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ABSTRACT  

Hsin Chen: Evaluation of a New Biomimetic Cement (GEMOSIL) for Use in Endodontic 

Therapy as Compared to the Widely-Used Mineral Trioxide Aggregate (MTA) 

(Under the direction of Ching-chang Ko)  

  

MTA has proven to be an effective material for endodontic therapy. However, due to its 

long setting time and dentinal/gingival staining, its use is limited.  The aim of this study was to 

see if the new biomimetic cement GEMOSIL has comparable properties to MTA, such that it can 

be used as an alternative to MTA.  Compressive and biaxial strength, discoloration, antimicrobial 

effects, cell viability and biocompatibility were analyzed in this study.  The compressive and 

biaxial strength reached 93 MPa and 59 MPa, respectively, after fully dried.  GEMOSIL
CHX

 

demonstrated antibiotic properties against S. mutans and E. faecalis. GEMOSIL had no 

cytotoxicity against human pulp cells and promoted significantly more cell proliferation 

(p<0.05).  GEMOSIL demonstrated less discoloration when placed in extracted teeth (p<0.05).  

GEMOSIL showed biocompatibility with living tissues. From these initial tests, GEMOSIL has 

demonstrated better properties compared to MTA, prompting GEMOSIL to be a viable 

alternative to MTA. 
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INTRODUCTION 

 

Mineral Trioxide Aggregate (ProRoot MTA; Dentsply Tulsa Dental, Tulsa, OK) is 

currently the most popular endodontic cement.  It was developed by Torabinajed et al in 1993 at 

Loma Linda University as a root-end filling and perforation material.  It consists of tricalcium 

oxide, silicate oxide, bismuth oxide, tricalcium silicate, and tricalcium aluminate (1).  It sets in 

the presence of moisture and renders a pH of 12.5 (2).  The gel solidifies to a hard solid structure 

in approximately three to four hours in the oral cavity (2).  Several studies of MTA have 

demonstrated that the cement possesses many of the properties sought for in a root-end filling 

material.  The sealing ability of MTA in root-end filling was found to be superior to amalgam, 

IRM, and Super-EBA (3).  An in vivo animal study on monkeys demonstrated that MTA caused 

no periapical inflammation and allowed new bone formation directly against the material when 

used as a root-end filling (4).  Due to its superiority in its biocompatibility and sealing ability, 

MTA is now also used as pulp capping material (5), and for repair of perforations (6). 

Although MTA has demonstrated excellent properties when compared with traditional 

root-end filling materials such as amalgam or IRM, the cost is expensive.  Research has also 

reported that MTA exhibits some poor handling properties.  Fridland et al. (7) found that MTA 

mixture becomes overly viscous and difficult to deliver even when mixed at the manufacturer’s 

recommended proportion of powder to liquid.  Lee (8) stated that MTA has a long setting time 

which can be easily washed out during procedures.  Torabinajed et al (9) also listed several 

drawbacks for MTA such as slow setting time and permanent dentinal discoloration.  Bortoluzzi 
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et al (10) has reported cases of marginal gingival discoloration when MTA was used for 

perforation repair.   

The shortcoming of MTA had led to the need for the development of an alternative 

endodontic cement.  

GEMOSIL, a new biomimetic cement, was developed for orthopedic applications by Ko 

et al at University of North Carolina (UNC patent: US 12/685,743 2010 and 61/560,777 2011).  

It consists of gelatinous hydroxyapatite nanocomposite, calcium silica, and calcium hydroxide.  

Preliminary studies showed GEMOSIL has a faster setting time, and its chemical composition 

has the potential for effective osteogenesis and some antimicrobial properties.   

In the 1
st
 manuscript, we focused on testing properties of GEMOSIL as an endodontic 

cement. Mechanical strength, discoloration, antimicrobial effects, cell viability and 

biocompatibility were tested. During the initial antimicrobial property testing, GEMOSIL 

formula only showed effective inhibition of S. Mutans but not of E. Faecalis; which is the most 

common organism cultured from persisted endodontic infections (11).  

From literature, chlorhexidine was initially used as a general disinfectant because of its 

broad antibacterial action (12).  It was later shown to inhibit dental caries and reduce the 

formation of dental plaque (13).  In vitro inhibition studies have shown chlorhexidine to be 

effective against species found in infected root canals such as Enterococcus faecalis (14) and 

Streptococcus mutans (15), and it consequently was introduced as an endodontic irrigant in the 

early 1960’s (13). Chlorhexidine is increasingly being incorporated into endodontic materials 

due to its ability to increase antimicrobial properties and improve prognosis.  
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The 2
nd

 manuscript (article in press) is a study to further investigate the effects of 

incorporating chlorhexidine into the original GEMOSIL formula to determine if the 

antimicrobial properties of GEMOSIL can be enhanced against common pathogens found in 

endodontic infections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

REFERENCES 

 

1. Abedi HR, Ingle JI. Mineral Trioxide Aggregate: a review of a new cement. Calif Dent 

Assoc J 1995;23:36-9. 

 

2. Torbinejad M, Hong CU, Pitt Ford TR. Physical and chemical properties of a 

new root-end filling material. J Endodon 1995;21:349-53. 

 

3. Torabinejad M, Falah Rastegar A, Kettering JD, Pitt Ford TR. Bacterial leakage of 

mineral trioxide aggregate as a root-end filling material. J Endodon 1995;21:109-12. 

 

4. Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller Da, Kariyawasam SP. 

Histological assessment of mineral trioxide aggregate as a root-end filling in monkeys. J 

Endodon 1997;23:225-28. 

 

5. Pitt Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Mineral trioxide 

aggregate as a pulp capping material. J Am Dent Assoc 1996;127:1491-4. 

 

6. Pitt Ford TR, Torabinejad M, Hong CU, Kariyawasam SP. Use of mineral trioxide 

aggregate for repair of furcal perforations. Oral Surg 1995;79:756-63. 

 

7. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with 

different water-to-powder ratios. J Endod. 2003 Dec;29(12):814-7. 

 

8. Lee SJ
1
, Chung J, Na HS, Park EJ, Jeon HJ, Kim HC. Characteristics of novel root-end 

filling material using epoxy resin and Portland cement. Clin Oral Investig. 2013 

Apr;17(3):1009-15. 

