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ABSTRACT 

Rebecca Lynn Whittlesey: Identification of potential biomarkers in PDAC 
(Under the direction of Jen Jen Yeh) 

 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of 

cancer deaths in both men and women in the United States, with a 5-year 

survival rate of approximately 6%.  The poor prognosis associated with PDAC 

emphasizes the need to improve detection and screening, therefore we aimed to 

identify new biomarkers associated with PDAC progression. 

137 cancer associated genes identified from our microarray data were 

screened for gene expression using 13 PDAC cell lines and 42 samples isolated 

from the blood of 21 PDAC and 4 control patients.  

56 genes were found to have expression in >70% of PDAC cell lines and 

low expression in control buffy coat samples.  16 of these genes showed 

significant survival differences in patients with low expression when analyzed in 

our microarray data.  Two of these genes, GJB3 and MFI2, showed a trend of 

higher expression in metastatic PDAC patients compared to benign or local PDAC 

patients. 

GJB3 and MFI2 may have clinical relevance for patient survival and be 

useful as metastatic biomarkers for PDAC, but improved sample isolation 

techniques and screening of more samples is needed to determine their 

significance.  
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CHAPTER 1: PANCREATIC CANCER 

 

Introduction 

The pancreas is a small organ located deep within the abdomen, under the stomach, which is 

responsible for the production of digestive enzymes and hormones, such as insulin.   Pancreatic ductal 

adenocarcinoma (PDAC) is the most common type of pancreatic cancer accounting for 90% of cases.   

Around 46,000 people are diagnosed with pancreatic cancer each year in the United States (Siegel, 

Naishadham et al. 2013).   It is the 9th and 10th diagnosed cancer in men and women, respectively, yet 

is the 4th leading cause of cancer deaths.  Survival rates are around 20% after the first year of diagnosis 

and reduce to 6% after 5 years (DeSantis, Lin et al. 2014).  The incidence of PDAC increases with age; 

with a median age of 71 years at diagnosis. The median survival for patients with advanced pancreatic 

cancer is around 6 months (Siegel, Naishadham et al. 2013). These statistics highlight the poor prognosis 

associated with PDAC and emphasize the need to improve early detection, develop better treatments, 

and better understand disease progression. 

Pancreatic cancer occurs through genetic mutations caused mostly by environmental factors 

including smoking, alcohol, diet, infectious agents, pollution and radiation (Anand, Kunnumakkara et al. 

2008).  The accumulation of mutations over time eventually leads cells to become malignant, by gaining 

certain characteristics including uncontrolled cell growth; resisting cell death and evading the immune 

response; bypassing DNA repair pathways; and other mechanisms (Hanahan and Weinberg 2011).  In 

PDAC, the progression of cancer via the activation of the KRAS2 oncogene, inactivation of the tumor-

suppressor gene CDKN2A followed by tumor-suppressor genes TP53 and SMAD4, confers tumor growth 
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(Hong, Park et al. 2011, Herreros-Villanueva, Gironella et al. 2013).   Up to 90% of PDAC have mutations 

in the KRAS2 oncogene, compounded by a 95% mutation rate in CDKN2A, resulting in increased 

proliferation and resistance of cell death (Hong, Park et al. 2011, Herreros-Villanueva, Gironella et al. 

2013).  TP53 mutations, occurring in 50-75% of tumors, allow cells to bypass DNA repair pathways, 

causing genomic instability (Hong, Park et al. 2011, Herreros-Villanueva, Gironella et al. 2013).  Loss of 

SMAD4 in 50% of tumors results in abnormal signaling of the transforming growth factor beta cell 

surface receptor (Hong, Park et al. 2011, Herreros-Villanueva, Gironella et al. 2013).  Additional 

mutations have also been implicated, including, MLL3, TGFBR2, ARID1A and SF3B1 (Biankin, Waddell et 

al. 2012).  An accumulation of these mutations leads to a heterogeneous population of tumor cells, 

making it difficult to understand the biological changes of PDAC as well as poor response to treatment 

regimens.  

Only 5-10% of PDAC cases are associated with a family history of this disease, making it 

problematic to study inherited types of this cancer (Anand, Kunnumakkara et al. 2008).  Smoking has 

been shown to initiate these genetic changes in up to 30% of cases, but other factors including alcohol 

and diet do not show a strong correlation to an increased risk of developing pancreatic cancer 

(Blackford, Parmigiani et al. 2009, Bosetti, Lucenteforte et al. 2012, Chaudhry, Hall et al. 2013, 

Pericleous, Rossi et al. 2014).  New research investigating the onset of diabetes and diagnosis of 

pancreatic cancer has shown only a mild correlation and the highest risk of being diagnosed with 

pancreatic cancer is within one year of developing diabetes (La Torre, Sferrazza et al. 2014).  The 

inability to predict patients susceptible to PDAC, without a family history of disease, makes early 

screening for disease difficult.   

