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ABSTRACT 
 

Zhixia Yan 
 

Integration of Preclinical and Clinical Data with Pharmacokinetic Modeling and 
Simulations to Characterize the Disposition of Orally-Active Antiparasitic Prodrugs and 

Metabolites: Prediction of the Dose-Exposure Relationship in Humans 
 

 (Under the direction of Mary F. Paine, R.Ph., Ph.D. and Kim L.R. Brouwer, Pharm.D., Ph.D.) 
 

Prediction of the disposition and selection of the appropriate dosage regimen of drug 

candidates prior to clinical studies presents a major challenge in drug development. In this 

dissertation project, a multiexperimental approach, including Caco-2 cells, rat isolated 

perfused livers (IPLs), rat and human sandwich-cultured hepatocytes (SCH), a 

plasma/tissue binding assay, and pharmacokinetic modeling was employed to 1) examine 

mechanisms underlying differences in systemic exposure of two active metabolites 

(furamidine and CPD-0801) of respective antiparasitic prodrugs (pafuramidine and CPD-

0868), and 2) quantitatively integrate preclinical and clinical data to elucidate the dose-

plasma/exposure relationship in humans using pafuramidine/furamidine as a model 

prodrug/active metabolite pair. 

Pafuramidine and CPD-0868 exhibited similar permeability properties in Caco-2 

monolayers when the basolateral compartment was supplemented with 4% bovine serum 

albumin, suggesting that the difference in systemic exposure of active metabolites was not 

due to the difference in intestinal permeabilities between the prodrugs. Hepatic 

accumulation of both active metabolites was extensive (>95% of total formed) in rat IPLs 

and SCH. Compared to furamidine, the extent of formation and perfusate/medium exposure 

of CPD-0801 was greater, by ≤2.5- and ≥7-fold, respectively. The unbound fraction of both
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active metabolites in rat liver (fu,L) was lower than that in plasma and perfusate by ≥24-fold; 

fu,L of CPD-0801 was 5-fold higher than that of furamidine (1.6 versus 0.3%). These 

observations suggested that intrahepatic binding influences the disposition of these active 

metabolites. A higher fu,L mostly explained the enhanced perfusate exposure of CPD-0801 

compared to furamidine in rat IPLs. A strong concordance between rat IPL and SCH data 

substantiated SCH as a useful tool to study the hepatobiliary disposition of these 

compounds.  

Pafuramidine/furamidine preclinical and clinical data were used as a training set to 

develop whole-body semi-physiologically-based pharmacokinetic (PBPK) models for rats 

and humans. The PBPK models suggested that the intestine may contribute to pre-systemic 

furamidine formation. Based on the prodrug dose-plasma/exposure relationship predicted by 

the human model, a dosage regimen of pafuramidine, 40 mg/day, was proposed. This 

dissertation project, through integration of preclinical and clinical data with pharmacokinetic 

modeling and simulations, provided a framework to guide dose-ranging studies in humans 

for next-in-class antiparasitic compounds. 
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A. HUMAN AFRICAN TRYPANOSOMIASIS  
 
 
A.1.      Overview 

Human African trypanosomiasis (HAT), one of four neglected tropical diseases 

identified by the World Health Organization (WHO) (WHO, 2010a), is transmitted through 

infected tsetse flies. HAT in west and central Africa is primarily a chronic disease caused by 

the protozoan parasite Trypanosoma brucei (T. b.) gambiense; HAT in east and southern 

Africa is primarily an acute and virulent disease caused by T. b. rhodesiense (Barrett et al., 

2007).  HAT has afflicted hundreds of thousands of people in rural areas of sub-Saharan 

Africa. Because of improved HAT control over the past decade, the number of new cases 

reported to WHO in 2009 has decreased to historically low level (<10,000) in 50 years 

(WHO, 2010b). However, political unrest, declining contributions by nongovernmental 

organizations, demographic evolution, climate changes, and reduced funding for HAT 

control all can lead to resurgence of HAT cases, as occurred in the 1980s (Simarro et al., 

2011).  As such, close surveillance and continued research of the disease and treatment 

options must be maintained.  

HAT consists of two stages. The first stage of infection begins when parasites are 

restricted in the hemolymphatic system, accompanied with generalized symptoms, including 

fever, headache, and joint pain. If untreated, the symptoms progress to endocrine, cardiac, 

renal, and/or anemic disorders. Second stage infection occurs when the parasites extend 

their distribution to the central nervous system (CNS), leading to severe neurological 

dysfunction, with the characteristic symptom of breakdown in the sleep-wake patterns, 

hence the more common term for this disease: “sleeping sickness”. Without treatment, the 

disease is 100% fatal, progressing from neurological and psychiatric disorders to coma, and 

ultimately to death (Barrett, 2010). 
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HAT treatment is crucial for reducing the trypanosome reservoir in humans and, 

consequently, for controlling the disease. However, infected individuals often live in 

resource-deficient and insecure areas of Africa with limited access to health care. Disease 

control and management, therefore, are extremely challenged by logistical issues, lack of 

optimal control tools and insufficient financial support for research and development.  

 

A.2.      Current Chemotherapy 

An effective vaccine has not yet been developed for this deadly disease. In addition, 

only four licensed compounds are used currently to treat HAT, the choice of which depends 

on the causative subspecies and disease progression stages (Barrett, 2010). There have 

been no therapeutic advances in more than 40 years. Chemotherapy for both stages of HAT 

has been limited to pentamidine and suramin for first stage infection and melarsoprol, 

eflornithine, and a combination of eflornithine and nifurtimox for second stage infection.  

 

A.2.1.   Chemotherapy for First Stage HAT 

Pentamidine, an aromatic diamidine (Fig. 1.1), was introduced in the early 1940s and 

remains the primary therapy for prophylaxis and treatment of Pneumocystis jirovecii 

pneumonia, several forms of American cutaneous leishmaniasis, and first stage of T. b. 

gambiense HAT (Dorlo and Kager, 2008). The diamidine structure of pentamidine has been 

shown to be essential for antimicrobial activity (Dorlo and Kager, 2008). Despite efficacy 

against the aforementioned infections, pentamidine has a number of untoward effects, 

including severe hypo- or hyper-glycemia, severe hypotension, and nephrotoxicity.  

Suramin, a sulfonated naphthylamine (Fig. 1.1), was introduced in the early 1920s 

and, to date, remains the drug of choice for treatment of the first stage of T. b. rhodesiense 

HAT. Suramin is associated with severe side effects, including collapse, nausea, 

nephrotoxicity and anemia (Bouteille et al., 2003). However, no significant resistance has 
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been observed in preclinical and clinical isolates, which could be due to its ability to inhibit 

multiple pharmacological targets (Fairlamb, 2003) 

Due to the highly hydrophilic nature of both pentamidine and suramin, they have 

poor oral absorption and must be given parenterally; neither drug crosses the blood brain 

barrier in sufficient concentrations to act against the organisms that invade the CNS. 

Therefore, both drugs are only effective against first stage HAT.  

 

A.2.2.   Chemotherapy for Second Stage HAT 

Invasion of parasites into the CNS poses a major challenge in drug development for 

second stage HAT due to the limited ability of many compounds to cross the blood brain 

barrier. To date, the only antitrypanosomal compounds that can reach therapeutic 

concentrations in the central nervous system are melarsoprol and eflornithine, both of which 

have been used for treatment of second stage HAT for many decades (Fairlamb, 2003).  

Melarsoprol, an old organic arsenical compound (Fig. 1.1), has been the drug of 

choice for second stage HAT caused by either T. b. gambiense or T. b. rhodesiense since 

1949 (Fairlamb, 2003). Melarsoprol is a highly lipophilic compound that crosses the blood 

brain barrier by passive diffusion (Nok, 2003). However, because of poor water solubility, 

melarsoprol must be administered intravenously after being dissolved in propylene glycol, 

which is highly irritating to tissues (Nok, 2003). Administration of melarsoprol, therefore, is 

very painful. The standard melarsoprol treatment regimen, which consists of 26-day 

consecutive injections, is protracted and associated with severe adverse effects; up to 10% 

of patients die during treatment from drug-induced reactive encephalopathy (Pepin and 

Milord, 1994). A newer short-course (10-day) alternative regimen demonstrated comparable 

efficacy, but a similar incidence of reactive encephalopathy (Burri et al., 2000).  

Eflornithine (DFMO),  an irreversible inhibitor of ornithine decarboxylase (Fig. 1.1), 

was introduced in the 1970s (Fairlamb, 2003). Eflornithine exhibits excellent penetration into 
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the CNS in humans and is effective against both stages of HAT caused by T. b. gambiense. 

Eflornithine is not recommended for T. b. rhodesiense infection due to innate tolerance of 

this strain to the drug (Iten et al. 1995). Compared to melarsoprol, eflornithine is relatively 

nontoxic with tolerable side effects such as gastrointestinal disturbances and anemia. 

However, the dosage regimen, which consists of 400 mg/kg per day in four daily infusions 

over 2 h for at least ten days, is burdensome and costly because it requires in-patient 

hospitalization. All of these factors limit the widespread use of eflornithine in rural areas of 

Africa with limited resources (Bouteille et al., 2003).  

Nifurtimox, a nitroheterocyclic compound (Fig. 1.1), originally was developed for 

treatment of American trypanosomiasis (Chaga’s disease). The major advantage of 

nifurtimox is that it is orally active. Common side effects include neurological dysfunction 

and gastrointestinal tract disorders (Bouteille et al., 2003). Nifurtimox has been used as a 

companion drug to treat second stage HAT when other treatments (melarsoprol or 

eflornithine) have failed.  

Nifurtimox-Eflornithine Combination Therapy (NECT) was included in the WHO 

Essential List of Medicines as a new treatment option for second stage T. b. gambiense 

HAT in 2009 (WHO, 2009). Eflornithine combined with nifurtimox offers a more feasible 

treatment regimen, by significantly reducing the frequency and number of eflornithine 

infusions from four times daily for 2 weeks to twice daily for one week combined with 

nifurtimox administered orally three times daily for 10 days; this combination has shown 

equivalent effectiveness without increased side effects compared with eflornithine alone 

(Barrett, 2010).  Furthermore, this combination may decrease the emergence of resistance 

to monotherapy and avoid the risk of severe adverse events associated with melarsoprol 

(encephalopathy). Despite these advantages, NECT has a number of limitations: it is less 

effective against T. b. rhodesiense HAT and requires administration of two drugs (IV and 

oral) for 7-10 days, which is a relatively complicated regimen.  
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In conclusion, although all of the current treatments for both stages of HAT have 

been used for decades, none of them are satisfactory.  Increasing rates of treatment failures 

due to parasite resistance, inconvenient regimens, painful formulations, significant adverse 

events, costly regimens, and involvement of specialized health personnel are all limitations 

of current therapies. Parenteral administration due to poor oral bioavailability poses 

significant challenges in remote regions of Africa where this disease is prevalent. Limitations 

of current chemotherapies highlight the desirable features of new drugs for HAT treatment 

(DNDi, 2009), which include: 1) low toxicity; 2) oral activity; 3) efficacy towards both stages 

of HAT; 4) a broad spectrum against both T. b. gambiense and rhodesiense; 5) short 

treatment duration; 6) product stability over long-term storage; and 7) affordability. Without 

question, an orally-active drug with a convenient treatment regimen and a low potential for 

toxicity would have great clinical benefit in the treatment of both stages of HAT.  

 

B. ORALLY-ACTIVE PENTAMIDINE ANALOGUES 

Pentamidine (Fig. 1.1) has been used clinically since 1939 and remains an important 

agent to treat first stage HAT despite a loss of activity when administered orally and toxicity 

when administered intravenously. The diamidine structure of pentamidine has been shown 

to be essential for antimicrobial activity, which is assumed to result from binding to the minor 

groove of DNA at AT-rich regions (Barrett et al., 2007). The exact mechanism of action of 

pentamidine is currently unknown. Of the many structurally related compounds that have 

been synthesized and tested to date, the dicationic agent, 2,5-bis(4-amidinophenyl)furan 

(furamidine; Fig. 1.2) has emerged as the most promising agent in terms of efficacy and 

toxicity when administered intravenously.  However, like pentamidine, furamidine has the 

diamidine moiety (pKa ≈10), which carries positive charges at physiological pH and limits the 

ability of furamidine to cross the intestinal epithelia when administered orally. As such, a 
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prodrug strategy that focuses on attempting to mask these positive charges with O-alkyl 

moieties was devised to improve the oral bioavailability of diamidine. 

 

B.1.      Pafuramidine  

Pafuramidine (Fig. 1.2) (Boykin et al., 1996), a methylamidoxime prodrug of 

furamidine, exhibits enhanced intestinal permeability and oral activity in mouse and monkey 

models (Zhou et al., 2002). To date, pafuramidine is the only orally available agent that has 

shown promise in clinical trials for the treatment of first stage HAT (Paine et al., 2010). In a 

multi-center phase III trial conducted from 2005 to 2007, 273 patients were enrolled and 

randomized to treatment with pafuramidine (100 mg oral, twice daily for 10 days) or 

pentamidine (4 mg/kg intramuscular, once daily for 7 days). Pafuramidine demonstrated 

promising efficacy, comparable to pentamidine; the 24-month post-treatment efficacy was 

84% and 89%, respectively (Paine et al., 2010). As requested by the U.S. Food and Drug 

Administration, an expanded phase I safety study was initiated in late 2007 involving healthy 

indigenous African volunteers, and the treatment regimen was extended from 10 to 14 days. 

During this study, approximately 25% of subjects developed transiently elevated liver 

transaminases five days after completion of the 14-day dosage regimen. This adverse event 

placed pafuramdine development program on clinical hold 

(www.immtechpharma.com/documents/news_022208.pdf) (Paine et al., 2010). Mechanisms 

responsible for pafuramidine-induced elevated hepatic signals currently are being 

investigated in preclinical models. 

