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ABSTRACT 

Monica L. Schmidt: Design and Validation of Two Predictive Models for Mortality and 

Readmission Following Surgery in Patients with Liver Cirrhosis 

(Under the direction of Morris Weinberger) 

Cirrhosis is the 12
th

 leading cause of death in the United States. By 2020, it is expected to 

affect more than 1 million Americans. Cirrhosis is a costly, chronic condition requiring frequent 

hospitalizations and unplanned readmissions. Patients with cirrhosis often require routine 

surgeries including hernia repair, coronary artery by-pass surgery and orthopedic hip or knee 

replacements. These procedures present a greater risk of morbidity and mortality for cirrhotic 

patients, including a 8-fold increase in risk of mortality and higher hepatic decompensation after 

surgery. Predicting post-operative mortality prior to surgery or post-operative readmission would 

allow patients and clinicians to make informed decisions that optimize survival and reduce 

readmission costs. Currently, the MELD score is often used, inappropriately, to assess risk of 

procedures in patients with decompensated cirrhosis. However, no models exist that predict 

mortality or readmission among patients with cirrhosis. This study aimed to develop and validate 

two predictive models; one for mortality among all patients with cirrhosis undergoing surgery; 

the other will predict readmission among cirrhosis patients discharged alive after the index 

surgery. Each two model was then compared to the MELD score. The NSQIP Mortality Model 

was significantly better than the MELD score at predicting mortality (p<0.001) and had an area 

under the receiver operating characteristic (AUROC) curve of 0.84. The readmission model was 

also significantly better than the MELD score (p<0.001), with an AUROC of 0.75. Both models 
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provide the basis for developing two decision tools that can assist clinicians and patients in 

making informed decisions that optimize survival and reduce unplanned readmissions.  
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CHAPTER 1. SPECIFIC AIMS 

Liver cirrhosis is a costly chronic condition requiring frequent hospitalizations, often for 

surgery. When undergoing surgery, patients with cirrhosis are at high risk for mortality and 

hepatic decompensation as well as for readmission to the hospital following discharge. 

Predicting their post-operative mortality as well as readmission post-discharge would allow 

patients and clinicians to improve: (1) treatment decision-making for patients and (2) process and 

outcomes of care by having hospitals implement strategies to reduce complications leading to 

readmissions and death. Currently, the Model for End-Stage Liver Disease (MELD) score is 

often used, inappropriately, to assess risk of procedures in patients with decompensated cirrhosis. 

However, no models exist that predict mortality or readmission among patients with cirrhosis.  

The long-term objective of this research is to improve the quality of life for patients with 

cirrhosis. The immediate objective of this study is to develop and validate models that predict 

mortality for patients with cirrhosis undergoing surgery as well as their risk of readmission 

following hospital discharge. Each model will be compared to the MELD. The central hypothesis 

is that we can develop validated models that perform better than the MELD. The rationale for the 

proposed research is that these predictive models will be able to: 1) improve surgical decision 

making and 2) inform allocation of appropriate post-discharge resources within risk-stratified 

discharge plans that reduce readmissions. 
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Aim 1: The Mortality Model  

To develop and validate a mortality predictive model and compare it to the currently used 

MELD score. 

Aim 1a: To develop a model that predicts increased risk of in-hospital mortality after the index 

surgery. 

Based on previous literature, age, gender, body mass index, functional status, 

ethnicity/race, American Surgical Association classification (ASA class), estimated 

glomerular filtration rate, serum albumin, platelet count, white blood cell count, total 

bilirubin, prothrombin time international normalization ratio (INR), emergent surgery, 

surgery type, and specific comorbid conditions will increase the risk of in-hospital 

mortality in patients with cirrhosis after the index surgery. 

Aim 1b: Using results from Aim 1a, validate the mortality predictive model. 

Hypothesis: The predictive model will have an area under the receiving operating 

characteristic curve (AUROC) of at least 0.75 when using cross-validation methods. 

Aim 1c: To compare the mortality model to the MELD score. 

Hypothesis: The predictive model will have significantly greater AUROC than the 

MELD score. 

Aim 2: The Readmission Model  

Aim 2a: To develop a model that predicts the risk of unplanned readmission within 30-days from 

discharge after the index surgery. 

In addition to all variables used in the mortality model, post-operative variables will be 

added to include: pneumonia, sepsis, time on operating table, total time under anesthesia, 
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acute/progressive renal failure, urinary tract infection, ventilator wean time >48 hours 

after surgery, and discharge destination. 

Aim 2b: Using results from Aim 1b, validate the readmission predictive model. 

Hypothesis: The predictive model will have an area under the receiving operating 

characteristic curve (AUROC) of at least 0.75 when using cross-validation methods. 

Aim 2c: To compare the readmission model to the MELD score. 

Hypothesis: The predictive model will have significantly greater AUROC than the 

MELD score. 

 

The two models can inform targeted measures to reduce inpatient mortality and 

readmission within 30 days of the index surgery. The mortality model would be used prior to 

surgery during the consultation between the hepatologist, surgeon, and patient to inform the risk 

associated with surgery. This information could be used to discuss the benefits and risks of 

alternative treatment options (including the decision to undergo surgery). The readmission model 

would be used prior to discharge to help a hospital’s transitional care team provide appropriate 

discharge planning that may mitigate readmission, an increasingly important outcome to 

hospitals given the Centers for Medicare and Medicaid Services (CMS) Hospital Readmissions 

Reductions Program. Either of these models could feed decision support, tools that capitalize on 

increased access to clinical data from electronic medical records. 
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CHAPTER 2. BACKGROUND & STUDY OVERVIEW  

Background 

Cirrhosis is the twelfth-leading cause of death in the United States[1]. By 2020, it is 

expected to affect more than 1 million Americans[2]. Cirrhosis is a costly, chronic condition 

requiring frequent hospitalizations and unplanned readmissions[3, 4]. The average-length stay 

for patients hospitalized with cirrhosis is eight days with a mean charge of $46,663 per stay if 

decompensated[5]. Cumulative one- and five-year risks for readmission were 45% and 83% in a 

study of 200 patients with cirrhosis.[3]. 

Patients with cirrhosis often require routine surgeries to maintain their quality of life. 

Hernia repair, coronary artery by-pass surgery, and orthopedic hip or knee replacements are 

common as these patients age[6]. These procedures present a greater risk of morbidity and 

mortality for cirrhotic patients[6, 7], including an eight-fold increase in risk of mortality[8] and 

increased hepatic decompensation[6, 9]. A patient with liver disease who has any of the 

following conditions is decompensated: ascites (fluid) in the abdominal cavity, hepatic 

encephalopathy (swelling of the brain), portal hypertension, or variceal hemorrhage (bleeding in 

esophagus). Decompensation increases the risk of in-hospital mortality as well as unplanned 

readmissions among those who survive to discharge[10-12].  

 Predicting post-operative mortality prior to surgery would allow patients and clinicians to 

make informed decisions that optimize survival[13]. Patients who die in-hospital after a surgical 

procedure may incur a prolonged stay in acute care. The cost of a prolonged stay would not be 

fully covered if the bundled service payment allows for a short stay in acute care after surgery. 
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Predictive models that allow for preventative services to be delivered to patients at greater risk of 

in-hospital mortality (i.e. prolonged stay) or readmission may mitigate financial losses 

experienced by hospitals under the bundled payment initiative[14, 15]. 

Readmissions are problematic for patients and may represent a problem in the quality of 

care during the index admission or the post-discharge period. The urgency to reduce 

readmissions is fueled by financial penalties imposed on hospitals by the Centers for Medicare 

and Medicaid Services (CMS) for Medicare patients with 30-day readmissions [16, 17]. As the 

cirrhotic population ages, more will have Medicare as their primary payer and expose hospitals 

to the risk for significant financial penalties [17]. Other payers will likely adopt CMS’s financial 

incentives to reduce 30-day readmissions. As CMS begins its bundled payments for care , it will 

be critical to a hospital’s financial health to know the risk of a prolonged stay or complication 

prior to the service provided (e.g., surgical procedure). The ability to predict the risk of 

readmission among those who survive surgery would allow for appropriate discharge 

planning[18].  

Predictive Models in Medicine to Improve the Quality of Care 

 Making decisions using complex information is standard practice in medicine. Clinicians 

are expected to make decisions by evaluating immense quantities of data and, using evidence-

based guidelines, apply those data to a specific patient. For example, when choosing to take a 

patient with cirrhosis to surgery, hepatologists and surgeons consider laboratory, history, social, 

and clinical factors that might impact outcomes[19, 20]. There is a need for a model that can 

deliver an evidence-based, patient-centered risk assessment of the cirrhotic patient to assist with 

this difficult clinical decision.  
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Electronic health records make it more feasible to incorporate patient data into predictive 

models that can give the clinician a quantitative risk score for readmission or mortality[21]. 

Predictive models may assist physicians when making decisions that involve complex patients 

instead of relying solely on their prior experiences[22, 23]. Ultimately, these models can be used 

as the foundation for shared decision-making and targeted discharge planning[24]. In an era 

when population health outcomes are linked to reimbursement, there is a need for predictive 

models to inform decisions and allocate resources [25]. 

The MELD Score 

The Model for End-Stage Liver Disease (MELD) score was originally developed and 

validated to predict mortality in patients with cirrhosis undergoing transjugular intrahepatic 

portosystemic shunt (TIPS) procedures. It was validated with 231 patients undergoing elective 

TIPS procedures to prevent hemorrhage or to treat refractory ascites[26, 27]; 70 patients died 

within 90 days of the procedure. Variables included in the MELD score are serum creatinine, 

total bilirubin, and prothrombin INR as follows: 

MELD Score = (0.957 * ln(serum creatinine) + 0.378 * ln(serum bilirubin) + 1.120 * 

ln(PT INR) + 0.643 ) * 10 (if hemodialysis, value for creatinine is 

automatically set to 4.0) 

 

 Although the MELD score is attractive because it uses objective, commonly available 

laboratory values, there are many weaknesses. First, inter-laboratory variability in creatinine 

measurement causes poor predictive power of the MELD score[28-30]. Replacing creatinine 

with estimated glomerular filtration rate (eGFR) could mitigate this problem by offering more 

robust measures of liver biosynthetic function[31, 32]. Second, there is evidence that sodium, 

albumin, and platelet counts are important predictors of liver function and should be included in 

the predictive model[33-39]. In fact, the MELD score was modified to include sodium in 2006. 
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However, this modified MELD-NA has not been fully accepted [35]. Third, MELD score 

performs poorly when assessing the immediate risk of mortality after surgery. In the largest 

study to date, Teh and colleagues used 772 patients having any major surgical procedure and 

cirrhosis to assess the MELD score as a model for predicting post-surgical mortality [7]. 

Although they found the MELD score to predict 30-day post-surgical mortality with some 

accuracy, it was not accurate zero to 7 days after surgery[7]. Moreover, MELD scores fail to 

include important predictors of mortality such as age [7]. In addition, gender influences the 

MELD score’s ability to predict short-term mortality in patients awaiting transplant[40, 41]. 

Differences in creatinine levels and height between males and females result in increased MELD 

scores for women rather than the severity of liver dysfunction[40, 41]. Finally, the MELD score 

is a poor predictor of mortality in the presence of complications of cirrhosis such as persistent 

ascites and hepatorenal syndrome [28]. These factors limit the usefulness of the MELD. Thus, it 

is critical to develop and validate a predictive model that is robust when predicting post-surgical 

mortality across different ages, genders, and varying degrees of liver dysfunction.  

 Beyond the weakness in using the MELD score to predict mortality, little is known about 

its ability to predict readmissions in patients with decompensated cirrhosis[4]. The only two 

single-site studies to date found that MELD predicted readmission in patients with 

decompensated cirrhosis when controlling for serum sodium, number of medications, gender, 

number of comorbidities, transplant list status, and discharge destination[4, 12]. However, both 

studies were small and had limited generalizability. Therefore, there is a need to develop and 

validate a model to predict hospital readmission for post-surgical patients with either 

compensated or decompensated cirrhosis.   
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Study Overview 

Currently, clinicians use the MELD score to guide surgical treatment decisions [42, 43]. 

To date, there are no valid predictive models to assess risk of mortality or readmission for 

patients with cirrhosis. My dissertation will address this gap in the literature by developing and 

validating two predictive models that will accurately stratify patients with cirrhosis by their risk 

of in-hospital mortality and 30-day readmission after surgery.  

The Proposed Predictive Models: Theory and Selection of the Measures  

 A thorough literature review and discussion with hepatologists and surgeons allowed a 

priori selection of variables for consideration in the predictive models for both in-hospital 

mortality and readmission (Table 1) for common surgical procedures undergone by patients with 

cirrhosis (Table 2).  

Institutional Review Board Approval 

This study has been given an exemption (IRB No. 13-3559) by the Office of Human 

Research Ethics at the University of North Carolina. It is a limited dataset and does not involve 

subject contact. The study was deemed exempt and updated to the American College of 

Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) on November 11, 

2013, and renewal is not required. 
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CHAPTER 3. THE NSQIP MORTALITY MODEL 

Introduction 

 The ability to predict post-operative mortality prior to surgery would allow patients and 

clinicians to make informed decisions that optimize survival[13]. Patients who die in-hospital 

after a surgical procedure may incur a prolonged stay in acute care. The cost of a prolonged stay 

would not be fully covered if the bundled service payment only allows for a short stay in acute 

care after surgery. Predictive models that allow for preventative services to be delivered to 

patients at greater risk of in-hospital mortality (i.e., prolonged stay) may mitigate financial losses 

experienced by hospitals under the bundled payment initiative[14, 15]. This study aimed to 

develop, validate, and compare a mortality model to the MELD score.  

Methods 

Data Source and Sample Selection 

This study used American College of Surgeons (ACS) National Surgical Quality 

Improvement Program (NSQIP) data from 2011–2013[44]. NSQIP is a national voluntary 

program to help hospitals reduce surgical morbidity and mortality. The program offers three 

levels of participation that vary by labor intensity to allow smaller hospitals with limited 

resources to participate. To date, more than 300 hospitals nationwide participate in the 

NSQIP[44]. 

