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ABSTRACT 
 
 

VICKI RICHARDSON: In Vitro Thyroid Hormone Metabolism: 
Effects of nuclear receptor activation on the metabolic profiles of thyroxine in rat and human 

hepatocytes 
(Under the direction of Michael J. DeVito, PhD) 

 

 Thyroid hormones are critical in the normal growth and development of amphibians, 

birds, fish, and mammals. There are numerous xenobiotics that interfere with thyroid 

hormone homeostasis; therefore, exposure to these xenobiotics could be detrimental to the 

growth and development.. Xenobiotics categorized as thyroid hormone disruptors have been 

defined by their ability to reduce circulating concentrations of thyroid hormone in serum. It is 

has been proposed that thyroid hormone disruption occurs through the induction of thyroxine 

(T4) glucuronidation and biliary elimination which ultimately results in reduced serum T4 

concentrations. This mode of action has been described using animal models, but the 

relevance to humans has not been determined. This research tests the hypothesis that there 

are species differences in the hepatic metabolism of thyroid hormones and these differences 

occur via nuclear receptor activation. Here we demonstrate the utility of sandwich-cultured 

rat and human hepatocytes in measuring T4 metabolism following the activation of Aryl 

hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) or pregnane x receptor 

(PXR). The relationship between T4 metabolism and nuclear receptor activation was studied 

through the establishment of an in vitro assay for the qualitative and quantitative 
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measurement of T4 metabolites.  Here we report that hepatic glucuronidation may be a more 

important pathway for T4 metabolism in rats whereas T4 deiodination may be a favored 

pathway in humans. Following nuclear receptor activation, glucuronidation is a primary route 

of T4 metabolism in rat and humans hepatocytes. Agonists of CAR/PXR are more consistent 

in the induction of T4 glucuronidation in rat and human hepatocytes. We also show 

similarities in the in vivo and in vitro effect on T4 metabolism in response to the 

environmental contaminant, 2,2′,4,4′-tetrabromodiphenyl ether (BDE 47). These results 

indicate possible species differences in hepatic T4 metabolism and these differences may be 

based on nuclear receptor activation. 
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CHAPTER 1 

 

INTRODUCTION 

 

A. Overview 

Thyroid hormones (THs) are essential to development, growth and metabolism in 

humans with its most prominent effects occurring during fetal development and early 

childhood. The lack of TH in childhood delays growth and in adults the primary effect is an 

alteration in metabolism. A broad spectrum of xenobiotics decrease serum THs levels in 

rodents and these decreases are often associated with the induction of xenobiotics 

metabolizing enzymes which result in increases in thyroxine (T4) metabolism and biliary 

elimination (Barter and Klaassen, 1992;  Liu et al., 1995;  Kolaja and Klaassen, 1998;  Hood 

et al., 1999;  Hood and Klaassen, 2000a;  Hood and Klaassen, 2000b;  Hood et al., 2003). 

Xenobiotics that activate the nuclear receptors, such as aryl hydrocarbon receptor (AhR), 

constitutive androstane receptor (CAR), and pregnane X receptor (PXR), appear to 

consistently decrease circulating TH concentrations (Barter and Klaassen 1992; Kretschmer 

and Baldwin 2005; Qatanani et al. 2005).  One commonality of these receptors is their 

regulation of xenobiotic metabolizing enzymes (XMEs), in particular uridine diphosphate 

glucuronosyltransferase (UGT) and sulfotransferase (SULT) and transporters. For example, 

through the activation of constitutive androstane receptor (CAR), phenobarbital (PB), 

induces hepatic UGTs in rat (Vansell and Klaassen, 2001;  Vansell and Klaassen, 2002a),
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which is associated with an increase in the biliary elimination of T4-glucuronides 

(Oppenheimer et al., 1968;  McClain et al., 1989;  Wong et al., 2005). PB increases [125I] 

liver accumulation in rats (Kato et al., 2010) and increases biliary elimination of [125I]-T4 and 

[125I]-T4G suggesting the involvement of hepatic transporters in cellular uptake and biliary 

excretion (Mitchell et al., 2005;  Visser et al., 2011). PB also decreases serum T4 

concentrations in humans (Ohnhaus et al., 1981;  Eiris-Punal et al., 1999). Mechanistic 

studies in humans are limited; consequently, the hypothyroid effect of PB in humans is 

thought to occur through the same mechanism as rats. Induction of hepatic UGTs by 

xenobiotics appears to be a common mechanism in thyroid hormone disruption in rodents; 

however, it is uncertain if this occurs in humans. The goals of this research are to examine 

the species differences in T4 metabolism using human and rat hepatocytes and further explore 

how these differences are affected by exposure to AhR, CAR, and/or PXR agonists. 

 

B. Nuclear receptors  
 

B.1. Aryl Hydrocarbon Receptor  

 Aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is a ligand 

dependent basic helix-loop-helix/per-ARNT-Sim (bHLH/PAS) transcription factor and is 

activated by exogenous and endogenous compounds. Once activated, AhR induces or 

represses a large number of genes involved in biological or toxicological effects in several 

species and tissues (Hankinson, 2005;  Beischlag et al., 2008;  Furness and Whelan, 2009). 

Ligands for AhR include a wide variety of hydrophobic environmental contaminants, 

including polycyclic aromatic hydrocarbons (PAH) and halogenated aromatic hydrocarbons 

(HAH). The most toxic and environmentally and biologically persistent compounds are 
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HAHs, which include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins 

(PCDD), and polychlorinated dibenzofurans (PCDF) (Safe, 1990). There are species 

differences in the ligand binding domain of AhR, which may be responsible for species 

differences in ligand binding and response (Bisson et al., 2009;  Pandini et al., 2009). 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) a prototypical ligand for AhR, produces toxic 

effects some of which include tumor promotion, dermal toxicity, disruption of endocrine 

homeostasis, wasting, and lethality. In humans, a point mutation in the ligand binding 

domain was found to lower the ability of AhR to bind TCDD by 10-fold compared to mouse 

AhR (Ema et al., 1994;  Ramadoss and Perdew, 2004). TCDD and 3-methylcholanthrene 

(3MC) induced AhR-regulated genes, CYP1A1 and CYP1A2, to a greater degree in wild 

type mice compared to AhR humanized mice, demonstrating mouse AhR has a higher 

binding affinity for TCDD and 3MC than human AhR (Moriguchi et al., 2003). 

 

B.2. Constitutive Androstane Receptor 

Constitutive androstane receptor (CAR) is a member of the NR1I3 subfamily of 

ligand activated transcription factors.  CAR is a promiscuous receptor that binds to a wide 

range of structurally unrelated compounds and regulates numerous genes involved in the 

metabolism and transport of exogenous and endogenous compounds. Abundantly expressed 

in the liver, CAR is important in regulating the metabolism and elimination of xenobiotics.  

Unlike many nuclear receptor orthologs, which share more than 90% homology, human and 

rodent CAR orthologs share only about 70% amino acid identity in the ligand-binding 

domain (Moore et al., 2002).  This evolutionary divergence in the ligand-binding domain 

between humans and rodents is apparent with differences in response to xenobiotics.  For 
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example, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP) is a potent CAR 

activator in rodents, but lacks activity in humans (Moore et al., 2000).  In contrast, 6-(4-

chlorophenyl :imidazo [2,1-b] thiazole-5-carbaldehyde O-(3,4 dichlorobenzyl) oxime 

(CITCO) is a potent activator of CAR in human, yet it lacks activity in rats and mice (Scheer 

et al., 2008).  With the divergence of ligand-binding domains between the species, there are 

compounds such as phenobarbital (PB), which activate both human and rodent nuclear 

receptors orthologs (Moore, et al., 2002); however this indirect activation is independent of 

the ligand binding domain (Sidhu and Omiecinski, 1995;  Honkakoski and Negishi, 1998).  

 

B.3. Pregnane X Receptor 

Pregnane X receptor (PXR) is a member of the NR1I2 family of nuclear receptors and 

acts as a xenosensor and transcriptional activator (Kliewer and Willson, 2002). PXR is 

activated by a variety of naturally occurring steroids of which pregnanes are the most potent 

(Kliewer et al., 1998;  Lehmann et al., 1998). Closely related, PXR and CAR share a variety 

of ligands and target genes (Maglich et al., 2002); however, PXR is more promiscuous than 

CAR, because it binds to a wide range of compounds that are of different molecular weights 

and are structurally dissimilar (Jones et al., 2000).  PXR exhibits a marked divergence across 

species within the ligand binding domain, where human and mouse PXR is only 76% 

homologous; however, the DNA binding domain is 96% homologous. The divergence in the 

ligand binding domain results in different ligand binding specificities. Pregnenolone 16α-

carbonitrile (PCN) is a ligand for rodent PXR, but not for human PXR. Human PXR is 

activated by rifampicin (Rif); however the rodent PXR is not activated by Rif. The species 

differences in PXR are consistent with the species differences in CYP3A induction. This 
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suggests that it is the species ortholog of the receptor and not the CYP3A gene promoter 

which determines the response.   

 

C. Thyroid Hormones 

 

C.1. Synthesis and Feedback 

The main function of the thyroid gland is to produce hormones, T4 and the active 

hormone, triiodothyronine (T3) (Figure 1). T4 and T3 are synthesized in the thyroid gland by 

thyroperoxidase (TPO) where TPO converts iodide to iodine and then attaches it to tyrosine 

residues.  Thyroglobulin (Tg), a large glycoprotein found within the thyroid follicular cells 

(thyrocytes), serves as a substrate for the synthesis and storage of THs and iodine.  When 

thyroid hormone is needed, Tg is internalized at the apical pole of thyrocytes, where it is 

digested by proteases, resulting in free T4 and T3.  After Tg digestion, T4 and T3 are released 

into the circulation.   

TH is regulated by a negative feedback loop from the pituitary gland. When the pituitary 

gland detects too much Thyroid stimulating hormone (TSH) is the predominant regulator of 

thyroid hormone synthesis and release.  Secreted from the pituitary, TSH interacts with its 

receptor (TSHR) in the thyrocytes to stimulate the accumulation of iodine and expression of 

the sodium/iodine symporter.  T4 and T3 regulate the synthesis and release of TSH at the 

pituitary level, as well as indirectly by affecting TSH synthesis via their effects on the 

synthesis of TRH.  TRH is the major positive regulator of TSH by activating the 

phospatidylinositol-protein kinase C pathway.  Once activated, TRH acts on the anterior 

pituitary to stimulate the release of TSH.  Collectively, these interrelated steps produce and 
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release thyroid hormones into the blood stream as well as regulate the amount of iodine 

available to the cells,  

 

C.2. Production and Clearance in Humans and Rats 

Although rats are often used to examine extrathyroidal TH metabolism, there are 

important differences in the production and kinetics of THs in rats and humans (Table 1).  In 

rats, normal plasma T4 concentrations are approximately 44nmol/L with a half-life (t1/2) of 

0.5-1 day.  T4 is cleared at a rate of about  50% per day in rats resulting in a daily production 

of approximately 1nmol/100g body weight(Bianco et al., 2002).  The mean normal 

concentration of total T4 in human plasma is approximately 100nmol/L (Larsen PR, 1998) 

amid a daily T4 production of 110 nmol/70kg body weight.  With a half-life (t1/2) of 5-9 days, 

about 10% or nearly 110nmol of T4 is cleared from the circulation per day in humans.  In rats 

and humans, plasma T3 is derived from thyroid gland secretion and extrathyroidal 

deiodination; however, only 20% of plasma T3 comes from thyroid secretions in humans, 

whereas 40% is secreted from the thyroid in rats.  Mean plasma T3 concentrations are 

approximately 750pmol/L in rats.  With a turnover rate of over 200% per day (t1/2 = 0.2 day), 

the daily production of T3 in rats is 415pmol/100g.  Humans have a mean normal plasma T3 

concentration of 1.8nmol/L with a daily production rate of 50nmol/70kg body weight and a 

t1/2 of 1.5 days; consequently, the fractional turnover rate of T3 in plasma is about 65% per 

day.  In humans, of the daily production of T4 (110nmol/day), 30-40% is converted to T3 

(40nmol) by peripheral deiodination, while the remaining amount (10nmol) is excreted 

directly from the thyroid(Larsen PR, 1998). In rats, approximately 415 pmol of T3 is 

produced daily.  About 20-25% of secreted T4 (1nmol/day) in rats is deiodinated to produce 
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225 pmol of T3 per day, while the remaining amount (190 pmol) is excreted directly from the 

thyroid (Oppenheimer et al., 1972;  Bianco, et al., 2002).  The molar ratio of T4/T3 in rat 

thyroid is 8:1 where as in humans the ratio is higher (15:1)(Abrams and Larsen, 1973;  Izumi 

and Larsen, 1977).  In comparing T4/T3 thyroidal secretion, the ratio is 5:1 in rats, while in 

humans the ratio is 11:1.  This indicates there are small contributions of thyroidal deiodinases 

to T4 to T3 conversion in both species.  

 

C.3. Serum Binding Proteins 

Specific proteins carry thyroid hormones in the blood and their high affinity binding 

to T4 and T3 are essential to the availability of the hormones to target tissues.  In humans, 

three major proteins bind (THs) in serum: thyroxine-binding globulin (TBG), transthyretin 

(TTR) and albumin (ALB) (Schussler, 2000).  TBG is a low capacity-high affinity binder of 

thyroid hormones, albumin is a high capacity-low affinity binder and TTR is an intermediate 

capacity and affinity binder (Power et al., 2000).  T4 affinity is greatest for TBG (Ka=1x10-10 

M), intermediate for TTR (Ka=7x10 -7 M), and lowest for ALB (Ka= 7x10 -5 M).  The affinity 

of T3 for the binding proteins is lower than that of T4, where the affinity for TBG is 

approximately 5x10 -8 M, for TTR it is 1x10 -7 M, and 1x10 -5 M for ALB (Robbins, 1991).  

All vertebrates have serum-binding proteins for thyroid hormone, but there are species 

differences in their specific composition within blood (Table 1).  In humans, TBG is the least 

abundant but almost 70% of T4 is bound to it (Benvenga, 2005).  In rats, TBG expression 

peaks postnatally and is not detectable by early maturity at 8 weeks, but reappears in 

senescence (Savu et al., 1991).  Thus, through most of their lives rats lack one of the major 

carrier proteins for T4, with TTR serving as the primary plasma transporter.  The binding 
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affinity of TTR for THs is less than the binding affinity of THs for TBG (Benvenga et al., 

2002).  In rodents, T4 is bound to TTR where as T3 is mainly bound to the least abundant 

TBG or albumin (Savu et al., 1987).  T4-TTR binding is thought to be more susceptible to 

chemical interference than T4-TBG binding (Munro et al., 1989).  This suggests that as a 

major circulating T4 binding protein, TTR may be important in the disruption of TH 

homeostasis in rodents.   

 

C.4. Metabolism 

 

C.4.1 Deiodination 

Tissue deiodinases are critical in the extrathyroidal conversion of T4 into its 

biologically active form, T3.  There are two isoenzymes that convert T4 to T3:  type I 5’-

deiodinase (D1) and type 2 deiodinase (D2).  D1 is located primarily in the liver, kidney and 

thyroid, and D2is located primarily in the brain, thyroid, anterior pituitary, brown adipose, 

placenta and skeletal muscle.  D1 is responsible for most of the conversion of T4 to T3 in the 

blood, while D2 provides conversion of T4 to T3 for intracellular use.  Type 3 deiodinase 

(D3) is located in the brain, placenta, fetal tissues and uterus during pregnancy and is 

responsible for inactivating thyroid hormones by converting T4 to rT3 and T3 to T2 (Figure 2).  

In humans, about 80% of circulating T3 derives from peripheral 5´-monodeiodination of T4, 

while the thyroid secretes 20% of the circulating T3 (Larsen PR, 1998).  Unlike humans, the 

intrathyroidal conversion of T4 to T3 provides 40% of the daily T3 production in rats and the 

other 60% is derived peripherally (Chanoine et al., 1993).  This suggests that peripheral 

deiodination may play a larger role in TH homeostasis in humans as compared to rodents.   
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C.4.2. Glucuronidation 

Glucuronidation involves the transfer of a sugar moiety on to uridine diphosphate 

(UDP)-glucuronic acid (UDPGA) to a substrate.  The enzymes responsible for 

glucuronidation of THs are UDP-glucuronoysyltransferases (UGT), which are located mainly 

in the endoplasmic reticulum of liver cells.  The TH glucuronide conjugate is excreted in 

bile, which may represent a reversible pathway as intestinal bacteria can hydrolyze the 

conjugates creating an enterohepatic cycle enabling reabsorption of free THs.  Induction of 

UGTs by xenobiotics may play an important role in chemically induced decreases in 

circulating THs (Hood and Klaassen, 2000a;  Klaassen and Hood, 2001;  Zhou et al., 2001).  

UGTs are also regulated by AhR, CAR and PXR (Maglich, et al., 2002;  Bock and Kohle, 

2004;  Wagner et al., 2005).  The degree to which chemicals reduce serum T4 is not always 

correlated with the increase in T4-UGT activity (Hood, et al., 2003;  Richardson et al., 2008).  

There are also differences between rats and mice in which Kenechlor-500, a mixture of 

polychlorinated biphenyls (PCBs) with PB-like effects on XMEs, reduces circulating levels 

of T4 in both rats and mice, but induces UGT activity in rats but not mice (Kato et al., 2003).  

In addition, Kenechlor-500 causes decreases in circulating T4 concentrations in the UGT1A 

deficient Gunn rats demonstrating that the decreases in circulating T4 is not necessarily solely 

dependent upon the induction of TH glucuronidation dependent (Kato et al., 2004).  As a 

result, it can be argued that UGT induction alone is not a uniform marker of the ability of 

chemicals to cause a reduction in serum TH, which could explain the inconsistencies 

observed in T4-UGT activity and T4 serum concentrations (Table 2).  Nonetheless, the ability 

of chemicals to reduce circulating levels of TH can be associated with UGT induction and an 

increase in fecal elimination of T4 (de Sandro et al., 1992;  Vansell and Klaassen, 2001). 
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C.4.3. Sulfation 

Sulfotransferases are a cytosolic group of phase II metabolizing enzymes important 

for the inactivation and elimination of endogenous and exogenous compounds.  Sulfation is a 

conjugation reaction in which a sulfate group from a sulfate donor, 3-phoshoadenosine-5-

phosphsulfate (PAPS), is transferred to a substrate.  Sulfoconjugation of THs is an alternative 

metabolic pathway that enhances enzymatic deiodination and facilitates their biliary and 

urinary excretion.  The TH-sulfate conjugate is rapidly deiodinated by type I deiodinase 

through successive deiodinations of the tyrosyl (inner) and phenolic (outer) rings, releasing 

iodine into the circulation for reutilization by the thyroid.  Sulfated conjugates are rapidly 

cleared in rats when deiodinase activity is inhibited.  TH sulfation is also thought to serve as 

a reservoir from which unconjugated hormone can be liberated through sulfatases in tissues 

or in intestinal bacteria (Hazenberg et al., 1988;  Kung et al., 1988).   

Because of their significance in xenobiotic metabolism and hormone metabolism, it 

has become important to understand the regulation of SULTs by nuclear receptors.  SULTs 

are regulated by AhR, CAR and PXR (Sonoda et al., 2002;  Saini et al., 2004); however, 

unlike UGTs, prototypical nuclear receptor activators may not markedly induce SULTs in 

rodents (Alnouti and Klaassen, 2008).  Human and rat SULTs catalyze THs though studies 

show significant species differences in SULT activity.  For example, even though there is an 

80% amino acid sequence homology between human and rat SULT1A1 (Yamazoe et al., 

1994;  Weinshilboum et al., 1997), human SULT1A1 catalyzes THs while the rat isoform 

does not.  Human SULT1A1 was also identified as a low Km sulfotransferase with similar 

Kms and TH substrate specificities as human hepatic and renal sulfotransferases (Visser et al., 

1998) (Kester et al., 1999).  This correlation between human SULT1A1 and sulfotranserase 
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activities toward THs suggests that human SULT1A1 is a prominent sulfotransferase in liver 

and kidney. 

 

C.4.4. Transporters 

Several AhR, CAR and PXR regulated transporters are known to actively transport 

glucuronides and/ or THs.  These comprise major efflux transporters in the ATP binding 

cassette (ABC) gene family, including multidrug resistance-associated proteins (MRPs), 

multidrug resistance proteins (MDRs).  There is also increasing evidence that uptake 

transporters such as, organic anion transport protein (OATP), and monocarboxylate 

transporter (MCT) are important in the intracellular access to THs for metabolism (Friesema 

et al., 1999;  Jansen et al., 2005).  There is a correlation between induction of hepatic UGTs 

(Ugt1a1), multidrug resistance protein-associated protein (Mrp2), and organic anion 

transporting proteins (Oatp1 and Oatp2) mRNA levels, with decreases in serum TH 

concentrations in treated with rats treated with 4-(3-pentylamino)-2, 7-dimethyl-8-(2-methyl-

4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine (DMP 904)(Wong, et al., 2005;  Lecureux et 

al., 2009).  There are indications that multidrug resistance proteins (MDRs) are important in 

TH efflux (Mitchell, et al., 2005).  These studies indicate that active transport along with 

glucuronidation and altered serum binding are possibly involved in TH decreases.  

Cellular entry is required for TH metabolism; therefore, transport can determine the 

availability of THs in tissues.  Na+/taurocholate-cotransporting polypeptide (NTCP) 

,expressed only in liver, and the Na+-independent) organic anion transporting polypeptides 

(OATPs), expressed in liver kidney and brain, are major influx transporters of thyronines and 

their metabolites in humans and rats (Hagenbuch, 1997;  Kullak-Ublick, 1999).  Studies 
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using oocytes injected with human and rat NTCP or OATP mRNA, observed a significant 

uptake of thyronines (Friesema, et al., 1999).  Conversely, rat hepatocytes incubated with a 

transport-blocking antibody resulted in a decrease clearance of the iodothyronines from the 

media and iodide into the media, confirming that active transport is essential to the uptake 

and metabolism of THs (Hennemann et al., 1986).  De Jong et al., (de Jong et al., 1993) 

demonstrated that Ouabain, a Na+ gradient inhibitor, reduces the amount of T4 taken up into 

human hepatocytes and reduces the amount of iodide cleared into the media.  Together, these 

studies indicate that TH transport is rate limiting for subsequent metabolism and suggest that 

transporters may serve a regulatory role in bioavailability and metabolism. 

 

D. Thyroid Hormone Disruption 

 

D.1. Xenobiotics and Hepatic Thyroid Hormone Metabolism 

Although xenobiotics can disrupt TH homeostasis by directly disrupting the functions 

of the thyroid, increases in extrathyroidal metabolism are also involved in facilitating 

changes in TH homeostasis.  As a major site of xenobiotic metabolism, the liver is important 

in metabolism of THs in humans and rodents.   

Xenobiotics decrease serum TH concentrations through hepatic mechanisms 

(McClain, et al., 1989;  Liu, et al., 1995) and activators of AhR, CAR and PXR consistently 

affect TH homeostasis (Kretschmer and Baldwin, 2005;  Qatanani et al., 2005).  PB and 

PCN, through activation of CAR and PXR respectively, induce rat hepatic microsomal 

enzymes, such as UGTs (Barter and Klaassen, 1992;  Vansell and Klaassen, 2001;  Vansell 

and Klaassen, 2002a).  In vivo studies in rats also show that PB and PCN induce the biliary 
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elimination of T4-glucuronides (Oppenheimer, et al., 1968;  McClain, et al., 1989); 

confirming that enzyme inducers mediate the increase in biliary elimination of THs via the 

induction of hepatic metabolizing enzymes.   

 

D.2. Animal to Human Extrapolation 

There is data supporting the induction of hepatic metabolism by which xenobiotics 

decrease circulating TH concentrations in rats; however, the mechanisms in humans are 

unclear (Table 3).  Specifically, PB induces CYP2B enzymes in rat and human hepatocytes, 

implicating CAR as a modulator of effects on circulating TH concentrations (Barter and 

Klaassen, 1994;  Madan et al., 2003).  While PB decreases serum TH concentrations in 

humans and rats (McClain et al 1989, Benedetti et al., 2005) only the increased biliary 

elimination of T4-glucuronide has been observed in rat models. 

Although several studies show that UGT1A1 and UGT1A3 are important in hepatic 

metabolism of T4, Tong et al., (2007) demonstrated that UGT activities toward THs were 

higher in mouse and rat liver microsomes as compared to human, suggesting that UGTs may 

play a more significant role in the metabolism of THs in rodents than in humans.  

Conversely, sulfotransferase may be more important in the metabolism of THs in humans.  

SULT1E1 conjugates THs in humans, yet not in rats (Kester et al., 1999; Kester et al., 2003).  

This divergence in substrate specificity between the species, suggests that sulfation may be 

more important in TH metabolism in humans than in rats.  In general, human hepatic SULTs 

have lower Kms than UGTs toward THs, suggesting that sulfation may play a more 

important role than glucuronidation in metabolism of THs in humans.  While hepatic UGTs 

and SULTs may be important in decreasing circulating TH concentrations, it is uncertain if 
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increased hepatic conjugation plays as large of a role as suspected.  For instance, studies 

using UGT1A-deficient Gunn rats exposed to PB or PCBs demonstrate that decreases in 

serum total T4 are not necessarily glucuronidation-dependent (Collins and Capen, 1980;  

Kato, et al., 2004).  Many studies have also reported the inconsistencies in hepatic T4-UGT 

activity and decreases in circulations in which the degree of T4 decreases do not always 

correlate with increases in T4-UGT activity (see Table 3).  Because of these inconsistencies, 

it is uncertain how relevant extrathyroidal TH disruption in animals is to humans. 

Reports indicate that hepatic transport may also be responsible for decreases in serum 

TH concentrations.  For example, correlations between the mRNA induction of hepatic 

UGTs and hepatic uptake (Oatp1 and Oatp2) transporters mRNA levels, with decreases in 

circulating TH concentrations were observed (Wong, et al., 2005;  Lecureux, et al., 2009).  

Wong et al. (Wong, et al., 2005) reported a greater biliary elimination of parent T4 versus 

glucuronide conjugated T4 following exposure to 4-(3-pentylamino)-2, 7-dimethyl-8-(2-

methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine (DMP 904) along with an increase in 

hepatic Mrp2 mRNA levels in rats.  DMP 904 also induced hepatic CYP2B1 and CYP3A1 

mRNA levels in rats, suggesting that it acts as an activator of CAR or PXR.  Together these 

studies show that hepatic uptake and efflux transporters play a role in increasing the 

metabolic availability of T4 as well as facilitating the clearance of unconjugated hormone.  

TH homeostasis depends greatly on transport by serum binding proteins.  In rats, TH is 

largely bound to transthyretin (TTR) while in humans; TH is mostly bound to thyroid binding 

globulin (TBG).  The differences in protein binding may cause THs in rats to be more 

susceptible to hepatic metabolism.  Binding to a higher affinity binding protein such as TBG 

may protect THs from metabolic degradation; therefore, species differences in serum binding 
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may be responsible for the sensitivity of rats to TH toxicants.  Although hydroxylated PCBs 

and PBDEs have been shown to bind to human and rodent TTR ex vivo, there are fewer 

compounds that compete for T4-TBG binding (Cheek et al., 1999;  Hallgren and Darnerud, 

2002).  This suggests that TH displacement from its binding protein may not necessarily be 

of concern for humans. 

 

E. Rationale for the Proposed Project 
 

TH concentrations are regulated by not only the hypothalamus-pituitary–thyroid axis, 

but also hepatic metabolism, and elimination; therefore, the liver is essential to the 

extrathyroidal regulation of THs.  Decreases in circulating TH concentrations by the 

induction of microsomal enzyme inducers have been linked to the increase in TH metabolism 

and biliary elimination (Barter and Klaassen, 1992;  Liu, et al., 1995;  Kolaja and Klaassen, 

1998;  Hood, et al., 1999;  Hood and Klaassen, 2000a;  Hood and Klaassen, 2000b;  Hood, et 

al., 2003).  The role of microsomal enzyme inducers on hepatic UGTs and their effects on 

circulating TH concentration have been thoroughly examined.  THs are not only 

glucuronidated but are also sulfated in the liver, for possible elimination into the bile.  

Although xenobiotics can cause decreases in circulating THs, xenobiotics do not necessarily 

induce hepatic UGTs to the same degree; therefore, it is important to determine why this 

occurs.  Attempts have been made to examine the hepatic metabolism of THs in rats and 

humans following xenobiotic exposures, but an investigation of species differences and what 

role the liver plays still need to be explored.  

Several studies show that primary hepatocytes are useful for examining the metabolic 

profiles of drugs (Bort et al., 1996a;  Bort et al., 1996b;  Hewitt et al., 2001;  Ponsoda et al., 
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2001).  For example, Ponsoda et al. (Ponsoda, et al., 2001), correlated the metabolites of 

aceclofenac, an anti-inflammatory analgesic drug, found in human urine, with the metabolites 

formed in human hepatocytes supporting the use of hepatocytes to predict what happens in 

vivo.  Furthermore, hepatocytes express nuclear receptor and therefore respond to xenobiotics 

through the induction of metabolizing enzymes.  Hepatocytes also express membrane bound 

transporters, which can influence the intracellular concentration of compounds therefore; 

hepatocytes can be used to define the mechanisms by which AhR, CAR, and PXR agonists 

can alter TH metabolism and clearance.   

Decisions concerning risk assessment have been based on animal to human 

extrapolations; therefore in vivo-in vitro comparisons are very important in the decision 

process.  In vivo responses to toxicity usually involve multiple mechanisms and multicellular 

interactions.  However, by focusing on a single cell type, data from in vitro studies becomes 

invaluable in evaluating the assumptions of specific mechanisms of action between species in 

toxicity studies.  The evaluation of potential species differences in hepatic T4 metabolism and 

the effect AhR, CAR, and PXR activation have on T4 metabolism were examined the 

following aims 

 

Aim 1:  Compare T4 metabolic profiles and clearance in rat and human hepatocytes. T4 

is metabolized by deiodination, glucuronidation and sulfation in the liver of rats and humans. 

It has been hypothesized that glucuronidation is a key step in the metabolism of THs in rats, 

whereas in humans, there is some evidence that sulfation may play a more pertinent role.  

