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ABSTRACT

JEANINE M. MATUSZEWSKI.  Properties of an  Statistic for Fixed Effects in the LinearV#

Mixed Model for Longitudinal Data.

(Under the direction of Dr. Lloyd J. Edwards)

 The V# statistic has become a widely used tool when analyzing data in the linear

univariate setting.  Many  statistics for the linear mixed model exist but their properties areV#

not well established.  The purpose of this dissertation is to examine the properties and

performance of  for fixed effects in the linear mixed model.V"
#

 Two approaches are considered in deriving approximations for the mean and variance

of V"
#  under the null and alternative hypotheses which include using the Beta distribution and

a Taylor series approximation Test statistics based on these two approximations of the mean.  

and variance are proposed and compared to the overall  test for fixed effects in the linearJ

mixed model.  Using simulations, the Type I error rate of the proposed  test statisticsV"
#

derived from the Beta distribution was equivalent to the Type I error rate for the overall J

test.  The Type I error rates for the test statistic based on the Taylor series approximation

moments were slightly inflated.

  The impact of covariance structure misspecification, estimation technique, and

denominator degrees of freedom method on the asymptotic properties of V"
#  are explored.

For the simulation studies examined, the estimation technique does not impact the values of

V V" "
# #.  The values and asymptotic properties of  using Kenward-Roger, containment and

Satterthwaite methods are greatly impacted by covariance structure misspecification whereas

V"
#  using the residual method is not.  Simulations illustrate the impact of underspecification

of the covariance structure as compound symmetric when the true structure is more complex.
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The asymptotic 's for the underspecified models using Kenward-Roger degrees of freedomV"
#

are smaller than the true asymptotic 's.  Conversely, the asymptotic 's for theV V" "
# #

underpecified models using residual methods are larger than the true asymptotic .V"
#

 The semi-parital  for the four denominator degrees of freedom are computed andV"
#

compared to the corresponding model  in both a real world example and simulation study.V"
#

The semi-partial  using residual degrees of freedom never exceeded the model , but theV V" "
# #

semi-partial  using the other three methods sometimes exceeded the model .   is alsoV V V" " "
# # #

evaluated as a fixed effects model selection tool.  The performance of  is poor; so anV"
#

adjusted  is created for purposes of fixed effects model selection.  The adjusted  usingV V" "
# #

residual degrees of freedom outperformed the adjusted  defined using the other methods.V"
#
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

 The  statistic used in linear regression is well known.  Its popularity has lead to theV#

development of  statistics for other types of models, including logistic regression,V#

proportional hazards regression, and the linear mixed model.  There is a growing interest and

need for  statistics in the linear mixed model because the linear mixed model is anV#

important tool used to analyze continuous longitudinal data.  It is an extension of the linear

univariate model which accounts for the correlated measurements of a particular unit.  While

the  statistic and its properties are well developed for linear regression (in the univariateV#

model), there are many different  statistics for the linear mixed model with var ingV# y

properties.  Throughout this chapter, the development and properties of  statistics for theV#

univariate, multivariate, and linear mixed models will be highlighted.

1.2 The  Statistic in Linear Univariate ModelV#

 The  statistic for the linear univariate model is well developed and utilizedV#

extensively in biomedical research.  Researchers in other disciplines find the statistic

appealing because it provides an easy to understand way of explaining how the model fits the

data.  Another appealing feature is that it has several equivalent definitions.  It is defined as a

goodness of fit measure, squared multiple correlation coefficient and the coefficient of

determination.

1.2.1 Model Notation



2

 The linear univariate model for  subjects and  covariates is represented as followsR :

(Muller and Stewart, 2006, p. 40-41) :

C \ /
ÐR ‚ "Ñ ÐR ‚ :Ñ ÐR ‚ "ÑÐ: ‚ "Ñ

œ �"     

/ ! Mµ R ßR R
#ˆ ‰5

(1.1)

In model 1.1,  is a vector of independent responses.   is a known constant design matrixC \

of covariates, and  is an unknown vector of population parameters."

1.2.2 Formulae and Interpretations of  in Linear RegressionV#

 There are many formulae for  in the linear univariate model. Kvalseth (1985) givesV#

several different expressions for  statistics that appear throughout the literature. Two ofV#

the 's (  and ) are the squared multiple correlation coefficient between the regressandV V V# # #
& 6

and the regressors and the squared correlation coefficient between  and .  These and theC Cs

other expressions of  are equivalent when using linear least squares regression for a modelV#

that includes an intercept (Draper and Smith, 1998, chaps. 1-2).

 The predicted values,  , in the formulae of  described in Kvalseth (1985), areCs V#

computed by fitting model (1.1).  Defining  in this way, does not emphasize the fact thatV#

V# is really a comparison of two models.   suggest that definingAnderson-Sprecher (1994)

V# in terms of a model comparison perspective is simpler and minimizes the potential

misinterpretations and incorrect usages of the statistic.  Muller and Fettermann (2002, p 226)

define V# using a model comparison perspective as follows:

V œ V Ð l ÞÞÞ Ñ

œ
Ð Ñ Ð:Ñ

Ð Ñ

# #
" :

!

!

C B Bc dSSE -SSE

SSE

"

"

where SSE  is the error sum of squares of the model only including the intercept and� �"!

SSE  is the error sum of squares of the model with all  variables.  Calculating � �: : V# in the
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above equation is equivalent to comparing two models.  There is a full model which contains

all of the  covariates including the intercept and a null model which contains only an:

intercept.

 Equivalently, Draper and Smith (1998, p 141) describe V# as follows,

V œ
J

� J
# "

# "

/

/ /
(1.2)

where  represents the test of the null hypothesis  versus theJ L À œ œ ÞÞÞ œ! " # :�"" " "

alternative, at least one of the 's (excluding ) is zero (i.e. The null hypothesis is thatL ÀE !" "

all non-intercept parameters are equal to zero.); /"is the numerator degrees of freedom of the

J : � " J statistic which is  statistic which;  is the denominator degrees of freedom of the /2

is .  Under , since  is distributed as R � : L J JÐ: � "ß R � :Ñ!  , then it is known that  isV#

is distributed as a Beta .ˆ ‰:�" R�:
# #ß

  is a one-to-one function of the overall  test.  The partial  can be used to testV J V# #

an individual covariate given the other covariates in the model.  Muller and Fetterman (2002)

describe the full multiple partial correlation as the correlation between two variables with

both adjusted for other variables.  The partial correlation can be denoted as

3c d� � e fCß B l B ß B ß ÞÞÞß B ß ÞÞÞß B4 " # 4�" : .

 The formulae presented above give rise to the various interpretations of the V#

statistic in linear regression.  The most common way of interpreting  is as V# the proportion

of variation in the response, , that is described by the covariates, C \.  Alternatively,  isV#

interpreted as the square of the correlation coefficient between the observed outcome and the

predicted outcomes.  as a measure of the overall linear association  One can also express V#

of one dependent variable with several independent variables.

1.2.3 Properties of the Univariate  statisticV#
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 Cameron and Windmeijer (1996) and Kvalseth (1985) define properties of an ideal

V# statistic.  The properties proposed by Kvalseth (1985) are as follows:

 1.  It is a measure of goodness of fit and provides a reasonable interpretation.

 2.  It is dimensionless.

 3.  The endpoints of   correspond to complete lack of fit and perfect fit.V#

 4.  It should be general enough to be applied to any model.

 5.  The model fitting technique should not effect the .V#

 6.  Comparisons can be made between   values that are computed using the sameV#

dataset.

 7.  Other goodness of fit measures are relatively comparable to  the .V#

 8.  The residuals that are positive are weighted the same as the residuals that are

negative.

Cameron and Windmeijer (1996) describe four additional properties   statistics shouldV#

have.  Those properties are:

 1.    does not decrease as covariates are added.V#

 2.    based on the residual sum of squares coincides with  based on explainedV V# #

sum of squares.

 3.  The   statistic corresponds to a significance test.V#

 4.   The interpretation of  is based on the information content of the data.V#

 Barten (1962) and Montgomery and Morrison (1973) both show that the V# for model

(1.1) is positively biased estimator for the true coefficient of determination.  The null

expectation of  in linear regression using least squares estimation isV#

I V l œ  !
: � "

R � "
Š ‹# L À œ !! 3#lC \ .
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When the total number of observations,  is small, there is potential for large bias.  R As a

result of this positive bias, an adjusted version of  has been proposed which takes intoV#

account the number of covariates in the model.  The adjusted version of  is defined asV#

V œ " �
ÐR � "ÑÐ" � V Ñ

ÐR � : � "Ñ+
#

#

.

The adjusted  increases when a covariate improves the model, whereas the unadjusted V V# #

always increases when covariates are added to the model (represented by the first property in

Cameron and Windmeijer (1996).  As a result, the adjusted  can be used to compare nestedV#

models to determine which model is a better fit to the data.

 Another important property is that  converges to the true coefficient ofV#

determination as the sample size increases (Barten, 1962).  Helland (1987) states that under

weak conditions, as ,R Ä∞

V Ä
�

#
w

w #a.s.
x

x

 
" "

" "

S

S 5

where ;   is defined as the  matrix of means of the Sx œ Ð � Ñ Ð � Ñ " ‚ : :� � �"
R�"

w\ "B \ "B B

covariates, and  is an  vector of ones." R ‚ "

1.3 The General Linear Multivariate Model

 Correlated data is fairly common in biomedical and social science research.

Multivariate models are one tool used to analyze a set of correlated responses.  The correlated

responses may be the same measurement taken repeatedly over time (longitudinal data), or

alternatively there could be different measurements of multiple correlated responses.  It is

necessary to take into accoun  the correlation t when performing estimation of model

parameters and conducting inference using the data.

1.3.1 Model Notation
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 The general linear multivariate model is (Muller and Stewart, 2006, 58):p 

] œ \ F 
 I
ÐR ‚ :Ñ ÐR ‚ ;ÑÐ; ‚ :Ñ ÐR ‚ :Ñ

(1.3)

where  is a matrix of repeated measure outcomes where the  rows of  are mutually] ]R

independent;  is a design matrix;   is a matrix of fixed parameters.  The random matrix\ F

I I ! I ] M has the following properties (1)  and (2) vec vec .IÒ Ó œ Z œ Z œ Œc d c d� � � �w
R D

The assumptions of the multivariate model are that there is neither missing nor mistimed

data, the same design matrix applies to all response variables, and the covariance matrix is

not based on the data.  Assuming a full rank design, the least squares estimate of  isF

F \ \ \ ] Fs œ � �w w�"
 which is a unique and unbiased estimator of  (Muller and Stewart,

2006, 65).p 

1.3.2 General Linear Hypothesis Tests

 The general linear hypothesis for the multivariate model (1.3) is defined as

L À! !@
Ð+ ‚ ,Ñ Ð+ ‚ ;Ñ Ð: ‚ ,ÑÐ; ‚ :Ñ

œ G F Y

where , and  represent fixed, known constraints on .  If analyzing repeatedG Y F@!

measures data, the  matrix represents the between subjects contrasts and the  matrixG Y

represents the within subjects contrasts.  In order for the hypothesis to be testable three

conditions must be met.  With Q G \ \ Gœ � �w w�
, the conditions are

Ð"Ñ œ +

Ð#Ñ

Ð$Ñ

rank� �� � � �Q

G \ \ \ \G œ

Y

w w�

rank .� � œ ,
For the multivariate model, there are two groups of hypothesis tests commonly used:

multivariate approach to repeated measures (MULTIREP) tests and univariate approach to

repeated measures (UNIREP) tests.  The MULTIREP tests include the Hotelling-Lawley

trace, Pillai-Bartlett Trace, Wilks' Lambda and Roy's Largest root.  The MULTIREP tests are
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of particular interest because each test has a corresponding multivariate measure of

association.  A multivariate measure of association is defined as the proportion of variance

controlled by the multivariate hypothesis.  For the general linear hypothesis test given in

(3.2), the hypothesis sum of squares is .  The error sum ofW Q2 ! !

w
�"œ � �s sŠ ‹ Š ‹@ @ @ @

squares is  where .  These two quantities are used to computeW Y I IY I ] \Fs s s
/

w w
œ œ � s

the MULTIREP test statistics and corresponding measure  of association.  These tests ands

their measures of association are given in Table 1.1.  In Table 1.1, min  and  is= œ Ð+ß ,Ñ 1

defined by Muller and Stewart (2006, p 71) as

1 œ
"

+ , � % Î + � , � &

+ , Ÿ %œ c d� � � �# # # # "Î#

# #

otherwise
.

 The four MULTIREP tests can be expressed as a one-to-one function of each other

under the null hypothesis and when  (Muller and Stewart 2006, pg 71).  When ,= œ " =  "

the four multivariate statistics do not have this property.  Furthermore, there is not one single

multivariate test statistic that satisfies all of the standard optimality criteria for the more

complex constrasts ( ).  The exact distributions of these statistics are only known for=  "

special cases when .  Johnson and Wichern (1992) provide conditions where functions=  "

of Wilks' Lambda have an  distribution and exact tests are possible.  Anderson (2003, pJ

330) shows that the Hotelling-Lawley trace criterion converges in distribution to the ;#

distribution.

 It is also important to know the distribution of the test statistics under the alternative

hypothesis to calculate the power of each of the tests.  Anderson (2003, p 334) describes how

the power of each of the MULTIREP tests approaches one since the noncentrality parameters

of the tests tends to infinity.  As a result, to compare the various MULTIREP tests, it is more

informative to consider a sequence of alternatives such that the powers of the tests will vary.

Sen and Singer (1993, p 238) define a sequence of local Pitman-type alternatives as

L À œ �E 8 ! 88
@ @ ?È  ,
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Defining a sequence of local alternatives in this way shows how the alternative is not held

fixed but allowed to get closer and closer to the null hypothesis as the sample size increases.

 Power of the four MULTIREP tests can be computed using a sequence of Pitman-type

alternatives and quantized limits.  Glueck (1997), Glueck and Muller (2003) and Anderson

(2003) define quantized limits by first, defining a positive integer , and let .7 RÐ7Ñ œ 7R

A quantized limit is then defined such that as , then through a sequence of quantized7 Ä∞

steps of size ,   It is important to recognize that  remains fixed as R RÐ7Ñ Ä ∞Þ R RÐ7Ñ

increases.   Muller et al. (2007) provide new power approximations for all four UNIREP tests

which eliminate the inaccuracies in existing methods.

  The bias of various multivariate measures of association for multivariate analysis of

variance model was examined by Kim and Olejnik (2005) and Steyn and Ellis (2009).  These

authors conclude that all of the multivariate measures of association examined, including

Wilks' lambda, Hotelling-Lawley trace and Pillai's trace criterion, are biased with the bias

increasing when the sample size is small, and when the number of outcome variables

increases.  Steyn and Ellis (2009) introduce the multivariate measures of association as effect

sizes and additionally show that they are biased when the effect size is small.

1.4 The General Linear Mixed Model

 The linear mixed model is another way to analyze correlated response data.  Laird and

Ware (1982) introduced the general linear mixed model for longitudinal data, based on the

work of Harville (1977).   This two-stage random effects model easily accommodates

unbalanced data whereas multivariate models can not.  The linear mixed model also differs

from the multvariate model in that it is able to handle mistimed data and allows the structure

of the covariance matrix to be specified by the data instead of assuming its structure.

1.4.1 Model Notation
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 The linear mixed model (LMM) is a powerful statistical tool for analyzing

longitudinal data.  The linear mixed model for an independent sampling unit  is (Muller and3

Stewart, 2006, Chapter 5):

C \ ^ . /3
Ð8 ‚ "Ñ Ð8 ‚ :Ñ Ð8 ‚ 5ÑÐ5 ‚ "Ñ Ð8 ‚ "ÑÐ: ‚ "Ñ3 3 3 3

œ � � 3 3 3 3  "  à 3 œ "ß ÞÞÞß7 (1.4)

Here,  is a vector of observations for subject ;  is a known, constant design matrixC \3 3 3

for subject , with full column rank ;  is a vector of unknown, constant, population3 : "

parameters; is a known, constant design matrix for subject  corresponding to the random^3 3

effects , with rank ;  is a vector of unknown, random individual parameters; is an . . /3 3 35 8 3

‚ " R œ 8 vector of random errors. Also, .  Throughout,  is Gaussian with mean 

3œ"

7

3 . !3

Ð5 "Ñ Ð8 "Ñ Ð8‚ ‚ ‚ and covariance , independently of Gaussian   with mean  D. . 33
� �7 / !3 3

"Ñ Ð8 ‚ 8 Ñ and covariance , so thatD/ /3
� �7 3 3

i
D

DŒ ” • � � � �.

/

3

3

. .

/ /
œ

!

!Œ 3

3

7

7

Here  is the covariance operator,  is a  positive-definite, symmetrici D� � � �† . .3
7 5 5‚

covariance matrix of the random effects, and is an unknown , constantD/ /3
� �7  8 83 3‚

positive-definite matrix.  Under the assumptions,   can be expressed as i� �C3

D D D D3 3 . . / /3
w� � � � � �7 7 7œ ^ ^

3 3
� . Generally, it is assumed that the covariance can be3 

characterized by a finite set of parameters represented by an  vector , which consists< ‚ " 7

of the unique parameters in  and .  Additionally,  will be the D D ) " 7. . / /
w w w

3 3
� � � �7 7  œ =Ð ß Ñ

‚ " = œ : � < vector of parameters for model (1.4), where .

1.4.2 Estimation Techniques

 There are  two estimation techniques used in the linear mixed model:primarily

maximum likelihood (ML) and restricted-maximum likelihood (REML) (Laird and Ware,
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1982; Jennrich and Schluchter, 1986).  The technique used plays an important role in both

inference and estimation.  The marginal log-likelihood function for model (1.4) is

6 œ � Ð# Ñ � l l
R "

# #

� Ð � Ð �
"

#

MLÐ Ñ

Ñ Ñ

", 7 D 7

" D 7 "

log log1 �
�

3œ"

7

3œ"

7
�"

3

3 3 3 3 3
w

� �
� �C \ C \

The restricted log-likelihood function for model (1.7) is

6 œ � Ð# Ñ � �
R � : " "

# # #

� � Ð � Ð �
" "

# #

REMLÐ Ñ

Ñ Ñ

", 7 D 7

D 7 " D 7 "

log log log

log

1 » »� � k k
» »� �

3œ" 3œ"

7 7
w
3 3

3œ" 3œ"

7 7
w
3 3

�" �"

\ \

\ \ C \ C \

3

3 3 3 3 3 3
w

� �
� � � �

 The expression for the estimate of  is given by"

" D 7 D 7s œ s s � �
3œ" 3œ"

7 7
w w
3 3

�" �"
3 3

�"

\ \ \ C3 3� � � �s s .

The expression for "s  is the same for ML and REML, but the estimates differ based on the

estimation of .  D 73� � The estimator, , is unbiased; however, there is no closed for"s m

expression for the variance of .  The common approach is to estimate the approximate"s

variance with

 Z Ð Ñs s" œ s �
3œ"

7
w
3

�"
3

�"

\ \D 73� �s . (1.5)

Kackar and Harville (1984) have shown that formula ( ) underestimates the true1.5

variance of "s .

1.4.3 Inference for the Linear Mixed Model
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 Inference in the linear mixed model has advanced considerably since it was first

popularized in the seminal works of Harville (1977) and Laird and Ware (1982).  There are

special cases of balanced data where the exact distribution of the parameter estimates is

known (Grizzle and Allen, 1969).  Although generally, exact distributions are not known.

Asymptotic approximations are used for inference.  Laird and Ware (1982) suggest using

asymptotic likelihood ratio tests for fixed effect hypothesis tests.  The simulation studies in

Helms (1992) show an inflated Type I error rate of the asymptotic likelihood ratio test.

Welham and Thompson (1997) propose adjusted likelihood ratio tests when using REML

estimation for fixed effects hypothesis tests.  Another complication to using the likelihood

ratio test is presented by Verbeke and Molenberghs (2000).  The authors explain that the

likelihood ratio test based on REML log-likelihood function, ( ), should not be used for1.10

hypotheses involving the fixed effects.

 As an alternative to the likelihood ratio test, Helms (1992) and others have proposed

an approximate  test for testing the fixed effects.  J The approximate  tests are a Wald-typeJ

test for the hypothesis,

L À œ L À Á! G ! G !" "vs. A

which has the general form,

J ß œ ÞsŠ ‹
Š ‹ Š ‹

� �" 7

" 7 "

s

sG G G G

G

s s
w �"

w

�"

– —Œ 

3œ"

7
w
3

�"
3\ \Ds3� �

rank
( )1.6

The J ß JsŠ ‹" 7s  statistic is usually approximated by an  distribution to account for the

underestimation of the variance of "s .

 There are several methods for determining the denominator degrees of freedom, , for/

the -statistic in equation ( ). J 1.6  Brief overviews of the methods are found in the MIXED

procedure in the SAS system (SAS, 2004).  The simplest denominator degrees of freedom are
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based on the residual degrees of freedom.  The residual denominator degrees of freedom are

R � :.  This method is correct for designs where the outcome is independent and identically

distributed (ie. ignoring covariance structure of the model.) because it is the same degrees of

freedom of the error term as the conventional  test.  This method should only be consideredJ

when there is a very large sample size and asymptotic distributions are good approximations.

Kesselman et al. (1999a) conclude that the degrees of freedom using the residual method are

too large when the covariance is not spherical.

 The MIXED procedure used in SAS (2004) describes an alternative method of

calculating the denominator degrees of freedom called the containment method.  This method

is based on the degrees of freedom in the balanced split-plot designs.  The degrees of freedom

are calculated by scanning the random effects terms to determine if they contain the fixed

effect which is being tested.  If no random effect contains the fixed effect being tested, the

denominator degrees of freedom is the same as the residual method.

  A more conservative method involves adjusting the degrees of freedom using the

procedure developed by Satterthwaite (1946).  The Satterthwaite (1946) approximation

computes the denominator degrees of freedom using the chi-square distribution to

approximate the distribution of the estimated variance of Gs".  Specifically, the estimated

approximate denominator degrees of freedom for a linear combination of fixed effects

estimates (  is an  matrix.) are,G " ‚ :

/s œ

#

s

– —Œ 
– —Œ 
G G

G G






3œ"

7
w
3

�"
3

3œ"

7
w
3

�"
3

\ \s

\ \s

D

D

3

3

� �
� �
7

7

s

s

�"
w

#

�"

wVar

 ,

where the denominator is approximated using gradients (Littell, 2002).  Keselman et al.

(1999b) found that the  tests using Satterthwaite method of estimating denominator degreesJ

of freedom yielded better results when compared to the residual degrees of freedom.  The
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authors also noted that the  tests were more robust when the true covariance structure wasJ

known.

 Another method of estimating the degrees of freedom which is very similar to the

Satterthwaite approach was developed by Kenward and Roger (1997).  These authors not

only estimate the denominator degrees of freedom for the  test in the linear mixed modelJ

but also adjusted the estimates of the covariance matrix of the parameter estimates.  A more

accurate estimate of  is computed to account for the variability in D3� �7 7s  and account for the

small sample bias.  Kenward and Roger (1997) approximate the distribution of the -statisticJ

by choosing a scale  and denominator degrees of freedom  such that - -7 J µ J 6ß7� �
approximately.

