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ABSTRACT 
Ronald Jarrod Copeland:  The Preparation and Characterization of a Heparin-Derived 

Oligosaccharide that Binds to Herpes Simplex Virus Type 1 Glycoprotein D 
(Under the direction of Jian Liu, Ph.D.) 

 
Heparan sulfate (HS) is a structurally diverse and highly sulfated polysaccharide that 

has been found to exist on the surface of mammalian cells in substantial quantities.  Unique 

saccharide sequences of HS have been shown to bind specifically to a number of biologically 

relevant proteins, thus allowing HS to play a role in numerous biological processes including 

regulation of blood coagulation, inflammation, cancer cell growth and viral infections.  

Understanding the structure-function relationship of HS will aid in the development of novel 

anti-viral and/or anti-cancer therapeutics.  Previous studies have shown that 3-O-

sulfotransferase isoform 3 (3-OST-3) generates 3-O-sulfated HS that can bind to 

glycoprotein D (gD) and facilitate HSV viral entry into target cells, thus implicating 3-O-

sulfated HS as a HSV entry receptor.  The goal of this work is to provide additional structural 

information concerning HS ability to assist in the HSV viral infection mechanism, while 

providing evidence to suggest that HSV infections may be inhibited by disrupting the 

interactions with its polysaccharide based cellular receptors.  The use of 3-O-sulfated heparin 

(HP) oligosaccharides, along with high expression levels of gD purified from E. coli., 

allowed for the investigation of the gD binding of various sized HP oligosaccharides.  

Results obtained from immunoprecipitation and affinity co-electrophoresis experiments 

suggested that the 3-O-sulfated HP octasaccharide was of the minimal required length for gD 

binding with a Kd value of 19 µM.  Structural characterization using chemical and enzymatic 
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approaches suggested the gD binding 3-O-sulfated HP octasaccharide had a structure of 

∆UA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-GlcNS6S3S-IdoUA2S-GlcNS6S (3-O-

sulfation site is underlined).  Coupling a sulfo donor regeneration system with 3-OST-3 

modification, sufficient amounts of the gD binding 3-O-sulfated HP octasaccharide was 

generated for cell based viral entry assays.  The characterization of a novel gD binding 

octasaccharide as described herein, provides additional structural information concerning 

HS/HP ability to assist in the HSV viral entry mechanism.  Specifically, it allows for further 

investigations to be conducted as the characterized 3-O-sulfated gD binding HP 

octasaccharide may serve as a good lead compound for the inhibition of HSV infections.  The 

further development of this project could uncover a new way to treat diseases related to HSV 

infections.   
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CHAPTER I 

INTRODUCTION 

 

Section I:  Glycosaminoglycans 

The cell surface as well as the extracellular matrix (ECM) is comprised of abundant 

quantities of complex, unbranched, and heterogeneous polysaccharides.  These 

macromolecules are known as glycosaminoglycans (GAGs).  The abundant presence of these 

GAGs on the cell surface and in the ECM allows for a large number of proteins such as 

cytokines, chemokines, and growth factors to bind to GAGs and participate in a wide array of 

biological events.  These events have been found to range from participating in the 

inflammatory response and embryonic development to cell adhesion, motility and 

morphogenesis (1-9). These polysaccharides are comprised of repeating disaccharide sugar 

units and carry negative charges.  The disaccharide units contain a glucosamine residue, 

which is either N-acetylgalactosamine (GalNAc) or N-acetylglucosamine (GlcNAc), and an 

uronic acid residue, which is either iduronic acid (IdoUA) or glucuronic acid (GlcUA).  

These GAGs are predominately presented on the cell surface attached to various core 

proteins in the form of proteoglycans. 

Glycosaminoglycans can be classified into four distinct classes; each class carries 

different repeating disaccharide units with various sulfations.  The classes include 

chondroitin sulfate, hyaluronic acid, keratan sulfate and heparan sulfate/heparin (figure 1). 
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Figure 1.  Structures of disaccharide repeating units of glycosaminoglycans.  R represents H or sulfate, and 
R’ represents acetyl, sulfate, or H.  Non-reducing and reducing ends are labeled. 
 
 

Hyaluronic acid  

Hyaluronic acid (HA), also known as hyaluronan or hyaluronate, is very unique 

among GAGs in that it does not contain any sulfate groups, is not epimerized, is not 

covalently attached to proteins as a proteoglycan, and is not synthesized in the Golgi.  HA is 

synthesized directly into the extracellular space as a copolymer of glucuronic acid (GlcUA) 

and glucosamine (GlcN) residues via a β1→3 linkage with a average approximate molecular 

weight (Mr) of 105-107 Da (10).  HA is mostly found in the extracellular matrix (ECM) of 

connective tissues such as the umbilical cord, synovial fluid and the skin (10).  Initially, HA 

was believed to only have a shock-absorbing role in the body, however a number of studies 

have been reported that suggest that HA plays a role in mediating various physiological 

functions, which include its roles in morphogenesis, regeneration, wound healing, and tumor 

invasion (11, 12).  
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Keratan sulfate 

Keratan sulfate (KS), is synthesized as a copolymer of repeating disaccharide units of 

galactose (Gal) and N-acetylglucosamine (GlcNAc) residues via a β1→4 linkage, with 

variable carbohydrate lengths and degrees of sulfation. KS has been shown to have on 

average 0.9 to 1.8 sulfates per disaccharide unit and a relative molecular weight between 

4×103 to 2×104 Da (13-15).  KS is biosynthesized in the Golgi in proteoglycan form and 

localized in cornea, bone, and cartilage (16).  An article by Funderburgh summarizes the 

biosynthesis and biological functions of KS.  These biological functions includes its roles in 

embryonic development, wound healing and cornea hydration (16). 

 

Chondroitin sulfate 

Chondroitin sulfate (CS), is synthesized as a copolymer of repeating disaccharide 

units of glucuronic (GlcUA) or iduronic acid (IdoUA) residues and N-acetylated 

galactosamine (GalNAc) with various sulfation.  CS can be further classified as either 

chondroitin sulfate A (CS-A), chondroitin sulfate B (CS-B) and chondroitin sulfate C (CS-

C).  CS-A contains a galactosamine 4-O-sulfate; CS-B, also known as dermatan sulfate (DS), 

contains higher degree of epimerization (i.e. more IdoUA residues); and CS-C, contains 

galactosamine 6-O-sulfate.  Chondroitin sulfate proteoglycans (CSPGs) have been found to 

be the most abundant proteoglycan in the ECM of the central nervous system (CNS) (17).  

Within the CNS, CSPGs primarily acts as barrier molecules that affect axon growth, cell 

migration and plasticity (18). 
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Heparin/Heparan sulfate 

Heparin (HP) and heparan sulfate (HS) are also included in this unique class of 

macromolecules called glycosaminoglycans.  This subclass however is the major focus of 

this thesis and its structure, biosynthesis, and biological functions are elaborated on in greater 

detail in the following sections. 
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Section II:  Heparin/Heparan Sulfate:  Structure and Biosynthesis 

 

Structure of Heparin vs. Heparan sulfate 

Heparan sulfate (HS) is a structurally diverse, complex, biopolymer that is initially 

synthesized in the Golgi with alternating disaccharide units of hexuronic acid (HexA) and N-

acetyl glucosamine (GlcNAc) residues attached via β1→4 linkage.  The HexA residue can be 

either a GlcUA or an IdoUA acid residue depending upon its variable degree of 

epimerization at the C5 position, by C5 epimerase.  Heparin (HP), commonly used clinically 

as an anticoagulant drug, is a copolymer of alternating HexA (mostly IdoUA) and GlcNAc 

residues (figure 2).   
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Figure 2:  Disaccharide repeating units of heparin and heparan sulfate (3).  Sulfation (R = -SO3) at carbon 
6 (known as 6-O-sulfo glucosamine) of glucosamine is common.  Sulfation at carbon 2 of iduronic acid (known 
as 2-O-sulfo iduronic acid) is common.  Sulfation at carbon 3 of glucosamine (known as 3-O-sulfo 
glucosamine) is rare.  Both N-acetyl (R’ = acetyl, GlcNAc) and N-sulfo glucosamine (R’ = -SO3, GlcNS) are 
common.  N-unsubstituted glucosamine (R’ = -H, GlcNH2) is a low abundance component. 

 
NMR and molecular modeling studies have provided evidence that HP and HS 

display a helical-type structure with the various sulfate and carboxylic groups projected in an 

outward fashion (19).  The basis of the well documented conformational flexibility of IdoUA 
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residues suggest that these residues have the ability to oscillate between chair and skew boat 

conformations (20).  This feature may manifest itself in the ability of HS and HP to display 

its sulfate and carboxylic groups in a flexible nature that can conform to various proteins to 

allow binding and modulation of protein activities.   

HP is structurally similar to HS.  HS is ubiquitously expressed and is a common 

product of all mammalian cells, while HP is generally considered to be an exclusive product 

of mast cells.  Mast cells are cells of the connective tissue that contains granules rich in 

heparin that play a role in wound healing and defense against pathogens.  The only noticeable 

difference between HS and HP is in their respective degree of modification, specifically 

sulfation at the N-, 2-, 6-, and 3-O positions and the epimerization patterns at C5 position of 

the glucosamine.  HP is found to primarily contain long repeating disaccharide units of –

IdoUA2S-GlcNS6S-, while HS is found to be more diverse in its epimerization and sulfation 

patterns.  Consequently, two points can be concluded from this, 1) that HP could be classified 

as a form of highly modified HS, and 2) its feasible for HS to display HP-like sequences 

within its polysaccharide chain.  The disaccharide units obtained from HP contain on average 

2.7 sulfate groups, compared to an average of 0.6-1 sulfate groups seen within the 

disaccharide units of HS (21).  The individual monosaccharides within HS and HP isolated 

from natural sources are found to be present at various levels.  The majority of the 

glucosamine residues found in HS are either N-acetylated (GlcNAc) or N-sulfated (GlcNS), 

with only 1-7% of the glucosamine residues existing in the N-unsubstituted form (GlcNH2), 

thus allowing HS to display primary amine groups (22).  Structural studies have shown that 

the presence of a 6-O- sulfated glucosamine and a 2-O-sulfated iduronic acid (IdoUA2S) are 
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common among the monosaccharides found in HS, while 3-O-sulfated glucosamine and 2-O-

sulfated glucuronic acid (GlcUA2S) residues are a rare component found in HS (23).   

 

Heparan Sulfate Proteoglycans (HSPGs) – Core Proteins 

Heparan sulfate proteoglycans (HSPGs) exists on the cell surface of mammalian cells 

as well as in the ECM in abundant quantities.  HSPGs consist of a core protein to which one 

or more GAG chains are attached at specific sites.  They have also been found to have a 

variety of diverse functions.  These functions range from mediating cell adhesion and 

migration, to regulating proliferation and differentiation (2, 24-27).  Even though it is 

generally considered that the specific HS chains are the moieties that interact with various 

proteins and allow HSPGs to be diverse in its biological functions, the core protein 

component is also important as it determines the localization and presentation of the 

proteoglycan and its HS chains on the cell surface and in the ECM.  The majority of core 

proteins contain up to 5 conserved HS sites, consisting of a SGXG or SG sequence, where X 

refers to any amino acid, with this sequence usually being preceded by various acidic 

residues (28).  HSPGs can be classified into two groups, membrane bound and secreted 

proteoglycans.  The major membrane bound HSPGs include syndecans and glypicans, which 

are encoded by multiple genes, while the major secreted HSPGs that make up the ECM 

include perlecans and agrins, which are encoded by a single gene respectively. 

 

Syndecan 

Syndecans are classified as type I transmembrane proteins, meaning that they contain 

a single membrane-spanning domain with the C-terminus oriented towards the cytoplasm of 
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the cell and the N-terminus is oriented towards the ECM.  This core protein has the ability to 

display either HS or CS/DS polysaccharide chains; however the majority of GAG chains are 

HS.  Syndecans have been found to have an average molecular weight between 20-45 kDa, 

and have been found to be present in four isoforms, namely syndecan-1, syndecan-2 

(fibroglycan), syndecan-3 (N-syndecan) and syndecan-4 (amphiglycan or ryudocan) (2, 24, 

29).  These isoforms contain a large ectodomain, a cytoplasmic domain and a highly 

conserved transmembrane region.  Within their cytoplasmic region, the isoforms have two 

conserved domains linked together by a variable region.  This variable region is unique for 

each individual isoform, allowing for isoform specific protein interactions to occur (30).  The 

different isoforms of syndecan have been shown to be expressed in a developmental and cell 

type-specific pattern.  Recent in vitro and in vivo data suggest that syndecans are involved in 

the regulation of various events including leukocyte-endothelial interactions, extravasation, 

formation of chemokine gradients and growth factor signaling (31).  

 

Glypican 

Glypicans are members of the membrane bound HSPG family that displays 

exclusively HS.  However, unlike syndecans, glypicans are attached to the cellular membrane 

via a glycosylphosphatidylinositol (GPI) anchor.  The presence of the GPI anchor results in 

variable localization patterns and differentiation of its metabolism pathways when compared 

to other HSPGs families (32, 33).  The glypican family is comprised of at least six different 

isoforms glypican-1 (glypican), glypican-2 (cerebroglycan), glypican-3 (OCI-5), glypican-4 

(K-glypican), glypican-5 and -6.  There is limited sequence homology between the glypican 

isoforms, however all glypicans share 14 conserved cysteine residues and have 2 or 3 GAG 
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attachment sites very close to the cellular membrane, thus suggesting that all members within 

this family share a similar tertiary structure (34).  Studies have provided evidence to suggest 

that glypicans are involved in cell proliferation and cancer development.  One example of 

this is found in a published report by Kleff and colleagues that provided evidence which 

showed that the expression of glypican-1 (but not other glypicans) is induced in human 

pancreatic and breast cancer cells (35).  This suggests that glypicans may have isoform 

specific biological functions. 

 

Perlecan 

Perlecan, which consists of a core protein of approximately 400 kDa, is primarily 

found in the basement membrane (2).  They have been shown to contain up to 3 GAG 

attachment sites which are primarily for HS, however CS can also be attached (36).  This 

family of HSPGs is comprised of five domains; each domain has specific and unique 

functions.  These domains allow perlecan to bind various basement membrane proteins, 

growth factors and integrins through its HS side chains and/or the perlecan core protein itself 

(2, 37-40).  Through these binding interactions, perlecan HSPGs have been found to 

participate in lipid uptake and metabolism, cell adhesion, cellular growth and morphogenesis 

(38, 41). 

 

Agrin 

Agrin, consisting of a core protein of approximately 250 kDa, is found as a 

constituent of the basement membrane, specifically within neuromuscular junctions and renal 

tubular basement membranes (42-44).  Agrin, like perlecan, has multiple domains with each 
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domain required for a specific function.  The structural functions of these domains have been 

reviewed by Iozzo et al. (45).  Agrin, unlike perlecan, displays exclusively HS.  Moreover, 

this HSPG can display at least six HS chains and contains five N-glycosylation sites, 

allowing the possibility of agrin to display heterogeneity in various tissues.  The biological 

functions of agrin HSPGs include aggregation of acetylcholine receptors and interaction with 

neural cell adhesion molecules, which led to the suggestion that agrin may play a role in the 

cell adhesion processes during neural development, including synaptogenesis (42-44). 

 

Biosynthesis of heparan sulfate 

The biosynthesis of HS results in the formation of a very diverse and heterogeneous 

polysaccharide chain.  This structural diversity of HS is of great importance as the position of 

IdoUA residues and sulfation patterns within the polysaccharide chain is directly correlated 

to HSPGs ability to interact with proteins and/or ligands and permits participation in a wide 

variety of biological functions.  In simple terms, the modifications within the HS 

polysaccharide chain determine the specific function of HSPGs.  The HS polysaccharide can 

be comprised of 50-100 disaccharide units and with each disaccharide unit having the 

possibility to carry variable modifications, the complexity and diversity that HS can obtain 

within its sequence is obvious.  The structural diversity of HS is achieved in the manner by 

which it is biosynthesized.  The HS biosynthetic pathway is described as a non-template, 

enzymatic driven process, which is separated into three steps:  a) biosynthesis of the 

tetrasaccharide linkage region, b) chain initiation/chain elongation, and c) chain 

modification.  The majority of the key HS biosynthetic enzymes have been cloned, which has 

allowed detailed investigations of their roles in generating specific sequences of HS (46). 
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Step 1:  Biosynthesis of the tetrasaccharide linkage region 

 HS biosynthesis occurs in the Golgi apparatus and is initiated by the attachment of a 

linkage region of four monosaccharides to the core protein at specific serine residues.  The 

tetrasaccharide linkage region has a sequence of xylose-galactose-galactose-glucuronic acid 

(Xyl-Gal-Gal-GlcUA), where the Xyl is covalently attached to a specific serine residue 

within the core protein (figure 3).  The linkage tetrasaccharide has the potential to be 

modified at various locations.  The xylose residue can be phosphorylated at its C2 position, 

while the two galactose residues may be sulfated at the C4 or C6 positions (47).  However, 

studies have not found any sulfate groups on either Gal residue in HSPGs only in CSPGs 

have they been found.  The individual sugar residues of the tetrasaccharide linkage sequence 

are added in a stepwise manner by the activities of four specific glycosyltransferases 

including, xylosyltransferase (XylT), galactoslytransferase I (GalT-I), galactoslytransferase II 

(GalT-II), and glucuronyltransferase I (GlcUAT-I).  These glycosyltransferases have been 

cloned (48), which has served as an important technological tool for new avenues concerning 

the chemoenzymatic synthesis of oligosaccharides (49, 50).   
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Figure 3:  Biosynthesis of the tetrasaccharide linkage region.  The tetrasaccharide linkage region (GlcUA-
Gal-Gal-Xyl) is shown.  The enzyme that is responsible for the transfer of each respective sugar unit is 
presented in parenthesis under the sugar unit.  R = proton or sulfate, R’ = proton or phosphate.      
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Xylosyltransferase (XylT) 

XylT is the first enzyme to act in the biosynthesis of the tetrasaccharide linkage 

region.  XylT catalyzes the transfer of D-xylose, from its donor substrate UDP-xylose to 

sequence specific serine residues within the core protein.  Usually substitution occurs at 

serine residues within the following peptide sequence of SGXG, where X is any amino acid.  

However, additional recognition signals must be involved since not all SGXG sequences 

within the core protein are substituted (51-54).  Like other glycosyltransferases, XylT has 

type II transmembrane topology which is consistent with its location in the Golgi apparatus 

where HS is synthesized.  Studies have also shown that xylosylation does indeed take place 

in the pre-Golgi compartment (55, 56).  Studies have also proved that XylT is involved in the 

biosynthesis of HS.  Chinese hamster ovary (CHO) cells that are deficient in XylT were 

found unable to synthesize HS or CS, suggesting that XylT is responsible for the initiation of 

HS formation in CHO cells (57). 

 

Galactosyltransferase I (GalT-I) and Galactosyltransferase II (GalT-II) 

GalT-I is the second enzyme to act in the biosynthesis of the tetrasaccharide linkage 

region.  This enzyme transfers the first of two galactose (Gal) residues onto the previously 

transferred xylose, while GalT-II is responsible for the addition of the second Gal residue.  

Both GalT-I and GalT-II catalyze their respective reactions by using UDP-galactose as a 

donor substrate and they both show type II transmembrane topology (47, 48, 58).  Studies 

have been conducted to prove the importance and role of these enzymes in the formation of 

the linkage region as well as in total GAG synthesis.  Transfection of GalT-I cDNA into 

CHO cells that are deficient in GalT-I was shown to restore GAG synthesis (59).  GalT-II 



  13

was also shown to be an essential enzyme for the synthesis of GAGs (58).  Concerning the 

substrate specificity, it was found that GalT-I does not exhibit activity toward a C2 

phosphorylated xyloside, which suggests that the presence of a 2-O-phosphorylated xylose 

residue on the acceptor substrate may disrupt substrate recognition by the enzyme (47, 60).  

Information concerning the physiological importance of GalT-I and also GAGs synthesis was 

also expanded upon when mutations of GalT-I resulted in progeroid-type Ehlers-Danlos 

syndrome in humans (61, 62). 

 

Glucuronyltransferase I (GlcUAT-I) 

The transfer of a GlcUA residue to the second Gal residue is the final biosynthetic 

step of the linkage region.  This transfer is catalyzed by the key enzyme GlcUAT-I.  

GlcUAT-I carries out its function by using UDP-GlcUA as a donor substrate.  The crystal 

structure of GlcUAT has been solved, which has provided structural information concerning 

its catalytic mechanism and the key amino acid residues that play a role in its substrate 

recognition (63).  Site-directed mutagenesis studies have also been conducted which allowed 

for definitive evidence concerning the residues that are involved in the catalytic mechanism 

(47).  According to experimental evidence, sulfation at various positions on the Gal residues 

have an effect on GlcUAT-I activity (47).  This allowed researchers to propose that sulfation 

is a critical feature that allows a sequence to serve as a substrate for GlcUAT-I.  Interestingly, 

studies concerning GlcUAT-I has provided evidence that this enzyme may be considered as a 

pharmacological target in the onset of osteoarthritis.  GlcUAT-I plays an important role in 

priming hexuronic acid containing GAG synthesis.  Any change in activity would likely 

affect the rate of GAG synthesis and consequently its proteoglycan biological properties.  
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Osteoarthritis is characterized by quantitative and qualitative modifications of proteoglycans 

and their GAG chains, which leads to alterations of the cartilaginous matrix (64).  Since 

GlcUAT-I is a key player in the formation of the linkage region, this could implicate HSPGs 

as a therapeutic target for osteoarthrits treatment (65, 66). 

 

Step 2:  Chain Initiation/ Chain Elongation 

After the tetrasaccharide linkage region is synthesized onto the core protein, another 

set of enzymatic reactions occurs which ultimately serves to synthesize and extend the HS 

backbone sequence that will serve as a precursor substrate for later modifications.  The HS 

backbone is synthesized by glycosyltransferases that are encoded by the EXT (exostosin) 

gene family (67).  To date, five different EXT genes have been identified EXT1, EXT2 and 3 

EXT-like genes EXTL1, EXTL2, EXTL3.  All members of the EXT gene family of proteins are 

type II transmembrane proteins that are located in the Golgi apparatus thus enabling them to 

participate in HS biosynthesis (48, 68).  The EXT gene family has been demonstrated to 

function as tumor suppressor genes with overlapping glycosyltransferase substrate 

specificities and are involved in HS biosynthesis (67-69).   The biosynthesis of HS backbone 

sequence can be separated into two parts: 1) HS chain initiation and 2) chain elongation or 

polymerization.  Chain initiation is carried out by N-acetyl-glucosaminyltransferase I 

(GlcNAcT-I) activity and chain elongation is carried out by two main polymerization 

enzymes N-acetyl-glucosaminyltranferase II (GlcNAcT-II) and glucuronyltransferase II 

(GlcUAT-II) (figure 4). 
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Figure 4:  Enzymes involved in chain initiation and chain polymerization of the HS polysaccharide.  
Chain initiation is achieved by GlcNAcT-I, which serves to transfer of a GlcNAc residue to the non-reducing 
end of GlcUA residue.  Chain polymerization occurs by the addition of alternating repeating units of GlcUA 
and GlcNAc residue by GlcUAT-II and GlcUAcT-II respectively.   
 

N-Acetyl-glucosaminyltransferase I (GlcNAcT-I) 

 The critical enzyme responsible for the transfer of GlcNAc to the linkage region is 

GlcNAcT-I (70).  This reaction is catalyzed in vitro by two EXT gene proteins, EXTL2 and 

EXTL3 (67).  GlcNAcT-I transfers the initial GlcNAc residue to the GlcUA residue at the 

non-reducing end of preformed tetrasaccharide linkage region via a α1→4 linkage, thereby 

initiating HS formation (instead of other GAGs) allowing this catalytic transfer to serve as a 

molecular signal or an indicator of HS polymerization.  EXTL3 has been shown to possess 

both GlcNAcT-I and –II activities (48, 71).  This unique feature allows for its possible 

participation in both chain initiation and chain elongation phases.  On the other hand, EXTL2 

has only been shown to possess GlcNAcT-I activity, suggesting that it is primarily involved 

during the chain initiation phase (48). 
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D-Glucuronyltransferase II(GlcUAT-II) / N-Acetyl glucosaminyltransferase (GlcNAc T-
II) 

Once HS formation has been initiated by transfer of a GlcNAc residue onto the 

tetrasaccharide linkage region, two main HS polymerizing enzymes serve to elongate the HS 

backbone by alternatively adding the repeating disaccharide units of GlcUA and GlcNAc.  

These reactions are catalyzed by the GlcUAT-II and GlcNAcT-II.  GlcUAT-II transfers a 

GlcUA residue to the previously transferred GlcNAc residue via a β1→4 linkage using UDP-

GlcUA as a donor substrate.  While GlcNAcT-II transfers a GlcNAc residue to the non-

reducing end of the previously added GlcUA via a α1→4 linkage using its UDP sugar as a 

donor substrate.  These two glycosyltransferases are products of EXT2 and EXT1 tumor 

suppressor genes respectively.  These products have been found to exist in a large heteo-

oligomeric complex within the Golgi, where the intricate roles of each gene product in HS 

polymerization is complex, however it has been reported that both need to be present in 

complex for successful polymerization to take place (48).  Numerous studies have been 

conducted that provide positive evidence for all EXT genes in HS biosynthesis and 

development (48, 72, 73).  Moreover, a great review has been published concerning the EXT 

gene family and cites relevant references that provide additional evidence for the 

involvement of the EXT gene family in HS biosynthesis and their biological importance (48). 

