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ABSTRACT 
 

JASON SUNG KIM: Innovative Biomedical Applications Using Hybrid Nanoparticles 
(Under the direction of Wenbin Lin) 

 
 

Nanoparticle and metal-chelate technologies can be combined to create innovative 

hybrid materials with versatile functions for research and clinical purposes.  This dissertation 

addresses the novel use of hybrid inorganic/organic nanoparticles in biomedical applications, 

including early detection of autoimmune disease and cancer as well as purification of 

therapeutic proteins.  In an in vivo animal model of rheumatoid arthritis (RA), fluorescent 

nanoparticles coated with a magnetic resonance imaging (MRI) contrast enhancing metal-

chelate are used for cell specific trafficking of monocytes, which correlate with disease 

activity.  Metal-chelate derivatized magnetic nanoparticles isolate tagged proteins, potential 

cancer therapeutics, from impurities generated from bacterial and mammalian cell expression 

systems.  The novel applications of hybrid magnetic nanoparticles pursued in this dissertation 

have the ability to translate into new and more sensitive strategies to treat patients with 

chronic disease.  
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CHAPTER 1 
 

HYBRID NANOMATERIALS FOR BIOMEDICAL APPLICTIONS: FUNDAMENTALS, 
STRATEGIES, AND HISTORICAL OVERVIEW  

 
 
 

1.1  Introduction to hybrid nanomaterials 

Inorganic nanostructures such as II-VI semiconducting quantum dots and 

superparamagnetic Spinel ferrite nanoparticles have attracted great interest from the 

scientific, engineering, and medical communities because of their strongly size- and shape-

dependent physical properties.1-5  The past two decades of intensive research has led to 

numerous highly reliable and reproducible synthetic methodologies for inorganic 

nanostructures with well-defined and nearly identical properties such as size, shape, 

composition, crystal structure and surface properties.  The field of organic polymer colloidal 

particles is even more mature,6-12 as evidenced by the commercial availability of numerous 

polymeric nanoparticles.  Reverse microemulsion polymerization and precipitation 

polymerization have, for example, allowed the synthesis of many monodisperse polymeric 

colloidal particles.  In contrast to the inorganic nanostructures and polymer colloidal 

particles, relatively little has been done on organic/inorganic hybrid nanomaterials.   

By merging the unique attributes of both soft organic and hard inorganic components, 

organic/inorganic hybrid nanomaterials offer many interesting characteristics that do not 

exist in either inorganic nanostructures or polymer colloidal particles alone.  They can not 

only possess some of the unique properties of inorganic nanostructures as a result of the size-
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dependent behaviors but also allow synthetic manipulations of the organic components with a 

molecular precision.  The modular synthetic procedures for organic/inorganic hybrid 

nanomaterials further allow systematic fine-tuning of their properties for specific 

applications.  Indeed, such an amalgam of hybrid materials and nanotechnology has already 

opened the door for a wide range of applications across multiple fields of science, 

engineering, and medicine.  For example, the synergistic interactions between adsorbed 

ruthenium complex antenna and titania nanoparticles have led to the design of Grätzel solar 

cells that have the potential to revolutionize solar energy utilization.13-16 In heterogenous 

asymmetric catalysis, Lin et al. has developed a magnetically recoverable iron oxide hybrid 

nanoparticle-supported chiral ruthenium (II) catalyst for the synthesis of chiral secondary 

alcohols.17  The applications of organic/inorganic hybrid nanomaterials in other fields (such 

as biological sensing, biomedical imaging, and catalysis) have also been recently 

demonstrated.18-22 This chapter surveys some of the latest developments in the design and 

applications of hybrid nanomaterials in the biomedical and biological fields.   

 

1.2 Hybrid nanomaterials as MRI contrast agents 

Magnetic resonance imaging (MRI) is a diagnostic tool that relies on the same 

mechanism as the commonly used nuclear magnetic resonance (NMR).  Based on the 

differentiated water proton signals, MRI provides images of anatomical structures and other 

physiological environments with an excellent spatial resolution.23  A patient is placed within 

a homogenous, static magnetic field B0 of an MR scanner to resonate nuclear spins at a 

determined frequency.  The hydrogen nuclei of water protons precess at the Larmor 

frequency (ωL) around and directed relative to B0 (Figure 1.1).  Possessing a ½ spin, the 
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hydrogen nuclei have two quantum mechanically allowed directions that correspond to the 

energy levels of the nuclei.  A radiofrequency pulse (B1) sequence, perpendicular to B0, is 

used to excite the proton spins, which changes the net magnetization (M).  The Boltzmann 

distribution shows that slightly more spins occupy the lower energy state (spin up) than the 

higher energy state (spin down), ultimately leading to the vector M.24  As the spins relax back 

to their original thermal equilibrium, the electromagnetic signals are recorded and 

transformed to three dimensional images.   
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A)  

B)  

C)  D)   

E)  

Figure 1.1  Schematic representation of hydrogen nuclei before and after placement within a 
magnetic field B0. A) Nuclei are randomly oriented until application of magnetic field 
induces alignment.  B) The hydrogen nuclei precess around B0 at the Larmor frequency, ωL, 
the net magnetization vector M is a result of more spins occupying the lower energy state 
(spin up).  C)  The net magnetization before electromagnetic radiofrequency pulse.  D) The 
radiofrequency pulse generates a magnetic field B1 that causes M to flip perpendicular to B0, 
while revolving around the B0-axis.  E)  The removal of the radiofrequency pulse allows the 
relaxation of M to the original state. 
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MR image contrasts result from the inherently variable levels of water present in 

different tissues and water environments.  For example, the higher water content of the brain 

leads to differences in MR contrast compared to muscle tissue of lower water content.  The 

longitudinal relaxation time constant (T1) and the transverse relaxation time constant (T2) of 

the proton spins are the most significant factors that determine the proton signal intensity 

from a particular tissue.  T1 describes the spin-lattice relaxation of M returning to 

equilibrium after B1 is removed.  Here, random motion of lattice molecules fluctuates at the 

Larmor frequency to increase relaxation to the lower energy state.  T2 describes the spin-spin 

relaxation returning to zero as random motion of molecules resonating at the same frequency 

leads to reduction of phase coherence.   

Further, longitudinal relaxation rate can be enhanced by the addition of a 

paramagnetic metal and is described by, 

 
R1

obs  = R1p
is +R1p

os + R1
w. 

 
R1p

is represents the contribution due to exchange of water molecules coordinating to the inner 

sphere of the metal ion, while R1p
os represents the contribution due to water diffusion into to 

outer sphere of the metal ion.  These contributions are added to the water relaxation rate in 

the absence of the paramagnetic metal, R1
w, to determine the observed longitudinal relaxation 

rate R1
obs.  Figure 1.2 schematically represents the two relaxation mechanisms.  The 

equation, 
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R1p
is = 

(c x q) 
________ x

1 
_____________ 

 
55.6 

 

(TH
1M + τm) 

 

describes the inner sphere relaxation rate.  The molar concentration of the paramagnetic 

metal ion is c.  The number of water molecules coordinated to the metal ion is q, with τm as 

the mean residence lifetime.  TH
1M is the longitudinal relaxation time of each coordinated 

water molecule which is described in clinical settings as,   

 
 

TH
1M = 

(2 γ1
2

 g2 μ B
 2) 

________________ S(S + 1) 
[(7 τc2) 

_________________ +
(3 τc1)] 

________________  . 
 

(15 rGdH
6) [(1 + ω S

 2τc2
3) (1 + ω I

 2
 τc1

2)] 
 
 
Here, γ1is the nuclear gyromagnetic factor, g is the electron g-factor, μ B

 is the Bohr 

magneton, rGdH is the electron spin-proton distance, S is the spin of the paramagnetic ion, ω S 

is the electron Larmor frequency, ωI is the nuclear Larmor frequency, and τc is the correlation 

time.  The correlation time is described by,  

 
1 
__ =

1 
__ +

1 
__ +

1 
__ ; i = 1,2 

  

τc 
 

τm

 

τr

 

τc
i

 
 
where τm is the water proton mean residence time, τr is the reorientational correlation time, 

τc
1 is the longitudinal electron spin relaxation time, and τc

2 is transverse electron spin 

relaxation time.  Many groups have attempted to alter relaxivities by adjusting parameters, 

such as q, τm , τr, and rGdH.25, 26 
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Figure 1.2 Schematic representation of paramagnetic Gd(III) interaction with water 
molecules and some of the main parameters affecting relaxation. 

 

By administering contrast agents, the T1 and T2 parameters can be manipulated to 

gain greater image contrast of specific tissues.  This is particularly important when imaging 

diseases where the abnormal disease tissue has similar water content to the normal tissue.  

Highly paramagnetic Gd(III)-chelates have been used to enhance water proton longitudinal 

relaxation, which results in increased (hyper-intense) MR signals.  Approximately half of 

clinical MR images are performed with the aid of Gd(III)-chelate contrast agents to detect 

conditions such as organ perfusion, blood/brain barrier abnormalities, and aberrant kidney 
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function.27  Alternatively, a contrast agent can be used to enhance water transverse 

relaxation, leading to reduced (hypo-intense) MR signals.   

MRI is intrinsically much less sensitive than other imaging techniques such as 

positron-emission tomography (PET) or single photon-emission computed tomography 

(SPECT).  As a result, it remains a great challenge to develop MR contrast agents that 

specifically target the diseased tissues.  The advances in molecular and cell biology have 

uncovered a large number of biomarkers that are overexpressed on cell surfaces of a number 

of diseases.  A straightforward strategy is to selectively and specifically delivering imaging 

contrast agents by conjugation to affinity molecules to the biomarkers.  Such an approach has 

been successfully used to design target-specific PET and SPECT contrast agents by tagging 

radionuclides or their complexes with antibodies or other cell-targeting molecules.28-33  

However, Gd(III)-chelates at sub-mM concentrations are needed to provide sufficient MR 

image contrasts.  This concentration is several orders of magnitude higher than that of 

overexpressed biomarkers.34  There is thus a urgent need of synthetic strategies that allow for 

the delivery of a very large payload of Gd(III) chelates with each cell-targeting molecule.   
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Figure 1.3 Examples of low molecular weight Gd(III) complexes clinically used for contrast-
enhanced MRI. 

 

Nanometer-scale materials have the ability to carry high payloads while maintaining 

the ability to move through physiological systems.  For MRI contrast enhancement, these 

materials continue to require paramagnetic metals ions such as Gd(III), necessitating the 

development of hybrid cargo platforms.  The many nanomaterial strategies – including 

superparamagnetic iron oxide, microemulsions, liposomes, and hybrid silica nanoparticles – 

will be discussed throughout this section.  
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1.2.1 Superparamagnetic iron oxide nanoparticles 

Superparamagnetic iron oxide (SPIO) nanoparticles were initially shown to improve 

the detection of focal liver lesions over the Gd(III)-DTPA enhanced MRI scans, leading to 

their FDA approval for clinical use in 1996,35-37 SPIOs are ferrites composed of γ-Fe2O3 and 

Fe3O4 magnetite phases that can be prepared by a variety of methods, 1,38 most commonly by 

oxidative coprecipitation or thermal decomposition.  Superparamagnetic properties of SPIOs 

allow for zero magnetization in the absence of an external magnetic field and the ability to 

efficiently relax proton spins for MRI.  The highly efficient spin relaxation rates, longitudinal 

r1 and transverse r2, are achieved through the dipole interaction between the surrounding 

water protons and the high magnetic moment of the superparamagnetic particles.38  The large 

magnetization difference between the non-homogeneous distribution of SPIOs gives rise to 

local field gradients, further enhancing relaxation of proton spins.  Superparamagnetic 

species experience this phenomenon more significantly than individual paramagnetic 

Gd(III)-complexes, generating large increases in r2 when moving to increased magnetic 

fields.  At low concentrations, T1-effects can be detected, producing signal enhancement 

(bright images).  In general, the T2-effects dominate and result in large enhancements of 

signal void (darkening of images).  Higher detection sensitivity has been reported by utilizing 

sequences designed for T2-weighted imaging.39   

As pioneered by Ralph Weissleder, recent efforts have been focused on developing 

SPIO/biomolecule conjugates for target-specific MR imaging of cancers and other diseases.  

In one formulation, superparamagnetic iron oxide nanoparticles were coated with cross-

linked dextran, a naturally occurring glucose-based polysaccharide capable of complexing 

iron metal ions.  Several variations of the formulation exist and are called cross-linked iron 
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oxide (CLIO), ultrasmall superparamagnetic iron oxide (USPIO), Combidex®, or 

Ferumoxtran in the basic science and clinical literature.  Combidex® is composed of 

materials on the generally regarded as safe (GRAS) list and has received an approvable letter 

by the FDA (subject to certain conditions).  CLIO has been extensively used to image 

diseases in animals and humans, such as cancers or arthritis, as well as molecular biological 

processes.    

The surface modification with dextran that is crosslinked with epichlorohydrin is of 

key importance to achieve longer blood circulation times.  Further, the dextran can be 

chemically modified for conjugation of targeting molecules.40  Often, the dextran coated iron 

oxide nanoparticles can be used without any further functionalization to show image 

enhancement of disease states.  Due to the dextran stealth capabilities from the 

reticuloendothelial system (RES), signal void in the circulation can be detected due to the T2 

relaxation of the water protons.  Upon capture, the CLIO contrast enhancement can image 

abnormalities of the RES.  Weissleder showed such imaging capabilities in a clinical study of 

eighty prostate cancer patients41 as well as other diseases21, 41-45. The CLIO was shown to be 

lymphtrophic and could be effectively used to image nodal abnormalities that were otherwise 

undetectable.   
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Figure 1.4 Dextran coating of iron oxide nanoparticles are cross-linked by epichlorohydrin 
and amine terminated by ammonia to form hybrid nanomaterial MRI contrast agents with 
surface functionalization moieties. 

 

The cellular events involved in inflammation has led to the study of leukocyte action 

in arthritis46 and arteriosclerosis47, 48.  Particularly, monocytes and macrophages have 

emerged as a highly active set of cells in the inflammatory process.  Adoptive transfer studies 

have been presented as an additional use for CLIO nanoparticles for imaging cellular 

pathogenesis of autoimmune diseases.  Specifically, monocytes and T-cells were loaded ex 

vivo before allowing migration to disease sites.49-53  CLIO can also be used to detect analyte 

concentrations within tissue through action as a magnetic switch that can form reversible 

cluster assemblies.  At low glucose concentrations, concavalin-A is multivalently bound by 

glucose-derivatized CLIO to form larger aggregations that can be detected by T2 changes.54  

Additional CLIO systems based upon this T2-effect magnetic switch concept have been used 

to detect changes due to enzymatic activity on peptide sequences20 and oligonucleotides.55 

The dextran coating can be chemically modified and used to conjugate affinity molecules to 

enable the iron oxide nanoparticles to target and report the presence of disease tissue.  

Peptides and proteins have been used as functional conjugates with these nanoparticles to 

image prostate, hepatic, splenic, and glial neoplasia.41, 43, 56-61 Conjugated to E-selectin or 
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VCAM-1, CLIO detects endothelium specific proteins to monitor tumor angiogenesis.40, 62  

Apoptotic cells can also be detected when the CLIO particles are functionalized with 

Annexin V, a calcium dependant protein that has high affinity for the phosphatidylserine 

apoptosis marker in the cell membrane.19, 22, 63-66  These recent targeted iron oxide based 

contrast agents have progressed significantly from the fibrin-targeted CLIO that utilized the 

high availability of thrombin involved in blood coagulation.67  Though extensively studied 

and considered relatively mature, the iron oxide MR contrast agents continue to be the 

trailblazer in biomedical imaging.   

 

1.2.2 Multimodal perfluorocarbon microemulsion contrast agents 

Wickline and Lanza have devoted immense efforts toward preparing MRI contrast 

agents using oil-in-water microemulsion technology.68-71  Individual emulsion nanoparticles, 

approximately 250 nm in diameter, are formed with a perfluorocarbon core surrounded by a 

monolayer lipid shell.  The particles can be synthesized by emulsification of the 

perfluorodichlorooctane, safflower oil, and glycerin with preformed microemulsions.70  

While stabilizing the nanoparticle, the lipid can also be designed to carry extraordinarily high 

payloads of metal centers, up to 90,000 Gd(III) chelates per microemulsion nanoparticle.  

These Gd-containing nanoparticles possess extremely large MR relaxivities on per particle 

basis,72 and provide an ideal platform for conjugation to affinity molecules for target-specific 

imaging of various diseases.   

Targeting molecules can also be incorporated into the lipid layer to create a highly 

modifiable surface capable of directing these particles to specific sites.  Ligands for 

overexpressed disease biomarkers that have been used for this material ranges from small 
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molecules,73 integrins,74-76 fibrin,77, 78 and antibodies.79, 80  The targeted derivatives of the 

perfluorocarbon-lipid nanoparticles were used extensively to image cardiovascular structures 

and disorders, such as arterosclerosis.68, 69, 71, 81, 82  Targeted imaging of neovascularization in 

atherosclerosis could be accomplished through aνβ3-integrin modified perfluorocarbon 

microemulsion nanomaterials.76, 83  In the past few years, these nanoparticulate MRI contrast 

agents have been used to detect tumors and angiogenesis.84-87   

The perfluorocarbon core also allows for the unique capability of an additional MRI 

probe using the 19F signal.  19F MRI is an advantageous imaging tool because the magnetic 

resonance sensitivity is nearly as high as 1H (83%), the low abundance of endogenous 19F in 

biological systems, and the 100% natural abundance of 19F isotope.88  The perfluorocarbon 

emulsions encapsulated by lipid-surfactant monolayers have been used to prepare MRI 

contrast agents with high 19F payloads.  The perfluorocarbon-based microemulsion 

nanoparticles developed by Wickline and Lanza have demonstrated capabilities for target-

specific Gd(III) enhanced MR imaging but also shown multimodalities that further expand 

the utilities of this novel class of nanomaterials in early diagnosis of a variety of diseases.   

 

 
 

Figure 1.5 Dual 1H/19F MR imaging of thrombus in a human carotid endarterectomy: (a) 
Optical imaging showing moderate luminal narrowing, several atherosclerotic lesions and 
areas of calcification, (b) 19F projection image acquired at 4.7T at the same location showing 
high signal enhancement due to perfluorocarbon nanoparticles, (c) 1H image with false color 
overlay of quantified 19F image.  (Images have been used with permissions from reference 89.) 
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1.2.3 Liposomes 

Liposomes, first discovered over 40 years ago, are vesicles formed from amphiphiles 

such as phospholipids.  The interaction of the amphiphilic molecules with each other and the 

surrounding environment induces the formation of a lipid bilayer structure that is spherical in 

shape.  Due to their cargo carrying capacity, liposomes have been widely explored for drug 

delivery.  With the ability to encapsulate and protect a variety of therapeutics that may be 

unstable or poorly soluble in physiological systems, the efficiency of liposomes in drug 

delivery is believed to result from membrane bilayer fusion with the target cell membrane or 

via endocytosis.  In cell culture, liposomes are actively used and commercially available for 

transfection of DNA to transform a host cell. 

 

Amphiphilic Molecule

Hydrophobic Tail
Hydrophilic Head

Lipid Bilayer

Aqueous Solution

 

Figure 1.6 Schematic representation of liposome: Self-assembly of amphiphilic molecules in 
aqueous solution forms a lipid bilayer containing spherical vesicle. 
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Gadolinium-labeled liposomes90-96 were prepared by modifying the structure of the 

amphiphiles.  Gd(III) was coordinated to a DTPA chelator incorporated into the hydrophilic 

head group.  The lipid bilayer composition is easily modifiable, as the paramagnetic Gd(III) 

containing amphipathic molecules could be incorporated into preexisting liposome designs 

composed of egg lecithin and cholesterol.  The first Gd(III)-containing liposomes, tested by 

imaging the liver and spleen of normal Balb/c mice, were confirmed to be viable as MRI 

contrast agents.  Later formulations were reported to show contrast enhancement of hepatic 

metastases in rats.97, 98 

A key advantage of liposomal nanoparticles is the tunable composition of the bilayer 

structure.  Amphiphiles with different unique properties can be used to tune the 

characteristics and behavior of the liposome.  In addition to the incorporation of Gd(III)-

based MR contrast agents in the liposome bilayer, they also allow for multimodal imaging by 

including contrast agents for optical imaging,99, 100 single-photon emission computed 

tomography (SPECT),101-103 and improved T2-weighted enhancement.104.  Another important 

potential of liposomes lies in the ability to add cell-targeting moieties to the bilayer surface.  

This is generally accomplished by synthesis of hydrophilic targeting molecules with 

hydrophilic tails to be incorporated into the bilayer as amphiphiles.  A number of target-

specific liposome-based contrast agents have already been explored for imaging IGROV-1 

xenograft tumors99 and hepatic metastases98 in rodents. 

 

1.2.4 Microemulsion-templated wax nanoparticles 

Oil-in-water microemulsions have been used as templates to engineer stable 

emulsifying wax nanoparticles containing gadolinium for potential use as MRI contrast 
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agents.105   Using a simple, reproducible technique (Figure 1.5) reported by Mumper et al. 

table wax nanoparticles of ~125 nm in diameter were produced.  This synthetic procedure is 

scalable to industrial production levels.106-108  The wax nanoparticles were first reported as 

delivery vessels of Gd(III) existing with a variety of hydrophobic ligands, such as 

acetylacetonate or hexanedione, for potential neutron capture therapy.   

To adapt for use as an MRI contrast agent precursor, dimyristoyl 

phosphoethanolamine diethylene triamine pentaacetate (DTPA) molecules were added during 

the nanoparticle formation.  Preloading the dimyristoyl phosphoethanolamine DTPA with 

Gd(III) before particle formation could greatly enhance the Gd(III) loading.  With recent 

safety concerns with Gd(III) toward patients prone to renal failure, limiting Gd(III) may be a 

beneficial strategy.  In addition, introduction of Gd(III) after nanoparticle formation would 

coordinate only surfaced exposed dimyristoyl phosphoethanolamine DTPA with ready access 

to water, maximizing the efficiency of each metal center to relax water protons.   

 

 

Figure 1.7 Schematic representation of the formation of “wax” nanoparticles by 
microemulsion template synthesis using variable temperature techniques. 
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The wax nanoparticles have a payload of approximately 105 Gd(III) per nanoparticle, 

determined through inductively coupled plasma-atomic emission spectroscopy.  In a 4.7T 

MR scanner, relaxivities were determined to be r1 = 7.1 and r2 = 13.0 per s-1 per mM Gd, 

suspended in 10% bovine serum.  Zn(II) and Cu(II) were used as competing ions for 

transmetallation kinetics of Gd(III) from the nanoparticles.  Kinetic constants of K1 = 0.033 

and K-1 = 0.022 h-1 with an equilibrium constant of 1.5  and thermodynamic binding constant 

for Gd(III) to the nanoparticles of  ~1018 M-1 were determined.  

Polyethylene glycol (PEG; average MW = 5000) was later incorporated into the 

Gd(III)-containing wax nanoparticles.109  The PEG molecules reduce the uptake by the RES 

system, allowing longer blood circulation times.  Using the enhanced permeability and 

retention (EPR) effect caused by the leaky vasculature of tumors, the PEGylated Gd(III)-

containing wax nanoparticles were used for MRI of nude mice bearing A549 lung carcinoma 

xenografts.  Detailed biodistribution profiles and pharmacokinetics reported in these animals, 

with tumor uptake of Gd(III) consistent with values of T1 enhancement from MRI.   

 

1.2.5 Hybrid silica nanoparticles 

Perfluorocarbon microemulsion, liposomal, and wax nanoparticles described above 

tend to be larger in size with diameters typically in 125-300 nm.  Such particles are useful for 

intravascular applications but might not efficiently pass through blood vessel for 

extravascular imaging.  The Lin group has sought to develop Gd-containing hybrid 

nanoparticles that have tunable sizes.  Highly robust hybrid multimodal contrast agents have 

been developed using silica nanoparticles of diameters from 20 to 100 nm.  Silica, a network 

of SiO2, is often used to develop functional materials by grafting alkylsiloxane-containing 
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agents.  In physiological systems, the material is inert and shows negligible acute toxicity in 

tissues and cells.  The preparation and industrial use of silica particles are well established.  

