
ABSTRACT

A Structural Characterization of an Aquatic Fulvic Acid
(Under the direction of Dr. Russell F. Christman)

The structural characterization of an aquatic fulvic acid was

attempted. Several approaches toward obtaining information concerning

the structure of a fulvic acid were taken. These included analysis of the

products from a mild oxidative degradation, elemental analysis, and

spectroscopic analysis of the undegraded fulvic acid.

The oxidative degradation method employed for this research was

an alkaline cupric oxide oxidation. Validation of this method with model

compounds was accomplished prior to the oxidation of the fulvic acid by

this technique. The products obtained from this procedure were analyzed

by gas chromatography and combined gas chromatography/mass

spectrometry.

Spectroscopic techniques employed for the purposes of analyzing

the structure of the undegraded fulvic acid include infrared spectroscopy

and proton and solid state ^^C nuclear magnetic resonance spectroscopies.

Additionally, the effects of the oxidative conditions employed for

the alkaline cupric oxide oxidation on selected compounds was

investigated. Analysis of the resulting products was performed in the

same manner as that for the oxidatively degraded fulvic acid.
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INTRODUCTION

Humic materials have been of interest to the investigative scientist

for some time (Green and Steelink, 1962, Christman and Ghassemi, 1966).

Humic substances are found in both aquatic and terrestrial environments

and although humics from these two sources share similarities,

differences between the two groups do exist. Humic substances may be

grouped into various categories or component matrices depending upon

certain characteristics expressed in isolation schemes employed for the

separation of the various components comprising the humic material

(Thurmond and Malcolm, 1981, Leenheer, 1981). A multitude of techniques

have been employed to gather data on the origin, structure, metal chelating

ability, and reactions of humics under various conditions (Christman et al.,

1984, Schnitzer and Ortiz de Serra, 1973, Hatcher, 1981, Weber, 1983).

The accumulation of data pertaining to humic material has generated

different schools of thought in areas such as the genesis of humic

materials and structural models (Hatcher, 1981, Schnitzer and Ortiz de

Serra, 1973, Christman et al., 1984).

Several techniques have been of use in humic research as in studies of

structural components of other naturally occuring materials such as lignin

and coal (Hedges and Ertel, 1982, Hatcher et al., 1981, Pearl, 1954). The

severity of techniques employed varies from nondestructive, as in the case

of NMR and IR spectroscopic analysis to destructive as with harsh

oxidative conditions coupled with combined gas chromatography/mass

spectrometry for the analysis of the oxidation matrix components

(Hatcher, 1981, Wilson, 1981, Liao eta!., 1982, Norv/ood, 1986).

Christman and coworkers have noted that the lack of standard isolation

procedures and subsequent set of analytical methods for the analysis of

organic carbon from aquatic media have hampered the ability of
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investigators to easily compare the results of existing databases and

propose coherent structural models for humic or fulvic acid (Nonwood,

1986).

Norwood has noted the lack of model compound work performed

employing the various oxidation techniques which so many investigators

have used (Norwood, 1986).

One of the objectives of this research was to standardize the oxidative

degradation conditions for the analysis of Lake Drummond fulvic acid. A

useful approach to this was to employ the alkaline cupric oxide oxidation

procedure as outlined by Ertel and Hedges (1982). This method had to be

verified in our own laboratory in the same manner as that of Ertel and

Hedges. This was accomplished by checking the stability of compounds

previously reported in the literature as stable to the oxidative conditions

and procedures outlined by Ertel and Hedges. The series of compounds

employed for this purpose are known as the index phenols.

A second objective of the research was to structurally characterize

the Lake Drummond fulvic acid oxidation products. This goal was met by

employing the previously validated standard oxidative method of alkaline

cupric oxide oxidation. Analysis of the resulting product mixture was

accomplished via gas chromatography and combined gas chromatography/

mass spectrometry. In addition, other methods such as elemental

analysis, infrared spectroscopy and proton and ^^C nuclear magnetic
resonance spectroscopy were employed to provide addtional information

concerning the structure of the fulvic acid.

Finally, a third objective of the research was to investigate the

relative stability during the standardized oxidation of selected compounds

which had been reported in the literature as products of the alkaline

cupric oxide oxidation of humic material. This was accomplished by

subjecting the compounds to identical alkaline cupric oxide oxidative
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conditions as had been previously employed for the oxidation of the index

phenols and the Lake Drummond fulvic acid. Analysis of the resulting

products was accomplished by employing gas chromatography and combine

gas chromatography/mass spectrometry.
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LITERATURE REVIEW

Humic substances are generally complex, base soluble, naturally

occuring materials found in both terrestrial and aquatic environments, and
are thought to be the products of vegetative decomposition (Thurman and
Malcolm, 1981). They may be subdivided into different categories based
upon their behavior in various isolation schemes. It is generally accepted
that humic acid is the acid insoluble fraction, that which precipitates
from solution when the pH of the aqueous medium is less than 2. Fulvic

acid is soluble in both basic and acidic media. Hymatomelanic acid is
soluble in both basic media and low molecular weight alcohols (eg.
butanol). however it is not soluble in dilute hydrochloric acid (Black and
Christman, 1963). Humin is a terrestrial humic material component which
is not base soluble. This property makes humin difficult to obtain for
analysis. Various methodologies have been worked out for the isolation

and seperation of the components of humic substances. These vary in
approach from distillation under reduced pressure (Black and Christman,
1963) to employing exchange resins of various types (Christman and
Ghassemi, 1966, Liao et al., 1982, Thurman and Malcolm, 1981, Leenheer,

1981).

Recent trends in isolation schemes show a marked perference for the

macroreticular type resins such as XAD-7 and XAD-8. These resins have a
great affinity for high molecular weight polyelectrolytic substances
which make them ideal support materials to be employed for the isoation
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of humic substances. Leenheer provides a very practice tretise on the

various resins employed for isolation of the many components comprising

dissolved organic carbon (DOC) in both natural waters and wastewaters

(1981). Thurman and Malcolm presented one of the earlier uses of

macroreticular resins in combination with cation exchange and

lyophylization for the isolation of aquatic humic and fulvic acids (1981).

These particular publications have laid much of the groundwork for the

methodologies presently employed in the isolation and fractionation of

aquatic humic substances. Much of the earlier literature focuses on

terrestrial humic materials, however some work on aquatic humic

material did parallel some of the earlier findings on terrestrial

substances (Christman and Black, 1963, Christman and Ghassemi, 1966).

The literature describes numerous techniques that have been employed

by various researchers in their quest for information relating to humic

materials. Oxidative degradation techniques comprise much of the earlier

literature. By the late 1970's advancements in the application of

spectroscopic techniques allowed for a new and different approach

towards studying humic substances. Of particular significance is the

application of some nuclear magnetic resonance (NMR) techniques such as

cross polarization- magic-angle spinning (CP/MAS) and dipolar dephasing.

These techniques have provided important information on the intact gross

structure of humic substances. The advent of CP/MAS provides a technique

to obtain relatively well defined spectra of humic materials in the solid

state, an important achievement.

Prior to approaches employing NMR as a structural study tool, the

approach towards studying the structure of humic substances was to

utilize the degradative techniques available at the time, thus allowing one

to examine the fragments of the humic material. However, as is evident in

the literature, piecing the subunits back together proves to be quite a
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difficult, if not controversial task (Christman et a!., 1984).

It is important not to rely too heavily on the information obtained from

one particular technique, rather, it is more advantageous to employ the

resources of information obtained from as many approaches as possible.

However, it is equally important to know the limitations of the techniques

that are employed. \
One of the earlier oxidative degradation methods employed with humic

material was alkaline permanganate oxidation. Schnitzer and DesJardins

(1970) found that the major products from alkaline permanganate

oxidation on a terrestrial fulvic acid were benzene carboxylic acids. Both

1, 2, 4, 5 - and 1, 2, 3, 5 -benzene tetracarboxylic acids along with penta-

and hexabenzene carboxylic acids were found to predominate the oxidation

products of reacted fulvic acid. This was found to be the case both when

employing premethylated or unmethylated fulvic acid. With respect to

smaller, volatile aliphatic acids found, unmethylated fulvic acid produced

only acetic acid wereas methylated fulvic acid produced oxalic and acetic

acids along with propionic, butyric and isocaproic acids. Acetic acid was

also the major volatile aliphatic acid produced in the reaction of

methylated fulvic acid with alkaline potassium permanganate in this

study. The benzene carboxylic acid portion, although the major

degradation product, accounts for only a small portion of the original

starting material (0.4 to 1.4 %) (Schnitzer and DesJardins, 1970)

Neyroud and Schnitzer (1974), employing alkaline potassium

permanganate oxidation on premethylated terrestrial fulvic acids found

that the major degradation product consisted of benzene carboxylic acids.

