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ABSTRACT

BRETT MATSUMOTO: Estimating Models of Learning in Individual Decision making with an
Application to Youth Smoking.

(Under the direction of Donna Gilleskie)

In the first chapter of my dissertation, I examine the dynamics of youth smoking behavior using

a model of rational addiction with learning. Individuals in the model face uncertainty regarding the

parameters that determine their utility from smoking. Through experimentation, individuals learn

about how much they enjoy smoking cigarettes as well as the effects of reinforcement, tolerance, and

withdrawal. The addition of learning to the dynamic optimization problem of adolescents provides

an explanation for the experimentation of the non-smoker. I estimate the parameters of the model

using data from the National Longitudinal Survey of Youth 1997 and compare the overall fit of the

model to the model without learning. The estimated model is also used to analyze the effect of

cigarette taxes and anti-smoking policies. I find that the model with learning is better able to fit the

observed data and that cigarette taxes are not only effective in reducing the level of youth smoking,

but can even increase welfare for some individuals.

In the second chapter (with Jonathan James), we show how the conditional choice probability

(CCP) estimation procedure of Arcidiacono and Miller (2011) can be extended to feasibly estimate

structural learning models. Although the focus of the paper is the specific application to learning

models, the procedure could be used to estimate any model with continuous unobserved hetero-

geneity. Monte-Carlo simulations show that the CCP method can provide significant computational

savings relative to Simulated Maximum Likelihood.

In the third chapter (with Forrest Spence), we investigate whether an individual’s subjective price

beliefs reflect the empirical distribution of prices and whether an individual learns about features of

the price distribution through experience in the market. We use data on subjective price beliefs from

a survey of 1,224 college students, and find that inexperienced individuals tend to expect online
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prices to be higher than what is observed empirically. However, consumers with more experience in

the marketplace generally have more accurate beliefs about the price distribution, which is consistent

with learning.
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CHAPTER 1

EXPLAINING YOUTH SMOKING INITIATION IN THE CONTEXT OF A RATIONAL
ADDITION MODEL WITH LEARNING

1.1 Introduction

Despite its historically low level in the U.S., cigarette smoking remains a major public health

concern. The Surgeon General estimates that tobacco use causes approximately 480,000 deaths per

year in the United States and is estimated to cause between $289-332.5 billion in economic costs

(USDHHS 2013).1 Tobacco use is the leading preventable cause of death, yet people continue to

smoke despite the high level of public awareness of its adverse health effects. Because cigarettes

are addictive, it may be easier to discourage smoking initiation than to encourage smoking cessa-

tion. Also, cigarette manufacturers have historically targeted their advertisements to young people

in the hopes of cultivating lifelong customers. Among adults who become daily smokers, approxi-

mately 90 percent smoke for the first time before age 18 (USDHHS 2012). For these reasons, policy

interventions aimed at reducing the level of smoking in the population often target young people.

The decision to engage in a harmful addictive behavior, such as smoking, seemingly presents

a problem for standard economic models. Consuming a harmful addictive substance would be an

irrational act for a forward-looking utility-maximizing agent. The Rational Addiction (RA) model

of Becker and Murphy (1988) shows that consumption of an addictive substance can be explained

using the standard economic framework. Their explanation of addictive behavior centers around the

concept that past utilization of addictive goods impacts current utility from consumption of these

goods. A major criticism of the Becker and Murphy model is the implication that individuals are

always acting optimally, so addicts do not regret their decision to consume the addictive good. In

1Economic costs include direct medical costs in addition to the lost productivity attributable to smoking related
illnesses. Estimates are for the years 2009-2012.



their model addiction is not a problem or even an undesirable outcome, so there is no place for policy

intervention to treat or prevent addiction. Empirical evidence suggests that many individuals regret

their decision to smoke. Approximately 70% of adult smokers wish to quit smoking entirely and

over half have attempted to quit smoking in the past year (NHIS, 2010).

Another limitation of the RA model as a model of youth smoking behavior is that it treats smok-

ing initiation as exogenous. In this paper, I extend the RA model so that it is better able to explain the

individual’s smoking initiation decision. Specifically, I relax the assumption of perfect information

in the RA model by incorporating learning about one’s preferences. The parameters that determine

the utility one receives from smoking are initially unknown, but the individual has beliefs about their

true value. As an individual experiments with smoking, he receives utility signals and updates his

beliefs. The addition of uncertainty and learning to the optimization problem of adolescents pro-

vides an explanation for the experimentation of the non-smoker and allows for the possibility that

an individual who starts to smoke may later regret that decision. Therefore, policies that prevent an

individual from experimenting with cigarettes may be welfare improving as the individual would be

prevented from making a decision he may later regret.

The main purpose of this paper is to quantify the effectiveness of anti-smoking policies and to

evaluate the resulting impact on individual welfare. In order to do this, I recover the policy-invariant

utility function parameters of a rational addiction model with learning by fitting a dynamic discrete

choice model of optimal smoking decision making to the observed data. As the first attempt to

estimate the structural parameters of a rational addiction model with learning about preferences, this

research allows for empirical testing of the perfect information assumption in the RA model (i.e., the

assumption that individuals know their utility function parameters). I estimate the model parameters

using the National Longitudinal Survey of Youth 1997 (NLSY97).

Estimation of the parameters of a dynamic discrete choice model is generally computationally

intensive as each iteration over the parameter space requires re-solving the dynamic optimization

problem. The inclusion of uncertainty and learning over multiple parameters further complicates

estimation of the model. To circumvent these computational issues, I use the Expectation Maxi-

mization (EM) algorithm in conjunction with Conditional Choice Probability (CCP) estimation and

2



Monte Carlo simulation to estimate the model parameters. The estimation procedure provides a sig-

nificant computational advantage, which allows for the estimation of a more complex model than is

feasible using full-solution techniques.

Preliminary estimation results demonstrate that allowing for uncertainty and learning in a dy-

namic model of youth smoking significantly improves the overall fit of the model. Results from

counterfactual policy simulations suggest that policies that impact individuals’ initial beliefs about

their utility function parameters are effective in reducing youth smoking. Taxes are also shown to

be effective in reducing the level of smoking. The estimated model predicts that a doubling of the

price of cigarettes would reduce the prevalence of youth smoking by 12.3% and adult smoking by

12.6%. An increase in the legal purchasing age from 18 to 19 years old would decrease youth smok-

ing by 21.7%. However, there would be no effect on adult smokers as the higher legal purchasing

age would only cause a delay in smoking initiation. The results of the welfare analysis show that

increasing cigarette taxes would only lead to a relatively small loss in total welfare as the welfare

gains to keeping those who would later regret the decision to smoke from starting to smoke offset

the loss of welfare from smokers having to pay a higher price for cigarettes.

The remainder of the paper proceeds as follows: Section 2 reviews the related literature. Section

3 presents the model. Section 4 discusses the data. Section 5 develops the estimation routine. The

estimation results are presented in section 6, and section 7 concludes.

1.2 Related Literature

Becker and Murphy (1988) developed the RA model to show that seemingly irrational behavior

could be explained using a standard economic framework of a forward-looking utility-maximizing

agent. The model’s welfare implications have caused many to abandon the general framework of the

RA model and to develop “irrational” models to explain the time inconsistency of addictive behavior.

These alternative theoretical models generally feature dual-states of the world or individuals with

dual-selves.2 Addiction results when an individual is in an addictive state of the world or if the

behavior of the individual is being controlled by the self that is more prone to addiction.

2Papers that use the dual-state approach include Winston (1980) and Bernheim and Rangel (2004). Papers that use
the dual-self approach include Thaler and Shefrin (1981) and Benabou and Tirole (2004).
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Other models of the consumption of addictive goods generate time-inconsistent behavior by de-

viating from the standard assumptions regarding how future utility is discounted. The simplest devia-

tion is the myopic model. A myopic individual completely discounts future utility and only considers

the current period’s utility when making decisions. Other deviations from the standard assumptions

regarding time preferences include an endogenous discount factor (Orphanides and Zervos 1998) or

hyperbolic discounting (Gruber and Koszegi 2001). Finally, Orphanides and Zervos (1995) argue

that the problem with the RA model is not the assumption of a rational, forward-looking agent but

the assumption of perfect information. An individual in their model can be one of two types (addict

or not an addict). The individual learns which type he is if he consumes the addictive good. The

model estimated in this paper is an extension of the theoretical model proposed by Orphanides and

Zervos (1995).

The RA model assumes that individuals are forward-looking, and there have been many studies

that attempt to test the validity of this assumption empirically in the context of consumer demand

for an addictive good. The evidence is generally consistent with forward looking behavior (Becker,

Grossman, and Murphy 1994; Chaloupka 1991).3 One of the limitations of the empirical addiction

literature is that papers primarily attempt to compare the rational addiction model to the myopic

model. No work (of which the author is aware) has been done to estimate alternative models or

to empirically test the other assumptions of the RA model. Most of the literature involves reduced

form estimation, but a few papers have estimated the structural parameters of an addiction model

(Arcidiacono, Sieg, and Sloan 2007; Choo 2000; Gordon and Sun 2009; Darden 2011).4

Much of the analysis in the economics literature of policy interventions on youth smoking has

focused on cigarette taxes. The rational addiction framework implies that individuals who are not

currently consuming the addictive good should be more responsive to changes in the price of that

good than current users. Many studies have found a significant effect of taxes on smoking initiation.

Some studies, however, have found that cigarette taxes have little to no significant effect on youth

3See Chaloupka and Warner (2000) for a thorough summary of the empirical literature.

4There is a learning component to the life-cycle model of Darden (2011), but the learning is over the health effects of
smoking. Individuals are assumed to know their preferences (i.e., utility function parameters).
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smoking initiation (DeCicca, Kenkel, and Mathios 2002; DeCicca, Kenkel, Mathios, Shin, and Lim

2008; Emery, White, and Pierce 2001). Importantly, some of the studies in this literature find that

nonsmokers are more price sensitive than smokers while also controlling for unobserved heterogene-

ity (Fletcher, Deb, and Sindelar 2009; Gilleskie and Strumpf 2005). Finally, some studies have found

that taxes merely delay smoking initiation rather than prevent people from becoming smokers (Glied

2002). There have been fewer papers that examine the effect of other anti-smoking policies on youth

smoking and the results have been mixed (Tworek, Yamaguchi, Dloska, Emery, Barker, Giovino,

O’Malley, and Chaloupka 2010).5

One of the main applications of learning models in economics is in the area of consumer learn-

ing from experience goods (Erdem and Keane 1996; Ackerberg 2003).6 These models estimate the

learning process involved when consumers purchase unfamiliar goods. The consumer learns about

the utility he receives from consuming these goods and updates his beliefs each time the good is

consumed. This paper fits into the structural learning literature because the utility that the individual

receives from consuming an addictive good is initially unknown and is learned over time if the indi-

vidual consumes the addictive good. This paper extends the standard models used by incorporating

the unique features of consuming an addictive good.

1.3 Model

This section sets up the individual’s decision problem regarding optimal smoking behavior. An

individual receives utility from consuming cigarettes as well as the consumption of other goods. In

order to incorporate the features of consuming an addictive good, the individual’s utility in the cur-

rent period also depends on past levels of smoking in a manner consistent with the scientific literature

on addiction (Laviolette and van der Kooy 2004; Nestler and Aghajanain 1997). Past consumption

of the addictive good affects current utility through reinforcement, which occurs when the marginal

utility of smoking is increasing in the level of past smoking. As the body becomes accustomed to

consuming an addictive substance, larger quantities of the substance must be consumed to achieve

5For an overview of the effectiveness of anti-smoking legislation in general, see Goel and Nelson (2006).

6See Ching, Erdem, and Keane (2011) for an overview of the empirical economic applications of learning models.
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a similar effect. This physical transition is referred to as developing tolerance. Habitual use of an

addictive good also generates physical dependence. As a result, the individual experiences adverse

effects from attempting to lower the level of consumption of the addictive good. This transition

may result in a withdrawal effect. Withdrawal is modeled as an asymmetric adjustment cost, i.e.

a cost associated with decreasing the amount consumed.7 These effects are parameterized in the

model (ρ, τ , and ω for reinforcement, tolerance, and withdrawal respectively), the magnitude of

these effects depends on the level of past smoking, and these parameters vary across individuals.

For certain combinations of these individual specific parameter values, the combined effect of re-

inforcement, tolerance, and withdrawal generates adjacent complementarity in the consumption of

cigarettes. Adjacent complementarity, which Becker and Murphy (1988) use as the defining charac-

teristic of addiction, occurs when current consumption of a good is increasing in past consumption.

1.3.1 Utility

Each year, individual n makes an annual smoking decision and chooses his level of smoking

from a discrete set of alternatives, aj ∈ {a1, a2, . . . , aJ}, which reflect the average daily cigarette

consumption during the year. The decision not to smoke is represented by the level of smoking a1.

The price of a single cigarette in period t is denoted pt. The addictive stock is denoted as Snt and

is defined as the level of smoking in the prior year.8 The contemporaneous utility associated with

alternative j > 1 for individual n at time t if the individual did not smoke in the previous period

(Snt = 0) is:

ujnt =
(
αn + ξjXnt

)
z(aj)− γnptaj + εjn (1.1)

where ε is a vector of independent and identically distributed alternative-specific preference shocks

that follow a Generalized Extreme Value (GEV) distribution. The utility from smoking depends

7This approach of explicitly modeling withdrawal effects as asymmetric adjustment costs to achieve adjacent com-
plementarity in a rational addiction model was developed by Suranovic, Goldfarb, and Leonard (1999).

8This definition of the addictive stock implies full depreciation which is justified by the frequency of the smoking
decision. Future versions of this paper will test whether the parameter estimates of the model change if this assumption
is relaxed.
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upon the individual-specific match parameter αn, demographic variables (Xnt), the level of smok-

ing through the function z(a) (explained below), and the expenditure on smoking (which depends

on both the price of cigarettes and level of smoking). The parameter γn measures the individual’s

sensitivity to the price of cigarettes and is a function of age, work status, and income.9 Addition-

ally, the individual’s demographic variables affect utility by imposing additional costs or benefits on

different levels of smoking. If a variable only affects the utility of smoking versus not smoking and

does not affect the decision of how much to smoke conditional on smoking, then the coefficient ξj

will be constant for j > 1. Variables in this category include the individual’s race or religion. These

variables may affect the social acceptance of smoking within the individual’s culture. Variables that

potentially affect utility differently for different levels of smoking could include whether the indi-

vidual is under 18 years of age or whether the individual has older siblings. These variables were

shown to be significant in the smoking decision of young people in Gilleskie and Strumpf (2005).

If the individual has a positive level of smoking stock (i.e., Snt > 0) then the utility for alternative

j > 1 is:

ujnt =
(
αn + ρng(Snt) + ξjXnt

)
z(aj)− τnSnt − ωnq(aj, Snt)1[aj < Snt]− γnptaj + εjnt (1.2)

The addictive stock affects the marginal utility of smoking through the reinforcement, tolerance, and

withdrawal terms. The reinforcement effect, ρg(S), increases the marginal utility of smoking for

every positive level of smoking. The tolerance effect, τS, enters current period utility for positive

levels of past and current consumption and decreases the utility associated with each positive level of

smoking. The adjustment cost or withdrawal cost, ωq(a, S), only enters the current period’s utility

when the individual reduces his consumption from one period to the next. The utility of not smoking

(j = 1) is normalized to only include the withdrawal term (if Snt > 0) and the preference shock.

The functions z, g, and q have the following properties:

1. z′(a) > 0, z′′(a) < 0, lima→0 z
′(a) <∞

9The utility from consuming one’s entire income in other goods is normalized to zero.
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2. g(0) = 0, g′(Snt) > 0, g′′(Snt) < 0

3. q(aj, Snt) ≥ 0 for all aj ≤ Snt and q(aj, Snt) = 0 if aj = Snt

The assumptions on the function z allow for a corner solution since the marginal utility from smok-

ing is finite when the individual chooses not to smoke. The function q, which is a component of

the withdrawal effect, is also assumed to be increasing in the size of the decrease in smoking from

one period to the next. The functions g and q allow the reinforcement and withdrawal effects to

be nonlinear.10 The Estimation section discusses the specific functional forms used. The individ-

ual’s smoking preference parameters are θn = (αn ρn τn ωn)′. The parameter αn determines the

individual’s match quality for smoking. The parameters ρn, τn, and ωn correspond to the effects of

reinforcement, tolerance and withdrawal, respectively. The parameters in θn vary across individuals

and are jointly normally distributed in the population: θn ∼ N(θ̄,Σ).

1.3.2 Timing

The individual does not initially know the value of his smoking preference parameters (θn). He

makes an annual smoking decision based on his beliefs about the parameters. At the start of the

period, the individual observes prices, government tobacco policies, demographic variables (X),

and the alternative specific preference shock. Then, the individual chooses a level of smoking and

receives a utility signal. The individual uses this signal to update his beliefs at the end of the period.

An individual who has never smoked before the current period faces a sequential smoking de-

cision within the period, where he first decides whether to experiment with smoking before making

a smoking consumption decision for the year. The consumer learning literature generally finds that

learning about match quality occurs relatively quickly. Since it would not take a full year to learn the

match quality parameter α, an individual who has never smoked must first decide whether to exper-

iment with smoking. Let aE denote the level of consumption associated with experimentation. If he

chooses to experiment, he learns his true value of α and proceeds to make a smoking decision for the

rest of the period. If he chooses not to experiment, his smoking consumption for the period is zero

and he will face the experimentation decision again in the next period. In periods after the individual

10The tolerance term could also be allowed to be nonlinear in S.
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experiments, the only decision is about annual smoking consumption. The utility of experimenting

is:

uEnt = (αn + ξEXnt)z(aE)− γptaE + εEnt (1.3)

The utility shock for experimenting is assumed to be from a Type I Extreme Value distribution. For

the sequential decision, individuals observe the preference shock for experimenting at the start of the

period but do not observe the preference shock for the smoking decision until after they experiment.

1.3.3 Beliefs and Learning over the Utility Function Parameters

The individual’s initial prior beliefs are denoted as θn,0 ∼ N(mn,0,Σn,0). Assuming Rational

Expectations, the mean and variance of the individual’s initial prior beliefs equal the population

mean and variance of θ.11

The individual updates his beliefs according to a Bayesian learning process based on the signals

received. After experimenting, the individual learns his true value of α. Without loss of generality,

assume that the individual first experiments with the addictive good in period 0. The initial prior for

the period 0 consumption decision is the initial prior distribution conditional on the realized value

of α. Let mn,0|αn and Σn,0|αn denote the mean and covariance matrix of the initial prior distribution

conditional on α = αn. This conditional distribution becomes the initial prior distribution for the

subsequent learning over the parameters ρ, τ , and ω.

In every period that an individual chooses to smoke, he receives utility signals about the value of

the reinforcement and tolerance parameters. If the individual reduces his level of smoking in period

t from the level in period t − 1, he receives a signal for the withdrawal parameter. For the level of

smoking aj and past smoking {Snl}tl=0, the signals are as follows:

δnt =


(ρn + λnt)1[aj > 0] λnt ∼ i.i.d. N(0,

σ2
λ

aj(1+g(Snt))
)

(τn + ψnt)1[aj > 0] ψnt ∼ i.i.d. N(0,
σ2
ψ

1+Snt
)

(ωn + ηnt)1[aj < Snt] ηnt ∼ i.i.d. N(0,
σ2
η

Snt−aj )

(1.4)

11Some restriction on the initial prior beliefs is required for identification. It may be possible to introduce heterogeneity
in the initial priors by allowing the parameters of the initial prior beliefs to vary by observable characteristics.
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The variation in the observed signal around its true value is assumed to be uncorrelated with the

other parameters. The accuracy of the reinforcement signal is proportional to the quantity consumed

as well as the level of past consumption, which implies that individuals face a trade-off between the

speed of learning and the risk of becoming addicted. The accuracy of the tolerance signal is greater

for higher levels of past consumption, and the accuracy of the withdrawal signal increases with larger

decreases in consumption. The individual uses this utility signal to update his beliefs about his true

parameters. I assume that the individual is able to distinguish between the signals if multiple signals

are received in a given period and that the signal noises are uncorrelated (conditional on aj and Snt).

The individual’s posterior beliefs at the end of period t after choosing a level of smoking equal

to aj (i.e., the individual’s beliefs after receiving the signals associated with the smoking decision)

are:

θn,t+1|α ∼ N(mn,t+1|α,Σn,t+1|α) (1.5)

where

mn,t+1|α = Σ−1
n,t+1|α(Σ−1

n,t+1|αmnt|α + Φ−1
nt δnt) (1.6)

Σn,t+1|α = (Σ−1
nt|α + Φ−1

nt Bnt)
−1 (1.7)

Φ−1
nt =


aj(1+g(Snt))

σ2
λ

0 0

0 1+Snt
σ2
ψ

0

0 0
Snt−aj
σ2
η

 (1.8)

Bnt =


1[aj > 0] 0 0

0 1[aj > 0] 0

0 0 1[aj < Snt]

 (1.9)

Equations (1.6) and (1.7) are the updating equations for the mean and variance of the individual’s

beliefs. The updated mean is a weighted average of the prior mean and the signal, where the weights

are the precision (inverse of the variance) of the prior and the signal. Φ is a diagonal matrix of the

signal precision, and B is a diagonal matrix with indicators for a given signal being received. As

the individual receives more signals, the precision of his beliefs increases. Since the signals are
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unbiased, the individual’s beliefs converge to the true parameter values.

Note that even though the signal noises are uncorrelated, the learning process for each param-

eter is not independent of the learning process for the other parameters. Since the parameters are

correlated in the population and the population covariance matrix is the variance of the individual’s

initial prior beliefs, there is correlation in the learning process among the parameters. Even if the

individual never receives a withdrawal signal, his beliefs about the value of his withdrawal parameter

will change as he receives more information about the value of his other parameters.

1.3.4 Expectation of Future Prices, Policies, and State Variables

There are two components of the retail price of cigarettes: the manufacturer’s price of the product

and state and federal excise taxes. Determinants of the price of the product include the price of

tobacco, production technology, labor costs, and other costs of production and distribution. Since

surveyed individuals are not typically asked about their subjective expectations for future prices,

some assumption must be made for how individuals forecast prices. One possible specification is

to assume that the base component of the price follows a simple stochastic process (e.g., time trend

with an AR(1) error). The justification for this specification is that individuals likely have some idea

as to any time trend in the price as well as some realization that price shocks are persistent over time.

The other component of price, the excise tax, is much more difficult for the individual to forecast

because it is determined by the political system. Specifying how individuals form expectations over

other future tobacco policies presents a similar challenge. Estimates of the model presented in this

work will impose the likely unrealistic assumption of perfect foresight.12

The endogenous state variables include the individual’s beliefs and the addictive stock. The

addictive stock is defined as the prior period’s level of smoking, so the addictive stock evolves de-

terministically conditional on a particular smoking choice. The individual uses his current beliefs

about smoking preferences to evaluate the different smoking alternatives, while taking into account

the potential information that he will receive from each possible choice. The individual also has

12Other possibilities include assuming that the individual expects current tobacco taxes and policies to continue in-
definitely or that individuals form expectations regarding the frequency and magnitude of excise tax changes based upon
recent experience (i.e., a form of adaptive expectations).
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perfect foresight regarding the observed exogenous state variables in X .13

1.3.5 The Individual’s Problem

Each period, the individual chooses a level of smoking that maximizes his expected discounted

lifetime utility given his beliefs and the value of the other state variables. The individual evaluates

his expected discounted lifetime utility using backwards recursion. Let T denote the final period the

individual is observed in the data, and let djnt be an indicator variable that equals one if the individual

selects alternative j in period t. Then the value function in period T is:

VnT (SnT ,mnT ,ΣnT , XnT ) = E
[

max
j

djnT

(
uj(θnT , SnT , XnT )

+ βE[Vn,T+1(Sn,T+1,mn,T+1,Σn,T+1, Xn,T+1, Hn,T+1)|SnT ,mnT ,ΣnT , XnT , d
j
nT = 1]

)]
(1.10)

The continuation value function VT+1 contains an additional state variable H that contains the indi-

vidual’s cumulative smoking history (i.e., total number of years smoked at each level of smoking).14

The cumulative smoking history affects the individual’s utility later in life through potential adverse

health effects of smoking. The expectation over the discounted future value term is taken with re-

spect to the future state variables. Current period utility is the expected utility given the current

period’s prior beliefs. Since the parameters in θ enter the utility function linearly, the expected utility

for the current period is just the utility evaluated using the mean of the individual’s current prior. The

value function for earlier periods can be defined recursively starting from the terminal period value

function:

Vnt(Snt,mnt,Σnt, Xnt) = E
[

max
j

djnt

(
uj(θnt, Snt, Xnt)

+ βE[Vn,t+1(Sn,t+1,mn,t+1,Σn,t+1, Xn,t+1) | Snt,mnt,Σnt, Xnt, d
j
nt = 1]

)]
(1.11)

13For some variables, such as the individual’s age, this assumption is not unrealistic.