 There have been various studies done to compare these methods of estimating the

denominator degrees of freedom.  Alnosaier (2007) has shown special cases computing the

degrees of freedom using Satterthwaite method coincides with the Kenward-Roger method.

Other studies have examined when the two methods differ.  Schaalje et al. (2002) found the

two methods Type I error rates were affected by simulation scenarios of different imbalance,

sample size, and covariance structure complexity.  The Kenward-Roger method outperformed

or performed similarly to the Satterthwaite approximation in all simulation scenarios.  Most

recently, Arnau et al. (2009) compared the Type I error rate of the  tests using Kenward-J

Roger, the Satterthwaite and containment degrees of freedom.  The simulation results showed

that the Satterthwaite approach had liberal Type I error rates, and that the Kenward Roger

approach provides the best control of the Type I error rates.

 A sequence of random variables  is said to converge in distribution to ,e f\ \8

denoted as,  if the distribution functions of  and  of  and  satisfy:\ \ J J \ \8 8 8Ä d

J B Ä J B 8 Ä ∞ B J8� � � � as  for each continuity point  of .

Given a random variable  with  then as ,  where\ \ µ JÐ Ñ Ä ∞ \ ]/ / =" #ß ß Ä/# d

] µ Ð Ñ/�"" ;# / ="ß J ß Js.  Therefore if we assume , aŠ ‹" 7s  has an  distribution pplying large
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sample theory, gives J ß Ä Ð+ß ÑsŠ ‹" 7s d .  +�"; =# Schluchter and Elashoff (1990) and Manor

and Zucker (2004) have examined the chi-square approximation for small sample data using

both REML and ML estimation.  The chi-square approximations had inflated Type I error

rates.

1.4.4 Misspecification of the Covariance

 In practice, information regarding the covariance structure is often unknown.  As a

result, researchers must assume a covariance structure for the data.  Assumptions about the

distribution of the  are also made when fitting a linear mixed model.random effects and errors

The linear mixed model assumption  as seen in Section   that the errors and thes 1.4.1 are

random effects are independent and normally distributed.  Much research has been done

examining what happens when these assumptions about the  arerandom effects and errors

incorrect, and the covariance is misspecified.  Thus, there are two types of covariance

misspecification that can occur.  First, it is possible that the structure has been misspecified.

The other misspecification occurs is if either the distribution of the error term or the

distribution of the random effects does not meet the linear mixed model assumptions (i.e.

neither is normally distributed.).

 Many authors suggest that specifying the covariance structure can lead to more

accurate fixed effects inference.  One potential disadvantage would be if the covariance

structure is misspecified.  Ferron et al. (2002) examined the sensitivity of various fit criteria

to misspecifications of the covariance structure, and then examined the bias of the fixed

effects and random effects parameters when there was misspecification They simulated data.  

from a first order autoregressive error structure and determined that Akaike's Information

Criteria (AIC) identified the correct structure 70% of the time and the Schwartz's Bayesian

Criterion identified the correct structure 45% of the time.  Additionally, when the error

structure was misspecified as a simplier structure, there was not any bias in the fixed effects
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or the tests of the fixed effects, but there was bias in the estimates of the random effects.

Gomez et al. (2005) examined the Kenward-Roger  statistic Type I error rates for tests ofJ

fixed effects when simulating data based on 15 different covariance structures when the

covariance structure is selected using AIC and BIC.  The authors concluded that the Type I

error rates of the KR  statistic when covariance is unknown were greater than 0.05 for all ofJ

their simulation studies.

 Ferron, Dailey and Yi (2002) examined the effect of underspecification of the error

structure on the fixed effects estimates and their standard errors under REML estimation.  In

their simulation study, the true error structure was autoregressive of order 1 and the

misspecified error structure is independent and identically distributed.  Underspecification of

the error structure lead to unbiased estimator  of the fixed effects but the variance parameterss

were biased.  Kwok, West and Green (2007) found similar results with respect to

underspecification of the error structure.  These authors expanded the result  by also lookings

at general misspecification and overspecification.  They conclude that general

misspecification of the error structure lead to an overestimation of the variances of the

random effects which implies overestimation of the standard errors of the fixed effect.

Alternatively, overspecification of the error structure lead to smaller random effect variances

which implies standard errors of fixed effects were smaller.

 Verbeke and Lesaffre (1997)  investigated the effect of misspecifying the distribution

of the random effects on the inference based on the ML estimates of the model.  The authors

concluded that misspecifying the distribution of the random effects does not ffect the MLa

estimates of the fixed effects.  Actually, the fixed effects estimates are consistent and

asymptotically normally distributed regardless of the distribution of the random effects, but

the misspecification of the distribution does have an effect on the random components.

  Similarly, Fellingham and Raghunathan (1995) found that when the distribution of the

random effects was symmetric, the REML estimates of the fixed effects were not affected.
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Conversely, REML estimation is poor when the random effects distribution is not symmetric.

Manor and Zucker (2004) found similar results when they simulated data where the random

terms had a t-distribution (symmetric) and a log-normal distribution.  The Type I error rates

were closer to the nominal level when the random effects had a t-distribution as compared to

the log-normally distributed random effects.  When the random effects were simulated from

the log-normal distribution, the Type I error rates were larger than when random effects were

simulated from the t-distribution.  Vallejo, Ato, and Valdes (2008) also researched the

consequences of covariance misspecification by examining Type I error rates for tests of

fixed effects when choosing a model based on various information criteria.  The Type I error

rates of the models chosen from the AIC criterion that were generated from symmetric

distributions were robust.

1.5  Statistics for the Linear Mixed ModelV#

1.5.1 Criteria for Assessing  statistics for the Linear Mixed ModelV#

 As seen in Section 1.2, the  statistics for the linear univariate model using leastV#

squares regression are equivalent.  Unfortunately, the various  statistics for other modelsV#

are different and do not coincide (Kvalseth, 1985).  Each of the formulae given in Section 2

are ways in which the  statistic can be adapted in the linear mixed model.  Those formulaeV#

are not equivalent in the case of the linear mixed model.  When applying those formulae very

different  statistics arise.  At this time, there is not a universally accepted  statistic forV V# #

fixed or random effects in the linear mixed model because opinions differ as to what V#

should measure in this setting.  This poses a problem when determining from which V#

statistic for the linear mixed model to choose.

 Kramer (2005) further describes the impossibility of defining a single   V# for fixed

effects for mixed models due to the complexity of the model and the variety of questions that

could be posed from the model. Researchers may be interested in hypothesis tests of the  
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fixed effects, or of the random effects.  Edwards et al. (2008) highlight the three types of

model comparisons that occur in the linear mixed model.  It is possible to compare models

with the same covariance structure but different fixed effects, models with the same fixed

effects but different covariance structures, and models with different fixed effects and

different covariance structures.  This distinction is important because in the linear mixed

model, variation can be explained due to the fixed effects or due to the covariance

specification.

 Another issue when defining an  statistic  for the linear mixedV# for fixed effects

model is the choice of the null model.  Throughout the literature of  statistics in the linearV#

mixed model, there has mainly been two null models that have been discussed.  There is the

null model with only an intercept in the fixed effects and the null model with both a fixed and

random intercept.  The null model for , V"
# an  statistic for fixed effects defined byV#

Edwards et al. (2008) can be,  different from those two null models.  It has a fixed effect in

the intercept and the same covariance structure as the model of interest.  The interpretation of

the  statistic depends on the choice of the null model (Edwards et al., 2008).V#

1.5.2 Evaluating the  Statistics for the Linear Mixed ModelV#

 Table 1.2 is a summary of the  statistics used in the linear mixed model.  AV#

comprehensive review and details of notation is provided in Edwards et al. (2008).  Since

many of the  statistics for the linear mixed model are new, there is an increased interest inV#

evaluating each of them and how they behave.  The evaluation methods used in the recent

work focus on the properties that are important for an ideal V# statistic.

 One property that is important for V# statistics is that the statistic increases when

important covariates are added to the model.  Conversely, it is not desirable for the V#

statistic to increase when fitting an overfitted model.  Orelien and Edwards (2008) evaluated

the marginal and conditional versions of and < ß V ß-
#
1 Trand as well as the V# statistics
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proposed by Xu (2003) ( and )Hs V
#

#
#,   in distinguishing between overfitted, true, and3s#

underfitted models.  The marginal version of these statistics refers to when the predicted

values are computed using only the fixed effects , and the conditional versionŠ ‹Cs œ3 \3"s

refers to when the predicted values are computed using the random

effects .  The conditional versions of and , Š ‹Cs œ < ßV ß Vs
3 -

# #
#

#\ ^ .3 3 3"s � s
1 Trand as well as H

and  performed poorly.  Those statistics 3s# could not distinguish when important covariates

were missing whereas, the marginal versions of .  < ß V ß-
#
1 and Trand could The authors

conclude that the marginal  statistics presented are able to determine the most parmoniousV#

model among overfitted, true, and underfitted models.

 Another important property of a Liu et al.V# statistic is that they are monotone.  

(2008) show that two of the three  statistics that they proposed are monotone throughV#

examining the dimension of the projected subspace of their statistics.

 Sun et al. (2010) also emphasize the importance of the monotonic nondecreasing

property in a  n V# statistic.  The authors primary reason for choosing Magee's (1990)

likelihood ratio based statistic was due to that property.  They evaluated the performance of

V < VLR W
# #

-, Trand,  and conditional and marginal versions of .  They were intested in finding 

which statistic best captured the quantitative locus trait effect in association mapping.

Another important property for Sun et al. (2010) was that the  statistic reduces to the usualV#

V# statistic for the fixed linear model.  The authors point out that <-  does not have this

property.

 Another evaluation method used is based on the ability of a  n V# statistic to select a

model.  Wang and Schaalje (2009) conducted a simulation study on 17 model selection

statistics to determine the success rate of choosing a fixed effect when the covariance

structure was known.  The V# statistics that the authors looked at were adjusted versions of

marginal and conditional  and also adjusted versions of the marginal and conditional V"
# <- .

All of the statistics were successful in selecting the best linear model when there was a
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compound symmetric covariance structure.  There was not one criterion that was consistently

better than the others.  Performance of these model selection criteria was found to be based

on covariance structure, values of parameters, and sample size.

 Kramer (2005) focused on examining V# statistics as a goodness of fit measurement.

V VPV [
# # and  statistics were evaluated and the author found that as the model complexity

increased, the  statistics increased.V#

1.5.3  for fixed effects in the Linear Mixed ModelV"
#

 Edwards et al. (2008) expanded on formula (1.2) and proposed an  statistic for theV#

fixed effects in the linear mixed model.  The newly proposed  is as follows,V"
#

V œ
; � " J ßs s

" � ; � " J ßs s
"
#

�"

�"

� � Š ‹
� � Š ‹

/

/

" D

" D
.

Edwards et al. (2008) showed that under certain conditions where the linear mixed model

coincided with the multivariate model, the  is identical to the Hotelling-Lawleylinear V"
#

trace statistic.  Another correspondence between a statistic for the linear mixedassociation 

model and a statistic for the multivariate model is shown in Bathke et al. (2009).linear 

These authors showed, under special cases, the equivalence of an ANOVA type statistic from

the linear mixed model and the Greenhouse-Geisser  adjustment.J

 The  statistic Edwards et al. (2008) propose is based on the restricted maximumV
"

#

likelihood (REML) estimation while noting that the formulae do apply to the maximum

likelihood estimation computations.  Additionally, the authors recommend using the

Kenward-Roger  to define  because small sample inference of the Kenward-Roger  isJ V J"
#

the most accurate.

 One advantage of  is that to compute it, only one model needs to be fit.  It is notV"
#

necessary to fit a null model.  Another advantage of the V"
#  proposed is that it corresponds to
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a signficance test function of the  test for the linear mixed model usingbecause it is a 1-1 J

Kenward-Roger's  statistic and REML estimation.  The  statistic based on the likelihoodJ V#

ratio test introduced by Magee (1990) also has this property.

 Another advantage of the  proposed is that V"
# the same statistic generalizes to define a

partial  statistic for marginal (fixed) effects of all sorts.  None of the other  statisticsV V# #

reviewed appear to have the same important property.

1.6 Summary and Overview

 In the linear univariate model, the  statistic has been extensively researched and isV#

a widely implemented analysis tool.  It serves as a goodness of fit tool, a model selection tool,

and a measure of the strength of association.  There are several formulae for the  statisticV#

and they are all equivalent under the context of linear regression models.

 Each expression for the  statistic in the univariate model gives rise to a  V V# #n

statistic in the linear mixed model.  Unfortunately, these statistics are not equivalent and there

is not one universally accepted  statistic for the linear mixed model.V#

    through both theoretical This dissertation will present some of the properties of V"
#

and applied analysis.  In Chapter 2, theoretical results are presented which describe the

asymptotic properties of  defined by the Kenward-Roger method using approximations toV"
#

the mean and variance of .  In addition, two tests of hypothesis are developed andV"
#

evaluated using a large scale simulation study.  Chapter 3 examines the impact of covariance

structure misspecification, denominator degrees of freedom methods, estimation techniques

on the values and asymptotic properties of .  The finite sample properties of  areV V" "
# #

discussed in Chapter 4 which include examining the semi-partial form of  for differentV"
#

denominator degrees of freedom methods and creating an adjusted version of  for fixedV"
#

effects model selection.
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Table 1.1  Test Statistics for General Linear Hypothesis

and the Corresponding Multivariate Measures of Association

Hotelling-Lawley Trace Pillai-Bartlett Trace Wilks' Lambda Roy's Largest Root

tr tr tr
max eigenvalue

Ð Ñ Ð � Ñ Ð � ÑW W W W W W W W2 2 2 2
�" �" �"
/ / / /c d c d

W W W2 2 /
�"

Î=
"� Î= = Ð � Ñ

"Î1 Ð Ñ

Ð � Ñ

œ œ œ " �( ( (
HLT

HLT tr
PBT tr

WLK
W

W W
2

2 /

Table 1.2. Summary of V# Statistics in the Linear Mixed Model

Source Formula

Vonesh et al. (1996)
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CHAPTER 2

ASYMPTOTIC PROPERTIES OF V#"
AND TESTS OF HYPOTHESES

2.1 Introduction

 Two approaches are considered in deriving approximations for the mean and variance

of V"
#� �/  under the null and alternative hypotheses which include using the Beta distribution

and a Taylor series approximation.  The former assumes the Wald  statistic has an J J

distribution and the latter assumes values for only the mean and variance of the  statistic.J

Test statistics are developed based on these approaches.

2.2 Distributions and Their Properties

2.2.1 Gamma distribution

 If a random variable, , has a Gamma distribution with parameters  the\ ß  !ßα "

probability density function is,

0 Bà ß œ B / ß B  !
"� � � �α "

" > αα
α�" �B" .

The chi-squared distribution is the special case of the Gamma distribution where  andα œ /
#

" ;œ # and will be denoted a ./
#

2.2.2 Central  distributionJ
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 The ratio of two independent chi-squared variables over their respective degrees of

freedom,  and  degrees of freedom, results in an  distribution with  and  degrees of/ / / /" # " #J

freedom.  The probability density function of the  distribution isJ

0 Bà ß œ B " � B ß B  !
"

F ß
� � � � Œ  Œ / /

/ /

/ /
" #

# #

" "

# #

�"
�

/ /" #

" " #
# #

"
#

�/ / /

/
Š ‹

,

where  and  are positive integers and  is the Beta function. Some well known/ /" # F +ß ,� �
facts concerning the  distribution are as follows:J

 1.  If  then as ,  converges in distribution to .\ µ J ß Ä ∞ \� �/ / / / ;" # # "
#
/"

 2.  If  then .\ µ J ß µ J ß� � � �/ / / /" # # "
"
\

 3.  If  and  then Beta (The Beta distribution\ µ J ß ] œ ] µ ß� � � �/ /" #
\Î

"� \Î # #
/ /
/ /

/ /" #

" #

" #

will be defined in section 2.2.4.)  .(Draper and Smith, 1998)

2.2.3   Non-Central  distributionJ

 The distribution of the ratio of a non-central chi-squared and a central chi-squared that

are independent is a non-central  distribution.  If  and  withJ \ µ ß \ µ \" " # # "
# #; / - ; /� � � �

independent of   then,\#

\ Î

\ Î
µ J ß ß

" "

# #
" #

/

/
/ / -� �,

where  denotes the non-central  distribution.  The mean of the non-central J ß ß J J� �/ / -" #

distribution when  is/#  #

I J œ
�

Ð � #Ñ
c d � �/ / -

/ /

# "

" #
.

If , then the mean does not exist.  Additionally,/# Ÿ #

 1.  When , the non-central  distribution becomes the  distribution.- œ ! J J



29

 2.  If  and  is not dependent upon  then as , \ µ J ß ß Ä ∞ \� �/ / - - / / /" # # # "

converges in distribution to .;/"
#

 3.  If  then Beta which will be defined\ µ J ß ß ] œ µ ß ß� � � �/ / - -" #
\

"� \ # #
/ /

/ /
/ /"

�"
# " #

"
�"
#

in Section 2.2.5.

2.2.4 Central Beta distribution

 The probability density function of the Beta distribution is:

0 Bà ß œ B " � B ! C B C "
�� � � �� �� � � �α #

> α #

> α > #
α #�" �"

, ,

where  is the gamma function.  Beta  denotes the Beta distribution with parameters> α # α� �ß

and .  The mean and variance of a random variable  with a Beta distribution with# \

parameters  and  are:α # !  !

IÒ\Ó œ ß
�

Z Ò\Ó œ
� � � "

α

α #
α#

α # α #� � � �# .

There are several important properties of the Beta distribution.

 1.  If \ µ ß " � \ µ ßBeta , then Beta .� � � �α # # α

 2.  If  has a Beta distribution where both of the parameters are equal to \ "

� � � �α #œ "ß œ " \ !ß ", then  has a Uniform distribution on .

 3.  If   and independently  then Beta\ µ ] µ µ ß; α ; ## # \
\�] # #� � � � � �α #

(Johnson,

Kotz and Balakrishnan, 1994).

 4.  If Beta  then as , then Gamma \ µ ß Ä ∞ \ Ä ß "� � � �α # # α.

2.2.5 Non-central Beta distribution
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 The non-central Beta distribution is defined as the ratio  where^ œ \
\�]

\ µ ß ] µ ] Á ! ^ œ; / - ; /# #
" #

\Î]
\Î] �"� � � � and .  It is clear to see that for , we can write .

If  and  and  is independent of  then  has a non-central \ µ ß ] µ \ ] \Î] J; / - ; /# #
" #� � � �

distribution.  Approximations of the mean and variance of the non-central Beta have been

implemented in computer programs.  Chattamvelli and Shanmugam (1997) give an

approximate expression for the mean of the non-central Beta distribution derived using the

delta method.  The approximation of the mean of a non-central Beta distribution is denoted as

Beta  where  and  is,� �α # - α # -ß ß  !ß  !ß  !

IÒ\Ó ¶ " � " � � S 8
G #G

Š ‹Œ  ˆ ‰# -
#

�"

where .  The order of  was shown in Oehlert (1992).G œ � � S 8α # -
#

�"� �
 The approximation of the variance of a non-central Beta distribution is:

Z Ò\Ó œ Z ¶ � " � � $ � W ÎK
#G K #

� " �HÎJ � S 8
J

 ‘V"

/ /

/

# # #

#
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#

%
# #

#
# �"
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# # #
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 V œ ' ' � � "" ‘ˆ ‰;�"
# #

/

2.3 Approximating the Mean and Variance of  using the BetaV"
#

Distribution

 In this section, the distribution of V"
#  is derived by assuming the JŠ ‹" Ds s,  statistic

has an  distributionJ;�"ß/� �- .  The mean and variance of  will be approximated underV"
#� �/

the null and alternative hypotheses.  To emphasize the distributional properties of JŠ ‹" Ds s, 

and V"
# , the statistics will be denoted as  and JŠ ‹-s V"

#� �/  respectively.

2.3.1   Motivation and Justification for using the Beta distribution

 Hotelling's  statistic is a test statistic used to compare groups in the multivariateX #

model given in equation 1.3.  It has the Hotelling's  distribution with parameters  and X 7 :#

and is denoted as .  X 7ß :#� � Mardia, Kent and Bibby (1992) show in Theorem 3.5.2 on page

74 that the Hotelling's X J# distribution has a scaled  distribution,

X :ß 7 œ J
7:

7� : � "
#

:ß7�:�"� � Œ  (2.1)   

 The multivariate model can be stated as a special case of the linear mixed model

(Muller and Stewart, 2006).  When the general multivariate hypothesis is equivalent to the

linear mixed model hypothesis, the Hotelling-Lawley trace measure of association, denoted

as , exactly coincides with the  calculated from the linear mixed model (Edwards et(HLT V"
#

al, 2008).  Therefore the  value corresponding to the multivariate HLT statistic is a one-to-J

one function of Hotelling's  statistic.  One implication of the coincidence of X # V"
#  with the

Hotelling-Lawley trace measure of association is that the Wald  test has an exact J J

distribution.  Thus, the coincidence of these statistics provides justification for assuming the

Wald  statistic has an  distribution.J J
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2.3.1.1 Dental Dataset Example

 A well-known example from Potthoff and Roy (1964) will be used to demonstrate the

correspondence between Hotelling's  statistic and the Wald  statistic in the linear mixedX J#

model.  Potthoff and Roy (1964) describe how growth curve analysis can be stated as a

Generalized Multivariate Analysis of Variance (GMANOVA) model.  The data is from an

orthodontic study of the distance (mm) from the center of the pituitary to the

pterygomaxillary fissure denoted as dental distance measured at ages 8, 10, 12, 14 for 16 boys

and 11 girls.

 The  statistic is computed analyzing the data using the linear mixed model and usingJ

a multivariate model.  As expected, the  statistic, denominator degrees of freedom, andJ

corresponding V"
#  are the same for both the linear mixed model and the linear multivariate

model.  The  value is 3.63 with degrees of freedom , and  is 0.398.J %ß ## V� � "
#

 Additionally, the  statistic is calculated for the dental dataset using a function in theX #

IML procedure.  The  statistic is 16.5.  Using Mardia, Kent, and Bibby (1992), the X X# #

statistic can be calculated using the  statistic. The first thing we have to do is determine J 7

and  in equation 2.1.  So,  represents the numerator degrees of freedom of the  statistic: : J

and, .  The denominator degrees of freedom of the  statistic in the linear mixed model: œ % J

is , and .  The  statistic can be computed as:7� : � " œ ## 7 œ #& X #

X œ $Þ'$ œ "'Þ&
#&‡%

#& � % � "
# Œ 

2.3.2 Under the Null Hypothesis

 Under the null hypothesis ,  statistic is approximated by aL À œ J! G !" the Š ‹-s
central distribution.  Section 2.3.1 provides justification for assuming  has an exactJ JŠ ‹-s
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central  distribution based on the special case multivariate.  J Under the properties of a

central  distribution, described in Section 2.2.2, if J µ JJ JŠ ‹-s ;�"ß/ , where  denotes;�"ß/

the  distribution with  numerator and  denominator degrees of freedom  J ; � " / , then

V œ µ ß Þ#
;�"

"� ;�"

;�"
# #"

/

/

/
� �
� �

�"

�"

J

J

Š ‹
Š ‹
-

-

sœ!

sœ!
Beta  approximately   Using the moments of the centralˆ ‰

Beta distribution,

I V ‘¸
"
#� �/ L! œ

; � "

; � " �

œ
; � "

; � " �

œ
; � "

; � � "

( )/2

( )/2 /2

( )

( )

,

/

/

/

Z œ
� � � "

œ

œ
# ; � "

; � � " ; � � "

 ‘¸V"
#� �/ L!