Data are collected through a combination of electronic and manual chart abstraction at 

each site. More than 150 variables are collected on surgical cases. Each year, hospitals rotate 

through 46 eight-day cycles of data collection to capture a random sampling of surgical cases. 
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Included are patients having a major surgery, defined by Current Procedural Terminology (CPT) 

code, during one of the eight-week data collection cycles. Both emergent and non-emergent 

surgeries are captured. Trauma and transplant surgeries are excluded[44, 45].  

Data are collected at the patient level. Pre-, intra-, and post-operative variables are 

collected for each patient. If a patient died prior to discharge, he or she is captured in the 

discharge status variable with an “expired” status[44].  

Identifying Patients with Cirrhosis 

I selected patients with liver disease, defined as having an esophageal hemorrhage or 

ascites as identified by the ACS NSQIP [44]. The ACS NSQIP definition for these variables 

requires a history of liver disease on record concurrent with an esophageal varices or ascites 

diagnosis[44, 45]. For these patients, previously validated laboratory values were used to define 

liver cirrhosis: platelet value of < 140,000/mm
3 

and albumin <3.5 g/dL and prothrombin 

INR>1.5 [45-47]. Finally, patients with disseminated cancer, an outpatient surgery, or a do not 

resuscitate (DNR) order on file, as defined by a variable in the NSQIP, were excluded. This 

resulted in a final cohort of patients with liver cirrhosis (n=4,916).  

Mortality Model Cohort  

 For aims 1a, 1b, and 1c, all patients with cirrhosis were included. After excluding 273 

patients with missing laboratory data, I used variables from the NSQIP to identify patients who 

died while hospitalized and were not discharged after the index surgery (Figure 1). Of those with 

cirrhosis, 608 died while hospitalized and 4,308 were discharged alive. Our final cohort for 

analysis in aims 1a, 1b, and 1c will include patients with laboratory values available to generate 

the MELD score and mortality model (died: n=543) and (n=4,100 discharged alive). 
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Bivariate Analyses 

 Patients with and without an in-hospital death were compared using analysis of variance 

(ANOVA), chi-square analyses, and non-parametric test for trends in ordered variables. Eligible 

patients with and without pre-operative laboratory values were compared by ANOVA or chi-

square analysis to determine if their baseline characteristics differ significantly (p<0.05). Those 

with and without laboratory data by surgery type were evaluated to further understand any bias 

that may be introduced into the model. It may be the less invasive surgery types had fewer labs 

ordered by the surgeon due to the perception of lower risk of mortality. Any significant 

differences are noted in limitations. It is not possible to control for selection bias in this sample 

when we do not have physician- or hospital-level factors necessary to generate an appropriate 

selection model.   

Development of the Multivariable Mortality Model  

A Poisson model with binary in-hospital mortality as the outcome was used. This model 

is has two advantages over logistic regression [48, 49]. First, it computes incident risk ratios 

(IRR) as relative risks, which facilitates interpretation[49, 50]. Second, when cross-sectional data 

have frequent outcomes of interest, odds ratios (OR) may overestimate the prevalence in the 

sample[50]. Poisson is appropriate for a binary outcome model when relative risk is desired and 

events of interest are frequent. The Poisson model requires Huber-White standard error 

adjustment (robust standard errors) to avoid under-dispersion[49, 50]. If a variable was not 

significant, I tested for joint significance (p<0.05). If there was joint significance with other 

variables in the model, I included these measures in the final model for validation.  
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Validation of the Mortality Model 

After determining the predictors of mortality using a Poisson model, a logistic regression 

maximum likelihood model with a binary outcome (mortality) was used to obtain in-range 

predictions. Predictions for Poisson models (used for development) are often not appropriate for 

validation methods discussed earlier and shown in Table 1 [51]. I will report ORs for the 

mortality estimates. Predictions from the model will be compared to those that actually died in-

hospital after the index surgery. I am interested in the predictions from the model and how they 

compare to the actual outcome. I will obtain the predicted probability of death for each patient in 

the sample. The actual outcome is binary with 1 equal to death. Having a binary outcome makes 

it difficult to compare predictions that are continuous between 0 and 1. It will be necessary to 

perform a cut-point (i.e., threshold) analysis to determine where along the range of predicted 

probabilities the sensitivity and specificity are optimized (e.g., where do you call a “positive” 

result=death versus a negative result=survive)[52, 53]. 

Assessment of Mortality Model Performance 

Overall model performance will be assessed with the Brier score [52, 53] (Table 3). Brier 

scores measure the distance between the actual outcome and the predicted outcome[53]. Brier 

scores are similar to the Pearson’s R
2 

statistic. It is a quadratic scoring equation that uses the 

squared differences between the actual binary outcome (died/survive) and the predictions (p). 

[Brier score=(Y-p)
2
] [52]. The lower the Brier score, the better the predictions are calibrated to 

the actual outcome; for a perfect model with optimal fit, the Brier score equals zero. The Brier 

score is affected by the incidence of the outcome of interest in the population. When the 

incidence of the outcome is lower in the sample, the upper limit of the Brier score is lower.  
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I calculated the Brier score’s upper limit using incidence of mortality in the NSQIP 

sample. I have 30-day mortality incidence of 12.36%. This means our maximum Brier score 

would be: (Incidence-1)
2
, which gives an upper limit of 0.7680 for an uninformative model. For 

this study, I will calculate the Brier score for all patients in the sample and use the mean Brier 

score to assess the model’s accuracy. 

It is not necessary to know the point where we call the prediction positive or negative 

(cut-point) for computing the Brier score. We will need to know the cut-point when evaluating 

performance at different areas under the receiving operating characteristic (AUROC) curve 

discussed later. Calibration (model fit) of a predictive model refers to the process of creating the 

model and running it on a population that is not used to generate the predictions[53].  

 Cross-validation will be used to predict the performance of the model in an external 

dataset [52, 54] (Table 3). The algorithm can be assessed for its performance in an external 

dataset by folding the data repeatedly on a subset of the observations (multiple training sets) and 

applying it to the remaining observations multiple times (validation sets). K-fold cross-validation 

has been shown to be more efficient and a good substitute for training set and validation methods 

when sample size is limited [52, 54]. Cross-validation was chosen over creating a single training 

and validation set of patients due the rapidly changing surgical methods and procedures in our 

data. For example, if we reserve year 2011 for training and apply that to data from 2012–2013, 

the algorithm may fail due to newer procedures that reduce mortality or shifting populations 

(aging baby boomers in the cirrhotic cohort). Therefore, it is optimal to train the algorithm on 

multiple samples selected from different years then apply it to multiple validation samples from 

the same years (at least 10 k-folds). 
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The ability of the model to discriminate between those who survived or not will be 

evaluated using AUROC curves [52] (Table 3). Calibration will be assessed by the calibration-

in-the-large and calibration-in-the-small measures. Both measures are decomposed from the 

Brier score. Calibration-in-the-large measures the discrepancy between the mean predicted 

probability and observed fraction of positive outcomes. Taking the square root of this value gives 

you the percentage difference between the prediction and the actual positive outcome. 

Calibration-in-the-small measures the difference between the predictive probability and actual 

outcome within the groups[52]. 

To determine the cut-point for the predicted probability of death that best agrees with the 

actual outcome, decision curve analysis will be performed[53] (Table 3). This analysis compares 

the net number of true positives gained by using the model plotted against a range of thresholds 

(probability of death cut-points). The cut-point that results in the greatest number of true 

positives will be chosen for the model. 

Comparison of the Mortality Model to the MELD Score 

For this analysis, we will use only patients that have laboratory values to generate both 

the MELD score and the mortality model. Those with and without laboratory values will be 

compared. If significant differences are observed, they will be listed as a limitation and 

addressed in future validation efforts. 

I will use a chi-square statistic distributed with one degree of freedom to compare the 

AUROC for each model to the MELD score [53]. The MELD score will be calculated for each 

patient in the cohort using the Mayo Clinic MELD score algorithm: 

MELD Score = (0.957 * ln(serum creatinine) + 0.378 * ln(serum bilirubin) + 1.120 * 

ln(PT INR) + 0.643 ) * 10 (if hemodialysis, value for creatinine is automatically set to 4.0) 
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The AUROC for the MELD score will be calculated and compared to the new predictive 

model [22, 53]. I expect the mortality model to have a greater AUROC than the MELD score 

when predicting post-surgical in-hospital mortality. I expect this difference to be significant with 

p<0.05. 

Sample Size and Power Determination 

 To estimate sample size and power, I use methods that are appropriate for diagnostic 

tests[55] (Table 4). A predictive model is similar to a diagnostic where sensitivity and specificity 

of the predictions determine the usefulness of the model. We want to optimize true positive and 

true negative predictions while minimizing false positives and false negatives. Jones et al. 

propose two separate calculations to determine sample size, one for optimizing sensitivity and 

one for optimizing specificity[55]. It is desirable to have the sample size to meet both 

requirements. We estimate power and sample size based on the assumption that our predictive 

models will not be less than 80% sensitive or 80% specific when compared to actual outcomes 

(mortality and readmission). The incidence of mortality was calculated. Overall 608/4,916 

patients died regardless of death in or out of the hospital (12.36%).  

Power Calculation Using a Sensitivity Threshold (Table 4) [55] 

 

1
st 

calculation: TP+FN=z
2
 * (SN (1-SN)/w

2
  

 

Using the 1
st
 calculation, we determine sample size based on the lowest possible 

acceptable sensitivity—here we use 80%. z
2
 is set equal to 1.96 for a 95% confidence interval. 

We set alpha to 0.05 (5% threshold on each side of our sensitivity is allowable). 

Where: 

TP=true positives 

FN=false negatives 

Z=1.96 (95% confidence interval (CI)) 

SN=sensitivity 

W=accuracy threshold (alpha) of 0.05 
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P=population mortality incidence (12.36%) 

 

Then 1.96
2
 *(0.80(1-0.80))/0.05

2
=246 (sample size without taking into account the 

population incidence). 

 

2
nd 

calculation
 
: N(sN)=TP + FN/P 

Using n=246 obtained in the first calculation and an incidence of 16.06% for deaths for 

cirrhotic patients obtained from our NSQIP data, we obtain: N(sN)=246/0.1236= 1,990 patients. 

The sample size is sufficient to power the study. 

 

Power Calculation Using a Specificity Threshold [55] 

1
st 

calculation: FP+TN=z
2
 * (SP (1-SP)/w

2
  

 

Using the 1
st
 calculation, we determine sample size based on the lowest possible 

acceptable specificity—here we use 80%. z
2
 is set equal to 1.96 for a 95% confidence interval. 

We set alpha to 0.05 (5% threshold on each side of our specificity is allowable). 

 

2
nd 

calculation: N(sN)=FP + TN/(1-P) 

 

Where: 

TP=true positives 

FN=false negatives 

Z=1.96 (95% CI) 

sN=sensitivity 

W=accuracy threshold (alpha) of 0.05 

P=population incidence (12.36%) 

 

Then 1.96
2
*(0.80(1-0.80))/0.05

2
=246 (sample size based on specificity not accounting for 

mortality incidence in the sample). 



17 

Using 246 obtained from the first calculation and using an incidence of 12.36% for 

deaths in cirrhotic patients obtained from the NSQIP data. We obtain: N(sN)=246/(1-

0.1236)=280 patients. Our sample size is sufficient to power the study. (Table 4) 

Results 

Bivariate Analyses (Table 5) 

The mortality cohort included 4,916 patients, 608 patients of whom died prior to 

discharge and 4,308 of whom were discharged alive. In the unadjusted analyses, 15.1% of 

patients were between 71 and 80 years of age and had a significantly greater incidence of 

mortality compared to those discharged alive in this age category (19.1%; p=0.004). Patients 

aged 41–50 had significantly better lower post-surgical mortality (10.2%; p=0.02).  

 Patients with normal renal function (eGFR>90) had significantly lower mortality. Any 

degree of kidney dysfunction was associated with significantly greater mortality rates.  

 43.5% of cases were an emergent surgical procedure. Mortality was significantly greater 

than those surviving emergency surgical procedures (70.6% versus 39.3%; p<0.001). 

  Patients having a pre-operative comorbidity of confusion, alcohol use, chronic 

obstructive pulmonary disease, or chronic heart failure had greater incidence of in-hospital 

mortality. Underweight patients had a greater mortality incidence (7.1% versus 4.6%; p=0.01).  

 Functional status, ASA classification, MELD score, Childs-Pugh category, AST to 

platelet (APRI) score, and total length of stay were all associated with post-surgical mortality in 

the unadjusted analyses. All pre-operative laboratory values were significantly associated with 

mortality except for serum sodium. The total length of the hospital stay was associated with 

mortality with a mean stay of 14 days for those who died versus 9 days for those discharged 

(p<0.001). 
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Comparison of Cirrhotic Cohort with and without Laboratory Values (Table 6) 

 To assess missing pre-operative laboratory values, I compared patients with and without 

values in an unadjusted analysis. Patients either had all laboratory values necessary to generate 

the MELD score, mortality model, and readmission model or were missing values that would 

prohibit generation of any of the three models. Significant differences (p<0.05) indicates data 

may not be missing at random. 

 In the unadjusted analyses, white patients were more likely to have pre-operative 

laboratory values (p=0.03) while other races (non-white and non-black) were less likely to have 

pre-operative labs (p<0.001). Patients having an emergent procedure were less likely to have pre-

operative labs (p<0.001).  

 Patients having a less invasive laparoscopic procedure were less likely to have pre-

operative lab values available (p<0.001). Hernia repair patients were more likely to have labs 

(p=0.005). If functional status was totally dependent, fewer patients had pre-operative labs 

(p<0.001). Patients with ASA classification of mild disturbance (p=0.02) and severe disturbance 

(p<0.001) were more likely to have lab values while those with life threatening (p=0.01) or 

moribund (p<0.001) status were less likely. 