9. Torabinejad Mahmoud and Parirokh Masoud. Mineral Trioxide Aggregate: A 

Comprehensive Literature Review—Part III: Clinical Applications, Drawbacks, and 

Mechanism of Action. Journal of endodontics 1 March 2010 (volume 36 issue 3 Pages 

400-413 DOI: 10.1016/j.joen.2009.09.009)  

10. Bortoluzzi EA, Araújo GS, Guerreiro Tanomaru JM, Tanomaru-Filho M.J Endod. 

Marginal gingiva discoloration by gray MTA: a case report.2007 Mar;33(3):325-7. Epub 

2006 Nov 22. 

 

11. Sundqvist G, Fidgor D, Sjogren U. Microbiology analysis of teeth with endodontic 

treatment and the outcome of conservative retreatment. Oral Surg Oral Med Oral Pathol 

85: 86-93. 

12. R.C. Hirst. Chlorhexidine: a review of the literature. Periodontal Abstra 20:52-8. (1972) 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bortoluzzi%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=17320726
http://www.ncbi.nlm.nih.gov/pubmed?term=Ara%C3%BAjo%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=17320726
http://www.ncbi.nlm.nih.gov/pubmed?term=Guerreiro%20Tanomaru%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=17320726
http://www.ncbi.nlm.nih.gov/pubmed?term=Tanomaru-Filho%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17320726
http://www.ncbi.nlm.nih.gov/pubmed/17320726


5 
 

13. R.H. Birch, T.H. Melville. Preliminary sterilization of the endodontic field. Comparison 

of antiseptics. Br Dent J. 111:362-3. (1961) 

 

14. H Ayhan, N Sultan, M Cirak, M.Z. Ruhi, H. Bodur. Antimicrobial effects of various 

endodontic irrigants on selected microorganisms. Int Endod J;32:00-102. (1999) 

 

15. J. Gultz, L. Do, R. Boylan, J. Kalm, W. Scherer. Antimicrobial activity of cavity 

disinfectants. Gen Dent. 47:187-90. (1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

EVALUATION OF A NEW BIOMIMETIC CEMENT (GEMOSIL) FOR USE IN 

ENDODONTIC THERAPY AS COMPARED TO THE WIDELY-USED MINERAL 

TRIOXIDE AGGREGATE (MTA) 

Hsin Chen
1
, Dong-Joon Lee

3
, He Zhang

3
, Jed Arbon

4
, Ching-Chang Ko

2,3,*
 

1. Department of Endodontics, School of Dentistry, University of North Carolina, Chapel 

Hill, NC 27599 

2. Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel 

Hill, NC 27599 

3. Dental Research, School of Dentistry, University of North Carolina, Chapel Hill, NC 

27599 

4. School of Dentistry, University of North Carolina, Chapel Hill, NC 27514 

* Corresponding author: Ching-Chang Ko; email: Ching-Chang_Ko@unc.edu 

 

ABSTRACT 

Mineral trioxide aggregate (MTA) is an effective material for endodontic 

therapy.  However, due to its long setting time and dentinal/gingival discoloration, its use is 

limited.  The objective of this study was to test the hypothesis that a new biomimetic cement, 

GEMOSIL, has physical/biological properties comparable to MTA in endodontic therapy.   

Samples of GEMOSIL were used to measure compressive and biaxial flexure strength 

with an Instron machine.  GEMOSIL and MTA were placed in pulp chambers of extracted 

human teeth for discoloration testing.  GEMOSIL and MTA were spin coated to 35 mm culture 

dishes, which were then seeded with pulp cells for viability testing.  Zones of inhibition against 

S. Mutans and E. Faecalis were measured with both materials.  GEMOSIL and MTA were also 

placed as a root-end filling material in rat incisors to assess biocompatibility with living tissues. 

The compressive strength of GEMOSIL reached 28 MPa after 2 hours of immersion in 

PBS and 93 MPa after fully dried.  Flexure strength ultimately reached 59 MPa.  GEMOSIL 

mailto:Ching-Chang_Ko@unc.edu
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demonstrated less discoloration when placed in pulp chambers of extracted teeth than MTA 

(p<0.05).  GEMOSIL presented no cytotoxicity and promoted significantly more proliferation 

than MTA when in contact with pulp cells (p<0.05).  S. Mutans was susceptible to both 

GEMOSIL and MTA, but E. Faecalis was only susceptible to GEMOSIL
CHX

.  Both materials 

showed biocompatibility as a retro-grade filling material in rats (p>0.05).  In conclusion, 

GEMOSIL has similar or better physical and biological properties as compared to MTA; thus 

GEMOSIL has potential to be a viable endodontic cement.  

 

INTRODUCTION 

 

There are 15 million endodontic therapies done each year in the United States.  Although 

this procedure has a high success rate, amidst ideal circumstances there can still be failures.  

When there is persistent periapical infection, conventional root canal therapy fails, and non-

surgical root canal re-treatment is not feasible, periradicular surgery (commonly known as 

apicoectomy) is often the preferred approach.  This procedure routinely consists of root-end 

exposure of the involved apex, resection of the apical 3mm of the root, a retro-filling preparation 

and the placement of a root-end filling material.  Various materials have been used as the root-

end filling material, such as amalgam, Intermediate Restorative Material (IRM), Super-EBA, 

glass ionomers and composite resins (1).  An ideal root-end filling material should prevent 

leakage of bacteria into the periapical tissue, it should be non-toxic, non-carcinogenic, 

biocompatible, insoluble, and have no shrinkage on setting (2).  Previous root-end filling 

materials have had a few drawbacks, such as corrosion in amalgam and higher concentration of 

eugenol in IRM and Super-EBA, which causes irritations in vital tissues. These drawbacks led to 

the development of Mineral Trioxide Aggregate (MTA). 
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Mineral Trioxide Aggregate (ProRoot MTA; Dentsply Tulsa Dental, Tulsa, OK) is 

currently the most popular endodontic cement.  It was developed by Torabinajed et al in 1993 at 

Loma Linda University as a root-end filling and perforation material.  It consists of tricalcium 

oxide, silicate oxide, bismuth oxide, tricalcium silicate, and tricalcium aluminate (3).  It sets in 

the presence of moisture and renders a pH of 12.5 (4).  The gel solidifies to a hard solid structure 

in approximately three to four hours in the oral cavity (4).  Several studies of MTA have 

demonstrated that the cement possesses many of the properties sought for in a root-end filling 

material.  The sealing ability of MTA in root-end filling was found to be superior to amalgam, 

IRM, and Super-EBA (5).  An in vivo animal study with monkeys has shown that when MTA 

was used for root-end filling, there was no periapical inflammation and new bone formed 

directly against the material (6).  Due to its superiority in its biocompatibility and sealing ability, 

MTA is now also used as pulp-capping material (7), and for repair of perforations (8). 