ˆ ‰� �
ˆ ‰ ˆ ‰
ˆ ‰ ˆ ‰

;�"
# #

;�" ;�"
# # # #

#

;�"
%

;�"� ;�"� �#
# #

#

#

/

/ /

/

/ /

( )

( )

( ) ( )
.

/

/ /

 2.3.3 Under the Alternative Hypothesis

 Under the alternative hypothesis ,  statistic is approximatedL À Á JA G !" the Š ‹-s
by a non-central distribution where  is the estimate of the noncentrality parameter .J s- -

Using properties of the non-central  distribution, if  then,J J µ J Ð ÑŠ ‹-s ;�"ß / -

V œ µ ß ß#
;�" J

"� ;�" J

;�"
# #"

/

/

/
� � Š ‹
� � Š ‹

�"

�"

-

-

s

s
Beta  approximˆ ‰- ately.  The non-central Beta distribution is

defined as the ratio  where  and .  For ,^ œ \ µ ß ] µ ] Á !\
\�]

# #
" #; / - ; /� � � �

^ œ \ µ ß ] µ \ ] \Î]\Î]
\Î] �"

# #
" #.  If  and  and  is independent of  then  has a; / - ; /� � � �

non-central  distribution.  Using the approximate moments of the non-central BetaJ

distribution provided by Chattamvelli and Shanmugam (1997)
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I V
� � � �

; � " � � ; � " � �

 ‘¸
"

/

/ - / -

# #
;�"
# # #

;�"
# # #

� �/
/

/ - / -

LA ¶ " � " � �S 7
#

œ " � " �
#

ˆ ‰ ˆ ‰ ˆ ‰

� � � �

-

-

#
�"

#

V ‘¸V"

/ / /
# # # #� �/ LA ¶ � " � � $ �L ÎK � " �HÎJ � S 7

#G K # J

- -
- -

� � � �” •ˆ ‰ ˆ ‰ ˆ ‰# #

%
# # # �"

where

 G œ � �;�"
# # #

/ -

 K œ GÐG � "Ñ � œ � � Ð � � � "Ñ � ß- - - -
# #

ˆ ‰;�" ;�"
# # # # # #

/ /

 W œ # � � " ß ‘ˆ ‰;�"
# #

/ #

J œ � � � " �L � $ � � % � ßˆ ‰ ˆ ‰  ‘ˆ ‰ ˆ ‰ˆ ‰;�" ;�" ;�"
# # # # # #

/ / /#

# # #

# $- - -

L œ $ � � & � � #ßˆ ‰ ˆ ‰;�" ;�"
# # # #

/ /#

 H œ L � #T �U �V � * ß- - - - -
# # # # #

# # $ %’ “ˆ ‰ ˆ ‰ ˆ ‰
T œ $ � � " * � � "( ‘ ‘ˆ ‰ ˆ ‰;�" ;�"

# # # #
/ /

  � # � $ � � # $ � � % � "&ßˆ ‰ ‘ ‘ˆ ‰ ˆ ‰;�" ;�" ;�"
# # # # # #

/ / /

 U œ &% � � "'# � � "$!ßˆ ‰ ˆ ‰;�" ;�"
# # # #

/ /#

 V œ ' ' � � "" ‘ˆ ‰;�"
# #

/

2.4 Mean and Variance of  using the Taylor SeriesV"
#

Approximation

 Since  is a function of  can be calculatedV V" "
# #JŠ ‹" Ds s, , the mean and variance of 

using a Taylor series approximation.  A specific distribution for  does not need to beV"
#

assumed, only the mean and variance of The Taylor series of aJŠ ‹" Ds s,  are assumed.  

function, 1 \� � that is infinitely differentiable in the neighborhood of  is,.\
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] œ 1 \ œ \ �
1

8x
� � � �� � �

8œ!

∞ Ð8Ñ
\

\
8.

.

where 1 8 1Ð8Ñ
\ \� �. . denotes the  derivative of the function  evaluated at .  Casella andth

Berger (2002) define the Taylor polynomial of order  about  is,< .\

X \ œ \ �
1

3x
< \

3œ!

< Ð3Ñ
\ 3� � � �� � �.

. .

The authors also state Taylors theorem as: if exists then1 œ 1 \Ð<Ñ
\

.
.B

Bœ

� � � �º.
<

<

\.

lim .
\Ä

1 \ �X \
\�. .

\

<

\
<

� � � �� � œ !

 The first order approximation to the mean is given by

I ] ¶ 1 � 9 l\ � lc d � � � �. .\ \ ,

and the second order approximation to the mean is

I ] ¶ 1 � 1 � 9 l\ � l Þ
"

#
c d � � � � ˆ ‰. 5 . .\ \ \\

# w #w

The first order approximation to the variance is given by

Z Ò] Ó œ Z 1 \

œ Z 1 � \ � 1

œ Z 1 \

œ 1 Z \

œ 1

c d� �c d� � � � � �c d� �
c d c d� �
c d� �

. . .

.

.

. 5

\ \ \
w

w
\

w
\

#

w
\ \

#
.

The second order approximation to the variance will not be computed since further moments

assumptions of  would have to be made.\

 In the case of .  Let  .V œ"
#

� �
� �
;�"

"� ;�"

�" \
"�\

/

/

�"

�"

J

J

Š ‹
Š ‹
-

-

s

s
\ œ ; � " 1 \ œ� � � �/ JŠ ‹-s , then

Taking the derivative of ,1 \� �
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Additionally, .1 \ œw w �#
Ð"�\Ñ� � $

2.4.1   Under the Null Hypothesis

 Under the null hypothesis, when has a central  distribution,J JŠ ‹-s ;�"ß /

I œ’ “JŠ ‹-s /

/
/

� #
 # for 

Z œ
#’ “JŠ ‹-s / /

/ /
/

#

#

Ð; � " � � #

; � " � # � %
 

)
4� �� � � �  for 

Recall, the noncentrality parameter for the JŠ ‹-s  is zero under the null hypothesis.

 2.4.1.1 First Order Approximation

 Under the null hypothesis, with \ œ ; � "� �/�"JŠ ‹-s , we know that

 .\ œ I \c d
œ � �; � "

� #

œ
; � "

� #

/
/

/

/

�"

.

Therefore, plugging in .\  to the first order approximation formula, we see that
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# / ¸L!
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/

/

( 2)/

/

I V I V ‘  ‘� � � �" "
# #/ /¸ ¸L L! ! using the Beta distribution is not equal to using the Taylor

series approximation; however, for large  they are approximately the same./

 Additionally,

5\
# œ Z \

œ Z

œ Z

œ

c d
’ “

’ “
� �

� �
� � c d� �

� �� � � �� �� �
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� �
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/
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Under the null hypothesis, the variance of V"
#� �/  can be approximated by
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 2.4.1.2 Second Order Approximation

 The second order approximation involves .  Since 1w w \� �. 1 \ œw w �#
Ð"�\Ñ� � $ ,

1 œw w
\� �.

� #

Ð" � Ñ

œ
� #

Ð Ñ

œ
� # � #

� ; � $

;�"
�#

$

�#�;�"
�#

$
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$

/

/
/� �

� �
/

/
.

Therefore, using the second order approximation to the mean,

I ] I V

1 � 1
"

#

œ

c d � � ‘
� � � �

œ

¶

; � " " # ; � " ; � � $ � # � #
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; � " # ; � " � #
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/

/

� �c d � �� �
� � � � � �� � � �� � � �

# $

$

# .

 2.4.2 Under the Alternative Hypothesis

 Under the alternative hypothesis, the noncentrality parameter is defined as

- œ � � � �G G G G" "
w �" w

�"’ “ˆ ‰\ \w �"D .
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where - -s œ Š ‹ Š ‹G G G G" "s s
w �"

w
�"” •Š ‹\ \w �"

Ds  is an estimator of .  The noncentrality

parameter is the value of the test statistic computed using the population values of " D and 

and is dependent upon the subject sample size.  When  is distributed as ,J JŠ ‹ � �-s ;�"ß / -

I œ
; � "

; � "
’ “ � �JŠ ‹-s / -
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 2.4.2.1 First Order Approximation

 Under the alternative hypothesis, with \ œ ; � "� �/�"J s( ) ,-
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Therefore, plugging in .\  to the first order approximation formula,
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Under the alternative hypothesis, the variance of  can be approximated byV"
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 2.4.2.2 Second Order Approximation

 To calculate the second order approximation, we will need to compute 5\
#  and

1w w \� �. .  Since 1 \ œw w �#
Ð"�\Ñ� � $ ,
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Therefore, using the second order approximation to the mean,
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 2.5 Asymptotic Values of the Mean and Variance of V"
#

 To develop the asymptotic values of the mean of , the order of convergence for V#" /

and  is needed.  Under the null hypothesis using both the Beta distribution and the - Taylor

series approximation,  is the only component of  and  that depends on/ / /I V Z V ‘  ‘� � � �" "
# #

7 (the number of independent sampling units), the asymptotic properties of  are the only/

properties of interest.

 Under the alternative hypothesis, in the non-central case, the denominator degrees of

freedom,  and the noncentrality parameter, , depend on .  / - 7 To emphasize the dependence

of both the noncentrality parameter, , and the denominator degrees of freedom, , on ,- / 7

denote  as  and  as ./ / - -� � � �7 7

  and  are consistent estimators of theFor the asymptotic theory, it is assumed that " Ds s

population parameters,  and " D D and  is correctly specified In addition, it is assumed that, .  



42

7   83 i.e., the number of independent sampling units dominates the number of

observations per unit.

2.5.1 Noncentrality Parameter

 Section 2.4.2 defines the noncentrality parameter.  The term of -Ð7Ñ that depends on

7 7 is .  All other components do not depend on .  The essence matrix will be used\ \w �"D

to write that term as a function of .  7 Helms (1988) defines the essence matrix as the matrix

that has only one copy of each unique row of the design matrix.  The essence matrix for the

fixed effects is denoted as \Ess. Similarly define the essence matrix for the covariance  

matrix and denote it as .DEss

 2.5.1.1 Case 1:  is the same for all  and \3 3 D3 is the same for all 3

 For designs, where the design matrix is the same for all , then 3 \ \3 œ 3Ess for all 

and  for all .D D3 œ 3Ess
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Under this special case,
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2.5.1.3 Case 3:  and =  \3 is the same for all   for  groups of size3 5 œ "ß ÞÞÞß OD D3 3k

nO
7
Oœ

 Assume there are  groups of unique covariance matrices of equal size O n  withO
7
Oœ

O  being an integer.  Under this case,
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The noncentrality parameter as a function of  is,7
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 2.5.2 Denominator Degrees of Freedom

 The denominator degrees of freedom also depend on  and convergence properties of7

each denominator degrees of freedom method vary greatly.  The asymptotic properties for

specific mean models and covariance structures of the Kenward-Roger (1997) method is

examined in the simulation study presented in Section 2.6.  Convergence properties for

specific mean models and covariance structuresof the Satterthwaite, containment, and

residual method are examined in Chapter 3.

 2.5.3 Asymptotic Properties of using the Beta Distribution ApproachV"
#  

Moments under the Null Hypothesis

 Under the null hypothesis ,L À œ! G !"

lim lim
/ /Ä∞ Ä∞

#I V ‘¸
"� �/ L! œ œ !

; � "

; � � "/
,

lim lim
/ /Ä∞ Ä∞

#Z V ‘¸
"� �/ L! œ œ !

# ; � "

; � � " ; � � "

( )

( ) ( )
.

/

/ /#

 Theorem 1:  Using the Beta distribution approach moments,  is mean squareV"
#� �/

consistent for 0 under the null hypothesis .L À œ! G !"
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 Proof:  From Serfling (1980, Section 1.15.2), if  is asymptoticallyI ‘¸V"
#� �/ L!

unbiased and  converges to 0, then  is mean square consistent for 0.Z  ‘¸V"
#� �/ L V!

#
"

 The asymptotic null results  because under the null hypothesis, it isare intuitive

assumed that none of the fixed effects are associated with the outcome.  V"
#� �/  values of zero

correspond to no multivariate association between the outcome and the predictors.

 2.5.4 Asymptotic Properties of  using Beta Distribution Approach MomentsV"
#

under the Alternative Hypothesis

 Under the alternative hypothesis ,L À ÁA G !"

I V
� � � �
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 The orders of each of the components will be calculated to evaluate the asymptotic

properties of  using the Beta distribution.  Since both  and  are linearZ  ‘V"
#� �/ ¸LA - /

functions of , the notation .  will denote the highest growth rate of  for each term,7 S 7� �
 G œ S 7� �
 K œ S 7� �#
 W œ S 7� �#
 J œ S 7� �$
 L œ S 7� �#
 H œ S 7� �%
 T œ S 7� �$
 U œ S 7� �#
 V œ S 7� �
Therefore, in writing  using this notation,Z  ‘V"

#� �/ ¸LA

Z ¶ � " �
S 7 S 7 S 7 S 7 S 7 S 7

S 7 S 7 S 7S 7 S 7
 ‘V"

#� �/ ¸LA

� � � � � � � � � � � �
c d� � � � � �c d c d� � � �– —$ # # %

% # $# $# #– —" � �

resulting in

lim .
7Ä∞

#Z V ‘
"� �/ ¸LA œ !

 Theorem 2:  Using  ithe Beta distribution approach moments, f  exists and is.V"
#

finite, then V"
#

V is mean square consistent for  under the alternative hypothesis.
"
#

L À ÁA G !" .

 

 Proof:  The proof of Theorem 2 is the same as Theorem 1.
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 2.5.5 Asymptotic Properties of  using the Taylor Series ApproximationV"
#

Moments under the Null Hypothesis

 Under the null hypothesis ,L À œ! G !"

lim lim
/ /Ä∞ Ä∞

#I V ‘¸
"� �/ L! œ œ !

; � "

; � �/ 3
,

lim lim
/ /Ä∞ Ä∞

#Z V ‘¸
"� �/ L! œ œ !

# � # ; � " � � ; � " � # � #

� ; � � $ � %

� � � � � �� � ‘
� � � �

/ - - /

/ - /

# #

%
.     

Theorem 3:  Using the Taylor series approximation moments,   is mean squareV"
#

consistent for 0 under the null hypothesis.

 Proof:  The proof of Theorem 3 is the same as Theorem 1.

 2.5.6 Asymptotic Properties of  using the Taylor Series ApproximationV"
#

Moments under the Alternative Hypothesis

 Under the alternative hypothesis ,L À ÁA G !"

.V
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� �/ ¸LA œ
; � " � s

; � � � $

œ
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� �

�

-

/ -
-

/ -

lim
7Ä∞

#Z V ‘¸
"� �/ LA œ !

 Theorem 4:   Using the Taylor series approximation moments, if  exists and is.V"
#

finite, then  is mean square consistent for  under the alternative hypothesisV"
#

V� �/ .
"
#

L À ÁA G !" .
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 Proof:  The proof of Theorem 4 is the same as Theorem 1.

 2.5.7 Summary of Asymptotic Results

 Sections 2.5 and 2.6 both showed that under the null hypothesis using both

approaches,

lim lim
7 7Ä∞ Ä∞

# #I V œ ! Z V œ ! ‘  ‘� � � �" "/ /¸ ¸L L! ! and .

Additionally, under the alternative hypothesis using both approaches,

lim
lim

lim lim7

7

7 7

Ä∞

# Ä∞

7
7

Ä∞ Ä∞

7 7
7 7

I V œ ‘� �"

-

- /
/ ¸LA

� �
� � � ��

,

and

lim
7Ä∞

#Z V œ ! ‘� �" / .

 2.6 Tests of Hypotheses

 The goal of this section is to use the two approaches shown in the previous sections to

develop a test for the null hypothesis, , that is equivalent to .L À œ ! L À œ! !3#lC \ G !"

The  represents a population parameter of the measure of multivariate association3#lC \

between the outcome  and the nonintercept covariates of interest represented by .C \

 The Type I error of a test statistic is defined as the probability of rejecting the null

hypothesis given the the null hypothesis is true.  The Type I error rates will be estimated for

each test statistic developed in the following sections.

 The power of a test statistic is Type II error .  The probability of a Type II" � T � �
error is the probability of failing to reject the null hypothesis when the alternative hypothesis
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is true.  When the alternative is true, our resulting tests statistics must be compared to the

alternative hypothesized distributions.

2.6.1 Beta Distribution Test Statistic

 Under the null hypothesis , L À œ! G !"  V µ#
"� �/ Beta .  To test,ˆ ‰;�"

# #ß
/

L À œ !! 3#lC \ , compare V#" to the central Beta distribution with  and  degrees of
;�"
# #

/

freedom.

 The power of the test statistic will be computed by comparing V"
#  to the non-central

Beta distribution with  and  degrees of freedom and noncentrality parameter .  Define
;�"
# #

/ -

J ß ßBeta’ “¹†   as the cumulative distribution function of the noncentral Beta
;�"
# #

/ -

distribution with  and  degrees of freedom and  as the noncentrality parameter with the
;�"
# #

/ -

corresponding probability density function,  .  The power of the test0 l ß ßBeta ‘† ;�"
# #

/ -

statistic is

T œ " � J 0 " � ß ß
; � "

# #
Beta crit” •� �¹α -

/
 

where  is the 100  percentile from the central Beta distribution with 0 " � " �crit� � � �α α ;�"
#

and  degrees of freedom./
#

2.6.2 Taylor Series Approximation Test Statistic

 Serfling (1980) states that it is necessary to determine normalizing constants  and+/ |L!

,/ |L!
L!

L!
 such that  converges in distribution to a random variable having a nondegenerate

V �"
# +

,
/

/

|

|

distribution.  Define + ,/ /| |L ! L !! !
œ I œ Z ‘  ‘¸ ¸V V" "

# #� � � �/ /L Land as computed˜ ™"Î# 
from .  Therefore,Section 2.4.1

+/ |L! œ
; � "

; � � $/
,
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,/ |L! œ
# ; � " � #

� % � ; � $

� �� �
� �� �

/

/ /

#

$ .  

The test statistic is

X/ œ
V �"
#� �/ ;�"

;� �$

# ;�" �#

�% �;�$

/

/

/ /
’ “� �� �� �� �

#

$

"
#

.

It will be compared to the standard normal distribution.  Since the Taylor series

approximation test statistic is based on the standard normal distribution, the one-sided test of

the hypothesis, L À œ L À Á X D! "�G ! G !" " vs.  rejects the null hypothesis if ,A / α 

where  is the one-sided critical value of the standard normal distribution with D"�α α œ 0.05.

 Define

+/ |LA
œ

; � " �

; � � � $

-

/ -
,

,/ |LA
œ
# � # ; � " � � ; � " � # � #

� ; � � $ � %

� � � � � �� � ‘
� � � �

/ - - /

/ - /

# #

%
.

Suppose the alternative hypothesis is true | then, .  TheT X D L À Á Á " �� �/ α "� A G !" α

power is
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 approximately follows a standard normal distribution when the alternative

hypothesis is true, the approximate power for is calculated as,X/  
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where  represents the standard normal distribution function.F� �†
 One important observation is that + ,/ //| |L L! !

 and  are both of the order .  Thus, 
"
# /�" X

needs to be appropriately standardized.  In addition, it is likely that the true limiting

distribution for this test statistic is not the standard normal distribution because the range of

the standard normal distribution is from  to .  The range of  is between 0 and .�∞ ∞ ∞X/

Instead, the chi-squared distribution may be more appropriate.  Let us examine this further,

TÖX Ÿ >× œ T Ÿ

œ T Ÿ >

/

Ú ÞÝ áÝ áÛ ßÝ áÝ áÜ àÚ Þ
Û ßÜ à

V �

V

"

"

#

#

;�"
;� �$

# ;�" �#

�% �;�$

#

$

/

/

/ /
’ “

– —� �� �
� �� �

� �� �� �� �
#

$

"
#

"
#

>

; � " # ; � " � #

; � � $
�

� % � ; � $/

/

/ /

 It is necessary to derive the limit distribution of V V" "
# #.    If we assume  has a Beta

distribution with shape parameters,  and , then we know from section 2.2.4, that the
;�"
# #

/

limiting distribution of  is distributed as a chi-squared random variable with parameters,/V"
#

α "œ œ #;�"
#  and .

TÖX Ÿ >× œ T Ÿ > Þ/

Ú Þ
Û ßÜ à/ /

/
V"
# � � � �� �– —� �� �

; � " # ; � " � #

; � � $
�

� % � ; � $/

/

/ /

#

$

"
#

The / αV œ"
# ;�"

# value can be compared to a chi-squared distribution with parameters,  and

" œ #.   The performance of this new statistic is an area of future research.  The simulation

studies presented only use the normal distribution for Type I error rates and power

calculations.

 2.7 Simulation Study Results 

2.7.1 Data Generation
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 The dental study data example from Potthoff and Roy (1964) used in Section 2.3.1.1

motivates the simulation study. Simulation study regression and covariance parameters are

patterned from a linear mixed model analysis of the data.

 Simulations and analysis were conducted using SAS version 9.2.  The simulated

longitudinal data has , , , ,  subjects, and7 œ #&ß &!ß "!!ß #!!ß &!!ß " !!!ß # !!!ß & !!!ß "! !!!

a constant number of observations per subject ( ).  8 œ 8 œ %3 The repeated measurements

were generated using a linear mixed model with four possible mean models and two different

covariance structures.  Thus, 9 4 72 simulation studies are presented each with‚ ‚ # œ

10,000 replications.

 The mean structure for Model 0 includes only an intercept.  The mean structure for

Model I includes an intercept and a continuous time effect.  Define \I œ

" )
" "!
" "#
" "%

Ô ×Ö ÙÖ Ù
Õ Ø

 as the

design matrix.

