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ABSTRACT 
 

JENNIFER MCKEE ALDERMAN: The Aging Process Deconstructed: 
 Glucose Production, Cancer Resistance and Longevity 

(Under the direction of Terry P. Combs) 
 

The aging process affects all mammals and is typically seen with a gradual decline in overall 

system functionality. This can affect organ and immune function, resulting in increased susceptibility 

to diseases such as cancer. There are many theories as to specific mechanisms of longevity; we 

investigate the neuroendocrine regulation of glucose utilization as a potential mediator. Animal 

models are valuable tools in our efforts to perform gerontological research. Increased lifespan in 

rodents and mice has been observed through calorie restriction and single mutations, such as Pit-/- and 

Proph1-/-. Our results in Snell dwarf mice suggest that the pituitary gland and adipose tissue are part 

of a neuroendocrine loop that lower the risk of cancer during aging by reducing the availability of 

glucose. 
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CHAPTER I 
 

EXPERIMENT: CANCER RESISTANCE IN SNELL DWARF MICE 

 

ABSTRACT 

Pit1 null (Snell dwarf) mice are long-lived mouse models that are resistant to cancer. Endogenous 

glucose production is lower in Snell dwarf than control mice during fasting. Does the reduction of glucose 

production provide resistance to cancer in Snell dwarf mice? First, we examined whether endogenous glucose 

production is also lower in Snell dwarf mice during feeding. The reduction of endogenous glucose production 

during feeding and fasting could reduce glucose utilization by cancer cells and provide resistance to cancer.  

Inhibition of endogenous glucose production by injection of glucose was enhanced in 13-month-old female 

Snell dwarf mice. Second, we compared the incidence of cancer at time of death in old Snell dwarf and 

control mice. Only 18% of old Snell dwarf mice had malignant lesions at the time of death compared to 82% 

of control mice. The median ages at death for Snell dwarf and control mice in this study were 33 and 26 

months, respectively. Elevated circulating adiponectin, a hormone produced by adipose tissue, was observed 

in 13 month old female Snell dwarf mice. The elevation of adiponectin may provide Snell dwarf mice with 

resistance to cancer by inhibiting endogenous glucose production. Like Snell dwarf mice, Proph1 null (Ames 

dwarf) mice are long-lived mouse models that lack GH, PRL and TSH and show reduced IGF-I and elevated 

adiponectin.  However, in contrast to Snell dwarf mice, old Ames dwarf mice show a high incidence of cancer 

at the time of death similar to control mice. Hence, endocrine factors other than elevated adiponectin, reduced 

IGF-I and a lack of GH, PRL and TSH provide old Snell dwarf mice with cancer resistance. Proteomics 

analysis of pituitary secretions revealed the lack of GH and PRL, the secretion of ACTH and elevated 

secretion of Chromogranin B and Secretogranin II in Snell dwarfs. We confirmed the elevation of circulating 

Chromogranin B and Secretogranin II in Snell dwarf mice by radioimmunoassay. In summary, these results 

suggest that the pituitary gland and adipose tissue are part of a complex neuroendocrine system that inhibits 

endogenous glucose production and thereby reduces the risk of cancer. 
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INTRODUCTION 

Snell dwarf mice are valuable laboratory models for investigating the mechanisms of cancer and 

aging.   Snell dwarf mice are homozygous for the Pit1dw allele which leads to the loss of the transcription 

factor Pit1 (Li et al., 1990). Snell dwarf mice are deficient in growth hormone (GH), prolactin (PRL) and 

thyroid stimulating hormone (TSH) due to hypoplasia of cells that produce these hormones in the anterior 

pituitary.  Snell dwarf mice are resistant to chemically induced cancer and live longer than control mice which 

are either homozygous or heterozygous for the wild-type Pit1 allele (Bielschowsky and Bielschowsky, 1959; 

Flurkey et al., 2001; Rennels et al., 1965).  

Endogenous glucose production and whole-body glucose utilization are lower in Snell dwarf mice 

than control mice during fasting (Brooks et al., 2007c). Cancer cells depend on high levels of anaerobic 

glycolysis rather than oxidative phosphorylation for ATP production (Brown, 1999; Gullino et al., 1967; 

Matoba et al., 2006). Glucose deprivation causes cancer cells in vitro to undergo cell death more readily than 

healthy cells (Elstrom et al., 2004b; Funes et al., 2007; Shim et al., 1998). Elevated circulating glucose 

increases the risk of cancer and diminishes the effectiveness of medical treatment in cancer patients (Caudle 

et al., 2008; Malin et al., 2005; Stattin et al., 2007). Hence, reduced endogenous glucose production may 

provide resistance to cancer in Snell dwarf mice by depriving cancer cells of energy. 

Glucose homeostasis differs dramatically between the fed and fasted states. During feeding (a) 

the concentration of exogenous glucose in the circulation from the gastrointestinal tract is elevated, (b) the 

concentrations of total circulating glucose and insulin are elevated, (c) circulating glucose is used for energy 

and storage and (d) endogenous glucose production is not needed to replenish the disappearance of circulating 

glucose. Endogenous glucose production was previously measured in Snell dwarf mice during fasting (Brooks 

et al., 2007c). Therefore, the first goal of this study was to determine whether elevated inhibition of 

endogenous glucose production in Snell dwarf mice extends to the fed state.  

Hypophysectomy, surgical removal of the pituitary gland, was used as endocrine therapy before 

highly specific chemicals and monoclonal antibodies were available to reduce hormone action to block 

hormone binding (Luft et al., 1955). Among pituitary hormones, the lack of GH combined with low levels of 

IGF-I, a hormone stimulated mainly by GH, plays a key role in cancer resistance. GH deficient rats are highly 

resistant to chemical induction of cancer unless GH is provided by injection (Shen et al., 2007). Furthermore, 

the suppression of IGF-I could provide resistance to cancer by reducing whole-body glucose utilization 

(Rossetti et al., 1991).  

Resistance to cancer in Snell dwarf mice could also be mediated by the elevation of circulating 

adiponectin (Brooks et al., 2007c; Combs et al., 2003). Adiponectin, a hormone produced exclusively by 

adipocytes, the lipid storing cells in fat tissue, inhibits endogenous glucose production (Brooks et al., 2007c; 

Combs et al., 2001; Combs et al., 2004). Numerous clinical studies show that cancer risk is associated with 
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elevated circulating adiponectin (Chen et al., 2006; Korner et al., 2007; Mantzoros et al., 2004; Miyoshi et al., 

2003; Tworoger et al., 2007). 