Although MTA has demonstrated adequate physical properties, superior biocompatibility 

and sealing ability when compared with traditional root end filling materials such as amalgam or 

IRM, the cost is expensive.  Research has also reported that MTA exhibits some poor handling 

properties.  Fridland et al. (9) concluded that MTA was difficult to handle due to its low 

viscosity when mixed with the manufacturer’s recommended amount of liquid.  Lee (10) stated 

that MTA can be easily washed out during procedures due to its long setting time.  Torabinajed 

et al (11) also listed several drawbacks for MTA such as slow setting time and permanent 

dentinal discoloration.  Bortoluzzi et al (12) has reported cases of marginal gingival discoloration 

when MTA was used for perforation repair. 

The shortcoming of MTA had led to the development of ProRoot MTA White (Dentsply 

Tulsa Dental, Tulsa, OK, 1998) in which the iron component was removed to improve the color 
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stability; however, there was little to no improvement in tooth/gingival staining (13).  ProRoot 

MTA White continued to show slow setting time and poor mechanical strength in a moist 

environment, thus the need for the development of an alternative endodontic cement exists.  

Recently, a new biomimetic cement, GEMOSIL, was developed for orthopedic 

applications by Ko et al at University of North Carolina (UNC patent: US 12/685,743 2010 and 

61/560,777 2011).  It consists of gelatinous hydroxyapatite nanocomposite, calcium silica, and 

calcium hydroxide.  Preliminary studies showed GEMOSIL has a faster setting time, and its 

chemical composition has the potential for effective osteogenesis and antimicrobial properties.  

GEMOSIL has also not demonstrated discoloration.   

All preliminary evidence suggests that GEMOSIL can be a new addition to existing 

endodontic cements including ProRoot MTA and its derivatives.  The aim of this study was to 

compare the physical properties (compressive and biaxial flexure strength), discoloration 

properties, biological properties (pulp cell proliferation effect and antimicrobial effect) and 

biocompatibility between MTA and GEMOSIL for endodontic therapy. 

MATERIAL AND METHODS 

MATERIALS 

 

GEMOSIL 

100 milligrams of HAP-Gel powder, 200 milligrams of Ca(OH)2 powder, 300 microliters 

of enTMOS solution and 40 microliters of PBS were sequentially added and mixed to make 

GEMOSIL samples.   

MTA 

 

The MTA (grey formula, ProRoot MTA; Dentsply, Tulsa, OK) samples were prepared 

according to the manufacturer’s instructions (powder mixed with recommended amount of sterile 
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MTA water provided by the manufacturer). 

Compression Strength 

20 cylindrical GEMOSIL samples (4 mm diameter by 8 mm height) were prepared and 

either immediately placed in PBS for 2 hours or allowed to air dry for 48 hours.  Samples were 

compressed using an Instron 4411 (Instron Co., Norwood, MA) at a crosshead speed of 0.5 

mm/min to determine ultimate failure strength σult.  The stress-strain curve was recorded via the 

Testworks 4 software (MTS, Eden Prarie, MN) and the highest stress at failure was identified as 

σult.  

Biaxial Flexure Strength 

The general testing procedure for biaxial flexure strength was performed according to 

Ban and Anusavice (J Dent Res 69(12):1791-1799, 1990).  10 GEMOSIL disc samples (diameter 

12mm by thickness 1mm) were prepared in Teflon molds.  The upper and lower surfaces were 

polished in order to obtain parallel surfaces with no apparent defects.  After measuring the 

sample diameter (d) and thickness (t), the disk was supported on three stainless steel balls (3mm 

in diameter), which were equally spaced along a 5mm radius (rs).  Prior to testing, a stainless 

steel piston (radius = rp=1.5mm) was aligned concentrically with the three balls.  A crosshead 

speed of 0.5mm/min was used, and the maximum force at failure (P) was determined.  A 

Poisson’s ratio (ν) of 0.3 was used for all materials unless the exact value was known.  The 

flexure stress at failure (σ in MPa) was calculated using the following expressions: σ = AP/t
2
 and 

A = (3/4π) [2 (1+ν) ln(rs/ro) + (1-ν) (2 rs
2
-ro

2
) / 2 (d/2)

2
 + (1+ν)] where ro = (1.6 rp

2
 + t

2
)
1/2

 – 

0.675t.   

Discoloration 
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Ten extracted human single-rooted teeth per group were used to test dentinal 

discoloration of GEMOSIL and MTA.  The teeth were collected based on the following criteria: 

no caries or restorations present and no previous root canal treatments.  Teeth were air dried for 

24 hours then mounted with regisil material to standardize angulation, and pre-op photographs 

were made (both facial and lingual).  Each tooth was then accessed from the lingual surface, and 

all coronal pulp tissue (if any) was removed.  3mm of MTA and GEMOSIL were placed in the 

pulp chamber.  A cotton pellet soaked with chlorohexidine was placed on top of the material and 

IRM was used to restore access.  Samples were placed in PBS on a shaker for 48 hours.  Teeth 

were then allowed to air dry for 24 hours, then post-op photographs were made with the same 

regisil mount and color change was analyzed using the following described procedure. 