 These laboratory data were not missing completely at random or missing at random. 

Therefore, the external validity of the analyses may be compromised given the selection bias 

present in the NSQIP. 

In-Hospital Mortality Model (Table 7) 

 The Poisson mortality model elucidated variables associated with mortality. As expected, 

advancing age is predictive of in-hospital mortality holding other variables constant. Patients 

between ages 51 and 60 had a 48.5% risk (IRR 1.485; p=0.047) of post-surgical death prior to 
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discharge compared to those <40 years (referent). As age increased, the risk increased to two 

times that of patients under 40 for the 71–80-year-olds (IRR 2.186; p<0.001) to >80 years (IRR 

2.382; p<0.001).  

 In general, patients with poorer clinical/health status at baseline were at increased risk of 

death. Compared to patients that were fully independent, having a functional status of partially 

dependent carried a 36.5% (p=0.009) relative risk of death while those totally dependent had a 

relative risk of 38.4% (p=0.002) holding all other variables constant. Those with an ASA 

classification of life-threatening (IRR 4.030; p<0.001) or moribund (IRR 5.478; p<0.001) had a 

significantly greater risk of death compared to patients with mild disturbance (referent). The pre-

operative eGFR, albumin, platelet count, total bilirubin, and prothrombin INR laboratory values 

were all predictive of post-surgical mortality. Patients having emergency surgery had a 69.8% 

(p<0.001) greater risk of death compared to scheduled surgery. Hernia repair surgery, whether 

laparoscopic or open, carried a 45.8% (p=0.025) reduction in the risk of death compared to other 

non-hernia open abdominal procedures. No other surgical category showed significant 

differences in risk compared to open abdominal surgeries. 

Final Mortality Model (Table 8) 

Mortality model: In-hospital mortality= β0 + β1 Age + β2 Gender + β3 BMI + β4 Functional 

Status + β5 ASA classification + β6 Race + β7 Race + β8 eGFR + β9 Albumin + β10 Platelet 

count + β11 WBC + β12 Total bilirubin + β13 PT INR + β14 Sodium + β15 Emergency 

surgery + β16 Type of surgery + β17 Comorbidities + β18 Surgery category 
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 All variables chosen a priori were kept in the model based on literature support. BMI was 

the only variable dropped from the model. BMI may be inaccurate because weight may reflect 

ascites rather than obesity in patients with decompensated cirrhosis.  

 Although hernia repair was the only surgery type to show a protective effect against 

mortality when compared to non-hernia open abdominal procedures, other surgery types were 

left in the model to control for complexity of the procedure and risk attributable to a specific 

procedure type. For example, cardiothoracic surgery may carry greater risk of mortality than a 

laparoscopic procedure. Diabetes, chronic heart failure, and COPD were not significant in the 

Poisson model but included in the final model to control for comorbidities known to carry risk of 

mortality.  

 The final mortality model employed a logistic regression reporting ORs. Predictions were 

obtained for the model and interpreted as the probability of death prior to discharge after the 

index surgery. The final model included 1,945 patients (Table 8). Advancing age was predictive 

of mortality with odds increasing from 2.041 (p=0.029) in the 51–60 group to 4.385 (p<0.001) in 

patients >80 years of age compared to the <40 referent group, holding other factors constant. 

Functional status, albumin, platelet count, total bilirubin, prothrombin INR, emergent surgery, 

and hernia repair were all significant predictors of mortality (p<0.05). 

Validation of the Mortality Model (Table 9) 

 To assess calibration, calibration-in-the-large, calibration-in-the-small, and Hosmer-

Lemeshow goodness-of fit tests are reported. Calibration-in-the large is a property of the entire 

mortality cohort sample. The mortality model had a calibration-in-the-large value of 0.0004. By 

taking the square root of this value, the model shows a 2% difference between the mean 

predicted probability of death and the actual mean of the binary outcome. Calibration-in-the-
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small measures the error within the groups (died vs. discharged alive). The mortality model had a 

value of 0.0014 that translates to 3.7% difference in the predicted probabilities versus the actual 

outcome within groups. Finally the Hosmer-Lemeshow goodness-of-fit test indicates if the 

model is correctly specified. In this case, the p-value for this test was 0.345. This is not 

significant at a threshold of p<0.05 indicating the model is correctly specified. 

 Discrimination was assessed using AUROC curves, sensitivity, specificity, positive 

predictive value, negative predictive value, and percent correctly classified at a chosen cut-point. 

The cut-point that maximized the sensitivity of the model and kept specificity above 60% was 

0.2150 (also see the decision curve analysis). This model achieved an AUROC of 0.8282. The 

sensitivity was 81.1%, specificity 73.6%, positive predictive value 47.6%, and negative 

predictive value 92.9%. We achieved our goal of at least 0.80 for the AUROC. The sensitivity 

exceeded our goal of at least 80% but the specificity of the model did not reach the goal of 80%.  

 We used the k-fold (k=10) and leave-one-out methods to cross-validate the model. Both 

the k-fold and leave-one-out methods exceeded our AUROC threshold of 0.80 (k-fold: 0.8402; 

leave-one-out: 0.8420). The Brier score, which considers both the calibration and discriminatory 

ability of the model, was 0.1269, which is well below the threshold for a non-informative model.  

Decision Curve Analyses (Figure 3) 

 The decision curve analysis indicates predicted probabilities where the model is useful as 

a decision tool versus using no tool (greatest net benefit). Figure 3 indicates the model may 

reduce post-surgical deaths (net benefit) if used between 10% and 75% predicted probability of 

mortality. Above 75%, predictions about whether a patient should have surgery are not useful 

given the high probability of post-surgical mortality without using the model. For probabilities 

below 10% the model is not useful given the low probability of death. Below 10% and above 
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75%, the model contributes no information beyond the surgeon’s assessment of risk. The point 

on the decision curve that maximizes the net benefit of the model to identity true positives is 

0.2150 and is where the maximum net benefit is gained. 

Comparison of the Model to the MELD Score (Figure 5) 

 The AUROC curve for the mortality model (0.8422) was significantly (p<0.001) better 

than the MELD (0.7405). Across the range of cut-points, the mortality model is better at 

predicting post-surgical deaths than the MELD score. This means the NSQIP mortality model is 

better at discriminating between those who died and those who were discharged alive versus the 

MELD score. If using the NSQIP mortality model, a clinician would be better able to classify 

patients by their risk of death post-operatively. 

Discussion 

 The decision to take a patient with decompensated cirrhosis to surgery is difficult for 

surgeons, given the patient’s risk of death. Currently, surgeons often look to the MELD score, 

even though it was not developed to predict death. We developed and validated the NSQIP 

Mortality Model, which is significantly better (p<0.001) than the MELD score when predicting 

post-surgical in-hospital mortality in patients with decompensated cirrhosis. This is, perhaps, not 

surprising because the variables we included were clinically sensible—for example, age, pre-

operative laboratory values, etc. 

 We found that surgery type carries different levels of risk. For example, cardiothoracic 

surgery carries more risk than a laparoscopic hernia repair. Therefore we kept surgery type in the 

model to control for varying levels of risk. Not surprisingly, hernia repair was performed most 

often by a laparoscopic procedure and offered a protective effect. Although any non-hernia/non-

cholecystectomy laparoscopic procedure was not significant in the model, the estimate does not 
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show a protective effect for the less invasive surgery. This may be due to selection bias in the 

sample. Sicker patients are selected for the less invasive laparoscopic procedures and thus carry a 

greater risk of mortality. 

 In terms of pre-operative laboratory values, albumin was strongly associated with 

mortality. Cirrhotic patients tend to struggle with decreasing albumin levels. The model showed 

that for every one point increase in albumin prior to surgery, the risk of mortality was reduced by 

35% on average. This may suggest that getting patient’s albumin levels up prior to surgery could 

be beneficial in reducing risk of mortality. Increases in total bilirubin and the PT INR were also 

strongly associated with mortality. For each point increase in bilirubin prior to surgery, the 

model showed a 22.9% increase in risk of death. For each point increase in PT INR, there was an 

87.3% increase in the risk of post-surgical mortality. It is well known that liver dysfunction 

contributes to increased bilirubin and prothrombin, and our data suggest that close attention 

should be paid to these pre-operative laboratory values prior to taking patients to surgery.  

 The model performed significantly better than the MELD score. In the decision curve 

analysis (Figure 3), the AUROC curve for the NSQIP Mortality Model is greater than for the 

MELD score. This difference represents the net benefit of using the NSIP Mortality Model to 

decide to take a patient to surgery across a range of predicted probabilities. Moreover, the 

NSQIP Mortality Model showed net benefit between across a broader range of predicted 

probabilities (10%–76%) than the MELD Score (22%–39%). Having a model that can predict 

mortality risk across the middle-range of threshold probabilities is of greater value to the 

surgeon. It is in this middle range of risk that decisions to proceed to surgery become difficult 

and the model offers the most net benefit. 
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This study has several limitations. First, there is selection bias. Given that pre-operative 

serum sodium was not predictive of mortality supports selection of healthier patients for surgery. 

In patients with liver cirrhosis, sodium has been found to be associated with mortality in multiple 

studies[56, 57]. Surgeons often avoid surgery on patients who have a low or elevated sodium 

value due to its association with mortality. They assume these patients are at great risk of death 

post-operatively and choose not to proceed. These patients will not be included in the NSQIP 

database.  

Second, laboratory values were not missing completely at random, which may have 

introduced bias into our models. One concern is that patients undergoing a laparoscopic 

procedure had fewer laboratory values necessary to generate the models and the MELD score 

than those undergoing more invasive (non-lap) procedures. Patients undergoing hernia repair had 

laboratory values available more often than those having non-hernia repair procedures. Further 

research in external samples is required to address the potential bias introduced by missing 

values. Imputation or selection models could have been undertaken but given the wide variation 

in laboratory values in decompensated cirrhotic patients, they were not chosen as options due to 

the fear of introducing more bias.  

 On the one hand, the estimates we obtain may be biased by the inability to control for the 

two types of selection bias present in the data[58]. On the other hand, the NSQIP is designed 

specifically to capture pre- and post-surgical risk or mortality and readmission[44]. There is no 

better database to stratify patients undergoing surgery by risk of mortality and readmission. It is 

possible to evaluate risk factors prior to, during and after surgery.  
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Next Steps 

 The mortality model performed well in this sample. However, more validation is 

necessary prior to using the model to make informed decisions regarding surgery. Once 

validation is completed in a prospective, real-world study, a risk score can be provided through 

the EMR. This score may appear as: “72% risk of mortality predicted: In studies of patients with 

decompensated liver cirrhosis and predicted probability of mortality of >60%, surgery is not 

recommended for X-type surgery.” This will inform decisions made between the hepatologist, 

surgeon, and patient.  

 Future studies will evaluate the mortality model in a real-world setting. I intend to 

implement the model in an electronic medical record (EMR) system for external validation. 

Because data in the model are collected in real time, the predicted probabilities can be classified 

based on patients’ outcomes. For example, if the model is allowed to run in an EMR for one year 

across several hospitals, enough data could be collected to group the predictions into clear go or 

no-go categories. A clear cut-point may emerge to inform the surgical decision. If a single cut-

point does not emerge, risk categories (Low/Medium/High) may be established to help the 

surgeon and patient decide if surgery is advisable. Validation of predictive models is a long and 

dynamic process. Until it is clearly proven the model works in multiple settings and across 

different surgery types, it cannot be implemented into practice. 
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CHAPTER 4. THE NSQIP READMISSION MODEL 

Introduction 

Decompensation increases the risk of unplanned readmissions [10-12]. Compared to 

patients without cirrhosis, those with cirrhosis had among the highest odds of unplanned 

readmissions[4, 11, 12, 59]. Patients with cirrhosis who undergo surgery are frequently 

readmitted within 30 days[12]. This is concerning for both the patients and the healthcare 

system. The ability to predict the risk of 30-day readmission would potentially reduce unplanned 

readmissions by allocating resources for support patients at the greatest risk of readmission[18]. 

The urgency to predict readmissions is fueled by financial penalties imposed on hospitals by the 

Centers for Medicare and Medicaid Services (CMS) for Medicare patients with 30-day 

readmissions [16, 17]. As the cirrhotic population ages, more will have Medicare as their 

primary payer and expose hospitals to the risk for significant financial penalties [17]. Other 

payers will likely adopt CMS’s reimbursement strategies for 30-day readmissions. As CMS 

begins its bundled payments for the care improvement initiative, it will be critical to a hospital’s 

financial health to know the risk of a prolonged stay or complication prior to the service provided 

(e.g., surgical procedure).   

 Currently, no validated model exists to predict readmission among patients with cirrhosis 

who undergo surgery. This study aimed to develop and validate a readmission predictive model 

and then compare its ability to predict readmission to the MELD score in patients undergoing 

surgery. 
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Methods 

Data Source and Sample Selection 

This study used the American College of Surgeons National Quality Improvement 

Program data from 2011–2013[44]. NSQIP is a national voluntary program to help hospitals 

reduce surgical morbidity and mortality. The program offers three levels of participation that 

vary by labor intensity to allow smaller hospitals with limited resources to participate. To date, 

more than 300 hospitals nationwide participate in the NSQIP[44]. 

Data are collected through a combination of electronic medical records and manual chart 

abstraction at each site. More than 150 variables are collected on surgical cases. Each year, 

hospitals rotate through 46 eight-day cycles of data collection to capture a random sampling of 

surgical cases. Included are patients having a major surgery (defined by CPT code) during one of 

the eight-day collection cycles. Both emergent and non-emergent surgeries are captured. Trauma 

and transplant surgeries are excluded[44, 45].  

Data are collected at the patient level. Pre-, intra-, and post-operative variables are 

collected for each patient. If a patient died prior to discharge, he or she is captured in the 

discharge status variable with an “expired” status[44]. Up to five unplanned readmissions are 

captured within 30 days from the index surgery in readmission outcome variable[44].  