Elevated adiponectin has been reported in several GH deficient and long-lived mouse models 

(Berryman et al., 2004; Combs et al., 2003; Wang et al., 2006). Adiponectin inhibits endogenous glucose 

production and stimulates fatty acid utilization through its intracellular target, AMP-activated protein kinase 
(Brooks et al., 2007a; Nawrocki et al., 2006; Tomas et al., 2002; Yamauchi et al., 2002).  Adiponectin inhibits 

endogenous glucose production in the liver by suppressing G6Pase and PEPCK, rate limiting enzymes in 

hepatic glucose production (Combs et al., 2004). Gene expression array data in GH deficient mice such as the 

Snell dwarf, Ames dwarf, GH release hormone receptor-null (little) and GH receptor-null mice, support the 

conclusion that fatty acid oxidation is elevated in these long-lived and cancer resistant mouse models (Stauber 

et al., 2005). Exercise training in humans enhances fatty acid metabolism through AMPK (Winder, 2001).   

Ames dwarf mice are homozygous for the Prop1df allele which leads to the loss of the 

transcription factor Prop1 (Sornson et al., 1996). Prop1 regulates the expression of Pit1 and the development 

of thyrotrophs, somatotrophs and lactotrophs in the anterior pituitary from Rathke's pouch.  As a result, Ames 

dwarf mice are deficient in GH, PRL and TSH similar to Snell dwarf mice. Ames dwarf mice live longer than 

control mice which are either homozygous or heterozygous for the wild-type Prop1 allele (Brown-Borg et al., 

1996; Ikeno et al., 2003). The median age of death for Ames dwarf and control mice was 36 and 26 months, 

respectively; however, despite having a similar endocrine profile as Snell dwarf mice, old Ames dwarf mice 

exhibit a high incidence of cancer at the time of death (Ikeno et al., 2003). Necropsy at the time of death 

revealed malignant lesions in 72% of Ames dwarf mice compared to 95% in control mice. Although young 

Snell dwarf mice exhibit resistance to chemically induced tumors, data on naturally occurring murine cancers 

in old Snell dwarf mice is currently not available.  Thus, our second goal was to determine whether old Snell 

dwarf mice also have a high incidence of cancer at the time of death as Ames dwarf mice.   

After discovering greater inhibition of endogenous glucose production by intravenous injection of 

glucose (aim 1) and resistance to cancer at the time of death in old Snell dwarf mice (aim 2), we examined by 

proteomics analysis whether the pituitary of Snell dwarf mice overproduces other hormones or lacks other 

hormones besides GH, PRL and TSH that may play a role in the resistance to cancer (aim 3).  Previous 

proteomics analyses of whole anterior pituitaries from outbred mice verified production of all known pituitary 

hormones except for TSH (Blake et al., 2005). Therefore, our third and final goal was to compare the proteins 

secreted from the pituitaries of Snell dwarf and control mice.  
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METHODS 

Mice. Unless indicated otherwise 12-14 month old female mice in the F1 (DWxB6) background 

were used in the present study. Mice were housed in ventilated isolator cage systems in a pathogen-free 

isolator barrier facility at 23oC, 55% humidity on a 12-hour light/12-hour dark cycle. Mice received a 

standard chow diet consisting 73% carbohydrate, 18% protein, 4% fat, 5% ash (Purina). Mice were sacrificed 

by cervical dislocation for experiments requiring dissection of tissues. Experimental procedures were 

approved by the Institutional Animal Care and Use Committees at the University of North Carolina. 

Intravenous Glucose Tolerance Test. Mice were fasted after 7 am and studied between 1 and 3 

pm. In the afternoon, mice received a single intra-venous injection of glucose (0.8 mg/g bodyweight) mixed 

with tritium labeled glucose, D-[3-3H]glucose (3H label on carbon 3 glucose) from Amersham Biosciences 

(Beard et al., 1986). The mixture was injected directly into the circulation of conscious, free-moving mice 

through the ophthalmic plexus. Blood samples (10-20 µL) were collected from the tail tip 2.5, 5, 10, 20 and 

30 minutes after injection for the measurement of glucose and radioactivity as previously described (Brooks et 

al., 2007c). The tail was nicked 2-4 mm from the tip always below the end of the vertebrae. Blood was 

collected from the tail-vein of free moving mice.  The fraction of circulating glucose representing the injected 

glucose was calculated from the specific activity of the [3H]glucose-glucose solution injected (300 cpm per 

μg glucose). HPLC analysis was performed to verify that the radioactivity measured in dried plasma by 

scintillation counter represented [3H]glucose. An Agilent 1100 HPLC system connected to a beta-RAM 

Model 2B Detector (IN/US Systems) was used. An Aminex HPX-87C polystyrene divinylbenzene resin 

column (Bio-Rad) was used at 80oC using a 0.6 mL/min flow of water. Mutant and control mice were always 

paired for intravenous glucose tolerance test.  

Cancer Evaluation at Necropsy. Gross pathologic examination was performed while gathering 

life span data at the Jackson Laboratories. Necropsy was performed on female Snell dwarf mice and control 

mice from a cohort of F1 (DWxC3He) mice. Cages were checked daily and necropsy was performed 

immediately when a dead mouse was found. The median age at time of death was 33 months for Snell dwarf 

mice and 26 months for control mice. A total of 11 Snell dwarf and 38 control mice underwent necropsy. 

Histology was used to determine whether neoplastic lesions were benign or malignant. The neoplastic lesions 

identified by histology included histiocytic sarcoma, lymphoma, mammary adenocarcinoma, fibrosarcoma, 

hepatocellular carcinoma, leiomyosarcoma, myelogenous leukemia and hemangiosarcoma. 

Proteomics Analysis of Pituitary Secretions. Anterior pituitary glands from 12-14 month old 

Snell dwarf and age-matched control mice were placed in serum-free modified Eagle’s media immediately 

after dissection and were incubated at 37o C for 1 hour.  The media was transferred to new tubes and 

centrifuged at 45,000 RPM for 1 hour. Proteomics analyses were performed at the UNC-Duke Proteomics 

Center.  The supernatant was digested with trypsin at 37o C for 1 hour and was analyzed by nano LC/MS/MS 
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using a Waters API-US Q-Tof, equipped with a Waters capLC system and a 75μ id x 15 cm PepMap C18 

column (Dionex).  The supernatants were analyzed by nanoLC/MS/MS on a ThermoFisher Orbitrap hybrid 

FT-MS, equipped with an Eksigent nanoLC system, New Objective nanospray source and a nanobore PicoFrit 

column (ProteoPepTM II C18, 50μm id x 10.0 cm, 10 µm tip size, New Objective). The Orbitrap data was 

processed using ThermoFisher’s Bioworks 3.3.1 software, the Sequest search engine and the FASTA Protein 

Database. A comprehensive report of the protein functions was prepared using BLAST on the NCBInr 

database. Protein expression ratios were determined with GE Healthcare's DecyderMS software.   

