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Abstract
Gene expression data from microarrays are being applied to predict preclinical and clinical
endpoints, but the reliability of these predictions has not been established. In the MAQC-II
project, 36 independent teams analyzed six microarray data sets to generate predictive models for
classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in
rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000
models were built using many combinations of analytical methods. The teams generated predictive
models without knowing the biological meaning of some of the endpoints and, to mimic clinical
reality, tested the models on data that had not been used for training. We found that model
performance depended largely on the endpoint and team proficiency and that different approaches
generated models of similar performance. The conclusions and recommendations from MAQC-II
should be useful for regulatory agencies, study committees and independent investigators that
evaluate methods for global gene expression analysis.

As part of the United States Food and Drug Administration’s (FDA’s) Critical Path Initiative
to medical product development (http://www.fda.gov/oc/initiatives/criticalpath/), the MAQC
consortium began in February 2005 with the goal of addressing various microarray
reliability concerns raised in publications1–9 pertaining to reproducibility of gene signatures.
The first phase of this project (MAQC-I) extensively evaluated the technical performance of
microarray platforms in identifying all differentially expressed genes that would potentially
constitute biomarkers. The MAQC-I found high intra-platform reproducibility across test
sites, as well as inter-platform concordance of differentially expressed gene lists10–15 and
confirmed that microarray technology is able to reliably identify differentially expressed
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genes between sample classes or populations16,17. Importantly, the MAQC-I helped produce
companion guidance regarding genomic data submission to the FDA
(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/
Guidances/ucm079855.pdf ).

Although the MAQC-I focused on the technical aspects of gene expression measurements,
robust technology platforms alone are not sufficient to fully realize the promise of this
technology. An additional requirement is the development of accurate and reproducible
multivariate gene expression–based prediction models, also referred to as classifiers. Such
models take gene expression data from a patient as input and as output produce a prediction
of a clinically relevant outcome for that patient. Therefore, the second phase of the project
(MAQC-II) has focused on these predictive models18, studying both how they are developed
and how they are evaluated. For any given microarray data set, many computational
approaches can be followed to develop predictive models and to estimate the future
performance of these models. Understanding the strengths and limitations of these various
approaches is critical to the formulation of guidelines for safe and effective use of
preclinical and clinical genomic data. Although previous studies have compared and bench-
marked individual steps in the model development process19, no prior published work has,
to our knowledge, extensively evaluated current community practices on the development
and validation of microarray-based predictive models.

Microarray-based gene expression data and prediction models are increasingly being
submitted by the regulated industry to the FDA to support medical product development and
testing applications20. For example, gene expression microarray–based assays that have
been approved by the FDA as diagnostic tests include the Agendia MammaPrint microarray
to assess prognosis of distant metastasis in breast cancer patients21,22 and the Pathwork
Tissue of Origin Test to assess the degree of similarity of the RNA expression pattern in a
patient’s tumor to that in a database of tumor samples for which the origin of the tumor is
known23. Gene expression data have also been the basis for the development of PCR-based
diagnostic assays, including the xDx Allomap test for detection of rejection of heart
transplants24.

The possible uses of gene expression data are vast and include diagnosis, early detection
(screening), monitoring of disease progression, risk assessment, prognosis, complex medical
product characterization and prediction of response to treatment (with regard to safety or
efficacy) with a drug or device labeling intent. The ability to generate models in a
reproducible fashion is an important consideration in predictive model development.

A lack of consistency in generating classifiers from publicly available data is problematic
and may be due to any number of factors including insufficient annotation, incomplete
clinical identifiers, coding errors and/or inappropriate use of methodology25,26. There are
also examples in the literature of classifiers whose performance cannot be reproduced on
independent data sets because of poor study design27, poor data quality and/or insufficient
cross-validation of all model development steps28,29. Each of these factors may contribute to
a certain level of skepticism about claims of performance levels achieved by microarray-
based classifiers.

Previous evaluations of the reproducibility of microarray-based classifiers, with only very
few exceptions30,31, have been limited to simulation studies or reanalysis of previously
published results. Frequently, published benchmarking studies have split data sets at
random, and used one part for training and the other for validation. This design assumes that
the training and validation sets are produced by unbiased sampling of a large, homogeneous
population of samples. However, specimens in clinical studies are usually accrued over
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years and there may be a shift in the participating patient population and also in the methods
used to assign disease status owing to changing practice standards. There may also be batch
effects owing to time variations in tissue analysis or due to distinct methods of sample
collection and handling at different medical centers. As a result, samples derived from
sequentially accrued patient populations, as was done in MAQC-II to mimic clinical reality,
where the first cohort is used for developing predictive models and subsequent patients are
included in validation, may differ from each other in many ways that could influence the
prediction performance.

