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ABSTRACT

Jonathan Hibbard: Harnessing Heterogeneity To Improve Patient Outcomes
(Under the direction of Michael Kosorok)

We investigate methods of improving medical outcomes through exploiting het-

erogeneity, with focus on actual implementation.

Advances in data-mining and big-data methods have allowed new and exciting

opportunities to alter the precise nature of statistical medical research. Whereas

traditional science experimentation has attempted to eliminate causes of variability

beyond a small set of variables of interest to be investigated, machine-learning tech-

niques to extract weak and complex signals from noisy data now allow handling of

heterogeneous experiments and subjects.

We propose that viewed through the lens of these modern machine-learning meth-

ods, heterogeneous and highly-variable data should be regarded as a boon not a

nuisance. In particular such data allows for the investigation and construction of in-

dividualized treatment rules for patients, that is for the advance of precision medicine.

Two facets of this view are especially explored. Firstly the practical design and

implementation of appropriate data collection experiments allowing for a machine-

learning approach, whilst simultaneously permitting a traditional experimental view

in order to satisfy investigators from both paradigms. We reference a particular

example, the design for a clinical trial investigating the optimal treatment of burns

patients (the LIBERTI trial).

This example highlights some particular challenges, statistical, philosophical and

logistical, and hopefully some corresponding solutions, that arise when bridging tra-

ditional and modern paradigms. Whilst we present our design as an initial solution,
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from the attempted implementation of this trial we discover, and then explore, par-

ticular aspects that are apt for further improvement.

Secondly we investigate methods to combine and make effective traditional clus-

tering techniques in higher dimensional data with weak signals, where existing tech-

niques may fail. Motivated by an example of COPD sufferers data (the SPIROMICS

study), we attempt to develop ways combining more traditional methods with a

machine-learning approach, and more fuzzy data-mining methods, with ones permit-

ting better inference.

We illustrate our methods on Fisher’s Iris data, and the Wisconsin Breast Cancer

data set. We explore extensions of the traditional Gaussian mixture model to more

general log-concave distributions and highlight what should be interesting theory for

such approximations.
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CHAPTER 1: INTRODUCTION.

Heterogeneity has long been the enemy of statisticians, and indeed much of statis-

tics historically has been focused on accounting for and removing this heterogeneity.

For a specific example, in clinical trials often a homogeneous population as possible

has been used to reduce patient variance, and ensure a clean signal can be extracted

with good inference.

However this approach is suboptimal, for numerous reasons. In particular, firstly

for generalizability. The conclusions of such an experiment can only be confidently

generalized to a similar population, and it is hypothesized that this has resulted in

some of the failures of recent supposed medical advances to be replicated in further

experiments. Secondly often such investigations and trials focus on the majority

subpopulations such, as white males, for these being the largest subpopulations are

both easiest to recruit and furthermore provide the largest market when there are

commercial concerns. This leaves minority subpopulations unfairly underrepresented

with respect to research and medical advances. Thirdly, and perhaps we might argue

most crucially, it is a missed opportunity to exploit patient variability to tweak and

thence optimize treatment for any given patient.

It is widely reported that we are entering an era of precision medicine. According

to the National Institutes of Health, precision medicine ‘an emerging approach for

disease treatment and prevention that takes into account individual variability in

genes, environment, and lifestyle for each person.’ (NIH (2016)). To crudely para-

phrase, people are highly heterogeneous, therefore treatments appropriate to each
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one should be heterogeneous too. Clearly doctors have known and appreciated this

since the modern era, if not before as Katsnelson (2013) points out. For instance that

a febrile infant demands different considerations than a febrile geriatric provides a

trite example; but through the science of collecting and providing much data on each

patient, not just simple demographics, but also genetic and environmental factors

amongst others, and then through the available computing power to make use of this

big data, there is the current possibility to tailor to each patient a treatment truly

deserving of the word ‘precision’.

Whilst data collection abilities and computing power have exploded, statistics,

including biostatistics, has not entirely kept pace, at least in the same direction.

This has resulted in new terminology such as ‘data science’ to nomenclate the devel-

opment and application of novel, nontraditional algorithms and techniques to cope

with examining big data, and extracting noisy, complex and sparse signals. While

there is much that is laudable in the new realm of ‘data science’, in particular the

drawing together of ideas from computer science, pure mathematics, applied mathe-

matics, physics, and statistics among other fields, the liberation from the more rigid

traditional statistics viewpoint also brings disadvantages.

A prominent warning as to the misuse of big data is the reported problems with

the Google Flu Trends project to predict epidemic outbreaks in the United States

(Lazer et al. (2014)). Lack of sufficient modeling assumptions and most saliently

the misapprehension of bias in the data sample, are reputed to have led to some

major errors. This decidedly showed simply using bigger data does not always give

a better result, and indeed Google retired the project. However, further research has

reported that the addition of more modelling and statistical inference methods into

such framework can reap real rewards (Schumacher et al. (2015), Preis and Moat

(2014)).
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Dealing with bias, modelling assumptions and inferences is the home territory of

the biostatistician, and hence biostatistics is in prime position to propel precision

medicine into a successful new era, particularly by fusing this familiarity with both

the use and development of powerful data mining methods. In this script, we shall

describe our own, rather minuscule, efforts to contribute to this fusion.

In the first chapter of this document, we define and focus on a particular type of

precision medicine, the adaptive, or dynamic, treatment regime (DTR), and advances

in calculating these. In particular we shall comment on the role of the Sequential Mul-

tiple Randomized Trial (SMART). We do so through presenting a particular example

of a SMART, that we have designed and of which we have begun implementation.

The design has the interesting features of being able to be regarded either from the

modern precision medicine viewpoint, amenable to develop precision treatment rules,

or from a more traditional perspective suited to making classic inference. We hope

that this design, the first of its type (to our knowledge) outside of mental health,

might serve as a template for launching other SMARTs.

For the second chapter, we shift our focus to a broad and more general type

of data mining, namely clustering. One might argue that the goal of clustering is

to strike a balance between parsimoniously describing the data, whilst recognizing

the presence of appreciable heterogeneity, which is to say we aim to group the data

into a relatively small number of groups, or clusters, such that the objects within

each group are appreciably more heterogeneous than objects between two different

clusters. This is a well researched and vast field, with little consensus on the optimal

methods, or indeed precise definitions, and we explore some of the issues through

the difficult analysis of high dimensional data on COPD patients, with the aim of

extracting COPD subtypes. We propose a viewpoint to allow reasonable conclusions

as to existence of subspecies/subtypes in a dataset, and illuminate the ideas through
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application to Fisher’s Iris data. We then examine what these methods tell us when

applied to data collected from the SPIROMIC Study, which provides a large amount

of data from COPD patients.

The third chapter examines extensions of our method, and explores the result of

these, in particular the use of certain nonparametric mixture models. We illustrate

this on a classical dataset, the Wisconsin Breast Cancer dataset. We tie our results

theoretically to other recent developments in this area, and suggest that, at least in

some instances, our methods offer, in some ways, benefits over competing ideas.

The concern of the fourth chapter is possible directions for further work on these

themes. In particular we discuss limitations we found on implementing the trial de-

sign presented in the second chapter. We discovered that logistics, insurance issues,

and patient perceptions caused implementation of the design to be problematic in

this particular setting. Hence we briefly discuss new proposals, involving judicious

and adaptive randomization, that we hope will result in both circumnavigating these

issues and furthermore actually improve the statistical power of our machine learning

techniques to calculate optimal decision rules. We also consider further how to con-

tinue the work we present on data mining the SPIROMIC Study, and ways to move

it more fully into the realm of machine learning. Finally we outline intended further

work on density approximation, in particular with regard to techniques which might

be of use in nonparametric mixture models.
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CHAPTER 2: LIBERTI, A MULTIPURPOSE SMART STUDY.

2.1 Summary.

Background/Aims:

Laser treatment of burns scars is considered by some to be standard of care,

despite little evidence-based research. Evaluating the efficacy is made difficult by

substantial heterogeneity in patient response, possible delayed effects from the laser

treatment, a large number of treatment options/settings, and treatments can be pro-

vided in conjunction. We design a trial capable of coping with these issues that may

be viewed as a classic randomized clinical trial, ensuring standard interpretations,

but also viewed from a more modern paradigm to give extra insight regarding opti-

mized treatment algorithms and precision medicine. It will be the first randomized

trial to compare the effectiveness of laser treatments for burns scars.

Methods:

We propose using the Sequential Multiple Assignment Randomized Trial (SMART)

framework to investigate the effect of various permutations of laser treatment on hy-

pertrophic burn scar amelioration. We also examine the resulting trial design from a

classical viewpoint, to provide sample size calculations, and assurance of good power

for specified treatment group comparisons under a traditional Randomized Clinical

Trial (RCT) viewpoint.
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Results:

We demonstrate that viewed classically the trial has power to produce determina-

tions of laser treatment effect. We also appeal to recent methodological research to

predict, and describe, the many benefits of the new SMART paradigm coupled with

machine learning.

Conclusions:

We show that some trials may be effectively viewed both as a SMART and a

RCT simultaneously, allowing the enhanced interpretations and power of the former,

while ensuring the well understood framework and analyses of the latter. We believe

that SMARTs designs should be commonly used, but until their benefits have been

frequently demonstrated, we suggest a chimera trial, such as proposed here, which

allows use of the SMART paradigm with confidence that classic results may still be

attained. Further, this is, to our knowledge, the first use of a SMART in surgery,

and possibly the first application of AI techniques to SMARTs outside of psychiatry,

and evinces the potential benefits of SMARTs throughout all fields of medicine.

2.2 Introduction and Background.

Overview:

The Laser Induced BioEngineered Remodeling of Thermally Injured skin (LIB-

ERTI) Trial is a randomized clinical trial in burn scar surgery, which combines both

conventional and precision medicine paradigms. The trial will investigate and eval-

uate the efficacy of certain sequences of laser treatment of hypertrophic burn scars,

and is designed to both address the salient clinical questions in a standard fashion,

while also allowing the calculation of precision medicine, patient specific, treatment
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rules which optimize individual patient outcome. To achieve this dual purpose both

standard Randomized Clinical Trial (RCT) and Sequential Multiple Assignment Ran-

domized Trial (SMART) paradigms are employed.

Both RCT and SMART approaches are of interest, as they allow the reasonably

powered comparison of a fairly large number of disparate treatment options, as well

as the rudimentary mathematical estimation of the effect of no treatment in a trial

where assignment to no treatment is impossible practically, yet should be considered.

The SMART approach is of further interest in this scenario, as it can make use of

very appreciable patient heterogeneity and is intended to provide an individualized

Dynamic Treatment Rule (DTR) that might allow patient specific precision medicine.

Indeed the SMART approach is of more interest still by virtue of being the first

such trial (to our knowledge) in surgery certainly, and possibly the first to employ

machine learning methods outside of psychiatry. As such, certain problems inherent

in the implementation of SMARTs in a new area are identified and overcome.

Burn Injury:

Hypertrophic burn scars are the cause of significant ongoing morbidity in burn

victims (Finnerty et al. (2016), Hultman et al. (2013)). Physical sequelae include itch-

ing, pain, stiffness and contracture (Finnerty et al. (2016), Hultman et al. (2013)),

while psychological sequelae include depression, post traumatic stress disorder and

great social anxiety (Arno et al. (2014), Bayat et al. (2003), Brown et al. (2008)).

Up to 70% of burns victims develop such scars but, of yet, optimal therapy combi-

nations, treatment timings, and indication remain unknown (Finnerty et al. (2016)).

Further clinical trials are needed to address the efficacy of currently used treatments,

in addition to elucidating the little known molecular pathways instrumental in the

formation of these scars (Finnerty et al. (2016), Friedstat and Hultman (2014), Porter
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et al. (2016)).

There are two laser treatments that are hypothesized to ameliorate hypertrophic

scars: vascular-specific Pulsed-Dye Laser (PDL), and ablative fractional CO2 laser

(CO2) (Hultman et al. (2013), Hultman et al. (2012)). These two types of therapies

operate through completely different mechanisms. PDL essentially vaporizes capil-

laries by targeting haemoglobin thereby reducing vascularity. The CO2 laser targets

water and essentially burns away multiple small vertical columns into the scar, pro-

moting collagen formation and scar remodelling (Hultman et al. (2013), Hultman

et al. (2012)). Some plastic surgeons familiar with these therapies consider them ef-

fective for remodelling burn scars, but the evidence for this is as yet unclear, a major

gap in the research (Friedstat and Hultman (2014)). There is a considerable lack of

large scale randomized trials regarding laser treatments.

Determining the effectiveness of a laser treatment is problematic for various rea-

sons (Friedstat and Hultman (2014)). A major one of these is the heterogeneity across

patients and types of burn scars. The burns mechanism could be an important indi-

cator of outcome, with say electrical burns being fundamentally different from flame

burns (Duke et al. (2012), Kidd et al. (2007)). The amount of melatonin in the skin is

a factor in response to laser treatment, with for example hypopigmentation being an

issue for darker skin types (Fontana et al. (2013)). Even genetic factors, particularly

regarding the inflammatory response, (Barber et al. (2006), Schwacha et al. (2005)),

will play a part in scar formation and hence treatment.

A further problem is that laser treatment is usually provided in combination

with other treatments, such as standard medical care (MED) involving non surgical

interventions such as silicone gels, compression garments and medical ointments, or

indeed within a sequence of laser treatments of more than one type, (Bloemen et al.

(2009), Kerwin et al. (2014)), causing the isolation of the effects of specific, individual
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treatments to be problematic.

SMART Studies:

The classic gold-standard in evidence based medicine is the randomized clinical

trial (RCT) (Bothwell et al. (2016)). Judicious use of randomization removes unmea-

sured confounders and permits unbiased estimation and precise statistical inference.

However the classic paradigm of falsifying one simple hypothesis is no longer as ap-

propriate in the age of precision medicine, big data and artificial intelligence (AI),

when rather than have a few treatment options to choose between the opportunity

exists to tailor treatment to the individual (Dawson and Lavori (2003)). As such

the clinical statistician’s task becomes less about comparing fixed treatments, and

more about data mining for possibly complex individualized treatment rules (ITRs)

(Murdoch and Detsky (2013), Alyass et al. (2015)).

Classical clinical trials may focus on a homogeneous subgroup (Akli et al. (2015)),

in order to reduce the outcome’s variance, and increase the statistical power. This is

not such an appropriate paradigm when the subjects are naturally extremely hetero-

geneous, nor especially when an aim is to investigate ITRs that precisely depend on

this heterogeneity (Collins and Varmus (2015), Hayward et al. (2006)).

When the goal of main interest is evaluating, or discovering, a dynamic treatment

regime (DTR), that is optimized for an individual patient, classical clinical trials

also fall short, as a possibly large number of treatment sequences must be compared,

arising from permutations of different possible treatments at subsequent timepoints

(Kidwell (2014)).

Moving away from the classic paradigm to address these issues and towards a

modern paradigm of data mining and constructing DTRs, Murphy (Murphy (2005))

introduced the nomenclature of a Sequential Multiple Assignment Randomized Trial
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(SMART). In a SMART, participants are randomized to different treatments at sub-

sequent timepoints, with the randomization options and possibilities based on tai-

loring covariates, particularly previous treatments, and a patient’s response to them

(Almirall et al. (2014)).

Mechanically, a SMART might be viewed simply as a subclass of RCT, especially

if the randomization probabilities remain constant between all arms at all timepoints.

However, the aim, of looking for a personalized DTR, welcoming heterogeneity, and

particularly the emphasis on use of newly developed, machine learning based ana-

lytical apparatus, as opposed to classical techniques, provides a clear philosophical

separation between SMARTs and RCTs and their utilities (Liu et al. (2014)).

While extensive theoretical research into SMARTs blossoms (Chakraborty and

Moodie (2013), Kosorok and Moodie (2015)), their practical use has so far been

limited, and restricted mostly to psychiatry, despite expected benefits of wide ap-

plication throughout the medical field (Zhao et al. (2009)). This is not of course

unreasonable. While a SMART offers a promise of powerful analysis, its unfamiliar

nature might rightly make clinicians, reviewers, IRBs and funding bodies uncomfort-

able or unwilling to approve such designs (Murphy (2005) ,Almirall et al. (2014)).

This is a particular problem due to the fact that precise statistical inference remains

very difficult (Laber et al. (2014)). This might even result in querying the ethics of

a SMART, as a patient should not be in a trial unless it is well planned to have a

feasible chance of success.

Authors have answered this issue by, among other ways, suggesting regarding

SMARTs as simply pilot trials for feasibility (Almirall et al. (2012)), or else embed-

ding a simple aim in the SMART such as a classic RCT comparison of first stage

treatments (Murphy (2005)), allowing a sample size calculation to be performed for

this secondary aim.We present a design that extends this idea, in that we propose
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a SMART and a complimentary classical analysis that is capable of powerfully ad-

dressing the main research question of interest: the simultaneous comparison amongst

multiple DTRs (albeit not individualized DTRs). We further propose a simple but

innovative halfway analysis between the classic RCT and modern SMART paradigm

that is well powered to find better and worse treatments, if not the best and worst

treatments.

2.3 Methods/Trial Design.

Aims/Hypotheses:

This study concerns the evaluation of effects of two different types of laser treat-

ment, (PDL and CO2), on hypertrophic burn scars in comparison to traditional

non-surgical medical therapy (MED). There are multiple aims.

1: Address the gap in current knowledge regarding clinical evidence for the efficacy

of laser treatment of hypertrophic burn scars.

2: Address the lack of knowledge as to the optimal timing, type and order of laser

treatment.

3: Develop a personalized approach to the treatment of scars, acknowledging

that each participant could possibly respond to treatment significantly differently

depending on individual participant variables such as, for example, scar severity, skin

pigment and burn type.

Addressing these aims will be accomplished by testing hypotheses as appropriate

and also by using machine learning techniques to indicate the optimal sequence. Our

main outcome will be the Vancouver Scar Score (VSS) well-validated quantitative

burn scar assessment tool Fearmonti et al. (2010)). Specifically:
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1: We will test the following hypothesis regarding the short-term change in VSS

between entry to the study (measured at Visit 1) and the end of the first four-month

treatment block (measured at Visit 2):

H0α: No significant difference in VSS change between PDL and MED.

H0β: No significant difference in VSS change between CO2 and MED.

H0γ: No significant difference in VSS change between PDL and CO2.

2: After 24 months of the study, we will determine the long-term effect of treat-

ment on change in VSS (between Visits 1 and 5) by testing the following hypotheses:

H01 : No significant difference in VSS change between laser and medical treatment.

H02 : No significant difference in VSS change between CO2 and PDL.

We will also construct a confidence interval for the effect of a ‘better’ treatment

combination over a ‘worse’ one.

3: We will analyze whether there is an optimal treatment sequence using Q-

learning (Moodie et al. (2014), Lu et al. (2011), Zhang et al. (2012)) and Outcome

Weighted Learning (OWL) (Zhao et al. (2012), Zhao et al. (2015a)), and investigate

the difference between estimated participant specific treatment optimal outcomes

with a general (that is patient non-specific) optimal treatment outcome.