Ammonia catalyzed hydrolysis of tetraethylorthosilicate (the so called Stöber synthesis) is a 

well established route for the production of silica particles.110, 111    

Previously, the Lin group has designed hybrid silica nanoparticles with potential 

utility as multimodal imaging agents.112  Using a well-established water-in-oil reverse 

microemulsion synthetic procedure, nanoparticles with luminescent [Ru(bpy)3]Cl2 core and 

silylated Gd(III) complex surface coatings were prepared for optical and MR imaging.  In 

supplement to a monolayer system of Gd(III) chelate surface coating, a multilayer system 

was also developed for increased Gd(III) loading.  The nanomaterials were extensively 

characterized by TEM, TGA, DCP, and relaxivity measurements in a clinical MR scanner.   

The nanoparticles were further evaluated as multimodal imaging agents with in vitro 

studies using cell viability assays, confocal fluorescence microscopy, flow cytometry, and 

MRI of cell pellets.  The ability to label monocytes was specifically studied, because of these 

cells’ participation in mounting inflammatory responses and adherent phagocytic capacity.  

Further, the nanomaterials were shown to be robust and resist degradation by the phagocytic 

monocytes after intracellular uptake.  Thus, these hybrid nanomaterials were determined to 

be attractive for tracking labeled monocytes in in vivo disease models of inflammatory 

arthritis.  Chapter 2 describes the efficacy of the monolayer coated nanoparticle for early 

detection of collagen-induced arthritis in murine mouse models.   

In order to design further methods of increasing Gd(III) payloads on the surfaces of 

hybrid silica nanomaterials, our group devised a polyelectrolyte layer-by-layer self-assembly 

approach to increase the Gd(III) loading.113  Unlike the previously described multilayer 
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system of silylated Gd(III) complexes,112 this approach maintains water accessibility to the 

metal centers for efficient water proton relaxation.  MR-enhancing Gd(III)-chelate oligomers 

with a net positive charge were deposited onto the negatively charged surface of the 

aforementioned silica nanoparticles with a monolayer of Gd(III) complexes.  The addition of 

polyanion layers could be utilized for incorporating additional layers of Gd(III)-chelate 

oligomer.  The alternating, stepwise layer-by-layer deposition of polyanions and polycations 

produces flexible architectures of macromolecules on nanomaterial surfaces.  Further, 

electrostatics could be used to add cancer targeting peptides to the surface of the 

nanoparticles.  Chapter 3 describes the steps and characterization of these hybrid 

nanomaterials for increasing MR relaxivities and targeting of cancer cells.   

 

1.3 Hybrid nanomaterials for protein purification 

Recent advances in proteomics provide the ability to design and generate many 

recombinant proteins in cell cultures.  A large number of proteins can be produced in large 

quantities for research and pharmaceutical purposes.  The purification of proteins however 

remains a significant challenge due to the complexities of their isolation from the biological 

systems.  After the protein is produced, release is achieved through cell lysis, which can be 

accomplished through mechanical disruption, sonication, freeze/thaw, mortar/pestle grinding, 

detergents, or protease inhibitors.  The crude cell lysate mixtures from these processes 

contain cell debris and/or surfactants.  Many techniques have been employed to purify 

desired proteins, including precipitation, dialysis, gel filtration, ion exchange 

chromatography, and affinity chromatography. 
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Affinity chromatography uses specific binding interactions between molecules to 

purify target proteins.  A variety of ligands, ranging from antibodies, proteins (avidin) and 

protein fragments (Protein A or G), peptides (glutathione), carbohydrates (dextrin), and small 

molecules (biotin), are available for interaction with the target protein.  The ligand of choice 

may be immobilized onto a solid support to bind the target, allowing impurities to be washed 

away, before elution of purified protein.  Immobilized metal affinity chromatography 

(IMAC)114 uses chelated metal ions to biding and purify recombinant fusion proteins. 

For IMAC, the desired recombinant protein is designed to include a tag of six or more 

histidines at the N- or C-terminus (His×6 tag).  Histidine contains an imidazole moiety that is 

able to bind metal ions.  To isolate the target protein, the crude cell lysate is passed through 

resin containing immobilized metal ions.  Nickel(II) ions chelated by an organic molecule 

with three or four binding sites, such as nitrilotriacetic acid (NTA), is a commonly used for 

resin immobilization.115 The histidine tag will bind with the chelated metal with greater 

affinity than untagged impurities.  After thorough washing, an imidazole solution is used to 

release the purified protein from the chelated metal ions.   

The resin used in IMAC is a key parameter for the purification of the protein, as the 

affinity support needs to be chemically modifiable for attachment of protein-binding metal 

ions and have a high surface area for interaction.  Porous gel supports, such as cross-linked 

agarose or polyacrylamide are widely used, but easily crush under pressure and often 

necessitate the use of gravity flow columns.  Microscale magnetic beads are a convenient 

support for affinity chromatography.  The beads can be quickly immobilized with a magnet, 

allowing facile manipulation of supernatant washes and elutions.  Magnetic nanoparticles 
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(~10 nm), which are several orders of magnitude smaller than commercially-available 

magnetic beads (~50 μm), have obvious surface area-to-volume advantages. 

Bing Xu and coworkers have shown use of dopamine to design as a robust 

bifunctional molecule able to anchor chelated nickel(II) ions onto an the iron oxide surface of 

a cobalt nanoparticle.116, 117  Dopamine contains a catechol moiety, a bidentate enediol, that is 

capable of tightly coordinating to transition metal ions.  The interaction between the catechol 

moiety of dopamine and the iron on the surface of the nanoparticle was shown to be stable at 

high salt concentrations, in the presence of detergents, and in boiling water.  These materials 

could be used to purify highly overexpressed green fluorescent protein (GFP) from E. coli 

cell lysates.   

Significant effort has been devoted to gaining better understanding of the interaction 

between Ni-NTA/His×6 tag to improve the IMAC protein purification process.  Using 

fluorescence anisotropy and fluorescence resonance energy transfer, Ebright et al. 

demonstrated the enhanced binding of the His×6 tag to a bivalent Ni-NTA compared to 

monovalent Ni-NTA.118  Piehler et al. has continued to examine further affinity 

enhancements by multivalency of Ni-NTA to His×6 tag.119, 120 Combining the strong affinity 

of multivalent Ni-NTA molecules with the increased surface area of superparamagnetic 

nanoparticles will allow improvement of IMAC protein purification. 

The Lin group has designed a new bivalent Ni-NTA molecule with the catechol 

anchor for binding to iron oxide nanoparticles to create a hybrid system for protein 

purification.121  The study showed that the multivalency effect led to enhanced binding of 

His×6 tagged proteins in native, folded conformations.  Recombinant proteins often must be 

denatured during the IMAC purification process to expose the full His×6 tag from the protein 
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structure to ensure effective binding.  Denaturing proteins can increase the efficiency of 

purification, but may not yield an active product.  Refolding proteins in the test tube cannot 

accurately mimic the folding conditions within the cell during translation.  A large 

percentage of recombinant proteins remain difficult to purify, hindering research on many 

important proteins.122   

This work demonstrates the utility of the multivalency strategy in enhancing the 

binding of His×6-tagged proteins in their native, folded conformations.  Selective 

purification of His×6-tagged proteins from crude cell lysates was achieved by using the 

Ni(II)-loaded iron oxide nanoparticles.  The present platform is capable of efficient 

purification of His×6-tagged proteins that are expressed at low levels in mammalian cells.  

The present hybrid nanomaterial represents a novel nanoparticle-based high-capacity protein 

purification system with shorter incubation times, proportionally large washes, and 

significantly smaller elution volumes compared to commercially available microbeads.   

 

1.4  Concluding remarks 

We have introduced in this chapter several hybrid nanomaterial systems and their 

applications in biological applications such as MR image diagnostics and protein 

purification.  In each case, the hybrid material system outperformed the current technology as 

a result of the unique combination of interesting properties.  The success in these areas of 

research provides a testament to organic/inorganic hybrid nanomaterials’s ability to offer 

many interesting characteristics that do not exist in either inorganic nanostructures or 

polymer colloidal particles alone.  The modular synthetic procedures for organic/inorganic 

hybrid nanomaterials should allow further fine-tuning of their properties for target 
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applications.  Such an amalgam of molecular chemistry and nanotechnology promises to lead 

to new hybrid nanomaterials for a wide range of biomedical applications, such as imaging or 

protein purification, across multiple scientific fields.   
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CHAPTER 2 
 
 

MULTIMODAL NANOPARTICLE CONTRAST AGENTS FOR TARGETED 
MONOCYTE IMAGING OF SYNOVIAL INFILTRATION IN INFLAMMATORY 

ARTHRITIS DISEASE MODELS 
 
 
2.1  Introduction 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease 

characterized by progressive damage of joints.  Affecting 1-2% of the worldwide population, 

disease onset can occur at any age of adulthood (25-50), and has a three times greater 

incidence in women.1 As one of the most common immune-mediated inflammatory disease, 

the aberrant immune system causes swelling, pain, and stiffness of the joint as well as 

destruction and deformity of the cartilage, bone, and ligaments. Thus, RA results in 

diminished quality of life and has been linked to increased risk of myocardial infarction, 

lymphoma, osteoporosis, and reduction of life expectancy.2-4  Events that initiate disease are 

unclear, though the presence and activation of T-cells, B-cells, and macrophages in the 

inflamed joint is generally accepted.  While a cure does not exist, the early treatment of RA 

using existing disease modifying and anti-inflammatory therapies (i.e. Rituxan®, Enbrel®, 

Humira®) can prevent irreversible joint damage, a primary cause of the associated chronic 

pain. 

 Diagnosis of RA is largely dependent on clinical criteria established by the American 

Rheumatism Association in 1987.  Four symptoms must be present for at least six weeks: 

early morning joint stiffness; polyarticular inflammation; swelling of proximal 
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interphalangeal, metacarpophalangeal, or wrist joints; and symmetric swelling.5  Serologic 

tests, such as measurement of rheumatoid factor (RF) and anti-cyclic citrullinated peptides, 

can also be used to help confirm diagnosis but cannot act as stand-alone assays.  

Seronegative RF appears in approximately 20% of RA patients and can also be positive in 

other diseases.6  For the research and treatment of RA, the ability to noninvasively 

characterize early inflammatory events within the joints remains a significant challenge.   

 

 

Figure 2.1 Diagram of normal joint compared to inflamed joint found in rheumatoid arthritis.  
(Adapted from reference 7.) 

      
Conventional radiography (CR or X-ray) remains the standard diagnostic, but 

ultrasound, computed tomography (CT), and MRI are gaining popularity.8 X-rays pass 

through soft tissues but are absorbed or scattered by denser bones, providing high quality 

images of bony structure.  In 2005, a long term comparison study of individual imaging 

modalities for rheumatoid arthritis was published, establishing the superiority of MRI over 
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CR.9  In this study, bone erosions could be detected 7 years sooner by MRI compared to CR.  

Inherently dependent on water distribution, MRI allows detection of early soft tissue 

changes, such as tissue inflammation, edema formation, and cartilage damage.10-14  These 

soft tissue changes occur earlier in disease progression than bone erosions, thus provide a 

more effective measure of response to treatment.15, 16   

 

A.  B.  

Figure 2.2 Hands of rheumatoid arthritis patient imaged A) visually and B) conventional 
radiography (X-Ray) showing bone damage detail but little soft tissue information.17 

 

While much more sensitive, MRI is often limited to structural anatomy that lack 

mechanistic information of disease.  Because cellular and molecular events long precede 

anatomic derangement, detection beyond the scope of conventional MRI is required to 

recognize disease earlier in order to design more targeted biologic therapies.  The synovium, 

a thin membrane that provides lubrication and nourishment to the joint, is a focus of 

inflammatory activity and rheumatoid arthritis.  Contrast-enhanced MRI can be used to 

improve contrast in synovial tissues for delineation from tendon sheaths, cartilage, and 

effusion.18  Low molecular weight metal-chelate contrast agents, such as Magnevist®, 

Omniscan®, or Dotarem®, have been used to enhance signal in interstitial fluid resulting 

from increased endothelial tissue permeability and blood flow caused by inflammatory 
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arthritis.19  Specificity of these small Gd(III) contrast agents has some limited utility, though 

signal enhancement is often seen in both normal and inflammatory tissues.  Using dynamic 

contrast-enhanced MRI, a modification of traditional techniques to help correlate the 

pathophysiology of synovial inflammation and response to treatment, acquisition of many 

sequential images immediately after administration of the contrast agent becomes possible 

and allows the analysis of synovial perfusion and capillary permeability.16  While being able 

to give vascular detail of disease, the low molecular weight Gd(III)-chelate contrast agents 

are limited by their quick clearance from the blood and inability to sensitively label cellular 

and molecular markers for inflammation. 

 Molecular markers such as αvβ3 integrins are expressed on synovial blood vessels in 

RA20, 21 and regulate migration and proliferation of endothelial cells in the synovial tissue.  

Targeted induction of apoptosis in the synovial neovasculature has been demonstrated as a 

potent therapy for RA.22  Using RGD peptides for integrin binding,23, 24 murine collagen-

induced arthritis can be suppressed by targeted apoptosis in cells of synovial 

neovasculature.25  Integrin targeting is an example of a molecular marker that is desirable for 

use in diagnosis of neoangiogenesis seen in RA as well as other diseases.  Unfortunately, 

currently available low molecular weight Gd(III)-chelates require concentrations orders of 

magnitude higher than available on overexpressed biomarkers on disease cell surfaces.26  A 

potential solution for this concentration gap is the development of nanomaterials with higher 

MR sensitivity. 

As MRI contrast nanomaterials with higher sensitivity are generated and optimized 

for targeted imaging, rapid uptake by the reticuloendothelial system (RES) is a major 

concern.  Phagocytic cells, residing in the lymph nodes, spleen, and liver, clean blood by 
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uptake of particulate matter.  This process is very fast, and often significantly interferes with 

targeted nanomaterials.  Yet, these phagocytic cells also play an important role in the 

immune response, inflammation, and thus RA.  Labeling phagocytic cells of the RES using 

inherent phagocytic activity toward particulate matter (i.e., contrast-enhancing nanoparticles) 

is an attractive alternative to helping image immunological responses in RA and subsequent 

soft tissue changes.   

Recently, particular interest has surrounded monocytes and synovial macrophages as 

important mediators of tissue and bony destruction in inflammatory arthritis.27-29  Activated 

macrophages are thought to play an important role in RA, and the total number of residing 

synovial macrophages correlates with RA disease activity (Figure 2.3).30, 31  Generally a 

membrane of one to two layers, the synovium thickens due to infiltration by blood 

monocytes.  The damage caused by these cells eventually cause irreversible destruction of 

the cartilage and bone.  Particulate contrast agents, such as ultrasmall superparamagnetic iron 

oxide (USPIO), has been used in investigational studies in inflammatory disease responses as 

labels of hematopoetic phagocytic cells.29, 32-34  USPIO are internalized by a variety of cells, 

but preferentially label monocytes/macrophages.  In the collagen-induced arthritis (CIA)34 

and in the experimental antigen induced arthritis29, 31 rodent models, USPIO particles showed 

a negative (dampened) signal intensity on MR images comparing arthritic to normal mouse 

joints.  These studies support the feasibility of cellular tracking in vivo and suggest their 

potential application for monitoring inflammatory events and response to therapy.  As 

cellular immunotherapies emerge,35-37 where cells are used as therapeutic delivery vehicles, 

non-invasive cell in vivo imaging techniques are needed to monitor these therapies and track 

the fate of the administered cells.38   
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A)   B)  

C)  D)  

Figure 2.3 Hematoxylin and eosin (H&E) stains of histological stains of A) normal rat knee 
joint at 10X magnification, B) normal rat knee joint at 100X magnification, C) arthritic rat 
knee joint at 10X magnification, and D) arthritic rat knee joint at 100X magnification.  Black 
arrows indicate the synovium, and hematoxylin stained cells (purple) show the infiltrating 
basophilic leukocytes.31  
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Our group has produced a new multimodal nanoparticle (MNP) contrast agent 

capable of T1- and T2- enhancement as well boasting relatively long fluorescence emission 

wavelengths39.  MNP outperforms both Gd-DTPA and USPIO in T1-enhancement and is 

comparable to USPIO in T2-enhancement.  This contrast agent has been shown to efficiently 

label monocytes for MRI and fluorescence without detriment to cell viability.  It is our 

hypothesis that MNP contrast agents can eventually be used to noninvasively measure and 

guide treatment in inflammatory arthritis.  Specifically, we will image animal models of 

inflammatory arthritis using multiple modalities to improve current MR imaging 

technologies (Figure 2.4).  This transformational research aims to help develop advances to 

guide RA therapies and generate knowledge that cannot be obtained by our current methods 

of analysis.   
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2.2 Results and Discussion 

2.2.1 Description of the multimodal nanoparticle (MNP) contrast agent 

The multimodal nanoparticle contrast agent used in these studies is composed of a 

Ru(bpy)3Cl2 dye-doped silica nanoparticle with paramagnetic coating of a gadolinium(III)-

diethylene triamine tetraacetic acid (DTTA)-silane (Figure 2.5).  The Gd(III) chelate is 

structurally similar to the clinically used low molecular weight contrast agent Gd-DTPA.  

One of the acetate groups is replaced with a silane moiety for immobilization onto the 

surface of the silica nanoparticle.  Thus, two water molecules can coordinate simultaneously 

to the paramagnetic metal center compared to the one water molecule that coordinates to Gd-

DTPA potentially increasing proton relaxation efficiency.  Gd(III) remains tightly bound to 

the chelator despite the loss of a coordinating acetate; loss of Gd(III) may result in increased 

toxicity due to interference with Ca(II) signaling.   

The nanoparticles have a spherical morphology and are highly monodisperse with a 

37 nm mean diameter.  Characterization was performed by scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and 

direct current plasma (DCP) elemental analysis.  In a clinical 3.0 Tesla MR imaging scanner, 

the r1 and r2 were measured to be 2.0 x 105 and 6.1 x 105 s-1, respectively.  MNP has been 

validated for in vitro uptake by murine monocytes, demonstrating fluorescence and MR 

enhancement.34 
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Figure 2.5 Schematic representation of the multimodal nanoparticle (MNP) contrast agent 
with luminescent Ru(bpy)3Cl2-doped core and Gd(DTTA) surface immobilized. 
 
 
2.2.2 Monocytes and their role in inflammation 

 Monocytes are leukocytes that circulate in the bloodstream and can actively 

participate in immune responses toward pathogens.  The main function of this type of cell is 

to mature into either macrophages for phagocytosis and digestion of undesirable material or 

to present antigens and trigger immune responses.  Monocytes are produced from 

hematopoetic stem cells (hemocytoblasts) found in the bone marrow.  The multipotency of 

these hemocytoblasts gives rise to a range of blood cell types: myeloid, lymphoid, and new 

stem cells.  Monocytes are derived from myeloid origin, as hemocytoblasts first commit to 

the myeloid progenitor state, before becoming myeloblasts, and then monocytes.  

Approximately 400 million monocytes exist per liter of human blood, carefully guarding 

against infection. 

Macrophages are monocytes that have left the bloodstream and have migrated into 

tissue actively undergoing inflammation.  Foreign material is removed from the tissue by 
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endocytosis, specifically phagocytosis.  During this process, macrophages can engulf 

particulate matter using its cell membrane to form an endosome, which can fuse with a 

lysosome to introduce superoxide (O2-), hypochlorite (HOCl), and enzymes.  These harsh 

conditions are suitable for breakdown of undesirable material, such as pathogenic 

microorganism or sensescent/dead/damaged cells. 

Acute and chronic inflammation is an immune response that monocytes and their 

derivative macrophages are major participants.  Inflammation is an essential healing process 

invoked by an organism toward tissue infection or damage.  Monocytes respond to cellular 

signals, such as selectins or chemokines, to migrate from the bloodstream into the damaged 

tissue.  Acting as macrophages within tissue, foreign debris is cleared and degraded to allow 

for regeneration of healthy tissue.  While vital to the survival of the organism, this process 

can go awry resulting in autoimmune diseases such as RA.   

In RA, monocytes have been implicated as a key contributor to dysfunctional immune 

response, specifically to joint tissue.  Monocytes are known to infiltrate the synovial tissue 

during the unwanted inflammatory response.33  Joints damage initially inflicted on the 

synovium eventually causes destruction to the cartilage and bone.   Monocytes can become 

activated by endotoxins derived from pathogens40 to release inflammatory mediators: tumor 

necrosis factor alpha (TNF-α)41-43 and interleukins (IL) -1 and -6.44  Upon activation, higher 

phagocytosis levels of particulate matter has also been demonstrated.45  Since these immune 

cells play a critical role in regulating the inflammatory response, methods of tracking for 

studying is highly desirable.   

The inherent phagocytic activities of live monocytes can act as a major hurdle for 

conventional labeling techniques.  Common cell surface labeling techniques, such as 
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fluorescent antibodies, will be engulfed and digested.  Also, antibodies labeled with Gd-

DTPA generally do not have sufficient sensitivity for in vivo studies of pathogenesis.  

Instead, particulate uptake was used for labeling and tracking monocytes in vitro and in vivo.  

We found that murine monocytes could quickly uptake particulate aggregates of iron oxide 

nanoparticles (Figure 2.6).   In this experiment, phagocytosis of large visible aggregates 

occurred within 45 minutes, with evidence of small vesicle formation for uptake of particles 

not visible by light microscopy at 100X magnification.  Cells appeared viable by trypan blue 

examination up to approximately 2 weeks after uptake of iron oxide particulates.  These 

observations were supported by literature reports of uptake of iron oxide by human 

monocytes.46  

We hypothesized that monocytes could efficiently uptake MNP, by utilizing their 

inherent phagocytic activity, for labeling and tracking cell pathogenesis in disease models.  

Using the luminescent properties of MNP, we characterized monocytes movement using in 

vitro assays, histopathology, and in vivo optical imaging of low tissue depth joints.  MR 

modalities were used to achieve further in vivo imaging of intricate joint structure and 

achieve greater resolution than what is available through optical imaging.   
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Figure 2.6 Monocytes can quickly engulf particulate matter (large aggregates of iron oxide 
nanoparticles) shown in these live cell bright field microscope images at 20X magnification.   
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2.2.3 The need for a robust system to track monocytes 

 As noted in the previous section, phagocytic cells, such as monocytes, have a primary 

function of digesting foreign material.  In order to effectively track the action of monocytes 

in an active inflammatory process, we realized the need for a robust system able to withstand 

the harsh conditions of the endosome.  Silica is known to be robust and biocompatible, 

having been used for industrial catalysis47-50 but have also been used for cellular studies.51-54  

With reports of doping silica nanoparticles with fluorescent molecules,55-57 we believed that 

coating luminescent silica nanoparticles with chelated metal centers could provide a robust 

contrast agent capable of withstanding harsh endosomal conditions.  We found the resulting 

material, MNP, could be label monocytes without diminishing their viability to track 

monocytes movement within a disease model.  MNP was monitored for over 4 weeks and 

found stable in vitro and in vivo.   

 

2.2.4 Fluorescence confocal microscopy of labeled monocytes 

 To label monocytes in vitro, cells were incubated with MNP to allow for phagocytic 

uptake.  Since MNP does not form large aggregates visible by light microscopy, confocal 

fluorescence was used to visualize nanoparticle uptake.  Confocal laser scanning microscopy 

is a valuable in vitro imaging technique that has been used extensively to examine biological 

samples.  Microscopy principles are similar to traditional fluorescence microscopy with the 

use of objective lens and a series of excitation/emission filters, but with a few key 

differences.  Particularly, resolution in confocal microscopy is greatly enhanced over 

conventional fluorescence microscopy because an aperture or pinhole is used to block out-of-

focus light.  The result is sharper images from luminescence arriving directly from the focal 
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point of luminescence.  Light can be detected at various z-axis planes, allowing visualization 

of a particular “slice” of a sample.  Additionally, the “slices” can be stacked, generating 

three-dimensional composite images by software.   

Imaging at z-axis planes is especially important for imaging monocytes with MNP 

uptake.  While the 37 nm diameter MNP cannot be seen by confocal laser scanning 

microscopy (neither bright field nor fluorescence), the accumulation of MNP within the cells 

was apparent (Figure 2.7).  By detecting fluorescence of a z-slice that cuts through the 

centers of the monocytes, MNP fluorescence within the cells was detected.  Focal regions of 

fluorescence indicate concentration of the nanoparticles into endosomal vacuoles.  Ring 

patterned fluorescence was not seen, which would be indicative of surface labeling of cells.  

Inspection of the representative images of MNP-labeled monocytes populations show high 

labeling efficiency that is also confirmed by flow cytometry. 
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A.  

