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ABSTRACT

Wei Xue: Genetic Association Analysis on Secondary Phenotypes and Group Conditional
Variable Importance in OPPERA Study

(Under the direction of Eric Bair)

Temporomandibular disorder (TMD) is a complex chronic painful orofacial disorder re-

sulting in dysfunction in the temporomandibular joints and the muscles around the jaw.

Numerous risk factors were studied and identified for the chronic and onset of TMD. The

Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study is a prospec-

tive study designed to study the etiology and the risk factors contributing to the onset and

chronic TMD (Smith et al. 2011).

Genetic risk factors play an important role in the etiology of TMD. While many stud-

ies identified the genetic variants associated with TMD case-control status, one may wish

to identify genetic markers associated with secondary phenotypes (such as clinical pain)

that are related to the severity of TMD. In such cases, naive regression methods that ig-

nore the case-control design produces biased results. This problem may be corrected by

statistical methods such as inverse probability weighting (IPW). However, it may be unre-

liable when genetic markers and secondary phenotypes are strongly associated with case-

control status. In order to perform unbiased association analysis, we proposed a novel

permutation-based IPW method, and compared it with conventional IPW method. The

results indicated that the permutation-based IPW produced controlled type I error rates

with no loss in power. The application to the data from OPPERA study identified the as-

sociated SNPs with the severity of orofacial pain.

Numerous risk factors were studied in previous OPPERA studies to cast light on the

etiology of TMD. It is of great interest to researchers to know if a subset of variables have
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high variable important (VIMP) score conditional on existing risk factors. The are curious

to know that in addition to the existing variables, would the group variables bring more

information in predicting outcome. For example, they want to know if the group impor-

tance score for measuring mechanical and thermal pain sensitivity is significantly different

from 0 conditional on all the other variables when predicting either chronic or first-onset

TMD.

In the second project, we proposed a method to test the group conditional variable im-

portance statistically, by conditional distribution of group variables on the those outside

the group using random forest model. Simulations were performed by continuous and cate-

gorical variable types. p-values were calculated for some groups. This method corrects the

shortcomings of the likelihood of choosing correlated variables with spurious correlation,

and provided a way of testing group variables without bias.

The methodology described in the second topic was applied to data in OPPERA case-

control and cohort study in the third topic for both chronic and first-onset TMD. Corre-

lated risk factors were subset and tested by the proposed method for the null hypothesis

of group VIMP score not significantly different from 0 based on the rest risk factors of

TMD in the data set. A number of groups of variables were identified bringing more in-

formation for the chronic TMD in addition to the existing risk factors. But none of the

proposed groups were identified conditionally important in first-onset TMD study.
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CHAPTER 1: INTRODUCTION

Chronic pain is a significant and costly health problem . In particular, temporomandibu-

lar disorder (TMD) is a complex chronic painful orofacial disorder resulting in dysfunction

in the temporomandibular joints and the muscles around the jaw. It has a prevalence of

around 5% in adults in US 2012 National Health Interview survey (Isong et al. 2008). Nu-

merous risk factors were studied and identified for the chronic and onset of TMD, such as

pain sensitivity risk factors, clinical risk factors, psychological distress, and genetic factors.

The Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study is a

prospective study designed to study the etiology and find out the risk factors contributing

to the onset and chronic TMD (Smith et al. 2011). The study patients filled out question-

naires and underwent a series of clinic examinations for potential risk factors for TMD.

Blood sample was drawn from each participants and genotyped for genome-wide associa-

tion study (GWAS).

There are compelling evidence that genetic risk factors may play a role in the etiology

of TMD. A recent study by Plesh et al. (2012) illustrated that genetic risk factors partially

contributed to TMD pain in women. While many studies identified the genetic variants

associated with TMD case-control status and they are informative, one may wish to iden-

tify genetic markers associated with secondary phenotypes (such as clinical pain) that are

related to the severity of TMD. In such cases, naive regression methods that ignore the

case-control design will produce biased results. This problem may be corrected by statis-

tical methods such as inverse probability weighting (IPW), which assigns weights to sub-

jects based on case-control status to correct for the fact that cases are overrepresented in
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a case-control study (Richardson et al. 2007) and (Monsees et al. 2009). However, con-

ventional IPW regression may be unreliable when evaluating the association between ge-

netic markers and secondary phenotypes that are strongly associated with case status.

In a TMD case-control study, one may wish to identify genetic markers associated with

the severity of orofacial pain, which is present in all TMD cases, but nearly all controls

report no orofacial pain, causing conventional IPW regression to produce inflated type I

errors and inaccurate results. In order to perform the association analysis, we proposed

a novel permutation-based IPW method in the first project, and compared it with con-

ventional IPW method. The results from simulations indicated that whereas conventional

IPW method might produced inflated type I error rates, the permutation-based IPW pro-

duced correct type I error rates with no loss in power. We then applied this method to

data from OPPERA case-control study to identify the associations between candidate

SNPs and the severity of orofacial pain. Two novel SNPs were identified associated with

TMD pain severity by our method.

Numerous risk factors were studied in previous OPPERA researches to cast light on

the etiology of TMD. Univariate models or ANOVA model were utilized to find out the

putative risk factors in chronic and first-onset TMD. Despite the informative studies, one

may wish to identify the most vital risk factors in predicting TMD. Random forest mod-

eling was utilized to identify the important risk factors by Bair et al. (2013b). But statis-

tical tests for the variable importance cannot be obtained by the previous random forest

model in OPPERA study. Breiman (2001) and Strobl et al. (2007) provided methods that

tend to assign high variable important scores to the correlated variables which indeed not

associated with the outcome. In order to solve the issue, our group previouly developed a

method based on the conditional distribution of variable of interest, and statistically tested

the null hypothesis that the conditional VIMP score for a risk factor is 0. This method
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successfully avoid choosing spurious variables as important ones. Based on the methodol-

ogy, people may be curious to know whether a group of variables are significantly impor-

tant to the outcome (which might be chronic or first-onset TMD) conditional on the rest

risk factors. Researchers in OPPERA study are especially interested in such questions be-

cause of the large amount of variables and the high correlations among them in OPPERA

case-control study and cohort study. For example, one may wish to know if the group im-

portance score for measuring mechanical and thermal pain sensitivity is significantly dif-

ferent from 0 when predicting either chronic or first-onset TMD conditional on the other

existing variables.

In the second project, we proposed a method to statistically test the group conditional

variable importance, by using conditional distribution of variables in the group on the

those outside the group in random forest. The idea behind the scene is when the vari-

ables in the group are important conditional on the other variables, they would bring more

information significantly in predicting the outcome in addition to variables outside the

group. The the prediction error by original data using random forest would be significantly

different from that by data of replacing the group with conditional distribution of group

variables on the rest of variables. Simulations were performed by different variable types.

p-values were calculated for some risk factors groups in both chronic and first-onset TMD

data sets. This method corrects the shortcomings of the likelihood of choosing correlated

variables with spurious correlation, and provided a way of testing group variables without

bias.

The methodology described in the second topic were applied to OPPERA case-control

study and cohort study in the third topic for both chronic and first-onset TMD. The pu-

tative risk factors for TMD that were measured in OPPERA study were described in this

section. Correlated risk factors were subset and tested by the proposed method for the

null hypothesis that group VIMP score is not significantly different from 0. Some groups
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of variables were identified bringing more information for the chronic TMD in addition to

the other risk factors. But none of those groups were identified significantly important in

first-onset TMD.
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CHAPTER 2: LITERATURE REVIEW

2.1 Statistical Methods and Background Information in Secondary Pheno-

types and Genetic Association Studies

2.1.1 Genetic Association Studies

Genetic association studies identifies associations between disease or phynotype and

a set of genetic markers. The aim is to find the candidate genes or specific regions which

might contribute to that trait Lewis and Knight (2012). The genetic association study is

more powerful for detecting common complex disease than other methods, such as linkage

analysis, which is based on the family data Austin et al. (2013). The diseases and traits

are complex since they include both genetic factors and environmental factors. Also, the

relationships between some traits and genes can only be tested through genetic association

studies because they incorporate the traditional epidemiological design. Association stud-

ies may be performed on candidate genes or the full genome, which is known as a genome-

wide association study (GWAS). They are used to test the null hypothesis of no associ-

ation between a marker and a phenotype under the "common disease/common variant"

(CDCV) hypothesis (Austin et al. 2013).

Candidate gene studies seek to identify variation within a particular gene or sets of

genes that may be associated with a trait or disease of interest. It tries to determine if the

allele in candidate genes are more frequently seen in cases (which might be disease under

investigation) rather than controls (which do not have disease). Researchers need to un-

derstand the disease mechanisms to choose the possible candidate genes (Kwon and Goate
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2000). Usually the first step is to look at the genes that are related to the disease or the

trait in published studies and decide if they include variants with function (Tabor et al.

2002). For example, to select the candidate genes for alcoholism, we need to identify dif-

ferent genetic pathways related to the alcoholism mechanism and the related enzymes and

chemicals based on human studies, animal models and the expression of genes in cells or

tissues (Kwon and Goate 2000). After the candidate genes are chosen, researchers need to

decide which polymorphism in the candidate gene to choose. The polymorphism represents

the variation of the gene at one site in the population. These variation sites are called Sin-

gle Nucleotide Polymorphism (SNPs). SNPs are the polymorphisms used most often in

the genetic association study because they occur frequently in the genome, and are rel-

atively easier to genotype. In addition to SNPs, other structural variants such as inser-

tions and deletions, translocations, VNTRs (variable number of tandem repeats) and some

other type of polymorphisms can be used in genetic studies (Austin et al. 2013). When the

possible genes and polymorphisms are chosen, researchers will test them in a case-control

study where random samples with or without diseases are included. The advantage of the

candidate genes approach is that it will quickly evaluate the possible associations between

traits and genes with less concern about spurious correlations due to multiple comparisons

(Kwon and Goate 2000).

Genome-wide association studies (GWAS) are one tool for evaluating the association

between phenotype and related genes. The objective is to identify the genetic variants as-

sociated with a specifec phenotype by investigating SNPs across the whole genome. The

SNP and CNV calling can be performed using genotyping arrays or next-generation se-

quencing technology followed by quality control analysis from blood or buccal samples in

the study. There is no prior hypothesis that SNPs are correlated with disease. A much

larger number of SNPs are involved in GWAS because millions of SNPs are read using

high-throughput technology.
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GWAS studies may use cohort, case-control, and case-parent trio designs. In case-

control studies, people with disease (cases) and without disease (controls) are compared

with respect to millions of SNPs. When a SNP is associated with specific trait, the allele

frequency is significantly different in the cases compared with controls. Large samples

are needed in order to have sufficient statistical power to detect such associations. Re-

searchers should also be aware of multiple testing issues that might cause false positives.

The strength of the association between the SNPs and the specific trait are usually esti-

mated as odds ratios (OR) based on logistic regression models. QQ-plots and Manhattan

plots can be used to display the significant findings (Austin et al. 2013). Linear regression

may be performed when the outcome is continuous (Cantor et al. 2010).

2.1.2 The analsyis of secondary phenotype in genetic association studies

Prospective studies are the preferred study design for evaluating the relationship be-

tween exposure and outcome. However, prospective studies are time-consuming and ex-

pensive, especially for rare disease, because more participants needs to be enrolled in the

study to have adequate statistical power. Since genotyping can be expensive, prospective

GWAS studies are generally not feasible. Case-control studies recruit a number of sub-

jects with and without a phenotype of interest. Most GWAS studies use case-control de-

sign since it is faster and cheaper than a prospective study. And researchers are interested

in the relationship between a given SNP and disease case-control status.

Given the expense required to perform a GWAS study, it is common to collect more

information from each subject in addition to the disease status, such as secondary phe-

notypes, to maximize the return. Secondary phenotypes are information in the subject

related to the disease of interest (Ghosh et al. 2013), which helps to understand disease

etiology and provide more information. For example, body mass index (BMI) and physical
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activity are of great interest to researchers in terms of the association of secondary pheno-

type and genotype (Frayling et al. 2007), which helped them to understand the association

of diabetes and genetic variants as well. Other examples include height in hypertensions

study (Loos et al. 2008), lipid (high-density lipoproten cholesterol, low-density lipoproten

cholesterol) in coronary artery disease study (Kammerer et al. 2004), and ages of menarche

in breast cancer GWA study (He et al. 2009)

To study the association of secondary phenotype and genetic variants, it is common

utilized methods such as standard linear regression for quantitative outcome, or logistic re-

gression for categorical secondary phenotype. However, the association studies between

secondary traits and genetic variants are complicated because of the case-control sam-

pling scheme. Case-control studies are not a representative sample from the population,

meaning that estimates derived from case-control samples may be biased (de Dieu Tap-

soba et al. 2014). Standard linear regression analysis is typically used to evaluate the as-

sociation between a quantitative phenotypes and a given genetic marker. When evaluat-

ing the association between a secondary quantitative phenotype and a marker, it is com-

mon to analyze only cases or controls, or combine both cases and controls but ignore their

case-control status, or use meta-analysis for cases and controls, or analyze both cases and

controls by adjusting for the case-control status (Lin and Zeng 2009). However, these ap-

proaches may produce biased regression estimates. Several statistical methods have been

proposed to correct for the case-control sampling scheme. Richardson et al. (2007) and

Monsees et al. (2009) investigated that inverse-probability weighting (IPW) avoided this

issue by taking selection probability into calculation. Lin and Zeng (2009) proposed method

using maximum likelihood estimation to analyize secondary phenotype under different sce-

narios including rare disease, and under different disease rates. Although it is powerful,

the assumptions of the distribution of secondary phenotype is needed. He et al. (2011)

performed the analysis of genetic association with secondary phenotype using Gaussian
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copula method where multiple correlated secondary phenotypes were able to handle. Rare

diseases were also studied with respect to the secondary phenotype. Li et al. (2010) found

that standard approach produced biased results in rare disease when both secondary phe-

notype and genetic variants interact with primary disease outcome.

IPW is frequently used for the analysis of the association between secondary traits and

genetic variants (Ghosh et al. 2013). IPW assigns weights to each study participant to ad-

just for the case-control study design. The participants are weighted so that the weight of

cases in the study is comparable to the proportion of cases in the general population. Con-

sider the following example: Suppose there are n1 cases and n0 controls in the study and

the population prevalence of the diseas is s. Suppose the weight of controls are 1. Then

cases are given a weight of n0 × s/(n1 × (1 − s)), so that the weights of the cases in the

study are the same as if one sampled from the general population. Appropriate methods

are needed to estimate the standard error of regression coefficients after applying IPW

(Monsees et al. 2009). The power for the IPW method is not as high as the power of un-

adjusted analysis, but the unadjusted methods has inflated type I error, especially when

there are associations between genotype and secondary traits or between disease and ge-

netic covariates (Monsees et al. 2009). Compared with other methods such as maximum

likelihood estimation, IPW regression is more robust and flexible in terms of model mis-

specification (de Dieu Tapsoba et al. 2014).

2.1.3 Principal component analysis (PCA)

Principal component analysis (PCA) is a useful technique for multivariate data reduc-

tion that performs orthogonal transformations on a set of variables to create a new set of

independent variables (Smith 2002). These new variables are called principal components.

Usually the number of the principal components are less than or equal to the number of

original variables. The first principal component has the largest variance among all the
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components, and the succeeding components explains higher variance than those that fol-

low them.

In genetic association studies, population stratification can produce spurious associa-

tions when the samples are from more than one population (Tian et al. 2008). In a case-

control GWAS study, it is assumed that cases and controls are from the same population.

However, when they come from different populations, the assumption is violated, which

can produce false positive results (Liu et al. 2013). Population stratification results in

systematic allele frequency differences in cases and controls. Thus, association between a

marker and the outcome of interest is confounded by these systematic allele frequency dif-

ferences between the two populations. Since population stratification can produce false

positive results or reduce the power to detect real effects, there are methods to correct for

population stratification, such as principal component analysis (PCA), linear mixed mod-

els (LMM), genomic control, and multidimensional scaling (Price et al. 2006, Li and Yu

2008, Zhang et al. 2010).

One of the most common methods for correcting bias from population stratification is

principal component analysis (PCA), proposed by Price et al. (2006). His method, EIGEN-

STRAT, consists of 3 steps. PCA is performed on the data with the expectation that the

largest principal components capture the systematic differences in allele frequencies due

to population stratification. Linear regressions are performed between each SNP and first

several components, and between outcome and the components for the residualized pre-

dictors and outcome. The (adjusted) association between the outcome and the genetic

marker is evaluated by performing regression on the residuals of these regression models.