Bioactivation of pafuramidine to the active metabolite, furamidine, is believed to 

occur primarily in the liver. The metabolic pathway involves sequential oxidative O-

demethylation reactions catalyzed by multiple cytochrome P450 enzymes (notably, 

CYP4F2/3B) and reductive N-dehydroxylation reactions catalyzed by cytochrome b5/NADH 

cytochrome b5 reductases (Fig. 1.3) (Saulter et al., 2005; Wang et al., 2006). In rats 

http://www.immtechpharma.com/documents/news_022208.pdf
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administered a single oral dose (10 mg/kg) of 14C-pafuramidine, total radioactivity, largely as 

furamidine, accumulated in the liver at substantially higher concentrations (~1300 fold) than 

those measured in plasma 24 hr post-administration; radioactivity was still measurable in the 

liver after seven days (Midgley et al., 2007). Validation of a rat toxicity model currently is 

being undertaken by our collaborators at the Hamner Institute for Health Sciences (RTP, 

NC). Preliminary results showed that pafuramidine demonstrated dose-dependent elevation 

of liver transaminases in rats (unpublished observations). Furamidine is generated primarily 

in the liver, where accumulation of furamidine increases with increment of pafuramidine 

dose.  Whether furamidine accumulates in livers of humans in vivo is not known.   

 

B.2.      2, 5-Bis [5-(N-methoxyamidino)-2-pyridyl] furan (CPD-0868) 

Drug treatment for second stage infection still relies on the old monotherapy 

(melarsoprol or eflornithine) and newly approved combination therapy (NECT), all of which 

require complicated/protracted treatment and inconvenient parenteral administration. Both 

pafuramidine and furamidine were unsuccessful for treatment of second stage infection 

because of limited access of furamidine to the brain (Mdachi et al., 2009). Structural analogs 

currently are being tested in various in vitro and in vivo systems, one of which is 2, 5-bis (5-

amidino)-2-pyridyl) furan (CPD-0801; Fig. 1.2).  

In vitro IC50 studies indicated that CPD-0801 was highly potent against both T. b. 

gambiense and rhodesiense, similar to furamidine and pentamidine. In vivo studies with a 

second stage mouse model administered CPD-0801 (20 mg/kg intraperitoneal, once daily 

for 10 days) demonstrated 100% cure; infected mice survived for more than 180 days after 

infection without showing a parasitemia relapse (Wenzler et al., 2009). Under the same 

experimental conditions, neither furamidine nor pentamidine showed efficacy against 

second stage infection in mice (Wenzler et al., 2009). An acetate salt of CPD-0801 (CPD-

0802) is currently under consideration for clinical testing in the treatment of second stage 
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HAT (Paine et al., 2010). Despite promising efficacy, CPD-0801 is an aromatic diamidine 

and exhibits poor oral activity due to inherent hydrophilic properties. Therefore, its methoxy 

prodrug, 2, 5-bis [5-(N-methoxyamidino)-2-pyridyl] furan (CPD-0868; Fig. 1.2), was 

synthesized.  

CPD-0868, a structural analog of pafuramidine, differs from pafuramidine by a single 

nitrogen incorporated into both phenyl rings. CPD-0868 was shown to be effective against 

both first and second stage infection in mice (Wenzler et al., 2009). Despite the remarkable 

structural similarity, CPD-0868 demonstrated a much higher cure rate compared to 

pafuramidine (4/5 versus 1/5) when administered at a oral dose of 50 mg/kg once daily for 

10 days in a second stage mouse model (Wenzler et al., 2009). Systemic exposure of the 

corresponding active metabolite (CPD-0801) was higher than that of furamidine, the active 

metabolite of pafuramidine (Wu et al., 2007). Higher systemic concentrations of CPD-0801 

could lead to enhanced brain exposure of this active metabolite, and hence, adequate 

therapeutic concentrations to kill the parasites in the brain. These results supported the 

hypothesis that CPD-868 may be a promising prodrug for treatment of second stage HAT.  

 

C. INTEGRATION OF PRECLINICAL AND MATHEMATICAL MODELS TO OPTIMIZE 
PRODRUG DOSE-SELECTION STRATEGY 

 
Successful completion of proof-of-concept phase II and multi-center phase III trials of 

pafuramidine were promising milestones in the development of this orally-active agent for 

patients who are suffering from this devastating disease without proper treatment. However, 

the transiently elevated liver transaminases observed in the subsequent safety study 

involving indigenous African healthy volunteers suspended the development of this 

promising agent (www.immtechpharma.com/documents/news_022208.pdf) (Paine et al., 

2010).  Although pafuramidine is no longer under development, there are many promising 

http://www.immtechpharma.com/documents/news_022208.pdf
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compounds currently under preclinical evaluation,  including CPD-0868, a lead candidate for 

both first and second stages of HAT (Wenzler et al., 2009).  

Drug-induced toxicity is the primary cause of attrition of compounds during drug 

development and post-marketing withdrawals in recent years. Approximately 6.7% of 

hospitalized patients suffer serious adverse drug reactions, defined as those resulting in 

hospitalization or causing disability or death; adverse drug reactions are the sixth leading 

cause of death in the United States (Lazarou et al., 1998). It is important to realize that 

absolute toxicity is rare. Relative toxicity is more common and may be influenced by many 

factors such as disease processes, dose/frequency/duration of treatment regimens, ADME 

properties, and drug/diet-drug interactions. In the case of orally-active antiparasitic agents, 

suspension of the pafuramidine program during late stage clinical studies was not attributed 

to a lack of efficacy, but to an overt drug-induced adverse event. Based on tissue 

distribution studies in rats administered a single oral dose of pafuramidine (10 mg/kg), 

furamidine was sequestered significantly in the liver (Midgley et al., 2007). Whether or not 

extensive accumulation of furamidine in the liver triggered pafuramidine-induced elevation of 

liver transaminases in human subjects remains unclear.  As mentioned previously, CPD-

0868 demonstrated a higher efficacy and an enhanced systemic exposure of derived active 

metabolite, CPD-0801, compared to pafuramidine/furamidine in a second stage mouse 

model (Wu et al., 2007; Wenzler et al., 2009).  In rats administered a single oral dose of 

CPD-0868 or pafuramidine (30 μmol/kg), CPD-0801 exhibited 7- and 40-fold less kidney 

retention compared to furamidine, six hours and eight days post administration of respective 

prodrug, respectively (Goldsmith, 2011). These observations emphasized the need to gain 

an improved understanding of the relationship between dose and systemic or tissue 

exposure, as well as their interrelation to efficacy and safety profiles of these antiparasitic 

prodrugs and active metabolites. 
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Drug efficacy results from the complex interplay of several pharmacokinetic 

processes, including intestinal absorption, distribution into blood and tissues, phase I and/or 

II metabolism, and renal and/or fecal drug excretion, which act in concert to provide 

pharmacologically active concentrations at the site of the respective target, e.g., the parasite 

in the brain during second stage HAT. After oral administration, the prodrugs pafuramidine 

and CPD-0868 must first traverse the intestinal epithelium and reach the bioactivation site 

(gut and/or liver) where they are metabolized to the respective active compounds, 

furamidine and CPD-0801, through complicated metabolic pathways (Fig. 1.3) (Zhou et al., 

2004; Generaux, 2010). The fact that insertion of a single nitrogen into each phenyl ring of 

pafuramidine led to improved efficacy of CPD-0868 towards second stage infection and 

enhanced systemic exposure of the corresponding active metabolite (CPD-0801) may be 

reflected by the differences in the intestinal and hepatobiliary disposition between the two 

prodrug/active metabolite pairs.  

To address these important issues, careful selection of relevant and predictive model 

systems is critical to quantify the impact of both intestinal/hepatic transport and metabolism 

on the overall disposition of these prodrugs/metabolites. Coupled with mathematical 

modeling, this integrated approach can provide valuable insight into the intestinal and 

hepatobiliary disposition of these compounds by assigning significance to each process and 

identifying the key step(s) that governs the systemic/tissue exposure of these active 

metabolites. 

 

C.1.      Preclinical Models 

A compound will not be an effective drug, regardless of the extent of 

pharmacological activity, unless it is well absorbed, distributed to the target site, metabolized 

and eliminated in a suitable manner. The ideal antiparasitic prodrug should be rapidly and 

almost completely absorbed from the gut, and reach the primary bioactivation site in the liver, 
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where it is efficiently converted to the active metabolite.  Once formed, the active metabolite 

should be efficiently excreted from the liver and reach sufficient concentrations in the 

systemic circulation to kill the parasites in the hemolymphatic system (first stage), or in the 

brain to elicit antitrypanosomal effects in the central nervous system (second stage). It is 

also important that prodrugs and derived active metabolites do not accumulate to a toxic 

level in the target organs. In order to identify compounds that possess the aforementioned 

desirable ADME features, proper selection of in vitro and in vivo model systems with 

descriptive and predictive capabilities is imperative.  

 

C.1.1.   Intestinal Absorption Models 

 Transport of compounds across the intestinal membrane is a complex and dynamic 

process, and dictated by various influx and efflux mechanisms via transcellular (passive 

diffusion or carrier/transporter-mediated process) and paracellular (via the tight junctions 

between the enterocytes) routes (Artursson et al., 2001). Many techniques have been 

developed and utilized to evaluate the intestinal permeability of drug candidates during early 

drug discovery (Miret et al., 2004; Penzotti et al., 2004). The commonly used methodologies 

include: in vitro systems, such as animal tissue-based Ussing chamber and membrane 

vesicles, human colon adenocarcinoma cell line (Caco-2) and Mardin-Darby canine kidney 

(MDCK), parallel artificial membrane permeability assay (PAMPA) and immobilized artificial 

membranes (IAM);  in situ intestine perfusion; in vivo animal studies; and in silico methods 

(Balimane et al., 2000; Lennernas, 2007). Artificial membrane-based systems and 

computer-based models are high-throughput screening tools, but the lack of mechanistic 

basis of these methods often causes less predictive results; although more predictive, in situ 

and in vivo studies are animal- and labor-intensive. As such, in vitro models, which are 

balanced between predictability and throughput, are the method of choice for permeability 

assessment in both academic and industrial settings. 
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Among all the in vitro models, the Caco-2 cell monolayer permeability assay is the 

most popular and well-recognized model in drug permeability studies (Artursson and 

Karlsson, 1991). Upon culture, Caco-2 cells differentiate and become confluent to form 

monolayers with tight junctions and polarized apical (A; gut lumen) and basolateral (B; blood) 

membranes that are structurally and functionally similar to those of enterocytes in vivo (Sun 

et al., 2008). Multiple uptake and efflux transporters, such as breast cancer resistance 

protein (BCRP), P-glycoprotein (P-gp), multidrug resistance protein (MRP), organic anion-

transporting polypeptide (OATP), and organic cation transporter (OCT) also are expressed 

and functional in Caco-2 cells (Hirohashi et al., 2000; Kobayashi et al., 2003; Muller et al., 

2005; Sun et al., 2008). In addition, phase II drug metabolizing enzymes, such as 

sulfotransferases and glutathione S-transferases reside in the Caco-2 cells (Peters and 

Roelofs, 1989; Sun et al., 2008). Although some phase I enzymes, particularly CYP3A4, are 

lacking in Caco-2 cells, medium supplemented with 1α,25-dihydroxy-vitamin-D3 (1α,25-

(OH)2-D3) can induce the CYP3A4 enzyme levels in a dose-dependent manner (Schmiedlin-

Ren et al., 1997). In addition to CYP3A4 enzyme, expression and activity of various 

transporters including P-gp, MRP1, and MRP2 also are significantly increased (p<0.05) in 

1α,25-(OH)2-D3-treated Caco-2 cells (Fan et al., 2009). These characteristics of Caco-2 cells 

allow for studying both intestinal metabolism and transport in a single cell-based system.  

Previous studies showed that absorptive permeability coefficient (Papp,A→B) of drugs 

derived in Caco-2 cell monolayers correlates well with the fraction of compound absorbed (fa) 

measured in humans in a sigmoidal shape (Artursson and Karlsson, 1991; Keldenich, 2009). 

According to Artursson and Karlsson, compounds that have Papp,A→B greater than 1 × 10-6 

cm/s in Caco-2 cells may be absorbed completely from the small intestine in humans. 

Another report showed that only drugs that have Papp,A→B greater than 7 × 10-6 cm/s are 

considered to be highly permeable (fa ≈ 100%) (Keldenich, 2009). It is well known that the 

main limitation of Caco-2 is the inter-laboratory variability (Stewart et al., 1995; Dressman et 
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al., 2008); the thresholds for permeability classification are, therefore, assay-specific and 

may differ from lab to lab. Papp,A→B value may not accurately predict fa when drugs are 

absorbed primarily via a paracellular route or transporters due to the narrower tight junctions 

and over- or under-expression of transporters in Caco-2 cells, respectively (Chong et al., 

1996; Collett et al., 1996; Yee, 1997). 

In addition to the permeability across the intestinal membrane, formulations and 

physicochemical properties including molecular weight, solubility, lipophilicity, pKa also are 

important determinants in the prediction of fa in humans (Keldenich, 2009). Following oral 

administration, the compound must be released from the dosage form, dissolved in the 

gastrointestinal (GI) fluids to be available in solution form at the sites of absorption (i.e., 

intestine). The Biopharmaceutical Classification System (BCS), provided by U.S. Food and 

Drug Administration, categorizes compounds into one of the four biopharmaceutical classes 

based on their water solubility and membrane permeability and allows the prediction of the 

rate-limiting step in the intestinal absorption process following oral administration (Polli et al., 

2008). In addition, food components also can play a role in the oral absorption of drugs, 

especially for poorly water-soluble but highly permeable compounds, absorption of which is 

usually bolstered when drugs are administered with food (Welling, 1996). Therefore, results 

with Caco-2 cells need to be considered within the context of other factors in the estimation 

of fa in humans.  

 

C.1.2.   Hepatobiliary Models 

After oral administration and absorption through the GI tract, drugs reach the primary 

clearing organ, the liver, where compounds can be metabolized by phase I or II enzymes, 

sequestered in the liver, excreted into bile, and/or effluxed back to the systemic circulation. 

Hepatobiliary disposition may play an important role in the overall therapeutic and/or 

toxicologic profile of a drug. For this reason, preclinical hepatic models that can accurately 
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resemble in vivo disposition of drug candidates in the liver can provide a mechanistic 

understanding of the hepatic disposition of a compound at an early developmental stage. 