B.  

Figure 2.7  Laser scanning confocal  microscopy images of murine monocytes incubated 
with MNP at 63X magnification under A) bright field and B) 433 nm excitation with 500-
550 nm emission settings.   
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2.2.5 In vitro MRI of MNP labeled monocytes 

 To evaluate potential use for in vivo applications for tracking monocytes using MR-

enhancing modalities of MNP, in vitro MRI was performed on labeled monocytes.  After 

incubating monocytes with MNP, the cells are washed and pelleted into Eppendorf tubes 

before being placed in a 3.0T MR scanner.  Figure 2.8 demonstrates contrast enhancement in 

T1- and T2-weighted MR imaging when compared to unlabeled cells.  T1-weighted images 

show a significant signal enhancement, while T2-weighted images show signal void of MNP-

labeled cells.  Both modalities may be useful in imaging disease and provide information 

regarding cellular pathogenesis.   

 

A.  B.  

Figure 2.8 In vitro MR images of murine monocytes unlabeled (left) and MNP-labeled (right) 
showing clear contrast signal contrast enhancement in A) T1-weighted and B) T2-weighted 
modalities. 

 

2.2.6 Flow cytometry of MNP labeled monocytes 

 Microfluidic advances have led to the development of the modern flow cytometer 

extensively used by immunologists and other scientists for studying populations of cells and 

microscale structures.  A major technological challenge was the accurate measurement of 

single particle events as they pass through a detector.  Typical manufacturing processes could 

not create microfluidic feature sizes that could effectively force particles to move 
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individually through channels.  Hydrodynamic focusing using sheath fluid to surround 

particulate-containing fluid within a larger, manufactured tube was found ideal for narrowing 

the sample stream.  Fluid dynamics allow two fluids that differ in velocity and density to 

resist mixing, enabling a stable two-layer flow, and thus producing the necessary stream 

diameter for single event detection. 

 Detectors for light scattering or fluorescence can be very useful for probing cellular 

samples in flow cytometry.  Forward scattered (FS) light is measured through the sample 

stream, while side scattered (SS) light is measured orthogonal to the sample stream.  Such 

scattered light is useful for measurements of cellular populations, as information about size 

and granularity of cells is generated.  Larger cells result in higher FS signals than smaller 

cells.  Cells of greater complexity, such as those with more granules or organelles, create 

higher amounts of SS light.  Fluorescence, like SS light, is also measured by detectors 

perpendicular to the sample stream.  In immunological assays, a wide range of fluorescently-

tagged antibodies specific for cellular markers are extensively used for studying populations.  

This technique is much more powerful and absolute in counting and sorting populations than 

light scattering detection.  Cells can be probed and sorted for functional characteristics 

labeled by fluorescent affinity molecules in conjunction to morphological characteristics 

provided by light scattering.   

 We used flow cytometry to measure the uptake efficiency of MNP by murine 

monocytes (Figure 2.9).  Cells that were and were not incubated with MNP were probed in a 

flow cytometer using light scattering and fluorescence.  A plot of SS versus FS light was 

used to determine healthy cells used for fluorescent measurement.  The light scattering data 

of the inset in Figure 2.9 shows “R2” as the region of interest encompassing the large 
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majority of cellular events, while those outside of the ellipse consist of dead cells and debris.  

Monocytes incubated with and without MNP had similar levels of events outside of the 

region of interest, indicating that the dead cells and debris are a result of the normal cell cycle 

rather than toxicity induced by MNP.  Finally, fluorescence was used to count over 1x105 

MNP-labeled (blue curve) and unlabeled cells (red curve).  Increasing concentrations of 

MNP used for incubating with monocytes were proportional to labeling efficiency.  

Presumably, the cells had an upper limit to MNP-labeling dependant on uptake capacity.  

Monocytes could be labeled in over 98% efficiency determined by increase in fluorescence 

intensity with little toxicity to cells.  This corresponds with the qualitative level of labeling 

seen in confocal fluorescence imaging.   
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Figure 2.9  Flow cytometry analysis murine monocytes labeled with different MNP 
concentrations; plotted as cell counts (y-axis) versus luminescence intensity (x-axis).  Insets 
show light scattering data to determine healthy cells sampled and counted in region of 
interest: R1, R2.  of MNP labeled showing increased fluorescence intensity of labeled (blue 
curve) cells compared to unlabeled (red curve) cells.  (a) 0 mg MNP per 1×106 cells in 2 mL 
media; R1 = 95.5% of total events; (b) 0.004 mg  MNP per 1×106 in 2 mL media; 0.6% NP 
labeling efficiency, R2 =94.0% of total; (c) 0.042 mg MNP per 1×106 in 2 mL media; 10.8% 
NP labeling efficiency, R2 = 94.2% of total events; (d) 0.418 mg MNP per 1×106 in 2 mL 
media; 98.0% NP labeling efficiency, R2 = 90.9% of total events; (e) 2.140 mg MNP per 
1×106 in 2 mL media; 99.4% NP labeling efficiency, R2 = 91.3% of total events. 
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2.2.7 Cell viability of monocytes incubated with MNP 

 MNP toxicity was measured using a commercially available colorimetric assay 

measuring enzymatic activity of the cells.  (3-4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium salt (MTS) is converted by cells 

to the derivative water-soluble formazan product that absorbs at 490 nm.  Literature has 

reported MTS assay for measurement of cell viability and proliferation; formazan generation 

is time-dependent and proportional to the number of viable cells.58, 59 

 

 

Figure 2.10 Structures of substrate and product used to measure cell viability of cells. 

 

Upon incubation of murine monocytes with various concentrations of MNP, MTS 

assay showed monocytes are fully viable even at high concentrations of nanoparticle.  

Monocytes were incubated with MNP concentrations from 0.0123 μg up to 123 μg per 5000 

cells in 120 μL media for 22 hours, and were found to be able to convert MTS as effectively 

as normal cells.  This result indicates that the nanomaterial construct is not toxic to 

monocytes, which is expected because components are also known to have little toxicity.   
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Thus, nanoparticle labeling may be a useful method to track monocytes, as uptake of MNP 

does not seem to hinder viability or proliferation.   

 

 

 

Figure 2.11 MTS assay results of murine monocytes incubated with 0, 0.0123, 0.123, 1.23, 
12.3, and 123 μg MNP per 5000 cells showing no toxicity and high cell viability. 
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2.2.8 Determining background fluorescence in non-arthritic joints of control animals 

injected with and without MNP 

At 12 hour time points following intravenous injection of MNP contrast agent, optical 

imaging was performed for fluorescence detection.  Figure 2.12 shows superimposed images 

of animals in both photographic (white light) and fluorescence (DsRed emission filter) 

channels.  Control animals, vehicle-immunized without heterologous bovine collagen, are 

used to establish baseline fluorescence emission for animals injected with saline (or 0 mg 

MNP / kg animal), 125 mg MNP / kg animal, and 250 mg MNP / kg animal.  These control 

animals injected with variable MNP dose demonstrate a slight increase in fluorescence 

background of the paws as MNP dose was increased.  This small increase in fluorescence 

signal is presumably due to the vascular trapping of nanoparticle within the paw circulation.   
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Figure 2.12 In vivo optical images of normal animals injected with A) saline, B) 125 mg/kg 
MNP, or C) 250 mg/kg MNP and collagen-induced arthritis (CIA) animals injected with D) 
saline, E) 125 mg/kg MNP, or F) 250 mg/kg MNP.  Luminescence intensity in MNP-treated 
arthritic paws had strong positive correlation with the assigned clinical index score in 
animals that received either H) 125 mg MNP/kg (r = 0.82, p = 0.01) or I) 250 mg MNP/kg (r 
= 0.89, p = 0.002). Arthritis was not symmetric and varies for each animal.   

 

 

r  = 0.76, p = 0.0683                 r = 0.82, p = 0.0128               r = 0.89, p = 0.0017 
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2.2.9 Determining background fluorescence in arthritic joints of control animals 

injected with and without MNP 

As compared to the non-arthritic group, animals with arthritis showed a dramatic 

increase in paw fluorescence.  Arthritic animals given higher doses responded with greater 

paw fluorescence.  The arthritic mouse injected with saline, shown in Figure 1, demonstrates 

little increase in fluorescence measured from the left hindlimb without arthritis (evaluated 

based on paw swelling) when compared to the right hindlimb with arthritis.  This increase in 

fluorescence is due to the paw swelling of the arthritic hindlimb, which results in a greater 

amount of surface area from which tissue autofluorescence was generated.  In the 125 mg / 

kg dosed arthritic animal shown, the left hindlimb (non-arthritic) clearly shows less 

fluorescence than the arthritic right hindlimb.  The fluorescence of the arthritic right hindlimb 

is also significantly enhanced in contrast to the right arthritic hindlimb of arthritic animal 

dosed with saline (0 mg / kg).  The fluorescence was further enhanced in the case of the 

arthritic animal dosed at 250 mg / kg.   

 

2.2.10 Correlation of optical imaging and magnetic resonance imaging in arthritic paws 

 Using the MR-enhancing modality of MNP, animals with inflamed joints were 

imaged using a 9.4T small animal scanner.  Animals were scanned before and 12 hours after 

125 mg / kg MNP administration.  The post-contrast image demonstrates a clear signal void 

compared to the pre-contrast image in the inflamed joints.  Enhanced T2 relaxation as a result 

of MNP deposition in the inflamed tissue causes the signal void and correlates appropriately 

with the post-contrast in vivo fluorescent enhancement.  The fluorescence images show a 

30% enhancement of fluorescence in the circled toe ROIs. 
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2.2.11 Magnetic resonance imaging: Relaxation time (T1, T2) mapping 

T1 and T2 relaxation time mapping is an MR imaging technique that has been found 

to quickly detect cartilage changes and provide quantifiable data in healthy children, 

adolescents, and adults as well as patients with juvenile rheumatoid arthritis (JRA).60-63   T1 

mapping with delayed administration of Gd-DTPA contrast agent has been shown to 

demonstrate loss of proteoglycan density in cartilage 63-65, but T1 and T2 mapping has yet to 

show changes as a result of cellular response.  Our studies indicate an increased sensitivity by 

T2 mapping MR imaging as compared to high resolution three-dimensional MR image.   

Figure 2.13 compares arthritic animals with early arthritis (day 30) and late arthritis 

(day 50), pre- and post-injection of MNP.  In early disease, the hind paws showed obvious 

enhancement of T2 relaxation time, but little to no change in T1 relaxation time.  Unlike low 

molecular weight Gd(III) contrast agents, MNP has significant T1- and T2- effects.  Often, 

parameters can be adjusted to weigh the effect in favor of T1 or T2.  In high concentrations, 

T2-effects dominate, outweighing T1-effects from being apparent even with parameter 

modification.  In this animal, there was no obvious detectable change in the high resolution 

MR image, but the T2 mapping image shows a marked enhancement of T2 relaxation, 

demonstrating the promise of relaxation time mapping for sensitive early detection of 

disease. 

Late arthritis did not detect significant T1- or T2-effects from MNP injection.  

Although this animal had heavy edema as result of inflammation, very little enhancement of 

T2 relaxation time was shown.  This is attributed to the lack of monocyte migration to the 

inflammation site.  At late stage arthritis, the inflamed site may be saturated with monocytes 
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that had migrated earlier, such as in the day 30 results, preventing significant new infiltration.  

Additionally, these results potentially support the idea that monocytes trafficking, rather than 

vascular trapping of MNP causes MNP deposition in the synovial joints.  An alternate mode 

of deposition may be the uptake of MNP by monocytes that have already infiltrated the joint, 

which indicate that monocytes in late stage arthritis may be less active.  Both modes of MNP 

deposition working in concert is possible, though difficult to clearly prove. 



63 
 

 

Figure 2.13 Representative T1 and T2 maps of arthritic animal hindlimbs showing pre- (day 
35) and post-MNP (day 36) contrast injection in a mouse with active inflammation.  The 
post-MNP contrast images were obtained 12 hours after injection with 2 separate doses of 
125 MNP/kg.  Changes in relaxation time are distinctly detected in T2 maps after MNP 
injection. 
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2.2.12 High-resolution Magnetic resonance imaging 

High-resolution MR images of collagen induced arthritis animals were scanned to 

show detailed anatomical structures not seen in T1- and T2- relaxation time maps and optical 

imaging.  These results are representative scans that clinicians may commonly see when 

examining human patients.  In Figure 2.14, an animal with arthritis is scanned by both high-

resolution MR and optical imaging.  The right hind paw of the animal post-injection of MNP 

shows luminescence enhancement when compared to the pre-injection optical image.  This is 

represented by the elliptical ROIs showing an increase from 2.1 X 106 to 3.4 X 106 

luminescent counts.  This corresponded well to the MRI scans, showing signal void in the 

toes of the animal as a result of T2-effects of MNP.  Slight signal void of toes in the left hind 

paw are also seen, which corresponds to the optical results.  MR and optical cannot be 

directly correlated because of positioning factors.  While MR can image slices of an 

anatomic structure, optical imaging will only provide data of the whole structure.  In this 

sense, optical imaging is severely limited because of the dependency on excitation and 

emission light penetration into the tissue.  For example, MNP accumulation closer to the skin 

surface will give greater luminescence than MNP accumulated further into the tissue.  Also, 

positioning of the limb can also greatly affect the measurement of luminescence.  Yet, optical 

imaging is an attractive potential diagnostic because it is inexpensive and less time 

consuming than MRI.   
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Figure 2.14 High resolution MRI and optical images of hind paws of collagen induced 
arthritis animals pre- and post- MNP injection.  Right hind paw shows higher fluorescence 
intensity and T2-effect signal void after MNP injection. 

 

2.2.13 Confocal fluorescence microscopy of arthritic joints 

 Tissue sections of arthritic hind paws were examined under light and confocal 

fluorescence microscopy.  The characteristic fluorescence of Ru(bpy)3Cl2 retained in the 

MNP core was specifically found in the synovial tissue where active inflammatory disease 

was present.  The nanoparticle contrast agent is hypothesized to in vivo label monocytes 

through phagocytosis.  As previously demonstrated, monocytes phagocytically loaded with 

MNP have been shown to be completely viable by MTS assay, potentially allowing activated 

cells to migrate and infiltrate joints during inflammation.  Figure 2.15 shows MNP 

fluorescence specifically in the “crescent” shaped synovium surrounding the calcaneus (heel 
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bone) of the ankle joint at 10X magnification.  Though a majority of MNP was localized in 

the synovial tissue surrounding the joint, some nanoparticle deposition was detected in the 

bone.  This may be evidence of monocytes infiltrating the bony structure and causing 

permanent damage.  Arthritic joints have apparent MNP deposition as measured by 

fluorescence, further magnification and immunofluorescence was necessary to examine 

cellular uptake and deposition.   

 

 

Figure 2.15 Overlay of 10X light and fluorescence images from hindlimbs of collagen-
induced arthritis animals showed MNP localizes in the synovial tissue (indicated by black 
triangles). 
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2.2.14 Immunofluorescence of arthritic joints 

Joint tissue slices stained for immune cells show that monocytes traffic nanoparticle 

to sites of inflammation under confocal fluorescence microscopy at 63X magnification.  

MNP contrast excites at 488 nm and emits at a 610 nm maximum wavelength, creating an 

ideal tandem stain with FITC-labeled antibodies.  Monocytes, B-cells, and T-cells are all 

known to take active roles in the immune response, but also all are known to infiltrate 

synovial tissue in RA.  As expected, monocytes, B-cells, and T-cells were present in the 

synovial tissue of the CIA mice, as shown by FITC fluorescence due to antibody stain.  Only 

monocytes stained with the monocyte/macrophage marker MOMA2-FITC have overlapping 

fluorescence with the MNP, showed intracellular monocyte uptake.  When stained with the 

T-cell marker anti-CD3-FITC, joint slices show little overlap with MNP fluorescence, due to 

low uptake by T-cells.  B-cells stained with anti-B220-FITC within the joints show a 

similarly low overlap with MNP fluorescence, indicative of little to no uptake by B-cells 

present in the inflamed tissue.  Overlap was indicated by the merging of fluorescence 

channels: FITC (green) + MNP (red) = overlay (yellow).  The relevance of these results is the 

demonstration of monocytes or macrophages with specific MNP uptake.  Although T-cells 

and B-cells also known to be present in sites of inflammation, they did not have nearly the 

same extent of MNP uptake. 
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Figure 2.16 Immunofluorescence microscope images of cryopreserved joint histopathology 
from arthritic mice demonstrated that MNP contrast is intracellular and specific for 
macrophages.  Tissue sections of the joints of the arthritic animals given MNP were stained 
and examined at 63X magnification.  MNP fluorescence was concentrated within the 
synovial tissue.  Macrophages stained with anti-MOMA2 had overlapping fluorescence with 
intracytoplasmic MNP, whereas lymphocytes (T-cells, B-cells) did not. 
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2.2.15 Tissue biodistribution of MNP in CIA mice 

 The tissue distribution of Gd(III) metal ions was measured by harvesting organs for 

direct current plasma elemental analysis.  Gadolinium is not an endogenous element that is 

present in physiological systems, so there is no background signal from biological tissues.  

Organs that commonly collect particulate matter were selected for analysis: lung, spleen, and 

liver; but also organs which may elucidate clearance mechanism: kidney, small intestine, and 

colon.  Figure 2.17 shows the biodistribution of MNP as measured by Gd elemental analysis 

of a CIA animal injected with 2.5 mg MNP.  Lung, kidney, and spleen demonstrated little to 

no detectable Gd(III).  

 

 

Figure 2.17 Biodistribution of MNP (2.5 mg injected dose, 4% Gd) in CIA mouse has been 
determined by DCP elemental analysis. 
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 Another arthritic animal, injected with 5.0 mg MNP, demonstrated similar 

distribution of MNP within its tissues.  Again, the clearance mechanism of the RES resulted 

in high levels of nanoparticle uptake.  Gd(III) levels approximately doubled in the liver 

compared to the animal injected with 2.5 mg MNP (Figure 2.18).  Liver uptake was, as 

expected, dose dependant to the amount of MNP injected (corresponding to the 4% Gd 

coverage of MNP as determined by DCP measurements).   

 

 

Figure 2.18 Gd levels measured in the livers of CIA animals injected with 2.5 mg MNP and 
5.0 mg MNP.  Elemental analysis of liver shows dose dependant uptake of MNP as 
correlated to milligrams of Gd in liver. 

 

Arthritic, inflamed paws of this animal were analyzed for Gd content to demonstrate high 

levels of Gd within a small tissue volume.  Figure 2.19 shows Gd levels roughly correlated 

with optical measurements of the paws.   
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 Figure 2.19 Gd levels measured in arthritic paws by elemental analysis were proportional to 
the increase in luminescence of MNP. 
 
 
These results show that MNP retains Gd and luminescence after being injected and traveling 

to the disease site.  CIA mice were also injected with a related MRI contrast enhancing 

nanomaterial reported by our group.66  This nanoparticle is also silica based with Gd(III) 

immobilized onto its mesoporous surface using the DTTA ligand.  Injecting 5.0 mg of these 

nanomaterials into CIA mice, the RES (liver and spleen) was found to contain a majority of 

the Gd(III), with the inflamed paws uptaking over 10% of the total Gd(III) injected.  The 

inflamed forepaws contained 1.64% (right) and 1.73% (left) while the larger hindpaws 

contained 3.40% (right) and 3.75% (left) of the total Gd(III) (Figure 2.20).  This level of 

uptake is extraordinary considering the small volume of inflamed synovial tissue and 

demonstrates the high payload and labeling efficiency of the nanomaterials. 
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Figure 2.20 Gd levels measured in arthritic paws by elemental analysis of collagen-induced 
arthritis animals injected with mesoporous silica nanospheres. 
 

The liver contained high levels of Gd(III) as a result of resident Kupffer cells 

(macrophages) quickly filtering particulate matter from the blood circulation.  Small amounts 

of Gd(III) were detected in the small intestine and colon, potentially indicating slow 

clearance of the MNP by a biliary mechanism.  Presumably, nanoparticles were filtered from 

the blood and collected by the liver, where they are slowly released with bile into the 

gastrointestinal system.  Silica nanospheres labeled with fluorescent molecules injected into 

mice were also found in the liver and bile ducts (Figure 2.21).66  Additionally, animals 

monitored over 4 weeks showed Gd(III) retained in the liver without detrimental effects to 

survival, demonstrating the robust nature of MNP while ensuring safe use. 
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A.  B.  

Figure 2.21 Silica nanospheres labeled with rhodamine injected into mice were found in the 
liver.  A) Light microscopy overlay with rhodamine fluorescence shows presence of 
nanospheres in bile ducts near Kupffer cells.  B) Immunofluorescence overlaying MOMA2-
FITC stained macrophage Kupffer cells trapping rhodamine labeled nanospheres. 
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2.3 Concluding Remarks 

 Early diagnosis of subclinical inflammation is realized by harnessing nanoscience of 

newly developed multifunctional nanomaterials.  These studies show that MNP contrast 

agent composed of a dye-doped silica nanoparticle with an enhanced paramagnetic coating of 

a Gd-DPTA silane derivative can deliver large payloads with enhanced relaxitives and thus 

be used as a highly sensitive noninvasive tool in inflammatory disease.  Murine monocytes 

could uptake and become labeled by MNP.  MNP-labeled cells were subsequently imaged in 

vitro by confocal and MRI, to show potential clinical application.  Current clinical studies 

have shown that T1 and T2 relaxation time mapping can rapidly detect cartilage changes 60-63 

and loss of proteoglycan density in cartilage. 63-65 Nanoscale materials can specifically label 

phagocytic cells because of these cells’ inherent activity for uptake and clearance of 

particulate matter.  Rather than avoiding the reticulo-endothelial system, we use the cellular 

mechanism to our advantage for diagnostic purposes using a robust hybrid nanomaterial.  

Our data provides evidence for high resolution T2 MRI and T2 relaxation time map changes 

at the cellular level in a model of autoimmune disease with dampening of the T2 signal in 

inflamed joints of arthritic animals.  Furthermore, multiple modalities of the MNP 

fluorescent core enabled us to demonstrate a strong positive correlation (p < 0.01) with 

clinical disease activity and determine the cellular target as infiltrating monocytes into the 

synovial tissue.  The MNP found in the liver was dose dependent, like MNP luminescence in 

the paws, and showed evidence of clearance by a biliary mechanism.  This novel technology 

has broad-reaching implications in guiding the diagnosis and treatment of autoimmune 

diseases such as rheumatoid arthritis in addition to other inflammatory disorders such as 

atherosclerosis and malignancy where targeted biologic therapy at the cellular level is 
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advancing.  It also serves as a platform for validating future molecular and cellular targets 

with the multifunctionality of the silica-based core for carrying cargo such as luminophores 

or therapeutic drugs. 

 

2.4 Materials and Methods 

2.4.1 Multimodal nanoparticle contrast agent  

The nanoparticle contrast agent was prepared by a synthetic procedure previously 

described.39  Briefly, vigorously stirred luminophore-doped (Ru(bpy)3Cl2: excitation maxima 

450 nm and emission maxima 595 nm) silicon dioxide nanoparticles prepared by water-in-oil 

reverse microemulsion are functionalized with Gd-(trimethoxysilylpropyl)- 

diethylenetriamine tetraacetate.  After purification, the hybrid contrast agent is dispersed in 

sterile saline (0.9%) and ready for administration as a functional MNP contrast agent.  In a 

clinical 3.0 Tesla MR imaging scanner, the r1 and r2 were measured to be 2.0 x 105 (mM Gd 

s)-1 and 6.1 x 105 (mM Gd s)-1, respectively. 

 

2.4.2 Cell culture studies 

 Monocyte immortalized lines were generated using the previously described methods 

of Monner67 and Walker68 with minor modifications described by Lorenz et al69.   Briefly, 

bone marrow progenitor cells from C57Bl/6 mice were harvested and grown in conditioned 

medium containing 10% heat-inactivated fetal calf serum, 1% l-glutamine, and 20% 

LADMAC (catalog no. CRL 2420; American Type Culture Collection) supernatant in 

Minimal Essential Medium.  Once immortalized, cells were grown in the aforementioned 

conditioned medium, which provides the isolated monocytes with colony-stimulating factor-
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1.  Cell lines were matured over 9 months to achieve a homogeneous population expressing 

the macrophage/monocyte marker MOMA-2 with phagocytic capacity.   