The advangtages of EIGENSTRAT include simplicity and computational tractability,

especially for large GWAS data sets. It has greater power to detect true associations than

the genomic control approach (Price et al. 2006). There are also some disadvantages to

EIGENSTRAT. When there are discrete subpopulations in the data set, they may not
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be adequately measured by continuous eigenvectors. This can produce spurious findings

if there are outliers in the data (Liu et al. 2013). PCA also assumes the samples are in-

dependent. Thus, it is not appropriate for family-based studies or situations with cryptic

relatedness, which can be analyzed using mixed effects models.

PCA were utilized to identify the putative latent constructs of risk factors in both

chronic and first-onset TMD in Orofacial Pain Prospective Evaluation and Risk Assess-

ment (OPPERA), such as psychosocial risk factors, pain sensitivity risk factors. It en-

volves four steps to do the PCA, including selecting variables for PCA, getting the cor-

relation matrix, finding out principal component, and intepreting the factor loadings. In

baseline case-control study, this method helped to identify that compare to chronic TMD

cases, the controls are less sensitive to the stimulus in pain (Greenspan et al. 2011). This

method also helped to identify four components which proved the correlation of poten-

tial psychosocial risk factors and chronic TMD (Fillingim et al. 2011). In first-onset TMD,

PCA was performed to reduce the dimension and find out the putative latent construct in

psychological risk factors. Four domains were accessed using this method, including Active

Coping, Passive Coping, Global Psychological and Somatic Symptoms, as well as Stress

and Negative Affectivity (Fillingim et al. 2013).

2.1.4 Permutation

A permutation is a random ordering of the elements of a set. Permutation testing pro-

vides a way to perform significance testing in GWAS studies by empirical test statistics.

By randomly permuting the phenotype vector, the association between the phenotype and

a given marker is removed, but the correlation among genotypes is preserved. Each permu-

tation is a random sample from the original data. Since there is necessarily no association

between the genetic markers and the permuted phenotype vector, the permutation proce-

dure provides an estimate of the distribution of the test statistic under the null hypothesis
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(Bush and Moore 2012). The p-value for testing the null hypothesis of no association be-

tween a genetic variant and the phenotype can be calculated by dividing the number of

times when the permuted test statistic is more extreme than the test statistic on the orig-

inal data by the number of permutations. Permutation is widely used jin the analysis of

GWAS data and provides robust p-values when the assumptions of parametric models are

violated (Posthuma et al. 2009).

2.2 Random Forests and Variable Importance

2.2.1 Random Forests Model

Random Forests are a machine learning technique widely used in many areas includ-

ing genetics (Goldstein et al. 2010), ecology, (Cutler et al. 2007), physics, bioinformatics

and may other fields. It is a non-parametric method, first introduced by Breiman in 2001,

based on bagging, classification and regression trees (CART) (Breiman 2001). Bagging is a

method for reducing the prediction variance by averaging a series of models (Hastie et al.

2009). Random forests have many desirable properties of decision trees and it is much

more accurate.

The random forest algorithm is similar to bagging (bootstrap aggregation), which also

involves growing a large number of decision trees. Every tree in the forest is fit to a boot-

strap sample from the training data. In each node of the tree, only a subset of the predic-

tors are considered when choosing the splitting variable in order to reduce the correlation

between trees. The ensemble of trees is then used to produce estimates based on the for-

est. Predictions are obtained by averaging the predictions of each individual tree for re-

gression problems and by majority vote for classification problems. The prediction error

rate, which is similar to the cross validation error rate, is calculated based on the out of

bag (OOB) samples in the random forest, which are the observations not included in the

bootstrap sample for a given tree. The size of the tree is increased until the error rate is
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stable. (Hastie et al. 2009).

Random forest has many good features. It can be used when the number of variables

are large while the number of observations is small, known as “small n large p” problem. It

can be applied to both categorical and continuous variables. Random forest is able to han-

dle highly correlated predictors and account for arbitrary interactions. It also can model

nonlinear associations between predictors and the outcome. In general they will not overfit

the data. They can also be used to evaluate variable importance (Díaz-Uriarte and De An-

dres 2006).

Random forest models were performed in the previous OPPERA studies to identify the

contributions of putative risk factors in the first-onset TMD analysis. It was utilized to

identify the most important variables among the risk factors by assigning variable impor-

tant score to the variable with the most important one with score 100. It is also performed

to find out the correlation of the variable and first-onset TMD by partial dependence plot

(Fillingim et al. 2013). Parafunctional oral behaviors, Pennebaker Inventory of Limbic

Languidness (PILL) were identified as the most important varible in clinical risk factors

and psychological risk factors respectively to the first-onset TMD (Fillingim et al. 2013,

Ohrbach et al. 2013)

2.2.2 Variable Importance (VIMP) in Random Forest

Random forests have the capability of calculating the variable importance score of the

predictors. Intuitively, a variable is “important” if the predictive accuracy of the model de-

creases if the variable is removed from the model or measured with error. There are mul-

tiple ways to measure variable importance. The naive method is to count the number of

times each variable appears in all trees in the forest. A better approach is to permute a

given variable and evaluate the decrease in the predictive accuracy of the model after the

variable is permuted. We refer to this method as Breiman’s variable importanace (VIMP).
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The idea is that if a variable is not important, the predictive accuracy of the model will

not change significantly after permuting it. A brief summary of the procedure is the fol-

lowing: to calculate the importance of Xj, variable Xj is permuated randomly in the OOB

samples. The predictive accuracy of the model is calculated and compared to the accuracy

of the model applied to the original data (with Xj unpermuted). The difference in the pre-

diction accuracy before and after premutation is averaged over all the trees in the random

forest, which defines the variable importance for Xj.

Random forests have two measurements of variable importance: Gini importance and

permutation accuracy importance. Gini importance measures the sum of decreases in the

Gini impurity when the node is split over all trees in the forest. Strobl observed that the

permutation accuracy importance is more reliable than Gini importance in most situations

(Strobl and Zeileis 2008). Another advantage of permutation importance is that it can be

used for both continuous and categorical variables, whereas the Gini importance can pro-

duce biased result when the number of categories changes (Strobl et al. 2008).

The permutation variable importance for the t-th tree of variable Xj is calculated as

V I(t)(Xj) =

∑
i∈B̄(t) I(γi = γ̂

(t)
i )

|B̄(t)|
−
∑

i∈B̄(t) I(γi = γ̂
(t)
i,πj

)

|B̄(t)|
(2.1)

where B̄(t) is the out of bag sample in tree t; t ranges from 1 to ntree and ntree is the

number of trees in the forest; γi = γ̂
(t)
i and γi = γ̂

(t)
i,πj

represent the i-th observation’s pre-

dicted class before and after permutation. The VIMP for Xj is the average of the score

over all trees, which is the formula below

V I(Xj) =

∑ntree
t=1 V I(t)(Xj)

ntree
(2.2)
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Since the V I(t)(Xj) are independent of one another in terms of different trees, the fol-

lowing test statistic has been proposed for testing the null hypothesis that the Xj’s vari-

able importance score is equal to 0. zj is the z score for variable Xj; σ̂ is the observed

standard deviation of variable importance scores, and V I(Xj) is the variable importance

score for Xj under Breiman’s definition.

zj =
V I(Xj)

σ̂
ntree

(2.3)

However, Strobl and Zeileis (2008) observed that the test statistics and p-values pro-

duced by this approach tend to be strongly anticonservative. It is inclined to increase type

II error as the number of trees increases even if the null hypothesis is true.

2.2.3 Strobl’s Conditional VIMP

Breiman’s VIMP for variable Xj is calculated by permuting Xj independently of the

other predictors, which is analogous to sampling from the marginal distribution of Xj. As

a result, variables that are not associated with the outcome but are correlated with other

important variables may still have high VIMP scores (Strobl et al. 2008). To overcome this

shortcoming, one may sample from the conditional distribution of Xj conditioned on all

of the other predictors denoted as X−j rather than merely permuting Xj. Strobl proposed

a method to sample from this conditional distribution that we call "Strobl’s Conditional

VIMP" (Strobl et al. 2008).

A description of the procedure is given below:

1. Before permuting Xj, calculate the out of bag prediction accuracy.

2. Conditioning on X−j, identify the cutpoints that split the variable in a given tree

and create a grid by bissecting the variable in each cutpoint.

3. Xj is permuted within the grid and OOB prediction accuracy is calculated after the
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permutation.

4. VIMP of Xj within one tree is calculated by taking the difference of the OOB pre-

diction accuracy before permutation and after permutation. The VIMP of Xj is calculated

by averaging these importance score over all trees.

Compared with Breiman’s VIMP, Strobl’s conditional VIMP is less likely to assign

high importance scores to spurious predictors that are correlated with other predictors.

However it is not able to solve this issure entirely. It still tends to assign nonzero impor-

tance to such variables that are correlated with other strong predictors but not the out-

come.

2.3 OPPERA study

2.3.1 Temporomandibular Disorder (TMD)

Temporomandibular disorder (TMD) is a painful disorder characterized by pain in the

mastication muscles and temporomandibular joints. Although it is not life-threatening,

patients with TMD may have constant pain in those regions as well as the head and neck

muscles (Maixner et al. 2011a). Quality of life is negatively affected by this disease. TMD

appears more often in females than males, with a prevalence of 6% in women versus 3% in

men. A national survey suggested that 5% of adults in the U.S. have TMD (Isong et al.

2008).

TMD is a complex disease with multiple risk factors, and many of them are unknown

(Cairns 2010). Possible risk factors include trauma and genetic variants, anatomical and

psychosocial factors (Maixner et al. 2011a). Sociodemographic factors such as age, gen-

der, and race, as well as clinical factors such as pain in other sites of the body are also

the risk factors for TMD. Plesh et al. (2002) reported that TMD is more prevalent among

African American women than Caucasian women. TMD is also related to pain amplifi-

cation, which occurs when the nervous system enhances the response from the periphery
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(e.g., muscle to brain) (Maixner et al. 2011a). Additionally, some psychological factors are

associated with TMD. People with TMD are more likely to have depression and anxiety

(Maixner et al. 2011a). Furthermore, genetic factors interact with environmental factors to

affect the risk of developing TMD. Since TMD is a multifactorial and complex disease, the

number of possible genes that correlated with TMD is large, such as monoamine oxidase

A (MAOA) (Karayiorgou et al. 1999), glucocorticoid receptor (GR) (WuÌĹst et al. 2004),

and D2 dopamine receptor (DRD2) (Lawford et al. 2003).

2.3.2 Overview of OPPERA

The “Orofacial Pain: Prospective Evaluation and Risk Assessment” (OPPERA) Study

is a large-scale prospective cohort study to identify the genetic, psychosocial, autonomic,

pain sensitivity and clinical factors for the development of TMD. Specifically, OPPERA

aimed to determine if sociodemographic factors (such as age, gender, race etc.), elevated

response to the noxious stimuli, and psychological factors are related to the first-onset of

TMD. OPPERA also considered genetic factors for chronic TMD and first-onset TMD.

OPPERA study has several cohorts and study designs, including a prospective cohort

study, a baseline case-control study, and a matched case-control study. OPPERA recruited

participants from four sites in the U.S., including The University of Maryland at Balti-

more, MD, The University of Buffalo, NY, The University of North Carolina at Chapel

Hill, NC and The University of Florida at Gainesville, FL. After enrollment, all the par-

ticipants’ information was collected via questionnaires, clinical examinations, and blood

samples (Slade et al. 2011).

The OPPERA prospective cohort study recruited participants without TMD between

2006 to 2008. They were followed for a median of 2.8 years to see which participants de-

veloped first-onset TMD. Participants were recruited via advertisements, emails, flyers and

word of mouth. 3,263 TMD-free participants were recruited between 18 and 44 years old .
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Exclusion criteria included orthodontic treatment, pregnancy or nursing, history of injury

or surgery on the face, and history of several serious medical conditions. At the baseline

visit, potential enrollees signed the consent form and completed a series of questionnaires.

Then they underwent a physical examination to confirm that they did not have TMD.

Quantitative sensory testing to evaluate sensitivity to noxious stimuli was also performed.

Furthermore, blood samples were collected and autonomic function was measured. The en-

rollees completed a quarterly health update (QHU) to evaluate the presence of pain in the

face and jaw. Participants who reported orofacial pain on the QHU were instructed to re-

turn to the clinic for a follow-up clinical exam to evaluate the presence or absence of first-

onset TMD (Slade et al. 2011). The baseline case-control study enrolled patients between

2006 and 2013 with around 1000 people with TMD as cases and 3200 TMD-free controls.

TMD cases were determined using Research Diagnostic Criteria for Temporomandibular

Disorder (RDC/TMD), including more than 4 days of facial pain during the previous 30

days and pain motivated by jaw movement and temporomandibular joints during the ex-

amination.

2.3.3 Studies of putative risk factors and TMD

The association with sociodemographic and socioeconomic risk factors and TMD were

studied in both baseline case-control study and the community-based prospective cohort

study. In the study of 1633 controls versus 185 cases among participants aged from 18 to

44, positive association was identified with patients from greater age; the odds ratio of

female and male with TMD was four; White non-hispanic participants was less likely to

have TMD than the other races. While whether participants were born in the USA was

not important to chronic TMD (Slade et al. 2011). Consistent with case-control study,

the prospective cohort study showed that patients with greater age group were more likely

to have TMD than younger people. The association of gender with first-onset TMD was
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marginally significant. Black American had large odds than white people for TMD. U.S

residency for lifetime are strong predictor and people spend their life in the USA had higher

odds than the others (Slade et al. 2013). The association of TMD and socioecomonic char-

acteristics illustrated that English as the first spoken language had higher odds of chronic

TMD than those with other first spoken languages. Never married people were more likely

to have chronic TMD than married ones (Slade et al. 2011). In prospective cohort study,

higher satisfaction with material standards in life contributes less to first-onset TMD (Slade

et al. 2013).

Many case-control studies illustrated that people with chronic pain have higher level of

psychological maladjustment compared with pain-free controls (Dworkin et al. 1990), and

TMD is one of them. Chronic TMD cases showed greater level of global measures of psy-

chological functions, affective distress and stress, somatic awareness and coping/catastrophizing

(Fillingim et al. 2011). Similarly researchers revealed the association with increased risk of

first-onset TMD and psychological factors, such as somatic symptoms, psychosockal dis-

tress and affected distress. But coping is not the predictors for first-onset TMD (Slade

et al. 2007)

In the previous first-onset studies, it is identified that TMD were associated with some

baseline self-reported measurements, including oral parafunctions, number of nonspecific

orofacial symptoms and other clinical risk factors (Ohrbach et al. 2013), pain sensitivity

and heart rate at rest in pain sensitivity risk factors (Greenspan et al. 2013), global psy-

chological and somatic symptoms as well as passive pain as the most important rpsycho-

logical factors (Fillingim et al. 2013).
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2.3.4 Genetic Associations with TMD in OPPERA

TMD is a complex disease with multiple risk factors. In particular, genetic factors are

believed to contribute to the risk of TMD. There are several markers that were associ-

ated with TMD in previous studies, such as the T102C SNP of serotonin receptor HTR2A

(Mutlu et al. 2004), A218C SNP in TPH1 gene (Etoz et al. 2008), and haplotypes of beta-

2-adrenergic receptor (ADRB2) (Diatchenko et al. 2006a). One goal of OPPERA is to

identify genes associated with chronic TMD. A total of 358 candidate genes involved with

pain processing were selected, and each OPPERA participant was genotyped at a series

of SNP’s in each gene. (Smith et al. 2011). Blood samples were collected from study par-

ticipants and genotyped. The analytic data sets have 1,961 observations (including 348

chronic TMD cases and 1,612 TMD-free controls) who were genotyped for 2,657 SNPs.

Logistic regression was performing using the PLINK software to see if each SNP was asso-

ciated with TMD case status after adjusting for other covariates such as age, gender, and

race.