Identifying Patients with Liver Cirrhosis 

I selected patients with liver disease, defined as having an esophageal hemorrhage or 

ascites as defined by the ACS NSQIP[44]. The ACS NSQIP definition for these variables 

requires a history of liver disease on record concurrent with an esophageal varices or ascites 

diagnosis[44, 45]. For these patients, I will use previously validated laboratory values that define 

liver cirrhosis: platelet value of < 140,000/mm
3 

and albumin <3.5 g/dL and prothrombin 
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INR>1.5 [45-47]. Finally, any patient with disseminated cancer, an outpatient surgery, or a do 

not resuscitate (DNR) order on file, as defined by a variable in the NSQIP, was removed. This 

resulted in a final cohort of patients with liver cirrhosis (n=4,916).  

Readmission Model Cohort  

Aims 1b, 2b, and 3b will be restricted to the 4,308 patients who were discharged alive 

after the index surgery (Figure 2). Of those, I determined who was readmitted versus those that 

were not readmitted within 30 days from the index surgery. The predictive model will be used 

for patients that are at risk of having an unplanned readmission within 30 days after the index 

surgery and subsequent discharge. Our final cohort for analysis in aims 1b, 2b and 3b will 

include patients with laboratory values to generate the MELD score and readmission model 

(readmitted: n=542) and (n=2,970 discharged alive but not readmitted within 30 days). 153 

patients were excluded due to missing laboratory values. 

Bivariate Analyses 

 Patients with and without a readmission were compared using ANOVA, chi-square, and 

non-parametric test for trends in ordered variables (Table 5). Eligible patients with and without 

pre-operative laboratory values were compared by ANOVA or chi-square analysis to determine 

if their baseline characteristics differ significantly (p<0.05) (Table 6). Those with and without 

labs by surgery type were evaluated to further understand any bias that may be introduced into 

the model. It may be the less invasive surgery types had fewer labs ordered by the surgeon due to 

the perception of lower risk of mortality. Any significant differences are noted in limitations. It is 

not possible to control for selection bias in this sample when we do not have physician- or 

hospital-level factors necessary to generate an appropriate selection model.  
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Development of the Multivariable Readmission Model 

We used a Poisson model with a binary outcome (readmission within 30 days of 

discharge from the index surgery) to determine predictors of readmission [48, 49]. This model is 

has two advantages over logistic regression [48, 49]. First, it computes incident risk ratios (IRR) 

as relative risks, which facilitates interpretation[49, 50]. Second, when cross-sectional data have 

frequent outcomes of interest, odds ratios (OR) may overestimate the prevalence in the 

sample[50]. Poisson is appropriate for a binary outcome model when relative risk is desired and 

events of interest are frequent. The Poisson model requires Huber-White standard error 

adjustment (robust standard errors) to avoid under dispersion[49, 50]. If a variable was not 

significant, I tested for joint significance (p<0.05). If there was joint significance with other 

variables in the model, I included these measures in the final model for validation. Ultimately, 

literature support guided final selection of variables in the model regardless of significance. 

Validation of the Readmission Model 

After determining the predictors of readmission using a Poisson model, a logistic 

regression maximum likelihood model with a binary outcome was used to obtain in-range 

predictions. Predictions for Poisson models (used for development) are often not appropriate for 

validation methods discussed earlier and shown in Table 1 [51]. I will report ORs for the 

readmission estimates. Predictions from the model will be compared to those that were 

readmitted after the index surgery. I am interested in the predictions from the model and how 

they compare to the actual outcome. I will obtain the predicted probability of readmission for 

each patient in the sample. The actual outcome is binary with 1 equal to death. Having a binary 

outcome makes it difficult to compare predictions that are continuous between 0 and 1. It will be 

necessary to perform a cut-point (i.e., threshold) analysis to determine where along the range of 
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predicted probabilities the sensitivity and specificity are optimized (e.g., where do you call a 

“positive” result=readmission versus a negative result=no readmission)[52, 53]. 

Assessment of the Readmission Model Performance 

Overall model performance will be assessed with the Brier score [52, 53] (Table 3). Brier 

scores measure the distance between the actual outcome and the predicted outcome[53]. Brier 

scores are similar to the Pearson’s R
2 

statistic. It is a quadratic scoring equation that uses the 

squared differences between the actual binary outcome (died/survive) and the predictions (p). 

[Brier score=(Y-p)
2
] [52] The lower the Brier score, the better the predictions are calibrated to 

the actual outcome; for a perfect model with optimal fit, the Brier score equals zero. The Brier 

score is affected by the incidence of the outcome of interest in the population. When the 

incidence of the outcome is lower in the sample, the upper limit of the Brier score is lower.  

It is not necessary to know the point where we call the prediction positive or negative 

(cut-point) for computing the Brier score. We will need to know the cut-point when evaluating 

performance at different areas under the receiving operating characteristic (AUROC) curve 

discussed later. Calibration (model fit) of a predictive model refers to the process of creating the 

model and running it on a population that is not used to generate the predictions[53].  

 Cross-validation was used to predict the performance of the model in an external dataset 

[52, 54] (Table 3). The algorithm can be assessed for its performance in an external dataset by 

folding the data repeatedly on a subset of the observations (multiple training sets) and applying it 

to the remaining observations multiple times (validation sets). K-fold cross-validation has been 

shown to be more efficient and a good substitute for training set and validation methods when 

sample size is limited [52, 54]. Cross-validation was chosen over creating a single training and 

validation set of patients due the rapidly changing surgical methods and procedures in our data. 
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For example, if we reserve year 2011 for training and apply that to data from 2012–2013, the 

algorithm may fail due to newer procedures that reduce mortality or shifting populations (aging 

baby boomers in the cirrhotic cohort). Therefore, it is optimal to train the algorithm on multiple 

samples selected from different years then apply it to multiple validation samples from the same 

years (at least 10 k-folds). 

The ability of the model to discriminate between those who were readmitted or not will 

be evaluated using AUROC curves [52] (Table 3). Calibration will be assessed by the 

calibration-in-the large and calibration-in-the small measures. Both measures are decomposed 

from the Brier score. Calibration-in-the-large measures the discrepancy between the mean 

predicted probability and observed fraction of positive outcomes. Taking the square root of this 

value gives you the percentage difference between the prediction and the actual positive 

outcome. Calibration-in-the-small measures the difference between the predictive probability and 

actual outcome within the groups[52]. 

To determine the cut-point for the predicted probability of readmission that best agrees 

with the actual outcome, decision curve analysis will be performed[53] (Table 3). This analysis 

compares the net number of true positives gained by using the model plotted against a range of 

thresholds (probability of death cut-points). The cut-point that results in the greatest number of 

true positives will be chosen for the model. 

Comparison of the Readmission Model to the MELD Score 

For this analysis, we will use only patients that have laboratory values to generate both 

the MELD score and the readmission model. Those with and without laboratory values will be 

compared. If significant differences are observed, they will be listed as a limitation and 

addressed in future validation efforts. 
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I will use a chi-square statistic distributed with one degree of freedom to compare the 

AUROC for the model to the MELD score [53]. The MELD score will be calculated for each 

patient in the cohort using the Mayo Clinic MELD score algorithm: 

MELD Score = (0.957 * ln(serum creatinine) + 0.378 * ln(serum bilirubin) + 1.120 * 

ln(PT INR) + 0.643 ) * 10 (if hemodialysis, value for creatinine is automatically set to 4.0) 

 

 The AUROC for the MELD score will be calculated and compared to the new predictive 

model [22, 53]. I expect the mortality model to have a greater AUROC than the MELD score 

when predicting post-surgical in-hospital mortality. I expect this difference to be significant with 

p<0.05. 

Sample Size and Power Calculation 

To estimate sample size and power, I use methods that are appropriate for diagnostic 

tests[55] (Table 4). A predictive model is similar to a diagnostic where sensitivity and specificity 

of the predictions determine the usefulness of the model. We want to optimize true positive and 

true negative predictions while minimizing false positives and false negatives. Jones et al. 

propose two separate calculations to determine sample size, one for optimizing sensitivity and 

one for optimizing specificity. It is desirable to have the sample size to meet both requirements. 

We estimate power and sample size based on the assumption that our predictive models will not 

be less than 80% sensitive or 80% specific when compared to actual outcomes (mortality and 

readmission). 

 Calculation of the incidence of readmission within 30 days: Overall 566/4,308 (13.14%) 

had any unplanned readmission. Using Jones et al. equations with a lower limit for sensitivity 

and specificity of 80%, we can estimate the sample size for the readmission model. We found 
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readmissions in the cirrhotic cohort were 13.14%. Using the incidence of readmission we find 

the following: 

Sensitivity: N(sN)=246/0.1314=1,872 total patients in sample  

Specificity: N(sN)=246/(1-0.1314)=283 total patients 

The sample size is sufficient to power the study. (Table 4) 

Results 

Bivariate Analyses (Table 5) 

 Patients discharged with a 30-day readmission were compared to those without on 

multiple variables. I found advanced age was not associated with readmission in patients with 

decompensated cirrhosis. Insulin-dependent diabetes was associated with readmission in 

(p=0.001). Patients classified into the ASA class moribund or life-threatening had significantly 

more readmissions. 

 The pre-operative laboratory values for albumin, sodium, total bilirubin, platelets, PT 

INR, and white blood cell count showed significant differences between those with an unplanned 

readmission versus those without. Patients with a MELD score of less than or equal to 9 (less 

severe disease) had significantly more readmissions (p=0.002). Those with MELD scores 

between 10 and 19 also had significantly fewer readmissions (p=<0.001).  

Comparison of Cirrhotic Cohort with and without Laboratory Values (Table 6) 

 To assess missing pre-operative laboratory values, I compared patients with and without 

values in an unadjusted analysis. Patients either had all laboratory values necessary to generate 

the MELD score, mortality model, and readmission model or were missing values that would 

prohibit generation of any of the three models. Significant differences (p<0.05) indicates data 

may not be missing at random. 
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 In the unadjusted analyses, white patients were more likely to have pre-operative 

laboratory values (p=0.03) while other races (non-white and non-black) were less likely to have 

pre-operative labs (p<0.001). Patients having an emergent procedure were less likely to have pre-

operative labs (p<0.001).  

 Patients having a less invasive laparoscopic procedure were less likely to have pre-

operative lab values available (p<0.001). Hernia repair patients were more likely to have labs 

(p=0.005). If functional status was totally dependent, fewer patients had pre-operative labs 

(p<0.001). Patients with ASA classification of mild disturbance (p=0.02) and severe disturbance 

(p<0.001) were more likely to have lab values while those with life-threatening (p=0.01) or 

moribund (p<0.001) status were less likely. 

 These laboratory data were not missing completely at random or missing at random. 

Therefore, the external validity of the analyses may be compromised given the selection bias 

present in the NSQIP. 

NSQIP Unplanned 30-Day Readmission Model (Table 10)  

 Age, gender, body mass index, functional status, race, surgery type, discharge 

destination, and emergent surgery were not significant predictors of readmission in the model. 

However, using a p-value significance threshold of less than 0.05, gender and discharge to a 

rehabilitation facility were borderline significant with p-values of 0.05. 

 Having an ASA classification of life-threatening increased the risk of readmission by 

62.8% (p=0.009) compared to those classified as having a mild disturbance while holding other 

variables constant. For every 1 point increase in albumin, there is a 14.7% (p=0.049) reduction in 

the risk of readmission. For every increase in the PT INR, there is a 48.0% (p=0.003) increase in 
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the risk of readmission. Patients who are insulin dependent have a 61.7% (p=0.001) increase in 

the risk of being readmitted compared to non-diabetics. 

 Certain post-operative complications were found to increase the risk of readmission. 

Sepsis dramatically increased the risk of readmission by 96.6% (p<0.001). Acute or progressive 

renal failure increased readmission risk by 57.0% (p=0.032) while a urinary tract infection 

increased risk more than two-fold (RR 2.25; p=0.001). If a patient had an unplanned intubation, 

the risk of readmission increased by 51.8% (p=0.038). 

 Time on the operating table contributes to the risk of readmission. For every additional 

hour spent on the table, the risk of readmission was increased by 12.0% (p=0.002). 

Final NSQIP Readmission Model (Table 11) 

Readmission model: Readmission (within 30 days of index surgery)= β0 + β1 Age + β2 

Gender + β3 BMI + β4 Functional Status + β5 ASA classification + β6 Race + β7 Race + β8 

eGFR + β9 Albumin + β10 Platelet count + β11 WBC + β12 Total bilirubin + β13 PT INR + 

β14 Sodium + β15 Emergency surgery + β16 Type of surgery + β17 Comorbidities + β18 

Surgery category + β19 Discharge destination + β20 Pneumonia + β21 Sepsis + β22 Time on 

table + β23 Time under anesthesia + β24 Acute/Progressive Renal Failure + β25 Urinary Tract 

Infection + β26 Ventilator Wean Time >48 hours + β27 Total Length of hospital stay + 

constant 

 

 All variables, regardless of significance in the Poisson model were kept in the final logit 

readmission model. Readmissions are notoriously difficult to predict. The Poisson model was 

used to find significant predictors of readmission. However, when using only significant 

predictors in the logit model, important factors that need to be controlled for (in theory) are lost 
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and may cause bias in predictors left in the model (joint significance). It is best practice to keep 

all variables in the readmission model, regardless of significance, because theory and literature 

dictate they contribute to readmission risk. For example, age is not significant in the Poisson 

model or logit model but there is support in the literature that advancing age increases the risk of 

readmission [17]. Omission of important variables may lead to omitted variable bias. However, 

including too many variables may result in over-fitting of the model. Subsequent tests were 

conducted to guard against over-fitting (see validation section). The final decision was to keep 

all variables from the Poisson model in the final readmission model. This was driven by theory 

and literature support. 