This group was comprised primarily of 1,2, 4, 5-, and 1, 2, 3,4-benzene

tetracarboxylic acids, benzenepentacarboxylic acid pentamethyl ester and

benzene hexacarboxylic acid hexamethylester. The authors indicate that

1,2,3,5-benzene tetracarboxylic acid tetramethyl ester is not detected.
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Liao, et al. (1982) utiized alkaline potassium permanganate oxidative
conditions on a set of aquatic fulvic and humic acids. Following potassium
permanganate oxidation, the product mixture was methylated with
diazomethane From this study, six major cateogries of compounds were
identified. These included benzene carboxylic acid methyl esters, furan
carboxylic acid methyl esters, glyoxylic acid methyl esters, aliphatic
monobasic acid methyl esters, aliphatic dibasic acid methyl esters and
aliphatic tribasic acid methyl esters. Mono-, di- and tribenzene carboxylic
acid methyl esters were identified amongst the benzene carboxylic acid
methyl esters, however, the tri-, tetra-, penta- and hexabenzene
carboxylic acid methyl esters predominate amongst this category and
account for approximately 65% of all identified chromatographable
products for humic acid and approximately 60% for identified fulvic acid
products resulting from oxidation with potassium permanganate. Other
individual major products from the humic and fulvic acid degradation
mixtures included oxalic, succinic and malonic acid dimethyl esters.

Alkaline nitrobenzene oxidation was a technique used mainly by wood
chemists but found application for use by those exploring the composition
of soil organic matter. Compared to alkaline potassium permanganate
oxidations, alkaline nitrobenzene appears to be less harsh. With alkaline
nitrobenzene, less highly oxidized products are obtained. Aldehydes and
ketones are readily detected amongst the isolated oxidation products.
Morrison (1963) describes a method for the determination of
p-hydroxybenzaldehyde, vanillin and syringaldehyde in the product mixture
when employing alkaline nitrobenzene as the oxidant. From his findings,
Morrison states that phenolic aldehydes account for approximattely 1% to
4% of the T.O.C. in peat and 0.5% to 1% of the T.O.C. in soil, whereas in
plant material, that parameter measures approximately 7% when
employing the same methodology. Other products identified in the product
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mixture include p-hydroxybenzoic, vanillic, syringic, coumaric and ferrulic
acids along with p-hydroxyacetophenone and acetovanillone.

Acetosyringone is detected but not to the extent of other ketones.
Morrison notes that the composition of the product mixture is altered with
respect to choice of reaction temperature. Employing a reaction
temperature below 170°C tended to favor the presence of substituted
cinnamic acids whereas choosing reaction temperatures above 180 C

favored the formation of aldehydes.

In a later study, Gardner and Menzel (1974) examine the aldehyde
content of marine sediments after exposing the sediments to alkaline

nitrobenzene oxidations. Gardner and Mentzel were attempting to employ
the aldehydes as tracers of terrestrial derived organic matter. They chose

p-hydroxybenzaldehyde, vanillin and syringealdehyde as their target

aldehydes. Syringaldehyde and vanillin were well known lignin degradation
products which are derived from higher vascular plants only available

from terrestrial sources. They found a range of 0.1% to 1.0% of total
organic matter analyzed as being comprised of syringaldehyde and vanillin.

The percentage decreased with increasing distance from shore. However,
laboratory blanks showed evidence of contaminating amounts of vanillin
and p-hydroxybenzaldehyde.

Hedges and Parker (1976) indicate that there are inherent problems
associated with nitrobenzene oxidations of organic matter with respect to

production fo organic compounds that coelute with p-hydroxybenzaldehyde
and vanillin. This was verified by analysis of system blanks for the

oxidation conditions employed.

Alkaline hydrolysis is considered mild amongst the spectrum of the
oxidative degradation techniques employed by researchers throughout the

years. Rupture of ether and ester linkages appears to be the predominant
reactions occuring in alkaline hydrolysis (Neyroud and Schnitzer, 1974).
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Neyroud, et al. (1974), having first methylated and then fractionated a
terrrestrial fulvic acid over alumina with solvents of increasing polarity,

subjected the two most polar fractions collected to alkaline hydrolysis.

The major reaction products isolated and identified by GC/MS consisted of
aliphatic acids, phenolic acids and benzene carboxylic acids. Overall yield

of products from these two fractions was 9.4% and 7.4%.

Liao, et al. (1982) using aquatic humic substances isolated on XAD-8

macro reticular resin examined the alkaline hydrolysis products by GC/MS.
Both humic and fulvic acid samples from two sources were examined under
this set of conditions. Products isolated from the reaction mixture were

methylated with diazomethane prior to GC/MS analysis. Although in
excess of 30 compounds for both humic and fulvic acids from each source
were identified, the major alkaline hydrolysis products consisted of the

methyl esters of benzene carboxylic acids and of aliphatic acids.

Dominant amongst the aliphatic acids were the dibasic acids. Overall

yields for products identified varied from 1.2% to 1.7%. The humic acid
fractions boasted a yield of approximately two times as much aliphatic

dibasic acid methyl ester content compared to the fulvic acid isolated
from the same source.

Another degradative technique that has been utilized for studying

humic materials is alkaline cupric oxide. With regard to oxidative

strength, it is a mild technique, comparable in mildness to alkaline

hydrolysis, however it appears to be somewhat stronger than alkaline

hydrolysis. Although widely used by wood and lignin chemists, alkaline
copper oxide has gained considerable popularity as a degradative

technique amongst those studying the structure of humic material (Hedges
and Ertel, 1982).

Some of the earlier studies on aquatic humic material employing

alkaline copper oxide conditions were performed by Christman and
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Ghassemi (1966). They investigated aquatic humic material isolated from
several sources in the northwestern United States. The authors reported
that the dark color imparted to the humic material was due to the
presence of aromatic polyhydroxymethoxycarboxylic acids. Employing thin
layer chromatography and various indicator reagent sprays, the authors
identified seven degradation products which fell into the above mentioned
category. It was also noted that when activated by an appropriate
hydroxyl substitution pattern, alkyl side chains of certain phenolic
structures were converted to phenolic acids. The alkyl side chain was
oxidized to the position where only a one carbon carboxylic acid function
remains. This occurs when the alkyl side chain is influenced by the
presence of an ortho-para director; i.e., the activator is in a position ortho
or para to the alkyl side chain. In this particular case, the ortho-para
director is the hydroxyl moiety.

An earlier study by Greene and Steelink (1961) employing aqueous
alkaline cupric oxide was performed on soil humic acid. Separation and
identification of degradation matrix products was accomplished by paper
chromatography. Phenolic structures were also the major components
identified in this study and this was also the first time that resorcinol
and guiacyl derivatives were reported as humic acid degradation products.
The authors postulated that the presence of these compounds indicate that
lignin may not be the sole precursor of terrestrial humic acid.

In a later study performed by Ertel et al. (1984), the potential
contribution of lignin as a precursor to aquatic humic substances is
assessed by employing alkaline cupric oxide as the oxidative degradion
technique. Hedges et al. had utilized this technique extensively in earlier
research on the distribution of oxidation products of lignin derived from
various sources (1979,1982). Previous work by Hedges et al. led to the
development of the term index phenols (1979,1982). This term applies
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to phenols that are commonly and consistently observed in cupric oxide
degradation of plant tissues of various origins. The phenols consist of the
aldehyde, ketone and carboxylic acid derivative of p-hydroxy, vanillyl and
syringyl structures. Cinnamyl phenols, which have trans-propenoic acid
functions, are also encountered.

Ertel and Hedges have found that certain types of the phenols are
associated with particular types of vegetation. Vanillyl phenols are found
amongst the cupric oxide degradation products from both the woody and
non woody tissues of angiosperms and gymnosperms, whereas syringyl
phenols are only found from angiosperm digests, and cinnamyl phenols
from gymosperm sources. The simplest class of phenols, the p-hydroxy
substituted phenols are found amongst the cupric oxide products from
vascular and non vascular plant tissues (1979,1982). Ertel and Hedges
(1982) state that a major protion of aquatic humic material comes from
vascular plants since these are the only source of lignin.

Ether extractable phenols were not observed when the isolated humic
materials were extracted, however, the distribution of the various forms
of index phenols were observed amongst the copper oxide oxidation
products. The authors felt that this implied that lignin-like structures
were present in the humic substances.

