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ABSTRACT

ZHE WANG: Models for Retail Inventory Management with Demand Learning
(Under the direction of Dr. Adam J. Mersereau)

Matching supply with demand is key to success in the volatile and competitive retail

business. To this end, retailers seek to improve their inventory decisions by learning demand

from various sources. More interestingly, retailers’ inventory decisions may in turn obscure

the demand information they observe. This dissertation examines three problems in retail

contexts that involve interactions between inventory management and demand learning.

First, motivated by the unprecedented adverse impact of the 2008 financial crisis on retailers,

we consider the inventory control problem of a firm experiencing potential demand shifts

whose timings are known but whose impacts are not known. We establish structural results

about the optimal policies, construct novel cost lower bounds based on particular information

relaxations, and propose near-optimal heuristic policies derived from those bounds. We

then consider the optimal allocation of a limited inventory for fashion retailers to conduct

“merchandise tests” prior to the main selling season as a demand learning approach. We

identity a key tradeoff between the quantity and quality of demand observations. We also

find that the visibility into the timing of each sales transaction has a pivotal impact on

the optimal allocation decisions and the value of merchandise tests. Finally, we consider a

retailer selling an experiential product to consumers who learn product quality from reviews

generated by previous buyers. The retailer maximizes profit by choosing whether to offer

the product for sale to each arriving customer. We characterize the optimal product offering

policies to be of threshold type. Interestingly, we find that it can be optimal for the firm to

withhold inventory and not to offer the product even if an arriving customer is willing to

buy for sure. We numerically demonstrate that personalized offering is most valuable when

the price is high and customers are optimistic but uncertain about product quality.
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CHAPTER 1

Introduction

Retail, the business of selling goods and services to end consumers, is one of the most

important industries in the U.S, and has a significant impact on the U.S. economy. A 2011

report from the National Retail Federation reveals that in 2009, the retail industry ranked

third among all industries by directly adding $1.2 trillion to GDP, accounting for 8.5% of the

U.S. GDP; it was also the largest private-sector employer in the country, directly providing

28.1 million full-time and part-time jobs, accounting for 24.1% of total national employment.

The retail business is challenging given its highly volatile and competitive nature. Success

in retail requires successfully matching supply with demand. On the demand side, learning

customer demand is crucial and has become increasingly challenging in a fluctuating economy

with shortened product life cycles, prolonged lead times, and rapidly changing consumer

behaviors. On the supply side, efficient and effective management of inventory, the single

largest asset for most retailers, is at the heart of retail operations.

Demand learning and inventory management are intricately interrelated. On one hand,

optimization of inventory decisions relies on information gathered from demand learning; on

the other hand, the ultimate goal of demand learning is to minimize profit losses, including

inventory costs, that are attributed to demand uncertainty. What further complicates the

relationship between the two is the fact that retailers’ inventory decisions may in turn

obscure their demand observations, as retailers typically do not observe lost sales due to

stockouts. This thesis focuses on the interactions between demand learning and inventory

management in retail contexts (see Figure 1.1). In one direction, this dissertation examines

how inventory decisions should respond when firms learn a dynamically changing demand
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Figure 1.1: Organization of the dissertation.

(Chapter 2 and 4). In the other direction, we study the impact of inventory decisions on the

effectiveness of demand learning (Chapter 3 and 4).

Demand learning also involves making the best use of available data. In response to rising

trends towards business analytics and big data, this dissertation examines various sources

of data for demand learning. In addition to historical demand, Chapter 2 incorporates

information on past events as indicators for potential demand changes. Chapter 3 discusses

the use of granular timing information of transactions on top of aggregate sales data.

Chapter 4 involves learning demand from consumer-generated product reviews and from

customers’ personal characteristics and preference data.

We provide below an overview of Chapters 2 through 4 of this thesis. In Chapter 2, we

study inventory management following a potential shift in the demand regime. The problem

was motivated by the unprecedented adverse impact of the financial crisis started in 2008,

which put retailers in uncharted territory in terms of revenue declines, credit availability,

and demand forecasting. To analyze how retailers should manage inventory adaptively

under such unpredictable circumstances, we consider a situation in which a firm is aware

that the demand regime may (or may not) have changed due to some notable event and

hopes to efficiently manage its inventory while also learning the actual demand trend. In

the periods soon after such events, the manager can rely on historical demand to carefully

estimate possibly obsolete demand parameters, discard the historical demand data and

instead re-estimate demand parameters based on a limited history, or do something in

2



between. The tradeoff inherent to this problem is between the precision brought by a long

(but possibly out-of-date) history and the responsiveness that comes from relying on a recent

(but limited) history.

We formulate the problem as a multi-period Bayesian inventory model with a mixture of

two priors—one summarizes the inventory manager’s historical demand information and the

other reflects the manager’s belief on the potential demand change. Although a theoretical

characterization of some structural properties of the optimal inventory policy is possible,

computing the exact policy remains challenging. As an alternative approach, we construct

bounds on the optimal costs and develop associated heuristics. Constructing the lower

bounds involves finding an “information relaxation” (Brown et al., 2010) that strikes a

balance between the amount of information to relax and the computational complexity

of the problem after the relaxation. In deriving a new “independentized” lower bound,

we consider a novel auxiliary version of the problem that relaxes the natural dependence

between demand signals and inventory trajectories that makes the inventory optimization

difficult. The result is a tractable, meaningful bounding approach.

An extensive numerical study not only demonstrates the performance of the bounds

and heuristics but also reveals the following key insights. Managers should remain wary of

potential shifts in demand, as a demand forecast that fails to account for potential demand

changes can be costly. When potential demand changes are moderate, a myopic policy

may be sufficiently good, suggesting that managers may prioritize demand estimation over

forward-looking inventory optimization in these cases. When extreme demand changes are

possible, managers may need to use sophisticated inventory policies that jointly consider

demand estimation and inventory dynamics.

Chapter 3 focuses on the practice of “merchandise testing” in the retailing of fashion

products. This chapter investigates the role of inventory allocation decisions in demand

learning across multiple locations. “Merchandise testing,” first documented and studied by

Fisher and Rajaram (2000), is a strategy adopted by fashion retailers to reduce demand

uncertainty caused by short product life cycles and/or long lead times. In a merchandise

test, a chain retailer allocates inventory to selected stores in its network to gather test sales

data prior to the primary selling season. The retailer then uses collected data to generate a
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more accurate demand forecast for the entire chain, thereby improving its ordering decisions

for the main selling season.

At its core, a merchandise test involves simultaneous demand learning across multiple

locations. We formulate the merchandise testing problem as a stylized, two-period, multi-store

Bayesian inventory model. In the presence of a limited quantity of overall test inventory and

demand censoring (i.e., the retailer does not observe lost sales due to stockouts), our analysis

reveals a unique tradeoff between the quantity and the quality of demand observations

collected during a test. Our results on this tradeoff contribute to the literature on Bayesian

inventory control with demand censoring, which mostly considers single-location settings.

This chapter also examines the implication of increased visibility into demand information,

which is relevant to the increased attention being paid to analytics in the retail industry.

In particular, we consider cases in which the retailer does, or does not, observe the timing

of each sales transaction, following a recent work by Jain et al. (2015). This sales timing

information is usually available from point-of-sale systems equipped by most modern retailers.

The characterization of the optimal test inventory allocations involves combining classic

operations theories with the statistical literature on comparisons of experiments (Blackwell

1953). We also develop two near-optimal heuristics for computing test inventory allocations

under general demand processes. Among many other analytical and numerical results, the

key findings of this chapter are:

• The allocation of test inventory can significantly impact the value of demand learning

through a merchandise test;

• The retailer’s visibility into demand information has a pivotal impact on test inventory

allocation decisions: when sales timing information is observable, retailers’ priority is

to achieve as many sales as possible during the test; When sales timing information

is unobservable, retailers should maintain a sufficiently high service level in each test

store before seeking to increase the number of stores to test.

In Chapter 4, we consider the problem of personalized offering when consumers generate

and learn product quality from public product reviews. The motivation comes from online

retailers’ increasing capability to collect consumer preference data, to customize product
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offerings, and to collect and monitor consumer-generated product reviews The fact that an

online retailer cannot offer customers with hands-on product information before purchases

amplifies the importance of customer reviews. We aim to answer the fundamental research

question of how a retailer should dynamically offer its inventory for sale to individual

customers whose product reviews may influence future demand. This chapter incorporates

two central elements: the consumers’ ability to collectively learn product quality through

reviews generated by their peers, and the firm’s ability to personalize product offering based

on its knowledge about individual customers’ preferences.

In particular, we consider a firm that sells an experiential product at an exogenous,

constant price over a finite selling season. For each customer, the gross utility from consuming

the product comprises two parts—an ex ante observable part that we refer to as customer

preference and an ex post observable part that we refer to as product quality. The quality of

the product is known to the firm but is unknown and learned by customers. The customer

base is heterogeneous and customers’ preferences for the product follow a random distribution.

We assume the firm may be able to identify the preference of an arriving customer (by

analyzing the customer’s past purchasing and online behaviors) and choose whether to offer

the product to that particular customer without incurring additional costs. Once offered,

the customer purchases a unit if her ex ante expected net utility is positive.

We model consumers’ review generation and quality learning process by a stylized

quasi-Bayesian social learning process. Consumers form a belief on the unknown quality

of the product and update it as they observe reviews posted by previous buyers. Each

arriving customer bases their purchasing decision on their ex ante expected net utility.

Once they purchase, customers generate reviews based on their ex post net utilities, namely,

utilities received after they have purchased and experienced the product. Customers are

not fully rational and are subject to selection biases: they update their belief in a Bayesian

fashion except that they ignore the potential selection biases and treat reviews as if they

are randomly sampled from the entire population, instead of those who purchase.

We formulate the firm’s personalized offering problem as a finite-horizon dynamic

program. We show that the optimal product offering policy is a threshold-type policy—

the firm should only offer the product for sale to customers with a higher-than-threshold
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preference. We demonstrate that it can be optimal for the firm not to offer the product to an

arriving customer with a low preference in order to avoid a bad review that will negatively

impact future sales, even when it is certain that the customer will buy the product if offered.

While our base model assumes no capacity or inventory constraints, we extend our analysis

to the setting in which the firm has a limited inventory upfront.

We study in a numerical analysis the impact of price and consumers’ mean belief and

uncertainty about product quality on the firm’s optimal product offering decisions and on

the potential value of personalized offerings. We find that compared with a benchmark policy

that offers the product to every arriving customer who is willing to purchase, personalized

offering may significantly improve profit, especially in settings in which the product price is

high and customers are moderately optimistic but uncertain about product quality.
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CHAPTER 2

Bayesian Inventory Management
with Potential Change-Points in Demand

2.1 Introduction

In most real-world inventory control problems, demand changes over time and the true

underlying demand distribution is never fully known to the inventory manager. The manager

makes dual use of historical demand data to populate the current demand distribution and

also to detect fundamental changes in the demand-generating process.

We provide two data examples in Figure 2.1 to illustrate the complexity of the manager’s

task. Figure 2.1(a) shows seasonally adjusted monthly sales by motor vehicle dealers in

the United States before and after September 2001. Imagine the situation faced by an

automobile dealer in the autumn of 2001. While a reasonable dealer would expect the

September 2001 attacks to impact consumer demand for automobiles, the direction and

magnitude of the impact would have been difficult to predict from data available at the

time. In October 2001 sales spiked substantially, but was this just a temporary surge or an

indicator of a new regime in automobile sales? Was pre-October historical data still useful

for understanding demand in October and beyond? History shows that demand eventually

fell back close to its pre-September levels, but this might have been unclear at the time.

Figure 2.1(b) shows seasonally adjusted monthly sales for U.S. women’s clothing stores in

2008 and 2009. Uncertainty in the financial markets reached a crescendo in September 2008

with the backruptcy of investment bank Lehman Brothers. Even if a women’s clothing retailer

at the time anticipated a negative impact on garment sales, the magnitude and persistence

of the impact would have been harder to anticipate. It turns out that adjusted women’s
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clothing demand bottomed out in December 2008 and stayed close to its December 2008

levels for over a year afterwards. In hindsight, we see that the Lehman Brothers bankruptcy

marked a distinct change in women’s clothing demand that rendered the previous demand

history unsuitable for understanding new demand levels.

These two examples illustrate what we believe is a common challenge faced by retail and

other managers, namely how to respond to external events that have the potential to change

the demand environment. While September 2001 and the Lehman Brothers bankruptcy

are well-known events that impacted many firms across many industries, demand-changing

events can also be local. For example, the start of a new marketing campaign, the entrance

of a new competitor, the release of a new product version, and the opening of a nearby

attraction can all potentially usher in new demand regimes for a firm. The introduction

of a new product could also be interpreted as a potential demand-changing event when

historical demand or sales data from a similar product are available for generating a reference

forecast. All of these events have in common that their timing is known but their impact is

not. In the periods soon after such events, the manager can rely on historical demand to

carefully estimate possibly obsolete demand parameters, discard the historical demand data

and instead re-estimate demand parameters based on a limited history, or do something

in between. The tradeoff inherent to this problem is between the precision brought by a

long (but possibly out-of-date) history and the responsiveness that comes from relying on a

recent (but limited) history.

We refer to such events as potential change-points in demand, and we present and analyze

an inventory control model that explicitly allows for potential change-points. We focus on

the case in which there is a single potential change-point in the recent past, which is relevant

to the examples of Figure 2.1 and to other examples in which change-points occur relatively

infrequently. We seek to understand the structure and behavior of the optimal policy, and

we look for computationally tractable bounds and heuristics.

We model the evolution of the manager’s belief on the demand process using a Bayesian

framework, extending the model pioneered by Scarf (1959) to allow for an unknown demand

parameter to be distributed according to a mixture of a “historical” prior distribution and a

“change” prior distribution. We leverage the structure of our demand model to characterize
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the effects of observed demand and the manager’s belief on the optimal (state-dependent)

base-stock levels.

The optimal policy remains challenging to compute. Scarf (1959) and Azoury (1985)

show that the stationary Bayesian inventory problem can be solved efficiently using a

dimensionality reduction approach for particular assumptions on the prior and demand

distributions, but these assumptions do not hold when the unknown parameter is described

by a mixture of distributions. We pursue heuristic policies coupled with cost lower bounds

specific to our setting. Our most sophisticated bounding approach is novel in its formulation

of an “independentized” problem that relaxes the dependence between physical demand and

demand signals. A particular information relaxation of the demand signal information yields

efficient subproblems that are solutions to stochastic multiperiod inventory problems with

known demand distributions. In contrast to the dimensionality reduction approach of Scarf

and Azoury, this approach can be applied for a broad set of belief and demand distributions.

An extensive numerical analysis reveals that this bound and a look-ahead policy derived

from it achieve small gaps. The numerical study also reveals that a myopic policy that

accounts for potential change-points (but that ignores future inventory dynamics) works

well except in extreme instances.

We also consider the sensitivity of our inventory policies to misspecification of the

parameters of the manager’s Bayesian prior. Taking a maximin profit perspective, we show

that a conservative manager worried about profit downside will follow a policy that assumes

the smallest prior (in a sense we will make precise) among a set of candidates.

The remainder of this chapter is organized as follows. We review related literature in

§2.2. In §2.3, we formulate our Bayesian demand model and associated inventory control

problem, and we present structural properties of the optimal inventory policy. In §2.4, we

develop lower bounds for the optimal expected cost, and we introduce heuristic policies

derived from these lower bounds. We numerically study these bounds and policies and

measure their performance in §2.5. In §2.6, we discuss the estimation of model parameters

and sensitivity to parameter misspecification. We conclude in §2.7.
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Figure 2.1: Examples of potential change-points in demand include (a) the terrorism events
of September 2001 and (b) the Lehman Brothers bankruptcy in September 2008. (Source:
U.S. Census Bureau)

2.2 Literature Review

This chapter relates to the inventory control literature dealing with nonstationary and/or

partially observed demand processes. For situations in which the demand is nonstationary but

the demand distributions are known, Karlin (1960) analyzes a dynamic inventory system in

which demands are stochastic and may vary from period to period and proves the optimality of

state-dependent base-stock policies. Song and Zipkin (1993, 1996) propose a continuous-time

Markov-modulated Poisson demand framework to model inventory management problems in

fluctuating demand environments. They assume that the demand distribution changes regime

according to a known Markov chain and that the demand distribution in each regime is

also fully known. Under these assumptions, they establish the optimality of state-dependent

(s, S) policies. Sethi and Cheng (1997) show similar results in a generalized discrete-time

inventory model with Markov-modulated demands. Graves (1999) characterizes the behavior

of an adaptive base-stock policy under an ARIMA demand process. Iida and Zipkin (2006)

and Lu et al. (2006) study approximate solutions for inventory planning problems with

demand forecasting based on the martingale model of forecast evolution (MMFE).

Using a Bayesian framework, Scarf (1959) pioneers the study of optimal inventory policies

under a stationary demand process with an unknown demand distribution parameter. Our

work extends this framework to general demand distributions with a more flexible belief
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structure. Scarf (1960) and Azoury (1985) provide conditions under which the dimensionality

of the problem can be reduced and the optimal base-stock levels can be obtained by solving

a one-dimensional dynamic program. Our heuristics make possible the computation of

approximate solutions to problems with more general prior and demand distributions.

Azoury and Miyaoka (2009) study a Bayesian inventory problem where demand in each

period depends on side information through a linear regression model. All of these works

assume, as we do, that demand is fully observable and backlogged. There is another stream

of research on inventory management problems when lost sales are unobserved and demand

is therefore censored, assuming stationary demand. See, for example, Lariviere and Porteus

(1999), Ding et al. (2002), Chen and Plambeck (2008), Bensoussan et al. (2007, 2008), Chen

(2010), and Huh et al. (2011). Chen and Mersereau (2015) include a survey of this literature.

The demand process we consider is also related to that of Treharne and Sox (2002),

who assume a Markov-modulated demand process in which state transitions are unobserved

but the manager knows the transition probability matrix and maintains a belief of the

underlying Markov state. They evaluate several heuristics, including limited lookahead

policies, numerically. Brown et al. (2010) apply information relaxation bounds to an extended

version of Treharne and Sox (2002)’s model with non-stationary cost parameters. Our model

differs from these in two important respects. First, we assume a single potential shift in

the past. This simplification yields structure that we exploit in deriving new results and

bounds. Second, we model component demand distributions that are learned over time,

whereas Treharne and Sox (2002) assume the demand distribution within each Markov state

is known and fixed. We believe that our model brings distinct advantages in flexibility and

parsimony. For further discussion, see §2.3.2. While the bounds we develop in §2.4 make use

of results in Brown et al. (2010), we believe our “independentized” bound to be new.

Inasmuch as our work considers a change in demand regime, it also relates to Besbes

and Zeevi (2011), in which a decision-maker seeks to detect and exploit a potential change

in customers’ willingness-to-pay distribution through dynamic pricing.

Our work is also related to a large stream of the statistics literature on change-point

detection — detecting departures of a stochastic process from a known model by monitoring

observations drawn from the process over time. We refer readers to Basseville and Nikiforov
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(1993), Lai (1995), and the recent text Tartakovsky et al. (2015). This literature most

commonly seeks to identify when a change occurs, focusing on the tradeoff between detection

delay and the risk of false alarm. Our interest is not in declaring when a change-point occurs;

rather, we formulate a dynamic optimization problem built on a stochastic model involving

a potential change-point. Our model specializes typical sequential change-point formulations

in that we assume that the timing of our potential change-point is known. In our model, a

key unknown is whether or not the change actually occurs.

2.3 Model and Analysis

In this section we model an inventory management problem over a finite horizon following a

potential change in the demand process. We present several structural properties, including

certain structure inherited from well-studied inventory problems, which we use in our

algorithm development in §2.4.

2.3.1 Inventory Management Following a Single Potential Change-point

Consider a single-item, T -period inventory system. At the beginning of period t, the decision

maker (DM) observes the inventory position, xt, and can place an order to bring the inventory

position up to yt ≥ xt at a linear purchasing cost c ≥ 0. We assume zero lead time such

that the order is instantaneously delivered. Demand, denoted by a random variable Dt with

realized value dt, is then realized and satisfied by the inventory on hand. If at the end of

the period the DM still has leftover inventory, i.e., yt − dt > 0, a linear holding cost h is

charged; otherwise (i.e., yt − dt ≤ 0), the excess demand is fully backlogged and incurs a

linear shortage cost p. The discount factor is α ∈ (0, 1] each period. We assume p > c(1−α)

to avoid trivial solutions. The salvage value for leftover inventory at the end of period T is

assumed to be zero. We shall omit the subscript t whenever it is clear from the context.

We assume the DM fully observes past demands without censoring, as does Scarf (1959).

This assumption is driven in part by analytical tractability (as is our assumption of inventory

backlogging), but we believe it is reasonable in practice when changes in demand are likely

to impact a whole department, firm, or industry at the same time. This is the case, for
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example, for the September 2001 and Lehman Brothers bankruptcy contexts described in

§2.1. In such cases, the firm can use data across stock-keeping units to correct for demand

censoring.

We extend the Bayesian framework of Scarf (1959). The distinctive feature of our model

is how we model the demand process. We assume that the demands Dt are independently

drawn according to a density function f(·|θ), where θ ∈ Θ is an unknown parameter. The

DM has a historical prior πh (h stands for “history”) on θ which reflects his prior knowledge

of the demand parameter based on historical information. A potential changepoint occurs in

period 1; thereafter, the DM is uncertain about whether the historical prior πh continues to

apply or whether the demand process has changed. The DM has a second prior distribution

πc on θ conditional on a change occurring (the superscript c stands for “change”). The

change probability γ represents the DM’s initial belief that a change has indeed occurred in

period 1.

In practice, it is reasonable for the DM to estimate the historical prior using historical

demand. However, it may be less obvious how to estimate the change prior πc and the

probability γ. We provide a full discussion of this in §2.6, where we perform a sensitivity

analysis and suggest robust choices for these parameters.

Let πt denote the DM’s prior belief on the unknown parameter θ at the beginning

of period t, then π1(θ) = (1 − γ)πh(θ) + γπc(θ) by definition, and πt+1 is the posterior

distribution obtained by updating πt based on dt, the demand realization in period t, using

Bayes rule. That is,

πt+1(θ|πt, Dt = dt) =
f(dt|θ)πt(θ)∫

Θ f(dt|ω)πt(ω)dω
. (2.1)

We will show in §2.3.4 that this update has a particular structure that enables our anal-

ysis. The predictive demand density in period t given belief πt is defined by φ(ξ|πt) =∫
Θ f(ξ|θ)πt(θ)dθ. A natural generalization of our model allows for multiple change priors.

Most of our results directly extend to this case. (The main exception is Proposition 2.4 in

§2.3.4, which requires further clarification on how priors are ordered and how to handle

multi-dimensional change probabilities.)
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The DM’s objective is to minimize the Bayesian expected discounted total cost over a

finite horizon based on his prior belief on the demand process by choosing an order quantity

in each period. We use (a)+ to denote max{a, 0} for a real number a. Given inventory

position y after ordering and a demand realization d, the holding and shortage cost incurred

in a single period is

l(y, d) = h(y − d)+ + p(d− y)+,

and the expected cost in period t with initial inventory position x and belief πt is given by

EDt|πt [c(y − x) + l(y,Dt)] = c(y − x) + L(y|πt),

where L(y|πt) := EDt|πt [l(y,Dt)] =
∫∞

0 l(y, ξ)φ(ξ|πt)dξ.

Let Ct(x|πt) be the optimal expected cost for periods t, t+ 1, . . . , T . We can formulate

the problem as a Bayesian dynamic program with the following optimality equations for

t = 1, . . . , T :

Ct(x|πt) = min
y≥x
{c(y − x) + L(y|πt) + αEDt|πt [Ct+1(y −Dt|πt ◦Dt)]}, (2.2)

where πt◦Dt := πt+1(·|πt, Dt) as defined by (2.1). The terminal cost is given by CT+1(·|·) = 0.

2.3.2 Discussion of our Demand Model

Our choice of a mixture model as a prior distribution for the unknown demand parameter

is driven by our interest, as discussed in §2.1, in situations in which the DM has reason to

believe a change in demand regime may have just occurred but is uncertain about whether

a fundamental change has really transpired and, if so, about its extent. Our mixture model

explicitly models this uncertainty. Such problems are most relevant and interesting in the

few periods just after the potential change, and our choice of a parametric Bayesian model

permits meaningful demand learning even with a few observations.

We use our model to illustrate numerically in Figure 2.2 the core demand learning

tradeoff we seek to capture. The left panel of Figure 2.2 corresponds with a single demand
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Figure 2.2: Illustration of behavior of various Bayesian demand learning models for two
demand paths.

path involving a change in the demand mean from 10 to 5 occuring at time t = 0, while

the right panel corresponds to a demand path drawn from a stationary demand process

with demand mean 10 units.1 The gray curves show statistics of the predictive demand

distribution under our mixture model. For comparison, we also plot predictive demand

statistics for models that use the historical prior alone and the change prior alone from time

t = 0 on.

In the left-hand plot, we see that the mixture model more quickly learns the changed

demand mean compared with the model using the historical prior alone, while (as expected)

not quite as quickly as the model that assumes a change definitely occurred. In the right-

hand plot, we see that the coefficient of variation (CoV) for our mixture model jumps

considerably less and stabilizes more quickly than the model that relies on the change prior

alone. We conclude that our “mixture” model of demand learning achieves a robust balance

of responsiveness (in the event a change actually occurs) and stability (in the event no

change occurs).

Further testing (omitted to conserve space) shows the necessity of allowing for the

component distributions (in particular, the change distribution) to be learned from data

rather than fixed a priori in situations where the DM has uncertainty around the post-

1 The specific instance is similar to those in §2.5.3 (i.e., gamma demand distribution). Using notation to be
introduced later, we assume an initial change prior of γ0 = 0.5, we assume a known “shape” parameter k = 3
for gamma demand, and we assume a “change” gamma prior with ac = 3, Sc = 5. The “historical” gamma
prior is generated based on the observations from time t = −40 to t = 0 starting from (a−40, S−40) = (3, 10).
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change demand parameter. Fixing and mis-specifying θ may prevent the mixture model

from converging to the true mean and variance of demand.

Finally, we have considered alternative modeling approaches for modeling change-points.

Hypothesis testing-based approaches to change-point detection (e.g., Tartakovsky et al.,

2015) do not naturally lead to forward-looking distributional forecasts that we require for

multiperiod inventory control. Non-parametric methods (e.g., Huh et al., 2011) offer no

concise state representation for use in a forward-looking dynamic optimization formulation.

2.3.3 Structure of the Optimal Policy

Although the demand process described in §2.3.1 is complicated by the potential change-

points, it is still independent of the ordering decisions. Because of this, the cost functions are

convex and a state-dependent base-stock policy is optimal. We state the following result for

completeness, but we omit the proof because the result can be obtained by a straightforward

modification of proofs in Scarf (1959) and Treharne and Sox (2002).

Proposition 2.1. (a) Ct(x|πt) is a convex function of x for all πt.

(b) The optimal policy takes the form of a state-dependent base-stock policy. There exists a

sequence of nonnegative functions {y∗t (πt)} such that it is optimal for the DM to order

min{y∗t (πt)− xt, 0} at the beginning of period t given inventory position xt and belief πt.

We do not have closed-form expressions for the optimal policy, and given previous

research it is unlikely that the optimal policy can be easily computed, much less simply

expressed. We discuss the computability of the optimal policy in §2.4. However, as is often

possible in finite horizon, non-stationary inventory problems (see Theorem 9.4.2 of Zipkin,

2000; also Karlin, 1960; Morton and Pentico, 1995), we are able to bound the optimal base-

stock levels by easily computed myopic base-stock levels, which has the potential to reduce

the search space for an optimal policy. The myopic policy is one in which the DM considers

neither the evolution of future demand forecasts nor the carry-over of inventory across

periods. The DM therefore treats each period as a single-period newsvendor problem. In our

case, let Φ(·|πt) be the cumulative distribution function representing the DM’s prediction of

period t demand given belief πt, i.e., Φ(dt|πt) =
∫ dt

0 φ(ξ|πt)dξ. Then, the base-stock level
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for period t under a myopic policy is given by yMt (πt) such that

Φ(yMt (πt)|πt) =


p−c(1−α)
p+h , t = 1, . . . , T − 1,

p−c
p+h , t = T.

(2.3)

The following proposition shows that this myopic policy upper-bounds the optimal policy.

Proofs appear in an appendix unless otherwise indicated.

Proposition 2.2. For all t = 1, 2, . . . , T , yMt (πt) ≥ y∗t (πt).