Early detection is challenging because initial symptoms are non-specific, including abdominal 

discomfort, nausea, and loss of appetite.  At the time of detection, most patients present with either 
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locally advanced or metastatic disease, in which treatment options are limited.  Unlike many other 

malignant diseases, the metastatic spread of PDAC is thought to begin when the primary tumor is very 

small and is hard to detect through CT imaging scans or abdominal ultrasounds (Yachida and Iacobuzio-

Donahue 2013).  Early detection is also limited because of the lack of a disease specific marker. 

Currently, the best tumor marker for pancreatic cancer is carbohydrate antigen 19‐9 (CA19-9) which 

provides suspicion of cancer or disease, but is not sensitive or specific enough for diagnosis (Cen, Ni et 

al. 2012).  CA19-9 has been detected in chronic pancreatitis, and may be normally expressed in some 

patients with early stage PDAC, as well as other cancers (Goggins 2005, Duffy, Sturgeon et al. 2010).  

PDAC commonly metastasizes to multiple sites throughout the body, with a preference for some sites 

including the liver, lungs, peritoneum, and adrenal glands.  In addition, this disease progression is 

associated with significant morbidity and is highly resistant to the current treatment therapies. The lack 

of diagnostic tools makes this disease very deadly and the need for more research to improve detection 

will benefit patient outcomes. 

Biomarkers 

Cancer detection is often performed using a blood test to look for known biological cancer 

markers.  A biomarker is a characteristic that can be measured to give information about the state of a 

cell, biological or pathogenic processes, or a pharmacological response.  Biomarkers can include specific 

cell types, genes or gene products, enzymes, or hormones.  Information can be obtained from body 

fluids such as blood, serum, plasma, or urine as well as body tissues.  There are three divisions of 

biomarkers: predictive, diagnostic, and prognostic.  Some biomarkers may span all three types and can 

provide a wealth of information, helping us understand the biology of cancer and aiding in the 

development of better medical treatments. 
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In cancer, biomarkers are used to detect disease and monitor the progression and response to 

treatment.  Predictive biomarkers help estimate the results of a therapeutic intervention in an individual 

patient and can categorize subpopulations of patients who are most likely to respond to certain 

therapies (Jazieh, Foote et al. 2014).  Predictive biomarkers can also be targets for therapy.  Measuring 

biomarkers, such as genes or proteins, in patients with a family history of pancreatic cancer helps 

physicians determine if a patient is at an increased risk of developing this disease.  For example, patients 

positively screened for BRCA2 mutations have a much higher chance of developing breast cancer (Harris, 

Fritsche et al. 2007).  BRCA1 and BRCA2 mutational screens have been shown to alter risk assignment in 

patients with a family history of PDAC, therefore improving screening recommendations in patients with 

mutations (Lucas, Frado et al. 2014).  Other genetic predictive biomarkers include mutations of KRAS, 

TP53, EGFR, and ERBB2 for colorectal, esophageal, liver, and pancreatic cancer (Verma and Manne 

2006).  Continued research into the development of pancreatic cancer as well as currently identified 

predictive biomarkers in other cancers may lead to the discovery of a useful predictive tool for 

pancreatic cancer. 

Diagnostic biomarkers can be measured to positively confirm the presence of a disease or 

cancer.  A diagnostic biomarker must have a low incidence of false positives and negatives, be 

detectable in all patients, and be specific and selective for a disease.  The FDA highly regulates tests used 

for diagnosis because of the potential harm that may be caused if the test is not accurate.  Currently 

there is not an identifiable biomarker that meets these criteria to confirm a diagnosis of pancreatic 

cancer.  Gold et al. has previously shown the high specificity for monoclonal antibody PAM4 to bind 

mucins specific to PDAC (Gold, Newsome et al. 2013).  In a combination study of PAM4 and CA19-9, they 

showed the sensitivity level of CA19-9 in detecting stage I PDAC was 58% and 64% using PAM4 (Gold, 

Gaedcke et al. 2013).  The specificity for detection using PAM4 was 96% suggesting that a combination 

test of CA19-9 and PAM4 may improve early detection of PDAC (Gold, Gaedcke et al. 2013).  
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Combinations of other biomarkers such as microRNAs with CA19-9 may have the potential to be useful 

as a diagnostic or prognostic tool for PDAC.  One group sought to identify potential diagnostic 

biomarkers in patients at an increased risk for familial pancreatic cancer.  In human patient samples, 

serum levels of miR- 196a and miR-196b were significantly higher in patients with sporadic and familial 

pancreatic cancer than in patients with chronic pancreatitis, early cancer and healthy controls (Slater, 