The MAQC-II project was designed to evaluate these sources of bias in study design by
constructing training and validation sets at different times, swapping the test and training
sets and also using data from diverse preclinical and clinical scenarios. The goals of MAQC-
II were to survey approaches in genomic model development in an attempt to understand
sources of variability in prediction performance and to assess the influences of endpoint
signal strength in data. By providing the same data sets to many organizations for analysis,
but not restricting their data analysis protocols, the project has made it possible to evaluate
to what extent, if any, results depend on the team that performs the analysis. This contrasts
with previous benchmarking studies that have typically been conducted by single
laboratories. Enrolling a large number of organizations has also made it feasible to test many
more approaches than would be practical for any single team. MAQC-II also strives to
develop good modeling practice guidelines, drawing on a large international collaboration of
experts and the lessons learned in the perhaps unprecedented effort of developing and
evaluating >30,000 genomic classifiers to predict a variety of endpoints from diverse data
sets.

MAQC-II is a collaborative research project that includes participants from the FDA, other
government agencies, industry and academia. This paper describes the MAQC-II structure
and experimental design and summarizes the main findings and key results of the
consortium, whose members have learned a great deal during the process. The resulting
guidelines are general and should not be construed as specific recommendations by the FDA
for regulatory submissions.

RESULTS
Generating a unique compendium of >30,000 prediction models

The MAQC-II consortium was conceived with the primary goal of examining model
development practices for generating binary classifiers in two types of data sets, preclinical
and clinical (Supplementary Tables 1 and 2). To accomplish this, the project leader
distributed six data sets containing 13 preclinical and clinical endpoints coded A through M
(Table 1) to 36 voluntary participating data analysis teams representing academia, industry
and government institutions (Supplementary Table 3). Endpoints were coded so as to hide
the identities of two negative-control endpoints (endpoints I and M, for which class labels
were randomly assigned and are not predictable by the microarray data) and two positive-
control endpoints (endpoints H and L, representing the sex of patients, which is highly
predictable by the microarray data). Endpoints A, B and C tested teams’ ability to predict the
toxicity of chemical agents in rodent lung and liver models. The remaining endpoints were
predicted from microarray data sets from human patients diagnosed with breast cancer (D
and E), multiple myeloma (F and G) or neuroblastoma (J and K). For the multiple myeloma
and neuroblastoma data sets, the endpoints represented event free survival (abbreviated
EFS), meaning a lack of malignancy or disease recurrence, and overall survival (abbreviated
OS) after 730 days (for multiple myeloma) or 900 days (for neuroblastoma) post treatment
or diagnosis. For breast cancer, the endpoints represented estrogen receptor status, a
common diagnostic marker of this cancer type (abbreviated ‘erpos’), and the success of
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treatment involving chemotherapy followed by surgical resection of a tumor (abbreviated
‘pCR’). The biological meaning of the control endpoints was known only to the project
leader and not revealed to the project participants until all model development and external
validation processes had been completed.

To evaluate the reproducibility of the models developed by a data analysis team for a given
data set, we asked teams to submit models from two stages of analyses. In the first stage
(hereafter referred to as the ‘original’ experiment), each team built prediction models for up
to 13 different coded endpoints using six training data sets. Models were ‘frozen’ against
further modification, submitted to the consortium and then tested on a blinded validation
data set that was not available to the analysis teams during training. In the second stage
(referred to as the ‘swap’ experiment), teams repeated the model building and validation
process by training models on the original validation set and validating them using the
original training set.

To simulate the potential decision-making process for evaluating a microarray-based
classifier, we established a process for each group to receive training data with coded
endpoints, propose a data analysis protocol (DAP) based on exploratory analysis, receive
feedback on the protocol and then perform the analysis and validation (Fig. 1). Analysis
protocols were reviewed internally by other MAQC-II participants (at least two reviewers
per protocol) and by members of the MAQC-II Regulatory Biostatistics Working Group
(RBWG), a team from the FDA and industry comprising biostatisticians and others with
extensive model building expertise. Teams were encouraged to revise their protocols to
incorporate feedback from reviewers, but each team was eventually considered responsible
for its own analysis protocol and incorporating reviewers’ feedback was not mandatory (see
Online Methods for more details).

We assembled two large tables from the original and swap experiments (Supplementary
Tables 1 and 2, respectively) containing summary information about the algorithms and
analytic steps, or ‘modeling factors’, used to construct each model and the ‘internal’ and
‘external’ performance of each model. Internal performance measures the ability of the
model to classify the training samples, based on cross-validation exercises. External
performance measures the ability of the model to classify the blinded independent validation
data. We considered several performance metrics, including Matthews Correlation
Coefficient (MCC), accuracy, sensitivity, specificity, area under the receiver operating
characteristic curve (AUC) and root mean squared error (r.m.s.e.). These two tables contain
data on >30,000 models. Here we report performance based on MCC because it is
informative when the distribution of the two classes in a data set is highly skewed and
because it is simple to calculate and was available for all models. MCC values range from
+1 to −1, with +1 indicating perfect prediction (that is, all samples classified correctly and
none incorrectly), 0 indicates random prediction and −1 indicating perfect inverse
prediction.