These potential species differences in T4 metabolism in may quantitatively influence hepatic 

clearance of THs.  In this study, the examination of metabolites formed following hepatic 



17 

thyroid hormone clearance will provide a better understanding of the differences between rat 

and human TH metabolism  

 

a. Establish a radiometric UPLC method for determining T4 metabolites (T4G, T4S, 

T3, rT3) in the media of hepatocytes.  

b. Compare clearance and metabolic profile by incubating T4 with rat and human 

hepatocytes. 

 

Aim 2:  Determine hepatic clearance and the metabolic profile of THs in rat and human 

hepatocytes following exposure to Ahr, CAR, and PXR agonists.  Metabolism plays a 

major role in the homeostasis of THs and because many xenobiotics can increase the 

metabolism of THs, it is important to understand the impact xenobiotics have on TH 

homeostasis.  A major pathway of TH metabolism in the liver is the conjugation of the 

hormones to glucuroinides or sulfates.  Uridine 5-diphosphate-glucuronosyltransferase 

(UGT) and sulfotransferase (SULT) mediate the conjugation of THs.  The activation of these 

AhR, CAR or PXR by xenobiotics can induce metabolizing enzymes (UGT and SULT).  The 

induction of UGTs and SULTs is thought to increase the metabolism and subsequent 

elimination of THs.  To examine differences in human and rat hepatic metabolism of TH, this 

study will analyze metabolic profiles and gene involved in the metabolism of xenobiotics and 

THs. 

a. Determine the effects of AhR, CAR, and PXR agonists (prototypical and 

environmental) on clearance and metabolic profiles of T4 in rat and human 

hepatocytes.  
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b. Examine mRNA expression of genes related to xenobiotic and thyroid hormone 

metabolism.  Correlate changes in mRNA expression with changes in the metabolic 

profile of T4 following exposure to AhR, CAR and PXR agonists. 

 

Aim 3:  Compare the effects BDE-47 on T4 metabolism in rats and metabolic profiles 

and clearance in rat and human hepatocytes.BDE-47, a CAR/PXR agonist, decreases T4 

serum concentrations in rodents. This decrease is thought to occur via: (1) the increase in 

hepatic T4 metabolism and (2) the competitive binding of BDE-47 with TH binding proteins. 

Hepatocytes are a dependable model for studying the induction of xenobiotics metabolizing 

enzymes. In these experiments an in vivo –in vitro comparsion is made betweenTo compare 

the effects of BDE-47 Hepatocytes are used in the in vitro-in vivo extrapolation of metabolic 

activity toward a number of drugs. (LeCluyse, 2001;  Hewitt et al., 2007). Using primary rat 

and human sandwich-cultured hepatocytes this study makes comparisons of T4 metabolism in 

response to nuclear receptor activation by BDE-47. The present study also compares the 

effects of BDE-47 on the genes involved in TH homeostasis in rat liver and hepatocytes. 
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Figure 1.1 Stucture of thyroxine (T4) and triiodothyronine (T3) 
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From (Bianco and Kim, 2006) 

Figure 1.2 Deiodinase conversion of thyroid hormones 
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Table 1.1 
 

Physiological differences in thyroid hormone parameters 
 

                                             Human                             Rat                         Reference 

a Mean of reference range of 60-140nM in adult humans 
  

TBG 
(Serum 

concentration) 

Present 
(0.02mg/ml) 

Not Present 
 (Wade et al., 1988) 

TTR 
(Serum 

concentration) 

Present 
(0.2mg/ml) 

Present 
(0.5mg/ml) 

(Benvenga and 
Robbins, 1998) 

T4 t1/2 (days) 5-9 0.5- 1 (Capan, 2001;  
Bianco, et al., 2002) 

T3 t1/2 (days) 1 0.25 (Bianco, et al., 
2002) 

Mean Serum T4 
(nM) 100.01,a 43.82 

1(Stockigt, 2003) 
2(Woody et al., 

1998) 

Mean Serum T3 
(nM) 1.91 0.92 

1(Stockigt, 2003) 
2(Woody, et al., 

1998) 
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Table 1.2  
 

Inconsistencies in serum T4 and T4-UGT activity 
 
     Chemical          Nuclear Receptor       T4-UGT             Serum T4                 Reference 

    Activity 

↑ = increase 
↓ = decrease 
↔ = no change 
 
 

β-NF AhR ↑ ↑ ↑ ↓ ↓ ↓ 
(Hood and 

Klaassen, 2000) 
 

3-MC AhR ↑ ↑ ↓ ↓ 
(Hood and 

Klaassen, 2000) 
 

PCB AhR/PXR ↑ ↑ ↓ ↓ ↓ 
(Hood and 

Klaassen, 2000) 
 

PCN PXR ↑ ↑ ↓ ↓ 
(Hood and 

Klaassen, 2000) 
 

PB CAR ↑ ↑ ↓ ↓ ↓ 
(Hood and 

Klaassen, 2000) 
 

DE 71 AhR/CAR/PXR ↑↑ ↓ ↓ 
(Zhou et al., 

2002) 
 

BDE 47 CAR ↔ ↓ 
(Richardson et 

al., 2008) 
 

PB/PCB 
(Gunn Rat) AhR/CAR/PXR ↔ ↓ ↓ ↓ (Kato et al., 

2007) 
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Table 1.3 
 

Key events in thyroid hormone disruption and relevance to humans 
 
      Key Event                Evidence in Rats       Evidence in Humans       Reference 

 
  

Nuclear Receptor 
activation (CAR) 

 

Yes 
In vivo and in vitro 

 

Yes 
In vitro 

 

(Barter and 
Klaassen, 1994;  

Hood and Klaassen, 
2000a) 

 

Hepatic UGT 
Induction 

 

Yes 
In vivo and in vitro 

 

Yes 
In vitro 

 

(Barter and 
Klaassen, 1994;  

Hood and Klaassen, 
2000a) 

 
Increased TH or 
Conjugated TH 

Biliary Elimination 
 

Yes 
In vivo and in vitro 

 

No Data 
 

(Kato et al., 2005;  
Wong, et al., 2005) 

 

Hepatic Transporter 
Induction 

 

Yes 
In vivo 

 

No Data 
 

(Ribeiro et al., 
1996;  Mitchell, et 

al., 2005;  Wong, et 
al., 2005) 

 

TTR Binding 
 

Yes 
Ex vivo; 

hydroxylated 
compounds bind to 

rTTR1 

 

Yes 
Ex vivo; 

hydroxylated 
compounds bind to 

hTTR 
 

(Cheek, et al., 
1999);(Hallgren and 

Darnerud, 2002;  
Meerts et al., 2002) 

 

TBG Binding 
 

No Data 
(TBG not present) 

 

Yes 
Ex vivo 

 

(Cheek, et al., 
1999) 

 

Serum TH Decrease 
 

Yes 
In vivo 

 

Yes 
In vivo 

 

(Cavlieri et al., 
1973;  Brucker-

Davis, 1998) 
 

Increased hepatic TH 
uptake/accumulation 

Yes 
In vivo No Data (Kato, et al., 2007) 
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CHAPTER 2 

 

IN VITRO METABOLISM OF THYROXINE BY RAT AND HUMAN 
HEPATOCYTES1 

 

A. INTRODUCTION 

The liver has a major influence on plasma concentrations of thyroid hormones (THs) 

and their metabolites (Ohnhaus and Studer, 1983;  Malik and Hodgson, 2002). Deiodinase I 

(DI), located primarily in the liver, is responsible for the extrathyroidal conversion of the 

prohormone, thyroxine (T4) to its biologically active form 3,3’,5-triiodothyronine (T3). DI is 

also critical in the inactivation of T3 to 3,3’,5’-triiodothyronine (rT3) and 3,3’-

diiodothyronine (T2). In the liver, THs also are metabolized to either glucuronide or sulfate 

conjugates and the resulting conjugates are excreted through the bile duct into the intestine. 

A portion of the conjugated hormone is hydrolyzed in the intestine and consequently the free 

hormones are reabsorbed into the systemic circulation while the conjugated portion is 

eliminated in the feces. 

There are species differences in the rates of these reactions of TH conjugation.  Tong 

et al., (2007) demonstrated that uridine diphosphate glucuronosyltransferase (UGT) activity 

toward T3 was higher in mouse and rat liver microsomes than human liver microsomes and  

___________________ 

1Richardson,V.M., Ferguson, S.S., Sey, Y.M., DeVito, M.J. (submitted) Xenobiotica 
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activity toward T4 is higher in mouse liver microsomes compared to rat and human liver 

microsomes. This suggests that UGTs may play a more significant role in the metabolism of 

THs in rodents than in humans. In contrast, the literature suggests that sulfotransferase 

(SULT) may be more important in the metabolism of THs in humans, as SULT1E1 

conjugates THs in humans, but not in rats (Kester, et al., 1999;  Kester et al., 2003). These 

studies suggest that regulation of serum TH concentrations involve both hypothalamus-

pituitary–thyroid (HPT) axis and hepatic metabolism and elimination. 

Hepatic uptake and efflux transporters contribute to the transport of endogenous and 

exogenous compounds from the systemic circulation to bile (Arias et al., 1993). Although it 

was once thought that THs traversed the plasma membrane by diffusion (Robbins and Rall, 

1960) it is now known that THs and their conjugates are also actively transported. 

Specifically, multidrug resistance-associated proteins (MRPs) and multidrug resistance 

proteins (MDRs) play a major role in efflux transport of THs (Friesema, et al., 1999;  

Mitchell, et al., 2005). There is also evidence that uptake transporters such as organic anion 

transporting polypeptides (OATPs), and monocarboxylate transporters (MCTs) are important 

in the intracellular accumulation of THs (Friesema, et al., 1999;  Jansen, et al., 2005). 

Because cellular entry is required for TH metabolism, it is likely that active transport is rate 

limiting with respect to bioavailability and metabolism of THs (de Jong, et al., 1993;  

Friesema, et al., 1999). 

Xenobiotics can alter TH homeostasis at the point of its biosynthesis, release, 

transport, metabolism and excretion. A number of environmental chemicals decrease 

circulating TH concentrations through the induction of xenobiotic metabolizing enzymes 

resulting in increases in TH metabolism and biliary elimination (Barter and Klaassen, 1992;  
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Liu, et al., 1995;  Kolaja and Klaassen, 1998;  Hood, et al., 1999;  Hood and Klaassen, 

2000a;  Hood and Klaassen, 2000b;  Hood, et al., 2003). For example, phenobarbital (PB), 

through the activation of the constitutive androstane receptor (CAR), induces rat hepatic 

xenobiotic metabolizing enzymes (XMEs), such as UGTs and increases the biliary 

elimination of T4 or T4-glucuronides (Oppenheimer, et al., 1968;  McClain, et al., 1989;  

Barter and Klaassen, 1992;  Vansell and Klaassen, 2001;  Vansell and Klaassen, 2002a). 

While PB decreases serum TH concentrations in humans and rats (McClain, et al., 1989;  

Benedetti et al., 2005), mechanistic studies are only available for rats. A PB-like inducer, 

2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153), also decreases serum T4 concentrations and 

induces hepatic microsomal T4-UGT activity in rats (Craft et al., 2002;  He et al., 2011). 

PCB 153 is a major component of Aroclor 1254 and is one of the PCBs with the highest 

human exposures (NHANES, 2012). Exposure to PCB 153 is associated with TH decreases 

in humans (Hagmar et al., 2001), but in vivo induction of hepatic metabolizing enzymes by 

PCB 153 in humans has not been demonstrated. In vitro, PCB 153 induces Ugt2b1 mRNA in 

rat hepatocytes; however, effects on TH metabolism were not determined (Ganem et al., 

1999). Overall, xenobiotics that induce hepatic UGTs result in a concomitant decrease in 

circulating TH concentrations in rodents; however, the mechanism by which TH disruption 

occurs in humans is unclear. 

To our knowledge, this is the first report to characterize the utility of sandwich-

cultured hepatocytes (SCH) in studying TH metabolism. This study aims to compare 

pathways involved in the hepatic metabolism of T4 in rats and humans, by examining the 

metabolic profiles of T4 following incubation with fresh SCH from rats and humans. 

Parameters for analysis include comparative examinations of the metabolic profiles in rat and 
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human hepatocytes over incubation time, T4 concentrations, culture days and following PCB 

153 treatment. T4 accumulation with hepatocytes was also explored to provide a better 

understanding of species differences in intercellular availability and hepatic metabolism of 

T4.  

 

B. MATERIALS AND METHODS 

 

Chemicals 

L-thyroxine (T4) and phenobarbital were purchased from Sigma-Aldrich Co. (St. 

Louis, MO). PCB 153 was purchased from Radian Corporation (Austin, TX). [125I]-T4, -T3, 

and -rT3, (116 Ci/mmol) were purchased from Perkin Elmer Life Sciences Inc. (Waltham, 

MA) and were purified to >98% immediately before use with Sephadex LH-20 (Sigma-

Aldrich) as described by Rutgers et al. (1989). All other reagents were of the highest grade 

commercially available. 

 

T4 glucuronidation assay 

T4 glucuronidation activity was evaluated in liver and intestinal microsomes from rat 

and humans (Zhou, et al., 2001) based on a previously published method (Visser et al., 

1993b). Microsomes were obtained from CellzDirect or Xenotech (Table 2.2). A 100 µl 

aliquot of microsomes (2 mg protein per ml 1M Tris/HCl buffer pH 7.4) was incubated at 

37°C with 4µM of cold T4, [125I]-T4 (100,000 cpm), 0.1mM 6-n-propyl-2-thiouracil (PTU), 

alamethicin (50 µg/mg microsomal protein) and 5mM uridine diphosphoglucuronic acid 

(UDPGA) for 1 hour. Sample blanks (without UDPGA) were analyzed concurrently.  The 
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reaction was stopped with methanol followed by centrifugation and mixing the supernatant 

with 0.1M HCl.  T4-glucuronide (T4G) was separated by chromatography using lipophilic 

Sephadex LH-20 columns and eluent was measured for radioactivity as previously described 

(Zhou, et al., 2001). 

 

T4 sulfation assay 

Rat and human liver cytosol were assayed for SULT activities as previously described 

(Szabo et al., 2009). Liver cytosols were obtained from CellzDirect (Table 2.2). 20 µg 

protein/ml of liver cytosol in the presence or absence (blank) of 50µM 3’-phosphoadenosine 

5’-phosphosulfate (PAPS; Sigma) in 0.2 ml of 0.1M phosphate (pH 7.2) and 2mM EDTA 

(Sigma) (Kaptein et al., 1997) was incubated with 4µM of T4, and 100,000 cpm of [125I]-T4 

for 30 min at 37°C.  The reactions were applied to 1 ml of lipophilic sephadex (Sigma) LH-

20 minicolumns (Superlco) equilibrated with 0.1M HCl. Iodine and T4-sulfate (T4S) were 

eluted with 2 X 1 ml of 0.1M HCl, and 6 X 1 ml of ethanol/water (20/80, vol/vol), 

respectively. Fractions were collected and 1 ml of the T4S fraction was quantitated by gamma 

spectroscopy (Perkin-Elmer Life Sciences Inc., Waltham, MA).  

 

Hepatocyte culture  

Fresh primary sandwich-cultured rat hepatocytes (SCRH), isolated from male 

Sprague-Dawley rats, and sandwich-cultured human hepatocytes (SCHH) in 24-well plates 

were obtained on culture day 2 from Life Technologies (Durham, NC) and maintained in 

Williams’ E medium with 0.1% dimethyl sulfoxide (DMSO) including Hepatocyte 

Maintenance Supplement (Life Technologies) which contains 0.1µM dexamethasone and 
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proprietary concentrations of penicillin-streptomycin, ITS+ (insulin, transferrin, selenium 

complex, BSA and linoleic acid), GlutaMAX™ and HEPES. Cultures were maintained for 

up to 6 days with medium replaced every 24 hours. Human donor demographics can be 

found in Table 2.1.  

 

Thyroxine and thyroxine metabolite separation, identification and quantitation from medium 

and hepatocytes. 

All medium samples were dried under N2 and then reconstituted with 40µl mobile 

phase consisting of 18% acetonitrile in 0.02M ammonium acetate (pH=4).  After addition of 

mobile phase, samples were centrifuged at 10,000 x g for 5 minutes at room temperature and 

the supernatants were placed in vials for UPLC analysis. UPLC equipped with a C18 – 2.1 x 

50mm x 1.7µm (Waters Corp.; Milford, MA) resolution column and fraction collector were 

used for separation and identification of T4 and T4 metabolites. Gradient elution was 

performed using a modified version of a previously established method by Rutgers et al. 

(1987) with a 16 minute gradient of 18-40% acetonitrile in 0.02M ammonium acetate 

(pH=4). Solvent flow rate was 0.4ml/min and 0.25 minute fractions were collected in test 

tubes. Peaks were then identified by analyzing collected fractions for radioactivity by gamma 

spectroscopy. Retention times for T4, T3, rT3, T4-glucuronide (T4G), and T4-sulfate (T4S) 

were determined using synthetic and biosynthetic compounds. Peaks for T3 and rT3 were 

often inseparable; therefore these peaks were added together and are presented in this study 

as T3+rT3. Figure 2.1 shows the results of a typical UPLC separation from the collected 

fractions for T4, T4G, T4S, T3, and rT3 from medium of SCRH. Protein content of the 
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hepatocytes was determined using a protein assay kit with bovine serum albumin as a 

standard (Bio-Rad Laboratories, Hercules, CA). 

Commercially available [125I]-T4, -T3, and -rT3 were used as references to determine 

retention times using UPLC with fraction collections.  T4-glucuronide and -sulfate conjugates 

were not commercially available, therefore T4G and T4S references were prepared using 

recombinant human UGT1A8 from BD Biosciences (San Jose, CA) and recombinant human 

SULT1E (US Biologicals, Swampscott, MA), respectively.    

T4G was synthesized by incubating 4µM T4 and 100,000 cpm of [125I]-T4 for 60 min 

at 37ºC with human recombinant UGT1A8 (BD Biosciences, San Jose, CA) (final 

concentration, 2 mg UGT1A8 protein/ml) in the presence or absence (blank) of 5mM uridine 

5′-diphosphoglucuronic acid (UDPGA) in 0.2 ml (total reaction volume) 75mM Tris-HCl 

(pH 7.8), 7.5mM MgC12 with alamethicin (50 µg/mg UGT1A8 protein). The reactions were 

stopped by the addition of 0.2 ml ice-cold methanol, and after centrifugation (10,000 x g for 

5 minutes at 4°C), supernatant was removed. The supernatant was then dried under N2 at 

40°C and prepared for UPLC analysis as mentioned above. T4G peaks were confirmed by β-

glucuronidase digestion (van der Heide et al., 2002). 

Recombinant human SULT1E (US Biologicals, Swampscott, MA) was used to 

synthesize T4S references.  T4S was synthesized by incubating 4µM T4 and 100,000 cpm 

[125I]-T4 incubated overnight at 37ºC with SULT1E (final concentration, 0.4 mg SULT1E 

protein /ml) in the presence or absence (blank) of 400µM adenosine 3′-phosphate 5′-

phosphosulfate (PAPS; Sigma-Aldrich) in 0.2 ml (total reaction volume) 0.1M potassium 

phosphate (pH 7.2), 2mM EDTA.  The reactions were stopped by the addition of 0.8 ml 

0.1M HCl.  Samples were then centrifuged at 10,000 x g for 5 minutes at 4°C. Supernatant 



42 
 

was collected, dried under N2 at 40°C, and prepared for UPLC analysis as mentioned above. 

T4S peaks were confirmed by acid solvolysis (van der Heide, et al., 2002). 

 

Comparisons of T4 metabolism across days in culture 

Fresh SCRH and SCHH were treated on culture day 3, 4, 5, or 6 with 0.05µM (rat) or 

0.1µM (human) [125I]-T4 (500,000 cpm/well) for 24 hours, after which media were collected 

and analyzed for T4 metabolites using the methods described above. Cells were washed twice 

with 0.5 ml/well of ice-cold PBS buffer.  Hepatocytes were collected by adding 0.5ml/well of 

0.1M NaOH and analyzed for protein content.  

 

T4 accumulation  

SCRH or SCHH were used to measure [125I]-T4 association over time. Hepatocytes 

were incubated with supplemented Williams’ E medium, as mentioned above, containing 

0.0005µM (5000 cpm) per well of [125I]-T4 for up to 5 minutes on culture day 6. After 

incubation, media were collected and cells were washed twice with 0.5 ml/well of ice-cold 

PBS buffer. After washing, hepatocytes were collected by adding 0.5ml/well of 0.1M NaOH. 

125I-derived radioactivity in collected media and hepatocytes were analyzed by gamma 

spectroscopy.  

 

Effects of incubation time on T4 metabolite levels and T4 depletion from medium 

Fresh SCRH and SCHH were treated on culture day 6 with 0.05µM (rat) or 0.1µM 

(human) [125I]-T4 (500,000 cpm/well) for up to 24 hours. After 4, 8, 12, or 24 hours, media 

and hepatocytes were collected. Mass balance was determined by preparing and analyzing 



43 
 

media and hepatocytes for T4 and T4 metabolites using the methods described above. 

Hepatocytes were collected and analyzed for protein content. 

 

Effects of T4 concentration on metabolite levels 

Fresh SCRH and SCHH were treated on culture day 6 with 0.05, 0.1, 5, 50, or 100 

µM of [125I]-T4 (500,000 cpm/well) in supplemented Williams’ E medium (0.5ml) for 24 

hours. Time course studies were performed using 0.05µM (rat) or 0.1µM (human) [125I]-T4. 

After 24 hours, medium was collected, prepared, and analyzed for T4 metabolites using the 

methods described above. Hepatocytes were collected and analyzed for protein content. 

 

Effects of PCB 153 on T4 metabolite levels 

Stock solutions of PCB 153 were diluted in DMSO and added to Williams’ E medium 

to a final DMSO concentration of 0.1%. On culture day 3, fresh SCRH and SCHH were 

exposed for 72 hours to the DMSO vehicle (0.1%) or PCB 153 (30µM). After 72 hours, 

medium was removed and replaced with Williams’ E medium containing physiological 

concentrations [0.05µM (rat) or 0.1µM (human)] of [125I]-T4 (500,000 cpm/well) for 24 

hours. Medium was collected, prepared and analyzed for T4 metabolites by the method 

described above. Hepatocytes were collected and analyzed for protein content. 

 

Data analysis  

Linear and nonlinear regression analyses were used to assess the relationship between 

[125I]-T4 accumulation in hepatocytes and appearance of T4 metabolites in medium and 

disappearance of T4 from the medium. A one-phase association exponential equation 
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Y=Y0 + (Plateau-Y0)*(1-exp (-K*x)), 

was fit to the accumulation data  where plateau is the Y value at infinite time and half time is 

the time it takes to reach half the plateau and is computed as ln(2)/K. A one-phase decay 

exponential equation,  

Y= (Y0-Plateau)*exp (-K*X) +Plateau, 

was fit to the [125I]-T4 disappearance data where the depletion rate constant (K) was 

determined. The half-life (t1/2) of all reactions was then determined as ln(2)/K. Using the rate 

of [125I]-T4 depletion, intrinsic clearance (CLint) estimates were determined as described by 

Obach (1997) using the equation, 

CLint, in vitro=KV/N, 

expressed as μl/min/106 cells, where K is ln(2)/ t1/2, V is the incubation volume and N is the 

number of hepatocytes used.  Human hepatocyte CLint (µl/min/106 cells) was scaled to in 

vivo CLint (ml/min/kg body weight) using the physiological parameters, human liver weight 

(22 g/kg body weight (and hepatocellularity (120 X 106 cells/g of liver) (Bayliss et al., 1999;  

Soars et al., 2002). Rat hepatocyte CLint (µl/min/106 cells) was scaled to in vivo CLint 

(ml/min/kg body weight) using the physiological parameters, rat liver weight (40 g/kg body 

weight (and hepatocellularity (120 X 106 cells/g of liver) (Bayliss, et al., 1999). 

Intergroup comparisons of control versus PCB 153 for SCRH were determined using 

a t-test.  GraphPad Prism 5.0 was used to analyze all data, (GraphPad Software San Diego, 

CA). The level of probability of statistical significance was p < 0.05. 
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C. RESULTS 

 

Glucuronidation of T4 in rat and human liver and intestinal microsomes  

To begin to understand variability in human liver metabolism of T4, human liver 

microsomes were obtained both pooled and individual, from two different suppliers (Table 

2.2).  T4G activity in these microsomes range approximately 5-fold, with the highest activity 

found in the pooled microsomes obtained from Xenotech and the lowest from an individual 

donor from Invitrogen (Table 2.3).  Compared to the pooled rat microsomes, T4G activity 

was 2 to 17.5 times lower in the human microsomes.  The T4G activity in the pooled human 

intestinal microsomes was 3 to 15 times higher than the T4G activity in the human liver 

microsomes. Compared to the pooled rat liver microsomal sample, the human liver 

microsomal samples were between 3 and 15 times lower for T4G activity (Table 2.3).  T4 

sulfation was also determined in rat and human liver cytosols.  T4 sulfation activity was 

approximately 10 times greater compared to T4G activity based on mg protein assayed and 

ranged from 4.0 to 4.8 pmol/mg protein/minute.  The pooled rat cytosol had a similar T4 

sulfation activity compared to the human cytosol (Table 2.3).   

 

T4 and T4 metabolite separation, identification and quantitation 

Retention times of commercially available [125I]-T4, -T3, and -rT3 were determined to 

be 12.75, 10.25, and 10.50 min, respectively. Conjugated metabolites of T4 were not 

commercially available; therefore T4G and T4S were biosynthesized using recombinant 

human UGT1A8 and SULT1E, respectively. Retention times for T4G and T4S were 

determined to be 5.50 and 8.25 min, respectively. Figure 2.1 illustrates the separation of T4 
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and its metabolites in medium of SCRH incubated with 5µM [125I]-T4 for 24 hours at 37ºC. 

The peaks correspond to the retention times of reference standards for T4, T3, rT3, T4G and 

T4S. 

 

Comparisons of T4 metabolism across days in culture in SCRH and SCHH 

Physiological serum concentrations of T4 in rat (0.05µM) and human (0.10µM) were 

used to measure changes in metabolite levels in media of SCRH and SCHH over days in 

culture. T4G and T4S were not detected in cell lysates, but were present in media. Figure 

2.2A shows T4G accumulation in the medium increased in SCRH from culture day 3 to 4 and 

plateaued on days 4 through 6. T4G in the medium of SCHH decreased until undetectable at 

day 5 (Hu8096) and day 6 (Hu8092). T4S reached maximum at day 4 and day 5 in media 

from SCHH and SCRH, respectively (Figure 2.2B). By day 5 and 6, similar amounts of T4S 

were found in the media of SCRH and SCHH. T3+rT3 levels plateaued between days 4 and 6 

in the medium of SCRH (Figure 2.2C). In medium of Hu8092, T3+rT3 reached a maximum at 

day 5 and plateaus at day 6. T3+rT3 in the medium of Hu8096 plateaued between culture days 

4 and 6. Overall, these data show that metabolic capacity differed quantitatively over culture 

days between species and between human donors, creating a challenge when examining 

species differences for TH metabolite appearance in this culture system. Given that intact 

canaliculi with increasing efflux transporter activity has been reported over culture days in 

SCH (Hoffmaster et al., 2004) and that biliary transport is a component of TH association 

and TH  metabolite elimination (Friesema, et al., 1999;  Mitchell, et al., 2005), we decided to 

add [125I]-T4 to hepatocytes on culture day 6 for all subsequent experiments. 
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T4 accumulation in SCRH and SCHH 

Cellular accumulation of T4 was evaluated by measuring radioactive [125I]-T4 from 1 

to 30 minutes on culture day 6 (Figure 2.3). Preliminary studies showed [125I]-T4 did not 

significantly bind to BD Matrigel® (BD Biosciences) or plastic ware (data not shown). [125I]-

T4 cellular associated radioactivity increased over time, but appeared to plateau between 10 

and 20 minutes. An exponential one-phase association model fit to each set of data indicates 

[125I]-T4 accumulation into SCRH was significantly different from accumulation into SCHH 

(F=5.46 (3,24); p=0.0053). [125I]-T4 accumulation in SCHH was greater and more rapid than 

in SCRH. The accumulation into the SCHH plateaued at approximately 11.7 ± 3.9% of the 

[125I]-T4 dose. In SCRH, the cellular accumulation plateaued at 5.5 ± 0.9%. Differences were 

also observed in [125I]-T4 accumulation half times, where the halftime of the SCRH was 6.1 

min and the SCHH was 16.0 min.  To understand the accumulation at the early time points, a 

linear model was used to fit the data from 1 to 5 minutes.  There was no significant 

difference in the accumulation of T4 in rat and human hepatocytes based on a linear model of 

the early time points (F=0.35 (1,21); p=0.56).   

 

Effects of incubation time on T4 metabolite concentrations in SCRH and SCHH 

On day 6 of culture, metabolite levels were measured in the media of SCRH and 

SCHH at 4, 8, 12 and 24 hours following exposure to physiological rat and human serum 

concentrations of T4. In medium of SCRH, T4G increased over time (Figure 2.4A). In rat 2, 

T4G peaked at 12 hours while in rat 1, T4G levels increased in a linear manner (p < 0.001; 

r2=0.98) with a slope of 0.5 ± 0.05 pmol/hr/mg cellular protein.  T4G appearance in the 

medium of SCHH was only detected at 12 and 24 hours for Hu1362 and at 24 hours in the 
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medium of Hu1364.  The amounts of T4G were much higher (13 times) in medium of SCRH 

as compared to SCHH. In SCRH medium, T4S was only detected at 24 hours (Figure 2.4B). 

In medium of Hu1362, T4S was first detected by 8 hours but there was no consistent time 

related trend.  In Hu1364, T4S increased linearly (p < 0.05; r2= 0.90) with time starting at 4 

hours at a rate of 0.6 ± 0.2 pmol/hr/mg cellular protein.   

In the medium of SCRH, there were no consistent time related trends for T3+rT3 

concentrations for either rat culture (p >0.05; r2=0.18).  In medium of Hu1362, T3+rT3 

concentrations decreased significantly in a linear manner (p < 0.03; r2=0.94) between 4 to 24 

hours. T3+rT3 concentrations decreased over time, but not in a linear manner (p >0.08) in 

Hu1364 (Figure 2.4C).   