14The state variable H is suppressed in the value functions of earlier periods to simplify notation. Although the
cumulative history does not affect utility in earlier periods, it still impacts the individual’s behavior by changing the
discounted expected future lifetime utility in period T.
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If the individual has never smoked prior to period t, the value function for the experimentation

decision is defined as:

V E
nt (mn,0,Σn,0, Xnt) =

max
{
uEnt + Eα[Vnt(mn,0|α,Σn,0|α, 0, Xnt)] , βE[V E

n,t+1(mn,0,Σn,0, Xn,t+1)]
}

(1.12)

The first term inside the max operator is the value from experimenting in the current period. This

term includes the utility from experimenting plus the value of the consumption decision for the cur-

rent period. The value of the consumption decision depends upon a particular realization of α, which

is unknown at the time of the experimentation decision, so the expected value of the consumption

decision is calculated by integrating over potential realizations of α. The second term inside the max

operator is the value associated with not experimenting, which is the discounted expected future

value of the next period’s experimentation decision.

The individual’s problem is to choose the optimal sequence of experimentation and consumption

in order to maximize his discounted lifetime expected utility. In the first period, the individual’s

beliefs are the initial prior beliefs and the individual has no experience with smoking.

1.4 Data

The data used to estimate the structural parameters of the model are from the NLSY97. The first

wave of the survey was conducted in 1997 and included 8,984 individuals who were born between

1980 and 1984 (age at first interview ranged from 12 to 18). Subsequent waves have been conducted

annually and are ongoing. This paper uses the first 13 waves of the data (through the 2009 wave).

There are several advantages of using this data set for the study of youth smoking initiation. First, the

individuals in the data set are surveyed at a young age during which the decision to begin smoking is

made. Second, the survey is conducted annually, which is generally the shortest interval between ob-

servations in large nationally-representative panel data sets. The learning process is better identified

with annual observations as opposed to less frequent observations.15 Finally, the questions related

15If the individuals are only observed infrequently, then it is likely that much of the uncertainty would be resolved
after a relatively small number of observations. It would be difficult to identify the dynamic learning process if the
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to smoking are asked every wave. I supplement the geocoded restricted use version of the NLSY97

data set with tobacco policy data by matching individuals with the tobacco policies in their state.

Relevant policies for this study include the cigarette excise tax, restrictions on tobacco advertising,

spending on anti-smoking policies, and indoor smoking bans.

1.4.1 Sample Selection and Attrition

In a dynamic structural model, missing choice data add additional complexity in estimation. If

an individual is in the sample, leaves, and later re-enters the sample, then the estimation routine has

to integrate over all possible sequences of choices in the missing periods to calculate the value of

the state variable when the individual re-enters the sample. One alternative is to only estimate the

model on individuals who are observed in each time period. Restricting the sample to individuals

observed in every time period avoids the difficulties in estimation, but the resulting sample may no

longer be representative of the population if attrition is non-random. Table 1.1 reports the proportion

of individuals with a given number of missing waves. Only about 60% of the original sample (5,385

of the original 8,984 individuals) is observed in every wave. Approximately 11% of this sample

has one missing observation, and an additional 10% have either two or three missing observations.

The preliminary estimation sample only includes the individuals who are observed in every wave.

An additional 598 individuals are excluded due to missing smoking, demographic, or geographic

data. The preliminary estimation sample contains the 4,787 individuals observed in every wave with

nonmissing data for the key variables.

Table 1.1: Individual Level Survey Participation

Total years missing 0 1 2 3 4 5 6 7+ Total
Frequency 5,385 1,011 582 378 330 254 219 825 8,984
Percent 59.94 11.25 6.48 4.21 3.67 2.83 2.44 9.18 100

econometrician only had a few observations per individual where uncertainty and learning mattered.
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1.4.2 Data Summary and Construction of Key Variables

In the NLSY97, individuals are asked whether they have smoked since the previous interview.

If the answer is yes, the individuals are asked about their smoking behavior over the month prior

to the interview. Specifically, the question asks, “during the past 30 days, on how many days did

you smoke a cigarette?” If the answer is greater than zero, the next question asks, “when you

smoked a cigarette during the past 30 days, how many cigarettes did you usually smoke each day?” I

construct a categorical smoking variable from the answers to these two questions. The total number

of cigarettes smoked in the past month is simply the product of the answer to these two questions

and is divided by 30 to give the average number of cigarettes smoked per day. The range of possible

values for the average number of cigarettes smoked per day is divided into four intervals to create the

discrete choice variable aj . These intervals correspond to not smoking, light smoking (0-5 cigarettes

per day), moderate smoking (5-15 cigarettes per day), and heavy smoking (more than 15 cigarettes

per day).

Table 1.2: Categorical Smoking Statistics

Smoking Level
Range Frequency

Percent E[a|aj]
(cigarettes per day) (in person years)

None a1 = 0 44, 186 69.65 0

Light 0 < a2 ≤ 5 9, 714 16.50 1.63

Moderate 5 < a3 ≤ 15 5, 469 9.21 10.50

Heavy 15 < a4 2, 862 4.64 23.51

Table 1.2 reports the range of each of the intervals, the number of observations (in person years)

in each interval, and the mean of average cigarettes smoked per day conditional on being in the range

of the interval. The distribution of the average cigarettes smoked per day is skewed to the right with

the majority of the observations concentrated at the mass point of zero.

Table 1.3 reports the transition probabilities for the smoking categories. The transition proba-

bilities illustrate several key features of the data. First, individuals increase their level of smoking

gradually. Individuals are more likely to increase to the next highest level than they are to jump
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Table 1.3: Cumulative Smoking Transition Probabilities

Smoking level at t
Smoking level at t− 1 None Light Moderate Heavy

None
0.900 0.081 0.014 0.005

(36,748) (3,321) (562) (193)

Light
0.297 0.537 0.141 0.026

(2,679) (4,848) (1,269) (233)

Moderate
0.097 0.175 0.575 0.154
(482) (871) (2,862) (767)

Heavy
0.065 0.059 0.249 0.627
(169) (155) (650) (1,635)

Note: frequencies in parentheses

Table 1.4: Under 18 Smoking Transition Probabilities

Smoking level at t
Smoking level at t− 1 None Light Moderate Heavy

None 0.882 0.099 0.015 0.004
Light 0.360 0.448 0.151 0.040

Moderate 0.116 0.146 0.517 0.221
Heavy 0.076 0.093 0.271 0.559
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several levels. Also, for any given level of smoking, there is a high probability that individuals will

transition to a lower level of smoking. For light and moderate levels of smoking, the probability that

individuals decrease the amount they smoke is approximately 30%. For the heaviest smokers, this

probability is almost 40%. The amount of decreases in the level of smoking observed in the data is

difficult to reconcile with the standard RA model, but is consistent with the model of behavior that

incorporates uncertainty and learning. Table 1.4 reports the transition probabilities for individuals

under 18 years old. Relative to the full sample there is less persistence in smoking choices, with

more movement (both upward and downward) between smoking categories. This is consistent with

the learning model since it will take some experience before individuals are able to determine what

level of smoking is optimal for their specific utility function parameters.

Table 1.5 presents summary statistics for smoking behavior and demographic variables in three

of the early waves.16 Over these waves, the proportion of individuals who currently smoke increases,

however, it does fall in later waves. The other variables included in the table enter the individual’s

decision to smoke, either directly through the utility received from smoking or through the cost of

smoking. The NLSY does not ask about parent’s smoking behavior. Parental smoking behavior po-

tentially enters the individual’s smoking decision through the individual’s beliefs as well as through

the cost of smoking. Parental education and other parental characteristics could serve as a proxy for

parent smoking behavior.

Figure 1.1 presents the proportion of individuals in each smoking category by age. The propor-

tion of individuals choosing to smoke increases steadily during the teenage years, reaches a peak for

individuals in their early 20s, and declines slightly as individuals progress through their 20s. The

decline in smoking rates for individuals in their 20s is primarily due to a lower proportion of light

smokers. The proportion of moderate and heavy smokers remains relatively constant after reaching a

peak around the age of 20. Figure 1.2 presents the proportion of current smokers by gender and race.

Blacks have a substantially lower rate of smoking compared to other ethnic groups, and females have

a lower smoking rate than males.

16See the Data Appendix for summary statistics for all waves.
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Table 1.5: Summary Statistics of Smoking and Demographic Variables in Select Years

Year
1997 1999 2001

Time-Varying Variables Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.363 0.481 0.517 0.500 0.598 0.490
Current smoker 0.156 0.363 0.265 0.441 0.315 0.464
Number of cigarettes per day 0.541 2.559 1.618 5.064 2.368 6.135
Age 14.23 1.474 16.82 1.432 18.88 1.430
Employed 0.447 0.497 0.530 0.499 0.708 0.455
Real annual income* 247.5 762.6 1,208 3,178 3,889 6,295
Income > $20,000 0.000 0.014 0.010 0.098 0.028 0.164
Married 0.000 0.014 0.013 0.115 0.053 0.224
Any children in household 0.007 0.085 0.047 0.212 0.107 0.310
High School student 0.982 0.133 0.691 0.462 0.292 0.455
College student 0.000 0.020 0.128 0.334 0.303 0.460
High School graduate 0.001 0.035 0.240 0.427 0.605 0.489

Time-Invariant Variables
Female 0.536 0.499
Black 0.255 0.436
Father’s educ (years) 10.32 5.752
Mother’s educ (years) 11.79 4.242
* In year 2000 dollars.
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Figure 1.1: Smoking Choice Probabilities by Age

Figure 1.2: Gender and Racial Differences in Smoking Rates by Age

19



1.4.3 Cigarette Prices and State Excise Tax Data

The cigarette tax and price data used in this paper are from Orzechowski and Walker’s Tax Burden

on Tobacco. The price used is a sales weighted average of the premium brand cigarettes sold in a

given year. Cigarettes are taxed at the federal and state level. In some instances they are also taxed at

the county and municipal level. The federal cigarette tax in 2011 was $1.01 per pack. The tax rates

vary considerably across states. In 2011, state cigarette taxes ranged from a low of $0.17 per pack

in Missouri to a high of $4.24 in New York. At the start of the sample period in 1997, state cigarette

taxes ranged from a low of $0.025 in Virginia to a high of $0.825 in Washington. Historically,

the states with the lowest tax rates on tobacco are the tobacco-producing states of the southeast.

From 1997-2011, only two states have had a constant tax rate, and most states have had multiple

tax increases over the period. The variation in tax rates is largely responsible for the variation in the

retail price of cigarettes across states. In 2011, the average retail price of cigarettes per pack ranged

from $4.70 in Missouri to $10.29 in New York.

Table 1.6: Summary Statistics of State Tobacco Price and Taxes

Year Real Price Real Tax (State + Federal)
Mean SD Min Max Mean SD Min Max

1997 2.265 0.327 1.796 3.305 0.633 0.217 0.284 1.143
1998 2.477 0.353 2.013 3.576 0.661 0.256 0.280 1.310
1999 3.200 0.361 2.698 4.304 0.670 0.271 0.274 1.282
2000 3.318 0.393 2.777 4.512 0.760 0.279 0.365 1.450
2001 3.500 0.370 3.035 4.458 0.752 0.291 0.355 1.410
2002 3.787 0.550 3.107 5.671 0.927 0.432 0.397 1.819
2003 3.843 0.567 3.157 5.452 1.041 0.453 0.388 2.284
2004 3.815 0.615 3.088 5.343 1.064 0.515 0.378 2.598
2005 3.847 0.643 3.095 5.292 1.157 0.528 0.406 2.513
2006 3.772 0.673 2.899 5.365 1.135 0.527 0.393 2.533
2007 3.883 0.652 2.906 5.520 1.191 0.518 0.382 2.462
2008 3.896 0.737 2.893 5.687 1.244 0.579 0.368 2.511
2009 4.711 0.846 3.406 6.458 1.856 0.628 0.867 3.588

Table 1.6 present the summary statistics across the 50 states and the District of Columbia of the

real price of cigarettes as well as the real total tax. The average real price approximately doubles
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over the sample period, and the amount of the average real tax increases by about three times. Over

the time frame, the variability in both the prices and taxes across states increases. Most years the

average real price increases due to increases in taxes. In years when there are no tax changes in a

state, the real price of cigarettes falls as the nominal price increases less than inflation.

Figure 1.3 shows how real retail cigarette prices and taxes have changed over time in New York

and North Carolina. Much of the price difference between these two states can be attributed to the

difference in their cigarette taxes. Also, the increase in the price of cigarettes over time is driven by

the increase in the tax rates. Other factors behind the increase in cigarette prices over this time period

are the Tobacco Master Settlement Agreement in 1998, and the increase in the federal cigarette

tax rate in 2009.17 Figure 1.4 shows the distribution of state cigarette tax rates over time. At the

beginning of the sample period, state cigarette taxes were relatively low. Over time, both the mean

and variance of the state cigarette tax distribution increased.

1.4.4 State Level Tobacco Policy Data

In addition to tobacco excise taxes, there are many other policies that states can pursue to influ-

ence the level of youth smoking. Some of these policies enter into the individual’s problem through

the budget constraint by imposing non-monetary costs on obtaining tobacco. Some examples of

policies that enter the individual’s problem in this way are restrictions on the sale of tobacco to mi-

nors, bans on the sale of tobacco in vending machines, and restrictions on free samples of tobacco

products. Another way for tobacco policies to influence behavior is through restrictions on tobacco

consumption. The overall utility one receives from smoking will be less if there are restrictions on

where and when one can smoke. Examples of restrictions on tobacco consumption are indoor smok-

ing bans and smoke-free schools. Finally, some tobacco policies influence the individual’s beliefs

and expectations. In the context of this paper, these policies influence the individual’s initial prior

beliefs. Examples include restrictions on cigarette advertisements, funding of tobacco prevention

17In 1998, 46 states came to an agreement with the four largest cigarette manufacturers. The states agreed to drop their
lawsuits against the tobacco companies, which sought compensation for the treatment of tobacco-related illnesses in the
Medicaid system. In exchange, the tobacco companies agreed to a monetary settlement, restrictions on the marketing
of tobacco products to young people, and the funding of a national anti-smoking organization. The tobacco companies
raised the price of cigarettes by 45 cents per pack in response to the settlement to cover the payments to the states.
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Figure 1.3: Real Cigarette Taxes and Prices in NY and NC (in year 2000 dollars)

Figure 1.4: Distribution of Real State Cigarette Taxes by Year
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and education programs, and requiring tobacco education in schools. The data on state tobacco poli-

cies are from the Centers for Disease Control (CDC), the National Cancer Institute (NCI), and the

Substance Abuse and Mental Health Services Administration (SAMHSA).

1.5 Estimation

1.5.1 Likelihood Function

Define the conditional value function for alternative j as the deterministic portion of flow utility

from that alternative (i.e., utility minus the preference shock) plus the discounted expected future

value of lifetime utility conditional on alternative j being chosen. Then, the conditional value func-

tion associated with alternative j in period t is given by:

vjnt(Snt,Γnt, Xnt) =
(
αn + Et[ρn|Γnt]g(Snt) + ξjXnt

)
z(aj)− Et[τn|Γnt]Snt1[aj > 0]

− Et[ωn|Γnt]q(aj, Snt)1[aj < Snt]− γnptaj + βEt[Vn,t+1(Sn,t+1,Γn,t+1, Xn,t+1)|djnt = 1] (1.13)

where

Vn,t+1(Sn,t+1,Γn,t+1, Xn,t+1) = E[max
j
vjn,t+1(Sn,t+1,Γn,t+1, Xn,t+1) + εjn,t+1] (1.14)

The expectation over the future value term is taken with respect to the distribution of future beliefs,

future demographic state variables, and future prices. The evaluation of current period utility depends

upon the mean of the prior beliefs only. The variance of the prior does affect the expectation over

future beliefs. The utility from not smoking is normalized to include the cost of withdrawal only,

so ξ1 = 0. The state variables are the level of smoking stock (i.e., last period’s smoking decision)

and the individual’s beliefs, denoted by Γ, which include beliefs about parameter values and future

prices.18 I assume an i.i.d. type I extreme value (EV) preference shock.19 The choice probabilities

18The price process has yet to be formally incorporated into the model, so the following estimation routine assumes
perfect knowledge of future prices. The proposed estimation routine can be extended to estimate the parameters of a
random price process.

19One of the major limitations of the multinomial logit model is the assumption that the shocks are uncorrelated over
alternatives (i.e., the Independence of Irrelevant Alternatives (IIA) assumption). The use of random parameter, or mixed,
logit can overcome the limitations of this assumption. In fact, mixed multinomial logit can approximate any discrete
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after experimentation are given by:

P j
nt =

ev
j
nt∑J

k=1 e
vknt

for j = 1, . . . , J (1.15)

For individuals who have never smoked, they first choose whether or not to experiment, and then,

conditional on experimenting, they decide the level of smoking. Let dEnt be an indicator variable that

equals one if the individual experiments in period t. The conditional value of experimenting is:

vEnt = (E[αn|Γnt] + ξEXnt)z(aE)− γptaE + Et[Vnt|dEnt = 1] (1.16)

The conditional value function of not experimenting is simply the discounted expected maximum

of the next period’s value function conditional on not experimenting and not consuming any of the

addictive good. The probability for experimenting, PE
nt, is given by the Logistic cumulative distri-

bution function. For an individual who has never smoked prior to period t, the behavior in period t

is captured by the joint probability of experimenting and level of smoking (PE
ntP

j
nt). The decision to

experiment is made based on the individual’s belief about his level of α, so PE
nt is calculated based on

an individual’s beliefs. If he decides to experiment, he learns his true level of α, so P j
nt is calculated

using the individual’s true value of α.

There are a total of N individuals, and each individual is observed for a total of T + 1 periods.

The likelihood of individual n making the sequence of choices {∪j{djnt}, dEnt}Tt=1 is:

Ln

(
γ, ξ | θn,Γn,0,Λn

)
=

T∏
t=0

(( J∏
j=1

P
j djnt
nt

)Ant ∗ [(1− PE
nt)

1−dEnt
(
PE
nt

J∏
j=1

P
j djnt
nt

)dEnt]1−Ant) (1.17)

where Ant is an indicator for the individual having ever smoked prior to period t. If the individual

has smoked prior to period t (i.e., Ant = 1), the individual makes a consumption decision. If the

individual has not smoked prior to period t (i.e., Ant = 0), then the individual makes a sequential

choice model derived from a random utility model to within any arbitrary degree of precision (McFadden and Train
2000).
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experimentation and consumption decision. This individual likelihood is conditional on the individ-

ual’s true addictive parameters (θn), the distribution of individual’s initial prior beliefs (Γn,0), and a

given sequence of signal noise draws (Λn = {ψnt, λnt, ηnt}Tt=0). This formulation is equivalent to

conditioning on the individual’s beliefs at time t since the beliefs in time t are completely determined

by the individual’s initial prior, the sequence of signal noise, and the sequence of choices. Since the

individual’s true parameters and signal noise sequences are not observed by the researcher, the un-

conditional likelihood is calculated by integrating the conditional likelihood over the distribution of

these unobserved variables:

Ln(γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =∫

θ

∫
Λ

Ln

(
γ, ξ | θn,mn,0,Σn,0,Λn

)
dF (Λ|σ2

ψ, σ
2
λ, σ

2
η) dF (θ|θ̄,Σ) (1.18)

and the full log-likelihood function is given by:

L (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =

∑
n

log
(
Ln(γ, ξ, σ2

ψ, σ
2
λ, σ

2
η, θ̄,Σ)

)
(1.19)

The total dimensions of unobserved variables is 3 ∗ T + 4.20 The integrals do not have a closed form

solution, so they must be approximated numerically. The parameters to be estimated include the util-

ity function parameters (γ, ξ), the mean and covariance matrix of the population distribution of the

rational addiction parameters (θ̄,Σ), and the variances of the signal noise distributions (σ2
ψ, σ

2
λ, σ

2
η).

1.5.2 Identification

The model parameters are identified through the observed sequences of smoking decisions. The

parameters ξ and γ are identified through differences in smoking decisions between individuals with

different observable characteristics. The price sensitivity parameter γ is identified by both cross-

sectional variation and variation over time in the price of cigarettes. The utility from not smoking

when the smoking stock is zero is normalized to zero. The parameter α affects the utility for each

20The dimension of the unobserved signals is likely to be less than 3*T since some of the signals are observed by
the researcher. Based upon the sequence of actions, the researcher knows whether or not a signal is received in a given
period.
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level of smoking regardless of past smoking. The reinforcement parameter captures the effect of the

interaction between the current level of smoking and the smoking stock. The tolerance parameter

only depends on the smoking stock, so, for a given level of smoking stock, a change in the tolerance

parameter only affects the probability of smoking versus not smoking. The reinforcement parameter

affects the probability of smoking versus not smoking, but it also affects the probability of each

level of smoking. The withdrawal parameter only affects the utility of a reduction in the level of

smoking from one period to the next, so this parameter is identified by smokers who reduce their

level of smoking or quit smoking entirely. The match, tolerance, reinforcement, withdrawal, and

price sensitivity parameters do not vary across alternatives. Differences in utility for the different

levels of smoking for these parameters are ultimately a result of the functional form assumptions.

The individual-specific parameters are not point identified for each individual. There is no way

to estimate a specific value of these parameters for each individual. Also, since these parameters

are continuous, a distributional assumption is required for the population distribution of parameters.

Then, given that the conditional value function is defined over the support of the distribution of the

unobserved continuous variables, the parameters of the population distribution (mean and covari-

ance) are identified. The identification behind the learning process is driven by the fact that the

valuation an individual attributes to each alternative depends upon the individual’s current beliefs

only and not the individual’s true parameters. The individual’s beliefs converge to the true param-

eters as the individual receives additional signals. Therefore, individuals with a lot of experience

will behave according to their true parameter values. Also, if an individual knows his true parameter

values, he can use the model to calculate an optimal consumption sequence. Differences between the

optimal consumption sequence if the individual knows his true parameter values and the decisions of

the individual when he is inexperienced are driven by the difference between the individual’s beliefs

and his true parameter values. The speed at which the individual’s consumption sequence converges

to the optimal consumption sequence with full knowledge identifies the speed of learning (i.e., the

variance of the signals). Additional restrictions on the learning process are necessary for identifi-

cation. These include restrictions on the initial prior beliefs (Rational Expectations), distributional

assumptions for the beliefs and signals (both Normal), and Bayesian updating.
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1.5.3 Estimation Procedure

There are several computational requirements that make estimation of the parameters of the

model by Full Information Maximum Likelihood difficult. The main issue is that the evaluation of

the log likelihood function requires integrating over the continuous distribution of population param-

eters and over all possible sequences of signal noise. Simulated maximum likelihood is one method

that is used to overcome this problem. The unconditional likelihood function is approximated nu-

merically by taking random draws from the distribution of the unobserved variable, evaluating the

conditional likelihood, and taking the average of the conditional likelihoods over the draws. Evaluat-

ing the conditional likelihood, however, for a single draw still involves significant computation. The

solution to the individual’s problem requires integrating over future beliefs, which are multidimen-

sional continuous variables. One way to reduce the computational burden of evaluating the value

function is to use the Conditional Choice Probability (CCP) method of Hotz and Miller (1993).

Hotz and Miller (1993) show that when the preference shock has a GEV distribution, the future

value term in the conditional value function can be expressed as a function of future flow utilities

and conditional choice probabilities (CCPs). For certain classes of problems (e.g., optimal stopping

problems), taking the difference in conditional value functions leads to the future value term only

containing one period ahead flow utilities and CCPs. In other problems, the future value term asso-

ciated with the difference in conditional value functions contains flow utilities and CCPs for a finite

number of future periods. This property is called finite dependence, and it is a feature of the prob-

lem in this paper.21 Standard CCP estimation involves estimating the CCPs in a first stage using the

data and using the estimated CCPs to calculate the individual’s value function. One limitation of the

standard method is that it do not allow for unobserved heterogeneity. Arcidiacono and Miller (2011)

develop a method of CCP estimation that allows for a finite distribution of unobserved heterogene-

ity by using the Expectation Maximization (EM) algorithm. The unobserved heterogeneity in this

paper are the individual’s beliefs and the individual’s true parameter values, which are both continu-

ous. James and Matsumoto (2013) extend the work of Arcidiacono and Miller (2011) to allow for a

21See the Estimation Appendix for the derivation of the CCP representation of the future value term.
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continuous distribution of unobserved heterogeneity.