 

Step 3:  Chain Modification 

 After the HS chain is elongated with variable chain lengths of repeating disaccharide 

units of GlcUA and GlcNAc as determined by the activities of the polymerization enzymes 

mentioned above, chain diversity is further complicated as the backbone sequence of HS can 

serve as a precursor substrate for a variety of enzymatic modifications.  These modifications 
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include N-deacetylation and N-sulfation of glucosamine (GlcN), C5 epimerization of GlcUA 

acid to IdoUA, 2-O-sulfation of IdoUA and GlcUA, as well as 6-O and 3-O-sulfation of 

GlcN.  The enzymes that are responsible for these modifications are N-deacetylase/N-

sulfotransferase (NDST), C5 epimerase (C5-Epi), 2-O-sulfotransferase (2-OST), 6-O-

sulfotransferase (6-OST), and 3-O-sulfotransferase (3-OST) respectively.  It is important to 

note here that none of these enzymatic modification reactions goes to completion, thereby 

adding yet another degree of diversity within the heterogeneous HS chain.  

Sulfotransferases catalyze the transfer of a sulfo group to an acceptor site of 

numerous substrates, utilizing 3´-phosphoadensine 5´-phosphosulfate (PAPS) as a universal 

sulfo donor as shown in figure 5 (74).    
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Figure 5:  General catalyzed reaction of sulfotransferases.  R-OH represents the awaiting substrate (i.e. HS), 
ST represent a sulfotransferase (i.e. NDST, 2-OST, 6-OST, or 3-OST) and R-OSO3

- represents the 3-O-sulfated 
product.   
 
PAPS is a biologically active form of inorganic sulfate that serves as a sulfo donor in various 

biologically processes (75).  It is interesting to note that a naturally-occurring defect in PAPS 

synthesis has been found to be lethal in mice (76).  This fact suggests that sulfation of HS 
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along with various substrates of other sulfotransferases are biologically relevant for normal 

development.  Specific Golgi-membrane sulfotransferases have the ability to transfer a sulfo 

group to glycosaminoglycans (i.e. HS), which converts the common polysaccharide chains to 

unique sites that can be recognized by biologically functional molecules, thus allowing HS to 

play a role in various biological processes (74).  All HS sulfotransferases are present in 

multiple isoforms with the exception of 2-OST.  NDST is present is four isoforms, 6-OST is 

present in three isoforms and 3-OST in seven isoforms.  The majority of these enzymes and 

their multiple isoforms have been isolated and cloned (46).  These isoforms have slightly 

different substrate specificities and unique tissue specific expression patterns (77-80).  

Different substrate specificities among isoforms allows for increased diversity within the HS 

chain.  It is hypothesized that cells have the ability to regulate expression levels of various 

isoforms to synthesize HS chains with defined saccharide sequences required to achieve 

certain biological functions (81).   

 

N-Deacetylase/N-Sulfotransferase (NDST) 

 NDST is a bifunctional enzyme with two distinct activities; N-deacetylation and N-

sulfation (82).  The N-deacetylase activity of NDST catalyzes the removal of acetyl groups 

from GlcNAc residues to generate unsubstituted glucosamine residues that display residues 

with free amino groups (GlcNH2).  The N-sulfotransferase activity of this enzyme can then 

catalyze the transfer of a sulfo group, from the universal sulfo donor PAPS, to the 

unsubstituted glucosamine at its N-position as shown in figure 6.   
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Figure 6:  Bifunctional activity of NDST.  The N-deacetylase activity of NDST catalyzes the removal of an 
acetyl group (Ac) from GlcN residue (left) to generate an unsubstituted GlcN residue with a free amino group 
(GlcNH2) (middle).  The N-sulfotransferase activity of NDST catalyzes the transfer of a sulfo group, from 
PAPS, to generate GlcNS (right).  The SO3

- group is colored in red for emphasis. 
 

The action of NDST is a key component in the overall design of HS, as subsequent 

modifications of HS depend on the presence and/or absence of specific GlcNS residues 

within the polysaccharide chain.  Depending on the activity of NDST, the HS polysaccharide 

chain can be divided into three domains; a highly modified domain (NS domain) containing a 

high degree of both N- and O-sulfate groups, a largely unmodified domain (NA domain) 

containing a short stretch of GlcNAc residues, and a domain that encompasses the two is 

considered a NS/NA domain.  NDST is present in four isoforms; NDST1, NDST2, NDST3 

and NDST4 (77, 83, 84).  These isoforms have been found to have a noticeable difference in 

their relative degrees of N-deacetylase and N-sulfotransferase activities (77).  Moreover, they 

display different expression patterns within tissues.  NDST1 and NDST2 are found to be 

ubiquitously expressed, while NSDT3 and NDST4 are expressed in a tissue specific manner 

(77, 83, 85, 86).  All isoforms of NDST are type II membrane proteins with four domains 

consisting of a cytoplasmic region, a transmembrane region, a stem region, followed by the 

catalytic domain which contains the independent active sites for N-deacetylase and N-

sulfotransferase activities.  The transmembrane and stem regions are thought to localize the 

enzyme in the Golgi whereby it can encounter the endogenous HS and allowed to participate 

in HS biosynthesis. 

 To date the crystal structure of only the N-sulfotransferase (NST) domain of NDST1 

has been successfully solved (87).  The overall structure of NST1 is roughly spherical with 
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an open clef, composed of a five-stranded parallel β-sheet with α-helices located on both 

sides (figure 7). 

 
Figure 7.  Overall structure of NST1.  A ribbon representation of NST1 in complex with PAP.  Helices are in 
yellow, β-strands in green, random coils in blue, disulfide bond in light blue, and PAP molecule in red (87). 
 
A cavity formed between the 5’-phosphate binding loop (PSB-loop) and α6 defines the site 

for PAP binding.  The open clef that runs perpendicular to the PAP binding cavity is large 

enough to accommodate a hexasaccharide chain.  Based on the crystal structure, the α6 and 

random coil between β2 and α2 may constitute part of the putative substrate binding site.   

 Lys-614 of NST1 is known to be a conserved residue in other HS sulfotransferases 

(88, 89).  Site-directed mutagenesis studies have also implicated Lys-614 as a critical residue 

for NST1 activity (figure 8) (89). 
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Figure 8.  Ribbon diagram of the PAP binding site of NST1.  Side chains that can interact with PAP are 
included.  The disulfide bond is in light blue (87). 
 
Even though Lys-614 has been implicated in the activity mechanism, the absolute structural 

role it plays in catalysis remains unsolved.  However, the crystal structure of estrogen 

sulfotransferase (EST) in complex with PAP-vanadate has been solved (90) and has provided 

some structural insights into the possible catalytic mechanism for the sulfotransferase activity 

of NST1.  Superimposition of the two crystal structures results in similar orientations of their 

PAP binding sites, especially Lys-614 in the NST1 complex and Lys-48 in EST complex (87, 

91).  Because of this similar orientation taken together with structural and mutational studies, 

it is proposed that Lys-614 may act as a proton donor in the NST1 catalytic mechanism, 

similar to the action of Lys-48 in the EST-PAP-vanadate complex (75, 90).  Mutational 

studies have also been undertaken which suggest that additional residues are critical for 

NST1 activity (92). 
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Due to the high degree of sequence homology between NDST isoforms and with the 

crystal structure of NST1 as a template, molecular modeling techniques have allowed 

researchers to model the NST domains of the NDST2, NDST3, and NDST4 (77).  The 

molecular models of the NDSTs showed varying charged distributions within their putative 

substrate binding sites.  This suggests that the difference in their relative N-deacetylase and 

N-sulfotransferase activities may be due to their variable substrate selectivities.  This idea 

was supported when multiple isoforms of NDST were overexpressed in human embryonic 

kidney 293 cells individually, resulted in the synthesis of HS with different N-sulfation 

patterns (93, 94). 

 N-deacetylation and N-sulfation of glucosamine residues is considered a prerequisite 

step for subsequent enzymatic modifications of HS and inactivation of this key step is 

expected to have very dramatic consequences for the overall structure and sulfation pattern of 

HS.  Moreover, these dramatic changes are hypothesized to have a delirious effect on the 

relative function of HS.  With this said, the generation of NSDT1 and NSDT2 knockout mice 

had yielded some very interesting results (84, 95).  NDST2 null mice showed a phenotype 

that was restricted to connective tissue-type mast cells (96, 97).  This was thought to be 

unusual considering that NSDT2 is ubiquitously expressed in many tissues.  This observation 

suggested that is it a possibility that other isoforms of NDST can compensate for NSDT2 

activity when it is not present.  Results with NDST1 yielded very dramatic but expect results 

considering it is also ubiquitously expressed.  Targeted mutations of NDST1 gene showed a 

dramatic reduction in N-sulfation of HS in various tissues (98).  Also, which is of great 

interest, was the observation that NDST1 null mice die neonatally (98).  These observations 
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taken from knockout studies suggest that NDST1 deficiency is lethal, and also implicates the 

participation of NDST1 and HS in the role of embryonic development. 

 

Glucoronyl C5 Epimerase (C5-Epi) 

 In the biosynthesis of HS, C5-Epi, which displays type II transmembrane topology 

(99), serves to change the configuration at the C5 position of specific D-glucuronic acid 

(GlcUA) residues by converting them to L-iduronic acid (IdoUA) residues (100-102).  This 

conversion step is relevant as IdoUA residues are biologically important for HS, as studies 

have shown these IdoUA residues play a role in promoting interactions with various proteins 

because of their conformational flexibility (103).  Epimerization is a two step process (figure 

9). 
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Figure 9:  Basic mechanism for C5 epimerization of GlcUA residues.  C5 epimerization involves abstraction 
of the C5 proton of GlcUA (top) followed by re-addition of a proton from the medium to the resultant carbanion 
intermediate (middle) to generate IdoUA (bottom). 
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First, there is a removal of the C5 proton of the GlcUA residue, resulting in the formation of a 

carbanion intermediate.  This is followed by the re-addition of a proton at the C5 position 

with the inversion of the stereocenter such that the carboxyl group is shifted across the plane 

of the sugar ring (100).   

Substrate recognition by the epimerase depends on the N-sulfation pattern (i.e. NDST 

activity) of the HS precursor polysaccharide, whereby it is required that the adjacent GlcN 

residue towards the non-reducing end be N-sulfated (i.e. GlcNS-GlcUA).  Moreover, if that 

non-reducing end bears a GlcNAc residue (i.e. GlcNAc-GlcUA), it is not a substrate for the 

epimerase (101, 104).   Additionally, kinetic studies have shown that the epimerase will act 

on appropriate GlcUA residues (forward reaction) as well as the IdoUA residues (reverse 

reaction) (104).  In a soluble in vitro system, epimerization of an appropriate substrate was 

found to be freely reversible, with the equilibrium favoring the retention of the GlcUA (100).  

However, when the reversibility of the epimerization reaction in a cellular system was 

studied, results suggested that C5 epimerization by the epimerase is irreversible in vivo, 

suggesting that there may be some order in the biosynthetic system (102). 

The action of C5-Epi during the biosynthesis of HS is followed by modification of the 

HS chain by various O-sulfotransferases.  Immediately following C5-Epi, there is the action 

of 2-O-sulfotransferase (2-OST).  It has been proposed that during HS biosynthesis, the 

biosynthetic enzymes may interact and form complexes with one another.  This notion is 

corroborated by a report that provides evidence to suggest that C5-Epi and 2-OST forms a 

stable complex in vivo (105).  When this complex is formed, the relative activity of C5-Epi is 

increased as compared to its activity when not complexed (105).  This feature by which C5-

Epi and 2-OST can form a stable complex, with increased activity may manifest itself by the 
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fact that 2-O-sulfation of IdoUA somehow prevents the reverse epimerization reaction back 

to the GlcUA unit (104).   

 

Uronosyl 2-O-Sulfotransferase (2-OST) 

2-OST catalyzes the transfer of a sulfo group from PAPS to the 2-OH position of 

specific uronic acid residues within HS (see figure 10). 
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Figure 10.  Reaction catalyzed by 2-OST.  2-OST can catalyze the transfer of a sulfo group from PAPS to the 
2-OH position IdoUA to generate IdoUA2S, as drawn.  2-OST can also sulfate GlcUA acid but the catalytic 
transfer favors the sulfation of IdoUA.  The SO3

- is colored in red for emphasis. 
 
The 2-O-sulfation has been deemed important as specific interactions between HS and a 

variety of proteins depend upon the degree of O-sulfation, specifically 2-O-sulfation’s 

involvement in fibroblast growth factor (FGF) binding (106).  Currently, 2-OST is unique 

among the other sulfotransferases that participate in the biosynthesis of HS in that it is 

presently found to exist in only one isoform.  The substrate specificity of 2-OST has been 

investigated, using appropriate N-sulfated substrates (107, 108).  From these investigations, 

evidence suggests that 2-OST has the ability to use IdoUA and GlcUA as substrates for 2-O-

sulfation.  However, in substrates containing both uronic acid residues in equal amounts, 2-

OST strongly favored the 2-O-sulfation of IdoUA (107).  In agreement with the propensity to 

generate IdoUA2S, 2-OST was also found to have approximately a five-fold higher affinity 

for IdoUA containing substrates when compared to that of GlcUA containing substrates 

(107).  To date the crystal structure of 2-OST has not been solved, thus the mechanism by 

which 2-OST recognizes its substrate and transfers a sulfo group is not completely known.  
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However, based on the high sequence homology with other sulfotransferases (NST1 and 3-

OST-1 and 3-OST-3) in which the crystal structures have been solved, it is hypothesized that 

the sulfuryl transfer mechanism of 2-OST is similar.  

The 2-O-sulfation of appropriate residues within HS is of biological importance as 

implicated in mutational studies.  Genetic studies have shown that mice that are deficient in 

2-OST die during the neonatal period due to defective kidney development and it was proven 

that the HS chains lacked 2-O-sulfate groups (109, 110).  Also, 2-OST deficient mice showed 

skeletal as well as eye morphological defects (84).  However, in these 2-OST deficient mice 

no lung defects could be detected suggesting that different sulfation patterns of HS are 

important for the development of different tissues, since NDST deficient mice were found to 

development lung defects (111).  Since subsequent chain modifications are dependent on N-

sulfation, NDST deficient mice will have a reduced degree of 2-O-sulfation.  However, in 

these mice (NDST deficient) with reduced 2-O-sulfation, kidneys were found to develop 

normally suggesting that the reduced amounts of 2-O-sulfation may be sufficient for kidney 

development (84, 109, 110).  These studies provide evidence to suggest that variable degrees 

of different types of sulfation may allow HS to have variable biological effects. 

 

Glucosaminyl 6-O-Sulfotransferase (6-OST) 

 6-OST serves to catalyze the transfer of a sulfo group from PAPS to the 6-OH 

position of specific glucosamine (GlcN) residues within the HS polysaccharide chain (figure 

11).   
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Figure 11:  Reaction catalyzed by 6-OST.  6-OST catalyzes the transfer of a sulfo from PAPS to the 6-OH 
position of GlcN.  R’ represents sulfate or acetyl group, R represents proton. The SO3

- is colored in red for 
emphasis. 
 
Three isoforms of 6-OST (6-OST-1, -2 and -3) have been cloned and characterized (112).  

All three isoforms display type II transmembrane topology and have approximately 50-55% 

sequence homology to each other (112).  The tissue expression patterns among the 6-OST 

isoforms are variable, where 6-OST-1 is found to be highly expressed in liver, 6-OST-2 is 

primarily expressed in brain and spleen, and 6-OST-3 is rather ubiquitously expressed (78).  

Using recombinant enzymes, the substrate specificities of the different 6-OST isoforms have 

been investigated (78, 113).  In those studies, investigators used various O-desulfated and 

polysulfated oligosaccharides as potential substrates for 6-O-sulfation.  Results obtained 

suggested that all 6-OST isoforms can catalyze the 6-O-sulfation of glucosamine residues 

contained within the following sequences –GlcUA-GlcNS- and –IdoUA-GlcNS-.  In 

addition, results also suggested that all isoforms had a higher preference for the 6-O-sulfation 

of IdoUA-containing sequences with or without 2-O-sulfation.  Additionally, 6-O-sulfation 

of GlcNAc residues was also found to be achievable with all three isoforms of 6-OST (113).  

Based on the investigations, it can be concluded that the three isoforms have similar substrate 

specificities with only minor differences within their target preference or recognition. 

 The interaction of HS with FGF is critical for the growth factor to bind to the cell 

surface.  Various structural motifs or sulfation patterns provide the necessary binding sites 

for these interactions to occur.  It has been found that HS lacking 6-O-sulfation lost its 

capability to stimulate FGF-mediated cell proliferation (114).  Disaccharide analysis of FGF 
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activating and non-activating oligosaccharides yielded a significant difference. Based on 

disaccharide analysis, the difference between these fractions were that the activating fractions 

contained 6-O-sulfated disaccharides whereas the non-activating fractions did not (114).  

These results suggest that in addition to 2-O-sulfation of IdoUA residues, there is a 

requirement for 6-O-sulfation of glucosamine residues within HS for the promotion of HS-

mediated FGF activity. 

 

Glucosaminyl 3-O-Sulfotransferase (3-OST) 

The final modification, and also the most rare, in the biosynthesis of HS is catalyzed 

by the activity of 3-OST.   3-OST serves to catalyze the transfer of a sulfo group from PAPS 

to the 3-OH position of specific glucosamine residues within HS (figure 12). 
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Figure 12: Reaction catalyzed by 3-OST.  3-OST catalyzes the transfer of a sulfo from PAPS to the 3-OH 
position of GlcN residues to generate 3-O sulfo GlcN.  R represents sulfate or acetyl group. The SO3

- is colored 
in red for emphasis.  
 
To date, 3-OST is found to be expressed in seven isoforms which are present at different  

levels in a tissue specific manner (Table 1) (79).  It is on this premise that suggests 3-OST is 

important in the biosynthesis of tissue-specific HS.  The isoforms of 3-OST that have been 

cloned and characterized are 3-OST-1, -2, -3A, -3B, -4, -5, and -6.  The isoforms of 3-OST 

have been found to have 50-80% homology within their sulfotransferase domain (79).  In 

particular, 3-OST-3A and 3-OST-3B have nearly identical amino acid sequence in the 

sulfotransferase domain (115).  All isoforms of 3-OST, except 3-OST-1, are classified as 

type II transmembrane proteins, which suggest that they can be localized in the Golgi so as to 
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be in the proper vicinity to participate in HS biosynthesis.  3-OST-1 is found to lack this 

transmembrane region; however its ability to participate in HS biosynthesis suggests it is or 

can be localized to the Golgi via an alternative mechanism, possibly through interactions 

with other proteins that reside in the Golgi compartment (79).   

Table 1:  Tissue Expression and Known Biological Function of 3-OST Modified HS 
3-OST Isoform Tissue Distribution Known Biological Function 
3-OST-1 Heart, brain, lung, kidney Anticoagulant HS 
3-OST-2 Brain HSV-1 entry receptor 
3-OST-3A Heart, placenta, lung, liver, kidney HSV-1 entry receptor 
3-OST-3B Heart, brain, lung, liver, kidney HSV-1 entry receptor 
3-OST-4 Brain HSV-1 entry receptor 
3-OST-5 Brain, spinal cord, skeletal muscle Anticoagulant HS and HSV-1 

entry receptor 
3-OST-6 Liver, kidney HSV-1 entry receptor 

 
By invoking their catalytic activity during the final stages of HS biosynthesis, the 

isoforms of 3-OST are generally considered to be more driven in terms of their substrate 

specificities compared to that of other HS biosynthetic enzymes.  The studies of 3-OSTs and 

their substrate specificities using recombinant enzymes demonstrate that these enzymes 

transfer a sulfo group to the 3-OH position of glucosamine residues that is linked to different 

sulfated uronic acid residues (81, 116, 117) (figure 13).  The substrate specificities of 3-OST-

1, 3-OST-3 and 3-OST-5 have been studied more extensively and are presented here for 

clarity as opposed to the presentation of all 3-OST isoform substrate specificities.  
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Figure 13:  Substrate specificities of 3-OST-1, 3-OST-3 and 3-OST-5 (116).  3-OST-1 transfers a 3-O-sulfo 
group to N-sulfated glucosamine (GlcNS±6S) residues that are linked to non-sulfated glucuronic acid (GlcUA) 
residues at its nonreducing end.  3-OST-3 transfers a 3-O-sulfo group to N-unsubstituted glucosamine 
(GlcNH2±6S) residues that are linked to 2-O-sulfo iduronic acid (IdoUA2S) residues at its nonreducing end.  3-
OST-5 transfers a 3-O-sulfo group to glucosamine (GlcNS±6S or GlcNH2±6S) residues that are linked to either 
a non-sulfated or sulfated iduronic (IdoUA±2S) or non-sulfated glucuronic acid (GlcUA) residue on its 
nonreducing end. 
 
The addition of the 3-O-sulfo group is hypothesized to generate binding sites within HS for a 

number of biologically important proteins.  This hypothesis is supported by that fact that 3-

OST-1 modified HS has the ability to bind to antithrombin (AT) and possess anticoagulant 

activity, whereas 3-OST-3 modified HS can bind to herpes simplex virus envelope 

glycoprotein D and assist in viral infection by serving as an entry receptor for HSV-1 (118, 

119).  Additionally, studies have shown that 3-OST-5 seems to be a more promiscuous 

enzyme, as it is able to generate HS sequences that can bind to AT as well as glycoprotein D.    

The crystal structures of 3-OST-1 (120) and 3-OST-3 (121) have been solved and 

along with the elucidation of the structure of NST1, have provided some structural 
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information concerning the catalytic mechanism and substrate recognition properties of the 

HS sulfotransferases.  In a published report, 3-OST-1 was crystallized in a binary complex 

with the donor product PAP (figure 14). 

 
Figure 14:  Stereo diagram of the PAPS binding site of 3-OST-1 (120).  Also pictured are the donor product 
PAP, conserved residues Ser-159 and Lys-68, and the catalytic Glu-90 that interact with the 3’- and 5’ 
phosphates of PAP respectively.  The conserved histidine is not shown. 
 
The structure of the 3-OST-1-PAP complex is roughly spherical that contains a relatively 

large open clef.  Additionally, as consistent with all known sulfotransferases, the structure is 

centered around an α/β motif (75).  Detailed observations of the crystal structure along with 

mutational studies revealed critical residues for PAPS binding and enzymatic activity of 3-

OST-1 (120).  These studies also suggest potential residues that may dictate or direct 

substrate specificity along with evidence that suggest 3-OST-1 undergoes a conformational 

change upon HS binding (120, 122).   

The crystal structure of 3-OST-3 was solved in a ternary complex with PAP and a N-

sulfated tetrasaccharide substrate (121) (figure 15).    
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Figure 15:  Ribbon diagram of the crystal structure of ternary complex 3-OST-3/PAP 
(blue)/tetrasaccharide (green) and sequence alignment of human 3-OST-3 and mouse 3-OST-1 (121).  ß-
strands and a-helices are purple and cyan respectively.  Structural alignment of 3-OST-3 with 3-OST-1 is 
shown.  Cyan barrels represent residues in helices and purple represents regions in B-strands.  Residues that are 
structurally dissimilar are shaded with a yellow background.  Residues that form interactions with the 
tetrasaccharide are colored green and the cysteines that form a disulfide bond are colored orange.  Red asterisks 
represent the three residues that may form a catalytic triad in the 3-OSTs. 
 
The overall structure of 3-OST-3 was found to be very much similar to that of 3-OST-1, with 

minor differences that were not found to contribute to the enzyme substrate specificity as 

they were found to be external of the conserved sulfotransferase domain.   The elucidation of 

this ternary complex combined with mutational studies identified residues that are involved 

in substrate recognition during catalysis (121).  It also provided atomic details concerning the 

reaction mechanism of HS sulfotransferases.  When PAPS is superimposed onto PAP, the 

acceptor hydroxyl group of the substrate is located 2.9 Å from the sulfur atom of PAPS and 

on the opposite of the sulfur from the leaving group PAP (see figure 16). 

 



  33

 
Figure 16:  Active site of 3-OST-3 with PAPS superimposed (121).  Stereo diagram of the superposition of 
the PAPS (orange) from the crystal structure of human estrogen sulfotransferase in to the active site of 3-OST-3 
(123).  The PAP (blue) and the acceptor substrate (green) are pictured, as are residues that may play a catalytic 
role.  Possible hydrogen bonds between 3-OST-3 and its substrate are displayed as black dashed lines.  Possible 
interactions between 3-OST-3 and the donor sulfuryl group based on the superposition are displayed as pink 
dashed lines.  Also displayed as a pink dashed line is the line of attack of the O-3 oxygen of the sugar to the 
donor sulfur atom of the PAPS molecule. 
 
The location of the sulfate group is consistent with a SN2 like displacement mechanism.  