Interventions/Measurements:

The study will dovetail with current treatment practice at the University of North

Carolina (UNC) Burn Reconstruction & Aesthetic Center. Following initial intensive

care and surgery, patients generally have a consultation with a plastic surgeon at the

center. Typically one or two laser treatment cycles of either CO2 or PDL, as well
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as concurrent MED, are offered over a period up to a year, with the combination

choice being driven by the surgeon’s (unevidenced) intuition. Each treatment block

is four months long, during which time each patient receives multiple sessions of

laser treatment. Only one of CO2 or PDL is offered during any specific four-month

treatment block.

Our study design will offer all patients two four-month blocks of laser treatment.

Initial patient consultation suggested that patients would be very unwilling to enter

a trial if there was some chance of not receiving the maximum laser treatment they

might otherwise receive outside of the trial. On presentation, patients will be screened

for the study inclusion criteria. These are minimal, and essentially are suitability for

laser treatment, and willingness to be in a study. If met, then the patient will be

asked by the surgeon to consider consenting to the trial, which involves two four-

month blocks of laser treatments over the period of one year, selected randomly, as

well as concurrent standard medical care, and a follow-up visit at the two year mark,

one year after the end of treatment.

Year 1 of the study is divided into three four-month blocks. Patients will be

randomized so that laser treatment, augmented with medical therapy, is given in two

of these blocks, and solely medical therapy is given in the other block. Patients will

be block randomized equally between all allowed treatment sequences.

The patients will be examined at baseline, and at the end of each four-month

block. Further, they will be examined at the end of Year 2, for a total of 5 visits (at

0, 4, 8, 12 and 24 months). The treatment path options, and the timings are shown in

Figure 1. At the initial visit, and the subsequent two visits, the patient is randomized

to either CO2, MED, or PDL, under the constraints each patient must receive exactly

two laser treatments during the first year. There are 12 such treatment paths that a

patient could be set on.
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Figure 2.1: Schematic diagram illustrating patient treatment sequences.

In total upwards of 30 variables will be collected from each patient, over 10 of

which are time varying and must be recorded at every visit.

The main outcome of interest will be the well validated VSS, which encapsulates

many scar issues with one single score that should be ideally minimized Fearmonti

et al. (2010). Standard demographics, injury/treatment factors and skin/burn mea-

surements (Zhao and Laber (2014a), Robins (2004)) will be used as controlling vari-

ables in the analysis, and more importantly as tailoring variables to determine a

DTR. Quality of life measures (Edwards et al. (2007)), and alternative scar scores

(Fearmonti et al. (2010)) will be collected as secondary outcomes of interest.
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Patients:

The study population will be all patients referred to UNC’s burn center that

satisfy the inclusion criteria. Extrapolating from previous patient numbers and types,

we expect to recruit a fairly heterogeneous population, at an estimated rate of 10

patients a month. We propose a sample size of 180 patients.

Models/Analysis Methods:

We outline our main analyses for the main outcome change in VSS. We have

stated three stated aims, which we attempt to fulfill using the following analyses:

1: For evaluation of short term treatment effect, we will test H0, H0 and H0, by

comparing, using standard methods, the mean change in VSS from baseline to four

months, between the patients receiving MED for the initial treatment block, those

receiving CO2, and those receiving PDL. We will make pairwise comparisons using

2-sided t-tests and the Hochberg modification of the Bonferroni multiple comparison

procedure, with an overall Type I error rate of 5% (Hochberg (1988)).

2: The comparison of 2-year change in VSS between sequences of three treatment

blocks is less standard. The SMART nature of the design means we compare 12

treatment options at once, with possible major heterogeneity. Further we want to

compare laser treatments versus no laser treatment, even though all patients will

receive some laser treatment. With certain models and assumptions, for example

additive treatment effects, this would not be an issue, however experience with laser

treatments suggests these may not be realistic assumptions. Instead we propose the

following innovative regression model.

We will test H01 and H02 using a one-sided test with Type I error of 5%. We first

test H01 and only if this is rejected we test H02. Step-down testing will preserve a
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total Type I error rate of 5%.

We use a regression model applied to the treatments effect in each of the blocks.

We denote a treatment sequence by a triplet (i, j, k) with each of i, j, k corresponding

to choice of treatment in the first, second and third block, respectively, and being

set to 0, 1, or 2, to represent MED, CO2, and PDL respectively. We let the change

in VSS over the study of any given participant on treatment sequence (i, j, k) be

denoted by zi,j,k. We model the change in VSS by a normal variable, with a global

constant variance, as follows:

zi,j,k ∼ N(µi,j,k, σ
2), E[zi,j,k] = µi,j,k = µ+ α1,i + α2,j + α3,k + βi,j + γi,j,

subject to the constraints:

Σiαx,i = 0, Σxαx,i = 0,

Σβp,j = 0, Σqβq,i = 0, Σaβa,a = 0,

Σkγq,k = 0, Σjγj,r = 0, Σaγa,a = 0.

So we model participants on a given treatment path to have random normal

responses, with a common variance. We thus assume a mean model which has 11

free parameters, and 28 total variables, that is µ, αx,p, βp,q, γp,q for all 1 ≤ x ≤ 3,

0 ≤ p ≤ 2, 0 ≤ q ≤ 2.

We note that the interpretation of these parameters are intuitive: µ is the grand

mean, αx,p represents the first order effect of having treatment p at timepoint x, βp,q

represents the interactive effect of treatment p at the first timepoint and at treatment

q at the second, and γp,q represents the interactive effect of treatment p at the second

timepoint and treatment q at the third.
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The imposed conditions should force the model to immediately identify a ‘better’

option for treatment at both a given timepoint, as well as ‘better’ treatment combi-

nations between first and second treatments and also second and third treatments.

These will simply correspond to the signs of the αx,p, βi,j, γj,k respectively.

We note µ+ αx,w corresponds to the expected outcome for participants assigned

treatment w at timepoint x and randomized to treatments at other timepoints with

equal probability. Other more elaborate interpretations may similarly be given. Thus

if, for example, we have an αx,u − αx,0 ≥ q, we have an interpretation that there is a

treatment with an average outcome different from the current standard by more than

q. Testing the αx,w to determine whether or not the outcome is different for various

treatments is then reasonable.

Under the null hypothesis H01, the model is true, and all parameters except µ are

0, in particular all the αx,i must be 0. Further if there is no difference between the

effect of CO2 and PDL, the standard regression estimators must give that αx,1 = αx,2

for each timepoint x. Testing these relationships is then a valid test of H01 and H02.

For testing H01, we will use an F (2, 157)-test to determine whether α1,0 = α2,0 =

α3,0 = 0, and for testing H02, use an F (2, 157)-test to determine whether α1,1−α1,2 =

α2,1 − α2,2 = α3,1 − α3,2 = 0. We will allow for a 5% type I error.

The predicted effects of unobserved treatments, as calculated by the model, will

depend most certainly on our model assumptions. Nevertheless we hope these pre-

dicted values might provide insight and guide future study.

The model we propose seems clinically reasonable; for example it contains the

‘usual’ regression model of nontemporal effects and two way interactions between first

and second treatments and also between second and third. It also seems statistically

reasonable; for example we have 11 free parameters for 12 distinct observation points.

17



This would seem to be as flexible as we could hope, yet still have some hope that the

model is robust and can extrapolate somewhat. Furthermore, it appears to have very

decent power for rejecting our proposed hypotheses, despite having comparatively

large degrees of freedom, as is needed to realistically fit data at 12 points.

We will attempt to answer the question of laser effect difference with a non-

model based approach as well. To do this we will empirically estimate the mean

population outcome for each treatment, and rely on standard asymptotic theory

to assume that these estimates are approximately normally distributed with differing

means µi = µi,j,k a constant variance of σ2
i = σ2 for all treatment sequences. Instead of

trying to identify the absolute best and worse treatment sequences, we simply search

for a ‘better’ and ‘worse’ one. Our estimator for this is constructed by ordering the

12 treatment sequences as i1, . . . , i12 corresponding to decreasing observed average

outcome. We take the sequence, i1 with highest observed average as the ‘better’

sequence, and the sequence, i12 with lowest observed average as the ‘worse’ sequence,

provided this difference of averages is too large to be observed by chance if i1 indeed

is not better than i12 overall, more precisely provided mi1 − mi12 > 1.15s, with s

being an estimate of σ. The chance of a type I error of a false conclusion is then

about 10%, yet we have good discriminatory power to indeed find a better and worse

sequence. Using a step-down procedure to preserve the error rate, we may continue,

adding a second ‘better’ treatment if mi2 − mi12 > 1.15s, then a second worse if

mi2−mi11 > 1.15s, to get a set of better treatments i1, i2, . . . , im compared with a set

of worse treatments in, i11, . . . , i12 and so on until either the appropriate statistic says

we cannot include another treatment in a particular group, or else all treatments are

divvied up between the ‘better’ and ‘worse’ groups.

3: We then proceed according to aim 3, to analyze the data using the recently

developed Q-learning framework (Schulte et al. (2014)), which attempts to find the
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optimal treatment regime tailored to an individual based on their individual covari-

ates and response to already given treatments, through regressing and essentially

theoretically reassigning, recursively, and simultaneous outcome weighted learning

(SOWL) framework (Zhao et al. (2015b)), which attempts to estimate the DTR di-

rectly without calculating theoretical reassignments. Q-learning is extremely powerful

if each regression step is well modelled (Zhao and Laber (2014b)), whereas SOWL has

excellence performance for higher dimensional covariate space (Zhao et al. (2015b)).

We do not specify the precise analysis, for we fully expect significant theoretical de-

velopments whilst the study is running, and we will avail ourselves of the best ones

available at the study’s conclusion. One very promising new method, is the possible

combining of Q-learning and OWL, so that the Q-learning is favoured if the associ-

ated models are estimated to be correct, but nonparametric OWL is favoured if they

are not.

If successful in this, we will have estimated not just the optimal treatment regime

for each individual, but also mean outcomes for the population if a population level

decision rule was followed instead. Specifically this will allows us, to evaluate the

result of varying the timing or order of the laser treatments at the general, non-

personalized level, and to compare this with our results from non-machine learning

methods.

Size Calculations and Power:

We estimate 180 participants will give us good power to ensure all three of our

aims are satisfied.

To account for some expected participant dropout, we calculated power for 162

participants (estimating a worse scenario of 10% dropout of our original 180). We

perform different sample size calculations for each of our different three differing aims,
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using calculations associated with the methods we have detailed to achieve them. In

particular we calculate:

1: We will reject either of H0α, H0β, or H0γ with 80% power, at overall size

5%, adjusting for multiple comparisons, if there is an effect size of more than 0.63

standardized units. Pilot study data suggests that we then have an 80% power of

observing a minimal clinically significant difference of 0.9 VSS units in treatment

effects.

2: The sample size will give good power for rejecting H01 or rejecting H02. The

precise conditions are slightly difficult to interpret. But we may make the following

observations:

a: the power of rejecting H01 is more than 80% if choosing MED at a particular

timepoint, and assigning random treatment at the other timepoints results in an

outcome difference of more than 0.35 standardized units in comparison to randomly

assigning treatment at each timepoint.

b: the power of rejecting H02 (if H01 is rejected) is more than 80%, if choosing

CO2 laser therapy at a particular timepoint, and assigning random treatment at the

other timepoints results in an outcome difference of more than 0.37 standardized

units in comparison to assigning PDL therapy at the given timepoint and assigning

random treatment at other timepoints.

More involved power estimates and their corresponding clinical interpretations

convince us that we have more than sufficient power.

For the better/worse treatment analysis we may show that we expect to iden-

tify a better and worse treatment 90% of the time if the true best and true worse

treatment sequences have expected outcomes separated by µi1 − µi12 > 1.15σ. If
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there is a laser effect we imagine this would be satisfied. We provide the worse sce-

nario power, and under realistic assumptions, we expect to have 90% power with far

weaker assumptions. Corresponding power calculations for longer sequences can also

be detailed.

3: The sample size is expected to be enough to enable insights into both general

optimal treatment path and a patient-specific optimal treatment path. More specifi-

cally we expect to find a superior personalized treatment (within approximately 90%

of the true optimal treatment) with probably at least 80%, based on published simula-

tion results (Zhao et al. (2011)). Further while the covariate dimension is fairly large

with 30 covariates, the sample size should allow decent performance of the support

vector machinery utilized by OWL (Zhao et al. (2015b)).

2.4 Expectations/Discussion.

We have provided a trial design and analysis that will allow comparisons of large

number of treatment options in a classical manner without drastic loss of power.

We have offered a simple and innovative analysis which allows calculation of sets of

better and worst treatments rather than calculating precise treatment effects. We

argue this different style of analysis has good power to provide most useful scientific

information as to differences in many treatment options. We have proposed a de-

sign that while being acceptable and powered for these analyses alone, should allow

application of machine learning techniques to mine precision medicine individualized

treatment regimes. That is, we have proposed a SMART for a challenging situation,

which has assurances of classical utility, even if the novel SMART analyses should

fail. We believe that until the use of SMARTs are well understood and practiced,

this is an ethical and effective way to implement such trials.
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CHAPTER 3: SURROGATE DRIVEN CLUSTERING.

3.1 Introduction and Background.

Clustering is a name given to the machine learning task of grouping together

objects within a set so that any object within each group, or cluster, is more ‘similar’

to any other object in the same cluster than it is to any object in any other cluster.

This task is clearly not well-defined, depending inherently on what ‘similarity’ means,

and this will change with context and with analyst.

Though not well-defined, the idea is however a clearly natural one, and that may

be easily intuitively grasped by most. For example, presented with an orange, an

apple, a pear, a dog and a cat, one suspects almost everybody would immediately

partition these objects in their mind to two subgroups or clusters, fruits and pets.

Now this starts to become murkier with further examples, for instance if the dog

and cat were ginger coloured, whilst the apple and pear were green, and the orange

was, erm, orange, then one could argue that an equally good partition would be into

green objects and orange objects. It seems possibly far less natural to cluster into

colours than fruits and pets, but at some point this becomes the natural partition, if

for example there are many such objects added, all of which are green or orange.

Being so natural, clustering has been used by various nomenclatures, or none,

and with differing mathematical and statistical subtleties, for a long period in aca-

demic research. For example, its use in psychology goes back to at least 1938, when

Zubin (1938) proposed creating clusters of ‘likeminded’ individuals, in anthropology
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to at least 1932, when Driver and Kroeber (1932) proposed subgrouping polynesian

cultures, and in sociopolitical theory to at least 1927, when Rice (1927) partitioned

members of New Jersey’s senate based on year-long voting history. Even at this

intial stage, these authors note the computational complexity of the problems they

consider, and with modern computing power, it is not difficult to imagine that uses

of clustering has only exploded exponentially.

A most comprehensive starting paper on current state-of-the-art in clustering is

provided by Jain (2010). The author begins with an observation that even one half-a

century after its introduction, and despite thousands of newer competing algorithms,

k-means is the prevalent clustering algorithm, and Jain claims this is evidence for

both the ill-defined nature and also difficulty of clustering.

A different philosophy is to regard clustering in terms of mixture models, as

described for example by Fraley and Raftery (1998) and McLachlan and Peel (2004),

who propound modeling the data as a sample from a finite mixtures of distributions

from some parametric families, most often some subset of gaussians. The mission

then is to identify the parameters corresponding to the separate distributions. The

usual approach to doing this is via the EM-algorithm, as explained by Dempster

et al. (1977). Fraley and Raftery (1999) give a very efficient R package, Mclust, that

assumes a normal mixture model, and estimates the associated parameters.

A related but separate way has been proposed by Huang et al. (2012). They tackle

the problem of high dimensional data, and the problem of significance testing in this

setting, especially with low sample size, introducing a method known as SigClust.

This gives test for deciding if the mixture is better represented as two normal com-

ponents or one. They then propose a divisive scheme, repeatedly dividing clusters

showing evidence of mixing further. This major benefit of this approach is a high

powered test despite the high dimensions, although there is some cost that a divisive
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algorithm, that is one that proceeds dividing clusters, might not be the optimal way

to find a clustering. Once a mistake is made and a cluster partitioned it can not

become visible again. Furthermore investigation is needed to understand well effects

missing data, for in higher dimensions, if some features have much missingness, a

complete case analysis may indeed have very few subjects. Imputation would be

a way to overcome this, but the resilience of the method to imputation and model

misspecifications is not well studied.

Once the data’s distribution is represented as a mixture model, then clustering

simply becomes a matter of identifying which distribution a sample comes from.

This would seem simple if the distributions have good separation, however when

the separation is not complete, it becomes clearly more problematic practically and

indeed philosophically.

Walther (2002) runs further with this idea, discussing how the evidence of mix-

ture distributions may be viewed as evidence of subtypes, or subgroups. Walther

considers cases when the (univariate) mixture distribution is unimodal but we still

have hope of concluding they are in fact different subtypes, referencing blood pressure

distributions, and radial star velocities as examples.

A most related issue is then how many subtypes are there? There are many

methods to address this question, as summarized in for example by Fraley and Raftery

(2002). This is naturally a big issue for unsupervised learning, when the answers

given may not be checked against any gold-standard. Our experience in clustering

has highlighted for us a separate, but similar issue, namely whether a subtype is

a clinically meaningful one. As we shall discuss with respect to our SPIROMICS

example below, in the age of big data, not only must we guard against false clusters,

but real ones of no significance. For example, many biomarkers exhibit clustering

artifacts between genders, or race. If we were clustering Alzheimer disease patients,
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a cluster distinguishing males and females might not be of scientific interest. However,

a similar example would be finding a cluster of Native Americans amongst study data

for Osteogenesis Imperfecta (Brittle Bone disease), yet the study actually managed

to interpret this cluster as a very different subtype. Hence determining whether a

cluster is a true subtype or not most delve deeper than simple comparisons of clusters.

We consider this problem further, and propose what we have termed surrogate driven

clustering as a possibility to help tackle this problem.

3.2 Use of a Surrogate.

Goal and Problems:

We consider Fisher’s Iris data, consisting of 50 samples of each of 3 species of iris,

with petal width and length, and sepal width and length measurements. This is a

classic supervised learning data set, but conventional wisdom says that it is unsuitable

for unsupervised learning, as either according to some sources, the species cannot be

well separated, or, according to other sources, they may separated by quite advanced

clustering methods but there is no way to determine how many species there are.

We claim surrogate driven clustering will evidence that there are three subtypes

of iris, and cluster them appropriately.

The idea behind surrogate driven clustering is that firstly clusters may not cor-

respond to distinct (relevant) subtypes. For instance clustering testosterone levels in

Alzheimers patients would likely give two pretty excellent clusters, but they would

not be fantastically interesting. This is especially important to bear in mind when

exploring big(gish) data without understanding the underlying biological mechanisms

fully (e.g. shotgun clustering as we shall designate it!).
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The second saliency inspiring surrogate driven clustering is that clusters may

merge together, and need to be separated, yet determining the number of clusters

(with or sans clinical relevance) is done by adhoc methods and little rigour, or jus-

tification. This is the situation for the iris example. As seen in Figure 3.1, there

appear to the eye to be two clusters, yet this would seem to be from species 2 and

3 having distinct clusters that merge into one another, once one inspects the species

labels. Indeed it would seem to human inspection that the fact there are three species

might not be recoverable from this data, although it seems apparent there are at least

2 subtypes of iris. A method capable of suggesting there were 3 species would be

therefore of interest.