The 36 analysis teams applied many different options under each modeling factor for
developing models (Supplementary Table 4) including 17 summary and normalization
methods, nine batch-effect removal methods, 33 feature selection methods (between 1 and
>1,000 features), 24 classification algorithms and six internal validation methods. Such
diversity suggests the community’s common practices are well represented. For each of the
models nominated by a team as being the best model for a particular endpoint, we compiled
the list of features used for both the original and swap experiments (see the MAQC Web site
at http://edkb.fda.gov/MAQC/). These comprehensive tables represent a unique resource.
The results that follow describe data mining efforts to determine the potential and limitations
of current practices for developing and validating gene expression–based prediction models.
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Performance depends on endpoint and can be estimated during training
Unlike many previous efforts, the study design of MAQC-II provided the opportunity to
assess the performance of many different modeling approaches on a clinically realistic
blinded external validation data set. This is especially important in light of the intended
clinical or preclinical uses of classifiers that are constructed using initial data sets and
validated for regulatory approval and then are expected to accurately predict samples
collected under diverse conditions perhaps months or years later. To assess the reliability of
performance estimates derived during model training, we compared the performance on the
internal training data set with performance on the external validation data set for of each of
the 18,060 models in the original experiment (Fig. 2a). Models without complete metadata
were not included in the analysis.

We selected 13 ‘candidate models’, representing the best model for each endpoint, before
external validation was performed. We required that each analysis team nominate one model
for each endpoint they analyzed and we then selected one candidate from these nominations
for each endpoint. We observed a higher correlation between internal and external
performance estimates in terms of MCC for the selected candidate models (r = 0.951, n =
13, Fig. 2b) than for the overall set of models (r = 0.840, n = 18,060, Fig. 2a), suggesting
that extensive peer review of analysis protocols was able to avoid selecting models that
could result in less reliable predictions in external validation. Yet, even for the hand-selected
candidate models, there is noticeable bias in the performance estimated from internal
validation. That is, the internal validation performance is higher than the external validation
performance for most endpoints (Fig. 2b). However, for some endpoints and for some model
building methods or teams, internal and external performance correlations were more
modest as described in the following sections.

To evaluate whether some endpoints might be more predictable than others and to calibrate
performance against the positive- and negative-control endpoints, we assessed all models
generated for each endpoint (Fig. 2c). We observed a clear dependence of prediction
performance on endpoint. For example, endpoints C (liver necrosis score of rats treated with
hepatotoxicants), E (estrogen receptor status of breast cancer patients), and H and L (sex of
the multiple myeloma and neuroblastoma patients, respectively) were the easiest to predict
(mean MCC > 0.7). Toxicological endpoints A and B and disease progression endpoints D,
F, G, J and K were more difficult to predict (mean MCC ~0.1–0.4). Negative-control
endpoints I and M were totally unpredictable (mean MCC ~0), as expected. For 11
endpoints (excluding the negative controls), a large proportion of the submitted models
predicted the endpoint significantly better than chance (MCC > 0) and for a given endpoint
many models performed similarly well on both internal and external validation (see the
distribution of MCC in Fig. 2c). On the other hand, not all the submitted models performed
equally well for any given endpoint. Some models performed no better than chance, even for
some of the easy-to-predict endpoints, suggesting that additional factors were responsible
for differences in model performance.

Data analysis teams show different proficiency
Next, we summarized the external validation performance of the models nominated by the
17 teams that analyzed all 13 endpoints (Fig. 3). Nominated models represent a team’s best
assessment of its model-building effort. The mean external validation MCC per team over
11 endpoints, excluding negative controls I and M, varied from 0.532 for data analysis team
(DAT)24 to 0.263 for DAT3, indicating appreciable differences in performance of the
models developed by different teams for the same data. Similar trends were observed when
AUC was used as the performance metric (Supplementary Table 5) or when the original
training and validation sets were swapped (Supplementary Tables 6 and 7). Table 2
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summarizes the modeling approaches that were used by two or more MAQC-II data analysis
teams.

Many factors may have played a role in the difference of external validation performance
between teams. For instance, teams used different modeling factors, criteria for selecting the
nominated models, and software packages and code. Moreover, some teams may have been
more proficient at microarray data modeling and better at guarding against clerical errors.
We noticed substantial variations in performance among the many K-nearest neighbor
algorithm (KNN)-based models developed by four analysis teams (Supplementary Fig. 1).
Follow-up investigations identified a few possible causes leading to the discrepancies in
performance32. For example, DAT20 fixed the parameter ‘number of neighbors’ K = 3 in its
data analysis protocol for all endpoints, whereas DAT18 varied K from 3 to 15 with a step
size of 2. This investigation also revealed that even a detailed but standardized description of
model building requested from all groups failed to capture many important tuning variables
in the process. The subtle modeling differences not captured may have contributed to the
differing performance levels achieved by the data analysis teams. The differences in
performance for the models developed by various data analysis teams can also be observed
from the changing patterns of internal and external validation performance across the 13
endpoints (Fig. 3, Supplementary Tables 5–7 and Supplementary Figs. 2–4). Our
observations highlight the importance of good modeling practice in developing and
validating microarray-based predictive models including reporting of computational details
for results to be replicated26. In light of the MAQC-II experience, recording structured
information about the steps and parameters of an analysis process seems highly desirable to
facilitate peer review and reanalysis of results.