Strauch et al. 2014).  Measurement of elevated levels of these two miRs may be used as a diagnostic 

tool in patients with an increased risk of pancreatic cancer.  Currently, this study and many others have 

suggested different biomarkers as indicators or possible diagnostic value, but further research must be 

conducted to validate their clinical use.  Utilizing a single biomarker or biomarker panel for detection of 

cancer through non-invasive methods is the most optimal in preventing unnecessary procedures for 

patients, but currently, for some cancers, is not an option. 

Biomarkers can be measured longitudinally during the course of disease.  Levels of biomarkers 

may correlate with progression, survival and drug response.  Currently CA 19-9 is measured in PDAC 

patients to determine tumor burden and monitor disease progression (Ballehaninna and Chamberlain 

2012).  Elevated levels of CA 19-9 are associated with metastatic spread, adverse patient outcomes, and 

recurrence of this disease.  Therefore CA19-9 is an effective tool in monitoring a patient’s disease.  

Recently, SMAD4 has become a cancer marker of interest because it is lost in about 50% of PDAC 

(Yachida, White et al. 2012).  New evidence suggests that SMAD4 downregulation is not only important 

for the development of PDAC, but also for the progression of the cancer. The loss of SMAD4 results in 

cancer cells that have an increased tendency for invasion and metastasis, leading to a worse prognosis 

(Jazieh, Foote et al. 2014).   Numerous studies have suggested that loss of SMAD4 correlates with a 

higher incidence of metastasis and poor overall and disease free survival (Iacobuzio-Donahue, Fu et al. 

2009, Singh, Srinivasan et al. 2012, Oshima, Okano et al. 2013).  A combination study into the 
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effectiveness of monitoring both CA19-9 and SMAD4 levels in patients may better represent how 

patients are responding to treatment and their prognosis. 

Biomarker research is receiving a lot of attention because of the potential they hold for 

personalized medicine and targeted therapy.   Individualized medicine is tailored treatment for a patient 

based on specific molecular and biological traits of their disease.  As we learn more about cancer cells 

and their surrounding environment, the number of subtypes of each cancer increases. A patient’s cancer 

may be subtyped according to a biomarker that is present or absent, increased or decreased.  

Personalized treatment plans can then be developed to provide treatment that is appropriate and 

effective.  Therefore, identifying and studying biomarkers will contribute to tailoring patient therapies. 

Circulating Tumor Cells and Nucleic Acids 

Metastatic disease is the main cause of death in cancer patients.  Circulating tumor cells are 

tumor cells that are released or dissociate from a primary or metastatic tumor.  This process is thought 

to occur through the epithelial-mesenchymal transition (EMT) in which epithelial cells are 

transcriptionally reprogrammed to lose their polarity and adhesion, and gain migratory and invasive 

properties.  EMT-inducing transcription factors dynamically modulate cell adhesion and promote 

metastasis by regulating the expression of the cadherin family of proteins.  E-cadherin expression is 

repressed with a switch to N-cadherin expression. This transition to mesenchymal gene expression 

allows the cell to migrate and enter into the blood stream (Yu, Bardia et al. 2013, Liu, Zhang et al. 2014).  

We know there are dynamic genetic and biological changes during the progression of cancer, and the 

expression of many genes vary as cells enter a mesenchymal state (EMT) and revert back to an epithelial 

state (MET)in metastatic disease (Liu, Zhang et al. 2014).  CTCs can travel through the blood stream and 

exit; if the environment is suitable, these cells can undergo mesenchymal to epithelial transition and 

seed themselves in different organs (Liu, Zhang et al. 2014).  Cell growth and proliferation then leads to 
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metastatic growth.  CTCs have been termed a ‘liquid biopsy’ because they provide a window of insight 

into the genetics and biology of a tumor.  Rhim et al. tracked cells through cancer progression using a 

pancreas specific Kras and p53 mutant mouse line (Rhim, Mirek et al. 2012).  They found that circulating 

PDAC cells are mesenchymal, invasive and exhibit stem cell like features. Furthermore, their mouse 

models suggest that PDAC CTCs are detectable before primary tumor formation and may actually 

metastasize to distant organs very early on (Rhim, Mirek et al. 2012).  More research to understand the 

dynamic properties that CTCs possess may help in understanding cancer progression. 