It can be shown that the values of the parameters that maximize the likelihood function (1.19)

also maximize the following transformed likelihood function:22

L (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =

∑
n

∫
θ

∫
Λ

πn(θn,Λn)

(∑
t

(1− Ant)
[
(1− dEnt)log(1− PE

nt) + dEntlog(PE
nt)
]

+
∑
j

djntlog(P j
nt)

)
dΛ dθ (1.20)

where π is the conditional probability that the parameter values are θ, θ0, and Λ given the observed

choices. This conditional probability is given by:

πn(θn,Λn) =
f(θn|θ̄,Σ)f(Λn|σ2

ψ, σ
2
λ, σ

2
η)
∏

t Lnt(θn,Λn)∫
θ

∫
Λ

∏
t Lnt(θn,Λn)f(Λn|σ2

ψ, σ
2
λ, σ

2
η)f(θn|θ̄,Σ) dΛ dθ

(1.21)

The estimation routine in this paper used the likelihood function in equation 1.20. The procedure

starts by taking M draws from the distribution of the unobserved variables for each individual as

well as initial guesses for the values of the parameters and the CCPs. The estimation proceeds by

using the EM algorithm, specifically a simulated EM algorithm (SEM). The EM algorithm is an iter-

ative procedure that alternates between an expectation step (or E-step) and a maximization step (or

M-step). The E-step updates the CCPs and π using the prior iteration values of the parameters and

CCPs. The M-step updates the value of the parameters by maximizing the likelihood function using

the updated CCPs and π. The estimation continues to iterate over these two steps until the parameter

estimates converge. The use of the EM algorithm to incorporate unobserved heterogeneity has sev-

eral advantages.23 The most significant advantage is that the EM algorithm, or the SEM algorithm

in the current context, reintroduces additive separability of the likelihood function. This property

allows for sequential estimation of the likelihood function. In the current context, additive separa-

bility of the likelihood function allows for the parameters of the experimentation and consumption

22This is the expected conditional (on the unobserved variables) likelihood, where the expectation is taken with respect
to the distribution of the unobserved variables conditional on the observed variables and the choices.

23See Arcidiacono and Jones (2003) for a full discussion.
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decisions to be estimated separately. The estimation procedure is presented in greater detail in the

Estimation Appendix.

1.5.4 Initial Conditions

The first period that individuals are observed in the NLSY97 is not the same as the initial period

of the individual’s optimization problem. That is, individuals may enter the estimation sample having

already smoked. The values of the state variables in the initial wave of data depend on prior decisions

and state variables that are not observed by the researcher. Some individuals have never smoked by

the first wave. Others have smoked at some point prior to the first wave but are not observed to

smoke in the first wave. Finally, some individuals are regular smokers at the first wave. The latter

two groups present an initial conditions problem both in that the prior year’s smoking is not observed

in the first period and it is not observed how much they have learned. Individual’s initial prior beliefs

also present an initial conditions problem. I assume that individual initial priors are identical to the

population distribution of the parameters (i.e., Rational Expectations).24

For individuals who have smoked prior to the first wave, the amount smoked in the period prior to

the first wave is treated as discrete unobserved heterogeneity. The individual likelihood is calculated

for each possible alternative in period t = 0. The probability that the individual selected alternative

j in period t = 0 is:

P j
n,0 =

1

1 + exp(ξjICX
IC
n,0)

(1.22)

The individual likelihood is calculated by multiplying the likelihood conditional on selecting alter-

native j in period t = 0 by the probability P j
n,0 and summing over the alternatives.

1.5.5 Functional Forms

The utility for the smoking level associated with alternative j, contains several modifying func-

tions. The purpose of these functions is to allow for utility to be nonlinear in both the level of

smoking and the level of past smoking. In order to estimate the parameters of the model, these

generic functions must be replaced with specific functional forms. The function z(a) incorporates

24In future work, I will attempt to parameterize the initial priors by allowing the mean of the initial priors (and perhaps
the variance as well) to be functions of individual characteristics and state tobacco policies.
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the standard utility function assumptions except that the marginal utility of smoking is positive for a

level of smoking equal to zero. Also, the utility from not smoking is normalized to zero. The func-

tion z(a) is assumed to take the following form: z(a) = log(1 + a). The function that modifies the

effect of reinforcement takes the following form: g(St) =
√
St. Finally, the function that modifies

the withdrawal effect has the following form:

q(aj, Snt) = Snt ∗
(

1− exp
(
c ∗ (aj − Snt)

))
(1.23)

When the individual smokes the same amount as the prior period, q = 0. If the individual smokes

less than the prior period, the withdrawal cost is positive. For a given level of last period smoking,

the withdrawal cost decreases as the individual smokes more in the current period. This decrease

occurs at an increasing rate. The parameter c affects the curvature of the function q as well as the

maximum possible withdrawal cost. This parameter is initially fixed at a value of 0.15. Finally, the

discount parameter β is set to 0.95.

1.6 Results

1.6.1 Parameter Estimates

This section presents the parameter estimates for the model. The estimation sample includes

white males who are observed in every time period. The version of the model that is estimated

differs from the model presented earlier in that the tolerance parameter τ is not estimated and set to

zero. Table 1.7 presents the parameter estimates for the model with learning as well as the model

without learning. The match parameter is negative for a large majority of the population. Even

individuals with a negative match parameter could receive positive utility from smoking due to the

effect of reinforcement. Individuals below the age of 18 experience a utility cost from smoking,

which is likely due to their inability to purchase cigarettes legally. This cost is increasing in the level

of smoking. The variance of the signals is significantly different from zero, which suggests that the

learning component of the model is significant.

In order to test the importance of learning, I estimate a version of the model without learning. In

the model without learning individuals are assumed to know the value of their parameters, but the
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Table 1.7: Estimation Results, Population Distribution Parameter Estimates

Parameter Description
Model with Model without

Learning Learning
ᾱ Mean of match parameter -3.567 (0.291) -1.351 (0.042)
ρ̄ Mean of reinforcement parameter 1.573 (0.105) 0.363 (0.011)
ω̄ Mean of withdrawal parameter 0.595 (0.021) 0.150 (0.014)
V ar(α) Variance of match parameter 0.988 (0.100) 4.723 (0.221)
V ar(ρ) Variance of reinforcement parameter 0.290 (0.019) 0.167 (0.009)
V ar(ω) Variance of withdrawal parameter 0.444 (0.019) 0.038 (0.004)
Cov(α, ρ) Covariance of match and reinforcement -0.301 (0.245) 0.867 (0.031)
Cov(ρ, ω) Covariance of reinforcement and withdrawal 0.221 (0.012) 0.061 (0.006)
Cov(α, ω) Covariance of match and withdrawal -0.364 (0.023) 0.274 (0.032)
σλ Standard deviation of reinforcement signal 0.912 (0.051) -
ση Standard deviation of withdrawal signal 1.010 (0.071) -
Note: Standard Errors in parentheses

parameters vary across individuals.25 Estimates of the parameters from the model without learning

differ in important ways from the parameter estimates from the model with learning. The mean of the

population distribution of the match parameter is larger in magnitude in the model without learning

and has much higher variability in the population. The mean value of the reinforcement parameter

is nearly the same in both models, and the mean of the withdrawal parameter is smaller in the model

without learning. The population variance of the reinforcement and withdrawal parameters is smaller

in the model without learning.

Table 1.8 presents the estimates of the coefficients on the observable variables. The first panel

includes the estimates for the variables that enter the utility function as preference shifters. The

next panel includes the variables that affect price sensitivity, and is followed by the parameters that

affect the probability of different levels of prior unobserved consumption. The last panel includes

the variables that enter the utility of experimentation. Note that there is no experimentation decision

in the model without learning since individuals already know they value of the match parameter.

Other than the age variables, the coefficients on observable characteristics tend to be relatively small

25The model without learning corresponds to a restricted version of the model with learning. Specifically, the model
without learning is equivalent to the model with learning where the mean of the initial prior is set to the individual’s true
parameter value and the variance of the initial prior is set to zero.
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Table 1.8: Estimation Results, Coefficients on Observable Variables

Preference Shifting Variables

Variable
Model with Model without

Learning Learning
Years until age 18, light smoking -0.075 (0.088) -0.435 (0.052)
Years until age 18, moderate smoking -0.229 (0.186) -0.903 (0.176)
Years until age 18, heavy smoking -0.053 (0.357) -1.016 (0.337)
Years until age 18 squared, light smoking -0.055 (0.018) 0.005 (0.012)
Years until age 18 squared, moderate smoking -0.199 (0.044) 0.001 (0.039)
Years until age 18 squared, heavy smoking -0.305 (0.090) -0.013 (0.074)
Married, light smoking -0.146 (0.134) -0.052 (0.039)
Married, moderate smoking -0.064 (0.166) -0.127 (0.051)
Married, heavy smoking -0.273 (0.191) -0.041 (0.048)
Has children in household, light smoking 0.090 (0.142) 0.167 (0.039)
Has children in household, moderate smoking -0.057 (0.187) 0.107 (0.051)
Has children in household, heavy smoking 0.027 (0.215) -0.032 (0.049)

Price Sensitivity Variables
γ̄, Mean Price sensitivity 0.143 (0.111) 0.442 (0.025)
Under age 18 0.042 (0.031) -0.053 (0.112)
Employed 0.076 (0.028) -0.009 (0.018)
Income greater than $20k -0.022 (0.107) -0.024 (0.009)

Unobserved Prior Consumption Variables
Constant, light smoking 0.050 (0.741) 5.913 (4.978)
Constant, moderate smoking 0.277 (1.359) 1.047 (1.189)
Constant, heavy smoking -0.182 (1.654) -0.543 (1.623)
Years since first smoked, light smoking -0.068 (0.476) -3.581 (5.137)
Years since first smoked, moderate smoking 1.040 (0.492) -0.135 (0.213)
Years since first smoked, heavy smoking -0.377 (0.919) -0.153 (0.330)

Experimentation Variables
Years until age 18 -0.475 (0.096) -
Years until age 18 squared 0.128 (0.017) -
Married -0.155 (0.437) -
Has children in household 0.066 (0.317) -
aE 0.949 (0.290) -
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in magnitude

The price sensitivity parameter is larger for the model without learning. The model without

learning is limited in terms of explaining quitting (or any reduction is smoking). Since prices are

increasing throughout the sample, the model without learning attributes any reduction in smoking to

the increase in prices. Although an increase in the price of cigarettes is one reason why an individual

would reduce his level of smoking, the model with learning allows for other potential reasons. As

an individual experiments with smoking, he may discover that his true utility from smoking is less

than he initially believed it to be. An individual is also able to learn about the withdrawal cost

through reductions in smoking. So in the model with learning, reduction in smoking could be due

to the increase in price, new information about the utility from smoking, and strategic reductions in

smoking in order to learn about the withdrawal cost. By ignoring the mechanisms through which the

learning process generates endogenous quitting (or reduction), the model without learning overstates

the importance of price in explaining the observed level of quitting.

1.6.2 Model Fit

Table 1.9 presents the observed transition probabilities from the data as well as the transition

probabilities from simulated outcomes generated using the model with learning and the estimated

parameters. The model is able to fit the observed transition probabilities well. For smoking tran-

sitions for individuals under 18, the simulated data tends to overstate the persistence in smoking

behavior, particularly for remaining a nonsmoker and a heavy smoker. The model is better able to

fit the transition probabilities for individuals over 18 years old. Also, the simulated data tends to

underestimate the probability of quitting, particularly for heavy smokers.

Figure 1.5 shows the proportion of individuals in each smoking category by age for both the

observed and simulated data using the estimated model with learning. The simulated data closely

match the observed age profile of smoking behavior. Figure 1.6 compares the proportion of individ-

uals in each smoking category by age for the observed data and for simulated data using the model

without learning. The model without learning does a relatively poor job in matching the observed

data.
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Table 1.9: Transition Probabilities, Observed and Simulated Data

Under 18 years old
Smoking level at t

Observed Data Simulated Data
Smoking level at t− 1 None Light Moderate Heavy None Light Moderate Heavy

None 86.81 10.47 1.83 0.88 90.26 8.23 0.90 0.62
Light 35.21 44.92 14.25 5.62 35.06 52.28 9.08 3.58

Moderate 15.70 10.74 49.59 23.97 9.37 16.97 50.32 23.34
Heavy 9.84 8.20 22.95 59.02 4.24 4.75 18.79 72.21

Over 18 years old
Smoking level at t

Observed Data Simulated Data
Smoking level at t− 1 None Light Moderate Heavy None Light Moderate Heavy

None 89.60 8.09 1.52 0.79 85.95 11.41 1.76 0.88
Light 27.12 57.88 12.24 2.76 32.64 56.23 9.31 1.82

Moderate 9.90 16.30 55.82 17.99 7.63 13.13 59.98 19.26
Heavy 6.30 5.09 21.26 67.35 3.66 3.22 18.88 74.23

Figure 1.5: Smoking Rates by Age, Observed and Simulated Data from the Model with Learning
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Figure 1.7 illustrates the model fit for the experimentation decision. This figure shows the prob-

ability by age that an individual who has not previously experimented with smoking will experiment

as well as the cumulative probability that an individual has experimented at some point in the past.

Up until age 19, the model is able to closely fit the observed experimentation probability. After age

20, the probability that an individual experiments drop quickly to between 1 and 2 percent, however

the model predicts a much more gradual decline.

1.6.3 Policy Simulations

In this section, I use the parameter estimates from the model with learning to conduct policy

counterfactual experiments. I consider policies that alter cigarette prices, beliefs about withdrawal,

and the legal smoking age.26

Prices

The tobacco excise tax is a popular policy tool among policymakers and anti-smoking advocates

to reduce the level of smoking. The specific policy experiment is doubling the price of cigarettes.

Under the counterfactual policy, individuals are faced with a price of cigarettes that is two times what

is observed in the data. This counterfactual measures the long run impact of a change in the price of

tobacco. Figure 1.8 depicts the smoking rates by age for the baseline simulation and the simulated

data under the counterfactual prices.

Doubling prices has a dramatic effect on the proportion of smokers. For individuals over 18

years old, the proportion of nonsmokers increases by about 5 percentage points as a result of the

higher prices. The proportion of light smokers decreases by around 15 percent, and the proportion

of moderate and heavy smokers decreases by around 10 percent.27

Beliefs

Prior to experimentation with cigarettes, a young individual has beliefs about his smoking pref-

erence parameters. The model imposes rational expectations for the initial beliefs. However, the

26The legal smoking age is the minimum age at which an individual can legally purchase tobacco products.

27One concern with this counterfactual is that the CCPs are estimated using the data, so they are only identified for
values of the state variables that are observed in the data.
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Figure 1.6: Smoking Rates by Age, Observed and Simulated Data from Model without Learning

Figure 1.7: Experimentation Rates by Age, Observed and Simulated Data from Model with Learning
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individual’s initial beliefs are likely influenced by a number of factors and could potentially be influ-

enced by anti-smoking policies. For example, advertisements that highlight the addictive nature of

cigarettes and the difficulty of quitting smoking may affect the individual’s beliefs about the value

of the parameters that govern the effects of reinforcement, tolerance, and withdrawal.

In this counterfactual experiment, the mean initial prior for the withdrawal parameter is increased

by one standard deviation of the population distribution. Only the initial belief about the withdrawal

parameter changes. The actual distribution of the withdrawal parameter in the population is the same.

Increasing the mean value of the withdrawal parameter in one’s initial prior beliefs causes a

reduction in the overall level of smoking. Individuals are now less likely to experiment with smoking

given the higher anticipated cost of quitting. The higher expected withdrawal cost results in a large

reduction in the proportion of moderate and heavy smokers. The proportion of light smokers is

slightly less relative to the baseline simulation. Some individuals who were light smokers under the

baseline simulation decide not to smoke under the counterfactual. These individuals are offset by

those who were moderate and heavy smokers under the baseline who remain light smokers for a

longer period before transitioning to higher levels of smoking under the counterfactual. The increase

in the expected withdrawal cost has the effect of extending the experimentation period.

Legal Smoking Age

Another possible policy tool that targets youth smoking is the minimum legal age to purchase

tobacco. In this counterfactual experiment, the effect of increasing the minimum legal purchase

age to 19 years old. Relative to the baseline simulation, increasing the purchase age is effective

in reducing smoking among teenagers. However, increasing the legal purchase age only delays

smoking rather than preventing it. The smoking rates converge to the baseline simulation for all

smoking categories once individuals are able to legally purchase tobacco.

These counterfactual simulations confirm that increasing the price of cigarettes is an effective

policy tool to reduce the prevalence of smoking. Changing the legal smoking age would have the

effect of reducing youth smoking, but would likely have only a minimal impact in reducing smoking

in the broader population. Policies that target an individual’s initial prior beliefs about the utility of

smoking could be very effective in reducing smoking. Specifically, increasing an individual’s beliefs
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Figure 1.8: Smoking Rates by Age, Baseline Simulation and Price Counterfactual Data

Figure 1.9: Smoking Rates by Age, Baseline Simulation and Beliefs Counterfactual Data
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about the withdrawal cost would lead to a relatively large reduction in the probability that individual

would become a heavy smoker.

Figure 1.11 shows the experimentation probabilities by age for the different counterfactual sim-

ulations. The belief counterfactual has no effect on the probability that an individual experiments.

This is because an individual who experiments who does not continue to smoke will not experience

withdrawal. Increasing the price only has a minor effect on the probability that an individual ex-

periments. Even with the higher prices, the monetary cost of experimenting is minor. However, the

individual would be less likely to continue smoking as a higher value of the match parameter would

be required to offset the higher monetary cost of smoking. Increasing the smoking age simply delays

experimentation.

1.6.4 Welfare Analysis

Thus far, the policy analysis has evaluated the effectiveness of alternative policies in reducing

the level of smoking without taking into account the effect of the policies on an individual’s welfare.

One of the key advantages of the model with learning is the ability of the model to explain regret.

In the standard RA model, policies that increase the cost of smoking will lower the welfare of every

individual. In the model with learning, a policy that increases the cost of smoking may lower the

welfare of some individuals, but it may increase the welfare of others. If an individual who would

later regret the decision to become a smoker decided not to smoke because of the policy, that policy

would increase his welfare (assuming the policy did not affect the utility from not smoking).

To evaluate the effect of the alternative policies on welfare, I calculate the expected lifetime utility

(ELU) for each individual’s simulated sequence of choices. This measure includes the deterministic

portion of utility evaluated using the individual’s true parameters.28 Since different sequences of

choices lead to a different state space in the terminal period, the individual’s value function in the

final period is added to the sequence of flow utilities.29 The objective in constructing this measure of

28Note that expected lifetime utility refers to the ex-post deterministic flow utility up to the end of the sample period.

29Including the terminal period value function adds the value of information to the measure of welfare. An individual
would not regret smoking just because the ex-post flow of utility from smoking was less than not smoking, as long as the
value of information more than offsets the difference.

39



Figure 1.10: Smoking Rates by Age, Baseline Simulation and Smoking Age Counterfactual Data

Figure 1.11: Experimentation Rates by Age, Baseline Simulation and Counterfactual Data
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Figure 1.12: Distribution of Expected Lifetime Utility

welfare is to determine the effect of the alternative policies on the individual’s ex-post welfare. The

welfare measure is normalized with respect to the sequence of never smoking. The expected flow

utility portion of the welfare measure is already normalized from the normalization of the utility

function. The terminal period value function is normalized by subtracting the terminal period value

function of the individual if he had never smoked.

Table 1.10 shows the summary statistics for the ELU measure of individual welfare for the base-

line simulation as well as under the different counterfactuals. The ELU of an individual is zero for

an individual who never smokes. The mean ELU for the baseline simulation is −0.660 and the me-

dian is −5.870. A vast majority of individuals have an ELU that is less than zero, indicating that

they are ex-post worse off than if they had never smoked. In the price counterfactual, the proportion

of individuals who never smoke increases. By increasing the proportion of individuals who never

smoke, these policies decrease the proportion of individuals with a negative ELU, but the policies

also decrease the proportion of individuals with a positive ELU. Individuals who enjoy smoking are

negatively affected by the increase in the price of cigarettes. Increasing initial beliefs about the diffi-

culty of quitting smoking decreases welfare on average as it decreases the proportion of individuals

with a positive ELU and increases the proportion of individuals with a negative ELU.

Figure 1.12 is a histogram that shows the distributional effects of the different smoking policies.
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Table 1.10: Welfare Analysis

Mean ELU Std ELU Med ELU Pr(ELU<0) Pr(ELU=0) Pr(ELU>0)
Baseline -0.660 27.388 -5.870 0.722 0.055 0.223
Price Cf -2.063 24.352 -5.686 0.739 0.062 0.199
Belief Cf -4.191 16.828 -4.981 0.791 0.075 0.135
Age Cf -1.981 25.042 -5.951 0.738 0.058 0.204

The first bar in each set represents the outcomes under the baseline simulation. The second, third,

and fourth bars are the results for the price, belief, and age counterfactuals respectively. All of

the policies reduce the welfare of individuals who enjoyed smoking under the baseline simulation

as there are fewer individuals in each range of positive ELU. The price and belief counterfactuals

also reduce the number of individuals in each range of negative ELU and increase the number of

individuals with an ELU close to zero. The individuals with a large negative ELU include those

who are “trapped” in their addiction. These are individuals who initially overestimated their true

tolerance and underestimated their true withdrawal. They receive a negative utility from smoking

but are not able to quit because they face a large withdrawal cost.

1.7 Conclusion

This research develops a model of rational addiction with learning in order to explain the smok-

ing initiation decision of young people. Estimation of the structural parameters of the model requires

significant computational resources, and is not computationally feasible using a full solution estima-

tion routine unless significant restrictions are placed on the model. Therefore, this paper proposes

the use of an alternative estimation routine. This estimation routine uses the EM algorithm and CCP

estimation, which reduces the computational burden of estimating the structural parameters of the

model.

Overall, the model is able to fit the data well. In particular, the model with learning fits the

data significantly better than the model without learning. The estimated parameters of the model are

used to conduct counterfactual policy experiments. Since an individual’s decision to smoke depends

upon his beliefs about his smoking preference parameters, policies that affect one’s beliefs can have

a significant impact on smoking behavior. Increasing individuals’ beliefs about the difficulty of
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quitting smoking is effective at reducing the number of heavy smokers. Increasing cigarette prices is

shown to be an effective policy tool to reduce youth smoking, although the model without learning

overstates the importance of the price of cigarettes. An increase in the legal age to purchase cigarettes

would lead to a decrease in the number of youth smokers, but it would only delay smoking initiation

so adult smoking behavior would not be affected. The analysis of individual welfare supports the use

of taxes as an anti-smoking policy tool. An increase in the price of cigarettes improves the ex-post

level of utility for some individuals by discouraging those who would later regret the decision to

smoke from ever experimenting with cigarettes, but hurts those who do enjoy smoking.

The results of this paper suggest several potential avenues of future research. First, the analysis

performed considers the demand side of the market. Although the analysis in this paper demonstrates

the importance of learning in explaining cigarette demand, the model would need to be extended to

incorporate optimal firm behavior in order to better capture the general equilibrium effects of policy

changes. An individual’s initial beliefs are an important determinant of early smoking behavior, as

changing the initial beliefs was shown to have a large effect on behavior in the counterfactual simu-

lation. Additional exploration of how these initial beliefs are formed would be useful. In particular,

to what degree are the individual’s initial beliefs influenced by the smoking behavior of others (e.g.,

parents, siblings, peers) or by advertising (either pro- or anti-smoking). Finally, the importance of

learning in explaining youth smoking behavior begs the question of how learning about cigarette

smoking preferences may impact learning about preferences for consuming other addictive goods

such as alcohol or illegal drugs. There are potential knowledge spillovers about the dynamic ef-

fects of consuming an addictive good (i.e., tolerance, reinforcement, and withdrawal), which may be

correlated across different addictive goods for an individual.
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CHAPTER 2

USING CONDITIONAL CHOICE PROBABILITIES TO ESTIMATE DYNAMIC DISCRETE
CHOICE MODELS WITH CONTINUOUS UNOBSERVED HETEROGENEITY WITH AN

APPLICATION TO LEARNING MODELS (CO-AUTHOR JONATHAN JAMES)

2.1 Introduction

This paper develops a method for estimating dynamic discrete choice models with continuous

unobserved state variables using the conditional choice probability (CCP) method developed by

Hotz and Miller (1993). The use of CCP estimation results in substantial computational savings for a

range of dynamic discrete choice models. CCP estimation techniques were extended by Hotz, Miller,

Sanders, and Smith (1994) to cover a larger range of discrete choice models and by Arcidiacono

and Miller (2011) to incorporate a finite number of unobserved states. Allowing for unobserved

heterogeneity overcomes one of the primary obstacles to the practical application of CCP methods.