Several in vitro or ex vivo hepatic models have been developed in the past few decades, 

including microsomes, cytosol, S9 fraction, cell lines, primary hepatocytes, liver slices, and 

perfused liver (Brandon et al., 2003). Model selection depends on the purpose of the study 

(e.g. phenotyping, biotransformation pathways, drug-drug interactions, hepatic uptake, 

and/or biliary excretion). In order to accurately investigate the overall hepatobiliary 

disposition of compounds, polarized whole-cell model systems must be utilized.  

Isolated perfused livers (IPLs) are the most physiologically-relevant ex vivo hepatic 

model because this model most closely approximates the whole liver in vivo (Brouwer and 

Thurman, 1996). Depending on the study objectives, IPLs can be performed in a either 

single-pass or recirculating manner; corresponding surgical procedures and experimental 

conditions have been described (Xiong et al., 2000; Ward et al., 2001; Zamek-Gliszczynski 

et al., 2006).  In contrast to in vitro models including microsomes, isolated/cultured 

hepatocytes, and liver slices, IPLs preserve hepatic architecture, cell polarity, and bile flow 

in the absence of the influences from in vivo non-hepatic and neural-hormonal effects 

(Gores et al., 1986). Besides, IPLs allow repeated sampling of perfusate, permit easy 

exposure of the liver to different concentrations of “victim” (test substrate) and “perpetrators” 

(inhibitors or inducers of metabolism and transport), and are amenable to alterations in 

physiology (blood flow and/or disease state) that would not be tolerated or feasible in vivo 

(Brouwer and Thurman, 1996). These advantages make IPLs a valuable model to elucidate 

the impact of the physiologic, pathologic, and pharmacologic factors on the hepatobiliary 

disposition of xenobiotics. Despite all these advantages, there are a number of reasons why 

IPLs are not used routinely, especially in the industry setting. The availability of viable 

human livers is limited due to ethical reasons, and livers from preclinical species may not be 

a useful predictor of drug disposition in humans. Furthermore, IPLs are labor intensive, 
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require delicate surgical procedures, and the functional integrity of metabolic systems and 

biliary excretion typically is limited to 2 h (Brouwer and Thurman, 1996). 

Sandwich-cultured hepatocytes (SCH) represent an alternative in vitro model to 

study the hepatobiliary disposition of xenobiotics (Dunn et al., 1989). Primary hepatocytes 

from animals or humans cultured between two layers of gelled collagen form extensive bile 

canalicular networks (LeCluyse et al., 1994). When hepatocytes are cultured in a collagen-

sandwich configuration, the cells differentiate, allowing for sinusoidal and canalicular 

transport protein localization to the proper domain.  SCH may represent a useful tool for 

investigating the hepatobiliary disposition of compounds. However, a major limitation of SCH 

is the decrease in cytochrome P450 enzyme activities observed over days in culture (Hoen 

et al., 2000; Boess et al., 2003). Medium supplemented with inducers such as phenobarbital 

and dexamethasone  (DEX) can reverse the decline in enzyme expression and maintain the 

enzyme levels comparable to in vivo conditions, as determined by gene expression and 

enzyme activity analysis (Kienhuis et al., 2007).  

Because of the presence of complete phase I/II metabolizing enzymes and cofactors, 

SCH are an appropriate system for metabolite identification and metabolic stability 

evaluation. These applications are supported by numerous reports on the similarity in 

metabolite profiles between SCH and in vivo models (Ansede and Brouwer, 2008; Wolf et al., 

2008; Yan et al., 2011). A handful of literature reports demonstrated that SCH also are 

capable of  studying drug-drug interactions at the levels of both hepatic uptake/efflux and 

metabolic processes (Annaert and Brouwer, 2005; Hewitt et al., 2007a; Lengyel et al., 2008; 

Jackson et al., 2009). Another advantage of SCH is its ability to differentiate the contribution 

of transporters via RNA interference (RNAi) of single or multiple transport proteins, 

particularly when probe substrates or inhibitors are not available. This technique showed 

success in specifically knocking down Bcrp/BCRP and Oatp/OATP in rat and human SCH 

(Yue et al., 2009; Liao et al., 2010).  
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Drug-induced liver injury (DILI) is the most common reason for safety-related drug 

marketing withdrawals and is a primary toxicological cause of attrition during drug 

development. Many hepatotoxic compounds are not recognized in preclinical species until 

later clinical studies, indicating that tolerability to toxic substances varies between animals 

and humans. Therefore, a human-derived in vitro model that can accurately predict DILI at 

early preclinical stage is highly needed.  Bosentan, an endothelin receptor antagonist for the 

treatment of pulmonary arterial hypertension, demonstrated hepatotoxicity in humans, but 

not in rats (Fattinger et al., 2001; Cohen et al., 2004). Using rat and human SCH, the 

mechanism of bosentan-induced preferential hepatotoxic effect in humans was explained by 

a differential inhibition of Na+-dependent taurocholate cotransporting polypeptide 

(Ntcp/NTCP) between the two species, resulting a greater extent of intrahepatic 

accumulation of bile acid in humans (Leslie et al., 2007). Studies on hepato-protective effect 

of DEX against trabectedin-mediated cytotoxicity further substantiated SCH as a useful in 

vitro model to assess and predict the hepatotoxicity of xenobiotics (Lee et al., 2008).  

SCH, cultured in different formats (6- to 96-well plates), are widely utilized in both 

industrial and academic research settings because of the versatility of this in vitro system to 

address a variety of scientific questions and applications. Compared to ex vivo (e.g. IPLs) 

and in vivo models, SCH represent a higher-throughput and more cost-effective system by 

significantly reducing the number of animals and amount of compounds required for 

experimentation. In addition, SCH from humans offer significant advantages over existing 

methodologies (e.g. liver microsomes and suspended/conventionally-cultured hepatocytes) 

to characterize and predict human biotransformation and transport processes. 

 

C.2.      PBPK Modeling-Based Dose-Selection Strategy 

Once the differential influence of ADME factors on the overall disposition of prodrugs 

and active metabolites is elucidated, translation of these results together with previously 
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generated preclinical data to make them therapeutically meaningful is warranted. This 

translational step is crucial to fill the gap between scientific research at the preclinical stage 

and the application of this information to the clinical setting.  

Selection of an appropriate dosage regimen is essential in clinical drug development 

of drug candidates that have shown therapeutic promise in preclinical evaluations. If too 

high of a dose is selected, immediate toxicity and early termination of the drug candidate 

may occur.  If too low of a dose is selected, it will add unnecessary testing and expense to 

the dose-ranging studies (Peck and Cross, 2007). Estimating the starting dose is a 

complicated and important task, and yet there is little uniformity or standardization of 

approaches. Dose calculations are performed in many different ways, often using empirical 

methods (Poulin and Theil, 2002). The approach used often depends on the training and 

experience of the scientists involved, and/or clinically used dosing regimens of structurally 

similar analogs. A mechanism-based approach is needed to select the right dose on a less 

empirical, more rational basis. Integration of the pharmacokinetic and pharmacodynamic 

properties of drug candidates utilizing mathematical model-based drug-development 

techniques would provide a sound scientific strategy for efficient dose optimization (Zhang et 

al., 2006; Lalonde et al., 2007; Wetherington et al., 2010). 

Empirical allometric scaling, based on body weight, is a commonly used method for 

extrapolating doses from animals to humans (Ito and Houston, 2005). Although many drugs 

are well predicted in humans from animal data using this method, some fail in the scaling 

exercise. For compounds that are distributed by passive distribution and that are mainly 

eliminated through hepatic metabolism or glomerular filtration, allometric scaling can provide 

relatively good predictions in pharmacokinetics for humans. In contrast, such method have 

proven to be of limited value for compounds that show large interspecies differences in the 

distribution and excretion processes (Mahmood, 2000).  
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Physiologically-based pharmacokinetic (PBPK) modeling, initially used in the areas 

of environmental toxicology and human health risk assessment, has been increasingly 

accepted and utilized in drug development over the years, primarily as a means to 

extrapolate pharmacokinetic behaviors from animals to humans (Andersen and Krishnan, 

1994; Bjorkman et al., 2001; Germani et al., 2005; Chiu et al., 2007; Germani et al., 2007).   

Unlike empirical allometric scaling, PBPK modeling includes specific tissue compartments 

involved in exposure, toxicity, metabolism, and biliary/renal excretory processes associated 

with blood flow (Fig. 1.4). Because compartments and blood flows are described using 

physiologically-relevant parameters, extrapolation between species can be performed by 

altering these physiological parameters (Rowland et al., 2004).  

In most cases, tissues are considered as “well-stirred” compartments, where the 

distribution of compounds between organs and blood is determined only by the flow rate of 

blood perfusing the organ (flow-limited kinetics); on the subtissue level, tissue blood and 

intracellular space can be further separated when diffusion across physiological membrane 

barriers becomes the rate-limiting step in the distribution of compounds within tissues 

(diffusion-limited kinetics) (von Kleist and Huisinga, 2007; Evans et al., 2008). Tissue-to-

plasma partition coefficient (Kp) is a key parameter to describe the rate and extent of 

distribution of a compound between the two compartments. Kp is often measured by either in 

vivo animal studies under the steady-state conditions or in vitro equilibrium dialysis (Kousba 

and Sultatos, 2002). However, this measurement process is elaborate, limiting the 

widespread use of PBPK modeling. It has become increasingly popular and accepted to 

estimate Kp based on physicochemical properties of compounds such as lipophilicity and 

pKa (Poulin and Theil, 2000; Rodgers and Rowland, 2006). However, when active transport 

processes are involved, Kp of compounds needs to be determined experimentally.  

Hepatic clearance (ClH) also is a very important parameter that dictates the overall 

disposition of compounds. Methods for predicting human in vivo ClH from in vitro systems 
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(e.g., hepatocytes and microsomes) and in vivo animal models have been described in 

detail (Obach, 1999; Luttringer et al., 2003; Ito and Houston, 2005; Lipscomb and Poet, 

2008). Through the incorporation of these drug-specific ADME properties derived from in 

silico, in vitro, ex vivo, and in vivo systems into the model, PBPK modeling is capable of 

extrapolating between routes of exposure (intravenous versus oral), species (rat versus 

human), and dosage regimens (single versus multiple dose).  For this reason, dosage 

regimens can be selected based upon model simulations on plasma/tissue concentration-

time profiles and anticipated therapeutic and safety margins of compounds (Parrott et al., 

2005). 

Dose selection for antiparasitic drugs traditionally has relied on correlations between 

plasma concentrations in animal models and humans. Clinically-used dosage regimen of 

pafuramidine also was selected based on this method.  However, the relationship between 

pafuramidine dose and furamidine plasma/tissue exposure is not known. This prodrug/active 

metabolite pair has been studied in multiple preclinical species (mice, rats, and monkeys) 

and humans by different collaborative labs and institutes involved in the Consortium for 

Parasitic Drug Development (CPDD). A large body of pafuramidine/furamidine 

pharmacokinetic and efficacy/safety data exists in various in vitro and in vivo model systems. 

The mechanistic and physiologic nature of PBPK modeling served as an ideal platform to 

combine all the preclinical/clinical results in an integrated manner to predict the dose-

plasma/tissue exposure relationship. In this dissertation project, additional preclinical models 

(in vitro and ex vivo) were selected and implemented in the mechanistic investigations of the 

intestinal and hepatobiliary disposition of pafuramidine and CPD-0868 and respective active 

metabolites, furamidine and CPD-0801. With the aid of PBPK models developed in this 

project, concentration-time profiles of furamidine in plasma and tissue (liver and kidney) 

were simulated under various dosing scenarios in humans. The dose-plasma/exposure 

relationship was predicted for the model antiparasitic prodrug/active metabolite pair, 
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pafuramidine and furamidine. This PBPK modeling-based strategy could be applied to next-

in-class compounds to guide dose-ranging studies in humans. 
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D.        OVERVIEW OF PROJECT 

Human dose projection is a key component of preclinical development before 

initiation of the first-in-human study. Selection of a first-in-human dose plays an important 

role in the anticipation of therapeutic-safety index, allowing for early discrimination of 

selection of potential drug candidates for later phase II/III trials. An appropriate dosage 

regimen should allow the drug candidate to achieve therapeutic concentrations at the site of 

action for a suitable duration of time, while maintaining these concentrations associated with 

a desirable safety profile. Therefore, preclinical studies should not only focus on the 

evaluation of efficacy, safety, and PK profiles in various preclinical models, but also the 

prediction of clinical outcomes via  quantitative integration of preclinical data.  

In this dissertation project, pafuramidine, a prodrug of furamidine, and CPD-0868, a 

prodrug of CPD-0801, were selected as model prodrug/active metabolite pairs for 

investigation of these aforementioned issues. Pafuramidine was the only orally-active agent 

that entered clinical trials for treatment of first stage HAT (Paine et al., 2010). However, 

clinical development of pafuramidine was suspended due to transiently elevated liver 

transaminases observed in an expanded phase I safety study 

(http://www.immtechpharma.com/documents/news_022208.pdf) (Paine et al., 2010). 

Furamidine exhibited extensive hepatic retention in rats following a single oral dose of 

pafuramidine (Midgley et al., 2007). CPD-0868, a lead candidate for oral treatment of 

second stage HAT, currently is under preclinical development. The active metabolite, CPD-

0801 exhibited a greater systemic exposure than furamidine, despite remarkable structural 

similarity between these two active metabolites (Wu et al., 2007). An improved mechanistic 

understanding of the disposition and the dose-exposure relationship of these prodrugs and 

metabolites is needed. These unaddressed important issues serve as the foundation for the 

central hypothesis and aims of this dissertation.  

http://www.immtechpharma.com/documents/news_022208.pdf
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Central Hypothesis: Integration of preclinical data and mechanism-based 

pharmacokinetic modeling can elucidate mechanisms underlying the difference in 

systemic/tissue exposure between the two antiparasitic active metabolites, and provide a 

framework for prediction of the disposition and the dose-plasma/tissue exposure relationship 

of prodrugs/metabolites in humans. 