Given that Glu-184 is 2.8 Å from the 3-OH position of the substrate, it is reasonable to 

suggest that this residue likely functions as a catalytic base serving to deprotonate the 3-OH 

position allowing for a nucleophilic attack on the sulfate group.  This glutamate residue is 

conserved among all the 3-OSTs and NSTs, suggesting its essential role for the catalytic 

function of HS sulfotransferases.  Studies have shown that if this conserved glutamate 

residue is mutated, activities of NST-1 and 3-OST-1 (92, 120) and 3-OST-3 (121) are 

completely lost.  A hydrogen bonding network that involves Glu-184, His-186, and Asp-189 

is observed in the ternary complex (figure 16).  This hydrogen bonding pattern is considered 

to be a catalytic triad.  Mutational studies have provided results that have shown His-186 and 

Asp-189 to be essential for the sulfotransferase activity of 3-OST-3 (121).  It is interesting to 

note that a similar hydrogen bonding network is observed in 3-OST-1 but not in NST-1 (87, 

120).  This result suggests that this “catalytic triad” may be linked to 3-OST activity.  
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Currently the crystal structure of 3-OST-5 has not been solved.  When the crystal structure of 

3-OST-5 is available, it may provide some structural information to corroborate the 

promiscuous nature of 3-OST-5 and the presence of the catalytic triad will strengthen the 

notion that it is linked to 3-OST activity. 

 Interesting and important information concerning the roles of 3-O-sulfated HS in 

biological events can be learned from using knockout mice.  Currently, only 3-OST-1 has 

been successfully knocked out and results show no obvious phenotype (124, 125). From the 

published reports, it was also concluded that 3-OST-1 generates the majority of anticoagulant 

HS.  Evidence was also provided that allowed for the conclusion that there is an unexpected 

phenotype exhibited by 3-OST-1 deficient mice in that they do not display an obvious 

procoagulant phenotype.  This would suggest that 3-O-sulfotransferases may have some 

redundancy associated within its various isoforms as suggestive by the fact the 3-OST-5 can 

generate anticoagulant HS as well. 
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Section III:  Common Analytical Approaches for Structural Analysis of HS 

It is widely known that HS plays a role in many biological processes.  However, due 

to the heterogeneity and structural diversity that HS displays within its polysaccharide chain, 

the elucidation of the structural-functional relationship of HS remains largely unresolved.  

The structural analysis of HS has come a long way; however under current technologies it is 

still impossible to completely characterize biologically relevant full length HS 

polysaccharides sequences.  Even though it is not possible to study the structure activity 

relationship of HS at the polysaccharide level, is possible to characterize HS at the 

oligosaccharide to disaccharide levels. 

The initial step in the analysis of a HS sequence is usually a study of its disaccharide 

components in which the relative composition and purity can be analyzed using multiple 

analytical techniques that include various HPLC chromatography methods and capillary 

electrophoresis (126, 127).  There are only a few choices available to depolymerize HS into 

its disaccharide components with high specificity.  The common methods for degrading the 

HS polysaccharide into its oligosaccharide or disaccharide components are enzymatic or 

chemical degradation.  It is important to note here that utilizing these methods have revealed 

various disaccharide components that play a role in allowing HS to posses anticoagulant 

activity as well as the ability for HS to be used as an entry receptor for the HSV virus (128-

130). 

 

Heparin Lyases 

The use of heparin lyases are the most commonly used enzymatic approach for the 

degradation of HS into its disaccharide substituents.  Heparin lyases exist in multiple 
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isoforms that can be isolated from Flavobacterium heparium and are commercially available.  

Additionally, these isoforms can be expressed as recombinant proteins using traditional 

molecular cloning techniques.  The multiple isoforms of heparin lyases have been found to 

have different substrate specificities which has aided in their use for the structure analysis of 

biologically relevant HS (figure 17) 
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Figure 17:  Substrate specificities of heparan lyases.  R represents (SO3
-) or H; R’ represents (SO3

-), an acetyl  
or H. 
 
Because heparin lyases are endoglycosidases, these enzymes cleave specific internal 

glycosidic linkages between the hexuronic acid and glucosamine residues within HS (131).  

The substrate specificity of the isoforms allows the lyases to recognize their cleavage sites 

within unique saccharide context (132).  Briefly, heparin lyase I cleaves the glycosidic 

linkage between 2-O-sulfated iduronic acid and N-sulfated glucosamine residues in highly 
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sulfated domains within HS.  Heparin lyase III cleaves the glycosidic linkage between 

glucuronic acid and either N-acetylated or N-sulfated glucosamine in less sulfated domains 

within HS when compared to that of heparin lyase I.  Heparin lyase II displays less structural 

specificity in terms of its substrate recognition with the ability to cleave both heparin lyase I 

and heparin lyase III sites displayed within HS.  The major advantage for using heparin 

lyases to degrade HS is that the degradation results in the formation of a ∆4,5-unsaturated 

uronic acid at the non-reducing end of the product which gives it characteristic absorbance at 

232 nm (figure 17).  The limitation here is that there is a loss of structural configuration 

about the C5 carbon of the hexuronic acid, which does not allow for the correct assignment of 

IdoUA or GlcUA residues in the precursor structure. 

 

Nitrous Acid Digestion 

Another approach commonly used to degrade the HS polysaccharide is by chemical 

means using nitrous acid as shown in figure 18.  Nitrous acid digestion of HS generates 2,5-

anhydromannose residues via nitrous acid reaction with glucosamine, which can be stabilized 

by conversion to 2,5-anhydromannitol by a reducing agent.  The selectivity of the nitrous 

acid reaction is found to be pH dependent.  Briefly, at high pH (4.5-5.5) nitrous acid 

degradation is selective towards N-unsubstituted glucosamine residues by reacting with the 

free amino group.  Conversely, at low pH (1.5) this reaction is more selective toward N-

sulfated glucosamine residues (133).  The advantage in using this chemical degradation 

method is that the configuration about the C5 carbon of the hexuronic acid is retained, which 

allows for subsequent assignment of IdoUA versus GlcUA residues using HPLC 

disaccharide analysis.  The limitation here is that the degraded products do not contain any 
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intrinsic UV absorbance properties, thus the incorporation of a radiolabel tag or fluorescent 

motif is required before analysis. 
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Figure 18:   Degradation of HS with nitrous acid.  Nitrous acid cleaves the linkage of N-
sulfated glucosamine and uronic acid at pH 1.5.  Nitrous acid cleaves the linkage of N-
unsubstituted glucosamine and uronic acid at pH 4.5-5.5.  N-acetylated glucosamine is 
converted to N-unsubstituted glucosamine via deacetylation by incubating HS with 
hydrazine.  
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Sequencing Approach 
 
Another approach for the structural analysis of HS oligosaccharides can be described 

as a multifaceted sequencing approach.  This strategy is divided up into two sections; 

reducing end analysis and non-reducing end analysis.  By using each component of this 

strategy it is possible to systemically determine the identity of a HS saccharide sequence if 

given a sufficient amount of material.  Briefly, reducing end analysis involves the 

incorporation of a tag onto the reducing end of the oligosaccharide via reaction with its 

hemiacetal group.  Reducing tags can include a fluorescent tag, a radiolabeled tag, or a mass 

tag (109, 134, 135).  After the incorporation of either of the above tag moieties, it is then 

possible to subject the tagged derivative to a series of digestions with heparin lyases or with 

nitrous acid under partial or exhaustive conditions.  The reducing end tag will allow for the 

determination of whether the resulting disaccharide (or oligosaccharide) originated from the 

reducing end as it with have different characteristics upon analysis with appropriate 

standards.  Non-reducing end analysis involves the use of a series of exoenzymes that only 

react with the non-reducing end of the saccharide sequence.  These exoenzymes include 

various sulfatases, hexauronidases, and α-hexaminidases.  Accordingly, based on the 

substrate specificities of the exoenzymes one can determine the identity of each residue after 

its systematic cleavage.  It is important to note here that cleavage of a residue will change the 

characteristics of the material in the form of a shift during analysis on HPLC and other 

analytical techniques.    

 In addition to the above approaches, the use of various mass spectrometry techniques 

has greatly aided in the characterization and study of HS oligosaccharides sequences.  These 

techniques include the use of matrix-assisted laser desorption/ionization (MALDI-MS) and 
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nanoelectrospray ionization (nESI) mass spectrometry (136-138).  The great advantage of 

these techniques is that they offer analysis to be conducted on femto- to picomole amounts of 

material.  This aspect is critical due to the complex and difficult nature that exists in the 

isolation of complex HS oligosaccharides.  The characterization of HS polysaccharide 

sequences at the disaccharide to oligosaccharide levels using enzymatic and chemical 

degradative approaches combined with MS techniques have revealed some structural 

relationships between various HS components that affect binding or activation of various 

proteins. 
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Section IV:  Heparan Sulfate Protein Interactions 

Heparan sulfate has been shown to interact with and modulate the activities of many 

different proteins.  These proteins include cytokines, growth factors, adhesion molecules, 

ECM proteins, as well as enzymes (31, 139, 140).  The majority of these proteins can interact 

with HS via ionic interactions primarily with lysine and arginine residues located within 

primary consensus sequences known as “Cardin-Weintraub” sequences (141).  These 

consensus sequences are as follows:  XBBXBX and XBBBXXBX; where B is a basic amino 

acid and X is any hydrophilic amino acid.  As a result, these sequences have been used as an 

initial screen to identify regions within proteins that can potentially bind HS.  However, as 

this is a simplified generalization, it is important to note that not all HS binding sequences 

are contiguous; the 3-D structure of a protein has an effect on HS binding and may orient the 

necessary residues from different regions of the protein in close proximity as to play a role in 

HS binding.  The interactions between HS and different types of proteins have been reviewed 

extensively (142, 143).  It is a misconception to imply that HS binding interactions are 

merely non-specific ionic interactions.  Current investigations provide evidence to suggest 

that HS binding interactions are indeed specific.  Herein, the focus of this section will be to 

highlight the two most heavily studied HS binding proteins, antithrombin (AT) and fibroblast 

growth factor (FGF), as investigations have led to some specific structural features of HS that 

play a important role its ability to bind to AT and FGF. 
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Antithrombin (AT) 

 AT is a single-chain glycoprotein, present in the plasma, with a molecular weight of 

58 kDa.  AT, a member of the serpin (serine protease inhibitor) superfamily of proteins, 

displays its primary regulatory function within the blood coagulation cascade (figure 19).   

 
Figure 19:  Simplified representation of the blood coagulation cascade.  As shown the cascade can be 
initiated by two distinct pathways:  the intrinsic pathway and the extrinsic pathway.  The cascade is made up of 
various proteases as illustrated above.  They converge on the activation of factor X into Xa.  ‘a’ denotes active 
species.  The red line represents inhibitory action of AT/HS complex factor Xa and to a lesser extent on 
thrombin.  
 
As illustrated in figure 19, the blood coagulation cascade can be separated into two distinct 

pathways:  the intrinsic pathway and the extrinsic pathway.   The intrinsic pathway is 

initiated when there is an exposure of collagen to a vessel surface; while the extrinsic 

pathway is initiated at the site of the injury in response to the release of a tissue factor (Factor 

III).  Although the pathways are initiated by distinct processes, they do converge on a 
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common pathway (Factor Xa activation) that ultimately leads to the activation of thrombin 

via hydrolysis.  Thrombin is serine protease that once activated by factor Xa, can convert 

fibrinogen to fibrin.  Fibrin then has the ability to form cross-links thereby generating and 

stabilizing a fibrin mesh or commonly known as a blood clot.  

The activity of AT is critical for the regulation of the blood coagulation cascade, 

which is critical for maintaining proper blood flow, while preventing excessive bleeding or 

thrombosis (144).  The importance of AT was observed in genetic studies whereby AT-

deficient mice resulted in death from massive thrombosis (145).  Additionally, there is a 

correlation between functional AT and diseases, specifically individuals with functionally 

defective AT were found to be susceptible to thromboembolic diseases (146).  As mentioned 

previously, AT displays its primary role as a protease inhibitor in the regulation of blood 

coagulation proteinases.  AT has a natural ability to bind to and inhibit both factor Xa and 

thrombin but at a relatively slow rate.  The activity of AT has been found to be enhanced by 

binding to HS/HP.  Briefly, it has been demonstrated that once AT binds to HS, it undergoes 

a conformational change at its reactive center thereby resulting in an accelerated inactivation 

of factor Xa (147) and an increased affinity for thrombin (IIa) (148).  This enhances the 

formation and stabilization of AT/IIa complexes which results in the inhibition of factor IIa 

activity in the blood coagulation cascade. 

HP has been therapeutically used as an anticoagulant for many years.  During that 

time very little was known about the specific structural features that allow for HP to bind to 

AT.  HP usage as an anticoagulant has been shown to have a few side effects, specifically 

platelet aggregation and blockage of veins (149).  It was hypothesized that a synthetic 

derived oligosaccharide could serve to decrease the side affects associated with HP 
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administration.  As a result of impressive structural analysis, the determination of the 

minimum saccharide sequence required for AT binding has been elucidated (figure 10) (150).      
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Figure 20:  AT binding pentasaccharide.  The critical 3-O-sulfo group on the internal glucosamine is shown 
in red for emphasis.  The pentasaccharide has Kd = 10-50 nM .   
 
This unique pentasaccharide sequence is a rare component of HS/HP as it contains a 3-O-

sulfo group on its internal glucosamine residue.  This pentasaccharide has a binding affinity 

to AT of 10-50 nM.  The pentasaccharide alone can achieve the accelerated inactivation of 

factor Xa by binding to and inducing a conformation change in AT.  However, in order for 

thrombin (IIa) to be effectively inactivated, longer HP chains are necessary as it can bridge 

AT and thrombin generating a ternary complex (151).  It is important to note here that the 3-

O-sulfo group can be transferred to HP/HS by the catalytic activity of 3-OST-1 and 3-OST-5.  

The addition of the 3-O-sulfo group has been found to enhance AT binding affinity by 

20,000-fold (152).  Moreover, targeted disruption of 3-OST-1 results in the decreased ability 

of HP/HS to bind to AT, which suggests that the 3-O-sulfo group plays an important role in 

binding.  The crystal structure of AT in complex with the pentasaccharide has been solved 

and has provided structural information regarding the amino acid residues involved in 

binding (148, 153). 

 Due to the high anticoagulant activity of the pentasaccharide, a synthetic HP 

pentasaccharide which only contains the AT binding region of HP, is now being used as an 

anticoagulant with reduced side effects under the name of Arixtra®.  The elucidation of the 

specific sequence required for AT binding has opened the door for the increased study 

regarding the structure of HS-protein interactions.  Currently, research is underway to 
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determine the minimum structural motifs that are displayed by HS in order for it to acquire 

the ability to interact with a variety of proteins, with hopes that the structural functional 

relationships, once elucidated, will serve to aid in the development of HS-related compounds 

that will modulate a variety of biological processes. 

 

Fibroblast Growth Factor (FGF) 

The FGF family of proteins is comprised of approximately 20 members.  Studies have 

shown that HS provides binding sites for members of the FGF family and have the ability to 

modulate FGF-mediated signaling events which have a role in cell proliferation, 

differentiation and angiogenesis (154, 155).  The majority of investigations to date, in terms 

of the structural requirements of HS that allow for binding, have been focused on two 

members of the FGF family namely FGF1 and FGF2.  The FGF signaling cascade involves 

FGF binding to its cell surface receptor (FGFR), which leads to receptor oligomerization.  

This is followed by phosphorylation/activation of downstream signaling molecules, which 

initiates the signaling cascade.  HS binding has been implicated in this pathway by enhancing 

the formation of FGF-FGFR complexes and stabilization of FGFR oligomers (156). 

 Several crystal and co-crystal structures of FGFs with different HS oligosaccharides 

and FGFRs have been solved (154, 157-159).  The structure of various FGF-HS 

oligosaccharide complexes suggest that FGF1 and FGF2 have different HS-mediated 

oligomerization modes in terms of the stoichiometries of the respective complexes.  Crystal 

structures have also implicated specific sulfate groups that are involved in FGF binding 

and/or FGF signaling (figure 21) (160). 
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Figure 21:  Repeating disaccharide unit –IdoUA2S-GlcNS6S- implicated in FGF binding.  n>2 needed for 
binding, while n>5 needed for dimerization and cell signaling. 
 
The oligosaccharide sequences contained within the crystal structures were primarily of the 

repeating disaccharide unit of [-IdoUA2S-GlcNS6S-].  Analysis of the structures by NMR 

and surface plasmon resonance (SPR) techniques determined the following:  1) the 2-O 

sulfate on iduronate and N-sulfate on the glucosamine residues are critical for both FGF1 and 

FGF2 binding and signaling, and 2) the 6-O sulfate on the glucosamine is critical for FGF1 

binding and signaling; however it was found not to be necessary for FGF2 signaling (160).  

This suggests that there may be some specificity between different growth factors for specific 

HS sulfated sequences.  Additionally, it was shown that saccharide length plays an important 

role in HS ability to facilitate growth factor dimerization (160).  This is important as 

dimerization of the growth factor is essential for the initiation of FGF-mediated signaling 

events. 

While extensive structural studies have focused on HS ability to bind to FGF1 and 

FGF2, studies are currently being initiated that focus on HS ability to bind to the other 

members of the FGF family as well as other growth factors (161).  Using a library approach, 

investigators are now beginning to uncover the structural-functional relationships between 

HS and growth factor binding.  Once elucidated, it may lead to the development and 

generation of specific HS sequences or HS inspired compounds that can modulate specific 

growth factor functions.   



  47

Section V:  HS Involved in Viral Infections 

HS is expressed on the cell surface by virtually all cell types.  It is known that under 

physiological pH, HS is a highly sulfated molecule that displays numerous negative charged 

groups along its carbohydrate chain.  Because of its rather ubiquitous presentation on the cell 

surface, HS is considered an ideal target for initial interactions between the virus and 

potential target cells.  These initial interactions could take place through various basic motifs 

of the viral envelope proteins and the negatively charged HS chain.  To date HS has been 

found to be involved in the viral infection mechanisms of at least 16 viruses some which are 

listed in Table 2 (3).  The most well known pathogenic viruses including the epstein-Bar 

virus (EBV) (162), hepatitis C virus (HCV) (163), human immunodeficiency virus (HIV) 

(164) and herpes simplex virus (HSV) (165), utilize HS during their infections mechanisms.  

As a result, this has sparked an increased interest in the study of HS by the pharmaceutical 

and industry sectors to develop antiviral drugs by targeting HS. 

  Table 2:  Heparan sulfate involved in viral infections. 
Pathogenic Viruses (Human) Diseases manifestations/implications  
  
Herpes simplex virus (HSV) Perioral and genital lesions and 

encephalitis  
Dengue virus Dengue hemorrhagic fever 
Human immunodeficiency virus (HIV) Acquired immunodeficiency syndrome 
Epstein Barr virus (EBV) Burkitt’s Lymphoma 
Cytomegalovirus (CMV) Small pox 
Human papillomavirus (HPV) Cervical cancer 
Varicella zoster virus (VZV) Chicken pox and shingles  
Hepatitis C virus (HCV) Liver cancer and cirrhosis  
  
Pathogenic Viruses (Animal)  
  
Foot and mouth disease virus (FMDV) Highly infectious disease in animals that 

can cause economic problems for humans 
Pseudorabies virus and Swine fever virus Infections found primarily in pigs 
Sindbis virus Fatal diseases in neonatal/adult mice 
  



  48

 Herpes simplex viruses (HSV) are DNA viruses and are members of the neurotropic 

subgroup (alphaherpesviruses) of the herpes family.  Infection with HSV type 1 (HSV-1) and 

HSV type 2 (HSV-2) are common among humans and display different phenotypes (166).  

Infections with HSV-1 results in the formation of localized lesions in and around the mouth, 

while HSV-2 results in the formation of lesions around the genital region.  The infection of 

the epithelial can cause characteristic herpetic lesions, blindness and infection in the central 

nervous system can cause life-threatening encephalitis.  It is estimated that the incidence of 

herpes-related encephalitis is about 2.3 cases per million people per year (167).  The current 

FDA approved treatment for HSV infection is the administration of two nucleoside analogs 

valacyclovir and acyclovir, which are designed to terminate DNA viral replication (168). 

The early stage infection of target cells is a two-step process:  attachment to cells and 

entry into cells (figure 22) (169, 170).  It has been known that cell surface HS plays an 

important role in assisting the attachment as well as in inducing the entry of the virus (165, 

171).  This knowledge is evident from the observation that removing HS from the cell 

surface severely reduces the susceptibility of those cells to HSV infection (172).  The 

attachment step primarily involves the interaction of HS and viral envelope glycoprotein C 

(gC) and/or glycoprotein B (gB) (173).  Previous studies have provided evidence to suggest 

that specific sulfated saccharide sequences probably contribute to the binding of HS to gC 

(174, 175).  Evidence has been provided to suggest that the shortest gC binding fragment 

consist of 10-12 monosaccharide units that contains at least one 2-O and one 6-O-sulfate 

groups (175).   
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Figure 22:  HSV-1 viral binding and entry mechanism (3).  Step 1, the virus attaches to its targets cells 
through the interactions of viral envelope proteins, glycoprotein C (gC) and glycoprotein B (gB) with cell 
surface HS.  Step 2, glycoprotein D (gD) interacts with cell surface entry receptors to trigger the fusion of the 
cell membrane.  The entry receptors include 3-O-sulfated HS or other protein entry receptors.  Step 3, the 
interaction of gD and entry receptor triggers the uncharacterized fusion mechanism which leads to infection. 
 

Attachment of the viral particle to the target cell alone is not enough to cause the 

infection; fusion of the viral envelope with the cellular membrane is also required.  

Following attachment, HSV-1 enters into target cells by interacting with specific cell surface 

entry receptors.  It is hypothesized that binding of cell surface receptors to viral envelope 

protein glycoprotein D (gD) initiates a fusion mechanism via an unknown pathway in concert 

with other viral glycoproteins including gB, gH, and gL that allows for subsequent infection 
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to occur (176).  gD is a type 1 viral membrane glycoprotein that is made up of 369 amino 

acids (177).  The core of gD (residues 56 to 184) has a V-like immunoglobulin (Ig) fold.  

This is encompassed by extensions at the N- and C-termini which make up the principle 

functional domains of the protein (178, 179).  Three families of HSV-1 entry receptors are 

present on the cell surface and all have the ability to bind to gD in the micromolar range 

(170).  Herpesvirus entry mediator (HVEM) and nectin-1 represent two families of those 

receptors, which belong to the tumor necrosis factor family and immunoglobulin superfamily 

respectively (169, 180).   

The 3-O-sulfated HS, which is generated by 3-OST-2, -3, -4, -5 and -6 represents the 

third family of HSV-1 known entry receptors (80, 118, 171).  This receptor is unique as it is a 

polysaccharide that contains a specific saccharide structure.  It is of great importance the 

observation that a specific 3-O-sulfated HS can serve as an entry-receptor for HSV-1 in the 

absence of the HVEM and nectin-1 protein receptors that were mentioned previously (130).  

Wild-type CHO cells do not contain 3-O-sulfated HS and are resistant HSV infection.  

However, when the cDNA of 3-OST-3 was transfected into CHO cells, it rendered the cells 

susceptible to viral entry.  On the contrary, the transfection of the cDNA of 3-OST-1 into 

CHO cells did not result in HSV entry (130).  It is important to note here the 3-OST-1 

modified HS does not bind to gD, while 3-OST-3 modified HS does bind to gD with a 

binding affinity of 2 µM (130).  Based on the known difference in substrate specificities 

between 3-OST-1 and 3-OST-3, and the above evidence it suggests that a specific HS 

saccharide sequence can serve as an entry receptor of HSV-1. 

The structure of a gD-binding HS derived octasaccharide was isolated from a 3-OST-

3 modified HS oligosaccharide library and characterized using a combination of mass 
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spectrometry and chemical and enzymatic degradation approaches (181) .  The proposed 

structure of the gD binding HS octasaccharide was found to be ∆UA-GlcNS-IdoUA2S-

GlcNAc-UA2S-GlcNS-IdoUA2S-GlcNH23S6S (figure 23).   
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Figure 23:  Structure of the gD binding HS octasaccharide.  This octasaccharide was demonstrated to bind 
to gD with a Kd value of 18 µM.  The abbreviated name of monosaccharide unit is shown under each sugar unit.  
The critical 3-O-sulfo (shown in red) is on the reducing in GlcNH2 residue.    
 
In that study, the above octasaccharide was found to have a binding affinity to gD of 18 µM. 

Supporting the role of 3-O-sulfated HS in assisting HSV-1 entry, two putative 3-O-

sulfonated HS binding sites on gD were observed in the co-crystal structure of gD and 

HVEM as shown in figure 24 (178).   