The percent of [125I] radioactivity for T4 decreased over time as metabolites increased 

in the media of SCRH and SCHH. T4 was consistently detectable in SCHH (Table 2.4) and 

SCRH (Table 2.5) at all time points tested.  By 24 hours, a larger (2 times) percentage of T4 

accumulated in SCHH compared to SCRH. The percentage of T4 increased over time in 

SCHH, but not in a linear manner (p>0.14). T4 in the medium of SCHH decreased; however, 

not in a linear manner (p >0.09). T4G and T4S were not detectable in SCRH or SCHH. 

Initially at 4 hours, T3+rT3 were detectable in SCRH but not in SCHH.  At 24 hours, T3+rT3 

were detectable in SCHH and not detectable in SCRH.   

 

Intrinsic clearance of T4 from the media of SCRH and SCHH. 

The clearance of T4 from the media of SCRH and SCHH was evaluated between 4 

and 24 hours.  T4 depletion profiles are shown in Figure 2.5, where the percent of T4 

remaining in media over time is shown for SCRH (A) and SCHH (B). A one-phase decay 
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model was used to estimate CLint in both SCRH and SCHH.  In SCRHs, T4 concentrations 

significantly decreased from 4-24 hours.  CLint in the hepatocytes of rat 1 and rat 2 were 1.08 

and 0.75 µl/min/106 cells, respectively. In humans, T4 concentrations also significantly 

decreased from 4-24 hours.  CLint for Hu1362 and 1364 were 0.56 and 0.62 µl/min/106 cells, 

respectively. 

 

Effects of T4 concentration on metabolite levels 

 T4 metabolite levels in media of SCRH (Figure 2.6A) or SCHH (Figure 2.6B) were 

examined following a 24 h incubation with increasing concentrations of [125I]-T4 on culture 

day 6. Metabolites levels increased with increasing [125I]-T4 concentrations in the media of 

SCRH and SCHH. At all concentrations, the rank order of metabolites in the medium of 

SCRH was: T4G>T3+rT3>T4S.  T4G was undetectable at lower concentrations of [125I]-T4 in 

medium of SCHH. The rank order of metabolites in the medium of SCHH was T3+rT3>T4G 

≈T4S. 

 

Effects of PCB 153 on T4 metabolite levels and clearance 

To study the effects of hepatic enzyme inducers on T4 metabolism in hepatocytes, 

PCB 153 was used as a prototype environmental chemical. Following exposure to PCB 153 

(72 hours), SCRH and SCHH were treated with physiological rat and human serum 

concentrations of T4 for 24 hours. Treatment of SCRH with 30µM PCB 153 increased T4G 

2.9-fold (Figure 2.7A). T4G in media of Hu8092 and Hu8096 was only detectable following 

PCB 153 treatment. Following PCB 153 treatment, T4G levels increased in the media of 

Hu1362 and Hu1364 9.3- and 3.2-fold, respectively. T4S levels did not change significantly 
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in the media of SCRH, Hu8092, Hu8096, Hu1362, and Hu1364 (Figure 2.7B). T3+rT3 levels 

following PCB 153 treatment were unchanged in the media of SCRH, Hu8092, Hu8096, 

Hu1362, and Hu1364 (Figure 2.7C). Increases in T4G levels in media of rat and human 

hepatocytes were a more consistent response to PCB 153 treatment as compared to T4S and 

T3+rT3 appearance.  

 

Effect of PCB 153 on the intrinsic clearance of T4 from the media of SCRH and SCHH. 

 Following 72 hours treatment with 30uM of PCB 153, T4 clearance was evaluated 

between 4 and 24 hours for SCRH and SCHH (Table 2.6).  A one-phase decay model was 

used to estimate the clearance rate in both SCRH and SCHH. CLint in the hepatocytes of rat1 

and rat 2 following PCB 153 treatment were 1.34 and 1.53 µl/min/106 cells, respectively. 

This represents between a 1.24- and 2.06-fold change in the clearance of T4 in the rat 

hepatocytes compared to the control.  CLint for Hu1362 and Hu1364 were 0.47 and 0.61 

µl/min/106 cells. This represents a 0.86-fold change for Hu1362 and no change in the 

clearance of T4 in Hu1364 compared to the control.  

 

D. DISCUSSION 

 

Much of the studies examining thyroxine metabolism use either microsomal or 

cytosolic fractions of various tissues. Using isolated liver fractions such as microsomes and 

cytosols has limitations in understanding the overall metabolism of endogenous substances 

and xenobiotics.   SCHs provide more in vivo-like metabolism, particularly when there are 

multiple enzymes involved with different intracellular locations. Differences in 



51 
 

glucuronidation and metabolism of THs between rats and humans were studied using liver 

and intestinal microsomal and liver cytosolic preparations and sandwich cultured 

hepatocytes. T4G activity varied by a factor of 5 in human microsomes and varied by a less 

than a factor of two in the SCHH.   The variation in human liver microsomal T4G activity is 

similar to that observed by Yamanaka et al (2007) and Kato et al (2008).  The rat liver 

microsomal T4G activity was higher than the human microsomal activity by 2- to 17.5-fold.  

In the SCH, the basal T4G activity was 2- to more than 13-fold greater in SCRH compared to 

SCHH, depending on the day in culture.  The concordance between the microsomal and SCH 

results on species differences provides confidence that the culture conditions are 

representative of in vivo metabolism. 

Pooled rat intestinal microsomes had greater T4G activity than the pooled rat liver 

microsomes.  Similar differences in T4G activity were observed with the pooled human 

intestinal microsomes compared to the human liver microsomes.  Yamanaka et al (2007) also 

demonstrated T4 glucuronidation in human liver and intestinal microsomes and suggested 

that in humans, intestinal clearance of T4 is half that of liver and that intestinal 

glucuronidation may play an important role in enterohepatic circulation.  This is the first 

report to demonstrate that, similar to humans, rat intestinal microsomes have higher T4G 

glucurondiation activity compared to liver microsomes and also suggests an important role of 

intestinal glucuronidation in the enterohepatic circulation of thyroxine in rats.   

In contrast to glucuronidation, sulfation of T4 in rat and human liver cytosols were 

similar and the variation in T4 sulfation was less than 1.5-fold in the various human samples.  

In the SCRH, <1% of the T4 is sulfated.  In comparison, almost 25% of the T4 is 

glucuronidated after 24 hours in culture.  In SCHH, <1% of the T4 is sulfated or 
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glucuronidated.  While previous studies have examined T3 sulfation in rat hepatocytes, this is 

the first study to examine T4 sulfation in both SCRH and SCHH.   The relative importance of 

T4 metabolic pathways did not vary with substrate concentration (0.1 to 100 µM T4) in either 

SCRH or SCHH.   The similar proportions of metabolites produced as concentration 

increases is consistent with the similar Km values ranging between 20-100 µM that various 

UGT and SULT isoforms exhibit towards T4 (Li and Anderson, 1999;  Yamanaka, et al., 

2007).   

Results of the [125I]-T4 incubation time course studies show that T4G does not appear 

in the medium of SCHH and T4S does not appear in the medium of SCRH at early time 

points, but were measurable at the 24 hour time point.  This is consistent with the intrinsic 

clearance of T4 from media in the present study.  T3+rT3 were detectable at each time point in 

the media of SCRH and SCHH.  While T3+rT3 contaminants were found in stock solutions, 

they were determined to be less than 0.1% of the [125I]-T4. Data were then corrected for this 

contaminant, so it is unlikely that the appearance of T3+rT3 were due to impurities. Despite 

the appearance of T3+rT3 at all time points examined, we did not detect further conversion 

metabolites like T2, T3-glucuronide or T3-sulfate in either medium or cells, but this may be 

due to detection limits for these metabolites. 

In the present study, physiologically relevant concentrations of T4 for rat (0.05μM) 

and human (0.1μM) were used to examine T4 metabolite levels in media and cells of SCH.  

T4G appearance in medium from SCRH is detectable on day 3 in culture and plateaus on 

days 4 through 6. In contrast, T4G appearance diminished until undetectable in the medium 

of SCHH by as soon as the fourth day in culture. Amounts of T4G in medium of SCRH were 

about 13-fold greater than in medium of SCHH.  T3+rT3 levels increase from day 3 to day 4 
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in culture and plateaus between days 4 and 6 for SCRH and Hu8092. In medium of Hu8096, 

T3+rT3 levels remained constant over days in culture. In contrast, we found that T4S amounts 

in the media of SCRH and SCHH were similar by culture days 5 and 6. Except for T4G in the 

media of Hu8092 and Hu8096, metabolite levels were maintained out to culture day 6. In a 

study using monolayer cultures of rat hepatocytes, T4G activity decreased over culture days 

(Viollon-Abadie et al., 2000). This does not agree with the present study, however, the 

difference in culture systems between the studies suggests that the effects observed are 

related to culture conditions. 

Transmembrane movement of thyroid hormones was thought to be a passive process; 

however, there is evidence that translocation occurs through active transport mechanisms 

(Blondeau et al., 1988;  De Jong et al., 1992;  de Jong, et al., 1993). Specifically, members of 

the MCT and OATP family have been shown to facilitate TH transport (Pizzagalli et al., 

2002;  Friesema et al., 2003;  Friesema et al., 2008;  van der Deure et al., 2008). Active 

transport is likely the rate-limiting step for TH metabolism; therefore, SCRH and SCHH 

were used to examine T4 accumulation over time. The rate of T4 accumulation has been 

shown to be slower in human hepatocytes than rat hepatocytes (Krenning et al., 1981;  de 

Jong, et al., 1993). In the present study, the rate of T4 accumulation is similar between SCRH 

and SCHH up to 5 minutes.  At the later time points in the accumulation studies, [125I]-T4 

accumulation plateaued at lower concentrations in SCRH than SCHH. The lower 

accumulation of T4 in SCRH compared to the SCHH is consistent with the greater T4G 

activity of the SCRH compared to the SCHH.  Transthyretin (TTR) and thyroid binding 

globulin (TBG) are major TH serum binding proteins and are thought to modulate the 

delivery of TH from blood to cells (Hennemann et al., 2001;  Choksi et al., 2003). In 
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humans, the majority of T4 is bound to TBG (Benvenga, 2005).  In rats, TBG expression is 

not detectable in adults; therefore, the major carrier protein for T4 is TTR (Savu, et al., 1991).  

This difference in serum binding proteins between rat and human may be of important to T4 

accumulation due to the differences in T4 affinity, where T4 has approximately 140-times 

greater affinity for TBG (Ka=1x10-10 M) than for TTR (Ka=7x10 -7 M) (Robbins, 1991). The 

T4 concentrations used in the present study do not take into account the binding of T4 to TTR 

or TBG; therefore, the species difference in TH binding proteins in vivo may indicate species 

differences in hepatic T4 accumulation. 

PCBs are environmental contaminates that were once used in capacitors and other 

industrial processes.  In rats, PCBs decrease thyroid hormones and this effect is thought to be 

due to increased hepatic accumulation and glucuronidation (Bastomsky, 1974;  Hood and 

Klaassen, 2000a;  Klaassen and Hood, 2001;  Craft, et al., 2002;  Crofton et al., 2005;  

Martin et al., 2012).  PCB 153 is one of the predominate congeners found in the environment 

as well as in humans.  It has been described as a phenobarbital-like PCB and decreases 

thyroid hormones in rats (Craft, et al., 2002;  Crofton, et al., 2005).  The current study shows 

that PCB 153 induced T4 glucuronidation in both SCRH and SCHH.  In comparison, T4S and 

T3+rT3 production were unaffected by PCB 153 treatment in both SCRH and SCHH. T4G in 

control media from Hu8092 and Hu8096 was not detectable; however, following PCB-153 

treatment, T4G accumulated in the media. In SCRH, T4G accumulation in the medium from 

control and PCB153 treatment was greater than in SCHH.  In vivo studies using the PCB 

mixture, Aroclor 1254, showed decreases in hepatic deiodinase I activity in rats (Hood and 

Klaassen, 2000b).  In the present study, no change in T3+rT3 production following PCB 153 

treatment of SCRH and SCHH was observed.  The difference between the in vivo studies and 
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the in vitro studies may be that in vivo, reductions in hepatic deiodinase activity may not be 

due to direct effects of the chemical on hepatocytes, but a physiological response to 

decreased serum T4 concentrations (Davies et al., 1996). Therefore, if deiodinase activity 

reductions are a physiological response in vivo, it is likely that T3+rT3 production would not 

change in hepatocyte cultures at the concentrations of T4 used in this study. 

The present study assessed the utility of SCH for evaluating the species differences in 

TH metabolism changes following exposure to environmental chemicals.  This is the first 

report, to our knowledge, characterizing inducibility, metabolism, and clearance of T4 in an 

in vitro model system in both SCRH and SCHH.  T4 metabolism was measurable in untreated 

SCRH and SCHH.  Exposure to PCB 153 increased metabolism of T4, consistent with the 

effects observed in vivo in rats. This model is also consistent with other in vivo and in vitro 

data indicating that glucuronidation may be a predominant pathway for hepatic TH 

metabolism in rats. Previous studies have suggested that sulfation is the preferred pathway 

for TH metabolism in humans (Kester, et al., 1999;  Kester, et al., 2003); however we find 

that deiodination of T4 is the favored pathway in this model system.  This in vitro system 

may be useful in evaluating a chemical’s ability to increase hepatic T4 metabolism in vivo.  

However, while the present model can be used to qualitatively assess whether a chemical can 

alter TH metabolism, quantitative extrapolation of this data to in vivo exposures requires 

further development. 
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Table 2.1  
 

Donor information for human hepatocytes 
 
     Donor              Sex        Age    Smoke/Alcohol        Medications        Experimental Use 

 UKN=unknown  
 
  

Hu1191 Male 19 No/No UKN T4 Accumulation/ 
T4 Clearance 

Hu1193 Male 68 Yes/No Aspirin 
Zolpidem 

Simvastatin 
Ranitidine 

 

T4 Accumulation/ 
T4 Clearance 

Hu1197 Female 29 No/Yes Amphetamine 
Bupropion 
Cetirizine 

Clonazepam 
Lamotrigine 

 

T4 Accumulation/ 
T4 Clearance 

Hu1362 Female 57 No/No Atenolol and 
Chlorthalidone 

Lorazepam 
Oxycodone 

 

Time course/ 
PCB 153 

Hu1364 Male 51 No/No Cyanocobalamin 
Diltiazem 

Ferrous Sulfate 
Folic Acid 
Metoprolol 
Omeprazole 

Potassium Chloride 
Prednisone 

 

Time course/ 
PCB 153 

Hu8092 
(non-

transplantable) 
 

Male 
 

59 
 

No/No 
 

UKN T4 dose response/ 
culture days/ 

PCB 153 
 

Hu8096 
(non-

transplantable) 

Male 52 No/Yes UKN T4 dose response/ 
culture days/ 

PCB 153 
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Table 2.2  
 

Liver microsomes and cytosol 
 

  

Species Tissue Fraction Lot Sex Supplier Number of 
subjects 

Human Liver 
Cytosolic/ 

Microsomal 
 

SD114 Male CellzDirect 1 

Human Liver 
Cytosolic/ 
Microsomal 

 
SD119 Male CellzDirect 1 

Human Liver 
Cytosolic/ 
Microsomal 

 
SD120 Female CellzDirect 1 

Human Liver 
Cytosolic/ 
Microsomal 

 
SD122 Male CellzDirect 1 

Human Liver 
Cytosolic/ 
Microsomal 

 
SD123 Female CellzDirect 1 

Human Liver Cytosolic/ 
Microsomal SD129 Male CellzDirect 1 

Human Liver Microsomal PL050 Mixed CellzDirect 50 

Human Liver Cytosolic PL024 Mixed CellzDirect 28 

Rat Liver Cytosolic RT042 Male CellzDirect 50 

Rat Liver Microsomal RT046 Male CellzDirect 50 

Human Liver Microsomal 0710091 Mixed XenoTech 50 

Human Intestine Microsomal 0610108 Mixed XenoTech 10 

Rat Liver Microsomal 0710387 Male XenoTech 400 

Rat Intestine Microsomal 0410063 Male XenoTech 148 
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Table 2.3  
 

Comparison of hepatic and intestinal T4G formation rates in microsomes and hepatic 
T4S formation rates in cytosols from rats and humansa. 

 
Species Tissues Donor T4G 

pmol/mg/min 
T4S 

pmol/mg/min 
Ratb 

 
Liver Pooled 2.0 4.4 

Ratc 

 
Liver Pooled 3.5 ND 

Ratc 

 
Intestine Pooled 7.2  NDd 

Humanc 

 
Liver Pooled 1.0 ND 

Humanb 

 
Liver Pooled 0.3 4.0 

Humanc 

 
Intestine Pooled 3.4  NDd 

Humanb 

 
Liver SD114 0.2 4.4 

Humanb 

 
Liver SD119 0.4 4.2 

Humanb 

 
Liver SD120 0.3 4.1 

Humanb 

 
Liver SD122 0.3 4.4 

Humanb 

 
Liver SD123 0.3 4.3 

Humanb Liver SD129 0.5 4.8 
aData are expressed as pmol/mg protein/min (mean). Data represent the average of duplicate 
experiments with variability of <30%. ND=not determined; T4 conjugates were generated 
following an incubation with 4uM [125I]-T4 
bSamples obtained from Invitrogen 
cSamples obtained from Xenotech 
dCytosol not available 
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Table 2.4  
 

Mass balance of T4 and T4 metabolites after exposure of human hepatocytes on culture 
day 6 to 0.1µM [125I]-T4 

aData are expressed as percent of total [125I] activity (mean); Data represent the average of 
duplicate experiments;  Limits of detection=0.4 pmol/mg cellular protein; BLQ=below limits 
of quantitation; n=2 (Hu1362 and Hu1364) 
  

Time 
(hours) T4

a
 T4Ga T4Sa T3+rT3

a 

 

4 

8 

12 

24 

Cells     Media 

12.9      85.5 

14.2      84.2 

17.4      80.7 

17.8      79.5 

Cells     Media 

BLQ       BLQ  

BLQ       BLQ 

BLQ      BLQ 

BLQ      BLQ 

Cells     Media 

  BLQ       BLQ  

  BLQ         0.4 

  BLQ         0.4 

  BLQ         0.6  

Cells       Media 

     BLQ        1.5 

BLQ        1.4 

BLQ        1.7 

0.3          1.3 
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Table 2.5  
 

Mass balance of T4 and T4 metabolites after exposure of rat hepatocytes on culture day 
6 to 0.05µM [125I]-T4 

Percentages of total metabolites, T4G, T4S and T3+rT3, in media and hepatocytes following 
exposure to [125I]-T4 for 4, 8, 12, or 24 hours. 
aData are expressed as percent of total [125I] activity (mean); Data represent the average of 
duplicate from experiments; Limits of detection=0.5 pmol/mg cellular protein; BLQ=below 
limits of quantitation.; n=2. 
  

Time 
(hours) T4

a
 T4Ga T4Sa T3+rT3

a 

 

4 

8 

12 

24 

Cells      Media 

  10.5         83.8 

    7.6         77.6 

  10.8         70.6 

    8.4         65.3 

Cells       Media 

BLQ        3.4 

BLQ      12.7 

BLQ      16.8 

BLQ      23.7 

Cells       Media 

BLQ       BLQ 

BLQ       BLQ 

BLQ       BLQ 

BLQ         0.4 

Cells         Media 

0.2             2.1 

BLQ           2.1 

BLQ           1.9 

BLQ           2.3 
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Table 2.6 
 

Intrinsic clearance of [125I]-T4 following treatment with PCB 153 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data represent the average of duplicates from a single experiment.  
SCH were incubated with 0.05µM [125I]-T4 (rat) or 0.1µM [125I]-T4 (human) for up to 
24 hours.  

 
  

  Control PCB 153 Fold 
change 

Rat 1 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body weight) 

 

0.00075 
 

1.08 
 

5.16 
 

0.00094 
 

1.34 
 

6.41 
 

1.25 
 

1.24 
 

1.24 

Rat 2 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body weight) 
 

0.00052 
 

0.75 
 

3.58 
 

0.00107 
 

1.53 
 

7.33 
 

2.06 
 

2.04 
 

2.05 

Hu 1362 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body weight) 
 

0.00039 
 

0.56 
 

1.60 
 

0.00033 
 

0.47 
 

1.37 
 

0.84 
 

0.86 
 

0.85 

Hu 1364 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body weight) 
 

0.00043 
 

0.61 
 

1.78 
 

0.00043 
 

0.61 
 

1.77 
 

0.98 
 

1.00 
 

0.99 
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Figure 2.1 Representative chromatogram of T4 and its metabolites in medium.   
The graph shows metabolites [iodide (-I), T4-glucuronide (T4G), T4-sulfate (T4S), 3,3’,5-
triiodothyronine (T3) and 3,3’,5’-triiodothyronine (rT3)] in medium of SCRH following a 24 
hour incubation with 5.0µM [125I]-T4 on culture day 6. Peaks were separated using UPLC. 
Fractions of eluent were collected and analyzed by gamma spectroscopy. 
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Figure 2.2 T4 metabolite levels in media during time in culture.SCH arrive on culture day 
2 and are untreated. SCH were incubated with 0.05µM [125I]-T4 (rat) or 0.1µM [125I]-T4 
(human) for 24 hours on culture days 3, 4, 5, or 6. Metabolites were separated using the 
established UPLC method. Metabolites analyzed are (A) T4G, (B) T4S, and (C) T3+rT3. Data 
are expressed as pmol/mg cellular protein [mean (human hepatocytes)] or [mean±SD (rat 
hepatocytes)]. Human hepatocyte data represent the average of duplicates in a single 
experiment. Human hepatocytes are from two donors (Hu8092 and Hu8096). Rat hepatocytes 
are from 3 donors (n=3) 
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Figure 2.3. Accumulation of [125I]-derived radioactivity in rat and human hepatocytes. 
Sandwich-cultured hepatocytes were incubated with 0.0005µM (5000 cpm) per well [125I]-T4 
on culture day 6. The accumulation of [125I]-T4 was determined over time (1-5 min).  Data 
represent the average of duplicates in a single experiment. Individual hepatocyte donor 
values are presented. Data are expressed as percentage of dose. The lines represent the linear 
regression of the data (1-5 min). The curved lines are the nonlinear regression of the data (1-
30 min). Rat hepatocytes are from 2 donors (n=2) and human hepatocytes are from 3 donors 
(n=3).    
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Figure 2.4. T4 metabolite levels in media during incubation time. SCH were incubated 
with 0.05µM [125I]-T4 (rat) or 0.1µM [125I]-T4 (human) for on culture day 6. Metabolite 
appearance were determined over time (4-24).Metabolites were separated using the 
established UPLC method. Metabolites analyzed are (A) T4G, (B) T4S, and (C) T3+rT3. Data 
are expressed as pmol/mg cellular protein (mean). Data represent the average of duplicates in 
a single experiment. Limits of detection=0.5 pmol/mg cellular protein. BLQ=below limits of 
quantitation.  
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Figure 2.5. [125I]-T4 clearance in the media of rat (A) and human (B) hepatocytes. SCH 
were incubated with 0.05µM [125I]-T4 (rat) or 0.1µM [125I]-T4 (human) on culture day 6. The 
accumulation of [125I]-T4 was determined over time (4-24 hours). Data represent the average 
of duplicates in a single experiment. Data are expressed as percentage of T4 remaining in 
media. The lines represent the linear regression of the data. 
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Figure 2.6. Metabolite levels in media of hepatocytes exposed to [125I]-T4 on culture day 
6 for 24 hours. (A) Rat hepatocytes were incubated with 0.05-100µM [125I]-T4 and (B) 
human hepatocytes were incubated with 0.1-100µM [125I]-T4 for 24. Data are expressed as 
pmol/mg cellular protein (mean). Data represent the average of duplicate experiments. The 
lines represent the linear regression of the data. Limits of detection=0.5 pmol/mg cellular 
protein; BLQ=below limits of quantitation. n=2 for rat hepatocytes and human hepatocytes 
(Hu8092 and Hu8096). 
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Figure 2.7. Comparison of metabolites in the media of SCRH and SCHH following 
treatment with PCB 153. Hepatocytes were incubated with 0.1% DMSO (control) or 30µM 
PCB 153 for 72 hours starting on culture day 3. Hepatocytes are then incubated for 24 hours 
on culture day 6 with 0.05µM (rat) or 0.1µM (human) [125I]-T4. Metabolites were separated 
using the established UPLC method. Metabolites analyzed are (A) T4G, (B) T4S, and (C) 
T3+rT3. Data represent the average of duplicate experiments. Data are expressed as pmol/mg 
cellular protein (mean±SD for rat hepatocytes and mean for human hepatocytes); Limits of 
detection= 0.5 pmol/mg cellular protein; BLQ=below limits of quantitation. n=3 for rat 
hepatocytes. Human hepatocytes are from 4 donors (Hu8092, Hu8096, Hu1362, and 
Hu1364). *Significantly different than control in rat hepatocytes; p<0.05.  



 
 

CHAPTER 3 

 

EFFECTS OF NUCLEAR RECEPTOR AGONISTS ON THYROXINE 
METABOLISM IN RAT AND HUMAN HEPATOCYTES 

 

A. INTRODUCTION 

 

Thyroid hormones (TH) are critical modulators of development in vertebrates.  In 

humans, developmental hypothyroidism is associated with increased risk of neurological 

impairment and decreases in stature and hearing loss.  The magnitude of these changes is 

dependent upon the magnitude of the developmental hypothyroidism. In amphibians and fish, 

metamorphosis occurs during peak plasma TH concentrations; therefore, decreases in TH 

delay metamorphosis.  Because of its importance in development, chemicals that alter thyroid 

hormone concentrations are potential developmental toxicants.   

Circulating TH concentrations are regulated, in part, by hepatic metabolism through 

pathways including: deiodination, glucuronidation and sulfation.  In TH responsive tissues, 

thyroxine (T4) is converted to triiodothyronine (T3), the active hormone, by deiodinases.  

Deiodinases also convert T4 and T3 to 3, 3’, 5’-triiodothyronine (rT3) and 3, 3’-

diiodothyronine (3, 3’-T2), respectively.  TH can be deactivated in the liver by, uridine 

diphosphate glucuronosyltransferase (UGT) and sulfotransferase (SULT) and these 

conjugates are then excreted through the bile into the intestines. There are significant species 

differences in thyroid hormone metabolism.  For example, human SULT1A1 catalyzes TH
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sulfation unlike the rat homolog (Visser, et al., 1998;  Kester, et al., 1999). Although 

SULT1A1 is expressed in human and rat liver (Ozawa et al., 1993;  Runge-Morris et al., 

1998), the divergence of catalytic activity toward TH suggests SULT1A1 is important to TH 

sulfation in the human liver and not in rat liver.  Primary rat hepatocytes produce 

approximately 13 times more T4-glucuronide (T4G) than T4-sulfate (T4S) when incubated 

with T4 (Richardson et al., submitted).  In contrast, primary human hepatocytes produced 

more T4S and deiodination products, T3 and rT3 (Richardson et al; submitted).  This suggests 

that T4 glucuronidation is the predominate pathway of deactivation in rats, while humans 

utilize sulfation and to a greater extent deiodination to deactivate T4.   

There are multiple sites within the thyroid axis in which xenobiotics alter TH 

homeostasis. Although SULTs are involved in T4 metabolism, most hypotheses on TH 

disruption focus on the increase in T4 metabolism though the induction of hepatic UGTs. 

Many agents that decrease serum T4 concentrations and induce hepatic UGTs activate 

nuclear receptors, such as constitutive androstane receptor (CAR), pregnane X receptor 

(PXR), and aryl hydrocarbon receptor (AhR) (Barter and Klaassen, 1992;  Kretschmer and 

Baldwin, 2005;  Qatanani, et al., 2005).  Phenobarbital (PB), a prototype activator of 

constitutive androstane receptor (CAR), decreases serum TH concentrations, increases 

hepatic T4 glucuronidation (Hood and Klaassen, 2000a;  Vansell and Klaassen, 2001;  

Vansell and Klaassen, 2002a;  Hood, et al., 2003;  Kato, et al., 2010) and increases the 

biliary elimination of T4G in rodents (Oppenheimer, et al., 1968;  McClain, et al., 1989;  

Wong, et al., 2005). PB has been shown to decrease serum T4 concentrations in humans 

(Tanaka et al., 1987;  Eiris-Punal, et al., 1999); however, it is unclear by what mechanism the 

T4 decrease occurs. Pregnenolone-16α-carbonitrile (PCN) and 3-methylcholanthrene (3MC), 
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prototype activators of PXR and AhR, respectively, also decrease serum T4 concentrations 

and induce hepatic T4-UGT activity in rats (Hood and Klaassen, 2000a;  Hood, et al., 2003;  

Richardson and Klaassen, 2010). While UGTs may play a role in decreasing circulating TH, 

it is not certain that the induction of hepatic T4 glucuronidation alone is responsible for the 

effects on serum TH concentration following xenobiotic exposure. Research shows that 

serum T4 decreases may not be dependent on increases in T4 glucuronidation. For example, 

decreases in serum T4 concentrations by phenobarbital (PB), pregnenolone-16α-carbonitrile 

(PCN), 3-methylcholanthrene (3MC) and polychlorinated biphenyls (PCBs) occur even in 

Ugt1a-deficient Gunn rats (Kato, et al., 2004;  Kato, et al., 2005;  Richardson and Klaassen, 

2010). The experimental compound 4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-

methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine (DMP 904) and the PCB mixture, Kanechlor-

500 (KC500) decrease serum T4 in rats, by increasing biliary elimination of unconjugated T4, 

(Wong, et al., 2005;  Kato, et al., 2007;  Lecureux, et al., 2009). Additionally, PB, DMP 904, 

and KC500 increase the accumulation of T4 in the liver (Wong, et al., 2005;  Kato, et al., 

2007;  Lecureux, et al., 2009;  Kato, et al., 2010).  This further suggests that serum T4 

decreases occur through a liver-selective accumulation and biliary elimination of T4, rather 

than through the induction of hepatic UGT. This also indicates that the process for 

xenobiotic-mediated decreases in serum T4 is controlled by uptake and efflux transporters in 

the liver. 