PCR Reactions and Northern Blot Analysis-Genotyping of Pit1dw allele carriers for 

breeding. The Pit1dw allele was detected from tail DNA to genotype breeding pairs by PCR using 

AGCTGCTAAGGATGCTCTGG (forward primer), CGTTTTTCTCTCTGCCTTCG (reverse primer) and 

PlatTAQ from Invitrogen on a BioRad thermocycler. These primers detected the Pit1dw allele in breeding 

pairs (Szeto et al., 1996).   

Reverse Transcriptase PCR. Mice were sacrificed by cervical dislocation between 1-3 pm. 

Tissues were frozen in liquid nitrogen immediately after dissection and stored at –70°C.RNA was isolated 

using a Qiagen kit according to the manufacturer ’s protocol. cDNA was prepared with reverse transcriptase 

(Invitrogen) and random hexamers. The PCR primer pair sequences for Chromogranin A were 

AAGAGGCCTGAGTGCCCAAC and ACGCTCCTCCTCCTCTTCC (reverse). The PCR primer pair 

sequences for Chromogranin B were GACCAGGACCAGAGCCAG and GACCAGGACCAGAGCCAG 

while the primer pair sequences for Secretogranin II were GCAGTGGGAGGTCACAGAG and 

ATACCCACCCTTGGAGAGC (reverse).  PCR conditions were 94o, 55o and 72o C (35 cycles).  

Northern Blot Analysis. Yield and purity of RNA were determined by spectrophotometric 

absorption analysis at 260/280 nm. Total RNA (5 µg) was electrophoresed on 1.2% agarose gel /6% 

formaldehyde and transferred to Hybond-XL membrane (Amersham). RNA was cross-linked to the 

membrane by ultraviolet irradiation and incubated at 65°C in hybridization buffer (GE Healthcare) overnight. 

Radiolabeled cDNA was introduced to the buffer, and the membranes were Blots were washed with 3xSSC, 

exposed to a PhosphorImager (Molecular Dynamics) screen for 24 h, and analyzed on a PhosphorImager 

using ImageQuant Software.  

mRNA Probe synthesis. Radiolabeled probes were prepared by PCR using 2.5 mM [32P]dCTP 

(Amersham). The Secretogranin II probe was prepared using TGCTGAAACGGCCCGAGC and 

CAGGCGTGTCCACTGGGAA. The Chromogranin B probe was prepared using 

TGCTGAAACGGCCCGAGC and CAGGCGTGTCCACTGGAA. An oligonucleotide (5 - C T T C C T C 

TA G ATA G TCAAGTTCGACCGTCT-3) specific for 18S rRNA (GenBank X01117) was end labeled with 

[32P] d ATP using T4 polynucleotide kinase (Invitrogen) and used to confirm equal RNA loading. 
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Hormone Measurements. Adiponectin was measured in plasma from control and Snell dwarf 

mice by western blot analysis as previously described (Brooks et al., 2007c).  Adiponectin was detected using 

rabbit antisera produced by the peptide antigen EDDVTTTEELAPALV representing murine adiponectin 

(amino acid residues 18-32) as previously described. Chromogranin A was measured using an antibody to 

human Chromogranin A amino acid sequence 324-337 coding for the peptide sequence 

ELEQEEERLSKEWE, which detects the WE-14 region of Chromogranin A. Chromogranin B was measured 

using an antibody to human Chromogranin B sequence 312-331 coding for the peptide sequence 

SEESNVSMASLGEKRDHHST (Stridsberg et al., 1995) Secretogranin II was measured as described 

previously using an antibody against the human Secretogranin II amino acid sequence 154–165 coding for the 

peptide QQWPERKLKHM. The detection limits were 10 fmol and the variability of replicate measurements 

was less than 10% (Nicol et al., 2002; Willis et al., 2008).   

 

RESULTS 

Glucose metabolism in Snell dwarf mice. Low endogenous glucose production and whole-body 

glucose utilization under fasting conditions were previously reported in Snell dwarf mice (Brooks et al., 

2007c). Rather than the fasted state, the data presented ahead were obtained under conditions that mimic the 

fed state (Fig. 1). Control and Snell dwarf mice received a single intravenous injection of glucose and trace 

amounts of [3H]glucose (0.8 mg/g body weight). Total plasma glucose was lower in Snell dwarfs at 2.5, 5, 10, 

20 and 30 minutes after glucose injection and was found to be lower at all time points except baseline. 

Endogenous glucose production was lower in Snell dwarf mice at 2.5, 5, 10 and 20 minutes after glucose 

injection. The reduction of endogenous glucose production may restrict glucose utilization by cancer cells in 

Snell dwarf mice and thereby prevent cancer. 

Incidence of cancer at time of death in old Snell dwarf mice. Low endogenous glucose 

production during feeding and fasting may deprive cancer cells of glucose thereby making Snell dwarf mice 

resistant to cancer. Snell dwarf mice are resistant to chemically induced cancers; however, the natural 

incidence of cancer in old Snell dwarf mice at the time of death has not been previously described 

(Bielschowsky and Bielschowsky, 1959; Flurkey et al., 2001; Rennels et al., 1965).  Consistent with previous 

reports, significantly fewer Snell dwarf mice had neoplastic lesions at necropsy. Only 18% of the Snell dwarfs 

had at least one malignant lesion compared to 82% of the control mice (Fig. 2). These results contrast sharply 

with the evidence of high tumor incidence at time of death in old Ames dwarf mice (Ikeno et al., 2003).  

Adiponectin levels in Snell dwarf mice. Adiponectin is a hormone that inhibits endogenous 

glucose production (Brooks et al., 2007c; Combs et al., 2001; Combs et al., 2004). If elevated adiponectin 

protects Snell dwarf mice from cancer, it is expected that it would remain elevated in older mice.  The 

elevation of plasma adiponectin was previously reported in young Snell dwarf and Ames dwarf mice (Combs 
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et al., 2003; Wang et al., 2006). We found that plasma adiponectin was elevated in 12-14 month old Snell 

dwarf mice indicating a possible role for adiponectin in cancer resistance (Fig. 3). 

Proteomics analysis of Snell dwarf pituitary secretions. The elevation of adiponectin and the 

reduction of GH may contribute to the reduction of glucose production and glucose utilization in Snell dwarf 

mice. However, to our knowledge, Ames dwarf mice show a similar endocrine profile as Snell dwarf mice yet 

Ames dwarfs are significantly less resistant to cancer than Snell dwarfs (Ikeno et al., 2003; Wang et al., 2006). 