We remark that both Proposition 2.1 and 2.2 extend to models with multiple potential

change-points in both the past and future, as long as the timing of the potential change-points

and their associated change priors and change probabilities are all known to the DM. Chen

and Plambeck (2008) also show that a DM may want to stock less than the myopic inventory

level when inventory is perishable, albeit in a different Bayesian inventory setting than ours

(with stationary demand and censored observations).

2.3.4 Monotonicity Properties of Optimal Base-Stock Levels

We explore in this subsection some monotonicity properties of the optimal base-stock levels

with respect to demand history, the historical and change priors, and the change probability.

Some definitions are needed here before we proceed.

Likelihood Ratio Order. Let f(·) and g(·) be two probability density functions. f

is larger than g in the likelihood ratio order, denoted by f ≥lr g, if for all d1 > d2,

f(d1)/g(d1) ≥ f(d2)/g(d2).

Monotone Likelihood Ratio Property (MLRP). A distribution family f(·|θ) with

a parameter θ ∈ Θ is said to have the Monotone Likelihood Ratio Property (MLRP) if

f(·|θ1) ≥lr f(·|θ2) for all θ1 ≥ θ2. Many common distributions, such as normal with known

variance, binomial, Poisson, gamma, and Weibull, have MLRP (see Karlin and Rubin, 1956).

Hereafter we assume that the demands are independent and from a distribution family

f(·|θ) with parameters θ ∈ Θ, and that f(·|θ) has MLRP. The underlying implication of

17



the MLRP assumption is that if a larger demand occurs, it becomes more likely that the

underlying demand distribution f(·|θ) has a higher θ parameter.

Scarf (1959) shows a monotonicity result in his setting with respect to the observed

demand history. Specifically, the optimal base-stock level is increasing in the demand

observation if the underlying demand process is stationary and the demand distribution

f(·|θ) is from the exponential family of the form f(ξ|θ) = β(θ)e−θξr(ξ) (with r(ξ) = 0 for

ξ < 0). We can view our single change-point model as a variant of Scarf’s model with MLRP

demand and an initial prior being a mixture of distributions. The following proposition

shows that we inherit Scarf’s monotonicity result by generalizing his result to the case of

MLRP demand.

Proposition 2.3. Let y∗t (πt) be the optimal base-stock level in period t (t = 1, . . . , T ) given

belief πt, where πt (t ≥ 2) is updated over πt−1 based on demand realization dt−1. If the

demand distribution family f(·|θ) has MLRP, then the following hold:

(a) y∗t (πt) ≤ y∗t (π′t) for πt ≤lr π′t;

(b) y∗t (πt) is increasing in dτ , for all t ≥ 2, τ < t.

Proposition 2.3(a) characterizes the behavior of the optimal base-stock level with respect

to the DM’s belief on the demand process. Intuitively, a larger (smaller) belief (in the

likelihood ratio ordering) indicates a larger (smaller) demand parameter, which further

implies a stochastically higher (lower) demand, which finally leads to a higher (lower) optimal

base-stock level. Proposition 2.3(a) paves the way for establishing monotonicity properties of

the optimal base-stock levels with respect to πc, πh, and γ in what follows. We use a closely

related result when deriving the independentized lower bound in §2.4.1.2. Proposition 2.3(b)

guarantees that it is always optimal to order more (less) in the next period if a higher (lower)

demand is observed during the previous periods. We note that these results do not require

specific assumptions on the initial belief π1; it need not have a mixture form and can be any

general distribution over the parameter space Θ. We present an example in Appendix A.2

showing the necessity of the MLRP assumption on f(·|θ).
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As mentioned previously, our model is distinguished by its particular prior structure.

The prior is a mixture of two distinct distributions. The following lemma establishes that

this structure survives the DM’s belief updating procedure.

Lemma 2.1. In the single potential change-point problem, let dt = (d1, . . . , dt) be any

demand history up to period t, t = 1, . . . , T . πt(·|dt−1) is then given by

πt(θ|dt−1) = (1− γt(dt−1))πht (θ|dt−1) + γt(dt−1)πct (θ|dt−1),

where πht (·|dt−1) is updated over πh based on dt−1, πct (·|dt−1) is updated over πc based on

dt−1, and γt(·) is a function of dt−1.

Lemma 2.1 shows that the belief updating procedure can be decomposed into two parts:

one separately updates the beliefs conditioned on there being a change and on there being

no change; the other updates the change probability. The belief is still in the form of a linear

mixture distribution of those two updated beliefs, with the updated change probability as

the weight. The following Proposition 2.4 uses this result to establish a relationship between

the corresponding optimal base-stock levels. In §2.4 we will use the structure in Lemma 2.1

to derive an easily computed cost lower bound.

Proposition 2.4. In the single potential change-point problem, let y∗t (πt) be the optimal

base-stock level in period t (t = 1, . . . , T ). Let yht (πht ) (yct (π
c
t )) be the corresponding optimal

base-stock level when the change probability γ = 0 (respectively, γ = 1). The following hold:

(a) If πh ≤lr πc, yht (πht ) ≤ y∗t (πt) ≤ yct (π
c
t ); otherwise if πc ≤lr πh, yct (π

c
t ) ≤ y∗t (πt) ≤

yht (πht );

(b) If πh ≤lr πc, y∗t (πt) is increasing in γ; otherwise if πc ≤lr πh, y∗t (πt) is decreasing in γ.

Proof. We only show the proofs of the first parts of (a) and (b). The proofs of the second

parts follow from a straightforward modification.

It is easy to verify that if πh ≤lr πc and π1(θ) = (1−γ)πh(θ) +γπc(θ) for some γ ∈ [0, 1],

then πh ≤lr π1 ≤lr πc. Lemma 2(c) of Chen (2010) further guarantees that πht ≤lr πt ≤lr πct

for all t. The first part of (a) follows directly from this result and from Proposition 2.3(a).
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Now define γ′ such that γ < γ′ ≤ 1, and let π′1(θ) = (1− γ′)πh(θ) + γ′πc(θ). Because we can

write π′1 as a convex combination of πh and πc, it follows that π1 ≤lr π′1, and thus πt ≤lr π′t

for all t. The desired result y∗t (πt) ≤ y∗t (π′t) then follows from Proposition 2.3(a).

Proposition 2.4 provides sufficient conditions for the optimal base-stock levels of the

single potential change-point problem to be bounded by those of the two degenerate problems

— one with γ = 0 and the other with γ = 1. The result is intuitive: if an increase in demand

is possible, the DM should order more than if the demand remains stable, and less than if

the demand is guaranteed to increase. Moreover, the DM should order more as the change

probability increases.

Proposition 2.4 may reduce the search space for optimal policies. It also motivates simple

and computable heuristic ordering policies. In particular, for certain choices of πh and πc,

the optimal solutions to the two degenerate problems can easily be computed by applying

the dimensionality reduction technique in Scarf (1960) and Azoury (1985). A base-stock

level in the form of a convex combination of these two solutions is an appealing heuristic

policy. We have found such a policy to perform reasonably well, though we do not pursue it

in the following section because it is outperformed by a related policy, which is greedy with

respect to a convex combination of cost-to-go functions for the two degenerate problems.

2.4 Bounds and Policies

The usual approach to evaluate the performance of an inventory policy is to compare its

expected cost with that of the optimal policy. However, the complexity of the Bayesian

inventory control problem with potential change-points makes it intractable to compute

optimal solutions. The dimensionality reduction technique in Scarf (1959) and Azoury (1985)

is in general not applicable for our model with potential change-points. The conditions for

applying the technique are:

1. Suppose that St is a sufficient statistic for demand observations up to period t. There is

a function qt(St) such that φ(ξ|St) = (1/qt(St))ψt(ξ/qt(St)), where ψt(·) is a probability

density function that depends only on t;
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2. The function qt(St) satisfies qt+1(St ◦ d) = qt(St)Ut+1(d/qt(St)) for some continuous

real valued function Ut+1 such that
∫∞

0 Ut+1(u)ψt(u)du <∞, where St ◦ d denotes an

update of St based on demand observation d.

However, since the beliefs in our problem are linear mixtures of distributions, there do

not exist qt functions that can serve as such scale parameters for the predictive demand

distributions. Therefore, it is computationally impractical to obtain the optimal policy or

the optimal expected cost.

Treharne and Sox (2002) face a similar issue with an adaptive inventory control problem

with similarities to our own. They point out the difficulty of computing an optimal policy

even with an understanding of the policy structure, and they turn to heuristic policies. As

an alternative approach, we develop lower bounds for the expected cost. Coupled with

ordering heuristics derived from these bounds, we seek to bound the optimal cost as tightly

as possible.

2.4.1 Bounds for Expected Cost

We develop two lower bounds in this subsection. The first makes use of the decomposition of

Lemma 2.1, while the second makes use of a novel relaxation we call the “independentized”

problem. Both make use of the “information relaxation” framework outlined in Brown et al.

(2010).

2.4.1.1 The Mixture Lower Bound.

Lemma 2.1 implies that the DM’s belief in a period can be decomposed as a convex

combination of the beliefs implied by two “degenerate” information structures in which a

change is known to have occurred or known not to have occurred. If the degenerate problems

are easily solved (e.g., if the historical prior πh and change prior πc satisfy the conditions of

Azoury, 1985), then the solutions can be easily employed to form an expected cost lower

bound. Imagine an oracle who reveals to the DM whether or not a change has occurred.

It is intuitive that the expected cost utilizing the oracle information would lower bound

the true expected cost. (Given that the DM is seeking to minimize cost, the additional
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information revealed by the oracle can only help achieve lower cost.) This is the content of

the following proposition.

Proposition 2.5. Let dt−1, πt(·|dt−1), πht (·|dt−1), πct (·|dt−1) and γt(dt−1) be defined as in

Lemma 2.1. For all t = 1, . . . , T , define the mixture lower bound LBM
t (xt|dt−1) by

LBM
t (xt|πt(·|dt−1)) = (1− γt(dt−1))Ct(x|πht (·|dt−1)) + γt(dt−1)Ct(x|πct (·|dt−1)),

then LBM
t (xt|πt(·|dt−1)) ≤ Ct(xt|πt(·|dt−1)).

Proof. The intuition behind the result is given above. The oracle information can be viewed

as an information relaxation. Therefore, the proposition follows from Lemma 2.1 in Brown

et al. (2010).

2.4.1.2 The Independentized Lower Bound.

When implementing an inventory policy with demand learning, the DM uses demand

realizations in two ways: to calculate inventory positions and to update demand beliefs. We

construct a lower bound using the notion of information relaxations (Brown et al., 2010) by

relaxing only the information available to the DM for belief updating.

To motivate this, write as Dt = (D̂t, Dt) the DM’s observation of demand in period t,

where we artificially distinguish between the physical demand D̂t that impacts inventory

positions and the demand signal Dt that the DM uses to update his beliefs around θ. In the

original problem, the physical demand and demand signal are one and the same and are

therefore perfectly correlated. We write Do
t for the original problem as Do

t = (Dt, Dt). For

the purpose of constructing a bound, we consider an “independentized” problem in which

the physical demand and the demand signal are assumed to be independent of each other.

We write D⊥t = (D⊥t , Dt) where both D⊥t and Dt have a marginal density φ(·|πt), which is

the predictive demand density implied by the belief πt, but D⊥t and Dt are independent,

conditional on πt.

Let Ct(xt|πt) and C⊥t (xt|πt) be the optimal expected costs of the original and the

independentized problems, respectively, for periods t, . . . , T given initial inventory position
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xt and belief πt. Then we have

Ct(xt|πt) = min
y≥xt

{
c(y − xt) + L(y|πt) + αEDo

t=(Dt,Dt)|πt [Ct+1(y −Dt|πt ◦Dt)]
}
,

C⊥t (xt|πt) = min
y≥xt

{
c(y − xt) + L(y|πt) + αED⊥t =(D⊥t ,Dt)|πt

[
C⊥t+1(y −D⊥t |πt ◦Dt)

]}
,

with terminal values CT+1(·|·) = C⊥T+1(·|·) = 0.

With the notation above, we have the following proposition which shows that the optimal

expected cost of the independentized problem serves as a lower bound for that of the original

problem.

Proposition 2.6. C⊥t (xt|πt) ≤ Ct(xt|πt) for all xt, πt, and t = 1, . . . , T .

The proof, in Appendix A.4, shows that the cost-to-go function, as a function of both

the physical demand realization d⊥t and demand signal realization dt, is supermodular and

that D⊥t = (D⊥t , Dt) is less than Do
t = (Dt, Dt) in the supermodular ordering. High-level

intuition is as follows. In the original problem, a small demand observation hurts the DM

because it yields low revenues in the current period, but also because it implies a high

end-of-period inventory position at the same time that demand forecasts are lowered. This

combination of high inventory position and low demand forecast accentuates the possibility

of inventory overage in the original problem. In the independentized problem, the correlation

between high inventory positions and lowered demand forecasts is removed. In particular,

high inventory positions and low demand forecasts are less likely to occur together.

Unfortunately, the independentized problem is not necessarily easier to solve than the

original problem. To cope with this, we use the information relaxation approach proposed by

Brown et al. (2010) to construct a lower bound for the expected cost of the independentized

problem. The basic idea is the following. At each decision point t we assume that an

oracle reveals the entire future path of demand signals (dt, . . . , dT ) to the DM. With this

extra information and his current belief πt, the DM is able to compute his future beliefs

π̃t+1, . . . , π̃T recursively through

π̃t = πt and π̃u+1 = π̃u ◦ du, ∀u = t, . . . , T.
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Let C̃⊥t (xt|πt; (dt, . . . , dT )) be the optimal expected cost-to-go at period t given inventory

position xt, belief πt and future demand signals (dt, . . . , dT ). The independentized problem

after relaxing future demand signals reduces to

C̃⊥t (xt|πt; (dt, . . . , dT )) = C̃⊥t (xt|π̃t, . . . , π̃T )

= min
y≥xt

{
c(y − xt) + L(y|π̃t) + αED⊥t |π̃t

[
C̃⊥t+1(y −D⊥t |π̃t+1, . . . , π̃T )

]}
,

with C̃⊥T+1(·|·) = 0. This is in fact a stochastic inventory problem with nonstationary, known

demand distributions, the solution to which can easily be obtained as the solution to a

(fully observed) MDP with a one-dimensional state space. Because the oracle information is

impermissible in the independentized problem, the optimal expected cost of the reduced

problem will be lower than that of the independentized one.

We formally state the independentized lower bound as follows.

Proposition 2.7. Let (Dt, . . . , DT ) denote the random demand signals in the independen-

tized problem for periods t, . . . , T . For all t = 1, . . . , T , define the independentized lower

bound LBI
t (xt|πt) by

LBI
t (xt|πt) = E(Dt,...,DT )|πt

[
C̃⊥t (xt|πt; (Dt, . . . , DT ))

]
,

then LBI
t (xt|πt) ≤ C⊥t (xt|πt) ≤ Ct(xt|πt).

Proof. The first inequality is an application of Lemma 2.1 in Brown et al. (2010). The

second inequality follows from Proposition 2.6.

We estimate LBI
t (xt|πt) in the numerical results using the following procedure. In

an outer simulation, we randomly generate full demand signal paths (d1, . . . , dT ) and

calculate predictive demand distributions, (φ1, . . . , φT ), based on the generated demand

signal paths. We then solve for each sequence of predictive demand distributions an inner

optimization problem which is an inventory control problem with nonstationary, known

demand distributions. These inner dynamic programming problems can be solved with
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straightforward backwards induction. The average of the resulting expected costs estimates

the independentized lower bound.

To our knowledge, the “independentized” approach to bounding inventory problems with

demand learning has not previously been used in the literature. An advantage of the approach

over the mixture lower-bounding approach of §2.4.1.1 is that it requires efficient solutions

only for inventory subproblems with known demand distributions, not for subproblems

involving demand learning as required in §2.4.1.1. This widens its applicability. A drawback

of the approach is that it is estimated via simulation. Due to estimation error, this means

that technically we do not have a provable bound if it is based on a finite number of sample

paths. In our numerical results, we estimate the bound based on a large number (100,000)

of sample paths.

The approach may be useful for inventory problems involving demand learning beyond

the one considered in this chapter. It is clearly applicable for other generalizations of the Scarf

(1959) model. Azoury (1985) shows that Scarf’s model can be efficiently solved, but only for

certain assumptions on the demand distribution. Without these assumptions, the optimal

policy remains difficult to compute. In §2.5.2 we demonstrate that the independentized

information relaxation is capable of meaningful bounds for the classic Scarf (1959) problem,

for which we can generate the optimal costs for comparison.

2.4.1.3 Penalties.

The information relaxation approach of Brown et al. (2010) also allows for the assignment of

a penalty on each sample path, which potentially tightens the bound by penalizing the use of

“impermissible” information in solving the inner problems. The lower bound for the optimal

expected cost of the original problem is obtained by either simulation or analytical expression

of the minimum expected value of the cost of the relaxed problem plus the penalty.

Unfortunately, we do not find computationally viable penalties for the two relaxations we

have proposed. For the mixture lower bound, any natural penalty destroys the decomposition

exploited by the information relaxation, and the inner problem becomes as difficult to solve

as the original problem. For the independentized lower bound, limited-lookahead methods

for computing penalties (as considered in Brown et al. (2010)) prove too time consuming
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to compute for the continuous prior and demand distributions we consider. As a result, in

general we impose a zero penalty on our inner problems for computing the lower bounds.

We leave further investigation of penalties for future work. Even with zero penalties, we see

meaningfully tight bounds in our numerical results.

2.4.2 Heuristic Policies

We develop three heuristic policies for the single potential change-point problem: a myopic

policy, a look-ahead policy based on the mixture lower bound, and a look-ahead policy based

on the independentized lower bound. In §2.5 we evaluate these heuristics using the lower

bounds in §2.4.1.

Myopic Policy. Each period the DM updates his belief based on the observed demand and

then uses the single-period newsvendor solution as the base-stock level. This policy therefore

forecasts demand using the potential change-point model but is not forward looking in its

inventory optimization.

Look-Ahead Policy Based on Mixture Lower Bound (LA-M). This policy takes

advantage of the mixture lower bound (LBM ) we have developed in the previous subsection.

For each period t, the DM uses LBM
t+1 as an approximation for the optimal cost-to-go

function in period t+ 1, Ct+1(·|·), and solves the following problem:

CMt (xt|πt) = min
y≥xt

{
c(y − xt) + L(y|πt) + αEDt|πt

[
LBM

t+1(y −Dt|πt ◦Dt)
]}
.

Of course, the LA-M policy is only implementable if the LBM
t+1 lower bound is simple to

compute. Therefore, this policy is only attractive for instances in which the degenerate

“change” (i.e., γ = 1) and “no change” (i.e., γ = 0) problems are easy to solve; e.g., when

they conform to the assumptions of Scarf (1960) or Azoury (1985).

Look-Ahead Policy Based on Independentized Lower Bound (LA-I). This policy

is very similar to the LA-M policy except that it uses the independentized lower bound

LBI
t+1 instead of LBM

t+1 to approximate the optimal cost-to-go function for the next period.
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More specifically, in each period t the DM solves the following problem:

CIt (xt|πt) = min
y≥xt
{c(y − xt) + L(y|πt) + αEDt|πt

[
LBI

t+1(y −Dt|πt ◦Dt)
]
},

where LBI
t+1(·|·) is estimated using Monte-Carlo simulation as described in §2.4.1.2. This

LA-I policy can be applied to the single change-point problem with any belief and demand

distribution; however, the computation effort grows as more sample paths are used to

estimate the LBI lower bound.

2.5 Numerical Analysis

In this section we conduct numerical analyses to demonstrate the performance of the

lower bounds and heuristics proposed in §2.4. Without loss of generality we normalize the

purchasing cost c to zero and the unit holding cost h to one. We also assume no discounting

(α = 1) throughout the section. We have also run our experiments with discount factor

α = 0.8 and found that the results do not change qualitatively.

We make use of the gamma-gamma conjugate pair as our model of demand in our

numerical results. This demand structure is amenable to the dimensionality reduction

technique of Scarf (1960) and Azoury (1985) for stationary versions of our problem. Given

this demand structure we can therefore easily compute the degenerate problems required to

evaluate the LA-M bound.

We will first review the gamma-gamma demand model and its relevant properties in

§2.5.1. We will then test the independentized lower bound against Scarf (1960)’s Bayesian

inventory problem with gamma-gamma demand in §2.5.2. Unlike the potential change-point

problem, we are able to solve Scarf’s problem optimally and compare our bound against the

known optimal solution. Finally in §2.5.3, we will perform a comprehensive numerical study

on bounds and heuristics for the potential change-point problem analyzed in §2.3 and 2.4.
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2.5.1 The Gamma-Gamma Demand Model

The gamma-gamma demand model is a common one for the study of inventory management

with demand learning (e.g., Azoury, 1985; Scarf, 1960; Chen, 2010) because of its versatility

and ease of updating. Assume that demand follows a gamma density with known shape

parameter k and unknown scale parameter θ:

f(ξ|θ) =
θkξk−1e−θξ

Γ(k)
.

We assume an initial gamma prior with parameters (a, S) around the unknown scale

parameter θ:

π1(θ) = π(θ|a, S) =
Saθa−1e−Sθ

Γ(a)
.

Given this information structure and demand observations (d1, . . . , dt−1), it is well-known

that sufficient statistics for Bayes updating are

at = at−1 + k = a+ k(t− 1) and St = St−1 + dt−1 = S +
t−1∑
i=1

di.

Furthermore, the updated distribution around θ at the beginning of period t is

πt(θ) = π(θ|at, St) =
Satt θ

at−1e−Stθ

Γ(at)
,

and the predictive demand density can be written as

φ(d|πt) = φ(d|at, St) =
1

St
φt

(
d

St

)
,

where φt(u) = Γ(at+k)
Γ(at)Γ(k)u

k−1(1 + u)−(at+k). A result of Scarf (1960), extended in Azoury

(1985), is that the optimization (2.2) can be written as a one-dimensional dynamic program:

vt(x) = min
y≥x

{
c(y − x) + Lt(y) + α

∫ ∞
0

(1 + u)vt+1

(
y − u
1 + u

)
φt(u)du

}
,t = 1, . . . , T,
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with vT+1(·) = 0. Let y∗t denote its optimal solution for period t. Then we have

(i) Ct(x|St) = Stvt(x/St),

(ii) y∗t (St) = Sty
∗
t .

Property (i) greatly simplifies calculation of our policies and bounds, in particular the

mixture lower bound. Assuming that the change belief πct for θ in period t is gamma with

parameters (act , S
c
t ) and that the no-change belief πht is gamma with parameters (aht , S

h
t ),

the mixture bound can be computed as

LBM
t (xt|πt) = LBM

t (xt|γt, Sht , Sct ) = (1− γt)Ct(x|Sht ) + γtCt(x|Sct )

= (1− γt)Sht vht (x/Sht ) + γtS
c
t v
c
t (x/S

c
t ).

2.5.2 Applying the Independentized Lower Bound to a Classical Problem

In this subsection we use the classic Bayesian inventory problem with gamma-gamma demand

from Scarf (1960) to explore the behavior and quality of the independentized lower bound.

This problem is a special case of our change-point problem with change probability equal to

zero (or one), and it can be solved using a dimension reduction technique (as previously

discussed). Therefore, it qualifies as a reasonable testbed for understanding the potential

tightness of the independentized lower bound.

We make two observations about the results, which cover 36 instances in a full factorial

design. First, we are able to estimate the lower bounds precisely, resulting in standard errors

no more than 0.5% of the optimal cost for each of the instances. Second, the independentized

bounding method produces meaningful lower bounds for most of the instances. We find the

average gap over the 36 instances to be 0.73% (negative gaps are truncated to zero), and

smaller than 2% for 33 out of the 36 instances. We observe that the gap is relatively larger

for larger critical ratios (i.e., for large p) and for large spread in the prior (i.e., small a).

2.5.3 Bounds and Heuristics for the Change-Point Problem

In this subsection we numerically examine the performance of three heuristic policies –

Myopic, LA-M and LA-I – for the single change-point problem introduced in §2.3 by
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comparing their expected costs with the lower bounds. In order to compute both the LBM

and LBI lower bounds and their corresponding one-period look-ahead policies LA-M and

LA-I, we assume a gamma-gamma conjugate demand structure. The demands are from a

gamma distribution with parameters (k, θ). We only report the results for k = 3 here since

we have observed results for k = 1 and 5 to be qualitatively similar. If the demand does

not change at the beginning of the planning horizon, θ follows a gamma distribution with

parameters (ah, Sh); otherwise it follows a gamma distribution with parameters (ac, Sc). We

choose the shape parameters of the two prior distributions to be ah = 48 and ac = 3. We

therefore have ah > ac, which implies that the DM is more uncertain about the demand

distribution if the demand does change. This seems representative of practice, where the DM

would have an accurate demand forecast based on an abundant demand history but would

only have a coarse one following a potential demand shock. We fix Sh = 160 such that the

no-change prior mean is ah/Sh = 48/160 = 0.3. We vary Sc such that Sc = 1, 5, 10, 15 and

19, indicating extremely downward, downward, stationary, upward, and extremely upward

potential changes in demand. We label the Sc = 5, 10, 15 cases as “moderate change” cases

and the Sc = 1 and 19 cases as “extreme change” cases in which potential demand changes

are quite large. We vary the initial change probability γ such that γ = 0.2, 0.5 and 0.8.

The unit shortage cost p is set to be 4 and 9, indicating critical fractiles of 0.8 and 0.9,

respectively. To examine the effect of the length of the planning horizon T , we let T = 5

and 10. Therefore, we have 5× 3× 2× 2 = 60 instances in total in our full-factorial design.

For each instance, we compute the LBM bound, estimate the LBI using Monte-Carlo

simulation with 100,000 demand signal paths, and estimate the expected costs of the Myopic,

LA-M, and LA-I policies using simulations with an identical set of 10,000 demand paths. We

also use the same set of demand paths to estimate the expected costs of two additional näıve

policies – optimal policies as if γ = 0 (denoted by OPTNOCHG) and as if γ = 1 (denoted

by OPTCHG) – as performance benchmarks. The OPTNOCHG policy would be adopted if

the DM ignores the potential change-point and only uses the historical demand information

for forecasting and inventory decisions. At the other extreme, the OPTCHG policy would

be employed if the DM ditches all the historical demand information and starts fresh with a

belief reflecting a change in demand.
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Due to space limitations, we refer readers to the electronic companion for detailed tables

of results. We find the estimated independentized lower bound LBI to be tighter than

the mixture lower bound LBM across all 60 instances, and therefore we use our estimated

LBI to evaluate optimality gaps of the various policies. We calculate the deviation of each

policy’s estimated expected costs from the estimated independentized lower bound LBI

(computed by (Cost−LBI)/LBI × 100%) for each instance. The percentage gaps, averaged

over parameter levels, are summarized in Table 2.1 (for “moderate change” cases) and

Table 2.2 (for “extreme change” cases).

We make several observations about the results in Table 2.1 and Table 2.2. First, for both

moderate and extreme scenarios, myopic, LA-M and LA-I policies nearly always perform

significantly better than the OPTCHG and OPTNOCHG policies. Intuitively, as change

probability γ increases, the performance of OPTCHG gets better while that of OPTNOCHG

gets worse. But even in their best instances (i.e., γ = 0.2 for OPTNOCHG and γ = 0.8 for

OPTNOCHG), they yield larger gaps than the three heuristics. This highlights the danger

of ignoring uncertainty around whether a demand change may or may not have happened.

Second, myopic, LA-M and LA-I policies have nearly the same performance under

moderate scenarios, achieving average gaps of 1.16%, 1.15% and 1.16%, respectively. This

suggests that the myopic policy may be an appealing choice except when extreme demand

changes are possible, especially given its simplicity for implementation in practice. Other

authors have found myopic policies to perform well in inventory contexts with demand

learning (e.g., Lovejoy, 1990, 1992). A managerial insight is that intelligent demand

estimation may merit more attention than forward-looking optimization when a (moderate)

demand shift may have recently occurred.

The myopic policy still performs reasonably well along with the two look-ahead heuristics

when there has been a large potential increase in demand (Sc = 19). However, when there

has been a potential extreme downward change in demand (Sc = 1), all the three heuristics

exhibit larger gaps relative to the lower bound. The myopic policy yields an average gap

of 15.74%. The LA-M and LA-I policy have much smaller average gaps (5.72% and 5.74%,

respectively) than the myopic policy. This observation suggests that more sophisticated

policies bring significant benefits over the myopic policy when relatively extreme changes
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Table 2.1: Mean percentage gaps for moderate change cases, averaged over parameter levels.