The number of CTCs in blood can be as low as 1 cell per 1x106 mononuclear cells, and their 

genetic heterogeneity makes detection extremely difficult (Harouaka, Kang et al. 2014).   The 

development of new CTC capture and enumeration methods are published weekly and rely on a number 

of selection methods.  Initially, researchers were only interested in counting these cells in the blood, 

which may be useful as a biomarker for disease.  More recently however, we are learning that analyzing 

the biology and genetics of these cells may tell us much more about a patient’s disease.  To isolate these 

rare cells from blood, a system has to be specific and selective enough to disregard blood cells, yet 

capture as many CTCs as possible.  There is not a single marker that will either detect all CTCs or all 

blood cells.  Isolation methods often utilize antibodies against epithelial markers or blood markers.  

Other methods take advantage of the size of CTCs, with a range of 12-25 microns, for isolation (Zheng, 

Lin et al. 2007).   Physical methods of isolation are also utilized to enrich CTC populations.  A simple and 

fairly inexpensive method of isolation is by cell density using gradient centrifugation.  This method 

isolates all the mononuclear cells from blood and downstream enrichment methods for CTCs are 

needed.  Ellis et al. performed a negative selection method on cells isolated using density gradient 

centrifugation of blood from prostate cancer patients.  Using both anti-CD45 and anti-CD61 magnetic 

beads to remove blood cells, they were able to identify prostate-specific antigen (PSA) expressing cells 

using qPCR (Ellis, Pfitzenmaier et al. 2003).   
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In addition to CTCs, circulating nucleic acids (cNA) have recently been proposed as a marker of 

disease.  This includes DNA, mRNA and microRNAs that can be measured in the serum or plasma of 

patients.  Cell free DNA (cfDNA) or circulating tumor DNA (ctDNA) levels have been shown to be 

increased in cancer patients, even in the absence of CTCs (Kopreski, Benko et al. 1999, Shinozaki, O'Day 

et al. 2007).  BRAF mutation V600E, which is present in over 70% of metastatic melanomas, can be 

detected in cfDNA and has been shown to be useful in monitoring patients with melanoma who are 

receiving therapy (Shinozaki, O'Day et al. 2007).  The physiological events that lead to the increase of 

cNA during cancer development and progression are still not well understood.  It is believed that 

macrophages may release DNA into the tissue microenvironment when engulfing apoptotic or necrotic 

cells(Schwarzenbach, Hoon et al. 2011).  Some evidence suggests that on average, the size of this DNA 

varies between small fragments of 70 to 200 base pairs and large fragments of approximately 21 

kilobases (Jahr, Hentze et al. 2001).  Analysis of ctDNA may allow for the detection of tumor related 

genetic and epigenetic alterations that are relevant to cancer development and progression.  

In general, the studies of ctDNA as cancer biomarkers focus on monitoring the presence of 

promoter hypermethylation, aberrant tumor DNA mutation, microsatellite alterations, and 

mitochondrial DNA in blood circulation (Stroun, Maurice et al. 2000).  Molecular characteristics of 

cancer including genetic and epigenetic alterations have been found in PDAC samples from tumor tissue, 

pancreatic fluid, and biopsies (Stroun, Maurice et al. 2000). These molecular characteristics are now 

being investigated in ctDNA from cancer patients. Dabritz et al. detected KRAS mutations in the plasma 

DNA of 36% of patients with PDAC, compared with no patients with pancreatitis.  By combining KRAS 

mutations with CA 19–9 levels they were able to diagnose PDAC with a sensitivity of 91% (Dabritz, 

Preston et al. 2009). 
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In summary both CTCs and ctDNA carry tumor related genetic and epigenetic alterations that 

are relevant to cancer development, progression and resistance to therapy.  Monitoring these 

alterations in a patient through minimally invasive blood tests for circulating tumor cells and cell-free 

nucleic acids can allow for repetitive real-time monitoring and will, therefore, contribute to the  clinical 

utility in the determination of prognosis and treatment.  Utilizing new isolation methods is promising for 

the study of CTCs and cNAs, but many hurdles still remain.  The biggest obstacle is determining which 

biomarkers to use for each type of cancer that will react with as many CTCs or as much cNA as possible, 

while maintaining specificity and sample purity.  Most of these tools and biomarkers need further 

validation to become acceptable forms of isolation and detection.  We aimed to identify genes 

associated with metastatic disease that have potential clinical use as a prognostic biomarker.  Using 

PDAC patient microarray data, we generated a list of genes that we tested on both cancer cell lines and 

PDAC patient samples to identify GJB3 and MFI2 as potential biomarkers for metastatic disease. 