 Being male was found to decrease the odds of readmission compared to females (OR 

0.705; p=0.041). Several laboratory values were predictive of readmission. As albumin increases 

by one point, the odds of readmission also decreased (OR 0.793; p=0.037). A one-point increase 

in PT INR increases the odds of readmission more than two-fold (OR 1.734; p=0.009). Patients 

who are insulin dependent have a two-fold increase in odds of readmission (OR 1.980; p=0.001).  

 Certain post-operative complications remained significant in the final model when 

predicting readmission. Post-operative sepsis increased the odds of readmission two-fold as did 

acute renal failure (OR 2.641; p<0.001 and OR 2.028; p=0.033). Urinary tract infection remained 

a strong predictor of readmission (OR 3.248; p=0.001). Patients that were discharged to a 

rehabilitation facility had lower odds of readmission compared to those discharged to a facility 

that was not home, acute care, or rehabilitation facilities (OR 0.452; p=0.041). 

Validation of the Readmission Model (Table 12) 

For the readmission model, calibration and discrimination were assessed. The calibration-

in-the-large was zero for this model. This indicates that for the entire readmission cohort, there is 
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no difference between the mean of all predictions and actual outcome. However, calibration-in-

the-small was 0.007 or 2.65% difference in the predicted mean of those readmitted versus the 

actual mean of those readmitted (within-group calibration). This is a well-calibrated model. The 

Hosmer-Lemeshow goodness-of-fit test was not significant (p=0.310), indicating the model is 

correctly specified.  

 The ability of the model to discriminate between those readmitted and those not 

readmitted was assessed. The AUROC was 0.7541 with a sensitivity of 76.6%, specificity of 

60.9%, positive predictive value of 27.7%, and negative predictive value of 93.0% at a cut-point 

of 0.1425. Neither the sensitivity nor specificity of the readmission model reached our goal of 

80%. 

 Although the model did not reach our 80% sensitivity and specificity goals, the out-of-

sample performance indicates a larger sample may improve performance. Cross-validation using 

the 10-fold method gave an AUROC of 0.7602. This is greater than the AUROC from running 

the full model and an indicator that performance in another sample or larger sample could 

improve performance. The leave-one-out method had an AUROC equal to that of the full model. 

 The Brier score was 0.1186. The maximum Brier score, accounting for 13.1% incidence 

of readmission, was 0.7540 for a non-informative model. Our Brier score was quite low, 

indicating good discrimination and calibration. Overall the model was able to classify 63.5% of 

the observations correctly. 

Decision Curve Analysis (Figure 4) 

The decision curve analysis showed the readmission model had a positive net benefit 

between threshold probabilities of 19% and 70%. This means that for those at very low risk of 

readmission (<19%) or those at very high risk (>70%) using the model to prevent readmissions is 
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of no benefit. A model that can inform decisions in the middle range for risk of readmission is 

most useful because this will be where it is difficult for a hospital to decide how to tier discharge 

planning to prevent readmission. 

 The point on the decision curve that maximizes true positives for readmission is 0.1425. 

This is where the maximum net benefit is gained by using the model. 

Comparison of the Readmission Model to the MELD Score (Figure 6) 

The readmission model was compared to the MELD score. Although the MELD score is 

not an optimal comparator and is not intended to predict readmissions, no other readmission 

model exists specifically for decompensated patients with cirrhosis undergoing surgery. The 

readmission model AUROC (0.7541) exceeded the MELD score AUROC (0.5663) when 

predicting 30-day readmission (p<0.001). 

Discussion 

Readmissions have been notoriously difficult to predict [60]. The combination of in-

hospital factors and patient-level factors after discharge are required to capture accurate risk of 

readmission. In our dataset, we had in-hospital factors. It is evident in the final readmission 

model there are few predictors that are significant. Prediction of in-hospital mortality relies on 

pre-, intra-, and post-operative factors that are captured in our dataset. When a patient is 

discharged the ability to capture important factors such as medication compliance and wound 

care is lost. Therefore, many readmission models, including this model, suffer from omitted 

variable bias. However, this model is a good start to finding predictors of readmission in 

decompensated cirrhotic patients. Further research will target data sources that capture out-of-

hospital factors. 
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 The current model had some surprising results. First, being male had a protective effect 

on readmission compared to females. There was a 29% decrease in the risk of readmission if 

male holding other factors constant (Table 10). This may be an artifact given over 50% of the 

patients in our sample are male (56.8%) or it could be that women are traditionally caretakers 

and have fewer resources for taking care of themselves. When they return home from the 

hospital, they may have less time to recover and address their own medical needs or may not 

have the support of a caretaker. Future studies would be warranted to investigate this hypothesis 

by capturing information on the home environment after discharge. 

 It was not surprising that having a life-threatening ASA classification was associated with 

readmission compared to those with mild disturbance. These patients are sicker and have greater 

baseline risk of complications after surgery. Patients with a moribund ASA classification were 

not associated with readmission. This may be due to the fact they are more likely to die after 

surgery given their grave health state.  

 The type of surgery, emergent surgery, and length of hospital stay were not predictive of 

readmission. This is surprising given that different surgery types carry variable levels of risk. It 

seems readmission may be more likely if undergoing a cardiothorasic procedure versus a hernia 

repair. Length of hospital stay has been associated with readmission in previous studies but our 

model did not show a significant association. It could be patients are hospitalized long enough to 

stabilize their health prior to discharge thus reducing the risk of readmission. In fact, discharge to 

a rehabilitation facility was associated with a 54.8% reduction in the risk of readmission 

compared to discharge to another type of facility that was not home or acute care (Table 10). 

Stabilizing patients with decompensated cirrhosis may be key to mitigating readmission. This 
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may include fluid management to prevent encephalopathy, protein management to stabilize 

albumin levels, and control of bleeding to avoid variceal hemorrhage.  

 Patients with insulin-dependent diabetes are almost two times as likely to be readmitted 

compared to those without diabetes. It is well established that liver dysfunction can make 

diabetes management difficult due to glycogen storage in the liver being impaired[61]. 

Readmission may be due to complications of slow wound healing or infection given both are 

frequent complications in diabetics.  

 There were no surprises in the post-operative predictors of readmission. Patients are at 

greater risk of infections even without surgery. Post-surgical urinary tract infections (UTI) 

increased the risk of readmission three-fold compared to those without a UTI. Sepsis increased 

readmission risk almost three-fold. Acute renal failure or progressive renal failure after surgery 

increased risk two-fold. Both sepsis and acute renal failure are common in decompensated 

cirrhotic patients even without surgery. Unplanned intubation after surgery was associated with 

readmission and may be a proxy for capturing post-surgical complications not available in the 

NSQIP database such as metabolic acidosis, encephalopathy, or fluid management problems. 

 Surprisingly, several pre-operative laboratory values were associated with readmission. 

Albumin, platelet count, and PT INR were all associated with readmission. As seen in the 

mortality model, decreasing albumin in decompensated cirrhotic patients is a clear predictor of 

health. As albumin falls, fluid management becomes more difficult, possibly leading to 

readmission. Platelet count and PT INR measures are associated with bleeding. Patients with 

cirrhosis have a difficult time with bleeding and surgery further complicates this delicate 

balance, possibly resulting in readmission. 
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 This study has several limitations evident in the results of the analyses. First, there 

is clear selection bias in the sample. Finding that pre-operative serum sodium was not predictive 

of mortality supports selection of healthier patients for surgery. In patients with liver cirrhosis, 

sodium has been found to be associated with mortality in multiple studies[56, 57]. 

 Second, for the readmission model, key factors may not be captured that are associated 

with readmission. This may introduce omitted variable bias in our model and decrease accuracy 

of the predictions (sensitivity/specificity/AUROC). Three such factors are socioeconomic status, 

home lifestyle factors, and insurance status of patients in our sample. Further studies are 

necessary to determine what factors are predictive of readmission and determine interventions to 

prevent readmission. 

 Finally, laboratory values were not missing completely at random or missing at random. 

This may have introduced bias into our models given we used complete case analysis. Further 

research in external samples is required to address the potential bias introduced by missing 

values. Imputation or selection models could have been undertaken but given the wide variation 

in laboratory values and missing information on hospitals or physicians in the dataset, they were 

not viable options.  

 Overall the readmission model performed reasonably well but did not reach the AUROC, 

sensitivity, and specificity goals of this study. Post-discharge patient-level data is required to 

accurately predict readmissions. Future studies will focus on collection of these factors to 

improve model performance. 

Next Steps 

This model will require substantial modification to improve performance moving 

forward. In fact, more development is required using post-discharge variables. Once the model is 
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fully developed and validated, it can be used to identify patients at greater risk of readmission 

and allocate at-home resources to these patients. One example may include scheduling more 

intensive home health visits for patients at greater risk of readmission. Prospective studies can 

assist in design of discharge plans tailored to the level of risk that successfully prevent unplanned 

readmissions. 
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CHAPTER 5. DISCUSSION AND FUTURE DIRECTIONS 

Discussion 

With the implementation of financial penalties for in-hospital mortality and 30-day 

readmissions by CMS, it is increasingly important to maximize value by reducing these costly 

events. To deliver high-quality care that reduces these penalties, it is necessary to predict which 

patients require more intensive in-hospital and post-discharge management. Predictive models 

are being used in health care to risk-stratify patients so that allocation of costly resources can be 

delivered to the right patients at the right time, resulting in better outcomes. This study develops 

and validates two predictive models that can help inform decisions for a high-risk population—

patients with decompensated liver cirrhosis undergoing surgical procedures. This study is the 

first to deliver such models for decompensated cirrhotic patients. 

Patients with decompensated cirrhosis are at greater risk of mortality due to sepsis, 

hepatic encephalopathy, and variceal hemorrhage[62]. Although sepsis is not unique to this 

population, hepatic encephalopathy and variceal hemorrhage are primarily seen in patients with 

cirrhosis. These comorbid conditions not only increase the risk of mortality but also the risk of 

readmission. Thus, specific models to predict mortality and readmissions in this population are 

necessary to capture these unique risk factors.  

 The National Surgical Quality Improvement Program (NSQIP) mortality model 

performance met the study goals and shows great promise for implementation in a real-world 

setting. Using secondary data to develop and internally validate models is a practical first step 

prior to its external validation and widespread implementation to make clinical decisions. In 
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addition to using the model to predict mortality, independent factors in the model shed light on 

potential opportunities to improve patient care. For example, the mortality model found hernia 

repair to have a protective effect. This may suggest that hernia repair is critical to reduce the 

decompensated patient’s risk of premature death. Further study is warranted on the benefits of 

hernia repair in this population. Additionally, the model found pre-operative albumin, total 

bilirubin, and Prothrombin International Normalized Ratio (PT INR) levels were strongly 

associated with mortality. For every one-point increase in the patient’s pre-operative albumin, 

mortality is reduced by 34% on average. Getting the albumin levels up in the cirrhotic patient 

prior to surgery may be critical in reducing the risk of post-operative mortality. The predictions 

from the mortality model were found to be informative in patients with a predicted probability of 

death between 10% and 76%. This is exactly where you want the model to be most useful. It is in 

patients that are in the middle range, not those with high or low risk of mortality, that the model 

is most needed to guide surgical decisions. When it is difficult for the surgeon, patient, and 

heptaologist to make the decision to proceed to surgery, the model is most informative and may 

better inform those decisions. Given the current paradigm is to use the MELD score to drive 

decisions in cirrhotic patients, this model is a much better option because it was significantly 

better than the MELD score at predicting post-surgical mortality. 

Although the NSQIP readmission model was reasonable, it did not meet the study 

performance goals. The inability of the readmission model to meet the study goals may be due 

inadequate sample size and/or the lack of information on patients once they leave the hospital. 

More often, consumer data is used to better understand patient behavior after discharge from a 

hospital. This model may benefit from addition of these factors in future development and 

validation efforts. In the current model, there were some useful findings. For example, insulin-
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dependent diabetes was a risk factor for readmission in decompensated cirrhotic patients. Better 

management of diabetes after surgery may be required for these patients. Implementing more 

intensive home health services for insulin-dependent diabetics may be one strategy for reducing 

readmission. If serum pre-operative albumin is increased by one point prior to surgery, there is a 

21% decrease in the risk of post-surgical readmission. The albumin levels can be managed pre-

operatively to reduce the risk of readmission in these patients. Predictions from the full model 

can guide the intensity of discharge planning. The model did outperform the Model for End 

Stage Liver Disease (MELD) score and may be a better way to assess risk of readmission in this 

population. 

 Both models are a strong starting point for improving the quality of care patients with 

cirrhosis receive. By implementing predictive models such as these in the electronic medical 

record (EMR) clinicians will be better able to judge risk of mortality or readmission. The current 

paradigm is for a hepatologist and surgeon to discuss a patient’s risk of mortality using the 

MELD score, clinical comorbidities, and many other factors (patient compliance, insurance 

status). MELD scores are inadequate for predicting risk of death or readmission across a broad 

range of patients with cirrhosis. These NSQIP models give a concrete risk score to the clinician 

that can better inform the decision-making process.  

Hospital discharge teams would benefit from knowing the risk of readmission in this 

special population of decompensated cirrhotic patients. Fluid management and keeping albumin 

levels in the up is key in patients with decompensated cirrhosis, especially after surgery. This 

model identifies that for those at greater risk of readmission and home health services, remote 

weight monitoring, albumin supplementation, and giving a 30-day supply of medication at 

discharge may all be strategies that can be implemented based on the readmission risk score. To 
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implement these interventions for everyone with decompensated cirrhosis, without knowing the 

risk of readmission, would be too costly.  

 Overall, both the mortality and readmission models move clinical care for patients with 

cirrhosis forward. First, prior to this study, no model existed to predict mortality or readmissions 

in decompensated cirrhotic patients. Second, the MELD score is overused for decision making 

when caring for patients with cirrhosis. It has multiple limitations that these models overcome. 

Last, targeted interventions can be investigated using the risk score to stratify patients into 

specific clinical care plans. 

 After further validation of each model using real-world clinical data, it is possible to 

implement the models in a widely used electronic medical record system such as Epic™. Epic™ 

Web is an Epic™ data warehouse for user-developed programs and registries that can be 

implemented by sites. It is possible to post models to the Epic™ Web after further validation. 