An alternate immortalized mononuclear cell line was cultured for viability and uptake 

experiments.  These mouse monocyte-macrophages, adapted to culture from female BALB/c 

mouse tumor, were grown in conditioned DMEM/F12 medium containing 10% heat-

inactivated fetal bovine serum and 1% Penicillin/Streptomycin at 37ºC with 5% CO2.  

Subcultures were prepared by scraping to dislodge cells rather than trypsinization. 

 

2.4.3 Monocyte cell viability assays 

 Cell viability of monocytes incubated in the presence of various nanoparticles was 

measured using the CellTiter 96® AQueous One Solution Cell Proliferation Assay purchased 

from Promega.  This is a colorimetric assay based on the bioreduction of 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt 

(MTS) into a colored formazan product.  Manufacturer’s directions were followed for this 

assay with slight modifications for addition of nanoparticle incubation.  Briefly, 5000 cells 

per well were placed in a 96-well plate with 100 μL of media per well.  Nanoparticles were 

added in various concentrations in 20 μL volumes to each well.  Variable concentration 

ranges were used, and each concentration was replicated five times.  After addition of 

nanoparticles, cells are allowed to incubate and uptake nanoparticles for 20-24 hours at 37ºC 

with 5% CO2.  MTS reagent was subsequently thawed from 20ºC storage at 37ºC for 10 

minutes before 20 μL per well and incubated for 4 hours.  Absorbance at 490 nm was 

measured using a Bio-Rad 96-well plate reader.  Data was processed through insertion of raw 

data into a spreadsheet. 
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2.4.4 In vitro MRI acquisition of MNP-labeled monocyte pellet 

 Monocyte cells were trypsinized for 5 minutes at 37 ºC and 5% CO2 before 

collection, then concentration by low speed centrifugation.  Cell concentration was 

determined by the trypan blue exclusion assay. Approximately 18.1 x 106 monocytes were 

placed in a culture dish with 1 mL of media and 0.433 mL of nanoparticle solution (24.6 

mg/mL). After 1 hour of incubation, the cells were washed with fresh media twice and 

pelleted. A final layer of PBS (200 μL) was added on top, careful not to disturb the pellet, for 

MR imaging of the cells.  In vitro MRI was acquired on a 3.0T clinical scanner using T1- and 

T2- weighted sequences. Upon completion of MR imaging, the cells were digested in 1.0 M 

HNO3 for DCP measurements of the total Gd uptake by the cells. 

 

2.4.5 Confocal fluorescence microscopy of MNP-labeled monocytes 

 Monocyte cells were incubated in media (2.0 mL) with nanoparticle suspension (17.0 

µL, 24.6 mg/mL) for 30 minutes at 37 ºC with 5% CO2.  The cells were isolated from the 

media by centrifugation at 1000 RPM for 10 minutes at 4 ºC, and subsequently washed with 

fresh aliquots of media.  The resulting isolated pellet was suspended in 100 µL of PBS and 

approximately 15 µL was placed onto a glass slide for imaging.  Grease was used to create a 

protective barrier, to prevent crushing of cells and loss of buffer solution, before a glass 

cover slip was placed onto the slide.  A Leica SP2 AOBS Upright laser scanning confocal 

fluorescence microscope at the UNC Michael Hooker Microscopy Facility was used with 

instrument settings of excitation at 488 nm and emission detected using a 530 long pass filter 

setting at 252X zoom (63X oil immersion optical + 4X digital). 
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2.4.6 Flow cytometry of MNP-labeled monocytes 

One million monocyte cells were incubated in media (2.0 mL) with nanoparticle 

suspension (17.0 µL, 24.6 mg/mL) for 30 minutes at 37 ºC with 5% CO2.  The cells were 

isolated from the media by centrifugation at 1000 RPM for 10 minutes at 4 ºC, and 

subsequently washed with fresh aliquots of media.  The resulting isolated pellet was 

suspended in 1 mL PBS before placing into flow cytometer.  A Beckman-Coulter (Dako) 

CyAn ADP flow cytometer using 488 nm excitation and PE-Texas Red emission settings was 

used for acquisition and Summit software used for data analysis.  Cells incubated without 

nanoparticles are used as a control and for gating purposes.  Various concentrations of 

nanoparticle were incubated with monocytes to demonstrate uptake and labeling efficiency to 

trigger events via cell fluorescence. 

 

2.4.7 Induction and evaluation of collagen induced arthritis (CIA) in animals 

Collagen induced arthritis animal models are widely used and well characterized for 

studying rheumatoid arthritis.70-73  First generated in rats, CIA in mouse models is most 

widely used, particularly for testing new anti-inflammatory and immune-specific 

therapeutics.74  Genetically susceptible animals are immunized with type II collagen to 

induce T- and B-lymphocyte immunity.  Also, major histocompatibility complex (MHC) 

class II, a large protein expressed on the surface of cells that displays antigens, is associated 

with both CIA and RA.72  Further evidence of pathogenesis of this experimental disease has 

also been studied to draw parallels to RA for determining applicability to human disease.  
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Etiology of RA remains largely unknown, yet collagen II specific antibodies have been 

detected in RA patients, indicating the significance of this model.   

Animals used in these experiments were DBA-1J mice either purchased from Jackson 

Laboratories (Bar Harbor, ME) or bred and cared for in Division of Laboratory Animal 

Medicine (DLAM) facilities under the University of North Carolina approved Institutional 

Animal Care and Use Committee (IACUC) protocol number 05-289.0 in pathogen free 

specific conditions.  Eight week old DBA-1J mice were immunized with adjuvant (Complete 

Freund's on day 0 and incomplete Freund’s on day 21) ± 100µg per mouse of heterologous 

bovine type II collagen.  Using a 27 gauge needle, 0.1 mL of a 1:1 mixture of adjuvant + 

collagen or saline was injected subcutaneously into the base of the tail.  Mice were assessed 

at baseline and from the onset of arthritis by a clinical scoring index.  Clinical index was 

performed by a blinded observer with the following scoring system: 0 = normal paw; 1 = 

mild but definite swelling of either the ankle or digits; 2 = moderate redness and swelling of 

an ankle ± any number of digits; 3 = maximal redness and swelling of the entire paw and 

digits.  The maximum score per paw obtainable was 3 with a total score obtainable of 12 per 

mouse.  At experiment termination, hindlimbs were embedded in OCT and frozen in liquid 

nitrogen for immunofluorescence. 

 



80 
 

 
 

Figure 2.22 DBA-1J mouse was used for collagen-induced arthritis model.  Upper right inset 
shows a visual comparison of the increased swelling resulting from hind paw inflammation. 

 

2.4.8 Global assessment of disease 

Paw swelling measurements consist of the mouse’s fore- and hind-limbs in 

millimeters with a caliper.  The change in paw thickness from the baseline (day 0) for each 

individual mouse is recorded.  Results are reported as an average of change from baseline for 

each group.  Clinical Index of disease is a clinical measurement of the degree of arthritis 

severity that has been validated in previous experiments.75  The clinical index is based on 

scores assessed by a trained observer and takes into account arthritis that is present beyond 

the ankle swelling, such as individual toes or tenosynovium (Table 2.1).  Each paw is 

assessed by a blinded observer; maximum score is 3 per paw for a total of 12 per mouse.   
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Table 2.1 Clinical Index of arthritis 
 

 
Arthritis 

Score 
 

 
Clinical Presentation 

 

 
0 

 
Normal paw, no arthritis 

 

 
1 

 
Mild, but definite swelling and/or redness of one major joint (wrist or ankle) or 

toe involvement (any number) 
 

 
2 

 
Moderate redness and swelling of wrist or ankle ± any number of toes 

 

 
3 

 
Maximal redness and swelling of entire paw  including toes ± ankylosis 

 
 

 

2.4.9 Administration of multimodal nanoparticle contrast agent 

Twenty-four DBA-1J mice immunized with (n = 12) or without (n =12) type 

heterologous II bovine collagen were distributed randomly (n = 4 per group).  Animals were 

warmed approximately 5 minutes using a heat lamp to increase blood flow and visualization 

of the vein.  The animal was placed into a holding device before tail veil intravenous 

injection (0.05 mL) with saline or nanoparticle contrast agent (125mg/kg or 250mg/kg) in 

two doses separated by 12 hours on Day 35 or other specified time point.    Intravenous 

injection was chosen over intraperitoneal or subcutaneous injection to insure direct delivery to the 

blood circulation. 
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2.4.10 In vivo optical imaging and imaging analysis 

Fluorescence intensities of animals were collected using a Xenogen IVIS 100 series 

Optical/Fluorescence Scanner exciting with the GFP filter (445-490 nm) and collecting 

emission with the DsRed filter (575-650 nm).  Animals had images taken under anesthesia 

with a carefully monitored inhaled isoflurane/oxygen gas mixture.  Initially, animals are 

placed in an anesthesia chamber before transfer to the scanner.  A continual flow of 

anesthesia was administered by the instrument’s nose cone and the animal is positioned 

dorsal side up.  Paws were positioned away from the body to obtain clear optical and 

luminescence images of the arthritis.  Fluorescence images were taken 12 hours after the 

second injected dose of nanoparticle contrast agent.  Additional images were obtained at 36, 

60, and 84 hours after second injected dose.  Igor Pro 4.06 Living Image®, version 2.20.1 

was used to record images, normalize background, and select elliptical regions of interest 

(ROIs) for fluorescence quantification.  For each animal measurement, four ROI ellipses are 

placed to include the inflamed wrist or ankle and associated digits, before requesting the 

software for a measurement.  Scales are normalized at a minimum of 6500 counts and a 

maximum of 65000 counts, with background subtraction and cosmic correction.  The 

obtained data was placed into an excel (.xls) spreadsheet with paw swelling measurements 

and clinical indices of arthritis. 

 

2.4.11 In situ immunofluorescence 

Tissue sections (5-7 μm) were cut from Tissue-Tek® O.C.T. embedded hindlimbs 

using a CryoJane Cryostat (at -20 ºC) and analyzed using a Zeiss LSM5 confocal laser 

scanning fluorescent microscope.  Cold acetone was used for fixing tissue sections and 
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removing O.C.T. compound.  Immunofluorescence was performed with monoclonal 

antibodies targeting the following FITC-labeled antigens; anti-B220 (B cell) (BD 

Biosciences, San Jose, CA), -CD3 (T cell) (BD Biosciences, San Jose, CA) , -MOMA-2 

(monocytes/macrophages).  After incubation of tissue section with labeled monoclonal 

antibodies, washing steps using 1X phosphate buffered saline occurred.  Confocal laser 

scanning fluorescence microscopy images were taken using 488 nm excitation with 

emissions collected from 500-520 nm (FITC) and 575-625 nm (MNP).  Data was processed 

with Leica LCS software to minimize background and generate overlay images.   

 

2.4.12 MR Imaging and data analysis 

MR imaging studies were acquired on a 9.4T Bruker BioSpec small animal scanner 

(Bruker Biospin, Ettlingen, Germany) with a 35 mm quadrature radiofrequency transmit and 

receive coil.  Imaging of animals was performed under carefully monitored inhalational 

anesthesia of isoflurane/oxygen gas mixture.  Two sets of images were obtained on 3 animals 

with CIA after the onset of clinical disease; one prior to MNP contrast injection and the 

second 12 hours after the last of 2 doses of contrast was administered intravenously.  A 3D 

Fast Low Angle Shot (FLASH) gradient echo sequence was utilized to obtain high resolution 

anatomical images of both legs and paws of an animal. The imaging parameters were as 

follows, TR/TE=120/2.876 ms, flip angle = 30°, FOV = 32*32*12 mm3, Matrix Size = 

640*512*192, voxel size = 0.062 x 0.062 x 0.062 mm3.  Two-dimensional (2D) multiple 

echo spin echo sequence was used to estimate T2 maps.  In total, 32 echoes with an echo 

spacing of 3.7 ms were obtained. The first echo time was 3.7 ms. TR was 2000ms.  FOV and 

matrix size were set to 35x30 mm2 and 128 x 128.  The slice thickness was 1 mm.   T1 maps 
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were obtained with a variable TR rapid acquisition relaxation enhanced (RARE) sequence 

with a TE = 5.14 ms. Twelve variable TRs (TR = 50, 100, 300, 600, 1000, 1500, 2000, 2500, 

3000, 4000, 5000, 7000 ms) were used with a FOV of 35x30 mm2 and a matrix size of 128 x 

128. RARE factor was 3.   Data was analyzed by the following software: Bruker TOPSPIN, 

MRIcro, and InsightSNAP. 

 

2.4.13 Statistical data analysis 

The relationship between fluorescence and clinical disease at day 36 was analyzed 

using linear mixed models with fixed clinical disease and random mouse effects.  The 

methods of Lipsitz et al.76 were used to calculate partial correlation coefficients adjusted for 

random mouse effects.  Each mouse provides four data points derived from each inflamed 

paw, which is associated with the clinical assessment and the fluorescence counts measured 

from each ROI ellipse.   

 
2.4.14 Sample preparation for biodistribution studies.   

To quantify biodistribution of gadolinium associated with nanoparticles, 6-8 week old 

DBA/1J age / sex matched animals (Jackson Laboratory; Bar Harbor, ME) were injected 

intravenously with MNP.  Studies were approved by the UNC institutional animal care and 

use committee and housed and maintained by DLAM veterinary staff.  At desired timepoints, 

the animals were sacrificed by CO2 chamber and cervical dislocation.  Organs are harvested, 

and then cremated in a furnace at 500ºC for a minimum of 5 hours.  The resulting ash is 

dissolved in 1M HNO3 for elemental analysis. 

 
 

  



85 
 

2.5  References 

1. Mount, C.; Featherstone, J., Rheumatoid arthritis market. Nat Rev Drug Discov 2005, 
4, (1), 11-2. 

2. Gabriel, S. E., The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 
2001, 27, (2), 269-81. 

3. Pincus, T.; Brooks, R. H.; Callahan, L. F., Prediction of long-term mortality in 
patients with rheumatoid arthritis according to simple questionnaire and joint count 
measures. Ann Intern Med 1994, 120, (1), 26-34. 

4. Pugner, K. M.; Scott, D. I.; Holmes, J. W.; Hieke, K., The costs of rheumatoid 
arthritis: an international long-term view. Semin Arthritis Rheum 2000, 29, (5), 305-20. 

5. Arnett, F. C.; Edworthy, S. M.; Bloch, D. A.; McShane, D. J.; Fries, J. F.; Cooper, N. 
S.; Healey, L. A.; Kaplan, S. R.; Liang, M. H.; Luthra, H. S.; et al., The American 
Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. 
Arthritis Rheum 1988, 31, (3), 315-24. 

6. Persselin, J. E., Diagnosis of rheumatoid arthritis. Medical and laboratory aspects. 
Clin Orthop Relat Res 1991, (265), 73-82. 

7. Shiel, W. C., Rheumatoid Arthritis. Medicinenet 2007. 

8. Scutellari, P. N.; Orzincolo, C., Rheumatoid arthritis: sequences. Eur J Radiol 1998, 
27 Suppl 1, S31-8. 

9. Scheel, A. K.; Hermann, K. G.; Ohrndorf, S.; Werner, C.; Schirmer, C.; Detert, J.; 
Bollow, M.; Hamm, B.; Muller, G. A.; Burmester, G. R.; Backhaus, M., Prospective 7 year 
follow up imaging study comparing radiography, ultrasonography, and magnetic resonance 
imaging in rheumatoid arthritis finger joints. Ann Rheum Dis 2006, 65, (5), 595-600. 

10. Gaffney, K.; Cookson, J.; Blake, D.; Coumbe, A.; Blades, S., Quantification of 
rheumatoid synovitis by magnetic resonance imaging. Arthritis Rheum 1995, 38, (11), 1610-
7. 

11. Gandy, S. J.; Brett, A. D.; Dieppe, P. A.; Keen, M. C.; Maciewicz, R. A.; Taylor, C. 
J.; Waterton, J. C.; Watt, I., Measurement of cartilage volumes in rheumatoid arthritis using 
MRI. Br J Radiol 2005, 78, (925), 39-45. 

12. Ostergaard, M.; Stoltenberg, M.; Lovgreen-Nielsen, P.; Volck, B.; Jensen, C. H.; 
Lorenzen, I., Magnetic resonance imaging-determined synovial membrane and joint effusion 
volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and 
microscopic appearance of the synovium. Arthritis Rheum 1997, 40, (10), 1856-67. 

13. Poleksic, L.; Musikic, P.; Zdravkovic, D.; Watt, I.; Bacic, G., MRI evaluation of the 
knee in rheumatoid arthritis. Br J Rheumatol 1996, 35 Suppl 3, 36-9. 



86 
 

14. Tamai, K.; Yamato, M.; Yamaguchi, T.; Ohno, W., Dynamic magnetic resonance 
imaging for the evaluation of synovitis in patients with rheumatoid arthritis. Arthritis Rheum 
1994, 37, (8), 1151-7. 

15. Hodgson, R. J.; Barnes, T.; Connolly, S.; Eyes, B.; Campbell, R. S.; Moots, R., 
Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid 
arthritis. Skeletal Radiol 2008, 37, (3), 201-7. 

16. Hodgson, R. J.; O'Connor, P.; Moots, R., MRI of rheumatoid arthritis image 
quantitation for the assessment of disease activity, progression and response to therapy. 
Rheumatology (Oxford) 2008, 47, (1), 13-21. 

17. Brandser, E. A., Radiological evidence of Degenerative Joint Disease (DJD): 
Rheumatoid Arthritis Affecting the Hands. University of Iowa Virtual Hospital 2005. 

18. Rand, T.; Imhof, H.; Czerny, C.; Breitenseher, M.; Machold, K.; Turetschek, K.; 
Trattnig, S., Discrimination between fluid, synovium, and cartilage in patients with 
rheumatoid arthritis: contrast enhanced Spin Echo versus non-contrast-enhanced fat-
suppressed Gradient Echo MR imaging. Clin Radiol 1999, 54, (2), 107-10. 

19. Demsar, F.; Van Dijke, C. F.; Kirk, B. A.; Kapila, S.; Peterfy, C. G.; Roberts, T. P.; 
Shames, D. M.; Tomazic, S.; Mann, J.; Brasch, R. C., Mapping abnormal synovial vascular 
permeability in temporomandibular joint arthritis in the rabbit using MRI. Br J Rheumatol 
1996, 35 Suppl 3, 23-5. 

20. Johnson, B. A.; Haines, G. K.; Harlow, L. A.; Koch, A. E., Adhesion molecule 
expression in human synovial tissue. Arthritis Rheum 1993, 36, (2), 137-46. 

21. Storgard, C. M.; Stupack, D. G.; Jonczyk, A.; Goodman, S. L.; Fox, R. I.; Cheresh, D. 
A., Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 
antagonist. J Clin Invest 1999, 103, (1), 47-54. 

22. Firestein, G. S., Starving the synovium: angiogenesis and inflammation in rheumatoid 
arthritis. J Clin Invest 1999, 103, (1), 3-4. 

23. Arap, W.; Pasqualini, R.; Ruoslahti, E., Cancer treatment by targeted drug delivery to 
tumor vasculature in a mouse model. Science 1998, 279, (5349), 377-80. 

24. Koivunen, E.; Restel, B. H.; Rajotte, D.; Lahdenranta, J.; Hagedorn, M.; Arap, W.; 
Pasqualini, R., Integrin-binding peptides derived from phage display libraries. Methods Mol 
Biol 1999, 129, 3-17. 

25. Gerlag, D. M.; Borges, E.; Tak, P. P.; Ellerby, H. M.; Bredesen, D. E.; Pasqualini, R.; 
Ruoslahti, E.; Firestein, G. S., Suppression of murine collagen-induced arthritis by targeted 
apoptosis of synovial neovasculature. Arthritis Res 2001, 3, (6), 357-61. 



87 
 

26. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B., Gadolinium(III) Chelates 
as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev 1999, 99, (9), 
2293-352. 

27. Koch, A. E.; Kunkel, S. L.; Strieter, R. M., Cytokines in rheumatoid arthritis. J 
Investig Med 1995, 43, (1), 28-38. 

28. Brennan, F. M.; Maini, R. N.; Feldmann, M., Role of pro-inflammatory cytokines in 
rheumatoid arthritis. Springer Semin Immunopathol 1998, 20, (1-2), 133-47. 

29. Lutz, A. M.; Gopfert, K.; Jochum, W.; Nanz, D.; Frohlich, J. M.; Weishaupt, D., 
USPIO-enhanced MR imaging for visualization of synovial hyperperfusion and detection of 
synovial macrophages: preliminary results in an experimental model of antigen-induced 
arthritis. J Magn Reson Imaging 2006, 24, (3), 657-66. 

30. Mulherin, D.; Fitzgerald, O.; Bresnihan, B., Synovial tissue macrophage populations 
and articular damage in rheumatoid arthritis. Arthritis Rheum 1996, 39, (1), 115-24. 

31. Simon, G. H.; von Vopelius-Feldt, J.; Wendland, M. F.; Fu, Y.; Piontek, G.; Schlegel, 
J.; Chen, M. H.; Daldrup-Link, H. E., MRI of arthritis: comparison of ultrasmall 
superparamagnetic iron oxide vs. Gd-DTPA. J Magn Reson Imaging 2006, 23, (5), 720-7. 

32. Wu, Y. L.; Ye, Q.; Foley, L. M.; Hitchens, T. K.; Sato, K.; Williams, J. B.; Ho, C., In 
situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection 
by cellular MRI. Proc Natl Acad Sci U S A 2006, 103, (6), 1852-7. 

33. Lutz, A. M.; Seemayer, C.; Corot, C.; Gay, R. E.; Goepfert, K.; Michel, B. A.; 
Marincek, B.; Gay, S.; Weishaupt, D., Detection of synovial macrophages in an experimental 
rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced 
MR imaging. Radiology 2004, 233, (1), 149-57. 

34. Dardzinski, B. J.; Schmithorst, V. J.; Holland, S. K.; Boivin, G. P.; Imagawa, T.; 
Watanabe, S.; Lewis, J. M.; Hirsch, R., MR imaging of murine arthritis using ultrasmall 
superparamagnetic iron oxide particles. Magn Reson Imaging 2001, 19, (9), 1209-16. 

35. Hercend, T.; Farace, F.; Baume, D.; Charpentier, F.; Droz, J. P.; Triebel, F.; Escudier, 
B., Immunotherapy with lymphokine-activated natural killer cells and recombinant 
interleukin-2: a feasibility trial in metastatic renal cell carcinoma. J Biol Response Mod 1990, 
9, (6), 546-55. 

36. Sykes, M.; Nikolic, B., Treatment of severe autoimmune disease by stem-cell 
transplantation. Nature 2005, 435, (7042), 620-7. 

37. Radbruch, A.; Thiel, A., Cell therapy for autoimmune diseases: does it have a future? 
Ann Rheum Dis 2004, 63 Suppl 2, ii96-ii101. 

38. Lang, P.; Yeow, K.; Nichols, A.; Scheer, A., Cellular imaging in drug discovery. Nat 
Rev Drug Discov 2006, 5, (4), 343-56. 



88 
 

39. Rieter, W. J.; Kim, J. S.; Taylor, K. M.; An, H.; Lin, W.; Tarrant, T.; Lin, W., Hybrid 
Silica Nanoparticles for Multimodal Imaging. Angew Chem Int Ed Engl 2007. 

40. Rittig, M. G.; Kaufmann, A.; Robins, A.; Shaw, B.; Sprenger, H.; Gemsa, D.; 
Foulongne, V.; Rouot, B.; Dornand, J., Smooth and rough lipopolysaccharide phenotypes of 
Brucella induce different intracellular trafficking and cytokine/chemokine release in human 
monocytes. J Leukoc Biol 2003, 74, (6), 1045-55. 

41. Pennica, D.; Nedwin, G. E.; Hayflick, J. S.; Seeburg, P. H.; Derynck, R.; Palladino, 
M. A.; Kohr, W. J.; Aggarwal, B. B.; Goeddel, D. V., Human tumour necrosis factor: 
precursor structure, expression and homology to lymphotoxin. Nature 1984, 312, (5996), 
724-9. 

42. Itaya, H.; Imaizumi, T.; Yoshida, H.; Koyama, M.; Suzuki, S.; Satoh, K., Expression 
of vascular endothelial growth factor in human monocyte/macrophages stimulated with 
lipopolysaccharide. Thromb Haemost 2001, 85, (1), 171-6. 