What would it take to convince us that one of those two apparent to the eye

clusters could actually be composed of two distinct species? Well if there are differ-

ent species, some variables must differentiate these well (whether we have access to

the variables or not). We shall call these variables surrogates (as in that they are

surrogates for subtype).

Overview of Methods:

In general we shall be interested in considering biomedical data, where clinical

variables are available and somewhat differentiate subtypes. For the iris data, we

have no clinical variables, but we can take some of the main variables to be surrogates

instead. The science would make this appear attractive, different species of iris are

most likely to have different underlying relationships of these variables. And here

the choice would appear obvious: petal width generally increases with petal length,

yet the rate of increase is likely to be different across species. We could observe the

same regarding sepal length and sepal width. Also the correlation of petal length

with sepal length is likely to be high, but change over species. And similarly for sepal

and petal widths.
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Figure 3.1: Iris dataset

To educe the different relationships across species we thus partition the variables

naturally as: Main variables: petal length, sepal width, and Surrogate variables:

petal width, and sepal length. And by pairing as uncorrelated variables as possible

together, we expect to maximize the ability to cluster.

In summary we postulate if needing to divide variables into Main Variables and

Surrogate Variables, variables should be partitioned to maximize in some way corre-

lations between Main Variables and Surrogates to highlight changing relationships for
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different subtypes well, and to minimize in some way correlations within the group

of Main Variables to provide as much information to guide our clustering as possible.

Once we have Main Variables and Surrogates chosen, we need to decide on a

clustering method. Our so called surrogate driven clustering is not a new clustering

method itself, but rather a way to both select the correct number of clusters and also

verify clinical relevance, for any analyst chosen clustering method.

Our general preferred clustering method is unconstrained normal mixtures. This

is a flexible, robust method with superb implementation in R through Mclust. It goes

without saying (but we will anyway) that it would be particularly appropriate when

the underlying variables, for each (unknown!) subtype have a normal distribution.

We would expect that maybe for the variables we have for the iris dataset (such

measurement variables are well known to be normally distributed in a species to very

good approximation).

K-means might be another general choice of method, however it seems too coarse

given we often expect different populations to have different heterogeneity.

Mixture models utilizing t-distributions have been put forward for modelling of

gene expression data (McLachlan et al. (2002)). A particular advantage of this is

that outliers are much better tolerated, whereas they can make it very difficult fit-

ting a normal mixture. A particular disadvantage is that there is no (we believe)

implementation in available routines that approaches the ability, or flexibility, of the

R package Mclust in modelling normal mixtures. (Further research to develop an

expanded package would likely be most worthwhile).

The data may require transforming to better choose a model. As an example, for

biomarkers in the blood, it is observed they often follow a log-normal distribution,

thus a logarithmic transform followed by modelling as a normal mixture could be
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appropriate.

One may always precheck the appropriateness of a certain clustering algorithm,

at least from a mixture modelling paradigm. For example a reasonable check to

see (well, technically, as per usual, to falsify) whether some multivariate samples

might be from a normal mixture, would be to see if each univariate variable could be

reasonably modelled with a normal mixture (following on from the knowledge that

normal projections are themselves normal).

We begin by using our chosen clustering algorithm on our dataset. As we, and

nobody else, knows (we pretend for the iris dataset) the correct number of clusters,

we will use our algorithm to divide the patients (well flowers!) into first 2 clusters,

then 3, then 4, and so on to a suitably large number which we believe is bigger than

how many subtypes we could possibly be looking for. So far, so usual for an analyst.

The crux of our method is that we now evaluate the quality of each of these clusters,

not with an internal measure as per unsupervised learning (these simply comment on

the cluster algorithms interaction with the data not the intrinsic relevance), nor an

external measure as per supervised learning (we are assuming one is not available),

but with an intrinsic measured found from using the surrogates.

Figure 3.2 shows how the iris species vary by the two main variables, petal width

and sepal length. The dataset we are using is truncated to the nearest 0.1 for each

variable, so to highlight multiple flowers with identical truncated measurements, in

Figure 4.2 we have randomly altered all measurements by 0.05. The iris species are

differentiated by colour, with each of cyan, blue and green corresponding to a different

species.

As we had expected from the pairwise plots of Figure 3.1, there is clear evidence of

two clusters, which may or may not correspond to differing subspecies. But it would
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Figure 3.2: Main variables, with species distinguished by colour.

be hard to conclude there could be three subspecies in this data, although knowing

the answer we might say that the green species can be identified from having different

variance from the blue. We would need good precise evidence though to be confident

of this.

Figure 3.3 shows the results of clustering using a normal mixture unconstrained

(except for 9 clusters, which requires a more specified structure to fit). The points

are, as in Figure 3.2, colored by species, whereas the cluster each point is assigned to
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is shown by the numeric label of that point.

Figure 3.3: Main variables clustered by normal mixtures into 1-9 clusters.

We remark that this cluster algorithm performs excellently, given we know the

labels. Clearly a mixture of normally distributed variables is a good model of this

data. We also note that the cluster algorithm separates the species excellently when

the correct number of clusters is chosen, that is for three clusters, the misclassification

rate of assigning species to the wrong cluster is an extremely impressive 4.7%. The

cluster algorithm performs very well in this example in that as the number of clusters
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is increased beyond the true number of components, the algorithm tends to break up

clusters into further subclusters, rather than as might happen provide a very different

grouping to the clusterings with less clusters. But we do see that for some choices,

such as 7 clusters, the cluster algorithm starts to perform less well, and as an example

where the species were very well distinguished when classified into 6 clusters, for 7

clusters, cluster number 4 groups together both the green and the blue species.

A little more precisely, we proceed as follows. Having asked our algorithm for a

total of M clusters, then for each of these outputted clusters we may see whether

there might be any evidence of multiple subtypes within the cluster.

Of course we need to find a way to evaluate such evidence, and there are many

choices. We consider a couple here, and see how they perform in the context of the

iris dataset.

The underlying thought behind our choices of evidence, is that, as we hinted at

above, for the correct choice of surrogates, the different subtypes will have different

relationships between the main variables and the surrogates. There is certainly always

an option of surrogate which will elucidate this and it is merely (or majorly more

like) a matter of finding it.

As an illustration, consider clustering genetic cancer data. If our method of

clustering gives you three clusters, and the survival times of each of the subjects for

each cluster appeared to be the same, would one leap to the conclusion that these

clusters are clinically relevant subtypes, for shouldn’t we expect different subtypes to

have different survival times for example, at least to a high resolution? Or would one

more likely decide that either these were real clusters but not so clinically relevant

(e.g. maybe we had just picked up clusters of ethnicity in the genetic data, which was

independent of much cancer relevance), or would one conclude that there was no real
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cluster and our algorithm for clustering (as such algorithms often are prone to do)

artificially divided up one group (and internal validity methods give some indication

as to which of these two options we should choose, but neither option is what we had

hoped to find)?

Conversely if one should find that in each produced cluster, a highly different,

‘non-overlapping’ survival time distribution, then this would surely be worthy of

further investigation, and perhaps the existence of discrete subtypes would be the

natural working explanation.

It is clear that such evaluations and determinations are not going to be precise

and unequivocal answers, just as there is no precise and unequivocal answer to the

question, ‘does this regression model fit well?’. But it seems that by considering the

algorithms we are suggesting, an analyst would be able to make arguments for or

against the existence of subtypes, just as an analyst has ways to make arguments for

or against the appropriateness of a regression model.

Our first idea applies to a very idealized situation. Assume there are very well

defined clusters, that our clustering algorithm will elucidate (if the correct number

of clusters is specified). Also assume that for each subtype, there is a different

distribution of surrogate. Then we should simply increase the number of clusters

we ask the algorithm to produce until we see that no outputted cluster contains a

mixture of distributions. Of course this might not get us far, for indeed how do we

know if a distribution is best regarded as a mixture or not? One method, we do

not investigate here, could be to assume and check that the surrogate variables have

unimodal distributions within each cluster. This could be problematic as there is

not yet a good way to estimate unimodal distributions, as the maximum likelihood

estimator is undefined, although we believe we have a new method to skirt this

issue. Moreover though a unimodal distribution can arise as a mix of (unimodal)
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distributions, so this is possibly not the most sensitive investigation we may follow.

Walther explores further this very question (Walther (2002)).

A little different track though could be to think that if a cluster contains a mix

of subtypes, and those subtypes each have a differently distributed surrogate, then

we should be able to tell (with enough data) that the distribution changes as we

move in the cluster. That is, we may simply check whether the main variables and

the surrogate variables are independent within each cluster. If not, we need further

divisions. To perform this test, one could use, as we propose, BM Covariance (Székely

et al. (2009)), a recently proposed powerful and widely applicable test of independence

between variables.

Preliminary Results:

In Table 3.1 we display the results of our procedure applied to the Iris data.

More specifically for differing total numbers of clusters 1 ≤ m ≤ 9 wecluster the

data through use gaussian mixture models (calculated with the EM-algorithm) with

m components. For a specified m total number of clusters, we then examine each

of the clusters, 1 ≤ n ≤ m in this clustering. For each of the clusters we evaluate

the dependence of the surrogate variable restricted to members of this cluster on the

spatial position within the cluster, using brownian distance correlation.

As interpretation of these results is somewhat dependent on cluster size, in Table

3.2 we display how many irises are in each corresponding cluster.

We observe that the normal mixture model divides the patients into fairly sizeable

groups at each clustering, but that almost none of the clusters, for any total number

of clusters, have a p-value which indicates that the surrogate and main variable are

independent in that cluster. Simply put we do not see any structure in the data from

our analyses.
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Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.450 0.025

2 0.005 0.005 0.005 0.005 0.070 0.045 0.005 0.305
3 0.005 0.005 0.065 0.005 0.005 0.805 0.685
4 0.005 0.160 0.025 0.005 0.005 0.005
5 0.160 0.200 0.150 0.005 0.005
6 0.165 0.230 0.150 0.005
7 0.165 0.255 0.040
8 0.105 0.355
9 0.320

Table 3.1: Within-cluster p-values for independence of main, surrogate.

Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 150 48 49 49 49 40 40 7 19

2 102 53 56 63 10 10 38 12
3 48 19 7 52 29 5 12
4 26 21 17 28 29 12
5 10 21 14 28 13
6 10 19 14 38
7 10 19 17
8 10 18
9 9

Table 3.2: Total number of members within each cluster.

This, on reflection, of course is not surprising. One of our main variables was

petal width, one of our surrogates petal length, and almost surely these will have a

strong correlation no matter the subspecies. Thus we should not expect to find main

and surrogate variable independence in this example.

Such a hiccup is not an unsurmountable objection to the proposed method how-

ever. For while we expect that the petal length and width should have high correlation

no matter the species, we might perhaps reasonably expect the precise nature of this

relationship to change. And therefore the nature of the relationship is what we need

to examine within each cluster.

We make a brief pause for two observations. Firstly our methods might be adapted

to, instead of finding clusters per se, regress the surrogates onto the main variables.

The division of the main variables into clusters should occur to group together either
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regions of high density in the main variables, or else very different classes of the main

variables. We may keep dividing until the surrogate appears to be approximately

constant statistically, to obtain a partition of the main variables, with little change

of surrogate in each partition. In some sense, we would have a blobby random forest.

Secondly this has significant implications for standard ways of validation for clus-

ter analysis. Often analysts will find a clustering (often using an internal, subjective,

metric to decide how many clusters) and then check the relevance clinically by seeing

if some clinical variable, essentially for us the surrogate, is significantly different be-

tween clusters. If so, then the cluster is validated both in spatial and clinical terms.

The above example shows that this is very erroneous. A simple regression effect be-

tween the clustered variables and the clinical one, such as we have in this example

with our main and surrogates will automatically result in the analyst falsely declaring

that the clustering is valid and clinically relevant. In this example that would have

been a conclusion no matter how many clusters were chosen, due to the very high

correlation. This issue, and ameliorating it, was actually the motivation for much of

our own work.

Enhanced Method:

Returning to our investigation of the iris dataset, we have remarked that we

would like to examine the nature of the relationships between the surrogate and main

variables, expecting these to change over species. Our question is then precisely how

we should do this.

We have a few suggestions to answer this question. An obvious solution would be

to require that the within-cluster relationships between the surrogates and the mains

is either say monotonic or else unimodal. As earlier this could be difficult to assess in

higher dimensions, though we could utilize say the grenander estimator to fit a model
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within each cluster in low dimensions, or else model with log-concave distributions.

We might also perhaps assess how well simple regressions explains the relationships

between the main variables and the surrogates, or whether for instance changepoint

models explains them better than simple regression.

However, while it would be worthwhile examining these ideas further, we shall

for now move in a different direction. These ideas all involve an assessment of how

appropriate our modelling choice is. For example, maybe petal length does grow

for each species with petal width, but nonlinearly. With enough samples, a simple

regression would then be rejected in each species, as would any posited relationship,

unless we happened to guess the precise truth, and our method would not give the

correct results that there are just three species.

Instead what we shall choose to focus more on, as a measure of whether the within

cluster relationship changes, is whether the residuals, having regressed the surrogate

onto the main variables, are independent of the main variables. This measure focuses

far less on the total model accuracy, and much more on whether it is equally accurate,

or otherwise, over a whole postulated cluster. We hypothesize that this then will be

able to highlight precisely any significant changes in relationship with clusters as we

wish to find. In particular we believe that examining the residuals for change over

each cluster will exploit situations where the heterogeneity of the surrogate differs

over subpopulations, not merely the average level.

We proceed with analyzing the iris data in this way. As before we use a normal

mixture to cluster the data, and then within each cluster we calculate the residuals

resulting from simply regressing the surrogates onto the main variables, for just pa-

tients in that cluster. It is the calculated residuals that are then tested for spatial

independence in each particular cluster by brownian distance correlation tests.
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Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 0.005 0.820 0.855 0.815 0.845 0.770 0.785 1.000 0.950

2 0.010 0.155 0.225 0.180 0.990 0.995 0.870 0.950
3 0.310 0.570 0.495 0.560 0.955 1.000 0.995
4 0.310 0.920 0.415 0.640 0.955 0.085
5 0.950 0.895 0.700 0.620 0.470
6 0.945 0.905 0.765 0.965
7 0.970 0.910 1.000
8 0.955 0.890
9 1.000

Table 3.3: Within cluster p-values for independence of main, residuals.

Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 150 48 49 49 49 40 40 7 19

2 102 53 56 63 10 10 38 12
3 48 19 7 52 29 5 12
4 26 21 17 28 29 12
5 10 21 14 28 13
6 10 19 14 38
7 10 19 17
8 10 18
9 9

Table 3.4: Total number of members within each cluster.

Table 3.3 shows the p-values obtained via this method. Table 3.4 is a duplication

of Table 3.2 and provides the number of patients in each cluster.

We find a far more interesting picture than when we examined the within-cluster

relationships between the unregressed surrogates and the main variables.

Firstly we see that there is very strong evidence (p = 0.005) that one cluster may

be inappropriate, and strong evidence that two clusters is inappropriate (Bonferroni

corrected p = 0.02). But the story in moving from one to two clusters overall is

worth scrutinizing further. Not only do the p-values increase. as would be expected

due to decreasing sample size in each cluster, but we also find that cluster 1 in the

two cluster solution appears to have broken off some patients into a homogeneous

cluster (p = 0.820), thus we may be confident that something is different about

these patients, and that they indeed may be grouped together. Likewise when we
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look at the results that correspond to the three cluster solution we find that the

heterogeneity found in cluster 2 of the 2 cluster solution is entirely addressed by

moving to three clusters. So it is not simply small (overal)l p-values we are interested

in, but behavious where the p-values jump suddenly from indicative of a bad fit, to

not contradicting a good fit. We are interested then in seeing a sigmasoidal curve

in the p-values, showing that subspecies are being picked off and separated as the

cluster becomes more refined.

Therefore we see, for the Irises, and looking at Table 4.3, evidence of three pop-

ulations with different relationships between the main and surrogate variables. And

indeed, as mentioned already, these 3 clusters divide superbly well the three species

(misclassifying just 4.7%).

There is no evidence of more than three populations within the irises. At least

we find no evidence given by this choice of main and surrogate variables. Perhaps

with a large sample, more populations (subsubspecies?) would be educed, or perhaps

another, more efficacious choice of surrogate would do so. However from this analysis

it seems clear that it is worth hypothesizing there are 3 species and then investigating

this claim further experimentally.

We may examine other diagnostics, such the BM covariance between surrogates in

each cluster, to get a metric on the clusters, and the between cluster BM covariance of

either the surrogate or the residuals. We merely remark that there is fecund ground

for a plethora of diagnostics here, which we believe are generally interesting and

worth developing, and in this example evidence further that there are three salient

species.

When using p-values to determine whether a cluster shows evidence of containing

multiple populations, as in this example one must consider the issues of multiple
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hypothesis testing. Of course, one may simply correct for this via a bonferroni type

correction. However we feel this is much too conservative. The data analyst would

likely rather have a false positive than a false negative, thus while this is an open

problem, we feel that either no correcting should be done, or else a test applied that

focuses on small p-values and how many there are. For example if we had examined

20 clusters, each having a p-value of 0.005, the trivially corrected p-value is 0.1,

non-significant. Yet surely noone would conclude all 20 p-values were just randomly

this tiny. Other methods we have investigated include testing whether the whole

set of values appears to emanate from a U [0, 1] uniform distribution, which gives

results that are very interesting, but requires careful interpretation, as the p-values

in actuality will not be uniformly distributed until large scale asymptotics may come

into play. Another test we have investigated, is constructing a statistic based on how

many p-values are below certain thresholds. This has given very promising results.

Another way to guard against false positives, is to view our process as a step-

down hypothesis test procedure, where each cluster showing a significant p-value is

split, but the ones which do not are left alone. This provides certain complications

with our normal mixture model, as increasing the number of clusters does not simply

result in an earlier one being split. However we believe this method may be adapted

to non-divisive clustering algorithms such as mixture models.

It goes without saying that the failsafe method of guarding against overfitting

and false positives may always be used, for example using both a training set to

data mine and a test set to verify hypotheses of interest. It is not utterly clear how

the hypotheses should be formulated however. Should they take into account and

attempt a reproduction of the spatial clusters, or the between cluster relationships,

or the within cluster relationships between main variables and surrogates? Likely the

answer to this depends on the precise situation and question of interest.
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Finally one diagnostic we should emphasize is the examination of the changes in p-

values as a cluster is divided, or a clustering with more components is moved to. In the

initial example, where the main variables and the surrogates were simply compared,

we see that there was no dramatic change moving from one clustering solution to

the next. However for the p-values found by comparing the main variables and the

residuals, we note dramatic jumps from significant values to non-significant values,

both moving from 1 to 2 clusters, and also for the division of cluster 2, moving from

2 to 3 clusters. We may interpret this as for the first example, showing us the choice

of comparing surrogate and main variables is not appropriate, and for the second

example showing us that the data is very well explained by clustering and comparing

the residuals. In effect we should be looking for some elbow in these statistics, and in

doing so, we should be asking whether the data is better explained by splitting one

cluster into more. Taking inspiration from the gap statistic, perhaps we should be

comparing the increase in p-values moving between clusters, with what the expected

increase would be if the particular cluster should not be split and there was little

spatial dependence of the surrogate or its residuals (as was applicable).