The SNP’s were classified into two tiers. The first tier included 23 candidate genes that

were considered to be high priority, whereas the second tier included all 358 genes. Bonfer-

roni correction was used to adjust for multiple comparisons. In the analysis of the Tier 2

SNP set, 9 SNPs in 6 genes were correlated with TMD case status. Specifically, 3 SNPs

were in the long intron of NR3C1 gene, which is a gluccorticoid receptor gene; 2 SNPs

were in located in the CAMK4 gene, the calcium dependent protein kinase 4 gene; and the

remaining 4 SNPs were located in CHRM2 (muscarinic cholinergic receptor 2), HTR2A

(serotonin 2A receptor), IFRD1 (the first intron of interferon-related developmental reg-

ulator 1) and GRK5 (the second intron of G protein-coupled receptor kinase 5) genes, re-

spectively. Among the Tier 1 SNPs, 2 SNPs in interleukin 10 (IL10) gene, 3 SNPs in an

adrenergic receptor genes (ADRA2C), and one SNP in the delta opioid receptor (OPRD1)

gene, showed significant associations with TMD (Smith et al. 2011).
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CHAPTER 3: A PERMUTATION-BASED GENETIC ASSOCIATION TEST
FOR SECONDARY PHENOTYPES

3.1 Introduction

In a cohort study, participants are followed over a period of time to evaluate the associ-

ation between an outcome of interest (such as a disease) and exposures (risk factors). This

study design allows one to measure exposures before the disease occurs and estimate the

incidence rate, which is an attractive design for studies in common diseases. However, co-

hort studies take a long time to complete and are relative expensive, which is problematic

in genetic studies. Moreover, the sample size would be prohibitively large for rare diseases

in order to have sufficient power. Compared with cohort studies, case-control studies are

much more cost-effective. They are attractive alternatives where researchers select partici-

pants with disease (cases) and without the disease (controls). Although case-control stud-

ies have a greater potential for confounding and do not allow one to estimate the disease’s

incidence rate, they are generally much cheaper and easier to perform than cohort studies.

In particular, genome-wide association studies (GWAS) typically use case-control design.

GWA studies are expensive in both time and cost, and researchers want to collect as

much information as possible to maxmize the return. In addition to identifying single-

nucleotide polymorphisms (SNP) genotype’s associated with the disease of interest, sec-

ondary phenotypes, which are associated with primary outcome are also collected and

studied. For example, in a study of TMD, one may be interested in SNP’s association with

pain sensitivity in addition to SNP’s association with TMD case-control status. TMD pa-

tients tend to be more sensitive to pain than TMD-free controls, so the secondary outcome
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pain density might be correlated with TMD case status. Similary, the association between

body mass index (BMI) and SNPs were studied to understand the etiology of type II dia-

betes (Frayling et al. 2007). In the GWA study of lung cancer, the correlation of secondary

outcome smoking and genetic variants were investigated to reveal useful information in

lung cancer (Villeneuve and Mao 1993) (Hung et al. 2008). Moreover, secondary pheno-

type provide more information about disease and are useful in gene mapping as well (He

et al. 2011).

The secondary phenotype studies should be analyzed carefully to avoid problematic or

even misleading results. The common approaches to analyze the association of secondary

outcome and SNPs in case-control studies are standard regression methods by using cases

only, controls only, samples with both cases and controls, or joint analysis of cases and

controls adjusting for disease status. However, the above methods led to spurious associ-

ation of secondary outcome and genetic variants because the samples from both cases and

controls are not representative of random samples from population. Hence none of them

are reliable (Monsees et al. 2009, Lin and Zeng 2009).

Data from case-control studies are not a representative sample of the population since

cases are overrepresented. it has been shown that logistic regression produce unbiased co-

efficient estimates for estimating the risk of case status in a case-control study. (Prentice

and Pyke 1979) However, there is no guarantee that coefficient estimates are unbiased if

the outcome is an secondary phenotype rather than case status. Indeed, logistic regres-

sion without adjustment for the study design will produce biased estimates (Monsees et al.

2009).

A number of statistical methods have been developed for the remedies. Richardson

et al. (2007) recommended inverse probability weighting (IPW), whereby cases and con-

trols are weighted such that the total weights of cases are comparable to the proportion
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of cases in the general population. However, standard logistic regression models will pro-

duce incorrect estimates of the standard error after applying such weights. Monsees et al.

(2009) demonstrated that one may calculate the standard error correctly using a sand-

wich estimator of the variance. The estimates by IPW method can be unstable when the

secondary phenotype is strongly associated with case status. For example, in genetic stud-

ies of TMD, one may wish to find genetic factors associated with the severity of orofacial

pain. Essentially all TMD cases will report some level of orofacial pain, but the majority

of controls won’t. When standard IPW regression is applied in this situation, tests of no

association between a given SNP and pain severity produce widely inflated type I errors.

In this situation, a more robust method is needed , which will help to identify genetic risk

factors for TMD, or be used as a tool for future similar situations in other GWA studies.

Wang and Shete (2011) proposed a bootstrap-based method for the estimation of the odds

ratio for a binary secondary outcome. However, it cannot be applied to a continuous out-

come. Lin and Zeng (2009) proposed a method based on maximum likelihood that can be

applied to both continuous and categorical intermediate phenotypes. This method is only

unbiased when the genotypes are not related to the primary outcome (Li et al. 2010).

In this chapter, we propose a permutation-based IPW method to analyze the associa-

tion between a genetic marker and secondary phenotypes in a case-control study where the

secondary outcome is correlated with case status. The proposed method has the advantage

of being completely non-parametric, so it will produce valid p-values even when the as-

sumptions of parametric models are violated (which is a common occurence when examin-

ing secondary phenotypes in the OPPERA study). We showed that the proposed method

has comparable power to existing parametric methods and it avoided the risk of elevated

type I error when the model assumptions are violated. We further applied the method to

the OPPERA data, and found two SNPs highly associated with clinical pain density.
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3.2 Method

3.2.1 Permutation-based IPW

The assumption of conventional IPW method is violated when secondary phenotype is

strongly correlated with cases, which will lead to anti-conservative p-values, and hence re-

sult in inflated type I error. In order to have valid p-values, we proposed a novel permutation-

based IPW method to evaluate the association between genetic markers and secondary

phenotypes in a case-control study when both are correlated with disease status. The pro-

posed method was motivated by the idea that when a given SNP (Xj) is associated with

secondary phenotype (Y ), it is expected that the counts of minor alleles for the SNP geno-

type is highly correlated with secondary outcome. When the Y is permuted as Y ∗, the in-

herent association between SNP and secondary outcome is destroyed. We expected to see

that the association between the permuted secondary outcome and SNP genotype would

be smaller than that before permution. So, we may test the null hypothesis of no associ-

ation between secondary outcome and a given SNP genotype (denoted as SNPj) by com-

paring the association of SNP and secondary outcome before and after permutation.

Suppose the number of participants with and without primary disease are n1 and n0

respectively in a case-control study. Let Xij be the number of copies of the minor alleles

for SNP j subject i; let Yi be the secondary phenotype for subject i. Assume there are N

SNPs. We assumed that the disease prevalence is s and hence the probability of controls

is 1 − s in the population. Then the weight of cases in the sample would be comparable

to that in general population if we assigned a weight of 1 to controls. Thus, the weight of

cases (defined as Wt1) was calculated by the following formula:

Wt1 =
s× n0

(1− s)× n1

(3.4)

Nonparametric method permutation was utilized to estimate the p-value of testing the
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null hypothesis of no association between Xj and Y . Y was permutated B times as Y ∗1 ,

Y ∗2 , Y ∗3 , . . . , Y ∗B. The weighted correlations between Xj and each of Y , Y ∗1 , Y ∗2 , Y ∗3 , . . . , Y ∗B

were calculated for every SNPj with weights derived from IPW weights given above. The

p-values (denoted as pj) for testing the null hypothesis of no association between SNPj

and secondary outcome was estimated by dividing the number of times that more extreme

correlations are observed across all the permuted correlations (Bair 2013). The function of

estimating p-value is shown below.

pj =
1

NB

N∑
i=1

B∑
k=1

I(
∣∣R∗l,k∣∣ ≥ |Rj|), (3.5)

where Rj is the weighted correlation between Xj and Y , and R∗l,k is the weighted corre-

lation between Xl and permuted outcome Y ∗k . I(x) is the indicator function. It is equal

to 1 when the condition is true, and 0 when the condition is false. The p-value was cal-

culated by pooling the weighted correlation across all the candidate genes and permuted

secondary outcome which is counting the number of absolute value of R∗l,k greater than

absolute value of Rj divided by NB. Note that this procedure may be used even if Yi is

binary, since the correlation between Xi and Yi is proportional to the Armitrage trend test

statistic. This method assumes that the distribution of R∗l,k does not depend on j.

Now suppose one wishes to evaluate the association between an allele count Xi and a

secondary phenotype Y after controlling for covariates Z1, Z2, . . . , Zk. The above proce-

dure can be modified as follows:

1. Regress Xi on the Zis by weighted least square regression where the weights were

calculated in the above method. Find out the residuals vector X ′
i from the resulting

model.

2. Similarly, Regress Y on the Zis by weighted least square regression and get the resid-

uals vector Y ′ from the resulting model.
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3. Apply the permutation test procedure above using X ′
i and Y

′ in place of Xi and Y .

This procedure is useful when one wishes to adjust for demographic covariates or eigenvec-

tors corresponding to population stratification such as race or ancestry (Price et al. 2006).

The above procedure requires one to regress Xj on the covariates for each SNP. Thus,

a naive application of this precedure would require the computation of millions of regres-

sion models, which would be computationally expensive. By noting that each regression

model has exactly the same covariates and Xj is the only difference, we proposed a method

that can significantly reduce the computing time. Let Z be the model matrix for a given

regression model, where each column of Z is an individual covariate. Let W be the N ×N

diagonal matrix of weights, and the weights on the diagonal were 1 for controls and Wt1

for cases. The weighted least squares regression coefficients were given by

β̂w = (ZTWZ)−1ZTWXj (3.6)

The estimated values of Xj were calculated as

X̂j = Z(ZTWZ)−1ZTWXj (3.7)

Let P = Z(ZTWZ)−1ZTW , and the above equation becomes

X̂j = PXj (3.8)

Noting that P depends on Z not Xj, one may calculate and store matrix P . Then the

residuals of the weighted regression model to predict Xj on Z (denoted as êXj) was cal-

culated by

êXj = Xj − PXj (3.9)
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Hence, the residual matrix for X was

êX = X − PX (3.10)

Similarly, the residuals of Y on Z (denoted as êY ) was using the following formula,

êY = Y − PY (3.11)

This requires only a single matrix multiplication rather than recomputing the entire re-

gression model for each SNP, and it is likely to significantly reduce the computation needed

for this procedure.

3.2.2 Type I error simulation

The above procedures were conducted to produce valid p-values whereas the conven-

tional IPW method produced inflated p-values. Simulations were performed to evaluate

the type I errors of the proposed method as well as a conventional IPW method. In the

first simulation, a data set with 100 “subjects” and 10000 “SNPs” were simulated. The first

50 “subjects” were designated as cases, and the remaining “subjects” were designated as

controls. The secondary outcome variable was simulated as integers between 0 and 10. For

cases, the secondary outcome variable was generated under a uniform distribution with the

integers between 1 and 10. To generate the secondary outcome for controls, first of all a

proportion p was generated under a (continuous) uniform distribution on (0.01, 0.1). Then

for each control in the sample, the secondary outcome variable was defined to be 0 with

probability 1 − p and an integer generated uniformly between 1 and 10 with probability

p. This simulation scenario is motivated by secondary pain phenotypes in the OPPERA
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study, where all cases report some level of pain and most controls report no pain. The mi-

nor allele frequency (MAF) of each SNP was randomly generated from a uniform distri-

bution ranging on (0.05, 0.1). After generating the MAF, the number of minor alleles for

each subject at each SNP was generated under a binomial distribution with two trials with

the probability of success equal to MAF.

The second simulation was performed in the scenario where population stratification

was present in the simulated SNPs. The data was generated by a Balding-Nichols model

similar to the simulations in Price et al. (2006). This simulated data set had 1,000 “sub-

jects” (with 500 controls and 500 cases) and 10,000 SNPs. The secondary outcome vari-

able was generated by the same procedure as those in the first simulation. To generate

SNPs, an ancestral allele frequency p was generated for each SNP under a uniform distri-

bution on (0.1, 0.9). We assumed that two subpopulations exist in the sample. The allele

frequency for each subpopulation (denoted as pi) was generated using Balding-Nichols’

model, as the formula below:

pi ∼ Beta
(
p(1− FST )

FST
,
(1− p)(1− FST )

FST

)
(3.12)

where pi is the allele frequency for population i, where i = 1, 2. The coefficient FST = 0.01

represents Wright’s coefficient of inbreeding, which was chosen based on the inbreeding

coefficient observed in different populations of Europen ancestry (Pritchard and Donnelly

2001). In the first 100 SNPs, the ancenstral allele frequencies were chosen to be 0.2 and

0.8 for population 1 and 2 respectively, to model the fact that a small number of SNPs are

expected to have larger differences between the two populations. This simulation scenario

is analogous to the model used for the simulations in (Price et al. 2006). It was assumed

that there were 300 cases and 200 controls in population 1 and the remaining simulated

subjects were in population 2. For each SNP, the count of minor alleles for each subject

was generated under a binomial distribution with two trials and probability of success pi,
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as described previously.

In both simulation scenarios, the secondary phenotype was permuted 10 times. The p-

value for testing the null hypothesis of no association between a SNP and the secondary

phenotype was calculated by proposed permutation-based IPW method as described in

Section 3.2.1. The p-value for conventional IPW regression was obtained using the “geep-

ack” R package as described in Monsees et al. (2009). The prevalance of the disease was

assumed to be 5% in the general population and was utilized in calculating the weights

for the cases. In the second type I error simulation, the first 10 eigenvectors were taken

into account as covariates adjusting for population stratification. No covariates were in-

cluded for the first simulation since only one “population” were simulated in the first data

set. The p-values were generated by proposed methods and conventional IPW method to

test the null hypothesis. Note that there’s no association between the SNPs and the out-

come variable in both simulated scenarios, all “significant” associations are necessarily false

positives. Under null hypothesis, all the p-values should be therefore uniformly distributed

between 0 and 1. When a method produces excessive number of small p-values, that indi-

cates that the method produces inflated type I errors and would have spurious association

with secondary outcome. Q-Q plots were utilized to present the observed p-values versus

the expected (uniform) distribution of the p-values for conventional IPW method and the

permutation-based IPW method. Lines were added to the plots showing the expected dis-

tribution of the p-values, as well as the significance thresholds corresponding to false dis-

covery rates (FDR’s) (Benjamini and Hochberg 1995) of 0.2, 0.1, 0.05 respectively. When

a SNP point on the plot is above the line corresponding to an FDR of 0.05, that implies

that the estimated false discovery rate would be less than 0.05 if that SNP (and all other

SNPs above the line) were called “’significant’.
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3.2.3 Power Simulation

We hypothesized that this method will have comparable power to conventional IPW

regression. In order to evaluate the power of the proposed method, we generated 10,000

SNPs for 2,000 subjects using a simulation similar to the simulation proposed by Lin and

Zeng (2009). Let Z be an indicator for case status; let Yi denote a quantitative secondary

outcome, and let Xi denote the number of minor alleles of SNP i. Then each Xi was gen-

erated as a binomial random variable with two trials and probability of success p, where p

is a tunable parameter. Then Yi was generated as follows:

Yi = β0 + β1X + εi (3.13)

where εi has a normal distribution with mean 0 and variance 1. In this simulation, we let

β0 = 0, and β1 was a tunable parameter.

To model the dependence of case status on both Xi and Yi, the probability of case sta-

tus was defined to be

P (Z = 1|Xi, Yi) =
eg0+g1Xi+g2Yi

1 + eg0+g1Xi+g2Yi
(3.14)

where g1 and g2 were equal to log 2; and g0 was defined to be

g0 = log
φ

1− φ
− g1X̄ − g2Ȳ (3.15)

In the formula above, X̄ and Ȳ are the mean value of Xi and Yi, and we let φ = 0.1. (Un-

der this model, the prevalence of the disease will be approximately φ.)

For each simulated observation, the probability of case status was calculated based

on (3.14) and the observation was randomly assigned to be a case or a control based on

this probability. The process was continued until 1000 controls and 1000 cases were gen-

erated. (Extra controls were discarded once 1000 controls had been generated.) After a
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complete data set was generated, both conventional IPW regression and our permutation-

based IPW method were applied to the simulated data set. The null hypothesis of no as-

sociation between the SNP and the outcome was rejected if the p-value was less than 0.05.

These calculations were repeated 10000 times for each choice of p and β1. The power of

each method was estimated to be the number of times the method produced a p-value of

less than 0.05 divided by the number of repeated times (which is 10000).

3.2.4 Data Application

We applied our method to data from the “Orofacial Pain: Prospective Evaluation and

Risk Assessment” (OPPERA) baseline case-control study. OPPERA study is a large scale

prospective cohort study in finding out the etiology and putative risk factors of chronic

and onset of temporomandibular disorder (TMD). In this study, people with TMD were

consideredd as cases, while people without TMD were denoted as controls. There are com-

pelling evidence that the genetic factors play an important role in the etiology of TMD.