Methods 

Patient Samples 

Patient blood samples were obtained after informed consent.  The white blood cell buffy coat 

was isolated via two methods of density gradient centrifugation.  Blood was either layered on top of 5 

mls of Ficoll at density 1.077 or a double gradient of Percoll (d= 1.092) and Ficoll (d=1.077) and 

centrifuged at room temperature for 20 min at 450g.  The white blood cells formed a buffy coat band in 

the Ficoll gradient or separated into monocyte and lymphocyte layers in the double gradient and were 

collected separately.  The cells were washed with PBS to remove residual density gradient media, frozen 

in RPMI-1640 with 10% DMSO and stored in liquid nitrogen.  Some buffy coat samples had further cell 

isolation methods performed using the Miltenyi CD45 microbeads and magnetic positive selection 
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columns.  Buffy coat samples from 6 metastatic PDAC patients were cultured on collagen matrix 

(Invitrogen) for one week, then washed, trypisinzed, and frozen in liquid nitrogen. 

PDAC cell line pellets previously frozen were thawed and RNA isolation of cell lines and patient 

samples were performed using either the Qiagen MiniRNA kit or Zymo QuickRNA miniPrep kit.  RNA 

concentrations were quantified using the Nanodrop.  cDNA was created using the Applied Biosystems 

cDNA synthesis kit.   

Real Time PCR Analysis 

RPLP0, ACTB, and GAPDH genes were selected as reference genes for their consistent 

expression with low standard deviation (less than 0.05) in the cells lines used in this screen.  13 cancer 

cell lines (HS766T, BxPC3, PC3, Aspc1, Capan2, MiaPaca2, CFPAC-1, HPAC, HPAF-II, Panc1, HuPT3, RT4, 

MCF7), the immortalized HPNE pancreatic cell line, the THP1 blood monocyte line and a buffy coat pool 

from three benign control patients were screened. Genes were analyzed in triplicate.  0.667ng/ul cDNA 

was used for cell lines and 3.33ng/ul for patient samples.  Invitrogen Taqman primers optimized for each 

gene and Taqman Universal Master Mix were used.  Samples were added to 384 well plates and 

amplified using the Applied Biosystems Viia6 or Viia7.  Triplicate values were averaged to define a cycle 

threshold (CT)value for each gene in each cell line.  The geometric mean of CT values for ACTB, RPLP0, 

and GAPDH served as a normalization value.  The ∆CT was calculated as: ∆CT = (CT – geometric mean) 

for each gene within each cell line.  Significance was evaluated using an unpaired t-test. 

Microarray and Statistical Analysis 

Microarray data used in this study is publically available (Chaika, Yu et al. 2012).  Survival and 

expression analysis was performed using the statistical software Prism Graphpad. Overall survival (OS) 

was analyzed using the Kaplan-Meier product-limit method and the significance of our variables was 
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measured by the log-rank test. The Gehan-Breslow-Wilcoxon Test was used to analyze associations 

between two variables.  

Results 

Identifying Cancer Associated Genes 

To identify genes that play a contributing role in the development and progression of cancer, we 

identified genes differentially expressed in metastatic and primary tissues from 5 patients with matched 

tissues.  Using our previously published microarray data set of PDAC patients, we identified a list of 

genes with greater than 2 fold higher expression in metastatic and primary tumors and a list of genes 

highly expressed in metastatic tumors, both compared to matched normal pancreas tissue.  Metastatic 

samples were defined as having >30% tumor content in tissues.  We then selected genes located at the 

plasma membrane that were differentially expressed in more than three metastatic sites.  This resulted 

in 137 genes that were overexpressed in primary and metastatic tissues compared to normal tissue.  We 

hypothesize that these genes are playing a role in tumorigenesis and metastasis and have the potential 

to be screened as biomarkers for PDAC.  
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Analysis of qPCR data 

We screened our list of genes in cancer cell lines and control patient samples to analyze these 

genes as potential biomarkers.  Low expression of each gene was defined as ∆CT ≥ 32 – geomean and 

high expression as ∆CT ≤ 32 – geomean.  Each gene was assigned scores ranging from 0-3 for low or high 

expression levels in the buffy coat(BC) pool, cancer cell lines, and HPNE cell line; and a composite score 

was generated [Table 1A].  A score of 0 was assigned to genes with a CT value greater than 32 in the 

WBC pool.  A score of 1 was assigned to genes with a CT between 30 and 32 in the WBC pool.  A score of 