43. Kermarrec, N.; Selloum, S.; Plantefeve, G.; Chosidow, D.; Paoletti, X.; Lopez, A.; 
Mantz, J.; Desmonts, J. M.; Gougerot-Pocidalo, M. A.; Chollet-Martin, S., Regulation of 
peritoneal and systemic neutrophil-derived tumor necrosis factor-alpha release in patients 
with severe peritonitis: role of tumor necrosis factor-alpha converting enzyme cleavage. Crit 
Care Med 2005, 33, (6), 1359-64. 

44. Chen, Y.; Kam, C. S.; Liu, F. Q.; Liu, Y.; Lui, V. C.; Lamb, J. R.; Tam, P. K., LPS-
induced up-regulation of TGF-{beta} receptor 1 is associated with TNF-{alpha} expression 
in human monocyte-derived macrophages. J Leukoc Biol 2008. 

45. Hetland, G.; Namork, E.; Schwarze, P. E.; Aase, A., Mechanism for uptake of silica 
particles by monocytic U937 cells. Hum Exp Toxicol 2000, 19, (7), 412-9. 

46. Metz, S.; Bonaterra, G.; Rudelius, M.; Settles, M.; Rummeny, E. J.; Daldrup-Link, H. 
E., Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in 
vitro. Eur Radiol 2004, 14, (10), 1851-8. 

47. McMorn, P.; Hutchings, G. J., Heterogeneous enantioselective catalysts: strategies for 
the immobilisation of homogeneous catalysts. Chem Soc Rev 2004, 33, (2), 108-22. 

48. Wan, Y.; Zhao, D., On the controllable soft-templating approach to mesoporous 
silicates. Chem Rev 2007, 107, (7), 2821-60. 

49. Grela, K.; Michrowska, A.; Bieniek, M., Catalysts for new tasks: preparation and 
applications of tunable ruthenium catalysts for olefin metathesis. Chem Rec 2006, 6, (3), 144-
56. 

50. Huh, S.; Chen, H. T.; Wiench, J. W.; Pruski, M.; Lin, V. S., Cooperative catalysis by 
general acid and base bifunctionalized mesoporous silica nanospheres. Angew Chem Int Ed 
Engl 2005, 44, (12), 1826-30. 



89 
 

51. Senarath-Yapa, M. D.; Phimphivong, S.; Coym, J. W.; Wirth, M. J.; Aspinwall, C. 
A.; Saavedra, S. S., Preparation and characterization of poly(lipid)-coated, fluorophore-
doped silica nanoparticles for biolabeling and cellular imaging. Langmuir 2007, 23, (25), 
12624-33. 

52. Slowing, I.; Trewyn, B. G.; Lin, V. S., Effect of surface functionalization of MCM-
41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am 
Chem Soc 2006, 128, (46), 14792-3. 

53. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S., A 
polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection 
reagent. J Am Chem Soc 2004, 126, (41), 13216-7. 

54. Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S., Gatekeeping layer 
effect: a poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for 
detection of amino-containing neurotransmitters. J Am Chem Soc 2004, 126, (6), 1640-1. 

55. Santra, S.; Xu, J.; Wang, K.; Tan, W., Luminescent nanoparticle probes for 
bioimaging. J Nanosci Nanotechnol 2004, 4, (6), 590-9. 

56. Tapec, R.; Zhao, X. J.; Tan, W., Development of organic dye-doped silica 
nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2002, 2, (3-4), 405-9. 

57. Xing, X.; He, X.; Peng, J.; Wang, K.; Tan, W., Uptake of silica-coated nanoparticles 
by HeLa cells. J Nanosci Nanotechnol 2005, 5, (10), 1688-93. 

58. Buttke, T. M.; McCubrey, J. A.; Owen, T. C., Use of an aqueous soluble 
tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent 
cell lines. J Immunol Methods 1993, 157, (1-2), 233-40. 

59. Cory, A. H.; Owen, T. C.; Barltrop, J. A.; Cory, J. G., Use of an aqueous soluble 
tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 1991, 3, (7), 
207-12. 

60. Dardzinski, B. J.; Laor, T.; Schmithorst, V. J.; Klosterman, L.; Graham, T. B., 
Mapping T2 relaxation time in the pediatric knee: feasibility with a clinical 1.5-T MR 
imaging system. Radiology 2002, 225, (1), 233-9. 

61. Kight, A. C.; Dardzinski, B. J.; Laor, T.; Graham, T. B., Magnetic resonance imaging 
evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing 
cartilage. Arthritis Rheum 2004, 50, (3), 901-5. 

62. Van Breuseghem, I.; Bosmans, H. T.; Elst, L. V.; Maes, F.; Pans, S. D.; Brys, P. P.; 
Geusens, E. A.; Marchal, G. J., T2 mapping of human femorotibial cartilage with turbo 
mixed MR imaging at 1.5 T: feasibility. Radiology 2004, 233, (2), 609-14. 



90 
 

63. Van Breuseghem, I.; Palmieri, F.; Peeters, R. R.; Maes, F.; Bosmans, H. T.; Marchal, 
G. J., Combined T1-T2 mapping of human femoro-tibial cartilage with turbo-mixed imaging 
at 1.5T. J Magn Reson Imaging 2005, 22, (3), 368-72. 

64. Bashir, A.; Gray, M. L.; Boutin, R. D.; Burstein, D., Glycosaminoglycan in articular 
cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 
1997, 205, (2), 551-8. 

65. Trattnig, S.; Mlynarik, V.; Breitenseher, M.; Huber, M.; Zembsch, A.; Rand, T.; 
Imhof, H., MRI visualization of proteoglycan depletion in articular cartilage via intravenous 
administration of Gd-DTPA. Magn Reson Imaging 1999, 17, (4), 577-83. 

66. Taylor, K. M.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W., Mesoporous silica 
nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 2008, 130, (7), 2154-5. 

67. Monner, D. A.; Denker, B., Characterization of clonally derived, spontaneously 
transformed bone marrow macrophage cell lines from lipopolysaccharide hyporesponsive 
LPS(d) and normal LPS(n) mice. J Leukoc Biol 1997, 61, (4), 469-80. 

68. Walker, W. S., Establishment of mononuclear phagocyte cell lines. J Immunol 
Methods 1994, 174, (1-2), 25-31. 

69. Lorenz, E.; Patel, D. D.; Hartung, T.; Schwartz, D. A., Toll-like receptor 4 (TLR4)-
deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent 
signaling of Bacteroides fragilis lipopolysaccharide. Infect Immun 2002, 70, (9), 4892-6. 

70. Ichim, T. E.; Zheng, X.; Suzuki, M.; Kubo, N.; Zhang, X.; Min, L. R.; Beduhn, M. E.; 
Riordan, N. H.; Inman, R. D.; Min, W. P., Antigen-specific therapy of rheumatoid arthritis. 
Expert Opin Biol Ther 2008, 8, (2), 191-9. 

71. Cho, Y. G.; Cho, M. L.; Min, S. Y.; Kim, H. Y., Type II collagen autoimmunity in a 
mouse model of human rheumatoid arthritis. Autoimmun Rev 2007, 7, (1), 65-70. 

72. Brand, D. D.; Kang, A. H.; Rosloniec, E. F., Immunopathogenesis of collagen 
arthritis. Springer Semin Immunopathol 2003, 25, (1), 3-18. 

73. Vierboom, M. P.; Jonker, M.; Tak, P. P.; t Hart, B. A., Preclinical models of arthritic 
disease in non-human primates. Drug Discov Today 2007, 12, (7-8), 327-35. 

74. Trentham, D. E.; Townes, A. S.; Kang, A. H., Autoimmunity to type II collagen an 
experimental model of arthritis. J Exp Med 1977, 146, (3), 857-68. 

75. Tarrant, T. K.; Patel, D. D., Chemokines and leukocyte trafficking in rheumatoid 
arthritis. Pathophysiology 2006, 13, (1), 1-14. 

76. Lipsitz, S. R.; Leong, T.; Ibrahim, S.; Lipshultz, S., A partial correlation coefficient 
and coefficient of determination for multivariate normal repeated measures data. The 
Statistician 2001, 50, (1), 87-95. 



 
 

 
 
 
 
 
 

CHAPTER 3 
 
 

SELF-ASSEMBLED HYBRID NANOPARTICLES FOR CANCER-SPECIFIC 
MULTIMODAL IMAGING 

 
 

3.1 Introduction 

In the previous chapter, a new nanomaterials with surfaced immobilized Gd(III) was 

presented for in vitro and in vivo imaging applications.  Large payloads of paramagnetic 

metal centers were immobilized onto the surface of the nanoparticle to take advantage of its 

high surface area.  As a comparison, we prepared nanoparticles with both a monolayer and 

multilayer of silane-derivatized Gd(III) chelates (Figure 3.1).  The two derivative 

nanoparticles produced excellent relaxivities, though the monolayer system produced the 

higher relaxivities per Gd(III) than the multilayer system. 199  Although the multilayer 

approach increased the payload of Gd(III) chelates, their MR relaxivities on a per Gd(III) 

basis diminished, presumably as a result of reduced water accessibility of the Gd(III) chelates 

buried in the interior of the multilayer.  This chapter presents a new electrostatic layer-by-

layer self-assembled nanoparticle platform for cancer-specific multimodal imaging. 
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Figure 3.1 Hybrid silica nanoparticles for multimodal imaging with luminescent core and 
monolayer (left) or multilayer (right) surface coating of Gd(III) chelates. 
 

3.1.1 Electrostatic layer-by-layer self-assembly 

Assembly of multilayer films on solid surfaces has been studied for over 70 years to 

allow for fabrication of multifunctional architecture assemblies.  Initially, Langmuir-Blodgett 

(LB) films were thoroughly explored to for the deposition of organic molecules onto surfaces 

by immersion into liquids.  Multiple layers of aliphatic molecules could be formed with 

accurate control of thicknesses.  LB films, however, suffer from dependence on specific 

classes of molecules and specialized equipment.  Alternatives to LB films have since been 

developed,200, 201 one of the most well-studied being layer-by-layer (LbL) self-assembly. 

Nuzzo and Allara first reported LbL self-assembly with the adsorption of thiols on 

gold substrates.202  LbL self-assembly has since been further developed to utilize interactions 

of varying strength: covalent bonds,203 metal-ligand coordination,204 and electrostatic 

attraction of charged polyelectrolytes.115  First conceived as a method for developing layered 

films onto planar surfaces, electrostatic LbL self-assembly has been recently reported in 

core-shell nanostructures116, 205, 206 and nanoshells.207-210   
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Building multilayer films using oppositely charge polyelectrolytes has created many 

opportunities for new biofunctional coatings. Multilayer architectures can be created using 

synthetic (organic polymers, colloidal particles, inorganic complexes) or natural 

polyelectrolytes (proteins, polysaccharides, DNA.   Electrostatic LbL self assembly has 

found applications in thin film coating,211 micropatterning,212, 213 nanobioreactors,208, 214 

artificial cells,215 drug delivery,216, 217 and electronic devices.218, 219  Polyelectrolyte LbL 

adsorption is a general and versatile tool for creating multifunctional surface coatings using 

flexible macromolecules which can form defined superlattice architectures without 

crystallinity.115  Polyelectrolyte LbL self-assembly continues to remain an interesting method 

for development of new applications as the field expands toward nanomaterials. 

Gero Decher has used the well-characterized gold nanoparticle system to show the 

preparation of core-shell nanostructures with polyelectrolyte LbL self-assembly.205  

Subsequently, these core-shell structures could be converted to nanoshells.  Furthermore, 

fluorescent polyelectrolytes were used to characterize the LbL-gold nanoparticle system 

using fluorescence resonance energy transfer.116  Parameters, such as length and 

concentration of polyelectrolytes as well as ionic strength of the suspending solution, were 

investigated to optimize parameters for control of nanoparticle flocculation, aggregation, and 

stability.206  We hope to continue the development of functional polyelectrolyte LbL self-

assembly nanomaterial systems. 

By electrostatic layer-by-layer self-assembly, multilayers of Gd(III) containing 

polymer are formed and retain active magnetic centers for MR relaxation.  The disordered 

polyelectrolyte network allows for sufficient water molecule access to the Gd(III) centers.  

The network is built upon the previously mentioned fluorescent nanoparticle with a 
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monolayer of chelated Gd(III) (designated as MNP in Chapter 2).  Based upon the net 

negative surface charge of the MNP system, a newly developed Gd(III)-chelated polymer 

(positively-charged) and poly(styrene sulfonate) (PSS; widely used for LbL architectures as a 

negatively-charged polyelectrolyte) are used to assemble multiple layer pairs onto the 

nanoparticle surface. 

 

3.1.2 Targeting integrins 

Integrins are a family of cell surface receptors that attach cells to the extracellular 

matrix (ECM) to mediate the mechanical and chemical signals.220 The ECM is the protein 

network that provides structural support and regulates intercellular communication.  

Intimately linked to the architectural assembly of the actin filaments composing the 

cytoskeleton, multivalent integrin binding of the cell to the ECM causes integrin 

clustering,221 inducing changes in morphology and adhesion properties of the cell.  

Signaling mediated by integrins is fundamentally shared by virtually all tissues of 

multicellular animals.222  Binding of extracellular proteins to integrins can create a signal to 

the cell or the cell can create a signal to the integrin to bind extracellular proteins.223-226  Cells 

can use integrins to interact with the surrounding ECM to determine ideal conditions for 

survival.227  Interactions with the ECM may allow the cell to determine suitable conditions 

for growth, regardless of other exogenous signals for apoptosis.  Conversely, trauma to tissue 

may result in ECM damage, unsuitable conditions, to cue cell death.  Endothelial cells use 

integrins are the primary receptors for interacting with the ECM angiogenesis, or growth of 

new blood vessels.  During this process, integrins can signal endothelial cells to become 

more proliferative and invasive.228   
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Twenty-five years ago, Erkki Ruoslahti discovered the arginine-glycine-aspartic acid 

(RGD) sequence within fibronectin to be the essential recognition site for cell adhesion.229  

Later, it was realized that the three amino acid sequence was present in other adhesive 

proteins, such as laminin,230 fibrinogen,231 and vitronectin.232 The discovery of a conserved 

sequence contained within many adhesive proteins in conjunction with the study of integrins 

has led to significant advances in the understanding of cell signaling by surface receptors.  

Integrins contain two subunits of 15 α and 8 β that combine to form over 20 heterodimers for 

a variety of specificity and signaling toward such ECM and blood plasma proteins.   

RGD peptides can be designed to mimic specific adhesion proteins, thus binding the 

desired integrin target.  The RGD peptide sequence will bind non-selectively to more than 

one integrin receptor.  Affinity of the RGD sequence can be much lower than those 

specifically designed to target specific integrins.  For example, the GRGDSP sequence found 

in fibronectin binds 1000 times more effectively than RGD peptide.233  However, the RGD 

sequence alone can be very effective for targeting of many integrins. 

In tumor cell proliferation and growth, ligation of different integrins on tumor cells 

can modulate proliferation or apoptosis via the Bcl-2 cell survival pathway.234  The ανβ3 

integrin has been one of the most widely studied receptors in cancer cells, particularly for its 

role in angiogenesis.  On vascular cells of human tumors, these integrins are highly 

overexpressed.235, 236  Anti-ανβ3 monoclonal antibodies and RGD peptides could reduce 

growth of blood vessels in tumors in animal models, while antibodies specific for other 

integrins and scrambled peptides could not.236  Specifically, this study and others237 found 

that ανβ3 antagonists prevented growth of new blood vessels with no effect on pre-existing 

mature blood vessels.   
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The following work describes a RGD peptide with oligomeric lysine residues is 

electrostatically deposited onto the surface of the nanoparticle for the purpose of general 

targeting toward integrin receptors.  The positive charges of the consecutive lysine sequence 

interact with the anionic polymer layer on the nanoparticle to display the RGD sequence.  

The adsorption of many RGD peptides onto the surface of the nanoparticle generated a 

multivalency effect, well known throughout nanoparticle functionalization literature.238, 239  

The displayed RGD peptides targeted all integrins, but should preferentially target cancer 

cells due to the high overexpression of ανβ3 integrins.   

 

 

 

Figure 3.2 Two-dimensional cross-sectional schematic representation of polyelectrolyte 
layer-by-layer self assembly strategy using nanoparticle platform with anionic surface (MNP) 
to alternate deposition of Gd(III)-DOTA oligomer (blue) and PSS (yellow). 
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3.2 Results and Discussion 

3.2.1 Rationale 

 Silica nanoparticles doped with Ru(bpy)3Cl2 and monolayer coated with Gd(III)-

DTTA (MNP) was used as the platform for multilayer self-assembly.  The DTTA ligand has 

three tertiary amines and four carboxy groups to provide seven sites of coordination with a 

Gd(III) ion.  Two coordination sites remain open on the chelated Gd(III) ion for interaction 

with water.  As a result of the three positive charges of the Gd(III) and the four negative 

charges of the DTTA ligand, the net complex is anionic, rendering the surface of the 

nanoparticle as anionic (Figure 3.3).  The MNP particles thus provide an interesting starting 

point for depositing multilayers of cationic polymers of Gd(III) chelates to enhance the 

Gd(III) payload of each nanoparticle.  The versatility of the electrostatic LbL method also 

allows for the addition of charged oligomeric peptide sequences that can target cancer cells. 

 

 

 

 

Figure 3.3 Anionic net surface charge of MNP due to immobilization of anionic Gd(III)-
DTTA ligand onto the nanomaterials surface. 
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Using the resulting anionic surface of the nanoparticle, cationic Gd(III)-DOTA 

polymer was deposited onto the surface via electrostatic interactions.  Anionic polystyrene 

sulfonate (PSS) was subsequently deposited in order to provide a substrate for further 

polycation layers.  In a typical deposition step, MNP was treated with cationic Gd(III) 

oligomer before washing steps to remove weakly interacting oligomers.  The resulting 

cationic layer was followed with the interaction of anionic PSS, which was also washed to 

remove any weakly bound polyelectrolytes.  These alternating deposition steps were repeated 

to build up to seven bilayers of Gd(III) oligomer and PSS.  Figure 3.4 illustrates the LbL 

self-assembly strategy for building polyelectrolyte multilayer architectures.  These 

nanoparticles are designated NPnA or NPnB with n denoting surface termination with 

Gd(III)-DOTA oligomer and PSS, respectively. 
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3.2.2 Measurement of LbL multilayer growth 

 A variety of methods were used to demonstrate the multilayer growth of alternating 

polyelectrolytes on the nanoparticle surface.  These included the measurement of size, 

relaxivities, and fluorescence of the self-assembled multilayer growth.  Size was measured by 

TEM.  MR measurements served to directly correlate Gd(III) levels on the nanoparticle to 

water proton relaxation efficiency.  Fluorescence derived from increasing layers of tagged 

Gd(III)-DOTA oligomer was also used to quantify growth and Gd(III) levels.  The multiple 

techniques convincingly demonstrated LbL self-assembly on nanoparticles. 

 

3.2.2.1 Measurement of nanoparticle diameters by transmission electron microscopy  

TEM images indicated alternate deposition of Gd(III)-DOTA oligomer and PSS onto 

the nanoparticles by growth of average diameters from no layers to seven layers of 

polyelectrolytes (Figure 3.5).   
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Populations of nanoparticles were measured to determine average diameters for each 

layer.  A linear increase nanoparticle diameter was determined, rising from 37 ± 1 nm to 44.5 

± 1 nm (Figure 3.6).  With increasing layers, TEM showed electrostatic cross-linking 

between nanoparticles.  These particles remained dispersible in water, though higher 

concentrations could lead to aggregation due to interactions between polyelectrolyte layers.  

The TEM images show particles as they are concentrated in populations during dehydration.  

 

Figure 3.6 Particle diameter plotted against increasing layers of Gd(III)-DOTA oligomer. 

 

3.2.2.2 Measurement of fluorescein-tagged multilayer growth 

A fluorescein isothiocyanate (FITC)-tagged Gd(III)-chelate polymer was synthesized 
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and did not overlap with the fluorescein emission at 515 nm.  Since the luminescence 

intensity at 615 nm is proportional to the nanoparticle concentration, the ratio of the 515 nm 

emission intensity to the 615 nm emission intensity is proportional to the number of FITC 

molecules on each nanoparticle.  The 515 nm channel was used to monitor washes following 

deposition steps to ensure removal of excess FITC-tagged Gd(III)-DOTA oligomer.  Figure 

3.7 shows that the ratio between 515 nm emission and 615 nm emission increases 

quadratically as more layers of Gd(III)-DOTA oligomer and PSS are deposited.  Since the 

surface area of the spherical nanoparticle scales quadratically to the particle diameter, this 

result is consistent to the linear increase in diameter.    

Decher and coworkers noted a non-linear increase in UV (225 nm) absorption for 

polyelectrolyte deposition of PSS onto colloidal gold nanoparticles.  The manuscript 

attributes the non-linear, vaguely exponential, growth of PSS absorbance to the increasing 

diameter and thus surface area.205  Our spherical nanoparticle also experiences a similar 

increase in diameter and surface area.  As Decher has shown in another recent publication,116 

fluorescent tagging of the polyelectrolyte yields higher sensitivity to clearly demonstrate 

exponential growth, much like the growth experienced in our system.   

Interlayer diffusion, the phenomenon in which species of a polyelectrolyte LbL 

system vertically diffuse through films during the assembly process, may partially explain 

the LbL assembly growth described by the polynomial curve.  Exponential layer growth is 

behavior characteristic of systems exhibiting interlayer diffusion, previously evidenced 

through fluorescence-labeled240 and radiolabeled241 polyelectrolytes.  As the polyelectrolyte 

interactions equilibrate through interlayer diffusion, the interactions may become weaker and 

more easily stripped by polyelectrolyte solutions used for deposition.  The interlayer 
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diffusion in our polyelectrolyte architecture may occur, though TEM and relaxivity 

measurements support linear diameter growth.  . 

 

Figure 3.7 Gd(III)-DOTA-FITC oligomer concentrations, measured by fluorescence, 
increases exponentially with multilayer growth.  

 

3.2.2.3 MR relaxivities of layer-by-layer self-assembled nanoparticles 

Longitudinal (r1) and transverse (r2) MR relaxivities for LbL nanoparticles were 

determined with up to seven layers of Gd(III)-DOTA oligomer.  Interestingly, relaxivity 

values for NPnA on a per Gd(III) basis remained essentially constant at r1 = 19.0 ± 1.7 mM-
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DOTA oligomer.  This contrasted starkly with the previously reported covalently attached 

multilayer system using bis(silylated)-Gd(III)-DTPA, which exhibited diminished relaxivities 

on a per Gd(III) basis.199  The highly disordered and hydrophilic nature of Gd(III)-DOTA 

oligomer and PSS allows ready access of water molecules to the metal centers for efficient 

water proton relaxation.  On the basis of the size of the LbL particles, we further estimated r1 

and r2 relaxivities of NPnA on a per particle basis, which increased linearly as more layers 

of Gd(III)-DOTA oligomer were deposited (Figure 3.9 and Table 3.1).  LbL self-assembly 

offers a superb strategy for increasing nanoparticle MR relaxivities. 

 

 

Figure 3.8  MR relaxivities, r1 and r2, per Gd(III)  for cationic Gd(III)-DOTA oligomer. 
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Figure 3.9 MR relaxivities, r1 and r2, per Gd(III) for LbL self-assembled nanoparticles. 
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Figure 3.10 Linear increase of r1 (black) and r2 (red) as layers of Gd(III)-containing 
oligomer are increased. 

 

3.2.3 Using electrostatic interactions to attach targeting moieties 

3.2.3.1 Description of the method 

 Since the LbL self-assembled nanoparticles were terminated with anionic PSS 

polymers, we hypothesized that the particles could be functionalized with targeting peptides 

that carry positive charges under physiological conditions.  The arginine-glycine-aspartate 
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with a glycine-arginine-aspartate derivative (K7GRD) serving as the scrambled control.  The 
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 Measurement of zeta potentials was performed to monitor changes in surface 

properties of the nanoparticles at various stages of multilayer growth and functionalization. 

Figure 3.12 shows that bare silica nanoparticles have negatively charged surfaces, as 

demonstrated with a zeta potential of -35.81 mV.  With the addition of the Gd(III)-DTTA 

monolayer coating, the zeta potential became more anionic to -42.45 mV.  Nanoparticles 

with three bilayers of Gd(III)-DOTA oligomer and PSS became more neutrally charged, -

25.83 mV.  Functionalization with the RGD or GRD peptides with lysine tail further shifted 

the zeta potential toward a cationic surface with zeta potential values of -18.98 and -17.79 

mV, respectively.  The oligomeric lysine tail interacts with the PSS surface, to create a more 

positive surface. 