In this paper, we extend prior CCP estimation techniques to allow for a continuous distribution

of unobserved heterogeneity. One area where this technique could potentially yield the greatest

benefit is in the estimation of structural learning models. Even with recent computational advances,

estimation of learning models is often infeasible in many applications unless strong restrictions are

placed on the model.

In dynamic models, the current period value function not only depends on the current period util-

ity, but also the discounted expected future utility. In recursively defined models with a continuous

state variable, calculating the expected future value term requires integrating over potential realiza-

tions of the state variable for each future time period. Even when numerical methods are used to

simulate these integrals, estimation of these dynamic models can become infeasible as the number

of time periods increases or as the state space becomes richer. One way to deal with continuous vari-

ables is through discretization. Continuous state variables can also be incorporated in full solution



estimation techniques using the method developed by Keane and Wolpin (1994). They use simula-

tion techniques to calculate the value function at particular points (often randomly chosen) within the

state space. When solving the individual’s optimization problem, the individual’s value function at

other points in the state space is calculated through interpolation. When the continuous state variable

is unobserved, an additional computational burden is added. In estimation, the likelihood function

is formed by integrating over the unobserved variable. With time varying unobserved heterogeneity,

the individual’s problem, which requires integrating over future values of the unobserved variable,

must be solved for all possible current period values of the continuous variable.

The use of CCPs can reduce the computational burden of estimating models with continuous

unobserved heterogeneity by reducing the burden of solving the individual’s problem. In discrete

choice models, the choice probabilities are functions of the conditional value functions. Hotz and

Miller (1993) showed that for certain discrete choice models, there is an inverse mapping, so the

conditional value functions could be written as functions of the conditional choice probabilities. In

particular cases, the conditional value functions can be written as functions of flow utilities and con-

ditional choice probabilities for only a few periods into the future. With a continuous state variable,

the conditional choice probability representation of the value function still requires integrating over

future conditional choice probabilities. However, the conditional choice probability representation

of the value function can reduce the number of integrals by reducing the number of future value

terms that are required to evaluate the conditional value functions.

2.2 Simple Learning Framework

2.2.1 Model

Each period the individual chooses among J alternatives plus an outside option. The utility from

option j ∈ {1, . . . , J} is:

ujt = αjXt + µj + εjt (2.1)

The utility from the outside option, j = 0, is normalized to zero. The vector ε includes alternative-

and time-specific preference shocks assumed to be i.i.d. Type I extreme value. The vector µ =

(µ1, . . . , µJ) consists of individual-specific tastes for each of the alternatives, and individuals do not
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know their true value of µ. The population distribution of µ is normal with mean µ̄ and variance Σ.

Although individuals do not know their true value of µ, they have a belief about its value. Individuals

learn about their true value of µ through experience.

The individual’s prior belief in period t is normally distributed with mean mt and variance Φt

(µt ∼ N(mt,Φt)). After choosing alternative j, the individual receives the signal:1

δjt = µj + ξjt (2.2)


ξ1

...

ξJ

 ∼ N(0, B) (2.3)

B =



σ2
ξ1

0 · · · 0

0 σ2
ξ2

. . . ...
... . . . . . . 0

0 · · · 0 σ2
ξJ


(2.4)

Let djt be an indicator variable that equals 1 when the individual chooses alternative j. Then the

individual updates the mean and variance of his beliefs according to the following Bayesian updating

equations:

mt+1 = Φt+1(Φ−1
t mt +B−1Dδjt) (2.5)

Φt+1 = [Φ−1
t +B−1DD′]−1 (2.6)

Dt =


d1,t

...

dJ,t

 (2.7)

The information that the individual uses when evaluating all of the possible alternatives is contained

in a vector of state variables. These state variables are the mean and variance of the individual’s prior

1There is no signal associated with the outside option.

46



beliefs, m and Φ, and the individual’s observable characteristics, X . The conditional value function

for alternative j is:

vjt(mt,Φt, Xt) = αjXt + E[µj]

+
∑
X′

βE[V (X ′,mt+1,Φt+1|mt,Φt, Dt)] ∗ Pr(Xt+1 = X ′|Xt, Dt) (2.8)

Evaluating the future value term requires integrating over all possible values of the signal since dif-

ferent realizations of the signal will generate different beliefs in the future period. Also, the variable

µj enters the utility function linearly, so the current period utility can simply be evaluated using the

mean of the prior distribution (E[uj(µj)] = uj(E[µj])).2 The variance of the prior distribution affects

the likelihood of different realizations of the mean of the posterior distribution.

2.3 CCPs and Finite Dependence

In this section we show that the learning framework naturally generates a relatively simple ex-

pression for the future value term in the conditional value function. Calculation of the conditional

value function for each alternative requires solving the full dynamic learning model. The conditional

value function for alternative j is period t is given by 2.8. The expected future value term is cal-

culated by integrating over possible future state variables, including future beliefs. The individual’s

mean prior in period t + 1 depends upon his beliefs in period t as well as the realization of the

signal. So integrating over possible future beliefs requires integrating over possible realizations of

the signal. The variance of the future beliefs is a function of the variance of the current beliefs and

the variance of the signal. Since the individual knows the variance of the signal, the individual can

calculate the variance of future beliefs conditional on the choice. The variance of the prior beliefs

transitions deterministically conditional on the choice and does not depend on the actual realization

of the signals.

Consider the future value term in the conditional value function for alternative j. This term can

be expressed as a function of a conditional choice probability and the conditional value function of

2If µj enters the utility function non-linearly, then calculating expected utility requires integrating over the prior
distribution.
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any of the alternatives:

E[V (mt+1,Φt+1|mt,Φt, Dt)] = Em[log(
J∑
j=0

exp(vj,t+1(mt+1,Φt+1))] (2.9)

= Em[v0,t+1 + log(1 +
J∑
j=1

exp(vj,t+1 − v0,t+1))]

= Em[v0,t+1 − log(P0,t+1(mt+1,Φt+1))]

= Em[u0,t+1 + β ∗ E[V (mt+2,Φt+2|mt+1,Φt+1, Dt+1)]

−log(P0,t+1)]

The CCP representation still contains a future value term for period t + 2. The future value term

associated with the conditional value function for the outside option has the following CCP repre-

sentation:

E[V (mt+1,Φt+1|mt,Φt, Dt)] = Em[log(
J∑
j=0

exp(vj,t+1(mt+1,Φt+1))] (2.10)

= Em[vj,t+1 + log(1 +
∑
k 6=j

exp(vk,t+1 − vj,t+1))]

= Em[uj,t+1 + β ∗ E[V (mt+2,Φt+2|mt+1,Φt+1, Dt+1)]

−log(Pj,t+1)]

When forming the choice probability in the likelihood function, what matters is the difference in

conditional value functions. Arcidiacono and Miller (2011) show that it may be possible in a given

problem to choose a particular form of the CCP representation such that the future value term k

periods in the future cancels when taking the difference in conditional value functions. Finite de-

pendence is the term they use to define the property of expressing the difference in conditional value

functions in such a way to generate the cancellation of the future value terms. Given how beliefs

transition in learning models, it is possible to generate finite dependence in beliefs.3

3Finite dependence must also hold for the other state variables along the choice sequence used to generate finite
dependence in beliefs in order for the estimation procedure to be feasible.
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The period t+2 value functions in equations (2.10) and (2.11) are equal to each other if the period

t + 2 state variables are the same after the sequence {j, 0} and the sequence {0, j} in expectation.

For each of the sequences, the individual will receive one signal about the utility of alternative j.

The variance of the priors will be the same after both sequences. The individual’s expectation in

period t of the mean of the priors in period t + 2 will also be the same for each sequence. Prior to

the realization of the signals, all that matters to the individual when forming expectations of future

beliefs is which signals will be received, not the timing of the signals.

2.3.1 Likelihood Function

The probability of individual n selecting alternative j in period t conditional on the state variables

is:

P j
nt(mnt,Φnt, Xnt) =

exp(vjnt(mnt,Φnt, Xnt))∑J
k=0 exp(v

k
nt(mnt,Φnt, Xnt))

(2.11)

The individual’s contribution to the likelihood function conditional on his true parameter values and

sequence of signal noises is:

Ln(µn,∆n) =
∏
t

∏
j

P j
nt(mnt,Φnt, Xnt|µn,∆n) (2.12)

where ∆n = {δn,1, . . . , δnt}. The unconditional likelihood function is obtained by integrating over

the distribution of parameter values and signals.

Ln =

∫
µ,∆

Ln(µn,∆)f(∆, µ|µ̄,Σ, σξ) d∆ dµ (2.13)

The full sample likelihood is calculated as the product over the individuals’ likelihoods. The param-

eters that need to be estimated are the parameters of the population distribution of µ, the variance of

the signal, and the coefficients of the observed state variables in the utility function.

2.4 The Estimation Algorithm

The model parameters can be estimated using Simulated Maximum Likelihood. The estimation

procedure we propose is based on the EM Algorithm. First, we will present the estimation proce-

dure, and then we will discuss the advantages of using the EM Algorithm over Simulated Maximum
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Likelihood.

Denote the parameters to be estimated as θ. Then the parameters that maximize the log likelihood

function will also maximize the following equation:

L (θ) =
∑
n

∫
µ,∆

q(µn,∆n|D,X, θ)log(Ln(µn,∆n)f(µn,∆n|θ)) dµ d∆ (2.14)

where

q(µn,∆n|D,X, θ) =
Ln(µn,∆n)f(µn,∆n|θ)∫

µ,∆
Ln(µ,∆)f(µ,∆|θ) dµ d∆

(2.15)

Equation 2.14 is the expected conditional likelihood of the joint probability of the individual’s

choices and the unobserved heterogeneity, where the expectation is over the distribution q, which

is the conditional probability distribution of the unobserved heterogeneity. This expected likelihood

function serves as the basis of the estimation procedure.

The estimation method in this section extends the method of Arcidiacono and Miller (2011).

Their method incorporates unobserved heterogeneity as a finite mixture distribution over unobserved

types using the Expectation Maximization (EM) algorithm. We extend this approach to allow for any

continuous distribution of unobserved heterogeneity by using simulation methods. The estimation

procedure uses a CCP representation of the individual’s value function in the maximization step of a

Simulated EM (SEM) algorithm. An individual’s “type” corresponds to a draw from the distribution

of unobserved heterogeneity.

Each step of the estimation procedure will be covered in detail after an overview of the entire

process. The algorithm begins with initial guesses for the parameters and iterates over the following

steps:

1. E-step, part 1: Use the current parameter values to update q.

2. E-step, part 2: Update the Conditional Choice Probabilities (CCPs) using the current parameter

values.

3. M-step: Update the parameter estimates by maximizing the simulated likelihood function us-

ing the updated CCPs and values of q.
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The process terminates when the parameter estimates converge. Since the EM algorithm is an iter-

ative procedure, the maximization step (or M-step) must be performed on each iteration. The SML

estimator only requires maximizing the likelihood function a single time. Despite the iterative nature

of the estimation, the EM algorithm can still yield considerable computational savings. The use of

CCPs in the maximization step can require far fewer computations than full solution methods. Also,

the EM algorithm reintroduces additive separability in the maximization step. When the likelihood

function is additively separable, it may be possible to estimate the parameters sequentially.

2.4.1 E step

The Expectation step uses the prior iteration parameter estimates, θ̂ = (α, µ̄,Σ, σξ), to update the

conditional probability distribution of the unobserved variable, q, and the CCPs, P̂ . The probability

distribution of the unobserved variables and the CCPs are functions of µ, which can take an infinite

number of values. Each individual, however, can only take on a finite number of values correspond-

ing to the draws needed to simulate the likelihood function. Therefore, these functions only need to

be evaluated at a finite number of points. Denote the iteration number with a superscript.

The first step is to use the prior iteration estimates of the population distribution parameters to

update the individual parameter values:

µm,s+1
n = µ̄s + chol(Σs)ηmn , for m = 1, ...,M (2.16)

where {ηmn }Mm=1 are size J vector draws from the standard normal distribution, and chol(Σs) is

the lower triangular Cholesky decomposition of the population variance matrix. The value of the

sequences of signal draws are updated similarly using the current iteration estimate of the standard

deviation of the signal. The following equation updates q:

qm,s+1(µn,∆n) =
Ln(µmn ,∆

m
n )

1
M

∑M
m=1 Ln(µmn ,∆

m
n )

(2.17)

The CCPs are updated as a weighted multinomial logit of the outcome on a flexible polynomial of the

state variables where the weights are q. Alternatively, the CCPs can be updated using the structure
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of the model. The model can be used to calculate the probability of a given choice at different points

in the state space and interpolation methods can be used to generate estimates of the CCPs at other

points in the state space.

2.4.2 The M Step

The maximization step uses the updated CCPs and the updated q’s to maximize the simulated

version of equation (2.14). The updated parameter estimates are:

θs+1 = max
θ

N∑
n=1

1

M

M∑
m=1

qm,s+1
n log(Ln(θ, P̂ s+1)) (2.18)

It is important to note that equation (2.14) is additively separable in the likelihood of the choice (Ln)

and the likelihood of the unobserved heterogeneity (f(µ,∆|θ)). The latter term can be used to update

the parameters of the distribution of unobserved variables. The updated distribution parameters are

the ML estimate of the mean and variance of the multinomial normal distribution, which simply

becomes the mean and covariance matrix of the sample ({µn,∆n}Nn=1) with weights q. The closed

form solution for the updated distribution parameters follows Train (2007). Additionally, the EM

Algorithm introduces additive separability into the choice likelihood, Ln, which could allow for

sequential estimation of the other model parameters (Arcidiacono and Jones 2003). Finally, it is

possible to use an alternative version of the EM algorithm that replaces the full maximization in the

M step with a single iteration of an optimization procedure. This variant of the EM algorithm is

known as the Generalized EM (GEM) algorithm. Using the GEM variant requires more iterations,

but can substantially reduce the computation required for each iteration. Full maximization in the

M step can be computationally intensive particularly if the optimization procedure uses numerical

gradients.4

4See James (2015) for an application of the GEM algorithm to estimate random parameter Logit models.
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2.5 Monte Carlo Results

2.5.1 Simple Learning Model

In this section we present Monte Carlo estimation results for a simplified version of the model

where individuals are myopic. In the next section we present results for the estimation of the full

model. The motivation for estimating the simplified model is to compare the basic estimation pro-

cedure with Simulated Maximum Likelihood. This comparison is not feasible in the full model as

performing a large enough number of iterations of the estimation using SML is computationally

prohibitive.

The values used in simulation are: T = 20 and J = 2. For each of 20 simulated data sets,

estimation is performed using SML and the EM Algorithm for a given number of draws (M =

{100, 500, 1000}). The simulations are repeated for different numbers ofX variables (K = {0, 1, 5)}),

and different sample sizes (N = {100, 500}). For the EM Algorithm, we use a sequential M step.

The updated distribution parameters have a closed form solution. The coefficients of the X variables

are updated as a single NR iteration of the simulated likelihood function. Optimization is performed

using numerical gradients.5 All computation is performed in MATLAB on a 12 processor com-

puter.6 The convergence criteria for the EM algorithm is that every parameter change by less than

0.5% across iterations, which is the criteria suggested by Train (2007), or a cumulative change in

the parameters by less than 1e − 4. For SML, the MATLAB defaults for the fminunc optimization

command were used. The true parameter values were used as the initial values for both procedures

and the same set of random draws were used.7

Table 2.1 presents the results for N = 100 and K = 0. The table reports the mean, standard

5In the naive learning model, it would be possible to use analytic gradients, which would significantly improve the
speed of the estimation. However, in the full dynamic learning model, only numerical gradients would be feasible.

6In the full dynamic learning model, certain computationally burdensome parts of the estimation algorithm use FOR-
TRAN Mex files in MATLAB. FORTRAN Mex files are MATLAB executable subroutines that are written and compiled
using FORTRAN.

7Starting at the true parameters biases the comparison in favor of SML. The EM algorithm performs better than
gradient based optimization methods at points far from the optimum, but converges slower near the optimum.
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deviation, and median for the set of parameter estimates across simulations for both the EM Algo-

rithm and SML. These summary statistics are also provided for the time it took for the estimation

procedure to converge as well as the number of iterations.8 Finally, we report the number of times the

estimation procedure successfully converged of the 20 total simulations.9 The first panel in table 2.1

reports the results for 100 draws used in simulation. The second and third panel report the results for

500 and 1000 draws respectively. The variables reported include the mean of the population distri-

bution (µ1 and µ2), the Cholesky decomposition of the covariance matrix, and the standard deviation

of the signal distribution.

Particularly for the higher number of simulation draws, both estimation methods are able to

recover the true parameters. The EM Algorithm has difficulty identifying the covariance term when

few draws are used. The variability of the parameter estimates is higher for the EM Algorithm, but

the EM Algorithm is significantly faster.10 The M step in the EM Algorithm only uses part of the

likelihood function, so we would expect a loss in efficiency relative to SML. For each number of

simulation draws, SML takes about the same number of iterations on average to converge. Since the

number of computations needed to calculate the simulated likelihood function is proportional to the

number of draws, calculating the simulated likelihood function for 500 draws takes about 5 times as

long as for 100 draws. Since the number of iterations does not change when 500 draws are used,

SML takes about 5 times as long when going from 100 to 500 draws. On the other hand, the EM

Algorithm converges in fewer iterations as more draws are used. Each iteration takes longer with

more draws, but since fewer iterations are needed, the total estimation time increases by less than the

increase in the number of draws. The number of iterations for the EM Algorithm contains some very

large outliers (the mean time and mean iterations are much larger than the medians). As the number

8If computation were performed on a single processor, the estimation time would be approximately 12 times the
numbers reported.

9The most common reason why the EM Algorithm failed to converge was due to the variance terms either going to
zero or becoming very large.

10There is a tradeoff in setting the convergence criteria. A more difficult criteria could lead to less variability in the
estimates but would add to the estimation time. However, it is not straight forward to set a consistent convergence criteria
for both estimation methods.
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of draws increases, these outliers occur less frequently.

Table 2.2 presents the results for N = 100 and K = 1 and table 2.3 presents the results for

N = 100 and K = 5. The results are qualitatively similar to those without the observed X variables.

There is more variation in the parameter estimates from the EM algorithm, but the estimation is

significantly faster in most cases. When only 100 draws are used, the average estimation time is less

for SML, but the median time is still higher. When more draws are used, the EM algorithm becomes

faster on average.

The next set of results repeats the analysis using a larger sample size (N = 500). Table 2.4

presents the results for K = 0, table 2.5 presents the results for K = 1, and table 2.6 presents the

results for K = 5. The larger sample size results in much less variation in the parameter estimates.

Also, the increase in sample size improves the identification of the parameters when few draws are

used. Even when 100 draws are used, the EM algorithm is now better able to estimate the covariance

parameter. The EM algorithm converges with far fewer iterations and increasing the number of draws

no longer results in a reduction in the number of iterations. The time differential between the EM

algorithm and SML becomes much more dramatic with the larger sample size. For the case with

no X variables (K = 0), the EM algorithm performs nearly as well as SML in recovering the true

parameters in approximately 10% of the time.

2.5.2 Full Learning Model

For the full dynamic model, we consider the estimation procedure in a stationary infinite horizon

framework. The additional complexity of solving the dynamic problem makes Simulated Maximum

Likelihood infeasible for the purposes of this exercise. The values used in the simulations are the

same as the previous section except the estimation is not done for the largest number of draws

(M = 1000) or the largest number of variables in X (K = 5). The discount factor is fixed at

β = 0.9. In integrating over future continuous state variables in the conditional likelihood function,

500 draws are used to approximate the integrals.

Table 2.7 presents the results forK = 0. For a sample size ofN = 100, there is a lot of variability

in the estimated parameters. Increasing the number of draws slightly improves the results. Going

from 100 to 500 draws approximately doubles the time it takes to estimate the parameters. Even

55



though each iteration takes longer with more draws, fewer iterations are required for convergence.

Going to the large sample size greatly improves the parameter estimates. For the sample size of

500, increasing the number of draws does not reduce the median number of iterations required for

convergence, but the average number of iterations falls due to fewer large outliers.

Table 2.8 presents the results for K = 1. The results are similar to those with K = 0. The

larger sample size allows for better identification of the parameters. Increasing the number of draws

reduces the number of iterations required for the smaller sample size, but has less of an effect for the

larger sample size.