Therefore, proteomics analysis was applied to determine whether any novel endocrine factors differ between 

Snell dwarf and control mice. Pituitary secretions were collected from Snell dwarf and control mice ex vivo. 

Proteomics analysis confirmed that the pituitary in the Snell dwarf produced ACTH but not GH or PRL. In 

addition, proteomics analysis revealed that Snell dwarf pituitary produced Chromogranin A, Chromogranin B 

and Secretogranin II (Table 1).  The method identified a total of 107 proteins from control mouse pituitary 

and 52 proteins from Snell dwarf pituitary including proteins classified as nuclear, metabolic, protein 

structure, cell structure, signaling and secreted proteins. Detection of cellular proteins among pituitary 

secretions was indicative of ex vivo pituitary cell lysis. Decyder MS software analysis indicated that 

Chromogranin A, Chromogranin B and Secretogranin II were elevated based on matching peptide masses and 

retention time. PCR reactions were performed for Chromogranin A, Chromogranin B and Secretogranin II 

using anterior pituitary cDNA from control and Snell dwarf mice. Reverse transcriptase/PCR results showed 

that Chromogranin B and Secretogranin II mRNA are expressed in control as well as Snell dwarf pituitaries 

(data not shown). Primer pair sequences are provided in Materials and Methods. These results show confirm 

that Chromogranin B and Secretogranin II are expressed by the pituitary (Grino et al., 1989; Nicol et al., 

2002; Wei et al., 1995). 

Elevated circulating Chromogranin B and Secretogranin II levels were detected in Snell dwarf 

mice at p<0.05 by nonparametric Student t-test (Fig. 4A). The elevation of Chromogranin B and 

Secretogranin II led us to investigate whether the pituitary is a major determinant of circulating Chromogranin 

B and Secretogranin II levels by Northern blot analysis (Fig. 4B). Northern blot analysis of mRNA expression 

suggests that the pituitary and the adrenal glands are the major determinants of circulating Chromogranin B.  

On the other hand, the pituitary is not the main producer of Secretogranin II.  
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TABLE 1. Proteomics analysis of secreted proteins from the pituitary of Snell dwarf and control mice. 
Proteomics analysis confirmed that the pituitary of the Snell dwarf does not secrete GH or PRL and verified 
the secretion of ACTH, Chromogranin A, Chromogranin B and Secretogranin II. LH, FSH and TSH secretion 
was not detected from Snell dwarf or control and pituitaries. The plus sign (+) indicates detected, two plus 
signs (++) indicate a 2-fold difference and ND indicates not detected. Pituitary secretion levels were 
compared using quantitative proteomics analysis software (Decyder MS). 
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FIGURE 1. Endogenous glucose in 12-14 month old female Snell dwarf mice after glucose injection. 
Control and Snell dwarf mice were injected with glucose (0.8 mg per g body weight) mixed with trace 
amounts of [3H]glucose (3 x 105 cpm per mg glucose). Compared to control mice, plasma glucose was lower 
in Snell dwarf mice at 2.5 5, 10, 15, 20 and 30 minutes after injection, indicating elevated glucose tolerance. 
Endogenous glucose in plasma was also reduced in Snell dwarf mice at 2.5, 5, 10, 15, 20 and 30 minutes after 
injection, indicating greater inhibition of endogenous glucose production. Results are shown as mean + SEM. 
*, ** Significantly different at indicated time-points by nonparametric Student t-test between Snell dwarf and 
control mice where p<0.05 and N=6 mice per group. 
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FIGURE 2. Percentage of old female Snell dwarf mice with neoplastic lesions at time of death. The 
percentage of mice with one or more neoplastic lesion at time of death was lower for Snell dwarf than control 
mice. The median age at time of death was 26 months for control and 33 months for Snell dwarf mice. 
Neoplastic lesions identified by histology included histiocytic sarcoma, lymphoma, mammary 
adenocarcinoma, fibrosarcoma, hepatocellular carcinoma, leiomyosarcoma, myelogenous leukemia and 
hemangiosarcoma. Bar graphs show results as mean + SEM.  * Significantly different by Chi-square analysis 
where p<0.05 and N=33 control mice and N=11 Snell dwarf mice.  
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FIGURE 3. Circulating adiponectin in 12-14 month old female Snell dwarf mice. Plasma adiponectin was 
elevated in Snell dwarf mice by Western blot analysis. Bar graphs show results as mean + SEM. * 
Significantly different by nonparametric Student t-test where p<0.05 and N=6 mice per group. 
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FIGURE 4. (A) Circulating Chromogranin A, Chromogranin B and Secretogranin II in 12-14 month 
old female Snell dwarf mice. Plasma Chromogranin B and Secretogranin II were elevated in Snell dwarf 
mice by radioimmune assay. Bar graphs show results as mean + SEM. * Significantly different by 
nonparametric Student t-test where p<0.05 and N=15 mice per group for Chromogranin A and N=5 mice per 
group for Chromogranin B and Secretogranin II. (B) Tissue Chromogranin B and Secretogranin II mRNA 
expression by Northern blot analysis in wild-type mice. Chromogranin B mRNA expression was detected 
in the pituitary and the adrenal glands while Secretogranin II mRNA expression was detected ubiquitously.  
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FIGURE 5. Neuroendocrine inhibition of endogenous glucose production and resistance to 
cancer. Snell dwarf mice show elevated adiponectin, Chromogranin B and Secretogranin II and low 
endogenous glucose production. Furthermore, Snell dwarf mice are highly resistant to cancer. 
Adiponectin, Chromogranin B and Secretogranin II are shown as part of a complex neuroendocrine 
axis that can ultimately provide resistance to cancer. 
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DISCUSSION 

Our main finding was that inhibition of endogenous glucose production was enhanced after 

injection of glucose in 12-15 month old female Snell dwarf mice in comparison to age-matched controls. 

Inhibition of endogenous glucose production by injection of glucose simulates the fed state.  These results 

complement previous data that endogenous glucose production is suppressed in Snell dwarf mice during 

fasting (Brooks et al., 2007c). 

Snell dwarf and control mice received the same dose of glucose per unit body weight.  Although 

previous studies indicated that Ames dwarf mice consume similar amounts of food per unit body weight as 

control mice, Ames dwarf mice show striking differences in glucose metabolism compared to control mice 

(Argentino et al., 2005; Borg et al., 1995; Dominici et al., 2003; Hauck et al., 2001; Mattison et al., 2000).  