To test this hypothesis, a multiexperimental approach, which included the human 

intestinal cell line Caco-2, rat isolated perfused livers (IPLs), rat and human sandwich-

cultured hepatocytes (SCH), a plasma/tissue binding assay, and pharmacokinetic 

(compartmental/noncompartmental and PBPK) modeling, was employed as outlined in the 

following specific aims: 

AIM #1. CHARACTERIZE AND COMPARE THE INTESTINAL DISPOSITION OF THE 

PRODRUGS PAFURAMIDINE AND CPD-0868 USING THE HUMAN INTESTINAL CELL LINE CACO-2.  

 

Hypothesis: The improved efficacy of the prodrug CPD-0868 compared to 

pafuramidine is due to superior permeability through the intestinal epithelium, which results 

in increased hepatic exposure to CPD-0868. 

1.a. Determine the permeability coefficient (Papp) of pafuramidine and CPD-0868 

across Caco-2 cell monolayers (A→B and B→A) under serum-free conditions. 

1.b. Determine the permeability coefficient (Papp) of pafuramidine and CPD-0868 

across Caco-2 cell monolayers (A→B) under “sink” conditions (addition of 4% BSA into the 

B compartment) 

 1 c. Evaluate the accumulation of pafuramidine and CPD-0868 in Caco-2 cells. 
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AIM #2. ELUCIDATE MECHANISMS UNDERLYING THE DIFFERENCE IN SYSTEMIC 

EXPOSURE OF ACTIVE METABOLITES, FURAMIDINE AND CPD-0801, BY COMPARING THE 

HEPATOBILIARY DISPOSITION OF RESPECTIVE PRODRUGS AND DERIVED METABOLITES IN TWO 

PRECLINICAL HEPATIC MODELS. 

 

Hypothesis: The enhanced systemic exposure of CPD-0801 compared to 

furamidine reflects superior hepatobiliary disposition characteristics, including a greater 

extent of conversion, less intrahepatic sequestration, and/or more efficient excretion of CPD-

0801 from hepatocytes into the systemic circulation. 

2.a. Quantify in recirculating isolated perfused livers (IPLs) from rats the extent of 

conversion of each prodrug to the corresponding active metabolite and the hepatocellular 

accumulation, biliary excretion and basolateral efflux of each prodrug and derived 

metabolites. 

2.b. Quantify in sandwich-cultured hepatocytes (SCH) from rats the extent of 

conversion of each prodrug to the corresponding active metabolite and the hepatocellular 

accumulation, biliary excretion and basolateral efflux of each prodrug and derived 

metabolites. 

2.c. Utilize the data generated from AIMS 2a and 2b and compartmental 

pharmacokinetic modeling to compare the hepatobiliary disposition of pafuramidine and 

CPD-0868 and derived metabolites, and elucidate the predominant process(es) that govern 

the hepatic disposition of respective active metabolites. 

2.d. Compare the data generated in rat SCH with rat IPL data. 
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AIM #3. DESIGN A SYSTEMATIC STRATEGY FOR DOSE SELECTION VIA PBPK MODELING 

AND SIMULATION USING PAFURAMIDINE/FURAMIDINE AS A MODEL PRODRUG/ACTIVE 

METABOLITE PAIR. 

Hypothesis: Incorporation of preclinical data into a PBPK model can be used to 

predict the disposition and the dose-plasma/tissue exposure relationship of 

pafuramidine/furamidine in humans. 

3.a. Develop a whole-liver rat semi-PBPK model for pafuramidine/furamidine using 

rat IPL data generated from Aim 2a. 

3.b. Develop a whole-body rat semi-PBPK model for pafuramidine/furamidine with 

integration of the IPL model and data from in vivo studies, tissue partitioning and renal 

excretion; examine the accuracy of the prediction by comparing with in vivo plasma data.  

3.c. Develop a whole-body human semi-PBPK model for pafuramidine/furamidine to 

1) predict the plasma/tissue and excretion profiles, and 2) predict the dose-exposure 

relationship in humans.  
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Figure 1.1. Chemical structures of drugs for treatment of first stage (left) and second stage 
(right) human African trypanosomiasis. 
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Figure 1.2. Chemical structures of orally-active pentamidine analogues, pafuramidine and 2, 
5-bis [5-(N-methoxyamidino)-2-pyridyl] furan (CPD-0868), and corresponding active 
metabolites, furamidine and 2, 5-bis (5-amidino)-2-pyridyl) furan (CPD-0801).  Arrows 
denote sequential metabolic pathways involved in the conversion of prodrugs to respective 
active metabolites.  
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Figure 1.3. Biocoversion of the prodrug pafuramidine to the active metabolite furamidine in 
human liver microsomes. M1-M4 represent four intermediate phase I metabolites. 
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Figure 1.4. Scheme for a generic physiologically-based pharmacokinetic (PBPK) model.
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A. ABSTRACT  

A successful oral prodrug should have sufficient permeability to traverse the gut wall 

and reach major site(s) of bioactivation to the active metabolite. Pafuramidine, a prodrug of 

furamidine, exhibited potent trypanocidal activity against first stage human African 

trypanosomiasis (HAT). 2, 5-Bis [5-(N-methoxyamidino)-2-pyridyl] furan (CPD-0868), a 

prodrug of 2, 5-bis (5-amidino)-2-pyridyl) furan (CPD-0801), showed improved efficacy and 

enhanced systemic exposure to the active metabolite (CPD-0801) compared to 

pafuramidine/furamidine in a second stage mouse model of HAT. To test the hypothesis that 

the superiority of CPD-0868 in terms of efficacy and systemic exposure is due in part to a 

greater extent of absorption, the human intestinal cell line Caco-2 was utilized to elucidate 

and compare the intestinal absorption properties of pafuramidine and CPD-0868. The 

similar absorptive and exsorptive permeability, in the absence of basolateral serum protein, 

suggested that both prodrugs are absorbed across the intestinal epithelium by passive 

diffusion. Application of 4% bovine serum albumin (BSA) to the basolateral compartment 

increased absorptive permeability of pafuramidine (by ~5-fold), but not CPD-0868, 

suggesting that portal plasma protein binding has a more significant impact on pafuramidine 

absorption. Comparable permeability coefficients of both prodrugs under this more 

physiologic condition suggested that the extent of absorption between pafuramidine and 

CPD-0868 may be similar in vivo.  
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B. INTRODUCTION 

Human African trypanosomiasis (HAT), also known as “sleeping sickness”, is a life-

threatening disease if untreated (Barrett et al., 2003). First stage infection is characterized 

by restriction of parasites to the hemolymphatic system; second stage infection occurs once 

parasites enter the central nervous system (CNS) (Checchi and Barrett, 2008). Current 

treatments for HAT are limited to four drugs as monotherapy: pentamidine or suramin for 

first stage infection, and melarsoprol or eflornithine for second stage infection.  All of these 

agents are associated with toxicities and increasing clinical failure and require parenteral 

administration (intravenous or intramuscular), posing challenges in rural areas of Africa 

where HAT is most prevalent (Checchi and Barrett, 2008). Orally-active drugs are, therefore, 

preferred as an alternative route to parenteral administration in resource-constrained 

settings. 

Pentamidine (Fig 2.1), was discovered in 1941 and still remains the drug of choice 

for the treatment of first stage HAT, regardless of adverse effects (Dorlo and Kager, 

2008). Of many structural analogs of pentamidine, furamidine (Fig. 2.1), synthesized in the 

early 1970s, showed promise, comparable to pentamidine, in animal models of first stage 

infection (Boykin et al., 1996). However, like pentamidine, furamidine carries positive 

charges at physiologic pH due to the diamidine moiety (pKa ≈ 10), which contributes to poor 

oral absorption (Zhou et al., 2002). Consequently, furamidine must be administered 

parenterally to achieve sufficient systemic trypanocidal concentrations at the target site.  An 

approach to improve oral bioavailability of furamidine focused on masking the cationic 

groups. Accordingly, pafuramidine (Fig. 2.1), an O-methylamidoxime prodrug of furamidine, 

was synthesized (Boykin et al., 1996). Pafuramidine exhibited improved oral activity in 

mouse and monkey infection models and was the only orally-active agent that had shown 

efficacy in the treatment of first stage HAT (Paine et al., 2010). However, pafuramidine was 
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not successful for the treatment of second stage (CNS) infection in a monkey model 

(Wenzler et al., 2009).   

Structural modifications to pafuramidine currently are being evaluated. To date, the 

most potent analogue is 2, 5-bis [5-(N-methoxyamidino)-2-pyridyl] CPD-0868 (Fig. 2.1), a 

prodrug of 2, 5-bis (5-amidino)-2-pyridyl) furan CPD-0801 (Fig. 2.1), which differs from 

pafuramidine by substitution of the phenyl rings with pyridines.  CPD-0868 demonstrated a 

higher cure rate  (4/5  vs. 1/5 at 50 mg/kg p.o. for 10 days) compared to pafuramidine in a 

second stage mouse model of infection (Wenzler et al., 2009); systemic exposure to CPD-

0801 was >2-fold higher than that to furamidine in mice given the same dose of respective 

prodrugs (Wu et al., 2007). 

These observations led to the hypothesis that the improved efficacy of the prodrug 

CPD-0868 and enhanced systemic exposure to the active metabolite CPD-0801, compared 

to pafuramidine/furamidine, is due to superior permeability of CPD-0868 through the 

intestinal epithelium. Following oral administration, pafuramidine or CPD-0868 must traverse 

the intestinal epithelium before reaching the portal circulation. Accurate prediction of human 

intestinal absorption can facilitate selection of candidates with optimal absorption properties 

for further development as oral drugs. The aims of this study were to 1) ascertain the means 

of absorption of pafuramidine and CPD-0868; and 2) compare the intestinal permeability 

between these two prodrugs using the well-characterized human intestine-derived cell line 

Caco-2.   

Caco-2 cells resemble morphologically and functionally the enterocytes of the human 

small intestine (Artursson, 1999). Caco-2 cells have been used widely as an in vitro tool to 

predict human drug absorption and elucidate transport mechanisms of drug molecules. The 

spontaneous differentiation process in cell culture leads to formation of tight junctions and 

development of cell polarity. Various phase I and phase II drug metabolizing enzymes as 

well as  uptake and efflux transporters including the breast cancer resistance 
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protein (BCRP), P-glycoprotein (P-gp), multidrug resistance protein (MRP), organic anion-

transporting polypeptide (OATP), and organic cation transporter (OCT) also are expressed 

and functional in Caco-2 cells (Muller et al., 2005; Sun et al., 2008). In many respects, 

Caco-2 cells mimic the human intestinal epithelium. One functional difference between 

enterocytes and Caco-2 cells is the relative lack of expression of cytochrome P450 (CYP) 

enzymes, particularly CYP3A4, which is expressed normally at high levels in the intestine 

(Sun et al., 2008). However, addition of 1α,25-dihydroxy-vitamin-D3 (1α,25-(OH)2-D3) to the 

culture medium can induce CYP3A4 expression and activity in a dose-dependent manner 

(Schmiedlin-Ren et al., 1997).  

Caco-2 monolayers were employed (Fig. 2.2) to evaluate both absorption and 

exsorption of pafuramidine and CPD-0868 by adding the test compound to either the apical 

(A) compartment (luminal side) or the basolateral (B) compartment (blood side); the A→B 

and B→A permeability coefficients (Papps) were calculated and compared to elucidate 

means of absorption (passive diffusion versus transporter-mediated pathways). In addition, 

the A→B translocation of prodrugs was evaluated further under “sink” conditions, when the 

B compartment was supplemented with 4% bovine serum albumin (BSA) to mimic the 

physiologic situation.  
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C. METHODS 

Materials and chemicals.  BioCoatTM control cell culture inserts (4.2 cm2, 1 µm pore 

size) and murine laminin were purchased from BD Biosciences Labware (Bedford, MA).  

Dulbecco’s modified Eagle’s medium (DMEM) (containing 25 mM D-glucose and L-glutamine) 

and nonessential amino acids (NEAA) were purchased from Invitrogen (Carlsbad, CA).  

Fetal bovine serum (FBS) was purchased from Thermo Scientific HyClone (Logan, UT).  

Vitamin E, zinc sulfate, sodium selenite, gentamicin, and BSA were purchased from Sigma-

Aldrich (St. Louis, MO).  Pafuramidine, CPD-0868, and internal standards (deuterium-

labeled prodrugs, d8-pafuramidine and d6-CPD-0868) were synthesized in the laboratory of 

Dr. David W. Boykin (Georgia State University, Atlanta, GA) (Boykin et al., 1996; Ismail et al., 

2003). All other chemicals and reagents were of analytical grade and were used without 

further purification. 

Caco-2 Cell Culture Conditions. Cell culture inserts were coated with murine 

laminin (5 µg/cm2) prior to seeding with the Caco-2 cell clone P27.7 (Schmiedlin-Ren et 

al.,1997) (passage 24) at a density of ~5 x 105 cells/cm2.  The cell cultures were maintained 

in growth medium (consisting of DMEM, 20% FBS, 0.1 % (v/v) NEAA, 50 µg/ml gentamicin, 

and 45 nM vitamin E) until reaching confluence, as determined by transepithelial electrical 

resistance (TEER) values of ≥250 Ω-cm2.  Cell monolayers were then treated with 

differentiation medium (consisting of DMEM, 5% heat-inactivated FBS, 0.1 % (v/v) NEAA, 50 

µg/ml gentamicin, 45 nM vitamin E, 0.1 µM sodium selenite, and 3 µM zinc sulfate) for 21 

days as described previously (Paine et al., 2005). 

Disposition of Pafuramidine and CPD-0868 in Caco-2 cells. Serum-Free 

Conditions.  To evaluate the absorptive (A→B) and exsorptive (B→A) translocation (Fig. 2.2), 

1.5 ml of incubation medium (differentiation medium devoid of FBS) containing pafuramidine 

or CPD-0868 (1 µM; 0.01% DMSO) was added to the donor compartment, followed by 1.5 

ml of drug-free incubation medium to the receiver compartment. Aliquots (25 µl) were 
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collected from the A and B compartments at 0, 10, 20, 30, 40, and 60 min. Cells were 

collected at the end of the experiment by scraping into 200 µl of cold incubation medium, 

after which acetonitrile (600 µl) was added. Cellular supernatants were collected followed by 

vortex-mixing and centrifugation at 1800 g for 10 min. TEER values were measured before 

and after the experiment to assess effects of test compounds on cell monolayer integrity. 