2.6 Conclusion

In this paper we extend CCP estimation techniques to allow for a continuous distribution of un-

observed heterogeneity. In many cases, the use of a finite non-parametric distribution of unobserved

heterogeneity (i.e., Arcidiacono and Miller, 2011) is likely to perform as well or better than a para-

metric continuous distribution. One significant exception is the when the parametric assumption is

made in the model, as is the case with learning models. The estimation procedure developed in this

paper provides a computationally feasible method for the estimation of learning models.
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Table 2.1: Naive learning model Monte Carlo results for N = 100 and K = 0

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
µ1 1.0 1.430 1.095 1.109 0.923 0.100 0.920
µ2 1.0 1.457 1.102 1.082 0.968 0.128 0.986
Ch11 2.0 2.396 1.401 1.923 2.024 0.236 2.048
Ch22 2.0 2.060 0.253 2.072 2.081 0.236 2.126
Ch21 -0.5 0.372 2.010 -0.386 -0.438 0.287 -0.357
σ 0.25 0.198 0.103 0.239 0.420 0.245 0.385

Time (min) 8.4 11.3 2.2 9.8 1.7 9.6
Iterations 108.0 145.4 28.0 15.4 2.7 15.0
Successes 20 20

M = 500

µ1 1.0 1.190 0.524 1.051 0.947 0.095 0.922
µ2 1.0 1.205 0.549 1.150 0.988 0.134 0.946
Ch11 2.0 2.192 0.504 2.065 2.028 0.238 2.062
Ch22 2.0 2.109 0.238 2.089 2.050 0.231 2.065
Ch21 -0.5 -0.057 0.834 -0.278 -0.455 0.272 -0.403
σ 0.25 0.238 0.057 0.251 0.404 0.288 0.333

Time (min) 18.0 36.2 7.5 53.2 8.5 52.9
Iterations 47.9 96.1 20.0 16.6 1.8 16.5
Successes 19 20

M = 1000

µ1 1.0 1.186 0.596 1.055 0.957 0.095 0.936
µ2 1.0 1.237 0.637 1.044 0.992 0.132 0.931
Ch11 2.0 2.230 0.675 2.045 1.991 0.234 2.025
Ch22 2.0 2.120 0.264 2.121 2.058 0.239 2.030
Ch21 -0.5 0.058 1.210 -0.334 -0.439 0.231 -0.395
σ 0.25 0.253 0.007 0.252 0.293 0.232 0.236

Time (min) 15.1 8.6 12.7 110.5 21.8 103.7
Iterations 20.2 11.4 17.0 17.1 2.7 17.0
Successes 19 20
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Table 2.2: Naive learning model Monte Carlo results for N = 100 and K = 1

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
α1 1.0 1.035 0.437 0.960 0.953 0.282 0.933
α2 -1.0 -0.876 0.563 -0.933 -0.958 0.310 -0.878
µ1 1.0 1.081 0.685 0.914 1.020 0.153 1.005
µ2 1.0 1.159 0.556 1.114 1.011 0.178 1.029
Ch11 2.0 2.071 0.432 1.986 2.046 0.210 1.969
Ch22 2.0 1.883 0.422 1.766 1.987 0.277 2.008
Ch21 -0.5 -0.347 1.111 -0.745 -0.507 0.353 -0.433
σ 0.25 0.226 0.074 0.250 0.453 0.265 0.425

Time (min) 22.7 50.7 6.0 17.9 2.6 18.6
Iterations 77.6 165.1 23 21.2 3.1 21.0
Successes 20 20

M = 500

α1 1.0 0.968 0.259 0.962 0.934 0.217 0.947
α2 -1.0 -0.975 0.312 -0.917 -0.943 0.267 -0.945
µ1 1.0 1.080 0.648 0.864 1.006 0.132 1.004
µ2 1.0 1.131 0.464 1.123 1.023 0.154 1.019
Ch11 2.0 2.148 0.499 2.073 2.044 0.189 1.988
Ch22 2.0 1.948 0.371 1.859 1.994 0.246 1.929
Ch21 -0.5 -0.309 1.079 -0.671 -0.557 0.256 -0.547
σ 0.25 0.231 0.074 0.253 0.417 0.272 0.369

Time (min) 89.0 192.5 19.7 75.3 14.0 75.2
Iterations 72.9 147.7 19.0 19.4 3.28 19.5
Successes 20 20

M = 1000

α1 1.0 0.985 0.317 1.018 0.958 0.241 1.010
α2 -1.0 -1.000 0.313 -0.944 -0.950 0.270 -0.911
µ1 1.0 1.029 0.607 0.848 1.007 0.127 1.000
µ2 1.0 1.073 0.404 1.088 1.021 0.150 1.008
Ch11 2.0 2.164 0.529 2.092 2.042 0.190 2.041
Ch22 2.0 1.909 0.337 1.864 1.959 0.226 1.956
Ch21 -0.5 -0.420 0.896 -0.631 -0.561 0.282 -0.514
σ 0.25 0.250 0.014 0.253 0.360 0.275 0.270

Time (min) 54.3 63.9 38.9 147.7 31.8 143.6
Iterations 26.4 28.1 20.0 18.9 3.3 19.0
Successes 19 20
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Table 2.3: Naive learning model Monte Carlo results for N = 100 and K = 5

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
ᾱ1 1.0 1.063 0.385 1.046 1.067 0.335 1.029
ᾱ2 -1.0 -1.018 0.328 -0.978 -0.971 0.274 -0.954
µ1 1.0 1.002 0.407 1.010 1.029 0.173 1.041
µ2 1.0 1.157 0.453 1.262 0.985 0.116 0.977
Ch11 2.0 1.968 0.520 2.024 2.044 0.274 1.988
Ch22 2.0 1.865 0.527 1.895 2.103 0.296 2.099
Ch21 -0.5 -0.384 0.998 -0.207 -0.460 0.302 -0.499
σ 0.25 0.340 0.441 0.259 0.450 0.333 0.147

Time (min) 123.9 219.3 35.2 39.5 6.9 38.7
Iterations 141.1 240.0 44.0 27.2 4.9 27.0
Successes 18 20

M = 500

ᾱ1 1.0 1.058 0.321 1.034 1.094 0.325 1.041
ᾱ2 -1.0 -0.968 0.318 -0.948 -0.996 0.282 -0.969
µ1 1.0 1.035 0.447 1.035 1.011 0.176 1.030
µ2 1.0 1.182 0.424 1.187 0.991 0.122 0.979
Ch11 2.0 2.092 0.231 2.059 1.999 0.182 2.015
Ch22 2.0 1.994 0.246 1.988 1.997 0.279 1.950
Ch21 -0.5 -0.177 0.798 -0.365 -0.565 0.244 -0.552
σ 0.25 0.252 0.016 0.253 0.417 0.317 0.321

Time (min) 117.3 65.3 91.2 168.9 23.8 163.8
Iterations 38.8 20.4 29.5 23.4 3.22 23.5
Successes 20 20

M = 1000

ᾱ1 1.0 1.076 0.313 1.067 1.106 0.305 1.045
ᾱ2 -1.0 -0.966 0.297 -0.938 -0.991 0.270 -0.968
µ1 1.0 1.020 0.420 1.082 0.999 0.169 1.030
µ2 1.0 1.166 0.407 1.208 0.995 0.120 0.993
Ch11 2.0 2.076 0.189 2.063 1.992 0.181 1.958
Ch22 2.0 2.009 0.254 1.973 1.989 0.301 2.041
Ch21 -0.5 -0.225 0.703 -0.290 -0.546 0.226 -0.552
σ 0.25 0.240 0.022 0.247 0.409 0.350 0.295

Time (min) 268.7 177.5 196.6 321.9 44.2 332.4
Iterations 44.6 27.3 34.5 22.5 3.3 22.0
Successes 20 20
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Table 2.4: Naive learning model Monte Carlo results for N = 500 and K = 0

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
µ1 1.0 1.078 0.114 1.094 0.994 0.066 0.983
µ2 1.0 1.044 0.166 1.026 0.964 0.053 0.966
Ch11 2.0 1.951 0.115 1.946 1.980 0.106 1.984
Ch22 2.0 1.973 0.125 1.991 2.060 0.166 2.025
Ch21 -0.5 -0.475 0.247 -0.476 -0.450 0.115 -0.447
σ 0.25 0.248 0.008 0.250 0.229 0.145 0.224

Time (min) 6.6 3.6 5.7 57.0 9.4 57.1
Iterations 16.8 9.0 14.5 15.7 2.1 16
Successes 18 20

M = 500

µ1 1.0 1.069 0.128 1.057 1.017 0.056 1.023
µ2 1.0 1.036 0.169 0.991 0.979 0.049 0.985
Ch11 2.0 2.008 0.112 2.021 2.010 0.125 2.026
Ch22 2.0 2.023 0.120 2.011 2.040 0.106 2.054
Ch21 -0.5 -0.450 0.218 -0.437 -0.486 0.112 -0.472
σ 0.25 0.250 0.005 0.251 0.340 0.152 0.307

Time (min) 31.0 18.8 26.9 307.2 42.7 315.1
Iterations 16.1 9.7 14.0 17.3 2.2 17.5
Successes 20 20

M = 1000

µ1 1.0 1.072 0.127 1.071 1.017 0.054 1.020
µ2 1.0 1.038 0.167 0.998 0.984 0.049 0.982
Ch11 2.0 2.017 0.111 2.027 2.015 0.122 2.015
Ch22 2.0 2.041 0.119 2.036 2.024 0.107 2.032
Ch21 -0.5 -0.429 0.222 -0.394 -0.515 0.092 -0.498
σ 0.25 0.251 0.003 0.251 0.350 0.158 0.322

Time (min) 62.9 37.5 55.3 624.9 122.2 593.9
Iterations 16.5 9.9 14.5 18.4 2.7 19.0
Successes 20 20
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Table 2.5: Naive learning model Monte Carlo results for N = 100 and K = 1

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
α1 1.0 0.952 0.105 0.956 0.961 0.112 0.949
α2 -1.0 -1.009 0.129 -1.008 -1.006 0.140 -1.010
µ1 1.0 0.950 0.219 0.965 0.976 0.073 0.980
µ2 1.0 1.073 0.136 1.046 1.016 0.064 1.011
Ch11 2.0 1.991 0.157 1.987 2.066 0.110 2.070
Ch22 2.0 1.940 0.159 1.923 2.012 0.120 2.029
Ch21 -0.5 -0.513 0.277 -0.581 -0.478 0.104 -0.462
σ 0.25 0.250 0.011 0.250 0.276 0.171 0.269

Time (min) 21.1 14.0 16.1 73.4 12.5 70.9
Iterations 20.4 12.7 16.0 17.7 2.9 18.0
Successes 20 20

M = 500

α1 1.0 0.971 0.102 0.999 0.973 0.105 1.000
α2 -1.0 -1.021 0.114 -1.024 -1.015 0.129 -1.008
µ1 1.0 0.933 0.191 0.979 0.988 0.066 1.004
µ2 1.0 1.061 0.120 1.068 1.032 0.068 1.044
Ch11 2.0 2.047 0.116 2.038 2.048 0.101 2.037
Ch22 2.0 1.982 0.115 1.984 2.038 0.113 2.058
Ch21 -0.5 -0.511 0.214 -0.564 -0.494 0.092 -0.489
σ 0.25 0.251 0.005 0.249 0.383 0.153 0.411

Time (min) 82.8 40.6 73.9 394.6 77.1 376.7
Iterations 16.9 7.6 15.5 18.9 3.06 18.5
Successes 20 20

M = 1000

α1 1.0 0.980 0.090 0.980 0.980 0.094 0.998
α2 -1.0 -1.012 0.121 -1.022 -1.009 0.128 -1.005
µ1 1.0 0.933 0.187 0.933 0.989 0.066 1.015
µ2 1.0 1.059 0.133 1.087 1.032 0.066 1.046
Ch11 2.0 2.049 0.124 2.034 2.051 0.102 2.045
Ch22 2.0 1.991 0.106 1.994 2.033 0.111 2.057
Ch21 -0.5 -0.508 0.189 -0.508 0.513 0.102 0.505
σ 0.25 0.250 0.004 0.250 0.347 0.185 0.353

Time (min) 159.3 83.6 139.7 800.3 142.8 765.8
Iterations 16.6 8.0 15.0 19.2 2.3 19.5
Successes 20 20
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Table 2.6: Naive learning model Monte Carlo results for N = 500 and K = 5

M = 100

EM SML
Variable True Value Mean SD Median Mean SD Median
ᾱ1 1.0 0.956 0.126 0.952 0.982 0.121 0.982
ᾱ2 -1.0 -0.951 0.141 -0.960 -0.975 0.144 -0.979
µ1 1.0 1.108 0.205 1.099 0.953 0.071 0.945
µ2 1.0 1.105 0.219 1.137 0.979 0.087 0.967
Ch11 2.0 1.964 0.122 1.947 2.032 0.132 2.037
Ch22 2.0 1.977 0.201 1.996 2.017 0.130 2.009
Ch21 -0.5 -0.349 0.314 -0.348 -0.511 0.152 -0.505
σ 0.25 0.253 0.023 0.248 0.231 0.147 0.243

Time (min) 103.8 75.0 65.9 163.6 27.1 157.8
Iterations 33.7 21.8 23 22.7 3.5 21
Successes 20 20

M = 500

ᾱ1 1.0 1.010 0.113 1.013 1.009 0.109 1.015
ᾱ2 -1.0 -0.982 0.132 -0.994 -0.995 0.131 -1.007
µ1 1.0 1.031 0.166 1.019 0.966 0.065 0.957
µ2 1.0 1.035 0.186 1.019 1.000 0.077 0.993
Ch11 2.0 2.007 0.115 1.993 2.015 0.111 1.983
Ch22 2.0 1.998 0.165 2.046 1.996 0.110 2.010
Ch21 -0.5 -0.422 0.223 -0.445 -0.530 0.105 -0.505
σ 0.25 0.250 0.005 0.250 0.334 0.184 0.318

Time (min) 306.0 212.3 228.0 870.1 175.7 843.5
Iterations 22.1 14.2 17.0 23.4 2.8 23.5
Successes 20 20

M = 1000

ᾱ1 1.0 1.008 0.106 1.013 1.015 0.108 1.023
ᾱ2 -1.0 -0.979 0.129 -0.988 -0.996 0.132 -0.993
µ1 1.0 1.043 0.175 0.994 0.964 0.071 0.955
µ2 1.0 1.043 0.191 1.006 1.005 0.083 1.010
Ch11 2.0 2.011 0.118 1.997 2.011 0.096 2.033
Ch22 2.0 2.013 0.163 2.045 1.985 0.121 1.987
Ch21 -0.5 -0.404 0.230 -0.409 -0.534 0.113 -0.517
σ 0.25 0.249 0.003 0.249 0.354 0.215 0.297

Time (min) 511.2 242.1 436.5 1768.5 285.2 1811.9
Iterations 18.5 8.4 16.0 23.5 3.7 23.5
Successes 20 20
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Table 2.7: Full learning model Monte Carlo results for K = 0

N=100
M = 100 M = 500

Variable True Value Mean SD Median Mean SD Median
µ1 1.0 0.802 0.587 0.600 0.999 0.688 0.742
µ2 1.0 0.696 0.583 0.670 0.960 0.753 0.693
Ch11 2.0 1.505 0.578 1.367 1.808 0.500 1.723
Ch22 2.0 1.676 0.889 1.605 1.623 0.526 1.511
Ch21 -0.5 -0.786 1.124 -0.993 -0.136 1.261 -0.751
σ 0.25 0.379 0.337 0.249 0.235 0.061 0.239

Time (min) 54.0 62.0 27.5 91.3 102.3 61.8
Iterations 143.3 150.7 74 90.7 110.2 59.5
Successes 19 20

N=500
M = 100 M = 500

µ1 1.0 1.059 0.346 1.029 1.132 0.339 1.060
µ2 1.0 0.968 0.326 0.846 1.038 0.330 1.041
Ch11 2.0 2.008 0.281 2.054 2.142 0.307 2.086
Ch22 2.0 1.922 0.364 1.863 2.012 0.366 2.039
Ch21 -0.5 -0.493 0.542 -0.581 -0.344 0.596 -0.461
σ 0.25 0.238 0.051 0.248 0.251 0.017 0.254

Time (min) 64.3 62.6 41.4 239.5 98.2 203.3
Iterations 67.0 69.1 42 53.1 22.6 43.5
Successes 20 20
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Table 2.8: Full learning model Monte Carlo results for K = 1

N=100
M = 100 M = 500

Variable True Value Mean SD Median Mean SD Median
α1 1.0 0.801 0.808 0.667 0.707 0.823 0.743
α2 -1.0 -0.934 0.606 -0.909 -0.762 0.658 -0.763
µ1 1.0 0.816 0.777 0.499 1.010 0.993 0.707
µ2 1.0 1.097 0.975 0.797 1.177 1.007 0.827
Ch11 2.0 1.720 0.739 1.616 2.117 0.771 1.962
Ch22 2.0 1.812 1.106 1.728 1.785 0.697 1.874
Ch21 -0.5 -0.336 1.369 -0.536 0.056 1.540 -0.316
σ 0.25 0.513 0.687 0.264 0.243 0.042 0.248

Time (min) 320.9 389.5 114.6 452.5 270.1 367.2
Iterations 186.2 186.3 88.0 81.8 50.8 67.5
Successes 20 20

N=500
M = 100 M = 500

α1 1.0 0.898 0.286 0.844 0.945 0.319 0.872
α2 -1.0 -0.976 0.258 -0.987 -1.000 0.267 -1.055
µ1 1.0 1.013 0.343 0.932 1.019 0.280 0.960
µ2 1.0 1.053 0.303 1.037 1.044 0.260 1.060
Ch11 2.0 1.950 0.379 1.989 2.081 0.262 2.089
Ch22 2.0 1.871 0.366 1.919 1.934 0.338 1.903
Ch21 -0.5 -0.545 0.481 -0.657 -0.504 0.456 -0.629
σ 0.25 0.275 0.073 0.258 0.249 0.009 0.247

Time (min) 516.4 591.8 331.3 1923.0 1211.7 1399.5
Iterations 66.2 69.6 44.0 52.2 29.7 43.0
Successes 20 19
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CHAPTER 3

DO CONSUMERS’ BELIEFS CONVERGE TO EMPIRICAL DISTRIBUTIONS WITH
REPEATED PURCHASES? (CO-AUTHOR FORREST SPENCE)

3.1 Introduction

Price dispersion is a feature of many markets and even occurs in markets for homogeneous goods

or services (Stigler 1961). One possible reason for the persistence of price dispersion is that con-

sumers have limited information over prices and acquiring information may be costly. In markets

with limited information and costly search, an individual may not purchase from the seller with the

lowest price if she is unaware of that price. Theoretical models of consumer search incorporate the

search decision into a model of consumer demand by assuming that individuals have beliefs about

the empirical distribution of prices in the market and must incur a cost to reveal price information

from one or more retailers before deciding whether to purchase the good or service (e.g., Reinganum,

1979; Burdett and Judd, 1983). The decision to search depends upon the magnitude of the search

costs as well as the individual’s subjective beliefs about the distribution of prices. When estimating

models of consumer search, researchers may impose assumptions on individuals’ beliefs in order

to recover estimates of search costs. In this paper, we test the validity of these assumptions using

data on the observed distribution of prices for the online textbook market and data on individuals’

subjective beliefs about this distribution.

There is a growing literature focusing on the development and estimation of structural models

of consumer search. These models have been used to explain observed price dispersion for ho-

mogeneous goods (Hortaçsu and Syverson 2004; Hong and Shum 2006), test competing models of

consumer search (De los Santos, Hortacsu, and Wildenbeest 2012b), and to recover demand esti-

mates in markets where price uncertainty is important (Koulayev 2012; Moraga-González, Sándor,

and Wildenbeest 2009). A critical assumption used in these studies is that consumers have rational



expectations, (i.e. the price of a product is a random variable, but consumers know the parameters

that govern the distribution of prices. However, if consumers have biased beliefs about the param-

eters of the empirical distribution of prices, this will lead to biased estimates of search costs. In

particular, if consumers’ beliefs about prices are biased upward, the rational expectations assump-

tion will bias search cost estimates upwards and bias price elasticity estimates towards zero (low

levels of search can be explained by either high search costs or low expected benefits from search).

By comparing subjective beliefs to actual observed price distributions, we are able to test the validity

of this assumption.

In addition to testing the validity of the rational expectations assumption, we also investigate

the degree to which experienced consumers have more accurate beliefs than their less experienced

counterparts. Recent research has supported this idea by incorporating learning into consumer search

models.1 In these models, consumers learn about the parameters of the empirical price distribution

within a single purchasing decision through a sequential search process (De los Santos, Hortacsu,

and Wildenbeest 2012a; Koulayev 2009, 2013). We focus instead on learning across purchasing

decisions; in particular we examine the hypothesis that more experienced consumers have acquired

information about the empirical price distribution through repeated participation in the market.2

We use data on the empirical distribution of textbook prices from online retailers and consumers’

subjective beliefs about this distribution. In order to obtain data on individuals’ subjective beliefs, we

provide an online questionnaire to 1,224 undergraduate students with multiple textbook purchasing

scenarios in order to elicit their beliefs about prices. For each hypothetical textbook purchasing

scenario, students are given the price of a textbook from the campus bookstore and are asked about

their expectations of the lowest price available from an online retailer. Additional questions are asked

to elicit consumers’ beliefs about the variability of the lowest price. For example, if a consumer

1Earlier studies examined learning and search through experimental designs (e.g., Sonnemans, 1998; Einav, 2005)

2The research questions we address in this paper are further supported by research in the labor literature, which uses
subjective beliefs about future earnings to explain college major choice (Arcidiacono, Hotz, and Kang 2012; Stinebrick-
ner and Stinebrickner 2011; Wiswall and Zafar 2012). These studies show that incorporating students’ subjective beliefs
leads to significantly different estimates than those obtained under the assumption of rational expectations. In addition
to this, Wiswall and Zafar (2012) show that college students’ beliefs about future earnings become more consistent with
the actual earnings distribution as they proceed through school (i.e., become more familiar with their field).
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reports an expected online price of $100, she is then asked about the likelihood that the actual price

is below $95.

Our results show that inexperienced consumers have price expectations that are significantly

greater than the mean of the empirical price distribution for both new and used textbooks. There-

fore, we can reject the hypothesis that inexperienced consumers know the parameters of the price

distribution for the online textbook market. Individuals with higher levels of experience, measured

by the number of prior online textbook purchases, typically have price expectations that are closer to

the empirical mean. For used books, individuals tend to underestimate the variation of the empirical

distribution, and beliefs about the variation of the price distribution do not appear to become more

accurate with experience. Overall, the evidence is consistent with learning, at least for learning about

the mean of the price distribution.

The following section provides theoretical motivation for this project and expands on our goals.

Section 3 describes the data and Section 4 presents results. Section 5 discusses the issue of selection,

and section 6 concludes.

3.2 Theoretical Motivation

We use the following simple model of consumer search to motivate the empirical section of this

paper. Individuals can purchase a given product from two locations. Assume for simplicity that the

search cost is zero for one of the locations, so the individual knows the price of the product at this

location. The price of the product at the other location is unknown by the individual, and there is

a cost associated with determining this price. Denote the price at the zero search cost location as

p∗ and the price at the location with a search cost as p, which is a random variable with cumulative

density function, F (p). The individual can either purchase the product from the first location or pay

some cost, c, to search and discover the price at the other location. If the individual decides to search,

he does not incur an additional search cost should he choose to purchase the product from the first

location (i.e., search with recall).

The decision rule for the search problem is given by Equation (3.1). An individual chooses to

search if,
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∫ p∗

0

(
p∗ − p

)
dF̃i(p) > ci (3.1)

where F̃i denotes an individual’s beliefs about the empirical price distribution. The LHS of Equation

(3.1) is the expected benefit of search. A individual integrates over the difference between the known

(p∗) and unknown price (p), given his beliefs about the distribution of the unknown price. The domain

of integration is bounded above by p∗ because an individual can costlessly revisit the first location

(i.e., the benefit from search is weakly positive).

The RHS of Equation (3.1) is an individual specific search cost ci. The majority of the structural

consumer search literature attempts to recover the distribution of individuals’ search costs. In order

to do so, the econometrician must make assumptions regarding individuals’ beliefs, F̃ . A common

assumption regarding individuals’ beliefs is that there is no learning over the parameters of the

distribution, and individuals have rational expectations. In other words, individuals are assumed to

know the parameters of the distribution of p.3

In this paper, we focus on the first two moments of individuals’ beliefs. Determining if these

moments match the corresponding moments of the empirical price distribution is important for the

estimation of search costs. If consumers overestimate the mean of the empirical price distribution,

then the model will generate an upwardly biased distribution of search costs under the rational ex-

pectations assumption. Similarly, if consumers underestimate the variance of the empirical price

distribution, search cost estimates will also be biased upward.4

An alternative to rational expectations is to allow uncertainty and learning over the parameters

3An alternative to making a parametric assumption on the empirical price distribution and consumers’ beliefs is to
instead assume that consumers form beliefs non-parametrically based on the empirical CDF of observed prices:

F (p) = F̃i(p) =
1

N

N∑
k=1

I[pk < p]

where N is the number of observed prices. If consumers’ beliefs are biased relative to the empirical distribution, this
leads to similar biases in search costs that are discussed under the assumption of a parametric distribution for prices and
beliefs.

4Misspecification of beliefs also leads to biases in price elasticity estimates. If individuals’ beliefs are biased such
that they underestimate the benefit of search (relative to the assumed, true benefit), then the model will recover price
elasticities that are lower relative to the true elasticities.
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of the price distribution. When individuals search and observe a price draw, they can use this infor-

mation to update their beliefs according to a learning process (e.g., Bayesian). Even in the learning

framework, however, some variant of the rational expectations assumption is commonly used to re-

strict individuals’ initial prior beliefs as the initial priors are typically not separately identified. In the

empirical section of the paper we test whether inexperienced individuals have biased beliefs about

the parameters of the price distribution. We also examine whether individuals’ beliefs are consistent

with learning by testing whether more experienced individuals have beliefs that are closer to the

parameters of the empirical price distribution.

3.3 Data

We collected data on subjective beliefs about the distribution of prices in the online textbook

market through online questionnaires sent to students at the University of North Carolina at Chapel

Hill (UNC).5 The questionnaires asked individuals about their previous textbook purchasing behavior

and presented them with hypothetical textbook purchasing scenarios. We supplement the responses

to these textbook purchasing scenarios with price data scraped from an online marketplace for a large

number of textbooks. Before providing a summary of both datasets, we will provide more detailed

information about the textbook purchasing scenarios.

3.3.1 Textbook Purchasing Scenarios

Each questionnaire contained three randomly assigned hypothetical textbook purchasing scenarios

from a total of twelve potential scenarios.6 Figure 3.1 is a screenshot of the information provided in

one particular scenario.7

After being presented with information about the scenario, respondents were provided with the

(actual) price of a new copy of the textbook from the campus bookstore, and were asked to give their

5Appendix Section B.1.1 contains the text from the online questionnaire provided to consumers. Individuals who
agreed to participate in the survey were sent a link to the questionnaire.

6These twelve textbooks include four textbooks each from physical sciences, social sciences, and humanities. Of the
four textbooks within these general fields, two are from introductory level courses. More information on the character-
istics of the textbooks used in the hypothetical purchasing scenarios can be found in Appendix B.1.2.

7For each scenario, we randomly assigned respondents to a full information case (title, author, publisher, picture, etc.)
or a limited information case. As opposed to the full information case, as seen in Figure 3.1, the limited information case
only provided information on the title, author, and course.
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expectations about the lowest price they would find for a new copy of this textbook if they searched

only one online retailer.8 Respondents were then presented with the actual price of a used copy of

the textbook from the campus bookstore (including taxes) and were asked to give their expectations

about the lowest price they would find for a used copy online if they searched one online retailer

(including shipping fees).