This is beyond the scope of this dissertation.  

The models may be implemented as smartphone applications in addition to Epic™ 

programs. This would allow non-Epic™ users to access the programs easily in the clinical 

environment regardless of the electronic medical record system in use at their facility. 

Both mortality and readmission models will require further study prior to using in the 

real-world setting. My first priority is to work with the Carolina Data Warehouse at the 

University of North Carolina to implement the mortality model for further validation. Being able 

to get a risk score for patients undergoing any type of surgery with both compensated and 

decompensated liver cirrhosis will broaden the scope of the model. Following patients outcomes 

will be easy considering the goal is to prevent in-hospital mortality after the surgical procedure. 
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My second priority is to improve the readmission model by obtaining information on 

patients once discharged. There are several initiatives underway at UNC Healthcare to prevent 

readmissions and better manage population health. One such initiative is to use consumer data on 

patients to gain better insight into their at-home habits to improve readmission prediction. I am 

very interested in novel data sources that may work to improve the model in this particular 

population of cirrhotic patients. I plan to collaborate with the UNC Healthcare population 

management data scientists to build a better model. 

Two papers will be produced from the dissertation, one each for the NSQIP mortality and 

NSQIP readmission models. I plan to submit both papers to clinical journals such as 

Gastroenterology and Clinical Gastroenterology and Hepatology. Additionally, I plan to submit 

abstracts to the American College of Gastroenterology (ACG) and American Association for the 

Study of Liver Diseases (AASLD) meetings in 2015. 
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APPENDIX. TABLES AND FIGURES 

Table 1. Model Measures and Justification 

Measures Description Theory Behind Selection 

Specific 

Aims 

Age 

Patient’s age at time of 

surgery  

Control for declining 

kidney and liver function 

due to age[7] 

All aims 

Gender 

Male/Female Control for differences in 

creatinine between 

genders[40, 41] 

All aims 

Pre-operative 

Body Mass Index 

(BMI) 

Using height and weight from 

the data: 

BMI=[mass(lbs)/height (in)^2 

] x 703 

Risk of mortality is 

increased in moribund 

patients[63-65] 
All aims 

Pre-operative 

Functional Status 

Functional status assessment 

prior to surgery: 

1-independent  

2-partially dependent 

3-Totally dependent 

Controls for poor health 

status prior to surgery. 

Those with lower 

functional status may carry 

greater risk of mortality 

pre-operatively[66] 

All aims 

Ethnicity/Race 
African 

American/White/Asian/Other 

Control for differences 

across ethnicities 
All aims 

Pre-operative 

estimated 

Glomerular 

Filtration Rate 

(eGFR) 

Use of the 2005 modification 

of diet and renal disease 

(MDRD*) formula: eGFR= 

186 x SCr
-1.154

 x Age
-0.203

 x 

[1.210 if Black] x [0.743 if 

Female] 

 

Captures early acute 

kidney injury often due to 

fluid overload from 

decompensated 

cirrhosis[40] 

All aims 

Pre-operative 

Serum Albumin 

Measured in g/dL Made by the liver and 

captures biosynthetic liver 

function-declines as liver 

function declines in 

cirrhosis[33] 

All aims 

Pre-operative 

Platelet Count 

Measured in mmol/L Hyponatremia (i.e., low 

sodium) associated with 

mortality across multiple 

conditions[35] 

All aims 

Pre-operative 

White Blood Cell 

Count (WBC) 

May be indicative of pre-

operative infection or 

inflammation 

Has been shown counts 

>10,000 are associated 

with a high mortality rate 

of 54% versus 19% in 

intra-abdominal surgery in 

patients with cirrhosis of 

any etiology[67] 

All aims 
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Pre-operative 

Serum Total 

Bilirubin 

Measured in mg/dL Captures biosynthetic liver 

function. Increases with 

cellular damage in the 

liver[67]  

All aims 

Pre-operative 

Prothrombin INR 

INR(international normalized 

ratio): standard measure of the 

clotting capacity of blood 

May detect risk of post-

surgical bleeding as well as 

capture liver function[68] 

All aims 

Emergency 

Surgery 

Surgery was due to emergent 

condition 

Controls for a greater 

probability of mortality due 

to an emergent 

condition[67] 

All aims 

Type of Surgery 

Surgical types include:  

1) Cardiothoracic 

 2) General 

3) Other-not classified 

elsewhere 

4) Laparoscopic procedures 

 5) Cholecystectomy (lap or 

open) 

6) Open abdominal  

7) Hernia Repair (lap or open) 

 

Controls for type of 

surgery[9]  

All aims 

Comorbidities 

Includes: 

1) Diabetes (Oral medication, 

Non-insulin or injectable 

insulin dependent) 

Control for comorbidities 

that may increase the risk 

of post-surgical 

mortality[69-72]  
All aims 

American Society 

of 

Anesthesiologists 

Physical Status 

Classification 

(ASA class) 

 Healthy patient 

 Mild systemic disease-

no functional 

limitation 

 Severe systemic 

disease-definite 

functional limitation 

 Severe systemic 

disease that is a 

constant threat to life 

 Moribund-patient is 

not expected to 

survive without 

surgery 

ASA classification is 

associated with post-

operative moratlity when 

used pre-operatively to 

stratify risk in patients[73] 

All aims 

Duration of 

Anesthesia and 

Duration of 

Operation 

Total duration of surgery from 

anesthesia start to anesthesia 

stop (minutes) 

Greater time in surgery 

increases risk of 

readmission due to 

complications[74] 

2a, 2b, 2c 

Post-operative Patient developed pneumonia Risk of readmission is 2a, 2b, 2c 
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Pneumonia based on radiology or 

laboratory data 

greater if post-operative 

pneumonia developed[75] 

Post-operative 

Sepsis or Septic 

Shock 

Patient developed sepsis or 

septic shock. 

Patients with cirrhosis are 

at greater risk of sepsis[12, 

75] 

2a, 2b, 2c 

Post-operative 

Acute or 

Progressive Renal 

Failure 

Patient developed either acute 

or progressive renal failure. 

Patients with 

decompensated cirrhosis 

are at greater risk of acute 

renal failure[76, 77] 

2a, 2b, 2c 

Post-operative 

Urinary Tract 

Infection 

Patient developed urinary 

tract infection. 

Urinary tract infection 

increases the risk of 

readmission[75] 

2a, 2b, 2c 

Post-operative 

Unplanned 

Intubation 

Patient was removed from 

ventilator and re-intubated. 

Complication resulted in an 

unplanned reintubation 

may increase risk of 

readmission[78] 

2a, 2b, 2c 

Post-operative  

Failure to Wean 

from Ventilator 

On ventilator >48 hours 

Extended time on the 

ventilator is associated 

with greater risk of 

mortality, length of stay 

and pneumonia[79] 

 

2a, 2b, 2c 

 

 

 

Discharge 

Destination 

 

1-Skilled care, not home 

2- Unskilled facility, not 

home. 

3-Same pre-operative facility 

4-Home 

5-Separate acute care 

6- Rehabilitation facility 

 

Discharge destination has 

been associated with the 

odds of readmission[4] 

2a, 2b, 2c 

Total Length of 

Hospital stay 
Days 

Risk of secondary 
nosocomial infection 

may increase as length 
of hospital stay 
increases[80] 

2a, 2b, 2c 

Abbreviations: *MDRD=Modification of Diet in Renal Disease eGFR equation 
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Table 2. Surgical Categories 

 

Surgery Type Description 

Cardiothoracic Surgeries requiring cutting into the thoracic cavity. 
General Surgery Surgeries not classified as cardiothoracic or abdominal. 

Open Abdominal 
Any surgery requiring cutting into the abdominal wall 
excluding hernia repair and cholecystectomy 

Any 
Laparoscopic 

Procedure 

Any laparoscopic procedure excluding lap 
cholecystectomy or lap hernia repair. 

Cholecystectomy Any cholecystectomy (lap or open) 
Hernia Repair Any hernia repair (lap or open) 

Other-not 
classified 

elsewhere 
Surgeries not classified elsewhere 
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Table 3. Summary of Model Performance Measures 

Measure Statistic Interpretation Expected  
Value 

Overall model 
performance 

Brier Score Range: 0-0.25  
Lower scores indicate better 
calibration and discrimination. 

<=0.25 (given 
50% chance of 
death) 

Discrimination AUROC, Sensitivity, 
Specificity, Positive 
Predictive Value, Negative 
Predictive Value, % correctly 
classified  
 
Note: all measures are at a 
specified cut-point 

AUROC: Plots sensitivity (SN)* vs. 
1-specificity (SP)**. Range 0-1 with 
scores closer to 1 indicating better 
discrimination. 
 
Sensitivity: Ability of the model to 
identify true positives correctly at a 
specific cut-point 
 
Specificity: Ability of the model to 
identify true negatives at a specific 
cut-point 

AUROC>0.80 
 
 
 
 
Sensitivity>80% 
Specificity>80% 

Calibration Calibration-in-the Large 
 
Calibration-in-the Small 
 
Hosmer-Lemeshow 
Goodness-of-fit Test 

Taking the square root of the 
calibration-in-the-large gives the % 
difference between the predictive 
fraction of positive results versus 
the predicted fraction of negative 
results.  
 
The square root of the calibration-
in-the small gives the % difference 
between the predictive positives 
and negatives versus the actual 
fraction amongst the groups. 
 
The Hosmer-Lemeshow goodness-
of-fit test is an indicator of how well 
my model fits the data in my 
sample. It indicates if the model is 
correctly specified. To simplify, is 
the actual number of patients that 
died or were readmitted match the 
predicted numbers. Hosmer-
Lemeshow breaks the groups into 
10 different groups of fitted values. 
If p>0.05 then we can assume our 
model’s predictions are similar to 
the actual outcome across 10 
different areas of the range of 
probabilities. 
 
 

<5% difference 
 
 
 
 
 
 
<5% difference 
 
 
 
 
p>0.05 (accept 
model is 
correctly 
specified) 
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Cross-
Validation 

AUROC for both the k-fold 
analysis and the leave-one-
out analysis 

Predicts the ability of the model to 
maintain performance in an 
external dataset.  
 
k-fold: fold data into 10 smaller 
training/validation sets. 
 
Leave-one-Out: use entire set to 
train and apply to the observation 
left out. Continue until you have 
predicted all observations. 

AUROC>0.80 
 

*SN=true positives/(true positives(TP) + false negatives(FN)) 

**SP= true negatives/(true negatives(TN) + false positives(FP)) 

 

 

 

 

Table 4. Sample Size Requirements for the Mortality and Readmission Cohorts 

Cohorts Incidence Power Alpha 

Sample 
Size* 

Required 
(Sensitivity) 

Sample Size 
Required* 

(Specificity) 

Mortality 
Cohort 

12.36% 80% 0.05 1,989 281 

Readmissions 
Cohort 

13.14% 80% 0.05 1,871 283 

*The sample sizes are sufficient for all aims. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5. Bivariate Analyses 

Mortality Cohort   Unplanned Readmission Cohort 

Variable Overall 
Discharged 

Alive Died In-house 

p-value 

  Overall 
Unplanned 

Readmission 
No 

Readmission 

p-value   n=4,535 n=3,927 n=608   n=3,475 n=542 n=2,933 

     
  

    Age (%)  
    

  
    <40 6.9 7.2 5.1 0.06   7.5 7.3 8.1 0.52 

41-50 13.2 13.7 10.2 0.02*   14.4 14.2 15.7 0.37 

51-60 28.9 29.4 26.2 0.1   30.9 30.7 32.3 0.46 

61-70 26.9 26.5 28.9 0.21   27 27.2 25.6 0.44 

71-80 15.1 14.5 19.1 0.004*   13.4 13.5 12.7 0.64 

>80 8.9 8.7 10.5 0.14   6.8 7.1 5.5 0.2 

     
  

    Race (%)  
    

  
    White 75 75.5 71.9 0.06   76.7 76.7 76.8 0.96 

Black 12 12.2 11.4 0.59   11.5 11.1 13.5 0.11 

Other 12.9 12.4 16.7 0.003   11.7 12.1 9.6 0.1 

     
  

    Gender (%) 
    

  
    Female 42.4 42.3 43.1 0.71   43.2 43.3 42.4 0.7 

Male 57.6 57.7 56.9 0.71   56.8 56.7 57.6 0.7 

     
  

    Chronic Kidney Disease 
Stage (%) 

    
  

    I. Normal 30.1 32.2 16.5 <0.001**   34.7 34.8 33.9 0.68 
IIa. Some kidney 

damage 26.6 28 17.4 <0.001**   28.8 29.1 26.7 0.26 

5
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IIb. Moderate kidney 
damage 23.6 23 27.5 0.01*   22.4 22.4 22.3 0.99 

III. Severe kidney 
damage 11.3 9.2 24.9 <0.001**   7.5 7.2 8.7 0.24 

Kidney Failure 8.5 7.7 13.7 <0.001**   6.7 6.4 8.3 0.1 

     
  

    Emergent surgery (%) 43.5 39.3 70.6 <0.001**   36.5 36.7 35.2 0.51 

     
  

    Pre-operative 
Comorbidities & 

Procedures (%) 
    

  
    Confusion (proxy for 

encephalopathy) 9.2 5.5 30 <0.001**   5.8 5.8 5.9 0.96 

Alcohol use 8.2 7.2 13.7 0.003*   7.4 7.1 8.9 0.42 
Chronic obstructive 
pulmonary disease 10 9.3 14.5 <0.001**   8.8 9.1 7.2 0.14 
Peripheral Vascular 

Disease 4.6 4.2 6.3 0.21   4.4 4.5 3.6 0.57 

Chronic Heart Failure 8 7 14.5 <0.001**   6.4 6.3 6.6 0.77 

Smoker 27.6 27.4 28.8 0.47   28.9 28.9 28.6 0.88 

     
  

    Diabetic Status (%) 
    