 

 

Figure 3.12 Zeta potential (mV) measurements of bare silica nanoparticles, Gd(III)-DTTA 
monolayer covalent coated nanoparticles (MNP),  MNP with 3 bilayers, MNP with 3 bilayers 
and K7RGD functionalization, and MNP with 3 bilayers and K7GRD functionalization. 
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3.2.3.3 Targeting endothelial cells 

 Angiogenesis, the process of new blood vessel formation, has been widely researched 

for its involvement in tumor growth and metastasis.  Malignant tumor expansion and 

metastasis requires the neovasculature to supply nutrients, oxygen, and waste disposal.  

Endothelial cells line the interior of blood vessels for the circulatory system and play an 

obviously important role in angiogenesis.  Integrins, the primary receptors for endothelial 

cells in initiating proliferation and invasion, can be targeted through RGD peptides. 

Cow pulmonary artery endothelial (CPAE) cells have high expression of these 

integrin receptors.243  Luminescent imaging and targeting capability of LbL nanoparticles 

were confirmed by laser scanning confocal fluorescence microscopy.  As shown in Figure 

3.13, significant luminescence signal was observed for CPAE cells incubated with NP5B 

particles that were non-covalently functionalized with K7RGD sequence.  Little to no 

luminescent signal was observed for control CPAE: incubated without nanoparticles, 

incubated with unfunctionalized nanoparticles, and incubated with a scrambled binding site 

(K7GRD).  The resulting images correlate with the membrane flow model of cell 

migration.244  Cellular projections, lamellipodia and filopodia, extend from the cell’s 

migrating edge and have an abundance of integrins.  Serving as adhesion points and directing 

movement, integrins are closely linked to the actin network that shapes the cytoskeleton.244  

Thus, the RGD-labeled nanoparticles are localized at cellular projections and edges that 

display increased levels of integrins.   
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3.2.3.4 Targeting cancer cells 

Integrin receptors have been found to be overexpressed in HT-29 human colon cancer 

cells.245, 246  Previously, fluorescent albumin microspheres were labeled with K7RGD were 

reported to show integrin mediated uptake by HT-29 cells.247  Targeting capability of our 

LbL nanoparticles was initially determined by laser scanning confocal fluorescence 

microscopy.  As shown in Figure 3.14, significant luminescence signal was observed in HT-

29 cells incubated with NP5B particles that have been non-covalently functionalized with 

K7RGD sequence, indicating efficient targeting of HT-29 cells.  In comparison, little to no 

luminescent signal was observed for control HT-29 cells without nanoparticles and for cells 

that have been incubated with NP5B particles without functionalization or functionalized 

with K7GRD. 
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3.3 Concluding remarks 

 In summary, we have utilized electrostatic LbL self-assembly to prepare targeted 

multifunctional nanoparticles with both MR and optical imaging capabilities.  Electrostatic 

LbL self-assembly enabled increased loading of Gd(III) payloads and the preservation of 

efficient water proton relaxation by Gd(III) metal centers.  Multilayer growth was confirmed 

by electron microscope measurement of nanoparticle diameters, demonstration of increasing 

MR relaxivities, as well as increasing fluorescence.  The LbL self-assembly strategy not only 

affords nanoparticles with extraordinarily high MR relaxivities but also provides an efficient 

means for non-covalent functionalization with affinity molecules.  Specifically, a cationic tail 

was used to display an integrin specific targeting peptide sequence that could label cancer 

cells (HT-29) and cells that participate in angiogenesis (CPAE).  The generality of the 

polyelectrolyte LbL self-assembly should allow the design of imaging and/or therapeutic 

multifunctional nanoparticles that can specifically target a wide range of diseased cells.   
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3.4 Materials and Methods 

3.4.1 General 

All of the chemicals were obtained from commercial sources and used without further 

purification.  Solvents used in all the reactions were dried by standard procedures.248  

Multimodal nanoparticles were prepared as described previously.199  Poly(sodium-4-

styrenesulfonate) (PSS) MW = 70 kDa (Sigma-Aldrich) was used without further 

purification.  Poly-L-lysine was purchased from MP Biomedicals and used without further 

purification.  The water (dH2O) used in all experiments was prepared by a Millipore 

NanoPure purification system (resistivity higher than 18.2 MΩ cm-1) and autoclaved before 

use.  KKKKKKKRGD peptide was purchased from EZ Biolabs whereas KKKKKKKGRD 

peptide was prepared with an Applied Biosystems Pioneer peptide synthesizer using Applied 

Biosystems PEG-PAL amide resin.  Thermogravimetric analysis (TGA) was performed using 

a Shimadzu TGA-50 equipped with a platinum pan and heated at a rate of 3°C / min under 

air.  Gd(III) ion concentration was measured on an Applied Research Laboratories 

SpectraSpan7 Direct Current Plasma (DCP) Spectrometer.  T1 and T2 values were 

determined on a Bruker 3.0 Tesla full body Magnetic Resonance Imaging (MRI) Scanner.  

Confocal laser scanning microscope images were taken with a Zeiss LSM5 (488 nm 

excitation, 550-650 nm emission) at the University of North Carolina Michael Hooker 

Microscopy Facility.  Fluorescence microscope images were taken at the University of North 

Carolina Pharmacy School with a Zeiss Axiovert 100 TV Fluorescence Microscopy using a 

long pass FITC filter.  A JEM 100CX-II Transmission Electron Microscope (TEM) was used 

to determine particle size and morphology. 
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minutes before centrifugation at 14000 RPM for 20 minutes.  The supernatant was removed 

(Flow Through = FT), and the nanoparticle pellet was re-suspended in 1 mL of dH2O.  

Centrifugation/re-suspension was repeated twice (Wash 1 = W1, Wash 2 = W2) before the 

washed nanoparticle pellet was re-suspended into the original volume (250 μL).  The 

collected supernatant fractions and re-suspended nanoparticle suspension were measured for 

fluorescence (515 nm and 610 nm) to ensure that the nanoparticles were free from excess 

unbound materials.  To deposit the negatively charged PSS layer, 250 μL of the previously 

layered nanoparticle was placed into 250 μL and 500 μL PSS (1 mg/mL dH2O).  The 

previous process was repeated to obtain the desired stage of layer deposition using constant 

concentrations of PSS and 1 or 1a.  This LbL deposition was repeated for depositing more 

layers of 1 (1a) and PSS. 

 

3.4.4 Functionalization of layer-by-layer nanoparticles 

A 50 μL aliquot of 3 or 5 bilayer nanoparticle (NP3B or NP5B) was placed in a 1.5 

mL polypropylene Eppendorf tube and 2 μL of KKKKKKKRGD, KKKKKKKGRD, or 

poly-lysine (1mg / μL) was added.  The tube was placed in a sonicator for 20 minutes before 

being centrifuged for 20 minutes at 14000 RPM.  The supernatant was removed and the 

nanoparticles were re-dispersed in 50 μL of dH2O.  The centrifugation / re-dispersion step 

was repeated once more before being re-dispersed in 50 μL of dH2O for use as labeling 

agent. 
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3.4.5 Endothelial cell culture 

 Cow pulmonary artery endothelial (CPAE) cells were maintained at 37°C in a 5% 

CO2 incubator with EMEM containing 20% FBS and 1% Penicillin/Streptomycin. All cells 

were passed and overgrowth maintained by trypsinization for detachment of adherent cells 

from the surface of the flasks.  Fresh media was added to flasks for continued growth of 

culture. 

 

3.4.6 Colon carcinoma cell culture 

Human colon carcinoma (HT-29) cells were maintained at 37°C in a 5% CO2 

incubator with McCoy’s 5A containing 10% FBS and 1% Penicillin/Streptomycin.  Cells 

were passed and overgrowth maintained by trypsinization to detach adherent cells from the 

surface of the flasks before aspiration and refreshing of media. 

 

3.4.7 In vitro labeling and fluorescence imaging of live endothelial and cancer cells 

CPAE and HT-29 cells were grown on 6-well plates with sterile glass coverslips at 

37°C in a 5% CO2 incubator with EMEM containing 20% FBS and 1% P/S, and McCoy’s 

5A containing 10% FBS and 1% P/S, respectively.  Cells were incubated with functionalized 

and unfunctionalized nanoparticle concentration of 11 μg/mL for 15-60 minutes.  The cells 

were then washed extensively with Hank’s Balanced buffered Saline Solution (HBSS) before 

being immediately imaged by scanning laser confocal fluorescence microscopy.   

 

  



 

120 
 

3.4.8 In vitro MRI of nanoparticle-labeled cancer cells 

HT-29 cells were cultured in large dishes with McCoy’s 5A media containing 10% 

FBS and 1% P/S at 37°C with 5% CO2 until approximately 70% confluency was observed.  

Cells were incubated with and without KKKKKKKRGD-functionalized, KKKKKKKGRD-

functionalized, and unfunctionalized 3-layer nanoparticles (11 µg/mL) for 60 minutes.  The 

cells were extensively washed with HBSS before trypsinization.  Free floating cells were 

counted using trypan blue exclusion (~10 million cells per dish), before collection and 

centrifugation at 1000 RPM for 10 minutes.  The cell pellets were placed into small PCR 

tubes with 100 µL of HBSS on top for MR imaging.   

 

3.4.9. Zeta potential measurements 

Zeta potentials of these materials were measured using a Brookhaven Instruments 

Corporation ZetaPlus Zeta Potential Analyzer.  Each sample was suspended in a 1 mM KCl 

aqueous solution (pH 7.0) to achieve ~0.1 mg/mL concentration.  Measurements were 

conducted at 25ºC and run a minimum of ten times.  The average values for various samples 

are determined and standard deviations are reported using error bars.   
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3.4.10 Determination of relaxivities per layer  

Nanoparticles with 3 layers of cationic Gd(III)-DOTA polymer was used to determine 

the Gd(III) amounts for layer relaxivity calculations. 

 
1) Mass % Gd for 3 layers of cationic polymer:  

2.96% Gd (as determined by TGA) 

2) Diameter of silica nanoparticle:  

37 nm (as determined by TEM) 

3) Calculated volume of silica nanoparticle (SiNP):  

(4/3)×π×(radius)3 = (4/3)×π×(37 nm/2)3 = 2.65×10-17 cm3 

4) SiO2 density:  

2.0 g cm-3 

5) Calculated mass of silica nanoparticle:  

2.65×10-17 cm3 × 2.0 g cm-3 = 5.30×10-17 g SiNP-1 

6) Gd atoms per nanoparticle:  

(Y×mGd) / (mSiNP +Y×moligomer + PSS) = mass % Gd 

 
(Y×157.25 g mol-1) 

= 2.96 % _______________________________________________________ 
 
(5.30×10-17 g SiNP-1 × 6.022×1023 SiNP mol-1) + (Y×669.3 g mol-1) 

 

Y×137.45  = 9.44×105 

Y = 6870 Gd per SiNP 
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NP0 was previously determined to have ~10200 Gd(III) ions immobilized onto its 

surface.199  Using TGA to determine weight loss of organics (from polymers), the number of 

Gd(III) ions of each layer was approximated.  Given the calculated number of Gd(III) ions 

within 3 layers of cationic polymer on the surface of Gd-DTTA functionalized nanoparticles 

we could determine the approximate number of Gd(III) ions per volume to be 0.822 taking 

into account the change in particle diameter found by TEM measurements.  Gd(III) 

relaxivities of each successive layer deposition did not show appreciable change in 

relaxivities.  Thus, we could average the relaxivities and multiply the number of Gd(III) per 

particle by the average relaxivities on a per Gd(III) basis to obtain relaxivities on a per 

particle basis.   

For NP3A,  

r1 = (10200 + 6870) Gd(III) ions per NP3A × 19 mM Gd s-1 = 3.24 × 105 (mM-1 s-1) 

r2 = (10200 + 6870) Gd(III) ions per NP3A × 55 mM Gd s-1 = 9.39 × 105 (mM-1 s-1) 

 
 

Table 3.1 Estimated MR relaxivities on a per particle basis (105 mM-1 s-1) 

  
NP0 

 
NP1A 

 
NP2A 

 
NP3A 

 
NP4A 

 
NP5A 

 
NP6A 

 
NP7A 

 
r1 

 
1.94 

 
2.11 

 
3.00 

 
3.24 

 
3.95 

 
4.29 

 
4.75 

 
5.34 

 
r2 

 
5.61 

 
6.11 

 
8.69 

 
9.46 

 
11.4 

 
12.4 

 
13.8 

 
15.5 
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CHAPTER 4 
 

HIGHLY-EFFICIENT PURIFICATION OF NATIVE HEXAHISTIDINE-TAGGED 
RECOMBINANT PROTEINS BY MULTIVALENT NITRILOTRIACETIC ACID-

MODIFIED MAGNETIC NANOPARTICLES 
 
 
4.1 Introduction 

Therapeutic proteins are undergoing rapid growth in pharmaceutical use in recent 

years.  Proteins are of primary importance to enzymatic and structural biochemical functions 

and control cell signaling, cell adhesion, and immune responses.  These abilities make 

proteins topics of great interest for therapy and treatment of diseases.  Additionally, the 

development of recombinant protein technology1 has allowed the production of many 

proteins of interest in large-scales.  Recombinant versions of proteins, such as human growth 

factor, human insulin, insulin-like growth factor, and interferon, have replaced therapeutics 

previously harvested from human and animal organs.   

As the demand for protein therapeutics increases, an emerging need exists for more 

efficient protein purification techniques allowing for direct isolation of proteins from cell 

lysates.2  Among many currently used protein purification strategies,3 immobilized metal 

affinity chromatography (IMAC) has emerged as one of the most powerful techniques for the 

purification of recombinant proteins.4  In the most common IMAC implementation, a 

hexahistidine (His×6) tag, comprised of six consecutively placed histidine residues, is 

incorporated into the C- or N-terminus of a recombinant protein.  The His×6 tag binds 

strongly to a divalent metal chelate, such as the Ni(II) nitrilotriacetate complex (Ni-NTA), 
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which is immobilized on a convenient commercial resin.  Four of the six coordination sites 

on the octahedral Ni(II) center are occupied by the NTA ligand and the remaining 

coordination sites are occupied by two of the six imidazole moieties available in the His×6 

tag.5 

 

Figure 4.1  Open sites of Ni(II) center open for imidazole (histidine) coordination. 

This basic IMAC strategy allows the purification of recombinant His×6-tagged 

proteins in one or two steps to achieve a moderate degree of purity.  Moreover, the His×6 tag 

is relatively small and generally does not interfere with the native structure or function of the 

protein and, is thus commonly used without cleavage of the tag.  Since its discovery in late 

1980’s, Ni-NTA based IMAC has been widely used for purifying recombinant proteins and 

many His×6-tagged proteins are now commercially available.  While this strategy has proven 

to be fairly successful, a significant percentage of recombinant proteins remain difficult to 

purify by IMAC.6  Low protein expression is a key contributor to difficulties in protein 

isolation. The target protein concentration may be less than 0.1% of the cleared crude lysate 
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when overexpressed in E. coli, and much lower when overexpressed in mammalian cells.  

Numerous functionally active proteins can only be expressed in mammalian cells and this 

imposes new challenges to protein purification techniques.  The target protein structure may 

also add to purification difficulties by blocking the His×6-tag from the Ni-NTA moiety on 

the surface of commonly used commercially available microbeads.  Consequently, a large 

number of His×6-tagged proteins cannot be captured by commercial Ni-NTA resin under 

native conditions.  To overcome this problem, purification under denaturing conditions has 

been used to gain full access to the His×6-tag, but the overall protein purification efficacy 

significantly decreases because of the unreliability and inefficiency of in vitro protein re-

folding to their native functional conformations. 

Significant efforts have been devoted to gaining a better understanding of the Ni-

NTA/His×6-tag interactions and thus improving the IMAC protein purification efficiency 

over the past few years.  Recently, the strength of the Ni-NTA interaction to histidine-tagged 

peptides was probed and assessed using scanning force microscopic techniques.7  Here, the 

benefit of tags with increased histidine residues was examined, and showed that His×6-tag 

created a significantly more stable interaction than His×2-tag (two histidine residues).  

Others have used His×10-tags to attempt to achieve higher affinity with a variety of designed 

Ni-NTA molecules.8  These studies appear to indicate the histidine tag affinity to Ni-NTA 

does not benefit from redundancy greater than His×6 due to increased loss of entropy. 

In an alternate viewpoint, Ebright et al. has elegantly demonstrated enhanced binding 

of the His×6-tag to a bivalent Ni-NTA system over a monovalent Ni-NTA control using 

fluorescence anisotropy and fluorescence resonance energy transfer measurements. 9  Tampé, 

Piehler, and coworkers have further studied the enhanced affinity of multivalent Ni-NTA-
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on iron oxide nanoparticles indicated a similarly high affinity for His×6-tagged proteins, 

suggesting that the very high density of the mono-NTA chelate presented by the 

nanoparticles allows the binding of the His×6-tag to more than one NTA moiety on the 

surface.  This work thus demonstrates that the multivalency strategy can be utilized to 

enhance the binding of his-tagged proteins in their native, folded conformations.   
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4.2 Results and Discussion 

4.2.1 Surface Modification of Iron Oxide Nanoparticles with Bis-NTA and Mono-NTA 

Ni(II) Chelates 

The iron oxide magnetic nanoparticles were synthesized using protocols previously 

described.19-21  The nanoparticles were washed in ethanol and transferred into n-hexanes and 

used without further purification.  The concentration of the nanoparticles was estimated 

based on the dry mass after the removal of the solvents.  Iron oxide nanoparticles prepared by 

different routes gave similar results for protein binding and purification experiments. 

Although a number of functional groups have been immobilized on iron oxide 

nanoparticles, their binding strength and their ease of surface immobilization vary 

significantly.  Since Xu and co-workers recently demonstrated the efficient immobilization of 

dopamine derivatives on iron oxide nanoparticles,16 we have decided to use this strategy to 

immobilize bis-NTA Ni(II) chelate for protein purifications.  The new bis-NTA ligand with a 

catechol group (4) was synthesized according to the procedures outlined in the previous 

section.  Compound 4 was synthesized in 22% overall yield in 4 steps starting from known 

benzyl-protected dopamine trifluoroacetate salt and benzene-1,3,5-tricarbonyltrichloride.  

New compounds 1-4 were characterized by 1H and 13C{1H} NMR spectroscopy and mass 

spectrometry. 

In order to determine the effects of multivalency on protein binding, we have also 

prepared a new mono-NTA ligand with two catechol groups (8) by using a 1:1 ratio of 

dopamine hydrochloride and benzene-1,3,5-tricarbonyltrichloride as shown in Scheme 2.  

Compound 8 was synthesized in an overall yield of 28% in 4 steps.  New compounds 5-8 

were characterized by 1H and 13C{1H} NMR spectroscopy and mass spectrometry. 
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Surface modification of iron oxide nanoparticles with new NTA-derived ligands was 

accomplished by simply stirring a biphasic mixture of the ligand in water and iron oxide 

nanoparticles in hexanes.  The NTA-ligand-immobilized nanoparticles were charged with 

Ni(II) ions by ultrasonic mixing in 2M NiCl2.  The iron oxide nanoparticles with different 

coatings were characterized by transmission electron microscopy (TEM).  TEM images of 

~10 nm monodisperse iron oxide nanoparticles (prepared by thermal decomposition) before 

and after surface modifications illustrate the retention of nanoparticle size and shape, and 

monodispersity throughout monovalent and bivalent NTA-ligand surface modification and 

Ni(II)-loading.  Slight aggregation of Ni(II)-loaded nanoparticles was however observed in 

the TEM images (Figure 4.4). 
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Figure 4.4 TEM images of monodisperse iron oxide nanoparticles (10 nm in diameter): (A) 
Prepared by thermal decomposition and stabilized with oleic acid. (B) Modified with bis-
NTA ligand. (C) Ni(II)-loaded bis-NTA nanoparticle. (D) Modified with mono-NTA ligand. 
(E) Ni(II)-loaded mono-NTA nanoparticle. The scale bar is 50 nm. 
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4.2.2 Binding of His×6-tagged Proteins Labeled with [35S]-Methionine 

Immobilization of proteins onto the nanoparticles and subsequent elution were 

initially demonstrated with His×6-tagged, [35S]-methionine-labeled GMAP-210 protein 

synthesized via coupled in vitro transcription and translation.  In a typical binding-elution 

experiment, the direct lysate (DL) signal is equal to the sum of the flow through (FT), washes 

(W1, W2, W3), elutions (E1, E2), and residual resin signals.  The signal from each fraction 

was measured using liquid scintillation counting (Figure 4.5, Table 4.1).  

 

Figure 4.5  Graphical representation the results of an [35S]-labeled HisX6-GMAP-210 
binding radioactive scintillation counting assay for bis-Ni-NTA nanoparticles (solid bars) and 
commercial Ni-NTA agarose beads (open bars). Fractions collected and radioactivity 
quantified in counts per minute (CPM). DL = direct lysate, FT = flow through, W1 = wash 1, 
W2 = wash 2, W3 = wash 3, E1 = elution 1, E2 = elution 2. 
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Table 4.1  Raw counts per minutes (CPM) data from [35S]-labeled HisX6-GMAP-210 
binding radioactive scintillation counting assay for bis-Ni-NTA nanoparticles and 
commercial Ni-NTA agarose beads (DL = direct lysate, FT = flow through, W1 = wash 1, 
W2 = wash 2, W3 = wash 3, E1 = elution 1, E2 = elution 2). 

 
Blank 
(CPM) 

DL 
(CPM) 

FT 
(CPM) 

W1 
(CPM) 

W2 
(CPM) 

W3 
(CPM) 

E1 
(CPM) 

E2 
(CPM) 

Resin 
(CPM) 

Bis-Ni-NTA 
Nanoparticles 

38 1685170 1636552 39410 1980 653 3840 764 1971 

Commercial 
Beads 85 1685170 1500000 60783 490 248 3602 430 269 

 

 
Since only a small percentage of  [35S]-methionine was incorporated into the 

recombinant protein in the TNT reaction, a majority of the radioactivity in both the 

commercial beads and nanoparticle systems came from unbound free [35S]-methionine in the 

FT (Figure 4.5 and Table 4.1).  Following the removal of FT, the resin was washed three 

times until low background was reached and subsequently eluted with imidazole. This 

scintillation counting assay demonstrates that the NTA-modified nanoparticles can 

specifically capture His×6-tagged proteins followed by efficient elution with imidazole. We 

also examined the relative protein binding capacity of nanoparticles as compared to the 

commercial beads. It was found that the 10 μL (0.32% v/v suspension, assuming Fe3O4 

density of 5.15 g/cm3) of nanoparticle (16.3 mg/mL) had a similar binding capacity to 10 μL 

(5% v/v suspension) of commercial magnetic agarose beads.  It appears that the un-optimized 

nanoparticles used in this work have higher residual radioactivity after elutions when 

compared to the commercial beads, presumably due to relatively strong nonspecific binding. 

This result was within expectation, since the commercial beads were coated with agarose, 

which has low non-specific binding to proteins. We think that the non-specific binding of the 

nanoparticle could be minimized if its surface is modified with hydrophilic molecules such as 

PEG that are known to resist nonspecific protein binding.22 
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4.2.3 Binding of Overexpressed His×6-tagged Proteins 

We next carried out protein binding studies of several commercially available 

recombinant His×6-tagged proteins. One of the major problems in using Ni-NTA in protein 

purification is that numerous His×6-tagged proteins can only be purified under denaturing 

conditions. Consequently, a complicated refolding process is needed that often results in low 

yield of the active protein. In this work, we focus on examining whether the NTA-modified 

nanoparticles can be used under native conditions to purify His×6-tagged proteins that 

require denaturing conditions when commercial NTA beads are used. We used recombinant 

murine His×6-endostatin as an example. Endostatin is a potent angiogenesis inhibitor that has 

shown therapeutic suppression of tumor-induced angiogenesis in mice implanted with 

tumors.23  O’Reilly et al. reported that recombinant murine endostatin with His×6 tag could 

be expressed in E. coli as insoluble inclusion bodies and purified using Ni-NTA resin under 

denaturing conditions. Endostatin thus purified underwent an inefficient refolding process 

before it could be used in xenograft mouse studies. We found that the already folded 

endostatin could not be captured when commercial Ni(II)-NTA beads were used. As shown 

in Figure 3, approximately 90% of His×6-rmES was present in the FT, and almost no protein 

was detected in the elutions, indicating that commercial beads failed to capture His×6-rmES 

under native conditions.  Significantly, Ni(II)-loaded nanoparticles readily bound His×6-

rmES without the use of denaturing conditions.  A 10 μL volume of Ni(II)-loaded 

nanoparticles (163 μg) is found to have a binding capacity of 5.6 μg under un-optimized 

conditions.  The bound His×6-rmES was readily eluted by imidazole.  This result indicates 

that milligrams of a native protein can be purified using approximately 30 mg of Ni(II)-

loaded nanoparticles (Figure 4.6 and Table 4.2).  
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Figure 4.8 (A) Bright field (left) and corresponding confocal fluorescence microcopy (right) 
images of normal cow pulmonary artery endothelial (CPAE) cells (without 6×His-rmES 
treatment). (B) Bright field (left) and corresponding confocal fluorescence microcopy (right) 
images of apoptotic CPAE cells labeled with Annexin V-PE. Apoptosis was induced over 24 
hours using 6×His-rmES (10 μg/mL) eluted from bis-Ni-NTA nanoparticles. 