Genetic inheritance contributes to about 27% to the variation of TMD pain in a recent

twin study (Plesh et al. 2012). Numerous studies found out associations between TMD

and genetic factors. While these studies are informative, one may wish to identify the ge-

netic variants that associated with secondary phenotype, such as widespread body pain

and clinical pain. TMD patients with greater widespread body pain or clinical pain might

represent a homogenous cluster of TMD patients as treating all the TMD patients ho-

mogenously would fail to detect genetic markers associated with the most severe forms

of TMD. Each patients in this study filled out a set of questionnaires at screening, and

underwent a series of clinical examinations to identify risk factors of TMD. A blood sam-

ple was obtained from each study participants and and stored in 5 ml EDTA-containing

polyethylene vacutainers at −80 ◦C. Then the samples were genotyped using Omni2.5

Bead Chip Illumina Platform as part of a genome-wide association study. Genetic data
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was available for both cases and controls.

The study enrolled a total of 3263 TMD-free controls and 186 chronic TMD cases. Ge-

netic data on 2924 SNPs was available for 3050 of these subjects. The secondary pheno-

type for this analysis was the pain density, a quantitative trait calculated as the average

self-reported orofacial pain rating (on a 0-100 scale) multiplied by the self-reported per-

centage of the day with pain. We included participants with non-missing pain density and

all SNPs with a MAF greater than 0.02. The final dataset consists of 3001 patients (with

166 TMD cases and 2835 TMD-free controls) and 2864 SNPs. Using the method described

above, principal component analysis was performed on the SNP matrix, and the first 6

components were included in the model as covariates controlling for population stratifica-

tion. Gender and dummy variables for OPPERA study sites were also included as covari-

ates. The permutation-based IPW procedure was applied to calculate p-values for each

SNP as described in Section 3.2.1. The p-values of testing null hypothesis of no associa-

tion between pain intensity and a SNP were visualized in Q-Q plot, where under the null

hypothesis the p-values were expected to follow uniform distribution.

3.3 Results

3.3.1 Type I Error

The Q-Q plots of the observed p-values versus the expected p-values under null hy-

pothesis of no association between secondary phenotype and a given SNP by permutation-

based method and conventional IPW method were shown in Figures 3.1 and 3.2 respec-

tively. They represent the scenario in simulation 1 where only one population were taken

into consideration. Each point on the plot represents a simulated “SNP”. Under the null

hypothesis, we expected to see that the expected p-values were nearly identical to the ob-

served p-values since none of the simulated “SNP” were associated with simulated “sec-

ondary phenotype”. In Figure 3.1, almost all the SNPs are on the line where the expected
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p-values are equal to the observed p-values, and none of the SNP point is above any of the

lines corresponding to FDR 0.2, 0.1 nor 0.05. This implies that we do not reject the null

hypothesis of no correlation between a “SNP” and secondary phenotype, which is what

we expected to see in the simulation. Type I error is well preserved by our nonparamet-

ric IPW method in this scenario. While Figure 3.2 is the Q-Q plot of p-values from the

same simulated data as those from Figure 3.1, but using conventional IPW method under

null hypothesis. We can see that a lot of SNP points’ with obseved p-values largely differ-

ent from the expected p-values, even above the lines with FDR 0.05. We rejected the null

hypothesis and those SNP points above the line where FDR = 0.05 are significantly as-

sociated with secondary outcome by looking at the plot. However, this is contradictory to

our simulated data where none of the SNP is correlated with secondary outcome. This im-

plies that conventional IPW method producedd unstable p-values and would inflate type

I errors. We cannot use this method in the analysis of real data which are similar to the

simulated data, since it would have false positive results and lead to spurious association

between them.

Figure 3.3 and 3.4 showed the p-values for both permutation-based IPW and conven-

tional IPW method under null hypothesis when population stratification were considered

as illustrated in simulation 2. Similar as the result in simulation 1, almost all the “SNP”

points were on the anti-diagonal line where expected p-values were equal to the observed

p-values. Only two points were on or above the lines with FDR 0.2 and 0.1. None of the

points were above the line with FDR = 0.05. Our method do not have inflate p-values in

scenario 2 and type I errors were well conservative. Compared with nonparametric IPW

method, conventional IPW method shown in Figure 3.4 had a trend of inflated type I er-

rors, meaning that the observed p-values were greater than expected p-values for a number

of simulated “SNPs”, which in fact did not associated with “secondary phenotype” in the

second simulation.
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In both simulation scenarios, the p-values produced by conventional IPW regression

deviated significantly from the expected p-values, indicating that conventional IPW re-

gression is producing anticonservative p-values in these simulation scenarios. In contrast,

the distribution of the p-values produced by permutation-based IPW procedure are nearly

identical to the expected null distribution. Our method is likely to find out true associa-

tion of a SNP and secondary outcome rather than spurious associations which are likely to

be produced by conventional IPW method.

3.3.2 Statistical Power

Table 3.1 shows the estimated power of conventional IPW regression and permutation-

based IPW approach for various values of MAF and β1. The powers by both methods

were very similar, indicating that our method has comparable power to conventional IPW

regression when true association exists.

3.3.3 Data application

The above results showed that our method has conservative type I errors and compara-

ble power to conventional IPW method. The application of the method to OPPERA data

would help us to identify genetic markers associated with secondary phenotype (which is

the severity of TMD pain). Figure 3.5 is the Q-Q plot of the observed p-values versus the

expected p-values under the null hypothesis of no association between a given SNP and

pain density in the OPPERA study. Most of the data points were on the anti-diagonal line

where expected p-values were identical to the observed p-values, implying that those SNPs

were not associated with pain density. Two SNPs show evidence of an association with the

pain density phenotype, including one SNP that shows a significant association after ad-

justing for multiple comparison.
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3.4 Discussion

IPW regression is a useful tool for evaluating the association between genetic park-

ers and secondary phenotypes in GWAS studies. However, it can produce unreliable es-

timates when the assumptions of the model, where the secondary phenotype is strongly

associated with disease case-control status are violated. In particular, conventional IPW

regression performs poorly when evaluating the association between a genetic marker and

a secondary phenotype that is equal to 0 for the majority of the controls. IPW regression

gives lower weight to cases to account for the fact that they are overrepresented in a case-

control study. Thus, if the secondary phenotype is equal to 0 for the majority of controls,

nearly all of the variance in the secondary phenotype outcome variable occurs among the

data with low weight, resulting in unstable regression estimates.

This situation is common in studies of chronic pain such as OPPERA. Suppose we

wish to identify SNPs associated with the severity of orofacial pain. All TMD cases have

some level of orofacial pain, but the majority of controls report no pain in the orofacial

region. If conventional IPW regression is applied to OPPERA (or similar data sets), it

produces a large number of anticonservative p-values.

In addition to conventional IPW method, other methods proposed for the analysis of

secondary phenotype and a genetic variants generally use parametric regression models

(Lin and Zeng 2009, He et al. 2011, Wang and Shete 2011). There’s a need of using non-

parametric methods rather than parametric ones where the assumptions are violated, to

produce robust estimates. Our proposed permutation-based IPW procedure overcomes this

shortcoming of conventional IPW regression. Our simulations and real data results indi-

cated that this procedure avoid the problem of inflated type I error when the assumptions

of the conventional IPW regression model are violated without sacrificing power. The pro-

cedure identified two novel SNPs associated with clinical pain in the OPPERA study. To

our knowledge, our method is the first purely nonparametric hypothesis test to evaluate
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the association between a risk factor and a secondary phenotype.

The proposed method is easy to implement using common statistical software and is

relatively fast. Fewer permutations are required when the number of SNPs is large, so the

method can be applied to GWAS data sets with millions of markers. Thus, the proposed

method is an attractive alternative to conventional IPW regression, particularly for sec-

ondary phenotypes with few nonzero values among controls.

Our application to identify SNP’s associated with pain density in TMD case-control

studies is also novel. Most previous GWA studies in OPPERA focused on the TMD dis-

ease status, which was usually considered as the outcome of interest. Such studies do not

consider the fact that the severity of the pain may vary greatly among TMD patients nor

the fact that individuals who do not meet the diagnostic criteria for TMD may still expe-

rience some levels of pain. Although genetic association of TMD related secondary pheno-

type (such as pressure pain sensitivity and non-specific orofacial symptoms) were analyzed

in previous studies, our analysis was focusing on pain density and based on candidate

genes. This analysis is the first GWA study to identify the association between genetic

markers and clinical pain severity, such as pain density. This analysis will lead to the new

insights on the genetic risk factors for TMD and chronic pain more generally. In a recent

study, Bair et al. (2016) found that TMD consists of at least three homogeneous subgroups

or clusters. Some clusters are associated with more severe clinical pain measures. It is be-

lieved that patients in different clusters will respond differently to treatments. Identifying

genetic markers associated with more severe forms of TMD will hep explaining why some

patients have more severe TMD symptoms and may lead to novel treatment plans.

This methodology has some limitations. It only produces p-values. It cannot be used to

calculate odds ratios (or any other measure of the strength of an association) or associated

confidence intervals. While the variance of effet size measures produced by conventional
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IPW regression are oftern anticonservative when a secondary phenotype is strongly associ-

ated with case status, resulting in confidence intervals that are too narrow. Future analysis

with alternative approach is needed to address these questions.
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Figure 3.1: QQ plot of the p-values produced by the permutation-based IPW method for
the first simulation scenario
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Figure 3.2: QQ plot of the p-values produced by conventional IPW regression for the first
simulation scenario
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Figure 3.3: QQ plot of the p-values produced by the permutation-based IPW method for
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Figure 3.4: QQ plot of the p-values produced by conventional IPW regression for the
second simulation scenario
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Figure 3.5: QQ plot of the p-values for testing the null hypothesis of no association be-
tween each SNP and pain density in the OPPERA study
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Table 3.1: Power simulation

β1 MAF Power using
permutation-based IPW

Power using
conventional IPW regression

-0.12 0.06 0.2295 0.3302
-0.42 0.3 1 1
-0.17 0.3 0.9782 0.98
-0.16 0.3 0.9633 0.9633
-0.15 0.3 0.9407 0.9462
-0.13 0.3 0.8631 0.8723
-0.12 0.3 0.7956 0.8079
-0.12 0.4 0.8581 0.8620
-0.012 0.3 0.056 0.0599
0.12 0.3 0.8137 0.8256
0.14 0.3 0.9181 0.9223
0.18 0.3 0.9899 0.9908
0.2 0.3 0.9976 0.9977
0.2 0.4 0.9994 0.9994
0.4 0.4 1 1
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CHAPTER 4: CONDITIONAL VARIABLE IMPORTANCE TEST IN
RANDOM FORESTS

4.1 Introduction

Random forests are an ensemble learning method proposed by Breiman in 2001. The

method combines bagging, classification and regression trees (CART). It performs very

well compared with the other method, and it is widely used in genetics (Goldstein et al.

2010), ecology (Cutler et al. 2007), physics, bioinformatics and other fields. This tool is

able to solve problems related to prediction even with nonlinearity and complex interac-

tions.

Random forests combine conventional decision trees in the following ways. A set of

bootstrap samples (which are sample with replacement) are selected as training sets to

create trees in the forest. Those left out of the samples are called out-of-bag (OOB) data,

which will further be utilized to get the prediction or classification error and calculate the

variable importance. Within each resulting tree, a subset of variables are selected at each

node, and they are splitted within the chosen variables (rather than splitting among all

variables in conventional decision trees). This process is repeated until the tree is fully

grown without pruning. Random forest predictors are obtained by averaging over all trees.

This strategy decreases the correlation among trees and thus allows one to reduce the vari-

ance in a single decision tree by averaging (Archer and Kimes 2008). It also increases the

prediction accuracy based on the ensemble method compared with single classification

tree.

Random forests have many excellent features. It can be utilized when the number of
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variables are large while the number of observations are small, known as a “small n large

p” problem because each split on a node is based on a subset of variables rather than all

the variables. Thousands of variables can be taken care of in the model without delet-

ing any of them. It can be applied to both categorical, continuous outcomes and survival

data. Random forests are able to handle highly correlated predictors and account for ar-

bitrary interactions. They are also able to model nonlinear associations between predic-

tors and the outcome. In general they will not overfit the data. Even though the results

are not easy to interprate as those of classification tree does, varaible importance in ran-

dom forest helps to solve the issue, as discussed below (Díaz-Uriarte and De Andres 2006).

Missing data can be imputed through random forest (https://www.stat.berkeley.edu/

~breiman/RandomForests/cc_home.htm).

Variable importance can be obtained by random forests. The advantage is that it con-

tains both the predictor’s impact and the interactions with the others. Intuitively, a vari-

able is “important” if the model’s predictive accuracy decreases when the variable is re-

moved from the model or measured with error. The naive way of vcalculating ariable im-

portance is to count the number of times the variable is selected in the trees in tree-based

methods. Gini importance and permutation accuracy importance are the two most com-

mon and more advanced measures of variables importance in random forests and usually

they are very consistent. Gini importance measures the sum of decreases in the Gini im-

purity when the node is split over all trees in the forest. The rationale for premutation

accuracy importance by Breiman is that the original correlation of a predictor variable Xj

and outcome Y is broken by randomly permuting Xj. The prediction accuracy by per-

muted Xj and the other predictors decreases dramatically if Xj is highly associated with

outcome. Hence the difference of prediction accuracy is the variable importance (Strobl

et al. 2007). Strobl observed that the permutation accuracy importance is more reliable

than Gini importance in most situations (Strobl and Zeileis 2008). Another advantage of
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permutation importance is that it can be used for both continuous and categorical vari-

ables, whereas the Gini importance produces biased result when the number of categories

changes (Strobl et al. 2008).

Breiman’s VIMP can be used to identify important variables in the model, but it has

certain shortcomings. It tends to assign high importance to variables that are correlated

with those which are highly associated with the outcome even if these variables are not

associated with the outcome (Strobl et al. 2008). Breiman also proposed a statistical test

for variable importance with the null hypothesis that the variable importance score for

a given variable is equal to 0 based on z-scorse which is the scale of variable importance

(Breiman and Cutler 2008). But The z-score tends to increase as the number of trees in

the forest increase, resulting in inflated type I error. The test’s power does not depend on

sample size either (Strobl and Zeileis 2008).

Breiman’s VIMP for variable Xj is calculated through permuting Xj independently

and keep the other predictors unchanged, which is analogous to sampling from the marginal

distribution of Xj. As a result, variables that are not associated with the outcome but are

correlated with other important variables may still have high VIMP scores because of spu-

rious correlation (Strobl et al. 2008). To overcome this shortcoming, one may sample from

the conditional distribution of Xj on all the other predictors Z = X1, . . . , Xj−1, Xj+1, . . . , Xp,

Xj|X−j rather than merely permuting Xj. In this way, after the true predictors are iden-

tified, the rest would contribute little or no information to the prediction. Strobl proposed

a method to sample from this conditional distribution that we call "Strobl’s Conditional

VIMP" (Strobl et al. 2008).

A description of the procedure is given below:

1. Before permuting Xj, calculate the out of bag prediction accuracy.

2. Conditional on Z, identify the cutpoints that split the variable in a given tree and

create a grid by bissecting the variable in each cutpoint.
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3. Xj is permuted within the grid; OOB prediction accuracy is calculated after the per-

mutation.

4. VIMP of Xj within one tree is calculated by taking the difference of the OOB pre-

diction accuracy before and after permutation. The VIMP of Xj is calculated by averaging

these importance scores over all trees in the forest.

Compared with Breiman’s VIMP, Strobl’s conditional VIMP is less likely to assign

high importance scores to variables that are highly correlated with other true predictors

but not associated with outcome. The conditional variable importance has smaller vari-

ation compared with unconditional one, which makes the variable easier to be identified.

However it does not solve the issue thoroughly. It still tends to assign non-zero importance

to such variables that are correlated with other predictors but not the outcome (Strobl

et al. 2008).

In order to solve this issue, our group proposed an alternative way of calculating con-

ditional VIMP and a statistical test for the VIMP previously. The previous two methods

provide variable importance for Xj by permuting Xj but keep other varibles unchanged,

or permuting Xj within the grid of other varibles, and calculate the prediction accuracy

changes before and after permutation as the variable importance. While the basic idea

for the alternative conditional VIMP is the changes of prediction accuracy when Xj is re-

placed by the conditional distribution of Xj. When Xj is conditional important to the out-

come, losing Xj or using the conditional distribution of Xj on the rest of variables would

lose a lot of information and hence the prediction accuracy is low compared with that of

original data. Otherwise, when Xj is not important in predicting Y , losing the informa-

tion from Xj won’t affect the prediction accuracy significantly. It answers the question of

whether Xj brings more information in predicting Y while the other variables are present.