Parameter Myopic LA-M LA-I OPTCHG OPTNOCHG

Sc 5 1.00% 0.99% 0.99% 5.79% 14.32%
10 0.90% 0.97% 1.00% 3.41% 21.73%
15 1.58% 1.50% 1.50% 7.67% 39.78%

p 4 0.74% 0.79% 0.81% 4.73% 19.83%
9 1.58% 1.51% 1.51% 6.52% 30.72%

γ 0.2 0.83% 0.91% 0.90% 11.09% 11.89%
0.5 1.53% 1.55% 1.58% 4.54% 26.49%
0.8 1.12% 1.00% 1.00% 1.23% 37.45%

T 5 1.50% 1.50% 1.51% 6.95% 25.39%
10 0.82% 0.81% 0.81% 4.29% 25.16%

Overall 1.16% 1.15% 1.16% 5.62% 25.27%

Note. Negative gaps are truncated to zero before averaging.

are possible. The gaps discussed here reflect the deviation of the policies’ expected costs

only from the cost lower bound rather than the optimal cost. Therefore, these gaps are

conservative in that they overestimate the optimality gaps.

Finally, although we have observed that LBI is tighter than LBM for all instances,

the LA-M and LA-I policies (which approximate cost-to-go functions by LBM and LBI ,

respectively) have nearly the same performance under all scenarios. Recall that the LA-

M policy can only be efficiently computed for cases in which the “degenerate” problems

referenced in §2.4.1.1 can be solved easily. The LA-M policy is recommended for such cases;

for other cases, the LA-I policy is likely to be more efficient to compute.

2.6 Parameter Estimation and Sensitivity

The demand model of §2.3 requires the specification of three inputs: a “no-change” or

historical prior πh, a change prior πc, and a change probability γ. The no-change prior πh,

the forecast of demand in the absence of a potential change-point, can be estimated using

established techniques applied to historical demand, and we do not elaborate on it here.

However, in many contexts it may be less obvious how to estimate the parameters πc and γ.
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Table 2.2: Mean percentage gaps for extreme change cases, averaged over parameter levels.

Parameter Myopic LA-M LA-I OPTCHG OPTNOCHG

Sc 1 15.74% 5.72% 5.74% 35.06% 73.97%
19 1.73% 1.56% 1.55% 12.09% 53.38%

p 4 6.79% 2.96% 2.97% 18.55% 61.74%
9 10.68% 4.32% 4.32% 28.60% 65.60%

γ 0.2 5.16% 3.97% 3.96% 43.12% 21.92%
0.5 11.74% 4.94% 4.96% 20.89% 53.49%
0.8 9.30% 2.01% 2.02% 6.72% 115.60%

T 5 8.96% 4.32% 4.32% 29.43% 60.73%
10 8.51% 2.97% 2.97% 17.72% 66.62%

Overall 8.73% 3.64% 3.64% 23.58% 63.67%

Note. Negative gaps are truncated to zero before averaging.

Selecting the change prior πc entails predicting the direction and magnitude of a potential

change. This represents a new demand regime for the firm by definition, but in many cases

it may be a regime with past precedents. Imagine a retailer facing the entrance of a new

competitor at one of its locations. It is likely to have faced similar entrances in the past

at other locations. When potential change-points are driven by changes in the state of the

economy (e.g., the example of women’s clothing following the 2008 financial crisis, discussed

in our introduction), financial markets (or forecasts thereof) may offer signals that can be

used to inform demand forecasts (Osadchiy et al., 2013). If neither of these two approaches

is applicable, a firm might generate πc by inflating the variance of πh and/or inflating or

deflating its mean by percentages determined by expert opinions.

The change probability γ is particularly challenging to estimate because it is arguably

most situation-specific and least amenable to estimation from historical data. Fortunately,

we have found that the performance of our policies is relatively insensitive to mis-specification

of γ. Figure 2.3 plots results from a numerical study similar to §2.5.3 except that we allow

for misspecification of the change probability γ. The manager employs the LA-M heuristic,

but computes forecasts and stocking decisions using a γ parameter that may differ from the

parameter used to simulate the underlying demand process.
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Figure 2.3: Sensitivity to misspecification of the change probability γ when the change prior
represents a moderate decrease (left) and moderate increase (right) in demand. The bars in
each chart represent expected profits when the manager assumes γ = 0.0 (white), 0.2, 0.5,
0.8, and 1.0 (black).

In contrast to our earlier development, we take a profit perspective here because changing

the “true” value of γ changes expected demand, making a comparison between costs

meaningless. Specifically, we translate expected costs into expected profit in the natural

way, defining expected single-period profit as E [pmin{y,D} − c(y − x)− h(y −D)+] =

−E [c(y − x) + h(y −D)+ + p(D − y)+] + pE [D]. The results in Figure 2.3 assume c = 0,

h = 1, p = 9, T = 5, historical prior πh given by a Gamma(48,160), and change prior πc

given by either Gamma(3,5) (i.e., “moderate decrease”), or Gamma(3,15) (i.e., “moderate

increase”), where the parameters have the same interpretations as in §2.5.3. We have found

consistent results across a broader set of instances.

We observe from Figure 2.3 that the expected profits naturally vary with the true

underlying demand process, and that the profits are always highest for each instance when

the assumed γ matches the “true” one used to generate the demand data. We also observe

that the expected profit for each instance remains relatively flat as we move the assumed

change probability γ from 0.2 to 0.5 to 0.8. In particular, the policy assuming γ = 0.5

exhibits robust performance across all of the instances we tried.

We also observe the least variation in profits across instances for policies that assume

demand will be low. That is, when the change prior indicates a possible downward change,

the “flattest” profits are obtained by the policy assuming γ equal to 1.0 or 0.8. When
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the change prior indicates a possible upward change in demand, the flattest profits are

obtained by the policy assuming γ equal to 0 or 0.2. This suggests that a conservative

decision-maker worried about downside risk may wish to choose πc and γ by erring on the

side of underestimating demand.

Proposition 2.8 below formalizes this finding for a Bayesian repeated newsvendor setting

in which there is no inventory carryover across periods. Consider a T -period Bayesian

newsvendor problem with unit selling price r, unit purchasing cost c < r, and inventory

that perishes at the end of each period with zero salvage value. As before, demands are

i.i.d. with density f(·|θ). Let G(y|π) = ED|π [rmin{y,D}]− cy be the single-period expected

profit given order quantity y and prior π. We denote by y = (y1, . . . , yT ) a non-anticipative

inventory policy. In general, yt may be a function of all the information that the DM has up

to period t. Let Dt = (D1, . . . , Dt) be demand until period t. For any initial prior π, let

VT (π) denote the optimal expected profit for this problem, i.e.,

VT (π) = max
y

T∑
t=1

E[G(yt|π ◦Dt−1)|π], (2.4)

where π◦Dt−1 is the posterior updated based on demand history. Suppose that a conservative

DM has a bounded set P that contains all candidate priors on θ, and there exists a “smallest”

prior π ∈ P such that π ≤lr π for all π ∈ P. The objective is to maximize the worst-case

expected profit, which translates into a max-min version of problem (2.4):

RT (P) = max
y

min
π∈P

T∑
t=1

E[G(yt|π ◦Dt−1)|π].

Proposition 2.8. Suppose that f(·|θ) has MLRP. Then RT (P) = VT (π).

The proposition says that the DM can obtain the optimal policy for the max-min problem

by simply solving (2.4) for π = π. We note that Proposition 2.8 is a fairly general statement

about the choice of prior beliefs, and the intuition can be applied to the selection of πc as

well as γ.

To summarize this section, we have suggested a few ways for a manager to think about

choosing the parameters πc and γ. We show evidence that the results of our heuristics
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are relatively insensitive to the specification of the change probability, particularly if a

change prior is chosen away from the extremes 0 and 1. We also find both analytically and

numerically that a max-min formulation is solved by assuming the smallest change prior

structure among a set of candidates. Therefore, a manager concerned about downside profit

risk may choose to “play it safe” by erring on the side of underestimating demand.

2.7 Conclusions

Our numerical study yields several insights on inventory management in uncertain demand

environments. First, if a change in demand regime is suspected, managers can recover

significant costs by accounting for this uncertainty. That is, a manager should remain wary

of demand changepoints. Second, a Bayesian myopic policy may be sufficiently good in many

cases, suggesting that a manager may be justified in prioritizing demand estimation over

forward-looking inventory optimization in these cases. Third, more sophisticated policies

may be needed when extreme demand changes are possible. Fourth, a manager worried

about profit downside may opt for lower demand estimates.

Several extensions of our model may merit further research. First, it would be interesting

to examine the case with censored demand, which makes the DM’s future observations

dependent on current ordering decisions. A conjecture is that the “stock more” result of

Lariviere and Porteus (1999), Ding et al. (2002), and others may be accentuated in the

presence of potential upward changes in demand. Second, interesting questions arise when a

potential change-point is anticipated in the future (as opposed to the assumption we have

made in most of the present paper that the potential change-point is at a known time in

the past). Third, it would seem relevant to inventory management practice to allow for

uncertainty in the timing of potential change-points in order to model demand shifts that

occur for unobserved reasons. Fourth, we believe that the independentized bound idea may

merit further investigation for other inventory models involving demand learning.
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CHAPTER 3

Optimal Merchandise Testing
with Limited Inventory

3.1 Introduction

Fashion products, which are characterized by highly uncertain demand, short life cycles, and

often long lead-times, pose great challenges for retailers trying to match supply with demand.

With only limited replenishment opportunities and inaccurate demand forecasts, retailers

often end up with significant losses in profit due to either lost sales from stockouts or heavy

price discounts needed to clear excess inventory at the end of the selling season. The past

two decades have seen various initiatives by retailers to streamline inventory management for

fashion products: for example, quick response (Fisher and Raman, 1996), backup agreements

with manufacturers (Eppen and Iyer, 1997), and advanced booking discount programs (Tang

et al., 2004), to name a few.

An effective strategy used in practice to improve initial demand forecasts is so-called

“merchandise testing,” wherein a retailer gathers demand information about new products

by offering inventory for sale in selected stores of its network during a short testing period

before the primary selling season starts. The retailer then uses the information gained

during the test to construct more accurate demand forecasts and thereby to make improved

ordering decisions in preparation for the main selling season (Fisher and Rajaram, 2000).

There are three key decisions involved in such a merchandise test: (1) store selection—which

store to select for the test? (2) inventory allocation—how to allocate inventory across the

test stores? and (3) demand learning—how to construct demand forecasts based on the test

sales data?
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Fisher and Rajaram (2000) formulate the merchandise testing problem as a store

clustering problem based on historical sales data of similar products and apply their methods

to a large women’s apparel retailer and two major shoe retailers in the United States.

Designed for practical implementation, their model requires a few simplifying assumptions.

First, Fisher and Rajaram implicitly assume retailers adopt a “depth test;” that is, they

assume that ample inventory is placed at each test store to meet demand during the test

period. Second, they assume that store-level demand forecasting for the selling season is

accomplished using a linear function of test sales that is calibrated using historical sales data.

In this chapter, we complement their work by relaxing these two assumptions. Our goal

is to obtain insights into the interplay between limited inventory and (Bayesian) demand

learning in a multi-location setting.

We consider a model in which a retailer, with multiple stores and a fixed quantity of

available test inventory, manages a testing period followed by a selling period. Demands at

each store in both the testing and selling periods are dependent on an unknown parameter

that is common across stores and periods. Demands are independent once conditioned on

this unknown parameter. Between the two periods, the retailer updates its demand forecast

in a Bayesian fashion (over some prior distribution on the unknown demand parameter)

based on its observations from the testing period, and it chooses inventory quantities for

the selling period, during which we assume no further replenishment opportunities. The

retailer’s objective is to allocate the test inventory to stores at the beginning of the testing

period such that the ex-ante expected total profit in the selling period is maximized. We

assume no fixed costs of testing at a store and no inventory carryover, choosing instead to

focus on the statistical forces at play.

When spreading test inventory across multiple locations, a retailer must choose not only

how many (and which) stores to include in the test, but also the service level to target

at each of the test stores. There is a natural incentive for the retailer to test at a large

number of stores, as this yields a large quantity of demand observations. On the other hand,

spreading a limited inventory among many stores compromises the service level targeted at

each store during the test, and these service levels can impact the quality of information

gathered in the test. How exactly service levels impact information quality depends on the
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retailer’s visibility into the demand process. When the retailer has access to the timing of

each sales transaction within a period (e.g., Jain et al., 2015), the available inventory at a

test store limits the maximum number of transactions that can be observed. However, when

the sales timing information is unobservable, the retailer only observes the total sales during

the test period at each store. It is known that such sales information is an imperfect demand

observation that is “censored” by the amount of inventory at each store (e.g., Lariviere and

Porteus, 1999; Ding et al., 2002). In this case, the retailer has an incentive to concentrate

inventory in fewer stores to achieve higher service levels, reduce censoring, and thereby

enhance the quality of the demand observations.

We begin in §3.4 with the case in which sales timing information is observable. We

first analyze a base case in which stores have stochastically identical demands. For general

demand processes with a general prior, we prove that (in the absence of fixed costs) an

optimal policy will never omit a store from a merchandise test. We further show that an

“even-split” policy, which allocates the test inventory to all stores as evenly as possible, is

always optimal under a Poisson demand process with a gamma prior. These results suggest

the opposite of the traditional practice of a depth test which tends to avoid stockouts during

the test. In fact, a high service level in the testing period is no longer a necessity when

the retailer has access to sales timing information. We then extend our analysis to the

non-identical-store case, in which stores may have diverse demand volumes. We characterize

the monotone structure of the optimal allocation policy with respect to the relative demand

volumes among stores.

A key intuition underlying the above results is that the availability of data on the

timing of sales transactions largely ensures that store-level observations are of high quality,

freeing the retailer to primarily consider observation quantity when allocating test inventory.

Moreover, “quantity” in this context is best interpreted not in terms of the number of

stores but rather in terms of the total number of sales observations—following Jain et al.

(2015), each sales transaction can be viewed as an (exact) observation of an inter-arrival

time in the underlying demand process. Therefore, an effective merchandise test is one that

tends to maximize the quantity of sales transactions in the testing period across the store
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network. Motivated by this insight, we propose a “Max-Sales” heuristic allocation policy

which maximizes the expected sales during the testing period.

We obtain contrasting results when the retailer does not have access to sales timing

information. In this case, the form of the optimal allocation policy becomes contingent upon

the amount of test inventory as well as the shape of the demand distribution, and it can be

complex to characterize. Our analysis of the case with stochastically identical stores suggests

that (1) when the amount of test inventory is small, a retailer should follow a “single-store”

policy which allocates all of the test inventory to only one store; (2) when the amount of test

inventory is large, an even-split policy is optimal. These results are established analytically

assuming a continuous gamma-Weibull demand structure (with shape parameter exceeding

one), and they are corroborated numerically for the case of Poisson demand with a gamma

prior. Moreover, we find examples with a moderate amount of available test inventory in

which the optimal allocation policy may stock unbalanced positive quantities in each store

even though stores are otherwise identical.

These findings reveal a delicate tension between the quantity of stores included in the

test and the quality of observations obtained from each one. Our results show that improving

the quality of each demand observation is a higher priority than seeking a large observation

quantity when the total test inventory is tightly constrained. This encourages the retailer to

consolidate inventory in fewer stores to increase service levels in the testing period so as to

avoid the negative impact of censoring on demand learning. This may be one justification

(in addition to operational fixed costs) for adopting a concentrated test at a small number

of stores. Motivated by these insights, for cases with heterogeneous stores we propose a

“Service-Priority” heuristic that allocates test inventory to achieve a target service level

during the testing period at as many stores as the inventory budget allows.

We evaluate our heuristic allocation policies in a numerical study by comparing their

performance with the optimal policies. We consider two- and three-store problems in

which the optimal allocations of the test inventory can be obtained through an exhaustive

enumeration. Our numerical study indicates that when timing information is observable,

the Max-Sales policy yields allocations that are extremely close to the optimal solutions;

in fact, the maximum optimality gap in our study is 0.01% across both two-store and
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three-store instances. When timing information is unobservable, the Service-Priority policy

also appears near-optimal in our numerical experiments, resulting in an average gap of 0.05%

and a maximum gap of 1.02% for two-store instances, and an average gap of 0.08% and a

maximum gap of 1.30% for three-store instances. Furthermore, we find that using inefficient

allocations—for example, using the Max-Sales and Service-Priority heuristics in the wrong

settings—can result in significantly suboptimal performance.

The remainder of this chapter is organized as follows. After a review of relevant literature

in §3.2, §3.3 describes a general modeling framework for the merchandise testing problem

with limited test inventory. §3.4 characterizes the structure of optimal allocation policies

for test inventory when sales timing information is observable to the retailer. In §3.5, we

analyze the case in which the retailer does not have sales timing information. We numerically

evaluate the performance of our proposed heuristics in §3.6. §3.7 concludes the chapter with

discussions of managerial insights and future research directions.

3.2 Literature Review

By studying the merchandise testing problem, our work contributes to a broad literature

studying strategies for retailers to learn about demand for products with short life cycles

and high demand uncertainty. Other examples include the “quick response” strategy of

Fisher and Raman (1996), the “advanced booking discount” program modeled by Tang et al.

(2004), and models allowing for advanced demand information that is updated over time

(e.g., Wang et al., 2012).

There is a well-established body of research that jointly considers demand estimation and

inventory optimization when unmet demand is lost and unobservable, or in other words, when

demand observations are “censored.” For a survey, we refer readers to Chen and Mersereau

(2015). The majority of this literature focuses on single-location settings. Our work belongs

to a substream of this literature that uses a Bayesian framework for demand estimation.

Lariviere and Porteus (1999) analyze the Bayesian inventory problem with censored demand.

To achieve tractability, they assume that the underlying demand distribution is from a family

of so-called “newsvendor distributions” defined by Braden and Freimer (1991) and that a
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gamma prior is used. The dimensionality reduction scaling technique in Scarf (1960) and

Azoury (1985), both assuming fully backlogged and exactly observable demand, is extended

to the censored demand case under a Weibull demand distribution with a gamma prior.

The problem receives continued exploration in Ding et al. (2002), Bensoussan et al. (2007),

Lu et al. (2008), Chen and Plambeck (2008), and Chen (2010). Recently, Bisi et al. (2011)

closely revisit the Bayesian inventory problem with censored observations and newsvendor

distribution demand and confirm that Weibull is the only member of the newsvendor family

for which optimal solutions are scalable. A common insight from this stream of literature is

that the retailer should stock more than myopic order-up-to levels to better learn future

demand information.

The recent paper of Jain et al. (2015) extends the literature on demand learning

with censored observations by incorporating the timing of individual sales transactions.

(Interestingly, Jain et al. (2015) use as a motivating example the Middle Eastern cosmetics

brand Mikyajy, which uses merchandise testing at a single store to make profitable purchasing

decisions prior to a full product launch.) In a parsimonious Bayesian multiperiod newsvendor

framework, they prove that the “stock more” result continues to hold with the additional

timing information. Furthermore, their numerical study shows that the use of timing

observations significantly reduces losses in expected profit due to censoring. While their

scope is again limited to a single-location setting, our research further extends their framework

to a multi-location setting, which leads to tradeoffs that are non-existent in a single-location

model.

A novel aspect of our work is the focus on demand learning (for a single product) across

multiple locations, which is different from Caro and Gallien (2007), who consider a dynamic

assortment problem with demand learning (at a single location) for multiple products. In

this regard, our model is conceptually related to Harrison and Sunar (2014), who consider a

firm choosing among several modes to learn the unknown value of a project for optimizing

investment timing. The cost and quality of each learning mode in Harrison and Sunar (2014)

are exogenously given, while our model seeks to maximize the value of demand learning

subject to a resource constraint on the amount of test inventory available.
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This chapter is also related to a large number of papers concerning inventory management

at a warehouse serving multiple retail locations. A detailed review can be found in Agrawal

and Smith (2009). Only a small subset of this literature is applicable to fashion products

with short life cycles and high demand uncertainty. Two notable examples, in addition

to Fisher and Rajaram (2000), are Agrawal and Smith (2013) and Gallien et al. (2015).

Agrawal and Smith (2013) consider a two-period inventory model in which the retailer

has multiple non-identical stores that share a common unknown parameter and uses a

Bayesian scheme to update demand forecast. Gallien et al. (2015) also develop a two-period

stochastic optimization model to determine initial shipments to stores at fashion retailer

Zara, accounting for the allocation of leftover and replenished stock at a central warehouse

to stores in the second period. Our work differs in several important ways. First, in the

previous two contexts, the widespread rollout of a product occurs at the very beginning of

the first period, which typically involves allocating a large amount of inventory to a large

number of stores; however, the first period in our merchandise testing problem only involves

distributing a very limited amount of inventory to a relatively small set of stores. Second,

neither paper explicitly considers demand censoring when updating demand forecasts based

on observations in the first period. Demand censoring is at the core of our study, as it leads

to the quantity versus quality tradeoff at the heart of our research questions. Finally, neither

of these papers considers using the timing of sales occurrences for demand learning.

At a high level, this chapter is related to research on the value of information and its

structure in problems involving collecting information with limited resources, examples of

which come from multiple disciplines including economics, simulation optimization, computer

science, and decision science. For example, Frazier and Powell (2010) consider the Bayesian

ranking and selection problem in which the decision maker allocates a measurement budget

to choose the best among several alternatives. They find that spreading the measurement

budget equally among alternatives can be paradoxically non-optimal when the prior is

identical for each alternative, due to lack of concavity of the value of information. In our

merchandise testing context, we also find that the value of information is not necessarily

concave, in particular, when timing information is unobservable.
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3.3 Model

In this section, we describe a general framework for the merchandise testing problem.

Consider a retailer that tests and sells a single product through a chain of N stores. We

model two periods, labeled 1 and 2 respectively, where period 1 represents the testing

period and period 2 the main selling period. At the beginning of period 1, the retailer has

Q ∈ Z+ units of inventory available in total to allocate to N stores for the merchandise test.

We denote a feasible allocation of the test inventory by a vector q ∈ Q = {(q1, . . . , qN ) :∑N
n=1 qn ≤ Q, qn ∈ Z+}.

We assume that the testing period has length T and that demand arrives at each store

n according to a renewal process, denoted by {Dn(t|θ), 0 ≤ t ≤ T}, where θ ∈ Θ is a

parameter that is common to all N stores but unknown to the retailer. Let tin denote

the arrival time of the i-th demand at store n and τ in = tin − ti−1
n the inter-arrival time

between the i-th and the (i − 1)-th demand. We assume that τ in has probability density

function (pdf) ψn(·|θ), cumulative distribution function (cdf) Ψn(·|θ), and complementary

cdf Ψn(·|θ), and is independent of the demand processes at other stores if conditioned on

θ. Cumulative demand Dn(t) until time t has probability mass function fn(·|t, θ) and cdf

Fn(·|t, θ) (complementary cdf Fn(·|t, θ)). We will use Dn and Dn(T ) interchangeably to

denote the total demand in period 1 at store n. A Bayesian framework is employed to model

demand learning and we assume that the retailer has a prior density π(θ) representing its

initial belief about the unknown demand parameter θ.

In order to highlight the value of demand learning associated with the allocation of

test inventory, we make the following simplifying assumptions. First, we assume no fixed

costs of including a store in the merchandise test. It is intuitive that fixed costs would

create an incentive to consolidate inventory; we focus instead on the statistical incentives

to consolidate inventory in a few stores versus spreading it among many stores. Second,

we assume that the revenue generated from sales in period 1 is negligible, as the testing

period is typically short compared to the primary selling season. Finally, we do not consider

inventory carryover from period 1 to period 2 for tractability reasons; in other words, the
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amount of leftover inventory from the test period is assumed to be negligible compared to

the substantially larger order quantities for the main selling period.

At the end of period 1, the retailer makes an observation X(q) which may depend on the

test demand realization Dn, the allocated test inventory level qn, and in some cases the timing

of demand epochs {t1n, t2n, . . . , tDnn } (or equivalently the inter-arrival times {τ1
n, . . . , τ

Dn
n }), at

each store n. The retailer can obtain different types of observations during period 1 and we

defer the details to §3.3.1. Let l(X(q)|θ) denote the likelihood of observing X(q) for some θ

and test inventory allocation q. The retailer uses Bayes rule to update its knowledge about

θ based on observation X(q) over prior π as follows:

π̂(θ) = π(θ) ◦X(q) =
l(X(q)|θ)π(θ)∫

Θ l(X(q)|ω)π(ω)dω
, (3.1)

where π̂(θ) is the updated posterior density.

Period 2 models the retailer’s operations in the primary selling season. In essence, the

retailer solves a newsvendor problem to choose the ordering quantity yn for each store n

to maximize the expected total profit generated by the entire chain based on its updated

knowledge π̂ about θ. Let D̂n be the period 2 demand at store n. Our most general model

is flexible in the demand structure of period 2 in that we only assume that D̂n is distributed

according to some cdf F̂ (·|θ) which also depends on the unknown demand parameter θ and

is independent of demand at other stores once conditioned on θ. We assume a unit selling

price p and a unit procurement cost c < p, both of which are exogenously determined and

apply universally to all N stores. The expected total profit in period 2 with respect to

ordering quantities y = (y1, . . . , yn) under belief π̂ is thus given by

Π̂(y|π̂) , E

[
N∑
n=1

pmin{D̂n, yn} − cyn
∣∣∣∣π̂
]
.

Denote by Φ̂n(·) be the unconditioned cdf of demand at store n in period 2, i.e.,

Φ̂n(x) =
∫

Θ F̂ (x|θ)π̂(θ)dθ. It is straightforward to see that the optimal order quantity y∗n for

store n is given by the well-known newsvendor order quantity y∗n = Φ̂−1
n (p−cp ), where Φ̂−1

n (·)

is the inverse unconditioned cdf, i.e., Φ̂−1
n (r) = min{x : Φ̂n(x) ≥ r}.
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Let V̂ (π̂) = maxy Π̂(y|π̂) be the optimal expected total profit in period 2. The retailer’s

problem at the beginning of period 1 is to find the optimal allocation q ∈ Q of the total Q

units of test inventory that maximizes its ex-ante expected profit Π(q|π) = E[V̂ (π◦X(q))|π],

with the anticipation of an observation X(q) being made after period 1.

3.3.1 Types of Demand Observations in Period 1

We present in this subsection two types of demand observations the retailer may receive

during period 1.

Observations without Timing Information (XNT (q)). This is the type of observations

assumed by the majority of the literature: at the end of period 1, the retailer observes

only the sales quantity at each store and whether a stockout has occurred. We denote by

sn = min{Dn, qn} the sales quantity at store n and by en = 1{Dn ≥ qn} a binary indicator of

the store’s stockout status at the end of period 1. The overall observation XNT (q) = {s, e}

is simply a collection of two vectors where s = (s1, . . . , sn) and e = (e1, . . . , en). The

superscript NT is for “No Timing.” For each store n, the likelihood of observing sales

quantity sn at time T given some demand parameter θ is f(sn|T, θ) if there is excess test

inventory (i.e., en = 0) and is F (qn − 1|T, θ) otherwise (i.e., en = 1). Recall that we assume

independent demand processes among N stores for any fixed θ. As a result, the likelihood

of observing XNT (q) for some θ is given by

l(XNT (q)|θ) =
N∏
i=1

[
(1− en) · f(sn|T, θ) + en · F (qn − 1|T, θ)

]
. (3.2)

Observations with Timing Information (XT (q)). This type of observation is considered

by Jain et al. (2015) in a single-store setting and we extend their definition to our multi-

location setting. It contains not only stores’ sales quantities and stockout statuses but also

the timing of all sales occurrences. Let ~τn = (τ1
n, . . . , τ

sn
n ) denote the observed sequence

of inter-arrival times between sales at store n. Let XT
n (qn) = {sn, en, ~τn} be the retailer’s

observation at store n where the superscript T stands for “Timing.” If the retailer decides

not to test at store n, i.e., qn = 0, then it automatically stocks out (i.e., en = 1) and
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of course sees no sales (i.e., sn = 0). Otherwise, if qn > 0, the likelihood of it observing

XT
n (qn) = (sn, 0, ~τn) at store n is

∏sn
i=1 ψn(τ in|θ) · Ψn(T −

∑sn
i=1 τ

i
n|θ) and of it observing

XT
n (qn) = (sn, 1, ~τn) is

∏sn
i=1 ψn(τ in|θ). Overall, the retailer’s observation, XT (q) = {s, e, ~τ},

is a collection of sales quantities, stockout statuses, and times between consecutive sales at

all stores where we define ~τ = (~τ1, . . . , ~τn). The likelihood of observing XT (q) for some θ is

therefore given by

l(XT (q)|θ) =
N∏
n=1

[
en ·

sn∏
i=1

ψn(τ in|θ) + (1− en) ·
sn∏
i=1

ψn(τ in|θ) ·Ψn(T −
sn∑
i=1

τ in|θ)

]
, (3.3)

where we use the conventions
∏0
i=1 ψn(τ in|θ) = 1 and

∑0
i=1 τ

i
n = 0 for the case sn = 0.