2 was given to genes with a CT less than 30 in the WBC pool. Gene expression status in cancer cell lines 

was scored according to the percentage of high expression in cell lines.  Genes with high expression in 

greater than 85% of cell lines were assigned a 0, high expression in greater than 70% of cell lines were 

assigned a 1, and high expression in less than 60% of cell lines were assigned a 2.  HPNE was used as a 

surrogate for normal pancreas expression.  A score of 1 was assigned to genes with low expression and 0 

was assigned to genes with high expression in HPNE [Table 1C]. 80 genes with a score of 0-3 were kept 

for further analysis and 57 genes with a score greater than 3 were discarded from future analysis [Table 

1B-D].   
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Table 1: qPCR Analysis of 137 Candidate Genes:  
Each gene tested from our list was assigned a score 
for three different criteria of expression: buffy coat 

pool, cancer cell lines, and HPNE (A).  Composite 
scores were generated to exclude genes with 

expression in the buffy coat pool (B).  MFI2 and 
GJB3 scores (C).  Composite scores, 0-3, for the 80 

genes included for further analysis (D). 

 

B: 

A: D: 

C: 
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Microarray Analysis 

In order to further narrow down my list of potential biomarkers, I looked at the expression data 

in the PDAC patient microarray data set our lab has generated.  This allowed us to confirm in a larger 

dataset what genes were overexpressed in primary and metastatic tumors compared to normal 

pancreas.  An issue with the initial screen to create our list was that it had a very limited sample size of 

matched samples, including 14 normal pancreas, 5 primary PDAC and 28 metastatic PDAC tissues.  An 

additional 33 normal pancreas, 161 primary and 28 metastatic samples were used to look at expression 

data.  I was able to determine significant differences in the level of expression between the normal 

pancreas tissue and primary PDAC tumors, metastatic tumors, and cell lines. A separate scoring system 

was developed to prioritize candidate genes.  A score of 0 was given to each gene with significance (p 

<0.05) in the three comparisons: normal pancreas versus primary PDAC, normal pancreas versus 

metastatic tumors, and normal pancreas versus cancer cell lines [Table 2A, C].  A score of 1 was given to 

genes without significance for each comparison.  24 genes had a composite score greater than 2, and 

were excluded from further analysis [Table 2B]. 56 Genes had a composite score of 0-2 [Table 2D]. 
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Table 2: Composite Scores of Genes in 
Microarray Expression: Each gene from the 
previous analysis was scored according to 
significant overexpression in primary and 

metastatic tumors, metastatic tumors and cell 
lines compared to normal pancreas tissue (A).  
Composite scores were generated to exclude 

genes without significant expression (B).  MFI2 
and GJB3 scores (C).  Composite scores, 0-2, of 

the 56 genes (D). 

A: 

 

D: 

 

B: 

C: 
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Survival Data 

Finding a biomarker that also shows an association with outcome may also be prognostic, 

therefore we looking at survival data of 136 patients with primary PDAC tumors.  For each of the 56 

genes, patient samples were systematically split into two groups using a sliding cutoff of gene 

expression. The partition which gave the most significant survival difference via log rank test was used 

to determine median overall survival for the low and high expression groups.  16 of these genes showed 

associations with survival [Table 3].  Thus these 16 genes may have promise as cancer biomarkers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Genes Associated with Survival.  
16 genes showed significant (p< 0.05) 

survival differences in patients with low 
expression. Median survival in months is 
shown between the high and low gene 

expression groups.  
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qPCR of Patient Samples 

To further investigate our 56 genes as potential biomarkers, 42 samples from 25 patients were 

screened.  This  included 4 patients with benign non-pancreatic diseases, 5 with local PDAC, 5 with 

advanced PDAC, and 10 with metastatic PDAC [Table 4].  The sample types included in this analysis were 

cells isolated from the buffy coat, monocyte and lymphocyte layers, CD45 selection from buffy coat and 

cultured samples.  EpCAM (epithelial cell adhesion molecule) was used as a surrogate marker for 

epithelial cell identification. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 4: Patient Sample Data.  
Samples collected are stratified by 
patient status, date collected and 

sample type. EpCAM expression and 
geomeans of reference genes are 

included for each sample analyzed. 
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We identified two genes, GJB3 and MFI2, with significant differences in median overall survival 

for patients when split into low and high expression groups [Figure 1].  These genes showed trends 

toward higher expression in metastatic patient samples compared to benign and local PDAC, suggesting 

that they may be potential biomarkers of metastasis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Differential Expression in PDAC samples.  GJB3 and MFI2 qPCR expression data by 
patient status and sample type shows higher expression in metastatic compared to benign 

and local PDAC groups (A-B).  Multiple samples from the same patient are noted in the legend.  
Kaplan-Meier survival plots of GJB3 and MFI2 show significant differences in survival (C-D). 

