ∆lnCt is log consumption

growth; ∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth;

rf,t is log risk free rate; rd,t is log return on dividend stream; rex,t is equity risk premium;

lnPtCt is the log price consumption ratio ; rc,t is the log return on the asset which pays the

consumption stream.

As shown in table 10, learning can elevate risk premium since under learning, the pricing

kernel is more volatile due to uncertainty regarding the underlying latent variables. Table

11 shows that the pricing kernel is less volatile under learning from both consumption and

dividend stream, compared to learning from consumption stream only, since learning from

multiple information sources increases the accuracy of estimated latent variables, which is

documented in the filtering error covariance matrices, table 8 and table 9. It is notable that

the exchange rate volatility does not go up much compared to the full-information case, since

learning generates higher cross-country correlation of the estimated long-run components. In

the data between US and UK from 1979 to 2006, the volatility of exchange rate is around 11%

(Colacito and Croce, 2011).

Another consequence of learning is that the cross-country correlation of risk free rate rf,t,

and return on the asset which pays consumption stream rc,t, are now higher, as shown in

table 13. This effect is more prominent for the case of learning from consumption, and less

prominent for the case of learning from consumption and dividend. This is also due to that

learning from multiple sources of information enables the agents to better infer the latent

variables with accuracy and thus move closer toward full information case.

The fact that agents cannot distinguish short-run from long-run shock can also be observed

in the correlation matrix of mapped shocks in table 4 and table 5, which were obtained through

the mapping procedure developed in section 4.4. While the true correlation matrix under full

information (table 3) has zero correlation between different types of shocks, that is no longer

true under learning.
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Chapter 7

Concluding Remarks

This article documents the asset pricing implications of learning in consumption-based long-

run risk literature in the context of international markets. There are two countries and the

long-run prospects of them are not directly observable, though they are known to be correlated.

Agents recursively Bayesian update their estimates of long-run persistent components through

Kalman filter. Learning provides an explanation for the contagion phenomenon, defined as

changes in one country’s asset prices in response to foreign news, that occurs in the absence of

domestic news. Learning generates higher correlation of pricing kernels across two countries,

and higher risk premium without increasing volatility of exchange rate. When evaluated off

steady-state, learning can generate time-varying volatility in risk premium and can also provide

an explanation for the forward premium puzzle.

It has been observed in data that correlation across countries is higher in bear markets

than in bull markets (Ang and Bekaert, 2002). For future research, one possible extension is

to incorporate pessimistic beliefs in the learning process, which will generate even richer asset

pricing dynamics. It may be also interesting to extend the model to three countries.



Figure 1: Impulse responses implied in the information structure of Full Information
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Each shock is given one standard deviation of positive impulse. εa,t is short-run shock, εz,t is
long-run shock, εd,t is dividend shock. zt is the long-run persistent component; ∆lnCt is log
consumption growth; ∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange
rate growth; rf,t is log risk free rate; rd,t is log return on dividend stream; rex,t is equity risk
premium; lnPtCt is the log price consumption ratio ; rc,t is the log return on the asset which
pays the consumption stream.
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Figure 2: Impulse responses implied in the information structure of Learning from Consump-
tion
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Each shock is given one standard deviation of positive impulse. εa,t is short-run shock, εz,t is
long-run shock. zt is the long-run persistent component; ∆lnCt is log consumption growth;
∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log
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log price consumption ratio ; rc,t is the log return on the asset which pays the consumption
stream.
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Figure 3: Impulse responses implied in the information structure of Learning from Consump-
tion and Dividend
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Each shock is given one standard deviation of positive impulse. εa,t is short-run shock, εz,t is
long-run shock, εd,t is dividend shock. zt is the long-run persistent component; ∆lnCt is log
consumption growth; ∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange
rate growth; rf,t is log risk free rate; rd,t is log return on dividend stream; rex,t is equity risk
premium; lnPtCt is the log price consumption ratio ; rc,t is the log return on the asset which
pays the consumption stream.
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Figure 4: Impulse responses to innovation shocks implied in the information structure of
Learning from Consumption
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Each shock is given one standard deviation of positive impulse. νc,t is consumption innovation
shock. zt is the long-run persistent component; ∆lnCt is log consumption growth; ∆lnDt is
log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log risk free
rate; rd,t is log return on dividend stream; rex,t is equity risk premium; lnPtCt is the log price
consumption ratio ; rc,t is the log return on the asset which pays the consumption stream.
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Figure 5: Impulse responses to innovation shocks implied in the information structure of
Learning from Consumption and Dividend
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Each shock is given one standard deviation of positive impulse. νc,t is consumption innovation
shock, νd,t is dividend innovation shock. zt is the long-run persistent component; ∆lnCt is log
consumption growth; ∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange
rate growth; rf,t is log risk free rate; rd,t is log return on dividend stream; rex,t is equity risk
premium; lnPtCt is the log price consumption ratio ; rc,t is the log return on the asset which
pays the consumption stream.
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Table 1: Parameters used for Calibration