Sink Conditions. The experimental procedure for evaluation of A→B translocation of 

prodrugs under sink conditions was similar as described above, only the incubation medium 

in the B compartment was supplemented with 4% BSA. Samples from the donor and 

receiver compartments and cellular supernatants were stored at -80°C pending analysis for 

prodrugs by LC-MS/MS. The dosing concentration (1 µM) was based on prodrug solubility in 

the incubation medium and assay sensitivity to quantify prodrug in the receiver compartment. 

Sample Preparation and LC-MS/MS Analysis. Donor samples were diluted 10-fold 

by adding 12.5 µl to 112.5 µl of acetonitrile (ACN). Receiver samples were diluted 5-fold by 

adding 25 µl to 100 µl of ACN.  The internal standards (d8-pafuramidine and d6-CPD-0868) 

were prepared by diluting the stock solution (100 µM in 100% DMSO) to generate a working 

solution (600 nM in 99.4% ACN and 0.6% DMSO), 25 µl of which was added to 125 µl of 

donor, receiver, and cell samples. After vortex-mixing and centrifugation at 1800 g for 10 

min, the supernatant (100 µl) was transferred to HPLC vials and quantified for pafuramidine 

and CPD-0868 on an API 4000 triple quadrupole mass spectrometer (Applied Biosystems, 

Foster City, CA) equipped with a Turbo IonSpray interface (MDS Sciex, San Francisco, CA). 

Analytes were separated with an Aquasil C18 HPLC column (2.1 mm × 50 mm, 5 µm) 

(Thermo Electron, Waltham, MA) and a high-pressure linear gradient program consisting of 

0.1% formic acid in HPLC-grade water (A) and 0.1% formic acid in HPLC-grade methanol (B) 

delivered by a Shimadzu pumping system (Shimadzu, Kyoto, Japan) at a flow rate of 0.75 

ml/min as follows: after a 0.5-min initial hold at 10% B, mobile phase composition was 

increased from 10% to 90% B over 3.5 min, and held at 90% B for 0.5 min; the column was 
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re-equilibrated for 0.5 min before the next injection. The mass spectrometer was operated in 

positive ion mode using multiple reaction monitoring: pafuramidine, 365.1→334.1 m/z; d8-

pafuramidine, 373.1→342.2 m/z; CPD-0868, 367.1→336.1 m/z; d6- CPD-0868, 

373.1→342.1 m/z; furamidine, 305.3 288.1 m/z; CPD-0801,  307.3 290.1 m/z. Although 

not quantified, the active metabolites (furamidine and CPD-0801) were monitored for peaks 

of the respective m/z ratios. Calibration curves were prepared in appropriate matrices 

(medium and cell supernatant) and were linear over 5-2000 nM (R2 > 0.99).  

LogP Calculation. The log octanol-to-water partition coefficients (logP) for 

pafuramidine and CPD-0868 were calculated using ACD/ChemSketch (Advanced Chemistry 

Development Inc., Toronto, Canada). 

Data Analysis. The apparent permeability coefficients (Papp) of both absorptive 

(A→B) and exsorptive (B→A) transport were calculated according to the following equation 

(Artursson, 1990):  

Papp = (dQ/dt)/(A•C0)     (Eqn 1) 

where dQ/dt is the appearance rate of prodrug in the receiver compartment, 

calculated by regression of the linear portion of concentration-time profiles; A is the surface 

area of the culture insert (4.2 cm2); and C0 is the initial concentration of the test compound 

added to the donor compartment (1 µM). 

The ratio of the exsorptive to absorptive permeability coefficient was calculated to 

obtain information regarding any asymmetry in the translocation of the test compound. Thus, 

efflux ratios were calculated as the ratio of Papp, B→A to Papp, A→B. Recoveries following apical 

and basolateral dosing were determined as the sum of amounts recovered in the apical, 

basolateral, and cellular compartments at 60 min as a percentage of the initial amount 

added. Cellular accumulation was calculated based on the amount recovered in cell 

scrapings as a percentage of the initial amount added. 
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Statistical Analysis.  Data are expressed as mean ± SD of triplicate culture inserts. 

Statistical significant differences between Papp values and between cellular accumulation at 

60 min, were determined by the unpaired Student’s t-test (p < 0.05). 
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D. RESULTS 

Effects of Prodrugs on Monolayer Integrity.  Under all conditions, the TEER 

measurements exceeded 250 Ω-cm2 and varied <15% over the 60-min experiment, 

indicating that membrane integrity remained intact as a function of prodrug/BSA treatments 

and time. 

Disposition of Pafuramidine and CPD-0868 in Caco-2 cells under Serum-Free 

Conditions.  Translocation. For both pafuramidine and CPD-0868, translocation through 

Caco-2 cell monolayers in the A→B direction was nearly superimposable with that in the 

B→A direction (Fig. 2.3), resulting in similar apparent permeability coefficients (Papp) 

measured in both directions and efflux ratios near unity (Table 2.1).  Corresponding Papp 

(A→B and B→A) of CPD-0868 were significantly higher than those of pafuramidine, differing 

by approximately 3- to 4-fold (Table 2.1). At the end of the experiment, almost 100% of both 

prodrugs were recovered except that pafuramidine recovery was <80% when added into the 

B compartment (Table 2.1). Cellular Accumulation. The cellular accumulation of 

pafuramidine at 60 min averaged 33% following apical administration; there was a 

significant decrease (2-fold) in cellular accumulation of pafuramidine under the same 

conditions following basolateral dosing (Fig. 2.4). In comparison to pafuramidine, the cellular 

accumulation of CPD-0868 at 60 min was significantly lower following the same 

administration route (33 versus 6% for apical dose and 17 versus 4% for basolateral dose) 

(Fig. 2.4). Metabolism. Neither of the active metabolites (furamidine or CPD-0801) was 

detected throughout the experiment regardless of whether the prodrug was dosed into the A 

or B compartment. 

Disposition of Pafuramidine and CPD-0868 in Caco-2 Cells under Sink 

Conditions. Translocation. When the B compartment was supplemented with 4% BSA, the 

A→B translocation of both prodrugs became nearly superimposable (Fig. 2.5). In addition, 

the Papp, A→B value of pafuramidine increased by ~5-fold in the presence relative to the 
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absence of BSA (Table 2.1); no significant difference in Papp, A→B associated with BSA was 

observed for CPD-0868 (Table 2.1). As a consequence, A→B permeability of pafuramidine 

and CPD-0868 became comparable (Table 2.1). Cellular Accumulation. In the presence of 

BSA, cellular accumulation of pafuramidine following apical dosing was significantly reduced, 

by approximately 2-fold, compared to the absence of BSA (33 versus 16%). Nevertheless, 

cellular accumulation of pafuramidine was still much higher than that of CPD-0868 (16 

versus 4%) (Fig. 2.4). Metabolism. Neither of the active metabolites (furamidine or CPD-

0801) was detected throughout the experiment. 

 



 49

E. DISCUSSION 

Current treatments for both the first and second stage of HAT require inconvenient 

parenteral administration, which limits widespread use of these drugs in areas affected by 

HAT. Prodrugs are one approach to enhance drug absorption of low permeability 

compounds. Pafuramidine, a lipophilic prodrug of furamidine, has greatly improved oral 

potency, compared to the hydrophilic active metabolite (furamidine), towards first stage HAT 

(Boykin et al., 1996).  Despite its improved intestinal permeability, pafuramidine was not 

effective against second stage HAT.  The structural analog, CPD-0868, may represent an 

alternative for second stage infection, as evidenced by a higher cure rate and improved 

systemic exposure of derived active metabolite (CPD-0801) in a second stage (CNS) mouse 

model (Wu et al., 2007; Wenzler et al., 2009). To investigate whether intestinal absorption 

plays a role in the observed difference in efficacy and pharmacokinetics between 

pafuramidine and CPD-0868, a well-characterized in vitro model of the intestinal epithelium, 

Caco-2 cells, was utilized to assess permeability and transport characteristics of both 

prodrugs. 

A previous study showed that the prodrug pafuramidine crossed the intestinal 

epithelium predominantly via a transcellular route (Zhou et al., 2002). Masking the cationic 

functionalities of furamidine by O-methylamidoxime moieties greatly enhanced the 

lipophilicity of the prodrug, pafuramidine, by increasing the LogD value from -3 to 4.3 (Zhou 

et al., 2002). At physiologic pH, passive diffusion would be expected to represent the major 

pathway for the uncharged (pKa ≈ 4) and lipophilic prodrug, pafuramidine, to traverse the 

intestinal epithelium. The nearly superimposable translocation profiles (Fig. 2.3) and similar 

Papp values (Table 2.1) for both pafuramidine and CPD-0868 after apical and basolateral 

dosing in Caco-2 cells (without serum in the medium) support the aforementioned 

postulation. Although both prodrugs crossed cell monolayers by passive diffusion, in the 

absence of serum in the medium, both absorptive and exsorptive permeability coefficients of 
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CPD-0868 were more than 3-fold higher than those of pafuramidine (Table 2.1), which could 

be attributed to the much lower cellular accumulation compared to pafuramidine (Fig. 2.4).  

As reported previously, the presence of BSA significantly increased absorptive Papp 

values of only the most lipophilic (logP > 3.0) and highly protein bound (fu < 5%) compounds 

(chlorpromazine and nelfinavir) by reducing cellular drug accumulation and non-specific 

binding to plastic wells (Aungst et al., 2000). Another study also demonstrated that addition 

of 4% BSA into the receiver compartment increased the absorptive permeability of a highly 

lipophilic compound, Sch-Y (logP = 4.0), by 5-fold, but the Papp values of a relatively less 

lipophilic compound, Sch 56592 (logP = 2.4), remained unchanged (Saha and Kou, 2002). 

Consistent with these previous results, when 4% BSA was added into the basolateral 

compartment to mimic plasma protein binding in the portal circulation, the cellular 

accumulation of the highly lipophilic prodrug, pafuramidine (LogP = 4.0; Table 2.1), 

decreased significantly (Fig. 2.4).  As a consequence, the permeability of pafuramidine 

increased by 5-fold, comparable to CPD-0868 (Table 2.1). This observation indicated that 

BSA served as a “sink” for pafuramidine to reduce backward flux and cellular accumulation 

of this prodrug. In contrast, little difference in permeability and cellular accumulation of the 

relatively less lipophilic prodrug, CPD-0868 (LogP = 2.2; Table 2.1), was observed in the 

absence and presence of BSA (Table. 2.1 and Fig. 2.4). Consistent with the relative 

lipophilicity between these two prodrugs, the unbound fraction (fu) of pafuramidine in human 

plasma was 35-fold less than that of CPD-0868 (Table 2.1). If BSA is the major protein that 

both prodrugs are bound to in the human plasma, the fu of CPD-0868 in 4% BSA would be 

expected to be much higher than that of pafuramidine, which could explain the fact that 

binding to BSA in the B compartment has a much lower impact on the permeability of CPD-

0868 across Caco-2 cell monolayers compared to pafuramidine.  

Both pafuramidine and CPD-0868 are poorly water-soluble compounds, thus, the 

dosing solutions of both prodrugs need to be prepared in a hydrophobic solvent, such as 
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DMSO. According to the Biopharmaceutical Classification System (BCS), pafuramidine and 

CPD-0868 can be classified as low solubility–high permeability class II compounds (Polli et 

al., 2008). Therefore, the extent of absorption of these prodrugs, expressed as the fraction 

of absorbed (fa), would be expected to be limited by the solubility rather than the 

permeability. In addition to the inherent physicochemical properties, local solubility of 

compounds in the gastrointestinal tract also can be influenced by a variety of factors, such 

as, surfactants, pH, buffer capacity, and food components (Dressman and Reppas, 2000). 

Numerous reports showed that the presence of food, particularly consisting of fat 

components, can greatly increase the extent of absorption of class II compounds (Welling, 

1996; Dressman and Reppas, 2000; Dressman et al., 2008). In the case of these 

antiparasitic prodrugs, administration accompanied by plenty of water and a high fat meal 

would be expected to enhance the fa, and in turn, the portal exposure for biotransformation 

to the active metabolites in the liver. 

In the current study, both prodrugs exhibited near complete recoveries in the Caco-2 

model, except for pafuramidine when dosed in the basolateral compartment. Considering 

the higher lipophilicity and more extensive binding of pafuramidine, the incomplete recovery 

of this prodrug when dosed into the B compartment may have reflected a greater extent of 

non-specific binding to the larger surface area of culture well/insert. In addition, no active 

metabolite formation was observed for either prodrug over the 60-min transport study. A 

previous study using human intestinal microsomes showed that human enteric CYP4F may 

play a role in the pre-systemic biotransformation of pafuramidine (Wang et al., 2007). 

Studies using human liver microsomes showed that CYP3A4 may be also involved in the 

sequential metabolism of pafuramidine to form furamidine (Wang et al., 2006). The 

activity/expression levels of some phase I metabolizing enzymes, particularly CYP3A4, in 

Caco-2 cells are considerably lower than those detected in human intestinal epithelium (Sun 

et al., 2008). The expression/activity levels of enzymes involved in biotransformation of 
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these prodrugs (e.g., CYP4F/CYP3A4) may not be adequate in Caco-2 cells to predict and 

study the metabolism of these compounds in the small intestine.  

In conclusion, no apparent difference in the Papp, A→B of these two prodrugs was 

observed under more physiologically-relevant conditions in the Caco-2 model, suggesting 

that the permeability of pafuramidine and CPD-0868 through the intestinal epithelium may 

be similar in vivo, hence, the intestinal permeability of prodrugs may have little impact on the 

difference in the systemic exposure of respective active metabolites observed in vivo. This 

study further demonstrated the utility of Caco-2 model to characterize the translocation of 

compounds in the gut and highlighted the importance of BSA in accurate assessment of 

Papp,A→B and permeability ranking of highly lipophilic compounds. The method used in this 

study can facilitate selection of lead candidates with desirable intestinal permeability 

properties for oral treatment of HAT. 
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F. TABLES 

 

Table 2.1 Comparison of pafuramidine and CPD-0868 translocation across Caco-2 cell 
monolayers.  
 