 
Figure 24:  Crystal structure of gD in complex with HVEM (178).  Electrostatic potential energy surface of 
gD in complex with HVEM.  Positive potential colored in blue, neutral potential colored in gray and negative 
potential colored in red.  S1 and S2 represents sulfate ion bound in complex and are potential sites of 3-O-
sulfated HS binding. 
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One potential binding site is located within a deep positively charged pocket, while another is 

located on a relatively flat surface covered with numerous basic amino acid residues.  It is 

hypothesized that these two sites have the ability to interact with HS utilizing various 

electrostatic interactions.  One of the putative 3-O-sulfated HS binding sites is located at the 

N-terminal of gD.  Viruses expressing wild type gD are able to infect target cells expressing 

3-OST-3, thereby displaying 3-O-sulfated HS.  However, it has been shown that viruses 

carrying gD mutations at the N-terminal are unable to infect target cells expressing 3-OST-3, 

confirming the location of a 3-O-sulfated HS binding site as predicted by the crystal structure 

(182, 183). 

Because HS has been found to participate in a wide variety of viral infection 

mechanisms, it is possible that investigations concerning the structural characteristics of HS 

that promote these infections can lead to polysaccharide based antiviral agents for the 

treatment of various viral infections. 
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Section VI:  Statement of Problem 

Heparan sulfate (HS) is a highly sulfated polysaccharide that has been found to exist 

on the surface of mammalian cells in substantial quantities.  Unique saccharide sequences of 

HS have been shown to bind specifically to a number of biologically relevant proteins, thus 

allowing HS to play a role in numerous biological processes.  Previous studies have shown 

that 3-OST-3 generates 3-O-sulfated HS that can bind to gD and facilitate HSV viral entry 

into target cells, thus implicating 3-O-sulfated HS as a HSV entry receptor.  Once gD binds 

to its cellular receptor, an uncharacterized fusion mechanism is initiated that allows the HSV 

viral particle to fuse with its target cell which leads to infection.  If the specific 3-O-sulfated 

oligosaccharide sequence that is thought to be responsible for triggering this fusion event is 

elucidated, it may provide new insights to prevent HSV viral infections by inhibiting viral 

entry through its polysaccharide based receptors. 

Due to the structural heterogeneity of HS, characterization of unique and biologically 

relevant sequences is a labor intensive process as it is difficult to obtain sufficient amounts of 

purified oligosaccharides to complete structural and functional analysis.  This is the primary 

reason why the study of the structural-functional relationships of HS is considered an under-

developed area compared to that of proteins and nucleic acids.  The chemical synthesis of a 

gD binding octasaccharide was demonstrated to be unsuccessful due to a stereoselectivity 

problem (184); suggesting that an alternative approach is required.  The goals of this 

dissertation are to provide additional structural information concerning HS mediated gD 

binding and to prepare sufficient amounts of a gD binding oligosaccharide to investigate its 

potential to inhibit HSV viral fusion. 
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Using structurally defined HP oligosaccharides substrates and purified 3-OST-3 

enzyme, we have determined the minimal size required for gD binding and developed a 

novel approach to express recombinant gD.  Milligram quantities of recombinant gD were 

expressed and purified from E. coli. utilizing a chaperone assisted bacteria expression 

system.  This allowed us to conduct binding analysis between gD and the 3-O-sulfated HP 

oligosaccharides.  Based on the results of the binding analyses, the 3-O-sulfated HP 

octasaccharide was concluded to be the minimum size for required of gD binding with a Kd 

value of 19 µM.  The structural characterization of this 3-O-sulfated HP octasaccharide was 

achieved using chemical and enzymatic modifications with results suggesting the structure is 

∆UA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-GlcNS3S6S-IdoUA2S-GlcNS6S (3-O-

sulfation site recognized by 3-OST-3 is underlined).  Coupling a PAPS regeneration system 

with 3-OST-3 modification, nearly 130 µg of this octasaccharide has been synthesized.  This 

amount of material should allow us to determine its efficacy in inhibiting HSV infection in a 

cell-based assay. 

Herpes viral infections are prevalent in humans.  HS plays intimate roles during the 

infection.  Developing a HS-based antiviral drug could be a viable approach to treat HSV 

infection.  Understanding the structure-activity relationship of HS in promoting HSV 

infections is essential for achieving this goal.  This thesis represents the first attempt to 

prepare a structurally defined 3-O-sulfated octasaccharide that could potentially interrupt 

HSV entry.   Further development of this project could uncover a new way to treat diseases 

related to HSV infections. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Purification of HS from bovine kidney acetone powder 

The large scale purification of HS from bovine kidney acetone powder was carried 

out by modifying and optimizing a previously published method (185).  Initially, 200 g of 

bovine kidney acetone powder (ICN) was homogenized (Fisher Scientific-PowerGen 1800D) 

at 13,000 rpm for 45 mins. in 4 L of distilled water.  The homogenate was autoclaved for 1 hr 

then cooled on ice.  Protease digestion was carried out with the addition of 1 g of protease 

(Type VIII:  Bacterial, Sigma P-5380) dissolved in 20 mM Tris and incubated with shaking 

at 37°C for 48 hours.  After centrifugation at 3400 rpm for 30 minutes, 2 times volume of 

cold ethanol was added to the supernatant in the presence of 150 mM NaCl and 0.25 M 

CH3COOH and placed at 4°C overnight.  After centrifugation at 3400 rpm for 30 mins., the 

pellet was dissolved in 1 L of 20 mM Tris pH 7.85 and redigested with protease in a similar 

manner as before.  Remaining proteins were removed via precipitation by the addition of 

trichloroacetic acid (TCA) to a final percentage of 10%.  The material was centrifuged and 

the pH of the supernatant was adjusted to 7.85 using NaOH pellets followed by ethanol 

precipitation which was carried out as before.  The pellet was dissolved in 20 mM Tris pH 

7.85 and was subjected to beta elimination with the addition of 1 ml of 10 M NaOH/0.89 M 

NaBH4 and incubated with shaking at 45°C.  The elimination reaction was neutralized with 

the addition of 1 ml of 10 M CH3COOH and adjusted to pH 
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7.85.  The resultant material was filtered through a 0.2 µm filter and subjected to ethanol 

precipitation as before.  The pellet was dissolved in 50 ml of ammonium acetate, pH 7 and 

digested with 3.3 units of chondroitnase ABC (purchased from Sigma C-2905) and incubated 

at 37°C overnight.  The material was centrifuged at 12,000 rpm for 30 mins. to remove any 

insoluble material. 

 

HS Purification - FPLC-DEAE Anion Exchange Chromatography 

 The HS was purified by utilizing DEAE anion exchange chromatography using an 

AKTA-FPLC system.  A 10-20 ml DEAE column was packed and equilibrated with 20 mM 

sodium acetate, 250 mM NaCl, pH 5 (buffer A).  After sample loading, the column was 

washed with 8 column volumes (CV) of buffer A at a flow rate of 3 ml/min.  The desired 

material was eluted over a linear gradient using 1 M NaCl, pH 5 (buffer B) over the course of 

20 CV while 4 ml fractions were collected with online UV detection at 280 nm.  The purified 

HS was desalted by dialysis against 4 L of 20 mM ammonium bicarbonate overnight using 

MWCO 12-14,000 membrane. 

 

Quantification of Purified HS - Alcian Blue Assay 

 The amount of HS purified from bovine kidney acetone powder was quantified using 

an alcian blue assay as previously described (186).  Briefly, the alcian blue dye stock solution 

was made by dissolving 1 mg of the dye with 100 ml of 18 mM H2SO4, a 1/100 dilution of 

the resulting dye stock solution should have an A600nm of ~1.4.  If not, additional dye was 

added.  This was followed by centrifugation at 10,000 rpm for 30 mins. to remove insoluble 

dye particles.  Standards and unknown samples were prepared in duplicated with standards of 
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HS (ICN) ranging from 0-3 µg.  All samples were brought up to 10 µl with distilled water, 

followed by the addition of 10 µl of reagent A.  Reagent A contained a 1:1 ratio of 8 M 

guanidine-HCl and 54 mM H2SO4, 0.75% Triton X-100, this solution was prepared fresh 

with each use.  To this, 100 µl of working dye was added to all samples bringing the final 

volume of the samples to 120 µl.  The working dye solution contained 18 mM H2SO4, 0.25% 

Triton X-100, and 5% dye stock solution, which was filtered through a 0.2 µm filter and the 

resultant solution was centrifuged at 10,000 rpm for 10 mins. to remove any insoluble 

material.  The samples were mixed thoroughly and centrifuged at 14,000 rpm for 30 mins.  

The supernatant was removed and the pellet was dissolved with 500 µl of 8 M guanidine-HCl 

afterwards, the samples were analyzed at a wavelength of 600 nm.  

 

Preparation of HS oligosaccharide library 

 A diverse HS-derived oligosaccharide library was prepared by incubating HS (bovine 

kidney) with limited amounts of heparin lyase III (Hep III) followed by resolution of sized 

fractions on a Bio-Gel P-6 column (Bio-Rad) as previously described (114).  In a typical 

optimized preparation, twenty separate digestions (5 mg HS/digestion) were incubated with 

6.1 mU of Hep III per digestion.  Each digestion mixture (1 ml) consisting of 50 mM 

NaH2PO4 and 100 µg/ml BSA, pH 7 was incubated at 37°C for 24 hr.  Digestions were then 

terminated by heating at 100°C for 15 mins.  All reaction mixtures were centrifuged at 

13,000 rpm to remove any insoluble material and after combining the supernatants from all 

reactions, the sized fractions were resolved by loading on into Bio-Gel (Bio-Rad) P-6 size 

exclusion column (2.5 × 200 cm) equilibrated with 0.5 M ammonium bicarbonate at a flow 

of 0.5 ml/min as 4.5 ml fractions were collected.  The digestion in terms of the amount of 
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Hep III used, was optimized so as to yield a partial digestion with the maximum amount of 

the hexasaccharide pool as this material contained the gD binding octasaccharide as 

previously published (181). 

 

Isolation of gD306t DNA from Baculovirus 

 The isolation of gD306t (gD) viral DNA began with the isolation of the baculovirus 

viral particles that contain the gD gene of interest using the Invitrogen protocol.  This was 

accomplished by mixing, by inversion, 750 µl of amplified baculovirus with 750 µl of cold 

(4°C) 20% PEG in 1 M NaCl in a sterilized eppendorf tube with incubation on ice for 30 

mins.  The tube was then centrifuged for 10 mins. at 4°C to pellet the viral particles while the 

supernatant was discarded.  The viral particles were then reconstituted in 100 µl sterile 

distilled water.  The isolation of the gD DNA from the viral suspension began with the 

addition of 143 µl of solution A (Invitrogen) to the viral particles and vortex for 1 second to 

mix and then incubated at 65°C for 6 mins.  Next, 58 µl of solution B (Invitrogen) was added 

and vortex for 5 seconds which was followed by adding 258 µl of chloroform and mixing.  

The resultant solution was centrifuged at 13,000 rpm for 10 mins. at 4°C to separate aqueous 

and organic phases.  The aqueous phase (containing DNA) was transferred into a separated 

sterilized centrifuge tube for subsequent DNA precipitation.  The gD viral DNA precipitation 

began with the addition of 500 µl of 100% ethanol (-20°C) mixed by inversion followed by 

centrifugation at 13,000 rpm for 5 mins.  To the pellet, 500 µl of 70% ethanol (-20°C) was 

added, followed by another round of centrifugation as before.  The supernatant was decanted 

and the resulting pellet was allowed to air dry for 5 mins.  The gD viral DNA was 

reconstituted in 20 µl of sterile distilled water and was ready for cloning and expression. 
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Expression and Purification of gD – Chaperone Bacterial Expression System 

 The introduction of a His6 tag at the C-terminus of gD306t (Lys26-His332) (gD) was 

achieved in the following manner.  The purified gD viral DNA was amplified by the 

polymerase chain reaction (PCR) using the 5′-specific primer, 5′-

ATTATTATCATATGAAATATGCCTTGGCGGATGC-3′ (NdeI site underlined), and the 

3′-specific primer, 5′-ATAATATAAAGCTTATGGTAAGGCGTCGCGGCGT-3′ (HindIII 

site underlined).  The resulting PCR construct was inserted into the pET21b vector 

(Novagen) using the with NdeI/HindIII restriction sites.  The resulting plasmid was 

sequenced to confirm the reading frame (at the University of North Carolina at Chapel Hill 

DNA Sequencing Core Facility).  The gD-pET21b plasmid was transformed into CHAP-

Origami B competent cells.  Bacterial transformations were completed by mixing 50 µl of 

Origami B competent cells with 1-10 ng of plasmid DNA.  The samples were allowed to 

incubate on ice for 10-30 mins., and then were placed at 42°C for 30 seconds.  The samples 

were then returned to ice for another 1-2 mins.  100-200 µl of pre-warmed SOC media was 

then added, and the samples were allowed to incubate at 37°C for 1 hour (1 L SOC contains 

20 g tryptone, 5 g yeast extract, 2 ml of 5 M NaCl and 2.5 ml of 1 M KCl).  The 

transformation was then plated on LB-agar plates (supplemented with the appropriate 

antibiotics) and allowed to grow at 37°C overnight. 

 Expression of gD was carried out in CHAP-Orgami B cells (Novagen).  CHAP-

Orgami B competent cells containing the gD-pET21b plasmid were grown in LB media with 

12.5 µg/ml tetracycline (Tet), 15 µg/ml kanamycin (Kana), 20 µg/ml chloamphenicol (Chl), 

and 50 µg/ml carbenicillin (Carb) at 37°C.  When the O.D600nm reached 0.6-0.8, the 

temperature was reduced to 22°C for 10 mins.  Isopropyl-β-thiogalactopyranoside (IPTG) 
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was then added to a final concentration of 200 µM IPTG and arabinose was added to a final 

concentration of 1 mg/ml and allowed to shake for 20 hr at 22°C.  Cells were harvested by 

centrifugation at 7,000 rpm for 10 mins. and resuspended in the sonication buffer containing 

25 mM Tris, 500 mM NaCl, and 15 mM imidazole at pH 7.5.  The cells were lysed by 

sonication and cell debris was removed by centrifugation at 14,000 rpm for 30 mins.  The 

cell lysate was processed for purification of the desired protein. 

 

Purification of gD-FPLC-Nickel Chromatography 

 The initial step in gD purification was performed by utilizing nickel chromatography 

using an AKTA-FPLC system.  A 7 ml nickel sepharose column was packed and equilibrated 

with a buffer containing 25 mM Tris, 500 mM NaCl, and 15 mM imidazole at a pH of 7.5 

(buffer A).  After sample loading, the column was washed at a flow rate of 3 ml/min with 

buffer A for 10 column volumes (CV).  The eluted protein was monitored with an online UV 

detector at 280 nm, elution was carried out using a linear gradient in a buffer containing 25 

mM Tris, 500 mM NaCl, and 250 mM imidazole (buffer B) from 0-100% B over the course 

of 7 CV, while 3 ml fractions were collected.  This was followed by an additional wash with 

100% B for 15 mins.  The desired fractions were collected, pooled, and subjected to 

concentration using Amicon® Ultra MWCO 10,000 centrifuge tubes. 

 

Purification of gD-FPLC-Size Exclusion Chromatography 

 The concentrated protein from the nickel column was subjected to size exclusion 

chromatography using an AKTA-FPLC system.  A pre-packed HiLoad™ 16/60 Superdex™ 

prep grade size exclusion column (Amersham Biosciences) was equilibrated with a buffer 
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containing 20 mM Tris, 1 M NaCl pH 7 (degassed).  After a maximum of 3 ml of 

concentrated protein was loaded, the protein was eluted under isocratic conditions with 120 

ml of the equilibration buffer at a flow rate of 1 ml/min.  The eluted protein was monitored 

with an online UV detector at 280 nm as 2 ml fractions were collected.   Final protein 

concentration was determined by UV absorbance at 280 nm, where 1.0 absorbance unit = 1.0 

mg/ml). 

 

SDS-PAGE Electrophoresis 

 Protein purity was determined using SDS-PAGE using precasted Tris-Tricine SDS-

PAGE (16.5% resolving gel, 4% stacking gel, 8.6 × 6.8 cm (W × L), BioRad).  Samples (10 

µl) were diluted with an equal volume of sample buffer (200 mM Tris-HCl, pH=6.8, 2% SDS 

(BioRad).  Gels were run at 110V for 1 hour, and then stained with coomassie blue (0.4%) 

for 30 mins.  Gels were destained using 10% acetic acid.  

 

Preparation of 3-O-sulfated HP oligosaccharides 

To prepare 3-O-sulfated HP oligosaccharides, individual reactions consisting of 1-5 

µg of the oligosaccharide (either tetra-, hexa-, or octasaccharide), was mixed with 

approximately 140-240 ng of  purified 3-OST-3 enzyme (121), [35S]PAPS (of known specific 

activity) in a buffer containing 50 mM MES, 1% Triton X-100, 5 mM MgCl2, 10 mM MnCl2, 

100 µg/ml BSA, pH 7, in a final volume of 65 µl.  The reaction was incubated for 1.5 hrs. at 

37°C.  The enzymatic reaction was stopped by boiling at 100°C for 2 mins.  The resultant 

solution was centrifuged at 14,000 rpm for 2 mins. to remove any insoluble materials.  The 

supernatant was then subjected to a 200 µl DEAE column equilibrated with 150 mM NaCl.  
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The column was washed with 4×1 ml UPAS (50 mM NaAcO, 150 mM NaCl, 0.1% Triton 

X-100, 6 M Urea, and 1 mM EDTA, pH 5), then 3×1 ml 150 mM NaCl, and the desired 3-O-

[35S]sulfated oligosaccharide was eluted with 1 ml of 1 M NaCl.  The resultant 3-O-

[35S]sulfated oligosaccharides were desalted in the appropriate manner depending on their 

size.  The 3-O-[35S]sulfated hexa- and octasaccharides were dialyzed against 3 L of 20 mM 

ammonium bicarbonate overnight MWCO 3500, while 3-O-[35S]sulfated tetrasaccharide was 

subjected to bio-gel P-2 size exclusion chromatography. 

 

Determination of gD binding affinity - Immunoprecipitation Approach 

The assay for determining the binding of various sized 3-O-[35S]sulfated HP 

oligosaccharides to gD was carried out by an immunoprecipitation procedure using purified 

gD and an anti-gD monoclonal antibody (130).  In separated reactions, either 3-O-

[35S]sulfated tetra-, hexa-, or octasaccharide (1-10 pmole) was incubated in 50 µl of buffer 

containing 50 mM Tris, 0.001% Triton X-100, pH 7.4 (binding buffer), and 20 µg gD at 

room temperature for 30 mins.  The anti-gD monoclonal antibody DL6 (5 µl) was added and 

the reaction mixture was incubated on ice for 1 hour, followed by the addition of protein A-

agarose beads (50 µl of pre-washed/pre-equilibrated beads) with agitation at 4°C for an 

additional hour.  The protein A-agarose beads were then washed stepwise with 0, 25, 50, 150, 

250, 500, and 1000 mM NaCl in the above binding buffer all while monitoring the elution of 

[35S]sulfated oligosaccharides as increasing NaCl was used.  The binding of HS to gD was 

assayed in a similar manner, with washing protein-A beads with 150 mM NaCl in binding 

buffer and eluting bound material with 1 M NaCl in above binding buffer. 
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Determination of gD binding affinity – Affinity Co-Electrophoresis (ACE) 

 To quantitatively determine the binding affinity between the 3-OST-3 modified HP 

derived oligosaccharides and gD, an affinity co-electrophoresis approach was utilized in a 

similar manner as previously described (130, 187).  Briefly, purified gD was cast in 1 % low 

melting point agarose (GIBCO) separation zones in a degassed gel buffer containing 125 mM 

sodium acetate and 50 mM 3-(N-morpholino)-2-hydroxypropane-sulfonic acid, pH 7, at six 

final concentrations ranging from 0 to 60 µM of gD in each zone.  In separate experiments, 

the 3-O-[35S]sulfated octasaccharide or 3-O-[35S]sulfated hexasaccharide, of known [35S] 

specific activity was loaded into each separation zone and the gel was subjected to 

electrophoresis at 350 mA for 3 hrs in circulated cold gel buffer.  The gel was dried using a 

Bio-Rad GelAir dryer, analyzed on a PhosphorImager (Amersham Biosciences, Storm 860) 

and exposed to radioactive developing film at -80°C for 1 week to observe the migration of 

3-O-[35S]sulfated HP derived oligosaccharide.  The binding affinity between the 3-O-

[35S]sulfated oligosaccharide and gD was calculated as a Kd value by plotting R/gD versus R, 

where the retardation coefficient R = (M0 – M)/M0.  Here M0 is representative of the 

migration of free 3-O-[35S]sulfated oligosaccharide, and M is the observed migration of the 

3-O-[35S] oligosaccharide in the presence of a specific concentration of gD located in a 

separation zone.  Based on the Scatchard equation, the calculation of the slope from the 

resulting plot yields -1/Kd. 

 

Heparin Lyase digestion 

 The digestion of unlabeled or 3-O-[35S]sulfated HP derived oligosaccharides were 

carried out as previously described (188).  Digestions were carried out in 100 µl of 40 mM 
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ammonium acetate (pH 7) containing 1 mM CaCl2 with limited amounts of heparin lyase I, 

II, and III, which are expressed and purified using a bacterial expression system.  The 

digestion mixtures were incubated at 37°C overnight, and the reactions are terminated by 

heating at 100°C for 2 mins.  The resultant material was centrifuged for 5-10 mins. at 13,000 

rpm to remove insoluble materials and was subsequently ready for HPLC analysis. 

 

HPLC-PAMN  chromatography 

 Materials were analyzed using PAMN chromatography.  The elution profile was 

monitored as the 3-O-[35S]sulfated material was applied to a silica-based polyamine (PAMN) 

HPLC column (0.46 × 25 cm, Waters) (121).  The column was equilibrated with 300 mM 

KH2PO4, and the radioactive material was eluted with a linear gradient of KH2PO4 from 300 

mM to 1 M in 60 min at a flow rate of 0.5 ml/min, followed by a continuous state of washing 

at 1 M for up to 100 mins.  The [35S] elution profile was monitored using an online 

radioactive detector. 

  

HPLC-DEAE-NPR chromatography 

Materials were analyzed using DEAE-NPR chromatography.  The elution profile of 

the 3-O-[35S]sulfated material or unlabeled material was monitored as the material was 

applied to a nonporous DEAE-NPR HPLC column (0.46 × 7.5 cm, Tosohass).  The DEAE-

NPR column was equilibrated with 100 mM NaCl in 50 mM Tris-HCl, pH 7 at a flow rate of 

0.4 ml/min.  The desired material was eluted using a linear gradient of 1 M NaCl, pH 7 over 

the course of 100 mins. while radioactivity and/or UV was monitored using an online 

detectors. 
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Non-Reducing End Labeling – ∆4,5Glycuronate-2-sulfatase 

 Non-reducing end labeling was employed to distinguish disaccharide products that 

result from the non-reducing upon digestion with heparin lyases and was carried out in as 

previously described (121).  The 3-O-[35S]sulfated HP oligosaccharides were digested with 

appropriate amounts of ∆4,5-glycuronate-2-sulfatase (2ase) (Seikagaku Corporation) 

warranted for complete digestion.  A typical digestion mixture consisted of the 3-O-

[35S]sulfated HP oligosaccharide and 2ase in a total volume of 100 µl of 50 mM imidazole-

HCl buffer (pH 6.5) that was subsequently incubated at 37°C overnight.  The 2ase digestion 

was terminated by heating at 100°C for 2 mins. after which the reaction mixture was 

centrifuged at 13,000 rpm to remove any insoluble materials.  The resulting supernatant was 

ready for HPLC analysis. 

  

Reducing End Labeling – [2-AB] (2-aminobenzamide) 

 The derivatization of the 3-O-[35S]sulfated HP oligosaccharides with 2-AB was 

achieved in a similar manner as previously described (189, 190).  Briefly, a given amount of 

3-O-[35S]sulfated HP oligosaccharide (5-100 µM) was dried to completion using a speed-vac 

centrifuge dryer (LABCONCO).  An aliquot (5-20 µl) of a freshly prepared derivatization 

reagent mixture (0.35 M [2-AB]/1 M NaCNBH4/30% (v/v) acetic acid in DMSO) was added 

to the dried sample and incubated for 3 hr at 65°C (Eppendorf Thermomixer R).  The 

resultant reaction mixture was purified via paper chromatography by spotting the mixture on 

to a section of Whatman 3MM paper.  The paper sections with UV absorbance as visualized 

under a UV light source are cut and placed into an eppendorf tube.  The paper strips were 

washed with 1 ml of acetonitrile 3 times by centrifugation at 10,000 rpm for 3 mins. while 
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the desired labeled oligosaccharide was eluted with 1 ml of distilled water.  The resultant 

material was then dried to completion and reconstituted in 50-100 µl distilled water to allow 

for further analysis.    

 

Preparation of larger quantities of 3-O-sulfated HP octasaccharide 

 Scale up preparation of the 3-O-sulfated HP octasaccharide was achieved using a 

PAPS regeneration system as similarly described (191).  Regeneration reactions consisted of 

1 ml of the following:  50 mM MES pH 7, 40 µM PAP, 1 mM PNPS, 50 µl purified AST-IV, 

and 10 µg of purified 3-OST-3  was incubated at room temperature for 15 mins.  The 

coupling efficiency was monitored by measuring the concentration of PNP at O.D. 410 nm.  