In order to elicit information about individuals’ beliefs about the higher order moments of the

price distribution, we then asked respondents for the probability that the price realized after search

would be less than X% or greater than Y% of their reported expected price for both new and used

copies of the textbook. For example, in Figure 3.1, the new price of the textbook at the campus

bookstore for the Fall 2012 semester was $87.00. If the respondent reported that her expectation of

the lowest price for a new copy of the textbook from one online retailer was $50.00, then the next

questions would ask her the probability that the price would be less than $45.00 and the probability

that the price would be greater than $55.00. In practice, X was randomly drawn from {85, 90, 95}

and Y was randomly drawn from {105, 110, 115}.

Given that individuals may not be accustomed to thinking about prices in a probabilistic man-

ner, we first presented individuals with an example in order to help clarify the questions within the

textbook purchasing scenarios. In the example, we asked individuals to consider the lowest price

they might find for a pair of jeans if they searched one retailer at the mall. This example contained

information about probabilities (e.g., that their response should be between 0 and 100 percent) and

clarification about the nature of price uncertainty (i.e. that although their best guess might be $20,

there is some chance that the price is actually lower or higher than $20).

3.3.2 Online Questionnaire Data

We conducted two waves of the survey. The first was during the Fall semester of 2012, and the

second was during the Spring semester of 2013. For the Fall 2012 and Spring 2013 semesters, 820

and 798 respondents completed the background questions about their previous textbook purchasing

8The bookstore price provided to students explicitly included sales tax. Respondents were asked to include shipping
fees when providing their expectation of the lowest price available. Respondents were also reminded to not actually
search for the lowest price of the textbook.
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experience, respectively. The sample used in analysis is composed of 739 respondents from the

Fall 2012 semester and 726 respondents from the Spring 2013 semester.9 104 respondents (52 from

both semesters) were dropped because they had been enrolled in college for more than 10 semesters

and an additional 49 respondents (29 from Fall 2012 and 20 from Spring 2013) were dropped for

reporting nonsensical answers (e.g., reporting an expected price of $100,000).10 Appendix B.1.3

provides a more detailed description of within survey attrition.

Table 3.1 displays the number of semesters enrolled for the questionnaire respondents. This

count includes both traditional fall and spring semesters and any summer sessions the students had

previously been enrolled in. Individuals in later semesters are slightly over sampled due to the nature

of how we recruited individuals for the study. We obtained the email addresses of individuals who

participated in a separate, longer running data collection project and agreed to receive follow-up

emails. This other project began in the Fall of 2011 and recruited new individuals each semester.

Individuals who participated at the start of this other project would be at least in their third semester

at the time of data collection (assuming continual enrollment). Appendix B.1.1 provides more detail

on how individuals were recruited.

Respondents’ previous textbook purchasing behavior and major choice are also reported in Table

3.1. A majority of respondents have purchased textbooks at the campus bookstore and from an

online retailer. There is significant variation in how many textbooks respondents have purchased

online; 33.6% of the individuals in the sample have purchased five textbooks or fewer from online

retailers. Approximately a third of respondents reported either Economics or a STEM field as one of

their stated majors.

3.3.3 Online Retailer Data

In order to construct an empirical distribution of prices for textbooks, we used a script in Perl to

scrape .html files from Amazon.com. We collected daily price data for approximately 3,500 books

9There were 240 individuals who participated in both surveys.

10In practice, this was done by removing respondents who reported expectations less than 10% or greater than 150%
of the bookstore price. In Appendix B.2.1 we report out main results for a more relaxed omission criterion. The results
are substantially the same.
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that were assigned at UNC during the 2012-2013 school year. Using these .html files, we used a

separate script in Perl to parse the lowest prices available for both new and used copies of the books

on each day.11 Since the survey asked individuals about their expectations of the lowest available

price for a particular book, we define the empirical distribution as the distribution of the lowest

online price as a proportion of the price at the campus bookstore across textbooks. We use the daily

price data for two intervals corresponding to the timing of the surveys. The Fall survey period is

from November 30, 2012 to December 10, 2012, and the Spring survey period is from April 11,

2013 to April 26, 2013.12 To construct the empirical price distribution, we use the average price of

the textbook over the survey period. The price sample used in the analysis trims the top and bottom

0.5% of the prices for each survey period.13

The total cost of purchasing books online includes shipping fees, which vary depending on the

speed of delivery. For items purchased on the Amazon Marketplace from third party sellers, we

added the fee for standard shipping. Items purchased directly from Amazon qualify for free standard

shipping as long as the item is purchased in as part of an order that exceeds a certain amount.14 Most

new textbooks will qualify for free shipping if purchased directly from Amazon, so we do not add

any shipping fees to the price of these books.15 We include sales tax in the campus bookstore prices.

Sales taxes are not included in the online prices.16

11Further analysis could incorporate additional prices from these .htmls files such as the lowest price conditional on
reported quality (e.g. very good, good, etc.).

12The online questionnaire was initially distributed on November 30, 2012 for the fall survey and April 11, 2013 for
the spring survey. Nearly all of the surveys were completed during these intervals. We take these periods as the the time
frames that individuals are forming their expectations over. This is potentially problematic as online textbook prices
vary systematically across the year (e.g., they are generally higher in August than May.). Further analysis could examine
additional time frames in the construction of the empirical distribution.

13The trimmed sample excludes books that have an online price listing that is either a very small fraction or a large
multiple of the bookstore price. In some cases, particularly for books with low sales volumes, the automated pricing
algorithms used by larger book resellers can generate these extreme prices.

14Orders that exceeded $25 qualified for free shipping at the time of the surveys.

15We do not include shipping for books that do not individually qualify for free shipping because they could be
purchased as part of a larger order that does qualify for free shipping. The empirical analysis focuses on higher priced
books that would qualify for free shipping. All of the books in the hypothetical textbook purchasing scenarios qualify
for free shipping if purchased new from Amazon.

16At the time of this analysis, Amazon did not collect sales taxes. Individuals were responsible for paying the sales
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Table 3.2 provides the ratio of prices of textbooks from Amazon.com relative to the price from

the campus bookstore. The first row reports the prices of new books for the full sample of books

for which we have data. On average, new prices on Amazon.com are approximately 85% of the

bookstore price. The second to last column reports the average difference between the price of the

textbook from the bookstore and an online retailer. For all textbooks in our sample, the savings in

absolute terms is approximately $10.

The second row reports the new prices that includes new books listed on the Amazon market-

place by third party sellers. Including the marketplace listings increases the savings relative to the

bookstore price. On average, used prices on Amazon.com are approximately 76% of the used book-

store price. This corresponds to an average difference of approximately $33. The median is lower

than the mean for both new and used books, as the distributions are slightly skewed to the right. On

average the prices during the Spring survey period were slightly lower than during the Fall period.

The next three rows of Table 3.2 provide summary statistics for textbooks which are priced

greater than $100 for a new copy from the campus bookstore. Books with a list price below $100

include popular press titles that have a large market outside of being assigned for a college course.

The restricted sample of books which are priced greater than $100 at the campus bookstore consists

primarily of books that are commonly thought of as textbooks. Relative to the full sample, the

potential savings from shopping online becomes greater for both new books and used books (i.e. in

both percentage and magnitude terms, more expensive textbooks have greater savings in the online

market). The variability of prices is less for both new and used books relative to the full sample.

The final three rows provide summary statistics for the textbooks used in the hypothetical textbook

purchasing scenarios.17 On average, these prices are slightly lower than the sample of textbooks with

a price of $100 or more at the campus bookstore, but the difference is not significant.

Ideally, how we define the empirical price distribution should match the price distribution of

the individuals’ beliefs, but there are a few reasons why this may not be the case. First, textbook

taxes for online purchases, however compliance was low. Sellers on the Amazon Marketplace are responsible for paying
any applicable sales taxes, so sales taxes are already included in the listed prices.

17Note that the total number of textbooks in the purchasing scenarios is actually 12. However, online retailer data for
one textbook is missing.
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prices vary over time, and the time frame used to define the empirical distribution may not match

the time frame of the individuals’ subjective beliefs. Second, we only use price data from a single

online retailer. We believe the prices from Amazon.com provide a reasonable approximation to the

empirical distribution of prices that consumers face if they only search one online retailer. Of the

individuals in our sample, 75% reported Amazon.com as the first website they would visit to search

for a textbook. These issues of timing and alternative retailers affect the comparison between the

individuals’ subjective beliefs and the empirical price distribution. The comparison of individuals’

subjective beliefs across different levels of experience is not affected as long as individuals with

different levels of experience do not systematically differ in the time frame considered or in the

choice of the online retailer.

3.4 Results

The first subsection presents results using the data on reported expectations. The following sub-

section incorporates additional data on beliefs to examine not only individuals’ expectations but also

individuals’ beliefs about the variance of the empirical price distribution in the context of a paramet-

ric learning model. The online survey asks individuals to report what they thought the price of the

textbook would be if they searched one online retailer. We interpret the responses to this question as

corresponding to individuals’ subjective beliefs about the mean of the price distribution of the lowest

price for a particular textbook.

3.4.1 Expectations Results

In this section we present descriptive statistics of individuals’ price expectations. Then, we test for

differences in price expectations relative to the empirical prices across levels of experience in order

to determine if consumers’ expectations converge to the mean of the empirical price distribution.

Finally, we perform regressions to control for additional characteristics of the respondents and the

textbook scenarios.

The first columns of table 3.3 provide the summary statistics of the reported expectations of

the lowest online price as a proportion of the bookstore price for individuals with different levels

of online textbook purchasing experience. In the survey, individuals were asked about the number

of textbooks they had ever purchased online, and they responded by selecting one of four possible
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categories. Individuals with no prior online textbook purchases expect the price of a used book online

to be approximately 74% of the price of a used book at the college bookstore. This corresponds to

an expected savings of $31.53 on average across the hypothetical textbook purchasing scenarios.

Individuals with prior online textbook purchases expect the online price to be lower, with higher

levels of experience corresponding with a greater expected savings. On average, individuals with

more than ten previous online purchases expect the price of a used book online to be approximately

65% of the price of a used book at the college bookstore. This corresponds to an average savings of

$41.65. The results from the spring survey display a similar pattern.

Table 3.4 repeats the analysis done in table 3.3 using level differences instead of the normalized

price ratio. Consumers across experience levels expect for there to be an average savings of $30 to

$40 for textbooks from online retailers. The patterns across experience levels are the same when

using levels as using ratios. As consumers gain experience, they expect to find larger savings in the

online market.

These results demonstrate that higher levels of experience are associated with lower expectations

of online textbook prices. This relationship would be consistent with learning if the individuals

with higher levels of experience report expectations that are closer to the true mean of the price

distributions. The final two columns of table 3.3 report the difference between the average of the

reported expectations and the mean of the empirical price distribution for the sample of scenario

textbooks as well as the sample of textbooks with a list price greater than $100. On average, the

reported expectations become closer to the empirical mean at higher levels of experience. For the

scenario textbooks, the difference between the mean of the reported expectations and the empirical

mean is not significant at any level of experience.18 For the sample of books with list price greater

than $100 for the fall survey, this difference is significant at the lowest levels of experience and is

not significant at the higher levels of significance. For the spring survey, the difference between the

mean of the reported expectations and the mean of the empirical price distribution is significant at

all levels of experience for books with a list price greater than $100. This is due to the mean of the

18This result is primarily due to the small sample size for the scenario textbooks.
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empirical price distribution being lower during the spring survey period.

Table 3.5 reports the results for new books. Individuals with higher levels of experience report

lower expected prices on average. Individuals with no experience expect the online price to be 83%

of the price of the textbook from the campus bookstore (a $26.67 average savings). Individuals with

eleven or more previous online purchases expect the online price to be 77% of the price from the

campus bookstore (a $37.58 average savings). The difference between the empirical mean and the

mean of the reported expectations decreases for higher levels of experience. However, unlike the

results for used books, individuals with higher levels of experience have expectations that are on

average significantly below the empirical prices. One explanation for this result is that the new price

is the price for purchasing the book directly from Amazon.com. When the new price is defined as the

minimum of the marketplace price and the price charged by Amazon.com, the reported expectations

are significantly greater than the empirical mean for all levels of experience. Some individuals likely

include the marketplace when forming their beliefs about the prices of new textbooks. One possible

explanation for the relationship between experience and price expectations for new books is that

individuals are learning about the availability of new textbooks by third party sellers.

Due to the nature of the data collection, we want to control for differences in the textbook pur-

chasing scenarios that individuals are given and control for additional characteristics of the individual

which may explain the differences in price expectations across levels of experience. Table 3.6 re-

ports results from a regression of normalized price expectations on level of experience, textbook

characteristics, scenario characteristics and additional individual controls. The scenario characteris-

tics include indicators to control for the different possible scenarios, the survey period, and whether

the textbook purchasing scenario was a full information case (details were provided on textbook

characteristics such as years since revision, etc.). The additional individual controls include indica-

tors for whether the individual has previously taken the course for which the textbook was assigned

and whether the individual has previously been assigned the textbook in the scenario.

The regression estimates are consistent with the mean comparisons above. Individuals who have

never made an online textbook purchase before have significantly higher price expectations than in-

dividuals who have purchased a textbook online. Price expectations evolve gradually, as individuals
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in the highest category of experience consistently have lower expectations.

The coefficients on indicators for whether the respondent had previously taken the course or been

assigned the textbook are consistently negative, but only statistically significant for individuals who

had previously taken the course. The coefficient on the number of years since the last revision is neg-

ative and significant, perhaps reflecting beliefs about a greater supply of textbooks in the secondary

market. As the number of years since a textbook has been revised increases, the supply of textbooks

in the secondary market increases, generally reducing the price of the textbook. Consumers seem to

internalize this when making a textbook purchasing decision, which supports the results in Chevalier

and Goolsbee (2009). Similarly, consumers have higher price expectations for textbooks that are the

latest edition released (two of the twelve textbook scenarios were for previous editions).

Table 3.7 reports regression results with year in school dummies. These results show that the

differences in beliefs are due to differences in direct online textbook purchasing experience rather

than from indirect experience (e.g., word of mouth).

3.4.2 Distribution Results

In this subsection, we examine whether the patterns observed in the data are consistent with learn-

ing over additional parameters/moments of the empirical price distribution. In the hypothetical text-

book purchasing scenarios, individuals report their expectations for prices as well as the probability

that a draw from the price distribution is below a given threshold (E[H] and Fp(pL;µ, σ)). We use

these two moments to calculate the expected parameters of each individual’s beliefs (i.e., E[µ] and

E[σ]), under the assumption that individuals believe that prices follow a log-normal distribution.19

The log normal distribution has two properties that make it an appropriate distribution in the current

context. First, the support of the distribution is non-negative real numbers and prices are bounded

below by zero. The second feature is that the log normal distribution is skewed to the right, which is

a feature of both the reported beliefs in the sample and the empirical distribution. The most impor-

tant criteria is that the beliefs (i.e., prior and posterior distributions) of the distribution parameters

19The parameters of the log-normal distribution this is done by using the following equations for the mean and CDF of
a log-normal random variable: E[H] = exp(µ+ σ2

2 ), and Fp(pL;µ, σ) = Φ( log(p)−µσ ), where Φ is the standard normal
CDF.
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are conjugate distributions, which is necessary for tractably modeling a Bayesian learning process.

The results are similar under alternative distributional assumptions.20

Assuming that individuals believe that the distribution of prices is log-normal, then individuals’

prior distribution on µ and 1
σ2 is Normal-Gamma. If the individual searches, she observes a price

which she uses to update her beliefs. As the number of price observations increases, the individual’s

mean prior on µ and σ converge to the true parameters, and the variance of the priors converge to

zero. In terms of the search problem, evidence of individual learning requires that individuals with

more experience in the market (i.e., more observations of prices) have more accurate beliefs about

the true parameters of the price distribution and more certainty in their beliefs.

Denote the individual’s expected parameters as µi and σi. In the analysis, we consider the dis-

tribution of the individual’s expected parameters in the population. Define µ̄e and σ̄e as the mean

of individuals’ beliefs with the same level of experience e (i.e. µ̄e = 1
Ne

∑
i µi ∗ 1[ei = e] and

σ̄e = 1
Ne

∑
i σi ∗ 1[ei = e]). Similarly, define V ar[µ]e and V ar[σ]e as the variance among individ-

uals’ beliefs with experience level e. As the number of signals the individual receives increases, the

expected parameters should converge to the true price distribution parameters. Since each individ-

ual’s beliefs converge to the true parameters, µ̄e and σ̄e should converge to the true parameters as

e increases. The convergence of each individual’s beliefs to the true parameters as experience in-

creases implies that the variance among individuals’ beliefs goes to zero. However, at low levels of

experience, V ar[µ]e and V ar[σ]e may increase depending on the variance among individuals’ initial

prior beliefs. If individuals have similar initial mean priors, then the signal noise would generate

greater dispersion of individuals’ beliefs for low levels of experience.

Table 3.8 reports the summary statistics for the reported probability that a draw from the price

distribution is below some threshold for different levels of the threshold. The threshold is defined as

a fraction of the individual’s reported expectation. On average, individuals report that the likelihood

of the lowest price being less than 85% of their expected lowest price is 0.298. For higher levels of

the threshold, individuals assign a larger probability that the price is below the threshold.

20The results for the gamma and normal distributions are presented in the Appendix.
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Some individuals report a probability of zero or 100 which cannot be justified given the distribu-

tional assumption. Similarly, reported probabilities close to zero or 100 will only fit the distribution

for extreme values of the parameters. Once the parameter values are calculated, individuals with

parameter values in the top or bottom 2.5% of parameter values for either parameter are dropped

from the sample to reduce the impact of outliers.21

In order to make the interpretation of the results more straightforward, we use the individual’s

distribution parameters to calculate the mean and standard deviation of the individual’s expected

price distribution, which is defined as the distribution with the individual’s expected parameter val-

ues.22 Table 3.9 reports the sample mean and standard deviation of these moments of the individual’s

expected price distribution by level of experience. Differences in the mean values from the analysis

in the previous section is due to the different samples that result from the different rejection crite-

ria. The mean and standard deviation of the preferred specifications of the empirical distribution are

presented for comparison.

For used books, the variability of the mean across individuals with the same level of experience

does not decrease for individuals with the highest level of experience. So there is greater variability

in the expected lowest price for individuals with the highest level of experience. One reason for the

greater variability for the highest category of experience is that there may be greater variability in

the underlying level of experience for individuals in this group since it includes a larger range of the

number of previous textbook purchases. The mean of the standard deviation of the expected price

distribution initially increases with experience (from 0.238 for individuals with no online purchases

to 0.250 for individuals with 1 to 5 online purchases) and then decreases with experience for higher

levels of experience. The variability of the standard deviation of the expected price distribution

across individuals with the same level of experience tends to decrease for higher levels of experience,

21Probabilities of zero and 100 are replaced with 1 and 99 respectively. The individuals who report probabilities of
zero or 100 are included in the 2.5%. For the normal distribution, the initial sample only includes individuals who report
a probability less than 50%.

22Note that individuals’ two responses for each scenario exactly identify their expectations of the mean and variance
of the normalized price distribution.
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which is consistent with learning. The significance levels reported for the mean are from a two-

sample equality of means test that compares individuals within a particular experience group to

everyone not in that group. The test for the equality of variances defines the comparison samples

in the same way. For new books, the standard deviation of the expected price distributions and

its variability within experience groups display similar patterns as for used books. However, the

significance of these patterns is less.

Comparing the beliefs about the standard deviation of the price distribution to the empirical

standard deviation suggests that individuals may underestimate the variability of prices for used

books and overestimate the variability of prices for new books. For used books, however, individuals’

beliefs about the mean of the standard deviation decrease at higher levels of experience, moving

farther away from the empirical standard deviation. There are several possible explanations for this

result. First, our construction of the empirical price distribution may overstate the variability of prices

by including erroneous product listings (e.g., sellers listing old editions or international editions).

Also, the empirical distribution we construct may not be representative of the books encountered by

the typical student since we include all books that are assigned at the university. Another explanation

is the inherent difficulty in eliciting beliefs about variance as individuals may not be accustomed to

thinking in probabilistic terms.

Figure 3.2 shows the density function of the log-normal distribution for the mean of the individual

parameter values as well as the empirical distribution. Moving from the group with no experience to

the group with some experience (1 to 5 online textbook purchases), the price distribution shifts to the

left and the variance increases slightly. The distributions for higher levels of experience are similar

to the group with some experience but have lower variance. This is in contrast to the empirical distri-

bution, which displays much more variability than the beliefs. Although individuals with experience

are more accurate in predicting the mean of the distribution, even high experience individuals tend to

place too little weight in the left tail of the price distribution. Figure 3.3 shows the densities for new

books. As experience increases, the variance of the distributions decreases. Similar to used books,

individuals tend to understate the variability of the empirical distribution but to a lesser degree.

Overall, the evidence is consistent with learning, although the evidence suggests incomplete
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learning. It may be the case that individuals are only learning over a single parameter. This would

explain why individuals with more experience are better able to predict the mean price, but are no

better (and are actually worse for used books) in incorporating the variance of the price distribu-

tion into their beliefs. Another possibility is that individuals in the sample do not have sufficient

experience for the convergence properties of the learning process to be evident.

3.4.3 Price Beliefs by Major

In this section, we test whether there are differences in individuals’ beliefs for STEM majors

and non-STEM majors. The STEM majors include the natural sciences, math, and other quantitative

fields (including Economics). Individuals with multiple majors are categorized as STEM majors if

any of their majors are in a STEM field. Table 3.10 reports the average expected price for STEM

and non-STEM majors. For both new and used books, there is not a significant difference between

the price expectations for individuals with no prior online purchases. For used books, this difference

becomes significant at low levels of experience as the price expectations of STEM majors decreases

at a faster rate. At higher levels of experience, the price expectations of non-STEM majors appears

to “catch up” to the price expectations of STEM majors and the difference is significant at the 10%

level. For new books, the difference in price expectations between STEM and non-STEM majors is

only significant at the highest level of experience.

Table 3.11 presents the average standard deviation of the expected price distribution for STEM

and non-STEM majors by level of experience. STEM majors tend to have lower expectations about

the variability of prices and there is little change in the expected price variation across different

levels of experience. For non-STEM majors, the variation in the expected price distribution initially

increases at the lowest level of experience and decreases at the higher levels of experience. This

pattern holds for both new and used books.

The results suggest that individuals in non-STEM majors may incorporate new information about

the price distribution differently from STEM majors. The mean of the expected price distribution

is higher than the mean of the empirical distribution for individuals with no online purchasing ex-

perience regardless of major. If these individuals with no experience search for a textbook online,

they are likely to observe a price that is lower than the mean of their expected price distribution. On
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average, STEM majors incorporate this initial experience by lowering the mean of their expected

price distribution while non-STEM majors increase the variance of their expected price distribution.

The results from this section should be interpreted with some caution as there are other factors

that may cause the reported beliefs about the price distribution to differ by major. First, STEM

majors may more comfortable answering the kind of probabilistic questions that we ask in the survey.

Second, the types of books purchased may be systematically different.

3.5 Learning vs. Selection

Although the evidence is consistent with learning, the differences in individuals’ beliefs across

levels of experience could also result from selection. If individuals have heterogeneous initial prior

beliefs, then individuals who believe that the online price is similar to the bookstore price will not

search and will not purchase their books online. Then, if the individuals whose initial priors are

close to the true distribution are the ones who search and purchase online, the observed difference in

beliefs would be the result of selection based on the initial difference in beliefs and not because of

learning.

To distinguish between the effects of learning and selection, we examine the individuals who

participated in the survey in both the fall and spring semesters. There were 240 individuals who

participated in both surveys. Of these individuals, 89 reported an increase in their level of online

textbook purchasing experience from the fall to the spring survey. If selection is generating the

observed patterns in the data, then the individuals who report an increase in experience in the spring

would have lower expected online prices in the fall than the individuals who do not have an increase

in experience. Alternatively, in order for the data to be consistent with learning, then individuals

who report an increase in experience should be more likely to report different beliefs in the spring,

whereas the beliefs of individuals who do not report an increase in experience should be similar in

both periods. For the prior online purchase experience measure, we restrict the analysis to the 22

individuals (between 47 and 56 scenarios) who report no experience in the fall survey. Since this

measure of experience is an interval, individuals who remain in the same interval for both fall and
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spring may or may not have gained experience.23 The inherent limitation of this test is that one

period of learning may not generate a significant difference in beliefs for those whose experience

increased. Therefore, this test is primarily a test of the hypothesis of no selection.