Thus, conversion of carbohydrates to fatty acids and the burning of fats may increase longevity 

compared to immediately burning carbohydrates directly for ATP. Elevated fat utilization for energy, fat 

burning, may be associated with greater fitness than burning of glucose. Low glucose utilization may delay 

aging by reducing oxidative stress (Brooks et al., 2007c; Nishikawa et al., 2000). Furthermore, the reduction 

of endogenous glucose production could restrict glucose utilization by cancer cells and inhibit the 

development of malignant lesions that appear with high frequency in old mice. Diabetes is often associated 

with elevated glucose production (Basu et al., 2005; Natali and Ferrannini, 2006; Radziuk and Pye, 2002; 

Stefan et al., 2003; Wajngot et al., 2001) and in a recent clinical study, not a single diabetic colorectal cancer 

patient showed a complete pathologic response to chemotherapy (Caudle et al., 2008).   

Significantly fewer Snell dwarf mice had neoplastic lesions at necropsy. Our study showed that 

only 18% of the Snell dwarfs had at least one malignant lesion compared to 82% of the control mice. The low 

incidence of cancer in Snell dwarf mice is in contrast to the high tumor incidence in old Ames dwarf mice at 

time of death (Ikeno et al., 2003). Necropsy revealed that 72% of Ames dwarfs showed at least one fatal 

neoplastic lesion at the time of death compared to 85% in controls (Ikeno et al., 2003).   

The mechanisms that provide Snell dwarf mice resistance to cancer late in life are obviously 

mediated by congenital loss of function of the Pit1 gene also called the growth hormone factor-1 gene 

(GHF1). Pituitary tumors show greater expression of Pit1 than healthy pituitary glands  (Asa et al., 1993; 

Delhase et al., 1993; Sanno et al., 1996).  The role of Pit1 as a tumor suppressor may be limited to in 

somatotrophs (Canibano et al., 2007). Pit1 is elevated in human breast carcinoma compared to normal breast 

tissue. Pit1 overexpression in MCF7 cells (human breast adenocarcinoma) stimulates GH production, cell 

growth and cell proliferation (Gil-Puig et al., 2005). Pit1 antisense oligonucleotides reduce GH mRNA 

expression and [3H]thymidine incorporation in pituitary somatotrophs and lactotrophs suggesting that Pit1 

may stimulate DNA replication and cell proliferation (Castrillo et al., 1991). The link between Prop1, the 

gene mutated in Ames dwarf, and cancer is less clear with one study reporting reduced Prop1 mRNA 
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expression in corticotroph tumors and several studies showing no significant difference and compared with 

other pituitary tumors.  

Catecholamines, glucagon and glucocorticoids are hormones that stimulate endogenous glucose 

production. Adiponectin, a hormone produced by adipose tissue, inhibits endogenous glucose production 

(Berg et al., 2001). By inhibiting glucose production, adiponectin may lower whole-body glucose utilization. 

The elevation of adiponectin may provide resistance to cancer by lowering endogenous glucose production 

(Fig. 5). The elevation of circulating adiponectin in Snell dwarf mice is an endocrine signal that suppresses 

endogenous glucose production and elevates fatty acid oxidation (Brooks et al., 2007c). This switch in 

substrate availability may impair cancer cell defense from the immune system and apoptosis. 

Glucose utilization may also be reduced in Snell dwarf mice by other mechanisms besides the 

inhibition of endogenous glucose production. Snell dwarf mice show elevated insulin sensitivity as indicated 

by circulating glucose and insulin levels, glucose tolerance tests and insulin tolerance tests (Brooks et al., 

2007c; Combs et al., 2003; Mirand and Osborn, 1952; Mirand and Osborn, 1953).  The elevation of insulin 

sensitivity in Snell dwarf mice and other long-lived mouse models can lower glucose utilization. Low levels 

of insulin could lower glucose utilization by reducing GLUT4 mediated insulin transport (Rossetti et al., 

1997).  Low insulin in Snell dwarfs can decrease insulin-mediated utilization of glucose by insulin responsive 

tissues, mainly muscle and adipose. (DeFronzo et al., 1981; Rossetti et al., 1997) Whether elevated insulin 

sensitivity in Snell dwarf mice is responsible for greater inhibition of glucose production is currently 

unknown.     IGF-I and thyroid hormone deficiency in Snell dwarfs also lower tissue demand for glucose (Itoh 

et al., 2001; Rossetti et al., 1991).  

As a first step towards determining the basis for the difference in the incidence of cancer between 

Snell dwarf and Ames dwarf mice, we tested whether there are any other pituitary hormone differences in the 

Snell dwarf mice besides a lack of GH, PRL and TSH. Proteomics analysis revealed that pituitary secretion of 

Chromogranin A, Chromogranin B and Secretogranin II were detected abundantly in Snell dwarf mice. 

Widely differing effects and targets for intact and alternatively processed derivatives of Chromogranin A, 

Chromogranin B and Secretogranin II have been reported (Helle, 2004). Chromogranin A and Chromogranin 

B were previously linked to low insulin production which may lower whole-body glucose utilization by 

reducing GLUT4 mediated glucose transport (Karlsson et al., 2000; Rossetti et al., 1997; Schmid et al., 2007). 

GLUT4 colocalizes with Secretogranin II in large dense core vesicles (Hudson et al., 1993). The effects of 

Chromogranin A, Chromogranin B and Secretogranin II on endogenous glucose production are currently 

unknown. Figure 5 illustrates how the anterior pituitary gland could inhibit endogenous glucose production by 

regulating circulating adiponectin levels.  Endogenous glucose production by the liver is also inhibited 

directly by the hypothalamus through the hepatic branch of the vagus nerve (Pocai et al., 2005).   
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The defense mechanisms that suppress the naturally occurring tumors in mice deteriorate during 

aging.  Future studies will investigate the link between glucose metabolism and cancer at an old age. The low 

incidence of cancer in old Snell dwarf mice should be investigated further considering the mechanism may be 

related to neuroendocrine factors besides than GH and IGF-I. Furthermore, future studies should define the 

neuroendocrine mechanism(s) that control endogenous glucose production and determine whether the 

impairment of those mechanisms can provide resistance to the naturally occurring cancers in mice.    



 17

 

 

 

 

CHAPTER II 

REVIEW: ANIMAL MODELS FOR GERONTOLOGICAL RESEARCH- 

DWARF MICE VS. CALORIC RESTRICTION 

 

ABSTRACT 

Gerontological research indicates that the aging process is similar in humans and laboratory 

rats and mice. What aging process is delayed by calorie restriction (CR) and mutations that produce long-

lived dwarf mice?  From 1935 until 1996, CR was an exclusive model for increasing lifespan in lab 

rodents (McCay et al., 1989).  In 1996, a mutation producing the Ames dwarf mouse was reported to 

increase lifespan. Additional single-gene mutations causing dwarfism or reducing body weight have been 

reported to increase longevity in mice since 1996 (Brown-Borg et al., 1996). Long-lived mouse models 

show elevated insulin sensitivity.  Elevated insulin sensitivity reduces oxidative stress, a potential cause 

of aging.  Our data, in the long-lived Snell dwarf mouse, suggests that increased adipose tissue production 

of adiponectin elevates insulin sensitivity, decreases oxidative damage and lowers the incidence of 

cancer. The elevation of liver insulin sensitivity by adiponectin, can lower oxidative damage and raise 

cancer resistance by (a) reducing endogenous glucose production and (b) increasing fatty acid oxidation.  