In addition to UGTs, AhR, PXR and CAR regulate transporter proteins (Maglich, et 

al., 2002;  Bock and Kohle, 2004;  Wagner, et al., 2005;  Jigorel et al., 2006). Though much 

focus has been placed on the metabolism of TH by UGTs, it is not exactly clear what role 

hepatic transporters play in the decrease in serum TH.  Multidrug resistance–associated 
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protein-2 (MRP2) and multidrug resistance protein-1 (MDR1) contribute to the excretion of a 

broad spectrum of substrates (Mitchell, et al., 2005;  Lecureux, et al., 2009;  Miyawaki et al., 

2012). Decreases in serum TH concentrations have been associated with increases in hepatic 

MRP2 mRNA and protein expression in rats treated with clobazam (CLB) (Miyawaki, et al., 

2012).   

A potential difference between rodents and humans with respect to thyroid disruptors 

is the slight difference in the structure activity relationship for the activation of nuclear 

receptors across species.  For example, in humans the PXR activator, rifampicin, does not 

activate PXR in rodents (Moore, et al., 2000;  Tirona et al., 2004).  Similarly, there are 

rodent and human specific activators of CAR.  Activators of CAR and PXR affect TH 

homeostasis in rodents (Chen et al., 2003;  Kretschmer and Baldwin, 2005;  Qatanani, et al., 

2005); thus, extrapolating xenobiotic-induced thyroid disruption by activators of hepatic 

nuclear receptors in rodents to humans is challenging due to the species differences in 

metabolism of the hormones and differences in the structure activity relationships for hepatic 

nuclear receptors across species. 

To our knowledge, this is the first report to examine differences in rat and human 

hepatic T4 metabolism as it relates to nuclear receptor activation. This study examines how 

prototype nuclear receptor agonists PB (human and rat CAR), PCN (rat PXR), Rif (human 

PXR), 3MC (human and rat AhR) change T4 metabolism in rat and human sandwich-cultured 

hepatocytes (SCH). The PB-like inducer, PCB 153 was also used as a prototype environment 

contaminant to assess the effects on T4 disposition in rat and human hepatocytes.  In addition, 

mRNA expression for cytochrome P450s (CYPs) UGTs, SULTs, deiodinase 1 (D1), and 
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transporters, were also examined to determine other possible genes involved in TH 

disruption. 

 

B. MATERIALS AND METHODS 

 

Chemicals 

L-thyroxine (T4), phenobarbital (PB), 3-methylcholanthrene (3MC), pregnenolone-

16α-carbonitrile (PCN), and rifampicin (Rif) were purchased from Sigma-Aldrich Co. (St. 

Louis, MO).  2, 2’, 4, 4’, 5, 5’-hexachlorobiphenyl (PCB 153) was purchased from Radian 

Corporation (Austin, TX). [125I]-T4, (116 Ci/mmol) was purchased from Perkin Elmer Life 

Sciences Inc. (Waltham, MA) and was purified to >98%) immediately before use with 

Sephadex LH-20 (Sigma-Aldrich) as described by Rutgers et al. (1989). All other reagents 

were of the highest grade commercially available. 

 

Hepatocyte culture  

Fresh primary male Sprague-Dawley sandwich-cultured rat hepatocytes (SCRH) and 

sandwich-cultured human hepatocytes (SCHH) in 24-well plates were received on culture 

day 2 from Life Technologies (Durham, NC). Hepatocytes were maintained for up to 6 days 

in culture with daily medium replacement. The maintenance medium consists of: Williams’ 

E medium with 0.1% dimethyl sulfoxide (DMSO) including Hepatocyte Maintenance 

Supplement (Life Technologies), which contains 0.1 µM dexamethasone and proprietary 

concentrations of penicillin-streptomycin, ITS+ (insulin, transferrin, selenium complex, BSA 
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and linoleic acid), GlutaMAX™ and HEPES]. Human donor demographics can be found in 

Table 3.1.  

 

T4 and T4 metabolite separation and quantitation  

Samples were dried at 40°C under N2 gas and then reconstituted with 40µl mobile 

phase consisting of 18% acetonitrile in 0.02M ammonium acetate (pH=4). After addition of 

mobile phase, samples were centrifuged at 10,000 x g for 5 minutes at room temperature and 

the supernatants were placed in vials for UPLC analysis. UPLC equipped with a C18 – 2.1 x 

50mm x 1.7 µm (Waters Corp.; Milford, MA) resolution column and a fraction collector 

were used for identification of T4 and T4 metabolites. Gradient elution was performed using a 

method modified version of a previously established method by Rutgers et al. (1987) with a 

16 minute gradient of 18-40% acetonitrile in 0.02M ammonium acetate (pH=4). Solvent flow 

rate was 0.4ml/min and 15 second fractions were collected in test tubes. Peaks were then 

identified by analyzing collected fractions for radioactivity by gamma spectroscopy. 

Retention times for T4, T3, rT3, T4-glucuronide (T4G), and T4-sulfate (T4S) were determined 

using synthetic and biosynthetic compounds as described by Richardson et al. (submitted). 

Peaks for T3 and rT3 were often inseparable; as a result, these peaks were added together and 

are presented as T3+rT3. Hepatocyte protein content was determined using a protein assay kit 

with bovine serum albumin as a standard (Bio-Rad Laboratories, Hercules, CA). 

 

T4 accumulation in hepatocytes following treatment with nuclear receptor agonists  

Stock solutions of each chemical were diluted in DMSO and added to maintenance 

medium to a final DMSO concentration of 0.1%. SCRH and SCHH were treated with species 
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appropriate prototypical nuclear receptor agonist starting on culture day 3.  SCRH were 

treated for 72 hours with the DMSO vehicle (0.1%), PB (1000 µM), PCN (10 µM), 3MC (5 

µM), or PCB 153 (30 µM) in maintenance medium for 72 hours. SCHH were treated for 72 

hours with the DMSO vehicle (0.1%) or PB (1000 µM), Rif (10 µM), 3MC (5 µM), or PCB 

153 (30 µM) in maintenance medium. Following the 72 hour incubation, medium was 

removed and replaced with maintenance medium containing 0.0005µM (5000 CPM) of 

[125I]-T4 for 1, 2, 5, 10, 20, or 30 minutes. After incubation, medium was collected and cells 

were washed twice with 0.5 ml/well of ice-cold PBS buffer. After washing, hepatocytes were 

collected by adding 0.5ml/well 0.1M NaOH. 125I-derived radioactivity in collected medium 

and hepatocytes were analyzed by gamma spectroscopy.  

 

Effects of hepatic enzyme inducers on T4 metabolite levels 

Stock solutions of PB, PCN, Rif, 3MC, and PCB 153 were diluted in dimethyl 

sulfoxide (DMSO) and added to Williams’ E medium at a final DMSO concentration of 

0.1%. On culture day 3, fresh SCRH were exposed for 72 hours to the DMSO vehicle 

(0.1%), PB (10, 100, 1000 µM), PCN (0.1, 1, 10 µM), 3MC (0.05, 0.5, 5 µM), or PCB 153 

(0.3, 3, 30 µM). SCHH were treated for 72 hours to the DMSO vehicle (0.1%) or PB (10, 

100, 1000 µM), Rif (0.1, 1, 10 µM), 3MC (0.05, 0.5, 5 µM), or PCB 153 (0.3, 3, 30 µM).  

After 72 hours, medium was removed and replaced with Williams’ E medium containing 

0.05 µM (rat) or 0.1 µM (human) [125I]-T4 (500,000 CPM) for 24 hours. Medium was 

collected and stored at 4°C until analysis. Hepatocytes were washed twice with 0.5 ml/well 

ice-cold PBS and collected by adding 0.5 ml/well of NaOH. Medium was prepared and 

analyzed for T4 metabolites as the method describes above.  



82 
 

RNA isolation and real-time RT-PCR analysis. 

Upon termination of the treatment period (72 hours), cells were washed once with 

ice-cold PBS (0.5ml/well), lysed by the addition of 0.7ml of RLT Buffer (Qiagen, Hilden, 

Germany) containing 1.0% β-mercaptoethanol (final concentration) and stored at -70° C until 

use. Lysates were thawed on ice and total RNA was isolated using the RNeasy Midi Kit with 

DNase I digestion performed during column purification (Qiagen, Hilden, Germany). The 

integrity of RNA samples were assessed using the 2100 Bioanalyzer was used (Agilent 

Technologies, Palo Alto, CA). RNA Integrity Numbers (RINs) greater than 8.0 are seen as 

acceptable for real-time RT-PCR analysis.  Real-time RT-PCR was performed using the ABI 

Prism 7700 Sequence Detection System (ABI, Foster City, CA). Total RNA (100ng) was 

converted to cDNA using High Capacity cDNA Reverse Transcription Kits (ABI, Foster 

City, CA). PCR reactions were then performed on all cDNAs using TaqMan Universal PCR 

Master Mix and custom TaqMan Low Density Arrays (ABI, Foster City, CA) preloaded with 

target gene expression assays. Gene expression assay identifications are listed in Tables 3.2 

and 3.3.   

All RT-PCR data were quantified by the relative quantitation method ΔΔCt (Applied 

Biosystems User Bulletin 2). These data were quantified relative to a control sample and an 

endogenous control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The control 

group is used as a reference point for all other dose groups; therefore, all samples are 

expressed as fold difference as compared with control. 
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Data analysis 

The statistical intergroup comparisons were determined by using one-way analysis of 

variance (ANOVA) followed by Dunnet’s Multiple Comparison and linear trend post tests. 

Nonlinear regression analysis was used to assess the relationship between [125I]-T4 

accumulation and chemical treatments. A one-phase association exponential equation  

Y=Y0 + (Plateau-Y0)*(1-exp(-K*x)), 

was fit to the [125I]-T4 accumulation data where plateau is the Y value at infinite times and 

half time is the time (minutes) it takes to reach half the plateau and is computed as ln(2)/K. 

GraphPad Prism 5.0 was used to analyze all data (GraphPad Software San Diego, CA). The 

level of probability of statistical significance was p < 0.05.  

 

C. RESULTS 

 

T4 metabolite levels following treatment with nuclear receptor activators 

To study the effects of hepatic enzyme inducers on T4 metabolism in hepatocytes, PB 

(CAR), and 3MC (AhR) were used as prototype nuclear receptor agonists for SCRH and 

SCHH. PCN and Rif were used as prototype PXR agonists for SCRH and SCHH, 

respectively. PCB 153 was used as a prototype environmental contaminant for SCRH and 

SCHH. T4G in the medium of SCRH significantly increased with treatment of 1000 µM PB 

(1.7-fold), 1 and 10 µM PCN (1.7- and 2.0-fold), 0.05, 0.5, and 5 µM 3MC (1.6-, 2.2-, and 

4.4-fold), and 0.3, 3, and 30 µM PCB 153 (1.6-, 2.3-, 4.8-fold) (Figure 3.1A). T4G in 

medium of SCHH significantly increased following Rif (10 µM) and PCB 153 (30 µM) 

treatment 2.9- and 3.6-fold, respectively (Figure 3.2A). T4G levels in the medium of SCHH 
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did not change with PB and 3MC treatment.  T4S (Figures 3.1B and 3.2B) and T3+rT3 

(Figures 3.1C and 3.2C) levels in the medium of SCRH and SCHH were not significantly 

changed with chemical treatment compared to control.    

 

Cytochrome P450 mRNA expression 

To determine if chemical treatments effectively activated specific nuclear receptors, 

mRNA expression levels of target cytochrome P450s were measured by RT-PCR. CYP1A 

mRNA expression was used as a marker for Ah receptor activation in SCRH (Table 3.4) and 

SCHH (Table 3.5).  3MC significantly increased CYP1A1 mRNA in SCRH 270.2-fold (5 

µM) and in SCHH 154.6-fold (0.5 µM) and 178.0 (5 µM). As markers for CAR activation, 

Cyp2b2 and CYP2B6 mRNA expression was used for SCRH and SCHH, respectively.  PB 

(1000 µM) treatment significantly increased Cyp2b2 mRNA expression 197-fold in SCRH. 

CYP2B6 significantly increased following PCB 153 (3 and 30 µM) treatment in SCHH 21.7- 

and 31.4-fold. CYP3A mRNA expression was used as a marker for PXR activation.  In 

SCRH, Cyp3a1 mRNA expression significantly increased 660.1-fold following treatment 

with PCN (10 µM). CYP3A4 mRNA expression significantly increased following PB (1000 

µM) and Rif (1 and 10 µM) 20.0- 15.7- and 24.9-fold, respectively. 

 

UGT, SULT and D1 mRNA expression 

There was a significant 25.7-fold increase in Ugt1a6 mRNA expression with 3MC (5 

µM) treatment of SCRH (Table 3.6). Ugt1a1, Ugt1a5, and Ugt2b mRNA expression in 

SCRH was not significantly altered with treatment. In SCHH, 1000 µM PB significantly 

increased UGT1A1, UGT1A4, UGT1A6, and UGT2B4 by approximately 6.4-, 9.6, 2.2-, and 
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2.0-fold (Table 3.7).  SCHH treated with 1 and 10 µM Rif significantly increased UGT1A1 

(4.7- and 6.6-fold) and UGT2B (2.1- and 2.4-fold) mRNA expression. UGT1A4 and 

UGT2B15 increased significantly in SCHH with Rif (10 µM) treatment by 7.2-fold and 3.1-

fold, respectively. Expression levels for the UGT genes examined were not significantly 

changed in SCHH with 3MC or PCB 153 treatment. PB (1000 µM) significantly increased 

Sult1e1 mRNA expression in SCRH by 6.8-fold (Table 3.8). Sult1c1 mRNA expression in 

SCRH significantly decreased with 10 µM PCN by 80%.  3MC and PCB 153 treatment did 

not alter Sult mRNA expression in SCRH. In SCHH, SULT1A3, SULT1E1, and SULT2A1 

were not significantly changed with chemical treatment (Table 3.9). Deiodinase 1 mRNA 

expression in SCRH was not significantly changed with chemical treatment (Table 3.10). In 

SCHH, deiodinase I mRNA expression increased 2.4-fold following treatment with 0.3 µM 

PCB 153, but was unchanged at the 2 higher doses of 3 and 30 µM PCB 153 (Table 3.11). 

 

Cell-associated radioactivity of [125I]-T4 in fresh rat and human hepatocytes following 

xenobiotics treatment 

Hepatocyte accumulation of T4 following xenobiotic treatment (72 hours) was 

evaluated by measuring the amount of radioactivity in the hepatocytes after incubation with 

[125I]-T4 for 1 to 30 minutes (Figure 3.3). Preliminary studies showed [125I]-T4 did not 

significantly bind to BD Matrigel® (BD Biosciences) or plastic ware (data not shown). An 

exponential one-phase association model was used to fit accumulation data for control and 

treated hepatocytes. The data for SCRH fit one curve indicating no significant difference in 

[125I]-T4 accumulation between all treatment groups (Figure 3.3A). In SCRH, [125I]-T4 

association plateau equaled 4.8% and half time was 4.0 minutes for all treatment groups.  
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[125I]-T4 accumulation was different between treatment groups in SCHH (Figure 3.3B). The 

model showed that [125I]-T4 accumulation into SCHH plateaued at 11.7, 11.5, 14.2, 11.7, and 

10.9% for control, PB, Rif, 3MC, and PCB 153, respectively. Half times were determined to 

be 16.0, 13.9, 15.7, 14.2, and 20.6 minutes for control, PB, Rif, 3MC, and PCB 153, 

respectively.  A linear model was used to fit the data from 1 to 10 minutes to analyze 

accumulation at early time points. The data for SCRH and SCHH fit one curve indicating no 

significant difference in [125I]-T4 accumulation between all treatment groups (SCRH: F=0.19 

(4,76); p=0.9413 and SCHH: F=1.60 (4,110); p=0.1792).  

 

Efflux and uptake transporter mRNA expression 

Mdr1a mRNA expression increased significantly in SCRH with PB (1000 µM), 3MC 

(5 µM), and PCB 153 (30 µM) by 1.4-, 1.7-, and 1.6-fold (Table 3.12). PCN treatment did 

not significantly change Mdr1a mRNA expression in SCRH. In SCRH, Mdr1b, Mrp2, and 

Mrp3 were not significantly altered with chemical treatment.  PB (1000 µM) treatment 

increased MDR1 and MRP2 mRNA expression in SCHH by 2.3- and 2.5-fold, respectively 

(Table 3.13). 1 µM and 10 µM Rif significantly increased MDR1 (2.0- and 2.0-fold, 

respectively) and MRP2 (2.0- and 2.1-fold, respectively) mRNA expression. MRP3 mRNA 

expression was not significantly altered with chemical treatment. Neither 3MC nor PCB 153 

significantly changed MDR1, MRP2, and MRP3 mRNA expression in SCHH. Only 1000 

µM PB significantly increased Oat2 mRNA expression in SCRH by 1.9-fold (Table 3.12). 

Ntcp1 mRNA expression in SCRH was unchanged with chemical treatment. In SCHH, 

NTCP1 and OAT2 were not significantly altered with chemical treatment (Table 3.13).  
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D. DISCUSSION  

 

Through the activation of nuclear receptors such as AhR, CAR, and PXR, xenobiotics 

are thought to lower serum T4 concentrations by increasing T4 glucuronidation and biliary 

elimination (Barter and Klaassen, 1994;  Klaassen and Hood, 2001;  Kato et al., 2011;  

Martin, et al., 2012). However, xenobiotic-mediated increases in T4 glucuronidation do not 

necessarily correlate with a change in serum T4 concentrations in rodents (de Sandro, et al., 

1992;  Hood and Klaassen, 2000a;  Craft, et al., 2002) and decreases in serum T4 may occur 

independent of hepatic T4 glucuronidation (Kato, et al., 2004;  Kato, et al., 2005;  Kato, et 

al., 2007;  Kato, et al., 2010;  Richardson and Klaassen, 2010).  Previous studies also 

demonstrate that decreases in serum T4 may occur as a result of increases in T4 accumulation 

in the liver (Kato, et al., 2011;  Martin, et al., 2012). The present study questions the 

importance of hepatic T4 glucuronidation and nuclear receptor activation on T4 clearance in 

rat and human hepatocytes. Prototype nuclear receptor agonists known to decrease serum T4 

concentrations and increase hepatic UGTs in rats were chosen for this study (Hood and 

Klaassen, 2000a;  Craft, et al., 2002). To examine the effects of nuclear receptor agonists on 

T4 metabolism, sandwich-cultured Sprague-Dawley male rat (SCRH) and human (SCHH) 

hepatocytes were treated with PB and 3MC, the prototype agonists for CAR and AhR, 

respectively. Due to the species differences in PXR activation, SCRH were treated with PCN 

and SCHH were treated with Rif. PCB 153, often described as a PB-like inducer (Parkinson 

et al., 1983;  McFarland and Clarke, 1989), was used as a prototype persistent organic 

pollutant. PCB 153 mediates decreases in serum T4 concentrations in rats and is found in 

high concentrations in human serum (NHANES, 2012) (Crofton, et al., 2005;  Liu et al., 
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2012). The results of this study show that increases in T4 glucuronidation are agonist- and 

species-specific. To our knowledge the present experiments were the first to examine species 

differences in xenobiotic-mediated increases in T4 metabolism using rat and human 

hepatocytes.  

To determine the functional integrity of the SCH used in this study, CYP1A, CYP2B, 

and CYP3A mRNA expression were measured, as classic targets for AhR, CAR, and PXR 

activation, respectively. As expected, the prototypical nuclear receptor agonists PB, PCN, 

and 3MC increased target P450 mRNA expression in SCRH. Consistent with previous 

studies, PB activates CAR to increase Cyp2b2 (CAR) and to a lesser degree Cyp3a1 (PXR) 

in SCRH (Frueh et al., 1997;  Meyer and Hoffmann, 1999;  de Longueville et al., 2003). In 

SCRH, PCN increased Cyp3a1 and to a much lesser degree Cyp2b2 (Smirlis et al., 2001) and 

3MC increased Cyp1a1 (AhR) (Hartley and Klaassen, 2000;  Surry et al., 2000). As 

previously reported, PB acted as a mixed activator of CAR and PXR through the induction of 

CYP2B6 and CYP3A4 in SCRH (Faucette et al., 2007;  Rotroff et al., 2010). PXR activation 

by Rif resulted in the induction of both CYP3A4 and CYP2B6 in SCHH (Faucette et al., 

2006). An overlap in genes regulated by PXR and CAR has been previously demonstrated, 

where PXR regulates CYP2B genes and CAR regulates CYP3A genes and this crosstalk 

between receptors may explain the overlapping induction of CYP2B and CYP3A in this 

study (Maglich, et al., 2002;  Pascussi et al., 2008).  As expected, 3MC proved to be a strong 

activator of AhR through the increase of CYP1A1 in SCHH. The prototype environmental 

pollutant, PCB 153, is described as PB-like based on its ability to induce CYP2B (Parkinson, 

et al., 1983;  McFarland and Clarke, 1989). In the present study, PCB 153 was a potent 

inducer of Cyp2b2 in SCRH.  In SCHH, PCB 153 was a more potent inducer of CYP2B6 and 
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CYP1A1, than CYP3A4, but the increase in CYP1A1 suggests the presence of a possible 

dioxin-like contaminant. However, the lack of a dose-dependent increase in Cyp1a1 in SCRH 

indicates the CYP1A1 increase in SCHH may be due to the overlapping regulation by CAR 

(Auyeung et al., 2003;  Nishimura et al., 2005).  

T4G, T4S, rT3 and T3 were all measured in the medium of SCRH and SCHH and only 

T4G was altered by chemical treatment. T4G increased in the medium of SCRH treated with 

PB, PCN, 3MC, and PCB 153 by as much as 1.7- , 2.0- , 4.4- , and 4.8-fold, respectively.  

These results are consistent with previous studies in which rat hepatocytes treated with PB 

(Viollon-Abadie, et al., 2000) and 3MC (Jemnitz et al., 2000) increased T4-UGT activity.  In 

vivo studies show that rats treated with PB, PCN, or 3MC resulted in increased hepatic T4-

UGT activity; however similar to the present study, PB-mediated increases in T4-UGT 

activity were small compared to the other nuclear receptor agonists (Barter and Klaassen, 

1992;  Barter and Klaassen, 1994;  Hood and Klaassen, 2000a). Kato et al. (2005) found that 

decreases in serum T4 in Gunn rats treated with PB were independent of T4 glucuronidation. 

In the present study, the small changes in T4G levels in the medium of SCRH following PB 

treatment is consistent with studies using Gunn rats and suggests that hepatic T4 

glucuronidation may play a smaller role in serum T4 decreases in rats treated with PB 

compared to PCN and 3MC. In contrast to SCRH, SCHH treated with Rif and PCB 153 

increased T4G levels in the medium; however, PB and 3MC did not increase T4G production. 

Studies by Ohnhaus et al (1981;  1983) showed that PB did not decrease serum T4 in humans, 

but parameters for liver microsomal enzyme activity, antipyrene and 6-β-hydroxycortisol 

clearance were increased in humans. Compared to PB, Rif decreased serum T4 and increased 

the metabolic clearance of antipyrene and 6-β-hydroxycortisol, but to a much greater extent 
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in humans. Although not exact evidence of T4 metabolism, the data suggest that the decrease 

in serum T4 followed by treatment with Rif may occur through mechanisms other than 

glucuronidation in humans.  

In rat liver, Ugt1a1 and Ugt1a6 are thought to be the major isoforms responsible for 

T4 glucuronidation (Vansell and Klaassen, 2002b) and UGT1A1, UGT1A3 and UGT1A9 are 

thought to be responsible for T4 glucuronidation in human liver (Findlay et al., 2000;  Yoder 

Graber et al., 2007). The differential induction of UGTs by AhR, CAR, and PXR is more 

apparent in rats, but not in humans. For example, AhR regulates Ugt1a6 in rats and to a lesser 

extent in humans (Auyeung, et al., 2003;  Bock, 2011). In rats, Ugt1a1 is regulated by CAR 

and PXR. In humans, UGT1A1 and UGT1A6 are regulated by AhR, CAR and PXR; 

however, UGT1A6 is not as inducible as UGT1A1 In the present study, not all of the 

agonists that increased T4G levels in the medium of SCRH and SCHH increased UGT 

mRNA expression. The lack of UGT mRNA expression induction in rat hepatocytes treated 

with PB agrees with studies by Shelby and Klaassen (2006), which show hepatic 

Ugt1a1,Ugt1a5, and Ugt1a6 mRNA expression did not change in rats treated with PB. In 

contrast to the present study, hepatic Ugt1a1 and Ugt1a5 mRNA expression have been shown 

to increase in rats treated with PCN (Shelby and Klaassen, 2006). In the present study, the 

25.7-fold increase in Ugt1a6 mRNA expression coincided with the 4.4-fold increase in T4G 

levels in medium of SCRH treated with 3MC. Rat Ugt1a6 induction is dependent on AhR 

activation (Auyeung, et al., 2003;  Bock, 2011) and the lack of significant increases in 

Ugt1a6 mRNA expression confirms that PCB 153 is not activating AhR in this model 

system. In SCHH, UGT mRNA expression increased with PB treatment, although T4G levels 

did not increase in the medium.  Rif increased mRNA expression, which coincides with 



91 
 

increases in T4G levels in the medium of SCHH. UGT mRNA expression levels were 

induced in SCHH treated with 3MC and PCB 153.  Despite the increased UGT1A1 mRNA 

expression by 3MC, there was no increase in T4G levels.  PCB 153 increased T4G levels by 

3.6-fold, which coincided with increases in UGT1A1 (p<0.01) and UGT1A4 (p<0.001).  

These results show that UGT mRNA expression may not be a reliable indicator for the 

increase in T4G levels in this system.  However in SCRH, 3MC increased T4G levels, which 

matched the increase in Ugt1a6 mRNA expression suggesting that potent activators of AhR 

may increase T4G levels through the induction of UGTs to a greater extent than other nuclear 

receptor activators.  

AhR, CAR and PXR also have been implicated in the regulation of SULTs (Saini, et 

al., 2004;  Yanagiba et al., 2009;  Aleksunes and Klaassen, 2012) and it has been proposed 

that SULTs may be more important in the metabolism of TH in humans than in rats (Kester, 

et al., 1999;  Kester, et al., 2003). In the present study, there were no significant changes in 

T4S levels following treatment of SCRH and SCHH with each nuclear receptor agonist. 

Because SULTs have a low affinity for T4 and the evidence that T4G is the major metabolite 

found in the bile in rats, it is not surprising that T4 sulfation did not change in the medium of 

SCRH and SCHH (Rutgers, et al., 1989;  Visser, 1996). In addition, the lack of effect on T4 

sulfation may be partly due to the instability and poor capacity of the SULT cofactor, PAPS 

(Koster et al., 1981;  Kim et al., 1995;  Novakova et al., 2004).  Impaired hepatic DI activity 

is associated with hypothyroidism in rats treated with dioxin or dioxin-like chemicals (Hood 

and Klaassen, 2000b;  Viluksela et al., 2004;  Szabo, et al., 2009); however, in the present 

study, there was no change in T3+rT3 levels and no change in DI mRNA expression in both 

species of hepatocytes. This agrees with the premise that a reduction in deiodinase activity is 
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a physiological response and is not due to direct effects of microsomal enzyme inducers; 

therefore, changes in T3+rT3 production and DI mRNA expression may not be observed in an 

in vitro system (Davies, et al., 1996). 

 Hepatic transporters are important in facilitating the absorption, distribution, and 

elimination of a variety of nutrients, drugs, and metabolites and are coordinately induced 

through the activation of nuclear receptors (Bock and Kohle, 2004;  Kohle and Bock, 2009;  

Aleksunes and Klaassen, 2012). Furthermore, reports show that TH are actively transported 

into and out of cells (De Jong, et al., 1992;  de Jong, et al., 1993;  Friesema, et al., 1999;  

Visser et al., 2008;  Lecureux, et al., 2009). Kato et al. (2010;  2011) demonstrated that PB 

and PCB 153 increased [125I]-T4 liver accumulation in rodents. The increase [125I]-T4 

accumulation in the liver resulted in increases in the biliary elimination of [125I]-T4 and [125I]-

T4G, suggesting that hepatic transporters are involved in the xenobiotic-mediated cellular 

uptake and biliary excretion of 125I]-T4 and [125I]-T4G. Differences between rats and mice in 

the biliary elimination of [125I]-T4 and [125I]-T4G following treatment with PB and PCB 153 

indicates a possible difference in the activity of transporters responsible for excretion into the 

bile duct (Kato, et al., 2010;  Kato, et al., 2011).  As a potential rate-limiting step for TH 

metabolism, we examined the species differences in accumulation of [125I]-T4 following 

treatment with different nuclear receptor agonists. In untreated hepatocytes, the rate of [125I]-

T4 accumulation is slower in human hepatocytes than rat hepatocytes (Krenning, et al., 1981;  

de Jong, et al., 1993). Previous work in our laboratory (Richardson et al; submitted) showed 

that at early time points (1-5 minutes) [125I]-T4 accumulation in untreated SCRH and SCHH 

were not significantly different. In the present study, [125I]-T4 accumulation following 

treatment with each agonist was not significantly different in SCRH and SCHH; however, 
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mRNA expression for MDR1, an efflux transporter, increased significantly with PB, 3MC 

and PCB 153 in SCRH and with PB and Rif treatment in SCHH. MRP2 is also an efflux 

transporter and it increased in SCHH treated with PB and Rif. Oat2 mRNA expression, an 

uptake transporter, increased in SCRH treated with PB; however, no significant changes were 

found in SCHH.  Collectively, the differences in transporter mRNA expression did not 

necessarily coincide with [125I]-T4 accumulation in SCRH and SCHH nor was it consistent 

with the differences in T4G levels in the medium of SCRH and SCHH following treatment 

with nuclear receptor agonists.  The main goal of the present study was to examine nuclear 

receptor-mediated increases in UGTs and T4 metabolism; therefore our system was 

optimized for nuclear receptor activation (72 hours incubation with activator) and T4 

metabolism (24 hours incubation with T4). Opposing expression profiles for uptake and 

efflux transporters were found over culture days in SCRH, suggesting optimal culture 

conditions for uptake transporters may not be optimal for efflux transporters (Tchaparian et 

al., 2011). Because the system was optimized for induction and metabolism and not 

optimized for transporter activity, it is difficult to make assertions about T4 transport in our 

system. In addition, mRNA expression is not a reliable indicator of transporter expression 

and therefore may explain the lack of consistency in the data (Johnson et al., 2002b;  Johnson 

and Klaassen, 2002;  Kipp and Arias, 2002;  Tchaparian, et al., 2011). The in vitro system 

used in the present study may not be able to discriminate between T4 accumulation and 

excretion; therefore, the use of transporter vesicles may be more suitable for the further 

exploration of all aspects of T4 transport. 