A: C: 

B: 

D: 
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Discussion 

 Much research is currently being conducted to identify genes involved in cancer initiation and 

progression in order to identify how these genes can be targeted for therapy. We sought to identify 

possible biomarkers specific to PDAC that could be used as cancer screening tools.  Discovery of 

biomarkers indicative of metastatic disease could improve our understanding of PDAC and potentially be 

used to improve patient outcomes.   In our screen, a large number of genes were shown to have high 

expression in cancer cell lines and some genes showed differences in expression in our PDAC patient 

samples.  However, this does not guarantee the identification of a biomarker.  Screening pancreatic 

cancer patient samples produced some promising candidates, but further evaluation using more 

samples will be needed.  The information we gathered from this screen has provided us a starting point 

for identifying new biomarkers for PDAC. 

 The patient samples used to screen our list of candidate biomarkers presented some issues.  Our 

results were limited by low RNA concentrations in some of our samples, allowing us to screen a fixed 

number of genes.  Additionally, it is unclear whether RNA was derived from CTCs or cell free RNA. We 

attempted to use samples with high EpCAM expression, as this may be indicative of CTCs, but expression 

was variable within each patient status group.  One benign control, patient 75, showed expression in 

EpCAM as well as 15 of the 56 genes screened.  Contamination in this sample could be one possible 

reason as to why a non-cancerous patient showed expression in EpCAM and 15 cancer associated genes.  

This sample may have affected significant differences in expression levels between patient status 

groups.  Increasing the number of control samples will reduce standard deviations and provide a more 

appropriate measure of expression.  Furthermore,  analyzing and understanding EpCAM expression in 

future benign control samples may also help us determine if it is an appropriate control for future 

studies and useful for identifying CTCs in PDAC patients.  Another explanation for the variability 
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observed in benign control samples is the possibility that we isolated cell free RNA as opposed to RNA 

from CTCs.  Cell free nucleic acids, including cell free RNA (cfRNA), have recently been found to exist in 

the bloodstream, making it unclear whether our isolated RNA was derived CTCs or cfRNA 

(Schwarzenbach, Hoon et al. 2011, Pucciarelli, Rampazzo et al. 2012). Determining the source of RNA in 

future analyses will help us better understand aberrant results such as this.  Expression of reference 

genes in patient samples were also more variable than we observed in cell lines. Because some patient 

samples had higher expression of reference genes, we only used patient samples with a CT geometric 

mean less than 29 for analysis.  Controlling these variables in future analysis and including more samples 

from each patient status group and benign controls may produce more robust results 

Another confounding factor in interpreting our results is that some patients had multiple 

samples isolated on the same day or different days.  An additional variable affecting our results is the 

fraction of the blood sample used for gene expression analysis.  CD45+ and lymphocyte fractions were 

isolated from the same tube of blood from patient 45, but EpCAM expression was much higher in the 

lymphocyte fraction.  EpCAM expression in patients 87, 73, and 90 was also different between CD45+ 

and lymphocyte fractions.  This may be due to our method of isolation, which uses a double gradient 

that separates the buffy coat by cell density.  It is possible that CTCs were isolated with the lymphocyte 

or monocyte fractions, thereby altering overall EpCAM expression in these samples.  We also observed 

variability within the same fraction over time.  Two monocyte samples from patient 45 that were 

collected approximately one week apart had differential EpCAM expression. Despite controlling for run 

to run variability, an additional 4 genes (CLDN12, TPBG, TNFRSF21, TSPAN5) also had variable expression 

between these two samples.  We observed similar differences in EpCAM gene expression using 

monocyte layers isolated from the same original tube of blood from patient 74.  The cause for these 

differences between samples could be attributed to sample storage conditions in liquid nitrogen.  It has 

been shown that expression profiles from frozen buffy coat samples differs from samples not frozen, 
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and the length of time in storage affects RNA stability (Debey-Pascher, Hofmann et al. 2011).  Future 

isolation of patient samples should utilize a method proven to provide better RNA stability and quality.  

Another reason we have seen these differences may be attributed to a change in potential CTCs or 

cfRNAs in patient blood samples.  Enumeration of CTCs is currently utilized to monitor patients and CTC 

counts have been shown to change through the course of cancer progression and treatment.  It is 

possible that we have captured this in our samples, but we cannot test this hypothesis.  Further studies 

should include determining how many CTCs are captured through isolation, if cfRNAs are present, and 

using proper storage techniques. 