3.3.2 Marginal Value of Learning of an Additional Unit of Test Inventory

It is intuitive that the retailer would always prefer to allocate all Q units of test inventory

in period 1 so as to acquire as much demand information as possible. We formalize this

intuition in the following lemma which shows that the retailer’s ex-ante expected profit is

increasing in the test inventory quantity allocated to any store. In other words, the marginal

value of learning from an additional unit of total test inventory is always nonnegative.

To facilitate our presentation throughout the rest of this chapter, we introduce δn =

(0, . . . , 0, 1, 0, . . . , 0) as an N -dimensional vector with only the n-th element being one and

all other elements zero. We use this notation mainly to describe allocation modifications.

For instance, allocation q + δi − δj modifies allocation q by sending one more unit of test

inventory to store i and one less to store j.

Let ΠT (q|π) and ΠNT (q|π) denote the ex-ante expected profits for the cases with and

without timing information.

Lemma 3.1. The following hold for all π, q ∈ ZN+ , and n = 1, . . . , N :

(a) ΠT (q|π) ≤ ΠT (q + δn|π);

(b) ΠNT (q|π) ≤ ΠNT (q + δn|π);

(c) There exists an optimal allocation q such that
∑N

i=1 qn = Q.
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All proofs can be found in the appendix. We prove Lemma 3.1 using results from

the statistics literature on comparisons of experiments (Blackwell, 1951, 1953). To prove

Lemma 3.1(a), we define merchandise tests with allocations q + δn and q as two statistical

experiments, ET and FT , when timing information is observable. The outcomes of the two

experiments are demand observations XT (q + δn) and XT (q). We then establish that there

exists a stochastic transformation from the distribution of XT (q + δn) to that of XT (q)

(which is intuitive as the retailer observes more information with the additional unit of test

inventory). As a result, experiment ET is said to be sufficient for FT and Lemma 3.1(a)

immediately follows. The proof of part (b) uses a similar argument, and part (c) is an

immediate corollary part of (a) and (b). Therefore, for the rest of the chapter, we narrow

our focus to the set of allocations satisfying
∑N

n=1 qn = Q without loss of generality.

3.4 With Timing Information

In this section, we analyze the retailer’s optimal policy for allocating test inventory when

timing information is observable. We first examine in §3.4.1 the case in which stores have

stochastically identical demand. Then we generalize our analysis to the case in which stores

follow a more general demand structure.

3.4.1 Identical Stores

We consider a base case in which all stores are identical. More specifically, we assume that

stores’ demand processes in period 1 share a common inter-arrival time distribution, i.e.,

ψn(τ |θ) = ψ(τ |θ) for all n = 1, . . . , N . The identical-store case enables us to gain focused

insights into the role of inventory allocation in gathering demand information from multiple

locations. Practically, a group of identical stores may be interpreted as stores that have

been clustered into a relatively homogeneous set in terms of demand or sales volume.

We first show in the following proposition that when the stores are identical and the

retailer observes sales timing information, the retailer benefits from allocating a positive

amount of test inventory to as many stores as possible under general renewal process demand

with a general prior.
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Proposition 3.1. Suppose that stores are identical. Then for all π, the following hold when

timing information is observable:

(a) Let q = (q1, . . . , qN ) be a test inventory allocation such that qi ≥ 2 and qj = 0 for some

i 6= j. Then, ΠT (q|π) ≤ ΠT (q− δi + δj |π);

(b) There exists an optimal allocation q∗ = (q∗1, . . . , q
∗
N ) such that q∗n > 0 for n =

1, 2, . . . ,min{Q,N}.

The main implication of Proposition 3.1 is that the retailer should cover as many stores

as possible in a test without worrying about the potential to stock out at stores. This finding

reveals an incentive for the retailer to deviate from a “depth test” that stocks high test

inventory levels to avoid stockouts.

A formal proof appears in the appendix, but we sketch it here. We prove Proposi-

tion 3.1(a) by constructing two statistical experiments, E and F , corresponding to the two

inventory allocations, q− δi + δj and q, respectively. As discussed in the sketch proof of

Lemma 3.1, the result follows if we establish that there exists a stochastic transformation

from the distribution of observation XT (q− δi + δj) to that of XT (q). The intuition is as

follows. When timing information is observable, the retailer learns the unknown demand

parameter essentially through observations of inter-arrival times. Each realized sale gives

the retailer an exact observation of a single inter-arrival time. Moreover, the retailer receives

a censored observation of the inter-arrival time when a store does not stockout, as the time

until the next demand epoch is truncated at the end of period 1. Therefore, by moving one

unit of test inventory from store i to store j (with no inventory), the retailer increases both

the probability of selling this unit and that of getting an accurate instead of a censored obser-

vation of the inter-arrival time. Both the quantity and the quality of observations collected

during the test increase (in a stochastic sense), therefore the distribution of XT (q− δi + δj)

can be transformed to that of XT (q). Proposition 3.1(b) is an immediate corollary of part

(a) given we have established in Lemma 3.1 that it suffices to consider allocation policies

that distribute all test inventory to stores.

Proposition 3.1 hints at the desirability of an “even-split” policy which evenly distributes

test inventory to all stores, thereby maximizing the expected sales, or equivalently, the
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number of uncensored inter-arrival time observations during period 1. This would be true

if one could generalize Proposition 3.1(a) to any allocation q that has qi − qj ≥ 2 without

requiring qj = 0. Unfortunately, the proof generally does not extend for qj > 0, as a

stochastic transformation from XT (q− δi + δj) to XT (q) appears no longer possible—in

other words, observations under allocation q−δi+δj do not always contain more information

than that under allocation q. Nevertheless, in the remainder of this subsection we present a

result showing that the even-split policy is indeed optimal for an important special case.

Poisson Demand with a Gamma Prior. In the following, we assume that the inter-

arrival times between consecutive demand epochs are exponentially distributed with an

unknown rate parameter λ > 0, i.e., ψ(τ |λ) = λe−λτ . In other words, the cumulative demand

up to time t at each store n, {Dn(t|λ), t ≥ 0}, is a Poisson process with unknown arrival rate

λ, a demand process often assumed in academic research on retail inventory management.

We further assume that the retailer uses a gamma prior with shape and rate parameters

α > 0 and β > 0, i.e., π(λ) = π(λ|α, β) = βα

Γ(α)λ
α−1e−βλ. When timing information is

observable, π(·|α, β) is a conjugate prior for λ. More specifically, let XT = {s, e, ~τ} be a

realized observation in period 1 under some allocation when timing information is observable.

Then the posterior, updated based on XT , is π̂(λ) = π(λ|α, β) ◦XT = π(λ|α+ S, β + T ),

where

S =
N∑
n=1

sn and T =
N∑
n=1

[
en ·

sn∑
i=1

τ in + (1− en)T

]

constitute the sufficient statistics. Note that S and T are essentially the total sales quantity

and the total sales duration across all stores, respectively.

The following proposition shows that the even-split policy is optimal for Poisson demand

with a gamma prior when the retailer observes sales timing information.

Proposition 3.2. Suppose that the demand at each store in period 1 is a Poisson process

with unknown arrival rate λ and that the retailer has a gamma prior π(·|α, β) with shape

and rate parameters (α, β). Then, the following hold when timing information is observable:
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(a) Let q = (q1, . . . , qN ) be a test inventory allocation such that qi − qj ≥ 2 for some i 6= j.

Then, ΠT (q|α, β) ≤ ΠT (q− δi + δj |α, β).

(b) The “even-split” allocation q∗ = (q∗1, . . . , q
∗
n), which allocates all Q units of test inventory

to all N stores as evenly as possible, is optimal. In particular:

(i) If Q ≤ N , q∗i = 1 for i = 1, . . . , Q and q∗j = 0 for j = Q+ 1, . . . , N ;

(ii) If Q > N , q∗i = bQ/Nc+ 1 for i = 1, . . . , (Q mod N) and q∗j = bQ/Nc for j = (Q

mod N) + 1, . . . , N .

The proof of Proposition 3.2(a) builds upon Proposition 3.1 and extends it to any

allocation q that has qi − qj ≥ 0 through a two dimensional induction on qi and qj . The

induction relies on a first-step analysis which conditions on the time until the next demand

arrival at either store i or j and treats the remaining testing period as a new merchandise

test with a shorter testing periodand an updated prior. This first-step analysis relies on

the memoryless property of Poisson processes and on the fact that S and T are sufficient

statistics for the past demand information. Proposition 3.2(b) is a straightforward corollary

of part (a).

The overall implication is that when sales timing information is used for demand learning

in a merchandise test, the retailer need not aim for a high service level to avoid stockouts

during the testing period. Instead, the retailer should allocate the limited test inventory

to more stores so as to maximize the total sales, or equivalently, the quantity of exact

inter-arrival time observations. The service level during the testing period is less of a concern

because each sale individually reveals information about the demand distribution and has

an equal value whether it is made in a store with a high or low service level.

3.4.2 Non-Identical Stores

In this subsection, we extend our analysis to the more general case where stores may be

non-identical. We model non-identical demand as follows. We assume that stores’ inter-

arrival times are stochastically ordered in a consistent way conditioned on any value of the

unknown demand parameter. Without loss of generality, we label the stores such that their
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demand inter-arrival times are increasing in the sense of first-order stochastic dominance. In

particular, we assume that

Ψ1(τ |θ) ≤ Ψ2(τ |θ) ≤ · · · ≤ ΨN (τ |θ) (3.4)

for all τ ≥ 0 and θ ∈ Θ. Recall that Ψn(·|θ) is the complementary cdf of the inter-arrival

times at store n given a fixed θ and is assumed to be known to the retailer. This assumption

also implies that stores’ demands are decreasing in the sense of first-stochastic dominance,

i.e., F 1(x|T, θ) ≤ F 2(x|T, θ) ≤ · · · ≤ FN (x|T, θ) for all x ≥ 0 and θ ∈ Θ. In this formulation,

one can interpret θ as the overall market potential of the product. The retailer does not

know θ, but knows the market share of each store, which may be relatively more stable and

predictable than the overall demand.

The following proposition extends Proposition 3.1 and sheds light on which stores the

retailer should prefer when allocating test inventory with timing information observable.

Proposition 3.3. Suppose that stores are non-identical such that Ψ1(τ |θ) ≤ Ψ2(τ |θ) ≤

· · · ≤ ΨN (τ |θ) for all τ ≥ 0 and θ ∈ Θ. Then for all π, the following hold when timing

information is observable:

(a) Let q = (q1, . . . , qN ) be a test inventory allocation such that qi = 0 and qj ≥ 1 for some

i < j. Then, ΠT (q|π) ≤ ΠT (q + δi − δj |π);

(b) There exists an optimal allocation q∗ = (q∗1, . . . , q
∗
N ) such that q∗n > 0 for n = 1, . . . ,m

and q∗n = 0 for n > m, where m is some number in {1, . . . , N}.

Proposition 3.3 indicates that the retailer should always allocate test inventory to stores

with higher demand before testing at stores with lower demand. This is in line with the

intuition we have gained in §3.4.1 that the retailer should maximize its test sales to maximize

the value of the test when timing information is observable. This result is also useful if the

retailer has an additional constraint on the maximum number of stores to test, say, M < N

stores. In that case, instead of considering all subsets with at most M stores, the number of

which is
∑M

m=1

(
N
m

)
in total, the retailer need examine only M subsets, each containing the

m stores with the largest relative demand, m = 1, 2, . . . ,M .
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Given the above proposition, it is natural to expect that the optimal quantities of test

inventory allocated to stores should be ranked according to stores’ relative demand volumes.

That is, the retailer should send the most test inventory to store 1, the second most to store

2, and so forth. We prove that this conjecture holds for an important special case involving

Poisson demand processes. Before formally stating the proposition, we first introduce our

gamma-Poisson demand model for the non-identical-store setting.

Non-Identical Poisson Demand with a Gamma Prior. We assume that the demand

inter-arrival times at store n are exponentially distributed with rate γnλ, i.e., ψn(τ |λ) =

γnλe
−γnλτ , where λ > 0 is unknown but γn > 0 is known to the retailer. In other words,

the cumulative demand up to time t at each store n, {Dn(t|λ), t ≥ 0}, is a Poisson process

with (partially) unknown arrival rate γnλ. In addition, we assume that γ1 ≥ γ2 ≥ · · · ≥ γN .

We call γn the relative demand coefficient of store n. The retailer still uses a gamma prior

π(λ|α, β) on λ with shape and rate parameters α > 0 and β > 0.

One can easily verify that the above Poisson demand model satisfies our general non-

identical-store assumption in (3.4) by noting that the complementary cdf of inter-arrival

times at store n is given by Ψn(τ |λ) = e−γnλτ . Furthermore, the gamma distribution is still

a conjugate prior for this non-identical Poisson demand process. Let XT = {s, e, ~τ} be a

realized observation in period 1 under some allocation when timing information is observable.

Then the posterior, updated based on XT , is π̂(λ) = π(λ|α, β) ◦XT = π(λ|α+ S, β + T ),

where

S =
N∑
n=1

sn and T =
N∑
n=1

γn ·

[
en ·

sn∑
i=1

τ in + (1− en)T

]
.

The sufficient statistics still have two dimensions with one being the total sales quantity

and the other the “weighted” total sales duration across all stores where the weights are the

relative demand coefficients.

We prove in the following proposition that in the gamma-Poisson demand model the

optimal quantities of test inventory allocated to stores are ordered by stores’ relative demand

coefficients.

53



Proposition 3.4. Suppose that the inter-arrival times at store n are exponentially distributed

with rate parameter γnλ where λ is unknown but γ1 ≥ . . . ≥ γn are known, and that the

retailer has a gamma prior on λ with shape and rate parameters (α, β). The following hold

when timing information is observable:

(a) Let q = (q1, . . . , qN ) be a test inventory allocation such that qi < qj for some i < j.

Then, ΠT (q|α, β) ≤ ΠT (q + δi − δj |α, β);

(b) There exists an optimal allocation q∗ = (q∗1, . . . , q
∗
N ) such that q∗1 ≥ q∗2 ≥ · · · ≥ q∗N .

The structure of the optimal allocation policy characterized by Proposition 3.4 provides

an intuitive guideline for practitioners to distribute test inventory in merchandise testing:

allocate more inventory to the stores with higher demand. However, computing the exact

optimal allocation quantities remains difficult due to the combinatorial nature of the problem.

We propose an easy-to-implement heuristic policy in the following subsection.

3.4.3 The Max-Sales Heuristic

In this subsection, we propose a heuristic policy named “Max-Sales” based on the intuition

developed in §3.4.1 that with timing information observable, a good policy tends to maximize

the sales during the testing period.

The Max-Sales policy is a greedy heuristic which sequentially allocates Q units of

test inventory to N stores such that each unit of product is sent to the store having

the highest (unconditioned) probability of selling that additional unit. Let φn(x) be the

unconditioned probability mass function of demand being x at store n in period 1, i.e.,

φn(x) =
∫

Θ fn(x|T, θ)π(θ)dθ. We denote by Φn(x) the corresponding unconditioned cdf,

i.e., Φn(x) =
∑x

u=0 φn(u), and let Φn(x) denote the unconditioned complementary cdf. The

algorithm of the Max-Sales policy is as follows:

B Max-Sales Heuristic

q1, . . . , qN←0;

for i← 1 to Q
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n∗←min{n : Φn(qn) ≥ Φm(qm) for all m = 1, . . . , N};

qn∗←qn∗ + 1;

end

Proposition 3.5. Suppose that stores are non-identical such that Ψ1(τ |θ) ≤ Ψ2(τ |θ) ≤

· · · ≤ ΨN (τ |θ) for all τ ≥ 0 and θ ∈ Θ. The following hold:

(a) The Max-Sales heuristic yields an allocation qMS = (qMS
1 , . . . , qMS

N ) that maximizes the

expected total sales in period 1;

(b) qMS
1 ≥ qMS

2 ≥ · · · ≥ qMS
N .

Proposition 3.5(a) shows that our greedy Max-Sales heuristic indeed maximizes the

expected total sales during period 1 under the general non-identical demand introduced in

§3.4.2. Proposition 3.5(b) guarantees that the Max-Sales allocation is monotonic, which

which shares the same structure as the optimal policy under gamma-Poisson demand as we

have proved in Proposition 3.4(b). The Max-Sales heuristic is easy-to-compute and applies

to general demand processes and priors. Based on our numerical experience, this heuristic

performs extremely well, coinciding with the optimal policy in almost all cases (see a detailed

discussion in §3.6.2).

3.5 Without Timing Information

We discuss in this section the optimal test inventory allocation policy when the retailer does

not observe sales timing information.

3.5.1 Identical Stores

When timing information is unobservable as is commonly assumed in the classic Bayesian

inventory literature with demand censoring, analyzing the optimal allocation policy becomes

particularly challenging. Even in the single-location setting, it is well-known that computing

the optimal inventory policy is difficult (Bisi et al., 2011). In addition, we lose conjugacy
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under the discrete demand assumption, which makes it challenging even to compute the

Bayes update between periods.

To achieve tractability, instead of assuming discrete, renewal process demand, we turn

to a continuous Weibull demand distribution with a gamma prior, a parsimonious demand

model widely adopted in the Bayesian inventory control literature with demand censoring.

We will corroborate our key results numerically for gamma-Poisson demand in §3.5.2. For

the present analysis we assume that the demand at each store in both periods is Weibull

distributed with known shape parameter k > 0 and unknown scale parameter θ > 0, and

that the retailer has a gamma distributed prior on θ with shape and scale parameters (a,S)

at the beginning of period 1. Note that the length T of period 1 is rendered irrelevant under

this assumption. In particular,

fn(x|θ) = f̂n(x|θ) = θxk−1e−θx
k
, and π(θ) =

Sa

Γ(a)
θa−1e−Sθ.

The following proposition partially characterizes the optimal allocation policy under

gamma-Weibull demand when timing information is unobservable.

Proposition 3.6. Suppose that the demand at each store in both periods is Weibull with

shape parameter k > 0 and unknown scale parameter θ, and that the retailer has a gamma

prior on θ with shape and scale parameters (a,S). The following hold for all a > 1
k and

S > 0 when timing information is unobservable:

(a) If 0 < k ≤ 1, the even-split allocation, q∗n = Q/N for all n, is optimal;

(b) If k > 1:

(i) there exists Q0 > 0 such that for 0 ≤ Q < Q0, a “single-store” allocation is optimal,

i.e., q∗i = Q for some i and q∗n = 0 for all n 6= i;

(ii) the even-split allocation, q∗n = Q/N for all n, becomes optimal as Q→∞.

We can see from Proposition 3.6 that the form of the optimal allocation policy is generally

complex when timing information is unobservable. It may depend on the total test inventory

Q as well as the shape of the demand distribution.
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When k ≤ 1, the demand density is strictly decreasing with a shape similar to that of

an exponential density. (The exponential distribution is itself a special case of the Weibull

distribution with k = 1.) In this case, the even-split allocation is always optimal regardless

of the total test inventory Q. In fact, the ex-ante expected profit ΠNT (q|a, S) is jointly

concave in the allocation q. This resembles Bisi et al. (2011)’s result that the expected cost

is convex in the inventory level under gamma-exponential demand in a single-store setting.

When k > 1, the demand density has a unimodal shape. In this case, the optimal policy

is “single-store,” i.e., allocating all Q units of test inventory to only one store, when Q is

sufficiently small relative to demand. We note that Q0 is a constant that depends on demand

parameters k, a, and S. The even-split allocation becomes optimal for sufficiently large Q.

In contrast with the case in which timing information is observable, the pursuit of the

quality and the quantity of demand observations need to be carefully balanced in the absence

of timing information. Sending more test inventory to a store increases the service level

and reduces the probability of demand being censored, thereby improving the quality of

the demand observation obtained from the store. But with a fixed overall quantity of test

inventory, this also means either sending less test inventory to some other store, which

degrades the observation quality at that store, or excluding one or more stores from the test,

which reduces the quantity of demand observations. When k > 1, Bisi et al. (2011) show in

a single-store setting that the expected cost can be non-convex in the inventory level; we

observe a similar phenomenon in our model, where the ex-ante expected profit ΠNT (q|a, S)

is non-concave in each qn. As a result, the retailer gains little demand information from

a store until it stocks sufficient test inventory at the store. Spreading the test inventory

equally to all stores may not be beneficial, as the increase in the total observation quantity

may not compensate for the significant loss in the quality of demand observations at each

store.

Proposition 3.6 suggests that the retailer may want to consolidate test inventory in a

few stores to achieve a sufficiently high service level during the testing period. In other

words, we provide a theoretical justification, in addition to fixed costs, for the practice of

avoiding stockouts in merchandise testing. We remark that this tendency to consolidate test

inventory is present even though we assume zero fixed cost of conducting a test at a store.
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Figure 3.1: Ex-ante expected profit Π(q1, Q− q1|α, β) as a function of q1 in a two-identical-
store example under Poisson demand with a gamma prior when Q = 5, 10, 15.
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Note. N = 2, α = 2, β = 0.4, p = 10, c = 1, T = 1.

3.5.2 Identical Stores: Numerical Illustration

In the following, we numerically test and illustrate the findings of Proposition 3.6 for example

merchandise testing problems with identical stores, Poisson demand, and a gamma prior.

To have a contrasting comparison, we also include the case with observable sales timing

information in this numerical illustration. We plot in Figure 3.1 the ex-ante expected profit

for a two-store problem as a function of q1, the units of test inventory allocated to store

1. The dashed lines with triangle markers are for the case in which timing information

is observable, whereas the solid lines with circle markers are for the case in which timing

information is unobservable. Lemma 3.1 implies that it is sufficient to consider allocations

q = (q1, q2) that have q2 = Q− q1. The shape and rate parameters of the retailer’s prior are

α = 2 and β = 0.4, so for each store the expected arrival rate E[λ] = α/β = 5. The profits

are plotted for Q = 5, 10, and 15, respectively. For each Q value, we only plot q1 from 0

to bQ/2c. Given that the two stores are identical, the profits for q1 ∈ {bQ/2c+ 1, . . . , Q}

mirror those shown.

We observe that even-split allocations (i.e., (2,3) when Q = 5, (5,5) when Q = 10, and

(7,8) when Q = 15) are always optimal when timing information is observable, consistent

with Proposition 3.2. However, when timing information is not observable, the structure

of the optimal allocation may differ as the total test inventory Q varies. The results in
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Figure 3.1(a) and 3.1(c) are consistent with the extreme cases of Proposition 3.6: if Q is small

compared to the demand (Q = 5), the single-store allocation (0,5) maximizes profits; if Q is

large (Q = 15), the even-split allocation (7,8) maximizes profits. Figure 3.1(b) highlights the

complexity of allocating test inventory without timing information: if Q is at a moderate

level (Q = 10), an unbalanced allocation (1,9), which allocates unequal, positive quantities

of test inventory to stores even though the stores are identical, can be optimal. Nonetheless,

the additional benefit of using the (1,9) allocation is small compared with the single-store

allocation (0,10). We find that the additional benefit of an unbalanced allocation is typically

small; also, the region for an unbalanced allocation to be optimal is typically very small.

Figure 3.1 also yields insights into the value of using timing information for demand

learning in the merchandise test. Naturally, the added value of timing information is always

positive under the same allocation of test inventory, and it decreases as Q increases. An

important observation is that the additional value of timing information hinges on the

allocation of test inventory. Figure 3.1(b) gives an example in which the use of timing

information may bring little extra value if the retailer employs a single-store rather than the

optimal even-split allocation. Interestingly, Figure 3.1(c) shows that the ex-ante expected

profit of using a single-store allocation with timing information is lower than that of using

the even-split policy without timing information. In other words, a suboptimal allocation of

test inventory may completely negate the advantage of observing sales timing information.

Figure 3.2 shows the ex-ante expected profit as a function of the total test inventory

Q under various allocation policies in a three-store example with identical stores, Poisson

demand, and a gamma prior. The parameters are the same as those used to generate

Figure 3.1 except that we increase the number of stores to N = 3. We consider the optimal

allocation when timing information is observable (i.e., the even-split allocation) and the

following four allocation policies when timing information is unobservable: (1) the single-

store policy; (2) the “two-store” policy (i.e., q = (Q2 ,
Q
2 , 0) if Q is even or q = (Q+1

2 , Q−1
2 , 0)

if Q is odd); (3) the “three-store” policy, or equivalently, the even-split policy; (4) and the

optimal allocation. We obtain the optimal ex-ante expected profit for each Q value when

timing information is unobservable through an exhaustive enumeration of all allocations

satisfying q1 + q2 + q3 = Q. Again, Figure 3.2 reinforces our insights from Proposition 3.6:
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Figure 3.2: Ex-ante expected profit in a three-identical-store example as a function of total
test inventory Q under various allocation policies.
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the single-store allocation is optimal when Q is small (Q < 10) while the even-split allocation

is optimal when Q is large (Q > 30). We also find that the use of timing information may

increase the ex-ante expected profit, potentially by a significant margin when Q is limited.

The additional value of timing information diminishes as Q increases.

We further notice in Figure 3.2 that when timing information is unobservable, the

optimal ex-ante expected profit closely follows the envelope of the profits achieved by a class

of “m-store” allocations, which allocate test inventory to m out of N stores as evenly as

possible. The optimal allocation can be something other than an m-store allocation: e.g.,

neither the single-store nor the two-store allocation is optimal at Q = 11; similarly, both

the two-store and the three-store allocation are suboptimal at Q = 29. However, the loss in

the ex-ante expected profit is negligible in both cases if the retailer chooses either m-store

allocation instead of the optimal allocation. This suggests that a retailer without access to

sales timing information may start with a single-store allocation and gradually add more

stores to the test as the total test inventory increases. The intuition is that the retailer

need maintain a sufficient service level at test stores during the testing period to ensure the

quality of the collected demand observations before seeking additional observation quantity

by increasing the number of stores to test.
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3.5.3 The Service-Priority Heuristic

Given the complexity of the optimal allocation policy for test inventory even in the identical-

store case, computing the exact optimal allocation quantities appears to be out of reach for

general demand processes when timing information is unobservable. Instead, we use the

intuition uncovered in previous subsections to develop a heuristic policy for allocating the

test inventory.

We have learned in §3.5.1 and §3.5.2 that the optimal allocation policy strikes a balance

between observation quantity (i.e., number of stores to test) and quality (i.e., service level

at each store tested). We develop our heuristic with this tradeoff in mind. The idea is to

achieve a certain target service level r at as many stores as possible in period 1, where r is

a tunable parameter. For this reason, we name our heuristic the “Service-Priority” policy.

In particular, the heuristic allocates test inventory starting from store N , the store with

the lowest relative demand. The motivating logic is that the retailer can always use less

inventory to achieve the target service level r in a store with lower demand.

Let Φ−1
n (r) be the inverse unconditioned cdf of demand at store n in period 1, i.e.,

Φ−1
n (r) = min{x : Φn(x) ≥ r}. The algorithm of the Service-Priority policy is the following:

B Service-Priority Heuristic

n←N;

while Q > 0

qn ← min{Q,Φ−1
n (r)};

Q←Q− qn;

n←n− 1;

end

The question remains how to choose the target service level r for the Service-Priority

policy. A näıve method would be to arbitrarily specify a relatively high r. One could also

perform a search over a set of candidate r values to identify the r value that maximizes
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the ex-ante expected profit. In §3.6.3, we compare the performance of both methods for

choosing r.

3.6 Performance of Heuristic Policies

In this section, we evaluate the performance of the Max-Sales policy and the Service-

Priority policy proposed in §3.4.3 and §3.5.3 in an extensive numerical study. We consider

a merchandise testing problem under non-identical Poisson demand with a gamma prior

as introduced in §3.4.2. More specifically, the demand at each store n in both periods is

a Poisson process with arrival rate γnλ, where λ is unknown but γn, the relative demand

coefficient, is known. We normalize the γn’s such that
∑N

n=1 γn = 1. The prior distribution

of λ is gamma with shape and rate parameters (α, β).