Future studies on the aging process will focus on the regulation of nutrient metabolism.  

 



 18

CALORIE RESTRICTION 

Centenarians escape many ailments associated with aging, such as cancer, stroke, Alzheimer’s 

and heart disease (Perls, 1995). Gerontological research seeks to explain how some people can live over 

100 years. The 2-3 year lifespan of the laboratory mouse provides a relatively rapid glimpse of the aging 

process.  Numerous studies show that calorie restriction (CR) causes life extension in laboratory mice and 

rats (Masoro, 2005; Weindruch, 1996).  CR also delays the aging process in humans. The population of 

Okinawa, which consumes 20% fewer calories than other Japanese populations, has 3.5 times more 

centenarians and shows a lower incidence of stroke, heart disease and cancer. (Kagawa, 1978) In humans, 

body weight, fat mass, body temperature, thyroid hormone and oxidative DNA damage decrease after 6 

months of 25% CR (Heilbronn, 2006). The reduction of oxidative damage supports that CR retards the 

aging process by reducing the accumulation of oxidative damage (Beckman and BN, 1998). Regardless of 

the strong link between CR and longevity, it is cautiously advised, as CR does not increase viability under 

every type of environmental stress or in every mouse strain (Forster et al., 2003; Gardner, 2005; Keenan et 

al., 1998).  

 

DWARFISM 

Long-lived mutant dwarf mice such as the Ames (Proph-1-/-), Snell (Pit-1-/-), and little (GhrhR-/-) 

have reduced growth hormone (GH) and insulin-like growth factor (IGF-1) (Brown-Borg et al., 1996; 

Coschigano et al., 2000; Flurkey, 2001; Flurkey et al., 2002; Kurosu et al., 2005; Migliaccio et al., 1999; 

Miskin and Masos, 1997). Human Laron syndrome, which is caused by a non-functional GH receptor, 

analogous to the little dwarf mouse, also exhibits reduced GH and IGF-1. However, the human Laron 

syndrome does not increase lifespan (Laron, 2008). Humans with mutations in the Prop-1 gene are of 

shorter stature, like the Ames dwarf mouse; however, the small number of human subjects with Prop-1 

mutations did not show a difference in lifespan (Krzisnik, 1999). The contradiction between species could 

be attributable to the specific mutation, which may not necessarily affect the gene in a similar manner. It 

should be noted that decreased height has been associated with decreased chronic disease and increased 

lifespan in population studies (Samaras et al., 2003).  

 

CANCER  

The incidence of cancer and death from cancer increase with age because the aging process 

impairs cellular defense and repair mechanisms (Holliday, 2004). Rous demonstrated over a century ago 

that underfed or calorie restricted mice that lost weight showed a decrease in the proliferative activity of 

transplanted tumors. This is based on a delay in the ability of the host to vascularize and form connective 

tissue necessary for tumor growth (Rous, 1914). CR also reduces the appearance of spontaneous tumors in 
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mice. Weindruch et al showed that CR inhibited the growth of spontaneous lymphomas in mice 

(Weindruch, 1982). Cancer also occurs less frequently in humans on CR (Grifantini, 2008; JAmes et al., 

1998). The IGF signaling pathway, which is suppressed by CR, promotes tumor growth (D'Costa et al., 

1993).  

Decreased endogenous glucose production and glucose utilization in Snell dwarf mice may 

account for their resistance to cancer considering that cancer cells depend on glucose for growth (Alderman 

et al., 2009). Hyperglycemia, an indication of impaired glucose metabolism, is associated with increased 

risk of cancer in humans (Stattin, 2007). Therefore, age-related changes in nutrient metabolism may be 

linked to the development of cancer.  Akt, an oncogene that promotes cell survival and transformation, 

stimulates glucose consumption in cancer cells (Elstrom et al., 2004a). In the absence of glucose, these cells 

are more susceptible to death.  Similarly, c-Myc, another oncogene, activates a glucose-dependent pathway 

and without glucose, c-Myc transformed cells undergo apoptotic cell death (Shim, 1998; Shim et al., 1997). 

Consistent with increased glycolysis in neoplastic cells, inhibition of certain glycolytic enzymes decreases 

glucose uptake and reduces tumor growth.  Clem et al, demonstrated that inhibition of PFK3B, one of four 

enzymes that leads to the production of fructose-2, 6-bisphosphate and indirectly activates PFK, reduces 

tumor growth in mice (Clem et al., 2008). An ad-lib low-carbohydrate diet also retarded transplanted colon 

tumor growth in obese mice (Wheatley et al., 2008). 

The absence of GH and low IGF signaling together may contribute to cancer resistance in Ames 

and Snell dwarf mice.  However, Ames dwarf mice show a delay in the appearance of cancer while Snell 

dwarf mice are highly resistant to spontaneous cancer with old age (Alderman et al., 2009). The loss of 

cancer resistance in old Ames dwarf mice may be based on Ames/Snell differences in (a) background strain 

or (b) Prop1/Pit1 function. Snell dwarf mice exhibit elevated adiponectin levels at middle age, which can 

reduce endogenous glucose production.  This may be due to variances in adiponectin levels. Plasma 

adiponectin is elevated in young and middle age Snell dwarf mice (Alderman et al., 2009; Combs et al., 

2003). Plasma adiponectin levels are elevated in young Ames dwarf mice; however, the difference 

disappears by middle age (Figure 6).   Life extension by CR in Ames dwarf mice may be mediated by the 

elevation of adiponectin (Bartke et al., 2001).  

In humans, type II diabetes is associated with elevated plasma glucose and insulin as well as an 

increased risk of certain types of cancer.  In a recent prospective study, abnormal glucose metabolism, 

indicated by hyperglycemia, was associated with significantly increased risk for overall cancer in women 

and pancreatic cancer, malignant melanoma and urinary tract cancers in men (Stattin, 2007). This finding 

further associates glucose metabolism with the development of cancer, but does not necessarily imply that 

glucose restriction will help to reduce the risk of cancer in humans.   
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Figure 6. Circulating adiponectin is similar in middle-aged wild type and Ames dwarf mice. (n=5; p>) 
Young Ames dwarf mice have higher plasma adiponectin. The equalization of adiponectin may explain the 
difference in late life cancer seen in Ames dwarf mice (previously unpublished data). Plasma adiponectin 
was measured by Western blot analysis as previously described and is compared to middle-aged Snell and 
wild type control mice. (Alderman et al., 2009). 
 