In comparing the distribution of the various phenols and their
respective form (i.e., aldehyde, ketone, carboxylic acid), Ertel et al. (1984)
found that the humic acid fraction had a greater proportion of syringyl and
lesser proportion of p-hydroxy phenols relative to the fulvic acid fraction.
It was also noted that the fulvic acid fraction yielded higher
acid/aldehyde ratios than the corresponding humic acid fraction. The
higher degree of demethoxylated and more oxidized moieties observed in
the fulvic acid fraction may be the result of a greater degree of biological
action upon the fulvic acid fraction compared to the humic acid fraction
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(Erteletal., 1984).

With regard to the mechanism of action by alkaline cupric oxide upon

complex matrices such as lignin or humic substances, there is a paucity of

literature or reported investigations. In a review by Hayes and Swift

(1978) the authors mention a plausible mechanism proposed by Chang and

Allan. They believe that the oxidation occurs by a one electron transfer

process. The authors further elaborate that the abstraction of an electron

to produce a phenoxy radical followed by a fast second electron transfer

back to the cupric oxide molecule which results in the production of a

quinonemethide. A reaction sequence proposed in their review follows;

12

n CH..OH = CHOH ------* ͨ   HOAl       J/-CHO-^ o/    V,
OCH,

Figure 2-1

D

The second electron transfer back to the cupric oxide prevents coupling of

phenoxy radicals. Employing a high reaction temperature along with

excess cupric oxide increases the rate of electron transfer, hence, driving

the oxidation more quickly towards completion(Hayes and Swift, 1978).

Whereas oxidative degradation of humic substances followed by

chromatographic separation and possible mass spectrometric

identification of the matrix components provides one with information

concerning the subunit structural entities that comprise the humic
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substances, it offers little information with regards to the original
overall structure of the intact undegraded humic substance. Recent
advances in the area of nuclear magnetic resonance (NMR) allow one to
obtain useful

information concerning gross overall structural composition of the humic
substances. With the advent of cross polarization/magic angle spinning
and fourier transform techniques, the high degree of resolution once only
available through analysis of samples in the liquid state can now be
obtained for intact solids (Wilson, 1981, Hatcher et al., 1981).

Prior to the introduction of CP/MAS, some investigators felt that
proton NMR (^ H NMR) was a more reliable technique for quantitative
structural analysis of humic substances (Ruggerio et al., 1979). However,
the introduction of CP/MAS and fourier transform techniques to solid
state ^ ^C NMR analysis has changed that view (Hatcher et al., 1981,
Wilson etal., 1981).

In recent years, refinements in the use of the new ^'^C NMR techniques
have contributed to their applications for quantitative purposes. To
employ solid state '^C NMR, certain parameters such as optimum cross
polarization contact time and appropriate pulse delays must be determined
experimentally beforehand. In dealing with ^'^C nuclei from different
chemical environments, different rates of relaxation to the ground state
are to be expected once Rf pulses have been applied to the samples
(Wilson, 1981). Signals from the various chemical environments within
the sample may be seen throughout the spectrum and signals seen in
particular spectral regions of arise from distinct classes of structural
entities present within the sample.

The positions of the various signals seen in the spectrum may be
defined by their chemical shift, which is their resonance frequency
difference position relative to a standard such as tetramethyl silane (TMS)
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(Wilson, 1981). Hatcher (1983) divides the ''"^C spectra of humic
substances into five regions. The first region (0 to 50 ppm) is comprised
mainly of aliphatic moieties, carbons singly bonded to other carbons. An
important entity contained within this region is terminal methyl groups.
In region II, (50 to 110 ppm) carbons singly bonded to heteroatoms such as
oxygen and nitrogen are observed. Resonances from structural entities
such as ethers, carbohydrates, amines, alchohols, methoxyl and acetals are
observed within this frequency range. Region III (110 to 160 ppm) mainly
reflects the aromatic character of solids, however carbon-carbon double
bonds of non aromatic origin also resonate within this region. Carboxyl
carbons bonded to heteroatoms such as oxygen and nitrogen resonate
within region IV (160 to 190 ppm). Resonances from functional groups
such as carboxylic acids, esters and amides are observed in this range.
Region V (190 to 220 ppm) reflects the resonances of carbonyl carbons
bonded to other carbons or hydrogens, and the resonances arising from
ketones and aldehydes are seen in this region.

Another important set of experiments that the nuclear magnetic
resonance spectroscopist must perform in order to obtain useful
quantitative data is CP/MAS relaxation time experiments. The spin-latice

relaxation time (T.j) can be obtained from these experiments. By obtaining
this value, the correct parameters for cross polarization contact time and
pulse delay time may be established.

Knowledge of relaxation rate parameters may enable one to obtain

spectra devoid of signals from CH or CH2 moieties (Wilson et al., 1983).
This is accomplished through a series of experiments involving dipolar
dephasing. Dipolar dephasing involves an instrumental experiment
whereby a series of set time delays are inserted into the pulse delay
program without decoupling of ' H and ^ ^C nuclei prior to acquisition of
data. The dipolar dephasing time (Tdd) is acquired through this set of

14
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experiments. As Tdd is increased the signal from protonated carbon

decreases. Wilson et al., (1983) employing a Maungatua soil sample shows

that as Tdd aproaches 40 u sec the signal from protonated carbon,

excluding methyl carbons, is almost completely diminished.

Utilizing this technique, the protonated carbon spectrum can be

obtained through a difference spectrum. Subtracting the ^'^C spectrum

obtain at a long Tdd from that obtained at Tdd=0, will provide the

spectrum of protonated carbon minus the methyl carbons. The spectrum

obtained will indicate if the aromatic content of the humic material is

heavily protonated.

Wilson adds a note of caution concerning interpretation of dipolar

dephased spectra with respect to the methyl region. Methyl groups are

allowed to rotate freely in the solid state and even at long Tdd's, the

methyl carbons do not relax and are present in spectra taken at long Tdds.

It is apparent that the knowledge of relaxation rates and dipolar

dephasing techniques provides another approach for functional group

analysis. Solid state ^^C NMR with ancillary techniques such as CP/MAS,

fourier transform, and dipolar dephasing provides the investigative

scientist with additional ways to study the structure of humic substances.
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Experimental Methods

Fulvic acid obtained from the waters of Lake Drummond was the humic

substance of choice, employed for the purposes of copper oxide

degradation reactions. The reader is referred to the work of Liao for exact

details concerning the location and characteristics of Lake Drummond
(1981). The fulvic acid was isolated according to the procedure outlined
by Christman et al. (1981). The exact isolation procedure is described in
detail by Norwood (1985).

Alkaline cupric oxide oxidation reactions on the Lake Drummond fulvic

acid (LDFA), the model compounds, and the index phenols were carried out

in Monel stainless steel reaction cylinders as diagrammed by Hedges and

Ertel (1982) and according to their procedure with minor modifications.
Exceptions to the protocol outlined by the authors included the use of a

replica of the commercially available 200ml Parr bomb (model 4753).
Additionally, an alternative surrogate standard was chosen. Ertel and

Hedges employed uniformally ring labeled [^'^CJ-p-hydroxyacetophenone as
the surrogate standard for recovery studies. Instead, following the cupric

oxide oxidations, known accounts of ethyl vanillin dissolved in pyridine
were introduced into the 10 ml Monel minibombs upon opening and prior to

any transfer steps (Hedges, personal communication).
Identical gas chromatographic operating conditions were employed

with the exception of the instrument, recorder, column and split ratio. A

Carlo Erba temperature programmable gas chromatograph (Model HRGC
5160 mega series) interfaced with a Shimadzu C-R3A integrator was
employed. A 30m by 0.25mm i.d. fused silica DB-1 capillary column (J & W
Scientific) at a split ratio of 10:1 was utilized.
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A temperature controller (Cole Palmer Model C-2155-20) equiped with
a platinum temperature probe was used to heat the reaction cylinder and
maintain the reaction temperature of 170°C. The Monel reaction cylinder
was fitted into an insulated heating sleeve mounted on top of a shaker top
table. The Monel reaction cylinder, minibombs, insulated heating sleeve,
and glove box were manufactured in the UNC School of Public Health
instrument shop.