Once equilibrium was reached 50 µg of the HP octasaccharide substrate was added and the 

resultant mixture was rotated at room temperature overnight.  Reactions were terminated by 

boiling for 2 mins. at 100°C.  Insoluble materials were removed by centrifugation at 13,000 

rpms for 10 mins.  The resultant material was loaded onto a 1 ml DEAE column that was 

equilibrated with 150 mM NaCl.  The column is washed with 5 × 2 ml with UPAS (without 

Triton X-100), then 5 × 10 ml with 150 mM NaCl, and the material was eluted with 3 × 2 ml 

with 1 M NaCl.  The resultant material was dialyzed against 20 mM ammionium bicarbonate 

for 8 hrs. using a MWCO 3500 membrane.  The dialyzed material was dried to completion 

and dissolved in distilled water.   

 

Electrospray Ionization Mass Spectrometry 

The 3-O-sulfated HP octasaccharide, unmodified HP octasaccharide, and Arixtra® was 

dialyzed against 25 mM ammonium acetate using a microdialysis apparatus with MWCO 
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1000 membrane.  The samples were then dried to completion on a speed-Vac device and 

reconstituted in doubled-deionized water to a known final concentration.   In separate 

analysis experiments, the unmodified HP octasaccharide (10 µM), the 3-O-sulfated HP 

octasaccharide (20 µM), and Arixtra® (100 µM) contained in 70% acetonitrile and 10 µM 

imidazole was introduced by direct infusion (10 µl/min) into the electrospray ionization mass 

spectrometer (Agilent 11090 MSD-Trap at the Mass Spectroscopy Core at the University of 

North Carolina at Chapel Hill School of Pharmacy).  Experiments were performed in 

negative ionization mode (2000V at 200°C, dry gas at 15 psi, nebulizing gas at 5 L/min.) 
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CHAPTER III 

 
DETERMINATION OF THE MINIMAL REQUIRED LENGTH OF THE 

GLYCOPROTEIN D BINDING HEPARIN OLIGOSACCHARIDE 
 
 
 

Introduction 
 

HS is presented on the cellular surface and is a common receptor for numerous 

viruses.  It is believed that defined sulfated sequences provide binding sites for the herpes 

simplex viral envelope protein gD as evident by the observation that 3-O-sulfated HS 

generated by 3-OST-3, not 3-OST-1, interacts with gD to induce viral entry (130, 175, 178).  

It is hypothesized that gD binding to its cellular receptor initiates a currently unknown fusion 

mechanism between the virus and the cell.  Due to the heterogeneity contained within HS 

sequences, it is extremely difficult to obtain substantial amounts of a homogenous sequence 

required to complete characterization and cell based assays.  Herein, the structurally similar 

but much less diverse HP oligosaccharides of various sizes were 3-O-sulfated by purified 3-

OST-3 enzyme and investigated to determine the minimal length required for binding to gD.  

The gD binding interactions of the 3-O-sulfated HP oligosaccharides were investigated both 

qualitatively and quantitatively using immunoprecipitation and affinity co-electrophoresis 

approaches respectively.  As a result, gD was expressed and purified from bacteria in 

sufficient quantities that were necessary for the completion of this study.    
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Purification of gD FPLC-Nickel Chromatography 

Truncated form of gD-1 (Lys26-His332) (gD) was cloned into a pET21b vector.  The 

resultant protein has a (His6)-tag on its C-terminus, which facilitates its purification using 

nickel chromatography.  The procedure for the expression of gD is described in Chapter II, 

which was carried out in E. coli. co-expressing the chaperone proteins GroEL and GroES.  

The cells were lysed by sonication and the supernatant was applied to a nickel column.  The 

protein was eluted from the column with an imidazole gradient and the elution profile is 

shown in figure 25. 
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Figure 25.  FPLC nickel chromatogram of bacterial gD.  The bacterial cell lysate from a 5 L culture 
containing gD was subjected to a 7 ml nickel column.  The column was eluted using an imidazole gradient 
while 3 ml fractions were collected.  The solid line represents the absorbance of the eluent monitored with an 
online UV detector at 280 nm, while the dotted line represents the imidazole gradient.  The black bar represents 
the fractions that were pooled and collected for further purification.  gD-CHAP represents the gD and 
chaperone complex. 
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As shown in figure 25, there are two partially resolved peaks.  The first peak was 

indicative of a gD-CHAP complex, while the second peak contained the purified gD protein.  

However, due to the over expression of CHAP proteins, the recombinant gD after nickel 

column purification undoubtedly contained some CHAP proteins as determined by SDS 

PAGE (data not shown).  To obtain pure gD additional purification steps were necessary.  It 

was observed that greater than 90% of the protein from the bacteria lysate did not bind to the 

nickel column suggesting that this step was successful.  

 

Purification of gD-FPLC-Size Exclusion Chromatography 

The next step in the purification scheme was designed to purify based on the 

molecular sizes.  To this end, the pooled fractions from the nickel column were concentrated 

and subjected to size exclusion chromatography.  The size exclusion purification profile is 

shown in figure 26.  The purified gD migrated at a molecular weight of 35 kDa as observed 

by a symmetric peak between 52 and 61 ml.  This molecular weight was very close to the 

calculated molecular weight of recombinant gD (37 kDa).  It is known that the CHAP 

proteins are present in hexametric form with an apparent molecular weight greater than 400 

kDa (192).  Indeed a peak was observed in the exclusion volume at 42 ml and this peak 

predominately contained CHAP proteins as determined by SDS-PAGE (data not shown).   
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Figure 26.  FPLC-size exclusion chromatogram bacterial gD.  The concentrated protein 
was subjected to size exclusion chromatography, while 3 ml fractions were collected.  
Elution conditions are described in “methods” section.  The solid line represents protein 
concentration monitored by an online UV detector at 280 nm.  The black bar represents the 
fractions that were pooled. The peaks corresponding to the gD-CHAP complex and purified 
gD are labeled. 
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Figure 27.  SDS-PAGE analysis of the purified gD.  SDS analysis was conducted on the 
purified gD protein as described in “methods” section.  Lane 1 is the molecular weight ladder 
and lane 2 is 4 µg of purified gD and lane 3 is 8 µg of purified gD.  
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 The gD protein after the size exclusion chromatography purification step was 

analyzed by SDS-PAGE and the gel is shown in figure 27.  The result suggested that the 

recombinant gD protein was approximately 85% pure.  Polypeptides smaller than gD were 

observed as higher amounts of purified gD were loaded onto the gel (figure 27, lane 3).  It 

was hypothesized that these lower molecular weight polypeptides were a result of proteolytic 

digestion during the purification.  Nonetheless, these polypeptide contaminants did not 

significantly affect the binding of 3-O-sulfated HS to gD as demonstrated below.  This 

purification procedure allowed for the recovery of 5 mg of purified gD from a liter of 

bacterial culture. 

 

Comparison of HS binding to gD expressed in bacteria and gD expressed in insect cells 

Recombinant gD has been expressed in insect cells and purified, and this gD 

preparation has been widely used in previously published reports (178, 181).  Three N-

glycosylation sites are present on the gD expressed in insect cells and are distant from the 

putative HS binding site based on the crystal structure (193).  So it was hypothesized that the 

bacteria expressed gD lack of glycosylation would not have an effect on its binding to HS.  

To prove this hypothesis, the two preparations of gD proteins were compared in terms of 

their binding to 3-O-sulfated HS using a gD immunoprecipitation approach with the specific 

anti-gD monoclonal antibody DL6 as previously described (130). 



  74

R
el

at
iv

e 
gD

 b
in

di
ng

 (%
)

0

2

4

6

8

10

12

14

16

gD (insect cells)
gD (bacteria)

unmodified [3H]HS 3-OST-3 modified [3H]HS
 

Figure 28.  The binding of unmodified and 3-OST-3 modified HS to gD expressed in 
bacteria and insect cells.  The binding of HS to differently expressed gD was carried out (in 
duplicate) at pH 7.4 by using an immunoprecipitation approach as described in the 
“methods” section.  The unmodified [3H]HS was prepared from wild type CHO cells grown 
in media containing [3H]glucosamine.  The 3-OST-3 modified [3H]HS was prepared by 
incubating unmodified [3H]HS with purified 3-OST-3 enzyme.  The binding experiment was 
carried out by incubating the unmodified [3H]HS and 3-OST-3 [3H]HS with 20 µg gD, where 
black bar represents gD from insect cells and gray bar represents gD from bacteria.  The HS-
gD complex was captured by anti-gD antibody DL6 on protein-A agarose.  Protein-A beads 
were equilibrated and washed with buffer containing 150 mM NaCl.  The relative binding is 
displayed as the percentage of [3H] counts recovered upon 1 M NaCl elution.  Error bars are 
representative of the standard deviation. 
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The result shown in figure 28 demonstrated that 14% of the 3-OST-3 modified HS bound to 

gD expressed in insect cells, similarly 12% of the 3-OST-3 modified HS bound to gD 

expressed in bacteria.  This result suggests that the gD expressed in bacteria and the gD 

expressed in insect cells are comparable in terms binding to 3-OST-3 modified HS.  

Consistent with previously published reports, the unmodified HS showed a much lower 

binding percentage to gD (figure 28). 

Overall, these results demonstrate that gD expressed in bacteria can be used to 

determine the binding of 3-O-sulfated HS.  Additional functional assays to prove the 

similarity between the gD expressed in bacteria and the gD expressed in insect cells are being 

conducted in Dr. Shukla’s laboratory (The University of Illinois at Chicago-UIC).  

Preliminary results indicate that these two gD preparations are indeed similar.  

 

Preparation of 3-O-[35S]sulfated HP oligosaccharides 
 
Because the 3-O-sulfo group introduced by 3-OST-3 is critical for gD binding, a 

series of 3-O-sulfated HP oligosaccharides were prepared in order to determine the minimal 

length required for this interaction.  Three purified oligosaccharides including tetra-, hexa-, 

and octasaccharides were purified from heparin lyases digested heparin by Dr. Linhardt 

(Rensselaer Polytechnic Institute-RPI).  The structures and purity were confirmed by MS and 

NMR in Dr. Linhart’s laboratory (194).  To prepare 3-O-sulfated HP oligosaccharides, 

purified 3-OST-3 enzyme was incubated with the oligosaccharides in the presence of 

[35S]PAPS and the products were purified by DEAE chromatography.  The procedure of the 

preparation of 3-O-sulfated HP oligosaccharides and the structures of the oligosaccharide 

substrates are shown in figure 29.    
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Figure 29. Preparation of 3-O-[35S]sulfated HP oligosaccharides.   3-O-[35S]sulfated HP 
oligosaccharides of various sizes were generated by incubating purified 3-OST-3 enzyme and 
[35S]PAPS with the respective unmodified HP oligosaccharide substrate.  Panel A shows the 
generation of 3-O-[35S]sulfated HP tetrasaccharide, panel B, shows the generation of  3-O-
[35S]sulfated HP hexasaccharide and panel C shows the generation of  3-O-[35S]sulfated HP 
octasaccharide.  Residue numbers are presented under each sugar unit for clarity. 
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The susceptibility of these HP oligosaccharides to 3-OST-3 modification is shown in figure 

30.  It appeared that the HP octasaccharide was the best substrate among these HP 

oligosaccharides accepting 44 pmole sulfate/µg of substrate.  The HP tetrasaccharide was the 

least susceptible to 3-OST-3 modification.  A previous study demonstrated that full length 

HP is not a substrate for 3-OST-3 (195).  However, the data presented above suggests that 

smaller oligosaccharides of HP can serve as a substrate for 3-OST-3.  As a result, it is 

hypothesized that upon depolymerization of full length HP into its smaller oligosaccharide 

components a structural feature that may inhibit 3-OST-3 activity is lost.  Nevertheless, the 

susceptibility of the HP oligosaccharides to 3-OST-3 modification allowed for the 

preparation of 3-O-sulfated HP oligosaccharides to determine the minimal size of the gD 

binding site.  It should be noted that the position of the 3-O-sulfo groups on the HP 

oligosaccharides upon 3-OST-3 modification is not completely known with the exception of 

the tetrasaccharide substrate.  Previous studies demonstrated that the 3-OST-3 enzyme 

transfers a 3-O-sulfo group to the 3-OH position of the glucosamine located at residue 2 

(121). 
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Figure 30.  Susceptibility of HP derived oligosaccharides to 3-OST-3 modification.  
Individual modification reactions consisting of 10 µg of substrate (octa-, hexa-, or tetra-) 
were incubated with 440 ng purified 3-OST-3, 15 µM cold PAPS, and [35S]PAPS at a 
specific activity of 4000 cpm/pmole in reaction buffer (see methods section).  The amount of 
pmoles transferred was calculated by the amount of [35S] counts recovered after purification.  
No error bars are presented as trial was done once.    
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The binding of 3-O-[35S]sulfated HP oligosaccharides to gD (Immunoprecipitation 
Approach) 
 

The binding of 3-O-[35S]sulfated HP oligosaccharides to gD was investigated using 

an immunoprecipitation approach.  The 3-O-[35S]sulfated HP oligosaccharides of various 

sizes were incubated with gD and the complex of gD/3-O-[35S]sulfated HP oligosaccharides 

were captured using anti-gD antibody on protein A agarose.  The 3-O-[35S]sulfated HP 

oligosaccharides were eluted from protein A agarose beads using increasing amounts of NaCl 

from 0 mM to 1 M.  The elution profile is shown in figure 31.  For the 3-O-[35S]sulfated HP 

tetrasaccharide only 5% of the [35S]counts were eluted with buffer containing 150 mM NaCl.  

In contrast more than 40% of the [35S]counts of the 3-O-[35S]sulfated HP octasaccharide 

were eluted with buffer containing 150 mM NaCl.  About 20% of the [35S]counts from the 3-

O-[35S]sulfated HP hexasaccharide was eluted under the same conditions. These observations 

suggest that the binding affinity to gD depends on the size of the oligosaccharide.  This 

suggestion was further strengthened by determining the binding constants using affinity co-

electrophoresis as described below. 
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Figure 31. Binding of various sized 3-O-[35S]sulfated HP oligosaccharides to gD using 
immunoprecipitation approach.  3-O-[35S]sulfated HP of various sizes (30 pmoles, 20 
pmoles, and 11 pmoles for octa-, hexa-, and tetra- oligosaccharides respectively) were 
incubated in binding buffer pH 6, and 20 µg gD at room temperature. The anti-gD 
monoclonal antibody DL6 was added and incubated at 4 °C for 1 h followed by addition of 
the protein A-agarose gel and agitated at 4 °C for an additional hour. The protein A agarose 
gel (Pierce) was then washed with increasing amounts of NaCl from 0 mM to 1 M.  During 
each washing concentration (x-axis) 5 × 500 µl was used to elute.  Relative gD binding is 
presented as the percentage of [35S] counts recovered upon the indicated NaCl wash (y-axis). 
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Affinity Co-electrophoresis-(ACE) 
 
 Affinity Co-Electrophoresis (ACE) is used to determine the binding constant by 

monitoring the electrophoretic mobility of a ligand in the presence of different concentrations 

of a receptor (187).  This technique can be used to measure the interactions between 

glycosaminoglycans and proteins in both high and low binding affinities.  Specifically, it has 

been used to determine the binding constants between HS and fibroblast growth factor (the 

Kd for FGF binding is nM range), antithrombin, and gD (the Kd for gD binding is µM range) 

(130, 181, 196). 

 The diagram shown in figure 32 illustrates how ACE technique is applied.  The 

protein of interest is casted in separation zones at various concentrations.  Trace amounts of a 

ligand is loaded at the top of the separation zones in pre-formed wells (Figure 32, panel A).  

With the anode positioned at the bottom of the gel, once the current is applied the ligand 

migrates through the separation zones while being retarded via its binding affinity towards 

the protein (figure 32, panel B).  At appropriate protein concentrations, the electrophoretic 

migration of the ligand is retarded in a concentration dependent manner.  Based on the 

distance traveled by the ligand through various protein concentrations, the binding constant 

(Kd) can be calculated using the Scatchard analysis.  In fact the protein concentration at 

which the ligand is half-shifted from being fully mobile is close to the Kd value.  
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Figure 32.  Schematic representation of Affinity Co-electrophoresis.  Panel A represents gel before 
electrophoresis,  panel B represents gel after electrophoresis.  The protein is cast at various concentrations 
within an agarose gel.  The radiolabeled ligand, black bars, is introduced at the top of the gel.  During 
electrophoresis, the radiolabeled ligand migrates through the gel zones and is slowed by binding to the protein 
cast in the gel.  Based on the migration pattern, a plot is generated from which an affinity constant may be 
derived (see text). 

 
The main advantage for using ACE to determine the binding affinity between a GAG 

and a specific protein is that ACE requires small amounts of GAG and GAG has high 

mobility under electrophoretic conditions.  More importantly, the interactions between GAG 

and its target protein often meet the requirements for accurate Kd determination using this 

technique (187).  For example, the interaction between the GAG and its protein is not 

affected by the present of the gel.  The complex of GAG/protein versus free GAG can be 

easily separated under electrophoretic conditions.  Furthermore, the association and 

dissociation rates of GAG and proteins are fast compared to the electrophoresis time.  

 

gD Binding of 3-O-[35S]sulfated HP octasaccharide-(ACE) 

The binding constant of the interaction between gD and 3-O-[35S]sulfated HP 

octasaccharide was determined using ACE.  The 3-O-[35S]sulfated HP octasaccharide was 

prepared as described above by incubating the HP octasaccharide with purified 3-OST-3 

enzyme in the presence of [35S]PAPS and purified using DEAE chromatography.  The 3-O-
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[35S]sulfated HP octasaccharide was separated under electrophoresis conditions through 

agarose gel zones containing gD concentrations ranging from 0 to 60 µM.  The migration 

profile of the 3-O-[35S]sulfated HP octasaccharide was visualized using Phosphor-Imager 

(not shown) and by autoradiography (figure 33, panel A).   
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Figure 33.  Determining the Binding Constant (Kd) between gD and 3-O-[35S]sulfated HP octasaccharide.  
Panel A presents the autoradiography of the agarose gel in which purified 3-O-[35S]sulfated HP octasaccharide 
was subjected to electrophoresis through separation zones containing gD at concentrations indicated.  
Approximately 28,000 cpm (4 × 10-12 mol)/lane of 3-O-[35S]sulfated HP octasaccharide was loaded into each 
separation zone.  Panel B represents the plot of R/[gD]total versus R, where R = (M0-M)/M0.  M0 is the migration 
of free 3-O-[35S]sulfated HP octasaccharide and M is the observed migration of 3-O-[35S]sulfated HP 
octasaccharide in the presence of gD at various concentrations.  According to the Scatchard equation, the plot in 
Panel B should yield a straight line with a slope of -1/Kd.  The linear coefficient value of the plot is indicated as 
R2 in Panel B. 
 

It was clear that the migration of the 3-O-[35S]sulfated HP octasaccharide was 

retarded by gD in a concentration dependent manner (figure 33, panel A).  For example, it 

was observed that the 3-O-[35S]sulfated HP octasaccharide was almost completely retarded at 

60 µM, while being fully mobile when no gD was present.  The relative migration distances 

of the 3-O-[35S]sulfated HP octasaccharide at various concentrations of gD, along with the 

Scatchard equation, were used to determine the Kd value to be 19 µM (figure 33, panel B).   
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Two interesting points were noted.  First, that the concentration 3-O-[35S]sulfated HP 

octasaccharide was much lower than the gD contained with the separation zones.  This 

allowed us to determine the Kd value.  If the amount of the 3-O-[35S]sulfated HP 

octasaccharide were close to the Kd value, deviations from linearity would occur at low 

values of R (at low protein concentrations) which may lead to an overestimation of Kd (187).  

Secondly, the 3-O-[35S]sulfated HP octasaccharide was nearly fully retarded at high 

concentration of gD suggesting that does this preparation was pure in terms of gD binding 

affinity.  The structural homogeneity of the 3-O-[35S]sulfated HP octasaccharide would 

facilitate the characterization of the position of the 3-O-sulfo group as described in Chapter 

IV. 

 

gD Binding of 3-O-[35S]sulfated HP hexasaccharide-(ACE) 

The binding constant between gD and the 3-O-[35S]sulfated HP hexasaccharide was 

also investigated using ACE.  The 3-O-[35S]sulfated HP hexasaccharide was prepared by 

incubating the HP hexasaccharide with 3-OST-3 enzyme in the presence of [35S]PAPS and 

purified using DEAE chromatography.  The 3-O-[35S]sulfated HP hexasaccharide was 

resolved under the same conditions as the 3-O-[35S]sulfated HP octasaccharide as described 

above.  The migration profile 3-O-[35S]sulfated HP hexasaccharide is shown in figure 34. 
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Figure 34.  Migration profile of  3-O-[35S] HP hexasaccharide on ACE gel.   Shown is the autoradiography 
of the agarose gel in which 3-O-[35S]sulfated HP hexasaccharide was subjected to electrophoresis through 
separation zones containing gD at concentrations indicated.  Approximately 27,000cpm (4.2 × 10-12mol)/lane of 
3-O-[35S]sulfated HP hexasaccharide was loaded into each separation zone.  Graphical analysis was unable to 
be performed due to no substantial retention of migration. 
 

The retardation of the 3-O-[35S]sulfated HP hexasaccharide on the gel was much less 

obvious when compared to that of the 3-O-[35S]sulfated HP octasaccharide.  Specifically, at 

the highest gD concentration tested, 60 µM, the 3-O-[35S]sulfated HP hexasaccharide 

migrated approximately halfway through the separation zone.  A higher concentration of gD 

was attempted to be casted into the gel, however the gel failed to be solidified uniformly 

under such conditions.  As a result, full retardation of the 3-O-[35S]sulfated HP 

hexasaccharide could not be obtained.  Thus, the Kd value could not be determined with 

confidence.  Based on its migration pattern shown in figure 34, the Kd was estimated to be 

greater than 115 µM.  This suggests that by reducing the size of the oligosaccharide from an 

octasaccharide to a hexasaccharide results in a greater than six fold decrease in its binding 

affinity.  Because the binding affinity between the gD and 3-O-[35S]sulfated HP 
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tetrasaccharide was believed to be lower than that of the 3-O-[35S]sulfated HP 

hexasaccharide, we decided not to determine its affinity to gD. 

The binding constant data are consistent with the results from immunoprecipitation 

binding experiments (figure 31).  These data support the conclusion that gD binds to 3-O-

[35S]sulfated HP oligosaccharides in a size dependent fashion.  Our results suggest the 3-O-

[35S]sulfated HP octasaccharide is the minimum size required for gD binding.  Because this 

octasaccharide has the highest affinity to gD, its structure was determined as described in 

Chapter IV. 

 

Conclusions 

Various studies concerning the structure of gD and its binding to its receptors have 

been conducted previously.  The majority of these studies used recombinant forms of gD that 

was expressed in insect cells using a baculovirus expression approach (178, 181).  The 

complexities associated with the baculovirus expression of gD prompted us to search for a 

more efficient expression method. As presented above, the ectodomain of gD (Lys26-His332) 

was cloned and expressed in large quantities in E. coli. with a yield of 5 mg per liter of 

culture.  This expression was achieved by co-expressing bacteria chaperone proteins.  From 

the binding of 3-O-sulfated HS to gD expressed in bacteria and gD expressed in insect cells, 

data presented above suggested that the recombinant gD from bacteria expression was 

functional.  To our knowledge, using a bacteria expression system to prepare HSV envelope 

proteins has not been reported previously.  The bacteria expression of other HSV envelope 

proteins including gB and gC are currently under investigation in our laboratory.  This novel 
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approach to express HSV envelope proteins could be used to develop a vaccine against HSV 

infections.   

Results demonstrated that the 3-O-[35S]sulfated HP oligosaccharides bound to gD in a 

size dependent manner, with the 3-O-[35S]sulfated HP octasaccharide having the minimum 

length required for detectable gD binding.  This conclusion was based on our success in 

obtaining purified 3-O-sulfated HP oligosaccharides of various sizes and the expression of 

gD in bacteria.  The high susceptibility of the HP oligosaccharides to 3-O-sulfation allowed 

for the determination of the minimal required length for binding using immunoprecipitation 

and ACE approaches.  The binding affinity of the 3-O-[35S]sulfated HP octasaccharide was 

found to have a Kd value of 19 µM.  This value was very similar to the Kd value determined 

for the previously characterized HS gD binding octasaccharide which was found to be 18 µM 

(181).  In the previous study, the HS octasaccharide was the only oligosaccharide isolated 

from the 3-OST-3 modified oligosaccharide library.  Thus, no information concerning the 

size requirement for gD binding was investigated.   

It is well known that full length HP/HS can inhibit HSV infections.  However, 

because of its heterogeneity, it has been shown to cross react with numerous proteins.  As a 

result it is not considered as an ideal compound to inhibit HSV infections.  Our goal is to 

generate a HP based oligosaccharide that can bind to gD and inhibit viral fusion between the 

virus and its target cells.  The gD binding 3-O-sulfated HP octasaccharide serves as an 

excellent lead compound for further investigations.  Two questions at this point remained 

unanswered.  The first was what the precise structure of the 3-O-sulfated HP octasaccharide 

is.  The second was whether this octasaccharide can inhibit viral infection.  The next chapter 

describes the characterization of the 3-O-sulfated HP octasaccharide. 
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CHAPTER IV 
 

STRUCTURAL CHARACTERIZATION OF THE GLYCOPROTEIN D BINDING 3-O-
SULFATED HEPARIN OCTASACCHARIDE 

 
 
 

Introduction 

 In the previous chapter, we determined that the 3-O-sulfated HP octasaccharide had a 

high binding affinity to gD.  In this chapter the structural characterization of this 3-O-sulfated 

HP octasaccharide is described.  The focus of the structural characterization was to determine 

the number and location of the 3-O-sulfo groups on the 3-O-sulfated HP octasaccharide.  The 

purity of the 3-O-sulfated HP octasaccharide was determined by anion exchange HPLC.  The 

structure was determined utilizing a combination of chemical and enzymatic degradations.  