  
    Not diabetic 74.6 74.8 72.9 0.3   75.6 76.8 69.0 <0.001** 

Insulin dependent 15.8 15.5 17.8 0.15   14.7 13.8 19.6 <0.001** 

Non-Insulin dependent 9.7 9.7 9.4 0.78   9.7 9.3 11.4 0.13 

     
  

    Pre-operative 
transfusion required 

(%) 15.8 13.7 29.3 <0.001**   11 10.9 11.4 0.74 

     
  

    Type of Surgery (%) 
    

  
    Open Abdominal 9.2 10.2 3.3 <0.001**   10.1 10.3 9.2 0.45 

Cardiothorasic 7.1 7.2 6.6 0.59   5.1 5.1 5.2 0.96 
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General surgery 46.0 43.4 63.0 <0.001**   43.4 43 45.6 0.27 
Other surgery type-not 

specifi 2.2 2.3 2.1 0.84   2.2 2.1 3 0.21 
Any lapararoscopic 

procedure 11.4 10.4 17.8 <0.001**   10.6 10.8 9.2 0.27 

Cholecystectomy 5.2 5.6 2.5 0.001*   5.2 5.4 4.4 0.37 

Hernia repair 18.8 21.0 4.8 <0.001**   23.4 23.4 23.4 0.97 

     
  

    BMI Category (%) 
    

  
    Normal 34.3 34.6 32 0.22   35.8 35.1 39.5 0.05 

Underweight 4.9 4.6 7.1 0.01*   4.6 4.3 5.8 0.13 

Overweight 29.8 30.7 23.7 <0.001**   31 31.5 28.6 0.19 

Obese 31 30.1 37.3 <0.001**   28.6 29.1 26 0.14 

     
  

    Functional Status (%) 
    

  
    Independent 85 87.7 66.8 <0.001**   88.3 88.5 87.2 0.41 

Partially Dependent 9.8 8.7 16.8 <0.001**   8.4 8.2 9.3 0.43 

Totally Dependent 5.3 3.6 16.3 <0.001**   3.3 3.3 3.5 0.8 

     
  

    ASA Class 
    

  
    Mild Disturb 8 9.1 1.3 <0.001**   9.9 10.4 7.6 0.05 

Severe Disturb 46.5 50.7 19 <0.001**   53.5 53.7 52.8 0.7 

Life Threat 40 36.5 62.6 <0.001**   34.6 33.8 38.9 0.02* 

Moribund 5.5 3.7 17 <0.001**   1.9 2.1 0.7 0.03* 
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Pre-Operative 
Laboratory Values                  

[Median (25th, 75th 
percentile] 

    
  

    

Albumin 
2.8             

(2.2,3.4) 
2.9            

(2.3,3.4) 
2.4          

(1.9,2.9) <0.001**   
2.9            

(2.4,3.5) 
2.9                         

(2.1,3.5) 
2.8                      

(2.3,3.4) 0.001* 

Sodium 
137         

(134,140) 
137           

(134,140) 
137         

(133,141) 0.77   
137         

(134,140) 
137                

(134,140) 
136            

(133,139) 0.001* 

Total Bilirubin 
1.0             

(0.5,1.9) 
0.9            

(0.5,1.7) 
1.6            

(0.8,3.4) <0.001**   
0.9           

(0.5,1.8) 
0.9                   

(0.5,1.7) 
1.0               

(0.5,2.1) 0.003* 

Platelets  
145            

(91,254) 
148           

(94,259) 
134           

(75,218) <0.001**   
179        

(103,280) 
182                

(106,283) 
155              

(91,263) 
<0.001*

* 

PT INR 
1.3             

(1.1,1.6) 
1.3            

(1.1,1.6) 
1.5            

(1.2,1.9) <0.001**   
1.2           

(1.1,1.4) 
1.2                   

(1.1,1.4) 
1.3              

(1.1,1.5) 0.005* 

White Blood Cell count 
7.9           

(5.2,12.4) 
7.6          

(5.0,11.5) 
11.8         

(7.2,18.7) <0.001**   
7.6         

(5.0,11.3) 
7.6                        

(5.1, 11.4) 
7.2            

(4.8,10.5) 0.03* 
estimated glomerular 
filtration rate (eGFR)                                                       
[Median (25th, 75th 

percentile] 
67.2             

(36.3, 97.0) 71.1 (41.2,98.9) 
40.0 

(22.2,72.4) <0.001**   
73.8 

(45.5,101.7) 
74.1           

(46.1,101.8) 
71.5 

(41.6,101.3) 0.17 

     
  

    MELD Category (%) 
    

  
    MELD <=9 23.7 26.0 8.0 <0.001**   30.1 31.1 24.5 0.002** 

MELD 10-19 51.9 53.3 41.7 <0.001**   53.6 53.4 54.4 0.66 

MELD 20-29 19.1 16.4 37.9 <0.001**   13.6 12.8 18.3 
<0.001*

* 

MELD 30-39 4.9 4.0 11.1 <0.001**   2.6 2.6 2.6 >0.99 

MELD >40 0.4 0.3 1.2 <0.001**   0.1 0.1 0.2 0.79 

     
  

    Childs-Pugh Category 
(%) 

    
  

    CTP A 6.5 7.1 3.0 <0.001**   4.6 4.7 4.1 0.49 
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CTP B 29.3 31.7 14.0 <0.001**   23.9 24.6 20.1 0.02* 

CTP C 64.1 61.2 83.1 <0.001**   71.5 70.7 75.8 0.01* 

    
.   

    APRI score                                                             
[Median (25th, 75th 

percentile] 
0.6            

(0.3,1.6) 
0.6            

(0.3,1.4) 
1.1           

(0.5,3.0) <0.001**   
0.5           

(0.2,1.3) 
0.5                   

(0.2,1.2) 
0.6                

(0.3,1.7) 
<0.001*

* 
Total Length of Stay in 

Days                                                                           
[Median (25th, 75th 

percentile] 
10                

(4,20) 
9                   

(4,19) 
14                 

(6,26) <0.001**   
9                   

(4,19) 
9                         

(4,20) 
10                    

(5,16) 0.17 

*P<0.05 

**P<0.001 
Mortality and Readmission cohorts include only patients with laboratory values available to generate both the MELD score and the Moratlity/Readmission 
models. 

P-values by non-parametric test for trend 
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Table 6. Comparison of the Cirrhotic Cohort with and without Laboratory Values 

Cirrhotic Cohort 

Variable Overall 

Missing 
Laboratory 

Values 

All laboratory 
values 

available for 
models 

p-value   n=4,916 n=273 n=4,643 

Year of Operation 
    2011 31.4 31.1 31.4 0.93 

2012 28.1 24.5 28.3 0.18 

2013 40.5 44.3 40.3 0.19 

     Age  
    <40 6.9 7.7 6.8 0.57 

41-50 13.1 14.3 13.0 0.54 

51-60 28.6 24.9 28.9 0.16 

61-70 26.8 26.7 26.8 0.98 

71-80 15.4 17.2 15.3 0.39 

>80 9.2 9.2 9.2 0.96 

     Race  
    White 75.8 69.6 76.2 0.03* 

Black 11.3 8.3 11.5 0.15 

Other 12.9 22.1 12.4 <0.001** 

     Gender 
    Female 42.2 43.6 42.2 0.64 

Male 57.8 56.4 57.8 0.64 

     

     Emergent surgery 43.9 56.4 43.1 <0.001** 

     Pre-operative Comorbidities & Procedures 
    Confusion (proxy for encephalopathy) 9.5 19.4 9.0 0.003** 

Alcohol use 8.1 6.9 8.2 0.7 

Chronic obstructive pulmonary disease 10.0 11.0 10.0 0.59 

Peripheral Vascular Disease 4.6 0.0 4.8 0.06 

Chronic Heart Failure 8.1 11.7 7.8 0.02* 

Smoker 27.8 28.9 27.7 0.66 
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Diabetic Status (%) 
    Not diabetic 74.5 76.2 74.4 0.5 

Insulin dependent 15.9 15.0 15.9 0.69 

Non-Insulin dependent 9.7 8.8 9.7 0.62 

     Pre-operative transfusion required (%) 15.7 23.4 15.2 <0.001** 

     Type of Surgery (%) 
    Open Abdominal 9.3 10.6 9.2 0.44 

Cardiothorasic 7.3 8.4 7.2 0.45 

General surgery 45.8 41.0 46.1 0.1 

Other surgery type-not specifi 2.4 2.9 2.3 0.52 

Any lapararoscopic procedure 11.5 21.6 10.9 <0.001** 

Cholecystectomy 5.2 3.3 5.3 0.15 

Hernia repair 18.6 12.1 19.0 0.005* 

     BMI Category (%) 
    Normal 34.5 29.9 34.8 0.12 

Underweight 4.9 5.3 4.9 0.76 

Overweight 29.6 29.1 29.7 0.85 

Obese 30.9 35.7 30.7 0.1 

     Functional Status (%) 
    Independent 84.7 82.3 84.8 0.27 

Partially Dependent 9.9 6.8 10.1 0.08 

Totally Dependent 5.5 10.9 5.1 <0.001** 

     ASA Class 
    Mild Disturb 7.7 4.1 7.9 0.02* 

Severe Disturb 45.8 30.4 46.7 <0.001** 

Life Threat 40.7 47.8 40.2 0.01* 

Moribund 5.8 17.8 5.1 <0.001** 

     

     
Total Length of Stay in Days                            

[Median (25th, 75th percentile] 
10       

(4,20) 
11                         

(4,19) 
10                      

(4,20) >0.99 

*P<0.05 

**P<0.001 

P-values by non-parametric test for trend 
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Table 7. Poisson Model for In-hospital Mortality (N=1,834) 

Variable IRR Robust SE Z p-value 

95% CI 

Low High 

Age 
      41-50 1.437 0.318 1.640 0.101 0.932 2.216 

51-60 1.485 0.295 1.990 0.047* 1.005 2.192 

61-70 2.047 0.407 3.600 <0.001** 1.386 3.022 

71-80 2.186 0.458 3.730 <0.001** 1.450 3.295 

>80 2.382 0.540 3.830 <0.001** 1.528 3.713 

       Male (ref. female) 1.006 0.085 0.070 0.948 0.852 1.186 

       BMI (ref. Normal) 
      Underweight 1.310 0.214 1.660 0.097 0.952 1.803 

Overweight 0.887 0.101 -1.050 0.294 0.709 1.110 

Obese 1.065 0.104 0.650 0.517 0.880 1.290 

       

       Functional Status (ref: 
Independent) 

      Partially Dependent 1.365 0.161 2.630 0.009* 1.083 1.720 

Totally Dependent 1.384 0.148 3.040 0.002* 1.122 1.707 

       ASA Class (ref: Mild 
Disturbance)  

      Life Threat 4.030 1.541 3.650 <0.001** 1.905 8.525 

Moribund 5.478 2.159 4.310 <0.001** 2.530 11.862 

       Race (ref: White) 
      Black 0.994 0.126 -0.050 0.963 0.776 1.274 

Other 0.974 0.115 -0.220 0.824 0.773 1.228 

       estimated glomerular 
filtration rate (eGFR) 0.997 0.001 -2.030 0.043* 0.995 1.000 

Albumin 0.801 0.044 -4.050 <0.001** 0.719 0.892 

Sodium 1.004 0.007 0.540 0.590 0.990 1.017 

Platelet count 0.999 0.000 -2.810 0.005* 0.998 1.000 
White blood cell 

count 1.007 0.004 1.660 0.097 0.999 1.016 

Total bilirubin 1.100 0.012 8.800 <0.001** 1.077 1.124 

PT INR 1.274 0.059 5.220 <0.001** 1.164 1.396 
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       Emercenty surgery 1.698 0.187 4.810 <0.001** 1.368 2.107 

       Diabetic Status (ref: 
Non-diabetic) 

      Insulin dependent 0.854 0.093 -1.460 0.145 0.690 1.056 

Non-insulin dependent 0.933 0.130 -0.500 0.618 0.710 1.226 

       Chronic obstructive 
pulmonary disease 1.001 0.114 0.010 0.995 0.800 1.251 

Chronic Heart Failure 1.179 0.125 1.560 0.119 0.958 1.451 

       Surgery Type (ref: 
Open Abdominal) 

      Cardiothorasic 1.484 0.459 1.280 0.202 0.809 2.721 

General surgery 1.303 0.345 1.000 0.317 0.776 2.188 
Other surgery type-

not specified 1.032 0.453 0.070 0.943 0.437 2.438 
Any lapararoscopic 

procedure 1.450 0.401 1.350 0.178 0.844 2.492 

Cholecystectomy 1.118 0.398 0.310 0.754 0.556 2.247 

Hernia repair 0.468 0.159 -2.230 0.025* 0.241 0.911 

       _cons 0.014 0.015 -3.850 0.000 0.002 0.121 

*P<0.05 

**P<0.001 
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Table 8. Logit Model for In-Hospital Mortality (N=1,945) 

Variable Odds Ratio Robust SE Z p-value 

95% CI 

Low High 

Age (ref: <=40)             

41-50 1.799 0.639 1.650 0.098 0.897 3.609 

51-60 2.041 0.666 2.190 0.029* 1.077 3.868 

61-70 3.519 1.165 3.800 <0.001** 1.839 6.733 

71-80 3.688 1.297 3.710 <0.001** 1.851 7.349 

>80 4.385 1.666 3.890 <0.001** 2.083 9.232 

  
     

  

Race (ref: White) 
     

  

Black 1.011 0.206 0.050 0.958 0.678 1.507 

Other 1.071 0.202 0.370 0.714 0.741 1.549 

  
     

  
Functional Status (ref: 

Independent) 
     

  

Partially 1.731 0.323 2.940 0.003* 1.201 2.496 

Totally 2.171 0.426 3.950 <0.001** 1.478 3.189 

  
     

  
ASA Class (ref: Mild 

Disturbance)  
     

  