Model compounds, index phenols, ethyl vanillin, trans-cinnamic acid,
homovanillic acid, and copper (II) oxide (gold label) were purchased from
Aldrich Chemical Company (Milwaukee, Wl) and were the best grade
commercially available. Structures for the model compounds and index
phenols appear in figures 4-3 and 4-1, respectively. Sodium sulfate and
ferrous ammonium sulfate were purchased from both Fisher Scientific
(Raleigh, NC) and EM Science (Cherry Hill, NJ). Sodium Hydroxide pellets
and Whatman extraction thimbles (33mm X 94mm) were purchased from
Fisher Scientific (Raleigh, N.C.). Pyrex brand glass wool was purchased
from Corning Glass Works (Corning, PA). Distilled in glass pyridine and
diethyl ether were purchased from Burdick & Jackson and were the best
quality grade commercially available and were used without further
purification. For the preparation of trimethylsilylated derivatives, i2ls-
(trimethylsilyl) trifiuoroacetamide (BSTFA) with 1% TMCS was employed
and was purchased from Pierce Chemical Company (Rockford, IL).

Sodium sulfate, ferrous ammonium sulfate, copper (II) oxide and glass
wool were all soxlet extracted with diethylether for 24 hours before being
employed for any purposes in any of the reaction steps. Prior to use for
extractions, diethyl ether was treated with soxlet extracted ferrous
ammonium sulfate in order to reduce any peroxides present.

NEATPAGEINFO:id=634B7CFC-CF97-4F11-8CE1-208161B97035



18

GCandGC/MS

As a quality assurance check, stock solutions of the index phenols and

various classes of model compounds were prepared, derivatized and

analyzed, as their TMS analog, via gas chromatography. The results of the

chromatography indicated that all the index phenols and model compounds

were free from any interferring substances.

Verification of the identity of the components comprising the various

stocks of index phenols and class of model compounds was accomplished

via combined gas chromatography/mass spectrometry analysis. Standard

solutions of the index phenols and the various classes of model compounds

were analyzed, as their TMS derivatives, on a Hewlett Packard gas

chromatographic interfaced quadrapole mass spectrometer (Model 5985 B).

A 30m X 0.25mm i.d. SE-30 fused silica capillary column was employed for

chromatographic separation of the components comprising the various

mixtures. A temperature program of 100°C to 270°C at 4°C/min with no

initial delay was employed. Samples were analyzed under electron impact

conditions at 70eV. A scan rate of 1 second was employed. The identity of

the components comprising the mixture isolated after Lake Drummond

fulvic acid was subjected to alkaline cupric oxide oxidation, was

accomplished on two different combined gas chromatography/quadrapole

mass spectrometry instruments. One of the instruments is previously

described.

The second instrument employed was a Finnigan 4021 combined gas

chromatography/quadrapole mass spectrometer equiped with a 30m X

0.25mm i.d. DB-1 capillary column. A scan rate of 1 scan/second was

employed. Samples were analyzed at 70eV. A total of 2600 scans was

obtained. The data system employed consisted of a Data General Nova 3
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computer equiped with Perkin-Elmer disk drives.

Calibration curves for the index phenols, the four classes of model

compounds, and ethyl vanillin were constructed for the purposes of
quantifying components in extracted samples. Stock solutions of the index
phenols with ethyl vanillin and the 4 classes of model compounds with
ethyl vanillin were prepared with known amounts of each component
present. Serial dilutions of the stock solutions were made over a 10 fold
range. To each solution, precise amounts of the appropriate GC internal
standard was spiked into each solution such that there was the same
amount of the GC internal standard at each level of dilution. For the

purposes of the index phenols, trans-cinnamic acid was employed as a GC
internal standard, whereas with respect to the model compounds,
homovanillic acid was utilized as the internal standard. On the DB-1

column, under the conditions previously described, homovanillic acid

coeluted with vanillic acid, one of the index phenols. It was suggested to
use trans-cinnamic acid as a substitute (Ertel, personal communication).

Trans-cinnamic acid did not interfere with any of the chromatographed
index phenols. Ethyl vanillin was employed as a surrogate standard in all
samples for the purposes of estimating overall recovery. The

concentration of components chosen for preparing the calibration curves
covered a range in the area of the initial starting materials employed for
alkaline copper oxide degradations.

Extraction Efficiency

The recovery of the index phenols was accomplised by measuring the
extraction efficiency of known amounts of the index phenols through the
complete set of post oxidations steps. A solution of index phenols in a 2 N
sodium hydroxide was split into equal volume aliquots and titrated with
6 N HCI until a pH of 2.0 was attained. The solution was then extracted

with several portions of anhydrous ethyl ether previously treated with
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ferrous ammonium sulfate. The ether extracts were dried by being passed

through glass columns containing sodium sulfate. The columns were

washed with several aliquots of ferrous ammonium sulfate treated ether

and the washings were combined with the previously collected extracts.
The extracts were concentrated to a volume of approximately two

milliliters via rotary evaporation. The concentrate was transferred to
preweighed vials and blown to dryness under a gentle stream of nitrogen.
The vials were reweighed, capped with teflon line caps and stored at 0°C
until analysis by gas chromatography.

Functional Group Analysis

Functional group analysis for the Lake Drummond fulvic acid was

accomplished by scanning infrared spectroscopy, proton nuclear magnetic

resonance spectroscopy and carbon-13 nuclear magnetic resonance
spectroscopy.

Scanning infrared spectroscopy was performed using a Perkin-Eimer

71 OB spectrophotometer, a dual beam instrument (Perkin-Elmer, Norwalk,

CT). A 3 mg sample of LDFA was combined with 300 mg of KBr (Harshaw

Chemical Company, Solon, OH), thoroughly mixed with a mortar and pestle
and pressed into a transparent pellet at approximated 2000 psi for 1

minute. A reference spectra of KBr was also obtained. The reference KBr

pellet was prepared in the same manner as the LDFA sample, minus the

inclusion of fulvic acid. The KBr had been dried overnight in a drying oven
at approximately 120°

Proton nuclear magnetic resonance spectroscopy was performed with a
200 MHz Bruker Fourier Transform spectometer (Bruker Instruments, Inc.,

Manning Park, Billerica, MA) The sample was prepared by placing 13.1 mg
of LDFA in a 5mm (Aldrich premium grade NMR tube and adding 0.6 ml of

DgO (Sigma Chemical Co., St. Louis, MO) Enough sodium deuteroxide (NaOD)
was added to dissolve the sample (Aldrich, Gold Label). A small amount of
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tetramethylsilane was added as a reference standard in order to obtain a
lock on 0 ppm. A total of 300 scans were acquired and averaged. A 2
second cycle time was employed.

Solid state C-13 nuclear magnetic resonance spectra for Lake
Drummond fulvic acid were obtained under identical conditions as

described by Norwood (1985).
Elemental Analysis

Elemental analysis of the Lake Drummond fulvic acid was performed by
M-H-W Laboratories, Phoenix, Arizona. The samples were vacuum dried at
60°C to a constant weight prior to analysis
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Results and Discussion

Index Phenols

A review of the most recent literature on alkaline copper oxide
oxidations of aquatic and terrestrial humic substances will reveal the
term index phenols, a term coined by Hedges to describe a set of nine
substituted phenols that are commonly and consistently found as oxidation
products from alkaline copper oxide oxidations of lignin (1975) Figure
4-1). The presence of these phenols amongst the products of humic
material subjected to alkaline copper oxide oxidative conditions infers the
importance of lignin as a significant or important precursor to humic
material formation (Ertel and Hedges, 1981). A major focus of this
project was to examine the product mixture obtained from subjecting Lake
Drummond fulvic acid to the same alkaline copper oxide oxidative
conditions as Ertel and Hedges employed for their studies on lignin (1979).
It had previously been demonstrated that the index phenols were relatively
stable towards the oxidative conditions employed In the alkaline copper
oxide reaction (Hedges, 1975). Since this was the first attempt at
alkaline copper oxide oxidations of humic material in our own laboratory
facilities, it was appropriate to examine the stability of the index
phenols. Approximately 3 milligrams of each compound was employed and
when recovery was corrected to that of ethyl vanillin, the surrogate
standard, the results indicate nearly quantitative recovery of the
p-hydroxyl and vanillyl moieties, however the syringyl compounds survive
the oxidation somewhat less than quantitatively  (Table 4-1). In his
preliminary research on the copper oxide oxidation of the index phenols,
Hedges observes the same occurance (1975). Hedges notes quantitative

NEATPAGEINFO:id=ED6EA229-076E-464D-AAC3-B97FA6CC0054



23

Figure   4--1

INDEX PHENOLS
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Figure 4.-2

FID Chromatogram of Index Phenols
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recovery for the p-hydroxyl and vanillyl compounds, but only an 84%
recovery for the syringyl phenols. The results obtained from this
experiment are comparable to those of Hedges, for we see quantitative
recovery of the p-hydroxyl and vanillyl moieties and an average recovery

of 81% for the syringyl moieties. The losses of syringyl moieties could
not be completely ascertained. The possibility of interconversion to

vanillyl and p-hydroxyl structures is not precluded, however, it could not
be verified by the results from this experiment.