The quantification results of discoloration were derived from color differences (δ) by 

CIELAB method. Optical color measurement, CIELAB (the Commission Internationale de 

I'Eclairage) tristimulus values, is based on the principle of light transmission which is 

wavelength-dependent.  Given an externally applied illuminating light to the stain, the detectable 

color spectrum is used as a signal to differentiate and analyze the degree of discoloration.  The 

tooth colors of the digital images were converted to CIELAB tristimulus values for each image 

pixel.  The tristimulus values (L, a*, and b*) of three evenly distributed points from each tooth 

for both the pre- and post-op photos were measured using Photoshop software (Adobe System 

Inc., CA).  For each material group, the formula to calculate the discoloration was a color 

difference between the teeth before placement of the material and after placement of the 

material, δ = ((L-Lo)
2
+(a*-a*o)

 2
+(b*-b*o)

2
)
1/2

 where (L, a*, b*) and (Lo, a*o, b*o) were 

tristimulus values for teeth after placement of the material and teeth before placement of the 
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material, respectively.  The mean δ was compared among two groups at different durations using 

the student t-test.  

Pulp Cell Isolation 

Dental pulp cells were isolated from non-carious human third molars, which were 

extracted for clinical reasons.  Tooth surfaces were cleaned by submersion in Betadine for one 

minute and then cleaned with 70% ethanol.  Pulp tissue was removed with a broach (Lexicon 

Barded Broaches, Dentsply Tulsa Dental, Tulsa, OK) after accessing the tooth.  After the pulp 

tissue was removed, cells were isolated by enzyme digestion.  The pulp tissue was digested in a 

solution of collagenase type II (2 mg/ml).  The cell suspension was then filtered through a 40 

micrometer strainer, centrifuged, and pellets were suspended in Dulbecco’s modified Eagle’s 

medium (DMEM).  Single-cell suspensions were seeded onto a 100 mm culture plate in DMEM 

supplemented with 10% Fetal Bovine Serum, and 1% penicillin and streptomycin.  Culture plates 

were incubated in a humidified atmosphere of 95% air and 5% CO2 at 37°C and medium change 

was performed every three days.  Once a cell colony was formed, cells were trypsinized and 

redistributed in a new culture plate.  When cells reached confluence, they were harvested by 

trypsinization and sub-cultured.  Passage 3 was used for testing. 

Cell proliferation: BrdU Assay 

MTA and GEMOSIL were prepared and spin-coated onto petri dishes, and then allowed 

to air dry for 24 hours.  All petri dishes were sterilized under UV light overnight before the 

experiment. 

Each coated petri dish was then seeded with pulp cells.  Every day the medium was 

replenished with fresh growth medium.  At the end of cultivation (3 days), the dish was rinsed 

twice with PBS.  BrdU stain was applied.  Under the fluorescent light, nuclei were counted in 10 
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regions per dish for both groups and compared by the student t-test between the two groups. 

 

Antimicrobial Testing 

Incorporation of Chlorhexidine in Ca(OH)2 for GEMOSIL
CHX

 

CaCO3 (Alkaline analysis grade, Aldrich, USA) was calcinated to CaO in a furnace at 

1250
o
C for 3 hours.  Pure Ca(OH)2 was obtained through the hydration of the calcinated CaO.  

The hydration was carried out at 300
o
C using 3 times the stoichiometric amount of 0.12% 

chlorhexidine aqueous solution.  The final Ca(OH)2

CHX
 content was determined by measuring the 

dry weight [120
o
C for 3 h]. 

 

Disc Sample Preparation 

GEMOSIL was prepared and made into 6.2 mm x 0.85 mm discs.  A total of eight discs 

were made in a span of 15 minutes.  

MTA was prepared and made into 6.2mm x 0.85mm discs.  The MTA was given 30 

minutes to set due to its increased inclination to crack and fracture, which would render it 

impossible to use.   

For the control, paper discs were immersed in 0.12% chlorhexidine solution right before 

placing them on the agar plate. 

Microorganism 

The microorganisms investigated were Streptococcus mutans and Enterococcus 

faecalis.  Both organisms were a stock strain in the Oral Microbiology laboratory, University of 

North Carolina School of Dentistry.   

Zone of Inhibition 
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Bacterial sensitivity of each material was evaluated using the following assay – zone of 

inhibition of surface growth.  The materials were tested against Streptococcus mutans and 

Enterococcus faecalis using assays that measured the diffusible inhibition of bacterial growth on 

a blood-agar surface and estimated the antimicrobial activity.  All procedures were performed 

under aseptic conditions.   

Agar Diffusion Assay 

Inocula from frozen stock cultures were cultivated in Wilkins-Chalgren (W-C) broth 

(Oxoid Ltd. Basingstoke, Hampshire, England) at 37°C in ambient atmosphere, after being 

screened by Gram-staining to confirm purity.  Loopful inoculations of Streptococcus mutans 

and Enterococcus faecalis were transferred to 10 ml of appropriate broth and incubated at 37 °C 

under anaerobic conditions.  Bacterial suspensions were prepared to 0.5 MacFarland standard 

and diluted to a 1:10 concentration with W-C broth.  Two hundred ml of the 1:10 dilution were 

then taken and spread-plated using a “hockey stick” on a turntable to ensure confluent bacterial 

distribution on the plates.  

Test specimens were immediately placed on the freshly inoculated agar plates and 

aerobically incubated for 18-24 hours at 37°C.  Each plate contained 7 disc samples - two per 

material and a paper disc soaked with chlorhexidine at the center as the control.  This assay was 

performed in quadruplets.  After 18-24 hours, the diameters of the zone of inhibition of bacterial 

growth around the discs were measured using a caliper by two independent observers.  