 

aCalculated based on equation (1); comparisons between pafuramidine and CPD-0868 Papp values 
were made using the two-tailed Student’s t-test. #p<0.05 versus the absence of BSA in the 
basolateral compartment.  *p<0.05 versus pafuramidine in the same translocation direction. Values 
denote mean ± SD of 3 culture inserts. 
 
bDetermined as the ratio of the Papp value in the B → A direction to that in the A → B direction. 
 
cCalculated as the sum of amount of prodrug recovered in the A and B compartments and cells as a 
percentage of initial amount of prodrug added to the donor compartment. 
 
dCalculated as described in Materials and Methods. 
 
efu denotes unbound fraction of pafuramidine or CPD-0868 in human plasma, which was determined 
using a method described in a previous study (Yan et al., 2011). 
 
fIncubation medium in the B compartment was supplemented with 4% BSA. 
 
gNot applicable. 

Prodrug Translocation 
Direction 

Papp  
(10-6 

cm/s)a    
Efflux 
Ratiob 

Recovery 
at  

60 min 
(%)c 

LogPd 
fu (%) in 
Human 
Plasmae 

A → B 8.0 ± 0.3 98 ± 8 

B → A 7.0 ± 0.2
0.9 ± 0.1

73 ± 1 Pafuramidine 

A → B 
 (w/ BSA)f 44 ± 3# N.A.g 100 ± 4 

4.0 ± 0.7 0.2 ± 0.02 

A → B 27 ± 2* 100 ± 5 

B → A 27 ± 3* 
1.0 ± 0.1

96 ± 2 CPD-0868 

A → B 
 (w/ BSA) 33 ± 1 N.A. 100 ± 1 

2.2 ± 0.7 7 ± 0.6 
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Figure 2.1 Chemical structures of pentamidine, pafuramidine, furamidine, CPD-0868, and 
CPD-0801.  Arrows denote sequential metabolic pathways involved in the conversion of 
prodrugs to respective active metabolites. 
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Figure 2.2 Schematic representation of the Caco-2 permeability assay. 
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Figure 2.3 Translocation of pafuramidine and CPD-0868 (1 µM) across Caco-2 cell 
monolayers. Symbols and error bars denote means and SDs, respectively, of triplicate 
culture inserts.  
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Figure 2.4 Cellular accumulation of pafuramidine or CPD-0868 in Caco-2 cells at the end of 
the 60-min experiment. Black, white, and gray bars represent the amount of each prodrug 
recovered in the cell scrapings as a percentage of initial amount added to the apical (A) or 
basolateral (B) compartment or apical compartment with 4% BSA in the B compartment 
containing 4% BSA. *p <0.05 versus CPD-0868 under the same dosing condition; **p <0.05 
versus A dose w/BSA (Student’s t-test). 
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Figure 2.5 Apical-to-basolateral translocation of pafuramidine and CPD-0868 (1 µM) across 
Caco-2 cell monolayers in the presence of 4% BSA in the basolateral compartment. 
Symbols and error bars denote means and SDs, respectively, of triplicate culture inserts.  
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A.        ABSTRACT 

Selection of in vitro models that accurately characterize metabolite systemic and 

hepatobiliary exposure remains a challenge in drug development. In the present study, 

mechanisms underlying differences in systemic exposure of two active metabolites, 

furamidine and 2, 5-bis (5-amidino)-2-pyridyl) furan (CPD-0801), were examined using two 

hepatic models from rats: isolated perfused livers (IPLs) and sandwich-cultured hepatocytes 

(SCH).  Pafuramidine, a prodrug of furamidine, and 2, 5-bis [5-(N-methoxyamidino)-2-pyridyl] 

furan (CPD-0868), a prodrug of CPD-0801, were selected for investigation because CPD-

0801 exhibits greater systemic exposure than furamidine, despite remarkable structural 

similarity between these two active metabolites.  In both IPLs and SCH, the extent of 

conversion of CPD-0868 to CPD-0801 was consistently higher than that of pafuramidine to 

furamidine over time (at most 2.5-fold); area under the curve (AUC) of CPD-0801 in IPL 

perfusate and SCH medium was at least 7-fold higher than that of furamidine. 

Pharmacokinetic modeling revealed that the rate constant for basolateral (liver to blood) net 

efflux (kA_net efflux) of total formed CPD-0801 (bound+unbound) was 6-fold higher than that of 

furamidine. Hepatic accumulation of both active metabolites was extensive (>95% of total 

formed); hepatic unbound fraction (fu,L) of CPD-0801 was 5-fold higher than that of 

furamidine (1.6 versus 0.3%). Incorporation of fu,L into the pharmacokinetic model resulted in 

comparable kA_net efflux,u between furamidine and CPD-0801.  In conclusion, intrahepatic 

binding markedly influenced the disposition of these active metabolites. A higher fu,L 

explained, in part, the enhanced perfusate AUC of CPD-0801 compared to furamidine in 

IPLs. SCH predicted the disposition of prodrug/metabolite in IPLs.  
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B.          INTRODUCTION 

The liver often is the predominant organ for biotransformation of a precursor 

compound (i.e., prodrug) to active metabolite, which can influence therapeutic and/or 

toxicologic outcomes (Pang et al., 2008). Once formed, active metabolite can undergo 

further metabolism, excretion into the systemic circulation or bile, and/or intrahepatic 

sequestration. Therefore, accurate characterization of the systemic and hepatobiliary 

exposure of active metabolite is imperative for efficacy and risk assessment. Although 

physiologically relevant, in vivo studies are cumbersome, costly, and associated with a 

variety of extrahepatic variables, including metabolic and active uptake/efflux processes in 

the intestine and kidney. As an alternative methodology, in vitro or ex vivo hepatic models 

that have strong descriptive and predictive capabilities for the in vivo situation would offer 

significant advantages. 

Isolated perfused livers (IPLs) are considered the closest approximation to the 

hepatobiliary system in vivo due to maintenance of hepatic architecture, microcirculation, 

and bile production (Brouwer and Thurman, 1996). Biotransformation pathways, 

sinusoidal/biliary transport processes, mechanisms underlying drug-drug interactions, and 

alterations in physiology (blood flow or changes in protein binding that might be associated 

with disease) can be elucidated by manipulating experimental conditions, in the absence of 

extrahepatic influence. Despite these advantages, several shortcomings limit widespread 

use of IPLs, such as the delicate surgical techniques required, the relatively short 

experimental period in which viability is maintained (≤ 2h), and the time/labor-intensive 

nature of the procedure (Brouwer and Thurman, 1996).  

Sandwich-cultured hepatocytes (SCH) have emerged as an alternative in vitro model 

of the hepatobiliary system (Swift et al., 2009). Unlike conventional culture, hepatocytes 

cultured between layers of gelled collagen in a sandwich configuration establish cell polarity 

and form intact canalicular networks with appropriate localization, expression, and function 
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of transport proteins (LeCluyse et al., 1994; Liu et al., 1999a). Compared to IPLs, SCH 

represent a more cost-effective and high-throughput system, allowing for simultaneous 

monitoring of xenobiotics in both cells and culture medium over an extended period of time 

(up to 24 h). One limitation of SCH is that catalytic activity of cytochrome P450 enzymes 

declines with days in culture (Boess et al., 2003). A medium additive, dexamethasone (DEX), 

has been reported to induce the expression of certain phase I and II enzymes in SCH to 

levels that more closely approximate in vivo metabolic activity (LeCluyse, 2001; Hewitt et al., 

2007a; Hewitt et al., 2007b; Kienhuis et al., 2007).  

A large body of literature describes the hepatobiliary disposition of many xenobiotics 

using IPLs or SCH. However, a comparison of both sinusoidal/canalicular transport and 

metabolism between these two hepatic models has not been evaluated. In the current study, 

two antiparasitic prodrugs and derived metabolites were utilized as model drug/metabolite 

pairs to investigate this unaddressed issue. 

Human African trypanosomiasis (HAT), a neglected parasitic disease, consists of two 

stages. During first stage infection, parasites are restricted to the hemolymphatic system; 

second stage infection begins once parasites invade the central nervous system, causing 

serious neurologic dysfunction (Barrett, 2010). Without treatment, HAT is invariably fatal. 

Pafuramidine (Fig. 3.1), a prodrug of furamidine (Fig. 3.1), is the only orally-active agent that 

has shown efficacy in clinical trials for the treatment of first stage infection (Paine et al., 

2010). CPD-0868 (Fig. 3.1), a structural analog of pafuramidine and prodrug of CPD-0801 

(Fig. 3.1), demonstrated a higher cure rate compared to pafuramidine in a second stage 

mouse model (4/5 versus 1/5 at 50 mg/kg p.o. for 10 days) (Wenzler et al., 2009); systemic 

exposure to CPD-0801 was higher than that to furamidine in mice given the same dose of 

respective prodrugs (Wu et al., 2007). These encouraging observations warrant further 

evaluation of CPD-0868 as an orally-active agent for second stage HAT. 
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Both furamidine and CPD-0801 are formed in the liver via sequential oxidative O-

demethylation and reductive N-dehydroxylation reactions, producing four intermediate 

phase I metabolites (Fig. 3.1) (Zhou et al., 2004; Generaux, 2010). Once formed, active 

metabolites must be excreted from hepatocytes into the systemic circulation to exert 

antiparasitic activity. These observations led to the hypothesis that improved efficacy of the 

prodrug, CPD-0868, against second stage infection compared to pafuramidine reflects 

superior hepatobiliary disposition characteristics, including a greater extent of conversion to 

the active metabolite (CPD-0801) and/or more efficient efflux of CPD-0801 from hepatocytes 

into the systemic circulation. This hypothesis was addressed utilizing IPLs and SCH from 

rats, coupled with mathematical modeling, to elucidate mechanisms underlying the 

difference in systemic/hepatobiliary exposure of these two antiparasitic active metabolites. 

Results generated from SCH were compared with IPLs. 
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C.        MATERIALS AND METHODS 

Materials and Chemicals.  Dulbecco’s modified Eagle’s medium (DMEM) and insulin 

were purchased from Invitrogen/GIBCO (Carlsbad, CA). ITS+TM (insulin/transferring/selenium) 

culture supplement and MatrigelTM were purchased from BD Biosciences (Bedford, MA). 

Penicillin, streptomycin, fetal bovine serum (FBS), non-essential amino acids (NEAA), 

dexamethasone (DEX), Krebs-Henseleit buffer, Triton X-100, and taurocholate were purchased 

from Sigma-Aldrich (St. Louis, MO). The prodrugs pafuramidine and CPD-0868, the 

intermediate phase I metabolites (M1, M2, and M3) of pafuramidine and CPD-0868, the active 

metabolites furamidine and CPD-0801, and the internal standards (deuterium-labeled 

pafuramidine, CPD-0868, furamidine, and CPD-0801) were synthesized in the laboratory of Dr. 

David W. Boykin (Georgia State University, Atlanta, GA) (Boykin et al., 1996; Ismail et al., 2003; 

Ismail and Boykin, 2006). All other chemicals and reagents were of analytical grade and were 

used without further purification. 

Animals. Male Wistar rats (250–300 g) were purchased from Charles River Laboratories 

(Raleigh, NC) for liver perfusion and hepatocyte isolation. Animals had free access to water and 

food before surgery. All animal procedures were compliant with guidelines of the University of 

North Carolina Institutional Animal Care and Use Committee. 

Disposition of Prodrugs/Metabolites in Isolated Perfused Rat Livers. Recirculating 

IPLs from rats were prepared using standard techniques; perfusions were conducted ex situ 

over designated times (up to 2 h) in a temperature-controlled chamber with recirculating 

oxygenated Krebs-Henseleit buffer (80 ml) containing 20% (v/v) rat blood at a flow rate of 20 

ml/min (Brouwer and Thurman, 1996). Taurocholate was infused (30 µmol/h) into the perfusate 

reservoir to maintain bile flow. Prodrug (pafuramidine or CPD-0868) stock solution (80 µl; 10 

mM in DMSO) was added as a bolus to the perfusate reservoir to yield an initial concentration of 

10 µM (0.1% DMSO). Aliquots of perfusate (~400 µl) were collected from the IPL reservoir at 5-

min intervals from 0-40 min and at 10-min intervals thereafter up to 2 h during perfusion; bile 
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was collected at 10-min intervals; liver was harvested at the end of perfusion. Perfusate plasma, 

bile, and liver collections were stored at -80°C pending analysis for prodrug and derived 

metabolites by liquid chromatography with detection by tandem mass spectrometry (LC-

MS/MS). The prodrug concentration (10 µM) was based on solubility in perfusate and assay 

sensitivity to monitor prodrugs/metabolites in perfusate plasma, liver, and bile throughout the 2-

h experimental period. The absence-of-liver condition was used to assess nonspecific binding of 

prodrug and metabolites to the IPL apparatus. 

Determination of Unbound Fraction. Liver. Livers from IPL experiments (described 

above) were thawed and homogenized in three volumes (v/w) of 0.1 M phosphate buffered 

saline (PBS). The unbound fraction of formed active metabolite in liver homogenates was 

determined using rapid equilibrium dialysis devices (Pierce Biotechnology, ThermoFisher 

Scientific, Waltham, MA).  Liver homogenates (200 μl) and blank PBS (350 μl) were placed in 

tissue and buffer chambers, respectively, and incubated (37°C) for 6 h on a thermomixer (350 

rpm) (Eppendorf AG, Hamburg, Germany). Preliminary testing indicated that 6 h of incubation 

was sufficient to achieve equilibrium without significant compound degradation.  After 6 h, 

aliquots (100 µl) were collected from the tissue and buffer chambers and analyzed for total 

(bound+unbound) and unbound formed active metabolite, respectively, by LC-MS/MS. 

Perfusate/Plasma. Blank rat IPL perfusate (composed of 20% rat blood) and plasma were 

spiked with preformed active metabolite to yield a total concentration of 1 or 10 μM. Spiked 

perfusate/plasma (200 μl) and blank PBS (350 μl) were placed in corresponding dialysis 

chambers, incubated for 6 h, and analyzed for total (bound+unbound) and unbound preformed 

active metabolite,  respectively, by LC-MS/MS. 

Disposition of Prodrugs/Metabolites in Sandwich-Cultured Rat Hepatocytes. 