Life Threat 3.563 1.443 3.140 0.002* 1.611 7.881 

Moribund 8.802 3.915 4.890 <0.001** 3.681 21.047 

  
     

  

Comorbidities 
     

  

Chronic Heart Failure 1.185 0.229 0.880 0.379 0.812 1.731 
Chronic Obstructive 
Pulmonary Disease 1.060 0.191 0.320 0.747 0.744 1.510 

  
     

  
Diabetic status (ref: Non-

diabetic) 
     

  

Insulin 0.727 0.125 -1.860 0.063 0.519 1.017 

Non-Insulin 0.882 0.192 -0.580 0.564 0.575 1.352 

  
     

  
Pre-Operative Laboratory 

Values 
     

  
estimated glomerular 
filtration rate (eGFR) 0.997 0.002 -1.730 0.084 0.994 1.000 

Albumin 0.658 0.057 -4.840 <0.001** 0.555 0.779 

Platelet Count 0.999 0.001 -2.160 0.031* 0.997 1.000 

Total Bilirubin 1.229 0.036 6.980 <0.001** 1.160 1.302 

PT INR 1.873 0.246 4.790 <0.001** 1.449 2.422 
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Emergency surgery (ref: 

Scheduled) 2.239 0.338 5.350 <0.001** 1.666 3.010 

  
     

  
Surgery Type (ref: Open 

Abdominal) 
     

  

Cardiothorasic 1.950 0.831 1.570 0.117 0.845 4.497 

General surgery 1.467 0.536 1.050 0.294 0.717 3.004 
Other surgery type-not 

specified 1.015 0.586 0.030 0.980 0.327 3.147 
Any lapararoscopic 

procedure 1.932 0.752 1.690 0.091 0.901 4.142 

Cholecystectomy 1.009 0.529 0.020 0.986 0.362 2.817 

Hernia repair 0.349 0.151 -2.430 0.015* 0.149 0.815 

  
     

  

_cons 0.015 0.011 -5.950 0.000 0.004 0.060 

*P<0.01 
**P<0.001 
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Table 9. Mortality Model Validation Summary 

Calibration  
     Calibration -in-the-Large 0.0004 

    Calibration-in-the-Small 0.0014 
    Hosmer-Lemeshow 

Goodness-of-fit  (chi^2 test) 8.97 p=0.345 
   

      Discrimination 
     AUROC 0.8282 

    Sensitivity (cut-point=0.2150) 81.10% 
    Specificity (cut-point=0.2150) 73.60% 
    Positive Predictive Value 

(cut-point=0.2150) 47.60% 
    Negative Predictive Value 

(cut-point=0.2150) 92.90% 
    Correctly Classified 75.30% 
    

      Out-of-Sample performance  
     

 
AUROC 

    K-fold (k=10) method 0.8402 
    Leave-one-out method 0.8420 
    

      Overall Model Performance 
     Brier Score 0.1269 

    

      Cut-Point Performance  
     Cutpoint Sensitivity Specificity Classified LR+ LR- 

0.149 88.96% 60.83% 67.25% 2.271 0.1814 

0.150 88.29% 61.09% 67.30% 2.2692 0.1917 

0.160 86.71% 62.82% 68.28% 2.3325 0.2115 

0.170 85.14% 65.09% 69.67% 2.4387 0.2284 

0.180 84.01% 67.42% 71.21% 2.5787 0.2372 

0.190 83.78% 68.62% 72.08% 2.6701 0.2363 

0.200 82.66% 70.95% 73.62% 2.8456 0.2444 

0.215 81.08% 73.55% 75.27% 3.0656 0.2572 

0.300 67.12% 82.74% 79.18% 3.8897 0.3974 
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Table 10. Poisson Model for Readmission within 30-days of the Index Surgery (N=1,495) 

Variable IRR Robust SE Z p-value 

95% CI 

Low High 

Age (ref: <=40) 
      41-50 1.061 0.255 0.250 0.805 0.663 1.698 

51-60 0.851 0.188 -0.730 0.466 0.552 1.313 

61-70 0.790 0.177 -1.050 0.293 0.509 1.226 

71-80 0.775 0.208 -0.950 0.343 0.458 1.312 

>80 0.818 0.257 -0.640 0.522 0.442 1.513 

       Male (ref. female) 0.789 0.097 -1.930 0.054 0.619 1.004 

       BMI (ref. Normal) 
      Underweight 0.813 0.226 -0.740 0.457 0.472 1.402 

Overweight 0.806 0.112 -1.550 0.121 0.614 1.058 

Obese 0.789 0.117 -1.600 0.109 0.591 1.054 

       Functional Status (ref: 
Independent) 

      Partially Dependent 0.737 0.170 -1.320 0.187 0.469 1.159 

Totally Dependent 1.374 0.339 1.290 0.198 0.847 2.229 

       ASA Class (ref: Mild 
Disturbance)  

      Life Threat 1.628 0.302 2.630 0.009* 1.132 2.342 

Moribund 0.721 0.377 -0.630 0.531 0.259 2.006 

       Race (ref: White) 
      Black 1.157 0.186 0.910 0.364 0.844 1.586 

Other 0.936 0.190 -0.330 0.743 0.629 1.393 

       Pre-operative 
Laboratory Values 

      estimated glomerular 
filtration rate (eGFR) 0.999 0.001 -0.910 0.365 0.996 1.001 

Albumin 0.853 0.069 -1.970 0.049* 0.728 0.999 

Sodium 0.989 0.013 -0.860 0.388 0.964 1.014 

Platelet count 0.999 0.001 -1.930 0.054 0.998 1.000 

White blood cell count 1.008 0.010 0.750 0.452 0.988 1.028 

Total bilirubin 0.990 0.032 -0.300 0.767 0.929 1.056 

PT INR 1.480 0.193 3.010 0.003* 1.146 1.911 
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Emercency surgery 0.930 0.134 -0.500 0.615 0.702 1.233 

       Diabetic Status (ref: 
Non-diabetic) 

      Insulin dependent 1.617 0.232 3.360 0.001* 1.221 2.141 

Non-insulin dependent 1.048 0.220 0.230 0.822 0.695 1.581 

       Surgery Type (ref: Open 
Abdominal) 

      Cardiothorasic 0.986 0.282 -0.050 0.959 0.563 1.726 

General surgery 1.119 0.259 0.480 0.628 0.711 1.760 
Other surgery type-not 

specified 1.285 0.408 0.790 0.429 0.690 2.393 
Any lapararoscopic 

procedure 1.258 0.346 0.840 0.403 0.734 2.157 

Cholecystectomy 0.581 0.243 -1.300 0.194 0.256 1.318 

Hernia repair 0.780 0.202 -0.960 0.336 0.469 1.295 

       Post-Operative 
Variables 

      Pneumonia 1.032 0.397 0.080 0.935 0.485 2.195 

Sepsis 1.966 0.301 4.410 <0.001** 1.456 2.656 

Time on Table 1.002 0.001 3.040 0.002* 1.001 1.003 
Time from operation to 

discharge 0.932 0.011 -5.760 <0.001** 0.910 0.955 
Acute or Progressive 

Renal Failure 1.570 0.330 2.150 0.032* 1.041 2.369 

Urinary Tract Infection 2.225 0.514 3.460 0.001* 1.415 3.499 

On Ventilator >48 hrs 0.760 0.154 -1.350 0.175 0.511 1.130 

Unplanned intubation 1.518 0.305 2.080 0.038* 1.024 2.250 

       Discharge Destination 
      Home 1.210 0.203 1.140 0.256 0.871 1.682 

Rehab 0.550 0.172 -1.910 0.056 0.298 1.016 

Separate Acute Care 0.492 0.223 -1.560 0.118 0.202 1.196 

       Total Hospital Length of 
Stay 1.006 0.009 0.730 0.466 0.990 1.023 

_cons 0.993 1.866 0.000 0.997 0.025 39.506 

*P<0.01, **P<0.001 
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Table 11. Logit Model for Readmission within 30-days of the Index Surgery (N=1,495) 

Variable OR Robust SE Z p-value 

95% CI 

Low High 

Age (ref: <=40) 
      41-50 1.039 0.344 0.110 0.909 0.543 1.988 

51-60 0.788 0.240 -0.780 0.435 0.433 1.433 

61-70 0.699 0.215 -1.170 0.244 0.383 1.276 

71-80 0.661 0.241 -1.140 0.256 0.324 1.349 

>80 0.693 0.287 -0.880 0.377 0.308 1.562 

       Male (ref. female) 0.705 0.120 -2.050 0.041* 0.504 0.985 

       BMI (ref. Normal) 
      Underweight 0.763 0.275 -0.750 0.453 0.376 1.548 

Overweight 0.769 0.143 -1.410 0.159 0.534 1.108 

Obese 0.729 0.146 -1.590 0.113 0.493 1.078 

       Functional Status (ref: 
Independent) 

      Partially Dependent 0.657 0.200 -1.380 0.167 0.362 1.192 

Totally Dependent 1.666 0.596 1.430 0.154 0.826 3.360 

       ASA Class (ref: Mild 
Disturbance)  

      Life Threat 1.828 0.432 2.560 0.011* 1.151 2.905 

Moribund 0.689 0.460 -0.560 0.577 0.186 2.550 

       Race (ref: White) 
      Black 1.185 0.264 0.760 0.446 0.766 1.834 

Other 0.896 0.238 -0.410 0.679 0.533 1.507 

       Pre-operative Laboratory 
Values 

      estimated glomerular 
filtration rate (eGFR) 0.998 0.002 -0.960 0.339 0.995 1.002 

Albumin 0.793 0.088 -2.090 0.037* 0.638 0.986 

Sodium 0.986 0.017 -0.840 0.401 0.953 1.019 

Platelet count 0.999 0.001 -1.990 0.047* 0.997 1.000 

White blood cell count 1.008 0.013 0.630 0.528 0.983 1.034 

Total bilirubin 0.993 0.048 -0.140 0.891 0.904 1.091 

PT INR 1.734 0.367 2.600 0.009* 1.145 2.624 
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       Emercency surgery 0.884 0.168 -0.650 0.518 0.609 1.284 

       Diabetic Status (ref: Non-
diabetic) 

      Insulin dependent 1.980 0.403 3.360 0.001* 1.329 2.951 

Non-insulin dependent 1.094 0.298 0.330 0.741 0.642 1.866 

       Surgery Type (ref: Open 
Abdominal) 

      Cardiothorasic 0.992 0.375 -0.020 0.983 0.473 2.082 

General surgery 1.210 0.358 0.650 0.519 0.678 2.161 
Other surgery type-not 

specified 1.449 0.670 0.800 0.423 0.585 3.586 

Any lapararoscopic procedure 1.397 0.494 0.940 0.345 0.698 2.794 

Cholecystectomy 0.500 0.254 -1.360 0.172 0.185 1.353 

Hernia repair 0.732 0.246 -0.930 0.353 0.379 1.414 

       Post-Operative Variables 
      Pneumonia 0.977 0.492 -0.050 0.963 0.364 2.624 

Sepsis 2.641 0.618 4.150 <0.001** 1.670 4.177 

Time on Table 1.002 0.001 2.800 0.005* 1.001 1.004 
Time from operation to 

discharge 0.910 0.016 -5.460 <0.001** 0.880 0.941 
Acute or Progressive Renal 

Failure 2.028 0.673 2.130 0.033* 1.059 3.885 

Urinary Tract Infection 3.248 1.154 3.320 0.001* 1.619 6.516 

On Ventilator >48 hrs 0.692 0.195 -1.310 0.191 0.399 1.202 

Unplanned intubation 1.837 0.559 2.000 0.046* 1.012 3.333 

       Discharge Destination 
      Home 1.251 0.286 0.980 0.327 0.799 1.960 

Rehab 0.452 0.176 -2.040 0.041* 0.211 0.968 

Separate Acute Care 0.382 0.230 -1.600 0.110 0.117 1.244 

       Total Hospital Length of Stay 1.008 0.012 0.680 0.497 0.985 1.031 

_cons 2.340 5.784 0.340 0.731 0.018 297.365 

*P<0.01, **P<0.001 
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Table 12. Readmission Model Validation Summary 

Calibration  
     

Calibration -in-the-Large 0.0000 
  

0 
 

Calibration-in-the-Small 0.0007 
  

2.65% 
 Hosmer-Lemeshow Goodness-of-

fit  (chi^2 test) 9.40 p=0.310 
   

      
Discrimination 

     
AUROC 0.7541 

    
Sensitivity (cut-point=0.1425) 76.64% 

    
Specificity (cut-point=0.1425) 60.91% 

    Positive Predictive Value (cut-
point=0.1425) 27.66% 

    Negative Predictive Value (cut-
point=0.1425) 93.04% 

    
Correctly Classified 63.48% 

    

      
Out-of-Sample performance  

     

 
AUROC 

    
K-fold (k=10) method 0.7602 

    
Leave-one-out method 0.7541 

    

      
Overall Model Performance 

     
Brier Score 0.1186 

    

      
Cut-Point Performance  

     
Cutpoint Sensitivity Specificity Classified LR+ LR- 

0.143 76.64% 60.91% 63.48% 1.9607 0.3835 

0.150 75.00% 63.47% 65.35% 2.0531 0.3939 

0.160 72.95% 65.79% 66.96% 2.1323 0.4112 

0.170 70.49% 68.82% 69.10% 2.2612 0.4287 

0.180 66.39% 71.46% 70.64% 2.3266 0.4703 

0.190 62.70% 73.86% 72.04% 2.3989 0.5049 

0.200 61.48% 76.02% 73.65% 2.5635 0.5068 
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Figure 1. Mortality cohort. 
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Figure 2. Readmission cohort. 
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Figure 3. Decision curve analysis (mortality model). 

 

 

 

 

 

 

 

 
 

Figure 4. Decision curve analysis (readmission model). 
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Figure 5. Comparison of the mortality model to the MELD score (AUROC). 

 

 

 

 
 

Figure 6. Comparison of the readmission model to the MELD score (AUROC). 
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