Biocompatibility  

10 Sprague Dawley male rats were used in this study.  Cefazolin 0.06ml and 

Tetracycline-HCL (30mg/kg) were given before surgery.  General anesthesia was induced by 

intraperitoneal injection of a mixture of Ketamine (80mg/kg) and xylazine (10mg/kg).  Eye 



15 
 

ointment was applied.  The right and left sides of the mandible were shaved and cleaned with 

75% alcohol and β-dine.  Under aseptic conditions, an incision was made along the inferior 

mandible border and the mandible was exposed by dissecting the subcutaneous tissues and the 

masseter muscle.  Under irrigation, the buccal plate was perforated with a large round bur in a 

slow speed handpiece to expose the incisor apex (oval shape/open apex).  Once the apex was 

exposed and location of the canal was confirmed with the aid of an endodontic file, placement 

was attempted of 3mm of MTA or GEMOSIL at the apex as a root-end fill.  4.0 Vicryl suture 

was used to reposition the periostium and muscles and 4.0 Monocryl suture was used to close the 

incision.  Saline (10ml/kg) was administered subcutaneously after surgery.  All animals were 

monitored until they recovered from general anesthesia.  Cefazolin 0.06ml was administered 

intramuscularly once a day and Buprenorphine 0.1ml was administered subcutaneously twice a 

day for 3 days.  Soft diet was fed to the animals up to 7 days after the surgery.  All animals were 

euthanized with injection of an overdose of barbiturate on day 21 postoperatively.  Both left and 

right sides of the mandible were submitted for non-decalcified histological slides to determine 

inflammation levels in the PDL, pulp and periapical tissue adjacent to the material for both 

materials.  Chi-square test was used to compare the two groups. 

RESULTS 

Mechanical Property 

GEMOSIL’s compressive strength was 28 MPa after 2 hours setting in PBS and reached 

93 MPa after fully dried. Biaxial flexure strength was 59 MPa.  The results appear to be better to 

those of MTA reported in the literature (1, 14).  
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 GEMOSIL MTA 

Setting Time 5 min (15) 3-4 hours (1, 14) 

Compressive 

Strength 

28 MPa (2 hours) 

93 MPa (fully dried) 

40 MPa (24 hours) 

67.3 MPa (21 days)  

(1, 14) 

Biaxial Strength 59 MPa No Available Data 

Table 1 Comparison between mechanical properties of GEMOSIL and MTA 

 

Discoloration 

Figure 1 shows examples of pre-op and post-op photographs for the MTA group.  Figure 

2 shows examples of pre-op and post-op photographs for the GEMOSIL group.  Discoloration 

can be seen clearly on a few of the MTA samples.  The comparisons of the L, a*, and b* values 

are presented in Figure 3.  δ and SD values for each group are listed in Table 2.  There was a 

significant difference in color change between the MTA and GEMOSIL group (p<0.05). 

 

 
Figure 1 MTA (top) Initial, no discoloration (bottom) 3 days after, grey discoloration in cervical 

third 
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Figure 2 GEMOSIL (top) Initial, no discoloration (bottom) 3 days after, slight/no discoloration 

in cervical third  

 

 
Figure 3 The comparison of L, a* and b* values, pre-op and post-op 

 

Material δ SD 

MTA 5.0251 3.0980 

GEMOSIL 1.7004 0.7079 

Table 2 δ and SD for MTA and GEMOSIL groups 
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Cell Proliferation 

Figure 4 shows the nuclei counts for the three groups, including the control group.  

Figure 5 shows the BrdU staining of the nuclei for all three groups.  There was a significant 

difference in the nuclei counts between the groups (p<0.05).  The GEMOSIL group had 

significantly more nuclei, indicating more cell proliferation. 

 

Figure 4 Cell count (nuclei) under BrdU staining with 3 day culture 

 
Figure 5 BrdU stain (green) for nuclei under cell proliferation 
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Antimicrobial Testing 

Figures 6 and 7 show photographs of the zones of inhibition for S. mutans and E. faecalis, 

respectively.  The data for the zones of inhibitions are presented in Tables 3 and 4.  Figure 8 plots the 

mean values of the zones of inhibition for all materials.  A greater value implies a better antimicrobial 

effect.  In the control, growth of both microorganisms was inhibited by chlorohexidine.  MTA, 

GEMOSIL, and GEMOSIL
CHX

 are inhibitory to S. mutans.  In this case, the means of the zones of 

inhibition were 17.7±0.76 mm for MTA, 15.58±1.41 mm for GEMOSIL, 17.08±0.64 mm for 

GEMOSIL
CHX

, and 16.45±1.5mm for Chlorhexidine.  

For E. faecalis, the means of the zones of inhibition were 0±0.0 mm for MTA, 0±0.0 mm 

for GEMOSIL, 8.18±0.73 mm for GEMOSIL
CHX

and 9.85±0.47mm for Chlorhexidine.  The data 

showed no zones of inhibition with MTA and GEMOSIL, compared to GEMOSIL
CHX

 and 

chlorohexidine, which showed zones of inhibition.  The difference among the materials was 

statistically significant (p<0.01). 

 

 
Figure 6 Photograph of the zones of inhibition in Streptococcus mutans.  In the dish, the upper 

right: GEMOSIL
CHX

, lower right: GEMOSIL, left: MTA, and center: Chlorhexidine. 
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Figure 7 Photograph of the zones of inhibition in Enterococcus faecalis.  In the dish, the upper 

right: GEMOSIL
CHX

, lower right: GEMOSIL, left: MTA, and center: Chlorhexidine. 

 

 

Material Plate 1 Plate 2 Plate 3 Plate 4 

MTA 17.2±0.01 18.7±0.71 17.7±0.71 17.2±0.01 

GEMOSIL 14.2±1.41 16.7±0.71 16.7±0.71 14.7±0.71 

GEMOSIL
CHX

 17.2±0.02 16.7±0.71 17.2±0 17.2±1.41 

CHX 18.2±0.28 17.2±0.28 15.2±0.57 15.2±0.28 

Table 3 Zones of inhibitions (diameter/mm) in Streptococcus mutans 

Material Plate 1 Plate 2 Plate 3 Plate 4 

MTA 0 0 0 0 

GEMOSIL 0 0 0 0 

GEMOSIL
CHX

 7.9±0.42 9.2±0 7.9±0.42 7.7±0.71 

CHX 9.2±0.28 9.8±0.57 10.2±0.28 10.2±0.28 

Table 4 Zones of inhibitions (diameter/mm) in Enterococcus faecalis 
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Figure 8 Plot of the mean values of the zones of inhibition comparing the four groups, p<0.01  

Biocompatibility  

There were a total of 18 samples submitted for histology, 9 samples for MTA and 9 

samples for GEMOSIL. Half of the samples were horizontally sliced and the other half were 

vertically sliced at the apex. 