In order to investigate the possibility of using the HP oligosaccharide to inhibit HSV 

infections, relatively large quantities of the 3-O-sulfated HP octasaccharide were needed.  By 

coupling a sulfo donor regeneration system with 3-OST-3 modification, about 130 µg of the 

characterized gD binding 3-O-sulfated HP octasaccharide was generated for cell based viral 

entry assays.  Once cell based assays are completed, results will determine whether the 3-O-

sulfated HP octasaccharide can inhibit viral fusion via its binding affinity for gD.  This will 

provide novel evidence as to the feasibility of inhibiting HSV viral infections by disrupting 

interactions with its polysaccharide based cellular receptors.   
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Determination of the purity of 3-O-[35S]sulfated HP octasaccharide 

 DEAE-NPR anion exchange HPLC chromatography was used to assess the purity of 

the 3-O-[35S]sulfated HP octasaccharide.   The 3-O-[35S]sulfated HP octasaccharide was 

prepared by incubating the HP octasaccharide with purified 3-OST-3 enzyme in the presence 

of [35S]PAPS.  The unmodified HP octasaccharide and the 3-O-[35S]sulfated HP 

octasaccharide were well resolved on DEAE-NPR column as shown in figure 35.  The 

unmodified HP octasaccharide has absorbance at 232 nm which was used to monitor its 

elution position.  The 3-O-sulfated HP octasaccharide contained a [35S] label which was used 

to monitor its elution position.  
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Figure 35.  Anion exchange HPLC-DEAE-NPR chromatogram of 3-O-[35S]sulfated HP octasaccharide.  
Approximately 3 ug of unmodified HP octasaccharide and approximately 56,000 cpm of 3-O-[35S]sulfated HP 
octasaccharide was subjected to HPLC-DEAE-NPR chromatography as described under “methods section”.    
The x-axis shows retention time in (mins.), the right y-axis monitors [35S] using online detection and left y-axis 
monitors the online UV detection at 232 nm. 
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 The separation of the HP oligosaccharides on the DEAE-NPR column was based on 

their negative charge densities.  As expected, the unmodified HP octasaccharide eluted as a 

major UV peak at 57 mins. (figure 35, blue line).  The 3-O-[35S]sulfated HP octasaccharide 

eluted as a major [35S] labeled peak at 62 mins. (figure 35, black line).  The higher retention 

time observed for the 3-O-[35S]sulfated HP octasaccharide on the DEAE-NPR column 

compared to that of the unmodified HP octasaccharide was indicative of it carrying 

additional sulfo groups.  Two [35S] labeled peaks were observed with retention times of 58 

and 62 mins.  The ratio of the intensities of the two [35S] labeled peaks were calculated to be 

1:4, suggesting the purity of the 3-O-[35S]sulfated HP octasaccharide was 80%.  The minor 

[35S] labeled peak that eluted at 58 mins. was believed to be due to the 3-O-sulfation of the 

minor component present in the starting material.  Indeed a minor component was observed 

in the starting material that eluted at 55 mins. (figure 35, blue line).  Taken together these 

results suggest that the 3-O-[35S]sulfated HP octasaccharide was sufficiently pure for 

structural characterization. 

 To eliminate the remote possibly that the minor contaminant in the 3-O-[35S]sulfated 

HP octasaccharide preparation was responsible for binding to gD, we compared the DEAE-

NPR profiles pre- and post gD affinity fractionation.  The gD affinity fractionation was 

carried out using an immunoprecipitation approach as described in Chapter III.  The resultant 

3-O-[35S]sulfated octasaccharide was resolved by DEAE-NPR chromatography.  The results 

demonstrated that the major [35S] labeled component was present in the high affinity fraction 

suggesting that this component was indeed responsible for the binding to gD (chromatograms 

not shown). 
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Structural characterization of 3-O-[35S]sulfated HP octasaccharide 

The unmodified HP octasaccharide contained four glucosamine residues, thereby 

giving it four potential sites for 3-O-sulfation by 3-OST-3 as shown in figure 36.  These four 

positions include residues 2, 4, 6, and 8.  Here we described the results to identify which 

residue carried the 3-O-sulfo group.  The 3-O-[35S]sulfated HP octasaccharide was prepared 

by incubated the HP octasaccharide with purified 3-OST-3 in the presence of [35S]PAPS.  

The structural characterization was accomplished using a combination of chemical and 

enzymatic degradations from both non-reducing and reducing ends.  Non-reducing end 

analysis permitted the identification of whether the 3-O-[35S]sulfo group was present on 

either residue 2 or 4.   Reducing end analysis permitted the identification of whether residue 

6 or 8 carried the 3-O-[35S]sulfo group 

O
CH2OSO3

-

OH

NHSO3
-

O

O

OH

OSO3
-

O
CH2OSO3-

OH

NHSO3
-

O

O
COOH
OH

OSO3
-

O
O

CH2OSO3
-

OH

NHSO3
-

O OH

O

OH

OSO3-

O
CH2OSO3

-

OH

NHSO3
-

O

O
COOH
OH

OSO3
-

O

HOOC

COOHO

1 543 762 8

O
CH2OSO3

-

OH

NHSO3
-

O

O

OH

OSO3
-

O
CH2OSO3

-

OH

NHSO3
-

O

O
COOH
OH

OSO3
-

O
O

CH2OSO3
-

OH

NHSO3
-

O OH

O

OH

OSO3-

O
CH2OSO3

-

OH

NHSO3-
O

O
COOH
OH

OSO3
-

O

HOOC

COOHO

1 543 762 8

3-OST-3
[35S]PAPS

∆UA2S GlcNS6S IdoUA2S IdoUA2S IdoUA2SGlcNS6S GlcNS6SGlcNS6S

Non-Reducing End Reducing End

 
Figure  36.  Potential 3-O-sulfation sites in HP octasaccharide.  The unmodified HP octasaccharide (top) is 
comprised of repeated disaccharide units of –[IdoUA2S-GlcNS6S]-.  After 3-OST-3 modification, in the 
presence of [35S]PAPS, a [35S]sulfo group is transferred to the 3-OH position of a specific glucosamine residue 
within the HP octasaccharide (bottom).  The residues are numbered from 1 to 8, starting with the non-reducing 
end, 1 to the reducing end, 8.  The red arrows show the potential sites for 3-O-sulfation.  The abbreviated 
notations are presented under the corresponding residue in the unmodified HP octasaccharide for clarity. 
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Figure 37.  Strategy for the determination of reside 2 as the 3-O-sulfation site.   Panel A, if an 3-O-
[35S]sulfated HP octasaccharide that carries the 3-O-[35S]sulfo group on reside 2 (octasaccharide A, panel A) is 
digested with 2ase, the result with be octasaccharide E.  If octasaccharide E is digested with a mixture of 
heparin lyases the result would be disaccharide A. Panel B, if octasaccharide A is directly digested with a 
mixture of heparin lyases, the result would be disaccharide B.  If the HPLC elution profile for disaccharide A 
and B are different, then residue 2 carries the 3-O-[35S]sulfo group.  If the HPLC elution profile is similar, then 
residue 2 does not carry the 3-O-[35S]sulfo group.  The “?” represents unknown residue number. 
 
 

Non-reducing end analysis 

Non-reducing end analysis takes advantage of the substrate specificity of ∆4,5 

glycuronate-2-sulfatase (2ase), an exolytic sulfatase (197).  This enzyme is known to 

specifically to remove the 2-O-sulfo group from ∆UA2S, which is present at the non-

reducing end of the 3-O-[35S]sulfated HP octasaccharide.  Subjecting the 3-O-[35S]sulfated 

HP octasaccharide to heparin lyases digestion with or without pretreatment of 2ase permitted 

the determination of whether the 3-O-[35S]sulfo group was on residue 2 or 4.  
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The initial hypothesis was that 3-OST-3 transferred a sulfo group to the 3-OH position of the 

glucosamine residue on the non-reducing end of the HP octasaccharide (figure 36, residue 2).  

This hypothesis was based on a previous study in which the 3-OST-3 enzyme sulfated a HP 

tetrasaccharide substrate (121).  The strategy for the determination of whether residue 2 

contains the 3-O-[35S]sulfo group is described in figure 37. 

The digestion of the 3-O-[35S]sulfated HP octasaccharide with a mixture of heparin 

lyases should yield a [35S] labeled disaccharide with a structure of ∆UA2S-[3-O-

35S]GlcNS6S3S (figure 37, panel B, disaccharide B).  Digestion of the 3-O-[35S]sulfated HP 

octasaccharide with 2ase will yield an octasaccharide that contains a ∆UA residue on the 

non-reducing end (figure 37, panel A, octasaccharide B).  The extent of the 2ase digestion 

can be monitored by DEAE-NPR as the starting octasaccharide (figure 37, panel A, 

octasaccharide A) and the digested octasaccharide (figure 37, panel A, octasaccharide B) 

elute with different retention times.  Subjecting octasaccharide B to a mixture of heparin 

lyases would yield a [35S] labeled disaccharide with a structure of ∆UA-[3-O-35S]GlcNS6S3S 

(figure 37, disaccharide A).  The identities of disaccharides A and B would be determined by 

co-elution with standards on HPLC.  To determine whether residue 4 contained the 3-O-

[35S]sulfo group, the 3-O-[35S]sulfated HP octasaccharide would be converted to [35S] labeled 

tetrasaccharide by partial digestion with a mixture of heparin lyases.  This digestion would be 

combined with or without pretreatment of 2ase. 

  The experiments as described were conducted.  Treatment of the 3-O-[35S]sulfated 

HP octasaccharide with 2ase was completed, and the product was analyzed by DEAE-NPR 

(figure 38).  As shown in figure 38 (panel A), when the 3-O-[35S]sulfated HP octasaccharide 

was digested with 2ase (3.1 U), the elution profile that resulted suggested that only a partial 
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digestion was achieved.  The undigested 3-O-[35S]sulfated HP octasaccharide eluted a 63 

mins. while the digested material eluted at 57 mins.  As shown in figure 38, panel B, when 

the 3-O-[35S]sulfated HP octasaccharide was digested with a larger amount of 2ase (10 U), 

one major [35S] labeled peak was observed that eluted at 57 mins.  The observable shift from 

63 mins. to 57 mins. suggested that the 2-O-sulfo group was removed from the non-reducing 

end of the octasaccharide.  The observation of one [35S] labeled peak resulting from the 2ase 

digestion of the 3-O-[35S]sulfated HP octasaccharide suggested that the digestion was greater 

than 95% complete.  Furthermore, the 2ase treated 3-O-[35S]sulfated HP octasaccharide was 

degraded with a mixture of heparin lyases and yielded a [35S] labeled disaccharide.  The 

resultant [35S] labeled disaccharide was resolved using anion exchange PAMN 

chromatography and was eluted at 50 mins. (figure 39, panel B).  This position was where 

the disaccharide standard with a structure of ∆UA2S-[3-O-35S]GlcNS6S3S was eluted under 

the same condition.  This ∆UA2S-[3-O-35S]GlcNS6S3S standard was generated by 

subjecting the previously characterized 3-O-[35S]sulfated HP tetrasaccharide to a mixture of 

heparin lyases as previously described (121).  The untreated 3-O-[35S]sulfated HP 

octasaccharide was also degraded with a mixture of heparin lyases and the resultant [35S] 

labeled disaccharide was also eluted at 50 mins. on the same HPLC column as shown in 

figure 39, panel A.  These results suggest that the 3-O-[35S]sulfated HP octasaccharide gave 

identical [35S] labeled disaccharide products after heparin lyase digestion regardless of 2ase 

pretreatment.  Therefore it was concluded the 3-O-[35S]sulfo group was not present on 

residue 2. 

 In order to prove whether the 3-O-[35S]sulfo group was on residue 4, the 3-O-

[35S]sulfated HP octasaccharide needed to be converted to [35S] tetrasaccharide.  This 
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experiment was not conducted, as the result from reducing end analysis suggested that the 3-

O-[35S]sulfo group was present on the reducing end. 
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Figure 38.  HPLC-DEAE-NPR chromatograms observing 2ase digestion of the 3-O-
[35S]sulfated HP octasaccharide.  The 3-O-[35S]sulfated HP octasaccharide was digested 
with different amounts of 2ase.  Panel A, shows the partial digestion of the 3-O-[35S]sulfated 
HP octasaccharide resulting from the addition 3.1 U of 2ase.  As a result of partial digestion, 
the material from panel A, was further digested with 10 U of 2ase and its elution profile is 
shown in panel B. 
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Figure 39.  HPLC-PAMN chromatograms of 2ase digested and undigested 3-O-
[35S]sulfated HP octasaccharide.  Panels A and B show the elution profiles of the 3-O-
[35S]sulfated HP octasaccharide digested with heparin lyases without or with pretreatment of 
2ase, respectively.  Elution condition is described in “methods” section.  The enzymatic 
digestions are presented to the right the chromatograms.  The anion exchange HPLC-PAMN 
elution conditions are presented in the “methods” section.  Arrow 1, elution position of [35S] 
free sulfate; arrow 2, elution position of ∆UA2S-[3-O-35S]GlcNS6S3S; “X” elution position 
of an undetermined material. 
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Reducing end analysis 

Reducing end analysis takes advantage of the presence of a chemically reactive 

hemiacetal group at the reducing end of the 3-O-[35S]sulfated HP octasaccharide.  A common 

method used to exploit the chemically reactive reducing end is to use reductive amination 

chemistry through the formation of a Schiff base (198).  Subjecting the 3-O-[35S]sulfated HP 

octasaccharide to heparin lyases digestion with or without prior reducing end modification 

permitted the determination of whether the 3-O-[35S]sulfo group was on residue 6 or 8.  The 

hypothesis was that 3-OST-3 transferred a sulfo group to the 3-OH position of the 

glucosamine residue on the reducing end of the HP octasaccharide (figure 36, residue 8).  To 

investigate this possibility, the reducing end was chemically modified with 2-aminobenzmide 

(2-AB).  It was decided that a [2-AB] tag would be used as [2-AB] labeled glycans can be 

resolved using HPLC (189).  The reducing end modification with [2-AB] is shown in figure 

40.  
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Figure 40.  Reaction for 2-AB reducing end labeling of oligosaccharides.  The reducing end glucosamine is 
shown in its ring opened form. 
 
 The [2-AB] labeling reaction involves a 2-step process as shown in figure 40.  First, 

there is a Schiff base formation.  The reducing end unit is in equilibrium between ring closed 

(cyclic) and ring open (acyclic) conformations.  The primary amine group of [2-AB] is able 

to perform a nucleophilic attack on the carbonyl carbon of the reducing end sugar in its 

acyclic conformation.  The result is the formation of a metastable Schiff base that is 

facilitated by mild acidic conditions.  Secondly, the Schiff base is chemically reduced by 

sodium cynaoborohydride to yield the stable [2-AB] labeled glycan.  The [2-AB] glycan will 

have characteristic UV absorbance at 330 nm. 
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Figure 41.  Strategy for the determination of reside 8 as the 3-O-sulfation site.  The 3-O-[35S]sulfated HP 
octasaccharide (octasaccharide C, panel A) is labeled with [2-AB] resulting in octasaccharide D (panel A).  
Octasaccharide D is digested with a mixture of heparin lyases to yield disaccharide C (panel A).  Disaccharide 
B standard (panel B) is generated by the heparin lyases digestion of tetrasaccharide A (panel B).  If 
disaccharides B and C co-elute, then residue 8 would carry the 3-O-[35S]sulfo group. 
 

The strategy for the determination of whether residue 8 contains the 3-O-[35S]sulfo 

group is described in figure 41.  The digestion of the 3-O-[35S]sulfated HP tetrasaccharide 

with a mixture of heparin lyases will yield a [35S] labeled disaccharide with a  structure of 

∆UA2S-[3-O-35S]GlcNS6S3S (figure 41, panel B, disaccharide B).  Subjecting the 3-O-

[35S]sulfated HP octasaccharide to reducing end labeling with [2-AB] would yield an 

octasaccharide that displays a [2-AB] label on the reducing end glucosamine (figure 41, 

panel A, octasaccharide D).   Subjecting octasaccharide D to a mixture of  heparin lyases 

would yield a [35S] labeled disaccharide with a structure of ∆UA2S-[3-O-35S]GlcNS6S3S-[2-

AB] (figure 41, panel A, disaccharide C).  The identities of disaccharides B and C would be 

determined by co-elution with standards on HPLC.  As a result, the preparation of the 
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∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] standard was essential and is described below.  To 

determine whether residue 6 contained the 3-O-[35S]sulfo group, the 3-O-[35S]sulfated HP 

octasaccharide-[2-AB] would be converted to tetrasaccharides by partial digestion with a 

mixture of heparin lyases (strategy not shown). 

 

Preparation of the ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] standard 

The preparation of the 3-O-[35S]sulfated disaccharide-[2-AB] labeled standard was 

achieved from a heparin lyases-digested 3-O-[35S]sulfated tetrasaccharide followed by [2-

AB] labeling.  The characterized 3-O-[35S]sulfated HP tetrasaccharide was generated as 

previously described by incubating the HP tetrasaccharide with purified 3-OST-3 enzyme in 

the presence of [35S]PAPS (figure 42, tetrasaccharide A) (121) .  Digestion of tetrasaccharide 

A with a mixture of heparin lyases yields a [35S] labeled disaccharide with a structure of 

∆UA2S-[3-O-35S]GlcNS6S3S (figure 42, disaccharide B).  Subjecting this [35S] labeled 

disaccharide to [2-AB] reducing end labeling would result in a [35S] labeled disaccharide 

with a structure of ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] (figure 42, disaccharide C).  

Disaccharides B and C can be then analyzed on HPLC to observe their elution profiles. 
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Figure 42.  Strategy for generating [35S] labeled disaccharide standards labeled with [2-AB].   The 3-O-
[35S]sulfated HP tetrasaccharide (tetrasaccharide A) is cleaved into its disaccharide components by heparin 
lyases resulting in disaccharide B.  Disaccharide B is further modified by [2-AB] labeling, yielding another 
[35S] labeled disaccharide standard (disaccharide C).  
 

The strategy to generate the [2-AB] disaccharide standard as presented in figure 42 

was carried out, and [35S] labeled disaccharides B and C were analyzed by PAMN to observe 

their elution profiles.  Tetrasaccharide A was digested with a mixture of heparin lyases and 

the resultant [35S] labeled disaccharide with a structure of ∆UA2S-[3-O-35S]GlcNS6S3S was 

resolved on PAMN (figure 43, panel A).  As shown in figure 43 panel A, two major [35S] 

labeled peaks were observed that had elution times of 30 mins. and 54 mins.  Peak 1 at 30 

mins. was free [35S]sulfate, a result of de-sulfation of 3-O-[35S]sulfated HP tetrasaccharide 

during the heparin lyases digestion.  Peak 2 at 54 mins. was the elution position of the 

∆UA2S-[3-O-35S]GlcNS6S3S standard.  An aliquot of this material was then subjected to [2-

AB] reducing end labeling and the resultant was resolved on PAMN (figure 43, panel B).  As 

shown in figure 43, panel B, two major [35S] labeled peaks were also observed that had 

elution times of 30 mins. and 50 mins.  Peak 1 was concluded to be [35S]sulfate as it had a 

similar elution time as shown in figure 43, panel A, while peak 3 with an elution time of 50 
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mins. was believed to be the ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] standard.  These 

observations suggest that we can generated the [2-AB] labeled disaccharide standard and 

separate it from its non-labeled precursor. 
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Figure 43.  HPLC-PAMN chromatograms of ∆UA2S-[3-O-35S]GlcNS6S3S and ∆UA2S-[3-O-
35S]GlcNS6S3S-[2-AB] standards.   Panel A, the elution profile of the ∆UA2S-[3-O-35S]GlcNS6S3S standard, 
which was generated by digesting the 3-O-[35S]sulfated HP tetrasaccharide with a mixture of heparin lyases.  
Panel B, the elution profile of the ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] standard, which was generated by 
subjecting an aliquot of the resultant from panel A to [2-AB] reducing end labeling.  Arrow 1, elution position 
of [35S] free sulfate; arrow 2, elution position of  ∆UA2S-[3-O-35S]GlcNS6S3S; and arrow 3, elution position 
of ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB].  The enzymatic and chemical modifications are shown next to the 
chromatograms. 
 

Given the similarities observed in the retention times of peak 2 (figure 43, panel A) 

and peak 3 (figure 43, panel B), we chose to co-inject both standards (disaccharide B and C) 

to strengthen our hypothesis that the [2-AB] labeled disaccharide could be resolved from its 
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non-labeled precursor.  The chromatograms are shown in figure 44.  When equal amounts of 

the two [35S] labeled disaccharide standards were co-injected onto the HPLC, we observed 

the presence of three major [35S] labeled peaks (figure 44, panel A).  Peak 1 is free 

[35S]sulfate, a result of de-sulfation of the 3-O-[35S]sulfated HP tetrasaccharide during the 

heparin lyases digestion, while peak 2 (48 mins.) was believed to be the unlabeled 

disaccharide, and peak 3 (44.5 mins.) was believed to be the [2-AB] labeled disaccharide.  

Due to the fact that peak 2 and peak 3 were eluted very close to each other, an additional 

experiment was necessary to further prove the conclusions. 

To this end, the identity of peak 3 was further proven by co-injecting the two [35S] 

labeled disaccharides at a different ratio on the HPLC.  The chromatogram is shown in figure 

44, panel B.  When the two disaccharides were mixed at a ratio of 4:1, the relative intensities 

of peak 2 and peak 3 decreased and increased proportionately.  The same three major [35S] 

labeled peaks were observed, however it was clearly observed that the peak at 44.5 mins. was 

substantially lower in its  intensity than the peak at 48 mins.  This observation suggested that 

∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] and ∆UA2S-[3-O-35S]GlcNS6S3S had elution 

positions of 44.5 mins. and 48 mins. respectively.  Taken together, results here demonstrated 

that the two [35S] labeled disaccharide standards (∆UA2S-[3-O-35S]GlcNS6S3S and  

∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB]) could be generated and resolved using HPLC.  

Additionally, the results demonstrated that the [2-AB] reducing end labeling was successful 

with high coupling efficiency as evident by only a single [35S] labeled peak in figure 43, 

panel B.  
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Figure 44.  HPLC-PAMN chromatograms of ∆UA2S-[3-O-35S]GlcNS6S3S and ∆UA2S-[3-O-
35S]GlcNS6S3S-[2-AB] standards (co-injected).  Panels A and B show the chromatograms of ∆UA2S-[3-O-
35S]GlcNS6S3S vs. ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB] at different ratios.  A shows a 1:1 ratio respectively, 
while B shows a 4:1 ratio of the disaccharide standards respectively.  HPLC-PAMN chromatography was 
performed as stated in “methods section”.  Arrow 1, elution position of [35S] free sulfate; arrow 2, elution 
position of ∆UA2S-[3-O-35S]GlcNS6S3S; arrow 3, elution position of ∆UA2S-[3-O-35S]GlcNS6S3S-[2-AB].  
The enzymatic and chemical modification reactions are illustrated to the right of the PAMN chromatograms. 
 
 
Determination of whether residue 8  is the 3-O-sulfation site 
 
 To determine whether the 3-O-[35S]sulfo group was present on residue 8, the 

approach as described in figure 41 was carried out.  The 3-O-[35S]sulfated HP octasaccharide 

was subjected to [2-AB] reducing end labeling.  It is important to note here that the [2-AB] 

labeling of HP disaccharides (shown above) and of the HP tetrasaccharide (data not shown) 

proceeded with high coupling efficiency.  This provided sufficient evidence to suggest that 

the [2-AB] labeling of the 3-O-[35S]sulfated HP octasaccharide would proceed with the same 
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effectiveness.  The [2-AB] labeled 3-O-[35S]sulfated HP octasaccharide was then subjected to 

a mixture of heparin lyases and the resultant materials were subjected to disaccharide 

analysis on HPLC with the elution profile shown in figure 45.  There were four categories of 

[35S] labeled peaks observed.  Peak 1 eluted at 30 mins. was concluded to be free [35S]sulfate 

which was a result of de-sulfation of the 3-O-[35S]sulfated HP octasaccharide-[2-AB] during 

the heparin lyases digestion.  Peak 2 eluted at 57 mins. was hypothesized to be ∆UA2S-[3-O-

35S]GlcNS6S3S. The cluster of peaks labeled peak 3 eluted from 69 mins. to 73 mins. was 

determined to be unknown as no standards were demonstrated to have a similar elution 

position.  Peak 4 eluted at 85 mins. was hypothesized to be a [35S]sulfated HP tetrasaccharide 

that was less susceptible to heparin lyases digestion.  The identity of peak 4 was investigated 

and described in the following section.  However, at this point our concern was the correct 

identification of the [35S] labeled disaccharide product (peak 2).  Given the observation that 

the [2-AB] disaccharide eluted very close to the unlabeled disaccharide as shown in figure 

44, an additional experiment was needed to increase our confidence in the assessment that 

peak 2 was ∆UA2S-[3-O-35S]GlcNS6S3S. 
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Figure 45.  HPLC-PAMN chromatogram of heparin lyases digested 3-O-[35S]sulfated HP octasaccharide-
[2-AB].   The 3-O-[35S]sulfated HP octasaccharide-[2-AB] was digested with a mixture of heparin lyases.  The 
resultant material was subjected to analysis on the PAMN column.  The elution conditions are described in the 
“methods” section.  Arrow 1, elution position of [35S] free sulfate; arrow 2, elution position of ∆UA2S-[3-O-
35S]GlcNS6S3S; arrow 3, elution position of unknown material; and arrow 4, elution position of a 3-O-
[35S]sulfated tetrasaccharide? 
 