In the present study, PCB 153 increased T4G levels in the medium of both SCRH and 

SCHH, whereas PB treatment caused a small increase in T4G only in medium of SCRH. 
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Based on P450 induction, PB appears to be a CAR agonist at lower and possibly more 

physiologically relevant concentrations; PCB 153 appears to be a more potent CAR agonist 

in SCRH. In SCHH, PB is a mixed activator of CAR and PXR however; PCB 153 appears to 

be more of a potent CAR agonist. Overall, the data suggests that PCB 153 is not PB-like, due 

to the large increases in T4G levels in medium of SCRH and SCHH; however, based on P450 

induction PB and PCB 153 are similar. This suggests PCB 153 is a more potent inducer of T4 

glucuronidation than PB in SCRH and SCHH.  

Species differences have been previously described in P450 induction and may 

explain species differences in T4 metabolism found in the current study. For example, PB 

does not directly interact with CAR; however, human CYP2B6 is inducible by PB, although 

to a much lesser extent than rodent CYP2B.  Since PB does not bind to CAR, this difference 

in induction may be due to differences in the proximal promoter for the CYP2B gene in 

rodents and humans (Faucette, et al., 2006).  In the current study, the species-specific 

differences in T4 glucuronidation following treatment with nuclear receptor agonists may be 

due to alternative splicing, phosphorylation of the receptor, or through crosstalk from other 

signaling systems (Weigel, 1996;  Crofts et al., 1998;  Fasco, 1998;  Shao and Lazar, 1999). 

While it appears that UGT metabolism and nuclear receptor regulation may not explain 

decreases in serum T4, further exploration of the role of transporters in this issue would be 

warranted. 

The present study further supports previous findings, which propose that serum T4 

decreases may occur independent of glucuronidation. It has been suggested that increases in 

transporter-mediated accumulation of T4 in the liver is a mechanism by which serum T4 is 

metabolized or eliminated through the bile; however, we were unable to confirm that 
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differences in T4 accumulation are linked to differences in T4 metabolism in this system. 

Data from this study are in accordance with previous studies which show increases in T4 

glucuronidation are species- and agonist-specific and further confirms that PB mediated 

decreases in serum T4 may be independent of hepatic T4 glucuronidation in rats (Kato, et al., 

2005;  Kato, et al., 2010). This study shows that PCB 153 was PB-like in its ability to induce 

CYP2B in SCRH and SCHH; however, PCB 153 and PB are not similar in their ability to 

induce T4 glucuronidation.  Overall, we demonstrate that SCH are an appropriate tool for 

assessing TH disruption and human risk, although further exploration of the role of 

transporters in T4 disposition is needed.    
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Table 3.1 
 

Donor information for human hepatocytes  
  Donor       Gender    Age      Smoke/Alcohol          Medications          Experimental Use 

UKN=unknown 
  

Hu1191 
 

Male 19 No/No UKN T4 accumulation 

Hu1193 Male 68 Yes/No Aspirin 
Zolpidem 

Simvastatin 
Ranitidine 

 

T4 accumulation 

Hu1197 
 
 
 
 
 

Hu1236 
 
 

Hu1248 
 

Female 
 
 
 
 
 

Female 
 
 
Male 

29 
 
 
 
 
 

68 
 
 

63 

No/Yes 
 
 
 
 
 

No/No 
 
 

Yes/Yes 

Amphetamine 
Bupropion 
Cetirizine 

Clonazepam 
Lamotrigine 

 
Multivitamin 

Vitamin D 
 

Sertraline 
Vicodin 

Docusate Sodium 
 

T4 accumulation 
 
 
 
 
 

Dose response 
 
 

Dose response 

Hu1362 Female 57 No/No Atenolol and 
Chlorthalidone 

Lorazepam 
Oxycodone 

 

Dose response 

Hu1364 Male 51 No/No Cyanocobalamin 
Diltiazem 

Ferrous Sulfate 
Folic Acid 
Metoprolol 
Omeprazole 

Potassium Chloride 
Prednisone 

Dose response 
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Table 3.2 
 

TaqMan rat gene expression assays  

Group Gene TaqMan Gene 
Expression Assay ID 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Endogenous control Gapdh Rn99999916_s1 

Nuclear receptor activation  Cyp1a1 
Cyp2b2 
Cyp3a1 

 

Rn00487218_m1 
Rn02786833_m1 
Rn01640761_gH 

Phase II metabolism 
 

Ugt1a1 
Ugt1a5 
Ugt1a6 
Ugt2b 

Sult1a1 
Sult1b1 
Sult1c1 
Sult1e1 

 

Rn00754947_m1 
Rn01427785_m1 
Rn00756113_mH 
Rn02349650_m1 
Rn00582915_m1 
Rn00673872_m1 
Rn00581955_m1 
Rn00820646_g1 

Transporter 
 
 

Mdr1a 
Mdr1b 
Mrp2 
Mrp3 
Ntcp1 
Oat2 

 

Rn00591394_m1 
Rn00561753_m1 
Rn00563231_m1 
Rn00589786_m1 
Rn00566894_m1 
Rn00585513_m1 

Thyroid hormone responsive D1 
 

Rn00572183_m1 
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Table 3.3 
 

TaqMan human gene expression assays   

Group Gene TaqMan Gene 
Expression Assay ID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Endogenous control GAPDH 
 

Hs99999905_m1 
 

Nuclear receptor activation CYP1A1 
CYP2B6 
CYP3A4 

 

Hs00153120_m1 
Hs03044634_m1 
Hs00430021_m1 

 
Phase II metabolism 

 
UGT1A1 
UGT1A4 
UGT1A6 
UGT1A9 

 
SULT1A3 
SULT1E1 
SULT2A1 

 

Hs02511055_s1 
Hs01592480_m1 
Hs01592477_m1 
Hs02516855_sH 

 
Hs00413970_m1 
Hs00193690_m1 
Hs00234219_m1 

 
Transporter 

 
 

MDR1B 
MRP2 
MRP3 
NTCP1 
OAT2 

 

Hs00184500_m1 
Hs00166123_m1 
Hs00358656_m1 
Hs00161820_m1 
Hs00185140_m1 

 
Thyroid hormone responsive D1 

 
Hs01554724_m1 
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Figure 3.1. Comparison of appearance of metabolites in medium of SCRH following 
treatment with nuclear receptor agonists. Hepatocytes were incubated with 0.1% DMSO 
(control), PB, PCN, 3MC, or PCB 153 for 72 hours. Hepatocytes are then incubated for 24 
hour with 0.05 µM [125I]-T4. Metabolites were separated using the established UPLC method. 
Metabolites analyzed are T4G (A), T4S (B), and T3+rT3 (C). Experiments were performed in 
duplicate Data are expressed as mean±standard deviation. n=4/group. *Significantly different 
than control; p<0.05. **Significantly different than control; p<0.01. ***Significantly 
different than control; p<0.001. 
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Figure 3.2. Comparison of appearance of metabolites in medium of SCHH following 
treatment with nuclear receptor agonists. Hepatocytes were incubated with 0.1% DMSO 
(control), PB, Rif, 3MC, or PCB 153 for 72 hours. Hepatocytes are then incubated for 24 
hour with 0.1 µM [125I]-T4. Metabolites were separated using the established UPLC method. 
Metabolites analyzed are T4G (A), T4S (B), and T3+rT3 (C). Experiments were performed in 
duplicate Data are expressed as mean±standard deviation. n=4/group. ***Significantly 
different than control; p<0.001. 
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Table 3.4 
 

Fold change in rat hepatic P450 mRNA expression 
Chemical 
 

Dose 
(µM) 

Cyp1a1a Cyp2b2a Cyp3a1a 

PB  
 

0 
10 
100 
1000 

1.0±0.0 
1.8±0.8 
1.8±1.4 
4.7±2.4 

1.0±0.0 
10.1±14.9 
28.3±19.9 

197.0±78.6b 

1.0±0.0 
11.2±18.2 
18.2±28.7 
60.4±51.8 

 
PCN 

 
0 
0.1 
1 
10 

 
1.0±0.0 
2.8±3.8 
1.7±1.8 
2.8±2.3 

 
1.0±0.0 
0.8±0.6 
4.2±2.9 
7.4±2.9 

 
1.0±0.0 

17.9±27.6 
213.9±347.2 
660.7±489.1b 

 
3MC 

 
0 
0.05 
0.5 
5 

 
1.0±0.0 

33.8±52.8 
30.9±24.6 

270.2±204.9b 

 
1.0±0.0 
0.9±0.9 
0.8±0.9 
1.0±0.4 

 
1.0±0.0 
7.8±12.2 
5.3±7.2 
4.4±4.2 

 
PCB 153 

 
0 
0.3 
3 
30 

 
1.0±0.0 
2.1±1.2 
4.2±2.8 
3.6±0.5 

 
1.0±0.0 

20.9±12.2 
27.4±19.4 
19.0±18.7 

 
1.0±0.0 
7.2±10.8 
21.1±34.0 
78.6±94.0 

aData are expressed as fold change mean±standard deviation (n=3/group)  
relative to control.  
bSignificantly different from control group (p<0.001). 
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Table 3.5 
 

Fold change in human hepatic P450 mRNA expression 
 

 

 

 

 

 

 

 

 

 

 
 
 
 aData are expressed as fold change mean±standard deviation (n=4/group)  
              relative to control. 

bSignificantly different from control group (p<0.05). 
cSignificantly different from  control group (p<0.01).  
dSignificantly different from control group (p<0.001). 

  

Chemical 
 

Dose 
(µM) 

CYP1A1a CYP2B6 a CYP3A4 a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
0.5±0.3 
0.8±0.5 
1.3±0.5 

1.0±0.0 
1.3±0.2 
5.7±2.1 

     17.1±7.4 

1.0±0.0 
1.0±0.4 
3.7±2.4 

  20.0±10.8d 
 

Rif 0 
0.1 
1 
10 
 

1.0±0.0 
0.6±0.4 
1.0±0.5 
0.7±0.4 

1.00±0.01 
2.34±1.61 
6.80±5.56 
15.29±9.46 

1.00±0.00 
5.10±4.20 

15.65±9.33c 
  24.87±12.09d 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.0 
9.8±6.4 

     154.6±132.8c 
  178.0±162.4c 

1.0±0.0 
1.3±0.3 
1.2±0.4 
1.0±0.1 

1.0±0.0 
1.0±0.3 
0.7±0.5 
0.9±0.3 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
0.8±0.3 
5.2±5.6 

19.6±22.5 

1.0±0.0 
4.6±2.5 

  21.7±11.0b 
  31.4±24.1d 

1.0±0.0 
1.4±0.8 
2.9±0.7 
 5.3±2.4 
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Table 3.6 
 

Fold change in rat hepatic UGT mRNA expression 

aData are expressed as fold change mean±standard deviation (n=3/group) relative 
to control. 
bSignificantly different from control group (p<0.001). 

 

 
 

Chemical 
 

Dose 
(µM) 

Ugt1a1a Ugt1a5a Ugt1a6a Ugt2ba 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
1.2±0.8 
1.9±1.7 
2.4±0.6 

1.0±0.0 
2.0±1.0 
2.0±0.7 
1.4±0.1 

1.0±0.0 
1.4±0.3 
2.0±1.2 
1.9±0.4 

1.0±0.0 
2.8±2.9 
3.1±2.7 
2.3±1.1 

PCN 0 
0.1 
1 
10 
 

1.0±0.0 
1.4±0.8 
2.5±1.9 
2.3±0.8 

1.0±0.0 
1.4±0.8 
2.6±2.6 
2.4±1.0 

1.0±0.0 
1.6±0.2 
1.8±0.8 
0.9±0.1 

1.0±0.0 
2.0±1.5 
3.1±2.9 
1.3±0.4 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.0 
1.5±1.0 
1.0±0.2 
0.5±0.2 

1.0±0.0 
1.3±0.6 
1.2±0.3 
0.5±0.3 

1.0±0.0 
2.3±0.9 
8.2±1.7 

  25.7±21.2b 

1.0±0.0 
3.1±2.9 
2.7±1.8 
1.1±0.3 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
1.3±0.5 
1.8±1.1 
1.5±0.3 

1.0±0.0 
1.5±1.1 
1.6±1.2 
2.1±0.4 

1.0±0.0 
1.7±0.4 
2.1±0.1 
1.9±0.9 

1.0±0.0 
2.7±2.5 
2.7±2.7 
0.9±0.3 



 
 

Table 3.7 
 

Fold change in human hepatic UGT mRNA expression 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    aData are expressed as fold change mean±standard deviation (n=4/group) relative to control. 
bSignificantly different from control group (p<0.05).  

  cSignificantly different from control group (p<0.01). 
   dSignificantly different from control group (p<0.001). 

Chemical 
 

Dose 
(µM) 

UGT1A1a UGT1A4a UGT1A6a UGT1A9 a UGT2B15 UGT2B4 

PB 
 

0 
10 
100 
1000 
 

1.0±0.0 
0.9±0.1 
2.2±0.7 

  6.4±2.6d 

1.0±0.1 
1.2±0.3 
1.7±0.3 

  9.6±6.2d 

1.0±0.0 
1.1±0.1 
1.6±0.7 

 2.2±0.3d 
 

1.0±0.0 
0.9±0.1 
1.0±0.3 
1.0±0.2 

1.0±0.0 
0.9±0.1 
1.6±0.5 
1.9±0.8 

1.0±0.0 
1.3±0.0 
1.5±0.4 

 2.0±0.5b 
 

Rif 0 
0.1 
1 
10 
 

1.0±0.0 
1.5±0.3 
4.7±2.2b 
6.6±3.6d 

1.0±0.1 
1.5±0.4 
3.3±0.5 
7.2±0.7d 

1.0±0.0 
1.2±0.1 
1.2±0.0 
1.6±0.2 

 

1.0±0.0 
1.1±0.3 
0.8±0.3 
0.9±0.3 

1.0±0.0 
1.5±0.3 
2.7±0.6 

 3.1±1.3d 
 

1.0±0.0 
1.5±0.3 

 2.1±0.5c 
 2.4±0.9d 

 
3MC 0 

0.05 
0.5 
5 
 

1.0±0.0 
1.5±0.2 
3.3±0.6 
2.9±1.1 

1.0±0.1 
1.7±0.7 
2.8±1.6 
1.8±0.6 

1.0±0.0 
1.2±0.3 
1.3±0.4 
1.1±0.3 

1.0±0.0 
1.0±0.2 
0.7±0.0 
1.0±0.3 

1.0±0.0 
1.2±0.6 
1.1±0.7 
0.9±0.3 

 

1.0±0.0 
1.3±0.3 
1.2±0.4 
1.1±0.3 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
1.3±0.2 
2.8±1.3 
3.5±1.5 

1.0±0.1 
1.3±0.5 
1.4±0.6 
2.1±0.1 

1.0±0.0 
1.1±0.3 
0.9±0.1 
1.3±0.2 

1.0±0.0 
1.1±0.3 
1.3±0.1 
1.0±0.1 

1.0±0.0 
1.3±0.6 
1.2±0.2 
1.2±0.3 

1.0±0.0 
1.3±0.3 
1.4±0.4 
1.4±0.2 
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Table 3.8 
 

Fold change in rat hepatic SULT mRNA expression 
Chemical 
 

Dose 
(µM) 

Sult1a1a Sult1b1a Sult1c1a Sult1e1a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
1.7±1.7 
1.8±1.2 
2.1±0.6 

1.0±0.0 
1.5±1.2 
1.7±0.6 
1.4±1.3 

1.0±0.0 
0.9±0.3 
1.7±0.2 
0.9±0.1 

1.0±0.0 
0.8±0.6 
2.5±1.3 
6.8±4.2c 

PCN 0 
0.1 
1 
10 
 

1.0±0.0 
1.7±0.8 
2.2±1.7 
0.9±0.3 

1.0±0.0 
1.3±0.5 
2.3±1.0 
1.5±0.5 

1.0±0.0 
1.1±0.2 
0.7±0.1 
0.2±0.1b 

1.0±0.0 
1.3±0.3 
1.7±1.1 
1.1±0.5 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.0 
1.7±1.5 
1.9±0.5 
1.1±0.6 

1.0±0.0 
1.4±1.0 
2.0±0.7 
1.0±0.0 

1.0±0.0 
0.6±0.2 
1.3±0.8 
1.2±0.5 

1.0±0.0 
0.9±0.4 
1.5±0.3 
1.2±0.4 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
1.7±0.5 
1.9±0.9 
0.7±0.2 

1.0±0.0 
1.7±0.9 
1.7±0.9 
0.9±0.2 

1.0±0.0 
1.2±0.3 
0.9±0.2 
0.8±0.8 

1.0±0.0 
2.4±1.0 
1.7±0.6 
0.8±0.4 

aData are expressed as fold change mean±standard deviation (n=3/group)  
 relative to control.  
bSignificantly different from control group (p<0.05). 
cSignificantly different from control group (p<0.001). 
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Table 3.9 
 

Fold change in human hepatic SULT mRNA expression 
 

 

 

 

 

 

 

 

 

 

 

                      
aData are expressed as fold change mean±standard deviation (n=4/group) 
relative to control. 

 

 

  

Chemical 
 

Dose 
(µM) 

SULT1A3a SULT1E1a SULT2A1 a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
0.9±0.4 
1.1±0.3 
1.3±0.4 

1.0±0.0 
1.0±0.3 
0.5±0.1 
0.3±0.2 

1.0±0.0 
0.9±0.0 
1.0±0.7 
1.0±0.4 

 
Rif 0 

0.1 
1 
10 
 

1.0±0.0 
0.9±0.5 
1.1±0.5 
1.0±0.4 

1.0±0.0 
1.1±0.7 
0.7±0.5 
0.7±0.7 

1.0±0.0 
1.1±0.7 
0.9±0.3 
0.9 ±0.7 

 
3MC 0 

0.05 
0.5 
5 
 

1.0±0.0 
0.8±0.3 
0.9±0.4 
0.7±0.3 

1.0±0.0 
1.1±0.3 
0.7±0.2 
0.9±0.1 

1.0±0.0 
1.0±0.2 
1.0±0.2 
1.0±0.2 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
0.8±0.2 
0.9±0.3 
1.4±0.9 

1.0±0.0 
1.0±0.3 
1.0±0.3 
0.6±0.3 

1.0±0.0 
0.9±0.3 
1.2±0.4 
0.8±0.4 
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Table 3.10 
 

Fold change in rat hepatic deiodinase I mRNA expression 
 

 

 

 

 

 

 

 

 

 

 

 
    aData are expressed as fold change mean±standard deviation (n=4/group) 

 relative to control. 
 

  

Chemical 
 

Dose 
(µM) 

D1a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
0.8±0.2 
1.1±0.0 
1.4±0.2 

PCN 0 
0.1 
1 
10 
 

1.0±0.0 
0.9±0.3 
1.1±0.3 
0.8±0.2 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.0 
0.8±0.3 
1.2±0.6 
1.3±1.0 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
0.9±0.3 
1.3±0.1 
0.8±0.1 
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Table 3.11 
 

Fold change in human hepatic deiodinase I mRNA expression 
 

 

 

 

 

 

 

 

 

 

 

 

                                         aData are expressed as fold change mean±standard deviation (n=4/group). 
 

Chemical 
 

Dose 
(µM) 

D1a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.0 
1.0±0.2 
1.6±1.0 
2.0±0.5 

Rif 0 
0.1 
1 
10 
 

1.0±0.0 
1.7±0.7 
1.9±0.4 
1.6±0.1 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.0 
1.1±0.4 
0.9±0.0 
1.2±0.7 

PCB 153 0 
0.3 
3 
30 

1.0±0.0 
2.4±1.3b 
1.9±1.1 
1.5±0.3 
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Figure 3.3. Accumulation of [125I]-derived radioactivity in rat (A) and human (B) 
hepatocytes following treatment with nuclear receptor agonists..Sandwich-cultured 
hepatocytes were plated at 3.5x105 cells per well and incubated with 0.0005µM (5000 CPM) 
[125I]-T4. The accumulation of [125I]-T4 was determined over time (1-30 min) following 
treatment. Data are expressed as percentage of dose mean ± standard deviation. The lines 
represent the linear regression of the data. The curved lines represent the nonlinear regression 
of the data. n=3/group.  
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Table 3.12 
 

Fold change in rat hepatic efflux and uptake transporter mRNA expression 
Chemical 
 

Dose 
(µM) 

Mdr1aa Mdr1ba Mrp2a Mrp3a Ntcp1a Oat2a 

PB  
 

0 
10 
100 
1000 

1.0±0.0 
0.9±0.1 
0.9±0.2 
1.4±0.5d 

1.0±0.0 
0.9±0.4 
0.8±0.5 
1.3±0.7 

1.0±0.0 
2.0±1.8 
2.2±1.7 
2.4±0.8 

1.0±0.0 
1.1±0.4 
1.1±0.3 
1.5±0.5 

1.0±0.0 
1.2±1.1 
1.5±0.8 
1.6±0.6 

1.0±0.0 
1.2±0.5 
1.4±0.2 
1.9±0.7b 

 
PCN 

 
0 
0.1 
1 
10 

 
1.0±0.0 
0.7±0.3 
1.2±0.2 
1.2±0.1 

 
1.0±0.0 
0.7±0.3 
1.1±0.4 
1.3±0.2 

 
1.0±0.0 
2.2±1.4 
3.9±4.3 
4.0±1.8 

 
1.0±0.0 
1.1±0.3 
1.4±0.1 
1.2±0.1 

 
1.0±0.0 
1.3±0.7 
1.9±1.6 
0.8±0.2 

 
1.0±0.0 
1.1±0.3 
1.5±0.5 
0.8±0.2 

 
3MC 

 
0 
0.05 
0.5 
5 

 
1.0±0.0 
0.9±0.1 
0.9±0.4 
1.7±0.2c 

 
1.0±0.0 
0.9±0.1 
0.8±0.4 
1.0±0.4 

 
1.0±0.0 
2.1±1.8 
1.7±0.1 
1.8±0.3 

 
1.0±0.0 
0.9±0.1 
1.6±0.9 
2.0±0.7 

 
1.0±0.0 
1.3±1.4 
1.4±0.4 
1.2±0.9 

 
1.0±0.0 
1.0±0.4 
1.4±0.4 
1.4±0.2 

 
PCB 153 

 
0 
0.3 
3 
30 

 
1.0±0.0 
0.9±0.4 
1.1±0.2 

  1.6±0.1b 

 
1.0±0.0 
0.7±0.5 
0.8±0.4 
1.1±0.1 

 
1.0±0.0 
1.9±0.9 
2.5±1.6 
2.8±1.4 

 
1.0±0.0 
1.1±0.5 
1.3±0.5 
1.3±0.1 

 
1.0±0.0 
1.5±0.9 
1.2±0.7 
0.7±0.1 

 
1.0±0.0 
1.3±0.3 
1.3±0.1 
1.0±0.3 

aData are expressed as fold change mean±standard deviation (n=3/group) relative to     
control. 

               bSignificantly different from control group (p<0.05). 
               cSignificantly different from control group (p<0.01). 
               dSignificantly different from control group (p<0.001). 
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Table 3.13 
 

Fold change in human hepatic efflux and uptake transporter mRNA expression  

aData are expressed as fold change mean±standard deviation (n=4/group) relative to 
control. 

      bSignificantly different from control group (p<0.01). 
     cSignificantly different from control group (p<0.001). 

  

Chemical 
 

Dose 
(µM) 

MDR1a MRP2a MRP3 a    NTCP1a    OAT2a 

PB  
 

0 
10 
100 
1000 
 

1.0±0.1 
0.9±0.2 
1.2±0.3 

 2.3±0.6c 

1.0±0.0 
1.0±0.1 
1.3±0.4 

 2.5±0.0c 

1.0±0.0 
0.7±0.2 
0.7±0.2 
0.9±0.3 

1.0±0.0 
0.9±0.3 
0.8±0.5 
0.6±0.1 

1.0±0.0 
0.9±0.4 
1.0±0.30 
0.7±0.4 

Rif 0 
0.1 
1 
10 
 

1.0±0.1 
1.1±0.2 

 2.0±0.7b 
 2.0±0.7b 

1.0±0.0 
1.2±0.3 

 1.8±0.3c 
 2.1±0.3c 

1.0±0.0 
0.9±0.1 
1.0±0.3 
0.8±0.2 

1.0±0.0 
0.8±0.1 
1.3±0.9 
1.1±0.5 

1.0±0.0 
1.4±0.4 
1.1±0.1 
1.3±0.2 

3MC 0 
0.05 
0.5 
5 
 

1.0±0.1 
0.9±0.3 
0.8±0.2 
0.8±0.1 

1.0±0.0 
1.0±0.2 
0.9±0.2 
0.9±0.2 

1.0±0.0 
0.7±0.1 
0.7±0.2 
0.7±0.3 

1.0±0.0 
1.0±0.5 
0.6±0.1 
0.8±0.2 

1.0±0.0 
1.0±0.5 
0.7±0.4 
0.7±0.3 

PCB 153 0 
0.3 
3 
30 

1.0±0.1 
1.1±0.1 
1.1±0.3 
1.4±0.6 

1.0±0.0 
1.1±0.0 
1.1±0.2 
1.4±0.3 

1.0±0.0 
0.9±0.2 
0.9±0.3 
0.9±0.3 

1.0±0.03 
0.9±0.3 
1.1±0.0 
0.7±0.2 

1.0±0.0 
1.0±0.2 
1.2±0.3 
0.8±0.2 
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CHAPTER 4 

 

EFFECTS OF BDE 47 ON THYROXINE METABOLISM 

 

A. INTRODUCTION 

 

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in 

various consumer products including polyurethane foam, electronics, and textile coating. Due 

to their persistence and lipophilicity, PBDEs bioaccumulate and have been detected in biota, 

environmental samples and human biological samples (Focant et al., 2004a;  Schecter et al., 

2010;  Krol et al., 2012). Pentabromodiphenyl ether (DE-71), is a commercial mixture of 

tribromodiphenyl ether to hexabromodiphenyl ether congeners, of which approximately 30% 

consists of 2,2′,4,4′-tetrabromodiphenyl ether (BDE 47).   BDE 47 is the predominant 

congener found in most environmental and human samples and usually accounts for half of 

the total PBDEs measured (Hites, 2004;  Lorber, 2008). Although found in human tissues, 

the health risks from exposure to PDBEs are uncertain.   

Similar to polychlorinated biphenyls (PCBs) and dioxins, PBDEs disrupt thyroid 

hormone (TH) homeostasis (Zhou, et al., 2001;  Hallgren and Darnerud, 2002;  Richardson, 

et al., 2008;  Szabo, et al., 2009).  Although there are many sites within the thyroid axis in 

which xenobiotics such as PBDEs can interrupt TH homeostasis, the literature focuses on 

two possible mechanisms: (1) the increase in hepatic TH metabolism and (2) the competitive
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binding of PBDEs with TH binding proteins. In rodents, decreases in thyroxine (T4) are often 

associated with xenobiotic-mediated increases in T4 glucuronidation and the subsequent 

elimination of T4-glucuronide (T4G) into bile (Vansell and Klaassen, 2002b;  Hood, et al., 

2003;  Martin, et al., 2012). Decreases in serum T4 in rodents treated with PBDEs often have 

been linked to inductions of hepatic uridinediphosphate glucuronosyltransferases (UGTs). In 

rat pups, gestational and lactational exposures to PBDEs result in decreased serum T4 

concentrations and inductions in hepatic UGT activity (Zhou, et al., 2002;  Szabo, et al., 

2009). Exposure to BDE 47 resulted in a 50% decrease in serum T4 concentrations and 

increases in hepatic Ugt1a1 and Ugt1a7 mRNA expression in female mice; however liver T4-

UGT activity did not increase (Richardson, et al., 2008). Although it appears that serum T4 

decreases are associated with increases in hepatic UGTs, there is evidence that T4 decreases 

may be independent of UGT induction. Ugt1a-deficient Gunn rats fed, 3-methylcholanthrene 

(3MC), pregnenolone-16α-carbonitrile (PCN), or Arochlor 1254 resulted in decreases in 

serum T4 concentrations 19, 38, and 91%, respectively; however, hepatic T4-UGT activity 

was unchanged and the magnitude of the decrease in serum T4 was similar to that observed in 

the Wistar rat (Richardson and Klaassen, 2010). Kenechlor-500 administered to Wistar and 

Gunn rats decreased serum T4 and increased the accumulation of [125I]-T4 in several tissues 

including the liver, but only increased T4 glucuronidation in the Wistar rat (Kato, et al., 

2007). In Wistar rats treated with phenobarbital (PB), decreases in serum T4 is associated 

with increased hepatic T4-UGT activity and increased biliary elimination of [125I]-T4 and 

[125I]-T4G, but in the Gunn rat, PB decreases serum T4 concentrations without a concomitant 

increase in T4 glucuronidation or biliary elimination (Kato, et al., 2010).  
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In addition to UGTs, Sulfotransferases (SULTs) are a pathway for TH metabolism. 

SULTs are inducible in rat liver following xenobiotics treatment and may be linked to 

enhanced TH metabolism in the liver and biliary elimination (Szabo, et al., 2009;  Paul et al., 

2010). Sulfation of TH facilitates their further degradation by deiodinase I (DI) (Visser et al., 

1990;  Visser, 1994). Deiodinases also are involved in TH metabolism in their conversion of 

T4 and T3 to 3, 3’, 5’-triiodothyronine (rT3) and 3, 3’-diiodothyronine (3, 3’-T2), respectively. 

Together these studies show that decreases in serum T4 are not completely associated with 

hepatic T4 glucuronidation, but also may involve sulfation, deiodination, serum-to-liver 

accumulation and biliary elimination of T4.  

Transthyretin (TTR), is a major plasma TH binding protein found in all vertebrates.  