Inflammation of the PDL and the pulpal and periapical tissue adjacent to material was 

analyzed. Almost all samples have mild inflammation, but there was no significant difference 

between the two materials (p>0.05).  Both materials showed new bone formation adjacent to the 

materials (Figure 9 for MTA and Figure 10 for GEMOSIL). 

One GEMOSIL sample showed cartilage formation (Figure 11) and one MTA sample 

showed formation of apical abscess (Figure 12).  
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Figure 9 New bone formation adjacent to MTA 

 

 
Figure 10 New bone formation found in GEMOSIL material 
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Figure 11 Cartilage formation adjacent to GEMOSIL material 

 

Figure 12 Apical abscess formation adjacent to MTA retro fill 

DISCUSSION 

The mechanical property testing determined the initial setting time of GEMOSIL to be 5 

minutes (15) and the mixture can be hardened in an ambient or PBS solution.  The faster setting 
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property and its capability of setting in moist environments make GEMOSIL a good candidate 

for a retrograde filling material during apicoectomy procedures.  The compressive strength (28 

MPa after 2 hours setting in water and 93 MPa after fully dried) appears to be superior to that of 

MTA reported in the literature.  Additionally, the formulation of GEMOSIL that incorporated 

chlorhexidine did not lead to a decrease in compressive strength. 

In discoloration testing, the GEMOSIL group demonstrated less color change than the 

MTA group when placed in pulp chambers of extracted teeth (p<0.05), which implies that 

GEMOSIL may cause less discoloration when used for vital pulp therapy in the esthetic zone of 

human dentition.  3 days could be too short for the materials to penetrate through dentinal 

tubules.  A longer storage period is recommended for future studies in order to fully understand 

the impact of discoloration on the facial side of the tooth.  Further testing will be necessary to 

determine whether the addition of chlorhexidine to the formulation of GEMOSIL impacts 

discoloration. 

In the biological property testing, the GEMOSIL scaffold presented no cytotoxicity when 

assessed by a viability assay and a 3 day culture with human dental pulp cells.  Short term pulp 

cell cultures show significantly more cell growth in GEMOSIL coated dishes compared to those 

of MTA (p<0.05).  GEMOSIL’s non-toxicity means it could be effective at maintaining pulp 

vitality in vital pulp therapy.  Previous GEMOSIL studies have shown higher mineralization 

rates in human osteoblasts, which combined with GEMOSIL’s cell proliferation effect, indicate 

it could possibly stimulate dentinal bridge formation.  Future tests are indicated to determine the 

optimal concentration of chlorhexidine to be added to the formulation of GEMOSIL
CHX

 without 

adversely affecting cell proliferation. 
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In testing the antimicrobial effect, S. Mutans was found to be susceptible to all three 

materials- GEMOSIL, GEMOSIL
CHX

 and MTA.  E. Faecalis was only susceptible to 

GEMOSIL
CHX

 and resistant to GEMOSIL and MTA. GEMOSIL
CHX

 demonstrates antimicrobial 

properties that may be highly effective against persistent endodontic infections when used as a 

root-end filling material.  The difference in zone of inhibition needs further investigation in order 

to determine its clinical significance. 

Lastly, in biocompatibility testing, both GEMOSIL and MTA showed biocompatibility 

with periapical tissues when placed in vivo as a root-end filling in rat incisors.  There were no 

adverse allergic reactions or skin irritation noted in the rats.  Histologically, all samples showed 

new bone formation adjacent to both materials.  There was no difference in PDL, pulpal or 

periradicular inflammation levels between the two materials (p>0.05).  GEMOSIL’s 

biocompatibility with rat tissues indicates promise for biocompatibility with other living tissues, 

including those of humans.  Due to anatomical differences, there are limitations to the rat model. 

To further understand how the material affects humans, future studies could consider the usage 

of an animal species more closely related to humans. 

In conclusion, GEMOSIL demonstrates similar physical and biological properties 

compared to MTA.  Continued study is necessary; however, initial testing finds that GEMOSIL 

and GEMOSIL
CHX

 could potentially become a viable substitute for MTA in endodontic therapy. 
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ABSTRACT 

The recently developed GEMOSIL, a nanocomposite material composed of gelatinous 

hydroxyapatite (HAP-GEL) and animosaline by pozzolanic crosslinking, provides a potentially 

improved alternative to current endodontic cements. The mechanical performance of fully dried 

GEMOSIL approximated that of cortical bone. In its pre-set form, the moldable cement 

solidified in approximately 5 minutes when submerged in water, primarily due to the pozzolanic 

crosslinking. The purpose of this study was to test if adding chlorhexidine to Ca(OH)2 during the 

formation of this material could provide enhanced antimicrobial effects. Four zones of inhibition 

were formed using GEMOSIL, GEMOSIL
CHX

, Mineral Trioxide Aggregate (MTA; Tulsa 

Dentsply), and Chlorhexidine as a control. Each material was prepared into disc samples (6.2mm 

x 0.85mm; 8 per material). The Enterococcus faecalis and Streptococcus mutans strains were 

cultured at 37
o
C under anaerobic conditions. Bacterial suspensions were evenly distributed on a 

mailto:Ching-Chang_Ko@unc.edu
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blood-agar plate surface. The MTA/GEMOSIL/GEMOSIL
CHX

/Chlorhexidine discs were placed 

on the inoculated blood-agar plates which were immediately incubated at 37
o
C for 18-24 hours 

under aerobic conditions. Results showed that the Chlorhexidine and GEMOSIL
CHX 

provided a 

similar antimicrobial effect to Enterococcus faecalis, while GEMOSIL and MTA did not. All 

four materials showed similar effects to Streptococcus mutans. In combination with previous 

reports showing osteogenesis of GEMOSIL, the GEMOSIL
CHX 

may be applicable to both 

orthopedic and endodontic cements.  

 

INTRODUCTION 

The biomimetic cement, GEMOSIL, consisting of gelatinous hydroxyapatite 

nanocomposite, calcium silica, and calcium hydroxide particles, was developed for orthopedic 

applications by Ko and co-workers (1,2).  

The advantages of GEMOSIL include hardening in a moist environment, moderately 

strong compressive strength (94 MPa) after dehydration, and biocompatibility with osteoblasts.  