 The mean structure for Model II includes an intercept, continuous time effect and a

dichotomous effect that is constant per subject.  The dichotomous effect is distributed equally

among the subjects.  Define and  as the two\ \II, II,! "œ œ

" ) ! " ) "
" "! ! " "! "
" "# ! " "# "
" "% ! " "% "

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

possible design matrices.   refers to the design matrix for all subjects  with a binary\II,! 3

effect of 0.   refers to the design matrix for all subjects  with a binary effect of 1.\II," 3

 The mean structure for Model III includes an intercept, continuous time effect,

dichotomous effect that is constant per subject, and a time by dichotomous variable

interaction.  Define and  as the two\ \III,0 III,1œ œ

" ) ! ! " ) " )
" "! ! ! " "! " "!
" "# ! ! " "# " "#
" "% ! ! " "% " "%

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

possible design matrices.   refers to the design matrix for all subjects  with a binary\III,0 3
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effect of 0.   refers to the design matrix for all subjects  with a binary effect of 1.  \III,1 3 The

corresponding true parameter values for each model are shown in Table 2.1.

 Covariance structure 1 includes a random intercept with independent errors.

Covariance structure 2 includes a random intercept and a random slope for time with

independent errors.  The covariance parameter values are presented in Table 2.2.  Table 2.3

shows the number of replications which there is a positive definite Hessian matrix for each

simulation study.  The Hessian matrix is the second order partial derivative of the log

likelihood function.  Only replications for which there is a positive definite Hessian matrix

will be included in analysis.

 

2.7.2 True V#

 The true  is introduced by Christou (2005) for a linear univariate model.  TheV#

author defines  as the squared correlation coefficient between the outcome and predictorsV#

and thus defines the true  (population ) for a univariate model with one predictor as,V V# #

3
" 5

" 5 5
#

# #
" \

# #
" \ /

#
œ

�

Similarly, Helland (1987) has shown that under weak conditions,  converges almost surelyV#

to,

" "

" " 5

w
\

w #
\ /

W

W �

as the total number of observations tends to infinity where  is the sample covarianceW\

matrix for the explanatory variables which is assumed to be fixed by design.

 Using the true parameter values, the asymptotic true  for each denominator degreesV"
#

of freedom methods can be calculated for simulations in which there is a constant

denominator degrees of freedom across all replications with a positive definite Hessian
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matrix.  The true population measure of association for the linear mixed model will be

denoted as .3C \= =l
#

 2.7.3 Objectives and Methods: Large Sample Mean of  under V L"
#

0

 To determine whether our theoretical results coincide with the real world data, a

simulation study was conducted to determine whether V#" converges to zero under the null

hypothesis.  To examine this result, the intercept only mean model was simulated using two

different covariance structures.  The two covariance structures included a random intercept

and with independent errors , and a random intercept and slope with(compound symmetry)

independent errors.  Then, these simulated datasets were analyzed using overspecified mean

models.  The overspecified mean parameters were then tested and an  was calculated.V#"� �/
Under these conditions, it is expected that  values should be close to zeroV#"� �/ .

 2.7.4  Results: Large Sample Mean of  under V L"
#

0

 Table 2.4 shows the average  for Model 0: Covariance 1 when the data wereV#"� �/
analyzed under different mean models using covariance 1.  The average  converges toV#"� �/
zero as the subject sample size increases for all denominator degrees of freedom methods and

all overspecified mean models. Table 2.5 shows the average  for Model 0: Covariance 2V#"

when the data were analyzed using several mean models using covariance 2.  The average V#"

converges to zero as the subject sample size increases for all denominator degrees of freedom

methods and all overspecified mean models.

 2.7.5  Objectives and Methods: Large Sample Mean of  under V"
# LA

 Using the true parameter values, the asymptotic true  for REML estimationV"
#� �/

with Kenward-Roger  test and corresponding degrees of freedom can be calculated J under
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LE for simulations with a constant denominator degrees of freedom across all replications

and a positive definite Hessian matrix.  The Kenward-Roger denominator degree of freedom

formulae and their convergence values for all of the models under REML estimation are

provided in Table 2.6.

 2.7.5.1 Asymptotic Properties of : Model I: Covariance 1V"
#

 Model I with Covariance 1 refers to a model with a continuous time effect and a

random intercept and independent errors (compound symmetric covariance matrix).  For

Model I with Covariance 1, the design matrix is the same for all  and  is the same for all ,3 3D3

\ \3 3,I Ess,I ,1 Ess,1œ œ and .  As shown in Section 2.5.1.1,D D

lim
7

w �" w
�"

Ä∞

-� � � � � �7

7
œ G G G G" "’ “ˆ ‰\ \Ess,I Ess,1 Ess,I

w �"D .

When using REML estimation with Kenward-Roger method,

lim
7

#

w �" w
�"

w �" w
�"Ä∞

IÒV Ó œ
$ �

"� � ’ “ˆ ‰
’ “ˆ ‰/KR

� � � �
� � � �
G G G G

G G G G

" "

" "

\ \

\ \

Ess,I Ess,1 Ess,I

Ess,I Ess,1 Ess,I

w �"

w �"

D

D

.

 2.7.5.2 Asymptotic Properties of : Model I: Covariance 2V"
#

 Model I with Covariance 2 refers to a model with a continuous time effect and a

random intercept and slope with independent errors.  For Model I with Covariance 2, the

design matrix is the same for all  and  is the same for all ,  and3 3 œD3 3\ \,I Ess,I

D D3,2 Ess,2œ .  As shown in Section 2.5.1.1,

lim
7

w �" w
�"

Ä∞

-� � � � � �7

7
œ G G G G" "’ “ˆ ‰\ \Ess,I Ess,2 Ess,I

w �"D .

When using REML estimation with Kenward-Roger method,
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lim
7

#

w �" w
�"

w �" w
�"Ä∞

IÒV Ó œ
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 2.7.5.3 Asymptotic Properties of : Model II: Covariance 1V"
#

 Model II with Covariance 1 refers to a model with a continuous time effect and a

binary effect with a random intercept with independent errors (compound symmetric).  Using

this notation, it is possible to express the noncentrality parameter as a direct function of 7

using Section 2.5.1.2,
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Using this formulation,
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When using REML estimation with Kenward-Roger denominator degrees of freedom,
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 2.7.5.4 Asymptotic Properties of : Model II: Covariance 2V"
#
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 Model II with Covariance 2 refers to a model with a continuous time effect and a

binary effect with a random intercept and slope with independent errors.  Using section

2.5.1.2,

-� � � � ’ “7 œ
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When using REML estimation with Kenward-Roger denominator degrees of freedom,
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 2.7.5.5 Asymptotic Properties of : Model III: Covariance 1V"
#

 Model III with Covariance 1 refers to a model with a continuous time effect, a binary

effect and their interaction with a random intercept with independent errors.  Using this

notation, it is possible to express the noncentrality parameter as a direct function of  using7

Section 2.5.1.2,
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and,
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 2.7.5.6 Asymptotic Properties of : Model III: Covariance 2V"
#

 Model III with Covariance 2 refers to a model with a continuous time effect, a binary

effect and their interaction with a random intercept and slope with independent errors.  Using

this notation, it is possible to express the noncentrality parameter as a direct function of 7

using Case 2 in 2.5.1.2,
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Using this formulation,
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When using REML estimation with Kenward-Roger denominator degrees of freedom,
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 2.7.6  Results: Asymptotic Mean of  underV"
#  LA
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 Table 2.6 provides the Kenward-Roger denominator degrees of freedom using REML

estimation and the equations used to predict the Kenward-Roger denominator degrees of

freedom using the subject sample size.  Table 2.7 shows the average simulated and true

values of V"
#� �/  for each model and covariance structure for which the Kenward-Roger

denominator degrees of freedom are constant across all 10,000 replications.  The simulated

values of  are converging to the asymptotic true  for each denominator degreesV V" "
# #� � � �/ /

of freedom method.

 2.7.7  Objectives: Hypothesis Testing

 Three test statistics were of interest in this simulation study, the Beta distribution

theory statistic, the Taylor series approximation statistic, and the  statistic in the linearJ

mixed model.  The simulation study objectives were to calculate and compare the Type I

error rates and power for these statistics.  In addition, the goal was to compare the results

from these three test statistics.

 Additional simulations were run to calculate the power.  The mean model consists of

an intercept and a continuous time effect with a parameter estimate of 0.03.  This mean

model was simulated for subject sample sizes of  using covariance"!ß #!ß &!ß "!!ß #!!

structures and values defined in Table 2.2.

 The test statistics were examined under the null hypothesis and different alternative

hypothesis for the simulation studies.  Type I error rates were calculated by comparing the

test statistic to their respective comparison distribution.  Specifically, the Type I error rates

were calculated for true Model 0 with covariance structures 1 and 2 when analyzing the data

with overspecified mean models (Models I, II, and III).  

 To calculate the Type I error, data were generated under the null hypothesis,

L À œ! G !"  for three different covariance structures.  The mean model consisted of only an

intercept denoted as model 0 for these three covariance structures, and the true parameter
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value is in Table 2.1.  Then, the simulated data were analyzed under three different incorrect

null hypotheses

L À œ !

L À œ œ !

L À œ œ œ !

! "

! " #

! " # $

I

II

III

"

" "

" " "

� �9.4

where " "" represents the parameter estimate corresponding to the continuous time effect ; 2

represents the parameter estimate corresponding to the binary effect;  represents the"3

parameter estimate corresponding to the binary effect and continous time interaction effect.

 For each test statistic, the p-value was calculated to determine if the null hypothesis

was rejected by comparing the test statistic to the appropriate value from the hypothesized

distribution.

 2.7.8 Results: Hypothesis Testing

 The Type I error rates are shown in Tables 2.8 and 2.9.  The simulation study results

indicate that comparing V#"� �/  to the Beta distribution is an equivalent test of the hypothesis

that L À œ! G !" .  The Type I error rates for the Beta distribution theory test statistic are

exactly the same as the Type I error rates for the  statistic in the linear mixed model.J

Comparing the Taylor series approximation to the standard normal distribution consistently

resulted in inflated Type I error rates.

 There were 10,000 replications for each power simulation.  The approximate half-

width of a 95% confidence interval for power is calculated as 1.96 .  Theoretical’ “T "�T
"!ß!!!
� � "

#

values of power for each simulation were computed by first determining the critical value of

the null hypothesized distribution.  Then, that critical value was evaluated in the cumulative

distribution function of the alternative hypothesized distribution.  Approximations of the non-

central Beta distribution were computed using version 2.13.0 of R.  Table 2.10 compares the

empirical power with the theoretical prediction of power.  For the Beta distribution test
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statistic, the difference between the theoretical and empirical power fell with the 95%

confidence interval for all of the covariance 1 simulations.  The Taylor series approximation

test statistic was not very accurate.  The difference was never within the 95% confidence

interval.

 2.8 Conclusions

2.8.1 Summary of the Mean and Variance of V"
#

 Using the Beta distribution, under the null hypothesis,
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  � # � $ � � # $ � � % � "&ßˆ ‰ ‘ ‘ˆ ‰ ˆ ‰;�" ;�" ;�"
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 Using the Taylor series approximation approach, using the first order approximation,

under the null hypothesis,
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and under the alternative hypothesis using the first order approximation,
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 Using the Taylor series approximation approach, using the second order

approximation, under the null hypothesis,
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2.8.2 Summary of the Asymptotic Properties of the Mean and Variance of V"
#

 While the approximate values of  and  are different when usingI V Z V ‘  ‘� � � �" "
# #/ /

the Beta distribution theory and the Taylor series approximation approaches, the asymptotic
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properties are the same.  Under the null hypothesis and assuming consistent estimators of the

population parameters  " D D and  correctly specified, where ,

lim
7

#

Ä∞
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 Under the alternative hypothesis,
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2.8.3 Conclusions

 For simulations for which the denominator degrees of freedom could be almost

perfectly predicted using subject sample size, the asymptotic mean of V"
#  could be calculated

because the convergence properties of the denominator degrees of freedom method could be

ascertained.

 The Type I error rate for the Beta distribution test statistic is equivalent to the usual J

statistic.  The power of the Beta distribution test statistic was fairly accurate.  The Taylor

series approximation test statistic had inflated Type I error rates as well as inaccurate power

estimates.

 Further research should investigate the asymptotic properties of V"
#� �/  under

misspecified covariance, the  finite sample properties of , and examine the impact ofV"
#� �/

varying the denominator degrees of freedom methods and estimation techniques used to

define .  In addition, evaluating  as a model selection tool should also be  V V" "
# #� � � �/ /

addressed.
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TABLES

Table 2.1 Simulated fixed effect parameter values  

Model 0 Model I Model II Model III

" " " "0 I IIIIIœ œ œ œ
"

"

!
16.8

6.8 0.5

0.7 -1.0

5.5

2.2

.7

17.4

0.3

” • Ô ×
Õ Ø

Ô ×Ö ÙÖ Ù
Õ Ø

Table 2.2 Simulated covariance parameter values  

Covariance 1 Covariance 2

V œ œ

H

3 5 5

5
5 3

3 5

e e

d
Int

Slope

# #

#
#

#

4.50 1.72

œ œ
!

2.02
5.79 -0.29

-0.29 .03” • ” •

Table 2.3  Number of replications where there is a positive definite hessian matrix

25 subjects 50 subjects 100 subjects 200 subjects 500 subjects 1000 subjects

Model I: Cov 1 9,966 10,000 10,000 10,000 10,000 10,000

Model I: Cov 2 6,863 7,984 8,963 9,692 9,984 10,000

Model I: Cov 3 8,035 9,178 9,812 9,987 10,000 10,000

Model II: Cov 1 9,965 10,000 10,000 10,000 10,000 10,000

Model II: Cov 2 6,901 7,949 8,978 9,721 9,981 10,000

Model II: Cov 3 8,010 9,138 9,806 9,988 10,000 10,000

Model III: Cov 1 9,961 10,000 10,000 10,000 10,000 10,000

Model III: Cov 2 6,801 7,997 9,023 9,708 9,985 10,000

Model III: Cov 3 7,983 9,133 9,816 9,989 10,000 10,000

Table 2.4.  Average simulated   values for true simulated data from Model 0: Covariance 1V#"

analyzed using various mean models with covariance 1

Model I Model II Model III

Cov 1 Cov 1 Cov 1

25 subjects 0.0134 0.0419 0.0467

50 subjects 0.0067 0.0205 0.0229

100 subjects 0.0034 0.0102 0.0115

200 subjects 0.0017 0.0050 0.0057

500 subjects 0.0007 0.0020 0.0022

1000 subjects 0.0003 0.0010 0.0011
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Table 2.5.  Average simulated   values for true simulated data from Model 0: Covariance 2V#"

analyzed using various mean models with covariance 2

Model I Model II Model III

Cov 2 Cov 2 Cov 2

25 subjects 0.0360 0.0590 0.0996

50 subjects 0.0190 0.0298 0.0505

100 subjects 0.0094 0.0147 0.0256

200 subjects 0.0049 0.0074 0.0130

500 subjects 0.0019 0.0029 0.0051

1000 subjects 0.0010 0.0015 0.0026

Table 2.6.  Constant Kenward-Roger denominator degrees of freedom using REML

estimation for simulated linear mixed models and prediction equations using subject sample

size

Model I Model I Model II Model II Model III Model III

Cov 1 Cov 2 Cov 1 Cov 2 Cov 1 Cov 2

25 subjects 74 24 46.09 30.62 61.35 25.29

50 subjects 149 49 96.11 63.96 127.55 54.13

100 subjects 299 99 196.12 130.63 259.92 111.82

200 subjects 599 199 396.13 263.97 524.63 227.20

500 subjects 1499 499 996.13 663.97 1318.75 573.35

1000 subjects 2999 999 1996.13 1330.63 2642.28 1150.28

2000 subjects 5999 1999 3996.13 2663.97 5289.34 2304.12

5000 subjects 14999 4999 9996.13 6663.97 13230.52 5765.66

10000 subjects 29999 9999 19996.13 13330.63 26465.81 11534.89

3 -1 -1
Prediction

Equation:
/ / /œ 7 œ 7 œ 2 -3.9 1.33 -2.7 2.65 -4.8 1.15 -3.6

3 1 2 1.33 2.65 1.15

7 œ 7 œ 7 œ 7/ / /

lim
7Ä∞ 7

/KR
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Table 2.7.  Average simulated  using Kenward-Roger denominator degrees of freedom andV#"

REML estimation and the corresponding asymptotic true V#"

Model I Model I Model II Model II Model III Model III

Cov 1 Cov 2 Cov 1 Cov 2 Cov 1 Cov 2

25 subjects 0.3960 0.7784 0.5576 0.7401 0.6621 0.8656

50 subjects 0.3943 0.7832 0.5455 0.7436 0.6483 0.8633

100 subjects 0.3937 0.7874 0.5404 0.7463 0.6439 0.8634

200 subjects 0.3934 0.7893 0.5379 0.7471 0.6415 0.8637

500 subjects 0.3924 0.7899 0.5365 0.7472 0.6396 0.8634

1000 subjects 0.3923 0.7899 0.5358 0.7467 0.6392 0.8631

2000 subjects 0.3923 0.7898 0.5356 0.7466 0.6389 0.8630

5000 subjects 0.3923 0.7897 0.5354 0.7466 0.6388 0.8628

10000 subjects 0.3923 0.7897 0.5353 0.7464 0.6387 0.8628

Asymptotic

True :
0.3923 0.7897 0.5353 0.7541 0.6386 0.8718

V"
#� �/

Table 2.8.  Type I error rates for true Model 0: Covariance 1

REML KR  test REML KR Beta test REML KR Taylor TestJ

L À œ !! "I
"  with Covariance 1

25 subjects 0.0512 0.0512 0.0644

50 subjects 0.0514 0.0514 0.0659

100 subjects 0.0521 0.0521 0.0663

200 subjects 0.0479 0.0479 0.0660

500 subjects 0.0500 0.0500 0.0670

1000 subjects 0.0479 0.0479 0.0661

L! " #II
À œ œ !" "  with Covariance 1

25 subjects 0.0521 0.0521 0.0618

50 subjects 0.0502 0.0502 0.0664

100 subjects 0.0516 0.0516 0.0689

200 subjects 0.0485 0.0485 0.0672

500 subjects 0.0501 0.0501 0.0707

1000 subjects 0.0504 0.0504 0.0709

 with Covariance 1

25 subjects 0.0

L À œ œ œ !! " # $III
" " "

507 0.0507 0.0621

50 subjects 0.0498 0.0498 0.0658

100 subjects 0.0511 0.0511 0.0681

200 subjects 0.0498 0.0498 0.0703

500 subjects 0.0487 0.0487 0.0690

1000 subjects 0.0507 0.0507 0.0704
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Table 2.9.  Type I error rates for true Model 0: Covariance 2

REML KR  test REML KR Beta test REML KR Taylor TestJ

L À œ !! "I
"  with Covariance 2

25 subjects 0.0383 0.0383 0.0416

50 subjects 0.0450 0.0450 0.0556

100 subjects 0.0449 0.0449 0.0604

200 subjects 0.0452 0.0452 0.0623

500 subjects 0.0479 0.0479 0.0656

1000 subjects 0.0493 0.0493 0.0650

L! " #II
À œ œ !" "  with Covariance 2

25 subjects 0.0429 0.0429 0.0483

50 subjects 0.0486 0.0486 0.0603

100 subjects 0.0484 0.0484 0.0635

200 subjects 0.0470 0.0470 0.0659

500 subjects 0.0470 0.0470 0.0674

1000 subjects 0.0506 0.0506 0.0703

 with Covariance 2

25 subjects 0.0

L À œ œ œ !! " # $III
" " "

377 0.0377 0.0353

50 subjects 0.0449 0.0449 0.0538

100 subjects 0.0491 0.0491 0.0648

200 subjects 0.0478 0.0478 0.0654

500 subjects 0.0483 0.0483 0.0672

1000 subjects 0.0503 0.0503 0.0691

Table 2.10.  Theoretical and empirical power estimates for simulated models with " œ !Þ!$

Beta Distribution Test Statistic Taylor Series Approx Test Statistic

Cov Theoretical Empirical Half-Width Theoretical Empirical Half-Wi7 dth

1 10 0.0543 0.0569 0.0044 0.0311 0.0628 0.0034*

1 20 0.0589 0.0598 0.0046 0.0381 0.0740 0.0038*

1 50 0.0729 0.0735 0.0051 0.0615 0.0935 0.0047*

1 100 0.0966 0.0926 0.0058 0.1048 0.1165 0.0060*

1 200 0.1452 0.1465 0.0069 0.1927 0.1790 0.0077*

2 10 0.0580 0.0204 0.0046* 0.0364 0.0071 0.0037*

2 20 0.0671 0.0462 0.0049* 0.0511 0.0450 0.0043*

2 50 0.0946 0.0869 0.0057* 0.1005 0.1026 0.0059*

2 100 0.1416 0.1348 0.0068 0.1857 0.1617 0.0076*

2 200 0.2373 0.2297 0.0083 0.3325 0.2750 0.0092*



CHAPTER 3

IMPACT OF COVARIANCE STRUCTURE

MISSPECIFICATION, DENOMINATOR DEGREES OF

FREEDOM AND ESTIMATION TECHNIQUE ON V#"

3.1 Introduction

 There has been considerable interest among researchers regarding an  statistic forV#

the linear mixed model.  However,  statistics for the linear mixed model are new statisticalV#

tools.  Edwards et al (2008) introduced a new  statistic in the linear mixed model,  forV V# #
"

fixed effects with many desirable features.  The  statistic has a semi-partial form as well asV"
#

a one-to-one correspondence with the Hotelling-Lawley trace multivariate measure of

association.  While the performance of  was examined when introduced, furtherV"
#

investigation is warranted.

3.1.1 Motivation

 Linear mixed models are an important tool used to analyze longitudinal data.  In

practice, when fitting a linear mixed model, if the model fails to converge, the common

practice is to simplify either the mean or the covariance model.  It is important to understand

what impact that change and potential misspecification has on the statistics being used to

analyze the data.  This chapter evaluates the impact of covariance structure misspecification

on .V"
#

 The denominator degrees of freedom methods and estimation techniques used to

define  are also evaluated.  When testing fixed effects in the linear mixed model forV"
#
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longitudinal data, the Kenward-Roger  statistic and corresponding denominator degrees ofJ

freedom should be calculated under REML estimation has been shown to have improved

Type I error rates (Kenward and Roger, 1997).  If inference for the fixed effects is not of

interest when using , then there is potential that  could be defined using otherV V" "
# #

denominator degrees of freedom methods and estimation techniques.  Therefore,

investigation into defining  for other denominator degrees of freedom methods andV"
#

estimation techniques is also important.

3.2 Notation DiscussionV"
#

 Edwards et al. (2008) proposed an  statistic for the fixed effects in the linear mixedV#

model.  The newly proposed  is as follows,V"
#

V œ
; � " J ßs s

" � ; � " J ßs s
"
#

�"

�"

� � Š ‹
� � Š ‹

/

/

" D

" D
.

T  will be expanded to take into account various linear mixed modelhe notation for the V"
#

conditions and assumptions.  implicit assumptions for the proposed Edwards et al. (2008) V"
#

are that the denominator degrees of freedom are known and the covariance structure is

correctly specified; therefore, the proposed  .    will be denoted asV"
# V Ð ß Ñ V Ð ßs ss s

" "
# # ‡
" D / " D¹ ¹

/Ñ will denote the multivariate measure of association under the assumption that the

denominator degrees of freedom are known and the true covariance structure is misspecified.