Hydroxylated PBDEs have been shown to competitively interact with TTR and it is 

hypothesized that this interaction displaces T4 from binding to TTR (Meerts et al., 2000;  

Hallgren and Darnerud, 2002;  Hamers et al., 2008). Hydroxylated metabolites of BDE 47, -

51, -51, -75, and -77 displaced more than 60% of [125I]-T4 from TTR in vitro (Meerts, et al., 

2000). Hamers et al. (2008) reported that six different hydroxylated metabolites of BDE 47 

had TTR-binding potencies 160–1600 times higher than the parent compound (BDE 47). 

This suggests that decreases in serum T4 may result from the displacement of T4 from TTR 

by BDE 47 metabolites.  

Aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and 

pregnane X receptor (PXR) regulate genes such as cytochrome P450s (CYPs), UGTs, SULTs 

and transporters which are all involved in the metabolism and elimination of xenobiotics 

(Bock and Kohle, 2004;  Wagner, et al., 2005;  Kohle and Bock, 2009;  Tolson and Wang, 

2010). Correlations between inductions in hepatic UGTs and multidrug resistance protein-
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associated protein (MRP) with decreases in serum T4 have been observed. In mice, BDE 47 

induces CAR regulated genes such as Cyp2b10 mRNA expression (Richardson, et al., 2008). 

BDE 47 also increased CAR regulated genes possibly involved in the metabolism and 

transport of THs.  For example, hepatic Ugt1a1 and Ugt1a7 mRNA expression increases 

correlated with serum T4 decreases in mice treated with BDE 47. There is evidence that 

transporters regulated by nuclear receptors are responsible for transporting T4 or conjugated 

compounds such as T4G.  Multidrug resistance proteins (MDRs) are important in TH efflux 

(Mitchell, et al., 2005).  Several studies report a correlation between the induction of hepatic 

UGT (Ugt1a1 and Ugt1a6), multidrug resistance protein-associated protein (Mrp2), and 

organic anion transporting proteins (Oatp1 and Oatp2) mRNA expression levels with 

decreases in serum TH concentrations in rodents following chemical exposure (Ribeiro, et 

al., 1996;  Mitchell, et al., 2005;  Wong, et al., 2005;  Miyawaki, et al., 2012). Friesema et al 

(2005) used Xenopus laevis oocytes to identify Na(+) taurocholate cotransporting 

polypeptide (NTCP) and organic anion transporting polypeptide (OATP) as TH uptake 

transporters.  In mice, BDE 47 increases Mdr1a and Mrp3 mRNA expression (Richardson, et 

al., 2008). These results suggest that the upregulation of hepatic UGTs in concert with the 

upregulation in hepatic transporters may enhance the elimination of TH by BDE 47. 

Collectively, these studies show that hepatic T4 metabolism, displaced T4-TTR binding, and 

the active transport of THs may play a part in disrupting TH homeostasis. 

The use of in vitro approaches to predict aspects of human drug metabolism has been 

of great interest. Hepatocytes are used in the in vitro-in vivo extrapolation of metabolic 

activity toward a number of drugs. As biologically relevant tools in the study of metabolism, 

hepatocytes are a dependable model for predicting the induction of xenobiotics metabolizing 
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enzymes (LeCluyse, 2001;  Hewitt, et al., 2007). Using primary rat and human sandwich-

cultured hepatocytes this study makes comparisons of T4 metabolism in response to nuclear 

receptor activation by BDE 47. The present study also compares the effects of BDE 47 on the 

genes involved in TH homeostasis in rat liver and hepatocytes.   

 

B. MATERIALS AND METHODS 

 

Chemicals 

2, 2', 4, 4'-Tetrabromodiphenyl ether (BDE 47) was provided by Battelle Memorial 

Institute (Columbus, OH). Purity was >98% as determined by reverse-phase-performance 

liquid chromatography (HPLC). L-thyroxine (T4) was purchased from Sigma-Aldrich Co. 

(St. Louis, MO). [125I]-T4, (116 Ci/mmol) was purchased from Perkin Elmer Life Sciences 

Inc. (Waltham, MA) and was purified to >98%) immediately before use with Sephadex LH-

20 (Sigma-Aldrich) as described by Rutgers et al. (1989). All other chemicals used were of 

the highest grade commercially available. 

 

Animals and Treatment  

Adult (7 -9 week old) male Sprague-Dawley rats were purchased from Harlan 

Laboratories (Dublin, VA).Animals were maintained on a 12h light/dark cycle at ambient 

temperature (22ºC) and relative humidity (55 ± 5%), and were provided with NTP 2000 

(Zeigler Bros. Inc., Gardner, PA) and tap water ad libitum..  All procedures comply with the 

Animal Welfare Act Regulations, 9 CFR 1-4 and animals will be handled and treated 

according to the Guide for the Care and Use of Laboratory Animals (ILAR, 1996). Animals 
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were treated with a single daily dose for 4 consecutive days.  Rats were randomly selected 

for each treatment group (n=6/group).  Rats were administered BDE 47 in corn oil (0, 3, 30, 

or 100 mg/kg/day for 4 days) by oral gavage (5 ml/kg).  Dosing solutions were prepared by 

dissolving BDE 47 in acetone followed by the addition of corn oil.   The acetone was 

removed from the dosing solutions by evaporation with a speed vacuum device  

 

Serum and Tissue Collection 

24 Hours after the final dose, mice were euthanized by CO2 asphyxiation followed by 

exsanguinations via cardiac puncture; and blood and livers were collected.  Blood was 

allowed to clot for 1 hour on ice in serum separator tubes (Becton Dickinson, Franklin Lakes, 

NJ).  Blood was centrifuged at 1300 x g for 30 min to obtain serum.  Serum was frozen and 

held at -80°C until analyzed.  Livers were removed and weighed.  Approximately 200 mg of 

liver was placed in a separate tube and frozen at -80°C for subsequent RNA purification.  

The remaining liver was frozen at -80°C for further enzyme activity analysis. 

 

Serum T4 concentration  

Serum T4, was measured in duplicate using Coat-a-Count radioimmunoassay kits 

(Diagnostic Products Corporation, Los Angeles, CA) according to the method of Craft et 

al.,(2002)  

 

T4-UGT Activity Assay  

Liver microsomal fractions were prepared (Zhou, et al., 2001) and protein 

concentrations were measured using a protein assay kit with bovine serum albumin as a 
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standard (Bio-Rad Laboratories, Hercules, CA). Hepatic T4-UGT activity was determined by 

using a modified assay (Zhou, et al., 2001;  Zhou, et al., 2002) based on a previously 

published method (Visser et al., 1993a). All data are expressed as fold change compared to 

control, where controls for T4-UGT are expressed as pMol T4-UGT/min/mg protein.  

 

T4-SULT activity assay 

Liver cytosol was collected at the same time the microsomes were collected. SULT 

activities were assayed by incubation of 4µM of T4, and 100,000 cpm of 125I-labeled T4 

(Perkin-Elmer) for 30 min at 37°C with 20 ug protein/ml of liver cytosol in the presence or 

absence (blank) of 50µM 3’-phosphoadenosine 5’-phosphosulfate (PAPS; Sigma) in 0.2 ml 

of 0.1M phosphate (pH 7.2) and 2mM EDTA (Sigma) (Kaptein, et al., 1997). The mixtures 

were applied to 1 ml of lipophilic sephadex (Sigma) LH-20 minicolumns (Superlco), and 

equilibrated in 0.1M HCl. Iodine, and sulfated T4 were successively eluted with 2 X 1 ml of 

0.1M HCl, and 6 X 1 ml of ethanol/water (20/80, vol/vol), respectively. Fractions were 

collected and 1 ml of the T4 sulfate (T4S) fraction was quantitated for radioactivity. 

 

Hepatocyte culture and BDE 47 treatment 

Fresh primary male Sprague-Dawley sandwich-cultured rat hepatocytes (SCRH) and 

sandwich-cultured human hepatocytes (SCHH) in 24-well plates were received on culture 

day 2 from Life Technologies (Durham, NC). Hepatocytes were maintained for up to 6 days 

in culture with medium replaced daily. The maintenance medium consists of: Williams’ E 

medium with 0.1% dimethyl sulfoxide (DMSO) including Hepatocyte Maintenance 

Supplement (Life Technologies) which contains 0.1µM dexamethasone and proprietary 
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concentrations of penicillin-streptomycin, ITS+ (insulin, transferrin, selenium complex, BSA 

and linoleic acid), GlutaMAX™ and HEPES].  

Stock solutions of BDE 47 were diluted to 0.3, 3, and 30µM in DMSO and added to 

maintenance medium at a final DMSO concentration of 0.1%. On culture day 3, fresh SCRH 

and SCHH were exposed for 72 hours to the DMSO vehicle (0.1%) or BDE 47 (0.3, 3 

30µM). After 72 hours, medium was removed and replaced with maintenance medium 

containing physiological concentrations [0.05µM (rat) or 0.1µM (human)] of [125I]-T4 

(500,000 cpm/well) for 24 hours. Medium was collected, prepared and analyzed for T4 

metabolites by the method described below. Hepatocytes were collected and analyzed for 

protein content or frozen at -70°C for RNA isolation. Human donor demographics can be 

found in Table 4.1.  

 

T4 and T4 metabolite separation and quantitation  

All media samples were dried at 40°C under N2 gas and then reconstituted with 40µl 

mobile phase consisting of 18% acetonitrile in 0.02M ammonium acetate (pH=4). After 

addition of mobile phase, samples were centrifuged at 10,000 x g for 5 minutes at room 

temperature and the supernatants were placed in vials for UPLC analysis. UPLC equipped 

with a C18 – 2.1 x 50mm x 1.7µm (Waters Corp.; Milford, MA) resolution column and 

fraction collector were used for identification of T4 and T4 metabolites. Gradient elution was 

performed using a method modified version of a previously established method by Rutgers et 

al. (1987) with a 16 minute gradient of 18-40% acetonitrile in 0.02M ammonium acetate 

(pH=4). Solvent flow rate was 0.4ml/min and 15 second fractions were collected in test 

tubes. Peaks were then identified by analyzing collected fractions for radioactivity by gamma 
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spectroscopy. Retention times for T4, T3, rT3, T4-glucuronide (T4G), and T4 sulfate (T4S) 

were determined using synthetic and biosynthetic compounds as described by Richardson et 

al.(submitted). Peaks for T3 and rT3 were often inseparable; as a result, these peaks were 

added together and are presented as T3+rT3. Hepatocyte protein content was determined 

using a protein assay kit with bovine serum albumin as a standard (Bio-Rad Laboratories, 

Hercules, CA). 

 

RNA Isolation and relative real-time RT-PCR  

Total RNA was isolated using the RNeasy Mini Plus Kit with gDNA eliminator 

columns. (Qiagen, Hilden, Germany). To assess the integrity of the RNA samples, the 2100 

Bioanalyzer was used (Agilent Technologies, Palo Alto, CA). RNA with RNA Integrity 

Numbers (RINs) greater than 8.1 were used for RT-PCR.  Real-time RT-PCR was performed 

using the ABI Prism 7700 Sequence Detection System (ABI, Foster City, CA). 100 ng of 

total RNA was used for each reaction. cDNA was synthesized using the High Capacity RNA-

to-cDNA Kit (ABI, Foster City, CA). PCR was then performed on all cDNAs using TaqMan 

Universal PCR Master Mix and Custom TaqMan Array Micro Fluidic Cards (ABI, Foster 

City, CA). TaqMan gene expression assays are listed in Tables 4.2 and 4.3.  

 

Physiologically Based Pharmacokinetic Modeling 

 In order to compare media concentrations to peak blood concentrations, a 

physiologically based pharmacokinetic model was used to estimate peak blood 

concentrations in the in vivo studies.  Using the PBPK model of Emond et al. (2010), peak 

blood and liver concentrations were estimated for each dose of BDE 47 administered to the 
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rats.  The Emond et al. (2010) model was developed based on data from male and female 

Sprague-Dawley rats following single and multiple dose exposures.   

 

Data Analysis  

All data are presented as the mean ± standard deviation. The statistical intergroup 

comparisons were determined by using one-way analysis of variance (ANOVA) followed by 

Dunnet's Multiple Comparison post-hoc test (GraphPad Prism 5.0, GraphPad Software San 

Diego, CA). The levels of probability of statistical significance are p < 0.05. A one-phase 

decay exponential equation, 

Y= (Y0-Plateau)*exp (-K*X) +Plateau, 

was fit to the [125I]-T4 disappearance data where the depletion rate constant (K) was 

determined. The half-life (t1/2) of all reactions was then determined as ln(2)/K. Using the rate 

of [125I]-T4 depletion, intrinsic clearance (CLint) estimates were determined as described by 

Obach (1997) using the equation,  

 CLint, in vitro=KV/N, 

expressed as μl/min/106 cells, where K is ln(2)/ t1/2, V is the incubation volume and N is the 

number of hepatocytes used.  Human hepatocyte CLint (µl/min/106 cells) was scaled to in 

vivo CLint (ml/min/kg body weight) using the physiological parameters, human liver weight 

22 g/kg body weight and hepatocellularity 120 X 106 cells/g of liver (Bayliss, et al., 1999;  

Soars, et al., 2002). Rat hepatocyte CLint (µl/min/106 cells) was scaled to in vivo CLint 

(ml/min/kg body weight) using the physiological parameters, rat liver weight 40 g/kg body 

weight and hepatocellularity 120 X 106 cells/g of liver (Bayliss, et al., 1999) 
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C. RESULTS 

 

Rat body weight, liver weight and serum total T4 

No obvious signs of toxicity and no treatment effect on body weight were noted 

between treatment groups of BDE 47. Liver weights increased 11%, 19%, and 21% at 10, 30, 

and 100 mg/kg/day BDE 47, respectively (Table 4.5). Similarly, liver-to-body weight ratios 

increased 9%, 17%, and 22% at 10, 30, and 100 mg/kg/day BDE 47, respectively. Decreases 

in serum total T4 of 76% and 96% were observed at 30 and 100 mg/kg/day of BDE 47 

(Figure 4.1).  There were no significant effects on serum total T4 at the lowest dose tested (10 

mg/kg/day BDE 47)  

 

Intrinsic clearance of T4 from the media of SCRH and SCHH 

The clearance of T4 from the media of SCRH and SCHH treated with 30µM BDE 47 

was evaluated between 4 and 24 hours (Table 4.4).  A one-phase decay model was used to 

estimate intrinsic clearance (CLint) in both SCRH and SCHH. BDE 47 did not significantly 

change Clint of T4 in the media of SCRH and SCHH. CLint in the untreated hepatocytes of 

rat1 and rat 2 was 1.08 and 0.75 µl/min/106 cells, respectively. In BDE 47 treated SCRH, 

CLint was 0.93 and 0.86 µl/min/106 cells for rat 1 and rat 2, respectively. In untreated SCHH, 

CLint for Hu1362 and 1364 was 0.56 and 0.62 µl/min/106 cells, respectively. Following BDE 

47 treatment, CLint was 0.56 and 0.52 µl/min/106 cells for Hu1362 and Hu1364, respectively. 
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CYPs: P450 mRNA expression   

Rats treated with BDE 47 (100 mg/kg/day) resulted in increased hepatic Cyp1a1 

mRNA expression by 44.9-fold (Table 4.6). Cyp1a1 did not change with 10 or 30 mg/kg/day 

BDE 47. At 30 and 100 mg/kg/day BDE 47, Cyp2b2 increased 16.4- and 21.0-fold and 

increased Cyp3a1 6.2-and 8.9-fold, respectively. In rat liver, Cyp2b2 and Cyp3a1 did not 

change at the lowest dose (10 mg/kg/day).  

BDE 47 did not change Cyp1a1 mRNA expression in SCRH (Table 4.7). In SCRH, 

Cyp2b2 increased 45.1- and 40.6-fold following treatment with 3 and 30µM BDE 47. 0.3µM 

BDE 47 did not change Cyp2b2. Cyp3a1 mRNA expression increased in SCRH 7.2-fold only 

at 30 µM BDE 47 and not at the lower concentrations. BDE 47 did not change CYP1A1 in 

SCHH (Table 4.8). BDE 47 (30µM) increased CYP2B6 and CYP3A4 in SCHH by 15.7- and 

10.9-fold, respectively. CYP2B6 and CYP3A4 mRNA expression did not change with 0.3 or 

3µM BDE 47. 

 

UGTs: T4G levels, enzyme activity and mRNA expression   

BDE 47 increased hepatic microsomal T4-UGT activity by 60%, 50%, and 50% at 10, 

30, and 100 mg/kg/day (Table 4.9). In rat liver, Ugt1a1 mRNA expression increased 

approximately 1.7- and 1.7-fold at 30 and 100 mg/kg/day, respectively.  Hepatic Ugt1a5and 

Ugt1a6 mRNA expression increased 1.5- and 2.0-fold, respectively in rats treated with 100 

mg/kg/day BDE 47.   

In the medium of SCRH, T4G levels were unchanged (Figure 4.2A) and UGT mRNA 

expression in rat hepatocytes was unchanged following BDE 47 treatment (Table 4.10).  In 

the medium of SCHH, T4G increased 2.0-fold at 30µM BDE 47 (Figure 4.3A). UGT1A1 
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increased 3.6-fold in human hepatocytes exposed to 30µM BDE 47 (Table 4.11). UGT1A4, 

UGT1A6, and UGT1A9 mRNA expression did not change with BDE 47 treatment. 

 

SULTs: T4S levels, enzyme activity and mRNA expression  

BDE 47 did not change T4-SULT activity or Sult mRNA expression in rat liver 

(Table 4.12).  T4S levels in the media of SCRH and SCHH did not change following 

treatment with BDE 47 treatment (Figure 4.2B and Figure 4.3B).  SULT mRNA expression 

also did not change in SCRH and SCHH with BDE 47 (Table 4.13 and 4.14). 

 

Transporters: mRNA expression 

In rat liver, Mdr1a and Mdr1b mRNA expression increased following treatment with 

100 mg/kg/day BDE 47 1.6- and 2.5-fold, respectively (Table 4.15).  BDE 47 increased 

Mrp3 mRNA expression 10.4- and 15.0-fold at 30 and 100mg/kg/day BDE 47 in rat liver. 

BDE 47 did not change Mrp2, Ntcp1, and organic anion transporter (Oat2) in rat liver.Mrp2 

increased 1.6-fold mRNA expression in SCRH treated with 30µM BDE 47 (Table 4.16). 

BDE 47 did not change mRNA expression for Mdr1a, Mdr1b, Mrp3, Ntcp1, and Oat2 in 

SCRH. In SCHH, MRP2 mRNA expression increased 1.6-fold with 30µM BDE 47 (Table 

4.17). MRP3 mRNA expression in human hepatocytes decreased 31% with 3 and 30µM 

BDE 47.  OAT2 mRNA expression in human hepatocytes decreased 54% and 63% with 3 

and 30µM BDE 47, respectively. MDR1 and NTCP1 mRNA expression in SCHH did not 

increase with BDE 47. 
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Thyroid responsive genes.  

In rat liver and SCRH, Dio1 and Ttr mRNA expression did not change with BDE 47 

treatment (Table 4.18 and Table 4.19). In SCHH DIO1 did not change with BDE 47 

treatment, but decreased 56% with 30uM BDE 47 (Table 4.20). 

 

Physiologically Based Pharmacokinetic Modeling. 

A physiologically based pharmacokinetic model was used to estimate peak blood 

concentrations in the in vivo studies.  Using the PBPK model of Emond et al. (2010), peak 

blood and liver concentrations were estimated for each dose of BDE 47 administered to the 

rats.  The model predicts that the range of peak blood concentrations of BDE 47 in rats 

treated with 10-100 mg/kg of BDE 47 is similar to the range of media concentrations used in 

the in vitro studies (Figure 4.4).   

 

D. DISCUSSION  

 

It has been hypothesized that in rodents, PBDEs disrupt TH homeostasis by the 

induction of hepatic T4-glucuronidation and the competition between PBDE metabolites and 

T4 for binding to the serum transport protein, TTR. The effects of PBDEs on TH homeostasis 

in humans are limited and it is unclear if the mechanisms underlying the decrease in serum T4 

in rodents is the same for humans. This study further investigates the alteration of thyroid 

hormone homeostasis of BDE 47. In particular, this study aims to identify nuclear receptor 

regulated genes altered by BDE 47, which may help understand the mechanisms by which 

BDE 47 decreases serum T4 in rats. Using rat and human hepatocytes, we also make species 
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comparisons on the effects of BDE 47 on hepatic T4 metabolism and the genes involved. In 

this study, BDE 47 decreased serum T4 in rats and increased T4G in the medium of SCHH.  

In addition, BDE 47 altered the mRNA expression of recognized hepatic UGTs and 

transporters of TH or glucuronides.   

After a 4-day treatment, BDE 47 decreased circulating total serum T4 concentration in 

rats by as much as 96% at the highest dose of 100 mg/kg/day. This observation supports our 

recent findings in which mice treated with 100mg/kg/day BDE 47 for 4 days decreased 

serum T4, although to a smaller degree in mice with a 43% decrease (Richardson, et al., 

2008). Decreases in serum T4 in rats treated with BDE 47 have previously been associated 

with moderate increases in hepatic T4-UGT activity (Hallgren et al., 2001;  Hallgren and 

Darnerud, 2002).  In the present study, BDE 47 increased T4-UGT activity by approximately 

50% from controls.  It seems unlikely that a small increase in T4-UGT activity could, by 

itself, result in over a 90% decrease in hormone concentrations.  In SCRH, BDE 47 did not 

increase T4G in the medium nor Ugt mRNA. In contrast, T4G levels increased in the medium 

of SCHH as was UGT1A1 mRNA expression.  

The present in vivo and in vitro data in rats is inconsistent with the hypothesis that the 

large decrease in serum T4 in rats are due solely to increases in Ugt mRNA expression and 

T4-UGT activity in liver. The lack of change in T4G levels in the medium or Ugt mRNA 

expression in SCRH following BDE 47 treatment supports the findings in the in vivo study 

and suggests that T4 glucuronidation has only a small effect, if any on the observed decreases 

in serum T4 in rats.  In SCHH, the increase in T4G levels in the medium may be due to the 

nearly 4-fold increase in UGT1A1. This also suggests that BDE 47 may have a greater effect 

on human UGTs compared to rat UGTs. 
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It is hypothesized that SULTs may be more important in the metabolism of THs in 

humans than rats, because SULT1E1 conjugates THs in humans, but not in rats (Kester, et 

al., 1999;  Kester, et al., 2003). Rutgers et al. (1989) reports that in untreated rats, 7 times 

more T4G was excreted into the bile than T4S. In this study, T4G levels were about 25 times 

greater in the medium of SCHH compared to T4S. In contrast, T4G and T4S levels in the 

medium of untreated SCHH were similar. BDE 47 had no effect on T4-SULT activity and 

SULT mRNA expression in rat liver. There also was no effect on T4S medium levels and 

SULT mRNA expression in SCRH and SCHH. SULT mRNA expression agreed with the T4-

SULT activity and T4S levels and confirms that BDE 47 has no effect on T4 sulfation.  

DI is responsible for most T3 production peripherally. However, when serum T4 

decreases, DI also decreases in an attempt to preserve serum T3 concentrations suggesting 

that the decrease in DI is mediated by a feedback mechanism through the thyroid axis 

(Zavacki et al., 2005). Hypothyroidism in rats treated with dioxin or dioxin-like chemicals is 

often associated with inhibited hepatic DI activity (Hood and Klaassen, 2000b;  Viluksela, et 

al., 2004;  Szabo, et al., 2009). In this study, DI mRNA expression and T3+rT3 levels in 

media did not change in SCRH and SCHH treated with BDE 47.  This agrees with the idea 

that decreases in DI are a physiological response to decreases in serum T4 and therefore may 

not be detected in an in vitro system. DI mRNA expression also did not change in rat liver 

which did not agree with the hypothesized association between decreases in DI and serum T4.   

CYP1A, CYP2B and CYP3A are classic targets for AhR, CAR, and PXR activation.  

In rats and mice, BDE 47 does not increase CYP1A mRNA, suggesting it is not an AhR 

agonist in rodents (Pacyniak et al., 2007;  Richardson, et al., 2008). HepG2 cells treated with 

BDE 47 also showed no AhR activation (Peters et al., 2006). Liver from F344 rats BDE 47 



137 
 

had a significant effect on the level of Cyp1a1 mRNA expression (2.4-fold) only at the 

highest dose, (100 μmol/kg-day for 3 days) indicating an activation of the Ah receptor 

(Sanders et al., 2005). In the present study, BDE 47 induced Cyp1a1 mRNA expression in rat 

liver, but not in SCRH and SCHH. The effect of BDE 47 on CYP1A1 in SCRH and SCHH 

agrees with previous studies showing BDE 47 is not an AhR agonist. In contrast, increases in 

Cyp1a1 in rat liver suggest that the AhR is activated. Ugt1a6 expression is regulated, in part 

by the AhR (Auyeung, et al., 2003;  Nishimura, et al., 2005). In this study, Cyp1a1 mRNA 

expression increase 44.8-fold while Ugt1a6 mRNA expression increased only 2.0-fold in the 

liver of rats treated with 100 mg/kg/day. The increase in Cyp1a1 and Ugt1A6 mRNA 

indicates the activation of AhR may come from an unidentified contaminant in the BDE 47 

(Wahl et al., 2008).  

BDE 47 increased CYP2B2 and CYP3A1 in rat liver and SCRH and SCHH which 

agrees with previous studies in mice and rats (Sanders, et al., 2005;  Pacyniak, et al., 2007;  

Richardson, et al., 2008). As common targets of CAR and PXR, the increases in CYP2B2 

and CYP3A1 indicate BDE 47 is a mixed inducer in rats, SCRH and SCHH. In particular, the 

increases in P450 mRNA expression support the idea that the hepatocytes used in this study 

are functional and viable. 

In general, it is hypothesized that hydroxylated PBDEs bind to TTR may decrease 

serum T4 concentrations by increase the hepatic uptake and biliary elimination of T4 in 

rodents (Hallgren and Darnerud, 2002).  The present study showed no change in TTR mRNA 

expression in rat liver and SCHR.  This does not agree with previous studies in which Ttr 

mRNA expression in mouse liver decreases with BDE 47 (Richardson, et al., 2008). TTR 

mRNA expression decreased in SCHH treated with BDE 47 (30µM), which agrees with 
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previous studies in mice (Richardson, et al., 2008).  Thyroxine-binding globulin (TBG) is the 

major T4 binding protein in humans; therefore it is unclear how significant a decrease in 

hepatic TTR mRNA would be to TH homeostasis in humans.  

Like other xenobiotic metabolizing enzymes, transporters are also regulated by 

nuclear receptor activation. In this study, we examined the effects of BDE 47 on hepatic 

uptake and efflux transporters and the role they may play in TH disruption. MDR1, MRP2, 

and MRP3 are efflux transporters and are regulated by AhR, CAR, and PXR (Cherrington et 

al., 2002;  Maglich, et al., 2002;  Kohle and Bock, 2009).  MDR1 encodes for the efflux 

transporter P-glycoprotein (P-gp) involved in the transport of hormones, steroids and a wide 

range of xenobiotics. Cells transfected with Mdr1 cDNA increased the efflux of T3 compared 

to cells without Mdr1 (Mitchell, et al., 2005). In mice, glucuronidated compounds are 

substrates for Mdr1. Like MDR1, MRP2, is a canalicular efflux transporter and is responsible 

for the transport of conjugated organic anions into bile (Leslie et al., 2005;  Nies and 

Keppler, 2007). Increases in MRP2 in rodents have been linked to UGT induction andT4 

elimination following treatment with PB or PCN (Johnson et al., 2002a;  Miyawaki, et al., 

2012). Szabo et al. (2009) demonstrated that rat pups exposed to DE-71 decreased serum T4 

and increased hepatic Mrp2 and UGTs.  MRP3, a sinusoidal efflux transporter, exports 

glucuronides from the liver to the blood.  NTCP, a sinusoidal uptake transporter, is known as 

a transporter of T4 and T4S (Friesema, et al., 1999;  Visser, et al., 2011). OAT2 is a 

basolateral uptake transporter and mediates the transport of exogenous and endogenous 

compounds from blood to liver.   

Mdr1a and Mdr1b encode P-gp in rodents.  In mice treated with BDE 47, hepatic 

Mdr1a decreased and Mdr1b mRNA expression did not change (Richardson, et al., 2008). In 
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the present study, hepatic Mdr1a and Mdr1b increased in rats treated with 100mg/kg/day 

BDE 47. In SCRH, Mdr1a and Mdr1b mRNA expression did not change.  MDR1 encodes P-

gp in humans and was unchanged in SCHH treated with BDE 47. This suggests MDR1 in 

rats may mediate the biliary elimination of T4 or T4G.   

BDE 47 did not change Mrp2 mRNA expression in rat liver. Mrp2 increased in 

SCRH. Although linked with T4 biliary elimination; our results suggest that Mrp2 mRNA 

expression may not be responsible for the observed decrease in serum T4 in rats. In contrast, 

MRP2 increased in hepatocytes from rats and humans following BDE 47 treatment. In 

response to BDE 47 treatment, MRP2 in rat liver may play a different role in the transport of 

T4, T4G and xenobiotics when compared to MRP2 in the hepatocytes.  

NTCP1 did not change with BDE 47 treatment of rats, SCRH and SCHH.  OAT2 did 

not change in rat liver and SCRH. OAT2 mRNA expression in SCHH decreased at 3 and 

30µM BDE 47. These results suggest BDE 47 did not induce a NTCP1- or OAT2-mediated 

increase in hepatic T4 uptake. In general, the effects of BDE 47 on transporter mRNA 

expression are inconsistent between rat and human hepatocytes and between rat liver and rat 

hepatocytes.  There are inconsistencies between transporter mRNA expression and T4G 

levels in media. Tchaparian et al.(2011) found a lack of concordance in the expression 

profiles for uptake and efflux transporters in SCRH over days in culture, indicating there may 

be different culture conditions for uptake transporters and efflux transporters .The aim of the 

present study was to examine increases in UGTs and T4 metabolism in response to BDE 47; 

as a result, our goal was to optimize our system for nuclear receptor activation by BDE 47 

and T4 metabolism. To optimize our system we determined that it was best to use an 

induction phase (BDE 47 incubation) of 72 hours followed by a metabolism phase (T4 
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incubation) of 24 hours. Transporter activity or expression was not optimized in this study 

and may explain the contrasting results observed in this study. Overall, transporter function 

were not confirmed; therefore, conclusions about the effect of BDE 47 on T4 uptake or 

biliary excretion.  