In this method, our group first proposed the conditional distribution of Xj on the other

predictors X−j through the following steps. Predict Xj by X−j in a single decision tree
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in random forest model. Calculate the random errors of Xj through the difference of pre-

dicted values by OOB data and the original values. Randomly permute the errors, the

conditional distribution of Xj (denoted as Xj|X−j) is derived as predicted Xj plus per-

muted random error. Conditional VIMP of Xj already accounts for the predictors’ cor-

relations and all the other variables. Suppose there are n subjects and p variables. Grow

ntree trees in the forest. Perform random forest model on data to get conditional dis-

tribution of Xj in place of Xj ; caldulate the Xj’s VIMP by OOB prediction accuracy

difference and average them over ntree trees, denoted as V IMPj, which is the variable

importance of Xj|X−j. In order to do the statistical test, we want to find the variable

importance for Xj when it is not important to Y . A data set was generated by permut-

ing the outcome Y so that dependent and independent variables are uncorrelated. Un-

der the m-th tree, calculate the VIMP again. Repeat this step for B times, and let k be

the k-th permutation of Y , where k = 1, 2, . . . , B. The permuted VIMPs of Xj are aver-

aged for ntree trees and B permutation, denoted as V IMP j,ntree,B. The original VIMP

is shifted by subtracting V IMP j,ntree,B from V IMPj, denoted as V IMP ∗j . The column

of permuted VIMP for Xj over ntree trees and k-th tree are denoted as V IMP j,perm and

V IMPj,k respectively. The column is centered through V IMP
∗
j,perm = V IMPj,perm −

1
B

∑B
k=1 V IMPj,k. Compare V IMP ∗j with V IMP

∗
j,perm and calculate the empirical p-

values for the statistical significance of VIMP score for variable j using formula Pj =

1
p×B

p∑
j=1

B∑
perm=1

I(V IMP ∗j < V IMP ∗j,perm). This method does not need normality assump-

tion. We can use small number of permutations to approximate the null distribution.

The alternative conditional VIMP method above provide a more robust way to test the

variable VIMP conditional on all the other variables. It provides a way of testing if one

variable are important to the outcome conditional on all the other variables. But some-

times a subset of variables might be missing simultaneously, and one may wish to know

whether a group of variables bring more information to the outcome based on all the other
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predictors, especially when they are highly correlated. It is possible that they as a group

conditional on the rest independent variables contribute significantly to predicting out-

come even though none of them individually in the subset conditional on all the others are

important. They cannot be removed simmutaneously without losing prediction accuracy

significantly in that case. This is very common in clinical study such as OPPERA study

where a number of varibles are highly correlated and the number of variables are large.

This motivated us to find out a way to test if a subset of variables are important based on

the rest risk factors.

4.2 Methods

4.2.1 Conditional VIMP on a subset of variables

Similar to the alternative conditional VIMP calculation, we first proposed the condi-

tional distribution of the variables in the subset based on all the other variables out of the

subset. Suppose there are n observations and p predictors X1, X2, . . . , Xp with the out-

come variable Y . The conditional distribution of of variables in the subset Xj1,...,js based

on all the remaining predictors X−j1,...,−js are denoted as Xj1|X−j1,...,−js, . . ., Xjs|X−j1,...,−js,

where jk with k = 1, . . . , s is from 1, 2, . . . , p.

1. Fit a linear or random forest model to predict X̂j1, X̂j2, . . . , X̂js respectively by all

other predictors X−j1,...,−js.

2. Let x̂i,jk be the predicted value of i-th observation and jk-th covariates from OOB

(out of bag) data. Then Random error ε̂i,jk was calculated by substracting the original

value xi,jk from predicted value x̂i,jk using OOB data when xi,jk is continuous. Permute

the random error ε̂i,jk as ε̂∗i,jk.

3. For quantative variable, let x̂∗i,jk = x̂i,jk + ε̂∗i,jk, and x̂∗jk = {x̂∗i,jk}. x̂∗jk is defined as

random sample from the conditional distribution of Xjk|X−j1,...,−js. While the variable in
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the group is qualitative, multinomial distribution was conducted to estimate the probabil-

ity of each category in this variable for each subject by OOB data. Sample a value from

multinomial distribution as the values estimated from OOB data.

Repeat step 2 and 3 by k = 1, . . . , s. We were able to create and sample from condi-

tional distribution of all variables in the subset. The conditional VIMP of the subset of

variables was calculated from data set in the next steps adjusting for the correlation of the

rest of predictors.

4.2.2 Statistical test for conditional VIMP on a subset of variables

Statistical test for the VIMP score for variable subset was also proposed. Under the

null hypothesis, the conditional variable importance score for subsets Xj1, ..., Xjs is not

significantly different from 0. When the subset is not strongly associated with the out-

come, the conditional VIMP score for the subset would not change significantly after the

subset are replaced by the conditional distribution of the subset. The following steps illus-

trate the way of calculating the conditional VIMP as well as the significant test of VIMP

score for the subset predictors from the conditional distribution of the subset variables.

1. Perform random forest model and calculate conditional VIMP for the subset in a

tree. First of all, calculate the OOB error by original data set through random forest.

Then create new data set by replacing Xj1, Xj2, . . . , Xjs by their conditional distributiion

X̂j1, X̂j2, . . . , X̂js and keep the others unchanged. Put the new data set down the previ-

ous tree and calculate the prediction error (which is the mean square error by the differ-

ence of predicted outcome) from OOB data points in new data set and outcome in OOB

data points from original data set. Then conditional VIMP of the subset in this tree was

calculated by using OOB mean square error minus the original OOB error.
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2. For some reason the above conditional VIMP is not close to 0 even when the sub-

set are not associated with dependent variable. To solve this problem, we calculated the

conditional VIMP when Y is independent of any Xs, and compare the conditional VIMPs.

We created a data set with Y independent of all predictors by permuting dependent vari-

able Y . B data sets were created by permuting Y for B times. In each permuted data set,

similar strategy as previous step was utilized to calculate conditional VIMP in this tree.

Variable Xjk in the l-th permutation is denoted as Xjk,l, where l = 1, . . . , B. Define the

outcome after the l-th permutation as Yl, and conditional distribution of Xjk as X̂∗jk,l. A

random forest model with one tree were perfomed on permuted data set l with all Xs as

independent variables and Yl as dependent variable. OOB error was calculated in this

model. Then replace Xj1,l, . . . , Xjs,l with their conditional distribution X̂∗j1,l, . . . , X̂∗js,l in

data l, and put the data down the same tree in random forest to generate the predicted

outcome. The OOB errors difference is the conditional VIMP score for group variables

Xj1, Xj2, . . . , Xjs in data l, denoted as V IMPj,l. This process were repeated for B times,

so that the VIMP scores of the subset for B permutation times were calculated.

3. Repeat steps 1 and 2 for ntree times to create ntree trees. The data we got contains

ntree conditional VIMPs of the same variable subset, and ntree conditional VIMPs of B

permuted data sets.

4. Average the conditional VIMPs over all trees and we got conditional VIMP of subset

variables and B conditional VIMPs of the subset when Y is independent of all the varis-

bles. Let V IMP j be the average of VIMP score for variable sets Xj1, . . . , Xjs over ntree

trees before permutation, and V IMP j,l be the average of VIMP score in l-th permuta-

tion over ntree trees after permutation, where l = 1, 2, . . . , B. V IMP j,l is also averaged

over B permutations as V IMP j,perm, where V IMP j,perm = 1
B

B∑
l=1

V IMP j,l. This value

denotes the noise from the data set when outcome and predictors are independent. The
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shifted VIMP score (V IMPj) for variable subset Xj1, . . . , Xjs, meaning the pure condi-

tional VIMP from variable subset, is calculated by subtracting V IMP j,perm from V IMP j,

which is V IMPj = V IMP j − V IMP j,perm. V IMP j,l was centered as V IMP ∗j,l through

V IMP ∗j,l = V IMP j,l − V IMP j,perm for l = 1, . . . , B.

5. Under the null hypothesis, the subset Xj1, . . . , Xjs do not have VIMP significantly

different from 0 conditional on all the other predictors. The shifted VIMP score V IMPj

is similar to centered VIMP score after permutation V IMP ∗j . P -value were obtained by

comparing shifted VIMP and centered VIMP, using formula

Pj1,...,js =
1

B

B∑
l=1

I(V IMP j < V IMP ∗j,l) (4.16)

The null hypothesis is rejected when V IMPj is greater than majority of the V IMP ∗j,ls,

because prediction accuracy decrease more when subset variable are associated with out-

come. Conditional VIMP p-value of selected variable subset was calculated through above

steps. This method can solve the problem when we want to know the if some variables can

bring more information when the others are present, where these questions are pretty com-

mon in OPPERA study.

The above methods consider the outcome with quantitative traits. The following sim-

ulations include different scenarios, such as categorical varibles and outcome, where multi-

nomial distribution was utilizef to predict categorical variables .

4.3 Simulation Studies

In this section, simulation examples were provided for the VIMP of subset variables.

The significant test was also provided by calculating empirical p-values based on the method

above.
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4.3.1 Simulation 1, simulation of quantitative outcome and predictors

In the first simulation, both outcome and predictors were quantitative. We simulated

a set of variables with 12 predictors X1, . . . , X12 and 1000 subjects following multivari-

ate normal distribution with mean 0 and covariance matrix Σ = {σi,j}, denoted as X ∼

N(0,Σ), where i, j = 1, 2, . . . , 12. The first four variables X1, X2, X3, X4 were highly cor-

related with covariance 0.9, but independent of other variables. The rest eight variables

were mutually independent. In other words, {σi,i} = 1 for i = 1, 2, . . . , 12; {σi,j} = 0.9

for i, j = 1, 2, 3, 4, where i 6= j; {σi,j} = 0 for all the other scenarios. The coefficients for

all 12 variables were 5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 0, 0 respectively and the outcome Y was

simulated through the following formula with εi ∼ N(0, 0.5).

yi = 5xi,1 + 5xi,2 + 2xi,3 − 5xi,5 − 5xi,6 − 2xi,7 + εi (4.17)

In this model, X1, . . . , X4 were highly correlated, whereas the rest eight variables were

independent with each other. Among the 12 variables, only 6 were associated with the

outcome, which are X1, X2, X3, X5, X6. X7. And X4, X8 to X12 were independent of Y .

We subset variables in a group to test if they brought more information to the prediction

of Y when the others were present. Method in the previous section was utilized for the

test. In the random forest, 200 trees were built; the outcome Y were permuted for B = 25

times.

The results were listed in Table 4.2. It summarized the test statistics with p-values of

conditional VIMP for the subgroups under the null hypothesis that the VIMP score for

the subset variables was 0 conditional on the other variables. Variables X1, X2, X3 were

grouped to test if they were important to Y conditional on all the other variables. From

model above, we noticed that their effect size were large compared with other predictors,

and they are independent of all the other variables which are correlated with Y . They
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should be important to Y . We created data with conditional distribution of three vari-

ables, and went through random forest model for the conditional VIMP with statistical

test. The conditional p-value was 0 as expected, suggesting significance on 0.05 level. We

rejected the null hypothesis of non-imporatance of group X1, X2, X3, and they brought

more information to the prediction of outcome when the other variables were present. By

the same token, variables subset X5, X6, X7 conditional on all other variables were sig-

nificant to variable Y as well. They were independent of other variables and contribute

to predicting Y . The group X10, X11, X12 had conditional p-value 0.68 which was much

greater than 0.05 threshold. In the model, the coefficients for all three variables equal to 0,

meaning they were not associated with Y . Hense their conditional distribution were inde-

pent of Y and could not provide more information when the other variables were present.

In the group of X2, X4 and X8, the first two variables were highly correlated with each

other and also associated with X1, X3; X4 and X8 were independent of Y , while X2 was

highly associated with Y . The conditional p-value was marginally significant. The simi-

lar group contains variables X6, X8, X9, X10, where only X6 was associated with Y . The

conditional VIMP p-value was 0, suggests significance in the test. The reason for the dif-

ference of p-values in both group is that X2 was highly correlated with X1 and X3, which

can be surrogates for X2, when X2 was missing, both of them provided some information

which X2 had. Since the effect size of X2 was large, the p-value was marginally significant.

However, X6 was independent of all the other variables. The information from X6 could

not be provided from the other variables and hence it would lose prediction accuracy when

X6 is absent. Similarly, X3, X4 were conditionally not significant because they were highly

correlated with X1 and X2. The coefficient of X3 was not as large as the other 4 variables

(X1, X2, X5, X6), meaning it did not have large effect on the outcome. X3, X4 could be

surrogated by the other variables and do not affect prediction accuracy much. The subset

X7, X8, X9, X10 was similar to the previous setting but X7 has small effect size to Y and
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all the others are independent on Y . The subset did not show significance to the outcome.

In order to make the simulation more comprehensive, we modify the above simulation

by adding interaction terms, including quanlitative predictor and binary outcome respec-

tively.

4.3.2 Simulation 2: simulation of quantitative outcome, predictors and adding

interaction term

In the second simulated model, an interaction term were added based on the first model.

Similar as model 1,12 predictors were first simulated multivariate normally distributed

with mean 0 and covariance matrix Σ, and six variables were associated with Y . Variables

X1, X2, X3, X4 were highly correlated with each other with correlation coefficient 0.9 but

independent of the other variables. All the other variables were independent of each other.

The simulation of the 12 predictors were exactly the same as model 1 above. An interac-

tion term was added so that X10 and X11 were correlated with Y only when X11 is greater

than 0. The outcome variable was simulated by the following model.

yi = 5xi,1 + 5xi,2 + 2xi,3 − 5xi,5 − 5xi,6 − 2xi,7 + βxi,10xi,11I(xi,11 > 0) + εi (4.18)

, where I(xi,11 > 0) is the indicator function suggesting if xi,11 is greater than 0 or not;

when it is greater than 0 it has value 1, otherwise it has value 0.

By the simulation describe above, the data set had 1000 subjects with variables y and

xi,1 to xi,12. The number of trees ntree was set to 200 and the number of permutation was

25 just the same as simulation 1. We modified β multiple times to create different value of

Y and checked the conditional VIMP p-value of group X10, X11. The results were shown
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in Table 4.3. When β was set to 4, the group conditional VIMP p-value is 0.36, suggest-

ing not significant under 0.05 threshold. By increasing the coefficient value for the in-

teraction term, conditional VIMP p-value kept decreasing. When β was 5, the group p-

value was 0.08, indicating marginal significance. While we increased β to 6 and 20, the

p-values was 0, suggesting the group variables are important to y, and the interaction of

both variables played and important role in prediction Y . Consider them as a group would

increase the prediction accuracy. Other combinations were tested additionally with β set

to 6. Group X1 and X11 showed conditional VIMP score significantly different from 0 in

the test, whereas group X12 and X11 were unimportant in predicting Y . This is because

X1 was important in simulating Y , while X12 was independent of Y . X11 affected the out-

come to some extent. X11 was independent of both variables and it did not have joint ef-

fect on outcome. Similarly subset X3, X11 did not provide more information to the predic-

tion of Y in addtion to the rest of the variables, since X3 is highly correlated with X1, X2,

which already provided some information of X3, and the contribution of this group was

not much. X7 was independent of other variables. When it combined with X11, the p-value

suggested marginally significant in predicting Y .

4.3.3 Simulation 3, simulation with binary outcome and quantitative vari-

ables.