Swap and original analyses lead to consistent results
To evaluate the reproducibility of the models generated by each team, we correlated the
performance of each team’s models on the original training data set to performance on the
validation data set and repeated this calculation for the swap experiment (Fig. 4). The
correlation varied from 0.698–0.966 on the original experiment and from 0.443–0.954 on
the swap experiment. For all but three teams (DAT3, DAT10 and DAT11) the original and
swap correlations were within ±0.2, and all but three others (DAT4, DAT13 and DAT36)
were within ±0.1, suggesting that the model building process was relatively robust, at least
with respect to generating models with similar performance. For some data analysis teams
the internal validation performance drastically overestimated the performance of the same
model in predicting the validation data. Examination of some of those models revealed
several reasons, including bias in the feature selection and cross-validation process28,
findings consistent with what was observed from a recent literature survey33.

Previously, reanalysis of a widely cited single study34 found that the results in the original
publication were very fragile—that is, not reproducible if the training and validation sets
were swapped35. Our observations, except for DAT3, DAT11 and DAT36 with correlation
<0.6, mainly resulting from failure of accurately predicting the positive-control endpoint H
in the swap analysis (likely owing to operator errors), do not substantiate such fragility in
the currently examined data sets. It is important to emphasize that we repeated the entire
model building and evaluation processes during the swap analysis and, therefore, stability
applies to the model building process for each data analysis team and not to a particular
model or approach. Supplementary Figure 5 provides a more detailed look at the correlation
of internal and external validation for each data analysis team and each endpoint for both the
original (Supplementary Fig. 5a) and swap (Supplementary Fig. 5d) analyses.

As expected, individual feature lists differed from analysis group to analysis group and
between models developed from the original and the swapped data. However, when feature
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lists were mapped to biological processes, a greater degree of convergence and concordance
was observed. This has been proposed previously but has never been demonstrated in a
comprehensive manner over many data sets and thousands of models as was done in
MAQC-II36.

The effect of modeling factors is modest
To rigorously identify potential sources of variance that explain the variability in external-
validation performance (Fig. 2c), we applied random effect modeling (Fig. 5a). We observed
that the endpoint itself is by far the dominant source of variability, explaining >65% of the
variability in the external validation performance. All other factors explain <8% of the total
variance, and the residual variance is ~6%. Among the factors tested, those involving
interactions with endpoint have a relatively large effect, in particular the interaction between
endpoint with organization and classification algorithm, highlighting variations in
proficiency between analysis teams.

To further investigate the impact of individual levels within each modeling factor, we
estimated the empirical best linear unbiased predictors (BLUPs)37. Figure 5b shows the
plots of BLUPs of the corresponding factors in Figure 5a with proportion of variation >1%.
The BLUPs reveal the effect of each level of the factor to the corresponding MCC value.
The BLUPs of the main endpoint effect show that rat liver necrosis, breast cancer estrogen
receptor status and the sex of the patient (endpoints C, E, H and L) are relatively easier to be
predicted with ~0.2–0.4 advantage contributed on the corresponding MCC values. The rest
of the endpoints are relatively harder to be predicted with about −0.1 to −0.2 disadvantage
contributed to the corresponding MCC values. The main factors of normalization,
classification algorithm, the number of selected features and the feature selection method
have an impact of −0.1 to 0.1 on the corresponding MCC values. Loess normalization was
applied to the endpoints (J, K and L) for the neuroblastoma data set with the two-color
Agilent platform and has 0.1 advantage to MCC values. Among the Microarray Analysis
Suite version 5 (MAS5), Robust Multichip Analysis (RMA) and dChip normalization
methods that were applied to all endpoints (A, C, D, E, F, G and H) for Affymetrix data, the
dChip method has a lower BLUP than the others. Because normalization methods are
partially confounded with endpoints, it may not be suitable to compare methods between
different confounded groups. Among classification methods, discriminant analysis has the
largest positive impact of 0.056 on the MCC values. Regarding the number of selected
features, larger bin number has better impact on the average across endpoints. The bin
number is assigned by applying the ceiling function to the log base 10 of the number of
selected features. All the feature selection methods have a slight impact of −0.025 to 0.025
on MCC values except for recursive feature elimination (RFE) that has an impact of −0.006.
In the plots of the four selected interactions, the estimated BLUPs vary across endpoints.
The large variation across endpoints implies the impact of the corresponding modeling
factor on different endpoints can be very different. Among the four interaction plots (see
Supplementary Fig. 6 for a clear labeling of each interaction term), the corresponding
BLUPs of the three-way interaction of organization, classification algorithm and endpoint
show the highest variation. This may be due to different tuning parameters applied to
individual algorithms for different organizations, as was the case for KNN32.