Upon investigation, its properties appear to match some demands of an ideal endodontic cement 

including 1) good mechanical strength, 2) short setting time in the presence of moisture, 3) 

injectability, 4) absence of dentinal discoloration, 5) bioactive dentinogenesis or osteogenesis, 6) 

antimicrobial activity and 7) sealability.  Currently, mineral trioxide aggregate (MTA) is widely 

used as endodontic cement; however, MTA shows tooth/marginal gingiva staining, slow setting 

time, and poor mechanical strength in a moist environment (3,4,5,6).  This has led to the 

development of several new derivatives of MTA (Dentsply Tulsa Dental, Tulsa, OK, 1998), 

although none have significantly improved upon these problems.  

Our previous studies have shown that the working time of GEMOSIL is approximately 1-
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3 minutes, and the compressive strength reaches 28 MPa after two hours of setting in water and 

94 MPa after fully dried.  GEMOSIL’s chemical composition has shown the potential for 

effective in vitro osteogenesis and in vivo bone formation (7,8).  All evidence suggests that 

GEMOSIL can be a new addition to existing endodontic cements including MTA and its 

derivatives.  One missing property of GEMOSIL is the antimicrobial effect against common 

microorganisms found in infected root canals.  

Chlorhexidine initially was used as a general disinfectant because of its broad 

antibacterial action (9). It was later shown to inhibit dental caries and reduce the formation of 

dental plaque (10).  In vitro inhibition studies have shown chlorhexidine to be effective against 

species found in infected root canals such as Enterococcus faecalis (11) and Streptococcus 

mutans (12), and because of this, it was introduced as an endodontic irrigant in the early 1960’s 

(10).  Chlorhexidine is increasingly being incorporated into endodontic materials due to its 

ability to increase antimicrobial properties and improve prognosis.  

In the present study, we demonstrated that chlorhexidine solution can be incorporated into the 

synthesis of calcium hydroxide, labeled as Ca(OH)2 creation of a chlorhexidine-impregnated 

GEMOSIL (GEMOSIL
CHX

). With this newly formed material, we hypothesized that it can 

improve the antimicrobial effect of GEMOSIL.  

Ultimately, the purpose of this in vitro study was to determine if the addition of 0.12% 

chlorhexidine would enhance the antimicrobial activity of GEMOSIL, and to compare the 

antimicrobial activity to the widely used material MTA. 
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MATERIALS AND METHODS 

Incorporation Of Chlorhexidine In Ca(OH)2 For GEMOSIL 

CaCO3 (Alkaline analysis grade, Aldrich, USA) was calcinated to CaO in a furnace at 

1250
o
C for 3 hours.  Pure Ca(OH)2 was obtained through the hydration of the calcinated CaO.  

The hydration was carried out at 300
o
C using 3 times the stoichiometric amount of 0.12% 

chlorhexidine aqueous solution.  The final Ca(OH)2

CHX
 content was determined by measuring the 

dry weight [120
o
C for 3 h]. 

Disc Sample Preparation 

For each GEMOSIL sample, 100 mg of hydroxyapatite-gelatin powder and 200 mg of 

Ca(OH)2 were ground and mixed with 300 ul of 95% enTMOS and 40 ul of PBS.  The mixture 

paste was then pressed into 6.2 mm x 0.85 mm disc samples.  A total of eight discs were made 

in about 15 minutes prior to testing.  

For each MTA sample, two 200 mg packages of grey ProRoot MTA (Tulsa, Dentsply) 

were mixed with sterile water into paste form.  The resultant mixture was made into 6.2mm x 

0.85mm disc samples.  The MTA was given 30 minutes to set due to its increased inclination to 

crack and fracture, which would render it impossible to use.   

For the control, paper discs were immersed in 0.12% chlorhexidine solution right before 

placing them on the agar plate. 

Microorganism 

Microorganisms investigated were Streptococcus mutans and Enterococcus faecalis.  

Both organisms were a stock strain in the Oral Microbiology laboratory, University of North 

Carolina School of Dentistry.  

Antimicrobial Assay 
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Bacterial sensitivity of each material was evaluated using the following assay – zone of 

inhibition of surface growth.  The materials were tested against Streptococcus mutans and 

Enterococcus faecalis using assays that measured the diffusible inhibition of bacterial growth on 

a blood-agar surface and estimated the antimicrobial activity.  All procedures were performed 

under aseptic conditions.   

Agar Diffusion Assay 

Inocula from frozen stock cultures was cultivated in Wilkins-Chalgren (W-C) broth 

(Oxoid Ltd. Basingstoke, Hampshire, England) at 37°C in ambient atmosphere, after being 

screened by Gram-staining to confirm purity.  Loopful inoculations of Streptococcus mutans 

and Enterococcus faecalis were transferred to 10 ml of appropriate broth and incubated at 37 

°C under anaerobic conditions.  Bacterial suspensions were prepared to 0.5 MacFarland 

standard and diluted to a 1:10 concentration with W-C broth.  Two hundred ml of the 1:10 

dilution were then taken and spread-plated using a “hockey stick” on a turntable to ensure 

confluent bacterial distribution on the plates.  

Test specimens were immediately placed on the freshly inoculated agar plates and 

aerobically incubated for 18-24 hours at 37°C.  Each plate contained 7 disc samples - two per 

material and a paper disc soaked with chlorhexidine at the center as the control.  This assay was 

performed in quadruplets.  After 18-24 hours, the diameters of the zone of inhibition of bacterial 

growth around the discs were measured using a caliper by two independent observers.  

The data for each material were subjected to one-way ANOVA to determine if significant 

differences in zones of inhibition occurred between different materials.  Confidence level was set 

at p<0.05. 

In-Vitro Cell Cytotoxicity Testing Through MTS  
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Since chlorhexidine has an antimicrobial effect, it may also affect normal cell growth.  

MC3T3E1 preosteoblasts were cultured to test in vitro cytotoxicity for the GEMOSIL
CHX

 coated 

on the 35 mm culture dishes.  The proliferation of the MC3T3-E1 cells on the coated dishes was 

conducted using MTS assay.  The MTS absorbance of each group was measured on day 1, 3, 5, 

7, and 9 respectively at 490 nm using a Plate reader (Biorad, Hercules, CA USA).  The control 

used GEMOSIL.  The higher the absorbance, the more cell growth. 