We first report results for a set of two-store instances (N = 2). We choose values of

the parameters to construct a large set of instances. We vary γ1 and γ2 such that γ1/γ2

takes value in {1,2,3,4,5}. The stores are identical if γ1 = γ2 = 0.5 and are non-identical

otherwise. The shape parameter α reflects the degree of uncertainty about λ and takes

values in {1, 2, 4, 8}, indicating a coefficient of variation of λ in {1, 1√
2
, 1

2 ,
1√
8
}. In order to

illustrate the inventory allocations in a unified scale, we fix the total test inventory Q at

30 and vary the demand level. We choose the value of the rate parameter β such that the

expected total arrival rate E[(γ1 + γ2)λ] = E[λ] = α/β ∈ {10, 20, 30, 40, 50, 60}. The unit

selling price is fixed at p = 20, and we vary the unit purchasing cost c in {1, 2, . . . , 10} to

have a range of newsvendor ratios (p − c)/p in {0.50, 0.55, . . . , 0.95} targeted in period 2.

This gives us a set of 1,200 instances in total. We also briefly report results for a set of

N = 3 instances in §3.6.4.

Throughout the section, we denote by qσn the test inventory quantity allocated to store

n under some policy σ. We use T ∗ and NT ∗ to denote the optimal allocation policy for the

cases with and without timing information, respectively. We refer to the “optimality gap” (or

“gap”, for short) of a policy σ for a problem instance as the percentage gap with respect to

the ex-ante expected profit under the optimal allocation policy. For example, the optimally
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Figure 3.3: Comparison of the optimal test inventory allocation policies for the cases with
and without timing information (N = 2).
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gap of a policy σ when timing information is observable is given by (ΠT ∗ −Πσ)/ΠT ∗ × 100%,

where Πσ is the ex-ante expected profit of policy σ.

3.6.1 Optimal Test Inventory Allocations

For all the two-store instances, we compute through an exhaustive enumeration the optimal

quantity of test inventory allocated to store 1 when timing information is observable, qT
∗

1 ,

and that when timing information is unobservable, qNT
∗

1 . (Recall from Lemma 3.1 that

when N = 2, the optimal allocation quantities to store 2 are just Q− qT ∗1 and Q− qNT ∗1 ,

respectively.) Figure 3.3 shows a bubble plot of (qT
∗

1 , qNT
∗

1 ) pairs for all instances. A bubble

at (qT
∗

1 , qNT
∗

1 ) means that there is at least one instance for which the optimal allocation

quantity for store 1 is qT∗1 if the retailer observes timing information and is qNT∗1 if the

retailer does not. The size of each bubble indicates the total number of such instances out

of the 1,200 total instances explored.

Figure 3.3 demonstrates the pronounced difference between the behavior of the optimal

allocation policy when timing information is observable and that when timing information is

unobservable. Also, we observe that qT∗1 ≥ 15 across all instances, which is consistent with

Proposition 3.2 given that our instances have γ1 ≥ γ2 and Q = 30.
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Figure 3.4: Comparison of the heuristic and the optimal allocation policies (N = 2).
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3.6.2 Performance of the Max-Sales Heuristic

We test the performance of the Max-Sales heuristic proposed in §3.4.3 against the optimal

allocation policy in the case where timing information is observable. Let “MS” denote the

Max-Sales policy. Figure 3.4(a) shows a bubble plot of (qT
∗

1 , qMS
1 ) pairs for all 1,200 instances.

We observe that the bubbles are all located close to the diagonal line, implying that the

Max-Sales policy closely follows the optimal allocation policy. The maximum difference

between qT∗1 and qMS
1 for an instance is 3 units—at (qT

∗
1 = 18, qMS

1 = 15). In addition, We

compute the optimality gap of the Max-Sales policy for each instance. The average gap is

0.0007% and the maximum is only 0.01% across all 1,200 instances1. The evidence lends

strong support to the near-optimality of the Max-Sales policy when timing information is

observable.

3.6.3 Performance of the Service-Priority Heuristic

We investigate the performance of the Service-Priority heuristic proposed in §3.5.3 against

the optimal allocation policy in the case where timing information is unobservable.

1We compute all the ex-ante expected profits using Monte Carlo simulation with 1,000,000 trials. Therefore,
the extremely small optimality gaps raise a natural question whether the Max-Sales heuristic is indeed optimal
under Poisson demand with a gamma prior. We do not seem to have a proof (or an exact counterexample)
for this claim and view it as an open question.
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Figure 3.5: Optimality gaps of the Service-Priority policy with various values of target
service level r when timing information is unobservable (N = 2).
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We first consider the näıve approach in which the retailer arbitrarily chooses a relatively

high target service level r and applies it uniformly across all instances. Figure 3.5 shows

the summary statistics of the optimality gaps of Service-Priority policies under various

specifications for the target service level r when timing information is unobservable. We

observe that as r varies from 0.80 to 0.99 in increments of 0.01, the lowest mean optimality

gap is 0.13% (achieved at r = 0.95) and the lowest maximum gap is 1.38% (achieved at

r = 0.90). These results imply that the näıve variant of the Service-Priority policy can be

reasonably satisfactory as long as the retailer chooses a relatively but not extremely high r.

We then examine an alternative approach in which a search over a set of r values

is performed for each instance to find the r value that maximizes the ex-ante expected

profit. We numerically test the performance of this variant of the Service-Priority policy,

abbreviated to SP-S, with a search over r ∈ {0.50, 0.51, . . . , 0.99} for each of the 1,200

instances. Figure 3.4(b) shows a bubble plot of (qS
∗

1 ,qSP-S
1 ) pairs for all the instances. We

observe that in most of the cases the SP-S policy closely follows the optimal policy, with

a few exceptions in which the optimal policy allocates zero units of test inventory to the

low demand store 2. In addition, we compute the optimality gap for each instance. The

average gap of the SP-S policy is only 0.05% across all 1,200 instances and the maximum

gap is 1.24%. As expected, the performance of the Service-Priority policy further improves

after we include a search for a better target service level r for each instance.
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3.6.4 Three-Store Instances

We report in this section the results for another set of instances in which N = 3. The

parameter setting is the same as in the N = 2 instances except for the relative demand

coefficients. For ease of exposition, we label the three stores H, M, and L, respectively,

which stand for relatively high, medium, and low demand. We vary their relative demand

coefficients such that γH/γL ∈ {1, 2, 3, 4, 5}. The medium demand store’s coefficient is set

at γM = (γH + γL)/2. As in the two-store instances, we also normalize the relative demand

coefficients such that γH + γM + γL = 1.

We compare the performance of the Max-Sales policy and the Service-Priority policy

with a number of benchmark heuristics. We include a set of simple heuristics, each named

with a set of the store labels, that always allocate the test inventory evenly to the stores

in its name. For example, an H policy allocates Q = 30 units of test inventory to store H,

an ML policy allocates 15 units each to store M and L, and so forth. We also include a

“Volume-Priority” policy (VP-S), a modification of the SP-S policy that gives priority to

stores with higher, instead of lower, demand for test inventory allocation. In addition, we

include the optimal policy without timing information (NT ∗) as a benchmark for the case in

which timing information is observable, and also the optimal policy with timing information

(T ∗) as a benchmark for the case in which timing information is unobservable.

The optimality gaps are plotted in Figure 3.6. When timing information is observable,

we observe that the Max-Sales performs extremely well with a mean gap of only 0.0008%

and a maximum gap of 0.01%. We also see that the H, HM, and HML policies dominate

other simple heuristics, consistent with our Proposition 3.3. In particular, we find that

the HML policy, which is the even-split policy in this N = 3 case, performs reasonably

well with a mean gap of 0.14% and a maximum gap of 0.71%. When timing information is

unobservable, the SP-S policy significantly outperforms other heuristics with a mean gap

of only 0.08% and a maximum gap of 1.30%. In addition, Figure 3.6 emphasizes again the

pivotal impact of timing information on the inventory allocation decisions for a merchandise

test. The optimal allocation policies can result in a significant loss in profit if employed

in a wrong situation. The optimality gap could be as large as 6.38% if the optimal policy
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Figure 3.6: Optimality gaps under heuristic test inventory allocation policies (N = 3).
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Note. For each policy, the box shows the median and the first and the third quartiles; all
the instances with an optimality gap below the first quartile or above the third quartile are
plotted as an circle outside the box.

without timing information were used when timing information is observable, and could be

as large as 22.06% if the optimal policy with timing information were used when timing

information is unobservable.

3.7 Concluding Remarks

This chapter uncovers new insights on the value of inventory for demand learning, in

particular, on how demand censoring, demand learning across multiple locations, and the

level of visibility into demand processes collectively impact inventory allocation decisions in

merchandise testing.

There are fundamentally two ways to improve demand estimation given a fixed time

frame to collect demand information: increasing the number, or the quantity, of the demand

observations, and improving the quality of each observation. In the case where the retailer

has a relatively coarse visibility into demand, i.e, the demand data contains only the sales

quantities and stockout statuses, a single demand observation is made at each location if

there is inventory for sale, and the quality of the observation is negatively associated with the

probability of obtaining an imperfect demand observation due to stockout. One can increase
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the observation quantity by stocking inventory at more locations, and can improve the

observation quality at a location by raising the inventory level thereat. Our results suggest

that improving the quality of each demand observation is a higher priority than seeking a

large observation quantity, especially when the total inventory is tightly constrainted. On

the contrary, if sales timing data is observable for a reconstruction of the entire demand

process, each sale transaction can be viewed as an exact demand observation. As a result,

the value of inventory in demand learning is approximately maximized by simply selling

as much inventory as possible so as to maximize the observation quantity. This generally

involves spreading inventory among more locations.

These findings have two important managerial implications for retailers that have access

to increasingly larger and richer demand data sets. First, when collecting and combining data

from multiple locations for demand estimation, inventory allocation may have a significant

impact on the outcome of demand learning. With the same amount of inventory, an inefficient

allocation can lead to a significant loss in demand information and profit. Second, how

to allocate inventory to maximizes its value in demand learning depends on the level of

visibility into the demand. In particular, the use of sales timing information considerably

reduces the need to maintain a high service level for demand learning as seen in reported

practice.

Our work suggests several avenues for future research. In our model, demand at stores

shares a common unknown parameter. Natural extensions would be to consider a hierarchical

parameter structure under which each store has an unique unknown parameter in addition

to the common parameter shared across stores. For example, Fisher and Rajaram (2000)

cluster stores using sales histories. One could view our heuristics as solutions to the problem

of inventory allocation within a store cluster; the question remains how to allocate a fixed

quantity of inventory across clusters, which can be modeled by the hierarchical parameter

structure described above. Another direction would be to consider a multi-product setting

in which the retailer learns customer preferences in addition to demand volume through

assortment experimentation. The retailer might choose to offer a full assortment with a low

service level at each store, or to offer partial assortments at distinct stores with high service
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levels. It would be interesting to examine what would be the best inventory strategy in this

setting.
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CHAPTER 4

Optimal Personalized Offering
when Customer Reviews Influence Demand

4.1 Introduction

There has been considerable growth in online retailing in recent years. The 2014 annual

report of the National Retail Federation estimated a 9-12% growth in online sales, as

opposed to a 3.6% growth in total retail sales. One of online retailers’ strengths over their

brick-and-mortar counterparts is their capability to collect consumer characteristics and

preference data. Many online retailers, e.g., Amazon.com, require customers to log in their

accounts to make purchases so as to keep track of their purchasing history. Typical flash deal

websites such as Gilt.com even require a customer to log in in order to simply browse their

sales listings. In addition to buying records, online retailers also mine real-time click-stream

data and track customers’ locations in hopes of obtaining a better understanding of their

browsing behaviors and preferences. Other informative data include consumers’ wish lists

and abandoned shopping carts. On top of these, even more personal information may become

available by encouraging individual customers to link their social network accounts. The

variety and amount of data that online retailers collect has only been growing more rapidly

with online retailers’ increased interests in embracing big data and analytics.

Another edge of online retailers over traditional retailers is the extremely low cost

and high flexibility in product listing and showcasing. Changing product assortments in a

physical retail store can be labor-intensive and costly, and customizing product offers for

individual customers is typically impossible. The story is quite different for an online retailer.

Many online retailers have invested in sophisticated analytics and personalization tools,
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and customization has become increasingly common. By personalizing their front pages,

product listings, search results, and product recommendations based on aforementioned

rich consumer preference data, online retailers essentially have the opportunity to choose

whether to offer a product to a customer. An even simpler way is to switch between the

“in-stock” and “out-of-stock” tags (Bernstein et al., 2015), despite potential controversy over

honesty and fairness.

The remote and virtual nature of online retailing also introduces significant uncertainty

about product quality to consumers. Unlike shopping in a brick-and-mortar store where

customers are able to gain hands-on experience by directly interacting with products,

customers shopping online can receive product information via only limited channels, e.g.,

texts, pictures, and occasionally videos. To reduce such uncertainty, uninformed consumers

may gather quality information from reviews generated by other peer consumers who have

purchased and experienced the product. A third distinguishing feature of online retailing

compared with brick-and-mortar retailing is the availability of these customer product

reviews. The Internet has considerably facilitated the availability of consumer-generated

reviews. Nowadays, most online retailers provide functionalities on their websites which

allow consumers to post their reviews for a purchased product. The content of a review

may range from a simple rating on a five-star scale, to as rich as a 500-word essay detailing

every aspect regarding a product. The proliferation of social media sites such as Twitter and

Facebook has opened up even more channels for consumers to share their likes and dislikes

of a product.

Reviews generated by other consumers may substantially impact consumers’ purchasing

decisions. Academic research has empirically established the link between positive reviews

and increased sales (Chevalier and Mayzlin, 2006). Product reviews can also be a valuable

input to retailers’ decision-making. Firms can use such review information to gauge consumers

attitude toward their product and adapt their management decisions. For example, online

reviews have been shown to significantly increase forecasting accuracy for motion picture

revenues (Dellarocas et al., 2007).

Motivated by both online retailers’ advantages in collecting consumer preference data

and in personalizing product offerings, and their disadvantages in increased product quality
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uncertainties, this chapter incorporates two central elements: the consumers’ ability to

collectively learn the product quality through reviews generated by their peers, and the

firm’s ability to personalize offerings based on its knowledge about individual customers’

preferences. We are interested in how an online retailer may wish to shape future demand by

expanding or restricting access of current customers to an experiential product, and thereby

influencing the trajectory of customer reviews.

Although a few papers have studied how to modulate social learning through operational

levers, including inventory and pricing decisions, little work has been done in understanding

product offering when the demand process is affected by social learning. We consider

the problem of personalized offering when consumers generate and learn product quality

information from public product reviews and the retailer monitors consumer reviews to learn

customers’ perception of the product quality. In particular, we consider a firm that sells

an experiential product at an exogenous, constant price over a finite selling season. For

each customer, the gross utility from consuming the product comprises two parts—an ex

ante observable part that we refer to as customer preference and an ex post observable part

that we refer to as product quality. The quality of the product is known to the firm but is

unknown to and learned by customers. The customer base is heterogeneous and customers

preferences for the product follow a random distribution. We assume the firm may be able to

identify the preference of an arriving customer (by analyzing the customer’s past purchasing

and online behaviors) and choose whether to offer the product to that particular customer

without incurring additional costs. Once offered, the customer purchases a unit if her ex

ante expected net utility is positive.

We model consumers’ review generation process by a stylized quasi-Bayesian social

learning process. Consumers form a belief on the unknown quality of the product and update

it as they observe reviews posted by previous buyers. By quasi-Bayesian, we mean that

customers update their belief in a Bayesian fashion except that they ignore the potential

selection biases and treat reviews as if they are randomly sampled from the entire population,

instead of from those customers who have been offered and have purchased the product. We

base our formulation upon empirical evidence on online product reviews (e.g., Li and Hitt

(2008)). Each arriving customer bases her purchasing decision on the ex ante expected net
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utility. Once they purchase, customers generate reviews based on their ex post net utilities,

namely, utilities received after they have purchased and experienced the product.

We formulate the firm’s product offering problem as a finite-horizon dynamic program.

We show that the optimal product offering policy is of a threshold type—the firm should

only offer the product for sale to customers with a higher-than-threshold preference. We

demonstrate that it can be optimal for the firm to forgo an arriving customer with a low

preference, even when it is certain that the customer will buy the product if offered, in order

to avoid a review that will negatively impact future sales. While our base model assumes no

capacity or inventory constraints, we extend our analysis to the setting in which the firm

has a limited inventory upfront.

In an numerical analysis to follow, we investigate the impact of the product price and

consumers’ mean belief and uncertainties about product quality on the optimal product

offering decisions and on the potential value of personalized offerings. We find that personal-

ized offering may significantly improve profit, especially in settings in which the product

price is high and customers are optimistic but uncertain about product quality.

The remainder of this chapter is organized as follows. In §4.2 we review the relevant

literature. In §4.3, we describe our model framework. §4.4 presents analysis on the social

learning process and optimal inventory policies in a setting with ample supply, whereas

§4.5 extends the analysis to the problem with a limited inventory. We conduct a numerical

analysis in §4.6 to understand the value of personalized offering. In §4.7, we conclude the

chapter with discussions and future research directions.

4.2 Literature Review

Product reviews have long received attention in the marketing literature. Most of this line

of work focuses on studying the effect of product reviews on sales of experiential products.

Findings are mixed on the association between product reviews and sales. There are empirical

studies showing that positive reviews are associated with higher sales, while negative reviews

may hurt sales of experiential goods (Chevalier and Mayzlin, 2006; Dellarocas et al., 2007).

Some other papers do not find statistically significant relationships (Duan et al., 2008; Liu,
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2006). This stream of literature centers on how online product reviews drive consumer choice

behaviors, whereas our focus is on how firms should adaptively manage inventory in the

presence of such a review-driven demand process.

Our work also connects to the social learning literature as late consumers learn quality

information from early consumers through public product reviews. Our social learning

process occurs when buyers report their ex post utilities, which is in line with the empirical

work of Godes and Silva (2012), and the theoretical framework in Papanastasiou et al. (2014),

Besbes and Scarsini (2014), and Ifrach et al. (2015). In these papers as in this chapter,

consumers’ purchasing decisions are non-informative of the product quality. This contrasts

with the settings in Banerjee (1992) and Bikhchandani et al. (1992), in which social learning

occurs when agents observe their predecessors’ ex ante actions.

A growing stream of literature studies how firms can modulate social learning through

their operational decisions. The majority of this literature focuses on pricing decisions

when customer behavior is driven by social learning processes. Ifrach et al. (2012) consider

monopoly pricing when buyers report whether their experience is positive or negative,

and subsequent customers learn from these reports according to an intuitive non-Bayesian

rule. Jing (2011), Papanastasiou and Savva (2014), and Yu et al. (2013) analyze dynamic

pricing policies when forward-looking consumers may strategically delay their purchases

in anticipation of product reviews. The literature is rather limited on inventory control

in the presence of social learning. Papanastasiou et al. (2014) provides an explanation for

early-supply shortage strategies in the presence of quasi-Bayesian social learning.

This chapter is also related to the assortment planning literature. For a thorough review,

readers are referred to Kök et al. (2015). This literature generally considers a firm’s optimal

choice of a subset of multiple products to offer. In this regard, our problem can be seen as

a special single-product assortment planning problem with only two assortment options,

offering or not offering the product. Two papers on dynamic assortment customization are

specifically relevant. Bernstein et al. (2015) consider a retailer selling identically-priced,

substitutable products to a heterogeneous customer base. The firm is able to identify

arriving customers’ types and to customize the assortment seen by each arriving customer.

They find it may be optimal for the retailer facing low inventory levels to reserve product
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for customers with stronger preferences. Golrezaei et al. (2014) propose algorithms for

optimally personalizing assortment for each arriving customer with the availability of real-

time consumer characteristics data. Both papers find that personalization leads to significant

improvements in revenue, but none considers a demand process governed by a social learning

process.

4.3 Model

In this section, we describe our model framework for the firm’s optimal offering problem.

Consider a firm selling an experiential product over T periods, indexed by T , T − 1, . . ., 1.

We assume that the product’s unit price p > 0 is exogenously given and constant throughout

T periods. For simplicity, we assume a constant stream of customer arrivals; one customer

arrives each period, and each purchases at most one unit of the product.

4.3.1 Consumers

A representative customer i’s gross utility from consuming the product consists of two

components, θi and q. The term θi represents a customer’s idiosyncratic preference—utility

derived from observable product features before purchase (e.g., product brand) and is known

to the consumer ex ante. Customers are heterogenous in their preferences. We assume

that θi’s in the population follow a Normal distribution with θi ∼ N (µθ, σ
2
θ). The density

function is denoted by fΘ(·), the distribution function by FΘ(·) and the complementary

distribution function by FΘ(·) := 1− FΘ(·). The distribution FΘ(·) is assumed to be known

to both the firm and customers.

The term q represents the product’s quality—utility derived from attributes which are

unobservable before purchase (e.g., product usability) and is referred to generically as the

product’s quality for customer i; q is known by the firm but is ex ante unknown and is

learned by the consumer only after purchasing and experiencing the product. For ease of

exposition, we assume away randomness in consumers’ ex post quality perceptions; namely,

all customers perceive exactly q as the product’s underlying quality after consuming the

product.
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Consumers hold a common prior belief over q, which summarizes their initial perception

on the product quality. We assume this belief to be a Normal random variable Q̂T where

Q̂T ∼ N (q̂T , σ
2
T ). Customers update their belief over q as customer reviews accumulate. We

will elaborate on this belief updating process in the sections to follow.

We assume customers to be risk-neutral utility-maximizers. Customer i with a non-

negative ex ante expected utility, i.e., q̂ + θi − p ≥ 0, is willing to buy a unit of the product.

Once she purchases, customer i derives a net utility of θi + q − p from purchasing and

experiencing the product. We do not consider in our model strategic customers who delay

purchasing to wait for more information about the product quality; each arriving customer

leaves permanently regardless of her purchasing decision.

Review Generation. Each buyer i generates a review of the product that is viewable

by the firm and all customers yet to arrive. Empirical evidence has shown that product

reviews may be systematically biased by customers’ idiosyncratic preferences. To capture

this effect, we assume that a buyer i simply (and truthfully) reports her net utility q+ θi− p,

or equivalently, generates a review ri = q + θi − µθ, as both p and µθ are assumed to be

common knowledge. We note that reviews are sampled only from customers who are offered

the product and who purchase, not from the entire population. As a result, reviews do not

necessarily follow a N (q, σ2
θ) distribution.

Social Learning of q. Consumers collectively learn the underlying product quality q by

monitoring reviews generated by previous buyers. A rational customer would update her

belief using Bayes rule. However, a full Bayesian updating would require customers to

keep track of the entire review history, to process it, and to anticipate the firm’s offering

policy, which is numerically challenging even for computers, and thus arguably impractical

for customers to perform, considering the large amount of cognitive processing power it

demands (see Appendix C.7 for a derivation of Bayesian updating that accounts for the

selection bias induced by customer purchasing). Indeed, there is empirical support that

online product reviews are subject to self-selection biases (Li and Hitt, 2008).

For the above reasons, in our model we take a quasi-Bayesian approach to model

customers’ belief updating process. More specifically, we assume that customers ignore
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the selection bias and update their belief as if reviews are i.i.d. sampled from the entire

population, i.e., reviews follow a N (q, σ2
θ) distribution. Under this assumption, the belief

updating could be carried out according to the usual parametric Bayesian paradigm. Let Q̂t

denote consumers’ common belief at the beginning of period t. Following Bayes rule, Q̂t is

Normal; in particular, Q̂t ∼ N (q̂t, σ
2
t ), with

q̂t =
σ2
θ q̂T + σ2

TRt
σ2
θ + stσ2

T

and σ2
t =

σ2
θσ

2
T

σ2
θ + stσ2

T

,

where Rt is the sum of reviews generated prior to period t and st the cumulative sales.

It is convenient in our problem setting to use mean belief q̂t and cumulative sales st as

sufficient statistics for belief updating. Suppose that a customer with preference θi buys a

unit of the product in period t and generates a review ri = q + θi − µθ. Then, the updated

q̂t−1 and st−1 for period t− 1 are given by

q̂t−1 = u(q̂t, st, θ) :=
q̂t(σ

2
θ + stσ

2
T ) + (q + θ − µθ)σ2

T

σ2
θ + (st + 1)σ2

T

,

st−1 = st + 1.

(4.1)

We define the mean belief updating function u(q̂, s, θ) as a function of θ from the firm’s

perspective, as θ is essentially revealed to the firm after a customer posts a review r = q + θ,

since we assume that the firm knows the value of q. This parameterization also proves useful

in our analysis of the problem to come. From the customers’ perspective, the updating is

also valid by treating q + θ − µθ as a single term. In addition, we remark that customers’

belief remains unchanged, i.e.,

q̂t−1 = q̂t and st−1 = st.

if a customer does not make a purchases. In other words, a non-purchase is non-informative

for customers to learn the true value of q. Intuitively, this is because when a customer makes

a purchasing decision, she has no additional knowledge of q beyond the common belief.

We summarize in Lemma 4.1 some basic properties of the mean belief updating function

u(q̂, s, θ).
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Lemma 4.1. The following hold for all s = 0, 1 . . . ,:

(a) u(q̂, s, θ) is increasing in q̂;

(b) u(q̂, s, θ) is increasing in θ;

(c) u(q̂, s, µθ + q̂ − q) = q̂.

All the proofs can be found in Appendix C. Parts (a) and (b) of Lemma 4.1 show that

consumers’ posterior mean belief increases with their prior mean belief on q as well as the

reviewer’s preference. Part (c) provides a threshold value on consumers’ preferences. An

immediate corollary of part (b) and (c) is that a review generated by a customer with

preference higher than µθ + q̂ − q will raise consumers’ posterior mean belief; otherwise,

customers’ mean belief decreases.

4.3.2 The Firm

A unique feature of our model is that the firm is allowed to personalize whether to offer the

product to each individual customer. As is discussed in the introduction, this is rarely a

viable option for traditional brick-and-mortar retailers but is increasingly adopted by online

retailers through customized product listings, search results, and other methods. The firm

seeks to maximize its expected total profit over the entire selling season by choosing whether

to offer the product for sale to each arriving customer. As mentioned previously, we assume

the firm knows the (exogenously determined) true value of q. We denote by ot ∈ {0, 1} the

firm’s offering decision for period t, where ot = 1 indicates that the firm chooses to offer the

product for sale to the arriving customer. In our base model, we assume that the firm has

ample supply of the product. We will discuss in §4.5 the case in which the firm has only a

limited inventory to sell.

An implicit assumption we make is that customers also ignore the potential bias in

reviews induced by the firm’s offering policy. That is, customers treat reviews as if they

are randomly sampled from the entire population, instead of customers who are willing to

purchase and are offered the product by the firm.
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4.4 Analysis

4.4.1 Unobservable Customer Preference Information – A Benchmark

As the first step of our analysis, we consider a benchmark case in which individual customers’

preferences are not revealed to the firm at their time of arrival. In other words, the firm

only knows that an arriving customer’s preference θi is a random draw from distribution

FΘ(·). Practically, this corresponds to traditional situations in which the firm may lack or

otherwise not use customers’ personal information.

We formulate the firm’s optimal offering problem as a finite-horizon dynamic program

(DP). Let Vt(q̂, s) be the optimal expected profit with t periods left, consumers’ mean belief

q̂ on q, and cumulative sales s. Then, the Bellman equations are given by

Vt(q̂, s) = max
ot∈{0,1}

ot ·
{
FΘ(p− q̂)Vt−1(q̂, s) +

∫ ∞
p−q̂

[p+ Vt−1(u(q̂, s, θ), s+ 1)]dFΘ(θ)

}
+ (1− ot) · Vt−1(q̂, s),

with terminal value functions V0(q̂, s) = 0.

Denote by o∗t (q̂, s) the firm’s optimal offering decision for period t given consumer mean

belief q̂ and cumulative sales s. We show in Lemma 4.2 that it is optimal for the firm to

offer the product to every arriving customer. This is not surprising given that the firm is

not able to differentiate one customer from another when making offering decisions. We call

this an “offer-to-all” policy and will use it as a benchmark in our numerical analysis in §4.6

when the firm has access to individual customers’ preferences.

For the case in which the firm does not observe individual customer preferences,

Lemma 4.2. o∗t (q̂, s) = 1 for all t, q̂, and s.

4.4.2 Observable Customer Preference Information

In this subsection, we consider the case in which the firm has knowledge of each arriving

customer’s preference. Specifically, we assume that the firm knows the exact value of each

arriving customer’s idiosyncratic preference θi. The implication of this assumption, given the
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review-generating process in our model, is that the firm knows exactly whether an arriving

customer i with common mean belief q̂ will make a purchase (q̂+ θi− p ≥ 0), and the review

she would generate (ri = q + θi − µθ) if she buys. Although highly stylized, this assumption

simplifies our exposition while capturing a key feature in our problem setting that the firm

possesses information for identifying individual customers’ preferences. In addition, our

main results can be generalized to the more general case in which the firm observes θ plus a

zero-mean Gaussian random noise. As the insights generated are qualitatively similar, we

do not present this general case for expositional simplicity.