We also analyzed the relative importance of modeling factors on external-validation
prediction performance using a decision tree model38. The analysis results revealed
observations (Supplementary Fig. 7) largely consistent with those above. First, the endpoint
code was the most influential modeling factor. Second, feature selection method,
normalization and summarization method, classification method and organization code also
contributed to prediction performance, but their contribution was relatively small.
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Feature list stability is correlated with endpoint predictability
Prediction performance is the most important criterion for evaluating the performance of a
predictive model and its modeling process. However, the robustness and mechanistic
relevance of the model and the corresponding gene signature is also important
(Supplementary Fig. 8). That is, given comparable prediction performance between two
modeling processes, the one yielding a more robust and reproducible gene signature across
similar data sets (e.g., by swapping the training and validation sets), which is therefore less
susceptible to sporadic fluctuations in the data, or the one that provides new insights to the
underlying biology is preferable. Reproducibility or stability of feature sets is best studied
by running the same model selection protocol on two distinct collections of samples, a
scenario only possible, in this case, after the blind validation data were distributed to the
data analysis teams that were asked to perform their analysis after swapping their original
training and test sets. Supplementary Figures 9 and 10 show that, although the feature space
is extremely large for microarray data, different teams and protocols were able to
consistently select the best-performing features. Analysis of the lists of features indicated
that for endpoints relatively easy to predict, various data analysis teams arrived at models
that used more common features and the overlap of the lists from the original and swap
analyses is greater than those for more difficult endpoints (Supplementary Figs. 9–11).
Therefore, the level of stability of feature lists can be associated to the level of difficulty of
the prediction problem (Supplementary Fig. 11), although multiple models with different
feature lists and comparable performance can be found from the same data set39. Functional
analysis of the most frequently selected genes by all data analysis protocols shows that many
of these genes represent biological processes that are highly relevant to the clinical outcome
that is being predicted36. The sex-based endpoints have the best overlap, whereas more
difficult survival endpoints (in which disease processes are confounded by many other
factors) have only marginally better overlap with biological processes relevant to the disease
than that expected by random chance.

Summary of MAQC-II observations and recommendations
The MAQC-II data analysis teams comprised a diverse group, some of whom were
experienced microarray analysts whereas others were graduate students with little
experience. In aggregate, the group’s composition likely mimicked the broad scientific
community engaged in building and publishing models derived from microarray data. The
more than 30,000 models developed by 36 data analysis teams for 13 endpoints from six
diverse clinical and preclinical data sets are a rich source from which to highlight several
important observations.

First, model prediction performance was largely endpoint (biology) dependent (Figs. 2c and
3). The incorporation of multiple data sets and endpoints (including positive and negative
controls) in the MAQC-II study design made this observation possible. Some endpoints are
highly predictive based on the nature of the data, which makes it possible to build good
models, provided that sound modeling procedures are used. Other endpoints are inherently
difficult to predict regardless of the model development protocol.

Second, there are clear differences in proficiency between data analysis teams
(organizations) and such differences are correlated with the level of experience of the team.
For example, the top-performing teams shown in Figure 3 were mainly industrial
participants with many years of experience in microarray data analysis, whereas bottom-
performing teams were mainly less-experienced graduate students or researchers. Based on
results from the positive and negative endpoints, we noticed that simple errors were
sometimes made, suggesting rushed efforts due to lack of time or unnoticed implementation
flaws. This observation strongly suggests that mechanisms are needed to ensure the
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reliability of results presented to the regulatory agencies, journal editors and the research
community. By examining the practices of teams whose models did not perform well, future
studies might be able to identify pitfalls to be avoided. Likewise, practices adopted by top-
performing teams can provide the basis for developing good modeling practices.

Third, the internal validation performance from well-implemented, unbiased cross-
validation shows a high degree of concordance with the external validation performance in a
strict blinding process (Fig. 2). This observation was not possible from previously published
studies owing to the small number of available endpoints tested in them.

Fourth, many models with similar performance can be developed from a given data set (Fig.
2). Similar prediction performance is attainable when using different modeling algorithms
and parameters, and simple data analysis methods often perform as well as more
complicated approaches32,40. Although it is not essential to include the same features in
these models to achieve comparable prediction performance, endpoints that were easier to
predict generally yielded models with more common features, when analyzed by different
teams (Supplementary Fig. 11).