 

 
 

 

 

OBESITY 

Obesity reduces the human lifespan (Flegal et al., 2005). Recent estimates suggest that obesity 

can decrease life expectancy by as much as seven years (Olshansky et al., 2005; Peeters et al., 2003).  

Obesity is also associated with increased risk insulin resistance, diabetes mellitus, hypertension, 

dyslipidemia, coronary heart disease, and certain cancers (Pi-Sunyer, 1993). It is therefore possible that 

obesity accelerates the human aging process.  

Adipose tissue produces substances that regulate nutrient metabolism, energy expenditure, 

insulin sensitivity, appetite, inflammation, and immunity (Shoelson et al., 2007). The reduction of adiposity 

has been shown to elicit various beneficial physiological changes. A reduction in adiposity increases insulin 

sensitivity, decreases hepatic glucose production, serum cholesterol, and blood pressure as well as 

normalizing plasma adipokine levels, including decreasing plasma C-reactive protein and leptin while 

increasing adiponectin (Valsamakis, 2004). The reduction of adiposity by CR suggests that the expansion of 

adipose tissue accelerates the aging process (Bartke et al., 2001; Harrison et al., 1984).  
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PHYSICAL ACTIVITY 

In studies comparing voluntarily-running rats and sedentary rats on CR to keep their body 

weights the same as those of the runners, CR sedentary controls were long-lived despite having a higher 

body fat content than runners (Holloszy et al., 1985). Similarly, long-lived male Snell dwarf mice become 

obese and exhibit high plasma levels of leptin late in life (Flurkey, 2001). Despite the late-life obesity and 

increase in plasma leptin, the Snell dwarf is longer lived than control mice. In short, reduced adiposity does 

not seem to be the primary mechanism involved in the anti-aging effects of CR. 

Physical activity is an important modulator of human gene expression influencing lifespan 

(Booth et al., 2002). The idea that physical activity is critical for human health is consistent with 

epidemiologic data and is a focus of many public health interventions (Hu et al., 2004). Furthermore, health 

benefits are said to increase in proportion with increased duration of exercise.  While these “health benefits” 

may include factors such as increased insulin sensitivity, improved cardiovascular health, and weight 

management, the impact on lifespan is unclear.  Data on the effect of physical activity on human longevity 

is lacking; it cannot be conclusively stated whether exercise confers any benefit on human lifespan. 

The hypothesis that linear increases in metabolic rate (and therefore ROS production) result in 

decreased lifespan suggests that exercise (and the corresponding increase in metabolic rate) would have the 

same effect.  One animal study has shown that voluntary exercise results in increased lifespan while another 

has shown that voluntary exercise improves survival rates but does not extend lifespan. (Goodrick, 1980; 

Holloszy et al., 1985). In a study examining the effect of voluntary exercise on longevity, rats engaging in 

voluntary exercise lived slightly longer than sedentary free-fed and sedentary pair-fed controls, but 

significantly less long than food restricted paired-weight controls (Holloszy et al., 1985). One study found 

that, while exercising rats did not live longer than sedentary controls, other markers of aging, such as recent 

memory retention, were improved with exercising (Samorajski et al., 1985). These results suggest that 

exercise may have some protective effect that counteracts the increased energy and oxygen utilization (and 

corresponding oxidative damage) that come with increased physical activity.   

While a direct correlation between exercise and length of natural lifespan cannot be concluded, 

exercise may be an important mediator of the aging process. Exercise improves health outcomes throughout 

life, enhancing insulin sensitivity and cardiovascular health and improving weight management.  Exercise 

may increase longevity indirectly through weight maintenance.   

 

INSULIN SENSITIVITY 

CR may extend lifespan due to increased insulin sensitivity (Al-Regaiey et al., 2007; 

Holzenberger et al., 2003). It is hypothesized that the CR mice exhibit a redistribution in metabolism, likely 

away from insulin-dependent signaling, which decreases glucose utilization. However, FIRKO mice, which 
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lack the insulin receptor in adipose tissue, show a decrease in adiposity and an 18% increase in lifespan 

(Bluher et al., 2003). The long-lived Klotho mutant, which experiences increased IGF and insulin 

resistance, is a contradiction to other dwarf mice characteristics (Kurosu et al., 2005). Future studies will 

need to determine to what degree and in what tissues insulin-like growth factor signaling reductions should 

take place to delay the aging process.  

In humans, obesity is frequently associated with insulin resistance and abnormal glucose 

homeostasis. Elevated adiponectin, increased peripheral insulin sensitivity and decreased circulating insulin, 

biomarkers of increased longevity, are evident in centenarians. (Atzmon et al., 2008; Paolisso et al., 2001) 

The cluster of physiologic changes associated with the metabolic syndrome increases the risk of 

cardiovascular disease. In adipose tissue, decreased production of the hormone adiponectin can cause 

obesity, insulin resistance, hyperglycemia and dyslipidemia (Brooks et al., 2007b). Individuals with the 

lowest plasma adiponectin in a population have the smallest and most dense LDL particles putting them at 

higher risk of heart disease (Hulthe et al., 2003).  

 

NUTRIENT METABOLISM 

CR can exert an anti-aging effect in rodents even when it is implemented at an advanced age 

(Masoro, 1990a; Masoro, 1990b). CR in humans offers similar positive benefits such as decreased BMI, 

increased insulin sensitivity, and all factors that decrease risk of diabetes and other health complications 

(Redman and Ravussin, 2009). Snell dwarf mice share multiple characteristics with CR mice: a smaller 

body size, lower body weight, and extended lifespan (Alderman et al., 2009). These similarities extend to 

carbohydrate metabolism and food intake. CR mice consume less food than AL mice because less is 

available to them; Snell and Ames dwarf mice also consume less food because they require less energy to 

fuel their small body and slower metabolic activities. Dwarf mice on average exhibit lower plasma glucose 

and high insulin sensitivity with reduced IGF-1 and TSH. Snell dwarf mice and CR mice both show less 

incidence of cancer than ad lib wild type mice; specifically Snell dwarf mice produce less ROS, perhaps 

decreasing any mtDNA damage (Alderman et al., 2009; Brooks et al., 2007a; Flurkey, 2001). It would seem 

that the most positive effect on longevity regardless of species would be that of a model with a sparing 

system.  