The aforementioned metrics as to whether the surrogate has a fundamental differ-

ence in distribution between clusters allows for an interesting possibility of boosting

the clustering algorithm. As we noted mixture models, as well as many other clus-

tering algorithms, do not just divide up an existing cluster when one more cluster is

asked for, but indeed might reorder all the clusters in order to best fit in an extra one.

More specifically often the situation arises where there are two clear well separated

clusters, yet the clustering algorithm only divides up the patients respectful of this

clear clustering when more than two clusters are requested, for it prefers to bisect one

cluster before marking the other one as separate. This is a particular problem when

one cluster is oversampled compared to the other, resulting in the value function

some algorithms attempt to maximize benefitting more from cleaving an entire large
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cluster up, rather than initially breaking apart the two clear clusters.

Thus to elucidate all the subtypes, it might be, indeed is probable that it is,

necessary to split some single clusters into pieces before the algorithm finds all the

clusters. This then gives us a method of creating a meta-algorithm. Whereas our

proposed method was just designed to evaluate the results of a clustering algorithm, it

may indeed be used to refine said algorithm. Specifically once the number of clusters

is chosen so that we have confidence all subtypes have been found, the clusters can be

compared, using our surrogates as explained, and decisions can be made to recombine

these. This idea may of course be iterated.

Similarly our proposed method lends itself well to controlling algorithms that

repeatedly divide or combine clusters, forming dendrograms. We have provided a

statistical stopping point for such divisions, or agglomerations.

3.3 Binary Surrogate and Residuals.

For this iris dataset, understanding the nature of the variables, led to a natural

and most efficacious choice of main and surrogates. Often the situation will not be

so clear. One situation we are interested in is using as a surrogate a binary indicator,

such as disease severity. This may possibly be a very good choice of indicator, as

it combines numerous clinical variables into one and may be assigned by an expert

diagnostician utilizing much experience and knowledge. Further when attempting to

find disease subtypes, this is one variable we might expect to vary in distribution over

the subtypes. Surely different subtypes would not have the same severity propensi-

ties? However do we lose too much information using a binary variable? We shall

investigate this.

Our previous method requires no tweaks for comparing the main and surrogates
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Species Cyan Blue Green
Y = 0 0 15 42
Y = 1 50 35 8

Table 3.5: Distribution of Y within each species.

within clusters, even when the surrogate is dichotomous. To evaluate the effect of

using a binary indicator, we create one for the iris example.

This we have done by randomly selecting two coefficients a and b and from the

surrogate forming the variable

f(flower) = a(sepal width) + b(petal length).

Then a new variable Y was randomly sampled for each flower of the dataset from the

distribution such that this variable for different flowers was independent, was binary,

and took the value 1 with probability

p = ef(flower)/(1 + ef(flower)).

The χ2 p-value for dependence between Y and the subspecies of iris was calculated,

and this process was repeated until the found p-value was below 0.01. The parameters

ultimately selected by this method were a = 6.50 and b = −3.91. We display the

distribution of Y in Figure 3.4, which displays the flowers according to the main

variables of petal width and sepal length and colours them according to species. The

points are designated by crosses if the corresponding Y value is 0, and by exes if the

corresponding Y value is 1. Table 3.5 gives the distribution of Y broken down by

species.

We see that this new binary variable does encode well information from the

species. Now we see if we can still conclude that there are the right number of

subspecies using this new surrogate.

As earlier we may use BM covariance to calculate p-values for within cluster
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Figure 3.4: Main variables, coloured by species, marked by Y values.

independence of this surrogate and the main group of variables. The p-values are

displayed in Table 3.6.

Evaluating these according to our new paradigm, we see that 3 species are once

more indicated. But this is surprising, not only did the binary surrogate give evidence

of 3 species, when the (non regressed) continuous did not, further the evidence is

extremely strong that there are 3 clusters, with minuscule p-values jumping to large

ones as soon as the patients are clustered into the right number of subtypes, that is
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Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 0.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.005 0.485 0.090 0.165 1.000 1.000 1.000 1.000
3 0.135 0.605 0.495 0.850 0.750 1.000 1.000
4 0.105 0.125 0.450 0.035 0.715 0.080
5 1.000 0.450 0.350 0.715 0.080
6 1.000 0.075 0.040 0.445
7 1.000 0.120 0.750
8 1.000 0.040
9 1.000

Table 3.6: Within cluster p-values for independence of main, 0/1 surrogate.

the elbow is very extreme. We will not do so now, but we shall attempt to unravel

why this binary surrogate should be so much more powerful than the continuous ones.

Our aforementioned diagnostics would also confirm that there are 3 clusters of stark

difference.

We could finish here, however what would have we done if we found no evidence

of clusters from our binary surrogate? Would we be capable of applying our residual

analysing method? That would of course be problematic. The corresponding regres-

sion would be a logistic one, but the usual considered ‘residuals’ are not identically,

independently distributed for the correct model, so it would be unreasonable to look

for independence of main variables and residuals. To circumnavigate this problem,

we must define a new residual. We do this as follows. First given a binary surro-

gate, we regress logistically, and obtain the probability f(X) that Y (X) = 1. Now

assuming the model is correct, we may define the error at each point. We expect

that Y should be 1 more than 0 if f(X) > 1/2 and 0 more than 1 if f(X) < 1/2,

so a natural error Z(X) may be defined by, if f(X) > 1/2 then Z = Y , and if

f(X) < 1/2 then Z = 1 − Y . Values of Z = 1 mean we observed the outcome we

expected, and Z = 0 we observed a different outcome. However this error variable

is biased in that, if we have a correct model, when for example f(X) ≈ 0 or 1, we

should see very few errors, but the errors we do see should really count. We can make

errors count equally no matter the spatial locale X by reweighting them. We do this
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Total Clusters: 1 2 3 4 5 6 7 8 9
Cluster: 1 0.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.059 0.560 0.319 0.337 1.000 1.000 1.000 1.000
3 0.505 0.527 0.549 0.646 0.527 1.000 1.000
4 0.477 0.465 0.473 0.511 0.523 0.417
5 0.493 0.488 0.408 0.494 0.579
6 0.492 0.474 0.433 0.527
7 0.500 0.476 0.641
8 0.504 0.431
9 0.509

Table 3.7: Average p-values for independence of main, 0/1 residuals.

by multiplying Z by idependent binary random variables V , defined by V (X) = 1

with probability (max(f(X), 1−f(X))/2). This reweighting ensures that the random

residual W that has definition W (X) = Z(X)V (X), if the model is correctly specified

is a binary random variable that is 1 with probability 1/2. Thus we have created

W , a random residual that is identically, independently distributed, if we have the

true model, and looking for where the distribution of W departs from W = 1 with

probability 1/2, W = 0 with probability 1/2, will highlight where the observations

do not concur with the model, analogously to standard regression residual analysis.

We have considered other ways to define W our residual, but are still examining the

optimal method. Now our residual W is random, but we can perform our analyses

with it, and then take an average over many simulations of V . Thus our techniques

for residual analysis we have put forth already will now apply. Table 3.7 then shows

the results of examining the within-cluster dependency of the residual for our exam-

ple, with our simulated binary variable. The mean p-value over 700 simulations of V

is displayed.

We see at a glance, adhering to our earlier logic for the analysis, that again

we should predict 3 species. Our residual definition and analyses seems to work

very adroitly. We notice there is now less evidence than given by using the original

surrogate for 3 clusters, but the results show the underlying algorithm is rather

sound. Further using the residual would, on consideration, seem preferable to using
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the original variable, due to being both more interpretable and robust.

We note however that these mean values do not give the whole picture. Figure

3.5 gives a density estimate for the p-values of both clusters, when the algorithm is

requested to give exactly 2 clusters.

Figure 3.5: Estimation of density of p-value for second cluster of 2.

We notice that this is a distribution with a very large skew and long tail. The

mean is really affected by outlying results, but most random p-values were discov-

ered to be 0.005. It seems that simply averaging may not be optimal to calculate
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the appropriate p-values, and maybe a bootstrap simulation, and comparison of the

observed distribution with the expected one if we had independent within-cluster

residuals, would provide a much more appropriate (and less liberal) p-value. We

shall make further studies regarding the best calculation of residual p-values from

the simulated random residuals.

3.4 Dimension Reduction Through a Surrogate.

We conclude this exploration with a discourse on how the surrogate variable not

only may be utilized to estimate (with significance levels) the number of clusters, but

also how it may be utilized in the other plague of clustering, namely reducing the

dimension.

Clustering algorithms rapidly become infeasible in higher dimension, particularly

ones that rely on fitting mixture models and density estimation. But in shotgun

clustering, as we named it, we are given many variables, and only a fraction of

these could be relevant. Screening of variables, particularly for gene data has been

suggested to reduce dimension. Screening is oft performed by looking for evidence of

clusters in each feature univariately, for example assessing the fit of a mixture model

with more than one unimodal distribution. However this is likely to both overfit (if we

have a large number of noise variables the true cluster signal could get crowded out),

direct us to non clinically relevant clusters, and also miss a weaker signal requiring

more than one feature to see. We hope that instead of fitting mixture models, the

surrogate could be of use to sidestep these issues.

We ultimately will be interested in only those clusters that show evidence of dif-

ference in surrogate, so we should begin by screening for those features most likely

to produce this. We make the suggestion that each individual feature should be
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screened for showing dependency between the feature and the surrogate. We shall

give the illustration of using our binary generated surrogate from the preceding ex-

amples. Here we only have two main variables, so it would not be too fascinating to

perform screening on these by themselves. Thus we create 4998 further random fea-

tures, with normal distribution, independent of the surrogate. We then screen using

Kolmogorov-Smirnoff tests, and test for independence of those values of the feature

corresponding to the surrogate being 0 with those values of the feature corresponding

to the surrogate being 1.

The Sepal Length and Petal Width features give p-values with orders of -10 and

-11. The next lowest p-value from the unassociated features is of order -4. If we

correct (simply) for multiple tests, the p-values corresponding to the main variables

are p=3x10−6, and 7x10−8. The other 4,998 p-values are all 1 following corrections.

It is entirely obvious that screening for association between the feature and surrogate

will proffer good outcomes, just as we see here.

We might also consider screening in couplets or triplets of variables. This can

simply be done, but instead of splitting the features between where the surrogate is 0

and where it is 1 and testing if the distributions of each are the same, we need to use

BM distance covariance. To do so, we test simply the dependence of the dimensional

feature, and the surrogate. In a like fashion if we want to screen with a continuous,

or multivariate surrogate, we can also take this route. We do not provide calculations

for the iris dataset with a non-binary surrogate, as the methods and results should

be trivial on comparison with the results for screening with Y .

The use of screening and dimension reduction should hopefully be immediately

appealing. However as an interesting illustration we shall display how even reducing a

small number of dimensions, of even very informative variables, might pay dividends.

Assume we have been told there are three species of iris, and asked to deliminate them.
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Groups Calculated In 4D: Groups Calculated In 2D:
I II III I II III Total

Species: 1 50 0 0 49 1 0 50
Species: 2 0 48 2 0 47 3 50
Species: 3 0 14 36 0 6 44 50

Total 50 62 38 49 54 57 150

Table 3.8: k-means constructed classifier performance.

Further assume that we decide on using k-means for this purpose. (For the iris data,

normal mixture modelling will not exhibit this precise pathology). Table 3.8 shows

the results of using 3-means (with 1000 repetitions of the algorithm of Hartigan–

Wong) applied to all four dimensions to classify the flowers, and then the results if

applied to just the two dimensions of Petal Length and Sepal Width. Immediately

we see using all four dimensions for classification performs far more poorly than just

using the selected two dimensions. This is a slightly shocking result as here we have

only removed informative variables, that are no more noisy, we believe, than those

we have kept.

Our overall misclassification rate when all four dimension are utilized is 10.7%.

However using just two we immediately get a far smaller misclassification rate of

7.3%.

Thus we hope surrogate clustering (and surrogate screening) has much to offer.

Certainly it is extremely effective for certain instances as we have shown.

3.5 Visualization Methods Involving Surrogate.

One issue of the use of clustering for data mining is that there often is no good

visualization of the results, meaning we lack good diagnostics. Indeed this is some-

what due to the inherent nature of cluster analysis. For two-dimensional or three-

dimensional data we have an instinctive idea of what constitutes a good clustering,
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and plotting the data can show whether we have an intuitively appropriate cluster-

ing. Appropriate hypothesis testing can then confirm this, at least if we are pro-

ceeding through a model-centric viewpoint. However, for higher dimensional data, it

is difficult to evaluate whether or not what we obtain is an appropriate meaningful

clustering, and of course it is even more difficult to even know how to precisely define

a meaningful cluster. A partial answer is provided by dendrograms, which may be

produced if the clustering algorithm is a divisive one (though any algorithm natu-

rally might be iterated to force it into a divisive-type algorithm). However, these are

not a perfect, or indeed a particularly acceptable, solution, and to an untrained eye,

the majority of dendrograms look pretty impressive and good evidence of clustering,

even if the data really doesn’t have meaningful clustering. We therefore put forth a

very simple graphical representation designed for non divisive algorithms that allows

visualization of our surrogate clustering technique.

Our representation, designed for non divisive algorithms expecting to find a rea-

sonably low number of clusters, is to visualize the clustering as a graph, with edges

having weightings reflecting both the spatial distance between corresponding clusters

and the ability to tell the clusters apart using the surrogate variables. More precisely,

given a clustering of a given number of clusters, we represent each of these clusters by

points spread equidistant around a circle. To indicate the size of each cluster we mark

its number with a symbol proportionate in size to how many members it has. To

indicate the distance in the main feature space between clusters, the line connecting

each cluster is given width inversely proportional to that distance, and to indicate

the dissimilarity of clusters based on our surrogate measure, we shade the line in

grayscale going from black to white, in proportion to the p-value that we calculate

for whether if those two clusters are combined, then regressed onto the main features,

the main features and residuals are dependent. Hence, clusters spatially close will

have thick lines, but these will be not so visible obviously unless the surrogate evinces
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a level of evidence for distinct subtypes - indeed they will be invisible against the

background if the surrogate evinces no evidence whatsoever. Thus both surrogate

and main feature distance may be seen on the diagram. While certainly not a solu-

tion to all cluster diagnostics, we feel this contributes a small amount to the ability

of graphically representing clusters. Figure 3.6 displays the results of using normal

mixture modeling on the iris dataset, for one, two, three, four and lastly five clusters.

The salient absorption from the graph should be the contrasting feature and surro-

gate distances, as opposed to absolute magnitudes, and especially the results when

shifting the number of clusters up or down by one.

Examining these plots provides a fair bit of information. Crossreferencing with

Figure 3.3 as required to see the precise location of the clusters in main feature space,

and we shall write cluster m/n to designate the mth cluster out of n in the clustering

with that total number of clusters. We see that cluster 1/2 is quite distinct, both

spatially and even more so in surrogate relation distance to cluster 2/2, and that this

separation continues in subsequent clusterings with at first cluster 2/2 being split

into two equal size clusters, of the same magnitude as 1/2, and a further of these 3/3

is split again and again in subsequent clusterings. It appears thus we have quite a

stable clustering. Interestingly when three clusters are asked for we see that 2/3 is

closer to 3/3 in absolute distance than it is to 1/3, but closer in surrogate relation

distance to 1/3 than 3/3. Further 3/3 is very distinct in surrogate relation metric

from 1/3, as well as in spatial absolute distance.It appears we have a true cluster effect

here and that three clusters are most justified. This is further highlighted looking

at the results of asking for four clusters, when cluster 3/3 is split into 3/4 and 4/4,

with 4/4 a cluster very distinct from cluster 1/4, and with 3/4 being closer to 1/4 in

surrogate relation distance, though not absolute distance, and much closer to 2/4 in

absolute spatial distance, but more like 4/4 in surrogate relation metric. This then

might be interpreted as one very distinct cluster, that is 1/3, and two clusters 2/3,
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Figure 3.6: Cluster plots for iris dataset with 2-5 clusters.

3/3 that merge into each other spatially but contain at least two subtypes evinced by

a switch in surrogate relationships. Moving to both four and five clusters shows that

our clustering is attempting to discern where 2/3 ends and 3/3 starts, by splitting

up points that are hard to identify. We conclude there is good evidence for three

subtypes.

Naturally the effects of statistical estimation may be also included in the cluster
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plots. For example markers, and lines may be multishaded to represent confidence

intervals. But we have not pursued this here.

3.6 Example: SPIROMICS Data.

Overview:

We proceed by attempting to utilize surrogate clustering to identify subtypes

of COPD using blood biomarkers. As part of the SPIROMICS study, data was

collected from over 1,000 COPD sufferers and normal controls. The data includes

both clinical variables, and 112 blood biomarker variables. We are interested in

determining subtypes of COPD through clusters in these 112 biomarkers.

Chronic Obstructive Pulmonary Disease (COPD) is a serious progressive and

debilitating lung condition that affects millions of sufferers, and is the third leading

cause of death in the United States alone. It is a term that denotes loss of air flow

through the lungs due to a number of possible causes, including loss of elasticity of

the airways and air sacs, wall being destroyed between air sacs, inflamed walls of

the airways, clogging from too much mucous. COPD includes two main conditions,

emphysema and chronic bronchitis, that are often concurrent in COPD sufferers.

There is no known cure or way to reverse damage, though progression can be slowed.

While risk factors, such as smoking, are known, other factors to explain the propensity

of a person to develop COPD are not. Furthermore, the precise pathophysiology of

COPD, and in particular how many disparate pathways there are that give rise to

symptoms denoted as COPD, are unknown. The latter query is of particular interest,

for different pathways would beget different possible interventions. We intend to

explore this question and identify different subtypes.

The SubPopulations and InteRmediate OutcoMes In COPD Study (SPIROMICS)
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is a multicenter program funded by the National Heart, Lung and Blood Institute,

coordinated by the University of North Carolina at Chapel Hill, to promote the collec-

tion and analysis of phenotypic, biomarker, genetic, genomic, and clinical data from

COPD subjects and corresponding controls. The primary aims include identifying

disease subpopulations, and discovering and validating surrogate makers of disease

severity that may be used as intermediate outcomes to asses whether potential treat-

ments are efficacious. Hence SPIROMICS provides a large, high dimensional data set,

which quite possibly will evince subtypes of COPD with differing pathophysiologies,

when subjected to the right analyses.

As noted, cluster analysis is one method to find subtypes of disease. For sub-

types of disease with different pathophysiologies, we expect a different distribution

among subtypes of some biomarkers related to these pathophysiologies. In particular

we might expect the high density regions to be quite different for each subtype. Not

knowing the subtypes and beginning with these biomarkers, clustering into unimodal,

high density regions should then elucidate the underlying subtypes. This logic has

been applied successfully in many areas of biomedical research, and for a particu-

lar example to examine cancer subtypes, where often the biomarkers are levels of

particular gene expressions.

Our initial results, using standard methods were unable to reveal any meaningful,

interpretable structure in the data. This motivated our development of surrogate

clustering as laid out above. We apply this method to the SPIROMICS data set, and

the results are detailed below.

Results Summary:

Using machine learning techniques, we isolate 10 of the 118 biomarkers to tar-

get for clustering: ICAM1, CXCL10, CXCL9, TNFRSF1B, CRP, MMP3, CHGA,
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TIMP1, CCL16, TNFRSF10A. We then predict that we may find the most clini-

cally meaningful clusters in just four of these features taken together simultaneously:

ICAM1, CXCL10, MMP3, TIMP1 (and CXCL10 may be essentially interchanged

with CXCL9).