Dynamic Program. Similar to the benchmark problem in §4.4.1, we formulate the firm’s

optimal product offering problem as a finite-horizon DP. The firm’s objective is to maximize

the expected total profit over T periods. With a slight abuse of notation, let Vt(q̂, s, θ) be

the optimal expected total profit with t periods left, consumers’ mean belief q̂, cumulative

sales s, and the arriving customer’s preference θ. If the arriving customer with preference

θ has a negative expected net utility, i.e., θ + q̂ − p < 0, she does not buy the product.

The firm collects no revenue and customers do not update their common belief on q. The

next arriving customer’s preference will be a random variable Θ following the preference

distribution FΘ(·). If the arriving customer’s expected net utility is positive, she will make

a purchase as long as the firm offers the product for sale. In that case, the firm collects

revenue p, and consumers update their common belief according to (4.1), in response to the

review generated by the buying customer. In summary, the value functions Vt(q̂, s, θ) are

given by

Vt(q̂, s, θ) =


EΘVt−1(q̂, s,Θ), θ + q̂ − p < 0,

max{p+ EΘVt−1(u(q̂, s, θ), s+ 1,Θ),EΘVt−1(q̂, s,Θ)}, θ + q̂ − p ≥ 0.

(4.2)

for t = T, T − 1, . . . , 1, with V0(q̂, s, θ) = 0 for all q̂, s, and θ.

Optimal Offering Policy. Let o∗t (q̂, s, θ) ∈ {0, 1} be the optimal offering decision with t

periods left, customers’ mean belief q̂, and arriving customer’s preference θ, where o∗t (q̂, s, θ) =

1 indicates that retailer chooses to offer the product and o∗t (q̂, s, θ) = 1 otherwise. We use the
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convention that o∗t (q̂, s, θ) ≡ 0 whenever θ+ q̂− p < 0. In the following proposition, we show

monotonicity properties of the value functions, which we subsequently use to characterize

the form of the optimal offering policy.

Proposition 4.1. The following hold:

(a) Vt(q̂1, s, θ) ≤ Vt(q̂2, s, θ) for any q̂1 < q̂2, t = 0, . . . , T , s = 0, . . . , T − t, and all θ.

(b) Vt(q̂, s, θ1) ≤ Vt(q̂, s, θ2) for any θ1 < θ2, t = 0, . . . , T , s = 0, . . . , T − t, and q̂ ∈ R.

(c) There exists a series of functions, {θ∗t (q̂, s), t = 1, . . . , T}, on R such that o∗t (q̂, s, θ) = 1

if θ ≥ θ∗t (q̂, s), and o∗t (q̂, s, θ) = 0 otherwise.

Proposition 4.1(a) and (b) show that the optimal expected total profit increases with

consumers’ mean belief and the arriving customer’s preference. These monotone properties

are consistent with the intuition that higher mean belief/preference leads to not only a higher

revenue from the arriving customers but also a higher mean belief for future customers.

Proposition 4.1(c) characterizes the firm’s optimal offering policy to be of a threshold

type. The threshold θ∗t (q̂, s) separates the potential arriving customers in period t into two

segments; to maximize profit, the firm should only offer the product for sale to customers

who have a preference higher than θ∗t (q̂, s).

We remark that the optimal offering thresholds may be non-trivial. Recall that a

customer with preference θ and common mean belief q̂ will buy if q̂ + θ − p ≥ 0, or

equivalently, if θ ≥ p − q̂. Therefore, a constant threshold θ∗t (q̂, s) ≡ p − q̂ would simply

imply an offer-to-all policy. However, as will be evident in our numerical illustrations, θ∗t (q̂, s)

can be greater than p− q̂. Such a threshold value would mean that it can be optimal for

the firm to “conceal” the product from an arriving customer, even if the firm is aware that

the particular customer will purchase the product if offered. The underlying reason for

the firm to forgo the immediate, guaranteed revenue is to avoid the negative externality

of offering the product to a low-preference customer. Accompanied with a revenue of p, a

low-preference customer also generates a low product review, which may decrease consumers’

mean belief and thus decrease the expected revenue from future customers.
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Moreoever, with Proposition 4.1(c), we are able to simplify the firm’s problem by

dropping θ as a state variable. Define Gt(q̂, s) := EΘVt(q̂, s,Θ), where Gt(q̂, s) is the firm’s

expected optimal profit in anticipation of a customer arriving in period t, with consumers’

mean belief being q̂ and the cumulative sale s. We can rewrite the DP in (4.2) as

Gt(q̂, s) = max
θt≥p−q̂

FΘ(θt)Gt−1(q̂, s) +

∫ ∞
θt

[p+Gt−1(u(q̂, s, θ), s+ 1)]dFΘ(θ)

= max
θt≥p−q̂

FΘ(θt)Gt−1(q̂, s) + pFΘ(θt) +

∫ ∞
θt

Gt−1(u(q̂, s, θ), s+ 1)dFΘ(θ)

= FΘ(θ∗t (q̂, s))Gt−1(q̂, s) + pFΘ(θ∗t (q̂, s)) +

∫ ∞
θ∗t (q̂,s)

Gt−1(u(q̂, s, θ), s+ 1)dFΘ(θ)

with terminal value functions G0(q̂, s) = 0 for all q̂ and s.

With the above simplified notation, we further characterize the optimal offering threshold

θ∗t (q̂, s) in Proposition 4.2.

Proposition 4.2. Let θ0
t (q̂, s) be the unique solution to the equation

Gt−1(q̂, s)−Gt−1(u(q̂, s, θ), s+ 1) = p, (4.3)

if it exists. Then, θ∗t (q̂, s) = max{p− q̂, θ0
t (q̂, s)} if θ0

t (q̂, s) exists. Otherwise, θ∗t (q̂, s) = p− q̂.

Proposition 4.2 reveals the key tradeoff the firm faces when making its offering decision

for each arriving customer. The solution to Equation (4.3), θ0
t (q̂, s), if it exists, strikes a

balance between the firm’s immediate return, the selling price p, and the expected marginal

return from skipping a low-value customer and maintaining a high mean belief for future

customers. We note that θ0
t (q̂, s) may not exist at all: a straightforward example is when

t = 1, as G0(q̂, s) = 0 for all q̂ and s. Indeed, the firm should offer the product to the last

customer whenever she is willing to buy. When θ0
t (q̂, s) does not exist, it means that the

future benefit of not offering the product to a potential buying customer never outweighs the

immediate revenue; as a result, the optimal decision is to offer the product to all customers.

Similarly, if θ0
t (q̂, s) does exists but is below the buying threshold p− q̂, there are customers

with low enough preferences to justify a no-offering decision as a result of their negative
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externality on future sales through social learning; however, such customers will not purchase

due to their low preferences.

The following proposition indicates that the firm’s optimal offering region shrinks as t

increases.

Proposition 4.3. θ∗t (q̂, s) ≤ θ∗t+1(q̂, s) for t = 0, . . . , T − 1, q̂ ∈ R and s = 0, . . . , T − t.

The intuition behind Proposition 4.3 is as follows. As the selling horizon lengthens,

so does the marginal benefit of personalized offering, since the number of affected future

customers increases. To illustrate, with t+ 1 periods left, if the firm chooses the optimal

threshold for a t-period problem, θ∗t (q̂, s), the firm’s marginal immediate profit loss remains

unchanged as in a t-period problem, whereas the marginal future profit gain increases due

to the additional period at the end to sell the product. Therefore, by (weakly) increasing

the offering threshold from θ∗t (q̂, s) and thus offering to a smaller segment of customers in

the current period, the firm re-strikes a balance between an increased its marginal profit

loss and the marginal future profit gain.

4.5 Limited Inventory

In this section, we extend our analysis to the case in which the firm has a fixed quantity

of inventory, I ∈ Z+, at the beginning of the selling season. The firm has no additional

replenishment opportunity throughout the T -period horizon. We note that this problem

reduces to an unlimited inventory problem when I ≥ T , and our results in §4.4.2 immediately

follow.

We incorporate the inventory constraint into the DP in Equation (4.2) by including

inventory level x as an additional state variable. In particular, let Vt(q̂, s, x, θ) be the optimal

expected total profit with t periods left, consumers’s mean belief q̂, cumulative sales s,

inventory level x, and the arriving customer’s preference θ. The Bellman equations are given
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by

Vt(q̂, s, x, θ) =


EΘVt−1(q̂, s, x,Θ), θ + q̂ − p < 0 or x = 0,

max{p+ EΘVt−1(u(q̂, s, θ), s+ 1, x− 1,Θ),

EΘVt−1(q̂, s, x,Θ)}, θ + q̂ − p ≥ 0 and x > 0.

(4.4)

for t = T, T − 1, . . . , 1, with V0(q̂, s, x, θ) = 0 for all q̂, s, x, and θ.

In a similar fashion to Proposition 4.1, we derive monotone properties of function

Vt(q̂, s, x, θ) and subsequently the form of the optimal offering policy.

Proposition 4.4. The following hold:

(a) Vt(q̂1, s, x, θ) ≤ Vt(q̂2, s, x, θ) for any q̂1 < q̂2, t = 0, . . . , T , s = 0, . . . , T − t, and all θ.

(b) Vt(q̂, s, x, θ) ≤ Vt(q̂, s, x+ 1, θ) for x = 0, . . ., all q̂, s, and θ;

(c) Vt(q̂, s, x, θ1) ≤ Vt(q̂, s, x, θ2) for any θ1 < θ2, t = 0, . . . , T , s = 0, . . . , T − t, and q̂ ∈ R.

(d) There exists a series of functions, {θ∗t (q̂, s, x), t = 1, . . . , T}, such that o∗t (q̂, s, x, θ) = 1

if θ ≥ θ∗t (q̂, s, x), and that o∗t (q̂, s, x, θ) = 0 otherwise.

While Proposition 4.4(a), (c) and (d) do not change qualitatively from their counterparts

in Proposition 4.1, Proposition 4.4(b) suggests that the optimal expected profit is also

monotonically increasing in the inventory level x.

Again, we see that the optimal offering policy is of the threshold type in the presence

of an inventory constraint. The optimal offering thresholds are functions that depend on

inventory level x, in addition to t, q̂, and s.

Similarly, we are able to simplify the firm’s problem by dropping θ as a state variable.

Define Gt(q̂, s, x) := EΘVt(q̂, s, x,Θ), where Gt(q̂, s, x) is the firm’s expected optimal profit

in anticipation of a customer arriving in period t, with consumers’ mean belief q̂, cumulative

sales s, and inventory level x. We rewrite the DP in (4.4) as

Gt(q̂, s, x) = max
θt≥p−q̂

FΘ(θt)Gt−1(q̂, s, x) +

∫ ∞
θt

[p+Gt−1(u(q̂, s, θ), s+ 1, x− 1)]dFΘ(θ)
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= max
θt≥p−q̂

FΘ(θt)Gt−1(q̂, s, x) + pFΘ(θt) +

∫ ∞
θt

Gt−1(u(q̂, s, θ), s+ 1, x− 1)dFΘ(θ)

= FΘ(θ∗t (q̂, s, x))Gt−1(q̂, s, x) + pFΘ(θ∗t (q̂, s, x))

+

∫ ∞
θ∗t (q̂,s,x)

Gt−1(u(q̂, s, θ), s+ 1, x− 1)dFΘ(θ)

for x > 0, with terminal value functions G0(q̂, s, x) = 0 for all q̂ and s, and Gt(q̂, s, 0) = 0

for all t, q̂, and s by noticing that the expected profit is zero with no inventory to sell.

With the above simplified notation, we characterize the optimal offering threshold

θ∗t (q̂, s, x) in Proposition 4.5, which extends Proposition 4.2 to a limited inventory setting.

Proposition 4.5. Let θ0
t (q̂, s, x) be the unique solution to the equation

Gt−1(q̂, s, x)−Gt−1(u(q̂, s, θ), s+ 1, x− 1) = p, (4.5)

if it exists. Then, θ∗t (q̂, s, x) = max{p − q̂, θ0
t (q̂, s, x)} if θ0

t (q̂, s, x) exists. Otherwise,

θ∗t (q̂, s, x) = p− q̂.

In the following, we analyze the optimal offering threshold θ∗t (q̂, s, x) as a function of

the selling horizon t as well as the inventory level x. We show in Proposition 4.6 that the

optimal offering region shrinks as t or x increases.

Proposition 4.6. The following hold:

(a) θ∗t (q̂, s, x) ≤ θ∗t+1(q̂, s, x) for x = 0, 1, . . ., all q̂ and s;

(b) θ∗t (q̂, s, x) ≤ θ∗t (q̂, s, x+ 1) for x = 0, 1, . . ., all t and s;

Proposition 4.6(a) shows that with more time left to sell the product, the firm should

be more selective in product offering; that is, the firm should offer the product to a smaller

segment of high-preference customers with the same consumer belief and leftover inventory.

This confirms that our finding in Proposition 4.3 continues to hold with a limited inventory.

Proposition 4.6(b) suggests that the firm should be more selective in product offering

with more leftover inventory, holding the consumer belief and selling horizon constant. This

conforms with our intuition that more inventory corresponds to more selling opportunities,
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hence a stronger incentive to personalize offerings. We remark that this result is contrary to

findings in the classic revenue management literature that the firm should be less selective

(i.e., reduce price in a dynamic pricing context) with more leftover inventory (Elmaghraby

and Keskinocak, 2003).

We also note that Proposition 4.6 links the optimal threshold for the limited inventory

problem to that for the unlimited inventory problem by providing a lower and an upper

bound for the former with the latter. Particularly, it follows straightforwardly that θ∗x(q̂, s) =

θ∗x(q̂, s, x) ≤ θ∗t (q̂, s, x) ≤ θ∗t (q̂, s, t) = θ∗t (q̂, s), where θ∗x(q̂, s) and θ∗t (q̂, s) are the optimal

offering thresholds for an x- and t-period unlimited inventory problem, respectively (recall

that x ≤ t). That is, for a t-period problem with x units of inventory, solving a t-period

problem with unlimited inventory gives an upper bound on the optimal offering threshold,

whereas solving an x-period problem with unlimited inventory yields a lower bound.

4.6 Numerical Analysis

In this section, we conduct a numerical analysis in order to obtain a deeper understanding

of the optimal product offering problem with customer preference and review information.

We first describe in §4.6.1 how we parameterize the problem and vary the model parameters.

Then in §4.6.2, we examine the value of personalized offering and demonstrate how the

optimal offering policy behaves under different parameter settings.

4.6.1 Parameter Settings

We simplify our model parameterization by focusing on three derived parameters—initial

belief mean q̂T , nominal purchasing probability β := P(Θ + q − p ≥ 0) = FΘ(p − q), and

uncertainty ratio γ := σT /σθ. We normalize q = 0 throughout our numerical analysis without

loss of generality. As a result, q̂T represents consumers’ relative expectation on product

quality: a positive (negative) q̂T value indicates that customers have an expectation on

quality that is higher (lower) than the actual quality of the product.

We define the nominal purchasing probability, β, to be the probability that a random

customer is willing to buy the product if the consumer mean belief q̂ = q = 0. One can
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interpret β as a normalized proxy for price p. We let β take values in {0.9, 0.5, 0.1},

corresponding to a relatively low, medium, and high price, respectively.

The uncertainty ratio γ reflects consumers’ level of uncertainty about the unknown

product quality. The higher the value of γ, the more susceptible is the consumers’ mean

belief to be affected by reviews. We choose the value of γ from {0.5, 1, 2}. In addition, we

fix µθ = 3 and σ2
θ = 1 to allow for low nominal purchasing probabilities β’s with price still

being positive.

We perform the analysis for the unlimited inventory problem with T = 10, 20, 50 and

the limited inventory problem with T = 50 and I = 10, 20, 50. We do not observe qualitative

difference among these parameter settings. Therefore, in the following we only report our

results for the unlimited inventory problem with T = 10.

4.6.2 The Value of Personalized Offering

We have discussed in Section 4.4.1 the “offer-to-all” policy, a benchmark product offering

policy that simply offers the product to all arriving customers. We have also demonstrated

its optimality in settings in which the firm does not observe individual customers’ preferences.

In this subsection, we investigate the value of personalized offering with customer review and

preference information by comparing the performance of the optimal offering policy with

that of the “offer-to-all” benchmark. Recall that GT (q̂, 0) is the optimal expected total profit

of a T -period problem with consumers’ prior mean belief q̂. Let GoT (q̂, 0) denote the expected

total profit of the same problem under the offer-to-all benchmark policy. To evaluate the

value of personalized offering over the traditional practice of offering to the entire customer

base, we compute the percentage profit gain by using personalized offering across a set of

numerical examples. In particular, the metric that we use is given by
(

1− GoT (q̂,0)

GT (q̂,0)

)
× 100%.

We plot in Figure 4.1 the percentage profit gain from personalized offering as a function

of q̂ under various β and γ values. We also show in Figure 4.2 the optimal offering threshold

for the first arriving customer in a T -period problem, θ∗T (q̂T , 0), as a function of consumers

initial mean belief q̂T . The thin lines represent customers purchasing thresholds θ = p− q̂T ,

which correspond to offering threshold for the offer-to-all policies. We observe that in general

87



Figure 4.1: Percentage profit gain from personalized offering.
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Figure 4.2: Optimal offering threshold θ∗T (q̂, 0).
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(b) γ = 2

the firm optimally chooses not to offer the product when consumers’ mean belief is high but

the arriving customer’s preference is low.

The Impact of q̂. We observe that personalized offering seems to be most valuable for

moderately positive q̂ values, that is, when customers hold an initial expectation that is

slightly higher than the product’s true quality. Figure 4.1 shows that the potential profit

gain from personalized offering can be more than 10% over an offer-to-all policy.

The value of personalized offering diminishes as q̂T becomes either negative or very large.

When q̂T is low, customers have a low expectation on product quality. As a result, only

customers with a high preference will purchase, and the generated reviews will only boost up

consumers’ mean belief on quality. In this case, the firm tends to adopt an offer-to-all policy

as the immediate revenue and future expected sales are aligned rather than conflicted. This

is reflected in Figure 4.2(b). When q̂T is high, customers’ expectation on product quality
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becomes so high that even offering the product to a low-preference customer will not bring

down customers’ expectation enough to negate future purchases. For example, Figure 4.2(b)

shows that as q̂T increases, the optimal offering threshold falls below µθ−3σθ = 0 for β = 0.9

and γ = 2; the firm is offering the product to essentially all customers.

The Impact of β. The value of personalized offering seems to decrease with β, or equiva-

lently, to increase with price. As shown in Figure 4.1, its value almost vanishes at β = 0.9,

which translates into a low price tag with a 90% purchasing probability when customers

know the true quality q. The value is most significant at β = 0.1, which corresponds to a

high price with only a 10% purchasing probability.

The intuition is as follows. When the price is low, most customers will buy regardless of

a low expectation on product quality. Therefore, the benefit of personalized offering is small.

On the contrary, when the price is high, an increase in customers’ quality expectation will

significantly increase the purchasing probability of an arriving customer. Hence, the value of

personalized offering increases. We observe in Figure 4.2(b) that the firm tends to be more

selective in its offerings as price increases, or, as β decreases.

The Impact of γ. Figure 4.1 shows that personalized offering is most valuable when γ is

large; that is, when consumers are very uncertain about their belief on the product quality.

A large γ implies that customers’ mean belief is easily changed in response to reviews.

Therefore, personalized offering makes a big difference. However, when γ is small, reviews

hardly affect customers’ belief about quality. As a result, the benefit of withholding product

from customers goes down.

Figure 4.2(a) displays how the value of γ affects the optimal offering threshold with a

fixed β = 0.1. For a fixed price, the optimal offering region shrinks as γ increases. Note that

the optimal offering policy approaches the offer-to-all benchmark policy as γ decreases from

2 to 0.5.

To summarize, our numerical analysis shows that personalized offering may be most

prominent and also may provide its highest benefit when the price is high and when consumers

have a moderately optimistic but highly uncertain expectation on the underlying quality of

the product.
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4.7 Concluding Remarks

In this chapter, we have considered a firm that maximizes its profit by personalizing

product offering decisions for a sequence of arriving customers based on their observable and

heterogeneous preferences. Customers collectively learn product quality by updating their

common belief based on product reviews generated by previous buyers. We characterize

that the optimal offering policy is of threshold type. Our most important finding is that the

optimal offering threshold can be higher than consumers’ purchasing threshold; that is, it can

be optimal for the firm not to offer the product for sale, even knowing the arriving customer is

willing to buy. The decision to offer the product involves a key tradeoff between an immediate

profit loss versus the marginal expected future sales from maintaining a high mean belief.

We remark that both features in our model—that the firm can observe individual customer

preferences and that customers learn product quality through reviews—are essential for our

main results to hold. Removing either will immediately trivialize the problem, making an

offer-to-all policy optimal.

Our work suggests several directions for future research. It would be interesting to

endogenize the initial inventory level I and/or the selling price p as decision variables and to

analyze the joint optimal pricing, inventory ordering, and product offering policy. Another

natural avenue to pursue is to extend the problem to a multi-product setting. In this case, the

problem closely resembles classic dynamic assortment planning problems, but with a demand

process that can be affected by customer reviews. It would be particularly valuable to

explore whether and how the firm would benefit from personalizing assortment for individual

customers in the presence of substitution and complementarity among products.

Our results rely on the assumption that customers are not fully rational in updating

their belief over product quality. In interpreting previous customer reviews, they do not

adjust for the selection bias due to customer purchasing decisions nor for the selection bias

due to the firm’s product offering policy. Our numerical analysis has been able to isolate and

showcase the effect and the value of personalized offering. However, it remains an intriguing

question whether our results extend to other customer learning schemes that may be able to
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correct for selection biases due to purchasing (e.g., Besbes and Scarsini, 2014), or even those

due to the adoption of personalized offerings.

We have considered a simplified model for consumer behaviors in which all customers are

homogeneous in terms of their beliefs and behaviors except for their individual preferences.

In reality, customers may be more diverse in their ways of generating and interpreting

product reviews. For instance, customers may subject to “under-reporting” biases in reviews

as people tend to write reviews only when they are either extremely satisfied or extremely

unsatisfied (Hu et al., 2009); previously posted reviews may affect customers’ decisions on

whether and what to contribute (Moe and Schweidel, 2012). As a result, it is worthwhile

to check the validity of our results under richer consumer behavior models that are able to

capture such effects.
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APPENDIX A

Proofs of Results in Chapter 2

A.1 Proof of Proposition 2.2

Proof. y∗t (πt) is the solution to

Ht(x|πt) = −p+ (h+ p)Φ(x|πt) + αEDt|πt

[
∂Ct+1

∂x
(x−Dt|πt ◦Dt)

]
= −c.

For t = T ,
∂CT+1

∂x (·|·) = 0, thus HT (y∗T (πT )|πT ) = −p + (h + p)Φ(y∗T (πT )|πT ) = −c, or

Φ(y∗T (πT )|πT ) = p−c
p+h = Φ(yMT |πT ), namely, yMT (πT ) = y∗T (πT ). One can show that due to

the convexity of Ct+1(·|·),

EDt|πt

[
∂Ct+1

∂x
(x−Dt|πt ◦Dt)

]
≥ −c,

therefore for t = 1, . . . , T − 1,

Ht(y
∗
t (πt)|πt) = −p+ (h+ p)Φ(y∗t (πt)|πt) + αEDt|πt

[
∂Ct+1

∂x
(x−Dt|πt ◦Dt)

]
≥ −p+ (h+ p)Φ(y∗t (πt)|πt)− αc.

Since y∗t (πt) satisfies Ht(y
∗
t (πt)|πt) = −c, we have

Φ(y∗t (πt)|πt) ≤
p− (1− α)c

p+ h
= Φ(yMt (πt)|πt),

namely, y∗t (πt) ≤ yMt (πt).
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Figure A.1: An example showing that Proposition 2.3(b) may not hold if f(·|θ) does not
have the MLRP property.

A.2 Proof of Proposition 2.3

Proof. We postpone the proof of part (a) until Appendix A.4, where Lemma A.3 includes

this result as a special case. Alternatively, part (a) can be proved directly with an extension

of Theorem 2 in Scarf (1959) to all demand distribution families that have MLRP.

To prove part (b), we note that for any dτ < d′τ , Lemma 2 of Chen (2010) establishes

that πt ≤lr π′t. The result then follows from (a).

We provide an example showing that it is necessary for f(·|θ) to have the MLRP

property for part (b) to hold. Let the demand parameter θ take values in the set {1, 2}.

Demand in each period is 0, 1, or 2 units, and the demand probability mass function is

shown in Figure A.1(c). Note that f(·|θ) does not have the MLRP property; in particular,

f(0|θ=2)
f(0|θ=1) = f(2|θ=2)

f(2|θ=1) = 4 > 0.25 = f(1|θ=2)
f(1|θ=1) . Now consider a two-period inventory problem.

Figure A.1(d) shows the predictive cumulative demand distribution given a uniform initial

prior π1(θ = 1) = π1(θ = 2) = 0.5. Suppose we choose cost parameters such that the

newsvendor critical ratio determining the period 2 base-stock level is 0.70. Then the optimal

base-stock level in period 2 is two units if d1 = 0 or d1 = 2 but is one unit if d1 = 1.

Therefore, the optimal base-stock level is not increasing in d1.
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A.3 Proof of Lemma 2.1

Proof. The proof is by induction. The lemma is true for t = 1. Suppose it is true for some

t ≥ 1; that is

πt(·|dt−1) = (1− γt(dt−1))πht (·|dt−1) + γt(dt−1)πct (·|dt−1).

Using Bayes rule, for i ∈ {h, c}, we have

πit+1(θ|dt) =
πit(θ|dt−1)f(dt|θ)∫

Θ π
i
t(ω|dt−1)f(dt|ω)dω

,

and

πt+1(θ|dt) =
[(1− γt(dt−1))πht (θ|dt−1) + γt(dt−1)πct (θ|dt−1)]f(dt|θ)∫

Θ[(1− γt(dt−1))πht (ω|dt−1) + γt(dt−1)πct (ω|dt−1)]f(dt|θ)dω
.

Write Ii =
∫

Θ π
i
t(ω|dt−1)f(dt|ω)dω for i ∈ {h, c}, then

πt+1(θ|dt) =
(1− γt(dt−1))πht (θ|dt−1)f(dt|θ)
(1− γt(dt−1))Ih + γt(dt−1)Ic

+
γt(dt−1)πct (θ|dt−1)f(dt|θ)

(1− γt(dt−1))Ih + γt(dt−1)Ic

=
(1− γt(dt−1))Ih

(1− γt(dt−1))Ih + γt(dt−1)Ic
πht+1(θ|dt)

+
γt(dt−1)Ic

(1− γt(dt−1))Ih + γt(dt−1)Ic
πct+1(θ|dt).

By defining

γt+1(dt) =
γt(dt−1)Ic

(1− γt(dt−1))Ih + γt(dt−1)Ic
,

the lemma is true for t+ 1, which completes the induction.

A.4 Proof of Proposition 2.6

For the purposes of this section, we consider an T -period generalized Bayesian inventory

problem as described below. Let Ĉt(x|π) be the optimal expected cost for periods t, . . . , T
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given initial inventory level x and prior distribution π, where

Ĉt(x|π) = min
y≥x

{
c(y − x) + L(y|π) + αEDt=(D̂t,Dt)|π

[
Ĉt+1(y − D̂t|π ◦Dt)

]}
,

with terminal value ĈT+1(·|·) = 0. We assume that D̂t and Dt have the same marginal

distribution induced by the prior π but their dependence is induced by some copula.

We denote the minimizer of this expression by ŷ∗t (π). Note that the original and the

independentized problems are both special cases of this formulation. In the original problem,

D̂t = Dt, whereas in the independentized problem, D̂t and Dt are independent with the

same distribution induced by π.

The proof of Proposition 2.6 requires a few lemmas:

Lemma A.1. For all π and t = 1, . . . , T + 1:

(i) Ĉt(x|π) has a continuous derivative with respect to x, and is convex with respect to x;

(ii) The optimal policies are defined by single critical numbers ŷ∗t (π) ≥ 0;

(iii) Ĉt(x|π) has a continuous second derivative with respect to x at all points except perhaps

x = ŷ∗t (π), at which point both the left and right hand second derivatives exist.

We omit the proof, as it is a minor modification of the one for Proposition 2.1.

Lemma A.2. Let Di = (D̂,D)|πi be a random vector in which D̂ and D have the same

marginal predictive demand density φ(·|πi), for i = 1, 2, and suppose that D1 and D2 have a

common copula. If π1 ≤lr π2, then D1 ≤st D2.