In simulation model 3, the outcome was binary in the model to mimic the outcome of

chronic TMD in OPPERA study. The simulation of predictors were exactly the same as

those in model 1, except that the outcome was binary instead of continuous. 12 predic-

tors were simulated following multivariate normal distribution with mean 0 for all predicc-

tors and covariance matrix Σ which was exactly the same as model 1. The first 4 variables

were highly correlated with each other and independent with all the other predictors. All

the other eight predictors were independent with each other. Simulate the coefficient for
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all Xs the same way as these in simulation 1. In order to simulate the binary outcome Y ,

a linear combination of Xs, which was denoted as Z, was simulated the way in the formula

shown below,

zi = 5xi,1 + 5xi,2 + 2xi,3 − 5xi,5 − 5xi,6 − 2xi,7 + εi (4.19)

, where i was from 1 to 1000, representing the subject ID. The predictor matrix was 1000×

12 in dimension. Let Y be the outcome of interest, following bernoulli distribution with

parameter p = 0.5. The outcome Y followed logistic regression:

p(yi = 1|xi,1, . . . , xi,12) =
ezi

1 + ezi
(4.20)

yi = 1 when p(yi = 1|xi,1, . . . , xi,12) ≥ 0.5; yi = 0 when p(yi = 1|xi,1, . . . , xi,12) < 0.5. The

number of trees ntree was set to 200, and the number of permutation was set to 25. The

same grouping strategies were used as those in simulation 1, and we got result in Table

4.4. Groups X1, X2, X3 , and X3, X4 were highly correlated with each other. X1, X2, X3

were associated with Y and the group p-value was 0. Although X4 was not correlated with

Y , when grouped it with other imporatant variables such as X3, the p-value still suggested

importance. Similarly, when we grouped variables which were important to Y and those

not important to Y together, such as the group X2, X4, X8, group X7, X8, X9, X10, and

group X6, X8, X9, X10, the p-values were important as well. While we group those not cor-

related with y such as group X10, X11, X12 the p-value was 0.12, which suggested not sig-

nificant at 0.05 level.
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4.3.4 Simulation 4, simulation with binary outcome and quantitative and qual-

itative variables.

In addition to the binary outcome, we also tried the simulation with categorical pre-

dictors based on simulation 3. A simulation of 12 variables and 1000 subjects were con-

ducted in the following way. x1 to x11 were quantitative variables simulated the same way

as those in simulation 3. Suppose x12 be a binary variable with values A and B. It fol-

lowed bernoulli distribution of p(A) = 0.3. Assume x∗12 = 1 when x12 = A, and x∗12 = 0

when x12 = B, so zi were defined as follows,

zi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 + β6xi,6

+ β7xi,7 + β8xi,8 + β9xi,9 + β10xi,10 + β11xi,11 + β12x
∗
i,12 + εi

, where i is from 1 to 1000, representing the subject ID. The binary outcome y was simu-

lated the same way as that in simulation 3. β1, . . . , β12 were simulated to be 5, 5, 2, 0, −5,

−5, −2, 0, 0, 0, 0, 0. The number of trees ntree was set to 200, and the number of permu-

tation was set to 25. The subsets and corresponding p-values were shown in Table 4.5.

p(yi = 1|xi,1, . . . , xi,12) =
ezi

1 + ezi
(4.21)

yi = 1 when p(yi = 1|xi,1, . . . , xi,12) ≥ 0.5; yi = 0 when p(yi = 1|xi,1, . . . , xi,12) < 0.5.

The number of trees ntree was set to 200, and the number of permutation was set to 25.

The same grouping strategies were used as those in simulation 1 as is shown in Table 4.5.

The results were very similar to those in model 3. In the tested subsets listed in the ta-

ble, when the group variables contained those correlated with y, such as group X1, X2, X3,

X2, X4, X12, the group conditional VIMP p-values were 0s. The p-value was greater than

0.05 when we grouped X10, X11, X12 together, where none of them were correlated with the

outcome.
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4.4 Discussion

We focused on random forest variable selection in this chapter and provided a method

for statistical testing in variable importance of a subset based on the conditional distribu-

tion of the subset on the other variables. We proposed four simulations to do the statisti-

cal tests of group variable VIMP under different scenarios, including quantitative outcome

and predictors, adding interaction term, binary outcome and the continuous predictors, as

well as binary outcome and mixed predictors with both continuous and categorical vari-

ables.

Based on the simulation study, when more variables in the group are highly correlated

with the outcome, the statistical tests for the groups are more likely to be significant. This

suggested that these varaibles are important in prediction of the outcome even when the

other predictors are present. Removing them from the variable set would decrease the pre-

diction accuracy significantly. In the simulations above, X1, X2, X5, X6 are highly corre-

lated with the outcome, group conditional VIMP showed significance when the subsets

include at least one of these variables. On the contrary, when none of the variables are as-

sociated with the outcome of interest, the statistical tests show non-significance for the

group such as subset X10, X11, X12. When some of the group variables are highly corre-

lated with the other strong predictors, even though the we include the correlated variables

with outcome in the group, the statistical test might show insignificance. It suggests that

based on all the other variables, these variables cannot bring much information. The rest

of variables could be the substitute to the variables in the subset. We may still get good

estimate of outcome of interest without these variables. In the tests above, subset X3, X4

in simulations 1 and 2 showed unimportance based on the other predictors because they

are highly correlated with X1, X2 and they do not contribute too much to the prediction of

Y . In addition, the effect size of X3 is small and X4 is not correlated with Y .
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This method solve the issue of the likelihood to assign high VIMP score to variables as-

sociated with true strong predictors but not correlated with the outcome, which existed in

other methods such as Breiman’s permutation VIMP and Strobl’s conditonal VIMP. Sta-

tistical tests were provided to see the conditional VIMP adjusting for the other variables.

It is very useful in clinical trials with many correlated variables such as OPPERA study,

where hundreds of highly associated predictors were collected, and some predictors might

be interchangeable (Bair et al. 2013b). Previous methods utilized in OPPERA study illus-

trated the univariate analysis of potential risk factors and TMD, or just the VIMP scores

for risk factors. This method provides a new way to determine which groups of variable

are superfluous conditional on the present variables and helps us to answer questions in

OPPERA study such as whether autonomic variables are important in predicting chronic

TMD conditional on all the other predictors including psychosocial, demographic and pain

sensitivity variables; whether Pain Catastrophizing Scale variables have high VIMP score

in predicting chronic TMD adjusting for the other variables. It provides more comprehen-

sive information of the risk factors to both first and chronic TMD in addition to the previ-

ous study.

As we know, increasing the number of trees in the forest and the number of permuta-

tion in the calculation are useful method to decrease the variance in computation, and it

will increase the computational burden. The number of trees and permutation times de-

pends on the complexity of the data we have, such as the number of variables and subjects

in the data, the correlation of predictors and etc. Choosing the balance of the two would

be helpful for the test in real data. How to choose both values with respect to the com-

plexity of the data would be the future work for this project.
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Table 4.2: Simulation Results of Conditional VIMP in Variable Subset for Simulation 1,

Variables in The Subset Group p-value of Conditional VIMP
X1, X2, X3 0
X5, X6, X7 0
X2, X4, X8 0.04
X3, X4 0.56
X10, X11, X12 0.68
X7, X8, X9, X10 0.2
X6, X8, X9, X10 0

Variables in The Subset Group is the set up for variable subset based on the model simulated; p-value of
Conditional VIMP is the conditional VIMP p-value on all the other variables.
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Table 4.3: Simulation Results of Conditional VIMP in Variable Subset for Simulation 2,

β Variables in The Subset Group p-value of Conditional VIMP
4 X10, X11 0.36
5 X10, X11 0.08
6 X10, X11 0
20 X10, X11 0
6 X1, X11 0
6 X7, X11 0.04
6 X3, X11 0.28
6 X12, X11 0.36

Variables in The Subset Group is the set up for variable subset based on simulated model 2; p-value of
Conditional VIMP is the p-value of conditional VIMP of the subset based on all the other variables.
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Table 4.4: Simulation Results of Conditional VIMP in Variable Subset for Simulation 3,

Variables in The Subset Group p-value of Conditional VIMP
X1, X2, X3 0
X5, X6, X7 0
X2, X4, X8 0
X3, X4 0
X10, X11, X12 0.12
X7, X8, X9, X10 0
X6, X8, X9, X10 0

Variables in The Subset Group is the set up for variable subset based on the model simulated; p-value of
Conditional VIMP is the p-value of conditional VIMP of the subset based on all the other variables.
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Table 4.5: Simulation Results of Conditional VIMP in Variable Subset for Simulation 4,

Variables in The Subset Group p-value of Conditional VIMP
X1, X2, X3 0
X5, X6, X7 0
X2, X4, X12 0
X3, X4 0
X10, X11, X12 0.72
X7, X8, X9, X10, X11, X12 0
X6, X8, X9, X12 0

Variables in The Subset Group is the set up for variable subset based on the model simulated; p-value of
Conditional VIMP is the p-value of conditional VIMP of the subset based on all the other variables.
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CHAPTER 5: CONDITIONAL VIMP AND STATISTICAL TEST IN
OPPERA STUDY

5.1 Introduction

Chronic pain conditions refer to pain lasting for months or longer. More than 100 mil-

lion people were affected in the U.S. each year. $635 billion dollars are cost for the disease

annually and it is a large burden to population (Simon 2012). The causes of chronic pain

may rise from illness or injuries. Chronic pain conditions are usually treated anatomically

and hence they are difficult to deal with. The examples are low back pain and Temporo-

mandibular disorder (TMD). Even though they occur in different body parts, they share

a lot of common risk factors (Diatchenko et al. 2006b). Etiology are considered in chronic

pain disease and are helpful in the management and prevention in the disease. TMD is

one of them. It refers to a group of painful conditions caused by the dysfunction in the

jaw and related muscles (Schiffman et al. 2014). The prevalence of TMD in the U.S. is 5%,

with higher prevalence among women than men (Isong et al. 2008). The average pain in-

tensity of TMD is 4.3 out of 0 to 10 scale (Von Korff et al. 1988). Anatomic-based diag-

noses are helpful in studying the disease. Other risk factors are also studied by researchers.

There are multiple risk factors in both chronic and first-onset, TMD such as clinical

risk factors, sociodemographic risk factors, psychological and pain sensitivity risk factors,

and genetic risk factors. They are highly correlated and the cost for the risk factors are

high in both time and money. In previous study, the univariate association between base-

line risk factors and the first-onset TMD incidence were conducted to illustrate the puta-

tive factors and TMD development (Slade et al. 2013), (Fillingim et al. 2013, Greenspan
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et al. 2013, Ohrbach et al. 2013, Sanders et al. 2013). These are common methods in epi-

demiology study in finding out the causal relationship of individual risk factors and the

effect.

The Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study is

a prospective cohort study to identify risk factors and the etiology of TMD. The goal of

the study is to find out the putative risk factors that increase the risk of TMD. The moti-

vation of the study is a heuristic model. Basically psychological distress and the pain am-

plifier contribute to the risk of first-onset TMD (Maixner et al. 2011a). Participants with

or without TMD aged from 18 to 44 were recruited from four U.S. study sites: Baltimore,

MD; Chapel Hill, NC; Bufflo, NJ and Gainesville, FL between 2006 and 2008 through

emails, flyers, advertisements, and word of mouths.

Even though the univariate and ANOVA models in previous studies casted light on the

putative risk factors in TMD, the limitation cannot be ignored. The number of risk factors

are large and they are highly correlated. For example, Bair et al. (2013b) discovered that

different somatic awareness and autonomic variables were selected as important predictors

in TMD by random forest model and lasso model; and the count of palpation sites with

pain in the right masseter were selected by random forest model with high variable impor-

tance score (VIS), whereas the number of palpation sites with pain in the right and left

temporalis were selected as important variables in lasso model. One may wish to find out

the most vital risk factors in predicting TMD. Or people are interested in the association

of a risk factor and the risk of TMD after controlling for other factors. Lasso regression

and random forest modeling were used in the analysis of multiple correlated predictors

in TMD. Lasso regressions penalized models with many variables to avoid overfitting. It

has smaller variance than the conventional least squares model. Random forest models are

based on mutliple decision trees. The decision tree is a tree graph with their consequence.

Classifications and decisions can be predicted by learning the rules in the decision trees. It

66



is useful in non-linear model and robust in missing values but has high variance which lead

to inaccurate prediction. Random forest model overcomes the limitation of decision trees

by averaging them to reduce the variance of trees fitted by subsets of data. In addition

to the advantage of accuracy in prediction, random forest model is able to handle miss-

ing data and large number of correlated variables accurately. Variable importance score

was utilized to identiy the most important variables by random forest model. Both models

were performed to answer these questions (Bair et al. 2013b). However, the limitation of

both methods are obvious. They cannot provide the statistical test for the variables peo-

ple are interested in. As stated in previous sections, Breiman’s VIMP by permutation in

random forest inclined to assign high score to variable that are associated with true im-

portant variables and may result in spurious correlation. Strobl’s method by permuting

variable within a grid is better than Breiman’s but does not solve the issue completely

(Strobl et al. 2007). We wish to find out a method to provide the statistical test to deter-

mine which subset of variables are important in predicting TMD and which variables are

not when the other variables are present.

A novel method for calculating and testing the significance of group importance scores

described in Chapter 4 were used to answer these questions. For example, when the group

importance score for the measurements of mechanical and thermal pain sensitivity is not

significantly different from 0 in predicting both chronic and first-onset TMD adjusting for

the other risk factors, it implies that these measurements do not provide additional infor-

mation about the risk of TMD beyond the rest risk factors. Similar methods were used to

evaluate the importance of other psychological and clinical questionnaires as well as the

various autonomic measures adjusting for all the other variables.

In this study, we utilized the method in Chapeter 4 to identify the subset of predic-

tors associated with chronic TMD or first-onset TMD conditional on the other risk factors.

Statistical tests were performed to identify if the groups of variables have VIMP score 0.
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We want to test whether the group of varaibles are superfluous conditional on the other

existing risk factors, meaning that we want to know if we lose information or not in TMD

prediction even though we don’t have all the information of risk factors in either chronic

TMD and the first-onset TMD. Several groups of variables were identified providing more

information in predicting chronic TMD after adjusting for all the other risk factors in the

data set. But none of the combination we had were important in predicting first-onset

TMD conditional on the rest predictors.

5.2 Methods

The data were analyzed from two observational studies, the chronic TMD and the first-

onset TMD in OPPERA study. We summarized the OPPERA study, risk factors measure-

ments and data analysis based on conditional VIMP for group variables method.

5.2.1 OPPERA study description

The “Orofacial Pain: Prospective Evaluation and Risk Assessment” (OPPERA) study

is a prospective cohort study to find out the putative risk factors that affect the develop-

ment of temporomandibular disorder (TMD), including psychological and physiological

risk factors, the sociodemographic risk factors, clinical risk factors, autonomic risk factors

and genetic mechanism. This study was funded by National Institues of Health, National

Institute of Detal and Craniofacial Research. The patients were recruited from 4 study

sites in the U.S., 1) The University of Maryland at Baltimore, MA, 2) The University of

Buffalo, NY, 3) The University of North Carolina at Chapel Hill, NC, and 4) The Univer-

sity of Florida at Gainesville, FL, with the nearby population around 651k, 292k, 49k, and

95k respectively (Slade et al. 2011).

The OPPERA study consists of 4 study designs: 1) a baseline case-control study of

chronic TMD, 2) a prospective cohort study of first-onset TMD, 3) a prospective cohort
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study of the course of TMD and 4) the matched case-control study of incident TMD. These

observational studies were designed for the identification of putative risk factors of TMD.

The present analysis of baseline case-control study in chronic TMD include 4278 subjects

recruited from May 2006 to May 2013 with 3247 chronic TMD controls and 1031 cases

(Slade et al. 2011).

In order to find out the etiology of the first-onset of TMD, a prospective cohort study

was conducted in the 4 sites targeted at people without TMD aged from 18 to 44 years

old enrolling between May 2006 and November 2008 using the method of emails, adver-

tisement and so on. 3263 participants were followed up to 5.2 years with an average of 2.8

years to ascertian the first-onset TMD. 2737 of them provided the data via questionnaires

and 260 subjects were identified first-onset TMD. The annual incidence rate was 3.5%,

which was determined by the total number of participants with first-onset TMD divided

by the followed up person-years (Bair et al. 2013a).

The written consent was provided in both studies. The criteria of the TMD cases were

using the Research Diagnostic Criteria for TMD, which include 1) ≥ 5 days of orofacial

pain in the preceding month, and 2) during the examination, the pain is reported in TMD

cases in response to the movement of one or more following muscles or joints including

masticatory muscles, temporalis, submandibular and lateral pterygoid (Slade et al. 2011).

5.2.2 Study Measurenment of Risk factors in TMD

Questionnaires regarding putative related risk factors were completed by participants

at enrolling. A brief description of the measurements collected in OPPERA is given below.

Sociodemographic factors and health status risk factors

Sociodemographic factors such as age, gender, race and ethnicity were collected at

screen from each study participant. Additional information were reported at the baseline
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visit though questionnaires, such as lifetime residence in the United States, marital status,

whether the first language spoken at home is English or not, whether he/she has health in-

surance, education, annual household income and self-rated socioeconomic status. (Slade

et al. 2013)

Potential Psychosocial Risk Factors

Previous research indicated that people with chronic TMD had higher level of the psy-

chosocial factors such as affective distress, somatic awareness, psychosocial stress, and pain

catastrophizing than TMD-free controls (Fillingim et al. 2011). In the OPPERA study,

psychosocial factors were evaluated by administering questionnaires. To illustrate affec-

tive distress, the State-Trait Anxiety Inventory (STAI) and Profile of Mood States-Bipolar

(POMS-Bi) were administered. STAI accesses participants’ anxiety (Spielberger 1983) and

POMS-Bi evaluated the positive and negative dimensions of a person’s mood (Lorr 1984).