RESULTS AND DISCUSSION 

Figure 1 shows photographs of the zones of inhibition for all testing samples.  The data 

for the zones of inhibitions are presented in Table 1 and Table 2.  Figure 2 plots the mean values 

of the zones of inhibition for all materials.  A greater value implies a better antimicrobial effect.  

In control, growth of both microorganisms was inhibited by chlorohexidine.  MTA, GEMOSIL, 

and GEMOSIL
CHX

 are inhibitory to Streptococcus mutans. In this case, the means of the zones of 

inhibition were 17.70±0.76 mm for MTA, 15.58±1.41 mm for GEMOSIL, 17.08±0.64 mm for 

GEMOSIL
CHX

, and 16.45±1.50 mm for CHX. 

For Enterococcus faecalis, the means of the zones of inhibition were 0.00±0.00 mm for 

MTA, 0.00±0.00 mm for GEMOSIL, 8.18±0.73 mm for GEMOSIL
CHX

, and 9.85±0.47 mm for 

CHX. The data showed no zones of inhibition with MTA and GEMOSIL, compared to 

GEMOSIL
CHX

 and chlorohexidine, which showed zones of inhibition.  The difference among the 

materials was statistically significant (p<0.05). 

The size of the zone of inhibition of an antibacterial substance depends on a couple 

factors: the toxicity of the substance for the particular microorganism and the diffusibility of the 

substance in the test agar being used.  The diffusibility of the substance is based on whether it is 

hydrophilic or hydrophobic, molecular size and its rate of release from the insoluble matrix in 
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which it is bound. Therefore the size of the zone of inhibition may not be entirely due to its 

toxicity to the microorganism.  

It had been shown that MTA has antimicrobial and antifungal effect (13, 14).  Several 

investigation reports that MTA has limited antimicrobial effect against some microorganisms 

(facultative/strict anaerobes) (15).  Al-Hezaimi et al evaluated the antimicrobial effect against 

two different kinds of MTA and found that grey MTA demonstrated significantly more 

antimicrobial effects than white MTA when present in low concentrations (16).  Also, when it 

was compared between Enterococcus faecalis and Streptococcus sanguis, Enterococcus faecalis 

requires significant higher MTA concentration for growth inhibition (16).  In our study MTA 

only demonstrated growth inhibition to Streptococcus mutans but not Enterococcus faecalis. 

 

  

Figure 1. Photographs of the zones of inhibition in Streptococcus mutans (left) and in 

Enterococcus faecalis (right).  In each dish, the upper right: GEMOSIL
CHX

, lower right: 

GEMOSIL, left: MTA, and center: chlorhexidine. 
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Table 1. Zones of inhibitions (diameter/mm) in Streptococcus mutans 

Material Plate 1 Plate 2 Plate 3 Plate 4 

MTA 17.20±0.01 18.70±0.71 17.70±0.71 17.2±0.01 

GEMOSIL 14.20±1.41 16.70±0.71 16.70±0.71 14.70±0.71 

GEMOSIL
CHX

 17.20±0.02 16.70±0.71 17.20±0.00 17.20±1.41 

CHX 18.20±0.28 17.20±0.28 15.20±0.57 15.20±0.28 

 

Table 2. Zones of inhibitions (diameter/mm) in Enterococcus faecalis 

Material Plate 1 Plate 2 Plate 3 Plate 4 

MTA 0 0 0 0 

GEMOSIL 0 0 0 0 

GEMOSIL
CHX

 7.90±0.42 9.20±0.00 7.90±0.42 7.70±0.71 

CHX 9.20±0.28 9.80±0.57 10.20±0.28 10.20±0.28 

 

 

 

In this present study, GEMOSIL demonstrated antimicrobial activity against 

Streptococcus mutans but failed to demonstrate antimicrobial activity against Enterococcus 

faecalis (Table 2).   This study also evaluated the effect of antimicrobial activity when 

chlorhexidine was added to the formulation of GEMOSIL (GEMOSIL
CHX)

. In the case of 

GEMOSIL
CHX

, the antimicrobial efficiency against Enterococcus faecalis increased 

significantly (p<0.05).  In comparison with MTA, which is the most widely used endodontic 

cement, GEMOSIL
CHX

 demonstrated significantly more antimicrobial effects against 

Enterococcus faecalis. Because Enterococcus faecalis is the most common microorganism 

cultured from persisted endodontic infections (17), the growth inhibition demonstrated by 

GEMOSIL
CHX

 suggests that this newly developed cement may lend itself to certain endodontic 

treatment modalities.  
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Figure 2. Plot of the mean values of the zones of inhibition comparing the four groups. The 

greater the value, the better the antimicrobial effect. S. Mutan and E.F. stand for Streptococcus 

mutans and Enterococcus faecalis, respectively. 

 

In vitro cytotoxicity testing showed GEMOSIL
CHX 

did affect normal cell growth (Figure 

3) which is proportional to the increased level of MTS absorbance. Two-way ANOVA showed 

that the difference was significant for both factors, Day and Material. At the beginning of the 

culture, the chlorhexidine increased cell growth approximately 25% but then decreased around 

25% after day 7.  

When testing the viability of pulp cells in the presence of the new cement, the 

preosteoblast culture showed that GEMOSIL
CHX

 increased cell growth 25% from day 1 to day 5 

but decreased cell growth 25% after the day 5. It was not clear by what mechanisms the material 

affects cell cycles and whether the cells in the preosteoblast cell culture underwent apoptosis in 

the presence of chlorhexdine.  Future investigations on dose effect and cellular mechanisms are 

necessary in order to determine the applicability of this new cement to endodontic treatment.  
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Figure 3. MTS absorbance for GEMOSIL and GEMOSIL
CHX

, measured on day 1, 3, 5, 7, 

and 9 respectively.   

 

CONCLUSION 

Chlorhexidine-impregnated GEMOSIL appears to provide superior mechanical strength, 

faster setting time, and greater antimicrobial properties than MTA and therefore, may offer a 

better future therapeutic alternative for endodontic cement. 
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