Analysis of patient blood samples has allowed us to identify two possible biomarkers for 

metastatic PDAC.  Both GJB3 and MFI2 showed significant differences in survival between low and high 

gene expression patient groups.  GJB3, also known as connexin31, showed a trend toward higher 

expression in the metastatic patient group compared to benign and localized PDAC groups.  Although we 

saw this trend in GJB3, patient 75 benign control showed strong expression of this gene, making our 

results somewhat difficult to interpret.  GJB3 gene expression analysis of additional benign controls will 

help us determine if this gene was abnormally expressed in patient 75 alone or consistently has variable 

expression across benign samples.  We also observed no significant differences in expression of GJB3 

among patients within the benign, localized and advanced PDAC status groups, indicating that GJB3 

would not be a useful biomarker for early or advanced PDAC.  We also analyzed GJB3 expression in 

multiple samples from the same patients, which may have biased our results.  It is possible that 

expression of GJB3 in our samples may be unrelated to cancer, since there is no known cancer function 

of GJB3 (Ikeya, Urano et al. 2013).  However, greatly reduced or absent expression of other connexins 

has been found in various cancers, such as lung cancer, suggesting that these connexins, like GJB3, play 

important roles as tumor suppressors by maintaining cell differentiation and preventing transformation 

(Cronier, Crespin et al. 2009, Naus and Laird 2010).  The re-expression of connexins in both non-
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metastatic and metastatic tumor cell lines decreases cell proliferation and tumorigenesis, and promotes 

favorable mesenchymal to epithelial transitions (McLachlan, Shao et al. 2006, Liu, Zhang et al. 2014).  

Another connexin, GJB5, was identified in our screen but did not show significant differences between 

patient groups.  In one study, overexpression of GJB5 increased the expression of epithelial markers, 

such as cytokeratin 18, and decreased expression of mesenchymal markers, such as vimentin, indicating 

GJB5 mediated a shift from a mesenchymal towards an epithelial phenotype (Zhang, Chen et al. 2012).  

Conversely, higher expression of connexin26 was associated with poor differentiation and venous 

invasion, as well as shorter disease free survival and lung metastasis free survival in colorectal cancer 

patients (Ezumi, Yamamoto et al. 2008).  The association of cancer and GJB3 needs further investigation.  

Our preliminary data suggests a connection with metastatic disease limited to the pancreas and analysis 

of other cancers may provide more support for the role of GJB3 in cancer.  Our data indicates that 

higher expression of GJB3 may indicate worse prognosis, shorter survival, and advanced disease.  We 

also note that expression of GJB3 in a control sample may indicate other functions which should be 

explored.  Current cancer research on connexins presents conflicting ideas.  Some connexins are 

correlated with metastasis, worse survival, increased cell proliferation, motility and invasiveness.  Yet 

closer analysis has revealed that connexins promote mesenchymal to epithelial transition, therefore 

high expression of connexins at later stages of cancer confer metastasis and in early stage cancer, tumor 

suppression.  Our data supports the role of GJB3 in metastatic disease, but further investigation into the 

role of connexins in tumor progression is needed. 

Also identified in our screen was MFI2, a cell-surface glycoprotein. Overexpression of MFI2 has 

been observed in metastatic melanoma tissue and is thought to play a role in angiogenesis specifically 

during metastasis (Sala, Jefferies et al. 2002). However, the specific effects of MFI2 in angiogenesis are 

still under investigation (Neitzel, Neitzel et al. 1999).  MFI2 has also been shown to be involved in 

migration and cell proliferation (Dunn, Sekyere et al. 2006, Suryo Rahmanto, Dunn et al. 2007). Our data 
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suggests that high expression of MFI2 indicates worse prognosis, shorter survival, and advanced disease.  

High expression of MFI2 was seen in all pancreatic cancer cell lines, which supports the hypothesis that 

MFI2 promotes tumorigenesis.  We found significantly improved survival in primary PDAC tumors with 

low expression of MFI2.  As previously discussed, multiple samples from the same patient as well as the 

limited number of samples from different patients may have introduced bias of MFI2 expression. 

Analyzing more samples in all patient groups will provide stronger evidence for differential MFI2 gene 

expression across different stages of disease.  Current research on MFI2 is aiming to identify the 

mechanisms by which MFI2 may promote proliferation, migration, and angiogenesis. Further 

investigation into the role of MFI2 in tumorigenesis will provide insight into its potential use as a 

biomarker in PDAC.  It is clear that MFI2 plays a role in melanoma tumorigenesis through increased 

proliferation and angiogenesis, but it’s involvement in PDAC cancers has yet to be determined.   

Additional gene expression analysis using isolated CTCs or cfRNAs may provide us with more 

information on the roles of GJB3 and MFI2 in PDAC.  Improving upon the methods used in this study may 

help us to identify other potential biomarkers from our screen to further investigate. 
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