A PBPK model was used to estimate the peak blood concentrations of BDE 47 from 

animals treated with 10, 30, or 100 mg/kg of BDE 47 for 4 consecutive days.  Model 

predictions of blood concentrations were within the range of the in vitro medium 

concentrations evaluated in the in vitro component of this study.  The modest effects on the 

induction of T4 glucuronidation occurred both in vitro and in vivo and at similar exposure 

concentrations.  In contrast, in vivo BDE 47 induced over a 90% decrease in serum T4 

concentrations.  These data suggest that the in vitro model recapitulates the in vivo response 

at similar concentrations and that it is unlikely that T4 glucuronidation plays a large part of 

this effect.  In the latest NHANES survey, the mean human serum concentrations of BDE 47 

are 2.1 nM with the 95th percentile at 17.8 nM.  These concentrations are approximately 1000 

fold lower than the exposures examined in these studies and suggest that effects on hepatic 

enzyme induction or changes in serum TH concentrations are unlikely to occur at 

background human exposure. 

The present study investigated the effects of BDE 47 on T4 serum concentrations and 

hepatic genes involved in T4 metabolism and transport in rats.  Species differences in T4 

metabolism also were examined using SCRH and SCHH treated with BDE 47. The TH 

disrupting effects of BDE 47 in rats is likely due to multiple mechanisms in the liver; 

including T4 glucuronidation and/or biliary efflux of T4 and is mediated through CAR/PXR 

pathways. In SCRH, BDE 47 appears to activate the CAR/PXR pathway and the mechanism 
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may be different than that of rats, because T4 glucuronidation appears not to be involved. In 

SCHH, T4 glucuronidation, biliary efflux and decreases in T4-TTR binding may be involved 

and is mediated through a CAR/PXR pathway. The effects observed in rats may be a result of 

a furan contaminant, which makes it difficult to attribute all of the observed effects to BDE 

47 alone. There were some inconsistencies in some of the transporter mRNA expression 

levels in the hepatocytes. This may be due to the culture days chosen for sample collection 

which may affect transporter mRNA expression or activity; therefore, transport efflux and 

uptake should not be ruled out as a mechanism of action. Overall, this study shows the utility 

of SCH in the continuing investigation of TH disruption and human relevance.   
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Table 4.1   
 

Donor information for human hepatocytes 
                Donor      Gender   Age       Smoke/Alcohol    Medications    Experimental Use  
               

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

Hu1236 
 
 

Hu1248 
 
 
 
 

Hu1362 
 
 
 
 

Hu1364 
 

Female 
 
 

Male 
 
 
 
 

Female 
 
 
 
 

Male 
 

68 
 
 

63 
 
 
 
 

57 
 
 
 
 

51 
 

No/No 
 
 

Yes/Yes 
 
 
 
 

No/No 
 
 
 
 

No/No 
 

Multivitamin 
Vitamin D 

 
Sertraline 
Vicodin 
Docusate  

 
 

Atenolol and 
Chlorthalidone 

Lorazepam 
Oxycodone 

 
Cyanocobalamin 

Diltiazem 
Ferrous Sulfate 

Folic Acid 
Metoprolol 
Omeprazole 
Potassium 
Chloride 

Prednisone 

BDE 47 
Treatment 

 
BDE 47 

Treatment 
 
 
 

BDE 47 
Treatment/ 

T4 Clearance 
 

 
BDE 47 

Treatment/ 
T4 Clearance 
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Table 4.2 
 

Taqman rat gene expression assays  

Group Gene Taqman Gene 
Expression Assay ID 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Endogenous control Gapdh Rn99999916_s1 

Nuclear receptor activation  Cyp1a1 
Cyp2b2 
Cyp3a1 

 

Rn00487218_m1 
Rn02786833_m1 
Rn01640761_gH 

Phase II metabolism 
 

Ugt1a1 
Ugt1a5 
Ugt1a6 
Ugt2b 

Sult1a1 
Sult1b1 
Sult1c1 
Sult1e1 

 

Rn00754947_m1 
Rn01427785_m1 
Rn00756113_mH 
Rn02349650_m1 
Rn00582915_m1 
Rn00673872_m1 
Rn00581955_m1 
Rn00820646_g1 

Transporter 
 
 

Mdr1a 
Mdr1b 
Mrp2 
Mrp3 
Ntcp1 
Oat2 

 

Rn00591394_m1 
Rn00561753_m1 
Rn00563231_m1 
Rn00589786_m1 
Rn00566894_m1 
Rn00585513_m1 

Thyroid hormone responsive Dio1 
Ttr 

Rn00572183_m1 
Rn00562124_m1 
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Table 4.3 
 

Taqman human gene expression assays   

Group Gene Taqman Gene   
Expression Assay ID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Endogenous control GAPDH 
 

Hs99999905_m1 
 

Nuclear receptor activation CYP1A1 
CYP2B6 
CYP3A4 

 

Hs00153120_m1 
Hs03044634_m1 
Hs00430021_m1 

 
Phase II metabolism 

 
UGT1A1 
UGT1A4 
UGT1A6 
UGT1A7 
UGT1A9 
UGT1A10 

 
 

SULT1A3 
SULT1E1 
SULT2A1 

 

Hs02511055_s1 
Hs01592480_m1 
Hs01592477_m1 
Hs02517015_s1 
Hs02516855_sH 
Hs02516990_s1 

 
Hs00413970_m1 
Hs00193690_m1 
Hs00234219_m1 

 

Transporter 
 
 

MDR1B 
MRP2 
MRP3 
NTCP1 
OAT2 

 

Hs00184500_m1 
Hs00166123_m1 
Hs00358656_m1 
Hs00161820_m1 
Hs00185140_m1 

 
Thyroid hormone responsive D1 

TTR 
Hs01554724_m1 
Hs00174914_m1 
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Figure 4.1. Total serum T4 concentrations in rats treated with BDE 47. 
Data are expressed as mean ± standard deviation (n=6/group).  
           ***Significantly different from control group (p< 0.001). 
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Figure 4.2. Comparison of metabolites in the medium of SCRH treated with BDE 47. 
Hepatocytes were incubated with 0.1% DMSO (control), 0.3, 3, or 30µM BDE 47 for 72 
hours starting on culture day 3.Hepatocytes are then incubated for 24 hours on culture day 6 
with 0.05µM [125I]-T4. Metabolites were separated using the established UPLC method. 
Metabolites analyzed are (A) T4G, (B) T4S, and (C) T3+rT3. Data represent the average of 
duplicate experiments. Data are expressed as pmol/mg cellular protein (mean±SD). Limits of 
detection= 0.5 pmol/mg cellular protein. n=4 for rat hepatocytes.  
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Figure 4.3. Comparison of metabolites in the medium of SCHH treated with BDE 47. 
Hepatocytes were incubated with 0.1% DMSO (control), 0.3, 3, or 30µM BDE 47 for 72 
hours starting on culture day 3.Hepatocytes are then incubated for 24 hours on culture day 6 
with 0.1µM [125I]-T4. Metabolites were separated using the established UPLC method. 
Metabolites analyzed are (A) T4G, (B) T4S, and (C) T3+rT3. Data represent the average of 
duplicate experiments. Data are expressed as pmol/mg cellular protein (mean±SD) Limits of 
detection= 0.5 pmol/mg cellular protein. n=4 human donors. Human hepatocytes are from 4 
donors (Hu1236, Hu1248, Hu1362, and Hu1364). **Significantly different than control; 
p<0.01.  
 
  



150 
 

0 10 20 30 40

1

10

100

0

2

4

6

 Rat T4 (serum)

 Rat T4G (media)

BDE 47 (µM)

Human T4G (media)

  T
4G

 (p
m

ol
/m

g/
) o

r
(p

m
ol

/m
in

/m
g)

Serum
 T

4  (ug/dL)

T4-UGT (microsomes)

 
Figure 4.4.  Comparison of in vivo and in vitro responses based on either medium 
concentrations (in vitro) or estimated blood concentrations (in vivo).  T4G activity is 
presented as either T4G accumulation in medium (T4G pmol/mg protein) or T4G activity in 
hepatic microsomal fractions (T4G pmol/min/mg protein) 
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Table 4.4  
 

Intrinsic clearance of [125I]-T4 following treatment with BDE 47  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

  Control BDE 47 Fold 
Change 

     
Rat 1 Rate constant K (1/min) 

 
Clint (µl/min/106 cells) 

 
Scaled Clint (ml/min/kg body 

weight) 
 

0.00075 
 

1.08 
 

5.16 
 

0.00065 
 

0.93 
 

4.47 
 

0.86 
 

0.86 
 

0.87 

Rat 2 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body 
weight) 

 

0.00052 
 

0.75 
 

3.58 
 

0.00060 
 

0.86 
 

4.11 
 

1.15 
 

1.15 
 

1.15 

Hu 1362 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body 
weight) 

 

0.00039 
 

0.56 
 

1.60 
 

0.00039 
 

0.56 
 

1.61 
 

1.00 
 

1.00 
 

1.00 

Hu 1364 Rate constant K (1/min) 
 

Clint (µl/min/106 cells) 
 

Scaled Clint (ml/min/kg body 
weight) 

 

0.00043 
 

0.62 
 

1.78 
 

0.00037 
 

0.52 
 

1.50 
 

0.86 
 

0.86 
 

0.84 
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Table 4.5 
 

Effects of BDE 47 on rat body weight, organ weights, and liver-to-body weight ratio 
Treatment  Body (g) a   Liver (g) a  Liver-to-body wt. ratio a 
(mg/kg/day)          
0   234.7±8.0  10.0±0.5  0.04±0.0  
10   238.5±9.5   11.2±0.8b  0.05±0.0c  
30   237.8±7.3  12.3±0.6d  0.05±0.0d  
100   232.1±10.7  12.7±0.9d  0.06±0.0d  
aData are expressed as mean ± standard deviation (n=6/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
dSignificantly different from control group (p< 0.001) 
  



153 
 

Table 4.6 
 

Effects of BDE 47 on P450s in rat liver  
Treatment  Cyp1a1a   Cyp2b2a  Cyp3a1a 
(mg/kg/day)          
0   1.1±0.6  1.2±0.8  1.0±0.3  
10            13.5±12.5   4.7±1.5  2.2±0.7  
30            24.1±27.0           16.4±6.7d  6.2±2.8c  
100            44.8±45.4b           21.0±7.1d  8.9±3.1d  
aData are expressed as mean ± standard deviation (n=6/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
dSignificantly different from control group (p< 0.01) 
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Table 4.7 
 

Effects of BDE 47 on P450s in rat hepatocytes 
Treatment  Cyp1a1a   Cyp2b2 a  Cyp3a1 a 
(µM)          
0   1.0±0.0  1.0±0.0  1.0±0.0  
0.3   1.6±1.7   7.3±4.7  1.7±1.5  
3   1.2±1.4           45.1±36.5b  1.3±0.1  
30   0.6±0.4           40.6±25.7b  7.2±4.7c  
aData are expressed as mean ± standard deviation (n=5/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
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Table 4.8 
 

Effects of BDE 47 on P450s in human hepatocytes 
Treatment  CYP1A1a   CYP2B6 a  CYP3A4 a 
(µM)          
0   1.0±0.0  1.0±0.0  1.0±0.0  
0.3   1.0±0.6   4.1±4.7  1.4±1.1  
3   1.0±1.2  5.0±3.3  2.1±1.2  
30   2.4±1.7           15.7±12.1b           11.0±8.4b  
aData are expressed as mean ± standard deviation (n=4/group) 
bSignificantly different from control group (p< 0.05) 
  



156 
 

Table 4.9 
 

Effects of BDE 47 on T4-UGT activity and Ugt mRNA expression in rat liver 
Treatment T4-UGTa   Ugt1a1a  Ugt1a5a  Ugt1a6a 

(mg/kg/day) 
0  1.0±0.1  1.1±0.4  1.0±0.3  1.0±0.3 
10  1.6±0.1c  1.3±0.2  1.0±0.3  1.3±0.2 
30  1.5±0.2c  1.7±0.4b  1.2±0.0  1.6±0.3 
100  1.5±0.1c  1.6±0.4b  1.5±0.3b  2.0±0.6c 
aData are expressed as fold change mean ± standard deviation (n=5-6/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.001) 
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Table 4.10 
 

Effects of BDE 47 on Ugt mRNA expression in rat hepatocytes 
Treatment    Ugt1a1a  Ugt1a5a  Ugt1a6a 

(µM) 
0    1.0±0.0  1.0±0.0  1.0±0.0 
0.3    1.3±0.5  1.3±0.5  1.2±0.5 
3    0.9±0.1  1.3±0.5  1.1±0.1 
30    1.1±0.4  1.8±0.8  1.7±0.8 
aData are expressed as fold change mean ± standard deviation (n=5/group) 
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Table 4.11 
 

Effects of BDE 47 on UGT mRNA expression in human hepatocytes 
Treatment UGT1A1a  UGT1A4a  UGT1A6a  UGT1A9a 

(µM) 
0  1.0±0.0  1.0±0.0  1.0±0.0   1.0±0.00     
0.3  1.2±0.4  1.4±0.3  1.1±0.3  1.0±0.2     
3  1.7±0.7  1.6±1.3  1.2±0.5  1.0±0.2      
30  3.6±1.6b  2.3±0.6  1.5±0.6  1.0±0.2      
aData are expressed as fold change mean ± standard deviation (n=4/group) 
bSignificantly different from control group (p< 0.01) 
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Table 4.12 
 

Effects of BDE 47 on T4-SULT activity and SULT mRNA expression in rat liver 
Treatment T4-SULTa      Sult1a1a      Sult1b1a      Sult1c1a      Sult1e1a 
(mg/kg/day)  
0  1.0±0.3    1.0±0.2    1.0±0.1    1.0±0.2    1.0±0.2 
10  1.0±0.3    0.9±0.1    1.1±0.3    1.0±0.2    1.0±0.2 
30  1.0±0.5    0.8±0.1    1.0±0.2    1.0±0.2    0.9±0.1 
100  0.8±0.3    0.8±0.3    1.0±0.2    1.0±0.2    0.9±0.1 
aData are expressed as fold change mean ± standard deviation (n=5-6/group) 
aSignificantly different from control group (p< 0.05) 
bSignificantly different from control group (p< 0.01) 
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Table 4.13 
 

Effects of BDE 47 on and SULT mRNA expression in rat hepatocytes 
Treatment  Sult1a1a Sult1b1a Sult1c1a Sult1e1a 
(µM)  
0   1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 
0.3   1.2±0.5 1.2±0.2 1.0±0.5 1.4±1.0 
3   0.9±0.3 1.0±0.2 0.9±0.2 1.1±0.5 
30   0.7±0.3 1.0±0.3 1.0±1.0 1.4±0.5 
aData are expressed as fold change mean ± standard deviation (n=5/group) 
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Table 4.14 
 

Effects of BDE 47 on SULT mRNA expression in human hepatocytes 
Treatment  SULT1A3a  SULT1E1a  SULT 2A1a   
(µM)  
0   1.0±0.0  1.0±0.0  1.0±0.0  
0.3   1.6±1.0  2.0±1.7  1.0±0.4  
3   1.1±0.6  0.9±0.6  1.1±0.8  
30   0.6±0.2  0.4±0.5  1.1±0.6  
aData are expressed as fold change mean ± standard deviation (n=4/group) 
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Table 4.15 
 

Effects of BDE 47 on efflux and uptake transporter mRNA expression in rat liver 
Treatment Mdr1aa         Mdr1ba           Mrp2a            Mrp3a            Ntcp1a            Oat2a 
(mg/kg/day) 
0            1.0±0.1         1.1±0.5         1.0±0.2          1.0±0.4           1.0±0.3           1.0±0.2 
10            1.3±0.3         1.2±0.4         1.1±0.3          4.2±2.5           1.2±0.4           0.9±0.2 
30            1.3±0.3         1.8±0.6         1.2±0.2        10.4±3.2d          1.1±0.3           0.9±0.1 
100            1.6±0.4b        2.5±0.9c        1.4±0.5        15.0±2.8d         1.1±0.4            0.9±0.2 
aData are expressed as fold change mean ± standard deviation (n=6/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
dSignificantly different from control group (p< 0.001) 
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Table 4.16 
 

Effects of BDE 47 on efflux and uptake transporter mRNA expression in rat 
hepatocytes 

Treatment Mdr1aa          Mdr1ba          Mrp2a          Mrp3a           Ntcp1a          Oat2a 
(µM) 
0           1.0±0.00         1.0±0.0         1.0±0.0        1.0±0.0         1.0±0.0         1.0±0.0 
0.3           1.4±0.6           1.4±0.5         1.3±0.5        1.3±0.4         1.2±0.5         1.3±0.5 
3           1.0±0.3           0.9±0.3         1.1±0.3        0.9±0.1         0.7±0.2         1.0±0.2 
30                  1.5±0.6           1.3±0.7         1.6±0.5b       1.3±0.5         0.7±0.4         1.1±0.3 
aData are expressed as fold change mean ± standard deviation (n=5/group) 
bSignificantly different from control group (p< 0.05) 
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Table 4.17 
 

Effects of BDE 47 on efflux and uptake transporter mRNA expression in human 
hepatocytes 

Treatment  MDR1a MRP2a  MRP3a  NTCP1a OAT2a 
(uM) 
0   1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 
0.3   1.1±0.3 0.9±0.6 0.9±0.3 1.3±0.6 0.9±0.4 
3   1.1±0.0 1.0±0.2 0.7±0.1b 1.0±0.5 0.5±0.1b 
30   1.5±0.6 1.6±0.3c 0.7±0.1b 0.4±0.2 0.4±0.2b 
aData are expressed as fold change mean ± standard deviation (n=4/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
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Table 4.18 
 

Effects of BDE 47 on thyroid hormone responsive genes in rat liver 
Treatment       Dio1a      Ttra  
(mg/kg/day)  
0    1.0±0.2   1.0±0.3   
10    1.1±0.2    1.0±0.4   
30    1.1±0.1   1.0±0.2   
100    1.1±0.4   0.9±0.4   
aData are expressed as mean ± standard deviation (n=6/group) 
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Table 4.19 
 

Effects of BDE 47 on thyroid hormone responsive genes in rat hepatocytes 
Treatment       Dio1a                 Ttra 
(µM)  
0    1.0±0.0   1.0±0.0   
0.3    1.2±0.6   1.2±0.6   
3    0.9±0.4   1.0±0.5   
30    0.7±0.2   1.1±0.9 
aData are expressed as mean ± standard deviation (n=5/group) 
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Table 4.20 
 

Effects of BDE 47 on thyroid hormone responsive genes in human hepatocytes 
Treatment      DIO1a        TTRa  
(µM)  
0    1.0±0.0    1.0±0.0   
0.3    1.5±0.5    1.1±0.4   
3    1.3±0.3    0.8±0.0   
30    1.7±0.6    0.4±0.1b   
aData are expressed as mean ± standard deviation (n=4/group) 
bSignificantly different from control group (p< 0.01) 
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CHAPTER 5 

 

CONCLUSIONS 

 

This study builds upon previous investigations into the mechanism of T4 disruption. It 

is hypothesized that through the activation of nuclear receptors such as, AhR, CAR, and 

PXR, hepatic UGTs are induced resulting in the enhancement in hepatic T4 glucuronidation 

and T4 clearance from the serum. There are findings that show that the magnitude of serum 

T4 decreases does not correlate with the magnitude of inductions in hepatic T4-UGT activity. 

Further reports indicate that the inconsistencies in serum T4 concentrations may be due the 

increased hepatic accumulation and elimination of T4 instead of increases in T4 

glucuronidation. Overall, this work shows that the induction of T4 glucuronidation is species-

and agonist-specific.  In addition, because of the small changes in T4 glucuronidation, the 

role of hepatic T4 glucuronidation in the disruption of T4 homeostasis is uncertain.  

The liver is a major site of xenobiotic and TH metabolism; therefore, hepatocytes 

were used because of their biological relevance. Hepatocytes also offered a direct 

comparison of hepatic T4 metabolism between rats and humans.  Sandwich cultured 

hepatocytes (SCH) were specifically chosen because hepatocytes in a sandwich configuration 

have been shown to extend the metabolism and transport functions of the cells. To achieve 

the goals set forth in this study, an analytical method for the detection of THs and their 

metabolites was developed.  Most importantly, the radiometric detection method developed
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for these studies simultaneously detect and quantify radiolabelled THs and metabolites in 

media and in hepatocytes.  To my knowledge, these are the first in vitro experiments to use 

physiologically relevant concentrations of T4 for rat (0.05µM) and human (0.1µM) to 

examine T4 metabolite levels in media. In an effort to create a straightforward method for 

measuring T4 metabolism TH serum binding proteins were not added to the media.  To make 

the experiments more relevant, future studies should use serum binding proteins (TTR and 

TBG) in the media, at species relevant concentrations would be helpful in examining the 

influence of T4 binding on metabolism.  TTR and TBG are produced in the liver and are 

presumed to be produced in hepatocytes; therefore, by adding TTR and TBG to the media in 

addition to what is produced by the hepatocytes may result in serum protein concentrations 

greater than those found in rat and human serum.  

With the knowledge that TH translocation occurs through active transport 

mechanisms (Blondeau, et al., 1988;  De Jong, et al., 1992;  de Jong, et al., 1993), it is 

reasonable to assume that active transport is likely the rate-limiting step for TH metabolism 

in hepatocytes. T4 uptake has been shown to be slower in human hepatocytes than rat 

hepatocytes (Krenning, et al., 1981;  de Jong, et al., 1993). In agreement with previous 

studies, I found that [125I]-T4 accumulation was a slower process in SCHH than in SCRH at 

longer time points; however at shorter time points accumulation did not change. Hepatic 

elimination may be rate-limiting due to the interplay of metabolic and transport processes; 

therefore, the greater T4 metabolite production of SCRH in comparison to SCHH may be 

partially explained by the more rapid uptake of T4 into SCRH.  

Agonists of hepatic nuclear receptors CAR, PXR, and AhR, consistently cause 

decreases in circulating TH concentrations in rodents (Barter and Klaassen 1992; Kretschmer 
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and Baldwin 2005; Qatanani et al. 2005). Prototypical agonists were used to examine the 

effects of nuclear receptor agonists on T4 metabolism. SCRH and SCHH hepatocytes were 

treated with PB and 3MC, the prototypical agonists for CAR and AhR, respectively. Due to 

the species differences in PXR activation, rat hepatocytes were treated with PCN and human 

hepatocytes were treated with Rif. The prototypical persistent organic pollutant, PCB 153 

was used in these studies because as a PB-like PCB, it induces the CAR P450 target, CYP2B.  

SCRH and SCHH were treated with PCB 153 to compare with the effects of PB treatment on 

T4 metabolism.  T4G in the media of SCRH increased with all of the nuclear receptor 

activators; however T4G only increased in the media of SCHH following treatment with Rif 

and PCB 153. Only PCB 153 increased T4G levels in the media of both SCRH and SCHH. 

This suggests that PCB 153 may be similar to PB in its ability to increase CYP2B; however 

PCB 153 is not PB-like when comparing T4G levels in the media of SCRH and SCHH. The 

results in SCRH are similar to results in vivo which show increases in hepatic T4-UGT 

activity or biliary T4G elimination (McClain, et al., 1989;  Hood and Klaassen, 2000a;  Craft, 

et al., 2002;  Kato, et al., 2004;  Kato, et al., 2011). Data on xenobiotic-mediated increases in 

T4 metabolism in humans is limited; however, the results in SCRH are similar to previous 

human in vivo studies, in which Rif decreased serum T4 and increased liver metabolic 

activity to a greater extent than PB (Ohnhaus, et al., 1981;  Ohnhaus and Studer, 1983).  

There is some consensus with the results from previous in vivo studies; however, it was 

difficult to correlate the UGT mRNA expression with T4G levels in media of SCRH and 

SCHH.  The most important finding from these data is that while PCB 153 is PB-like in its 

ability to induce CYP2B, PCB 153 is different from PB as it is a more efficacious inducer of 
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T4 glucuronidation than PB. Future studies should focus on the differences in UGT induction 

between PB and PCB 153.  

AhR, CAR and PXR have been shown to regulate SULTs (Saini, et al., 2004;  

Yanagiba, et al., 2009;  Aleksunes and Klaassen, 2012); however, T4S levels in the media of 

SCRH and SCHH did not change with treatment of each agonist. MRNA expression of 

SULTs involved with T4 sulfation also did not change. The lack of change in T4S levels is 

not exactly surprising, because T4G is the major metabolite found in the bile of rats. Also, 

SULTs have a low affinity for T4 so it is reasonable that T4S levels do not change whereas 

T4G levels increase (Rutgers, et al., 1989;  Visser, 1996). In this study, there was no change 

in T3+rT3 levels and no change in DI mRNA expression in both species of hepatocytes. 

Hepatic deiodinase I activity often decreases with hypothyroidism in rats treated with AhR 

agonists (Hood and Klaassen, 2000b;  Viluksela, et al., 2004;  Szabo, et al., 2009). 

Reductions in deiodinase activity is thought to be a physiological response to decreases in 

serum T4 and is not mediated by nuclear receptor agonist; therefore, changes in T3+rT3 

production and DI mRNA expression may not be observed in an in vitro system(Davies, et 

al., 1996). 

Increases in [125I]-T4 liver accumulation and biliary elimination of [125I]-T4 and [125I]-

T4G occurs in rodents treated with PB or PCB 153 (Kato, et al., 2010;  2011). I found that 

[125I]-T4 accumulation is slower in SCHH than in SCRH. This shows that uptake and efflux 

transporter may play an important part in the metabolism of T4. The effects of nuclear 

receptor agonists on uptake and efflux transporter mRNA expression were mixed. mRNA 

expression for efflux transporters MDR1, an efflux transporter, increased with PB, 3MC and 

PCB 153 in SCRH and with PB and Rif in SCHH. MRP2, also an efflux transporter 
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increased in SCHH treated with PB and Rif. The only change in uptake transporters was with 

the increase in Oat2 mRNA expression, in SCRH treated with PB.  These results indicate that 

treatment with nuclear receptor agonists may alter efflux and uptake transporter activity; 

however, it is difficult to correlate T4G changes with transporter mRNA expression in SCRH 

and SCHH.  It could be explained that the lack of consistency between transporter mRNA 

expression and treatment with nuclear receptor agonist is due to the culture day in which the 

cells were collected for mRNA analysis. Hepatocytes were treated for 72 with an agonist; 

however, it is possible that treating the hepatocytes for 48 hours would result in more 

consistency in transport mRNA expression. Tchaparian, et al.(2011) demonstrated that in 

SCRH, expression profiles for uptake and efflux transporters do not predict transport activity. 

This suggests that optimal culture conditions for uptake transporters are not necessarily 

optimal for efflux transporters. The in vitro method described in this report was optimized for 

T4 metabolism and not for transporter activity; therefore, it is difficult to make conclusions 

about T4 transport in our system. Further work describing the uptake and efflux of T4 by 

transporters is needed.  

BDE 47 is a major congener in the PBDE class of brominated flame retardants. It is 

also the predominant congener found in most environmental and human samples (Hites, 

2004;  Lorber, 2008). BDE 47 has been shown to be an agonist for CAR and to a lesser 

extent PXR in rodents (Pacyniak, et al., 2007;  Richardson, et al., 2008). Previous studies, 

show BDE 47 decreases serum T4 in rodents and increases T4-UGT activity or UGT mRNA 

expression (Hallgren, et al., 2001;  Hallgren and Darnerud, 2002;  Richardson, et al., 2008). 

To my knowledge this is the first time in vivo-in vitro comparisons have been made 

concerning BDE 47 and its effect on T4 metabolism.  Using SCRH and SCHH, we also 
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investigated the changes in T4G levels in response to BDE 47. To examine effects on T4 

glucuronidation, T4-UGT activity and UGT mRNA expression were analyzed in the liver of 

rats treated with BDE 47. T4-UGT activity did not change; however, UGT mRNA expression 

increased. BDE 47 also did not change T4G levels or UGT mRNA expression in SCRH. The 

increase in hepatic UGT mRNA expression did not coincide with the lack of T4-UGT activity 

increase in rat liver or T4G levels in the media of rat hepatocytes.  This discrepancy could be 

due to an inability of the T4-UGT enzyme assay to accurately measure T4 glucuronidation. It 

is possible that the T4-UGT assay was not optimized for different UGT isoforms; therefore, 

changes in T4 glucuronidation may not be measured accurately (Visser, et al., 1993a;  Hood 

and Klaassen, 2000a). Also, certain UGT isoforms may be necessary to adequately measure 

increases in T4-UGT activity or in T4G levels in the media. The rat and SCRH data is 

inconsistent with the large decrease (96%) in serum. In SCRH, BDE 47 did not change T4G 

levels or UGT mRNA expression which supports the findings in the in vivo rat study. This 

suggests that hepatic T4 glucuronidation has only a minor effect on the decrease in serum T4 

in rats.  In contrast, BDE 47 increased T4G levels in the media of SCHH and increased 

UGT1A1 mRNA expression which shows a potential species difference in the BDE 47 effect 

on T4 metabolism in rodents and humans.  

The response of transport mRNA expression to BDE 47 was mixed. Overall, the 

results suggests MDR1 in rats may mediate the biliary elimination of T4 or T4G following 

BDE 47 treatment; however, this same result may not be observed in SCRH or SCHH. Mrp2 

mRNA expression did not change with BDE 47; therefore, it may not be responsible for the 

decrease in serum T4 observed in rats. In general, transporter mRNA expressions following 

treatment with BDE 47 are mixed between the species of hepatocytes and rat liver which 
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makes it difficult to make conclusions about BDE 47 and T4 transport. To better answerer 

questions concerning transporters, further studies on the elimination or accumulation of T4 in 

rats should be conducted.  