Table 3.12 reports the mean parameter values for a log-normal distribution of prices for the two

groups for both surveys as well as the mean change in parameter values between surveys. The results

of the two-sample t-tests comparing each of the mean values between groups are also reported.

There is not a significant difference between the mean parameter values of the two groups in the fall

semester for both new and used books. The only difference that is significant is the difference in the

value of σ for used books in the fall compared to the spring. However, this change is significant for

both groups. These results suggest that selection is not the primary cause of the differences in beliefs

across experience levels. However, due to the limited sample size, no definitive conclusion can be

drawn.

3.6 Conclusion

Although the evidence is consistent with learning, it appears that the learning process is incom-

plete. Even individuals with the highest levels of experience on average do not fully converge to the

empirical distribution. Also, many individuals with high levels of experience have inaccurate beliefs

(i.e., the variation across individuals’ beliefs does not converge to zero). There are three primary

explanations for the persistence of inaccurate beliefs. The first is that the level of experience where

this convergence would occur is beyond what we measure in the data. The second is that the beliefs

are converging to a distribution other than what is observed during the sample period. For much of

the year, the prices of these textbooks online are relatively stable. For a few weeks prior to the start

of the semester, prices rise sharply and peak around the first week of the semester. Since individuals

are likely to purchase textbooks during this period, the signal that they receive will be from a dis-

tribution with a higher mean than what is observed during the sample period. If an individual only

ever purchases books online during the first week of the semester (the time when online prices are

greatest), then a high experience individual may expect that potential savings online are relatively

23The results of the test are the same if the sample is not limited to individuals who report no experience in the fall.
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modest. Finally, there is likely to be some noise in the reported data as individuals may have differed

in their interpretation of questions as well as the amount of consideration given to their responses.

One limitation of this analysis is the problem of external validity. Although the online market

for textbooks is comparable to online markets for other goods, the individuals in our sample are not

representative of consumers in other online markets. Relative to consumers in other online markets,

individuals in our sample are likely to be younger with higher intellectual ability, but they may have

less overall experience in online markets. If there are knowledge spillovers across online markets,

i.e. if experience in one online market causes individuals to have more accurate beliefs about the

prices in other online markets, then the observed bias in the initial beliefs may be more pronounced

in the online textbook market, where individuals are likely to have less overall experience in online

markets.

In this paper we use a novel dataset to examine subjective price beliefs and their relationship

with experience in a market. We find that inexperienced consumers have biased beliefs, but that

consumers appear to be learning about the empirical price distribution as they repeatedly participate

in the market. This study also leaves open a wide avenue for future research. First, since we do not

estimate a dynamic model of search and learning, we are not able to show how individuals incorpo-

rate their beliefs into the search decision. Thus, we are not able to determine whether individuals

incorporate the benefits of the additional information obtained through search for future purchasing

decisions in their decision to search. Also, if individuals have heterogeneous initial prior beliefs, one

potential avenue of future research would be to determine the sources of this heterogeneity. Finally,

future research is needed to justify the distributional assumptions on the empirical distribution as

well as the prior beliefs.
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Figure 3.1: Textbook Purchasing Scenario
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Table 3.1: Respondent Characteristics

Proportion
1 - 2 Semesters 0.143
3 - 4 Semesters 0.248
5 - 6 Semesters 0.242
7 or More Semesters 0.369
Ever Purchased at Campus Bookstore 0.960
Never Purchased Online 0.106
Purchased 1 - 5 Online 0.230
Purchased 6 - 10 Online 0.241
Purchased 11 or More Online 0.423
STEM Major 0.280
Economics Major 0.089
Other Major 0.631
N = 1465

Table 3.2: Ratio of Amazon Prices to Bookstore Prices by Survey Period

Fall Survey Period
Mean Ratio S.D. Min Median Max Mean Diff. ($) N

All Books New 0.857 0.156 0.467 0.850 1.432 9.37 2051
Newalt 0.772 0.236 0.206 0.753 2.877 20.05 2220
Used 0.758 0.383 0.091 0.715 4.207 16.24 2129

Bookstore New 0.825 0.142 0.475 0.829 1.222 28.33 405
Price > $100 Newalt 0.678 0.169 0.206 0.673 1.377 57.29 429

Used 0.657 0.246 0.097 0.659 1.348 46.03 390
Scenario Books New 0.788 0.112 0.600 0.802 0.961 31.07 11

Newalt 0.659 0.136 0.514 0.609 0.861 61.48 11
Used 0.609 0.241 0.151 0.578 0.979 45.81 11

Spring Survey Period
Mean Ratio S.D. Min Median Max Mean Diff. ($) N

All Books New 0.834 0.148 0.357 0.838 1.425 10.99 2023
Newalt 0.755 0.295 0.202 0.737 3.970 21.64 2248
Used 0.735 0.441 0.080 0.684 5.675 18.57 2161

Bookstore New 0.795 0.158 0.358 0.815 1.326 34.02 379
Price > $100 Newalt 0.646 0.219 0.216 0.658 1.804 62.39 434

Used 0.597 0.279 0.085 0.602 1.731 54.57 390
Scenario Books New 0.729 0.120 0.524 0.768 0.879 46.57 11

Newalt 0.607 0.169 0.275 0.593 0.853 66.80 11
Used 0.614 0.255 0.123 0.581 0.919 50.26 11

Notes: The ratio reported is the lowest price on Amazon.com divided by the price
of the same title (of equivalent quality) from the campus bookstore. Newalt refers
to the lowest price listed by marketplace sellers for a new copy of the title.
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Table 3.3: Mean Ratio Comparisons by Online Purchasing Experience, Used Books

Fall

Expectation / Bookstore Price Mean Expectation Bias

Experience N Mean Ratio S.D. Median Scenario Books Books > $100

No online purchases 256 0.735 0.204 0.750 0.126 0.078***

1-5 online purchases 478 0.714 0.191 0.744 0.105 0.057***

6-10 online purchases 477 0.663 0.172 0.683 0.054 0.006

11+ online purchases 810 0.645 0.184 0.645 0.036 -0.012

Spring

Expectation / Bookstore Price Mean Expectation Bias

Experience N Mean Ratio S.D. Median Scenario Books Books > $100

No online purchases 182 0.744 0.198 0.761 0.130 0.147***

1-5 online purchases 439 0.710 0.170 0.745 0.097 0.113***

6-10 online purchases 480 0.703 0.173 0.741 0.089 0.106***

11+ online purchases 888 0.660 0.176 0.675 0.046 0.063***

Notes: The ratio reported is an individual’s expectation of the lowest price from an online retailer
divided by the price of the same title from the campus bookstore. Expectation Bias refers to the
difference between this ratio and the ratio of the observed online price to the bookstore price.

* refers to t–test p–values < .1; ** < .05; *** < .01; H0 = No difference between ratios.

Table 3.4: Mean Difference Comparisons by Online Purchasing Experience, Used Books

Fall

Bookstore Price - Expected Price Mean Expectation Bias

Experience N Mean Diff. S.D. Median Scenario Books Books > $100

No online purchases 256 31.55 29.86 28 14.26 14.48***

1-5 online purchases 478 35.02 30.51 27.5 10.79 11.01***

6-10 online purchases 477 40.37 30.79 31 5.44 5.66

11+ online purchases 810 41.73 30.78 31 4.08 4.30

Spring

Bookstore Price - Expected Price Mean Expectation Bias

Experience N Mean Diff. S.D. Median Scenario Books Books > $100

No online purchases 182 32.16 29.52 27.5 18.10 22.41 ***

1-5 online purchases 439 35.22 28.56 28 15.04 19.33 ***

6-10 online purchases 480 35.97 27.75 28.5 14.29 18.59 ***

11+ online purchases 888 41.28 31.09 31 8.98 13.29 ***

Notes: The difference reported is an individual’s expectation of the lowest price from an online retailer
subtracted from the price of the same title from the campus bookstore. Expectation Bias refers to the
difference between this difference and the difference of the observed bookstore price to the online price.

* refers to t–test p–values < .1; ** < .05; *** < .01; H0 = No difference between differences.
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Table 3.5: Mean Ratio Comparisons by Online Purchasing Experience, New Books

Fall

Expectation / Bookstore Price Mean Expectation Bias

Scenario Books Books > $100

Experience N Mean Ratio S.D. Median New Newalt New Newalt
No online purchases 256 0.834 0.164 0.853 0.046 0.174*** 0.008 0.156***

1-5 online purchases 479 0.819 0.155 0.851 0.032 0.160*** -0.006 0.142***

6-10 online purchases 480 0.778 0.171 0.817 0.010 0.119** -0.048*** 0.100***

11+ online purchases 814 0.768 0.159 0.798 -0.020 0.109** -0.058*** 0.090***

Spring

Expectation / Bookstore Price Mean Expectation Bias

Scenario Books Books > $100

Experience N Mean Ratio S.D. Median New Newalt New Newalt
No online purchases 184 0.835 0.183 0.870 0.103** 0.225*** 0.037** 0.186***

1-5 online purchases 444 0.818 0.150 0.856 0.089** 0.210*** 0.023** 0.171***

6-10 online purchases 486 0.788 0.152 0.822 0.059 0.180*** -0.008 0.141***

11+ online purchases 892 0.772 0.155 0.795 0.043 0.164*** -0.023** 0.126***

Notes: The ratio reported is an individual’s expectation of the lowest price from an online retailer divided
by the price of the same title from the campus bookstore. Expectation Bias refers to the difference
between this ratio and the ratio of the observed online price to the bookstore price.

* refers to t–test p–value < .1; ** < .05; *** < .01; H0 = No difference between ratios.

Figure 3.2: Used price pdf versus empirical dist. by level of experience
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Table 3.6: (Online Expectation / Bookstore Price) Regressed on Prev. Purchases

(1) (2)
New Used New Used

1 - 5 Online Purchases -0.014 -0.026 -0.015 -0.028*
(0.015) (0.017) (0.014) (0.017)

6 - 10 Online Purchases -0.051*** -0.058*** -0.052*** -0.059***
(0.015) (0.017) (0.014) (0.017)

11+ Online Purchases -0.063*** -0.087*** -0.063*** -0.088***
(0.014) (0.016) (0.014) (0.016)

Previously Taken Course -0.037*** -0.027** -0.022* -0.025*
(0.012) (0.013) (0.012) (0.013)

Previously Assigned Book 0.006 -0.005 -0.008 -0.017
(0.016) (0.017) (0.016) (0.017)

Introductory Course -0.009 0.003 · ·
(0.006) (0.008) · ·

Latest Edition 0.007 0.028** -0.006 -0.003
(0.012) (0.012) (0.015) (0.016)

Years Since Last Revision -0.001* -0.004*** -0.002* -0.002**
(0.001) (0.001) (0.001) (0.001)

Hardback -0.009 -0.005 0.004 -0.016
(0.010) (0.011) (0.011) (0.013)

Book Fixed Effects No Yes
Notes: Clustered standard errors (on the individual) given in parentheses. Also
included: full information indicator, Spring indicator, pages, and weight.
* refers to p–value < .1; ** < .05; *** < .01

Figure 3.3: New price pdf versus empirical dist. by level of experience
Newalt is the minimum price for a new textbook from Amazon or Amazon Marketplace.
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Table 3.7: (Online Expectation / Bookstore Price) Regressed on Experience

(1) (2)
New Used New Used

1 - 5 Online Purchases -0.019 -0.026 -0.020 -0.027
(0.014) (0.017) (0.014) (0.017)

6 - 10 Online Purchases -0.058*** -0.054*** -0.060*** -0.058***
(0.015) (0.016) (0.014) (0.016)

11+ Online Purchases -0.076*** -0.084*** -0.077*** -0.087***
(0.014) (0.016) (0.014) (0.016)

Second Year 0.018 -0.018 0.019 -0.013
(0.013) (0.015) (0.013) (0.015)

Third Year 0.026* -0.012 0.026* -0.007
(0.013) (0.015) (0.014) (0.015)

Four and Above 0.040*** -0.005 0.040*** -0.002
(0.016) (0.015) (0.013) (0.015)

Additional Controls No Yes
Notes: Clustered standard errors (on the individual) given in parentheses. Additional
controls include scenario f.e.s, full information ind., Spring indicator, pages, weight,
prev. taken, prev. assigned, latest edition ind., hardback ind. and years since revision.
Second year denotes an indicator for individuals in their 3rd or 4th semester, etc.

* refers to p–value < .1; ** < .05; *** < .01

Table 3.8: Reported Probability that Lowest Price < b ∗ Expected Lowest Price

Used
b N Mean S.D. Min Median Max

0.85 1352 0.298 0.187 0 0.250 0.95
0.90 1368 0.328 0.189 0 0.300 1.00
0.95 1283 0.359 0.198 0 0.300 1.00

New
b N Mean S.D. Min Median Max

0.85 1359 0.271 0.176 0 0.250 1.00
0.90 1376 0.312 0.190 0 0.300 1.00
0.95 1293 0.339 0.195 0 0.300 1.00
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Table 3.9: Mean and Variance Comparisons (Log-Normal Assumption)

Used

Empirical Distribution

N Mean S.D.

pBookstore > $100 390 0.657 0.246
Scenario Books 11 0.609 0.241

Beliefs

Experience N Mean Ei(p) S.D. Ei(p) Mean
√

Vari(p) S.D.
√

Vari(p)
No online purchases 370 0.713*** 0.166* 0.238 0.384
1-5 online purchases 819 0.703*** 0.166 0.250** 0.362**
6-10 online purchases 884 0.682 0.167* 0.230 0.332
11+ online purchases 1577 0.652*** 0.171*** 0.204*** 0.284***

New

Empirical Distribution

N Mean S.D.

Bkstr. Price > $100 405 0.825 0.142
Scenario Books 11 0.788 0.112

Beliefs

Experience N Mean Ei(p) S.D. Ei(p) Mean
√

Vari(p) S.D.
√

Vari(p)
No online purchases 371 0.813*** 0.151 0.232 0.300
1-5 online purchases 815 0.809*** 0.145** 0.246** 0.346*
6-10 online purchases 872 0.783 0.151 0.222 0.304
11+ online purchases 1535 0.769*** 0.149 0.215* 0.289

Notes: The significance levels reported for the mean values are from a two-sample equality of
means test. The significance levels for the standard deviations are from Brown and Forsythe’s
alternative formulation of Levene’s robust two-sample equality of variances test.
* refers to p–value < .1; ** < .05; *** < .01
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Table 3.10: Mean Comparison by Major

Used Books
STEM majors Non-STEM majors

Experience N Mean Ei(p) N Mean Ei(p) p-value
No online purchases 117 0.703 (0.167) 252 0.718 (0.166) 0.429
1-5 online purchases 314 0.681 (0.174) 505 0.716 (0.160) 0.004
6-10 online purchases 323 0.667 (0.175) 560 0.692 (0.161) 0.036
11+ online purchases 598 0.642 (0.171) 979 0.657 (0.171) 0.093

New Books
No online purchases 118 0.820 (0.143) 259 0.811 (0.154) 0.568
1-5 online purchases 320 0.801 (0.149) 508 0.814 (0.144) 0.245
6-10 online purchases 321 0.787 (0.150) 563 0.779 (0.155) 0.426
11+ online purchases 596 0.754 (0.148) 966 0.777 (0.152) 0.003
Notes: The p-value is from a two-sample equality of means test.
Standard deviation in parentheses.

Table 3.11: Variance Comparison by Major (Log-Normal Assumption)

Used Books
STEM majors Non-STEM majors

Experience N Mean
√

Vari(p) N Mean
√

Vari(p) p-value
No online purchases 117 0.220 (0.387) 252 0.248 (0.384) 0.528
1-5 online purchases 314 0.207 (0.224) 505 0.276 (0.424) 0.003
6-10 online purchases 323 0.215 (0.292) 560 0.240 (0.353) 0.249
11+ online purchases 598 0.209 (0.292) 979 0.202 (0.279) 0.642

New Books
No online purchases 118 0.203 (0.290) 259 0.252 (0.336) 0.153
1-5 online purchases 320 0.213 (0.292) 508 0.278 (0.421) 0.009
6-10 online purchases 321 0.231 (0.326) 563 0.222 (0.322) 0.699
11+ online purchases 596 0.201 (0.270) 966 0.225 (0.316) 0.114
Notes: The p-value is from a two-sample equality of means test.
Standard deviation in parentheses.
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Used Books
Fall Spring Difference

Group N mean µi mean σi N mean µi mean σi mean µi mean σi
Increase Exp. 48 -0.447 (0.321) 0.297 (0.307) 47 -0.412 (0.356) 0.199 (0.169) 0.034 -0.098*

Same Exp. 55 -0.479 (0.363) 0.342 (0.372) 54 -0.446 (0.299) 0.230 (0.255) 0.034 -0.111*
Difference 0.033 -0.045 0.034 -0.032

New Books
Fall Spring Difference

Group N mean µi mean σi N mean µi mean σi mean µi mean σi
Increase Exp. 45 -0.243 (0.163) 0.216 (0.148) 50 -0.294 (0.274) 0.240 (0.276) 0.051 -0.024

Same Exp. 56 -0.302 (0.289) 0.277 (0.279) 53 -0.288 (0.217) 0.246 (0.221) -0.014 0.031
Difference 0.059 -0.060 -0.005 -0.006

Table 3.12: Parameter Values by Change in Experience
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APPENDIX A

APPENDIX FOR EXPLAINING YOUTH SMOKING INITIATION IN THE CONTEXT OF A
RATIONAL ADDITION MODEL WITH LEARNING

A.1 Data Appendix

Table A.1 presents the summary statistics by year for the sample of individuals who are observed

in every wave of the survey. The proportion of individuals who smoke increases over the first few

waves. The proportion of smokers peaks at around 36% in 2002 and remains in the low 30’s for the

rest of the sample period.

A.2 Estimation Appendix

A.2.1 CCP Representation and Finite Dependence

When the preference shock is GEV, the future value term in the conditional value function has

a closed form solution. With type I EV errors, the future value term can be expressed as the one

period ahead CCP and conditional value function of any alternative. The closed form expression of

the future value term is:

E[max
j
vjt+1] = log(

J∑
k=1

ev
k
t+1) + e.c. (A.1)

where e.c. is Euler’s constant.1 To express the future value term in terms of the conditional value

function and CCP of alternative 1, consider the probability of choosing alternative 1 in period t+ 1:

P 1
t+1 =

ev
1
t+1∑J

k=1 e
vkt+1

(A.2)

Now, take the log of both sides:

log(P 1
t+1) = v1

t+1 − log(
J∑
k=1

ev
k
t+1) (A.3)

1Individual subscripts are suppressed for simplicity.

94



Table A.1: Summary statistics by year for individuals observed every period

(N = 5, 385)
Year

1997 1998 1999
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.373 0.484 0.473 0.499 0.532 0.499
Current smoker 0.164 0.370 0.239 0.427 0.279 0.448
# of cigs/day 0.560 2.572 1.274 4.566 1.674 5.137
Age 14.23 1.472 15.87 1.430 16.84 1.439
Employed 0.441 0.497 0.501 0.500 0.522 0.500
Income 243.5 749.5 626.3 1,720 1,189 3,168
Married 0.000 0.019 0.004 0.064 0.013 0.112

2000 2001 2002
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.579 0.494 0.618 0.486 0.648 0.478
Current smoker 0.316 0.465 0.335 0.472 0.361 0.480
# of cigs/day 2.122 5.616 2.451 6.168 2.703 6.535
Age 17.91 1.435 18.90 1.427 19.90 1.402
Employed 0.611 0.488 0.697 0.459 0.750 0.433
Income 2,191 4,565 3,785 6,281 4,877 7,702
Married 0.026 0.159 0.052 0.222 0.074 0.262

2003 2004 2005
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.697 0.460 0.668 0.471 0.684 0.465
Current smoker 0.350 0.477 0.361 0.480 0.357 0.479
# of cigs/day 2.936 7.019 2.772 6.349 2.880 6.631
Age 22.85 1.420 20.85 1.424 21.88 1.418
Employed 0.830 0.376 0.785 0.411 0.804 0.397
Income 10,832 13,255 6,327 8,995 8,485 11,807
Married 0.108 0.310 0.143 0.350 0.182 0.386

2006 2007 2008
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.709 0.454 0.717 0.450 0.722 0.448
Current smoker 0.354 0.478 0.343 0.475 0.328 0.470
# of cigs/day 2.818 6.462 2.740 6.488 2.760 6.827
Age 23.81 1.420 24.77 1.432 25.78 1.426
Employed 0.854 0.353 0.870 0.336 0.867 0.340
Income 14,024 15,555 17,402 18,905 20,711 20,735
Married 0.217 0.412 0.248 0.432 0.277 0.447
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Substituting the log-sum term into the future value term gives the CCP representation of the future

value term:

Et[max
j
vjt+1] = u1

t+1 + EVt+2 − log(P 1
t+1) + e.c. (A.4)

When forming the choice probabilities in the likelihood function, all that matters is the difference

in conditional value functions. Finite dependence occurs when two sequences of choices lead to the

same future state in expectation. Then when taking the difference in conditional value functions, the

remaining future value terms in the CCP representation cancel. The state variables are the individuals

beliefs and the prior period’s decision. The expectation in the current period of future mean priors

is simply the mean of the current period priors for any future sequence of signals (i.e., Et[mt+k] =

mt, ∀k and ∪j {djt+1, . . . , d
j
t+k−1}). The variance of the priors only depends on the number and

intensity of the signals; the timing of the signals does not matter. So the expected distribution of a

future period’s beliefs will be the same along any two sequences that generate the same number and

intensity of the signals. The other state variable is the prior period’s decision, which will be the same

as long as the two sequences end with the same alternative. The following table gives the sequences

that generate finite dependence.

period t− 1 t t+ 1 t+ 2 t+ 3

sequence 1 0 aj 0 0

sequence 2 0 0 aj 0

For any aj > 0

sequence 1 aj′ aj 1 aj′ 0

sequence 2 aj′ 0 aj′ aj 0

For any aj, aj′ > 0
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Consider the simpler case, which is when the individual did not smoke in the prior period. The

conditional value function in period t for any alternative j > 1 and j = 1 are:

vj(d1
t−1 = 1,Γt) = uj(mt) + β ∗ E[V (Γt+1|djt = 1)]

v1(d1
t−1 = 1,Γt) = β ∗ E[V (Γt+1)|d1

t = 1]

(A.5)

The CCP representation of the future value term in the conditional value function for alternative

j > 1 is:

E[V (Γt+1|djt = 1)] = u1(E[mt+1|djt = 1])− Em[log(P 1(mt+1|djt = 1))]

+ βu1(E[mt+2|djt = 1, d1
t+1 = 1])− βEm[log(P 1(mt+2|djt = 1, d1

t+1 = 1))]

+ β2E[V (Γt+3|djt = 1, d1
t+1 = 1, d1

t+2 = 1)] (A.6)

and the CCP representation of the future value term in the conditional value function for alternative

j = 1 is:

E[V (Γt+1)|d1
t = 1] = uj(E[mt+1|d1

t = 1])− Em[log(P j(mt+1|d1
t = 1))]

+ βu1(E[mt+2|d1
t = 1, djt+1 = 1])− βEm[log(P 1(mt+2|d1

t = 1, djt+1 = 1))]

+ β2E[V (Γt+3|d1
t = 1, djt+1 = 1, d1

t+2 = 1)] (A.7)

When calculating the choice probability in the likelihood function, all that matters is the difference

between these conditional value functions. The t + 3 expected future value term is the same for the

alternative j > 1 and j = 1 conditional value functions, so it will cancel out in the difference term.

All that remains are the flow utilities for periods t, t + 1, and t + 2 as well as CCPs for periods

t + 1 and t + 2. Note that the CCPs are functions of the mean prior beliefs (m), which depend on

the realized value of the signal. If no signal is received, then the CCP can be evaluated using the

current period beliefs. If, however, a signal is received, then calculating the expectation requires
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integrating over possible realizations of the signal. Approximating these integrals numerically adds

to the computational burden of the estimation procedure, but the computational requirements are

much less than would be needed to fully solve the dynamic learning problem.

An additional advantage of the CCP representation of the value function with finite dependence

is that it is not necessary to estimate a separate closing function for the value function in the final

period that the individuals are observed, which is the case when solving for the value function using

backwards recursion.

The experimentation decision is an optimal stopping problem, which is one of the original class

of problems where the CCP representation was applied. The conditional value function of experi-

menting is:

vEt = uEt + Et[Vt|dEt = 1] (A.8)

In periods after the individual experiments, he no longer faces an experimentation decision. So,

the conditional value function for experimenting does not include a future value term for future

experimentation decisions. The expectation over the value of the consumption decision is over the

iid preference shock as well as potential realizations of the value of α. The conditional value function

for not experimenting is the discounted expected value of the next period’s experimentation decision.