While it is true that there are some special cases of the linear mixed model and estimation

methods where the denominator degrees of freedom are known, it is more common that the

denominator degrees of freedom will have to be estimated from the data.   willV Ð ß ß Ñs s s"
# " D /

denote the multivariate measure of association when the denominator degrees of freedom are

estimated from the data and the covariance structure is correctly specified.  Similarly,

V Ð ß ß Ñs s s"
# ‡
" D /  will denote the multivariate measure of association when the denominator
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degrees of freedom are estimated from the data and the covariance structure is misspecified.

The primary focus of this chapter will be on deriving the asymptotic properties of

V Ð ß Ñs s
"
# ‡
" D /¹  for the four different denominator degrees of freedom methods.

 To further clarify notation, the denominator degrees of freedom methods used to

define  will be added.  The Kenward-Roger method denominator degrees of freedom willV"
#

be denoted as , the Satterthwaite method as , the residual method as , and the/ / /KR Sat Res

containment method as ./Contain

 3.3 Denominator Degrees of Freedom Methods

 There are several methods for determining the denominator degrees of freedom, , for/

the -statistic J which include residual, containment, Satterthwaite, and Kenward-Roger

method.  Section 1.4.3 provides a detailed review of those methods. An important distinction  

when comparing each of these methods is that when using the same estimation technique

(ML or REML), the residual, Satterthwaite, and containment methods all result in the same J

value.  These three methods only differ in the distribution to which they compare that

statistic.  For example, under the residual denominator degrees of freedom method, the J

statistic is compared to an  distribution with rank  numerator degrees of freedom andJ � �G

residual denominator degrees of freedom to compute the p-value.  Under most cases, the

Kenward-Roger  value differs from the other statistics because under this method, anJ

adjusted version of  is estimated.c d\ \w
= =

�"
D=
�"� �7s

3.3.1  Asymptotic Properties of the Denominator Degrees of Freedom Methods

 As mentioned in Section 2.5.2. the asymptotic properties of each denominator degrees

of freedom method varies.  The residual denominator degrees of freedom has a constant

formula for all complete and balanced designs.  The residual denominator degrees of freedom

formula is .  Therefore,/Res� �7 œ 87� ;
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lim lim
7 7Ä∞ Ä∞

/� �7
7 7

œ
87� ;

œ 8Þ

The asymptotic properties for specific mean models and covariance structures of other

denominator degrees of freedom methods are examined in Section 3.5.

 3.4 Covariance Structure Misspecification

 One of the simplest covariance structures used in the linear mixed model is the

compound symmetric covariance.  The compound covariance structure is denoted as

D3 8 8
# w #

8,CS œ � " �5 3 3 5 3 ‘� �" " M
3 33

 where  denotes the common variance,  denotes the

intraclass correlation, and  represents the number of repeated measures for subject .  Often8 33

researchers will use the compound symmetric covariance structure if there are problems with

model convergence when fitting the linear mixed model.  It is often overlooked as to the

consequences of covariance structure underspecification.  Gurka, Edwards, and Muller

(2011) describe the bias that arises in inference when underspecifying the covariance

structure as compound symmetric.

 Suppose the true model is a linear mixed model with a true covariance structure that

is not compound symmetric, but the model is fit using a compound symmetric structure.

Kistner and Muller (2004) have shown how the estimates of the common variance and

intraclass correlation can be derived from the unstructured REML estimates of .  Gurka,D3

Edwards and Muller (2011) provide the formulae,

5s œ
s

8
#

3tr
,

Š ‹D

3s œ
s s�

8 � " s

’ “Š ‹
� � Š ‹

" "8 3 3
w
8

3

D D

D

tr

tr
.
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Assume  and  is dominated by , then   where  denotesD Ds Ä 8 7 Ä œs3 3 :
#

8
# #5 5 5

tr
Miss Miss

� �D3

the asymptotic misspecified common variance.  Also under those assumptions,

3 3 3s Ä œ:
�

8�"
c d� �� � � �" "8 3 3

w
8

3

D D

D

tr

tr Miss Miss where  denotes the asymptotic misspecified intraclass

correlation.  Given the true covariance parameters, the asymptotic misspecified parameter

values can be calculated, and the asymptotic properties of  under misspecification can be V"
#

derived.

 3.5 Simulation Study

 The large simulation study used in Chapter 2 was used to examine the impact of

covariance structure misspecification for the various denominator degrees of freedom

methods.  Simulated data from a new covariance structure was added to this simulation study.

Covariance structure 3 is the structure which allows heterogeneity between the dichotomous

effect for the error variance, and has a random slope and a random intercept.  The covariance

parameter values are presented in Table 3.1.

3.5.1 Objectives

 The objectives of this simulation study is to examine the impact of covariance

structure misspecification, estimation technique, and denominator degrees of freedom

method on the large sample properties of V"
# .

3.5.2 Methods

 For each simulation study, eight different values of  are calculated by varying theV"
#

estimation technique and the denominator degrees of freedom methods when analyzing the

simulated data using the true mean model and covariance structure.  The simulated data are

also analyzed with incorrect covariance structures for each denominator degrees of freedom

method.
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 The asymptotic true V"
#  were calculated for each denominator degrees of freedom

method with a constant value across all replications with a positive definite Hessian matrix.

Table 3.2 provides the formula for calculating the denominator degrees of freedom based on

the subject sample size.  Details of the computation of the asymptotic true  follow exactly V"
#

as in Section 2.7.5.

 For some of the simulated models, the denominator degrees of freedom for Kenward-

Roger, and Satterthwaite are not constant across all 10,000 replications with a positive

definite Hessian matrix, but the residual and containment denominator degrees of freedom

are constant though.

 Figure 3.1-3.4 show the plot of the denominator degrees of freedom by subject sample

size each for a different simulation study.  For each of the figures, the prediction lines for

containment and residual denominator degrees of freedom represent a perfect fit, while, the

prediction lines for Kenward-Roger and Satterthwaite denominator degrees of freedom

represent a very nearly perfect fit.  From the figures, the ordering of the denominator degrees

of freedom methods increases from Satterthwaite to Kenward-Roger to containment to

residual.

3.5.2.1 Derivation of Asymptotic  for Misspecified Covariance Structure V"
#

 The true value of Covariance 2 D3 is

D3 3 %
w
3œ �^ ^ M” • � �5.79 -0.29

-0.29 0.03
1.72 .

The estimates of parameter in a misspecified compound symmetric structure defined in

Section 3.4 will converge to

5Miss
# 3

œ œ
tr

4
4.91

� �D

and
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3Miss œ œ
�c d� �� �" "8 3 3

w
8

3

D D

D

tr

3tr
0.61.

 The asymptotic values of when incorrectly assuming a compound symmetricV#" 

covariance structure can be calculated for this model using the same principles as outlined in

Chapter 2 with

D3 œ

Ô ×Ö ÙÖ Ù
Õ Ø

4.91 2.99 2.99 2.99

2.99 4.91 2.99 2.99

2.99 2.99 4.91 2.99

2.99 2.99 2.99 4.91

.

Note that 4.91(0.61) 2.99.  Similar analysis can be done for Covariance 3.5 3# œ œ

3.5.3 Results

3.5.3.1 ML |  vs. REML |V Ð ß Ñ V Ð ß Ñs ss s
" "
# #" D / " D /

 The comparison of the average ML V V" "
# # and the average REML  for a simulated

mean model and covariance structure are provided in Tables 3.3, 3.4, 3.5, 3.7, 3.8, 3.10, 3.11,

3.12, 3.14, 3.16, 3.17.  The 's are almost identical to the average REML average ML V V" "
# #

for all simulated models and covariance structures.  Even for those simulation studies with

low subject sample size, the REML 's were very similar to the ML 's for eachV V" "
# #

denominator degrees of freedom method.  The largest difference between the average ML V"
#

and the average REML  was 0.013 in the simulation study of Model III with Covariance 2V"
#

with 25 subjects using the residual method.

3.5.3.2 Asymptotic Properties of | V Ð ß Ñs s
"
# " D /

 The average simulated values of  are converging to the asymptotic  values forV V" "
# #

each denominator degrees of freedom method.  In addition, the asymptotic true  usingV"
#

residual denominator degrees of freedom is significantly smaller than the asymptotic true V"
#
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using the other denominator degrees of freedom methods as a result of the large difference in

lim
7Ä∞ 7

/Res� �7
 as compared to the other limits.

3.5.3.3 Asymptotic Properties of V Ð ß Ñs s
"
# " D /*|

 Figures 3.5-3.13 present the average  for each of the nine simulated models for theV"
#

four denominator degrees of freedom methods under REML estimation.  These figures also

show the average  under covariance structure misspecification for the four denominatorV"
#

degrees of freedom methods under REML estimation.  When the true covariance structure is

compound symmetric (Figures 3.5, 3.8, 3.11), if the covariance structure is overspecified, the

average  is substantially larger than the true  when using Kenward-Roger,V V" "
# #

Satterthwaite, and containment methods.  These findings are consistent with Kramer (2005)

who found that as the model complexity increased the two  statistics being evaluatedV#

increased.  In addition, the average  for the overspecified models are converging to aV"
#

different value than the average  for the Kenward-Roger, Satterthwaite, and containmentV"
#

methods.  The average  for the true model using residual method is fairly similar to theV"
#

average  using residual method for the overspecified models.V"
#

 When the simulated covariance structure contains a random intercept and a random

slope with hetereogeneous residual errors (Covariance 3 shown in Figures 3.7, 3.10, 3.13), if

the covariance structure is underspecified, the average  for the underspecified models isV"
#

substantially smaller than the average  for the true model using Kenward-Roger,V"
#

Satterthwaite, and containment methods.  The average  for the true model using residualV"
#

method is fairly similar to the average  using residual method for the overspecifiedV"
#

models.  Tables 3.18 and 3.19 show the true asymptotic  values of both the true covarianceV"
#

structure and the underspecified covariance structure using Kenward-Roger and residual

methods.  The impact of underspecification of covariance structure varies based on which

denominator degree of freedom method is used.
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 3.6 Conclusions and Discussion

 The results from the simulation study are valuable in illustrating the properties and

potential pitfalls of defining  using various denominator degrees of freedom methods andV"
#

estimation techniques.  For the simulation studies examined, the estimation technique does

not impact the values of  even for the smaller sample size simulations.  As assumed, theV"
#

V V" "
# # using REML estimation converges to the  using ML estimation.

 As suggested in Edwards et al. (2008), the convergence of  is clearly affected byV"
#

the choice of the denominator degrees of freedom method.   using residual degrees ofV"
#

freedom are consistently lower than the 's defined using other methods.V"
#

 Covariance structure misspecification greatly impacts the values of  usingV"
#

Kenward-Roger, containment and Satterthwaite degrees of freedom.  Conversely, the values

of  using the residual method are not greatly impacted by covariance structureV"
#

misspecification.  For the case of underspecified covariance structure, the true asymptotic

V Ð ß Ñ V Ð ß Ñs ss s
" "
# #" D / " D /*|  using Kenward-Roger is less than the true asymptotic |  using

Kenward-Roger.  For the case of underspecified covariance structure, the true asymptotic

V Ð ß Ñ V Ð ß Ñs ss s
" "
# #" D / " D /*|  using residual methods is greater than the true asymptotic |  using the

residual method.

 The impact of covariance structure misspecification on  has importantV"
#

implications.  Often, the true model is not known in practice; therefore, it is difficult to know

whether  is measuring the truth or is inflated or deflated as a result of covariance structureV"
#

misspecification if Kenward-Roger, Satterthwaite, or containment methods are used.

 Additionally,  statistics are often provided as a measure of effect size for a fixedV#

effect.  If the values of  are greatly affected by the covariance structure used, then  isV V" "
# #

not an accurate measure of the fixed effect size.  Since  using the residual method are notV"
#
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impacted by covariance structure misspecification, when using  to develop a model or as aV"
#

measure of effect size,  should be defined using the residual method.V"
#
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TABLES

Table 3.1 Additional simulated covariance parameter values

Covariance 3

 
     V

œ

œ

H

3
5

5

5 3

3 5

0

1

Int

Slope

#

#

#

#

0.44

2.66

” • ” •œ
!
!

3.89 - .16

-0.16 .03

Table 3.2  Formulas to compute the denominator degrees of freedom using subject

sample size for each simulation study

Kenward-Roger Satterthwaite Containment Residual

Model I

Cov 1

Model I

Cov 2

Model I

Cov 3
NC

/ / / /

/ / / /

œ $7� " œ $7� " œ $7� " œ %7� #

œ 7� " œ 7� " œ 7� " œ %7� #

* NC

Model II

Cov 1
3

Model II

Cov 2
3

Model II

Cov 3
NC NC

/ /

/ / / /

/ / / /

œ 7� " œ %7� #

œ #7� $Þ))*( œ œ $7� " œ %7�

œ "Þ$$ � #Þ(!%# œ 7� "Þ&!$$ œ #7 œ %7�

1.5001 2.9317�

/ /

/ / /

/ / /

/ /

œ #7 œ %7�

œ #Þ'%("7 � %Þ)!"* œ $7� # œ %7�

œ "Þ"&$) � $Þ&'%$ œ #7 œ %7�

œ #7 œ %7�

3

Model III

Cov 1
NC 4

Model III

Cov 2
NC 4

Model III

Cov 3
NC NC 4

*  Indicates that the denominator degrees of freedom are not constant across all replications with a positive

definite Hessian matrix.
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Table 3.3  True and simulated  values for Model I with Covariance 1 under REML andV#"

ML estimation when using different denominator degrees of freedom methods

Model I: Cov 11

All other All other REML ML

REML ML Residual Residual

25 subjects 0.396 0.396 0.333 0.336

50 subjects 0.394 0.394 0.330 0.331

100 subjects 0.394 0.394 0.328 0.329

200 subjects 0.393 0.393 0.328 0.328

500 subjects 0.392 0.392 0.327 0.327

1000 subjects 0.392 0.392 0.326 0.326

2000 subjects 0.392 0.392 0.326 0.326

5000 subjects 0.392 0.392 0.326 0.326

10000 subjects 0.392 0.392 0.326 0.326

Asymptotic  0.392 0.392 0.326 0.V#
" 326

1 Model I: Covariance 1 is the model which contains an intercept and a continuous time effect with a

compound symmetric covariance structure.
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Table 3.4  True and simulated  values for Model I with Covariance 2 under REML andV#"

ML estimation when using different denominator degrees of freedom methods

Model I: Cov 22

All other All other REML ML

REML ML Residual Residual

25 subjects 0.778 0.776 0.470 0.476

50 subjects 0.783 0.782 0.476 0.480

100 subjects 0.787 0.787 0.482 0.484

200 subjects 0.789 0.789 0.484 0.485

500 subjects 0.790 0.790 0.485 0.485

1000 subjects 0.790 0.790 0.485 0.485

2000 subjects 0.790 0.790 0.484 0.485

5000 subjects 0.790 0.790 0.484 0.484

10000 subjects 0.790 0.790 0.484 0.484

Asymptotic  0.790 0.790 0.484 0.V#
" 484

Table 3.5  True and simulated  values for Model I with Covariance 3 under REML andV#"

ML estimation when using different denominator degrees of freedom methods

Model I: Cov 33

REML ML REML ML

Contain Contain Residual Residual

25 subjects 0.862 0.867 0.611 0.621

50 subjects 0.863 0.866 0.613 0.618

100 subjects 0.864 0.865 0.614 0.616

200 subjects 0.863 0.864 0.612 0.614

500 subjects 0.862 0.863 0.610 0.611

1000 subjects 0.862 0.862 0.610 0.610

2000 subjects 0.862 0.862 0.609 0.610

5000 subjects - - 0.609 0.609

10000 subjects - - 0.609 0.609

Asymptotic  0.860 0.860 0.609 0.609V#
"

2  Model I: Covariance 2 refers to the mean model with an intercept and continous time effect with a

random intercept and a random slope and independent errors.

3  Model I: Covariance 3 refers to a mean model with an intercept and a continuous time effect and a

random intercept and a random slope with heterogeneous errors by group.
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Table 3.6  Average denominator degrees of freedom for Model II: Covariance 1 under REML

estimation from the simulation study results

Kenward-Roger Satterthwaite Containment

25 subjects 46.09 34.52 74

50 subjects 96.11 72.07 149

100 subjects 196.12 147.10 299

200 subjects 396.13 297.11 599

500 subjects 996.13 747.12 1499

1000 subjects 1996.13 1497.12 2999

2000 subjects 3996.13 2997.12 5999

5000 subjects 9996.13 7497.12 14999

10000 subjects 19996.13 14997.12 39997

Table 3.7  True and average simulated V#" values for Model II: Covariance 1 under

REML estimation for the denominator degrees of freedom methods

Kenward-Roger Satterthwaite Containment Residual

25 subjects 0.558 0.629 0.446 0.382

50 subjects 0.546 0.616 0.439 0.373

100 subjects 0.540 0.611 0.437 0.369

200 subjects 0.538 0.608 0.436 0.367

500 subjects 0.537 0.607 0.435 0.366

1000 subjects 0.536 0.606 0.435 0.366

2000 subjects 0.536 0.606 0.436 0.366

5000 subjects 0.535 0.606 0.434 0.366

10000 subjects 0.535 0.606 - 0.366

Asymptotic 0.535 0.606 0.434 0.366V#
"
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Table 3.8  True and average simulated V#" values for Model II: Covariance 1 under ML

estimation for the denominator degrees of freedom methods

Kenward-Roger Satterthwaite Containment Residual

25 subjects 0.548 0.619 0.452 0.388

50 subjects 0.541 0.612 0.442 0.376

100 subjects 0.538 0.609 0.438 0.371

200 subjects 0.537 0.607 0.436 0.368

500 subjects 0.536 0.607 0.435 0.367

1000 subjects 0.536 0.606 0.435 0.366

2000 subjects 0.536 0.606 0.436 0.366

5000 subjects 0.535 0.606 0.434 0.366

10000 subjects 0.535 0.606 - 0.366

Asymptotic 0.535 0.606 0.434 0.366V#
"

Table 3.9  Average denominator degrees of freedom for Model II: Covariance 2 under

REML estimation from the simulation study results

Kenward-Roger Satterthwaite Containment

25 subjects 30.62 23.49 50

50 subjects 63.96 48.50 100

100 subjects 130.63 98.50 200

200 subjects 263.97 198.50 400

500 subjects 663.97 498.50 1000

1000 subjects 1330.63 998.50 2000

2000 subjects 2663.97 1998.50 4000

5000 subjects 6663.97 4998.50 10000

10000 subjects 13330.63 9998.50 20000
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Table 3.10  True and average simulated V#" values for Model II: Covariance 2 under

REML estimation by the various denominator degrees of freedom methods

Kenward-Roger Satterthwaite Containment Residual

25 subjects 0.740 0.792 0.644 0.486

50 subjects 0.744 0.794 0.654 0.491

100 subjects 0.746 0.797 0.660 0.495

200 subjects 0.747 0.797 0.662 0.496

500 subjects 0.747 0.797 0.662 0.496

1000 subjects 0.747 0.797 0.662 0.496

2000 subjects 0.747 0.797 0.663 0.496

5000 subjects 0.747 0.797 - 0.495

10000 subjects 0.746 0.797 - 0.495

Asymptotic 0.746 0.797 0.660 0.500V#
"

Table 3.11  True and average simulated V#" values for Model II: Covariance 2 under ML

estimation by the various denominator degrees of freedom methods

Kenward-Roger Satterthwaite Containment Residual

25 subjects 0.740 0.786 0.650 0.493

50 subjects 0.741 0.792 0.657 0.495

100 subjects 0.745 0.796 0.662 0.497

200 subjects 0.747 0.797 0.663 0.497

500 subjects 0.747 0.797 0.663 0.497

1000 subjects 0.747 0.797 0.663 0.496

2000 subjects 0.747 0.797 0.663 0.496

5000 subjects 0.747 0.797 - 0.496

10000 subjects 0.746 0.797 - 0.495

Asymptotic 0.746 0.797 0.660 0.500V#
"
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Table 3.12  True and average simulated V#" values for Model II: Covariance 3 for the

various denominator degrees of freedom methods

REML ML REML ML

Contain Contain Residual Residual

25 subjects 0.772 0.780 0.639 0.649

50 subjects 0.774 0.778 0.637 0.642

100 subjects 0.776 0.779 0.637 0.640

200 subjects 0.775 0.777 0.635 0.637

500 subjects 0.775 0.776 0.634 0.634

1000 subjects 0.775 0.775 0.633 0.633

2000 subjects 0.775 0.775 0.633 0.633

5000 subjects - - 0.632 0.633

10000 subjects - - 0.632 0.632

Asymptotic True 0.772 0.772 0.632 0.632V#
"

Table 3.13  Average denominator degrees of freedom for Model III: Covariance 1 under

REML estimation from the simulation study results

Kenward-Roger Containment

25 subjects 61.35 73

50 subjects 127.55 148

100 subjects 259.92 298

200 subjects 524.63 598

500 subjects 1318.75 1498

1000 subjects 2642.28 2998

2000 subjects 5289.34 5998

5000 subjects 13230.52 14998

10000 subjects 26465.81 -
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Table 3.14  True and  values for Model III: Covariance 1 for theaverage simulated V#"

various denominator degrees of freedom methods

REML ML REML ML REML ML

KR KR Contain Contain Residual Residual

25 subjects 0.662 0.658 0.626 0.636 0.561 0.571

50 subjects 0.648 0.647 0.616 0.621 0.548 0.553

100 subjects 0.644 0.643 0.613 0.615 0.544 0.546

200 subjects 0.642 0.641 0.611 0.613 0.542 0.543

500 subjects 0.640 0.639 0.610 0.610 0.540 0.541

1000 subjects 0.639 0.639 0.610 0.610 0.540 0.540

2000 subjects 0.639 0.639 0.610 0.610 0.539 0.539

5000 subjects 0.639 0.639 0.609 0.610 0.539 0.539

10000 subjects 0.639 0.639 - - 0.539 0.539

Asymptotic 0.639 0.639 0.609 0.609 0.539 0.539V#
"

Table 3.15  Average denominator degrees of freedom for Model III: Covariance 2 under

REML estimation from the simulation study results

Kenward-Roger Containment

25 subjects 25.29 50

50 subjects 54.13 100

100 subjects 111.82 200

200 subjects 227.20 400

500 subjects 573.35 1000

1000 subjects 1150.28 2000

2000 subjects 2304.12 4000

5000 subjects 5765.66 10000

10000 subjects 11534.89 20000
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Table 3.16  True and  values for Model III: Covariance 2 for theaverage simulated V#"

different denominator degrees of freedom methods

REML ML REML ML REML ML

KR KR Contain Contain Residual Residual

25 subjects 0.866 0.863 0.774 0.783 0.642 0.655

50 subjects 0.863 0.862 0.778 0.783 0.642 0.649

100 subjects 0.863 0.863 0.781 0.784 0.644 0.648

200 subjects 0.864 0.864 0.784 0.785 0.646 0.648

500 subjects 0.863 0.863 0.784 0.785 0.646 0.647

1000 subjects 0.863 0.863 0.784 0.784 0.645 0.646

2000 subjects 0.863 0.863 0.784 0.784 0.645 0.645

5000 subjects 0.863 0.863 - - 0.645 0.645

10000 subjects 0.863 0.863 - - 0.645 0.645

Asymptotic 0.863 0.863 0.784 0.784 0.645 0.645V#
"