The Pennebaker Inventory of Limbic Languidness (PILL) is a summary score measuring

the common physical symptons and sensations frequency on five categories. (Pennebaker

et al. 1982). The Kohn Reactive Scale analyzed a participant’s reactivity level (Dubreuil

and Kohn 1986). Both illustrate participants’ somatic awareness. To get the measurement

of stress, the Perceived Stress Scale (PSS), the Life Experiences Survey (LES) and the Life

Stressor List/PTSD Checklist-Civilian Version (LSL/PCL-C) were administered. They

evaluated stress (Cohen et al. 1983), the impact of life changes (Sarason et al. 1978) and

post-traumatic stress disorder (PTSD) symptoms, respectively (Weathers et al. 1993). The

Eysenck Personality Questionnaire-Revvised (EPQ-R) values personality dimension using

scales of Extraversion, Neurotiicsm, and Psychoticism (Eysenck et al. 1985). The Symp-

tiom Checklist 90-Revised (SCL-90R) evaluated global psychological distress on 9 scales

such as Depression, Anxiety, Hostility, Somatization, Obsessive-Compulsive, Interpersonal

Sensitivity, Phobic Anxiety, Pranoid Ideation and Psychoticism. 3 Global Indices were
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also included in SCL-90R. (Derogatis 1996). The Coping Strategies Questionnaire-Revised

(CSQ-R) checked the coping mechanisms used by individuals experiencing pain with 27

items (Geisser et al. 1993). The Pain Catastrophizing Scale (PCS) measured the tendency

to catastrophize in response to pain (Sullivan et al. 1995). The Pittsburgh Sleep Quality

Index (PSQI) is the self-reported measurement for sleep, which accesses sleep quality from

19 items during the previous month (Buysse et al. 1989).

Potential Autonomic Factors

Autonomic profiles were evaluated during the baseline visit in five periods of time: a

twenty-minute rest period, a five-minute orthostatic challege period, another ten-minute

rest period to access the pain-sensitivity, a five-minute color-word stroop period, and a

five-minute pain-affect stroop period. Blood pressure (including systolic and diastolic blood

pressure, and mean pressure, where SBP, DBP and MAP were used to name them) and

heart rate (where MeanHR was used for the mean heart rate) were measured at the first

period and stroop periods (which are period 4, 5) for a number of times and average them

by electrocardiogram(ECG). Heart rate (HR) and blood pressure (BP) were measured

prior to the first period as the initial HR and BP, as well as the second period. Several

derived autonomic measures were calculated, including Total Power (TP), Very Low Fre-

quency (VLF), Low Frequency (LF) and High Frequency (HF) HRV, which provided infor-

mation about overall autonomic activity, slow temporal process activity, sympathetic ac-

tivity and parasympathetic activity. The derive autonomic variables also include SDNN(standard

deviation of normal-to-normal intervals) and RMSSD(root mean square of the difference

between successive N-N intervals), which were time domain to measure heart rate. The

derived autonomic measures were tested duing the following period except period three

(Maixner et al. 2011b).
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Pain Sensitivity Factors

Pain sensitivity in TMD was evaluated using psychophysical protocols. Three sensory

domains were tested using psychophysical protocols. Pressure Pain Thresholds (PPT) was

tested by pressure algometer using 1cm2 flat-tip and on five body sites (including tempo-

ralis muscles, masseter muscles, temporomandibular joint, trapezius muscles, and lateral

epicondyle). Examiner increased the pressure until patients first felt pain (Greenspan et al.

2011). Mechanical Cutaneous (Pinprick) Pain were measured through weighted probes.

The measurements included pain threshold, the two largest single stimulus intensities (in

the response of 256mN and 512mN) with their rating of pain intesity, and temporal suma-

tion of pain. The ratings of the pain were collected after 15 and 30 seconds of the last

stimulus (Greenspan et al. 2011). Heat pain sensitivity was accessed with thermode through

threshold similar to PPT by thermal stimulator. Starting at 32 ◦C by contacting skin in

the ventral forearm, the temperature increased by 0.5 ◦C /sec until the participants felt

pain and push bottom to record it, which estimated heat pain tolerance. Suprathreshold

heat stimuli were tested repetively following the heat pain thresholds and measurement

by verbally reporting the number within the range of 0 to 100 in a series of 3 stimulus

with the targeted peak temperature 46 ◦C, 48 ◦C, and 50 ◦C respectively. (Greenspan et al.

2011). The participants recieved the temperature at a rate of 20 ◦C/sec for one second in

order to get the hold time 750 msec for each targeted temperature. The measurements

for three peak temperatures included the first thermal pulse rating, area under the curve

(AUC, which is sum of rating for the pulse in each temperature) of temporal summation,

and the difference of maximum pain rating and the first pulse rating, defined as "delta".

The pain ratings were also collected after 15 and 30 seconds of the final pulse in the three

targeted temperatures.
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General Health Status Factors

Participants’ general health status were accessed by questionnaires regarding health

conditions for now and the past. The related checklist included endocrine, cardiovascular,

hematologic, respiratory and so on. Body mass index (BMI) was measured from weight

and height using formula BMI = Weight/Height2. Cigarette smoking status were taken

into account and classified as nonsmokers, former smokers and current smokers. Short

Form 12 Health Survey v2 (SF-12v2) form was utilized to access the general health by the

weighted score of physical and mental components (Sanders et al. 2013).

Clinical Factors

Various TMD clinical risk factors were assessed through baseline questionnaires. The

Comprehensive Pain and Symptom Questionnaire (CPSQ) consists of a series of questions

on the frequency and severity of orofacial pain and headaches as well as other comorbid

pain conditions (Ohrbach et al. 2011). The Graded Chronic Pain Scale (GCPS) measured

the pain intensity and interference outside orofacial region. The Jaw Functional Limitation

Scale (JFLS) evaluates limitations in jaw function with respect to vertical jaw mobility

and verbal/emotional expression (Ohrbach et al. 2011).

5.2.3 Statistical Analysis

Statistical analyses were conducted in both chronic TMD and first-onset TMD data

sets by conditional VIMP on group variables method (illustrated in Chapter 4) to find

out any combinations of variables in the group with high VIMP score significantly dif-

ferent from 0 in predicting TMD when the other variables are present. The number of

predictors in predicting TMD cases are large, with 117 predictors in chronic TMD (with

sociodemographic, psychological, pain sensitivity and autonomic risk factors) and 200 in
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first on-set TMD (with clinical and health status risk factors in addition to all the risk fac-

tors in chronic TMD). Both analysis data sets exclude the predictors with more than 150

missing values to avoid computational issues. Variables with less than 150 missing values

were kept in the model with all the missing values imputed by random forest. The chronic

data set were from baseline case-control study described above, which include 4278 sub-

jects with 1031chronic TMD cases and 3247 TMD free controls. The outcome is a binary

variable suggesting TMD case-control status. The first-onset analysis data set contains 200

predictors and 2737 subjects with 260 cases for first-onset TMD. The outcomes were two

variables, follow-up years and incidence cases, indicating how long the subjects had been

followed and whether the subject was identified with TMD or cencored respectively. The

follow-up years were calculated as the period between the time of enrollment to the first

events of loss to follow-up or the first-onset TMD by examiner or the census date.

In this analysis, we aimed to find out the subset of variables which are enssential in

elevating the risk of TMD, or groups of variables which are not important in predicting

TMD risk based on all the other factors. We applied random forest conditional VIMP

for group variables method described in Chapter 4 to the OPPERA data and found out

groups of variables important to TMD conditional on all the other risk factors. The group-

ing strategies are arbitrary. Usually highly correlated variables were subset together to see

if they bring more information in addtion to the other risk factors. The R package ‘ran-

domForestSRC’ was used in the calculation. Statistical tests were perfomed and p-values

were produced by the model for the subset variables. The nulll hypothesis H0 was that the

group variables’ conditional VIMP on all the other predictors is 0. Statistical tests were

performed to test the null hypothesis and conditional VIMP p-values were provided. Basi-

cally we want to see if using the conditional distribution of variables in the group in place

of original variables would greatly impact the prediction accuracy.

The idea of the method is to find out if the group variables bring more information in
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predicting outcome when the other variables are present. When the group variables can

not bring more information in predicting TMD while the others are present, the prediction

accuracy would not decrease significantly after using conditional distribution of variables

in the group. The conditional distribution of a continuous variable in a group was cre-

ated by the summation of predicted value by all the variables outside the group in OOB

data and samples of random errors (derived from the difference between actual value and

predicted value by OOB data). The conditional distribution of categorical variable in a

group is the sample from multinomial distribution with probabilities estimated from vari-

ables outside the group. If the group varaibles are important, when we replace them with

the conditional distribution of the variables, the prediction accuracy would decrease a lot

because the group have information that cannot be covered by the other variables. The

difference of prediction accuracy would indicate the VIMP score for the group. The condi-

tional variable importance for chronic TMD was calculated by the percentage of times of

predicting TMD status not equal to the original outcome from OOB data in a tree minus

predicted hazard ratio while put original data down the tree, and averaged over all trees.

In first-onset TMD, the conditional VIMP score was calculated similarly except that the

prediction errors were calculated by 1 − concordance. On the other hand, when the vari-

ables in the group were important to TMD, even though we have the rest of the variables,

the prediction accuracy of TMD still decreased a lot after using conditional distribution

of variables in the group, because they cannot be predicted accurately from the other risk

factors and hence affect the prediction of outcome. Any p-values less than 0.05 are con-

sidered significant to the first-onset TMD conditional on all the other predictors. In this

model, random survival forest was grown. Cox proportional hazards model was performed

by the out of bag data using follow-up time and event.

In both model, the number of trees in the forest was set to 250 and the number of per-

mutation was 100.
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5.3 Results

The total 117 risk factors in baseline case-control chronic TMD study data set include

39 psychosocial risk factors, 44 autonomic risk facors, 4 sociodemographic risk factors,

and 30 pain sensitivity risk factors. Besides the risk factors in chronic TMD, clinical and

health status risk factors were also included in the analysis data set of first onset TMD.

The strategies of grouping variables were to subset variables under the similar risk factors

since they are more likely to be highly correlated with each other.

Measure of Psychosocial risk factors

The results are shown in Table 5.6. The four dimensions of EPQ-R risk factors, in-

dicating Extraversion (EPQ-E), Neuroticism (EPQ-N), Psychoticism(EPQ-P) and Lie

scale(EPQ-L) were grouped together and our hypothesis is that based on all the other risk

factors, the condition variable importance score of the group of four EPQ-R variables was

0 in predicting chronic TMD. After the test, the p-value was 0.03, which was less than 0.05

threshold, indicating the VIMP for the 4 variables as a group is significantly different from

0 in predicting chronic TMD cases when the other risk factors are present. When we only

grouped EPQ-N and EPQ-P in chronic TMD, the p-value was 0.92. While both test in

first-onset TMD had the conditional VIMP p-values 0.27 and 0.23 respectively, which were

greater than 0.05 threshold.

The group of all subcales in SCL90-R (which are variables SCL90-R in Depression,

Anxiety, Hostility, Somatization, Obessive-Compulsive, Interpersonal Sensitivity, Phobic

Anxiety, Pranoid Ideation and Psychotism) and Global Indices had smaller p-values con-

ditional on the rest variables compared with those with only Depression and Obsessive-

Compulsive subscales in chronic TMD analysis. The conditional p-values were 0 and 0.27

respectively. Both p-values were greater than 0.05 in the first-onset TMD, and they were

0.13 and 0.35 respectively.
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STAI includes State Axiety Inventory and the Trait Anxiety Inventory. Conditional

on all the other factors, the subset was not significant in predicting both chronic and the

first-onset TMD with p-values 0.36 and 0.43 respectively. POMS-Bi contains 6 subscales

(Agreeable-Hostile, Elated-Depressed, Confident-Unsure, Energetic-Tired, Clearheaded-

Confused, and Composed-Anxious). The group conditional p-values for both TMD studies

were 0.89 and 0.12 respectively. The two studies’ global indices of positive an negative ef-

fects in POMS-Bi had the group conditional p-values greater than 0.05 as well, which were

0.23 for chronic TMD and 0.32 for first-onset TMD respectively. However, the measure-

ment of Affective Distress has 8 variables, including POMS-Bi subscales and global indices,

and the p-values was 0.01 indicating significant difference from 0 in VIMP in predicting

chronic TMD. And the p-value of conditional VIMP of the group was 0.07 for first-onset

TMD.

Psychosocial Stress measurement contains three variables, PSS, total positive and to-

tal negative events in LES in the data set. Small conditional p-value (0.02) was generated

when they were grouped together in chronic TMD data. Both Pennebaker Inventory of

Limbic Languidness (PILL) and Kohn Reactivity Scale (KOHN) suggested Somatic Aware-

ness measurement, with conditional p-value 0 for a group in chronic TMD study. While

the p-values in both group cases were greater than 0.05 in the first-onset TMD study.

CSQ-R has 27 items and 6 subscales indicating pain coping strategies. They are divert-

ing attention, catastrophizing, praying and hoping, ignoring pain sensations, reinterpret-

ing pain sensations„ and coping self-statements. The group of CSQ-R scale had p-values

0.36 and 0.26 for both Chronic TMD and first-onset conditional VIMP respectively, re-

flecting insignificance. Pain Catastrophizing Scale (PCS) has 3 subscales: Rumination,

Magnification, Helplessness, and their p-value was 0. Combining PCS and CSQ-R risk fac-

tors for the Coping/Catastropjizing measures, the group p-value was 0 as well. Similar as

the above groups in the first-onset TMD, the conditional p-values for the two groups were
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greater than 0.05, and they were 0.28 and 0.17 respectively.

Table 5.6: Conditional VIMP p-values in Psychosocial Risk Factors Subsets on Chronic
and First-onset TMD

Conditional VIMP (p-values)Psychosocial Variables Subset Group
Chronic TMD First-onset TMD

EPQ-P, EPQ-E, EPQ-N,EPQ-L 0.03 0.27
EPQ-P, EPQ-N 0.92 0.23

9 subscales in SCL 90-R and Global Indices 0 0.13
SCL 90-R subscales in Depression,

Obsessive-Compulsive 0.27 0.35

State Anxiety Inventory and Trait Anxiety
Inventory 0.36 0.43

6 subscales in POMS-Bi and 2 Global Indices
of positive and negative effect 0.01 0.07

6 subscales in POMS-Bi 0.89 0.12
2 Global Indices of positive and negative effect 0.23 0.32

PSS and 2 subscales in LES 0.02 0.19
PILL and Kohn Reactive Scale 0 0.2

6 subscales in CSQ-R 0.36 0.26
3 PCS subscales 0 0.28

6 subscales in CSQ-R and 3 PCS subscales 0 0.17

Measure of Autonomic risk factors

Group p-values with respect to measuring autonomic risk factors are shown in Table

5.7. Results in chronic TMD studdies illustrated some of the groups are associated with

chronic TMD. The heart rate measurement variables include HR, SPB, DPB, MAP at

initial, baseline, and stroop period, as well as 5 minutes heart rate at orthostatic period.

This group of variables had conditional VIMP p-value 0. Look at the group of derived

variables (which are SDNN, RMSSD, LnTP, LnVLF, LnLF, and LnHF) in each period

separately, the groups in period 1, 2, 4 have p-values 0s but 0.24 in period 5. The fre-

quency domain variables include SDNN and RMSSD at period 1, 2, 4, 5, with the condi-

tional p-value 0. However, the time domain variables contain LnVLF, LnTP, LnLF and
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LnHFat period 1, 2, 4, 5, and the group p-value was 1. All the groups listed above in first-

onset TMD have p-values greater than 0.05 threshold.

Table 5.7: Conditional VIMP p-values in Autonomic Risk Factors Subsets on Chronic and
First-onset TMD

Conditional VIMP (p-values)Autonomic Variables Subset Group
Chronic TMD First-onset TMD

All heart rate measurement variables 0 0.16
SDNN, RMSSD, LnTP, LnVLF, LnLF, LnHF in

baseline period 0 0.18

SDNN, RMSSD, LnTP, LnVLF, LnLF, LnHF in
second period 0 0.33

SDNN, RMSSD, LnTP, LnVLF, LnLF, LnHF in
fourth period 0 0.38

SDNN, RMSSD, LnTP, LnVLF, LnLF, LnHF in
fifth period 0.24 0.43

All frequency domain variables 0 0.23
All time domain variables 1 0.24

Measure of Pain Sensitivity Risk Factors

The group strategies and conditional VIMP p-values for the pain sensitivity risk factors

in chronic and first-onset TMD are described in Table 5.8.