As a result, an identical amount of the digestion was co-injected with the ∆UA2S-[3-

O-35S]GlcNS6S3S standard and the HPLC elution profile is shown in figure 46.  It was 

observed that the peak at 55 mins. (figure 46, peak 2) greatly increased in its intensity with 

the addition of the ∆UA2S-[3-O-35S]GlcNS6S3S standard, while the intensities of peak 3 

(cluster of peaks from 69 mins. to 73 mins.) and 4 (85 mins.) remained constant.  The co-

elution of the ∆UA2S-[3-O-35S]GlcNS6S3S standard with peak 2 (figure 46) suggested that 

this peak has the same structure and is not [2-AB] labeled.  These observations suggested that 

the [35S] labeled disaccharide product that was released upon heparin lyases digestion of the 

3-O-[35S]sulfated HP octasaccharide-[2-AB] did not originate from the reducing end.  These 

results suggest that the reducing end glucosamine (residue 8) does not carry a 3-O-[35S]sulfo 

group. 
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Figure 46.  HPLC-PAMN chromatogram of heparin lyases digested 3-O-[35S]sulfated HP octasaccharide-
[2-AB] spiked with ∆UA2S-[3-O-35S]GlcNS6S3S standard.  Digested material from figure 45 was spiked 
with the ∆UA2S-[3-O-35S]GlcNS6S3S standard (red line).  The elution conditions are described in “methods” 
section.  Data from figure 45 is overlaid (black line).  Arrow 1, elution position of [35S] free sulfate; arrow 2, 
elution position of ∆UA2S-[3-O-35S]GlcNS6S3S; arrow 3, elution position of unknown material; and arrow 4, 
elution position of a 3-O-[35S]sulfated tetrasaccharide? 
 
 

Internal analysis 

 The results obtained from non-reducing and reducing end analysis of the 3-O-

[35S]sulfated HP octasaccharide as described above demonstrated that the 3-O-[35S]sulfo 

group was not on the glucosamine located at residue 2 or residue 8.  We decided to determine 

if the 3-O-[35S]sulfo group was on residue 6 by converting the 3-O-sulfated HP 

octasaccharide-[2-AB] to a tetrasaccharide.  The result from the heparin lyases digestion of 

the 3-O-[35S]sulfated HP octasaccharide-[2-AB] suggested that the identification of residue 6 

as the 3-O-sulfation site was feasible because the digestion yielded a tetrasaccharide as 

shown in figure 45.   
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Figure 47.  Strategy for the determination of reside 6 as the 3-O-sulfation site.  The 3-O-[35S]sulfated HP 
octasaccharide-[2-AB] (octasaccharide E) is converted into tetrasaccharide C by partial digestion from 
incubation with a mixture of heparin lyases.  Tetrasaccharide C* standard is generated by 2-AB reducing end 
labeling of tetrasaccharide A.  If tetrasaccharides C and C* co-elute, then residue 6 would carry the 3-O-
[35S]sulfo group. 
 
   Figure 47 describes the steps necessary to determine whether residue 6 carries the 3-

O-[35S]sulfo group.  First, the [2-AB] labeled octasaccharide (figure 47, octasaccharide E) is 

converted to a [2-AB] labeled tetrasaccharide (figure 47, tetrasaccharide C) by partial 

digestion with a mixture of heparin lyases.  Second, a [2-AB] labeled 3-O-[35S]sulfated 

tetrasaccharide standard (figure 47, tetrasaccharide C*) is generated by [2-AB] labeling 

tetrasaccharide A.  If tetrasaccharides C and C* co-elute on the PAMN column it would 

suggest that they are structurally identical, considering the fact that the 3-O-[35S]sulfo group 

is not present on residue 8.  This would suggest that residue 6 carries the 3-O-[35S]sulfo 

group.  To this end, tetrasaccharide C* was generated and determined whether it could be 

resolved from tetrasaccharide A using PAMN chromatography. 
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Preparation of the 3-O-[35S]sulfated HP tetrasaccharide-[2-AB] standard 

 Tetrasaccharide A standard was prepared by incubating the HP tetrasaccharide 

substrate with purified 3-OST-3 in the presence of [35S]PAPS.  Under this condition a 

tetrasaccharide with a structure of ∆UA2S-[3-O-35S]GlcNS6S3S-IdoUA2S-GlcNS6S will be 

generated (121).  As expected, tetrasaccharide A was observed to migrate as a single [35S] 

labeled peak at 86 mins. as shown in figure 48, panel A.  This suggested that tetrasaccharide 

A was radioactively pure. 

 To prepare the tetrasaccharide C* standard, tetrasaccharide A was incubated with 2-

aminobenzamide and reduced with sodium cyanoborohydride.  The product was analyzed by 

PAMN chromatography (figure 48, panel B).  A [35S] labeled peak was observed at 89 mins. 

which was believed to be tetrasaccharide C*, and a minor [35S] labeled peak that eluted at 74 

mins. was observed of which the identity was unknown.  Due to their close elution times, we 

could not confidently conclude that tetrasaccharides A and C* were separated by this 

method.  As a result, tetrasaccharides A and C* were co-injected on the PAMN column and 

the chromatogram is shown in figure 48, panel C.  This revealed two [35S] labeled peaks at 

82 mins. and 85 mins. that correlated to tetrasaccharides A and C* respectively, while the 

cluster of [35S] labeled peaks from 71 mins to 74 mins was unknown but thought to be due to 

some de-sulfation during the [2-AB] labeling process.  These observations suggested that 

both tetrasaccharides A and C* could be resolved using PAMN chromatography, which was 

later used to prove that 3-O-[35S]sulfo group was indeed on residue 6. 
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Figure 48. HPLC-PAMN chromatograms of 3-O-[35S]sulfated HP tetrasaccharide and 3-O-[35S]sulfated 
HP tetrasaccharide-[2-AB] standards.  The [35S] labeled material was eluted using a linear KH2PO4 gradient.  
The elution conditions are presented in the “methods” section.  Panel A shows the elution profile of the 3-O-
[35S]sulfated HP tetrasaccharide standard (15,000 cpm), while panel B shows the elution profile of 3-O-
[35S]sulfated HP tetrasaccharide-[2-AB] standard (10,000 cpm).  Panel C shows the elution profile of the 3-O-
[35S]sulfated HP tetrasaccharide-[2-AB] (15,000 cpm) spiked with the non-[2-AB] labeled precursor (5,000 
cpm).  Arrow 1, represents ∆UA2S-[3-O-35S]GlcNS6S3S-IdoUA2S-GlcNS6S; arrow 2, represents ∆UA2S-[3-
O-35S]GlcNS6S3S-IdoUA2S-GlcNS6S-[2-AB]; and arrow 3, represents an undetermined species.  
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Determination of residue 6 as the 3-O-sulfation site  

To determine whether peak 4 (figure 45) had a structure that was identical to 

tetrasaccharide C*, octasaccharide E (figure 47) was partially digested with a mixture of 

heparan lyases.  The digested material was analyzed on the PAMN column (figure 49).  A 

partial digest was observed as evident by the present of four [35S] labeled peaks.  The 

chromatogram that resulted was identical to what is shown in figure 45.  Here the idea was to 

determine whether peak 4 was structurally similar to either tetrasaccharide A or C* shown in 

figure 47.  
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Figure 49.  PAMN chromatogram of partially digested 3-O-[35S]sulfated HP octasaccharide-[2-AB].  The 
[35] labeled material was eluted using a linear KH2PO4 gradient.  The elution conditions are presented in the 
“methods” section.  Approximately 15,000 cpm of the partially digested 3-O-[35S]sulfated HP octasaccharide-
[2-AB] was subjected to PAMN chromatography.  Arrow 1, represents free [35S]sulfate; arrow 2, represents 
UA2S-[3-O-35S]GlcNS6S3S; arrow 3,  represents an undetermined species; and arrow 4, represents 3-O-
[35S]sulfated HP tetrasaccharide-[2-AB]. 
 

To determine whether peak 4, which resulted from the partial heparin lyase digestion 

of octasaccharide E, had a similar structure as either tetrasaccharide A or C* a co-injection 

was conducted.  An identical amount of the digest (from figure 49) was co-injected on the 

PAMN column with the tetrasaccharide A standard.  The chromatogram is shown in figure 
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50 (blue line, panel A).  The same four [35S] labeled peaks were observed as in figure 49.  

However, as a result of the co-injection of the tetrasaccharide A standard, one additional [35S] 

labeled peak was observed that had an elution time of 90 mins. (figure 50, peak 5).  This was 

concluded to be the elution time of tetrasaccharide A.  The observance of this additional [35S] 

labeled peak suggested that what resulted from the partial digestion of octasaccharide E 

(peak 4) is not structurally similar to tetrasaccharide A.  In a similar manner, tetrasaccharide 

C* was co-injected on the PAMN column with an identical amount of the partially digested 

octasaccharide E.  The chromatogram is shown in figure 50 (red line, panel B).  The 

chromatogram showed the presence of four [35S] labeled peaks.  A noticeable increase was 

observed in the intensity and area of peak 4 (97 mins.).  This observation along with the 

absence of any additional [35S] labeled peaks suggested that the tetrasaccharide C* (see 

figure 47) had an elution time similar to that of peak 4.  As a result, peak 4 was considered 

structurally identical to tetrasaccharide C*.  Additionally, it is important to note here that 

peak 4 that resulted from the partial digestion of octasaccharide E, shown in figure 49, eluted 

at a similar position as tetrasaccharide C* on a P-10 size exclusion column (data not shown) 

which further suggested that it was indeed a 3-O-[35S]sulfated tetrasaccharide that carried the 

[2-AB] label.   
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Figure 50.  PAMN chromatogram of partially digested 3-O-[35S]sulfated HP octasaccharide-[2-AB] 
spiked with [35S]sulfated HP tetrasaccharide standards. The [35] labeled material was eluted using a linear 
KH2PO4 gradient.  The elution conditions are presented in the “methods” section.  Panel A shows the 
chromatogram that resulted from co-injection with 3-O-sulfated HP tetrasaccharide standard (15,000 cpm) (blue 
line).  Panel B shows shows the chromatogram that resulted from co-injection with 3-O-sulfated HP 
tetrasaccharide-[2-AB] standard (30,000 cpm) (red line).  Arrow 1, represents free [35S]sulfate, arrow 2, 
represents ∆UA2S-[3-O-35S]GlcNS6S3S, arrow 3, represent unknown species, arrow 4, represents ∆UA2S-[3-
O-35S]GlcNS6S3S-IdoUA2S-GlcNS6S-[2-AB], and arrow 5, represents ∆UA2S-[3-O-35S]GlcNS6S3S-
IdoUA2S-GlcNS6S.  The black line in each panel shows the elution profile as shown in figure 49.  
 

These observations suggests that the parital digestion of octasaccharide E results in a 

3-O-[35S]sulfated tetrasaccharide that carries a [2-AB] label.  The presence of the [2-AB] 

suggested that it originated from the reducing end of the octasaccharide.  As a result, these 
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observations demonstrate that the glucosamine at position 6 carried the 3-O-[35S]sulfo group, 

considering position 8 had been previously excluded.  This results in an octasaccharide 

sequence of ∆UA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-[3-O-35S]GlcNS6S3S-

IdoUA2S-GlcNS6S.  The confirmation of residue 6 excluded residue 4 as being the site for 

3-O-sulfation.  If residue 4 did carry the 3-O-[35S]sulfo group, partial heparin lyases 

digestion of the 3-O-[35S]sulfated HP octasaccharide-[2-AB] would have resulted in a 

hexasaccharide carrying both [35S]sulfo and [2-AB] labels.  This would have a very different 

retention time on the HPLC from that of tetrasaccharide C*.   

In summary, we conducted non-reducing, reducing end, and internal sequence 

analysis to prove the structure of the 3-O-[35S]sulfated HP octasaccharide.  The results 

obtained from non-reducing end analysis demonstrated that residue 2 did not carry the 3-O-

[35S]sulfo group.  Likewise the results obtained from reducing end analysis demonstrated that 

residue 8 did not carry the 3-O-[35S]sulfo group.  The internal analysis of the 3-O-

[35S]sulfated HP octasaccharide-[2-AB] suggested that residue 6 did carry the 3-O-[35S]sulfo 

group.  Because this 3-O-sulfated HP octasaccharide can be prepared with by one step 3-

OST-3 modification of a HP octasaccharide substrate we could synthesize relatively large 

amounts of material to test its antiviral activity in a cell based assay.  The next section 

describes the procedure for the synthesis of several hundred micrograms of this 3-O-sulfated 

HP octasaccharide. 

 

Scale up preparation of the gD binding 3-O-sulfated HP octasaccharide 

 The key step for the synthesis of hundreds of micrograms of the 3-O-sulfated HP 

octasaccharide was the coupling of the 3-OST-3 modification with a PAPS regeneration 
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system.  The advantage of using the PAPS regeneration system in this study was to utilize 3-

OST-3 more effectively by continuously removing PAP which is a product inhibitor of 3-

OST-3.  Additionally, the expense of the synthesis would be significantly reduced because a 

low cost sulfo donor was used.  Although the latter consideration would be beneficial for 

commercial scale synthesis, it is beyond the scope of this thesis.   

The PAPS regeneration system, discovered by Professor Chi-Huey Wong, was 

initially coupled with Rhizobium Nod factor sulfotransferase (NodST) for the enzymatic 

synthesis of N,N’-diacetylchitobiose 6-sulfate (199).  In this study, the coupling of the PAPS 

regeneration system with 3-OST-3 modification requires two enzymes:  aryl sulfotransferase-

IV (AST-IV) and 3-OST-3 as shown in figure 51.  This system can be considered a two-step 

process that continues for multiple rounds.  Step one utilizes the reverse activity of AST-IV.  

Namely, AST-IV transfers the sulfo group from p-nitrophenyl sulfate (PNPS) to PAP, to 

generate PAPS (200).  Step two is the 3-OST-3 modification.  The 3-OST-3 enzyme transfers 

the sulfo group from PAPS that is generated by AST-IV to the HP octasaccharide substrate.  

During the 3-OST-3 modification, PAP is formed which could inhibit the activity of 3-OST-

3.  However this is not a concern in this system because PAP is converted back to PAPS by 

AST-IV.  Therefore, the overall net reaction was the transfer of the sulfo group from PNPS to 

the HP octasaccharide to form the 3-O-sulfated HP octasaccharide.   
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Figure 51.  PAPS regeneration system with p-nitrophenyl sulfate (PNPS), aryl sulfotransferase (AST-IV) 
and 3-OST-3 to generate 3-O-sulfated HP octasaccharide.  Step 1:  AST IV transfers the sulfo from PNPS 
(in excess) to PAP to generate PAPS and the release of PNP (p-nitrophenol).  Step 2:  3-OST-3 then transfers 
the sulfo group from PAPS to the 3-OH position of the waiting HP octasaccharide (R-OH), to generate 3-O-
sulfated HP octasaccharide (R-OSO3

-).  The PAP generated in step 2 is processed again by AST-IV, and PAPS 
is regenerated to allow for subsequent cycles to occur.       
 
To monitor whether the 3-OST-3 modification coupled with the PAPS regeneration system, 

the amount PNP generated from the reaction was monitored.  This was done by measuring 

the concentration of PNP at 410 nm.  The reaction was initiated by incubating AST-IV, 3-

OST-3, PAP, and PNPS at room temperature (without HP octasaccharide substrate).  The 

O.D. value (410 nm) reached a plateau after 15 minutes suggesting that the conversion of 

PNPS to PNP that is catalyzed by AST-IV reached equilibrium.  At this point the HP 

octasaccharide substrate was added and the continued increase of the value of O.D. (410 nm) 

was observed (data not shown).  This suggests that the transfer of the sulfo group to the HP 

octasaccharide pulled the equilibrium to PNP production.  After overnight incubation, the 3-

O-sulfated HP octasaccharide was purified by DEAE chromatography.  The products were 

analyzed HPLC as described below. 

Approximately 200 µg of HP octasaccharide substrate was processed using this 

reaction system.  The purity of the resultant 3-O-sulfated HP octasaccharide was determined 

by monitoring the absorbance at 232 nm.  The elution position of the product was determine 
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by using 3-O-[35S]sulfated HP octasaccharide prepared as describe above.  The HPLC profile 

is shown in figure 52.  
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Figure 52.  DEAE-NPR chromatography analysis of the 3-O-sulfated HP octasaccharide.  An aliquot from 
the PAPS regeneration product was subjected to HPLC, with elution conditions described in “methods” section.  
Peak 1 represents the unmodified HP octasaccharide, and peak 2 represent the 3-O-sulfated HP octasaccharide. 
 

The UV peak that was eluted at 61 mins. (peak 2) co-migrated with the 3-O-

[35S]sulfated HP octasaccharide suggesting the it has the structure of ∆UA2S-GlcNS6S-

IdoUA2S-GlcNS6S-IdoUA2S-GlcNS6S3S-IdoUA2S-GlcNS6S.  The UV peak that eluted at 

57 mins. (peak 1) co-eluted with the unmodified HP octasaccharide suggesting this is the 

starting material due the incomplete modification.  Based on relative peak areas, it was 

estimated that the 3-O-sulfated HP octasaccharide was 80% pure.  To estimate the amount of 

the product, a quantitative HPLC analysis was conducted using the starting material as a 

standard.  It was estimated that approximately 130 µg of the 3-O-sulfated HP octasaccharide 

was generated and recovered.  This material has been given to Dr. Shukla (UIC), whom is 
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currently conducting cell based assays to investigate its efficacy an inhibiting viral fusion.  

Results obtained will determine whether disrupting gD binding to its polysaccharide cellular 

receptor is a viable approach to inhibit HSV infections. 

 

Mass Spectrometry analysis of Arixtra® 

We next determined the molecular mass of the standard compound Arixtra® using 

electrospray ionization mass spectrometry (ESI-MS).  This experiment was conducted 

primarily to optimize the mass spectrometry conditions.  A high degree of de-sulfation of the 

sample was observed when high voltage and temperature was used during analysis (data not 

shown).  During optimization, it was observed that the degree of de-sulfation of the sample 

could be decreased by substantially lowering the voltage and temperature.  Eventhough the 

presence of some de-sulfation was observed at the optimized conditions, data obtained 

allowed for the correct determination of the sample as shown in figure 53.  The sample 

showed four prominent molecular ion peaks.  These were [M-3H]3- at 501.3 m/z (Mr = 

1506.9 Da), [M-6H+3Na]3- at 523.9 m/z (Mr = 1508.7 Da), [M-5H+3Na]2- at 786.4 m/z (Mr = 

1505.8 Da), and [M-2H]2- at 752.4 m/z (Mr = 1506.8 Da).  From this data the molecular 

weight of the standard compound Arixtra®, was determined to be 1507.1 ± 1.0 Da which is 

close to the known molecular mass of Arixtra® which is 1506.9 Da.  As a result of this data, 

it was hypothesized that under the optimized conditions the determination of the molecular 

masses of the unmodified HP octasaccharide and the 3-O-sulfated HP octasaccharide were 

possible. 
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Figure 53.  Electrospray ionization mass spectrum of Arixtra®.  Arixtra (100 µM) contained in 70% 
acetonitrile and 10 µM imidazole was introduced by direct infusion (10 µl/min) into the mass spectrometer.  
The expected ions are indicated, where “Na” represents a sodium adduct.  Asterisk (*) represents signals that 
result from de-sulfation of Arixtra®. 
 
 
Mass Spectrometry analysis of the unmodified HP octasaccharide 

The unmodified HP octasaccharide had its mass determined using ESI-MS under the 

optimized conditions and the resulting spectrum is shown in figure 54.  The sample showed 

two prominent molecular ion peaks.  These were 

 [M-7H+2Na]5- at 469.3 m/z (Mr = 2307.5 Da) and [M-5H+Na]4- at 580.3 m/z (Mr = 2303.2 

Da).  From this data the molecular mass of the unmodified HP octasaccharide was 

determined to be 2305.4 ± 2.15 Da which is close to the anticipated molecular mass of the 

unmodified HP octasaccharide (Mr = 2306.9 Da) with a structure as shown in figure 29, 

panel C.  At this point the number of 3-O-sulfo groups transferred to the unmodified HP 

octasaccharide substrate is unknown.  However by comparing the mass spectrums of the 
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unmodified HP octasaccharide and the 3-O-sulfated HP octasaccharide the number of 3-O-

sulfo groups can be determined.  To the end, the 3-O-sulfated HP octasaccharide had its 

molecular mass determined using ESI-MS.  
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Figure 54.  Electrospray ionization mass spectrum of the unmodified HP octasaccharide.  The unmodified 
HP octasaccharide (10 µM) contained in 70% acetonitrile and 10 µM imidazole was introduced by direct 
infusion (10 µl/min) into the mass spectrometer.  The expected ions are indicated, where “Na” represents a 
sodium adduct. 
 

Mass Spectrometry analysis of the 3-O-sulfated HP octasaccharide 

 Results obtained from structural characterization experiments presented above, 

suggest that 3-OST-3 transfers one 3-O-sulfo group to the unmodified HP octasaccharide 

substrate.  This result was further strengthen as the purified 3-O-sulfated HP octasaccharide 

had its molecular mass determined using ESI-MS.  The mass spectrum of the 3-O-sulfated 

HP octasaccharide is shown in figure 55.  The sample showed three prominent molecular ion 

peaks.  These were [M-8H]8- at 297 m/z (Mr = 2384.0 Da), [M-13H+5Na]8- at 311 m/z (Mr = 
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2386.1 Da), and [M-16H+7Na+Imid]8- at 325.1 m/z (Mr = 2387.9 Da).  From this data the 

molecular weight of the 3-O-sulfated HP octasaccharide was determined to be 2386.0 ± 1.6 

Da which is close to the anticipated molecular mass of a HP octasaccharide that carries one 

3-O-sulfo group (2386.8 Da) 
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Figure 55.  Electrospray ionization mass spectrum of the 3-O-sulfated HP octasaccharide.  The 3-O-
sulfated HP octasaccharide (20 µM) contained in 70% acetonitrile and 10 µM imidazole was introduced by 
direct infusion (10 µl/min) into the mass spectrometer.  The expected ions are indicated.  “Na” and “Imid” 
represents sodium and imidazole adducts respectively.  
 

Conclusions 

 HS has been implicated in the infection mechanism of numerous viruses that affect 

humans (3, 162-165).  Specifically, HS has been shown to assist in the viral infection 

mechanism for HSV-1, at both the viral attachment and viral fusion stages of infection via 

interactions for viral envelope glycoproteins (130, 175, 201).  Due to the structural diversity 

contained with HS sequences, the functional relationships between specific saccharide 
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sequences and their ability to promote HSV infections remain largely unknown, as it is 

extremely difficult to obtain sufficient quantities of a homogenous HS sequence. 

 In the present chapter, we determined that incubating the HP octasaccharide with 

purified 3-OST-3 in the presence of [35S]PAPS resulted in a gD binding 3-O-[35S]sulfated HP 

octasaccharide that was 80% pure in terms of radioactivity.  This was found to be sufficient 

enough to complete is structural characterization as we set to determine which glucosamine 

residue that carried the 3-O-[35S]sulfo group.  Results obtained from non-reducing end 

analysis demonstrated that residue 2 did not carry of the 3-O-[35S]sulfo group.  Results 

obtained from reducing end analysis revealed that residue 8 did not carry the 3-O-[35S]sulfo 

group.  Internal sequencing analysis demonstrated that 3-OST-3 transfers a 3-O-[35S]sulfo 

group to the glucosamine located at residue 6 within the unmodified HP octasaccharide, 

resulting in a sequence of ∆UA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-GlcNS6S3S-

IdoUA2S-GlcNS6S (3-O-sulfation is underlined).  To our knowledge, the elucidation of this 

gD binding sequence has not be reported before and is only the second sequence that has 

been characterized and demonstrated to provide binding sites for gD.  The characterization of 

the 3-O-sulfated HP octasaccharide provides a novel gD structure that provides additional 

structural information about heparan sulfate assisted viral entry.  Using a PAPS regeneration 

system coupled with 3-OST-3 modification, we were able to generate and purify sufficient 

amounts of the characterized gD binding 3-O-sulfated HP octasaccharide warranted for cell 

based assays.  When cell based assays are completed, it will represent the first attempt to 

inhibit HSV viral infection by exploiting a structurally defined oligosaccharide’s ability to 

bind to gD.  Finally, utilizing electrospray mass spectrometry our results were confirmed in 

that 3-OST-3 transfers only one 3-O-sulfo group to the HP octasaccharide substrate.   
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CHAPTER V 
 

PURIFICATION OF HEPARAN SULFATE FROM BOVINE KIDNEY 
 
 
 

Introduction 

HS is a highly sulfated polysaccharide that is presented in abundant quantities on the 

cell surface, thereby making it an ideal target for the modulation of many biological 

processes through its interactions with various biologically important proteins.  HS has been 

found to play a role in the HSV infection mechanism through its interactions with HSV gD.  