Table 3.17  True and average simulated V#" values for Model III: Covariance 3 for the

various denominator degrees of freedom methods

REML ML REML ML

Contain Contain Residual Residual

25 subjects 0.864 0.872 0.770 0.782

50 subjects 0.866 0.870 0.768 0.775

100 subjects 0.867 0.869 0.768 0.771

200 subjects 0.867 0.869 0.767 0.769

500 subjects 0.867 0.867 0.765 0.766

1000 subjects 0.867 0.867 0.765 0.765

2000 subjects 0.867 0.867 0.765 0.765

5000 subjects - - 0.764 0.765

10000 subjects - - 0.764 0.764

Asymptotic True 0.868 0.868 0.764 0.764V#
"
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Table 3.18  Average for the true simulated models and misspecified models with theirV#" 

corresponding asymptotic 'true' using Kenward-Roger methodV#" 

Model I: Cov 2 Model II: Cov 2 Model III: Cov 2

True Cov 1 True Cov 1 True Cov 1

25 subjects 0.7784 0.6060 0.7401 0.7145 0.8656 0.7842

50 subjects 0.7832 0.6030 0.7436 0.7081 0.8633 0.7756

100 subjects 0.7874 0.6027 0.7463 0.7052 0.8634 0.7719

200 subjects 0.7893 0.6022 0.7471 0.7031 0.8637 0.7703

500 subjects 0.7899 0.6022 0.7472 0.7022 0.8634 0.7694

1000 subjects 0.7899 0.6022 0.7467 0.7017 0.8631 0.7691

Theoretical 

Asymptotic V"
#� �/ :

0.7897 0.6020 0.7541 0.7089 0.8718 0.7788

Table 3.19  Average for the true simulated models and misspecified models with theirV#" 

corresponding asymptotic 'true' using the Residual methodV#" 

Model I: Cov 2 Model II: Cov 2 Model III: Cov 2

True Cov 1 True Cov 1 True Cov 1

25 subjects 0.4695 0.5385 0.4855 0.5494 0.6423 0.7030

50 subjects 0.4760 0.5340 0.4910 0.5451 0.6420 0.6942

100 subjects 0.4817 0.5329 0.4949 0.5432 0.6441 0.6905

200 subjects 0.4841 0.5320 0.4961 0.5414 0.6456 0.6890

500 subjects 0.4847 0.5319 0.4963 0.5408 0.6455 0.6881

1000 subjects 0.4847 0.5318 0.4956 0.5404 0.6451 0.6878

Theoretical 

Asymptotic V"
#� �/ :

0.4842 0.5315 0.5055 0.5491 0.6624 0.6999
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Table 3.20  Mean (Standard Deviation) of the REML Kenward-Roger denominator

degrees of freedom and  statistic for true mean models IJ
REML Kenward-Roger REML Kenward-Roger

Denomatinator Degrees of Freedom  statistic

Cov 1 Cov 2 Cov 3 Cov 1 Cov 2 Cov 3

True Model I: Covar

J

iance 1

 

25 74 (0) 24 (0) 22.8 (1.87) 50.6 (16.8) 42.1 (14.81) 41.0 (14.57)

50 149 (0) 49 (0) 47.4 (2.39) 99.1 (23.36) 87.3 (21.8) 86.0 (21.68)

100 299 (0) 99 (0) 97.2 (2.5) 196.1 (32.34) 178.4 (31.2) 177.3 (31.33)

200 599 (0) 199 (0) 197.0 (2.87) 390.6 (45.91) 366.7 (46.57) 365.5 (46.5)

500 1499 (0) 499 (0) 496.9 (2.99) 970.1 (71.45) 931.8 (73.55) 930.7 (73.7)

1000 2999 (0) 999 (0) 996.8 (3.11) 1938.5 (101.16) 1883.6 (105

 

.81) 1882.7 (105.69)

25 74 (0) 24 (0) 22.9 (1.93) 118.7 (31.48) 90.5 (27.7) 88.2 (27.11)

50 149 (0) 49 (0) 47.5 (2

True Model I: Covariance 2

 .37) 231.3 (44.05) 184.4 (42.54) 182.3 (42.06)

100 299 (0) 99 (0) 97.4 (2.6) 458.3 (60.69) 374.7 (62.14) 372.8 (61.83)

200 599 (0) 199 (0) 197.3 (2.56) 911.5 (85.9) 754.0 (91.11) 752.1 (90.8)

500 1499 (0) 499 (0) 497.3 (2.65) 2274.3 (136.3) 1884.9 (148.58) 1883.2 (148.58)

1000 2999

 

 (0) 999 (0) 997.2 (2.57) 4544.58 (190.23) 3765.5 (208.15) 3763.8 (208.09)

25 74 (0) 24 (0) 18.6 (3.03) 137.5 (3

True Model I: Covariance 3

8.43) 102.5 (33.84) 154.2 (51.06)

50 149 (0) 49 (0) 38.1 (4.55) 261.3 (51.14) 205.7 (48.16) 313.8 (77.1)

100 299 (0) 99 (0) 77.3 (6.38) 513.2 

 

(70.13) 417.2 (70.04) 633.4 (113.23)

200 599 (0) 199 (0) 156 (9.24) 1022.6 (100.3) 846.7 (105.55) 1262 (162.26)

500 1499 (0) 499 (0) 392.5 (1 4.54) 2543.2 (155.41) 2129 (173.89) 3132.4 (249.6)

1000 2999 (0) 999 (0) 786.6 (20.43) 5079.0 (221.75) 4255.8 (255.54) 6247.9 (352.82)



92

Table 3.21  Mean (Standard Deviation) of the REML Kenward-Roger denominator

degrees of freedom and  statistic for true mean models IIJ
REML Kenward-Roger REML Kenward-Roger

Denomatinator Degrees of Freedom  statistic

Cov 1 Cov 2 Cov 3 Cov 1 Cov 2 Cov 3

True Model II: Cova

J

riance 1

 

25 46.1 (0) 30.6 (0) 29.4 (1.61) 30.6 (9.3) 25.9 (8.18) 25.3 (8.09)

50 96.1 (0) 64 (0) 62.4 (1.87) 59.1 (12.6) 52.7 (11.94) 52 (11.81)

100 196.1 (0) 130.6 (0) 128.9 (1.88) 116.7 (17.66) 108 (17.28) 107.4 (17.17)

200 396.1 (0) 264 (0) 262.1 (2.01) 231.9 (24.73) 219.6 (24.92) 218.9 (24.75)

500 996.1 (0) 664 (0) 662.1 (1.99) 578 (38.42) 558.6 (39.63) 558 (39.48)

1000 1996.1 (0) 1330.6 (0) 1328.7 (2.02) 1153.2 (54.76) 1124.5 (56.71) 1124 (56.7)

25 46.1 (0) 30.6 (0) 29.3 (1.63) 60.4 (15.66) 46.5 (13.81) 45.6 (13.54)

50 96.1 (0

True Model II: Covariance 2

) 64 (0) 62.2 (1.92) 119.3 (21.77) 95.9 (20.52) 95 (20.29)

100 196.1 (0) 130.6 (0) 128.2 (2.03) 237.4 (30.77) 195.7 (30.86) 194.9 (30.76)

200 396.1 (0) 264 (0) 260.4 (2.27) 471.8 (42.75) 393.8 (45.72) 392.9 (45.75)

500 996.1 (0) 664 (0) 657.3 (2.75) 1177.2 (67.87) 985.3 (74.52) 984.5 (74.56)

1000 1996.1 (0) 1330.6 (0) 1318.8 (3.34) 2351 (96.84) 1965.1 (106.04) 1964.3 (106.09)

25 46.1 (0) 30

True Model II: Covariance 3

.6 (0) 25.2 (2.98) 70.4 (19.09) 53.3 (16.4) 85.3 (27.07)

50 96.1 (0) 64 (0) 52.3 (4.32) 134.3 (25.86) 106.7 (23.64) 172.5 (40.62)

100 196.1 (0) 130.6 (0) 107.6 (6.12) 265.8 (35.56) 218.6 (35.51) 348.9 (60.27)

200 396.1 (0) 264 (0) 218.1 (8.61) 528.9 (50.05) 442.9 (52.12) 694 (84.52)

500 996.1 (0) 664 (0) 549.5 (13.53) 1318.5 (79.69) 1115.2 (87.27) 1727.1 (132.23)

1000 1996.1 (0) 1330.6 (0) 1102.8 (19.45) 2633.8 (110.61) 2230.8 (125.94) 3446.2 (188.87)
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Table 3.22  Mean (Standard Deviation) of the REML Kenward-Roger denominator

degrees of freedom and  statistic for true mean models IIIJ
REML Kenward-Roger REML Kenward-Roger

Denomatinator Degrees of Freedom  statistic

Cov 1 Cov 2 Cov 3 Cov 1 Cov 2 Cov 3

True Model III: Cov

J

ariance 1

25 61.3 (0) 25.3 (0) 23 (1.8) 41.6 (9.94) 35.7 (9.15) 35.7 (9.38)

50 127.6 (0) 54.1 (0) 49.4 (1.99) 79.8 (13.14) 71.9 (12.91) 71.9 (13.14)

100 259.9 (0) 111.8 (0) 102.3 (2.2) 158.1 (18.78) 147.5 (18.95) 147.5 (19.29)

200 524.6 (0) 227.2 (0) 208 (2.62) 314.3 (26.16) 298.8 (27.62) 299 (27.85)

500 1318.8 (0) 573.4 (0) 524.6 (3.35) 781.5 (40.58) 757.1 (42.89) 757.4 (43.3)

1000 2642.3 (0) 1150.3 (0) 1051.3 (4.41) 1561.6 (57.38) 1527.4 (61.68) 1527.6 (62.39)

25 61.3 (0) 25.3 (0) 23.2 (1.63) 77.1 (16.92) 57.7 (15.53) 57.9 (1

True Model III: Covariance 2

5.96)

50 127.6 (0) 54.1 (0) 50 (1.97) 149.6 (23.09) 117.7 (22.84) 117.9 (23.44)

100 259.9 (0) 111.8 (0) 103.8 (2.38) 295.8 (32.48) 239.9 (34.86) 240.3 (35.24)

200 524.6 (0) 227.2 (0) 211.6 (3.08) 589.1 (45.82) 484.5 (51.66) 485 (52.18)

500 1318.8 (0) 573.4 (0) 535.5 (4.52) 1469 (71.1) 1213.1 (83.11) 1213.7 (83.7)

1000 2642.3 (0) 1150.3 (0) 1075.6 (5.98) 2935.7 (100.51) 2422.6 (116.92) 2423.4 (117.73)

True Model III: Covariance 3

25 61.3 (0) 25.3 (0) 23.2 (1.63) 88.9 (20.7) 64.8 (18.34) 57.9 (15.96)

50 127.6 (0) 54.1 (0) 50 (1.97) 168.3 (27.12) 130.6 (26.44) 117.9 (23.44)

100 259.9 (0) 111.8 (0) 103.8 (2.38) 332.5 (37.03) 266.9 (39.39) 240.3 (35.34)

200 524.6 (0) 227.2 (0) 211.6 (3.08) 661.8 (53.09) 543.4 (59.36) 485 (52.18)

500 1318.8 (0) 573.4 (0) 535.5 (4.52) 1647.4 (83.59) 1367.8 (99.31) 1213.7 (83.69)

1000 2642.3 (0) 1150.3 (0) 1075.6 (5.98) 3291.7 (118.12) 2738.4 (142.44) 2423.4 (117.73)
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Figure 3.1  Plot of Kenward-Roger, Satterthwaite, containment and residual denominator

degrees of freedom methods by subject sample size with prediction lines for each method for

Model II: Covariance 1

Kenward-Roger:  y = 2m - 3.8897

Satterthwaite:  y = 1.5001m - 2.931

Residual:  y = 4m - 3

Containment:  y = 3m - 1
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Figure 3.2.  Plot of Kenward-Roger, Satterthwaite, containment and residual denominator

degrees of freedom methods by subject sample size with prediction lines for each method for

Model II: Covariance 2

Kenward-Roger:  y = 1.3333x - 2.7042

Satterthwaite:  y = 1x - 1.5033

Containment:  y = 2x

Residual :  y = 4x - 3
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Figure 3.3.  Plot of Kenward-Roger, containment and residual denominator degrees of

freedom methods by subject sample size with prediction lines for each method for Model III:

Covariance 1

Kenward-Roger:  y = 2.6471x - 4.8019

Containment:  y = 3x - 2

Residual:  y = 4x - 4
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Figure 3.4.  Plot of Kenward-Roger, containment and residual denominator degrees of

freedom methods by subject sample size with prediction lines for each method for Model III:

Covariance 2

Kenward-Roger:  y = 1.1538x - 3.5643

Containment:  y = 2x

Residual:  y = 4x - 4
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CHAPTER 4

SEMI-PARTIAL  AND FIXED EFFECTS MODELV"
#

SELECTION USING V"
#

 4.1 Introduction

 There is an increasing desire for a universal V# statistic for the linear mixed model.

There are many proposed  statistics available for testing the fixed effects of linear mixedV#

models.  Unfortunately, as Kramer (2005) has suggested, a universal  statistic for the linearV#

mixed model may not be possible due to the complexity of the model and its assumptions.  In

fact, most likely, an  statistic for the linear mixed model will have to be chosen based onV#

the properties for which the investigator is interested.  As a result, properties of these V#

statistics will aid in determining which  statistic to use.V#

 Another consideration when choosing an V# statistic for the linear mixed model is to

choose the statistic based on the purpose for which it is intended.   statistics serve manyV#

functions.  They are model selection tools, goodness of fit measures and measures of effect

size (express the strength of a relationship between response and predictor).  Therefore, it is

important that the performance of   statistics in the linear mixed model is evaluated as aV#

model selection tool, goodness of fit measure and effect size.

 4.2 Semi-partial V"
#

4.2.1 Notation
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 The semi-partial V L À œ ! 4 − "ß ÞÞÞß ; � ""
#

! 4 is defined for the hypothesis  for " e f
where an individual fixed effect is being tested.  If  is defined as the Wald-type  statisticJ J4

for the  fixed effect with corresponding denominator degrees of freedom , then the semi-4th /4

partial  is V"
#

/

/

�"
4 4

�"
4 4

J

" � J
.

More generally, if there is a test of a group of variables, or a contrast, resulting from an J

statistic, a corresponding semi-partial  can be calculated.  The semi-partial  allows V V"
# #

researchers to assess the relationship between a subset of predictors and the response adjusted

for other predictors in the model.  It represents the partial multivariate association between

the repeated outcomes and one predictor after controlling for the effect of the other predictor.

 4.3 Model Selection Methods

 Model selection is a fundamental part of statistical analysis because researchers are

often trying to build the best model to answer research questions.  Muller and Fettermann

(2002, pg 224) outline a process for model selection in the linear univariate model.  Hosmer

and Lemeshow (2000, Chapter 4) provide model selection techniques for logistic regression.

Cheng et al (2010) outline model selection in the linear mixed model.  Model selection in the

linear mixed model is more complex than in the linear univariate model since both the

covariance structure and mean model need to be chosen.

 Information criteria are often used to choose the covariance structure in the linear

mixed model and are becoming an increasingly popular fixed effects model selection tool.

4.3.1   Information Criteria
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 There are several different fit criteria which include: Akaike's Information Criteria

(AIC) (Akaike, 1974), (AICC) (Hurvich and Tsai, 1989), Schwarz Bayesian Criterion (BIC)

(Schwarz, 1978), (CAIC) (Bozdogan, 1987), and (HQIC).  The criteria will not necessarily

choose the best structure nor will they agree on the choice of the covariance structure.

 A majority of the research regarding information criteria compares the AIC with the

BIC, and the results are varied.  Keselman, Algina, Kowalchuk and Wolfinger (1998) have

shown that the BIC criterion selects the more parsimonious model as a result of its larger

penalty term.  Ferron et al. (2002) found AIC outperformed BIC in all of their simulation

studies.  The performance of these criteria improved with increasing sample size and level of

autocorrelation.  Ferron et al. (2002) investigated the sensitivity of various information

criteria to misspecifications of the covariance structure.  They found that data simulated from

a first order autoregressive structure, the success rate of identifying the correct covariance

structure for AIC was 71% and the success rate for BIC was 45%.  Gomez et al (2005)

generated data from fifteen covariance structures and found that performance of AIC and BIC

depends on the sample size and complexity of the covariance structure.  As these studies

indicate, the performance of the information criteria is greatly dependent upon the linear

mixed model being simulated.

 4.4 An Adjusted  for Fixed Effects Model SelectionV"
#

 Morrison (1990) has shown that the null expectation of  in linear regression usingV#

least squares estimation is

I V l œ  !
; � "

R � "
Š ‹# L À œ !! 3#lC \ .

When the total number of observations,  is small, there is potential for large bias.  TheR

adjusted   isV#
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V œ " �
" � V R � "

R � ;A
#

#

 ,
� �� �� �

and under the null hypothesis,

I V l œ " �
R � " I " � V

R � ;

œ " �
R � " � R � " I V

R � ;

œ " �
R � " � ; � "

R � ;

œ !

ˆ ‰ � � � �� �� � � � � �� �� � � �� �

A
#

#

#

L!

.

  

 From Chapter 2, the approximate Beta distribution expectation under the null

hypothesis is,

I V ‘¸
"
#� �/ L! œ  !

; � "

; � �/ 1
.

If the denominator degrees of freedom is small, there is potential for large bias.  Therefore,

using similar process as in the linear univariate model, an adjusted version of V#" is

V œ " �
V

#
#

"
"

adj
� � � �
/

/ ‘� �" � ; � " � 
,

/

/

where,

I V
V

V

’ “¸
 ‘"

"

"

adj

#
#

#

� � � �
� �

/
/

/

L! œ " �
I " � ; � " �

œ " �
; � " � � ; � " � I
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 4.5 Real World Examples
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4.5.1 Data Background 

 The data from Potthoff and Roy (1964) described in Section 2.3.1.1 are used to

illustrate the performance of the semi-partial  for various denominator degrees of freedom V"
#

methods.  Linear mixed models were fit with linear age and gender effect for three different

covariance structures.  The three covariance structures are the same as the simulation study

presented in Section 2.7.1.  Model 's and semi-partial  for both gender and age were  V V" "
# #

calculated for Kenward-Roger, Satterthwaite, and residual denominator degrees of freedom.

4.5.2 : ResultsSemi-partial V"
#

 Table 4.1-4.3 provide the semi-partial and model  for the mean model with three V"
#

different covariance structures.  The semi-partial  for age is greater than the semi-partial V"
#

V"
#  for gender for all denominator degrees of freedom methods and covariance structures.

Both semi-partial 's are almost equivalent for the Kenward-Roger and Satterthwaite V"
#

methods whereas, the semi-partial 's for the residual method are smaller.  The semi-partialV"
#

V"
# 's for gender when using Kenward-Roger and Satterthwaite vary from 0.20 to 0.27 across

the three covariance structures used.  The semi-partial  for age when using Kenward- V"
#

Roger and Satterthwaite vary from 0.59 to 0.85 across the three covariance structures used.

The semi-partial  for age when using the residual method vary from 0.45 to 0.52 across the V"
#

three covariance structures used.

 One of the problematic results is that when using the Kenward-Roger method, the

model  is smaller than the semi-partial  for age for the two complex covariance  V V" "
# #

structures.  The same misalignment is not present for the  using residual and SatterthwaiteV"
#

denominator degrees of freedom methods.

 4.6 Simulation Study for Semi-partial V"
#
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4.6.1  Objectives and Methods

 The large scale simulation study summarized in Chapter 2 is used to assess the semi-

partial forms of  for the four denominator degrees of freedom methods.  The simulationsV"
#

for mean Model II with the three different covariance structures will be analyzed according to

their true model.  Semi-partial  for the continuous time effect and the model  using theV V" "
# #

four denominator degrees of freedom methods are computed.

 The purpose of this study is to compare the semi-partial  for the continuous timeV"
#

effect and the model  and examine under which linear mixed model settings andV"
#

denominator degrees of freedom methods the semi-partial  is larger than the model .V V" "
# #  

4.6.2  Results

 Table 4.4 provides the differences between the model  and the semi-partial  forV V" "
# #

the continuous time effect along with the minimum and maximum values of the difference

across all 10,000 replications when the true model was fit to the data.  Table 4.5 provides the

proportion of times the semi-partial V V" "
# # for the continuous time effect exceeds the model .

For Model II with Covariance 1, the model  is always greater than the semi-partial  forV V" "
# #

all denominator degrees of freedom methods and estimation techniques.

 For Model II with Covariance 2, for the simulation studies with 100 subjects or more,

the   was always less than the semi-partial 's for the continuous time effect when model V V" "
# #

using Kenward-Roger and containment methods.  When using Satterthwaite and residual

methods, the model  was always greater than the semi-partial  for the continuous timeV V" "
# #

effect.

 For Model II with Covariance 3 using the Kenward-Roger method, for simulation

studies with 500 subjects or more, the model  was always less than the semi-partial 'sV V" "
# #

for the continuous time effect.  When using the residual method, the model  was alwaysV"
#

greater than the semi-partial 's for the continuous time effect.  When using theV"
#
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Satterthwaite method, there was no consistent relationship between the model  and theV"
#

semi-partial  for the continuous time effect (The difference was not either positive orV"
#

negative across all 10,000 replications.)  For simulation studies with 50 subjects or more,

when using the containment method, the model  was always less than the semi-partial 'sV V" "
# #

for the continuous time effect.

4.6.3 Discussion

 The misalignment of the semi-partial  in relation to the model is not a desirable V"
#

property of the statistic.  If the semi-partial  is greater than the model , it suggests that  V V" "
# #

the partial multivariate association between the repeated outcomes and one predictor after

controlling for the effect of the other predictor is greater than the multivariate association

between the repeated outcomes and both of the predictors.

 For the Kenward-Roger, Satterthwaite and containment methods, there were

simulations where the model  was less than the semi-partial  for the continuous time  V V" "
# #

effect.  The  using the residual method was the only method where the model  was  V V" "
# #

never less than the semi-partial  for the continuous time effect.  Therefore, it is possible V"
#

that the semi-partial  should be defined using the residual method to avoid any V"
#

misalignment.

 Before that recommendation can be made further research is necessary to determine

whether the values of the semi-partial  using the residual method are true effect sizes. V"
#

Researchers use the semi-partial  as a measure of effect size associated with a statistical V"
#

test.  Therefore, measuring the magnitude of the association is very important.  Edwards et al.