Freshly-isolated rat hepatocytes were seeded at 1.75 x 106 cells/well onto 6-well BioCoatTM 

collagen plates (BD Biosciences, Bedford, MA) in seeding medium (DMEM containing 5% (v/v) 

FBS, 10 μM insulin, 1 μM DEX, 2 mM L-glutamine, 1% (v/v) NEAA, 100 units penicillin G 
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sodium, and 100 μg streptomycin sulfate). Approximately 24 hours after seeding (Day 1), cells 

were overlaid with 0.25 mg/ml MatrigelTM in ice-cold culture medium (DMEM supplemented with 

1% (v/v) ITS+TM, 1 μM DEX, 2 mM L-glutamine, 1% (v/v) NEAA, 100 units penicillin G sodium, 

and 100 μg/ml streptomycin sulfate). Thereafter, culture medium was changed every 24 h for 

two days. On Day 4, cells were incubated with culture medium (1.5 ml) containing pafuramidine 

or CPD-0868 at a concentration identical to that used for the IPL experiments (10 µM, 0.1% 

DMSO). At designated times up to 24 h, aliquots of medium (500 µl) were collected, and cells 

were washed twice and incubated at 37°C for 5 min with HBSS with Ca2+ (to maintain bile 

canalicular networks; cells+bile) or without Ca2+ (to open bile canalicular spaces; cells) (Lee et 

al., 2010). After incubation, buffer was removed, and cells were lysed with ice-cold 

methanol/water (7:1 v/v) containing 0.1% (v/v) trifluoroacetic acid (TFA). Media, cell lysates, and 

cells+bile lysates were stored at -80°C pending analysis for prodrug and derived metabolites by 

LC-MS/MS. The absence-of-cell condition was used to assess nonspecific binding of prodrug 

and metabolites to Matrigel-overlaid BioCoatTM collagen plates. 

Determination of Hepatocyte Viability. Effect of prodrugs/metabolites on hepatocyte 

viability was assessed by monitoring lactate dehydrogenase (LDH) release to the culture 

medium using a cytotoxicity detection kit (Roche, Indianapolis, IN) according to the 

manufacturer’s instructions.  Briefly, aliquots (25 µl) of medium from vehicle- (0.1% DMSO) and 

prodrug-treated SCH were collected at 0.5, 2, 4, 8, and 24 h. The degree of LDH release was 

expressed as percentage of the maximum cellular LDH release, which was measured by adding 

2% detergent, Triton X-100, to SCH (Lee et al., 2008). 

LC-MS/MS Analysis for Prodrugs and Derived Metabolites.  The concentration of 

prodrug and derived metabolites in perfusate/plasma or medium, liver homogenates or cell 

lysates, bile, and PBS from IPL or SCH studies (described above) was quantified by LC-MS/MS 

using a method modified from Wang et al. (2006). Briefly, analytes were extracted by adding 

methanol/H2O (7:1) with 0.1% TFA containing 600 nM internal standards, followed by vigorous 
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mixing and centrifugation at 1800 g for 10 min. The supernatant (100 µl) was transferred to 

HPLC vials and quantified for prodrug and metabolite using multiple reaction monitoring via an 

API 4000 triple quadrupole mass spectrometer (Applied Biosystems, Foster City, CA) equipped 

with a Turbo IonSpray interface (MDS Sciex, San Francisco, CA). Analytes were separated on 

an Aquasil C18 HPLC column (2.1 mm × 50 mm, 5 µm) (Thermo Electron, Waltham, MA) with a 

high-pressure linear gradient program consisting of 0.1% formic acid in HPLC-grade water (A) 

and 0.1% formic acid in HPLC-grade methanol (B) delivered by a Shimadzu pumping system 

(Shimadzu, Kyoto, Japan) at a flow rate of 0.75 ml/min as follows: after a 0.5-min initial hold at 

10% B, mobile phase composition was increased from 10% to 90% B over 3.5 min, and held at 

90% B for 0.5 min; the column was re-equilibrated for 0.5 min before the next injection. For all 

studies except liver binding, prodrugs and metabolites were quantified with calibration standards 

(1-10,000 nM) prepared in the appropriate matrix; for the liver binding study, both active 

metabolites were quantified with calibration standards prepared in liver homogenates (0.5-50 

µM) and PBS (1-10,000 nM). All calibration curves were linear over the respective range (R2 > 

0.98).  Intra- and Inter-day coefficients of variation were <15%.  

Pharmacokinetic Modeling. Stepwise nonlinear least-squares regression analysis 

(WinNonlin 5.0.1, Pharsight Corp., Mountain View, CA) was used to fit a compartmental model 

(Fig. 3.2, Model 1) to the hepatobiliary disposition of prodrug and derived metabolites mass 

versus time data obtained from IPLs and SCH. Model 2 (Fig. 3.2) incorporates the unbound 

fraction of active metabolite in the liver to emphasize the importance of hepatic binding in 

governing the systemic exposure of these compounds. Goodness of fit was based on 

randomness of residuals, correlation matrices, standard errors of parameter estimates, and 

visual comparison of predicted mass/concentration-time profiles with observed data.  Because 

the batch of synthesized pafuramidine standard contained impurities largely as the intermediate 

metabolite, M3, an initial value of 10% of pafuramidine in the dosing compartment (perfusate for 

IPLs; medium for SCH) was utilized to describe M3 disposition in IPLs and SCH. Some 
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intermediate metabolites (specifically, M1 and M2 of pafuramidine and M2 of CPD-0868) were 

not included in the model if concentrations in the perfusate/medium, liver/cells, and bile were 

below the limit of quantification (BLQ), or if pure synthesized standards (M4 of pafuramidine and 

CPD-0868) were not available. 

Data Analysis. The hepatic clearance (ml/min) and extraction ratio of prodrug in IPLs 

were calculated as follows: 

Total hepatic clearance (ClH) = dose / AUCperfusate,0-∞, where AUCperfusate,0-∞ was calculated 

as the area under the perfusate concentration-time curve from time 0 to infinity using the 

trapezoidal method. 

Biliary clearance (Clb) = massbile,0-120min / AUCperfusate,0-120min, where massbile,0-120min was 

calculated as the cumulative amount of compound excreted into bile over 120 min. 

Metabolic clearance (Clm) = ClH - Clb 

Hepatic extraction ratio (EH) = ClH / Q, where Q represents total perfusate flow rate (20 

ml/min). The blood-to-plasma ratio for both prodrugs is 1 (GZY, KLRB, MFP, unpublished 

observations). 

With both IPLs and SCH, hepatic accumulation was calculated as the amount of active 

metabolite recovered in the liver or cells as a percentage of the total amount formed over time. 

Extent of formation of active metabolite was determined as the total amount of active metabolite 

recovered in perfusate, liver and bile as a percentage of the initial amount of prodrug added to 

the perfusate reservoir (IPLs) or the total amount of active metabolite recovered in medium, 

cells and bile as a percentage of the initial amount of prodrug added to the culture medium 

(SCH).  

Data showed that distribution of furamidine/CPD-0801 between liver and perfusate in 

IPLs, and between cells and medium in SCH, reached equilibrium from 100 min and 16 h 

onward, respectively. Therefore, furamidine/CPD-0801 liver-to-perfusate (IPLs) or cell-to-

medium (SCH) partition coefficients (Kp,IPLs and Kp,SCH, respectively) were calculated as the ratio 
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of concentration in liver (CL) to that in perfusate (CPer) at the end of the perfusion (120 min), or 

the ratio of concentration in cells (CC) to that in medium (CM) at the end of the incubation (24 h). 

The hepatocellular volumes used to calculate CL and CC were 0.6 ml/g rat liver (Pang et al., 

1988) and 6.2 ×10-6 µl/hepatocyte (Swift et al., 2009) for IPLs and SCH, respectively. 

A two-tailed Student’s t-test was used to compare disposition properties between 

furamidine and CPD-0801 in IPLs and SCH. A p-value < 0.05 was considered statistically 

significant. 



 72

D.        RESULTS 

Nonspecific Binding of Prodrugs/Metabolites. Nonspecific binding of both prodrugs 

and all metabolites to collagen-coated culture plates, and to the perfusion tubing and apparatus, 

was <10% of the initial mass of starting material.  Accordingly, nonspecific binding was 

assumed to be negligible. 

Disposition of Prodrugs/Metabolites in Isolated Perfused Rat Livers. Both prodrugs 

were taken up and metabolized rapidly, as reflected by the prompt appearance of intermediate 

metabolites in perfusate (Fig. 3.3). Both prodrugs were eliminated in rat liver primarily by 

metabolism; biliary excretion was negligible (Table 3.1). Pafuramidine had a higher hepatic 

extraction ratio than CPD-0868 (Table 3.1). Recovery of M1 and M2 metabolites of 

pafuramidine in perfusate, liver, and bile was BLQ. The M3 metabolite of pafuramidine 

appeared in the perfusate immediately (Fig. 3.3A), reflecting M3 as an impurity in this batch of 

synthesized standard of pafuramidine, and then decreased slightly due to uptake into 

hepatocytes; at ~10 min, M3 began to increase slightly due to efflux of M3 formed from M1. The 

M1 metabolite of CPD-0868 in perfusate was maximal at ~15 min (Fig. 3.3B), then decreased 

rapidly, due to reuptake into hepatocytes and further metabolism.  The M3 metabolite of CPD-

0868 in perfusate was maximal at ~40 min (Fig. 3.3B), then decreased due to reuptake into 

hepatocytes and further metabolism.  The rate constants associated with both basolateral 

reuptake (kM3_reuptake) and efflux (kM3_efflux) of the M3 metabolite were comparable between 

prodrugs (Table 3.2).  kM3_reuptake was more than 40-fold higher than kM3_efflux for the M3 

metabolite of both prodrugs (Table 3.2). The rate constant associated with biliary excretion of 

the M3 metabolite (kM3_bile) of CPD-0868 was 4-fold higher than that of the M3 metabolite of 

pafuramidine (Table 3.2). The rate constant associated with conversion from M3 to the active 

metabolite (kM3→A) of CPD-0868 was 3.5-fold higher than that of pafuramidine (Table 3.2).  

The extent of formation of furamidine in rat IPLs was at least half that of CPD-0801 (Fig. 

3.4A). Perfusate exposure to CPD-0801 was much higher compared to furamidine. The area 
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under the perfusate concentration-time curve (AUC) PD-0801 was 10-fold higher than that for 

furamidine (Table 3.3). Pharmacokinetic modeling (Model 1, Fig. 3.2) revealed that the rate 

constant associated with net basolateral efflux (kA_net efflux) of CPD-0801 was 6-fold higher than 

that of furamidine (Table 3.2).  

Hepatic accumulation of both active metabolites in rat IPLs was extensive (Table 3.3). 

The liver-to-perfusate partition coefficient (Kp,IPLs) of furamidine at 2 h was 3700 and was 

approximately 5-fold higher than that of CPD-0801 (Table 3.3). The unbound fractions of both 

active metabolites in plasma/perfusate were similar at 1 and 10 µM. The unbound fraction of 

each active metabolite in rat liver (fu,L) was ≥24-fold lower than that in plasma (fu,P) and 

perfusate (composed of 20% rat blood; fu,Per) (Table 3.3). The fu,L of CPD-0801 was 

approximately 5-fold higher than that of furamidine (Table 3.3). Assuming that only unbound 

drug can translocate out of hepatocytes into blood and bile, fu,L was incorporated into the 

pharmacokinetic model (Model 2, Fig. 3.2) to evaluate further the hepatic excretion of derived 

active metabolite. Based on Model 2, the rate constant for biliary excretion (kA_bile,u) was 9-fold 

higher than that of basolateral efflux (kA_net efflux,u) for unbound furamidine, whereas kA_bile,u and 

kA_net efflux,u for CPD-0801 were more comparable than those for furamidine (Table 3.4). After 

incorporating fu,L, the kA_net efflux,u of furamidine became comparable to that of CPD-0801 (Table 

3.4). 

Disposition of Prodrugs/Metabolites in Day-4 Sandwich-Cultured Rat Hepatocytes. 

The disposition profiles of prodrugs and derived metabolites in SCH (Fig. 3.5) were similar to 

those for rat IPLs (Fig. 3.3), although the time-course in SCH was longer than that in IPLs (24 

versus 2 h). As shown in IPLs, the recovery of M1 and M2 metabolites of pafuramidine in 

medium, cells, and bile was BLQ; the M3 metabolite of pafuramidine appeared in medium 

immediately (Fig. 3.5A), reflecting M3 as an impurity. The M1 metabolite of CPD-0868 in 

medium was maximal at 2 h (Fig. 3.5B), and then decreased rapidly due to subsequent 

reuptake into hepatocytes and metabolism.  The M3 metabolite of CPD-0868 in medium was 
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maximal at 8 h (Fig. 3.5B), then decreased due to reuptake into hepatocytes and further 

metabolism.  The rate constant associated with conversion from M3 to the active metabolite 

(kM3→A) of CPD-0868 was 1.4-fold higher than that of pafuramidine (Table 3.5). Only the M3 

metabolite of CPD-0868 was recovered in bile (Table 3.5). 

The extent of conversion of CPD-0868 to CPD-0801 was consistently higher than that of 

pafuramidine to furamidine in SCH over 24 h (Fig. 3.4B). Medium exposure to CPD-0801 was 

higher compared to furamidine. The area under the medium concentration-time curve (Jin et al.) 

for CPD-0801 was 7-fold higher than that for furamidine (Table 3.3). As shown in IPLs, kA_net efflux 

of CPD-0801 was 6-fold greater than that of furamidine. Model 1 adequately described the 

disposition of furamidine in medium and hepatocytes (solid and dashed lines in Fig 3.5A); the 

large variability in the parameter estimate for kA_net efflux of furamidine may be due to the marked 

difference between the amount of furamidine recovered in the medium and that recovered in 

hepatocytes (>2 orders of magnitude). Hepatocellular accumulation of furamidine and CPD-

0801 over 24 hr was extensive (Table 3.3). The cell-to-medium partition coefficients of both 

active metabolites measured in SCH (Kp,SCH) was 6- to 7-fold higher than liver-to-perfusate 

partition coefficients measured in IPLs (Kp,IPLs); similar to IPL results, Kp,SCH of furamidine was 

approximately 5- to 6-fold higher than that of CPD-0801 (Table 3.3).  