Finally, applying good modeling practices appeared to be more important than the actual
choice of a particular algorithm over the others within the same step in the modeling
process. This can be seen in the diverse choices of the modeling factors used by teams that
produced models that performed well in the blinded validation (Table 2) where modeling
factors did not universally contribute to variations in model performance among good
performing teams (Fig. 5).

Summarized below are the model building steps recommended to the MAQC-II data
analysis teams. These may be applicable to model building practitioners in the general
scientific community.

Step one (design). There is no exclusive set of steps and procedures, in the form of a
checklist, to be followed by any practitioner for all problems. However, normal good
practice on the study design and the ratio of sample size to classifier complexity should be
followed. The frequently used options for normalization, feature selection and classification
are good starting points (Table 2).

Step two (pilot study or internal validation). This can be accomplished by bootstrap or cross-
validation such as the ten repeats of a fivefold cross-validation procedure adopted by most
MAQC-II teams. The samples from the pilot study are not replaced for the pivotal study;
rather they are augmented to achieve ‘appropriate’ target size.

Step three (pivotal study or external validation). Many investigators assume that the most
conservative approach to a pivotal study is to simply obtain a test set completely
independent of the training set(s). However, it is good to keep in mind the exchange34,35

regarding the fragility of results when the training and validation sets are swapped. Results
from further resampling (including simple swapping as in MAQC-II) across the training and
validation sets can provide important information about the reliability of the models and the
modeling procedures, but the complete separation of the training and validation sets should
be maintained41.

Finally, a perennial issue concerns reuse of the independent validation set after
modifications to an originally designed and validated data analysis algorithm or protocol.
Such a process turns the validation set into part of the design or training set42. Ground rules
must be developed for avoiding this approach and penalizing it when it occurs; and
practitioners should guard against using it before such ground rules are well established.
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DISCUSSION
MAQC-II conducted a broad observational study of the current community landscape of
gene-expression profile–based predictive model development. Microarray gene expression
profiling is among the most commonly used analytical tools in biomedical research.
Analysis of the high-dimensional data generated by these experiments involves multiple
steps and several critical decision points that can profoundly influence the soundness of the
results43. An important requirement of a sound internal validation is that it must include
feature selection and parameter optimization within each iteration to avoid overly optimistic
estimations of prediction performance28,29,44. To what extent this information has been
disseminated and followed by the scientific community in current microarray analysis
remains unknown33. Concerns have been raised that results published by one group of
investigators often cannot be confirmed by others even if the same data set is used26. An
inability to confirm results may stem from any of several reasons: (i) insufficient
information is provided about the methodology that describes which analysis has actually
been done; (ii) data preprocessing (normalization, gene filtering and feature selection) is too
complicated and insufficiently documented to be reproduced; or (iii) incorrect or biased
complex analytical methods26 are performed. A distinct but related concern is that genomic
data may yield prediction models that, even if reproducible on the discovery data set, cannot
be extrapolated well in independent validation. The MAQC-II project provided a unique
opportunity to address some of these concerns.

Notably, we did not place restrictions on the model building methods used by the data
analysis teams. Accordingly, they adopted numerous different modeling approaches (Table
2 and Supplementary Table 4). For example, feature selection methods varied widely, from
statistical significance tests, to machine learning algorithms, to those more reliant on
differences in expression amplitude, to those employing knowledge of putative biological
mechanisms associated with the endpoint. Prediction algorithms also varied widely. To
make internal validation performance results comparable across teams for different models,
we recommended that a model’s internal performance was estimated using a ten times
repeated fivefold cross-validation, but this recommendation was not strictly followed by all
teams, which also allows us to survey internal validation approaches. The diversity of
analysis protocols used by the teams is likely to closely resemble that of current research
going forward, and in this context mimics reality. In terms of the space of modeling factors
explored, MAQC-II is a survey of current practices rather than a randomized, controlled
experiment; therefore, care should be taken in interpreting the results. For example, some
teams did not analyze all endpoints, causing missing data (models) that may be confounded
with other modeling factors.

Overall, the procedure followed to nominate MAQC-II candidate models was quite effective
in selecting models that performed reasonably well during validation using independent data
sets, although generally the selected models did not do as well in validation as in training.
The drop in performance associated with the validation highlights the importance of not
relying solely on internal validation performance, and points to the need to subject every
classifier to at least one external validation. The selection of the 13 candidate models from
many nominated models was achieved through a peer-review collaborative effort of many
experts and could be described as slow, tedious and sometimes subjective (e.g., a data
analysis team could only contribute one of the 13 candidate models). Even though they were
still subject to over-optimism, the internal and external performance estimates of the
candidate models were more concordant than those of the overall set of models. Thus the
review was productive in identifying characteristics of reliable models.
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An important lesson learned through MAQC-II is that it is almost impossible to
retrospectively retrieve and document decisions that were made at every step during the
feature selection and model development stage. This lack of complete description of the
model building process is likely to be a common reason for the inability of different data
analysis teams to fully reproduce each other’s results32. Therefore, although meticulously
documenting the classifier building procedure can be cumbersome, we recommend that all
genomic publications include supplementary materials describing the model building and
evaluation process in an electronic format. MAQC-II is making available six data sets with
13 endpoints that can be used in the future as a benchmark to verify that software used to
implement new approaches performs as expected. Subjecting new software to benchmarks
against these data sets could reassure potential users that the software is mature enough to be
used for the development of predictive models in new data sets. It would seem advantageous
to develop alternative ways to help determine whether specific implementations of modeling
approaches and performance evaluation procedures are sound, and to identify procedures to
capture this information in public databases.