In conclusion, there were consistent differences in the levels of T4G in the media of 

untreated SCRH and SCHH. Species differences were also observed for [125I]-T4 uptake and 

T4G levels in treated hepatocytes which may give insight into the effects of nuclear receptor 

agonists on TH disruption. It is understood that there are species differences in nuclear 

receptor activation and ligand binding and these species difference were apparent in this 

study. There were some inconsistencies in some of the UGT, SULT and transporter mRNA 

expression levels which are difficult to explain; but they should not be ruled out as a method 

to describe increases in T4 metabolism or biliary elimination. Future studies may be able to 

resolve these inconsistencies by confirming the gene expression data with protein analysis. 

To my knowledge this is the first study to examine multiple T4 metabolites and induction by 

AhR, CAR, and PXR agonist in rat and human hepatocytes. While there are limitations in the 

quantitation of T4 uptake, further work is warranted. Overall, these studies show the utility of 

SCH in the study of hepatic T4 metabolism in the continuing investigation of thyroid 

hormone disruption and human relevance.  
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APPENDIX 

POSSIBLE MECHANISMS OF THYROID HORMONE DISRUPTION IN MICE BY 
BDE 47, A MAJOR POLYBROMINATED DIPHENYL ETHER CONGENER2 

 

A. INTRODUCTION 

 

Polybrominated diphenyl ethers (PBDEs) have been commercially used as fire 

retardants in consumer products such as polyurethane foam, electronics, and textile coating.  

PBDEs are lipophilic compounds that have been detected in human serum and breast milk as 

well as in various types of environmental media around the world (Petreas et al., 2003;  

Schecter et al., 2003;  Focant et al., 2004b).  2, 2', 4, 4'-Tetrabromodiphenyl ether (BDE 47) 

is the predominant congener found in most wildlife and human samples and generally 

accounts for half of the total PBDEs measured (Birnbaum and Staskal, 2004;  Hites, 2004).  

Although health risks to humans following PBDE exposure are unknown, several studies in 

rodents report potential developmental, reproductive, neurological, and endocrine toxicity 

(Zhou, et al., 2001;  de Wit, 2002;  Zhou, et al., 2002;  Birnbaum and Staskal, 2004). 

Due to their structural similarity to polychlorinated biphenyls (PCBs) and thyroid 

hormones (THs), PBDEs may act as TH disruptors.  Developmental exposures to commercial  

_____________________ 

2Richardson, V.M., Staskal, D.F., Ross, D.G., Dilliberto, J.J., DeVito, M.J., and Birnbaum, 
L.S. Toxicol Appl Pharmacol 226(3), 244-50. 2008
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PBDE mixtures decreased circulating TH concentrations in rat pups (Zhou, et al., 2002;  

Ellis-Hutchings et al., 2006).  Additionally, short term exposures to PBDEs during puberty 

resulted in decreases in TH in rats (Zhou, et al., 2001;  Stoker et al., 2004).  While there is 

sufficient evidence that PBDEs decrease circulating TH concentrations, the mechanisms 

involved are unclear.   

There are multiple sites within the thyroid axis in which xenobiotics can alter the 

hormonal balance, such as changes in binding proteins and hormone metabolism.  In rodents, 

decreases in TH concentrations are often associated with induced hepatic thyroxine (T4)-

glucuronidation followed by increased biliary elimination of the conjugated hormone (Barter 

and Klaassen, 1992;  Vansell and Klaassen, 2002a).  Rats exposed to PBDEs have decreased 

concentrations of circulating T4 which are linked to moderate induction in hepatic 

uridinediphosphate glucuronosyltransferases (UGTs) (Hallgren and Darnerud, 2002;  Zhou, 

et al., 2002).  While UGTs play a role in decreasing circulating TH, it is not certain that the 

induction of hepatic T4-glucuronidation alone is responsible for the effects on TH 

concentration following PBDE exposures.  For instance, studies using UGT1A-deficient 

Gunn rats exposed to phenobarbital (PB) or PCBs demonstrate that decreases in serum total 

T4 were not necessarily glucuronidation dependent (Collins and Capen, 1980;  Kato, et al., 

2004).  In vivo studies show that PCB metabolites can bind to transthyretin (Ttr), a major TH 

transport protein in plasma, (Kato, et al., 2005) and also cause increases in biliary T4 

excretion which in combination may result in decreases in circulating total T4.  Hydroxylated 

PBDEs incubated with T4 and human transthyretin show decreases in ex-vivo T4-Ttr binding 

(Hallgren and Darnerud, 2002;  Hamers et al., 2006).  This suggests that alterations in Ttr-

mediated transport may also contribute to the observed decrease in T4.     
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Xenobiotic metabolizing enzymes (XMEs) such as UGTs and cytochrome P450s 

(P450s), as well as transport proteins, are induced through the activation of a variety of 

nuclear receptors including the aryl hydrocarbon receptor (AhR), pregnane X receptor 

(PXR), and constitutive androstane receptor (CAR) (Maglich, et al., 2002;  Auyeung, et al., 

2003;  Bock and Kohle, 2004;  Wagner, et al., 2005).  The role of UGTs in the PBDE–

mediated decrease in TH has been studied, but the function transporters play in this decrease 

has yet to be determined.  In addition to UGTs, PBDEs induce cytochrome P450s (Sanders, 

et al., 2005;  Staskal et al., 2005), but it is uncertain if transport proteins are also altered, and, 

if so, what role they play in the decrease in circulating T4.  Studies have shown a correlation 

between induction of hepatic UGTs (Ugt1a1), multidrug resistance protein associated protein 

(Mrp2), and organic anion transporting proteins (Oatp1 and Oatp2) mRNA levels, with 

decreases in serum TH concentrations (Ribeiro, et al., 1996;  Mitchell, et al., 2005;  Wong, et 

al., 2005).  There is also evidence that multidrug resistance proteins (MDRs) are important in 

TH efflux (Mitchell, et al., 2005).  Collectively, these studies indicate that active transport 

along with glucuronidation and altered serum binding are possibly involved in TH decreases.  

In an effort to understand the mechanisms involved with alterations in TH 

concentrations following exposure to PBDEs, this study examines the effects of BDE 47 on 

TH homeostasis in adult female mice.  Multiple parameters including enzymatic activities 

and gene expression were assessed to identify possible mechanisms of TH disruption.  In 

particular, genes related to TH transport and metabolism were analyzed for changes 

following BDE 47 exposure.   
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B. MATERIALS AND METHODS 

 

Chemicals   

2, 2', 4, 4'-Tetrabromodiphenyl ether (BDE 47) was generously provided by Great 

Lakes Chemical Corporation (Indianapolis, IN). Purity was >98% as determined by reverse-

phase-performance liquid chromatography (HPLC).  All other chemicals used were of the 

highest grade commercially available. 

 

Animals and Treatment  

Female C57BL/6 mice (9 weeks old, 19-22g) were obtained from Charles River 

Breeding Laboratories (Raleigh, NC).  Animals were maintained on a 12- hour light/dark 

cycle at ambient temperature (22°C) and relative humidity (55±5%).  They were provided 

with Purina 5001 Rodent Chow (Ralston Purina Co., St. Louis, MO) and tap water ad 

libitum.  Mice were housed individually and allowed to acclimate for one week before study 

commencement.  Animals were held in a facility approved by the American Association for 

Accreditation of Laboratory Animal Care (AAALAC).  The Animal Care and Use 

Committee of NHEERL (U.S. EPA, RTP, NC) approved all animal protocols.  Animals were 

treated with a single daily dose for 4 consecutive days.  Mice were randomly selected for 

each treatment group (n=10/group).  Mice were administered BDE 47 in corn oil (0, 3, 10, or 

100 mg/kg/day for 4 days) by oral gavage (10 ml/kg).  Dosing solutions were prepared by 

dissolving BDE 47 in hexane followed by the addition of corn oil.  Hexane was removed 

from the dosing solutions by evaporation with a speed vacuum device (Speed Vac, Savant 

Instruments, Inc., Farmingdale, NY).   
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Serum and Tissue Collection 

24 hours after the final dose, mice were euthanized by CO2 asphyxiation followed by 

exsanguination via cardiac puncture; and blood, liver, and kidneys were collected.  Blood 

was allowed to clot for 1 hour on ice in serum separator tubes (Becton Dickinson, Franklin 

Lakes, NJ).  Blood was then centrifuged at 1200 x g for 30 min to obtain serum.  Serum was 

frozen and held at -80°C until analyzed.  Livers and kidneys were removed and weighed.  

Between 100 and 150 mg of liver or kidney were placed in RNAlater solution (Ambion, Inc., 

Austin, TX) and frozen at -80°C for subsequent RNA purification.  The remaining liver was 

frozen at -80°C for further enzyme activity analysis. 

 

Thyroid Hormone Analysis 

Serum total thyroxine (T4) concentrations were measured using the Coat-a-Count 

radioimmunoassay (RIA) kit (Diagnostic Products Corporation, Los Angeles, CA) according 

to the manufacturer’s protocol.  Each sample was measured in duplicate. All data is 

expressed as ng/ml serum T4. 

 

EROD, PROD, and T4-UGT assays 

Liver microsomal fractions were prepared (Zhou, et al., 2001;  Zhou, et al., 2002) and 

protein concentrations were measured using a protein assay kit with bovine serum albumin as 

a standard (Bio-Rad Laboratories, Hercules, CA).  Enzymatic activities for ethoxyresorufin 

O-deethylase (EROD), a marker for CYP1A1, and pentoxyresorufin O-deethylase (PROD), a 

marker for CYP2B, were measured using a spectrofluorimetric assay (DeVito et al., 1994).  

Hepatic T4-UGT activity was determined by using a modified assay (Zhou, et al., 2001;  
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Zhou, et al., 2002) based on a previously published method (Visser, et al., 1993b).  All data 

is expressed as fold change as compared to control, where controls for EROD and PROD are 

expressed as nMol resorufin/min/mg protein and controls for T4-UGT are expressed as pMol 

T4-UGT/min/mg protein. 

 

RNA isolation, relative real-time RT-PCR, and RT-PCR data analysis 

Total RNA was isolated using the RNeasy Midi Kit with DNase I digestion 

performed during column purification (Qiagen, Hilden, Germany).  To assess the integrity of 

the RNA samples, the 2100 Bioanalyzer was used (Agilent Technologies, Palo Alto, CA) 

using RNA with RNA Integrity Numbers (RINs) greater than 8.1.  Samples with RINs less 

than 8.1 were not analyzed by RT-PCR, therefore, the sample size used for many of the 

genes examined varied (n=4-6/group).  Real-time RT-PCR was performed using the ABI 

Prism 5700 Sequence Detection System (ABI, Foster City, CA).  100 ng of total RNA was 

used for each reaction.  cDNA was synthesized using TaqMan Reverse Transcriptase Kits 

(ABI, Foster City, CA).  PCR was then performed on all cDNAs using TaqMan Universal 

PCR Master Mix and TaqMan Gene Expression Assays (ABI, Foster City, CA).  These 

assays are Cyp1a1 (ABI# Mm00487218_m1), Cy2b10 (Mm00456591_m1), Ugt1a1 

(Mm0129059_m1), Ugt1a6 (Mm01290954_m1), Ugt1a7 (Mm01967851_s1), Ugt2b5 

(Mm01623253_s1), Mdr1a (Mm00440761_m1), Mdr1b (Mm0040736_m1), Mrp3 

(Mm00551550_m1), Mct8 (Mm00486202_m1), Ttr (Mm00443267_m1).   The thermal cycle 

condition for the RT reaction was as follows: 10 min at 25°C, 30 min at 48°C, and then 5 min 

at 95°C.  The PCR reaction was performed as follows:  2 min at 50°C (uracil-DNA 

glycosylase activation), 10 min at 95°C (activation of Taq DNA polymerase), and 40 cycles 
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of denaturation at 95°C for 15 s followed by annealing and extension at 60°C for 1 min.  

Data were analyzed using the Sequence Detection Systems software (ABI, Foster City, CA).  

All RT-PCR data were quantified by the ΔΔCt method (Applied Biosystems User Bulletin 2) 

relative to a calibrator sample and an endogenous control (18S).  In the ΔΔCt method, the 

control group is used as a reference point for all other dose groups; therefore, all samples are 

expressed as fold difference as compared to control. 

 

Data Analysis 

All data are presented as the mean ± standard deviation.  The statistical intergroup 

comparisons were determined by using one-way analysis of variance (ANOVA) followed by 

Dunnet’s Multiple Comparison post test (GraphPad Prism 3.0, GraphPad Software San 

Diego, CA).  The levels of probability of statistical significance are p < 0.05.  Data were 

transformed (Y=1/Y), where intergroup variability was deemed significantly different by 

Bartlett’s test for equal variances.  Data transformed due to intergroup variability include 

EROD, PROD, Cyp2b10, Ugt1a7, Mrp3, and Mct8. 

 

C. RESULTS 

 

Body weight, liver weight, and serum total T4 

There were no obvious signs of toxicity and no significant treatment effect on body 

weight, or kidney weight between treatment groups.  Liver weights and liver-to-body weight 

ratios significantly increased 14% and 10%, respectively, at 100 mg/kg/day of BDE 47 

(Table 1).  A maximal decrease in serum total T4 of almost 43% was observed at 100 
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mg/kg/day of BDE 47 with respect to controls (Figure 1).  There were no significant effects 

on liver weight or serum total T4 at the lower doses tested (3 and 10 mg/kg/day of BDE 47) 

(Table 1).  

 

Hepatic UGT induction 

To determine which UGT isoforms were induced with exposure to BDE 47, liver 

mRNA expression was analyzed by real time RT-PCR.  Treatment with BDE 47 increased 

hepatic mRNA expression of Ugt1a1, Ugt1a7 and Ugt2b5.  Specifically, 100 mg/kg/day of 

BDE 47 significantly increased hepatic Ugt1a1 and Ugt2b5 mRNA expression 1.2- and 1.3-

fold, respectively.  Ugt1a7 mRNA expression also significantly increased 1.3- and 1.7-fold at 

10 mg/kg/day and 100 mg/kg/day of BDE 47, respectively.  Ugt1a1, Ugt1a7, and Ugt2b5 

correlated with the observed decreases in T4 (R2=0.27, 0.46, and 0.22, respectively and 

p<0.05, 0.001, and 0.05, respectively).  Liver microsomes were used to determine UDP-

glucuronosyltransferase (UGT) activity with respect to T4.  Hepatic T4-UGT enzyme activity 

was unchanged with BDE 47 treatment and therefore, did not correspond with the changes 

observed in UGT mRNA expression.  The T4-UGT enzyme assay does not detect specific 

UGT isoforms.  This suggests that our assay may not be a sensitive measure of actual 

changes in individual UGT isoform activity (Table 2). 

 

Hepatic Cytochrome P450 induction 

 Effects on major xenobiotic metabolizing enzymes (XMEs) for phase I metabolism, 

were examined.  Cyp1a1 mRNA expression and EROD activity were used as markers for Ah 

receptor activation (Whitlock, 1990).  BDE 47 significantly increased hepatic EROD, a 
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marker for Cyp1a1 activity, 1.4-fold at the highest dose (100 mg/kg/day); however, hepatic 

Cyp1a1 mRNA expression was not significantly changed with treatment.  Hepatic PROD and 

Cyp2b10 mRNA expression were used as markers for CAR activation (Waxman, 1999;  

Maglich, et al., 2002;  Xiong et al., 2002;  Yamada et al., 2006).  Hepatic PROD, a marker 

for CYP2B activity, increased significantly at the 3, 10, and 100 mg/kg/day doses, 1.2- , 1.8-, 

and 4.8- fold, respectively.  Hepatic Cyp2b10 mRNA expression was increased significantly 

at 10 and 100 mg/kg/day, 2.5- and 19.9-fold, respectively.  Correlations with T4 decreases 

were significant for PROD (R2=0.57, p<0.0001) and Cyp2b10 (R2=0.44, p<0.005).  Hepatic 

Cyp3a11 mRNA expression, a marker for PXR activation (Waxman, 1999;  Xie et al., 2000), 

showed no significant changes with treatment.(Table 3). 

 

Transporter mRNA expression 

Several transporters known to transport glucuronides or thyroid hormones were 

analyzed.  Specifically, major efflux transporters in the ATP binding cassette (ABC) gene 

family, including multidrug resistance-associated proteins (MRPs), and multidrug resistance 

proteins (MDRs), were analyzed for changes in mRNA expression in liver (Table 3).  The 

expression of hepatic Mrp3 mRNA, a major sinusoidal efflux transporter of glucuronides, 

showed a significant 47% increase at 100 mg/kg/day of BDE 47.  Overall, Mrp3 mRNA 

expression correlated significantly with decreases in T4 (R2=0.46, p<0.001).  Mdr1a and 

Mdr1b encode P-glycoproteins (P-gp) in mice and can transport several substrates including 

glucuronides and thyroid hormones (Ribeiro, et al., 1996;  Mitchell, et al., 2005).  Exposures 

to BDE 47 caused a significant dose-dependent decrease at all doses tested in hepatic Mdr1a 

mRNA expression; however, the decreases did not correlate with T4 decrease (R2= 0.17, 
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p=0.08).  Mdr1b mRNA expression was unchanged in liver (Table 4).  MCT8, a membrane 

bound thyroid hormone uptake transporter (Friesema, et al., 2003) was examined for BDE 

47- related changes in mRNA expression.  Hepatic Mct8 mRNA expression significantly 

decreased 0.8-fold at 100 mg/kg/day; however, this decrease did not correlate significantly 

with decreases in T4, (R2= 0.02, p=0.56) (Table 5). 

 Mdr1a, Mdr1b, and Mrp3 mRNA expression was also measured in kidney.  BDE 47 

had no observed effect on mRNA expression of these transporters analyzed. 

 

Transthyretin mRNA expression 

Transthyretin (Ttr), a major serum transport protein in rodents was analyzed for 

effects on mRNA expression following exposures to BDE 47.  Ttr mRNA expression was 

significantly decreased at the highest dose tested (100 mg/kg/day) and correlated well with 

the observed decrease in serum T4 (R2=0.61; p<0.0001) (Table 5).  . 

 

D. DISCUSSION 

 

Previous hypotheses on TH disruption by BDE 47 have focused on two mechanisms: 

1) induction of hepatic UGT-mediated TH metabolism resulting in decreased circulating T4 

and 2) competitive binding of BDE 47 and thyroid hormones to serum transport proteins.  

This study further investigates parameters involved in the alteration of thyroid hormone 

status.  Specifically, this study aims to identify the genes activated by BDE 47, which may 

provide information as to the mechanisms by which PBDEs exert their effects.  In this study, 

BDE 47 decreased T4 and increased hepatic UGT mRNA expression in female mice.  In 
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addition, BDE 47 altered the hepatic mRNA expression of putative transporters of TH or 

glucuronides.  

In vivo studies show that decreases in TH concentrations in rats treated with BDE 47 

(Hallgren, et al., 2001;  Hallgren and Darnerud, 2002) coincide with increases in hepatic T4-

UGT activity.  In this study, BDE 47 exposures increased Ugt1a1, Ugt1a7, and Ugt2b5 

mRNA expression in mouse liver, while Ugt1a6 remained unchanged.  Changes in specific 

UGT isoforms, such as Ugt1a7 mRNA expression correlated well with decreases in T4. (R2= 

0.46, p<0.001) 

There was no increase in hepatic T4-UGT activity, which does not agree with the 

observed increases in UGT mRNA expression.  This may be because the T4-glucuronidation 

enzyme assay does not evaluate activity for specific UGT isoforms.  Alternatively, increases 

in UGT mRNA expression may not result in adequate increases of the respective enzyme 

proteins.  Some UGT activity induction can also be dependent on AhR activation.  For 

example, Ugt1a6 induction is dependent on AhR activation (Auyeung, et al., 2003;  

Nishimura, et al., 2005); therefore, the lack of significant increases in hepatic Ugt1a6 mRNA 

expression in our study further supports the idea that BDE 47 is not an agonist for AhR and 

may explain the lack of hepatic UGT activity.   

Once activated, nuclear receptors coordinately regulate genes involved in the 

detoxification (phase I and II) and elimination (phase III/transport) of xenobiotics, steroid 

hormones, and bile acids (Bock and Kohle, 2004;  Wagner, et al., 2005).  With the induction 

of genes involved in phase I and phase II metabolism, this study examined the effects of 

BDE 47 on the expression of uptake and efflux transporters in the liver.  MCT8 is a major 

thyroid hormone uptake transporter.  MCT8-null mice exhibit abnormal thyroid hormone 
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levels (decreased serum T4 and elevated serum T3) (Trajkovic et al., 2007) suggesting that the 

decrease in hepatic Mct8 mRNA expression found in the present study following BDE 47 

exposure may play an important role in the serum T4 decrease.  

P-gp, encoded by Mdr1a and Mdr1b in mice, is a major canalicular efflux transporter 

and plays a role in the transport of a diverse range of xenobiotics and steroids into the bile.  

There is also evidence that MDR transporters are important in TH efflux, in which cells 

transfected with Mdr1 cDNA increased the efflux of T3 as compared to control cells 

(Mitchell, et al., 2005).  (Nishio et al., 2005)also examined changes in P-gp in hyperthyroid 

rats.  They demonstrated that rats in a hyperthyroid state have increased levels of Mdr1a and 

P-gp in the liver.  They also found that hyperthyroid rats administered digoxin had lower 

concentrations of digoxin in serum, which may be attributable to the P-gp increases.  Studies 

from our laboratory show a decrease in the urinary elimination of BDE 47 (single, oral dose 

of 100 mg/kg) in Mdr1a/b deficient mice as compared to wild type mice1.  Together, these 

studies show that P-gp also plays an important role in defining the toxicokinetics of many 

xenobiotics.  Furthermore, these studies show that P-gp may be regulated by TH levels.  In 

the present study, hepatic Mdr1b mRNA expression was unchanged with exposure to BDE 

47, while Mdr1a mRNA expression decreased significantly, even at the lowest dose tested (3 

mg/kg/day).  Based on the cited studies, there are two possible explanations for the decrease 

in hepatic Mdr1a following BDE 47 exposure.  First, it is possible that once in a hypothyroid 

state, hepatic Mdr1a expression will decrease in response to the decrease in circulating serum 

T4.  On the other hand, decreases in hepatic P-gp may result in a longer half-life of BDE 47 in 

liver, resulting in increased opportunity for induction of UGTs, consequentially decreasing 

serum T4. 
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There were no changes in hepatic mRNA expression of sinusoidal efflux transporters, 

Mrp1 and Mrp5.  However, Mrp3 mRNA expression increased with BDE 47 exposures.  

Mrp3, a sinusoidal efflux transporter, exports glucuronides from the liver and into the blood.  

It has been suggested that the induction of Mrp3 results from the need for an alternative 

protective mechanism (Inokuchi et al., 2001;  Wagner, et al., 2005).  The increase in Mrp3 

mRNA expression, suggests that high doses of BDE 47 may saturate hepatic efflux 

transporters. The saturation of hepatic efflux transporters would require the induction of a 

back-up transporter to move glucuronides from the liver into the bloodstream.  Altogether, 

the altered expression in hepatic transporter mRNA expression suggests that BDE 47 may 

mediate changes in biliary elimination of glucuronides.  The induction of Mrp3 also shows 

that increases in glucuronidation may be a major cause of the TH decreases even though T4-

UGT enzymatic activity was unchanged as measured by our assay.  

CYP1A1, CYP2B10, and CYP3A11, classic targets for AhR, CAR, and PXR 

activation, respectively, (Maglich, et al., 2002), were measured to establish which nuclear 

receptor pathway BDE 47 may activate.  Cyp1a1 mRNA expression and associated enzyme 

activity (EROD) was used to determine the ability of BDE 47 to act through the AhR.  The 

slight increase in EROD and lack of hepatic Cyp1a1 mRNA induction at the highest dose 

tested supports data that shows BDE 47 is not an AhR agonist (Peters et al., 2004;  Sanders, 

et al., 2005).  The modest increase in EROD activity may also be due to overlapping 

regulation by CAR (Auyeung, et al., 2003;  Nishimura, et al., 2005).  Other studies suggest 

that BDE 47 may be an AhR antagonist in rats, and this may explain the small decrease in 

mouse Cyp1a1 mRNA expression seen in this study (Peters, et al., 2004;  Hamers, et al., 

2006).  Common targets for CAR activation, Cyp2b10 mRNA expression and associated 
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enzyme activity (PROD), increased significantly in liver.  The sensitive dose-dependent 

increases in hepatic PROD (3 mg/kg/day) and Cyp2b10 mRNA expression (10 mg/kg/day) 

suggests that CAR may be one of the major nuclear receptors involved in the regulation of 

the observed responses. Hepatic Cyp3a11 mRNA expression, a common target for PXR 

activation was unchanged following BDE 47 exposure.  In contrast to the reported increase in 

male mice exposed to 50 mg/kg/day BDE 47 by intraperitoneal injections for 4 days 

(Pacyniak, et al., 2007), we saw no increase in hepatic Cyp3a11 mRNA expression.  Whether 

or not this result is due to differences in exposure routes or the sex of the mice used is 

unclear. 

It is hypothesized that hydroxylated PCB metabolites (Brouwer et al., 1988;  Lans et 

al., 1994) and hydroxylated PBDE metabolites (Hallgren and Darnerud, 2002) bind to 

transthyretin causing an increase in the hepatic uptake and biliary elimination of T4.  The 

present study showed decreases in hepatic Ttr mRNA expression that correlated well with the 

observed T4 decreases (R2=0.61; p<0.0001).  This further supports the hypothesis that BDE 

47 may alter T4 transport by Ttr in rodents.  Further investigation is needed to examine what 

mechanisms may cause the decrease in Ttr mRNA expression.  Considering that thyroxine-

binding globulin (TBG) is the major TH serum carrier protein in humans and although Ttr 

may be critical during human development, it is unclear if alteration in hepatic Ttr would 

play a significant role in TH homeostasis in adult humans. 

In conclusion, this study was designed to examine TH decreases following a short-

term exposure; therefore, the doses chosen are relatively high in comparison to daily human 

exposure and are known to be non-linear in toxicokinetic mouse studies (Staskal et al., 2006).  

This report shows that active transport along with glucuronidation and alterations in TH 
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binding in serum may be involved in the TH decreases at 100 mg/kg/day BDE 47 in adult 

female mice.  Decreases in total T4 after BDE 47 exposure may be mediated through 

CAR/PXR pathways and this is evident by the induction of genes regulated by CAR/PXR, in 

particular, Cyp2b10, Ugt1a1, Ugt1a7, Ugt2b5 and Mrp3.  Although mRNA expression was 

unchanged for several of the transport proteins important in glucuronide or TH transport, this 

does not rule out possible changes in regulation at the translational or posttranslational levels 

(Peeters et al., 2002).  Together our data demonstrates that the coordinated regulation of 

phase I, phase II, phase III/transporters, serum binding proteins and thyroid hormone 

clearance following exposures to environment contaminants, such as BDE 47 are 

complicated processes, which require further examination.   
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Table A.1. 
 

Body weight, organ weights, and liver-to-body weight ratio 
Treatment Body (g) a   Liver (g) a Kidney (g) a Liver-to-body wt. ratio a 
(mg/kg/day)          
0  20.60±0.63   0.96±0.07 0.23±0.02 0.046±0.003 
3  21.33±0.72a   0.99±0.08 0.23±0.01 0.046±0.003 
10  21.03±0.60   0.92±0.07 0.23±0.02 0.044±0.002 
100  21.52±0.51b   1.09±0.06b 0.24±0.01 0.051±0.002b 
aData are expressed as mean ± standard deviation (n=10/group) 
aSignificantly different from control group (p< 0.05) 
bSignificantly different from control group (p< 0.01) 
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Table A.2. 
 

Fold change in hepatic UDPGT activity and mRNA expression 
Treatment  UDPGTa Ugt1a1a Ugt1a6a Ugt1a7a Ugt2b5a 

(mg/kg/day)  
0  1.0±0.2 1.0±0.0 1.0±0.2 1.0±0.1 1.0±0.1 
3  1.1±0.4 1.0±0.1 1.2±0.3 1.0±0.1 0.9±0.2 
10  1.1±0.2 1.1±0.1 1.2±0.3 1.3±0.2c 1.2±0.2 
100  1.1±0.3 1.2±0.1b 1.4±0.3 1.7±0.1c 1.3±0.2b 
aData are expressed as fold mean change ± standard deviation (n=4-5/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
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Table A.3. 
 

Fold change in hepatic cytochrome P450 activity and mRNA expression 
Treatment  Cyp1a1a ERODa Cyp2b10a PRODa Cyp3a11a 

(mg/kg/day) 
0  1.0±0.3 1.0±0.1 1.0±0.1 1.0±0.2 1.0±0.1 
3  0.8±0.3 0.9±0.1 1.2±0.4 1.2±0.2b 0.9±0.1 
10  0.8±0.3 1.0±0.1 2.5±0.8c 1.8±0.2c 1.1±0.1 
100  0.6±0.1 1.4±0.5c         19.9±2.9c 4.8±0.5c 1.2±0.2 
aData are expressed as fold change mean ± standard deviation (n=5-10/group) 
bSignificantly different from control group (p< 0.05) 
cSignificantly different from control group (p< 0.01) 
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Table A.4. 
 

Fold change in hepatic efflux transporter mRNA expression 
Treatment      Mrp3a  Mdr1aa  Mdr1ba 

(mg/kg/day)   
0  1.00±0.07          1.00±0.23         1.00±0.33       
3  0.80±0.05          0.66±0.10c        1.23±0.56       
10  1.19±0.14          0.61±0.36b       1.37±0.43       
100  1.47±0.20b         0.60±0.06b         1.27±0.59  
aData are expressed as fold change mean ± standard deviation (n=5-6/group) 
bSignificantly different from control group (p< 0.01) 
cSignificantly different from control group (p< 0.05) 
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Table A.5. 
 

Fold change in hepatic thyroid hormone transporter mRNA expression 
Treatment  Ttr a             Mct8 a                                 
(mg/kg/day)           
0         1.00±0.06        1.00±0.20       
3         0.91±0.04       1.02±0.16       
10         0.93±0.11       1.05±0.16       
100         0.73±0.04b         0.80±0.04c       
aData are expressed as fold change mean ± standard deviation (n=5-6/group) 
bSignificantly different from control group (p< 0.01) 
cSignificantly different from control group (p< 0.05) 
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Figure A.1. Total serum T4 concentrations in mice treated with BDE 47 
*Significantly different from control group (p< 0.0001) 
Data are expressed as mean ± standard deviation (n=9-10/group). 
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