Proof. Let D̂|πi and D|πi denote random variables with density φ(·|πi) for i = 1, 2, then

D̂|π1 ≤st D̂|π2 and D|π1 ≤st D|π2 (Lemma 2(d), Chen, 2010). The lemma follows from

Theorem 6.B.14 in Shaked and Shanthikumar (2007).

Lemma A.3. If π1 ≤lr π2, the following hold for all x, π and t = 1, . . . , T + 1:

(i) ∂Ĉt
∂x (x|π1) ≥ ∂Ĉt

∂x (x|π2);

(ii) ŷ∗t (π
1) ≤ ŷ∗t (π2).
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Proof. The proof is by induction. The lemma clearly holds when t = T + 1 because

ĈT+1(·|·) = 0. Suppose it is true for t+ 1. One can show that

∂Ĉt
∂x

(x|π) =


−c , x < ŷ∗t (π),

Ĥt(x|π) , x ≥ ŷ∗t (π),

where function Ĥt(·|π) is defined by

Ĥt(x|π) = −p+ (h+ p)Φ(x|π) + αE(D̂t,Dt)|π

[
∂Ĉt+1

∂x
(x− D̂t|π ◦Dt)

]
.

For fixed (d̂t, dt), by the induction assumption, we have

∂Ĉt+1

∂x
(x− d̂t|π1 ◦ dt) ≥

∂Ĉt+1

∂x
(x− d̂t|π2 ◦ dt), (A.1)

since π1 ◦ dt ≤lr π2 ◦ dt (Lemma 2(c), Chen, 2010). In addition, for d̂1
t ≤ d̂2

t , d
1
t ≤ d2

t , we

have

∂Ĉt+1

∂x
(x− d̂1

t |π2 ◦ d1
t ) ≥

∂Ĉt+1

∂x
(x− d̂1

t |π2 ◦ d2
t ) (A.2)

≥ ∂Ĉt+1

∂x
(x− d̂2

t |π2 ◦ d2
t ), (A.3)

where (A.2) follows from the induction assumption and that π2 ◦d1
t ≤lr π2 ◦d2

t (Lemma 2(a),

Chen, 2010), and (A.3) from the convexity of Ĉt+1(·|π2 ◦d2
t ). Therefore, ∂Ĉt+1

∂x (x− d̂t|π2 ◦dt)

is decreasing in (d̂t, dt). In addition, π1 ≤lr π2 together with Lemma A.2 imply that

(D̂t, Dt)|π1 ≤st (D̂t, Dt)|π2. (A.4)

We thus have

E(D̂t,Dt)|π1

[
∂Ĉt+1

∂x
(x− D̂t|π1 ◦Dt)

]
≥ E(D̂t,Dt)|π1

[
∂Ĉt+1

∂x
(x− D̂t|π2 ◦Dt)

]
(A.5)

≥ E(D̂t,Dt)|π2

[
∂Ĉt+1

∂x
(x− D̂t|π2 ◦Dt)

]
, (A.6)
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where (A.5) results from (A.1), and (A.6) from (A.4) and the fact that ∂Ĉt+1

∂x (x− d̂t|π2 ◦ dt)

is decreasing in (d̂t, dt) (Section 6.B.1, Shaked and Shanthikumar, 2007). We conclude that

Ĥt(x|π1) ≥ Ĥt(x|π2). Note that ŷ∗t (π) is the solution to the equation Ht(x|π) = −c. Also

note that Ht(x|π) is increasing in x. Hence,

Ĥt(ŷ
∗
t (π

1)|π1) = −c = Ĥt(ŷ
∗
t (π

2)|π2) ≤ Ĥt(ŷ
∗
t (π

2)|π1),

which indicates that ŷ∗t (π
1) ≤ ŷ∗t (π2).

It remains to show that ∂Ĉt
∂x (x|π1) ≥ ∂Ĉt

∂x (x|π2). Consider three cases:

(i) x < ŷ∗t (π
1). In this case, ∂Ĉt

∂x (x|π1) = ∂Ĉt
∂x (x|π2) = −c;

(ii) ŷ∗t (π
1) ≤ x < ŷ∗t (π

2). In this case, ∂Ĉt
∂x (x|π1) = Ĥ(x|π1) ≥ Ĥ(ŷ∗t (π

1)|π1) = −c =

∂Ĉt
∂x (x|π2);

(iii) x > ŷ∗t (π
2). In this case, ∂Ĉt

∂x (x|π1) = Ĥ(x|π1) ≥ Ĥ(x|π2) = ∂Ĉt
∂x (x|π2);

This completes the induction proof.

With these lemmas established, we can now proceed to the proof of Proposition 2.6.

Proof of Proposition 2.6. The proof is by induction. The proposition is clearly true when

t = T + 1. Suppose for period t+ 1, C⊥t+1(x|π) ≤ Ct+1(x|π) for all x, π.

Fix y. Consider function K(d⊥t , dt) = C⊥t+1(y − d⊥t |π ◦ dt). Taking the derivative with

respect to d⊥t , we obtain

∂K

∂d⊥t
(d⊥t , dt) = −

∂C⊥t+1

∂(y − d⊥t )
(y − d⊥t |π ◦ dt).

For d1
t ≤ d2

t , Lemma 2 of Chen (2010) implies that π ◦ d1
t ≤lr π ◦ d2

t . Lemma A.3 therefore

yields

∂K

∂d⊥t
(d⊥t , d

1
t ) ≤

∂K

∂d⊥t
(d⊥t , d

2
t ).

In other words, K(·, ·) has increasing differences in (d⊥t , dt). Thus, K(·, ·) is supermodular

in (d⊥t , dt).
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Let F ot (d̂t, dt) and F⊥t (d̂t, dt) be the distribution functions of the random vectors Do
t =

(Dt, Dt)|π and D⊥t = (D⊥t , Dt)|π, respectively. Then we have

F⊥t (d̂t, dt) = P
{
D⊥t ≤ d̂t, Dt ≤ dt

}
= P

{
D⊥t ≤ d̂t

}
P {Dt ≤ dt}

≤ min
[
P
{
D⊥t ≤ d̂t

}
,P {Dt ≤ dt}

]
= min

[
P
{
Dt ≤ d̂t

}
,P {Dt ≤ dt}

]
= P

{
Dt ≤ d̂, Dt ≤ d

}
= Fo(d̂, d).

Therefore, by (9.A.3) in Shaked and Shanthikumar (2007), Do
t and D⊥t are ranked in the

positive quadrant dependent (PQD) order: D⊥t = (D⊥t , Dt)|π ≤PQD (Dt, Dt)|π = Do
t .

By (9.A.18) in Shaked and Shanthikumar (2007), Do
t and D⊥t are thus ranked in the

supermodular order as follows:

D⊥t = (D⊥t , Dt)|π ≤sm (Dt, Dt)|π = Do
t . (A.7)

We finally have

C⊥t (x|π) = min
y≥x

{
c(y − x) + L(y|π) + αED⊥t =(D⊥t ,Dt)|π

[
K(D⊥t , Dt)

]}
≤ min

y≥x

{
c(y − x) + L(y|π) + αEDo

t=(Dt,Dt)|π [K(Dt, Dt)]
}

= min
y≥x

{
c(y − x) + L(y|π) + αEDo

t=(Dt,Dt)|π

[
C⊥t+1(y −Dt|π ◦Dt)

]}
≤ min

y≥x

{
c(y − x) + L(y|π) + αEDo

t=(Dt,Dt)|π [Ct+1(y −Dt|π ◦Dt)]
}

= Ct(x|π),

where the first inequality follows from (A.7) and the definition of supermodular ordering,

and the second follows from the induction assumption. This completes the proof.

A.5 Proof of Proposition 2.8

Proof. Let dT = (d1, . . . , dT ) and d′T = (d′1, . . . , d
′
T ) be two demand paths such that dt ≤ d′t

for all t. Let dt = (d1, . . . , dt) and d′t = (d′1, . . . , d
′
t) be the subsequences of dT and d′T until
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period t, respectively. Let y(π) = (yt(π ◦ dt−1)) denote the myopic (also the optimal) policy.

It follows that π ◦ dt−1 ≤lr π ◦ dt−1 and hence

G(yt(π ◦ dt−1)|π ◦ dt−1) ≤ G(yt(π ◦ dt−1)|π ◦ dt−1) (A.8)

for all π ∈ P because G(y|π) ≤ G(y|π′) for all π ≤lr π′. To see this, note that D|π ≤st D|π′

for all π ≤lr π′ and that min{y, d} is an increasing function in d.

We also have π ◦ dt−1 ≤lr π ◦ d′t−1 ≤lr π ◦ d′t−1 for all π ∈ P, which implies that

yt(π ◦ dt−1) ≤ yt(π ◦ d′t−1) ≤ yt(π ◦ d′t−1). Therefore, we have

G(yt(π ◦ dt−1)|π ◦ dt−1) ≤ G(yt(π ◦ dt−1)|π ◦ d′t−1) ≤ G(yt(π ◦ d′t−1)|π ◦ d′t−1), (A.9)

where the first inequality follows from the fact that π ◦ dt−1 ≤lr π ◦ d′t−1 and the second

from the fact that G(y|π ◦ d′t−1) is increasing over yt(π ◦ dt−1) ≤ y ≤ yt(π ◦ d′t−1). As a

consequence,

E[G(yt(π ◦ dt−1)|π ◦ dt−1)|π] ≤ E[G(yt(π ◦ dt−1)|π ◦ dt−1)|π]

≤ E[G(yt(π ◦ dt−1)|π ◦ dt−1)|π]

for all π ∈ P. The expectations are with respect to the random variable dt−1 over π and

π in the first two expressions and the third expression, respectively. The first inequality

directly follows from (A.8) whereas the second is due to (A.8) and that π ≤lr π.

Denote by ΠT (y, π) the expected total profit when policy y is employed and π is used as

the “true” prior for generating the Bayesian demand process. More specifically, ΠT (y, π) =∑T
t=1E[G(yt|π ◦Dt−1)|π]. With this notation we can write RT (P) = maxy minπ∈P ΠT (y, π).

Let π∗(y) = arg minπ∈P ΠT (y, π) for any policy y, thus ΠT (y, π∗(y)) ≤ ΠT (y, π) by

definition. For policy y(π), it follows from the previous result that π∗(y(π)) = π, or

ΠT (y(π), π) ≤ ΠT (y(π), π) for all π ∈ P. Together with the fact that, for any pol-

icy y, ΠT (y, π) ≤ ΠT (y(π), π) = VT (π), we have RT (P) = maxy minπ∈P ΠT (y, π) =

maxy ΠT (y, π∗(y)) = ΠT (y(π), π) = VT (π).
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APPENDIX B

Proofs of Results in Chapter 3

B.1 Proof of Lemma 3.1

The proof of Lemma 3.1 employs results from the statistical literature on comparison of

experiments (Blackwell, 1951, 1953). In the following, we introduce the definitions of statistic

experiment.

Definition B.1 (Blackwell, 1951, 1953; Ginebra, 2007). A statistical experiment E =

{(X,SX); (Pθ,Θ)} (E{X;Pθ} for short) yields an observation on a random variable X

defined on SX , with an unknown probability distribution that is known to be in the family

(Pθ, θ ∈ Θ).

The two observation types introduced in §3.3.1 can be viewed as outcomes of the following

statistical experiments.

(i) Observations without timing information (XNT (q)): Consider ENT (q) = {XNT (q);PNTθ },

where XNT (q) = {s, e} as defined in §3.3.1. The joint distribution PNTθ of XNT (q)

under θ ∈ Θ is given by (3.2). ENT (q) is by definition a statistical experiment which

corresponds to using an allocation q when timing information is unobservable.

(ii) Observations with timing information (XT (q)): Consider ET (q) = {XT (q);P Tθ }, where

XT (q) = {s, e, ~τ} as defined in §3.3.1. The joint distribution P Tθ of XT (q) under θ ∈ Θ

is given by (3.3). ET (q) is by definition a statistical experiment which corresponds to

using an allocation q when timing information is observable.

Next, we introduce the sufficiency ordering between experiments.

Definition B.2 (Ginebra, 2007). Experiment E = {X;Pθ} is sufficient for experiment

F = {Y ;Qθ} if there is a stochastic transformation of X to a random variable W (X) such

that W (X) and Y have identical distribution under each θ ∈ Θ.

The following lemma is a restatement of Proposition 3.2 in Ginebra (2007) by ?.
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Lemma B.1 (Ginebra, 2007; Jain et al., 2015). Experiment E is sufficient for experiment

F if and only if, for every decision problem involving θ, the Bayes risk for E does not exceed

the Bayes risk for F , i.e., rπ(E) ≤ rπ(F) for all prior π on θ.

Finally, we prove Lemma 3.1 by establishing sufficiency orderings between experiments

with different test inventory allocations.

Proof of Lemma 3.1(a). Let ET = {XT (q + δn);Pθ} and FT = {XT (q);Qθ} be the ex-

periments with timing information under allocation q + δn and allocation q, respectively.

Consider the following transformation from XT (q + δn) = {s, e, ~τ} to X ′ = {s′, e′, ~τ ′}:

(1) For all m 6= n: let s′m = sm, e′m = em, ;

(2) if sn = qn + 1, en = 1: let s′n = qn, e′n = 1, and ~τ ′n = (τ1
n, τ

2
n, . . . , τ

qn
n );

(3) if sn = qn, en = 0: let s′n = qn, e′n = 1, and ~τ ′n = (τ1
n, τ

2
n, . . . , τ

qn
n );

(4) if sn < qn, en = 0: let s′n = sn, en = 0, ~τ ′n = (τ1
n, τ

2
n, . . . , τ

sn
n ).

It can be verified that X ′ and XT (q) have identical distributions. Therefore, ET is sufficient

for FT according to Definition B.2.

We can recast our merchandise testing problem as a statistical decision problem with

period 2 ordering quantities y as the decision, and a loss function L(y, θ) = Π̂∗(θ)− Π̂(y|θ),

where Π̂∗(θ) is the optimal expected profit in period 2 under θ, and Π̂(y|θ) the expected

profit if the retailer’s ordering decision is y. The Bayes risk is thus rπ(ET ) = Eπ[EPθ [L(y(π ◦

XT (q + δn)), θ)]] = Eπ[EPθ [Π̂
∗(θ)]] − Eπ[EPθ [V̂ (π ◦ XT (q + δn))]] = Eπ[EPθ [Π̂

∗(θ)]] −

ΠT (q + δn|π) for ET , and is rπ(FT ) = Eπ[EPθ [L(y(π ◦ XT (q)), θ)]] = Eπ[EPθ [Π̂
∗(θ)]] −

Eπ[EQθ [V̂ (π ◦XT (q))]] = Eπ[EQθ [Π̂
∗(θ)]]− ΠT (q|π) for FT . Note that Eπ[EPθ [Π̂

∗(θ)]] =

Eπ[EQθ [Π̂
∗(θ)]] = Eπ[Π̂∗(θ)]. Lemma 3.1(a) thus follows from rπ(ENT ) ≤ rπ(FNT ) as a

result of Lemma B.1.

Proof of Lemma 3.1(b). Let ENT = {XNT (q + δn);Pθ} and FNT = {XNT (q);Qθ} be the

experiments without timing information under allocation q+δn and allocation q, respectively.

Consider the following transformation from XNT (q + δn) = {s, e} to X ′ = {s′, e′}:
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(1) For all m 6= n: let s′m = sm, e′m = em;

(2) if sn = qn + 1, en = 1: let s′n = qn, e′n = 1;

(3) if sn = qn, en = 0: let s′n = qn, e′n = 1;

(4) if sn < qn, en = 0: let s′n = sn, en = 0.

It can be verified that X ′ and XNT (q) have identical distributions. Therefore, ENT is

sufficient for FNT according to Definition B.2. We show ΠNT (q) ≤ ΠNT (q + δn) by an

argument similar to that in proving part (a).

Proof of Lemma 3.1(c). Suppose that allocation q∗ is optimal with timing information,

i.e., ΠT (q∗) ≥ ΠT (q) for any allocation q. If
∑N

n=1 q
∗
n < Q, consider allocation q′ =

q∗+(Q−
∑N

n=1 q
∗
n)δ1, which has

∑N
n=1 q

′
n = Q. It follows from part (a) that ΠT (q′) ≥ ΠT (q∗),

which indicates that q′ is also optimal. A similar argument applies to the case without

timing information.

B.2 Proof of Proposition 3.1

Proof of Proposition 3.1(a). Let E = {XT (q − δi + δj);Pθ} and F = {XT (q);Qθ} be the

experiments with timing information under allocation q−δi+δj and allocation q, respectively.

Consider the following transformation from XT (q− δi + δj) = {s, e, ~τ} to X ′ = {s′, e′, ~τ ′}:

(1) For m 6= i, j, let s′m = sm, ~τ ′m = ~τm, and e′m = em;

(2) Let s′j = 0, ~τ ′j = ∅, e′j = 1;

(3) if si < qi − 1: let s′i = si, ~τ
′
i = ~τi, and e′i = 0;

(4) if si = qi − 1, sj = 0: let s′i = qi − 1, ~τ ′i = ~τi, e
′
i = 0;

(5) if si = qi − 1, sj = 1, and τ1
j > T −

∑qi−1
k=1 τ

k
i : let s′i = qi − 1, ~τ ′i = ~τi, and e′i = 0;

(6) if si = qi− 1, sj = 1, and τ1
j ≤ T −

∑qi−1
k=1 τ

k
i : let s′i = qi, ~τ

′
i = {τ1

i , . . . , τ
qi−1
i , τ1

j }, e′i = 1.
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It can be verified that X ′ and XT (q) have identical distributions. Therefore, E is sufficient

for F . We show ΠT (q) ≤ ΠT (q − δi + δj) by an argument similar to that in the proof of

Lemma 3.1.

Proof of Proposition 3.1(b). Immediately follows from part (a).

B.3 Proof of Proposition 3.2

Proof of Proposition 3.2(a). We show the proof only for N = 2 and let i = 1 and j = 2

without loss of generality, namely, ΠT (q1, q2|α, β) ≤ ΠT (q1− 1, q2 + 1|α, β) for all q2 ≥ 0 and

q1 ≥ q2 + 2. The proof extends to the N > 2 cases by conditioning on the demand processes

at stores other than i and j.

We prove by two inductions—an inner induction nested inside an outer induction.

Proposition 3.1 guarantees that part (a) holds for q2 = 0 and all q1 ≥ 2. Suppose that it

holds for some q2 = q ≥ 0 and all q1 ≥ q + 2, that is,

Assumption B.1. ΠT
T (q1, q|α, β) ≥ ΠT

T (q1− 1, q+ 1|α, β) for some q ≥ 0 and all q1 ≥ q+ 2.

Assumption B.1 is the assumption for the outer induction. The subscript T in ΠT
T makes

explicit the length T of period 1. We first show it holds for q2 = q+1 and q1 = q2 +2 = q+3.

By conditioning on the time s ≥ 0 until the first demand arrival at either store, which is

exponential with rate 2λ, we have

ΠT
T (q + 3, q + 1|α, β)

= Eλ|α,βEs|λ

[{
1

2
ΠT
T−s(q + 2, q + 1|α+ 1, β + 2s)

+
1

2
ΠT
T−s(q + 3, q|α+ 1, β + 2s)

}
1s≤T + ΠT

0 (q + 3, q + 1|α, β + 2T )1s>T

]
,

ΠT
T (q + 2, q + 2|α, β)

= Eλ|α,βEs|λ

[{
1

2
ΠT
T−s(q + 1, q + 2|α+ 1, β + 2s)

+
1

2
ΠT
T−s(q + 2, q + 1|α+ 1, β + 2s)

}
1s≤T + ΠT

0 (q + 2, q + 2|α, β + 2T )1s>T

]
.
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Note that

(i) ΠT
T−s(q + 2, q + 1|α+ 1, β + 2s) = ΠT

T−s(q + 1, q + 2|α+ 1, β + 2s) because stores are

identical;

(ii) ΠT
T−s(q + 3, q|α+ 1, β + 2s) ≤ ΠT

T−s(q + 2, q + 1|α+ 1, β + 2s) by Assumption B.1;

(iii) ΠT
0 (q + 3, q + 1|α, β + 2T ) = ΠT

0 (q + 2, q + 2|α, β + 2T ) since period 1 has zero length.

As a result, ΠT
T (q+ 3, q+ 1|α, β) ≤ ΠT

T (q+ 2, q+ 2|α, β); i.e., Assumption B.1 holds for q+ 1

and q1 = q + 3.

We still need to show that Assumption B.1 holds for q+ 1 and all q1 > q+ 3 to complete

the outer induction. We prove that by an inner induction on q1 which makes the following

induction assumption.

Assumption B.2. ΠT
T (q + ∆q + 3, q + 1|α, β) ≥ ΠT

T (q + ∆q + 2, q + 2|α, β) for q and some

∆q ≥ 0.

We have shown that Assumption B.2 is true for q and ∆q = 0. To show it holds for

∆q = 1, we again condition on the time s ≥ 0 until the first demand arrival at either store

and get

ΠT
T (q + ∆q + 1 + 3, q + 1|α, β)

= Eλ|α,βEs|λ

[{
1

2
ΠT
T−s(q + ∆q + 3, q + 1|α+ 1, β + 2s)

+
1

2
ΠT
T−s(q + ∆q + 4, q|α+ 1, β + 2s)

}
1s≤T

+ ΠT
0 (q + ∆q + 4, q + 1|α, β + 2T )1s>T

]
,

ΠT
T (q + ∆q + 1 + 2, q + 2|α, β)

= Eλ|α,βEs|λ

[{
1

2
ΠT
T−s(q + ∆q + 2, q + 2|α+ 1, β + 2s)

+
1

2
ΠT
T−s(q + ∆q + 3, q + 1|α+ 1, β + 2s)

}
1s≤T

+ ΠT
0 (q + ∆q + 3, q + 2|α, β + 2T )1s>T

]
.
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Note that

(i) ΠT
T−s(q + ∆q + 3, q + 1|α + 1, β + 2s) ≤ ΠT

T−s(q + ∆q + 2, q + 2|α + 1, β + 2s) by

Assumption B.2;

(ii) ΠT
T−s(q+∆q+4, q|α+1, β+2s) ≤ ΠT

T−s(q+∆q+3, q+1|α+1, β+2s) by Assumption B.1;

(iii) ΠT
0 (q + ∆q + 4, q + 1|α, β + 2T ) = ΠT

0 (q + ∆q + 3, q + 2|α, β + 2T ) since period 1 has

zero length.

Consequently we have ΠT
T (q + ∆q + 1 + 3, q + 1|α, β) ≤ ΠT

T (q + ∆q + 1 + 2, q + 2|α, β) which

completes the inner induction. This also completes the outer induction in showing that

Assumption B.1 holds for q + 1 and all q1 ≥ (q + 1) + 2 = q + 3.

Proof of Proposition 3.2(b). Immediately follows from part (a).

B.4 Proof of Proposition 3.3

Proof of Proposition 3.3(a). Let E = {XT (q + δi − δj);Pθ} and F = {XT (q);Qθ} be the

experiments with timing information under allocation q+δi−δj and allocation q, respectively.

Consider the following transformation from XT (q + δi − δj) = {s, e, ~τ} to X ′ = {s′, e′, ~τ ′}

for every θ ∈ Θ:

(1) For m 6= i, j, let s′m = sm, ~τ ′m = ~τm, and e′m = em;

(2) let s′i = 0, ~τ ′i = ∅, e′i = 1;

(3) if sj < qj − 1 (qj ≥ 2): let s′j = sj , ~τ
′
j = ~τj , e

′
j = 0;

(4) if si = 0, sj = qj − 1: let s′j = sj = qj − 1, ~τ ′j = ~τj , e
′
j = 0;

(5) if si = 1, sj = qj − 1, and Ψi(τ
1
i |θ) > Ψj(T −

∑qj−1
k=1 τkj |θ): let s′j = qj − 1, ~τ ′j = ~τj ,

e′j = 0;

(6) if si = 1, sj = qj − 1, and Ψi(τ
1
i |θ) ≤ Ψj(T −

∑qj−1
k=1 τkj |θ): let s′j = qj , ~τ

′
j =

{τ1
j , . . . , τ

qj−1
j ,Ψ−1

j (Ψi(τ
1
i |θ)|θ)}, e′j = 1,
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where Ψ−1
j (·|θ) is the inverse cdf of the corresponding inter-arrival time cdf Ψj(·|θ). It can

be verified that X ′ and XT (q) have identical distributions under every θ ∈ Θ. Therefore, E

is sufficient for F . We show ΠT (q) ≤ ΠT (q + δi − δj) by an argument similar to that in the

proof of Lemma 3.1.

Proof of Proposition 3.3(b). Immediately follows from part (a).

B.5 Proof of Proposition 3.4

The proof involves an equivalent transformation from a problem in which stores have non-

identical arrival rates and identical lengths of period 1, to one in which stores have identical ar-

rival rates and non-identical lengths of period 1. We use ΠT (q|γ1λ0, . . . , γNλ0;T1, . . . , TN ;α, β)

to denote the ex-ante expected profit of an allocation q for a merchandise testing problem

with observable timing information, unknown arrival rate parameter λ0, relative demand

coefficients γ1, . . . , γN , and lengths of period 1, T1, . . . , TN . The retailer has a gamma prior

with parameters (α, β) on λ0. The following lemma shows that under gamma-Poisson

demand, a store n with arrival rate γnλn and length Tn in period 1 is equivalent in terms of

ex-ante expected profit to one with arrival rate λn and length γnTn.

Lemma B.2. ΠT (q|γ1λ0, . . . , γnλ0, . . . , γNλ0;T1, . . . , TN ;α, β) = ΠT (q|γ1λ0, . . . , λ0, . . . ,

γNλ0;T1, . . . , γnTn, . . . , TN ) for all q, γn > 0, α > 0, and β > 0.

Proof. We show the proof only for N = 1, i.e., ΠT (q|γλ0;T0;α, β) = ΠT (q|λ0; γT0;α, β).

The result extends to the N > 1 cases by conditioning on the demand processes at other

stores.

Observations during period 1 can be summarized by a pair of sufficient statistics (s, t),

where s is the sales quantity and t is the effective sales duration. Let α̂ and β̂ denote the

posterior parameters. Let P (D(T |λ) = s) be the probability of total arrivals being s during

time [0, T ] in a Poisson process with arrival rate λ, and g(t|q, λ) be the probability density

of the q-th arrival time. Then,
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(i) if λ = γλ0, T = T0: α̂ = α+ s, β̂ = β + γt. By conditioning on unknown parameter λ0

and observation (s, t), one obtains

ΠT (q|γλ0;T0;α, β) = Eλ0|α,βE(s,t)|γλ0 [V̂ (α+ s, β + γt)]

= Eλ0|α,β

[
q−1∑
s=0

V̂ (α+ s, β + γT0) · P (D(T0|γλ0) = s)

+

∫ T0

0
V̂ (α+ q, β + γt) · g(t|q, γλ0)dt

]

= Eλ0|α,β

[
q−1∑
s=0

V̂ (α+ s, β + γT0) · (γλ0T0)se−γλ0T0

s!

+

∫ T0

0
V̂ (α+ q, β + γt) · (γλ0)qtq−1e−qγλ0t

Γ(q)
dt

]
; (B.1)

(ii) if λ = λ0, T = γT0: α̂ = α + s, β̂ = β + t. Similarly, by conditioning on λ0 and

observation (s′, t′) we have

ΠT (q|λ0; γT0;α, β) = Eλ0|α,βE(s′,t′)|λ0 [V̂ (α+ s′, β + t′)]

= Eλ0|α,β

[
q−1∑
s′=0

V̂ (α+ s′, β + γT0) · P (D(γT0|λ0) = s′)

+

∫ γT0

0
V̂ (α+ q, β + t′) · g(t′|q, λ0)dt

]

= Eλ0|α,β

[
q−1∑
s′=0

V̂ (α+ s′, β + γT0) · (γλ0T0)s
′
e−γλ0T0

s′!

+

∫ γT0

0
V̂ (α+ q, β + t′) · λ

q
0(t′)q−1e−qλ0t

′

Γ(q)
dt′

]
.

Let s′ = s, t′ = γt, then

ΠT (q|λ0; γT0;α, β) = Eλ0|α,β

[
q−1∑
s=0

V̂ (α+ s, β + γT0) · (γλ0T0)se−γλ0T0

s!

+

∫ T0

0
V̂ (α+ q, β + γt) · λ

q
0(γt)q−1e−qλ0γt

Γ(q)
dγt

]
(B.2)

= ΠT (q|γλ0;T0;α, β).
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The last equality follows from a comparison between (B.1) and (B.2).