We identify 4 possible clusters in the subspace of these features.

We identify a high association between these clusters and the 57 clinical features

which may be divided into physical, demographic, lung capacity, response to bron-

chodilator, lung disease indication, and biomarker subsets (with the biomarker falling

into four distinct categories).

Figure 3.7 displays a visualization of these clusters in a two dimensional repre-

sentation of the four dimensional biomarker space, followed by a two dimensional

visualization of the clinical variables (listed above, but excluding the physical height

and gender variables), colored by these four clusters.

Figure 3.7: Two dimensional visualizations of the 4 clusters, both in biomarker space
(in which they are defined) and clinical space.
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We may observe that the clusters found from the biomarkers appear to have

clinical significance. Indeed, when viewed in clinical feature space, there is evidence

of clustering among the clinical variables, and this clustering calculated from the

biomarkers suggests greater evidence of subtypes than when viewed in biomarker

space. We explore and comment further below.

Data:

The SPIROMICS data available for our analysis is 439 clinical and 118 biomarker

variables taken from 1,697 patients.

Demographic (gender, race, etc.), physical (weight, BMI, etc.), physiological (lung

capacity, sleep quality) and medical (drug usage information) constitute the clinical

variables, which are a mixture of continuous and categorical variables. The biomark-

ers are measurements of a number of different proteins obtained from the plasma

of each patient. The 112 different biomarkers were proposed by the investigators as

being judged to be the biomarkers most likely to elucidate further information about

COPD.

The patients are stratified into four strata: healthy non-smoker, healthy smoker,

mild/moderate COPD, severe COPD.

The data has appreciable missingness. Certain biomarker variables are over 90%

missing. Missingness is of multiple types. We have frequent left censoring due to

receiving reported measurements below the accuracy level of the assays, and less

frequently right censoring due to the measurement being above the upper quantifiable

limit of the assay. Further there is occasionally general, presumably non-ignorable,

missingness.

We also have appreciable missingness within certain clinical variables. We have
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439 variables, but only 270 with less than 25% missing, and only 162 with less than

5% missing.

Method:

The fairly high dimensionality of the dataset, combined with the amount of miss-

ing data, and need for clinical interpretability make this a difficult analyses. Standard

analyses did not reveal interesting structure in the data. We needed to develop spe-

cific machine learning techniques for this task, as described below.

The biomarker measurements are all positive numbers, of differing ranges. For

statistical, scientific, and philosophical reasons, we work with the logarithmic trans-

forms of these. Below, all referenced biomarkers are referencing the log transform of

the original data biomarkers.

We shall use a training and test set split. As much has to be estimated from the

training set (that is appropriate dimension reduction, clustering, clinical relevance)

we propose that a 3:2 ratio is appropriate, stratified by COPD severity. We divide

our data randomly into a training set of 636 patients from strata 3 and 4 (with a

breakdown of 439 in stratum 3, 205 in stratum 4), and a test set of 423 patients from

strata 3 and 4 (with a breakdown of 287 in stratum 3, 136 in stratum 4).

Our hope is that different pathways may be educed by extracting different signa-

tures in the patients measured biomarkers, more precisely by finding clusters, each of

which corresponds to a different pathway or pathophysiology. Examining the clinical

measurements is an alternative attack, but our hope is pathway differences will have

a more immediate and clearer signal in the biomarkers than the clinical variables.

Furthermore all patients have similar presentations of the disease, suggesting finding

subtypes from presentation may be difficult. However we will crossreference our find-

ings with clinical variables to determine if our results have clinical meaning. Simple
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standard explorations appear to be unable to find meaningful clusters that are well

separated in biomarker space, or else with good interpretation in terms of clinical

relevance, requiring us to extend existing methods.

We utilize subspace clustering, with clustering for each subspace begin performed

by fitting normal mixture models, using the Mclust algorithm of Fraley et al.

To reduce the number of subspaces to examine to manageable numbers, we screen

each biomarker first univariately, and then in pairs bivariately, for suggestions of

clinically different subtype. This then flags the ten biomarkers: ICAM1, CXCL10,

CXCL9, TNFRSF1B, CRP, MMP3, CHGA, TIMP1, CCL16, TNFRSF10A.

We exhaustively search through and rank all 1024 possible subspaces of these to

identify those with possible clinical meaningful subtypes. We select the 4-dimensional

subspace of ICAM1, CXCL10, MMP3, TIMP1, as that which is most promising for

the identification of subtypes. Within this subspace we infer there are 4 meaningful

clusters.

The presence of clinical subtypes is sought for by examining and seeking sharp

changes in regressed residuals of the clinical variable LLN FEV1/FVC onto the

biomarkers over different clusters. This clinical variable is the lower limit of nor-

mal ratio of volume of air exhaled in 1 second to total volume that may be exhaled.

The lower limit of normal for an individual is defined as the lower fifth percentile

of this variable for a group similar in age, height, gender and race. It is inherently

bound up with the definition and diagnosis of COPD, and we might hope different

subtypes of COPD have this variable distributed somewhat differently. It is thus an

acceptable surrogate.
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Biomarker p-value
ICAM 1.4× 10−12

CXCL10 1.1× 10−8

CXCL9 6.2× 10−7

TNFRSF1B 3.8× 10−4

CRP 5.0× 10−4

MMP3 5.2× 10−4

CHGA 7.1× 10−4

TIMP1 3.9× 10−3

CCL16 7.6× 10−3

Table 3.9: Biomarker rankings for possible indication of disparate subtypes.

Preliminary Conclusions:

Scrutinising changes in relationships between the biomarkers and the surrogate

LLN FEV1/FVC variable, we propose that the 9 biomarkers, as ranked in Table

3.9, show strong evidence of possible disparate clusters or subtypes. The p-values

shown are for those calculated by brownian distance correlation t-tests, for the null

hypothesis that regressing the surrogate results in residuals independent from the

biomarker, using the training set.

Of subspaces spanned by features chosen from these nine, the 10 we rank most

interesting and likely to display clusters of disparate subtypes are indicated by Table

3.10. The estimated statistic is calculated from a regression of log p-values onto

number of clusters, ranging from 1 to 8, where the p-values are for the hypothesis

that normal mixture modelling into the requisite number of clusters results in clusters

where the residuals of the regressed surrogate are independent of spatial position

within the cluster. We conjecture high values of this statistic are likely to indicate

a significant number of clusters representing disparate subtypes. It appears that

ICAM1, MMP3, TIMP1 and one of CXCL10 or CXCL9 are the most important

biomarkers according to this statistic. Interestingly it seems that the noise to non-

mutual signal ratio of CXCL10 and CXCL9 is not high enough to justify including

the additional dimension of having both these biomarkers in the clustering.
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Combination 1 2 3 4 5 6 7 8 9 10
ICAM1 X X X X X X X X

CXCL10 X X X X
CXCL9 X X X X X X X

TNFRSF1B X X X
CRP X

MMP3 X X X X X X X X
CHGA X
TIMP1 X X X X X X X
CCL16 X X X

Statistic Estimate 19.6 18.2 17.9 17.6 17.4 17.1 16.8 16.8 16.4 16.3

Table 3.10: Subspaces giving highest statistics.

Total Clusters: 1 2 3 4 5 6 7 8
Cluster: 1 1×10−12 3×10−4 2×10−3 0.65 0.88 0.84 0.81 0.88

2 0.79 0.52 0.81 0.68 0.84 0.59 0.80
3 0.78 0.90 0.67 0.72 0.78 0.64
4 0.80 0.88 0.91 0.91 0.87
5 0.74 0.69 0.72 0.83
6 0.71 0.81 0.64
7 0.88 0.89
8 0.92

Overall: 1×10−12 6×10−4 6×10−3 1.00 1.00 1.00 1.00 1.00

Table 3.11: Training p-values for ICAM1, CXCL10, MMP3, TIMP1.

Examining the p-values whose logarithms were regressed to give the proposed

statistic, we see that for the subspace of ICAM1, MMP3, TIMP1 and CXCL10, we

choose 4 populations as the best estimate for the number of clusters in this 4d sub-

space. These p-values are shown in Table 3.11. More specifically the table displays

the within cluster p-values calculated by brownian distance correlation for the null

hypothesis that the regressed surrogate residual with each individual cluster, if the

subspace is clustered into differing number of total clusters, is independent of spatial

location within the cluster. The simply Bonferroni corrected overall p-value is also

given for each choice of the overall number of clusters. Table 3.12 shows the break-

down of how many training subjects are in each cluster, if four clusters are sought.

The clusters are designated partly by the colors they will be represented by in later

illustrations.

The results of the clustering calculated on the training data may be shown visually
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Cluster (of 4): 1 (Green) 2 (Magenta) 3(Black) 4 (Blue)
Number of subjects: 132 139 247 114

Table 3.12: Number of training subjects assigned to each cluster.

through either pairwise feature plots, as in Figure 3.8, or a two dimensional classical

multidimensional scaling (MDS) of a data matrix, performed using cmdscale in R, as

shown in Figure 3.9. In both cases the 4 clusters are color coded. Corresponding to

the ordering in Table 3.12 for a total number of 4 clusters, Green represents cluster

1, Magenta cluster 2, Black cluster 3, Blue cluster 4.

Figure 3.8: 2D visualization of the 4D biomarker space, colored by 4 clusters.
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Figure 3.9: Pairwise feature plots, colored by 4 clusters, for training data.

The univariate marginal distribution of the four biomarkers within each cluster is

summarized in Figure 3.10.

We find that in the two dimensional multidimensional scaling representation as

given in Figure 3.8, clusters 2, Magenta and 3, Black, seem to be compact somewhat

spherical clusters, with not unreasonable delineation, whereas cluster 1, Green is

ellipsoidal and cluster 4, Blue is also ellipsoidal, although somewhat orthogonally

oriented to cluster 1, Green. Indeed cluster 4, Blue seemingly is a cluster of outliers,
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Figure 3.10: Marginal distribution of biomarkers by cluster.

or extreme points in the 4 dimensional space. From the pairwise plots of Figure 3.9,

we may obtain the same observations, and indeed expand them noting that cluster 1,

Green is fairly compact and spherical except mainly in the CXCL10 feature, whereas

cluster 4, Blue is diffuse in all four variables. Cluster 4, Blue in particular might

possibly be characterized as differing from the other clusters due to strong positive

correlation between CXCL10 and ICAM1, whereas cluster 1, Green shows strong

positive correlation between MMP3 and CXCL10. From examining the univariate

distributions by cluster, as displayed in figure 3.10, we reinforce our diffuseness and
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Cluster (of 4): 1 (Green) 2 (Magenta) 3(Black) 4 (Blue)
Number of subjects: 84 81 164 92

Table 3.13: Number of test subjects assigned to each cluster.

compactness observations, and note that a fairly sharp boundary in MMP3 seems

to be the discriminating factor between assignment into clusters 2, Magenta, and

3, Black, and these clusters otherwise are hard to distinguish. The fact that the

medians (and other similar quantities) of all clusters may not be simply arranged

into any monotone increasing pattern across all variables simultaneously suggests

that we have not simply divided up one unimodal elliptical distribution.

Having fitted a normal mixture model, we may then use the parameters estimated

to provide a classifier for new subjects. This essentially classifies subjects by eval-

uating four different quadratic forms of the four features ICAM1, CXCL10, MMP3

and TIMP1, and the minimum of these indicates which cluster the subject should be

placed in. Thus we may classify our test data to examine performance. We note that

as the sampling mechanism is identical for the test and training data, we may take

into account the relative size of the clusters in constructing the classifier, as opposed

to if we had a different sampling mechanism when it would be preferable to use a

pure maximum likelihood classifier. Table 3.13 shows how many subjects in the test

set are classified into each of the clusters.

As normal mixture modelling gives consistent estimates, and as the sampling

mechanism is the same, we should expect to see our clustering repeatedly exactly in

the test set once it is classified, and clearly it is, as shown in Figure 3.11. Similarly

the marginal distributions of the feature among the clusters in the test set should be

a repeat of that for the training data, up to statistical sampling variability.

What are not consistent estimates however are the p-values we calculated to de-

termine the correct number of clusters. These should be validated in the test set.
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Figure 3.11: Pairwise feature plots, colored by 4 clusters, for test data.

Tables 3.14 provides the corresponding p-values in the test set.

These p-values are, by our above reasoning, indicative of at least three clusters,

and are not obviously contradictory to the hypothesis of four clusters. Hence we are

willing to believe that our results from the training data were not unduly biased by

our feature and subset selection process, and thus there indeed are four clinically

meaningful clusters in these four features.
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Total Clusters: 1 2 3 4 5 6 7 8
Cluster: 1 3×10−6 0.82 0.12 0.39 0.30 0.88 0.38 0.33

2 0.02 0.34 0.18 0.64 0.49 0.74 0.88
3 0.49 0.81 0.81 0.65 0.86 0.30
4 0.82 0.49 0.89 0.65 0.74
5 0.75 0.84 0.81 0.75
6 0.75 0.80 0.62
7 0.77 0.90
8 0.87

Overall: 3×10−6 0.04 0.36 0.73 1.00 1.00 1.00 1.00

Table 3.14: Test p-values for ICAM1, CXCL10, MMP3, TIMP1.

Clinical Interpretations:

It does appear that our clustering approach has given interesting and appropri-

ate results for the biomarker space. We now explore how the corresponding clusters

appear in clinical space. A simple visualization is a multiple dimensional scaling of

the clinical variables. We have some missingness in these clinical variables, and to

deal with these, we consider those variables with less than 10 missing measurements

amongst COPD sufferers in the training set, and then those subjects with no missing

observations for these variables. This allows us to have complete data on 562 COPD

sufferers for 113 demographic and clinical variables. Of these features 63 features

are non-discrete and amenable to multidimensional scaling techniques. We separate

the demographic variables, namely Age, BMI, Height, Weight, Follow Up Period,

Pack Years of Smoking History, from the 57 clinical variables. We perform multidi-

mensional scaling to two dimensions separately for these 6 demographic variables and

then for the 57 clinical variables, due to the disparate natures of these two categories.

We color the points according to their cluster assignments in biomarker space. The

results for the demographic variables is shown in Figure 3.12, and that of the clinical

variables in Figure 3.13.

Both representations display structure, though it is hard to interpret. The repre-

sentation of demographic variables is surprisingly discretized, and the representation
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Figure 3.12: Two dimensional visualization of the 4 clusters, both in demographic
space of six chosen continuous variables.

of clinical variables might be interpreted to hint at a number of clusters. However it

is not easy to see how our biomarker based clusters relate to the representations in

clinical or demographic space. To try to determine any correspondence we attempt

to denoise, and extract only relevant signal in the clinical feature space. To do so

we examine which variables differ significantly between the biomarker clusters. To

measure this we use brownian correlation p-values that test the dependence of vari-

able on the cluster number, and a correction for multiple testing is made. A density
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Figure 3.13: Two dimensional visualization of the 4 clusters, both in space of 57
chosen continuous clinical variables.

estimate of the resulting p-values is shown in Figure 3.14.

We make an assumption that the density of p-values for the non-informative

features is unimodal. From examining the inflection points of the estimated density

of the p-values, we suggest using10−5 as a threshold to indicate likely informative

features. This results in identifying 79 variables of interest, which are displayed in

Tables 3.15, 3.16 and 3.17 with the corresponding p-values calculated both in the

training set and also the confirmatory p-values found from the test set. We find that
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Figure 3.14: Density estimate of clinical p-values of training data.

the 10−5 cut off is appropriate., and many p-values reproduce very well in the test

set. Those features which failed to reproduce are greyed out.

It is clear that the found clusters differ markedly amongst the variables high-

lighted. There is certainly a race and gender effect, with cluster 1, Green, isolating

many white males (best lung function), cluster 2, Magenta isolating many white fe-

males, and cluster 4, Blue isolating many blacks (worst lung function). However there

are also clear purely clinical feature differences, so the race and gender effect, while

interesting, does not appear to fully explain the separation of these clusters in clin-

ical space. Furthermore, if we are indeed looking at clusters indicative of subtypes,

it would be reasonable to expect the subtypes to affect gender and race at different

rates.

Overall 56 variables were still flagged as significant after validating replication in

the training set. We remark that numerous PEX features (discrete measures related

to particulates) were flagged in the training set, but this failed to be reproduced in the

test set. It is possible this is an artifact due to the discrete nature of these variables,
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Feature Train p-value Test p-value
HT CM01 0 0
GENDER 0 0

RACE 0 0
AGECAT BY10 1×10−7 3×10−12

LLN FEV1 FVC 0 0
LLN FEV1 0 0
LLN FVC 0 0

PEX TOT0101 0 0.5
PEX HCUTOT0101 0 1
PEX ANTITOT0101 9×10−10 0.4

PEX STEROIDTOT0101 0 2
PEX DRUGTOT0101 3×10−8 0.6

PEX SEVERETOT0101 0 4
INFECTIOUS DISEASE CONDITION01 1×10−9 3

EMPHYSEMA DIAGNOSED01 3×10−7 0.3
FVC BDRESPONSE VOL01 6×10−11 4
BRONCH DIAGNOSED01 9×10−8 0.2

CBC LYMPHOCYTE CNT01 0 0.6
CBC LYMPHOCYTE PCT01 0 0
LONGESTJOBDURATION01 0 0.3

EMPH ULN01 0 0
ANT05 0 0

ANT06C 0 0
PRH09A 2×10−12 2
PRH09C 2×10−8 4
PRH09D 7×10−8 1
CBC07 0 4×10−11

CBC08 4×10−6 0

Table 3.15: Selected p-values for demographic, clinical features (initial).

which can sometimes cause problems with the interpretation of p-values calculated

with brownian distance correlation, however it is more plausible that missing values in

these data dropped the available data below the corresponding detection thresholds.

For ease of displaying an overview of the result, we group them (a little arbitrar-

ily) together. We create a demographic features subset (Gender, Race, Height, Age),

a Physical features subset (Sleep quality measurements, Physical well being mea-

surements), a lung function subset (involving all the LLN measurements), a Bron-

chodilator Response subset (pre- and post- bronchodilator FEV1, FVC and SVC), a

Lung Condition subset (Indicators for the presence of Emphysema, Infectious Disease,

Bronchitis), and subsets grouping all the SSV variables together, the PFV variables
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Feature Train p-value Test p-value
SSV33 DERV 0 0
SSV34 DERV 0 0
SFV31 DERV 0 0
SFV40 DERV 0 0
SFV30 DERV 0 0
SFV45 DERV 2×10−8 0.7
SFV33 DERV 0 0
SFV32 DERV 0 0
SFV34 DERV 0 0
SFV62 DERV 2×10−11 0.01
PSV33 DERV 0 0
PSV34 DERV 0 0
PFV31 DERV 0 0
PFV40 DERV 0 0
PFV30 DERV 0 0
PFV45 DERV 9×10−12 0.4
PFV33 DERV 0 0
PFV32 DERV 0 3×10−15

PFV34 DERV 0 0
PFV62 DERV 0 0.02

SDF03A 0 0
SDF03B 0 0
SDF03C 3×10−6 0.2
SDF03D 0 0
SDF05A 0 0
SDF05B 0 0
SDF05C 9×10−12 0.1
SDF05D 0 0

Table 3.16: Selected p-values for demographic, clinical features (continued).

together, the SDF variables together, and a sundry biomarker subset (including ANT,

PRH, CBC, SFH, DEM). As we have a large number of clinically relevant variables,

subgrouping them for simplification might be valuable in determining what precisely

these subgroups represent.