Five body sites were tested for pressure pain thresholds (PPT). They are related to

temporalis muscle, masseter mucle, temporomandibularr joint, trapezius muscle and lat-

eral epicondyle. Conditional on all the other risk factors, PPT predictors group had con-

ditional VIMP p-value 0 in chronic TMD analysis. When some of PPT predictors were

grouped together, such as PPT trapezius and epicondyl or tramporalis and epicondyl, the

conditional VIMP p-values on all the rest risk factors, including the remaining PPT vari-

ables were still 0 in chronic TMD study.

Nine pricking pain sensitivity variables, such as pain threshold, pain intensity at sin-

gle stimulus by 256 and 512-mN probes, 15 and 30 seconds after sensation and residual
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nonpainful sensations at both probes were grouped and tested for chronic TMD with con-

ditional p-value 0. Conditional VIMP p-values were 0 and 0.01 with respect to the groups

of variables (including pain intensity at single stimulus, after sensation at 15 and 30 sec-

onds, and residual nonpainful sensations) under 256-mN, and 516mN probes respectively

in chronic TMD analysis.

Heat pain sensitivity in pain sensitivity risk factors was accessed through heat pain

tolerance, first pulse rating, delta, AUC and aftersensation pain ratings at 15 and 30 sec-

onds in temperature 46 ◦C, 48 ◦C, and 50 ◦C. The following analysis were all in chronic

TMD study. The conditional VIMP p-values for all heat pain sensitivity variables were

0s. The conditional p-values in the first pulse variables group, delta variables group and

AUC variables group under the series of three tempearatures were 0.24, 0.89, 0.94 respec-

tively, which were all greater than 0.05. The conditional p-value of first pulse and AUC

variables was 0.18. The first pulse and delta predictors, which indicate maximum ratings

under three temperatures suggested significant conditional VIMP with conditional p-value

0. The conditional VIMP p-values were 0s under other grouping strategies, such as the

groups of all aftersensation predictors, all the heat pain predictors at 46 ◦C, 48 ◦C, and

50 ◦C respectively. The subset of all the heat pain predictors suggest significant conditional

VIMP.

The same groups described above in chronic TMD pain sensitivity risk factors were

performed and tested in first-onset TMD study. The conditional VIMP p-values were all

greater than 0.05.

5.3.1 Additional Measurements in First-onset TMD

Sociodemographic risk factors such as race, gender, age group and site ID were grouped

and conditional VIMP were tested in the first-onset TMD study. The p-value was 0.15.
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Table 5.8: Conditional VIMP p-values in Pain Sensitivity Risk Factors Subsets on Chronic
and First-onset TMD

Conditional VIMP (p-values)Pain Sensitivity Variables Subset Group
Chronic TMD First-onset TMD

PPT in all 5 body sites 0 0.29
PPT sites related to trapezius and lateral epicondyl 0 0.31

PPT sites related to tramporalis and lateral
epicondyl 0 0.25

All the 9 pricking pain sensitivity variables 0 0.81
Pricking pain sensitivity variables of 256-mN 0 0.14
Pricking pain sensitivity variables of 512-mN 0.01 0.33

All the heat pain sensitivity variables 0 0.89
First pulse variables in heat pain at the target

temperature 46 ◦C, 48 ◦C, 50 ◦C
0.24 0.36

AUC variables in heat pain at the targeted
temperature 46 ◦C, 48 ◦C, 50 ◦C

0.89 0.27

Delta variables in heat pain at the targeted
temperature 46 ◦C, 48 ◦C, 50 ◦C

0.94 0.33

AUC and first pulse variables in the targeted
temperature 46 ◦C, 48 ◦C, 50 ◦C

0.18 0.29

Delta and first pulse variables in the targeted
temperature 46 ◦C, 48 ◦C, 50 ◦C

0 0.16

AUC, delta and first pulse variables in the
targeted temperature 46 ◦C, 48 ◦C, 50 ◦C

0 0.07

Aftersensation variables in heat pain at 15 seconds
in the targeted temperature 46 ◦C, 48 ◦C, 50 ◦C

0 0.35

Aftersensation variables in heat pain at 30 seconds
in the targeted temperature 46 ◦C, 48 ◦C, 50 ◦C

0 0.42

Aftersensation variables of 15 and 30 seconds in
the targeted temperature 46 ◦C, 48 ◦C, 50 ◦C

0 0.77

First pulse, AUC, delta, aftersensation variables of
15, 30 seconds in the targeted temperature 46 ◦C

0 0.37

First pulse, AUC, delta, aftersensation variables of
15, 30 seconds in the targeted temperature 48 ◦C

0 0.31

First pulse, AUC, delta, aftersensation variables of
15, 30 seconds in the targeted temperature 50 ◦C

0 0.47
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p-values for health status risk factors was 0.08, including smoking history, number of med-

ications taken in the past, history of cardiovascular conditions, hematologic conditions,

neural/sensory conditions, endocrine conditions, respiratory conditions, osteoarthritis,

rheumatoid arthritis, Sjogrens syndrome, obstructive sleep apnea. Social economic vari-

ables group such as lifetime US residence, first spoken language, current marital status,

education, finacial situation, material standards, current health insurance were grouped

and testd with conditional p-value 0.34 in first-onset TMD.

5.4 Discussion

As we know, in both studies, the number of predictors are large and they are highly

correlated. Measuring the variables are time and cost consuming.The study in chapters 4

and 5 provide us a way to test if some variables can provide more information in predict-

ing TMD when the other risk factors are present. The above findings described the condi-

tional VIMP of targeted groups based on all the rest risk factors in both baseline chronic

TMD study with TMD-free controls and TMD cases, as well as baseline data in TMD-

free participants when enrolled in first-onset TMD study. These findings identified some

groups of varaibles in psychosocial variables, autonomic risk factors and pain sensitivity

risk factors were important conditional on all the other risk factors in predicting chronic

TMD. None of groups tested in first-onset TMD was important varlables group conditional

on all the rest of variables. For example, PPT on 5 body sites were important to chronic

TMD conditional on all the other pain sensitivity variables, autonomic, psychosocial and

sociodemographic variables, but not important to first-onset TMD based on all the clinical

and general health varaibles in addition to the variables described in chronic TMD.

We grouped different psychosocial risk factors and identified the groups of factors highly

correlated with the case-control status of TMD conditional on the rest fo psychosocial

variables and the other variables.

82



Consistent with previous findings that somatic awareness such that PILL, SCL 90-R

differ significantly with respect to TMD case control status (Fillingim et al. 2011), the

group of SCL 90-R and Global Indices, as well as the group of PILL and KOHN had p-

value 0s in conditional VIMP. The results suggested that the groups of variables were im-

portant to TMD case-control status even though the other psychosocial risk factors were

present, and they could not be omitted in the chronic TMD case-control studies. However,

both groups in the first-onset TMD studies were different from previous findings, where

most of variables in the univariate associations were highly correlated with the incidence

rate of the first-onset TMD. None of them were important variable groups when the other

predictors are present, suggesting we still get accurate first-onset TMD predictions even

when either one groups are omitted. The group of SCL 90-R Depression and Obsessive-

Compulsive in both chronic and first-onset TMD studies were not important. Previous

studies illustrated in univariate analysis that SCL 90-R Depression was associated with

TMD, and SCL 90-R Obsessive-Compulsive associated with first-onset TMD (Fillingim

et al. 2011; 2013). Our study answered the questions of whether the two variables were im-

portant to either chronic or first-onset TMD when the other predictors were present. Simi-

larly, omitting variable groups State Anxiety Inventory and Trait Anxiety Inventory would

not affect both TMD prediction even though each of the variables show highly correlation

with both chronic and first-onset TMD in univariate cases in previous studies (Fillingim

et al. 2011; 2013).

Previous studies suggested the highly univariate association of EPQ−N and low asso-

ciation of EPQ − E with both chronic and first-onset TMD respectivley (Fillingim et al.

2011; 2013). Our tests answer the questions if the group of EPQ−R or some of EPQ−R

variables were important to both TMD studies. The group of four EPQ−R variables sug-

gested significant conditional VIMP in chronic TMD case-control study, indicating missing

all four EPQ − R variables at once would greatly affect the predicting accuracy of chronic
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TMD in case-control study. While only EPQ − N and EPQ − P were missing, we still

had EPQ − P , EPQ − E, the rest of the psychosocial predictors, sociodemographic, au-

tonomic and pain sensitivity risk factors, where we still get good prediction accuracy of

chronic TMD based on them. However, in the study of first-onset TMD, both groups sug-

gested insignificant association with TMD and hence did not affect the prediction accuracy

when either groups were omitted.

The group of six subscales in POMS-Bi or the group of 2 global Indices of positive and

negative effect showed insignificant conditional VIMP in predicting both chronic and first-

onset TMD, although the univariate analysis suggested the two global indices individu-

ally highly associated with both chronic and first-onset TMD (Fillingim et al. 2011; 2013).

Combining the above two groups together had significant conditional VIMP in chronic

TMD study. This suggested that missing them simultaneously would loose information in

prediction. When one group were missing, the other group could be a substitute to them

and the prediction accuracy in chronic TMD could be still high. They as a group were im-

portant in predicting chronic TMD and could not be substituted by the other variables,

since the prediction accuracy decreased significantly when both of them were missing.

While in the first-onset TMD study, the conditional VIMP were not important to TMD

whether they grouped together or not, suggesting that they were not able to bring more

information in predicting TMD when the other risk factors were present. In this case, even

though we don’t have these variables, we still have good estimate of first-onset TMD. Sim-

ilarly the group of PSS and LES brought more information in addition to the other pre-

dictors in chronic TMD but not in first-onset TMD even though the univariate analysis of

LES and PSS showed significant association with first-onset TMD (Fillingim et al. 2011;

2013).
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None of the following subsets, the group of Pain Catastrophizing Scale (PCS Rumina-

tion, PCS Magnification, and PCS Helplessness), the group of Coping Strategies Question-

naire (CSQ-R) risk factors and the group of both subset variables suggested insignificance

in first-onset TMD. This is consistent with univariate analysis in first-onset TMD where

no individual risk factors were associate with TMD. It is not surprising that the three

PCS subscales group had significant conditional VIMP in chronic TMD study but CSQ-

R group did not because of the highly correlated relationship of individual PCS variables

with chronic TMD but only a few of CSQ-R variables associated with chronic TMD.

Previous studies showed significant association between each of the PPT variables with

chronic TMD with p-values < 0.0001 by analysis of variance model (Greenspan et al.

2011), indicating that PPT variables might be important to chronic TMD. Our analy-

sis approved it by grouping all PPT variables together or part of them together, show-

ing highly significant conditional VIMP for these variables groups. Likewise, any of the

pricking pain sensitivity variables, as well as the after sensation variables in heat pain were

highly associated with case-control status in ANOVA analysis in chronic TMD (Greenspan

et al. 2011). Our analysis grouped all or some of the pricking pain variables and the af-

tersensational variables group and they showed significance in prediction chronic TMD.

However, although AUC in heat pain significantly associated with chronic TMD in pre-

vious studies (Greenspan et al. 2011), the group could not bring any information when

the other risk factors were present. In the first-onset TMD, most heat pain and pricking

pain sensitivity variables were not highly associated with the first-onset TMD in univariate

model. It is not surprising that conditional on the rest of other predictors, they could not

bring new information in predicting TMD.

The derived measurements (SDNN, RMSSD, LnTP, LnVLF, LnLF, LnHF) groups sug-

gested significant conditional VIMP in the first four period but did not bring any new in-

formation in the fifth period in predicting chronic TMD. This is probably due to the high
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correlation of the last period and the previous ones. It helps us to answer the question

that if the fifth period is important in terms of the derived autonomic variables conditional

on the previous periods and other risk factors. We also noticed that the time domains

(including LnTP, LnVLF, LnLF, LnHF in all periods) were not able to bring more infor-

mation based on the other predictors even though the previous study showed significant

association with chronic TMD (Maixner et al. 2011b). The frequency domains (SDNN,

RMSSD) could not be eliminated in predicting chronic TMD, since they would signifi-

cantly affect the prediction accuracy. Similar as before, the groups of autonomic risk fac-

tors do not bring any information when the other variables are present and hence do not

affect the prediction accuracy of TMD.

In this study, conditional variable importance random forest model were utilized in

both chronic TMD and first-onset TMD studies with binary outcome and time-to-event

outcome respectively. Conditional p-values were calculated for the statistical testing of

variable subset. Some variable subsets were identified significantly in predicting chronic

TMD. None of the subsets were important in first-onset TMD. One reason is smaller num-

ber of data set but larger number of variables in first-onset TMD data set than chronic

TMD data set. Their number of variables and participants differences are 117 VS. 200 and

4278 VS. 2737 in chronic TMD and first-onset TMD data set, respectively. Each variable

in chronic TMD might contribute more than the first-onset TMD. The second reason is

that when we looked at the previous findings regarding each variable and TMD, more vari-

ables are found associated with chronic TMD than first-onset TMD by univariate model.

When we combined them together and rule out the other predictors’ affect, it is likely that

more variable groups are associated with chronic TMD. Thirdly, the variables are highly

correlated with each other, interactions among variables are likely in the model. The cur-

rent analyses did not include interaction terms in both study. Further research might be

needed in terms of interaction terms. Fourthly, the incidence cases in first-onset TMD
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study is 260, which is relatively small, and the power of the testing is limited as well.

Another interesting finding is that increasing the number of trees in random forest to

250 and the number of permutation to 100, which are typically reducing variance and in-

creace accuracy, would make the p-values for chronic TMD more stable than those for

first-onset TMD data. We ran each group’s analysis for 10 times using different seed and

notice that the p-values in a group for chronic TMD are the same but not for first-onset

TMD. The p-values are more likely to be random distributed. Each varible in first-onset

TMD contribute little to TMD, when they were removed the prediction accuracy is not af-

fected significantly, which were consistent with most of the previous studies. We probably

would increase the number of trees or the number of permutations in the second data set,

but it would increase the computation burden for sure.

In this chapter, we discussed the risk factors in TMD of both baseline case-control

study and prospective cohort study. we studied a number of questions in the analysis of

predictors as a group when the other predictors were present, and computed the p-values

for the statistical analysis. We answered the questions such as if all heart rate measure-

ments are important variables in predicting both chronic and first-onset TMD, whether

AUC variables in heat pain sensitivity risk factors can be eliminated without increasing

prediction error. This is a great help to predict TMD accurately when some variables are

missing or only a subset of variables are present due to limited budget.
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

The Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study is

a prospective study designed to study the etiology and find out the risk factors contribut-

ing to the onset and chronic temporomandibular disorder (TMD). Numerous risk factors

were studied and identified for TMD, such as pain sensitivity risk factors, clinical risk fac-

tors, psychological distress, and genetic factors. In this dissertation, three projects were

included to study the genetic risk factors, and the other risk factors as a group by using

nonparametric and machine learning methodologies.

The first topic focused on the question of genetic association with secondary outcome

which was highly associated with case control status. Permutation-based IPW method

were proposed to address this question. Compared with conventional IPW method which

produced inflated p-values, our nonparametric method do not have inflated type I errors.

The power of the test were comparable to conventional IPW method. Our method was ap-

plied to OPPERA study to find out the association of TMD pain density and candidate

genetic variants, where two SNPs were identified associated with secondary outcome. How-

ever, this method only produces p-values. It is not able to calculate odds ratios or other

effect size. As we know that conventional IPW method produced anticonservative results

in the variance of effect size, future research is need to address the question.

In the second and third topic, we focus on the variable importance by random forest in

OPPERA study. We developed a novel method by testing whether the group of risk fac-

tors’ variable importance is 0 adjusting for the existing variables. We tested for a number
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of groups of predictors to see that based on the variables we have, would the group vari-

ables bring more information. This method corrects the shortcomings of the likelihood

of choosing correlated variables with spurious correlation, and provided a way of testing

group variables without bias. The method were applied to OPPERA study to test the

risk factors for chronic and first-onset TMD, where many groups of variables were iden-

tified importance to chronic TMD conditional on the rest risk factors, whereas none of the

groups were found significant to first-onset TMD adjusting for the rest predictors.
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