The following lemma is a counterpart to Proposition 3.3 in which stores have identical

inter-arrival time distributions but have different lengths of period 1.

Lemma B.3. Suppose that stores have identical inter-arrival time distributions Ψ(τ |θ).

Then, ΠT (q|Ψ, . . . ,Ψ;T1, . . . , TN ;π) ≤ ΠT (q + δi − δj |Ψ, . . . ,Ψ;T1, . . . , TN ;π) for all q that

has qi = 0 and qj > 0 for some i < j, T1 ≥ · · · ≥ TN , and all π.

Proof. Let E = {XT (q + δi− δj);Pθ} and F = {XT (q);Qθ} be the experiments with timing

information under allocation q+δi−δj and allocation q, respectively. Consider the following

transformation from XT (q + δi − δj) = {s, e, ~τ} to X ′ = {s′, e′, ~τ ′} for every θ ∈ Θ:

(1) For m 6= i, j, let s′m = sm, ~τ ′m = ~τm, and e′m = em;

(2) let s′i = 0, ~τ ′i = ∅, e′i = 1;

(3) if sj < qj − 1: let s′j = sj , ~τ
′
j = ~τj , e

′
j = 0;

(4) if si = 0, sj = qj − 1: let s′j = q, ~τ ′j = ~τj , e
′
j = 0;

(5) if si = 1, sj = qj − 1, and τ1
i > Tj −

∑qj−1
k=1 τkj : let s′j = qj − 1, ~τ ′j = ~τj , e

′
j = 0;

(6) if si = 1, sj = qj − 1, and τ1
i ≤ Tj −

∑qj−1
k=1 τkj : let s′j = qj , ~τ

′
j = {τ1

j , . . . , τ
qj−1
j , τ1

i },

e′j = 1.

It can be verified that X ′ and XT (q) have identical distributions. (Note that Ti ≥ Tj

guarantees that
∑qj

k=1 τ
′
j
k =

∑qj−1
k=1 τkj +τ1

i in (6) covers the entire [0, Tj ] interval.) Therefore,

E is sufficient for F . The lemma follows from an argument similar to that in the proof of

Lemma 3.1.

The following corollary applies Lemma B.3 to gamma-Poisson demand.

Corollary B.1. Suppose that demand is gamma-Poisson and that stores have identical

arrival rates λ, lengths T1 ≥ · · · ≥ TN ≥ 0 of period 1. Then, ΠT (q|λ, . . . , λ;T1, . . . , TN ;π) ≤

Π(q + δi − δj |λ, . . . , λ;T1, . . . , TN ;π) for all q that has qi = 0 and qj > 0 for some i < j,

α > 0, and β > 0.
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The following corollary applies Proposition 3.3 to gamma-Poisson demand.

Corollary B.2. Suppose that demand is gamma-Poisson and that stores have identical

length T of period 1 and relative demand coefficients γ1 ≥ γ2 ≥ · · · ≥ γN ), respectively.

Then, ΠT (q|γ1λ, . . . , γNλ;T, . . . , T ;π) ≤ ΠT (q + δi − δj |γ1λ, . . . , γNλ;T, . . . , T ;π) for all q

that has qi = 0 and qj > 0 for some i < j, α > 0, and β > 0.

Proof. Follows from Lemma B.2 and Proposition 3.3.

The following lemma shows that under gamma-Poisson demand, the retailer prefers

allocation q + δi − δj to allocation q that has qj = qi + 1 for some i > j, if stores have

identical arrival rates but store i has a longer length of period 1 than store j does.

Lemma B.4. Suppose that demand is gamma-Poisson and that stores have identical ar-

rival rates λ and lengths T1, . . . , TN of period 1, where Ti ≥ Tj for some i 6= j. Then,

ΠT (q|λ, . . . , λ;T1, . . . , TN ;α, β) ≤ ΠT (q+ δi− δj |λ, . . . , λ;T1, . . . , TN ;α, β) for all q that has

qj = qi + 1, α > 0, and β > 0.

Proof. We show the proof only for N = 2 and let i = 1 and j = 2 without loss of generality,

i.e., ΠT (q, q + 1|λ, λ;T1, T2;α, β) ≤ ΠT (q + 1, q|λ, λ;T1, T2;α, β) for all q = 0, 1, . . ., α, and

β. The proof extends to the N > 2 cases by conditioning on the demand processes at stores

other than i and j.

We write T = T2 ≥ 0 and ∆T = T1 − T2 ≥ 0. Consider a modification of the problem

where period 1 at each store always ends, instead of starts, at the same time. In this case,

after the modification, period 1 at store 1 covers time interval [0, T + ∆T ], whereas period 1

at store 2 covers time interval [∆T, T +∆T ]. We use a tilde as an identifier for corresponding

notation in the modified problem. Note that the lengths of period 1 for both stores remain

the same: T̃1 = T + ∆T = T1, T̃2 = T = T2. Since the stores are independent conditional on

λ and period 1 is purely for information learning purpose, such a modification in the start

time of testing at store 2 does not affect the ex-ante expected profit, i.e.,

Π̃T (q, q + 1|λ, λ;T1, T2;α, β) = ΠT (q, q + 1|λ, λ;T1, T2;α, β),

Π̃T (q + 1, q|λ, λ;T1, T2;α, β) = ΠT (q + 1, q|λ, λ;T1, T2;α, β).
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Let T = min{tq1,∆T}, where tq1 is the time of q-th arrival at store 1. By conditioning on

λ, T , and observation (s, t) (sales quantity and effective selling duration) during [0, T ], we

obtain

Π̃T (q, q + 1|λ, λ;T + ∆T, T ;α, β)

= Eλ|α,β

[
q−1∑
s=0

ΠT (q − s, q + 1|λ, λ;T, T ;α+ s, β + ∆T )P (D(∆T |λ) = s)

+

∫ ∆T

0
Π̃T (0, q + 1|λ, λ;T + ∆T − t, T ;α+ q, β + t)g(t|q, λ)dt,

]
,

Π̃T (q + 1, q|λ, λ;T + ∆T, T ;α, β)

= Eλ|α,β

[
q−1∑
s=0

ΠT (q + 1− s, q|λ, λ;T, T ;α+ s, β + ∆T )P (D(∆T |λ) = s)

+

∫ ∆T

0
Π̃T (1, q|λ, λ;T + ∆T − t, T ;α+ q, β + t)g(t|q, λ)dt

]
,

where g(t|q, λ) is the pdf of tq1 conditional on λ. Note that

(i) ΠT (q − s, q + 1|λ, λ;T, T ;α + s, β + ∆T ) ≤ ΠT (q + 1 − s, q|λ, λ;T, T ;α + s, β + ∆T )

for all s = 0, . . . , q − 1, following from Proposition 3.2;

(ii) Π̃T (0, q+1|λ, λ;T+∆T−t, T ;α+q, β+t) = ΠT (0, q+1|λ, λ;T+∆T−t, T ;α+q, β+t) ≤

ΠT (1, q|λ, λ;T + ∆T − t, T ;α + q, β + t) = Π̃T (1, q|λ, λ;T + ∆T − t, T ;α + q, β + t),

where the inequality follows from Corollary B.1.

As a result, Π̃T (q, q+1|λ, λ;T+∆T, T ;α, β) ≤ Π̃T (q+1, q|λ, λ;T+∆T, T ;α, β), or, ΠT (q, q+

1|λ, λ;T1, T2;α, β) ≤ ΠT (q + 1, q|λ, λ;T1, T2;α, β).

The following corollary is a counterpart to Lemma B.4 in which stores have identical

lengths of period 1 but different arrival rates.

Corollary B.3. Suppose that demand is gamma-Poisson and that stores have identi-

cal lengths T of period 1, and relative demand coefficients γ1 ≥ γ2 ≥ · · · ≥ γN . Then,

ΠT (q|γ1λ, . . . , γNλ;T, . . . , T ;α, β) ≤ ΠT (q + δi − δj |γ1λ, . . . , γNλ;T, . . . , T ;α, β) for all q

that has qj = qi + 1 for some i < j, α > 0, and β > 0.
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Proof. Follows from Lemma B.2 and Lemma B.4.

Proof of Proposition 3.4(a). We show the proof only for N = 2 and let i = 1 and j =

2 without loss of generality, i.e., ΠT (q, q + n|γ1λ, γ2λ;T, T ;α, β) ≤ ΠT (q + 1, q + n −

1|γ1λ, γ2λ;T, T ;α, β) for q = 0, 1, . . ., n = 1, 2, . . ., γ1 ≥ γ2, T > 0, α > 0, and β > 0. The

proof extends to the N > 2 cases by conditioning on the demand processes at stores other

than i and j.

The proof is by induction. The proposition holds for q = 0 and all n ≥ 1 according to

Corollary B.2. It also holds for all q ≥ 0 and n = 1 according to Corollary B.3.

Assume that the proposition holds for some q and all n ≥ 1. In addition, assume that it

holds for q + 1 and some n ≥ 1. We show that it continues to hold for q + 1 and n+ 1 by

conditioning on the time t ≥ 0 until the next arrival at either store, which is exponential

with rate (γ1 + γ2)λ. Once arrives, the next arrival occurs at store 1 with probability γ1
γ1+γ2

and at store 2 with probability γ2
γ1+γ2

. We have

ΠT (q + 1, q + 1 + n+ 1|γ1λ, γ2λ;T, T ;α, β)

= Eλ|α,βEt|λ

[{ γ1

γ1 + γ2
ΠT (q, q + 1 + n+ 1|γ1λ, γ2λ;T − t, T − t;α+ 1, β + γ1t+ γ2t)

+
γ2

γ1 + γ2
ΠT (q + 1, q + 1 + n|γ1λ, γ2λ;T − t, T − t;α+ 1, β + γ1t+ γ2t)

}
1{t ≤ T}

+ ΠT (q + 1, q + 1 + n+ 1|γ1λ, γ2λ; 0, 0;α, β + (γ1 + γ2)T )1{t > T}

]
,

ΠT (q + 2, q + 1 + n|γ1λ, γ2λ;T, T ;α, β)

= Eλ|α,βEt|λ

[{ γ1

γ1 + γ2
ΠT (q + 1, q + 1 + n|γ1λ, γ2λ;T − t, T − t;α+ 1, β + γ1t+ γ2t)

+
γ2

γ1 + γ2
ΠT (q + 2, q + n|γ1λ, γ2λ;T − t, T − t;α+ 1, β + γ1t+ γ2t)

}
1{t ≤ T}

+ ΠT (q + 2, q + 1 + n|γ1λ, γ2λ; 0, 0;α, β + (γ1 + γ2)T )1{t > T}

]
.

Note that

(i) ΠT (q, q + 1 + n + 1|γ1λ, γ2λ;T − t, T − t;α + 1, β + γ1t + γ2t) ≤ ΠT (q + 1, q + 1 +

n|γ1λ, γ2λ;T−t, T−t;α+1, β+γ1t+γ2t), following from the first induction assumption;
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(ii) ΠT (q+1, q+1+n|γ1λ, γ2λ;T−t, T−t;α+1, β+γ1t+γ2t) ≤ ΠT (q+2, q+n|γ1λ, γ2λ;T−

t, T − t;α+ 1, β + γ1t+ γ2t), following from the second induction assumption;

(iii) and ΠT (q + 1, q + 1 + n + 1|γ1λ, γ2λ; 0, 0;α, β + (γ1 + γ2)T ) = ΠT (q + 2, q + 1 +

n|γ1λ, γ2λ; 0, 0;α, β + (γ1 + γ2)T ) by definition.

Therefore, the induction is complete.

Proof of Proposition 3.4(b). Immediately follows from part (a).

B.6 Proof of Proposition 3.5

Proof of Proposition 3.5(a). We formulate the problem of maximizing the expected sales

during period 1 as a dynamic program. Let Sn(q) denote the sales at store n with test

inventory level q. Then

E[Sn(q)] =

q∑
x=0

xφn(x) + q

∞∑
x=q+1

φn(x),

where φn(·) is the unconditioned pmf of demand at store n. We thus have

∆E[Sn(q)] = E[Sn(q + 1)]− E[Sn(q)] = Φn(q), (B.3)

where Φn(q) =
∑∞

x=q+1 φn(x).

Let S(q) be the expected total test sales under allocation q = (q1, . . . , qN ), i.e., S(q) =∑N
n=1 Sn(qn). Let Vq(q) denote the maximum additional expected total test sales with q

units of test inventory left to allocate given an allocation q. The problem of allocating Q

units of test inventory to maximize test sales can be formulated as a longest path problem

with the following Bellman equations:

Vq(q) = max
n∈{1,...,N}

{∆E[Sn(qn)] + Vq−1(q + δn)}

= max
n∈{1,...,N}

{Φn(qn) + Vq−1(q + δn)},
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with V0(q) = 0 for all q. The maximum expected total test sales with Q units of test

inventory is given by VQ(0).

The proof of part (a) is by backward induction. For any allocation q = (q1, . . . , qN ),

relabel the stores by n1, n2, . . . , nN , a permutation of 1, 2, . . . , N , such that Φn1(qn1) ≥

Φn2(qn2) ≥ · · · ≥ ΦnN (qnN ). Note that

V1(q) = max
i=1,...,N

{Φni(qni) + V0(q + δni)} = Φn1(qn1) + V0(q + δn1),

as V0(q) = 0 for all allocation q. Suppose that for some q ≥ 1 and allocation q,

Vq(q) = max
i=1,...,N

{Φni(qni) + Vq−1(q + δni)} = Φn1(qn1) + Vq−1(q + δn1)

where stores are relabeled according to q such that Φn1(qn1) ≥ Φn2(qn2) ≥ · · · ≥ ΦnN (qnN ).

Consider

Vq+1(q) = max
i=1,...,N

{Φni(qni) + Vq(q + δni)}.

Note that Φn1(qn1) ≥ Φni(qni) ≥ Φni(qni + 1) for i = 2, . . . , N . Therefore,

Vq(q + δni) = Φn1(qn1) + Vq−1(q + δni + δn1)

for i = 2, . . . , N by the induction assumption. It follows that

Φni(qni) + Vq(q + δni) = Φni(qni) + Φn1(qn1) + Vq−1(q + δni + δn1)

= Φn1(qn1) + Φni(qni) + Vq−1(q + δn1 + δni)

≤ Φn1(qn1) + Vq(q + δn1),

where the inequality follows from the definition of Vq(q + δn1). As a result, we have

Vq+1(q) = Φn1(qn1) + Vq(q + δn1).

This completes the induction.
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Proof of Proposition 3.5(b). We prove part (b) by showing that the ordering q1 ≥ q2 ≥ . . . ≥

qN is preserved before each step of the Max-Sales algorithm. The ordering holds trivially

at the beginning of the algorithm as q1 = · · · = qN = 0. Suppose that the ordering holds

before some step i. By definition n∗ = min{n : Φn(qn) ≤ Φm(qm), ∀m 6= n}. The ordering

is preserved before step i+ 1 if n∗ = 1. When n∗ > 1, assume that qn∗−1 < qn∗ + 1, then

Φn∗(qn∗) > Φn∗−1(qn∗−1) ≥ Φn∗(qn∗−1) ≥ Φn∗(qn∗), where the first inequality follows from

the definition of n∗ and the last from the fact that qn∗−1 ≥ qn∗ . This leads to contradiction.

Hence we must have qn∗−1 ≥ qn∗ + 1, i.e., the ordering holds before step i+ 1.

B.7 Proof of Proposition 3.6

We show the proof only for N = 2. The proof extends to the N > 2 cases by conditioning

on demand at other stores and noting the fact that stores are identical.

Let V̂ (â, Ŝ) denote the optimal expected profit in period 2 at a single store under some

gamma posterior with parameters (â, Ŝ). The ex-ante expected profit of allocation (q1, q2)

under a gamma prior with parameters (a, S) is given by

ΠNT (q1, q2|a, S) = Π(q1, q2)

=

∫ ∞
0

[∫ q1

0

∫ q2

0
V̂ (a+ 2, S + xk1 + xk2)f(x1|θ)f(x2|θ)dx1dx2

+

∫ ∞
q1

∫ q2

0
V̂ (a+ 1, S + qk1 + xk2)f(x1|θ)f(x2|θ)dx1dx2

+

∫ q1

0

∫ ∞
q2

V̂ (a+ 1, S + xk1 + qk2 )f(x1|θ)f(x2|θ)dx1dx2

+

∫ ∞
q1

∫ ∞
q2

V̂ (a, S + qk1 + qk2 )f(x1|θ)f(x2|θ)dx1dx2

]
π(θ|a, S)dθ.

Following Bisi et al. (2011), we can write V̂ (a, S) = Ŝ
1
k v̂(â), where v̂(â) = V̂ (â, 1). Taking

the derivatives, we have

∂Π(q1, q2)

∂q1
= qk−1

1

[
A(S + qk1 )

1
k
−a−1 + (B −A)(S + qk1 + qk2 )

1
k
−a−1

]
,

∂2Π(q1, q2)

∂q1∂q2
= k

(
1

k
− a− 1

)
(B −A)qk−1

1 qk−1
2 (S + qk1 + qk2 )

1
k
−a−2,
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∂2Π(q1, q2)

∂q2
1

= Aqk−2
1 (S + qk1 )

1
k
−a−2

[
(k − 1)S − kaqk1

]
+ (B −A)qk−2

1 (S + qk1 + qk2 )
1
k
−a−2

[
(k − 1)(S + qk2 )− kaqk1

]
, (B.4)

where A and B are constants given by A = Saka
[

a+1
a+1−1/k v̂(a+ 2)− v̂(a+ 1)

]
and B =

Sak
(
a− 1

k

) [
a

a−1/k v̂(a+ 1)− v̂(a)
]

that have B > A > 0. We also have ∂Π(q1,q2)
∂q2

= ∂Π(q2,q1)
∂q2

and ∂2Π(q1,q2)
∂q22

= ∂2Π(q2,q1)
∂q22

as Π(q1, q2) is symmetric with respect to q1 and q2.

It can be verified that ∂Π(q1,q2)
∂q1

> 0 for all q1 > 0, q2 ≥ 0, and that ∂Π(q1,q2)
∂q2

> 0 for all

q1 ≥ 0, q2 > 0. Therefore, it suffices to consider allocations that satisfy q1 + q2 = Q.

Proof of Proposition 3.6(a). When 0 < k ≤ 1, from (B.4) we have ∂2Π(q1,q2)
∂q21

< 0 and

∂2Π(q1,q2)
∂q21

< 0 for all q1 > 0, q2 > 0. Furthermore, we have (∂
2Π(q1,q2)
∂q22

)(∂
2Π(q1,q2)
∂q21

) −

(∂
2Π(q1,q2)
∂q1∂q2

)2 > 0 for all q1 > 0, q2 > 0. Hence, Π(q1, q2) is jointly concave in q1 and

q2 for q1 > 0, q2 > 0. Also, Π(q1, q2) is continuous at points with q1 = 0 and/or q2 = 0.

Therefore, allocation q∗ = (q∗1, q
∗
2) with q∗1 = q∗2 = Q/2 maximizes Π(q1, q2).

Proof of Proposition 3.6(b). When k > 1,

(i) ∂2Π(q1,q2)
∂q21

> 0 and ∂2Π(q1,q2)
∂q21

> 0 for all q1 < Q0, q2 < Q0 where constant Q0 =[
(k−1)S
ka

] 1
k
. Also, (∂

2Π(q1,q2)
∂q21

)(∂
2Π(q1,q2)
∂q22

) − (∂
2Π(q1,q2)
∂q1∂q2

)2 > 0 for all q1 < Q0, q2 < Q0.

Hence, Π(q1, q2) is jointly convex on q1 < Q0, q2 < Q0. As a result, for all Q < Q0,

Π(q1, q2) is jointly convex on {(q1, q2) : q1 + q2 = Q}, and a single-store allocation

(Q, 0) or (Q, 0) maximizes Π(q1, q2).

(ii) ∂2Π(q1,q2)
∂q21

< 0 for all q1 > Q̄(q2) and ∂2Π(q1,q2)
∂q22

< 0 for all q2 > Q̄(q1) where function

Q̄(q) =
[

(k−1)(S+qk)
ka

] 1
k
. Also, (∂

2Π(q1,q2)
∂q21

)(∂
2Π(q1,q2)
∂q22

) − (∂
2Π(q1,q2)
∂q1∂q2

)2 > 0 for all q1 >

Q̄(q2), q2 > Q̄(q1). Hence, for q1 > Q̄(q2), q2 > Q̄(q1), Π(q1, q2) is jointly concave in

q1 and q2, thus (Q/2, Q/2) is a local maximal. Also, as Q→∞, Π(Q/2, Q/2|a, S)→∫∞
0

∫∞
0

∫∞
0 V̂ (a+ 2, S + xk1 + xk2)f(x1|θ)f(x2|θ)dx1dx2π(θ)dθ ≥ Π(q1, q2) for all q1 ≥ 0

and q2 ≥ 0.
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APPENDIX C

Appendix for Chapter 4

C.1 Proof of Lemma 4.1

Proof of Proposition 4.1(a). Follows immediately by taking the first derivative of u(q̂, s, θ)

with respect to q̂.

Proof of Proposition 4.1(b). Follows immediately by taking the first derivative of u(q̂, s, θ)

with respect to θ.

Proof of Proposition 4.1(c). u(q̂, s, µθ + q̂ − q) =
q̂(σ2

θ+sσ2
T )+q̂σ2

T

σ2
θ+(s+1)σ2

T
= q̂.

C.2 Proof of Lemma 4.2

Proof. We prove by induction. Note that o∗1(q̂, s) = 1 as FΘ(p − q̂)V0(q̂, s) +
∫∞
p−q̂[p +

V0(u(q̂, s, θ), s + 1)]dFΘ(θ) = pFΘ(p − q̂) > 0 = V0(q̂, s). Suppose that o∗t (q̂, s) = 1, i.e.,

Vt(q̂, s) = FΘ(p − q̂)Vt−1(q̂, s) +
∫∞
p−q̂[p + Vt−1(u(q̂, s, θ), s + 1)]dFΘ(θ). Since Vt(q̂, s) ≥

Vt−1(q̂, s) ≥ 0 by definition, we have FΘ(p− q̂)Vt(q̂, s)+
∫∞
p−q̂[p+Vt(u(q̂, s, θ), s+1)]dFΘ(θ) ≥

FΘ(p− q̂)Vt−1(q̂, s) +
∫∞
p−q̂[p+ Vt−1(u(q̂, s, θ), s+ 1)]dFΘ(θ) = Vt(q̂, s). The equality follows

from the induction assumption. Therefore, o∗t+1(q̂, s) = 1, which completes the induction.

C.3 Proof of Proposition 4.1

Proof of Proposition 4.1(a). We prove by induction. The result trivially holds for t =

0. Suppose Vt(q̂1, s, θ) ≤ Vt(q̂2, s, θ) for some t, all q̂1 < q̂2, s, and θ. We show that

Vt+1(q̂1, s, θ) ≤ Vt+1(q̂2, s, θ) for all q̂1 < q̂2, s, and θ. Consider the following regions of θ:

(i) θ < p−q̂2. In this region, Vt+1(q̂1, s, θ) = EΘVt(q̂1, s,Θ) ≤ EΘVt(q̂2, s,Θ) = Vt+1(q̂2, s, θ).

(ii) p− q̂2 ≤ θ < p − q̂1. In this region, Vt+1(q̂1, s, θ) = EΘVt(q̂1, s,Θ) ≤ EΘVt(q̂2, s,Θ) ≤

Vt+1(q̂2, s, θ).
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(iii) θ ≥ p− q̂1. In this region,

Vt+1(q̂1, s, θ) = max{p+ EΘVt(u(q̂1, s, θ), s+ 1,Θ),EΘVt(q̂1, s,Θ)}

≤ max{p+ EΘVt(u(q̂2, s, θ), s+ 1,Θ),EΘVt(q̂2, s,Θ)}

= Vt+1(q̂2, s, θ),

where the inequality uses the fact that u(q̂1, s, θ) ≤ u(q̂2, s, θ) as a result of Lemma 4.1(a).

These together complete the induction.

Proof of Proposition 4.1(b). The proof is by induction. The result trivially holds for t = 0.

Suppose Vt(q̂, s, θ1) ≤ Vt(q̂, s, θ2) for some t, all θ1 < θ2, and all q̂ and s. We show that

Vt+1(q̂, s, θ1) ≤ Vt+1(q̂, s, θ2) for all θ1 < θ2 and all q̂ and s. Consider the following regions

of q̂:

(i) θ1 < θ2 < p− q̂. In this region, Vt+1(q̂, s, θ1) = EΘVt(q̂, s,Θ) = Vt+1(q̂, s, θ2).

(ii) θ1 < p− q̂ ≤ θ2. In this region, Vt+1(q̂, s, θ1) = EΘVt(q̂, s,Θ) ≤ Vt+1(q̂, s, θ2).

(iii) p− q̂ ≤ θ1 < θ2. In this region,

Vt+1(q̂, s, θ1) = max{p+ EΘVt(u(q̂, s+ 1, θ1), s,Θ),EΘVt(q̂, s,Θ)}

≤ max{p+ EΘVt(u(q̂, s+ 1, θ2), s,Θ),EΘVt(q̂, s,Θ)}

= Vt+1(q̂, s, θ2),

where the inequality follows from Lemma 4.1(a).

These together complete the induction.

Proof of Proposition 4.1(c). This is a direct corollary of Proposition 4.1(b).

C.4 Proof of Proposition 4.3

Proof. The proof is by induction. The proposition holds trivially if θ∗t (q̂, s) = θ∗t+1(q̂, s) =

p− q̂. Suppose that for some t > 1, θ∗t−1(q̂, s) = p− q̂ and θ∗t (q̂, s) > p− q̂. We show that
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θ∗t (q̂, s) ≤ θ∗t+1(q̂, s), or, equivalently, p+Gt(u(q̂, s, θ∗t (q̂, s)), s+ 1) ≤ Gt(q̂, s):

Gt(q̂, s) = FΘ(θ∗t (q̂, s))Gt−1(q̂, s) + pFΘ(θ∗t (q̂, s)) +

∫ ∞
θ∗t (q̂,s)

Gt−1(u(q̂, s, θ), s+ 1)dFΘ(θ)

≥ FΘ(θ∗t (q̂, s))[p+Gt−1(u(q̂, s, θ∗t (q̂, s)), s+ 1)] + pFΘ(θ∗t (q̂, s))

+

∫ ∞
θ∗t (q̂,s)

Gt−1(u(q̂, s, θ), s+ 1)dFΘ(θ)

= p+ FΘ(θ∗t (q̂, s))Gt−1(u(q̂, s, θ), s+ 1) +

∫ ∞
θ∗t (q̂,s)

Gt−1(u(q̂, s, θ), s+ 1)dFΘ(θ)

≥ p+Gt(u(q̂, s, θ∗t (q̂, s)), s+ 1).

This completes the induction.

C.5 Proof of Proposition 4.4

Proof of Proposition 4.4(a). Follows from a similar argument in the proof of Proposi-

tion 4.1(a).

Proof of Proposition 4.4(b). The proof is by induction. Suppose Vt(q̂, s, x, θ) ≤ Vt(q̂, s, x+

1, θ).

Vt+1(q̂, s, x, θ) = max{p+ EΘVt(u(q̂, s, θ), s+ 1, x− 1,Θ),EΘVt(q̂, s, x,Θ)}

≤ max{p+ EΘVt(u(q̂, s, θ), s+ 1, x,Θ),EΘVt(q̂, s, x+ 1,Θ)}

= Vt+1(q̂, s, x+ 1, θ).

This completes the induction.

Proof of Proposition 4.4(c). Follows from a similar argument in the proof of Proposition 4.1(b).

Proof of Proposition 4.4(d). This is a direct corollary of Proposition 4.1(c).
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C.6 Proof of Proposition 4.6

Proof of Proposition 4.6(a). Follows from a similar argument in the proof of Proposition 4.3.

Proof of Proposition 4.6(b). The proof is by induction.

C.7 Bayesian Updating Accounting for Selection Biases

Let π(q) denote consumers’ prior belief on q. The posterior updated based on a review r is

given by

π̂(q|r) =
π(q)fΘ(r + µθ − q|r + µθ − q + q̂ − p ≥ 0)∫∞

−∞ π(q)fΘ(r + µθ − q|r + µθ − q + q̂ − p ≥ 0)dθ

=
π(q)fΘ(r + µθ − q)1q≤r+µθ+q̂−p∫∞

−∞ π(t)fΘ(r + µθ − t)1t≤r+µθ+q̂−pdt
.

One can verify that the posterior π̂(q|r) is truncated Normal if π(q) is Normal. Further

updating requires keeping track of the entire review history and there is no finite dimension

sufficient statistic.
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