 

 Additionally, bis-Ni-NTA nanoparticles were used to bind His×6-caspase 3, the key 

mediator of apoptosis in mammalian cells, and demonstrate retention of activity after elution.  

After typical binding/elution of the His×6-caspase 3, the resulting fractions were used for an 

activity assay of a fluorogenic substrate containing the caspase 3-specific sequence (Figure 

4.9).  Activity was shown in the untreated protein (DL) and the unbound protein (FT).  Little 

activity was found in the final wash before elution (W3), suggesting that unbound protein has 

been washed away.  The first elution showed an apparent fluorescence due to activity of the 

caspase 3.  The second elution showed little fluorescence, suggesting that most of the 
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elutable protein was release in the first elution fraction.  The nanoparticle resin also showed 

activity, demonstrating that protein immobilized onto the surface of the nanoparticle retains 

activity. 

 

 

Figure 4.9 His×6-caspase 3 activity of fractions from binding/elution experiment with bis-
Ni-NTA nanoparticles.  RLU was measured from the fluorescence resulting from the 
cleavage of the DEVD-APC substrate. 

 

We also compared the binding of other His×6-tagged proteins that do not require 

denaturing conditions for Ni-NTA based purifications.  Ubiquitin is a protein found 

throughout all eukaryotic cells and plays key roles in highly specific protein degradation.  

The small His×6-tagged ubiquitin (9.3 kDa) is expected to have an affinity for both the 

commercial beads as well as the surface modified nanoparticles.  SDS-PAGE analysis 

confirms the affinity of the commercial beads and the Ni(II)-loaded nanoparticle (Figure 

4.10 and Table 4.2).    
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Densitometry analysis shows the binding capacity of 20 μL (5% v/v suspension) of 

commercial beads is 1.1 μg His×6-Ub, while that of 10 μL (0.32% v/v suspension) of bis-

NTA-Ni(II)-loaded nanoparticle is 2.3 μg.  In comparing the binding of 10 μL (0.32% v/v 

suspension) of nanoparticle for His×6-rmES (21.3 kDa , 5.6 μg) and 6xHis-Ub (9.3 kDa , 2.3 

μg), it is estimated that the binding capacity of the Ni(II)-loaded nanoparticles is approximate 

25 pmol of proteins/μL. 

 

Table 4.2 Intensity Density Values (%IDV) compiled from densitometry quantification of 
SDS-PAGE results for collected fractions comparing Bis-Ni-NTA-modified nanoparticles 
and commercial Ni-NTA agarose beads in HisX6-tagged protein binding experiments (10 μg 
total protein). 

 FT W1 W2 W3 E1 E2 NP/resin 

6xHis-rmES + 2NiNTA-NP 30.48 1.05 1.70 0.67 56.20 1.21 8.70 

6xHis-rmES + Com. Beads 89.58 6.06 0.44 0.44 0.54 0.18 2.74 

6xHis-Ub + 2NiNTA-NP 26.30 6.06 0.44 0.44 0.54 0.18 11.54 

6xHis-Ub + Com. Beads 39.35 18.22 9.80 3.07 23.21 7.85 6.54 

6xHis-UCH-L1 + 2NiNTA NP 31.80 12.38 1.25 1.16 34.78 3.30 15.33 

6xHis-UCH-L1 + Com. Beads 83.16 6.19 0.89 0.89 0.58 0.03 8.27 

 

 

Binding studies on His×6-UCH-L1 (~25 kDa) were also used to demonstrate the 

nanoparticle’s ability to capture His×6-enzymes (Figure 4.11 and Table 4.2).  Binding 

capacities of 40 μL (5% v/v suspension) of commercial beads and 10 μL (0.32% v/v 

suspension) of nanoparticle are 0.06 μg and 3.48 μg His×6-UCH-L1, respectively.  This 
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method in volume reduction. However, the loss of purified proteins could be significant, 

presumably due to nonspecific interactions with the membrane. Our Ni(II)-loaded 

nanoparticles disperse well in aqueous solution, and therefore significantly smaller elution 

volume can be used. This advantage eliminates the need of volume reduction and makes it 

possible to directly use the proteins after purification. 

Our magnetic, recyclable nanoparticles are able to bind important His×6-proteins in 

native conformations with a high capacity. It is worth mentioning that our Ni(II)-loaded 

nanoparticles were able to efficiently capture all the proteins we randomly chose for this 

study. Although we have only tested a small number of proteins, our success rate is much 

higher than that of previous research, which has shown an approximately 60% success rate.5 

 

4.2.4 Purification of Recombinant His×6-tagged Proteins from Crude Mammalian Cell 

Lysate 

Proteins expressed in mammalian cells are usually soluble and active, and therefore 

extremely useful in studying their physiological significances. The biggest drawback is that 

their expression levels are very low, making the purification challenging.  The nanoparticle 

platform was previously used for protein purification from E. Coli cell lysate,15 in which 

proteins are much more easily overexpressed.  We investigated whether our NTA-loaded 

nanoparticles could be used to purify recombinant proteins expressed in mammalian cells. 

293T cells were used to express a recombinant His×6-UGT protein. The lysate was prepared 

for purification of 6xHis-UGT protein by the bis-Ni(II)-NTA modified nanoparticles.  Figure 

4.12 shows the staining of DL, FT, W3, E1, E2, and nanoparticle fractions and clearly 

indicates the purification of desired His×6-tagged protein from the mammalian crude lysate.  
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The elution E1 is significantly cleaner than the direct lysate, with few impurities.  These 

nonspecifically bound impurities are probably due to proteins with many amino acid residues 

that can coordinate to the immobilized metal ion.  Nonetheless, the present nanoparticle 

system has shown great promise in the purification of His×6-tagged proteins from crude 

mammalian cell lysates. 

 

 

 
 

Figure 4.12 Mammalian Cell Lysate Fractionation. SDS-PAGE (12.5% separation gel) 
results of flag-6xHis-UGT prepared from 293T cells showing marker (M). direct lysate (DL, 
10% dilution), flow through (FT, 10%), 3rd wash (W3), elution 1 (E1), elution 2 (E2), and 
protein residue on nanoparticle (NP).   

 

4.2.5 Nonspecific Interactions 

Nonspecific interactions between the protein and nanoparticles do not appear to be 

significant when the NTA nanoparticles are chelated with N(II). Table 1 shows 

approximately 8.7% of His×6-rmES remained on the Ni(II) loaded bis-NTA-modified 

nanoparticles after elution, slightly higher than that on commercial microbeads.  Without the 

chelation of Ni(II), His×6-rmES was found to have a high affinity for the bis-NTA-modified 

nanoparticle (Figure 4.6).  Densitometry measurements show that more than 45% of the 
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6xHis-rmES was present in the sum of the washes and elutions, while 39% of the protein 

remained on the bis-NTA-modified nanoparticles.   

On the other hand, freshly prepared iron oxide nanoparticles (without surface 

modifications) had little interaction with His×6-rmES.  Over 70% of the 10 μg of loaded 

protein was detected in the FT and over 90% was detected in the sum of the FT and washes.  

The nanoparticles retained approximately 7% of the His×6-rmES after elution, a significant 

reduction from the 39% retention of Ni(II)-free bis-NTA-modified nanoparticles.  The 

nonspecific interaction of the rmES to the nanoparticle is thus a result of the surface 

modifications.  To rule out the potential role of residual oleic acid on the nanoparticle 

surface, we carried out a binding experiment using particles without oleic acid stabilization.  

Nonspecific interaction was observed for the oleic acid-free nanoparticles as well. 

As the ratio of His×6-rmES (μg) to bis-Ni(II)-loaded NTA nanoparticle (mg) is 

increased from 10.2 to 61.3, the amount of non-specifically bound protein appears to remain 

constant (Figure 4.13).  The specific his-tag binding to Ni(II)-NTA occurs after the full 

capacity of the nonspecific interaction is reached at a 6×His-rmES (μg) to bis-Ni(II)-loaded 

NTA nanoparticle (mg) ratio between 10.2 and 15.3.  Maximum binding capacity of the 

nanoparticle via the His×6-tag appears to have been reached with a His×6-rmES (μg) to bis-

Ni(II)-loaded NTA nanoparticle (mg) ratio of 61.3 since some 6xHis-rmES is detectable in 

the FT.  
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4.3 Concluding Remarks 

New bis-nitrilotriacetic acid (NTA) chelates with catechol anchors were synthesized and 

immobilized on superparamagnetic iron oxide nanoparticles.  When loaded with Ni(II), these 

NTA-immobilized nanoparticles were shown to bind His×6-tagged proteins in their native, 

folded conformations that commercial microbeads fail to bind under identical conditions.  An 

extensive series of control experiments suggest that the multivalency strategy can be utilized 

to enhance the binding of His×6-tagged proteins in their native, folded conformations.  

Additionally, proteins were confirmed for activity after binding and release by a fluorometric 

assay for enzymatic cleavage of a caspase 3-specific peptide sequence and induction of 

apoptosis of endothelial cells.  We further demonstrated the selective purification of His×6-

tagged proteins from direct cell lysates by using the Ni(II)-loaded magnetic nanoparticles.  

The present platform is capable of efficient purification of His×6-tagged proteins that are 

expressed at low levels in mammalian cells.  This work thus presents a novel nanoparticle-

based high-capacity protein purification system with shorter incubation times, proportionally 

large washes, and significantly smaller elution volumes compared to currently available 

microbeads.  
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4.4 Materials and Methods 

4.4.1 General 

Nα,Nα-bis(carboxymethyl)-L-lysine was purchased from Fluka.  All other chemicals 

were purchased from Sigma-Aldrich and used as received unless otherwise noted.  Carboxy-

terminated magnetic microparticles were purchased from Bangs Laboratories, Inc. Purified 

recombinant His×6-endostatin (His×6-rmES) was purchased from Calbiochem. Recombinant 

human His×6-ubiquitin (His×6-Ub) and mouse His×6-ubiquitin C-terminal hydrolase L-1 

(His×6-UCH-L1) were from Boston Biochem.  1H and 13C{1H} NMR spectra were obtained 

on a Bruker 400MHz AVANCE or Bruker 400MHz DRX.  Mass spectra were obtained from 

Voyager DE-Pro MALDI-MS or HP/Agilent LC/Ion-trap MS in the Department of 

Chemistry at Duke University.  Liquid scintillation counting experiments are performed on a 

Tri-Carb 2900TR Liquid Scintillation Analyzer.  SDS-PAGE gels were quantified using the 

AlphaEaseFC program.  Transmission Electron Microscopy (TEM) images were taken with a 

JEM-100CXII transmission electron microscope at 100 KV.   

 

4.4.2 Synthesis of 2-(3,4-Bis-benzyloxy-phenyl)-ethylamine-trifluoroacetate-salt (Bn-

DA-TFA) 

2-(3,4-Bis-benzyloxy-phenyl)-ethylamine-trifluoroacetate-salt (Bn-DA-TFA) was 

prepared from literature procedures.16  Briefly, dopamine hydrochloride was neutralized by 

stirring with NaOH in dioxane.  Tert-butyl dicarbonate dioxane solution was dropped into the 

stirring solution while solution was cooled in an ice bath.  The solution was allowed to stir 

for under inert atmosphere and allowed to warm to room temperature.  The solution was 

acidified with an HCl solution and subsequently washed with ethyl acetate.  The tert-butyl 
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carbonate (tBOC) protected product was concentrated, purified by column chromatography, 

and confirmed using 1H NMR spectroscopy.  The tBOC-dopamine was dissolved in 

anhydrous DMF and stirred vigorously with K2CO3.  Excess benzyl bromide was added 

dropwise and allowed to stir overnight.  The reaction mixture was filtered and washed with 

ether, dH2O, and brine.  The benzyl protected tBOC-dopamine was purified by 

recrystallization and confirmed by 1H NMR spectroscopy.  The tBOC deprotection was 

removed by stirring the fully protected compound in 5% trifluoroacetic acid (TFA) in 

dichloromethane.  The solvents were evaporated under reduced pressure to yield the benzyl 

protected dopamine TFA salt, which was confirmed by 1H NMR spectroscopy. 

 

Scheme 4.1   2-(3,4-Bis-benzyloxy-phenyl)-ethylamine-trifluoroacetate-salt (Bn-DA-TFA) 
synthesis. 
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4.4.3 Synthesis of Nα,Nα-bis(carboxymethyl)-L-lysine tribenzyl ester-trifluoroacetate-

salt (Bn-NTA-lys-TFA) 

Nα,Nα-bis(carboxymethyl)-L-lysine tribenzyl ester-trifluoroacetate-salt (Bn-NTA-lys-

TFA) prepared from literature procedures.17  Briefly, Nα,Nα-bis(carboxymethyl)-L-lysine and 

Cs2CO3 were stirred vigorously in H2O and dioxane.  Tert-butyl dicarbonate dioxane solution 
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was dropped into the stirring solution while solution was cooled in an ice bath.  The 

completion of the reaction was checked using thin layer chromatography (TLC) and 

ninhydrin.  The tBOC-protected lysine derivative cesium salt was filtered dried under 

reduced pressure to remove solvent.  The intermediate protected cesium salt product was 

dissolved in DMF before excess benzyl bromide was slowly dropped into solution.  The final 

protected product was extracted using chloroform and washed with water before column 

chromatography and 1H NMR confirmation.  The tBOC protection group was removed by 

TFA in dichloromethane to from the benzyl protected lysine derivative TFA salt, which was 

confirmed by 1H NMR spectroscopy. 

 

Scheme 4.2 Nα,Nα-bis(carboxymethyl)-L-lysine tribenzyl ester-trifluoroacetate-salt (Bn-
NTA-lys-TFA) synthesis. 
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4.4.4 Synthesis of dimethyl 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-

dioate (1).  

To a stirring solution of benzene-1,3,5-tricarbonyltrichloride (1.7 g, 6.40 mmol) in 

dry CH2Cl2 (170 mL) at 0°C was added Bn-DA-TFA (0.536 g, 1.20 mmol) in dry CH2Cl2 

(100 mL) dropwise over 5 hours.  The solution was allowed to warm to room temperature.  

The solvent was removed under reduced pressure to produce a white residue.  Methanol was 

added and stirred for a few hours.  The excess methanol was removed under reduced pressure 

to produce a white solid.  The product was isolated using flash column chromatography 

(ethyl acetate/hexanes, 2:3 v/v; Rf = 0.4).  The solvents were removed under reduced 

pressure to yield a white solid of 1 (0.225 g, 0.408 mmol, 34.0% yield).  1H NMR (400MHz, 

CDCl3): 8.75 (s, 1H), 8.52 (s, 2H), 7.40 (d, 4H), 7.29 (m, 6H), 6.90 (d, 1H), 6.81 (s, 1H), 

6.72 (d, 1H), 5.11 (s, 2H), 5.01 (s, 2H), 3.92 (s, 6H), 3.64 (q, 2H), 2.83 (t, 2H); 13C NMR 

(CDCl3, 100 MHz) δ 165.4, 165.3, 149.0, 147.6, 137.2, 137.0, 135.4, 132.9, 132.0, 131.9, 

130.9, 128.3, 127.7, 127.2, 121.5, 115.5, 115.3, 71.3, 71.2, 52.4, 41.4, 34.9, 31.5; MALDI-

MS: [M+H]+ m/z 554.0 (calcd 554.6); [M+Na]+, m/z 577.2 (calcd 576.6); [M+K]+ m/z 592.8 

(calcd 592.7). 

 

Scheme 4.3   Dimethyl 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-dioate (1) 
synthesis. 
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4.4.5 Synthesis of 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-dioic acid (2) 

To a stirring solution of 1 (0.160, 0.289 mmol) in acetone (6 mL) was added 1N 

NaOH (4 mL).  After 3 hours, complete deprotection was confirmed by TLC.  The solution 

was acidified to pH 3 using 1N HCl.  The solvent was removed and the product was stirred in 

H2O.  The precipitate of 2 was collected by suction filtration and recrystallized in acetone 

(0.145 g, 0.276 mmol, 95.5% yield).  1H NMR (400MHz, MeOD): 8.42 (s, 1H), 8.21 (s, 2H), 

7.15-6.90 (m, 10H), 6.67 (s, 1H), 6.62 (d, 1H), 6.49 (d, 1H), 4.73 (s, 4H), 3.28 (t, 2H), 2.54 

(t, 2H); 13C NMR (DMSO, 100 MHz) δ 166.4, 164.6, 148.3, 146.8, 137.5, 137.4, 135.5, 

132.7, 132.2, 132.0, 131.8, 128.4, 127.8, 127.7, 127.6, 127.5, 121.2, 115.2, 114.8, 70.3, 70.2, 

41.1, 34.4; MALDI-MS: [M+H]+ m/z 525.9 (calcd 526.6). 

 

Scheme 4.4   5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-dioic acid (2) synthesis. 
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4.4.6 Synthesis of 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-benzyl-NTA-

lysine (3) 

The diacid 2 (0.140 g, 0.266 mmol) was stirred in dry CH2Cl2 (13 mL) to form a 

cloudy suspension.  0.40 mL of SOCl2 was slowly added and stirring continued at 50 °C for 6 

hours to form a clear solution.  The solvent was removed under reduced pressure to give the 
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5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-dioyl dichloride intermediate which 

was used without further purification.   

To a stirring mixture of Bn-NTA-lys-TFA (0.408 g, 0.632 mmol), TEA (0.5 mL), and 

CHCl3 (5 mL) was added a solution of 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-

1,3-dioyl dichloride in CHCl3 (10 mL) dropwise at 0 °C.  The reaction was allowed to warm 

to room temperature and stir overnight.  After removal of solvents under reduced pressure, 

column chromatography (ethyl acetate/hexanes, 3:2 v/v; Rf = 0.5) was used to isolate a pure 

white solid of 3 (0.281 g, 0.181 mmol, 67.9% yield).  1H NMR (CDCl3, 400 MHz) δ 8.33 (s, 

3H), 7.41-7.25 (m, 35H), 6.95 (t), 6.86 (d, 2H), 6.80 (s, 2H), 6.69 (d, 2H), 5.10 (s, 8H), 5.06 

(s, 2H), 4.98 (s, 4H), 3.68 (s, 4H), 3.59 (t, 4H), 3.46 (t, 1H), 3.32 (t, 2H) 2.75 (t, 4H), 1,69-

1.24 (m, 6H); 13C NMR (CDCl3, 100 MHz) δ 172.8, 171.7, 166.3, 149.3, 148.0, 137.6, 137.5, 

135.9, 135.8, 135.6, 135.4, 132.4, 128.8, 128.7, 128.6, 128.5, 128.0, 127.7, 121.7, 116.2, 

115.9, 71.6, 66.8, 66.7, 64.5, 53.1, 40.2, 35.4, 29.9, 28.5, 23.1; MALDI-MS: [M+H]+ m/z 

1556.3 (calcd 1555.8); [M+Na]+, m/z 1577.5 (calcd 1577.8); [M+K]+, m/z 1593.1 (calcd 

1593.9). 
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Scheme 4.5 5-(3,4-bis(benzyloxy)phenethylcarbamoyl)benzene-1,3-benzyl-NTA-lysine (3) 
synthesis. 

O

O

OH

OHO

O

O NH
SOCl2
CH2Cl2

TEA
CHCl3

O

O

O

O

O NH

N
H

N

OO

O

OO

O
HN

N
O

O

O

O

OO

3

  

 

4.4.7 Synthesis of 5-(3,4-bis(hydroxy)phenethylcarbamoyl)benzene-1,3-NTA-lysine (4) 

Product 3 (0.043 g, 0.052 mmol) was dissolved in 1.5 mL of CHCl3 and 6 mL of 

MeOH and placed in a Parr flask with 15 mg Pd/C (10%).  The mixture was shaken in a Parr 

reactor for 24 hours under H2 (60 psi).  Upon complete deprotection, the palladium catalyst 

was filtered off using Celite and solvent removed under reduced pressure.  The product was 

purified by recrystallization in MeOH/CH2Cl2 to give 4 in a quantitative yield.  1H NMR 

(MeOD, 400 MHz) δ; 8.29 (s, 3H), 6.60 (s, 1H), 6.59 (s, 1H), 6.47 (d, 2H), 3.71-3.21 (m, 

16H), 2.68 (t, 2H), 1.63-1.45 (m, 8H), 1.18 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ; 174.1, 

173.0, 168.6, 146.7, 144.7, 136.6, 132.0, 130.0, 121.1, 117.0, 116.4, 66.9, 54.3, 43.1, 40.7, 

35.9, 29.8, 29.8, 24.4; MALDI-MS: [M]+, m/z 833 (calcd 833.8); [M+Na]+, m/z 856 (calcd 

856.8). 
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 Scheme 4.6  5-(3,4-bis(hydroxy)phenethylcarbamoyl)benzene-1,3-NTA-lysine (4) synthesis. 
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4.4.8 Synthesis of methyl 3,5-bis(3,4-bis(benzyloxy)phenethylcarbamoyl)benzoate (5) 

 To a stirring solution of benzene-1,3,5-tricarbonyltrichloride (0.320 g, 1.20 mmol) in 

dry CH2Cl2 (170 mL) at 0 °C was added Bn-DA-TFA (0.536 g, 1.20 mmol) in dry CH2Cl2 

(100 mL) dropwise over 5 hours.  The solution was allowed to warm to room temperature.  

The solvent was removed under reduced pressure to produce a white residue.  Methanol was 

added and allowed to stir for a few hours.  The excess methanol was removed under reduced 

pressure to produce a white solid.  The product was isolated using silica flash column 

chromatography (ethyl acetate/hexanes, 1:1 v/v; Rf = 0.4).  The solvents were removed under 

reduced pressure to yield a white solid of 5 (0.298 g, 0.349 mmol, 29.0% yield).  1H NMR 

(CDCl3, 400 MHz) δ 8.44 (s, 2H), 8.28 (s, 1H), 7.45-7.25 (m, 20H), 6.88 (d, 2H), 6.81 (s, 

2H), 6.71 (d, 2H), 6.56 (t, 2H), 5.10, (s, 8H), 3.88 (s, 3H), 3.60 (q, 4H), 2.80 (t, 4H); 13C 

NMR (CDCl3, 100 MHz) δ 165.6, 165.3, 148.7, 147.4, 136.9, 136.8, 135.1, 131.9, 130.5, 

130.3, 129.6, 128.2, 127.6, 127.2, 127.1, 121.4, 115.4, 115.0, 71.1, 52.2, 41.3, 34.7; MALDI-

MS: [M+Na]+, m/z 877.0 (calcd 878.0); [M+K]+, m/z 893.0 (calcd 894.1). 
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Scheme 4.7  Methyl 3,5-bis(3,4-bis(benzyloxy)phenethylcarbamoyl)benzoate (5) synthesis. 
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4.4.9 Synthesis of 3,5-bis(3,4-bis(benzyloxy)phenethylcarbamoyl)benzoic acid (6) 

Compound 5 (0.250 g, 0.292 mmol) was stirred in a solution of 3 mL of acetone and 

1 mL of 1M NaOH overnight.  The solution was acidified to pH 3 using 1N HCl, added 

dropwise.  The solvent was removed and the product was stirred in H2O.  The precipitate was 

collected by vacuum filtration to give 6 in quantitative yield.  1H NMR (MeOD, 400 MHz) δ 

8.53 (s, 2H), 8.37 (s, 1H), 7.40-7.20 (m, 20H), 6.93 (s, 2H), 6.91 (s, 2H), 6.76 (d, 2H), 5.03 

(s, 8H), 3.54 (t, 4H), 2.81 (t, 4H); 13C NMR (CDCl3, 100 MHz) δ 169.2, 164.9, 150.4, 148.9, 

138.9, 138.8, 136.3, 134.3, 131.9, 129.8, 129.5, 128.9 128.8, 123.1, 117.2, 116.9, 72.7, 72.5, 

42.8, 37.0; MALDI-MS: [M+Na]+, m/z 863.4 (calcd 864.0). 