To accompany the copper oxide oxidations of index phenols, the

extraction efficiency of these compounds plus the surrogate standard,

ethyl vanillin, was investigated. Throughout the course of the post
oxidation workup, several steps involving transfers, concentrations and

removal of water though the addition of a drying reagent are required. It

was of interest to document the recovery of these compounds through the

extraction efficiency procedure previously described in the experimental

section. From this experiment, one could see how well ethyl vanillin

extracts compared to compounds of similar structure and, hence, be able

to assess its value as a surrogate standard. Throughout the course of their

work involving copper oxide oxidations. Hedges and Ertel employed

uniformally ring labeled ^^ C-acetophenone for the purposes of calculating
recovery. The purchase of uniformally ring labeled ^^C-acetophenone was
quite costly, therefore owing to cost restraints, it was decided to employ
non-radioactive compound as the surrogate standard. The addition of
known amounts of ethyl vanillin to each minibomb following the oxidation

was suggested (Hedges, personal communication). The results of the
extraction efficiency appear in Table 4-2.

It is obvious that losses occur during the post oxidation work up. The
standard deviations associated with the recoveries of the compounds are
inflated to a greater degree largely because of the high values associated
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Table   4-1

Percent Recovery of Index Phenols from Cupric Oxide Oxidation

Percent

Recovery

4-Hydroxybenzaldehyde 99.3%

4-Hydroxyacetophenone 104.6%

4-Hydroxybenzoic Acid 102.9%

Vanillin 98.8%

Acetovanillone 101.3%

Vanillic Acid 106.9%

Syringealdehyde 80.3%

Acetosyringone 93.4%

Syringic Acid 70.0%
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Table 4-2

Index Phenol Extraction Efficiency Data

Percent Recovery for Five Extractions

Mean &

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Std. Dev.

4-Hydroxybenzaldehyde 75.4 68.8 80.4 78.8 114.6 83.6+17.9
4-Hydroxyacetophenone 77.3 69.2 83.4 81.0 117.1 85.6+18.4
4-Hydroxybenzoic Acid 91.9 69.6 87.2 79.2 112.9 88.2+16.1
Vanillin 61.1 50.1 63.8 68.2 96.3 67.9+17.2
Acetovanillone 73.7 62.3 72.2 75.5 108.7 78.5+17.6
Vanillic Acid 90.5 67.2 92.2 80.4 116.3 89.3+18.1
Syringealdehyde 70.0 63.2 70.6 68.6 110.5 76.6+19.2
Acetosyringone 67.4 59.0 75.2 72.4 103.5 75.5+16.8
SyringicAcid 66.5 47.8 72.3 65.4 93.5 69.1+16.4
Ethyl Vanillin 64.0 60.5 65.1 70.5 100.7 72.2+16.4

NEATPAGEINFO:id=761AD274-200D-4062-8554-2E5EAF2402F0



28

with sample 5. It is also seen that ethyl vanillin extracts and is recovered
in quantities similar to that of the other compounds and its use as a
surrogate standard for the purposes of quantitative is justified.

Model Compounds

A series of model compounds were chosen and subjected to the
oxidative conditions of the alkaline copper oxide reaction previously
described. This set of experiments was performed to investigate the
relative stability of some simple compounds which had been reported in
the literature as alkaline copper oxide oxidation products of humic
material. Additionally, related compounds which had not been cited as
products, but which were structurally similar to those reported, were also
employed.

A paucity of data concerning model compound work in relation to
alkaline copper oxide oxidations on humic material exists, however, that
which has been found deserves mention. Christman and Ghassemi

performed alkaline copper oxide oxidations on a series of phenolic and
flavenoid compounds. For the substituted phenolic compounds, it was
shown that cleavage of the alkyl side chain depends upon the hydroxyl
substitution pattern on the ring (1966). The authors stated that the alkyl
side chain is more easily cleaved to a one carbon acid function when the
appropriate activator resides in a position ortho or para to the alkyl side
chain. Results from the flavenoid model compound work indicated that the
flavenoid structure is oxidized to more simple phenolic compounds. It
must be added that the mode of detection and identification employed
consisted of separation of the components by thin layer chromatography
followed by spraying with specific indicator reagents.

Hedges subjected the index phenols to the oxidative conditions of the
alkaline copper oxide oxidation reaction. He noted that there was
approximately a 10% conversion of the aldehydes to their corresponding
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FID Chromatograms of Group IV Model Compounds
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acidic form (1975). Under identical conditions, employing syringyl
propionic acid as the sole starting material the major oxidation products
recovered included syringealdehyde, acetosyringone, and syringic acid.
Ferrulic acid was oxidized to vanillin and tyrosine was converted to

p-hydroxybenzaldehyde and p-hydroxybenzoic acid. The model compounds
chosen for the purposes of this study were all alkyl benzene moieties with
various hydroxy! and methoxyl substitution patterns except for one class
which did not have any hydroxy! or methoxyl substituents.

The series of model compounds were placed into four categories, Group
I through Group IV, according to their structure (Figure 4-3). Percent
recovery data for the bombed model compounds appear in Table 4-3.
Examination of the results indicates that certain compounds are more
resistant to the oxidative conditions than others.

With regard to the data obtained for the Group I model compounds, a
note of caution must be made concerning interpretation of the result. One
of the model compounds from this class, 3-(4-hydroxyphenyl)propionic
acid is not baseline resolved from the internal standard, homovanillic

acid, and therefore, these results are somewhat suspect. The choice of
another internal stardard would clarify this situation.

Examination of the results for the Group II model compounds indicate
that these compounds withstand the oxidative condition quite well. Nearly
quantitative recovery of the compounds is attained (Table 4-3).

The results for the Group III model compounds readily indicate that
1,3-dihydroxybenzene is greatly affected by the oxidative conditions
associated with the reaction. Only 22% of original starting material
normalized to the internal stardard is recovered, whereas the other Group
III model compounds are recovered almost quantitatively. IVIechanisms
could be proposed with regard to the fate of 1,3-dihydroxybenzene under
these conditions, however, based on the data obtained, these mechanisms
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would be speculative at best. A further experiment employing
1,3-dihydroxybenzene as the sole starting material would be required to
obtain the necessary data from which one could propose plausible
mechanisms concerning the fate of this structure. Upon examination of
the data for the Group IV model compounds, one sees that the
3,4-dihydroxy moieties are not recovered after the reaction (Figure 4-4).
This is readily apparent from comparison of the chromatograms for a
stock solution of the compounds and that for the products obtained
following the reaction. Aside from the internal and surrogate standards,
there are two peaks present. One of them matches the retention index for
3,4-dimethoxyphenyl acetic acid, however, the second peak does not match
the retention index for any of the starting material. Analysis by combined
gas chromatography mass spectrometry yielded an empirical formula of
^i3'~'22^'2^3 ^"'-' ^ formula weight of 282. Analysis of an authentic sample
of 3,4-dihydroxy-benzaldehyde provided a match for both the g.c.
retention index and mass spectrum of the secondary oxidation product
obtained from the alkaline copper oxide oxidation of the Group IV model
compounds (Figure 4-5).

From their review on soil organic colloids, Hayes and Swift suggest a
one electron transfer mechanism which proceeds through the formation of
a quinonemethide intermediate en route to the formation of an aldehyde as
the product.

CHO

Figure  It-()

Although this mechanism begins with a benzyl alcohol it does emphasize
the importance of the hydroxyl group in the para position. Referring to

enroll CO
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Table   4-3

Percent Recovery of Model Compounds from Cupric Oxide Oxidation

Percent

Recovery

Group I Model Compounds

2-Hydroxybenzoic Acid 98.0%
4-Hydroxybenzoic Acid 94.4%
4-Hydroxyphenylacetic Acid 78.0%
3-(4-Hydroxyphenyl)proprionic Acid 23.7%

Group II Model Compounds

Phenylacetic Acid 91.6%
Hydrocinnamic Acid 102.7%
Cinnamic Acid '      90.7%

Group III Model Compounds

1,3-Dihydroxybenzene 21.7%
3-Hydroxybenzoic Acid 116.2%
3-Hydroxyphenylacetic Acid 94.6%
3,5-Hydroxybenzoic Acid 102.6%

Group IV Model Compound

3,4-Dimethoxyphenylacetic Acid 86.0%
3,4-Dihydroxybenzoic Acid *
3,4-Dihydroxyphenylacetic Acid ,       *
3,4-Dihydroxyhydrocinnamic Acid *
3,4-Dihydroxycinnamic Acid *

*Not Recovered
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Christman and Ghassemi's premise that cleavage of the alkyl side chain

will occur when the appropriate activating groups are present on the

aromatic ring, It is evident from this study that hydroxyls present in both

the meta and para positions exert a greater influence towards cleavage of
the alkyl side chain than when present in either the ortho, meta, or para

position alone. However, since the data concerning the Group I model
compounds should be viewed cautiously, the influence of the ortho and para

positions upon cleavage of the alkyl side chain cannot be stated with great
certainty, it is also evident that the 3,4-dimethoxy substitution pattern

is less activating than the 3,4-dihydroxy substitution pattern.