Parameter Value

Persistence of long run shock ρ 0.98
Subjective discount factor δ 0.9985
Long run mean of Consumption Growth µ 0.0015
Long run mean of Dividend Growth µd 0.0007
Risk aversion γ 10
Intertemporal elasticity of substituion ψ 2
Leverage. Dividend process LongRun component multiple λ 5.5
Composite Parameter θ -0.055556
Ratio of Dividend shock and Short-Run shock volatilities ϕd 5
Correlation of Home/Foregin Short-Run shock ρ

(
εa,t, ε

∗
a,t

)
0.35

Correlation of Home/Foregin Long-Run shock ρ
(
εz,t, ε

∗
z,t

)
0.93

Correlation of Home/Foregin Dividend shock ρ
(
εd,t, ε

∗
d,t

)
-0.1

Variance of Home Short-Run shock σ2
a,t 8.28e-006

Covariance of Home/Foreign Short-Run shock σa,a∗,t 3.381e-006
Variance of Foregin Short-Run shock σ2

a∗,t 1.127e-005

Variance of Home Long-Run shock σ2
z,t 4.6656e-008

Covariance of Home/Foreign Long-Run shock σz,z∗,t 5.0622e-008
Variance of Foregin Long-Run shock σ2

z∗,t 6.3504e-008

Variance of Home Dividend shock σ2
d,t 0.000207

Covariance of Home/Foreign Dividend shock σd,d∗,t -2.415e-005
Variance of Foregin Dividend shock σ2

d∗,t 0.00028175

Table 2: Variance-Covariance Matrix under Full Information

εa,t ε∗a,t εz,t ε∗z,t εd,t ε∗d,t
εa,t 8.28e-006 3.381e-006 0 0 0 0
ε∗a,t 3.381e-006 1.127e-005 0 0 0 0

εz,t 0 0 4.6656e-008 5.0622e-008 0 0
ε∗z,t 0 0 5.0622e-008 6.3504e-008 0 0

εd,t 0 0 0 0 0.000207 -2.415e-005
ε∗d,t 0 0 0 0 -2.415e-005 0.00028175

Table 3: True Correlation Matrix under Full Information

εa,t ε∗a,t εz,t ε∗z,t εd,t ε∗d,t
εa,t 1 0.35 0 0 0 0
ε∗a,t 0.35 1 0 0 0 0

εz,t 0 0 1 0.93 0 0
ε∗z,t 0 0 0.93 1 0 0

εd,t 0 0 0 0 1 -0.1
ε∗d,t 0 0 0 0 -0.1 1
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Table 4: Correlation Matrix for Mapped Shocks under Learning from Consumption

ε̂a,t ε̂∗a,t ε̂z,t ε̂∗z,t
ε̂a,t 1 0.37639 0.88709 0.76154
ε̂∗a,t 0.37639 1 0.76154 0.88709

ε̂z,t 0.88709 0.76154 1 0.97473
ε̂∗z,t 0.76154 0.88709 0.97473 1

Table 5: Correlation Matrix for Mapped Shocks under Learning from Consumption and Divi-
dend

ε̂a,t ε̂∗a,t ε̂z,t ε̂∗z,t ε̂d,t ε̂∗d,t
ε̂a,t 1 0.36687 0.56191 0.45826 0.039716 0.03239
ε̂∗a,t 0.36687 1 0.45826 0.56191 0.03239 0.039716

ε̂z,t 0.56191 0.45826 1 0.97112 0.61576 0.50218
ε̂∗z,t 0.45826 0.56191 0.97112 1 0.50218 0.61576

ε̂d,t 0.039716 0.03239 0.61576 0.50218 1 -0.060154
ε̂∗d,t 0.03239 0.039716 0.50218 0.61576 -0.060154 1

Table 6: Numerical value of steady-state Kalman Gain Matrix under Learning from Consump-
tion

0.040927 0.024985
0.034007 0.040927

Table 7: Numerical value of steady-state Kalman Gain Matrix under Learning from Consump-
tion and Dividend

0.027375 0.014482 0.0079858 0.0056773
0.019711 0.027375 0.0077274 0.0079858

Table 8: Numerical value of steady-state Covariance matrix of the filtering errors under Learn-
ing from Consumption

ε̂h,t ε̂f,t
ε̂h,t 4.5324e-007 4.5394e-007
ε̂f,t 4.5394e-007 6.1691e-007

Table 9: Numerical value of steady-state Covariance matrix of the filtering errors under Learn-
ing from Consumption and Dividend

ε̃h,t ε̃f,t
ε̃h,t 3.1137e-007 2.9626e-007
ε̃f,t 2.9626e-007 4.2381e-007
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Table 10: Numerical Simulation Results: Annualized Mean

FI LIcss LIcdss
zt 0 0 0
∆ lnCt 1.8 1.8 1.8
∆ lnDt 0.84 0.84 0.84
mt -8.4586 -8.762 -8.7359
∆et -2.0553 -2.1795 -2.1791
rf,t 2.3328 2.1909 2.231
rd,t 6.4177 7.2046 6.6513
rex,t 4.0849 5.0137 4.4204
ln Pt