(2008) has shown that for cases where a multivariate linear hypothesis can be written as a

linear mixed model hypothesis, the Hotelling-Lawley trace measure of association is a one-

to-one function of  defined using Kenward-Roger denominator degrees of freedom. V"
#
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 4.7 Simulation Study assessing  as a Model Selection ToolV"
#

 Throughout the model selection process, there are four different mean models and

three covariance structures being evaluated.  Thus, the maximum model contains four

covariates consisting of an intercept, a binary effect, and a continuous time effect and their

interaction.  The maximum model is denoted as Model III.

4.7.1 Objectives

 The overall goal of this simulation study is to determine whether either V"
#� �/  or

V#"adj
� �/  is a reliable mean model selection tool and evaluate the impact of the denominator

degrees of freedom method used to define these statistics.  Four denominator degrees of

freedom methods will be evaluated including: residual, containment, Satterthwaite and

Kenward-Roger methods.

4.7.2 Scenario 1: Model Selection for Known Covariance Structure

 Four candidate models were fit for each of the 10,000 replications of each simulation

study.  These candidate models were fit using REML estimation and four denominator

degrees of freedom methods.  The candidate models consisted of:

 (1)  An intercept and slope model

 (2)  An intercept and group effect model

 (3)  An intercept, slope, and group effect model

 (4)  An intercept, slope, group effect and group slope interaction.‚

The mean model corresponding to the largest  and  was selected for eachV V" "
# #� � � �/ /

adj

denominator degrees of freedom method. 

4.7.2.1 Results
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 Table 4.6-4.8 shows the accuracy of V V" "
# #� � � �/ / and  for each denominator degrees

adj

of freedom method at selecting the true mean model when the covariance structure is

assumed known.  Table 4.6 provides the performance when the true model was simulated

with only a continuous time effect (Mean Model I) for three covariance structures.  As the

subject sample size increases,  performance improved for all denominator degrees ofV"
#� �/

freedom methods.  The performance of the  were relatively constant for theV#"adj
� �/

containment and residual methods.

 Performance of  and  varied greatly based on the true covarianceV V" "
# #� � � �/ /

adj

structure.   for all of the denominator degrees of freedom performed very poorly for theV"
#� �/

simplest covariance structure (Covariance 1).  For the more complex covariance structures,

the performance of the unadjusted versions using Kenward-Roger and containment

denominator degrees of freedom improved dramatically.  For each denominator degrees of

freedom method, using  improved the performance as compared to the correspondingV#"adj
� �/

V"
#� �/ .

 Table 4.7 shows the results of the true mean model with a binary and a continuous

time effect (True Mean Model II).  For the simplest covariance structure (Covariance 1), the

unadjusted versions of Kenward-Roger and Satterthwaite V"
#� �/  performed well in selecting

the true model while the unadjusted versions of the containment and residual V"
#� �/

performed poorly.  The performance for each denominator degrees of freedom method was

improved in the adjusted versions.  For the more complex covariance structures (Covariance

2 and 3),  and  using Kenward-Roger and containment were outperformed byV V" "
# #� � � �/ /

adj

the  and  using Satterthwaite and residual.V V" "
# #� � � �/ /

adj

 Table 4.8 shows the results of the true mean model with a binary effect, continuous

time effect and their interaction (True Mean Model III).  For the simplest covariance

structure, the unadjusted versions of containment or residual performed well in seected the

true model while the unadjusted versions of Kenward-Roger and Satterthwaite performed
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poorly.  The performance for each denominator degrees of freedom method was not

improved in the adjusted versions.  For more complex covariance structures,  andV"
#� �/

V"adj

# � �/  using residual outperformed the other denominator degrees of freedom methods.  For

each denominator degrees of freedom method, using  did not improve theV"adj

# � �/
performance as compared to .V"

#� �/

4.7.3 Scenario 2: Complete Model Selection

 Although interest is focused on the fixed effects, the covariance structure is important

for accurate inference on the fixed effects (Verbeke and Molenberghs, 2000, p. 62).  Thus,

the complete model selection process will be examined.  The complete model selection

process highlighted in Cheng et al (2010) will be conducted for each simulation replication.

First, the covariance structure for the maximum mean model will be selected using AIC and

BIC separately under REML.  Then,  defined using residual and Kenward-RogerV#"adj
� �/

denominator degrees of freedom will be used as a criterion for selecting the mean model.

4.7.3.1 Covariance Structure Selection: Results

 The true covariance structure is not known in real world applications of the linear

mixed model.  In fact, for small samples, there is not a universally accepted method used to

identify the best covariance models (Gurka, 2006).

 Tables 4.9-4.17 present the covariance structure selected using AIC, AICC, CAIC,

BIC, and HQIC for the nine simulated models.  For the simulated models with the simplest

covariance structure (Covariance 1), the CAIC performed the best out of the five different

criteria examined.  The BIC performed similarly with the percentage of replications selecting

the true model tending to 100%.  For simulations with Covariance 2, the information criteria

performed poorly for the smaller subject sample sizes but performance greatly improved for

the larger subject sample sizes.  For the simulated models with the most complex covariance
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structure (Covariance 3), all of the information criteria accurately selected the true covariance

structure.

4.7.3.2 Mean Model Selection: Results

 The complete model selection results using AIC and BIC are presented in this chapter.

Table 4.18-4.20 present the results for the complete model selection process when using AIC

to choose the covariance structure.  Table 4.21-4.23 present the results for the complete

model selection process when using BIC to choose the covariance structure.  The complete

model selection results using AIC to first select the covariance structure were very similar to

the complete model selection results using BIC.

 The performance of REML KR V#"adj
� �/  in selecting the true mean model when the

covariance was chosen with either AIC or BIC was not very consistent.  Under certain

simulation conditions, the  performed very well and others very poorly.REML KR V#"adj
� �/

The performance of  varied based on the true mean model, and the trueREML KR V#"adj
� �/

covariance structure.  Conversely, the performance of  was fairlyREML residual V#"adj
� �/

consistent.  The  selected the true mean model approximately 50% ofREML residual V#"adj
� �/

the time when the true model had continuous time effect and was not dependent upon the true

covariance structure.  The performance of  improved as theREML residual V#"adj
� �/

complexity of the true model increased.

 4.8 Conclusions and Discussion

 This study investigated the appropriateness of using V#" as a model selection tool and

an adjusted version of  was created to aid in model selection.  In addition, investigationV#"

was conducted as to defining  and the adjusted version using three other denominatorV#"

degrees of freedom methods.
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 Although this simulation study was based on model selection for a maximum model

of only three covariates, there is evidence to suggest fixed effects model selection in the

linear mixed model should be conducted using the adjusted .  The unadjusted  for allV V# #
" "

denominator degrees of freedom do not perform consistently as a fixed effects model

selection tool.  The adjusted  improved performance of its corresponding unadjusted formV#"

for most of the simulations.  In addition, for purposes of model selection, there is evidence

that the adjusted  should be defined using REML estimation with residual denominatorV#"

degrees of freedom.  The adjusted  using REML with residual denominator degrees ofV#"

freedom performed the most consistently for each of the simulation study scenarios.

 All of the information criteria performed poorly for the small subject sample size and

simpliest covariance structure simulations.  As the subject sample size increased, the

performance of the information criteria improved.  While covariance structure selection is not

the primary focus of this paper, it has a direct impact on the mean model selection.  Research

has indicated that covariance structure greatly impacts the values of V#" and thus future work

is necessary.
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TABLES

Table 4.1  Semi-partial  and model  using Kenward-Roger  using REMLV V J" "
# #

estimation for the dental data with Model II for three covariance structures

Cov    Variable                        Semi-Partial Model 

1 Gender 9.29 25.0 0.27 0.71

Age 114.84 80.0 0.59

2 Gender 7.34 25.0 0.23 0.7

J V V/ " "
# #

3

Age 85.85 26.0 0.77

3 Gender 6.24 25.2 0.20 0.81

Age 87.38 16.9 0.84

Table 4.2  Semi-partial  and model  using REML estimation with SatterthwaiteV V" "
# #

denominator degrees of freedom for the dental data with model II for three covariance

structures

Cov    Variable                        Semi-Partial Model 

1 Gender 9.29 25.0 0.27 0.77

Age 114.84 80.0 0.59

2 Gender 8.02 25.0 0.24 0.7

J V V/ " "
# #

9

Age 85.85 26.0 0.77

3 Gender 6.73 25.2 0.21 0.85

Age 93.74 16.9 0.85

Table 4.3  Semi-partial  and model  using REML estimation with the Residual degreesV V" "
# #

of freedom for the dental data with model II for three covariance structures

Cov    Variable                        Semi-Partial Model 

1 Gender 9.29 105 0.08 0.54

Age 114.84 105 0.52

2 Gender 8.02 105 0.07 0.47

Ag

J V V/ " "
# #

e 85.85 105 0.45

3 Gender 6.73 105 0.06 0.51

Age 93.74 105 0.47
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Table 4.4  Average (Minimum, Maximum) difference between model V"
#  and

semi-partial V"
#  for the continuous time effect across all 10,000 simulations

using REML estimation in Model II

Kenward-Roger Satterthwaite Containment Residual

Model II: Covariance 1

25 subjects 0.16 (0.08, 0.39) 0.23 (0.14, 0.44) 0.05 (0.00, 0.29) 0.05 (0.00, 0.27)

50 subjects 0.15 (0.10, 0.28) 0.22 (0.16, 0.35) 0.05 (0.00, 0.17) 0.04 (0.00, 0.15)

100 subjects 0.14 (0.11, 0.23) 0.21 (0.18, 0.29) 0.04 (0.01, 0.12) 0.04 (0.01, 0.11)

200 subjects 0.14 (0.11, 0.20) 0.22 (0.18, 0.27) 0.04 (0.01, 0.10) 0.04 (0.01, 0.09)

500 subjects 0.14 (0.12, 0.17) 0.21 (0.19, 0.24) 0.04 (0.02, 0.07) 0.04 (0.02, 0.07)

1000 subjects 0.14 (0.13, 0.17) 0.21 (0.20, 0.24) 0.04 (0.03, 0.06) 0.04 (0.03, 0.06)

25 subjects -0.04 (-0.06, 0.08) 0.02 (0.00, 0.15) -0.13 (-0.18, -0.02) 0.02 

Model II: Covariance 2

(0.00, 0.13)

50 subjects -0.04 (-0.07, 0.03) 0.01 (0.00, 0.09) -0.13 (-0.17, -0.06) 0.01 (0.00, 0.11)

100 subjects -0.04 (-0.06, -0.02) 0.01 (0.00, 0.04) -0.13 (-0.16, -0.10) 0.01 (0.00, 0.05)

200 subjects -0.04 (-0.06, -0.03) 0.01 (0.00, 0.03) -0.13 (-0.15, -0.10) 0.01 (0.00, 0.04)

500 subjects -0.04 (-0.05, -0.03) 0.01 (0.00, 0.02) -0.13 (-0.14, -0.10) 0.01 (0.00, 0.03)

1000 subjects -0.04 (-0.05, -0.04) 0.01 (0.00, 0.01) -0.13 (-0.14, -0.12) 0.01 (0.01, 0.02)

25 subjects -0.02 (-0.07, 0.08) 0.00 (-0.03, 0.11) -

Model II: Covariance 3

0.09 (-0.17, 0.01) 0.03 (0.00, 0.19)

50 subjects -0.02 (-0.06, 0.04) 0.00 (-0.02, 0.06) -0.08 (-0.14, -0.02) 0.03 (0.00, 0.14)

100 subjects -0.02 (-0.05, 0.01) 0.00 (-0.01, 0.04) -0.08 (-0.13, -0.05) 0.03 (0.00, 0.09)

200 subjects -0.02 (-0.04, 0.00) 0.00 (-0.01, 0.02) -0.08 (-0.11, -0.05) 0.03 (0.01, 0.07)

500 subjects -0.02 (-0.03, -0.01) 0.00 (-0.01, 0.01) -0.08 (-0.10, -0.06) 0.03 (0.02, 0.05)

1000 subjects -0.02 (-0.03, -0.01) 0.00 (-0.01, 0.01) -0.08 (-0.09, -0.07) 0.03 (0.02, 0.05)
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Table 4.5  Proportion of times the semi-partial V"
#  for the continuous time effect exceeds the

model V"
#  across all 10,000 simulations using REML estimation in Model II with Covariance

2 and Covariance 3

Kenward-Roger Satterthwaite Containment Residual

Model II: Covariance 2

25 subjects 98.68 0 100 0

50 subjects 99.95 0 100 0

100 subjects 100 0 100 0

200 subjects 100 0 100 0

500 subjects 100 0 100 0

1000 subjects 100 0 100 0

25 subjects 91.17 44.33 99.99 0

50 subjects 95.98 4

Model II: Covariance 3

2.70 100 0

100 subjects 99.46 40.87 100 0

200 subjects 99.98 39.78 100 0

500 subjects 100 35.52 100 0

1000 subjects 100 29.96 100 0
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Table 4.6  Percentage of the correct mean model selected using different denominator

degrees of freedom methods when defining  and an adjusted  for each of theV V" "
# #

denominator degrees of freedom methods for mean model I with three different covariance

structures

7
REML REML REML REML Adjusted

KR Sat Contain Residual REML KR
  

Adjusted Adjusted Adjusted

REML REML REML

Sat Contain Residual

Model I: Covariance 1

25 0.06 0.06 0.01 0 0.22 0.22 63.96 52.45

50 0 0 0 0 0 0 63.89 51.25

100 0 0 0 0 0 0 64.19 51.42

200 0 0 0 0 0 0 63.69 51.49

500 0 0 0 0 0 0 64.33 52.06

1,000 0 0 0 0 0 0 63.85 51.88

25 70.66 2.01 99.99 0.09 77.63 65.03 99.99 47.52

50 86.06 0.86 100 0 87.51 76.69 100 47.93

100 94.81 0.08 100 0 94.9 85.56 100 48.7

Model I: Covariance 2

7

200 99.17 0.01 100 0 99.17 89.69 100 47.86

500 99.98 0 100 0 99.98 90.88 100 48.82

1000 10000 0 100 0 100 91.1 100 48.92

25 92.13 89.8 9

Model I: Covariance 3

9.99 0.65 92.62 92.16 99.99 48.3

50 98.28 98.02 100 0.11 98.28 98.22 100 47.81

100 99.9 99.9 100 0.03 99.9 99.9 100 49.08

200 100 100 100 0 100 100 100 49.74

500 100 100 100 0 100 100 100 50.01

1,000 100 100 100 0 100 100 100 49.45
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Table 4.7  Percentage of the correct mean model selected using different denominator

degrees of freedom methods when defining  and an adjusted  for each of theV V" "
# #

denominator degrees of freedom methods for mean model II with three different covariance

structures

7
REML REML REML REML Adjusted

KR Sat Contain Residual REML KR

Adjusted Adjusted Adjusted

REML REML REML

Sat Contain Residual

Model II: Covariance 1

25 98.67 99.62 0 12.25 98.88 99.79 65.51 66.9

50 99.96 100 0 13.27 99.96 100 68.11 68.17

100 100 100 0 14.41 100 100 69.4 69.4

200 100 100 0 15.49 100 100 67.76 67.76

500 100 100 0 16.24 100 100 67.95 67.95

1,000 100 100 0 15.47 100 100 68.13 68.13

25 1.8 86.13 0 49.73 4.69 65.21 0 58.08

50 0.67 94

Model II: Covariance 2

.37 0 52.92 0.71 85.72 0 66.96

100 0.04 99.12 0 54.56 0.04 98.56 0 68.42

200 0 99.93 0 56.41 0 99.93 0 68.7

500 0 100 0 55.11 0 100 0 68.04

1000 0 100 0 55.66 0 100 0 68.53

25 6 20.89 0 45.84 6.31 13.48 0 58.45

50 1.49 8.23 0 50.23 1.52 5.2 0 65.76

100 0.08 1.63 0 51.24 0.08 0.94 0 68.05

200 0 0.16 0 51.55 0

Model II: Covariance 3

0.11 0 68.33

500 0 0 0 51.85 0 0 0 68.33

1,000 0 0 0 51.57 0 0 0 68.56
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Table 4.8  Percentage of the correct mean model selected using different denominator

degrees of freedom methods when defining  and an adjusted  for each of theV V" "
# #

denominator degrees of freedom methods for mean model III with three different covariance

structures

7
REML REML REML REML Adjusted

KR Sat Contain Residual REML KR

Adjusted Adjusted Adjusted

REML REML REML

Sat Contain Residual

Model III: Covariance 1

25 1.18 0.47 100 97.69 1.01 0.39 72.46 72.46

50 0.07 0.01 100 99.46 0.05 0.01 88.7 88.7

100 0 0 100 99.98 0 0 98.36 98.36

200 0 0 100 100 0 0 99.99 99.99

500 0 0 100 100 0 0 100 100

1,000 0 0 100 100 0 0 100 100

25 74.22 45.8 2.41 93.41 59.38 40.35 2.00 88.8

50 79.67 55.8 0.32 99.05 70.67 51.85 0.26 98

Model III: Covariance 2

.29

100 90.35 70.36 0 99.96 86.9 67.87 0 99.94

200 97.91 81.9 0 100 97.04 80.49 0 100

500 99.99 94.1 0 100 99.97 93.67 0 100

1000 100 98.92 0 100 100 98.8 0 100

Model III: Covariance 3

25 29.34 11.3 6.12 94.23 21.83 9.67 5.47 90.39

50 22.81 6.34 2.02 99.47 18.12 5.63 1.75 98.87

100 12.01 1.95 0.21 99.99 9.97 1.82 0.19 99.97

200 3.65 0.25 0 100 2.94 0.23 0 100

500 0.15 0 0 100 0.12 0 0 100

1,000 0 0 0 100 0 0 0 100
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Table 4.9  Covariance Structure Selection for Model I: Covariance 1 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 0 (0) 7872 (78.72) 2128 (21.28)

50 subjects 7432 (74.32) 1727 (17.27) 841 (8.41)

100 subjects 7762 (77.62) 1487 (14.87) 751 (7.51)

200 subjects 7996 (79.96) 1299 (12.99) 705 (7.05)

500 subjects 8536 (85.36) 1464 (14.64) 0 (0)

1000 subjects 10000 (100) 0 (0) 0 (0)

25 subjects 0 (0) 8192 (81.92) 1808 (18.08)

50 subjects 7656 (76.

AICC

56) 1625 (16.25) 719 (7.19)

100 subjects 7891 (78.91) 1425 (14.25) 684 (6.84)

200 subjects 8064 (80.64) 1270 (12.7) 666 (6.66)

500 subjects 8556 (85.56) 1444 (14.44) 0 (0)

1000 subjects 10000 (100) 0 (0) 0 (0)

25 subjects 0 (0) 8985 (89.85) 1015 (10.15)

50 subjects 9222 (92.2

CAIC

2) 719 (7.19) 59 (5.9)

100 subjects 9531 (95.31) 460 (4.6) 9 (0.09)

200 subjects 9728 (97.28) 265 (2.65) 7 (0.07)

500 subjects 9941 (99.41) 59 (0.59) 0 (0)

1000 subjects 10000 (100) 0 (0) 0 (0)

25 subjects 0 (0) 8669 (86.69) 1331 (13.31)

50 subjects 8980 (89.8) 875 (8.75) 145 (1

BIC

.45)

100 subjects 9381 (93.81) 571 (5.71) 48 (0.48)

200 subjects 9639 (96.39) 87 (0.87) 0 (0)

500 subjects 9913 (99.13) 87 (0.87) 0 (0)

1000 subjects 10000 (100) 0 (0) 0 (0)

25 subjects 0 (0) 8160 (81.6) 1840 (18.4)

50 subjects 8313 (83.13) 1274 (12.74) 413 (4.13)

100 subjects

HQIC

8811 (88.11) 941 (9.41) 248 (2.48)

200 subjects 9164 (91.64) 671 (6.71) 165 (1.65)

500 subjects 9566 (95.66) 434 (4.34) 0 (0)

1000 subjects 10000 (100) 0 (0) 0 (0)
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Table 4.10 Covariance Structure Selection for Model I: Covariance 2 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 5299 (52.99) 3367 (33.67) 1334 (13.34)

50 subjects 3597 (35.97) 5028 (50.28) 1375 (13.75)

100 subjects 1451 (14.51) 6967 (69.67) 1582 (15.82)

200 subjects 156 (1.56) 8286 (82.86) 1558 (15.58)

500 subjects 0 (0) 8401 (84.01) 1599 (15.99)

1000 subjects 0 (0) 8445 (84.45) 1555 (15.55)

25 subjects 5911 (59.11) 3089 (30.89) 1000 (

AICC

10.00)

50 subjects 3911 (39.11) 4892 (48.92) 1197 (11.97)

100 subjects 1554 (15.54) 6966 (69.66) 1480 (14.80)

200 subjects 162 (1.62) 8330 (83.30) 1508 (15.08)

500 subjects 0 (0) 8420 (84.20) 1580 (15.80)

1000 subjects 0 (0) 8452 (84.52) 1548 (15.48)

25 subjects 7945 (79.45

CAIC

) 1776 (17.76) 279 (2.79)

50 subjects 7798 (77.98) 2043 (20.43) 159 (1.59)

100 subjects 6026 (60.26) 3846 (38.46) 128 (1.28)

200 subjects 2636 (26.36) 7246 (72.46) 118 (1.18)

500 subjects 57 (0.57) 9870 (98.70) 73 (0.73)

1000 subjects 0 (0) 9940 (99.40) 60 (0.60)

25 subjects 7

BIC

134 (71.34) 2322 (23.22) 544 (5.44)

50 subjects 6766 (67.66) 2907 (29.07) 327 (3.27)

100 subjects 4848 (48.48) 4910 (49.10) 242 (2.42)

200 subjects 1790 (17.90) 8000 (80.00) 210 (2.1)

500 subjects 31 (0.31) 9850 (98.50) 119 (1.19)

1000 subjects 0 (0) 9905 (99.05) 95 (0.95)

2

HQIC

5 subjects 5905 (59.05) 3075 (30.75) 1020 (10.2)

50 subjects 4946 (49.46) 4273 (42.73) 781 (7.81)

100 subjects 2774 (27.74) 6480 (64.8) 746 (7.46)

200 subjects 550 (5.50) 8776 (87.76) 674 (6.74)

500 subjects 3 (0.03) 9449 (94.49) 548 (5.48)

1000 subjects 0 (0) 9475 (94.75) 525 (5.25)
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Table 4.11 Covariance Structure Selection for Model I: Covariance 3 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 12 (0.12) 11 (0.11) 9977 (99.77)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 24 (0.24) 13 (0.13) 9963 (99.63)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

AICC

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 209 (2.09) 61 

CAIC

(0.61) 9730 (97.3)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 71 (0.71) 27 (0.27) 9902 (99.02)

50 subjects 0 (0) 0 (0) 10000 (10

BIC

0)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 24 (0.24) 13 (0.13) 9963 (99.63)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subject

HQIC

s 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)
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Table 4.12 Covariance Structure Selection for Model II: Covariance 1 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 7138 (71.38) 1890 (18.9) 971 (9.71)

50 subjects 7415 (74.15) 1722 (17.22) 862 (8.62)

100 subjects 7765 (77.65) 1486 (14.86) 749 (7.49)

200 subjects 7951 (79.51) 1266 (12.66) 783 (7.83)

500 subjects 8096 (80.96) 1235 (12.35) 669 (6.69)

1000 subjects 8114 (81.14) 1191 (11.91) 695 (6.95)

25 subjects 7591 (75.91) 1705 (17.05) 703

AICC

 (7.03)

50 subjects 7665 (76.65) 1609 (16.09) 725 (7.25)

100 subjects 7870 (78.7) 1449 (14.49) 681 (6.81)

200 subjects 8003 (80.03) 1243 (12.43) 754 (7.54)

500 subjects 8117 (81.17) 1226 (12.26) 657 (6.57)

1000 subjects 8127 (81.27) 1186 (11.86) 687 (6.87)

25 subjects 8801 

CAIC

(88.01) 1060 (10.6) 138 (1.38)

50 subjects 9216 (92.16) 728 (7.28) 55 (0.55)

100 subjects 9514 (95.14) 463 (4.63) 23 (0.23)

200 subjects 9718 (97.18) 271 (2.71) 11 (0.11)

500 subjects 9930 (99.3) 65 (0.65) 5 (0.05)

1000 subjects 9976 (99.76) 23 (0.23) 1 (0.01)

25 subjects 8399

BIC

 (83.99) 1280 (12.8) 320 (3.2)

50 subjects 8958 (89.58) 905 (9.05) 136 (1.36)

100 subjects 9377 (93.77) 570 (5.7) 53 (0.53)

200 subjects 9654 (96.54) 325 (3.25) 21 (0.21)

500 subjects 9893 (98.93) 96 (0.96) 11 (0.11)

1000 subjects 9948 (99.48) 46 (0.46) 6 (0.06)

25 subjects 7

HQIC

596 (75.96) 1693 (16.93) 710 (7.10)

50 subjects 8299 (82.99) 1290 (12.9) 410 (4.1)

100 subjects 8779 (87.79) 965 (9.65) 256 (2.56)

200 subjects 9191 (91.91) 636 (6.36) 173 (1.73)

500 subjects 9521 (95.21) 377 (3.77) 102 (1.02)

1000 subjects 9586 (95.86) 323 (3.23) 91 (0.91)
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Table 4.13 Covariance Structure Selection for Model II: Covariance 2 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 5289 (52.89) 3391 (33.91) 1320 (13.2)

50 subjects 3593 (35.93) 5008 (50.08) 1399 (13.99)

100 subjects 1425 (14.25) 7017 (70.17) 1558 (15.58)

200 subjects 176 (1.76) 8281 (82.81) 1543 (15.43)

500 subjects 0 (0) 8464 (84.64) 1536 (15.36)

1000 subjects 0 (0) 8390 (83.9) 1610 (16.1)

25 subjects 5914 (59.14) 3083 (30.83) 1003 (10.