We may visualize the relationship between these subgroups and biomarker clusters

by using multidimensional scaling maps to embed the variations in each subgroup

with two dimensions. Representations are shown in Figures 3.15 to Figures 3.23.

We see much structure in these representations. The bronchodilator response and

physical subsets in particular, seem to be in the shape of interesting manifolds. There

is a clear partition into two sets in LLN variables, that is predominantly respected
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Feature Train p-value Test p-value
SFH RP01 0 7×10−16

SFH SF01 4×10−6 6×10−7

SGR ACTIVITYSCORE01 5×10−9 0.01
SGR IMPACTSCORE01 4×10−6 1 ×10−4

SGR TOTALSCORE01 5×10−9 4 ×10−4

PSQ TOTALSCORE01 3×10−15 0.1
PSQ SLEEPDISTURBANCE01 2×10−6 2×10−7

PSQ SLEEPLATENCY01 8×10−8 0.004
PSQ SLEEPEFFICIENCY01 6×10−15 1

FACIT PHYSICALWELLBEINGSCORE01 5×10−12 4×10−10

VSASCORE01 2×10−7 6 ×10−2

DEM02 2×10−10 0.5
DEM04 0 3

RDS10A2 2×10−6 3
RMU02 0 1 ×10−5

BMH08A 3×10−8 1
SYMBICORT 5×10−6 2 ×10−5

PREBD FVC 0 0
PREBD FEV1 7×10−7 0.5
POSBD FVC 0 0
POSBD FEV1 9×10−12 0.1
PREBD SVC 0 0
POSBD SVC 0 0

Table 3.17: Selected p-values for demographic, clinical features (final).

by the biomarker clustering with cluster 1, Green and cluster 2, Magenta being split

between the two clusters - though of course the choice of a LLN variable as a surrogate

likely influences this. Other subspaces hint at more clusters, for example three would

be a reasonable extraction from the CBC, ANT, PRH and DEM subspace.

Conclusions: We are confident in a meaningful division of COPD patients in

the SPIROMICS study into four clusters determined by biomarkers. The structure

and signal is messy, but nevertheless there is structure and signal present. Clinical

interpretation and whether these could indeed be indicative of disparate subtypes is

now necessary.

Our lessons from this analysis include that clustering noisy data in high dimen-

sions is hard! We have proposed and partly validated a screening method that seems

to give clinically meaningful clusters in projected dimensions. As a result of this,
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Figure 3.15: Cluster visualization in the space of 11 physical variables.

we have also introduced a new method for selecting the number of clusters in a

meaningful data driven way.
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Figure 3.16: Cluster visualization in the space of 3 LLN variables.

76



Figure 3.17: Cluster visualization in the space of 2 PSV variables.
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Figure 3.18: Cluster visualization in the space of 2 SSV variables.
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Figure 3.19: Cluster visualization in the space of 9 PFV variables.
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Figure 3.20: Cluster visualization, in the space of 8 SFV variables.
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Figure 3.21: Cluster visualization in the space of 7 SDF variables.
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Figure 3.22: Cluster visualization in space of 6 bronchodilation effect variables.
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Figure 3.23: Cluster visualization in space of 10 chosen features from the set of CBC,
ANT, PHR, DEM variables.
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CHAPTER 4: JUMBLED KDES AND MIXTURE MODELS.

4.1 Introduction and Abnormal Distributions.

We detailed numerous possible extensions that might be useful for our surrogate

clustering method. We now consider a class in more detail.

The decision to use mixture modelling to attempt to unscramble subtypes seems

a very justifiable and defendable one, as we have noted (Walther (2002)). A simple,

and well-established, distillation of this idea is to estimate the number of modes of

a distribution, and conclude that each of these corresponds to a separate univariate

population (Silverman (1981)). However this is problematic in higher dimensions

even in simple situations, for as Ray and Lindsay (2005) point out, the property of

normal mixture models in one dimension that the modality equaling the number of

components is no longer true in higher dimensions. Thus different subpopulations

may not be as simply identifiable. However, they consider other functionals that

allow recovery of how many components there are, under the strong assumption the

mixture truly is a normal mixture. It is thus clear we must be careful in higher

dimensions, and our intuition from lower dimensions does not transfer. The same

phenomenon precisely in the one dimensional case when the distributions are not

normal is the motivation for Walther (2002) to model with log-concave distributions

instead of simply mode hunting. Walther also points out that this approach may

provide far more power than simple mode hunting would.

It is then clear that we should perhaps be flexible in our choice of distributions.
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A different reason to be flexible is pointed out by McLachlan et al. (2002), who note

that the heavy tails of distributions of gene expression levels might not be at all

suitable for modelling as a gaussian mixture. Indeed the authors propose examining

whether t-distributions are a better modelling assumption than simple normals for

these situations.

In our work we have often observed, as in the case of the SPIROMICS data,

biomarkers may not be assumed to follow gaussian distributions, and in the situa-

tions we have considered heavy tails have not been much of an issue. As we noted

earlier, one workaround was to transform variables that they might be approximated

by normal distributions, such as taking a logarithm when the variable was strictly

positive, and hence certainly non-normal, yet specific work-arounds are undesirable

for machine learning situations where as much of the decision process as possible

should be automated. It seems therefore we should maybe continue with Walther’s

paradigm, and consider modelling with mixtures of log-concave distributions.

The use of log-concave distributions has many attractive features. If we are mod-

elling mixtures with a class of distributions in higher dimensions (with the features

being possibly fairly convoluted or interrelated) then we should hope for some closure

properties for certain operations on this set. For example, reasonable properties to

require would be that marginal densities are in the class if joint densities are, and

addition and multiplication of random variables with densities in the class results in

a random variable with density also in this class. These properties are met by the

class of log-concave distributions (see for example Bagnoli and Bergstrom (2005)).

The log-concave distributions also form a rather wide class, from normals and chi-

squared distributions, to exponential and compactly supported uniform distributions,

enabling them to model appropriately many situations. Further the log-concave dis-

tributions all necessarily have the restriction that they are unimodal, vital for use in

85



extracting subpopulations. We thus concur with Walther that log-concave mixtures

offer much promise.

4.2 Shape Constrained Density Estimates and Jumbled Kernel Density Esti-
mators.

Modern clustering is usually performed on non-univariate features, which makes

modelling with a non-parametric class of distributions fairly problematic. Recently

Dümbgen, Lutz and Rufibach (Dümbgen et al. (2009)) introduced and proved unique-

ness of the MLE for a univariate log-concave density. Cule, Samworth and Stewart

introduced a MLE of a multivariate a log-concave distribution (Cule et al. (2010b)),

and studied its theoretical properties (Cule et al. (2010a)). This was a major step

forward as it allowed them to use log-concave densities within an EM-algorithm for

fitting mixtures. As Cule and Samworth note, the MLE of a unimodal distribu-

tion must be undefined, but placing the log-concave restriction allows estimation and

identifiability. However we have observed that significant improvement, especially

for higher dimensions or low sample size may be obtained simply through another

method.

Shape constrained density estimation is a well considered problem, going certainly

as far back as Grenander’s celebrated MLE for estimation of a monotone density over

a finite interval (Grenander (1956a), Grenander (1956b)). What appears to have

received less attention however is the possibility of simply tweaking existing, well-

understood estimators, such as kernel density estimators (KDEs) to fit the relevant

constraints. Suggestions of doing so appear more or less explicitly in a number of

papers, such as in Kosorok’s consideration of bootstrapping the grenander estima-

tor (Kosorok (2008)), as well as more expansively elsewhere (Birke (2009), Wolters

(2012)). However, there seems to be neither much acknowledgement as to the nu-
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merical advantages of this technique, nor the theory that can be inherited from KDE

theory. We shall highlight the possibility of both of these.

Kernel density estimation is well-established, having been first introduced sep-

arately by Rosenblatt and Parzen (Rosenblatt et al. (1956), Parzen (1962)). One

feature that makes it a particularly attractive method is the fact that it has optimal

convergence properties amongst non-parametric density estimators (Roberts et al.

(2001)), as well as the well-developed theory of KDEs in general.

We let {Xi}, 1 ≤ i ≤ n, be an i.i.d. sample from the random variable X which has

density function fX(x) with respect to lebesgue measure on Rk. The kernel density

estimator with bandwidth b is a map

Kn, b(n) : (Rk)n → D

where D = {f ∈ L1(Rk) : f ≥ 0,
∫
f dx = 1}. Depending on the choice of bandwidth

(and actually kernel), which could be data dependent, this might or might not be a

linear map. For a non data dependent smart choice of bandwidth it is a linear map,

and for appropriate bandwidths (such as those minimizing expected mean integrated

squared error (MISE)) it is known that

√
n

∫
g(Kn,b(n)(Xn)− f) dx l∞(G) G

where G are certain classes of functions and G is a generalized brownian bridge process

indexed by G. Proving such results requires smoothed empirical processes (Giné and

Nickl (2008)).

Let C ⊂ D represent the class of densities in which that of X is known (or

assumed) to be. For our procedure, we propose choosing some T : D → C, then on

application of the functional delta method (see for example Kosorok (2007)), we have

that
√
n

∫
g(T (Kn,b(n)(Xn))− f) dx l∞(G) T

′(f)(G)
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provided T is hadamard differentiable tangentially to C at f , and where we have used

the fact (assuming a sane choice of T !) that T (f) = f . We will name T the correction

map.

Therefore we have provided an estimator Jn : (Rk)n → C with precise definition

J(X) = T (Kn,b(n)(Xn))

for which we may obtain both consistency and inference results, given the proviso

that we may find a good choice for T .

As the new estimator is constructed through simply taking a KDE and deforming

it as needed, we refer to this type of estimator as a Jumbled Kernel Density Estimator,

that is a JKDE.

4.3 A Monotone Jumbled Kernel Density Estimator.

Example, Grenander estimator: The grenander estimator is a well studied

estimator for a monotone univariate density. It is a MLE estimator, resulting in a

piecewise constant density function. Inference is challenging, e.g. standard boot-

strapping is inconsistent (Kosorok (2008)). We investigate the proposed method in

comparison to the grenander estimator. We assume a monotone decreasing density

on, without loss of generality, [0, 1]. Our choice of kernel density estimator is one that

is respectful of this finite support. In order to give a density on [0, 1], we use a kernel

density estimator on the transformed data when the mapping U : R→ R defined by

U(x) = log(x/(1− x)) is applied, the estimated density is then transformed back to

[0, 1]. Here we use a kernel density estimator which selects bandwidth to correspond

with the sample standard deviation. Specifically we use the density() function in R.

There are numerous options for T . We consider two.
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Error N=10 N=100 N=1000 N=10000
Grenander JKDE Grenander JKDE Grenander JKDE Grenander JKDE

L1 0.44(0.17) 0.31(0.16) 0.17(0.09) 0.12(0.040) 0.08(0.04) 0.054(0.015) 0.035(0.009) 0.025(0.005)
L2 0.85(0.85) 0.57(0.47) 0.65(3.03) 0.29(0.31) 0.50(1.48) 0.12(0.09) 0.15(0.30) 0.05(0.02)
Pointwise 0.27(0.19) 0.17(0.12) 0.12(0.09) 0.08(0.06) 0.063(0.046) 0.042(0.030) 0.031(0.024) 0.022(0.017)
Probability 0.15(0.09) 0.12(0.084) 0.034(0.027) 0.028(0.020) 0.013(0.009) 0.012(0.008) 0.004(0.003) 0.005(0.003)

Table 4.1: Grenander and JKDE empirical errors for a truncated exponential on [0,1].

1: The first choice of T we consider is a decreasing rearrangement, T = Td,

defined by the fact that Tdf(x) ≥ Tdf(y) if 0 ≤ x ≤ y, and |{x : Tdf(x) ≥ c}| = |{x :

f(x) ≥ c}| ∀c. This is a standard real analysis tool, and maps a given function to a

nonincreasing one of same Lp norm for p ≥ 1. This is simple to calculate, and the

complexity is not high when programmed smartly. The main advantage of this choice

though is that T is differentiable (in the hadamard sense), with the derivative being

simply id(x) = x provided the true density f has no piecewise constant sections,

which is to say @a, b, c so that f(x) = c ∀x ∈ [a, b]. This seems a rather trivial

requirement for real life densities.

In Figure 4.1, a comparison of the decreasing rearrangement kernel density es-

timator and the grenander estimator is given for a truncated exponential on [0,1],

for sizes of sample, N=10, 100, 1000 and 10000. Visually, the rearranged density

estimator is much more attractive. It seems the improvement is extreme for lower

sample sizes, when the grenander is very coarse. Table 4.1 shows the findings of a

simulation of 100 samples from this density regarding the performance of the two

estimators measured by expected errors in L1 and L2 norms, the error in pointwise

evaluation at the (arbitrary point) x = 0.4, and also the error of estimating the prob-

ability P (X ≤ 0.4) (again with an arbitrary choice being made for this interval), and

corresponding standard deviations. It is immediate that the proposed estimator out-

performs the grenander considerably. Although we have not detailed this here, similar

improvements are seen when considering median and quantiles of errors instead of

expected error and variances.
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Figure 4.1: Grenander and JKDE density estimates for a truncated exponential on
[0,1].

Now we consider the effect of choosing different distributions to generate the data.

We examine the distributions that corresponding to a truncated normal of variance 1,

a piecewise uniform with jump at 0.4 and 0.7, and a piecewise uniform with 10 jumps

(that were chosen at random). We consider having N = 100 samples. Simulations of

the estimated densities are shown in Figure 4.2 for visual comparison.

2: A second possible choice of T we could consider is simply the map which sends

a function to the nearest (using the L1 metric) decreasing positive function of integral

1, T = To.

90



0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

x

y

Exponential

truth
grenander
kde
rearranged

0.0 0.2 0.4 0.6 0.8 1.0

0.
7

0.
8

0.
9

1.
0

1.
1

x

y

Normal

truth
grenander
kde
rearranged

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Piecewise 1

truth
grenander
kde
rearranged

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Piecewise 2

truth
grenander
kde
rearranged

Figure 4.2: Grenander and JKDE estimates for diverse densities.

This may be calculated by using linear programming. For example, we choose a

(large) number of quadrature points u1, . . . , un in the unit interval, at which we shall

determine the value of J(X). First we evaluate vi = Kn,b(n)(X)(ui) for 1 ≤ i ≤ n.

Denote wi = J(X)(ui). All we need do is simply solve the convex optimization:

Minimize: Σn
i=1|wi − vi|(ui − ui−1)

such that: wi ≥ 0, wi+1 ≥ wi for each 0 ≤ i ≤ (n− 1)

Σn
i=1wi(ui − ui−1) = 1.

Obviously choosing the nearest monotone function using a different norm (such as
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L2) provides a number of other choices. Furthermore a choice of using the L2 norm

has the additional advantage that the resulting optimization is not just convex, but

quadratic. We have not pursued the performance of this correction map further in

this work.

4.4 A Log-Concave Jumbled Kernel Density Estimator.

There are available estimators for a log-concave density in high dimension (Cule

et al. (2010b)). Such estimators are found using MLE methods. There are several

issues however with using these. One complication using the available estimators is

that the running time for computations becomes impractical in higher dimension,

with a possibility of a week running time in say R10, if not earlier. Clearly this

hampers the use of log-concave densities, especially in mixture models, and even more

so in EM algorithms. Additionally, such estimators do not compare extremely well

with kernel density estimators regarding errors, which might indicate that a JKDE as

we propose would be superior. Furthermore, as would be expected from an estimator

that maximizes likelihood, it is a rather greedy estimator, often underestimating the

extent of support, particularly when the signal is sparse, either due to low sample

size, or simply the result of the curse of dimensionality.

For us it is an open question as to the optimal map from a KDE to a log-concave

JKDE, and likely the optimal map will depend on the metric studied. However a most

simple method would be to estimate the logarithmic density as usual, then we can

calculate a concave majorant simply from calculating the appropriate convex hull of

the interpolation points. Then we apply exponentials and finally normalize to a norm

of 1 in L1. This can be done rather fast: quickhull is one of many algorithms that can

do this, and the complexity of quickhull is conjectured to be n log(n) independent

of the space dimensionality, subject to certain so-called ‘balance’ conditions (Barber
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et al. (1996)). It is reported that it is efficient certainly for R8 and lesser dimensions.

The normalization is not as simple as might be thought in higher dimensions, as

the curse of dimensionality requires that a partition for numerically evaluating an

integral must contain a very large, and computationally awkward, number of points

to produce good accuracy in higher dimension. However this difficulty may be offset

by the application of a Monte Carlo integration technique (Morokoff and Caflisch

(1995)).

If there is an issue with a spiky density estimate due to a discontinuous density,

then it is likely worth considering down-weighting spiky areas by weightings according

to the confidence we have in our KDE at that point.

We now compare through simulations the performance of our JKDE for log-

concave functions, which we are most interested to apply to the SPIROMICS project,

with its competitor the MLE for log-concave functions. We shall perform the com-

parison in two-dimensions, as firstly the MLE becomes prohibitively expensive com-

putationally in higher dimensions, and secondly we may visualize the performances

and obvious pathologies of each method simply in two dimensions. To simulate the

sparsity of higher dimensions, and to really highlight the features of the estimators,

we will use a small sample size. We also compare these with the uncorrected KDE.

Figures 4.3 and 4.4 show the results of estimating a pdf of a standard two dimen-

sional gaussian and a standard two dimensional uniform on the unit square respec-

tively. We note that the JKDE seems to be clearly the best performing, smoothing

out the standard KDE, whereas the simple MLE estimates the support too sparsely.

Table 4.2 shows the average results of 335 experiments generating the gaussian dis-

tribution with 8 samples, and calculating the L1, L2, L∞, and hellinger norms of the

difference between the estimate and the true distribution. The monte carlo standard
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deviations over the runs is given in brackets.

KDE MLE

JKDE TRUE

Figure 4.3: Estimators of a 2D gaussian.

We observe that indeed the JKDE performs far better than the MLE in simulation,

giving savings in all error norms considered of between 50% and 80% over the errors

of the MLE, a very appreciable benefit.

The JKDE also clearly beats the uncorrected KDE, saving between 5% and 10%

over the KDE error in the L1, L2, L∞ norms, and a large 45% in the hellinger norm.

Quite why the JKDE is so much better than both KDE and MLE in the hellinger
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KDE MLE

JKDE f

Figure 4.4: Estimators of a 2D uniform.

norm, which we did observe consistently in other experiments, we have not yet un-

derstood, even though the explanation might be quite simple.

Even though the KDE and JKDE have fairly similar performances in the L1, L2, L∞

norms, albeit with a definite advantage to the JKDE, other considerations show that

the JKDE is a far better and more appropriate estimator in many uses. For example

when using the EM-algorithm to fit some mixture of log-concave densities, clearly the

KDE estimate simply cannot help resolve which samples belong to which mixture.
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Error Metric MLE KDE JKDE
L1 1.0 (0.21) 0.47 (0.11) 0.45 (0.11)
L2 0.33 (0.096) 0.13 (0.031) 0.12 (0.030)
L∞ 0.35 (0.19) 0.084 (0.023) 0.075 (0.021)

Hellinger 0.32 (0.080) 0.11 (0.040) 0.063 (0.026)

Table 4.2: Error estimates for MLE, KDE, JKDE, across 335 simulations.