Ct
79.2296 77.8268 77.9568

rc,t 3.0044 3.0205 3.019

FI is full information benchmark; LIcss is learning from consumption stream using steady-state
Kalman filter; LIcdss is learning from consumption and dividend stream using steady-state
Kalman filter. zt is the long-run persistent component; ∆lnCt is log consumption growth;
∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log
risk free rate; rd,t is log return on dividend stream; rex,t is equity risk premium; lnPtCt is the
log price consumption ratio ; rc,t is the log return on the asset which pays the consumption
stream. Simulation is done with third order numerical approximation for 25 chains each with
700 periods in monthly frequency but reported values are annualized and multiplied by 100.
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Table 11: Numerical Simulation Results: Annualized Volatility

FI LIcss LIcdss
zt 0.3218 0.2695 0.2999
∆ lnCt 1.0444 1.0696 1.0589
∆ lnDt 5.1658 5.8829 5.2499
mt 34.85 36.4356 35.6694
∆et 19.2524 19.9782 20.2438
rf,t 0.1576 0.132 0.1469
rd,t 15.4034 16.6043 16.1085
rex,t 15.4068 16.6067 16.1112
ln Pt

Ct
7.5098 6.284 6.9969

rc,t 2.012 2.3885 2.2648

FI is full information benchmark; LIcss is learning from consumption stream using steady-state
Kalman filter; LIcdss is learning from consumption and dividend stream using steady-state
Kalman filter. zt is the long-run persistent component; ∆lnCt is log consumption growth;
∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log
risk free rate; rd,t is log return on dividend stream; rex,t is equity risk premium; lnPtCt is the
log price consumption ratio ; rc,t is the log return on the asset which pays the consumption
stream. Simulation is done with third order numerical approximation for 25 chains each with
700 periods in monthly frequency but reported values are annualized and multiplied by 100.
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Table 12: Numerical Simulation Results: Autocorrelation-ACF(1)

FI LIcss LIcdss
zt 96.9764 97.0699 97.5444
∆ lnCt 10.3912 8.1219 11.2292
∆ lnDt 13.1464 8.1219 10.7614
mt 1.8545 -1.4132 0.7303
∆et -3.7041 0.2235 0.9167
rf,t 96.9764 97.0709 97.5447
rd,t 4.4295 -1.3378 0.7313
rex,t 4.2478 -1.4892 0.5728
ln Pt

Ct
96.9759 97.07 97.5442

rc,t 2.4978 -0.2555 2.1265

FI is full information benchmark; LIcss is learning from consumption stream using steady-state
Kalman filter; LIcdss is learning from consumption and dividend stream using steady-state
Kalman filter. zt is the long-run persistent component; ∆lnCt is log consumption growth;
∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log
risk free rate; rd,t is log return on dividend stream; rex,t is equity risk premium; lnPtCt is the
log price consumption ratio ; rc,t is the log return on the asset which pays the consumption
stream. Simulation is done with third order numerical approximation for 25 chains each with
700 periods in monthly frequency but reported values are annualized and multiplied by 100.
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Table 13: Numerical Simulation Results: Correlation of Home/Foreign Counterparts

FI LIcss LIcdss
zt 92.1642 97.6228 96.0112
∆ lnCt 39.5981 40.9778 39.2543
∆ lnDt 1.9399 40.9778 0.7725
mt 88.3361 88.0758 87.1885
∆et -100 -100 -100
rf,t 92.1937 97.6037 96.0116
rd,t 82.1113 84.8666 80.5397
rex,t 82.1154 84.8671 80.5463
ln Pt

Ct
79.262 93.2036 87.8564

rc,t 71.2044 75.3846 72.3027

FI is full information benchmark; LIcss is learning from consumption stream using steady-state
Kalman filter; LIcdss is learning from consumption and dividend stream using steady-state
Kalman filter. zt is the long-run persistent component; ∆lnCt is log consumption growth;
∆lnDt is log dividend growth; m is pricing kernel; ∆et is log exchange rate growth; rf,t is log
risk free rate; rd,t is log return on dividend stream; rex,t is equity risk premium; lnPtCt is the
log price consumption ratio ; rc,t is the log return on the asset which pays the consumption
stream. Simulation is done with third order numerical approximation for 25 chains each with
700 periods in monthly frequency but reported values are annualized and multiplied by 100.

Table 14: Numerical Simulation Results: Theoretical βUIP Regression Coefficients

FI LIcss LIcdss LIchh+ LIcdhh+ Data
βUIP 1.00 1.00 1.00 -2.84 -0.74 -0.72

Theoretical βUIP regression coefficients of the equation ∆et+1 = α + βUIP · (rf,t − r∗f,t) + εt.
FI is full information benchmark; LIchh+ is learning from consumption stream using a not yet
converged Kalman filter from a prior in which variance of estimation error of home’s latent
variable was believed to be 150% the steady-state Kalman filter value; LIcdhh+ is learning from
consumption and dividend stream using a not yet converged Kalman filter from a prior in which
variance of estimation error of home’s latent variable was believed to be 150% the steady-state
Kalman filter value. Simulation is done with third order numerical approximation for 25 chains
each with 100 periods in monthly frequency.
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