The CCP representation of this future value term is:

vNEn,t = βEt[V
E
n,t+1] (A.9)

= βEt[v
E
n,t+1 − log(PE

n,t+1) + ec]

= βEt[u
E
n,t+1 + Et+1[Vn,t+1|dEn,t+1 = 1]− log(PE

n,t+1) + ec]

Note that the CCP representation does not contain a future value term for the experimentation de-

cision for period t + 2. Now both conditional value functions contain an expected value of the

consumption decision in the period that the individual experiments. The expected value of the con-

sumption decision in the conditional value function for experimenting can be expressed as a function
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of the CCP of not smoking and the conditional value function of not smoking:

Et[Vn,t|dEn,t = 1] = Et[u
1
n,t + βEt[Vn,t+1|d1

n,t = 1]− log(P 1
n,t) + ec] (A.10)

The future value term will cancel with the future expected value of the consumption decision in

the conditional value function of not experimenting. Then the difference in the conditional value

functions of not experimenting and experimenting is:

vNEn,t − vEn,t = −uEn,t + E[log(P 1
n,t)]− ec+ β(uEn,t − E[log(PE

n,t)] + ec) (A.11)

The probability that an individual experiments is:

PE
n,t =

1

1 + exp(vNEn,t − vEn,t)
(A.12)

A.2.2 Estimation Procedure

This section describes the details of the estimation procedure. The estimation procedure uses

the EM algorithm to estimate the parameters that maximize the likelihood function (equation 1.20).

The integrals in the likelihood function are approximated numerically, so the likelihood function

becomes a simulated likelihood function in estimation.2 The procedure begins with initial guesses

for the parameters and the CCPs as well asM vectors of draws from the standard normal distribution

for each individual, {zmn }Mm=1. These draws are used to form a sample ofN∗M simulated individuals.

Each iteration proceeds according to the following steps:

1. Calculate the value of the unobserved state variables for each individual using the current esti-

mates of the population distribution parameters and theM draws using the following equations

2When the EM algorithm is used to maximize a simulated expectation (the likelihood being maximized is the expected
conditional likelihood), it is called a simulated EM (SEM) algorithm.
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and the corresponding elements of the vector z:

θmn = θ̄ + Ch′ ∗ zmn (A.13)

{λmn,t}Tt=1 = σλ ∗ zmn , {ψmn,t}Tt=1 = σψ ∗ zmn , and {ηn,t}Tt=1 = ση ∗ zmn (A.14)

where Ch is the Cholesky decomposition of Σ. These values of the addictive parameters and

the noisy component of the signals are used to calculate the individual’s prior beliefs for each

period.

2. E step, part 1: Use the prior iteration parameter values and CCPs, denoted P̂ , to update π:

π(θmn ,Λ
m
n ) =

∏
t Ln,t(θ

m
n ,Λ

m
n , P̂ )∑

m

∏
t Ln,t(θ

m
n ,Λ

m
n , P̂ )

(A.15)

3. E step, part 2: Use the updated values of π to update the CCPs. There are several methods for

updating the CCPs. The method used in this paper is to estimate a weighted multinomial logit

model of the observed choices on a flexible polynomial of the state variables (both observed

and unobserved), where the values of π are the weights. The coefficients from this multinomial

logit are used in order to approximate the CCPs at the relevant combinations of state variables

in the solution to the individual’s problem. This method for updating the CCPs is analogous to

least squares value function interpolation. The only heterogeneity in utility from experimenta-

tion is in observable characteristics. Therefore, the CCPs for the experimentation decision can

be estimated outside of the main estimation routine. Similarly, state transition probabilities

that do not depend on the unobserved heterogeneity, or that only depend on the unobserved

heterogeneity through the smoking choice, can also be estimated in a first stage.
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4. M step: Using the updated CCPs and π, the parameters are updated by maximizing the simu-

lated log-likelihood function:

L̃ (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =∑

n

1

M

∑
m

π(θmn ,Λ
m
n )L (θmn ,Λ

m
n , P̂ , γ, ξ|σ2

ψσ
2
λ, σ

2
η, θ̄,Σ) (A.16)

The parameters of the population distribution of unobserved heterogeneity can be estimated

separately and have a closed form solution (Train 2007). The updated parameters are simply

the weighted mean (for θ̄) and variance (for Σ, σ2
λ, and σ2

η) of the values of θmn and Λm
n , where

the weights are the values of π. The remaining parameters are estimated using simulated

maximum likelihood.

These steps are repeated until the parameters converge. The criteria for convergence can either be

based on changes in the parameter values or changes in the likelihood function. In practice, there

are a wide range of criteria used to determine the convergence of the SEM algorithm. Also, the

algorithm may not converge to the global maximum, so to confirm any potential maximum, the al-

gorithm must be rerun using different starting values. The convergence criteria used for preliminary

estimation results are that the parameters change by less than one half of one percent, which is the

criteria suggested by Train (2007). A feature of the EM algorithm is that the likelihood function

weakly increases from one iteration to the next. Performing the full maximization in the M-step

yields the largest possible increase in the likelihood but may be computationally intensive. The com-

putational burden is particularly great if an the derivative and Hessian must be approximated using

finite differences. In order to reduce the computational burden, I use an alternative version of the EM

algorithm. This alternative version of the EM algorithm replaces the full optimization of the M-step,

which gives the greatest possible likelihood improvement, with a procedure that is simply guaranteed

to improve the likelihood function. This version of the EM algorithm is called a Generalized EM

algorithm (GEM) and is commonly implemented by replacing the maximization in the M-step with

a single Newton-Raphson iteration. GEM algorithms share similar convergence properties as the
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EM algorithm, although they converge at a slower rate. Even though GEM algorithms require more

iterations to converge, each iteration requires much fewer evaluations of the likelihood function.

This estimation procedure is still computationally demanding, although standard procedures

would likely be infeasible.3 Evaluating the likelihood for a single simulated individual only takes

a fraction of a second, but with N ∗M simulated individuals, a single evaluation of the likelihood

function can take hours.4

3Using Simulated Maximum Likelihood to estimate the version of the model without learning took around 12 hours
for a modest number of draws.

4There are two factors that influence the number of calculations needed to evaluate the likelihood function for a single
simulated individual. The most significant determinant of the number of necessary calculations is the number of draws
used to approximate the future value terms. Increasing the number of draws by a given factor increases estimation time
by nearly the same factor. The second determinant of estimation time is the number of terms used in the interpolation of
the CCPs. Increasing the number of terms by using a higher order polynomial approximation increases the calculations
needed to evaluate the likelihood function. However, the most significant effect of increasing the number of interpolation
terms comes in the increase in the time it takes to update the CCPs.
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APPENDIX B

APPENDIX FOR DO CONSUMERS’ BELIEFS CONVERGE TO EMPIRICAL
DISTRIBUTIONS WITH REPEATED PURCHASES?

B.1 Data Appendix

B.1.1 Online Questionnaire Data

Individuals who participated in the online questionnaire were respondents from a list of emails

generated through participation in a separate online questionnaire conducted at UNC during the

2011-2012 and 2012-2013 academic calendar years. These individuals agreed to participate in

follow-up surveys at the completion of the separate questionnaire. This separate questionnaire was

distributed by instructors to their students, who had the option to participate. Additional details about

this separate questionnaire are available in Spence (2013).

Online Questionnaire

[The following is a subset of the questions provided to textbook consumers using Qualtrics online survey

software. Notes are provided in brackets.]

Textbook Purchasing Questionnaire

The following survey seeks to gain understanding into how consumers choose which retailers to consider

when faced with purchasing decisions. Over the course of this survey you will be presented with a number

of hypothetical textbook purchasing decisions. You will be asked about your price expectations from online

retailers and your beliefs about the time costs involved with searching within an online market. You will not

actually have to price any textbooks from online retailers or visit any website outside of this survey.

Directions: Please answer all questions to the best of your ability. Use the right arrow button at the bottom of

the screen to advance to the next page. You may also use the left arrow at the bottom of the screen to move

back at any time and change a previous answer. If you are uncomfortable answering a specific question you

can either skip that question or exit the survey. Thank you for participating!

How many semesters in total, including this one, have you attended UNC and any other college? (Count a

summer session as a semester)

Semesters:
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What is (are) your major(s)? Please write Undecided if you do not currently have a stated major.

Major(s):

Which of the following have you ever purchased a textbook from? (Please check all that apply)

� UNC Student Stores (campus bookstore)

� Ram Book and Supply

� Another college bookstore

� Amazon.com

� Half.com or Ebay.com

� Ecampus.com

� Chegg.com

� Another online retailer

� Another student (directly)

Which of the following have you ever rented a textbook from? (Please check all that apply)

� I have never rented a textbook

� UNC Student Stores (campus bookstore)

� Ram Book and Supply

� Another college bookstore

� Amazon.com

� Half.com or Ebay.com

� Ecampus.com

� Chegg.com

� Another online retailer

� Another student (directly)

Please write in the other online retailers you have ever rented or purchased a textbook from:

When do you normally purchase (or order) your textbooks?

� More than 2 weeks before the semester starts

� 1 - 2 weeks before the semester starts
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� A few days before the semester starts

� The day the semester starts

� A few days after the semester starts

� 1 - 2 weeks after the semester starts

� More than 2 weeks after the semester starts

Have you purchased or rented any textbooks for an upcoming summer session?

� Yes

� No

How many textbooks have you ever purchased or rented online?

� 1 - 5

� 6 - 10

� 11 or more

When purchasing or renting a textbook online, have you ever used a website that shows the lowest prices

available from multiple online retailers?

� Yes

� No

On average, when you purchase a textbook online, how many different online retailers do you visit? Number

of Retailers Visited:

Do you have an Amazon Prime membership?

� Yes

� No

Do you have a Paypal account?

� Yes

� No

How many online purchases do you typically make in a three month period?

Number of Purchases:

If you were given an isbn number or textbook title and wanted to purchase or rent this textbook online, what
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is the first website you would visit?

Website Name:

Hypothetically, if you only visited one online retailer, how many minutes do you think it would take to look up

one textbook and purchase it? (Include the time to search, find the option you want, enter your information,

and complete the transaction)

Minutes:

Hypothetically, if you only visited one online retailer, how many minutes do you think it would take to look

up three textbooks and purchase them? (Include the time to search, find the option you want, enter your

information, and complete the transaction)

Minutes:

You will now be given a number of hypothetical textbook purchasing decisions. In each case, you will be

given information about the textbook and asked to give your best guess about what the price of this textbook

is from an online retailer. This survey is concerned about what your expectations are about prices from online

retailers, so please do not actually search for the price of the textbook online. Before presenting you with the

hypothetical purchasing decisions, you will be provided with an example of what the questions will be like.

Example: If you searched only one clothing store in the mall (ex. Old Navy), what do you think is the lowest

price you could find for a pair of jeans in your size? Please enter your answer as a number. Note that this

question does not have a right or wrong answer, it simply asks for your best guess.

$ [Denoted “Example Expectation” in following questions]

Example Continued: Given that you dont know the lowest price of a pair of jeans with certainty, there is some

chance that the lowest price is lower than $[Example Expectation] and some chance that the lowest price is

greater than $[Example Expectation]. In the following questions, you will be asked about your beliefs about

the chance that the lowest price you could find would be below $[Example Expectation] and also the chance

the lowest price you could find would be above $[Example Expectation].

What do you think is the chance that the lowest price of the pair of jeans is less than $[90% of Example

Expectation]? Please enter the chance as a percentage (i.e. a number between 0 and 100). For example: I think

there is a 30% chance that the lowest price of the pair of jeans is less than $[90% of Example Expectation];

Percent Chance:
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What do you think is the chance that the lowest price of the pair of jeans is more than $[110% of Example

Expectation]? Please enter the chance as a percentage (i.e. a number between 0 and 100). For example: “I

think there is a 35% chance that the lowest price of the pair of jeans is greater than $[Example Expectation].”

Percent Chance:

You will now be given three textbook purchasing scenarios, each similar to the previous example.

[The following is an example using one of the possible twelve textbooks. Respondents were given three

scenarios randomly drawn from three groups of four textbooks (one from each group).]

Scenario: You are assigned “Economics: Principles and Policy” by William Baumol and Alan Blinder for

an introductory economics course (ECON-101). [The following information on textbook characteristics was

randomly assigned to respondents with 50% likelihood. The likelihood of receiving this information for the

subsequent scenarios did not depend on whether the information on characteristics was shown for previous

textbook purchasing scenarios.] This is the twelfth and latest edition of the textbook, it was published by

South-Western College Publishing, and was last revised in 2012. The dimensions of the book are 8.4 x 1.5 x

11.1 inches, it is a hardcover, it contains 880 pages, and it weighs 4.4 pounds. A picture is provided below:

[Picture presented such as the one shown in the screenshot in Section 3]

Have you ever taken this course?

� Yes

� No

Have you ever been assigned this textbook?

� Yes

� No

You know that a new copy of this book costs $212 (including taxes) at the UNC Student Stores. If you searched

one online retailer, what do you think the price of a new copy at this online retailer would be (include shipping

costs)? Reminder: Please do not actually search for this price. Provide your best guess instead.

$ [Denoted “New Expectation” in future questions]

What do you think is the probability that the lowest price for a new copy of this book is less than $[85%, 90%,

or 95% of New Expectation] (including shipping costs) at the online retailer?
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Percent Chance:

What do you think is the probability that the lowest price for a new copy of this book costs more than $[105%,

110%, or 115% of New Expectation] (including shipping costs) at the online retailer? Note that your answer

to this question added to your answer from the previous question should not exceed 100.

Percent Chance:

You know that a used copy of this book costs $159 (including taxes) at the UNC Student Stores. If you searched

one online retailer, what do you think the price of a used copy at this online retailer would be (include shipping

costs)?

$ [Denoted “Used Expectation” in future questions]

What do you think is the probability that the lowest price for a used copy of this book costs less than $[85%,

90%, or 95% of Used Expectation] (including shipping costs) at the online retailer?

Percent Chance:

What do you think is the probability that the lowest price for a used copy of this book costs more than $[105%,

110%, or 115% of Used Expectation] (including shipping costs) at the online retailer? Note that your answer

to this question added to your answer from the previous question should not exceed 100.

Percent Chance:

B.1.2 Textbook Purchasing Scenarios

Table B.1 provides information on the textbooks used in the hypothetical textbook purchasing sce-

narios. Respondents that completed the survey faced three scenarios; in each scenario, one textbook

from each group was randomly assigned to the respondent. The first group is composed of social

science textbooks; the second group is composed of hard science textbooks; the third group is com-

posed of humanities textbooks. In the Fall 2012 semester, individuals were presented these scenarios

in the previous ordering (social sciences, hard sciences, then humanities). The Spring 2013 ques-

tionnaire assigned individuals to groups at random (i.e. roughly one third of respondents completed

a scenario with a hard sciences textbook, then social sciences, then humanities).

Textbooks were chosen to provide variation in the following characteristics: the number of total

editions of the textbook, whether the textbook is the latest edition, the year of publication, whether

the course was designed for an introductory or upper-level course, the type of cover (hardback vs.
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paperback), the number of pages, and the weight. In the following tables, course number refers to

the numbering at UNC for the Fall 2012 and Spring 2013 semesters. New bookstore price refers to

the price from UNC’s campus bookstore during these semesters.

B.1.3 Survey Attrition and Estimation Sample

Table B.2 summarizes the number of respondents at various points within the survey. For the Fall

2012 semester, 979 respondents began the questionnaire and 734 (75%) completed the questionnaire.

For the Spring 2013 semester, 1002 respondents began the questionnaire and 703 (70%) completed

the questionnaire. We only exclude individuals who did not complete the background questions. This

leaves 820 respondents from the Fall and 798 respondents from the Spring. Of these individuals, we

exclude 104 respondents (52 from both semesters) because they had been enrolled in college for

more than 10 semesters and/or summer sessions and an additional 49 respondents (29 from Fall

2012 and 20 from Spring 2013) for reporting nonsensical answers (e.g., reporting an expected price

of $100,000).

Table B.2: Survey Attrition

Fall 2012 Percent Spring 2013 Percent
Respondents Remaining Respondents Remaining

Began the questionnaire 979 100 1002 100
Completed the background questions 820 83.8 798 79.6
Completed at least one scenario 759 77.5 761 75.9
Completed at least two scenarios 741 75.7 716 71.5
Completed the questionnaire 734 75.0 703 70.2

B.2 Robustness Checks

This section investigates the robustness of the results presented in the paper by providing results

from a number of other specifications. Explicitly, we explore the robustness of our results by varying

the following:

B.2.1 The criteria for begin omitted from the sample and the number of scenarios used for each

respondent.

B.2.2 Testing the distributional assumption.
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Table B.3: Results Using Alternative Samples

Used Books
Main Sample Extended Sample Single Scenario

Experience N Mean SD N Mean SD N Mean SD
No Online Purchases 438 0.739 0.201 450 0.732 0.211 151 0.736 0.209
1-5 Online Purchases 917 0.712 0.181 939 0.709 0.189 311 0.700 0.190
6-10 Online Purchases 957 0.683 0.173 976 0.677 0.181 324 0.674 0.181
11+ Online Purchases 1698 0.653 0.180 1755 0.647 0.191 577 0.638 0.186

New Books
Main Sample Extended Sample Single Scenario

Experience N Mean SD N Mean SD N Mean SD
No Online Purchases 440 0.833 0.172 452 0.832 0.186 152 0.828 0.177
1-5 Online Purchases 923 0.819 0.153 945 0.814 0.161 313 0.804 0.166
6-10 Online Purchases 966 0.783 0.161 985 0.779 0.165 326 0.761 0.176
11+ Online Purchases 1706 0.770 0.157 1763 0.768 0.166 581 0.752 0.168

B.2.1 Omission Criteria

Respondents are omitted from our sample in the main body of the paper for two reasons:

1. Being enrolled in more than 10 semesters of college.

2. Reporting expectations less than 10% of the bookstore price or greater than 150% of the book-

store price.

The first criteria is used to focus on traditional college students. The second criteria is used to

eliminate respondents who we believe did not take the questionnaire seriously (for example, indi-

viduals who reported expectations of $0 or $100,000). To make sure that our results are not biased

because of these omissions, we relax the second omission criteria. We also report evidence that our

omission criteria is not correlated with our measures of experience.

We proceed to report the main findings from the paper for a less stringent omission criteria.

Specifically, we only omit respondents who report expectations less than 1% of the bookstore price

or greater than 200% of the bookstore price. This results in four respondents being omitted from

the Fall sample and one respondent being omitted from the Spring sample for reporting expectations

below 1% of the bookstore price, and four respondents being omitted from the Fall sample and four

respondents being omitted from the Spring sample for reporting expectations greater than 200% of
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Table B.4: Distribution Results

Used New
Experience N mean Ei(p) mean

√
Vari(p) N mean Ei(p) mean

√
Vari(p)

Normal
No online purchases 291 0.720*** (0.159) 0.126 (0.096) 300 0.837*** (0.134) 0.139 (0.099)
1-5 online purchases 619 0.714*** (0.155) 0.130* (0.094) 662 0.822*** (0.129**) 0.141* (0.096)
6-10 online purchases 667 0.701* (0.150***) 0.125 (0.095) 696 0.796 (0.130) 0.130 (0.088*)
11+ online purchases 1202 0.669*** (0.160***) 0.119** (0.089) 1259 0.784*** (0.134*) 0.133 (0.096)

Gamma
No online purchases 411 0.747*** (0.192) 0.219 (0.281) 412 0.836*** (0.164) 0.237 (0.288)
1-5 online purchases 852 0.717*** (0.175) 0.244** (0.294**) 870 0.819*** (0.152*) 0.243* (0.312)
6-10 online purchases 900 0.689 (0.170***) 0.234 (0.292) 908 0.785* (0.158) 0.224 (0.276)
11+ online purchases 1601 0.656*** (0.174) 0.207*** (0.252***) 1604 0.774*** (0.153) 0.217* (0.269)

Log-Normal - Restricted Sample
No online purchases 283 0.726*** (0.158) 0.113 (0.068) 299 0.836*** (0.135) 0.129 (0.074***)
1-5 online purchases 610 0.715*** (0.156) 0.116*** (0.067**) 649 0.822*** (0.126***) 0.131*** (0.071)
6-10 online purchases 647 0.701* (0.151***) 0.110 (0.063) 678 0.797 (0.128) 0.121 (0.065**)
11+ online purchases 1168 0.665*** (0.161***) 0.104*** (0.060**) 1218 0.783*** (0.134**) 0.121* (0.068)

Gamma - Restricted Sample
No online purchases 317 0.754*** (0.197) 0.108 (0.060) 325 0.847*** (0.164) 0.126** (0.072***)
1-5 online purchases 637 0.715*** (0.174) 0.112*** (0.064**) 690 0.821*** (0.151*) 0.125*** (0.070**)
6-10 online purchases 676 0.694 (0.166***) 0.107 (0.063) 708 0.788** (0.153) 0.114* (0.063**)
11+ online purchases 1210 0.660*** (0.174) 0.101*** (0.059**) 1263 0.780*** (0.150) 0.114*** (0.063**)

Notes: Standard deviations in parenthesis.
The significance levels reported for the mean values are from a two-sample equality of means test. The significance levels
for the standard deviations are from Brown and Forsythe’s alternative formulation of Levene’s robust two-sample equality of
variances test.
* refers to p–value < .1; ** < .05; *** < .01

the bookstore price.

Table B.3 reports the mean ratio of expectations to bookstore prices for the main sample as

well as the extended sample. Including outliers does not significantly change the estimates of mean

price expectations. Also included in table B.3 are the results that only use the first hypothetical

textbook purchasing scenario that an individual responded to (out of a potential of six for individuals

who completed the questionnaire in the fall and spring semester). The price expectations for the

first scenario are lower than for the full sample, but the relationship between experience and price

expectations is the same for both groups.

Results from regressions of the ratio of expectations to bookstore prices on measures of experi-

ence and other covariates also remain quantitatively similar to the results reported in the main body

of the paper (not reported).

Table B.4 reports the results for the normal and gamma distributions. Also included are the

results for the log-normal and gamma distributions using a more restrictive sample. Since the normal
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distribution requires dropping individuals who report a greater than 50% probability of being below

the threshold, the restricted samples are constructed using a similar rejection criteria. The samples

are constructed by dropping individuals who report a 50% or greater probability of being below the

threshold. Then the parameter values are calculated for each individual, and the final sample includes

individuals whose parameter values are not in the top or bottom 2.5% of values for either parameter.

The results for the log-normal and gamma using the restricted samples does not change the mean of

the price expectations by a large amount, but the variability of the expected price distribution falls

substantially. With a similar sample construction, the normal distribution is closest to the variability

of the empirical distribution. The higher mean variability of the expected price distribution using the

less restrictive sample for the log-normal and gamma distributions is driven by the individuals who

report a high probability of the price being below the threshold. Ultimately, the results are similar

regardless of the distribution used.

B.2.2 Price Distribution

In this section we provide some evidence supporting the use of the log normal price distribution as

well as discussing some limitations of the distribution in fitting certain features of the empirical price

distribution. Tests for normality reject the assumption of normality for both the distribution of prices

and the log of prices for most specifications of the empirical distribution. For used books with a list

price greater than $100, the assumption of normality cannot be rejected. For new books, the normal

distribution is able to fit the data better than the log-normal distribution. For used books, the normal

distribution only fits better for the relatively expensive books. In order for the log normal distribution

to fit the long right tail of the price distribution, the result is that it places too little weight on the left

tail relative to the empirical distribution. The analysis in this paper is not dependent on a particular

distributional assumption. In structural search models, however, an incorrect distributional assump-

tion on the individual’s beliefs about the price distribution or about the empirical price distribution

can significantly bias estimates. Figure B.1 displays histograms of the empirical prices for the Fall

survey period. Figures B.2 and B.3 display kernel density estimates for used and new prices. Finally

figures B.5 and B.4 display the time series of the mean daily price with the 95% confidence interval.

During the survey periods, prices are relatively stable. Used prices rise considerably leading up to
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Figure B.1: Histograms of Prices

the start of the semester, however, new prices remain fairly stable throughout the year.
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Figure B.2: Kernel Density Estimate

Figure B.3: Kernel Density Estimate
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Figure B.4: Daily Used Prices

Figure B.5: Daily New Prices
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