This is consistent with electrophilic aromatic substituent theory

which places the hydroxyl group as a strongly activating ortho-para
director and the methoxyl group as only a moderately activating

ortho-para director (Solomons, 1976). This previous statement does not

suggest that the alkaline copper oxide reaction is classified as an

electrophilic aromatic substitution reaction, rather, it merely indicates
that the hydroxyl group is believed to be a more potent activator of the
aromatic ring than the methoxyl group.

The results from the Group IV model compounds study indicate that
3.4-dihydroxy substituted alkyl benzene may be present in macromolecular
compounds such as lignin and humic materials, however, these may not be
seen amongst the reaction products from alkaline copper oxide
degradations due to secondary reactions occuring during the oxidation. It
must be emphasized that the compounds employed are simple structures
and are devoid of any near neighbor chemistry such as resonance and/or
inductive effects of adjacent moieties which may occur during the
oxidation with macromolecular compounds.
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Alkaline Cupric Oxidation of Lake Drummond Fulvic Acid

The results of the copper oxide oxidations of Lake Drummond fulvic

acid revealed the presence of numerous and diverse structural entities in

the product mixture. Both aliphatic and aromatic structures are found and
those identified by gas chromatography and combined gas chromatography/

mass spectroscopy appear in Table 4-4. This list of compounds comprises

approximately 31.4% of the FID chromatogram beyond the large solvent

front (Figure 4-7).

Analysis of the data presented in Table 4-4 reveals that the short

chain monobasic and dibasic aliphatic acids account for 12.9% of the total

peaks present or 41% of the identified products. This indicates that the

majority of identified products are aromatic structures. It is interesting

to note that the longest aliphatic structures identified, succinic and

maleic acids, are only four carbon atoms in length. This is consistent with

the premise that the fulvic acid contains shorter chain linkages compared

to humic acid, thus making the fulvic acid more soluble and less

hydrophobic than humic acid (Christman, 1983, Liao, 1982).

The aromatic moieties comprising the remainder of the product

mixture consist primarily of substituted phenols. Many, but not all, of the

index phenols described by Hedges were found. Exceptions to this group

included syringealdehyde and acetosyringone.

The presence of the index phenols is generally regarded as evidence of

lignin as a precursor to humic material formation (Ertel and Hedges, 1981,

1984). The presence of the p-hydroxyl phenols does not necessarily

indicate lignin as a precursor of humic material for these phenols are not

exclusively lignin derived, although they are seen as copper oxide

oxidation products of non-woody angiosperm tissues and gymnosperm
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Figure k-'l
FID Chromatograms for LDFA Products from CuO Oxidation

With standards Ethyl Vanillin and trans-Cinnamic Acid
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Above, spiked with Index Phenols
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TABLE 4-4

CuO Oxidation Products from Lake Drummond Fulvic Acid

Compound Retention       %Relative
Index Yield

1. Lactic Acid 0.347 3.54

2. alpha-Hydroxyisobutyric Acid 0.359 2.86

3. Levulenic Acid 0.408 1.22

4. alpha-Hydroxybutyric Acid 0.428 0.42

5. Malonic Acid 0.508 0.63

6. Benzoic Acid 0.566 1.19

7. Succinic Acid 0.649 1.82

8. Methyl Succinic Acid 0.670 1.41

9. Maleic Acid 0.684 2.86

10. 4-Hydroxybenzaldehyde 0.720 0.46

11. 1,3-Dihydroxybenzene 0.778 0.81

12. 4-Hydroxyacetophenone 0.848 0.55

13. Vanillin 0.922 0.98

14. 2-Hydroxybenzoic Acid 0.973 0.19

15. Acetovanillone 1.023 1.39

16. 3-Hydroxybenzoic Acid 1.041 0.93

17. 3,4-Dihydroxybenaldehyde 1.045 0.47

18. 4-Hydroxybenzoic Acid 1.049 2.08

19. Phthalic Acid 1.114 1.65

20. Tricarballylic Acid 1.178 0.57

21. Isophthalic Acid 1.196 3.36

22. Vanillic Acid 1.206 0.42

23. Terephthalic Acid 1.237 0.65

24. 3,5-Dihydroxybenzoic Acid 1.258 5.79

25. Syringic Acid 1.340 0.88

Retention Index - retention time of analyte relative to that for the
surrogate standard, ethyl vanillin. Retention
indices reported were obtained from GC data.

% Relative Yield -        peak area ratio of analyte versus chromatogram
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woods (Ertel and Hedges, 1984). It has been demonstrated that the various

vanillyl and syringyl moieties comprising the remainder of the index

phenols are lignin derived. The vanillyl structures are copper oxide

oxidation products of gymnosperm woody tissues and syringyl moieties are

derived from angiosperms. The distributions of these phenols generally

reflect the vegetative patterns indigenous to the area from which the

humic material is obtained.

Distributions of the different forms of the phenols mentioned within

the types of humic material analyzed, i.e., humic acid versus fulvic acid,

may also vary. Humic acids generally produce higher aldehyde/acid ratios

than the corresponding fulvic acids. Also, it has been shown that fulvic

acids produce a greater amount of p-hydroxyl phenols compared to vanillyl

and syringyl phenols than the corresponding humic acid (Ertel and Hedges,

1984). This helps to explain the fact that syringealdehyde and

acetosyringone are not seen amongst the copper oxide oxidation products

of Lake Drummond fulvic acid.

An interesting product which was found amongst many products

identified was 3,4-dihydroxybenzaldehyde. Schnitzer and Ortiz de la Serra

reported seeing 3,4-dimethoxybenzaldehyde as an alkaline copper oxide

oxidation product of a terrestrial humic acid (1973). The products

characterized by these authors were methylated following isolation and

prior to analysis by GC/MS. Therefore, the possibility exists that

3,4-dihydroxybenzaldehye was amongst the products isolated, however,

since the products were methylated prior to analysis, this position cannot

be ascertained. Had the products been analyzed as trimethylsilyl

derivatives, the present of 3,4-dihydroxybenzaldehyde as an oxidation

product could be stated more confidently. The significance of

3,4-dihydroxybenzaldehyde as a product of the alkaline copper oxidation of

the fulvic acid is emphasized by the results of the alkaline copper oxide
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oxidation of the Group IV model compounds. The results of that
experiment indicated that 3,4-dihydroxyphenyl alkanoic moieties do not
survive the oxidative conditions of the alkaline copper oxide reaction,

rather a secondary oxidation product results, namely 3,4-dihydroxy¬

benzaldehyde. It is therefore possible that 3,4-dihydroxyphenylalkanoic
moieties may be part of the macrostructure of the humic material,

however, upon their release during the alkaline copper oxide oxidation,

they are further acted upon producing 3,4-dihydroxybenzaldehyde as one of
the products. It must be emphasized that this process is not quantitative
and that other competing or subsequent reactions are most likely occuring,

further oxidizing these structures.

It was noted during the course of experimentation that some color

remained on the sodium sulfate drying column and that this color was not

easily removed by diethyl ether, however, a more polar solvent such as

methanol would elute the color from the drying columns. The products

analyzed in these sets of experiments and those reported by previous

investigators are for the most part, the ether extractable organics. It

would be of interest to choose an inert polar solvent (more polar than

diethyl ether) that would elute the color remaining on the column and see

what the product composition of this fraction would be.