The findings of the MAQC-II project suggest that when the same data sets are provided to a
large number of data analysis teams, many groups can generate similar results even when
different model building approaches are followed. This is concordant with studies29,33 that
found that given good quality data and an adequate number of informative features, most
classification methods, if properly used, will yield similar predictive performance. This also
confirms reports6,7,39 on small data sets by individual groups that have suggested that
several different feature selection methods and prediction algorithms can yield many models
that are distinct, but have statistically similar performance. Taken together, these results
provide perspective on the large number of publications in the bioinformatics literature that
have examined the various steps of the multivariate prediction model building process and
identified elements that are critical for achieving reliable results.

An important and previously underappreciated observation from MAQC-II is that different
clinical endpoints represent very different levels of classification difficulty. For some
endpoints the currently available data are sufficient to generate robust models, whereas for
other endpoints currently available data do not seem to be sufficient to yield highly
predictive models. An analysis done as part of the MAQC-II project and that focused on the
breast cancer data demonstrates these points in more detail40. It is also important to point out
that for some clinically meaningful endpoints studied in the MAQC-II project, gene
expression data did not seem to significantly outperform models based on clinical covariates
alone, highlighting the challenges in predicting the outcome of patients in a heterogeneous
population and the potential need to combine gene expression data with clinical covariates
(unpublished data).

The accuracy of the clinical sample annotation information may also play a role in the
difficulty to obtain accurate prediction results on validation samples. For example, some
samples were misclassified by almost all models (Supplementary Fig. 12). It is true even for
some samples within the positive control endpoints H and L, as shown in Supplementary
Table 8. Clinical information of neuroblastoma patients for whom the positive control
endpoint L was uniformly misclassified were rechecked and the sex of three out of eight
cases (NB412, NB504 and NB522) was found to be incorrectly annotated.

The companion MAQC-II papers published elsewhere give more in-depth analyses of
specific issues such as the clinical benefits of genomic classifiers (unpublished data), the
impact of different modeling factors on prediction performance45, the objective assessment
of microarray cross-platform prediction46, cross-tissue prediction47, one-color versus two-
color prediction comparison48, functional analysis of gene signatures36 and recommendation
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of a simple yet robust data analysis protocol based on the KNN32. For example, we
systematically compared the classification performance resulting from one- and two-color
gene-expression profiles of 478 neuroblastoma samples and found that analyses based on
either platform yielded similar classification performance48. This newly generated one-color
data set has been used to evaluate the applicability of the KNN-based simple data analysis
protocol to future data sets32. In addition, the MAQC-II Genome-Wide Association
Working Group assessed the variabilities in genotype calling due to experimental or
algorithmic factors49.

In summary, MAQC-II has demonstrated that current methods commonly used to develop
and assess multivariate gene-expression based predictors of clinical outcome were used
appropriately by most of the analysis teams in this consortium. However, differences in
proficiency emerged and this underscores the importance of proper implementation of
otherwise robust analytical methods. Observations based on analysis of the MAQC-II data
sets may be applicable to other diseases. The MAQC-II data sets are publicly available and
are expected to be used by the scientific community as benchmarks to ensure proper
modeling practices. The experience with the MAQC-II clinical data sets also reinforces the
notion that clinical classification problems represent several different degrees of prediction
difficulty that are likely to be associated with whether mRNA abundances measured in a
specific data set are informative for the specific prediction problem. We anticipate that
including other types of biological data at the DNA, microRNA, protein or metabolite levels
will enhance our capability to more accurately predict the clinically relevant endpoints. The
good modeling practice guidelines established by MAQC-II and lessons learned from this
unprecedented collaboration provide a solid foundation from which other high-dimensional
biological data could be more reliably used for the purpose of predictive and personalized
medicine.