AICC

03)

50 subjects 3916 (39.16) 4853 (48.53) 1231 (12.31)

100 subjects 1516 (15.16) 7031 (70.31) 1453 (14.53)

200 subjects 183 (1.83) 8323 (83.23) 1494 (14.94)

500 subjects 0 (0) 8473 (84.73) 1527 (15.27)

1000 subjects 0 (0) 8400 (84) 1600 (16)

25 subjects 7935 (79.35) 1766 (17

CAIC

.66) 299 (2.99)

50 subjects 7715 (77.15) 2111 (21.11) 174 (1.74)

100 subjects 6134 (61.34) 3742 (37.42) 115 (1.15)

200 subjects 2583 (25.83) 7311 (73.11) 104 (1.04)

500 subjects 45 (0.45) 9895 (98.95) 60 (0.60)

1000 subjects 0 (0) 9945 (99.45) 55 (0.55)

25 subjects 7094 (70.9

BIC

4) 2359 (23.59) 547 (5.47)

50 subjects 6683 (66.83) 2965 (29.65) 352 (3.52)

100 subjects 4950 (49.5) 4801 (48.01) 249 (2.49)

200 subjects 1785 (17.85) 8018 (80.18) 197 (1.97)

500 subjects 15 (0.15) 9872 (98.72) 113 (1.13)

1000 subjects 0 (0) 9909 (99.09) 91 (0.91)

25 subject

HQIC

s 5910 (59.1) 3068 (30.68) 1022 (10.22)

50 subjects 4948 (49.48) 4219 (42.19) 833 (8.33)

100 subjects 2813 (28.13) 6448 (64.48) 739 (7.39)

200 subjects 621 (6.21) 8722 (87.22) 657 (6.57)

500 subjects 0 (0) 9438 (94.38) 562 (5.62)

1000 subjects 0 (0) 9503 (95.03) 497 (4.97)
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Table 4.14 Covariance Structure Selection for Model II: Covariance 3 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 5 (0.05) 6 (0.06) 9988 (99.88)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 20 (0.2) 8 (0.08) 9971 (99.71)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 

AICC

subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 232 (2.32) 42 (0.4

CAIC

2) 9725 (97.25)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 71 (0.71) 19 (0.19) 9909 (99.09)

50 subjects 0 (0) 0 (0) 10000 (100)

1

BIC

00 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 19 (0.19) 8 (0.08) 9972 (99.72)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (

HQIC

0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)



134

Table 4.15 Covariance Structure Selection for Model III: Covariance 1 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 7083 (70.83) 1874 (18.74) 1043 (10.43)

50 subjects 7386 (73.86) 1738 (17.38) 876 (8.76)

100 subjects 7693 (76.93) 1512 (15.12) 795 (7.95)

200 subjects 7990 (79.9) 1292 (12.92) 718 (7.18)

500 subjects 8071 (80.71) 1198 (11.98) 731 (7.31)

1000 subjects 8090 (80.9) 1227 (12.27) 683 (6.83)

25 subjects 7536 (75.36) 1706 (17.06) 75

AICC

8 (7.58)

50 subjects 7643 (76.43) 1622 (16.22) 735 (7.35)

100 subjects 7812 (78.12) 1451 (14.51) 737 (7.37)

200 subjects 8041 (80.41) 1264 (12.64) 695 (6.95)

500 subjects 8094 (80.94) 1186 (11.86) 720 (7.2)

1000 subjects 8102 (81.02) 1220 (12.2) 678 (6.78)

25 subjects 8826 

CAIC

(88.26) 1025 (10.25) 149 (1.49)

50 subjects 9218 (92.18) 726 (7.26) 56 (0.56)

100 subjects 9843 (98.43) 492 (4.92) 25 (0.25)

200 subjects 9723 (97.23) 265 (2.65) 12 (0.12)

500 subjects 9938 (99.38) 60 (0.6) 2 (0.02)

1000 subjects 9981 (99.81) 19 (0.19) 0 (0)

25 subjects 8346 (

BIC

83.46) 1306 (13.06) 348 (3.48)

50 subjects 8993 (89.93) 879 (8.79) 128 (1.28)

100 subjects 9334 (93.34) 607 (6.07) 59 (0.59)

200 subjects 9650 (96.5) 321 (3.21) 29 (0.29)

500 subjects 9911 (99.11) 81 (0.81) 8 (0.08)

1000 subjects 9956 (99.56) 39 (0.39) 5 (0.05)

25 subjects 75

HQIC

39 (75.39) 1699 (16.99) 762 (7.62)

50 subjects 8317 (83.17) 1262 (12.62) 421 (4.21)

100 subjects 8776 (87.76) 959 (9.59) 265 (2.65)

200 subjects 9134 (91.34) 678 (6.78) 188 (1.88)

500 subjects 9517 (95.17) 370 (3.7) 113 (1.13)

1000 subjects 9575 (95.75) 348 (3.48) 77 (0.77)
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Table 4.16 Covariance Structure Selection for Model III: Covariance 2 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 5342 (53.42) 3346 (33.46) 1312 (13.12)

50 subjects 3649 (36.49) 5015 (50.15) 1336 (13.36)

100 subjects 1391 (13.91) 7027 (70.27) 1581 (15.81)

200 subjects 164 (1.64) 8230 (82.3) 1606 (16.06)

500 subjects 0 (0) 8418 (84.18) 1582 (15.82)

1000 subjects 0 (0) 8373 (83.73) 1627 (16.27)

25 subjects 5982 (59.82) 3039 (30.39) 979 (9.

AICC

79)

50 subjects 3960 (39.6) 4878 (48.78) 1162 (11.62)

100 subjects 1484 (14.84) 7036 (70.36) 1479 (14.79)

200 subjects 173 (1.73) 8269 (82.69) 1558 (15.58)

500 subjects 0 (0) 8443 (84.43) 1557 (15.57)

1000 subjects 0 (0) 8378 (83.78) 1622 (16.22)

25 subjects 7953 (79.53) 176

CAIC

4 (17.64) 283 (2.83)

50 subjects 7788 (77.88) 2052 (20.52) 160 (1.6)

100 subjects 6073 (60.73) 3812 (38.12) 114 (1.14)

200 subjects 2704 (27.04) 7185 (71.85) 111 (1.11)

500 subjects 51 (0.51) 9872 (98.72) 77 (0.77)

1000 subjects 0 (0) 9949 (99.49) 51 (0.51)

25 subjects 7210 (

BIC

72.1) 2259 (22.59) 531 (5.31)

50 subjects 6773 (67.73) 2904 (29.04) 323 (3.23)

100 subjects 4840 (48.4) 4914 (49.14) 245 (2.45)

200 subjects 1834 (18.34) 7952 (79.52) 214 (2.14)

500 subjects 24 (0.24) 9836 (98.36) 140 (1.4)

1000 subjects 0 (0) 9897 (98.97) 103 (1.03)

25 subj

HQIC

ects 5975 (59.75) 3019 (30.19) 1006 (10.06)

50 subjects 5020 (50.2) 4229 (42.29) 751 (7.51)

100 subjects 2712 (27.12) 6563 (65.63) 724 (7.24)

200 subjects 598 (5.98) 8692 (86.92) 710 (7.1)

500 subjects 3 (0.03) 9438 (94.38) 559 (5.59)

1000 subjects 0 (0) 9479 (94.79) 521 (5.21)
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Table 4.17 Covariance Structure Selection for Model III: Covariance 3 using ML estimation

Covariance Structure Selected

AIC

Covariance 1 Covariance 2 Covariance 3

25 subjects 12 (0.12) 2 (0.02) 9985 (99.85)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 17 (0.17) 6 (0.06) 9976 (99.76)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

20

AICC

0 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 218 (2.18) 67 (0

CAIC

.67) 9714 (97.14)

50 subjects 1 (0.01) 0 (0) 9999 (99.99)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 69 (0.69) 28 (0.28) 9902 (99.02)

50 subjects 0 (0) 0 (0) 10000 

BIC

(100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subjects 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)

25 subjects 17 (0.17) 6 (0.06) 9976 (99.76)

50 subjects 0 (0) 0 (0) 10000 (100)

100 subjects 0 (0) 0 (0) 10000 (100)

200 subje

HQIC

cts 0 (0) 0 (0) 10000 (100)

500 subjects 0 (0) 0 (0) 10000 (100)

1000 subjects 0 (0) 0 (0) 10000 (100)
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Table 4.18  Model selection results using AIC criterion as the covariance structure

selection for Model I with three different covariance structures

7
 

AIC

selecting

true covariance

Adjusted Adjusted REML Adjus

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ted Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model I: Covariance 1

V

V

"

"
#

#

25 0 41.81 0 51.88 0

50 74.32 8.36 0 50.95 38.01

100 77.62 7.84 0 51.28 39.91

200 79.96 8.01 0 51.43 41.01

500 85.36 6.38 0 51.94 44.66

1,000 100 0 0 51.88 51.88

Model I: Covariance 2

25 33.67 37.31 27.72 47.22 15.98

50 50.28 56.7 45.26 48.03 24.76

100 69.67 81.52 66.59 48.72 34.22

200 82.86 97.56 82.18 47.93 39.74

500 84.01 99.97 84 48.82 41.03

1000 84.45 100 84.45 48.92 41.4

25 99.77 92.51 92.44 48.28 48.19

50 100 98.28 98.28 47.81 47.81

100 100 99.9

Model I: Covariance 3

99.9 49.08 49.08

200 100 100 100 49.74 49.74

500 100 100 100 50.01 50.01

1,000 100 100 100 49.45 49.45
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Table 4.19  Model selection results using AIC criterion as the covariance structure

selection for Model II with three different covariance structures

7
AIC

selecting

true covariance

Adjusted Adjusted REML Adjust

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ed Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model II: Covariance 1

V

V

"

"
#

#

25 71.38 77.08 70.56 67.58 48.03

50 74.16 79.07 74.12 68.63 50.51

100 77.65 80.93 77.65 69.7 53.51

200 79.51 81.35 79.51 67.92 53.64

500 80.96 81.29 80.96 68.1 54.88

1,000 81.14 81.15 81.14 68.26 55.22

25 33.91 55.1 2.11 55.84 19.92

50 50.08 36.63 0.64 65.86 33.58

100 70.17 14.3 0.04 68.14 48

Model II: Covariance 2

.21

200 82.81 1.76 0 68.67 56.78

500 84.64 0 0 68.06 57.61

1000 83.9 0 0 68.52 57.52

25 99.71 6.31 6.31 58.43 58.31

50 100 1.52 1.52 65

Model II: Covariance 3

.76 65.76

100 100 0.08 0.08 68.05 68.05

200 100 0 0 68.33 68.33

500 100 0 0 68.33 68.33

1,000 100 0 0 68.56 68.56
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Table 4.20  Model Selection Results using AIC criterion as the Covariance structure

selection for Model III with three different covariance structures

7
AIC

selecting

true covariance

Adjusted Adjusted REML Adjust

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ed Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model III: Covariance 1

V

V

"

"
#

#

25 70.83 20.38 0.77 71.95 51.2

50 73.86 17.65 0.03 88.46 65.76

100 76.93 14.99 0 98.31 75.59

200 79.9 12.7 0 99.99 79.9

500 80.71 11.07 0 100 80.71

1,000 80.9 9.2 0 100 80.9

25 33.46 27.83 17.9 89.43 29.37

50 50.15 45.38 34.94 98.37 49.23

100 70.27 75.93 61.21 99.93 70.27

200 82.3 95.84 79.96 10

Model III: Covariance 2

0 82.3

500 84.18 99.97 84.15 100 84.18

1000 83.73 100 83.73 100 83.73

25 99.85 21.7 21.7 90.38 90.24

50 100 18.12 18.12 98.87 98.8

Model III: Covariance 3

7

100 100 9.97 9.97 99.97 99.97

200 100 2.94 2.94 100 100

500 100 0.12 0.12 100 100

1,000 100 0 0 100 100
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Table 4.21  Model selection results using BIC criterion as the covariance structure

selection for Model I with three different covariance structures

7
BIC

selecting

true covariance

Adjusted Adjusted REML Adjust

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ed Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model I: Covariance 1

V

V

"

"
#

#

25 0 41.89 0 51.92 0

50 89.8 1.69 0 51.21 45.93

100 93.81 0.78 0 51.33 48.22

200 96.39 0.39 0 51.52 49.66

500 99.13 0.14 0 52.06 51.57

1,000 100 0 0 51.88 51.88

Model I: Covariance 2

25 23.22 22.29 18.66 46.86 10.62

50 29.07 28.59 26.03 47.78 14.39

100 49.1 49.13 46.9 48.69 24.72

200 80 81.37 79.35 47.7 38.19

500 98.5 99.66 98.48 48.83 48.16

1000 99.05 100 99.05 48.92 48.43

25 99.02 91.96 91.79 48.22 47.83

50 100 98.28 98.28 47.81 47.81

100 100 99.9 99.9

Model I: Covariance 3

49.08 49.08

200 100 100 100 49.74 49.74

500 100 100 100 50.01 50.01

1,000 100 100 100 49.45 49.45
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Table 4.22  Model selection results using BIC criterion as the covariance structure

selection for Model II with three different covariance structures

7
BIC

selecting

true covariance

Adjusted Adjusted REML Adjust

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ed Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model II: Covariance 1

V

V

"

"
#

#

25 83.99 88.97 82.96 67.17 55.99

50 89.58 94.18 89.54 68.28 61.16

100 93.77 96.72 93.77 69.45 65.13

200 96.54 98.23 96.54 67.77 65.54

500 98.93 99.26 98.93 67.96 67.22

1,000 99.48 99.48 99.48 68.13 67.75

25 23.59 73.13 2.12 54.42 13.84

50 29.65 67.53 0.66 64.31 20.00

100 48.01 49.55 0.04 66.

Model II: Covariance 2

68 33.47

200 80.18 17.85 0 68.15 55.6

500 98.72 0.15 0 68.04 67.19

1000 99.09 0 0 68.53 67.92

25 99.09 7.03 6.31 58.4 57.95

50 100 1.5

Model II: Covariance 3

2 1.52 65.76 65.76

100 100 0.08 0.08 68.05 68.05

200 100 0 0 68.33 68.33

500 100 0 0 68.33 68.33

1,000 100 0 0 68.56 68.56
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Table 4.23  Model selection results using BIC criterion as the covariance structure

selection for Model III with three different covariance structures

7
BIC selecting

true covariance

Adjusted Adjusted REML Adjus

REML

 KR 

selecting   mean  and

true mean covariance

 

KR 

selecting trueV

V

"

"
#

#

ted Adjusted REML

REML

Residual 

selecting   mean  and

 true mean covariance

Residual 

selecting true

Model III: Covariance 1

V

V

"

"
#

#

25 83.46 9.70 0.86 72.22 60.55

50 89.93 4.29 0.05 88.65 89.93

100 93.34 2.35 0 98.36 91.82

200 96.5 0.88 0 99.99 96.49

500 99.11 0.21 0 100 99.11

1,000 99.56 0.1 0 100 99.56

25 22.59 16.51 10.68 89.95 19.77

50 29.04 21.87 19.12 98.48 28.48

100 49.14 44.56 42.35 99.93 49.11

200 79.52 79.25 77.1

Model III: Covariance 2

3 100 79.52

500 98.36 99.73 98.33 100 98.36

1000 98.97 100 98.97 100 98.97

25 99.02 21.3 21.11 90.38 89.55

50 100 18.12 18.12 98.8

Model III: Covariance 3

7 98.87

100 100 9.97 9.97 99.97 99.97

200 100 2.94 2.94 100 100

500 100 0.12 0.12 100 100

1,000 100 0 0 100 100



CHAPTER 5

SUMMARY AND DISCUSSION

 5.1 Summary

 This dissertation has focused on investigating the properties of  for fixed effects inV"
#

the linear mixed model.  has many desirable features that make it worthwhile to explore.V"
#

It has a semi-partial form and for special cases, there is a one-to-one correspondence to a

multivariate measure of association.  .

 The first goal of this dissertation research was to examine the asymptotic properties of

V"
#  using Kenward-Roger denominator degrees of freedom under the null and alternative

hypothesis.  The mean and variance of  are approximated using a Beta distribution andV"
#

also using a Taylor series expansion.  The asymptotic expectation and variance of  areV"
#

shown to converge to the same value for both of these approaches.  Test statistics based on

these two approximations of the mean and variance are derived and compared to the overall

J  test for fixed effects in the linear mixed model.  Using simulations, the Type I error rate of

the proposed  test statistics derived from the Beta distribution was equivalent to the Type IV"
#

error rate for the overall  test.  The Type I error rates for the test statistic based on theJ

Taylor series expansion moments were slightly inflated.

 Another goal of this dissertation research was to examine the impact of covariance

structure misspecification, estimation technique, and denominator degrees of freedom

method on For the simulation studies examined, the the finite sample properties of V"
# .  
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estimation technique does not impact the  values of  even for the smaller sample sizeV"
#

simulations while varying the denominator degrees of freedom has a substantial impact on

the values and asymptotic properties of .  Covariance structure misspecification alsoV"
#

greatly impacts the values of  using Kenward-Roger containment and SatterthwaiteV"
#

degrees of freedom.  Conversely, the values of  using residual degrees of freedom are notV"
#

impacted by covariance structure misspecification.  The great variation in  values for theV"
#

misspecified models arises because the covariance structure misspecification impacts the

denominator degrees of freedom being used to define .V"
#

 The finite sample properties of  is also considered which include evaluating  asV V" "
# #

a fixed effects model selection tool and evaluating the semi-partial .  One potentiallyV"
#

troublesome feature is that the semi-partial  is larger than the model  when usingV V" "
# #

Kenward-Roger denominator degrees of freedom and restricted maximum likelihood; while

the semi-partial  does not exceed the model  for the residual denominator degrees ofV V" "
# #

freedom.  For purposes of fixed effects model selection, an adjusted version of  wasV"
#

created.

 5.2 Conclusions

5.2.1 Denominator Degrees of Freedom Methods

 The results from Chapters 2, 3 and 4 show that choosing which denominator degrees

of freedom method used in defining  is critical.  The denominator degrees of freedomV"
#

method affects the values and asymptotic properties of  as seen in Chapter 2 and 3.  InV"
#

addition, covariance structure misspecification greatly impacts the  values as a result ofV"
#

changes in the denominator degrees of freedom as seen in Chapter 3.  There was great

variation seen in the denominator degrees of freedom depending upon the covariance

structure specified.  Chapter 4 highlights some of properties of  for the denominatorV"
#
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degrees of freedom methods.  Some of the denominator degrees of freedom methods used to

define  exhibit problematic results.V"
#

 The question remains: what denominator degrees of freedom method should be used

to define ?  When initially proposed,  was defined using Kenward-Roger methodV V" "
# #

because of the performance of that method in small sample inference.  This dissertation has

shown some of the pitfalls of the Kenward-Roger method in defining .V"
#

5.3  Future Work

 While the large simulation study did include many different mean model and

covariance settings, it still does have limitations.  Future research, should investigate the

results of this dissertation for other simulation conditions and settings which include cases of

incomplete and/or unbalanced data.  Complete and balanced data is not always common in

the real world.  Oftentimes, longitudinal data are mistimed and not complete.

 There has been an increased interest in an V# statistic for fixed effects in the linear

mixed model and there are many statistics available.  These  statistics for fixed effects inV#

the linear mixed model are often being used in data analysis without a detailed examination

of their properties.  As our research has indicated, the properties of the statistic are essential

in understanding how the  statistic will perform.  Future work should be done to compareV#

V V"
# # and other  statistics and examine for which functions they should be used.  For

example, further examination of  as a fixed effects model selection tool isV#"adj
� �/Res

necessary.  In particular, determining how well the statistic performs in choosing fixed effects

for model selection compared to other  statistics and information criteria is important.V#

These comparisons would inform researchers as to which statistic in the linear mixed model

to choose as a fixed effects model selection tool.