Infared Spectroscopy

Another approach to functional gorup analysis of the undegraded Lake

Drummond fulvic acid is provided by infrared spectroscopy. The IR spectra
for Lake Drummond fulvic acid and potassium bromide appear in Figure
4-8. Several investigators have assigned certain frequencies to various
functional groups (Neyroud and Schnitzer, 1974, Thurman and Malcolm,

1985). Hydrogen bonded hydroxyls appear around 3400 cm'''. As is seen in
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Figure U-8
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Table 4-5

Elemental Composition of Lake Drummond Fulvic Acid

Sample 2iC        2il 23Ni %Ash

LDFA1 50.86     4.09 1.01 0.16

LDFA2 57.00     5.49 1.07 NIL

LDFA3 5L15    521 052 MQ

Mean 54.34     4.94 0.97 0.19

H/C=1.09 C/N=65.36
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comparison of the spectrum for the KBr pellet versus that for the fulvic

acid, the presence of the hydrogen bonded hydroxyls is a contribution from

the fulvic acid. Aromatic C-H stretching appears around 3000 cm"^ and
aliphatic C-H stretching occurs near 2960 cm'^ and 2840 cm'^. An
intense signal at 1720 cm"^ is due to carbonyl stretching. A shoulder near
1620 cm"^ may be due to aromatic C=C possibly conjugated to C=0.
Aliphatic C-H bending should occur at 1440 cm-1 and C-O-C stretching

due to ethers appears at 1250 cm"^. The infrared spectrum for Lake
Drummond fulvic acid is very similar to that for Lake Singletary fulvic

acid (Norwood, 1986).

Elemental Analysis

The results of elemental analysis appear in Table 4-5. The ash content

is very low, less than 1%. Also the nitrogen content is low, typical of

fulvic acids (Thurman and Malcolm, 1983).

NMR Spectroscopic Analysis of Lake Drummond Fulvic Acid

Another set of experiments performed to complement the information

obtained from the GC/MS analysis of the product mixture obtained from

the cupric oxide oxidations of Lake Drummond fulvic acid, was solid state

^^C NMR analysis of the intact fulvic acid. CP/MAS spectra, with and
without dipolar dephasing were acquired (Figures 4-9, 4-10). An

informative and concise treatise concerning the principles of both C-13

NMR and proton NMR is provided by Wilson (1981). For details concerning

the aquisition of the spectra, the reader is referred to Nonwood (1985).

Whereas one obtains information concerning the subunit structure of

the fulvic acid from analysis of degradation mixtures, information about
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the carbon skeleton of the fulvic acid can be obtained from analysis of

spectra obtained from various solid state ^^C NMR experiments. The
analysis of the spectrum follows the format provided by Hatcher (1981).

The spectrum is divided into four regions, each region representative of

particular types of carbon moieties. The percent contributions for each

region appeaar in Table 4-6A.

Region I (0 to 50 ppm) consists primarily of paraffinic carbon

structures and will contain the signals arising from carbon-carbon single

bonds from polymethylene structures and those from terminal methyl

groups. Integration of the spectrum reveals a contribution of 21% of the

total carbon of the fulvic acid present in this region. Reference to the

dipolar dephased spectrum, a prominent peak centered at 20 ppm is

indicative of terminal methyl groups present. \

Region II (50 to 110 ppm) contains the resonances resulting from

carbons bonded to heteroatoms such as oxygen and nitrogen. The bond

order of the carbon-heteroatom linkage consists of single bonds and

structures representative of the signals one observes in this region,

include alcohols, ethers, carbohydrates, acetals and methoxyls. A

contribution of 23% of the total carbon contained within the intact fulvic

acid was observed for this region. Several resonances which are

characteristic of particular structural entities which may or may not be

present are worth noting. Wilson et al., indicate the presence of

carbohydrates by the occurance of resonances at 72 ppm and 104 ppm. The

signal occuring at 72 ppm is assigned to O-alkyI carbons and that at 104

ppm is due to the presence of dioxygenated carbon structures. The authors

further note that these resonances can be more definitively assigned

through the use of a dipolar dephase difference spectrum. Also discussed

is the signal present at 55 ppm, which the authors attribute to methoxyl

carbons (O-CH3). With respect to the LDFA CP/MAS spectrum, a shoulder.

45
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rather than a distince peak is present at 55 ppm. However, in the dipolar
dephased spectrum (tau=40 usec), a broad peak centered about 55 ppm is
observed. This is probably due to the presence of methoxyl carbons.

Resonances observed from 110 ppm to 160 ppm (Region III) arise
primarily from aromatic and olefinic carbon. Results from degradation
studies have emphasized the importance of aromatic moieties as major
structural constituents of humic material (Liao et al., 1981, Schnitzer and
DesJardin, 1970). With the advent of solid state C-13 NMR and the
associated techniques of CP/MAS and dipolar dephasing, one can
confidently obtain an estimate of aromatic carbon present in the intact
undegraded humic material. However, when one views the percent
contribution of aromatic/olefinic carbon and compares it to that which is
obtained from degradation studies, a disparity between the results from
the two approaches is readily evident.

Permanganate oxidations produce mainly benzene carboxylic acids as
the major products (Liao et al., 1981) and alkaline copper oxide oxidations
show a wide spectrum of phenolic structures (Ertel and Hedges, 1984).
The large aliphatic content not detected by chemical degradations is seen
via CP/MAS and further emphasized by dipolar dephased spectra. The
increase in observable aliphatic content therefore indicates that the
aromatic content is lower than previously thought. Region III contributes
27% of the total signal observed in the spectrum. If one assumes that the
signal observed in this region is primarily aromatic, then one observes

four to five benzene rings per 100 carbons.
Upfield from the aromatic/olefinic region, one observes a large

resonance centered about 173 ppm and a cluster of lesser signals centered
approximately at 190 ppm. These signals arise from carbonyl and carboxyl
carbons. Contained within this region. Region IV (160 ppm to 220 ppm),
are the resonances characteristic of carboxylic acids, esters, amides.
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ketones and aldehydes. The large peak centered about 173 ppm is assigned

to carboxyl carbons which one may find in structures such as carboxylic

acids and esters. The cluster of resonances in the area from 180 to 210

ppm are most likely due to the presence of carbonyl carbons, which are

found in structures such as ketones and aldehydes. This region contributes

29% of the total signal observed in the spectrum.

A dipolar dephased spectrum with a Tdd= 40 u sec is provided in Figure

4-9. Comparing this spectrum to that of Figure 4-10, one sees a dramatic

decrease in area over regions I, II, and III. The dipolar dephased spectrum

allows one to view the contribution arising solely from the carbon

backbone with any coupling effects due to the presence of attached

protons removed. One may note a prominent peak in region I of the dipolar

dephased spectrum centered about 42 ppm. This signal arises from rapid

spinning terminal methyl groups present in the solid fulvic acid. Due to

their rapidly spinning, the coupling of these protons to carbons is not

completely disapated.

To complement the information obtained from the C-13 spectra, a

proton spectrum was also obtained and appears as Figure 4-11. Percent

contributions for various regions of the spectrum appear in Table 4-6B.

The format presented and analysis of the spectrum follows that provided

by Norwood (1985). In region I, one is primarily observing the signal

generated from the presence of protons on terminal methyl, methylene, and

methine groups on carbons at least one carbon atom removed from

deshielding influences such as ether linkages or carboxyl groups. Region II

consists of resonances of mostly methyl and methylene protons on carbons

adjacent to carboxyl, aromatic or ether moieties. Methine protons,

attached to carbons adjacent to these groups resonate at a lower field and

appear in region III. Phenolic - OH protons, some alcohol - OH protons and

protons attached to carbons of unsaturated linkages also appear in region
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13
Figure U-^0

C NMR  Dipolar Dephased Spectrum of Lake
Drummond Fulvic Acid
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TABLE 4-6A

C-13 NMR Chemical Shift Regions

%Qpntribution

Region 1 0 to 50 ppm 21%

Region II 50 to 110 ppm 23%

Region III 110 to 160 ppm 27%

Region IV 160 to 220 ppm 29%

TABLE 4-6B

Proton NMR Chemical Shift Reqion$

%Contributi9n

Region 1 0.8 ppm to 1.7 ppm 19%

Region II 1.7 ppm to 3.3 ppm 42%

Region III 3.3 ppm to 4.6 ppm 26%

Region IV 6.5 ppm to 8.1 ppm 13%
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1
Figure 4-11

H NMR Spectrum of Lake Drummond Fulvic Acid
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ill. The large peak centered about 4.8 ppm is due to the presence of HgO

and HOD. Aromatic protons appear in Region IV.

There appears to be very good agreement between the two sets of

spectra. Also, with an average of four to five aromatic rings per one

hundred carbon atoms and a low percent contribution of signal from the

aromatic region of the proton spectrum, it appears as though the aromatic

centers are fairly heavily substituted, with approximately three

substitutions per ring.