METHODS
Methods and any associated references are available here.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental design and timeline of the MAQC-II project. Numbers (1–11) order the steps
of analysis. Step 11 indicates when the original training and validation data sets were
swapped to repeat steps 4–10. See main text for description of each step. Every effort was
made to ensure the complete independence of the validation data sets from the training sets.
Each model is characterized by several modeling factors and seven internal and external
validation performance metrics (Supplementary Tables 1 and 2). The modeling factors
include: (i) organization code; (ii) data set code; (iii) endpoint code; (iv) summary and
normalization; (v) feature selection method; (vi) number of features used; (vii) classification
algorithm; (viii) batch-effect removal method; (ix) type of internal validation; and (x)
number of iterations of internal validation. The seven performance metrics for internal
validation and external validation are: (i) MCC; (ii) accuracy; (iii) sensitivity; (iv)
specificity; (v) AUC; (vi) mean of sensitivity and specificity; and (vii) r.m.s.e. s.d. of
metrics are also provided for internal validation results.
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Figure 2.
Model performance on internal validation compared with external validation. (a)
Performance of 18,060 models that were validated with blinded validation data. (b)
Performance of 13 candidate models. r, Pearson correlation coefficient; N, number of
models. Candidate models with binary and continuous prediction values are marked as
circles and squares, respectively, and the standard error estimate was obtained using 500-
times resampling with bagging of the prediction results from each model. (c) Distribution of
MCC values of all models for each endpoint in internal (left, yellow) and external (right,
green) validation performance. Endpoints H and L (sex of the patients) are included as
positive controls and endpoints I and M (randomly assigned sample class labels) as negative
controls. Boxes indicate the 25% and 75% percentiles, and whiskers indicate the 5% and
95% percentiles.
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Figure 3.
Performance, measured using MCC, of the best models nominated by the 17 data analysis
teams (DATs) that analyzed all 13 endpoints in the original training-validation experiment.
The median MCC value for an endpoint, representative of the level of predicability of the
endpoint, was calculated based on values from the 17 data analysis teams. The mean MCC
value for a data analysis team, representative of the team’s proficiency in developing
predictive models, was calculated based on values from the 11 non-random endpoints
(excluding negative controls I and M). Red boxes highlight candidate models. Lack of a red
box in an endpoint indicates that the candidate model was developed by a data analysis team
that did not analyze all 13 endpoints.
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Figure 4.
Correlation between internal and external validation is dependent on data analysis team.
Pearson correlation coefficients between internal and external validation performance in
terms of MCC are displayed for the 14 teams that submitted models for all 13 endpoints in
both the original (x axis) and swap (y axis) analyses. The unusually low correlation in the
swap analysis for DAT3, DAT11 and DAT36 is a result of their failure to accurately predict
the positive endpoint H, likely due to operator errors (Supplementary Table 6).
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Figure 5.
Effect of modeling factors on estimates of model performance. (a) Random-effect models of
external validation performance (MCC) were developed to estimate a distinct variance
component for each modeling factor and several selected interactions. The estimated
variance components were then divided by their total in order to compare the proportion of
variability explained by each modeling factor. The endpoint code contributes the most to the
variability in external validation performance. (b) The BLUP plots of the corresponding
factors having proportion of variation larger than 1% in a. Endpoint abbreviations (Tox.,
preclinical toxicity; BR, breast cancer; MM, multiple myeloma; NB, neuroblastoma).
Endpoints H and L are the sex of the patient. Summary normalization abbreviations (GA,
genetic algorithm; RMA, robust multichip analysis). Classification algorithm abbreviations
(ANN, artificial neural network; DA, discriminant analysis; Forest, random forest; GLM,
generalized linear model; KNN, K-nearest neighbors; Logistic, logistic regression; ML,
maximum likelihood; NB, Naïve Bayes; NC, nearest centroid; PLS, partial least squares;
RFE, recursive feature elimination; SMO, sequential minimal optimization; SVM, support
vector machine; Tree, decision tree). Feature selection method abbreviations (Bscatter,
between-class scatter; FC, fold change; KS, Kolmogorov-Smirnov algorithm; SAM,
significance analysis of microarrays).
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Table 2

Modeling factor options frequently adopted by MAQC-II data analysis teams

Modeling factor Option

Original analysis (training => validation)

Number of teams Number of endpoints Number of models

Summary and normalization Loess 12 3 2,563

RMA 3 7 46

MAS5 11 7 4,947

Batch-effect removal None 10 11 2,281

Mean shift 3 11 7,279

Feature selection SAM 4 11 3,771

FC+P 8 11 4,711

T-Test 5 11 400

RFE 2 11 647

Number of features 0~9 10 11 393

10~99 13 11 4,445

≥1,000 3 11 474

100~999 10 11 4,298

Classification algorithm DA 4 11 103

Tree 5 11 358

NB 4 11 924

KNN 8 11 6,904

SVM 9 11 986

Analytic options used by two or more of the 14 teams that submitted models for all endpoints in both the original and swap experiments. RMA,
robust multichip analysis; SAM, significance analysis of microarrays; FC, fold change; RFE, recursive feature elimination; DA, discriminant
analysis; Tree, decision tree; NB, naive Bayes; KNN, K-nearest neighbors; SVM, support vector machine.
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