 

Scheme. 4.8   3,5-bis(3,4-bis(benzyloxy)phenethylcarbamoyl)benzoic acid (6) synthesis. 
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4.4.10 Synthesis of benzyl 6-(N3,N5-bis(3,4-bis(benzyloxy)phenethyl)benzene-1,3,5-

tricarboxamido)-2-(bis(((benzyloxy)carbonyl)methyl)amino)hexanoate (7) 

A mixture of Bn-NTA-lys-TFA (0.060 g, 0.071 mmol), 6 (0.075 g, 0.142 mmol), and 

HOBt (0.010 g, 0.074 mmol) was stirred in 3 mL anhydrous DMF for 5 minutes.  

Dicyclohexylcarbodiimide (0.015 g, 0.073 mmol) was added and the mixture was allowed to 

stir overnight.  The solvents were removed under reduced pressure.  The product 7 was 

isolated with silica gel flash column chromatography (ethyl acetate/hexanes, 3/2 v/v; Rf = 

0.4).  Yield: 0.094 g (97.7%). 1H NMR (CDCl3, 400 MHz) δ 8.43 (s, 1H), 8.41 (s, 2H), 7.50-

7.26 (m, 40H), 7.04 (s, 3H), 6.87 (s, 1H), 6.85 (d, 1H), 6.72 (d, 1H), 5.12 (s, 8H), 5.07 (s, 

8H), 3.74 (s, 8H), 3.59 (t, 2H), 3.51 (t, 2H), 3.35 (t, 4H), 2.79 (t, 2H), 1.75-1.28 (m, 12H); 

13C NMR (CDCl3, 100 MHz) δ 172.5, 171.5, 165.9, 148.9, 147.6, 137.2, 137.1, 135.3, 132.0, 

128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.4, 127.3, 121.5, 115.7, 115.2, 71.3, 66.5, 66.4, 

64.0, 52.8, 41.5, 39.9, 35.0, 27.9, 25.5, 24.8; MALDI-MS: [M+H]+, m/z 1356.4 (calcd 

1355.6); [M+Na]+, m/z 1378.0 (calcd 1378.6); [M+K]+, m/z 1393.9 (calcd 1394.7).  

 

Scheme 4.9 Benzyl 6-(N3,N5-bis(3,4-bis(benzyloxy)phenethyl)benzene-1,3,5-
tricarboxamido)-2-(bis(((benzyloxy)carbonyl)methyl)amino)hexanoate  (7) synthesis. 
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4.4.11 Synthesis of 6-(N3,N5-bis(3,4-dihydroxyphenethyl)benzene-1,3,5-tricarboxamido)-

2-(bis(carboxymethyl)amino)hexanoic acid (8) 

To a solution 7 (0.094 g, 0.069 mmol) in of 5 mL of MeOH and 10 mL of CHCl3 was 

added 20 mg Pd/C (10%).  The mixture was placed in a Parr reactor bottle and rocked for 24 

hours at 60 psi H2.  Upon complete deprotection, the catalyst was filtered off using Celite and 

the solvents were removed under reduced pressure.  8 was purified by recrystallization in 

MeOH/CH2Cl2 in a quantitative yield.  1H NMR (MeOD, 400 MHz) δ 8.34 (s, 3H), 6.69 (s, 

2H), 6.67 (s, 2H), 6.56 (d, 2H), 3.64 (t, 4H), 3.60 (t, 1H), 3.33 (s, 4H), 3.29 (t, 2H), 2.77 (t, 

4H), 1.90-1.50 (m, 4H), 1.27 (p, 2H); 13C NMR (CDCl3, 100 MHz) δ; 175.3, 174.1, 168.5, 

146.1, 144.7, 136.6, 132.0, 129.4, 121.1, 117.0, 116.4, 68.2, 55.1, 43.1, 40.3, 35.9, 26.4, 25.9, 

23.6.  MALDI-MS: [M+H]+, m/z 724.8 (calcd 725.7); [M+Na]+, m/z 746.8 (calcd 747.7). 

 

Scheme 4.10  6-(N3,N5-bis(3,4-dihydroxyphenethyl)benzene-1,3,5-tricarboxamido)-2-
(bis(carboxymethyl)amino)hexanoic acid (8) synthesis. 
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4.4.12 Surface modification of iron oxide nanoparticles with bis-NTA-derived Ni(II) 

chelate and mono-NTA-derived Ni(II) chelate 

The ligand 4 (0.5 mL of a 10 mg/mL MeOH solution) was placed in 1.25 mL dH2O 

of pH 4.  To this aqueous solution was added 1 mL of iron oxide nanoparticles in n-hexanes 

(16.3 mg/mL).  The two layers were sonicated for 1 hour, and repeatedly washed with n-

hexanes, then methanol until the nanoparticles were readily dispersed in dH2O.  Using a 

magnet, the nanoparticles were collected and placed in 2 mL of dH2O.  The bis-NTA-pendant 

ligand-immobilized nanoparticles (0.5 mL) were placed in 2M NiCl2 solution and sonicated 

for 1 hour.  The Ni(II)-loaded nanoparticles were stored in the NiCl2 solution before use.  

Iron oxide nanoparticle modified with mono-NTA Ni(II)-loaded nanoparticles were similarly 

prepared.   

 

Scheme 4.11 Surface modification of iron oxide nanoparticles with bis-NTA-derived Ni(II) 
chelate. 
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4.4.13 Preparation of Ni(II)-loaded magnetic microparticles 

An aliquot of 0.5 mL (2.4 μmol carboxyl) BioMag Carboxyl magnetic iron oxide 

microparticles (~1.5 μm mean diameter, ~20 mg/mL particle concentration, ~4.8 μmol/mL 

carboxy-surface titration, Bang’s Lab) was washed with dH2O (3×500 μL), then with acetone 

(3×500 μL).  Aliquots of N-hydroxysuccinimide (NHS) (25 μL, 30 mg/mL acetone) and 

dicyclohexylcarbodiimide (50 μL, 50 mg/mL acetone) were added and incubated overnight.  

The NHS-activated particles were washed with acetone and used without further purification. 

A 240 μM solution of Nα,Nα-bis(carboxymethyl)-L-lysine was prepared by dissolving 

0.629 mg Nα,Nα-bis(carboxymethyl)-L-lysine in 35 μL of triethylamine, 500 μL of acetone, 

and 500 μL of dH2O.  The NHS-activated microparticles were washed with dH2O, then 

placed in 100 μL of the Nα,Nα-bis(carboxymethyl)-L-lysine solution.  After overnight 

incubation, the particles were washed with dH2O.  The particles were placed in a 1M NiCl2 

solution for 1 hour before use. 

 

4.4.14 Isolation of recombinant mouse His×6-Endostatin (His×6-rmES) with Ni(II)-

loaded nanoparticles 

The Ni(II)-loaded nanoparticles (7-10 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and a binding buffer (3×50 μL; 50 mM phosphate buffer system, 300 mM NaCl, 10 mM 

imidazole, pH 8.0).  The washed nanoparticles were incubated with 10 μg of His×6-rmES in 

40 μL of binding buffer for 5-60 minutes at 4 °C.  Using a centrifuge and magnet, the 

supernatant was collected and nanoparticles washed in 50 μL aliquots of binding buffer (FT: 

Flow Through, W1: Wash 1, W2: Wash 2, W3: Wash 3).  After the third wash, 50 μL of the 
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elution buffer (50 mM phosphate buffer system, 300 mM NaCl, 250 mM imidazole, pH 8.0) 

was added and the mixture tumbled for 10 minutes at 4 °C.  The eluents were similarly 

collected by centrifugation and magnetic immobilization (E1: Elution 1, E2: Elution 2).  

Non-specifically bound protein was released from the nanoparticles by boiling at 95 °C for 4 

minutes in a Laemmli SDS-PAGE gel loading buffer.  The volumes of the aliquots were 

reduced in a Speedvac before loading to an SDS-PAGE (12.5%, 180V, 50 min).  After 

separation, the SDS-PAGE gel was stained in a Coomassie Blue solution (0.1% Coomassie 

blue, 10% acetic acid, 40% methanol) overnight.  Recombinant human His×6-ubiquitin 

(His×6-Ub) and recombinant mouse His×6-ubiquitin C-terminal hydrolase L-1 (His×6-UCH-

L1) were isolated with Ni(II)-loaded nanoparticles in the same fashion. Protein isolation by 

commercial magnetic agarose beads was performed according to the manufacturer’s 

instructions (Qiagen). 
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Scheme 4.12 General scheme for bis-NTA nanoparticle protein purification system 

 

 

 

4.4.15 Isolation of His×6-rmES by Ni(II)-loaded microparticles 

The Ni(II)-loaded microparticles (10 μL, 20mg/mL) were washed in dH2O (3x50 μL) 

and binding buffer (3 x 50 μL).  The washed microparticles were incubated with 10 μg of 

His×6-rmES in 40 μL of binding buffer for 60 minutes at 4 °C.  The beads were washed and 

the bound protein eluted similarly. All the fractions were loaded to an SDS-PAGE for 

analysis as previously described. 

 

4.4.16 Expression of [35S]-methionine-labeled His×6-GMAP-210 

The gene coding a 70 kDa fragment of GMAP-210 (Golgi-associated microtubule-

binding protein) was PCR-amplified from a human total RNA library (Stratagene). After 
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introducing the T7 promoter and TMV 5’-UTR by second PCR, the cDNA was used as 

template for a coupled in vitro transcription/translation (TNT) reaction in the presence of 10 

µCi [35S]-methionine (Perkin-Elmer) in a total volume of 25 µL for 90 minutes at 30 °C. 

Protein synthesis was confirmed by SDS-PAGE and autoradiography. The protein was stored 

at –80 °C until used. 

 
Hisx6-GMAP-210 Properties: 
 
Protein Sequence: 
 
10 20 30 40 50 
MQLLFTITME KGEIEAELCW AKKRLLEEAN KYEKTIEELS NARNLNTSAL 
60 70 80 90 100 
QLEHEHLIKL NQKKDMEIAE LKKNIEQMDT DHKETKDVLS SSLEEQKQLT 
110 120 130 140 150 
QLINKKEIFI EKLKERSSKL QEELDKYSQA LRKNEILRQT IEEKDRSLGS 
160 170 180 190 200 
MKEENNHLQE ELERLREEQS RTAPVADPKT LDSVTELASE VSQLNTIKEH 
210 220 230 240 250 
LEEEIKHHQK IIEDQNQSKM QLLQSLQEQK KEMDEFRYQH EQMNATHTQL 
260 270 280 290 300 
FLEKDEEIKS LQKTIEQIKT QLHEERQDIQ TDNSDIFQET KVQSLNIENG 
310 320 330 340 350 
SEKHDLSKAE TERLVKGIKE RELEIKLLNE KNISLTKQID QLSKDEVGKL 
360 370 380 390 400 
TQIIQQKDLE IQALHARISS TSHTQDVVYL QQQLQAYAME REKVFAVLNE 
410 420 430 440 450 
KTRENSHLKT EYHKMMDIVA AKEAALIKLQ DENKKLSTRF ESSGQDMFRE 
460 470 480 490 500 
TIQNLSRIIR EKDIEIDALS QKCQTLLAVL QTSSTGNEAG GVNSHQFEEL 
510 520 530 540 550 
LQERDKLKQQ VKKMEEWKQQ VMTTVQNMQH ESAQLQEELH QLQAQVLVDS 
560 570 580 590 600 
DNNSKLQVDY TGLIQSYEQN ETKLKNFGQE LAQVQHSIGQ LCNTKDLLLG 
610 620 630 640  
KLDIISPQLS SASLLTPQSA ECLRASKSEV LSEHHHHHH_    
 
Number of amino acids: 639 
 
Molecular weight: 74406.8 
 
Theoretical pI: 5.43 
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4.4.17 Isolation of [35S]-methionine-labeled His×6-GMAP-210 with Ni(II)-loaded 

nanoparticles 

The Ni(II)-loaded nanoparticles (10 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and binding buffer (3×50 μL).  The washed nanoparticles were incubated with 5 μL of 

TNT reaction mixture in 100 μL of binding buffer for 60 minutes at 4 °C.  The nanoparticles 

were washed and the bound protein eluted according to the procedures detailed above. All 

the fractions including the remaining nanoparticles were transferred to scintillation vials for 

radioactivity measurements using a liquid scintillation counter.  Protein isolation using 

commercial magnetic agarose beads (Qiagen) was performed according to the manufacturer’s 

instructions, and scintillation counts were measured as mentioned above. 

 

4.4.18 Expression of His×6-UGT from cultured 293T cells 

The cDNA corresponding to the open reading frame of C. elegans UGT was 

amplified from a C. elegans cDNA library (Invitrogen) using high fidelity Platinum Pfx DNA 

polymerase (Invitrogen) and sequence-specific primers with CACC at the 5’ end of the 

forward primer. The full-length cDNA was gel purified and subcloned into the 

pcDNA3.1D/V5-His TOPO vector (Invitrogen) according to the manufacturer’s instructions. 

The resulting gene-containing plasmid was confirmed by PCR and sequence analysis. 

293T cells were cultured in Dulbecco’s Minimal Essential Media (DMEM, Gibco) 

supplemented with 10% Fetal Bovine Serum (FBS, Sigma), 1% L-glutamate (Gibco), and 

1% Penicillin/Streptomycin.  Cell culture was maintained at 37 °C with 5% CO2. On the day 

of transfection, the pre-formed UGT plasmid DNA-Lipofectamine complex (500 µL) was 

added directly to each well.  Cells were incubated at 37 °C in 5% CO2 for 4 hours. 
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Afterwards, the media was changed and 2 mL of fresh DMEM (with 10% FBS and 1% L-

glutamate) was added.  After incubation at 37 °C in a 5% CO2 incubator for a total of 24 

hours to allow protein expression, cells were harvested and lysed using a commercial 

extraction buffer (Biovision).  Intact cells were removed by centrifugation and the 

supernatants were cleared at 21,000×g for 15 minutes at 4 °C. Levels of protein expression 

were assessed by separation on SDS-PAGE gels, followed by Western blotting onto 

nitrocellulose membranes (Amersham Pharmacia), and probing with anti-V5 antibody 

(Invitrogen). The lysates that were prepared were used for binding studies. 

 
C. elegans UGT (C-HisX6-tagged) properties: 

10 20 30 40 50 
MLLRILTFLA VCQVTTSHKI LMFSPTASKS HMISQGRIAD ELANAGHEVV 
60 70 80 90 100 
NFEPDFLNLT DKFVPCKKCR RWPVTGLNNY KFKKIQNGLS GDVFQQSSIW 
110 120 130 140 150 
SKIFNTDSDP YQDEYTNMCE EMVTNKELIE KLKKEKFDAY FGEQIHLCGM 
160 170 180 190 200 
GLAHLIGIKH RFWIASCTMS VSMRDSLGIP TPSSLIPFMS TLDATPAPFW 
210 220 230 240 250 
QRAKNFVLQM AHIRDEYRDV VLTNDMFKKN FGSDFPCVEF LAKTSDLIFV 
260 270 280 290 300 
STDELLEIQA PTLSNVVHIG GLGLSSEGGG LDEKFVKIME KGKGVILFSL 
310 320 330 340 350 
GTIANTTNLP PTIMENLMKI TQKFKDYEFI IKVDKFDRRS FDLAEGLSNV 
360 370 380 390 400 
LVVDWVPQTA VLAHPRLKAF ITHAGYNSLM ESAYAGVPVI LIPFMFDQPR 
410 420 430 440 450 
NGRSVERKGW GILRDRFQLI KDPDAIEGAI KEILVNPTYQ EKANRLKKLM 
460 470 480 490 500 
RSKPQSASER LVKMTNWVLE NDGVEELQYE GKHMDFFTFY NLDIIITAAS 
510 520 530 540 550 
IPVLIFIVLR ISNISIITSS PKNKKDKGQD NSADIQHSGG RSSLEGPRFE 
560 570    
GKPIPNPLLG LDSTRTGHHH HHH   
 
Molecular weight: 64722.7 daltons 

Theoretical PI: 8.03 
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4.4.19 Isolation of His×6-UGT from cultured 293T cells using Ni(II)-loaded 

nanoparticles 

To purify the His×6-UGT expressed in 293T cells, the pre-washed, Ni(II)-loaded 

nanoparticles (10 μL; 16.3 mg/mL) were incubated with 50 μL of cleared crude cell lysate 

(~4 μg/μL total protein) in 50 μL of binding buffer for 15 minutes at 4 °C.  After washing 

nanoparticles three times using 50 μL of binding buffer, the bound proteins were eluted using 

15 μL of elution buffer. Aliquots of each fraction were loaded to an SDS-PAGE for 

separation. The protein was detected by Coomassie blue staining. 

 

4.4.20 Iron oxide nanoparticle surface modification with mono-NTA Ni(II) chelate 

One mL of iron oxide magnetic nanoparticles suspension (16.3 mg/mL) was added to 

ligand 8 (0.5 mL of a 10 mg/mL MeOH solution diluted by 1.25 mL dH2O of pH 4).  The 

two layers were sonicated for 1 hour, and repeatedly washed with n-hexanes, then methanol 

until the nanoparticles were readily dispersed in dH2O.  Using a magnet, the nanoparticles 

were collected and placed in 2 mL of dH2O.  The mono-NTA modified nanoparticles (0.5 

mL) were placed in 1M NiCl2 solution and sonicated for 1 hour.  The divalent Ni(II)-loaded 

nanoparticles were stored in the NiCl2 solution before use. 

 

4.4.21 Isolation of His-Ubiquitin C-terminal Hydrolase L-1, mouse recombinant (6xHis-

UCH-L1) with Ni(II)-loaded nanoparticles 

The Ni(II)-loaded nanoparticles (10 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and wash buffer (3×50 μL; 50 mM phosphate buffer system, 300 mM NaCl, 10 mM 

imidazole, pH 8.0).  The washed nanoparticles were placed in 40 μL of wash buffer and 10 
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μL of 6xHis-UCH-L1 (1 μg 6xHis-UCH-L1/1 μL dH2O) and incubated for 60 minutes at 4 

°C.  Using a centrifuge and magnet, the supernatant was collected and nanoparticles washed 

in 50 μL aliquots (FT, W1, W2, W3).  After W3, 50 μL of elution buffer (50 mM phosphate 

buffer system, 300 mM NaCl, 250 mM imidazole, pH 8.0) was added and rotated for 10 

minutes at 4 °C.  Nanoparticles were collected in 50 μL aliquots (E1, E2).  Nonspecifically 

bound protein was released from the nanoparticles by boiling at 95 °C for 4 minutes.  The 

volumes of the aliquots were reduced for analysis by SDS-PAGE (12.5% separation gel, 

180V, 50 min).  The SDS-PAGE gel was stained using Coomassie Blue overnight. 

 

4.4.22 Isolation of His-Ubiquitin, human recombinant (6xHis-Ub) with Ni(II)-loaded 

nanoparticles 

The Ni(II)-loaded nanoparticles (10 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and wash buffer (3×50 μL; 50 mM phosphate buffer system, 300 mM NaCl, 10 mM 

imidazole, pH 8.0).  The washed nanoparticles were placed in 40 uL of wash buffer and 10 

uL of 6xHis-Ub (1 μg 6xHis-Ub/1 μL dH2O) and incubated for 60 minutes at 4 °C.  Using a 

centrifuge and magnet, the supernatant was collected and nanoparticles washed in 50 μL 

aliquots (FT, W1, W2, W3).  After W3, 50 μL of elution buffer (50 mM phosphate buffer 

system, 300 mM NaCl, 250 mM imidazole, pH 8.0) was added and rotated for 10 minutes at 

4 °C.  Nanoparticles were collected in 50 μL aliquots (E1, E2).  Non-specifically bound 

protein was released from the nanoparticles by boiling at 95 °C for 4 minutes.  The volumes 

of the aliquots were reduced for analysis by SDS-PAGE (12.5% separation gel, 180V, 50 

min).  The SDS-PAGE gel was stained using Coomassie Blue overnight.   
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4.4.23 Isolation of Endoproteinase GluC, (6xHis-EndoGluC) with Ni(II)-loaded 

nanoparticles 

The Ni(II)-loaded nanoparticles (10 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and wash buffer (3×50 μL; 50 mM phosphate buffer system, 300 mM NaCl, 10 mM 

imidazole, pH 8.0).  The washed nanoparticles were placed in 40 μL of wash buffer and 20 

μL of 6xHis-EndoGluC (1 μg 6xHis-EndoGluC/2 μL dH2O) and incubated for 60 minutes at 

4°C.  Using a centrifuge and magnet, the supernatant was collected and nanoparticles washed 

in 50 μL aliquots (FT, W1, W2, W3).  After W3, 50 μL of elution buffer (50 mM phosphate 

buffer system, 300 mM NaCl, 250 mM imidazole, pH 8.0) was added and rotated for 10 

minutes at 4 °C.  Nanoparticles were collected 50 μL aliquots (E1, E2).  Non-specifically 

bound protein was released from the nanoparticles by boiling at 95 °C for 4 minutes.  The 

volumes of the aliquots were reduced for analysis by SDS-PAGE (12.5% separation gel, 

180V, 50 min).  The SDS-PAGE gel was stained using Coomassie Blue overnight.   

 

4.4.24 Isolation of human recombinant His×6-caspase 3 (His×6-huCsp3) with Ni(II)-

loaded nanoparticles 

 The Ni(II)-loaded nanoparticles (1 μL; 16.3 mg/mL) were washed in dH2O (3×50 

μL) and wash buffer (3×50 μL; 50 mM phosphate buffer system, 300 mM NaCl, 10 mM 

imidazole, pH 8.0).  The washed nanoparticles were placed in 45 uL of wash buffer and 5 uL 

of 6xHis-huCsp3 (1X) and incubated for 60 minutes at 4 °C.  Using a centrifuge and magnet, 

the supernatant was collected and nanoparticles washed in 50 μL aliquots (FT, W1, W2, 

W3).  After W3, 50 μL of elution buffer (50 mM phosphate buffer system, 300 mM NaCl, 

250 mM imidazole, pH 8.0) was added and rotated for 10 minutes at 4°C.  Nanoparticles 
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were collected in 50 μL aliquots (E1, E2).  Non-specifically bound protein was released from 

the nanoparticles by boiling at 95 °C for 4 minutes.  Aliquots are analyzed by SDS-PAGE 

(12.5% separation gel, 180V, 50 min).  The SDS-PAGE gel was stained by silver staining. 

 

4.4.25 Activity Assay of human recombinant His×6-caspase 3 (His×6-huCsp3) eluted 

from Ni(II)-loaded nanoparticles 

 Eluted protein activity was measured using a commercially available (Biovision) 

caspase 3 fluorometric substrate.  Nanoparticle eluted His×6-caspase 3 (10 μL from 50 μL 

eluted volume) was incubated with 50 μM DEVD-AFC (Asp-Glu-Val-Asp-AFC) substrate in 

provided reaction buffer (50 μL) containing 10 mM DTT.  Multi-well fluorescence plate 

reader was set for excitation at 400 nm and emission at 505 nm and incubation temperature 

of 37ºC.   

 

4.4.26 Activity Assay of recombinant mouse His×6-Endostatin (His×6-rmES) eluted 

from Ni(II)-loaded nanoparticles 

A previously published protocol is used to determine apoptotic activity of eluted 

Hisx6-rmES.18  Briefly, cow pulmonary artery endothelial (C-PAE) cells are maintained in 

DMEM containing 2% FCS and 3 ng/mL bFGF.  Cells are treated with Hisx6-rmES directly 

eluted from Ni(II)-loaded nanoparticles (10 μg/mL).  As a negative control, cells are treated 

with an equivalent volume of elution buffer.  Cells are collected by trypsinization and 

washed twice with cold phosphate buffered saline (pH 7.4) before resuspension in binding 

buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2).  Cells are incubated with 
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Annexin V-PE per manufacturer’s protocol.  Stained cells are analyzed using confocal 

fluorescence microscopy. 
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