4.5 Theory.

We now summarize our main theorems that provide the backbone of our theory

for JKDEs. We then will show how these may be applied in particular circumstances,

in particular with respect to the monotone density operator of section 4.3, and more

importantly its higher dimensional analogues.

We begin with a trivial theorem, that exploits asymptotic optimality of KDEs,

and that this will not change if one is corrected with a contraction, or projection,

map for the corresponding Lp. The JKDE immediately inherits (or perhaps betters)

the Lp approximation properties of the KDE, when the underlying density is indeed

preserved by the map. Hence, given (under weak conditions) that the KDE has

optimal error in both mean integrated squared error (MISE) and also L1 error, for

appropriate bandwidths, the JKDE also inherits this convergence rate. We restate

that result as follows:

Theorem 4.5.1. Let b(n) be a sequence of bandwidths such that Kn,b(n)(x) achieves

optimal asymptotic convergence in the MISE (or L1) norms, for some class of den-

sities F . Further let T |F = id for some restricted contraction map T . Then trivially

Jn,hn(x) = T (Kn,hn(x)) achieves the same, or better, asymptotic convergence rate in

the MISE (or L1) norm.

While consistency and the optimal asymptotic rate in certain error norms, over

appropriate classes of densities come almost for free, we can say more without too
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much further work, if we may exploit the differentiability of the correction map.

Giné and Nickl, who provide the theoretical framework for proving some uniform

central limit theorems and plug-in properties of the KDE with optimal (MISE or L1)

bandwidth. We may extend their theorem without to much effort.

We basically will work from two key theorems, one specific for KDEs (as proved by

Giné and Nickl), and the second the standard functional delta method from empirical

process theory. Following these authors we define a kernel K : Rd → R of real order

r > 0 to be a integrable function (with respect to lebesgue measure), such that:

K(−x) = K(x),

∫
Rd

K(x) dV (x) = 1,

∫
Rd

‖x‖r|K(x)| dV (x) <∞
∫
R
xjmK(x) dxm = 0,

where 1 ≤ m ≤ d and 0 ≤ 1 ≤ [r], with [x] denoting the smallest integer below x.

Then the standard kernel density estimator is given by

Kn,hn(x) = Pn ∗Khn(x)

where Khn(x) = h−dn K(x/hn) and Pn = Σn
i=1δXi

is the standard empirical measure

derived from n i.i.d. samples of X.

The theorem of most interest to us from Giné and Nickl (2008) is proposition 4,

which we state (a slightly weaker version of) below:

Theorem 4.5.2. Let X1, . . . ,Xn be i.i.d. according to the (continuous) law P on Rd,

where dP(x) = p0(x) dV ((x)), with ‖p0‖L∞(Rd) <∞, then for all translation-invariant

P-Donsker class C of convex sets with uniformly bounded diameter, we have:

√
n(Kn,hn(x)− P) l∞(C) G
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where G is the P-Brownian bridge indexed by C.

Giné and Nickl actually prove this for a wider range of kernels and classes of sets,

however these are defined through their extension of the space of functions of bounded

variation to higher dimensional space, and their wider framework is unnecessary here.

We now quote the functional delta theorem from Kosorok (2007).

Theorem 4.5.3. For normed spaces D, E let φ : Dφ ⊂ D → E be hadamard differen-

tiable at θ tangentially to D0 ⊂ D. Assume that hn(Xn − θ) X for some sequence

of constants rn →∞, with Xn taking values in Dφ, and X being a tight process taking

values in D0. Then

hn(φ(Xn)− φ(θ)) φ′θ(X)

where φ′θ is the hadamard derivative of φ evaluated at θ.

Placing these theorems together, and using the fact that our correction map is

the identity at the true density, we then inherit convergence of our JKDEs whenever

our correction map φ is hadamard differentiable. That we have simply deduced:

Theorem 4.5.4. Let Jn(X) = T (Kn,b(n)(Xn)) be a JKDE, with {Xi} being i.i.d.

samples from a continuous bounded density on Rd which has continuous density fX(x)

with respect to lebesgue measure, then

√
n(Jn(x)− P) l∞(C) T

′(X)G.

Thus to show convergence of any proposed JKDE it is simply necessary to examine

the derivative of the correction map. With a reasonable choice of correction map

though, this should be simple. For example consider our monotone density estimator
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of section 4.3. Here the correction map is the decreasing rearrangement operator on

L1([0,∞)). We may prove:

Proposition 4.5.1. Let T : L1([0, 1)) → L1([0, 1)) be the decreasing rearrangement

operator, and f ∈ L1([0,∞)) be such that it is strictly monotone decreasing, then T

is hadamard differentiable at f , and T ′ =id.

To prove this proposition, we must more carefully define the decreasing rearrange-

ment operator. The rearrangement operator was introduced by Hardy and Littlewood

(1930) in relation to maximal inequalities. As some of their presentation, such as the

explanations by appeal to examples from the game of cricket, do not immediately

lend themselves to our needs, we redevelop the theory we require.

Definition 4.5.1. We let P ⊂ L∞([0, 1)) be the set of functions having the form

P =

{
f(x) =

2n∑
i=1

ai1[(i−1)2−n, i2−n)(x)|ai ≥ 0

}

and define the operator T : P → P ⊂ L∞([0, 1]) by

T

(
2n∑
i=1

ai1[(i−1)2−n, i2−n)(x)

)
=

2n∑
i=1

ãi1[(i−1)2−n, i2−n)(x)

such that the sequence ã1, . . . , ãn is a reordering of a1, . . . , an with ã1 ≥ . . . ≥ ãn.

We immediately may note:

1. T (f)(x) ≥ T (f)(y) whenever when y ≥ x.

2. µ(x : T (f)(x) ≥ λ) = µ(x : f(x) ≥ λ).

hence T is a decreasing rearrangement operator on P . Further we have :

3. ‖T (f)‖∞ = ‖f‖∞.

4. ‖T (f)‖1 = ‖f‖1.
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Proposition 4.5.2. T is a contraction map operator on Lp(R+), that is

‖T (f)− T (g)‖p ≤ ‖f − g‖p

for all f, g ∈ P, and for 1 ≤ p ≤ ∞.

Proof: We need only show this for simple functions and appeal to the resulting

continuity. Without loss of generality we consider when p =∞. We may proceed by

induction. Given f(x) =
∑2n

i=1 ai1[(i−1)2−n, i2−n)(x), g(x) =
∑2n

i=1 bi1[(i−1)2−n, i2−n)(x),

by consideringm∨n, and a consistent reordering of sequences a1, . . . , am and b1, . . . , bn

we may assume without loss of generality thatm = n and a1 ≥ . . . ≥ an. Then assume

‖f − g‖∞ = ε > 0.

The L∞-norm condition gives us that |ai − bi| ≤ ε for each 1 ≤ i ≤ n. By choice

T (f) = f . Let T (g) =
∑2n

i=1 b̃i1[(i−1)2−n, i2−n)(x) and let k = arg maxi bi, so then

bk = b̃1.

We have

a1 + ε ≥ ak + ε ≥ bk ≥ b1 ≥ a1 − ε.

Further let f̃(x) =
∑2n−1

i=1 ai+11[(i−1)2−n, i2−n)(x), g̃(x) =
∑2n−1

i=1 b′i+11[(i−1)2−n, i2−n)(x)

where b′1, . . . , b
′
n is the extant sequence b1, . . . , bn with bk omitted (that is we have re-

moved the largest terms (a1 and bk respectively) in the series expansion definition of

f(x) and g(x)). Then we have that T (f) = a11[(0,2−n)(x) + T (f̃)(x + 2−n) and that

T (g) = a11[(0,2−n)(x) + T (g̃)(x+ 2−n).

But we have for 1 ≤ j < k that

aj+1 + ε ≥ ak + ε ≥ bk ≥ bj ≥ aj − ε ≥ aj+1 − ε

and of course aj + ε ≥ bj ≥ aj − ε for j > k. We may then deduce ‖f̃ − g̃‖∞ < ε.

By an appeal to the inductive hypothesis, we have ‖T (f̃) − T (g̃)‖∞ ≤ ε, and thus
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combining our observations, we have proven ‖T (f) − T (g)‖∞ ≤ ε, and indeed the

entire proposition.

Proposition 4.5.2 implies continuity of T on P , hence T extends to a continuous

operator on the completion of P in Lp. Thus, noting this completion in Lp([0, 1]) is the

entire space whenever p <∞, we have an operator defined T : Lp([0, 1])→ Lp([0, 1]),

for p < ∞, which, by appeal to its continuity, also satisfies the properties following

Definition 4.5.1 and furthermore Proposition 4.5.2. This may be regarded then as

our decreasing rearrangement operator.

The situation for p =∞ is not so straightforward, as L∞([0, 1]) is not separable.

We proceed by utilizing the established behaviour of T on Lp([0, 1]) for large p.

Lemma 4.5.1. ‖f‖∞ = limp→∞ ‖f‖p ∀ f ∈ L∞([0, 1]).

Proof: Let f(x) = ΣN
i=1ai1αi

be a simple function. Then ‖f‖∞ = max |ai| = |am|

for a certain m. We have

‖f‖p =

(
N∑
i

|ai|pµ(αi)

)1/p

= (µ(αm))1/p|am|

(
N∑
i

(
|ai|
|am|

)p
µ(αi)

µ(αm)

)1/p

.

Now |ai|/|am| < (1− η) for some 0 < η < 1 and i 6= m, hence

(µ(αm))1/p|am| ≤ ‖f‖p ≤ (µ(αm))1/p|am|(1 +Q(1− η)p)1/p.

Upon letting p→∞ the result follows.

Hence we simply extend the operator T to simple functions after noting

‖T (f)− T (g)‖∞ = limp→∞‖T (f)− T (g)‖p ≤ lim
p→∞
|f − g‖p = ‖f − g‖∞.

Thus T not only extends to L∞([0, 1]) by an appeal to continuity, but the properties

of defintion 4.5.1 extend similarly.

Now we consider the differentiability of our T .
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Proposition 4.5.3. The decreasing rearrangement operator that we have defined,

T , is hadamard differentiable at f with derivative being T ′ = id the identity map,

provided f is strictly decreasing.

Proof: Given hn ∈ R and gn ∈ L∞ such that hn → 0 and gn → g, first we observe

that

T (f + hngn)− T (f)

hn
=
T (f + hng)− T (f)

hn
+
T (f + hngn)− T (f − hng)

hn
.

An application of Proposition 4.5.2, as well as noting the multiplicative property of

the definition of T , shows∥∥∥∥T (f + hngn)− T (f − hng)

hn

∥∥∥∥ ≤ ‖T (f + hngn)− T (f − hng)‖
|hn|

≤ ‖(f + hngn)− (f − hng)‖
|hn|

≤ |hn|‖gn − g‖
|hn|

≤ ‖gn − g‖

→ 0

and therefore limn
T (f+hngn)−T (f)

hn
= limn

T (f+hng)−T (f)
hn

, so it suffices to just consider

T (f+hng)−T (f)
hn

. Now given N such that |hn| < ε/2 for all n ≥ N , then there exists

fε(x) =
∑2m

i=1 ai1[(i−1)2−m, i2−m)(x) with a1 ≥ . . . ≥ am and |ai − aj| > 2‖g‖ε if

i 6= j, such that ‖fε− f‖ ≤ ‖g‖ε/2. Then note that if x ∈ [(i− 1)2−m, i2−m) we have

am+‖g‖ε/2 < f(x) < am−‖g‖ε/2, and then am+‖g‖ε < f(x)+hng(x) < am−‖g‖ε.

As |ai − aj| > 2‖g‖ε if i 6= j, we then have f(x) > f(y) for any x ∈ [(i −

1)2−m, i2−m), y ∈ [(j−1)2−m, j2−m) with j > i. Hence if x ∈ [(i−1)2−m, i2−m) then

am+‖g‖ε > T (f)(x) > am−‖g‖ε. As a result we certainly have ‖T (f)−f‖ ≤ ‖g‖ε for

all n ≥ N , thus this then says that T (f+hng) is calculated by taking a rearrangement
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on each dyadic interval. We thence obtain T (f + hng)(x) − T (f)(x) = hng(y) for

some y in the same interval [(i− 1)2−m, i2−m) as x. Letting hn →∞, thus m→∞

and ε→ 0 will prove the result.

Finally Propositions 4.5.3 and 4.5.2 together prove Proposition 4.5.1.

Combining Proposition 4.5.1 and Theorem 4.5.3, we then straightaway find for

the monotone density JKDE of section 4.3 simply that

Theorem 4.5.5.
√
n(Jn(x)− P) l∞(C) G

for all translation-invariant P-Donsker class C of convex sets with uniformly bounded

diameter.

and thus we establish asymptotic properties.

This result is of course univariate, and does not make full use of the theory of

Giné and Nickl and their extensions to higher dimensions, but we similar results may

be obtained for all well chosen JKDEs. As an example we propose an estimator of

a density on [0,∞)d for which we expect the density to monotonically decrease in

the direction of the axes, that is f(x1, . . . , xk, . . . , xn) ≥ f(x1, . . . , x̃k, . . . , xn) for all

x̃k ≥ xk. Let Txj be the decreasing rearrangement operator in the jth coordinate.

Then

Proposition 4.5.4. The JKDE on [0,∞)d given by applying the correction map

T (x) = Tx1 ◦ . . . ◦ Txn is an estimator for monotonically decreasing densities on

[0,∞)d.

Proof: We proceed by simple induction on the dimension and liberal use of the

fubini tonelli theorem. This immediately gives that T : L1([0,∞)d) → L1([0,∞)d),
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and we have ‖T (f)‖L1([0,∞)) = ‖f‖L1([0,∞)) (indeed it is also trivial to see for L∞, and

standard riesz-thorin interpolation results then give the same for Lp), and also that

T (f) is monotonically decreasing as needed.

The simple composition nature of this operator also allows differentiability results

to be simply obtained. In particular we shall appeal to the chain rule for hadamard

differentiability (see for example Van and der Vaart (1996)) that states

Theorem 4.5.6. Assume φ : Dφ ⊆ D→ Eφ ⊆ E is hadamard differentiable at θ ∈ Dφ

tangentially to D0 ⊆ D and that ψ : Eψ ⊆ E → F is hadamard differentiable at φ(θ)

tangentially to φ′θ(D0), then χ = ψ ◦ φ : Dφ → F is hadamard differentiable at θ

tangentially to D0 with derivative χ′θ = ψ′φ(θ) ◦ φ′θ.

We now may deduce asymptotic properties for this multivariate JKDE.

Theorem 4.5.7. Let X be i.i.d. distributed according to a strictly monotone decreas-

ing (coordinatewise) density f on [0,∞)d. Let T : L1([0,∞)d) → L1([0,∞)d) be the

multidimensional rearrangement map of Proposition 4.5.2, and Jn(X) = T (Kn,b(n)(Xn))

be the corresponding JKDE. Then

√
n(Jn(x)− P) l∞(C) G

for all translation-invariant P-Donsker class C of convex sets with uniformly bounded

diameter.

Proof: We simply have to exploit the sequential composition nature of T in terms

of coordinate rearrangement maps Txj , which are all hadamard differentiable at the

true density f . The chain rule of hadamard differentiability thus gives that T will

also be and then that T ′(f) = id.

While as noted, the idea of correcting other density estimates to take account of
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shape constraints has been floated before, these are the first kind of such asymptotic

results, to the best of our knowledge.

As noted we may prove similar theorems for numerous correction maps. It would

be nice though to have unifying theory giving this automatically for entire classes

and we continue to study this.

4.6 Example: Wisconsin Breast Cancer Dataset.

Our main interest and motivation in developing the JKDE, especially for log-

concave densities, is to investigate the application of multivariate log-concave mixture

models to complicated clustering situations, which might certainly be a promising

method for the SPIROMICS data from perusal of the provided graphics. We finish

by considering the application to the Wisconsin Breast Cancer Dataset, available

from the UC Irvine machine learning repository. This dataset was analyzed by Cule

and Samworth in their research into the log-concave MLE. These authors perform

two experiments between their online preprints and published papers. Firstly they

attempt to classify the samples, which are either benign or malignant, using two

features relating to cell area (the standard deviation and worst measurements), that is

features 13 and 14. The authors examine how unsupervised division into two clusters

respects the benign or malignant designation, and compare the resulting performance

with the clustering given by using a gaussian mixture. Secondly the authors repeat

this but using the first two principle components of all 30 features. We compare the

results for normal mixture models with those from the MLE EM-algorithm, and the

same algorithm using instead the JKDE.

Figure 4.5 shows the distribution of the samples with respect to the selected area

features, denoted by malignancy (pink denoting malignant, cyan denoting benign).
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Figure 4.6 shows the same distribution of the samples classified into two clusters using

a gaussian EM-algorithm (blue denoting mixture 1, green denoting mixture 2). Figure

4.7 shows the samples classified into two clusters using the JKDE EM-algorithm,

initiated from the gaussian mixture (blue denoting mixture 1, green denoting mixture

2).

Figure 4.5: Samples displayed according to chosen area features classified by malig-
nancy.

The JKDE EM-algorithm performs significantly better in distinguishing malig-

nancy than the gaussian EM-algorithm, with only 120 misclassifications, as opposed
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Figure 4.6: Samples displayed according to chosen area features classified by gaussian
mixture cluster.

to 144. Samworth and Cule’s MLE EM-algorithm has 121 misclassifications, so here

there is a small benefit in using the JKDE with respect to misclassifications. How

the classification breaks down precisely when normal mixtures are used is given in

Table 4.3, and how it breaks down for log-concave mixtures is shown in Table 4.4.

We note that identfying malignancy using normal mixtures has 56% specificity

and 86% sensitivity. These rise to 65% and 87% respectively when using log-concave
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Figure 4.7: Samples displayed according to area features classified by log-concave
(JKDE) mixture cluster.

mixtures. There is thus an apprecialbe improvement in specificity.

There may be considerable speed difference in using the JKDE. Secondly we note,

as Samworth and Cule did, that indeed a mixture of log-concave happens to be far

more appropriate in this scenario than a mixture of gaussians. Certainly we should

bear this possibility in mind in clustering work.

Figure 4.8(a) shows the distribution of the samples with respect to the highest
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Malignant Benign
Cluster I 118 50

Cluster II 94 307

Table 4.3: Breakdown for normal mixture.

Malignant Benign
Cluster I 138 46

Cluster II 74 311

Table 4.4: Breakdown for log-concave mixture.

two principle components, after centering and scaling, denoted by malignancy (pink

denoting malignant, cyan denoting benign). Figure 4.8(b) shows the same distribu-

tion of the samples classified by the JKDE EM-algorithm, initiated from the gaussian

mixture (blue denoting mixture 1, green denoting mixture 2).

Table 4.5 summarizes the breakdown of malignancy category between the two

estimated mixtures from the JKDE EM-algorithm on the first two principal compo-

nents. We observe that here the use of principal components do actually improve

clustering performance (the use of principal components in clustering being a matter

of some debate, see for example Ding and He (2004), Chang (1983)). The JKDE EM-

algorithm gives 2 fewer misclassifications than the MLE EM-algorithm (as reported

by Samworth and Cule), which is a change in the right direction.