The results presented from the C-13 solid state and proton NMR

spectra indicate that the Lake Drummond fulvic acid possesses a great

deal of aliphatic structure and the carbonyl and carboxyl content, as seen

in the C-13 spectra is significant. The aromatic contribution is

significantly less than that postulated from wet chemical methods. The

NMR spectra have provided us with important information concerning gross

structural features of the intact undegraded fulvic acid and, when coupled

with the information from the degradation studies, one may get a clearer

picture of the structure of the fulvic acid than that provided from the

information of either set of experiments alone.
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Conclusions and Recommendations

Alkaline cupric oxide oxidation of the index phenols revealed that these

structures are quite stable under the oxidative conditions employed.
Whereas the p-hydroxyl and vanillyl moieties are recovered quantitatively,
the syringyl phenols show an average recovery of 81% (the range is 70.0%
to 93.4%). To better ascertain the fate of the syringyl moieties, these

phenols should be run alone and the product mixture analyzed to see if
alkyl side chain cleavage is occuring.

The extraction efficiency data for the index phenols and ethyl vanillin
indicates that there is a wide range in the percent recoveries for these

compounds and that recovery is generally less than quantitative. It does

show that ethyl vanillin is recovered in amounts comparable to the other

index phenols and its use as a surrogate standard is justified. This
provides one with a more cost effective surrogate standard than that used

by Ertel and Hedges, namely uniformally ring labeled ^"^C-acetophenone.
The necessary precautions to be taken when handling radioisotopes are

also eliminated. The numerous transfer, drying and concentration steps

employed in the post oxidation workup contribute to the less than

quantitative recoveries.

The model compound work has provided us with some insight regarding

reactivity of simple phenolic and phenyl alkanoic structures. Although the
results of the Group I model compounds suggest that cleavage of the alkyl

side chain may be occuring, these results should be viewed cautiously, for
one of the compounds, 3-(4-hydroxyphenyl) propionic acid is not
completely baseline resolved from the internal standard, homovanillic
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acid. The choice of another internal stardard would eliminate this

uncertainty. The Group II and Group III model compounds are recovered
almost quantitatively, with the exception of 1,3-dihydroxybenzene.
Another experiment involving 1,3-dihydroxybenzene as the sole starting
material would be necessary to fully address the fate of this compound.
Mechanisms proposed at this point regarding the fate of 1,3-di¬
hydroxybenzene would be speculative at best. The 3,4-dihydroxy
substitution pattern of the Group IV model compounds proved to be very
unstable towards the oxidative conditions employed. None of moieties
were recovered, rather, a new structure, 3,4-dihydroxybenzaldehyde,
appears amongst the products. The 3,4-dimethoxyphenylacetic acid is
relatively unaffected by the oxidative conditions, being recovered at a
yield of 86.0%. These findings suggest that 3,4-dihydroxyphenyl alkanoic
structures may be present in the intact undegraded fulvic acid, however,
due to their instability under the oxidative conditions employed, these
structures would not be seen amongst the isolated products. However, the
results from the model studies cannot account for other influences such as

resonance stabilization and inductive effects which may be part of the
chemistry of the macromolecular structure.

Analysis of the alkaline cupric oxidation products of the Lake
Drummond fulvic acid has provided us with additional information
concerning structures associated with aquatic fulvic acids. Norwood
performed the same reactions on fulvic acid isolated from Lake Singletary,
NC. We now have databases for fulvic acid isolated from two different

sources and the results can be compared directly. The list of products and
their relative yields are very similar. The product compostion for Lake
Drummond fulvic acid suggests that the major portion (59%) of the fulvic
acid is comprised of aromatic structure and the lesser portion is made of
of aliphatic moieties. The largest aliphatic moieties are four carbon and
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five carbon atoms in length. It is noted that the products reported are the

ether extractable products. Apparently, more polar materials remain on

the sodium sulfate drying columns and analysis of these products would

require employing an inert, more polar solvent for elution purposes. This

would be an interesting endeavor for future alkaline cupric oxide oxidation

experimentation on humic material.

The results of the solid state ^^C and the proton NMR experiments

provide us with important information concerning the gross overall

structure of the intact undegraded fulvic acid. The results indicate that

the aliphatic contribution is much greater that that previously thought

through the results from wet chemical methods. The aromatic

contribution is much less than earlier investigators believed and the

aromatic structures have approximately three substitutions per benzene

ring.
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List of Abbreviations for the Index Phenols and Model Compounds

Appearing in the Calibration Curves

1. 4-Hydroxybenzaldehyde

2. 4-Hydroxyacetophenone

3. 4-Hydroxybenzoic Acid
4. Vanillin

5. Acetovanillone

6. Vanillic Acid

7. Syringealdehyde

8. Acetosyringone

9. Syringic Acid

10. 2-Hydroxybenzoic Acid

11. 4-Hydroxyphenylacetic Acid

12. 3-(4-Hydroxyphenyl)propionic Acid

13. Phenylacetic Acid

14. Hydrocinnamic Acid
15. CinnamicAcid

16. 1,3-Dihydroxybenzene

17. 3-Hydroxybenzoic Acid

18. 3-Hydroxyphenylacetic Acid

19. 3,5-Dihyroxybenzene

20. 3,4-Dihydroxybenzoic Acid

21. 3,4-Dihydroxyphenylacetic Acid

22. 3,4-DJhydroxyhydrocinnamic Acid

23. 3,4-Dihydroxycinnamic Acid

24. 3,4-Dimethoxyphenylacetic Acid

25. Ethyl Vanillin

Ph

Po

Pa

Vh

Vo

Va

Sh

So

Sa

2-HBA

4-HPAA

3-4HPPA

PAA

HCA

tCA

1,3-DHB

3-HBA

3-HPAA

3,5-DHBA

3,4-DHBA

3,4-DHPA

3,4-DHHC

3,4-DHCA

3,4-DMPA

EV
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Calibration Curves for p-Hydroxy Phenolic Moieties
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Calibration Curves for Vanillyl Moieties
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Calibration Curves for Syringyl Moieties
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Calibration Curves for Group 1 Model Compounds
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Calibration Curves for Group2 Model Compounds
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Calibration Curves for Group 3 Model Compounds
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List of Mass Spectra
1. Lactic Acid

2. alpha-Hydroxy Isobutyric Acid
3. Levulenic Acid

4. alpha-Hydroxybutyric Acid
5. Maionic Acid

6. Benzoic Acid

7. Succinic Acid

8. Methyl Succinic Acid
9. Maieic Acid

10. 4-Hydroxybenzaldehyde

11. 1,3-Dihydroxybenzene

12. 4-Hydroxyacetophenone
13. Vanillin

14. 2-Hydroxybenzoic Acid
15. Acetovanillone

16. 3-Hydroxybenzoic Acid

17. 3,4-Dihydroxybenzaldehyde

18. 4-Hydroxybenzoic Acid
19. PhthalicAcid

20. Tricarballylic Acid

21. Isophthalic Acid
22. Vannilic Acid

23. Terephthalic Acid

24. 3,5-Dihydroxybenzoic Acid

25. Syringic Acid

The format for the spectra presented in the appendix shows the standard
on the top half of the page and that for the corresponding compound

identified from Lake Drummond fulvic acid on the bottom half of the page.
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Ab 6^45

4000'

SUB^DD DVC

73 89
151,  I /    /[«>.li^Jt>,,L.at .A.I. A

13.16 tin

:B0

208

/
257
/

336 374
/   /

11 I 11 H i I I I 11 I I 1 11 I I I 11 I I I I i 1 I I 11 I I i,| I < I I 11 I 1 I I i r I I I 11 I I I »I I I I 11 I r I

5Q       JQQ_____150      2QQ_____250      3Q0      35Q

'40

13

iw.a-

53.a-

73

i,ei 53

193

288
I

151

7Q  8S

;jJ33 1135 '.^     M7        ;'?.tli," 'i'
157 166 1?^ "i ' ~ ' 1

r  49S2.

262

«/E \W 156 296 25e

NEATPAGEINFO:id=C93444BA-CF30-4A7E-9FFF-A6FB71907FE5



Vanillin

miSitsB

2000-   73

0"

SUB ADO Dvn

\   104    137    163
]\ \ \

I I I I I I I
id...hL.. I . I. ..     I

209

14. 65 tin.

m

327   :"40

111 • 11 • 111111111111111 ji 111111111111111111111111111
ei]l____12fi____m____2QQ      24Q      280      32Q

1)

ioe.8n

58.3-
73

1 S3

B/E lee 150

19(

293

224

laa

r 49ee.

:!62   281   299
T—--1  T  I  I  ! ͣ  I  I  I  I  I
258 388

NEATPAGEINFO:id=6DC77A76-2C36-48C0-BCF1-EC3B1F9A3821



2-Hydroxybenzoic Acid
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