 

OXIDATIVE STRESS  

Oxidative stress and damage caused by free radicals to proteins, lipids, and DNA, particularly 

mitochondrial DNA (mtDNA), increases with age in both humans and rodents. Oxidative damage to DNA, 

lipids, and proteins was measured in muscle biopsy samples from humans 25 to 93 years of age by 

quantifying the amount of 8-hydroxy-2-deoxyguanosine (8-oxodG), malondialdehyde (MDA), and protein 
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carbonyl groups as indicators of oxidative damage to DNA, lipid peroxidation, and protein carbonylation, 

respectively (Mecocci et al., 1993). The results indicate that oxidative damage to DNA, lipids, and proteins 

in muscle increases with age and suggest that oxidative damage may contribute to aging in human muscle. 

Oxidative damage was also observed in nDNA and mtDNA in brain tissue from humans 42 to 97 years of 

age by quantifying the amount of 8-oxodG (Medocci, 1999). The results indicate that oxidative damage 

increased significantly in both nDNA and mtDNA with age; however the rate of oxidative damage 

accumulation was much greater for mtDNA. The results from the abovementioned studies suggest that 

oxidative damage may contribute to aging in humans. Healthy human centenarians with a mean age of 101 

years exhibited high levels of plasma vitamin A and vitamin E in comparison to elderly humans 60-99 years 

of age and young adults less than 60 years of age (Mecocci et al., 2000). This suggests that increased 

longevity is associated with higher levels of compounds with antioxidant properties such as vitamins A and 

E which limit oxidative damage.  

Lipid, protein, and DNA oxidation was measured in liver tissue of young mice of 5 months and 

old mice of 18 to 24 months (Colantoni et al., 2001). Old mice showed significantly higher levels of 

oxidative damage in every measure. The amount of oxidative DNA damage in kidney tissue was found to 

be 150% higher in old mice, compared to young mice (Fraga et al., 1990). In one study, old rats had 

approximately 2 million DNA oxidative lesions per cell, compared to only 1 million in young rats (Ames et 

al., 1993). Mice overexpressing the human enzyme catalase in mitochondria displayed increased median 

and maximum lifespan, as well as, decreased oxidative damage as measured by 8-oxodG, decreased 

numbers of reactive oxygen species, decreased mtDNA deletions, and reductions in age-related pathologies 

(Schriner, 2005). These results suggest that neutralizing free radicals could increase longevity by delaying 

oxidative damage associated aging (Sohal, 1996). 

CR decreases the rate of oxidant production, which then results in a reduction in the levels of 

damaged proteins, lipids, and DNA from age-associated oxidation. Long-term calorie restricted rats 

displayed significantly less hydrogen peroxide production in liver mitochondria, as well as significantly 

lower levels of mtDNA damaged by oxidation, compared to rats fed ad libitum. 8-oxodG in old rats age was 

suppressed by long-term caloric restriction (Lopez-Torres and al., 2002). These results suggest calorie 

restriction decreases the rate of mitochondrial ROS production and the amount free radical damage to 

mtDNA in rats. 

Dwarf mice display significantly lower levels of oxidative stress than their respective wild type 

controls. Sanz et.al reported that 8-oxodG in mtDNA from brain tissue was 32% lower in male and 36% 

lower in female Ames dwarf mice; 8-oxodG in mtDNA from heart tissue was 30% lower in male Ames 

dwarf mice, while there were not differences among females (Sanz et al., 2006). The results suggest that, 
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although sex differences exist, the decreased oxidation in mtDNA in Ames dwarf mice may play a role in 

their increased longevity.  

Snell dwarf mice display a significantly different response to oxidative stress than their wild 

type counterparts. When 3-nitropropionic acid, an inhibitor of succinate dehydrogenase, was used to induce 

oxidative stress via the production of ROS, Snell dwarf mice had less activation of the MEK–ERK kinase 

cascade, suggesting that this altered tolerance to oxidative stress may play a role in the increased longevity 

(Madsen et al., 2004). It has also been shown that Snell dwarf mice display low glucose utilization and high 

fatty acid utilization, which is correlated with a low level of oxygen radical damage (Brooks et al., 2007c). 

The relationship between free radical damage, oxidative stress, mtDNA damage and longevity 

is as of yet still unknown. The Free Radical/Oxidative Stress Theory of Aging states: levels of oxidative 

damage will increase with age; manipulations that increase lifespan will also reduce the levels of oxidative 

damage; and decreasing levels of oxidative stress will increase lifespan (Bokov et al., 2004).  This theory is 

exemplified in the abovementioned study with glucose metabolism in Snell dwarf mice, suggesting that the 

aerobic metabolism of glucose may lead to more oxygen radical production and more oxidative damage.  

The idea is based on the altered ratio of NADH to FADH2, which is higher from glucose oxidation 

compared to amounts of NADH:FADH2 produced from the oxidation of fatty acids (Brooks et al., 2007c). 

The major producer of reactive oxygen species in the electron transport chain is Complex I where NADH 

oxidation is the first step and through which flux is greater when glucose is oxidized. Although it is 

tempting to suggest that directly decreasing oxidative stress in humans will increase longevity, the available 

evidence does not fully support this theory. More research concerning the relationship between oxidative 

stress and aging needs to be conducted before recommendations can be made for the human population.  
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SUMMARY  

Gerontological research in human and rodent models suggests that CR delays the aging 

process. The recent discoveries of single-gene mutant long-lived dwarf mice, which phenotypically mimic 

CR mice, provide an opportunity to investigate common features between models. Cancer resistance is a 

common feature in CR and long-lived dwarf models. Increased cancer resistance may be based on the 

elevation of insulin sensitivity. The hormone adiponectin, produced by adipose tissue, may play a major 

role in the elevation of insulin sensitivity with CR. Elevated adiponectin and increased insulin sensitivity 

is also a feature in many long-lived dwarf models. Our recent data suggest that the benefits of elevated 

adiponectin disappear by middle age in female Ames dwarf mice. This may contributes to high incidence 

of cancer in old female Ames dwarf mouse.  

Oxygen radical production from the mitochondria is related to energy utilization, a potential 

cause of aging in lab rodents and humans. The increase of energy expenditure though exercise does not 

accelerate the aging process. Caloric intake per unit body weight is not altered in CR rats or Ames dwarf 

mice. Elevated insulin sensitivity can alter fuel utilization in a way that decreases oxygen radical 

production. We conclude that the elevation of adiponectin by CR or the absence of GH in dwarf mice is a 

major contributor to increased insulin sensitivity. Elevated insulin sensitivity reduces endogenous glucose 

production and increases fatty acid utilization for energy. ATP produced from fatty acids may generate 

fewer oxygen radicals than glucose on the basis that glucose oxidation proceeds primarily through 

complex I whereas fatty acid oxidation is more dependent on complex III. Future studies should focus on 

mechanisms that will alter nutrient metabolism and potentially delay aging in humans.  
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