If the minimal required sequence for this interaction is determined, it may be possible to 

inhibit HSV infections by mimicking it polysaccharide based receptors.  As a consequence in 

Chapter III, a 3-O-sulfated HP octasaccharide was determined to be of the minimum size 

required for gD binding.  In Chapter IV, characterization of this 3-O-sulfated HP 

octasaccharide was completed.  Results obtained do provide additional structural information 

regarding the HS assisted HSV entry mechanism.  However, only when a diverse library of 

structurally defined sequences that possesses binding affinity for gD becomes available, can 

one begin to uncover the structure-activity relationships of HS.   

To this end, we describe the isolation and purification of large quantities of HS from 

bovine kidney by modifying and optimizing a previously published method (185).  Once 

purified, the HS was subjected to partial digestion by heparin lyases to generate an HS 

oligosaccharide library of various sizes.  Milligram amounts of the HS octasaccharide library 

were modified with 3-OST-3 with hopes that a novel gD binding sequence could be 

 



  124

generated in sufficient amounts to complete structural characterization.  This would again 

provide new insights to the currently unknown structure-activity relationship between HS 

and gD.    

 

Purification of HS from bovine kidney acetone powder 

Since the HS that was commercially available, utilized bovine kidney as the starting 

material, we attempted to use the same and process it through an identical purification 

procedure (185).  This initial attempt was abandoned because it was estimated that ~600 L of 

chloroform/methanol and ether would be needed to defat and dry the tissue to produce the 

starting material required for large scale production.  Because of this a different starting 

material needed to be selected.  As described in the previous publication (185), the goal of 

the high amounts of chloroform/methanol and ether was to remove fat and to completely dry 

the resulting tissue into its powder form.  Fortunately, bovine kidney acetone powder was 

found to be commercially available.  Since this material has already been defated and 

completely dried no chloroform/methanol and ether was needed to process this material.  As 

a result, the bovine kidney acetone powder was used as the starting material for the isolation 

and purification of large quantities of HS. 

The purification procedure can be separated into eight steps as described below 

(figure 56).  It is important to note here that the recovery yield from each step was monitored 

to ensure the highest recovery yield possible.  This was done by taking an aliquot after the 

completion of one step and spiking it with [35S] labeled HS, and then this material was 

subjected to the next step.  The recovery yield was observed by the amount of [35S] labeled 

HS that was recovered. 
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Step one:  Homogenization and protein denaturation 

 Each round of purification begins with the homogenization of the 200 g of bovine 

kidney acetone powder.  The acetone powder is homogenized in 4 L of distilled water.  The 

resulting homogenate is then heated at 100°C for 1 hr to denature proteins and to destroy the 

presence of any bacteria.  Due to high volumes that were to be heated along with the size 

limitations of our water bath, we decided to autoclave the homogenate for 1 hr.  This 

provided a simple, yet efficient way to denature proteins that were contained in the large 

volumes of the homogenate. 

 

Step two:  Protease Digestions (2 rounds) 

 Denaturing the proteins serves to increase their susceptibility to be degraded during 

protease digestion.  The amount of protein associated with the homogenate was considered to 

be high, thus two rounds of protease digestion were carried out. 

 

Step three: Trichloroacetic acid (TCA) precipitation 

 After proteins had been degraded, they were subsequently precipitated by the addition 

of trichloroacetic acid (TCA).  The supernatant which contains the HS was collected and 

processed in subsequent steps. 

 

Step four:  Ethanol precipitation 

 The HS is then precipitated using cold ethanol.  It is important to note that after TCA 

precipitation, the pH of the supernatant was not surprisingly found to be extremely acidic pH 

between 0.5-1.0.  During procedure optimization, it was discovered that ethanol 
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precipitations of HS was required to be carried out at more of a neutral pH (~7.85) for 

maximum recovery yield of 90-95%.  If the HS precipitation was carried out at very acidic or 

low pH, the recovery yield from this step alone decreased to approximately 40%.  The most 

efficient approach to neutralize the TCA supernatant was to use NaOH pellets.  We used 

NaOH pellets so that the volume would be as small as possible.  Minimizing the volume was 

a huge concern because at this point approximately 15 L of material was generated.  After the 

ethanol precipitation the volume was reduced significantly to approximately 1 L which was 

more manageable.     

 

Step five:  Beta-elimination 

 After ethanol precipitation, the HS was considered to be in its proteoglycan form.  In 

this form, HS is considered to be linked to its core protein at specific serine residues.  Beta-

elimination by the addition of NaOH and NaBH4, serves to break this linkage and stabilize 

the HS polysaccharide so that further degradation does not occur. 

 

Step six:  Ethanol precipitation 

 After beta-elimination the HS (free from its core protein), is precipitated as before 

using cold ethanol.  HS precipitation here serves to decrease the volume and to increase the 

concentration of HS for subsequent steps. 

 

Step seven:  Chondrotinase digestion 

 At this point, it is possible that the material contains some amount of chondroitin 

sulfate (CS).  The CS needed to be removed as the final step in the purification procedure 
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utilizes anion exchange chromatography.  CS, like HS, is a long polysaccharide that carries 

numerous negative charges.  As a result, it would be difficult to separate CS from HS using 

this method.  Furthermore, the presence of CS would interfere with HS quantification as a 

positively charged based alcian blue assay will be used as described later.   

 

Step eight:  Anion exchange chromatography 

 The resultant material after CS digestion is subjected to anion exchange DEAE 

chromatography using the AKTA FPLC system.  This is the final step in the purification 

procedure which serves to separate HS from any residual protein contaminants that may have 

survived.  The HS is separated from protein and eluted using a NaCl gradient.  A 

representative DEAE elution profile is shown in figure 57. 

 

  

Figure 56.  Optimized scheme for HS purification from bovine kidney acetone powder.  The purification 
procedure consists of eight separate steps.  Each step is described in greater detail in the text. 
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Figure 57.  FPLC anion exchange profile of the purification of HS.  Column size: (1 × 20 cm).  The column 
was equilibrated with a solution of 50 mM NaAc, 250 mM NaCl pH 5.  HS was eluted using with a 400 ml 
gradient of 1 M NaCl in 50 mM NaAc, pH 5 at a flow rate of 4 ml/min.  Protein concentration was monitored 
by online absorbance detection at 280 nm. HS was monitored using the alcian blue assay on every third fraction. 
 
 In figure 57, the protein concentration was monitored using an online UV detector 

while the HS elution trend was monitored using the alcian blue assay on every third fraction.   

It was observed that there was some degree of overlap between the protein and HS elution 

patterns.  However, the majority of the protein seemed to be eluted prior to fraction 38.  As a 

result, all fractions after this point were collected, dialyzed and deemed to be purified HS.  

Furthermore, the chromatogram suggested that the majority of the protein could be separated 

from HS using this method as the majority of the protein did not bind to the column.   

 

Quantification and purity of HS 

The amount of HS that was ultimately purified was quantified using an alcian blue 

assay as described in the “methods” section.  This assay has been developed, optimized, and 

reported in a previous publication (186).  This assay takes advantage of HS ability to interact 
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with the positively charged dye through its negative charged groups.  As a result, HS binds to 

the dye in a concentration dependent fashion as shown in figure 58.     
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Figure 58.  Alcian blue assay for the quantification of HS.  The standard curve was prepared in duplicate 
with HS (ICN) samples from 0-2.5 µg.  The assay was preformed as explained in “methods” section, with 
analysis at 600 nm.  The linear regression and R2 value is present in the graph.  The purified HS were prepared 
in duplicated at various concentrations to fall on the standard curve.  
 
Figure 58, shows a representative standard curve using the alcian blue assay with HS (ICN), 

in order to observe whether this method could be used to quantify the amount of HS that was 

purified.  It was clearly observed that there is a linear correlation between the amount of HS 

(ICN) and the O.D600nm.  Specifically, it was observed that the standard curve maintained its 

linearity up to approximately 2-2.5 µg HS (ICN).  It is important to note that once the 

concentration of the purified HS was determined, it was possible to generate a standard curve 

using it with results similar to what is shown in figure 56.  This observation suggested that 

this assay could be used to directly quantify the amount of HS that was purified, assuming 

the dilutions would be fixed so as they would fall within this linear range.  
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 The purity of the final HS sample was evaluated using the well established Bradford 

assay for the quantification of proteins.  Based on the FPLC profile at 280 nm, it was 

believed that the protein present was low (figure 57).  Results obtained from the Bradford 

assay, using bovine serum albumin (BSA) as a standard, suggested that very little protein 

remained in the sample.  This was evident as the protein concentration was determined to be 

less than 5 µg/ml, which was the detectable limit of the assay (data not shown).  

Consequently, the relative purity of the HS was deemed acceptable when the ratio between 

HS to protein was considered.  The purity was further investigated by HS ability to be 

modified by HS sulfotransferases when compared to that of HS (ICN).  Any contamination 

(i.e. proteins) would have adverse effects on these modification reactions.  Results suggested 

that the sulfotransferases where able to transfer a [35S]sulfo group with comparable efficiency 

to both purified HS and HS (ICN) (data not shown).  This was extremely important as the HS 

oligosaccharide library would need to be modified by 3-OST-3 to generate potential gD 

binding oligosaccharides. 

The above optimized HS purification procedure was carried out seven times, each 

processing 200 g of bovine kidney acetone powder.  Each round of purification took 

approximately 14 days to complete.  The major challenge included designing a method with 

appropriate instrumentation that could accommodate the large volumes that were generated, 

which were in excess of 15 L prior to step 4, during each round of purification.  Each round 

yielded on average approximately 120-130 mg of purified HS, with a final recovery yield 

greater than 60%.  Considering the amount of steps and the high volumes that were generated 

and processed, a 60% recovery yield was deemed satisfactory.   A total of 1600 g of bovine 

kidney acetone powder was ultimately processed which has yielded over 770 mg of purified 
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HS that has an estimated commercial value of greater than $46,000.  This material was later 

used to generate a HS oligosaccharide library from its partial digestion by heparin lyases. 

 

Generation and isolation of gD binding HS oligosaccharide 

 The purification of large amounts of HS allowed for the generation of milligram 

amounts of various sized HS oligosaccharides.  The HS was partially digested by heparin 

lyase III (Hep III).  The Hep III digestion was optimized to give the most octasaccharide and 

hexasaccharide pools upon resolving on a P-6 size exclusion column.  Results from 

optimization suggested that digesting 5 mg of HS with 6.1 mU of Hep III was necessary to 

achieve this goal.  To this end, twenty reactions (5 mg HS/reaction) was each digested with 

6.1 mU of Hep III and subjected to size exclusion chromatography.  The P-6 elution profile is 

shown in figure 59.     
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Figure 59.  HS oligosaccharide library production.  Profile of ~100mg of purified HS digested with Hep III.  
Twenty separate digestions (~5 mg of HS/digestion) were incubated with 6.1mU Hep III/digestion.  Each 
digestion mixture ~1 ml consisted of HS, 50 mM NaH2PO4 and 100 ug/ml BSA, pH 7 incubated at 37°C for 24 
hrs.  Digestions were terminated by heating at 100°C for 15 mins.  All mixtures are loaded on a Bio-Gel P- 6 
size exclusion column (2.5 x 200 cm) equilibrated with 0.5 M ammonium bicarbonate at a flow rate of 0.5 
ml/min and 4.5 ml fractions were collected. 
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Based on the elution profile shown in figure 59, it was observed that we were able to 

sufficiently resolve from octasaccharides down to disaccharides using this method.  Based on 

their absorbance at 232 nm, we could estimate that amount of material contained within each 

oligosaccharide pool.  In the previous publication by our laboratory, approximately 400 ng of 

a 3-O-sulfated gD binding HS octasaccharide was isolated by processing 40 mg of HS.  

Therefore, we hypothesized that processing 300 mg of HS would result in a sufficient 

amount of a gD binding oligosaccharide to complete its characterization. 

 It was observed that processing 300 mg of HS through the optimized Hep III partial 

digestion yielded approximately 10 mg of HS hexasaccharide library.  This library was 

demonstrated to contain a gD binding octasaccharide as described in a previous publication 

(181).  The HS hexasaccharide library was then incubated with purified 3-OST-3 enzyme in 

the presence of [35S]PAPS to generate a 3-O-[35S]sulfated HS library.  We attempted to use 

two forms anion exchange chromatography, as did the previous report, to purify a gD binding 

3-O-sulfated HS octasaccharide from the library.  However, after processing the material it 

was observed that only 5 µg of a gD binding 3-O-sulfated HS octasaccharide was isolated.  

This was much lower than was previously expected.  Based on this recovery, it was estimated 

that 5-10 g of HS needed to be processed to complete characterization and cell-based assays.  

As it was not plausible for us to attempt this, the isolation of a gD binding HS 

oligosaccharide from a HS library was abandoned.   

 

Applications for purified HS 

 Eventhough we were not able to generate sufficient quantities of a gD binding 3-O-

sulfated HS octasaccharide, the purification of large amounts of HS has greatly assisted our 
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continued study of HS and its biological functions.  As the laboratory continues to study HS 

biosynthesis, recombinant proteins of the various HS biosynthetic enzymes have been 

expressed and purified using traditional molecular cloning techniques.  Upon purification of 

these biosynthetic enzymes, their activities were able to be investigated utilizing the purified 

HS as a substrate.  Additionally, given that many of the HS biosynthetic enzymes are present 

in multiple isoforms, the substrate specificities of these isoforms were also able to be 

investigated using the diverse sequences contained with the purified HS polysaccharide.     

 The structural study of biologically important HS sequences at the polysaccharide 

level is a daunting task due to its structural diversity and technological limitations.  However, 

it is much easier to study HS sequences at their oligosaccharide to disaccharide levels.  The 

laboratory also has expressed and purified three HS degrading enzymes, endoglycosidases, 

heparin lyase I, II, and III.  After purification of these enzymes, their activities were also 

investigated utilizing the purified HS as a substrate.  Heparin lyases serve to degrade the HS 

polysaccharide into its disaccharide and/or oligosaccharide components, by cleaving 

glycosidic bonds depending on various sulfations patterns within the polysaccharide.  

Additionally, various sized oligosaccharide standards and libraries were generated by partial 

digestion by heparin lyases and the resulting sized oligosaccharides were separated and 

resolved by size exclusion chromatography as shown in figure 59. 

  

Conclusions 

 We were able to efficiently isolate and purify HS from bovine kidney acetone 

powder, using an eight step optimized procedure.  By using commercially available bovine 

kidney acetone powder, we were able to avoid the use of the harmful amounts of 
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chloroform/methanol and ether estimated for large scale production.  It was observed that 

processing 200 g of acetone powder resulted in approximately 120-130 mg of purified HS 

with a recovery yield of 60%.  We were able to process 1600 mg of acetone powder which 

yielded over 770 mg of purified HS. 

   The purified HS was used to generate milligram amounts of a HS oligosaccharide 

library by its partial digestion by heparin lyases.  Specifically, processing 300 mg of HS 

yielded 10 mg of the HS hexasaccharide library.  We subjected this library to 3-O-sulfation 

by incubation with purified 3-OST-3 in the presence of [35S]PAPS.  We attempted to isolate a 

gD binding 3-O-sulfated HS oligosaccharide from the library, however due to low recovery 

yields we were only able to obtain approximately 5 µg of a 3-O-sulfated HS oligosaccharide.  

As a result of low yields, we were not able to isolate sufficient amounts of a gD binding 

oligosaccharide from the library to complete its characterization.  

 HS is the central molecule of interest in our laboratory.  HS is a highly sulfated 

polysaccharide that is presented in abundant quantities on the cell surface, thereby making it 

an ideal target for the modulation of many biological processes through its interactions with 

various biologically important proteins.  The laboratory is interested in understanding the 

“non-template” driven biosynthesis of HS through investigations of HS biosynthetic 

enzymes.  Moreover, the laboratory is interested studying the roles that HS play in assisting 

in HSV viral infections and its roles in regulating blood coagulation.  As a result, the 

purification of large quantities of HS was a great success and is used frequently in the 

laboratory.  Purified HS is a valuable reagent to have on hand to study HS biosynthesis, its 

structure and how they relate to its diverse function.  Given the high commercial cost of HS 
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(ICN) along with it being abruptly discontinued, an efficient large scale purification 

procedure was essential.   

Furthermore, we were able to send milligram amounts of purified HS to various 

collaborators to explore novel biological interactions that implicate HS.  By generating 

microgram amounts of 3-O-sulfated HS (3-OST-1/3-OST-3), novel investigations and 

experimentations are forthcoming that may suggest specific 3-O-sulfated HS sequences have 

different and previously unknown biological properties. 
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CHAPTER VI 

CONCLUSIONS 

 

HS has been implicated in the infection mechanism of numerous viruses that affect 

humans (3, 162-165).  Specifically, HS has been shown to assist in the viral infection 

mechanism for HSV-1, at both the viral attachment and viral fusion stages of infection via its 

interactions with various HSV-1 envelope glycoproteins (130, 175, 201).  Due to the 

structural diversity contained with HS sequences, the functional relationship between specific 

saccharide sequences and their ability to promote HSV infections remain largely unknown, 

as it is extremely difficult to obtain sufficient quantities of a homogenous HS sequence.   

In a previous study, it was demonstrated that HS modified by 3-OST-3, and not 3-

OST-1, was able to bind to gD to initiate HSV-1 viral entry into target cells (130).  As a 

result, it was hypothesized that if the specific HS sequence that allows for gD binding that 

subsequently promotes viral fusion is elucidated, then it could possibly serve as a lead 

compound for further development of HS based therapeutics.  The development of HS based 

therapeutics may aid in the treatment of HSV infection by disrupting viral entry by targeting 

the virus interactions with its polysaccharide based cellular receptors.  As a result, the goal of 

this dissertation was four fold.  First, was to achieve high expression levels of gD that were 

needed to investigate its binding to various sized HP oligosaccharides (Chapter III).  Second, 

using structurally defined HP oligosaccharide substrates, was to generate gD binding 3-O-

sulfated HP oligosaccharides of various sizes and determine the minimal required length for 
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gD binding (Chapter III).  Third, was to characterize the oligosaccharide that possessed the 

greatest binding for gD and generate sufficient quantities to conduct cell based assays 

(Chapter IV).  Fourth, was to generate and isolate a novel gD binding sequence from a HS 

derived oligosaccharide library (Chapter V).   

In Chapter III, the expression of the ectodomain of gD (Lys26-His332) in large 

quantities from E. coli. was described.  The successful expression of gD (5 mg/L culture) was 

achieved by co-expressing the bacteria chaperone proteins GroEL and GroES.  To our 

knowledge, using a bacteria expression system to prepare gD or other HSV envelope proteins 

has not been reported.  This represents a novel approach to express HSV envelope proteins 

that could be used to develop a vaccine against HSV infections.  As a result, future 

investigations are forthcoming that will investigate other HSV envelope glycoproteins (gC 

and gB) that will require their expression in E. coli.  Results presented in this chapter 

demonstrated that the HP oligosaccharides of various sizes had a high susceptibility to 3-O-

sulfation by 3-OST-3 in a size dependent manner.  gD binding investigations revealed that 

the 3-O-[35S]sulfated HP oligosaccharides bound to purified gD in a size dependent manner 

with the 3-O-[35S]sulfated HP octasaccharide having the minimum length required for 

detectable gD binding.  The binding affinity of the 3-O-[35S]sulfated HP octasaccharide to 

gD was determined to have a Kd value of 19 µM.  Prior to this work, the minimal length 

required for gD binding had not be investigated.   

 In Chapter IV, the structural characterization of the gD binding 3-O-[35S]sulfated HP 

octasaccharide was described.  Specifically, the glucosamine residue that carried the 3-O-

[35S]sulfo group transferred by 3-OST-3 was determined using a combination of chemical 

and enzymatic modifications from both non-reducing and reducing ends.  Results 
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demonstrated that 3-OST-3 transfers a 3-O-[35S]sulfo group to the glucosamine located at 

residue 6 of the unmodified HP octasaccharide, resulting in a sequence of ∆UA2S-GlcNS6S-

IdoUA2S-GlcNS6S-IdoUA2S-GlcNS6S3S-IdoUA2S-GlcNS6S (3-O-sulfation is 

underlined).   To our knowledge, the elucidation of this gD binding sequence has not be 

reported before and is only the second sequence that has been characterized and 

demonstrated to provide binding sites for gD.  Using a PAPS regeneration system coupled 

with 3-OST-3 modification we were able to generate nearly 130 µg of the characterized 3-O-

sulfated HP octasaccharide.  This will allow for the 3-O-sulfated HP octasaccharide to be 

tested in a cell based assay to determine if it could inhibit HSV viral fusion.  These 

experiments are currently being conducted in Dr. Shukla’s laboratory and results are 

forthcoming.  To our knowledge this represents the initial experiment of this kind which will 

determine the feasibility of using structurally defined HS/HP sequence to inhibit HSV viral 

infections. 

The 3-O-sulfated HP octasaccharide and the 3-O-sulfated HS octasaccharide are 

found to display 13 and 7 sulfate groups respectively (figure 60).  Given that their binding 

affinities to gD were found to be nearly identical, suggests that the interactions between gD 

and HS/HP sequences are more than mere non-specific electrostatic interactions.   
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Figure 60.  Known characterized gD binding structures.  Shown in panel A is the 3-O-sulfated HP 
octasaccharide, shown in panel B, is the 3-O-sulfted HS octasaccharide.  The binding affinities are presented as 
Kd values.  The critical 3-O-sulfo group transferred by 3-OST-3 is illustrated in red.  The noticeable differences 
beyond 6-O-sulfations are circled in blue. 
 
When the two gD binding structures are further examined, there are a few noticeable 

differences beyond the number of sulfate groups and the presence of 6-O-sulfate groups.  If 

the HS gD binding sequence is compared to the HP gD binding sequence the differences are 

as follows: 1) the absence of a 2-O-sulfate group on the non-reducing end uronic acid, 2) the 

presence of an N-acetyl group instead of a N-sulfate group on residue 4, and 3) the presence 

of an N-unsubstituted glucosamine instead of an N-sulfated glucosamine at the reducing end 

residue 8.  As a result of the two characterized 3-O-sulfated octasaccharides (see figure 58) 

having similar binding affinities for gD, it suggests that the differences between the two may 

be located in regions or positions that have little to no affect on gD binding.  However, only 

when a diverse library of structurally characterized sequences becomes available that 

demonstrate binding to gD, can the specific structural motifs that promote gD binding be 

uncovered.  The characterization of the 3-O-sulfated HP octasaccharide provides a novel gD 

structure that along with the previously characterized 3-O-sulfated HS octasaccharide 

provides additional structural information about heparan sulfated assisted viral entry. 
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 In Chapter V the large scale purification of HS from bovine kidney acetone powder 

was described.  Using an eight step optimized procedure, we were able to purify 120-130 mg 

of HS from 200 g of bovine kidney acetone powder.  Processing 1600 mg of acetone powder 

yielded over 770 mg of purified HS.  To search for an additional gD binding structure, we 

partially digested 300 mg of HS using a mixture of heparin lyases.  This resulted in 

approximately 10 mg of a HS hexasaccharide library.  We subjected the library to 3-OST-3 

modification in attempt to generate and isolate a novel gD binding oligosaccharide.  

However, results obtained suggested that the recovery yield was much lower than initially 

expected.  It was estimated that approximately 5 µg of a 3-O-sulfated HS oligosaccharide 

was recovered.    This amount was deemed insufficient to conduct the propose experiments.  

Eventhough we were not able to generate sufficient quantities of a gD binding 3-O-sulfated 

HS oligosaccharide, the purification of large amounts of HS has greatly assisted our 

continued study of HS and its biological functions.  As the laboratory continues to investigate 

and understand HS biosynthesis, the purified HS is serving as a valuable tool for the 

determination of activities of recombinant HS biosynthetic enzymes.  

Herpes viral infections are prevalent in humans.  Unique HS/HP sequences play 

intimate roles during the infection process.  Developing a HS/HP based antiviral drug could 

be a viable approach to treat HSV infection.  Understanding the structural-activity 

relationship of HS/HP in promoting HSV infections is essential for achieving this goal.  The 

work described above provides additional structural evidence of the HS/HP mediated HSV 

infection mechanism.  Specifically, this work represents the first success in determining and 

an oligosaccharide’s gD binding affinity, characterization of its structure, and the preparation 
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of sufficient quantities for cell based assays.  Further development of this project could 

uncover a new way to treat diseases related to HSV infections. 
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