We conclude firstly, with the comment that although the improvement for the

JKDE over the MLE EM-algorithm is not huge for these examples, we expect that in

higher dimensions, due to the greedy nature of the MLE, this improvement would be

Malignancy Mixture 1 Mixture 2
Benign 350 7

Malignant 30 182

Table 4.5: Division of malignancy category between 2 clusters from JKDE EM-
algorithm on the first 2 principal components.
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Figure 4.8: Samples displayed according to highest 2 PCs, classified according to (a)
malignancy and (b) log-concave (JKDE) cluster.

much more significant. Further the computational saving of the JKDE may be very

significant in high dimensions, and thus may allow for the JKDE to be used when

the MLE is infeasible.

Secondly we conclude by observing that even though the samples were not well

separated according to malignancy in either the two area coordinates, or the two

highest principal components, the unsupervised clustering does result in much clinical

significance. This example then gives hope that the clustering we obtained for the

SPIROMICS data is also relevant, despite the clusters overlapping with respect to

their defining biomarkers.
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CHAPTER 5: FURTHER WORK.

5.1 LIBERTI.

In chapter 2, we presented a design for a trial that could be viewed as both a

SMART and a RCT, that allows powerful comparisons of the effects of numerous

different laser sequences on burns scars, the LIBERTI trial. We had been confident,

that due to the powerful design, and possible standard interpretations that made IRB

approval simple, we would achieve impressive results. Unfortunately, upon starting

the trial, a major snag was hit, namely insufficient patient enrollment.

Enrollment for the trial began in January 2016, and efforts were made to get

patients into the study through March 2016. At UNC Jaycee Burns Center during

this period, 100 new burn reconstruction patients were seen, who might have been

candidates for LIBERTI. Of these 68 patients satisfied the initial screening criteria,

and were approached to enter the trial. However only 24 patients met the inclusion

criteria of speaking english, committing to one year of laser therapy and one year of

followup, and had insurance that would pay for the treatments involved. Of this last

set of patients, 0 consented, rendering the trial infeasible.

The main problem for satisfying the screening criteria was the fact that burns

injuries mainly occur as a result of workplace accidents, and hence often the main

provider is Worker’s Comp. However, Worker’s Comp decided they would not pay

for treatments in an experimental trial, even though they would pay for identical

treatments not in a trial.
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The main issues preventing patients from consenting, could be summarized by

three reasons: ‘I don’t want to be experimented on, or be a guinea pig anymore,’ ‘I

have been poked and prodded enough, I’m done waiting, and want to heal,’ and ‘I

trust you to decide on the treatment Doc, just do what you think best’.

These logistical issues are of course perennial banes of all clinical trials. And even

trials that do get off the ground often have low enrollments. Shortreed et al. (2011)

reveal that the current average of people enrolled in schizophrenia trials, a prime area

for trialing DTR discovery and SMARTs, is only 62 patients per trial. Thus clearly

such trials could run into sample size problems, and be under powered, especially

when missingness and drop out occurs.

This problem, with a particular reference to SMART trials has been investigate.

Ogbagaber et al. (2016) we may data mine electronic health records, but we have

then seen how the estimation of DTRs becomes far more complicated if we do not

have the unmeasured confounders assumption. Liu et al. (2016) consider a scenario

where power can be increased by enrolling patients at a the later stage after they had

received out-of-study unrandomized and possibly doctor or patient decided treatment

at a corresponding earlier stage. Liu et al. show this may be done in a way not to

cause bias. This seems a very promising idea, although of course a seed of patients

is still needed to begin the trial no matter the later stages. They call this technique

SMARTEr (SMART with EnRichment).

It is of course disappointing these issues were also so apparent when recruiting

for the LIBERTI trial, however given the amount of effort gone into designing the

LIBERTI trial, and the fact that much set-up has been already done, and IRB ap-

proval obtained, we would like to save it, close to its current form if possible. Further

a design that addresses these issues for the LIBERTI trial would be translational to

many other types of trials, and hopefully serve as a future template.
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Repackaging A Trial Through Adaptive Assignments.

We propose as a further research area, determining a design that preserves the

aims and abilities of the LIBERTI trial, while addressing either the patient or insurers

concerns to ensure sufficient enrollment. The essence of our idea is to repackage the

trial, so that it may be also regarded as AI augmented treatment, instead of a trial,

and be not just acceptable but indeed attractive to patients, and insurers alike. While

considering this idea, we are also led to consider a similar idea which might not make

the trial more acceptable to patients or insurers, but would make it more powerful,

and hence also more ethical (Altman (1980)).

The classic way to ensure participation is to provide monetary incentives. However

sometimes this is insufficient, and sometimes impossible due to cost constraints, as

well as arguably unethical (Grady (2005)). Yet for a SMART, the fact that the goal

is to find a precision medicine DTR, allows us to proffer a chance for the patients to

benefit from this rule while actually participating within the trial.

We proceed considering constructing an ITR from the first stage of a clinical trial,

using OWL (Zhao et al. (2012)), in order to elucidate our ideas. As we noted, we

believe the superior higher dimensional performance of OWL (Zhao et al. (2012))

means it should be a leading contender to find ITRs in trials such as the LIBERTI

trial, where we expect to have many covariates of interest.

Consider a basic trial to find an ITR deciding between two treatments, 0 and 1.

As a simulation we assume there are 4 covariates, excitingly named X1, X2, X3 and

X4, and the treatment effects Y (1), Y (2) is given by:

Y (0) = N ×X1 − E ×X2 + U

Y (1) = Y (0) + 12X1 − 9(1 +X2)
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with

N ∼ N(0, 1)

E ∼ Exp(1)

U ∼ U [−3, 3]

being normal, exponential and uniform variables as indicated. Thus we observe

only 2 covariates actually have any relevance, and X3 and X4 simply represent noise

variables. The treatment effects are random, yet linear in X1 and X2. The contrast

effect is fixed, and the ITR of optimal treatment (assuming positive outcomes are

desirable) is given by T = I(X2 ≤ 4
3
X1 − 1) where I(j) is an indicator function. We

shall assume all four covariates are distributed as independent standard normals.

The basic paradigm proposed by Zhao et al. (2012) is to simply assign treatment

at random with equal probability to subjects in a trial, and use this to estimate the

ITR. We pretend we have 100 patients in the study, and then 10,000 patients who are

not but we must decide the optimal treatment for. Figure 5.1 shows a plot of both

trial and test subjects X1 and X2 coordinates, and labels these by what the optimal

treatment should be: a green ’+’ for treatment 0, and a purple ’X’ for treatment 0.

Above each plot the mean Y outcome from following the shown treatment is given,

along with the monte carlo experimental standard deviation in parentheses.

Figure 5.2 shows a plot of the effect of assigning random treatment to the test

set, and using OWL to calculate the best treatment rule for the training set. We see,

random treatment in the test set in effect costs a test patient an average decrease of

1.61 − (−4.97) = 6.58 in outcome from the optimal. However the treatment set see

benefits from this, and on average gain 0.29−(−4.97) = 5.26 over random assignments

in outcome.

It does not seem entirely ethical the test set see no benefits, but the training set
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Figure 5.1: Training, test sets of patients, along with optimal treatment.

Figure 5.2: Training set with random trt and test sets with est optimal.

will. (Of course as evidenced by Miller and Brody (2003), there is much to debate over

what is or is not entirely ethical.) A different assignment procedure we consider could

be to attempt calculating the ITR after every patient, then assign the next patient

to the predicted best treatment. We call this greedy assignment, and Figure 5.3

displays this. We see that this benefits the training set greatly, who gain on average
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−3.37− (−4.97) = 1.60 more than when treatments are assigned randomly. However

the test set, while receiving treatment gains well above both random treatment and

the greedy test set, do not now see as much of a gain as the random training set.

Figure 5.3: Training set with greedy trt and test set with est optimal.

It could be considered whether the greedy assignment is indeed too greedy. A

compromise algorithm would be to assign test patients to treatments we knew were

going to be beneficial, if we had confidence in their advantage, and if we had little

confidence, then instead simply randomize. In the setting of OWL, one way of doing

this is given a new patient, check whether or not they are within the soft margin of

the classifier found with support vectors. If they are, we say we are not confident

as to their treatment and they are assigned randomly, but if they lie outside, we say

we are confident in their best treatment choice and act accordingly. We call this the

trade assignment. The results of this process are shown in Figure 5.4. We see that

surprisingly the test set has a better result on average under this assignment algorithm

than it does for the greedy algorithm, gaining −2.78− (−3.37) = 0.79, although this

difference may not have significance. Less surprising, the estimated optimal ITR

benefits the training patients, over what would have resulted from using the greedy
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algorithm, with a patient gaining on average −1.54 − (−1.86)=0.29, although once

more this might not be of significance.

Figure 5.4: Training set with trade trt and test set with est optimal.

We therefore see that by altering the randomization probabilities through the trial,

the test subjects can also see significant benefits from being in the trial. We propose

to research this to find the optimal, or how one might define optimal, compromise

between maintaining power of the trial, and giving benefit to those involved. We

intend to prove consistency results, and asymptotic convergence rates.

Ultimately, it seems an aim would be one on-going trial, so that the optimal

treatment rule is constantly updated. The mechanics of how to do this most efficiently

are not clear, and the theory would have to be developed. The main issue naturally

is that the randomization is no longer independent of patient covariates, or indeed

previous subjects and their outcomes. It would seem a propensity score solution, to

model how likely a patient was to have had been given a certain treatment, would

be achievable. While we are most concerned about applying this for OWL, we hope

the framework should be transferable to other methods.
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It is of interest to investigate how propensity modeling affects the OWL per-

formance anyway, independent of randomizing patients to a likely more beneficial

treatment. Indeed van der Laan and Petersen (2007) have observed even for a totally

randomized trial, superior performances may be obtained by estimating the propen-

sity for the analysis. Extending this to OWL, which is of course different from many

regression based methods, would be of great interest.

Another interesting investigation, would be ongoing dimension reduction through-

out the trial. As an example in our LIBERTI trial, we start with a very large number

of covariates that might, or might not be influential on the final optimal ITR. By

varying the randomization to provide coarse information with regard to some of these

dimensions sequentially, it may be possible to make good decisions about dropping

these dimensions, reducing the collection of possible expensive to measure variables.

Once more, it would be vital to give a consistency proof.

Alternatively, rather than attempting to assign test subjects to a treatment they

may benefit from, the experiment could assign them simply to the treatment which

gives most information to the investigator. For simple examples, the treatment as-

signment could be made to ensure an even distribution throughout the covariate

space of all treatments. This might be very useful in higher dimensions in which we

hope to use OWL.

We also consider methods of interpolating to see whether a new patient would

give more information to the ITR estimation from being assigned to one treatment

rather than the other. As a simple exploration of this idea, we return to the previous

simulated example. For every new patient, we approximate using very basic nearest

neighbor interpolation (see for example @articlealtman1992introduction) the effects

of treatment, and assuming that effect, we see how much the ITR changes when they

are assigned to one treatment than the other. We will call the method of selecting
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the assignment we predict to alter the ITR most, (that is essentially gives most

information), Info Assignment. The outcome of this is shown in Figure 5.5.

Figure 5.5: Training set with info trt and test set with est optimal.

We see that for Info Assignment, the final calculated ITR is superior to the random

assignment final ITR, as we had hoped, by on average an increase of 0.47−0.29 = 0.18,

although this might not have much significance. However the startling observation is

that the test set outcomes are far better for the Info Assignment than the Greedy or

Trade Assignments and definitely the random assignment, which patients on average

achieving benefits of −1.06 − (−4.97) = 3.91. We will investigate further much

more advanced and sophisticated ways of finding this information measure, which

necessitates considering what metrics should be used to quantify the possible change

in ITR. We hope to see what then the properties of using this assignment regime are

on the test set, and how much improvement could be possible.

In summary we are most interested in a somewhat classical question of amending

using previous patient information to judge possible treatment benefits for the next

patients, and also, unique to the SMART framework, using previous stage information

to judge possible treatment benefits for the same patient at subsequent stages, to

119



firstly maximize benefit to each patient participating in the trial, while secondly

maximizing the information gained from each patient by judicious assignment. These

aims of course might be contradictory, and we shall investigate the tensions between

them.

The idea of such information sampling as we term it, that is under some work-

ing model, assigning the treatment to constantly update and maximize the analysts

knowledge of the underlying mechanism, needs to be solidified. For example, we

could proceed under a proposed fixed model with the aim of, given firm belief in

this model, maximizing patient benefit under it. Alternatively we could proceed by

exploring an appropriate covariate space so that the covariants involved in the model

are continuously selected for effect size and importance during the trial, in order to

streamline both the model and also the logistics and data collection of the trial. A

further idea would be to allow the complexity of the model to grow with patient

accrual, at a pertinent rate until appropriate information and modelling is achieved.

Possible practical benefits of a successful project are the improved speed and costs

of a trial, as well as better ethics and patient participation and easier accrual and

enrollment. We aim to investigate the advantages in terms of each of these.

We expect the work to have connections to, amongst other areas, adaptive learn-

ing (Minsker et al. (2016)), reinforcement learning (Zhao et al. (2009)), thompson

sampling (Chapelle and Li (2011), Agrawal and Goyal (2012)), multi-armed bandit

questions (Vermorel and Mohri (2005)).

Relevance To LIBERTI.

Returning to consider LIBERTI, we are not exactly in the set up we have described

with a single stage ITR to be found. Nevertheless we have confidence we can extend
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these ideas to improve this trial and offer patients the chance to have an AI method

calculate a better treatment than they would have received from the current standard

of treatment. The notions need to be tweaked a little. For example the fact that

there are multiple stages offers even the initial patients a chance to benefit, as under

simple, reasonable assumptions of treatment effect additivity, we could model the

effects of treatments two and three by that of treatment one, so that when the initial

patients move through the trial, enough patients have complete the initial treatment,

allowing us to predict a better treatment for the initial patients at the later stages,

benefitting all participants.

Of course this is a rather lofty goal, and in reality it would be logistically chal-

lenging to collect the data, perform the appropriate analysis and implement the new

assignment procedure. This would all take considerable time, and as our LIBERTI

trial showed, even the ‘simpler’ trials may fail logistically. However it would be very

interesting to contemplate what may be done theoretically and how this may be

practically implemented to varying degrees.

5.2 SPIROMICS.

The work we present in SPIROMICS is just the tip of the iceberg as to what

we believe should and indeed may be done for this clustering and subtype detection

paradigm. In particular this was an exploration to familiarize ourselves with the

thought processes and logical deduction framework that go into such analyses. The

ultimate goal would be to fully implement this in a pure machine learning fashion.

There are numerous ways we can proceed to bolster the results of this work and

explore further.

At the expense of a direct clustering, Latent Supervised Learning (Wei and
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Kosorok (2013)) might give a better division in high-dimensional covariate space.

The issue of high-dimensional noise would need to be tackled, perhaps by adding a

lasso penalty or other standard method (Meinshausen and Yu (2009)).

Biclustering is a term for finding multiple possibly overlapping clusters sparse

in both patients and features (Cheng and Church (2000)). This topic is very closely

related to clustering, yet has also a separate literature of its own (Prelić et al. (2006)).

We calculated a clustering driven by one surrogate variable. It is possible to do this,

and evaluate and rank the results, for varying clinical variables. This would give us

a biclustering which might yield more information.

The biclustering approach alluded to might not give distinct biclusters, rather

using different surrogates might identify repeated clusters with varying accuracy.

Application of a super-learner method (Van der Laan et al. (2007)) could take ad-

vantage of this to firm up cluster definitions and combine the results from many

surrogates to denoise.

Whether or not successful in fully adapting our process to a machine learning

paradigm, certainly using machine learning classifiers, having found the clusterings

in low dimensional biomarker space, we could extend to find corresponding rules back

in higher dimensional space. It would be interesting whether an approach through

lower dimensional subspace to obtain the signal, and then cross-referencing in high

dimensional subspace to improve the result is possible.

If it does appear, after consultation with clinicians, that race and gender effects

are too prevalent, and are non-informatively driving the definition of the clusters, we

could regress these out from the biomarkers and surrogate, before performing simi-

lar analyses (Zhang (2003)). Similarly we could simply perform subgroup analyses,

although we would likely have power issues (Vollmer et al. (2001)).
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We have the option to bring data back in from the non COPD patients to see if

the COPD clusters represent significantly different pathologies. This could be linked

to any subgroup analyses.

We should investigate the stability of our results when e.g. subsampling tech-

niques are applied. Indeed stability measures have been proposed as metrics of clus-

ter validity, although their use is somewhat debatable (Lange et al. (2004), Wang

(2010)).

We did not use missing data as much as we might due to inference problems, yet

this might provide much information if it could be brought into our analysis (Zhang

and Chen (2003)). Multiple imputation might be fruitful, although it is known that

clustering becomes fairly unstable in the presence of even small amounts of missing

data.

We only calculated the differences of the clinical variables between clusters. By

our stated logic, it might be more germane to look at differences of residuals when the

clinical variables are regressed over clusters. This runs the risk of being too cautious

- at this point the signal might be rather weak - but would be worthwhile to check.

5.3 Jumbled Kernel Density Estimators.

The JKDE technique is clearly generalizable. Other maps of the estimated KDE

may be considered, to achieve, for example, unimodal or more generalized unimodal

densities as explored by Wolters (2012). There is much room for expanded methods,

especially in higher dimensions. Estimators of unimodal densities in high dimension

are not readily available. The methods we have provided work very well for the

construction of a unimodal in any dimension. Use of the kernel density estimator

bypasses the issue of no MLE existing, and the need of restrictions to cope with this
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if we should attempt to use methods founded on likelihoods.

For ease of unimodal estimation though, it should be assumed the mode is at

a sample point, as has been considered in other methods, for example in using the

grenander estimator to find a unimodal estimator (Meyer (2001)). Naturally this

would make theoretical results a little more difficult. The order of the algorithm

would be increased by a factor of the resolution if the simplest algorithm was applied.

We could further consider a local unimodality restriction. For example a distri-

bution constant on a curved manifold, may be considered unimodal if an appropri-

ate transformation of Rk is used. Another generalizing distribution would be star

shaped, so that radiating from the center on any vector gives a unimodal density.

Such constraints are also discussed by Wolters (2012). Local unimodality conditions

are simple to include by only requiring pertinent unimodality conditions for only the

nearest quadrature points, and would allow construction of curved unimodal and star

shaped densities.

This method does not solely need to be linked to KDEs, but a choice of any initial

estimator of the density could be made, followed by application of our T to generate

a density of the appropriate restriction. One upshot of this, is for example when

working in Rk for sizeable k. We remark that obviously kernel density estimators

perform increasingly badly in higher dimension. This, though, is not a failing of

KDEs alone. MLEs equally have this problem, if not more so due to greedy behaviour

and sparsity. However there are some ways to estimate densities (making for example

the assumption it is elliptic, or through wavelet theory) which have (certain) errors

independent of dimension (Liu and Wong (2014), Battey and Linton (2014)). Maybe

these could be the initial estimate.

All of these should provide interesting applications to machine learning clustering
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in higher dimensions.
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