Effect of Prodrugs/Metabolites on Hepatocyte Viability. In rat SCH treated with 

vehicle (0.1% DMSO) or prodrug (pafuramidine or CPD-0868), an elevation in LDH release was 

not observed over 24 h compared to untreated SCH (data not shown).  These data suggested 

that membrane integrity remained intact as a function of prodrug treatment and time.  
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E.         DISCUSSION 

 SCH have been used previously to investigate the hepatobiliary disposition of 

drug/metabolite pairs, including terfenadine and fexofenadine (Turncliff et al., 2006). The 

current work represents the first systematic comparison of two established hepatic models, 

IPLs and SCH, to understand mechanisms governing the systemic and hepatobiliary 

exposure of two antiparasitic active metabolites.  Rat IPLs and SCH showed similar 

disposition profiles of prodrugs and derived metabolites (Fig. 3.3 versus Fig. 3.5). The extent 

of formation and AUC in perfusate (IPLs) or medium (SCH) of CPD-0801 was consistently 

higher than that of furamidine (Table 3.3). A stepwise pharmacokinetic modeling approach 

was utilized to differentiate, quantitatively, between the contribution of hepatic metabolism 

and transport to the enhanced perfusate/medium AUC of CPD-0801 compared to furamidine. 

Model 1 described adequately the disposition of both prodrugs and derived metabolites (Fig. 

3.3 and Fig. 3.5; Supplemental Fig. 3.S1 and Fig. 3.S2) and predicted a net basolateral 

efflux rate constant (kA_net efflux) for CPD-0801 that was 6-fold higher than that for furamidine 

in both IPLs (Table 3.2) and SCH (Table 3.5). The extent of formation of CPD-0801 was 

only ≤2.5-fold higher than that of furamidine (Fig. 3.4A and Fig. 3.4B; Table 3.3).  These 

observations indicated that net basolateral efflux predominated over metabolism in 

governing perfusate/medium exposure to active metabolite.  

The fu,L of CPD-0801 was ~5-fold higher than that of furamidine. Based on Model 2 

(Fig. 3.2), the ratio of biliary excretion (kA_bile,u) to basolateral efflux (kA_net efflux,u) rate 

constants for furamidine was 9 (Table 3.4), suggesting that once formed in liver, the 

predominant process that determines furamidine elimination is excretion into bile, whereas 

biliary and basolateral excretory processes contribute approximately equally to CPD-0801 

hepatic excretion (Table 3.4). Incorporation of fu,L in Model 2 (Fig. 3.2) resulted in a 

comparable kA_net efflux,u of both active metabolites (Table 3.4), indicating that the 6-fold 
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difference in the rate constant for net basolateral efflux of total formed active metabolite 

(kA_net efflux) could be attributed largely to the 5-fold difference in hepatic binding.  

During an expanded phase I safety study in indigenous African volunteers, 

pafuramidine demonstrated transiently elevated liver transaminases, a known class effect of 

diamidines (Paine et al., 2010). In rats administered a single oral dose of pafuramidine (10 

mg/kg), liver-to-plasma partitioning (Kp) of furamidine was as high as 1300 (Midgley et al., 

2007). As shown in the current study, hepatic accumulation of furamidine was extensive, 

and the unbound fraction of furamidine in liver was at least 80-fold lower than that in plasma 

and perfusate (Table 3.3). Thus, binding sites in liver may act as an “intracellular sink” that 

limit systemic exposure to furamidine. Previous subcellular fractionation studies 

demonstrated that furamidine accumulated primarily in the mitochondrial fraction of liver 

tissue (Midgley et al., 2007). Consistent with these observations, preliminary fractionation 

studies with rat IPLs revealed that furamidine was localized primarily in the mitochondrial 

fraction (43%); CPD-0801 was localized primarily in the cytosolic fraction (45%), with 

negligible mitochondrial accumulation (≤1%) (GZY, KLRB, MFP, unpublished observations). 

Extensive accumulation of furamidine in mitochondria could cause mitochondrial dysfunction 

and trigger liver signal elevations (Pessayre et al., 1999).  Significant hepatic accumulation 

of furamidine is consistent with previous in vivo data (Midgley et al., 2007) suggesting that 

hepatocellular sequestration may limit systemic exposure of furamidine and predispose the 

liver to elevated signals. In contrast, a significantly higher hepatic unbound fraction and less 

mitochondrial accumulation of CPD-0801, compared to furamidine, could enhance systemic 

exposure to CPD-0801 and reduce hepatic signals. 

Utilizing appropriate preclinical hepatic models to estimate liver-to-plasma 

partitioning of potential hepatotoxicants has been a topic of interest in toxicologic risk 

assessment. In the current study, the liver-to-perfusate partition coefficient (Kp,IPLs) of 

furamidine measured in IPLs was 3700, about 2.8-fold higher than the in vivo Kp (1300) 
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measured in rats. This discrepancy can be explained by the 2-fold difference in the extent of 

protein binding of furamidine in perfusate (composed of 20% blood) versus plasma (Table 

3.3). If basolateral membrane barriers are absent, liver-to-plasma partitioning can be 

estimated as the ratio of the unbound fraction of furamidine in plasma to that in liver (i.e., Kp 

= fu,P/fu,L = 24/0.3 = 80), assuming the liver is a well-stirred organ (Rowland, 1985). Similarly, 

Kp,IPLs = fu,Per/fu,L = 44/0.3 = 147. Both estimated Kp and Kp,IPLs values are much lower than 

observed values in IPLs and intact rats, suggesting that active transport may be involved in 

the increased hepatic partitioning of furamidine in the intact organ. Notably, cell-to-medium 

partition coefficients of furamidine/CPD-0801 measured in SCH (Kp,SCH) overestimated 

corresponding values measured in IPLs (Kp,IPLs) by approximately 6-fold. This discrepancy 

could be explained, in part, by the absence of serum in culture medium, which resulted in a 

higher fu in medium (approximately unity) than that in perfusate. Therefore, binding 

differences in transport buffer/medium and plasma need to be considered when using SCH 

to estimate liver-to-plasma partitioning. Nonetheless, both Kp,SCH and Kp,IPLs of furamidine 

were >5-fold higher than those of CPD-0801.  

The intermediate metabolite, M3, from both prodrugs was excreted extensively into 

bile in IPLs; M3 from CPD-0868 was the most extensively excreted compound in bile among 

all prodrugs and metabolites.  Both active metabolites also were recovered in bile, but to a 

20- to 50-fold lesser extent than M3 from CPD-0868 (Table 3.2). In contrast, only M3 from 

CPD-0868 was recovered in bile of SCH. Unlike in IPLs, biliary excretion in SCH was 

measured indirectly, by determining the difference in substrate accumulation between 

standard HBSS (cells+bile) and Ca2+-free HBSS (cells) (Liu et al., 1999b). As reported 

previously, SCH may under-predict in vivo biliary clearance of compounds due to less 

extensive canalicular network formation relative to whole liver (Liu et al., 1999b; Hoffmaster 

et al., 2005; Abe et al., 2008). To compare the biliary excretion in SCH and in IPLs, the 

intrinsic biliary clearance of M3 from CPD-0868 in SCH (ClM3_biliary, SCH) was estimated by 
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multiplying kM3_bile (Table 3.5) by the hepatocellular volume of 6.2 × 10-6 µl/hepatocyte (Swift 

et al., 2009), and then scaled up to l/h/g liver based on 110 × 106 hepatocytes/g rat liver (Ito 

and Houston, 2004) and 1 × 106 hepatocytes/well in 6-well plates. The intrinsic biliary 

clearance of M3 from CPD-0868 in IPLs (ClM3_biliary, IPLs) was estimated by multiplying kM3_bile 

(Table 3.2) by the hepatocellular volume of 0.6 ml/g rat liver (Pang et al., 1988). Scaled 

ClM3_biliary, SCH approximated ClM3_biliary, IPLs (3.4 × 10-5 versus 25 × 10-5 l/h/g liver) within an 

order of magnitude. As shown in rat IPLs, the fraction of total formed furamidine and CPD-

0801 excreted into bile at 2 h was ≤3% (calculated by subtraction of percent of hepatic 

accumulation from unity; Table 3.3); in addition, kA_bile of furamidine and CPD-0801 was 20- 

to 50-fold lower compared to M3 (kM3_bile) from CPD-0868 (Table 3.2). Therefore, biliary 

excretion of furamidine/CPD-0801 may be so small that the difference in substrate 

accumulation between standard and Ca2+-free HBSS was indistinguishable.  

A previous study showed that CYP4F2 and CYP4F3B were the major enzymes 

responsible for pafuramidine O-demethylation (M1 formation) in human liver microsomes 

(Wang et al., 2006).  The enzymes involved in this reaction in rats have not been identified. 

Cyp1a2, Cyp2d2, and Cyp4f1 were reported to catalyze CPD-0868 O-demethylation in rat 

liver microsomes (Generaux, 2010). In the current work, metabolic activity in rat SCH was 

maintained by supplementing the culture medium with 1 µM DEX, a standard concentration 

used in metabolism studies with SCH (Turncliff et al., 2006). Further studies are warranted 

to characterize the effect of DEX concentration on expression/activity of the enzymes 

involved in the biotransformation of both prodrugs.  

In summary, an integrated approach involving two rat hepatic systems (IPLs and 

SCH) and pharmacokinetic modeling provided a mechanistic understanding of the impact of 

hepatic binding on the systemic and hepatobiliary exposure of two antiparasitic active 

metabolites. As hypothesized, despite structural similarities, CPD-0868 had superior 

hepatobiliary disposition characteristics compared to pafuramidine, as reflected by more 
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extensive formation of the active metabolite, CPD-0801, together with higher hepatic 

basolateral efflux (due to a higher hepatic unbound fraction), compared with furamidine. The 

combined effect of both factors could explain, in part, the enhanced systemic exposure of 

CPD-0801. Although mechanism(s) of brain penetration for these active metabolites have 

not been elucidated, an increased systemic exposure of CPD-0801 could lead to improved 

brain exposure. Based on similar in vitro potencies of both active metabolites against 

various strains of trypanosomes (Wenzler et al., 2009), increased brain exposure of CPD-

0801 may enhance antitrypanosomal efficacy in the central nervous system relative to 

furamidine. The agreement between results from rat IPLs and SCH further substantiates 

SCH as a useful in vitro tool to characterize hepatobiliary disposition of xenobiotics. 

Because human IPLs are not feasible, human SCH could be utilized as a surrogate to 

predict hepatobiliary disposition of xenobiotics in humans. 
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F.       TABLES 
 
Table 3.1. Hepatic clearance and extraction ratio of prodrugs in rat isolated perfused livers. 
 

Hepatic Clearance (ml/min) Prodrug Total Metabolic Biliary EH 

Pafuramidine 17.6 17.6 < 0.1 0.88 
CPD-0868 12.4 12.4 < 0.1 0.62 
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Table 3.2. Kinetic parametersa, generated from Model 1, associated with the disposition of 
prodrugs (pafuramidine and CPD-0868) and derived metabolites in rat isolated perfused 
livers. 
 

Pafuramidine / Metabolites CPD-0868 / Metabolites 
Parameters  

Estimate  
(h-1) 

CV 
(%) 

Estimate 
(h-1) 

CV  
(%) 

kP_net uptake 58 88 13 23 
kP→M1 N.A.b N.A. 3.8 7 

kM1_reuptake N.A. N.A. 96 55 
kM1_efflux N.A. N.A. 330 62 
kP→M3 1.7 6 N.A. N.A. 
kM1→M3 N.A. N.A. 108 20 

kM3_reuptake 13 69 11 33 
kM3_efflux 0.31 72 0.20 29 
kM3_bile 0.096 11 0.42 14 
kM3→A 0.43 8 1.5 12 

kA_reuptake 2.7 >100 3.3 >100 
kA_efflux 0.0065 >100 0.028 >100 

kA_net efflux
c
 0.0021 14 0.012 51 

kA_bile 0.020 48 0.0084 61 
aDefined in the legend to Fig. 3.2. No discernable correlation between parameters was observed by 
evaluation of the correlation matrix (absolute correlation value ≤0.5).  See Supplemental Fig. 3.S1 for 
the plot of weighted residual versus time data. 
 
bNot applicable. 

cDue to the high variability associated with the parameter estimates for kA,reuptake and kA_efflux, Model 1 
was modified to include a net efflux term, kA_net efflux. 
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Table 3.3.  Comparison of hepatic disposition of active metabolites in isolated perfused 
livers (IPLs) and day-4 sandwich-cultured hepatocytes (SCH) from rats. 
 

Rat IPLs Rat SCH 
Measurea 

Furamidine CPD-0801 Furamidine CPD-0801 
Hepatic Accumulation (%) 99 ± 1 97 ± 1 99 ± 0 95 ± 1* 
Extent of Formationb (%) 31 ± 6 72 ± 14* 49 ± 2 61 ± 11 

Perfusate or Medium 
AUC (µM•h)c 0.006 ± 0.002 0.06 ± 0.01* 0.6 ± 0.1 4.2 ± 0.3* 

Liver-to-perfusate or  
cell-to-medium  

partition coefficient  
3,700 800 27,000 4,700 

fu,L
d (%) 0.3 ± 0.1 1.6 ± 0.3* N.A.e N.A. 

fu,Per
 f

 (%) 44 ± 5 70 ± 6* N.A. N.A. 

fu,P
 f

 (%) 24 ± 2 38 ± 3* N.A. N.A. 
aComparisons between furamidine and CPD-0801 for all outcomes were made using the two-tailed 
Student’s t-test. *p<0.05 versus furamidine. Values denote mean ± SD. 
 
bMeasured at the end of the perfusion for IPLs (120 min) and at the end of the incubation for SCH (24 
h). 
 
cCalculated as the area under the respective concentration-time curves from 0 to 2 h (IPL) and from 0 
to 24 h (SCH), respectively. 
 
dUnbound fraction of formed active metabolite in liver. 
 
eNot applicable. 
 
fUnbound fractions of preformed active metabolite added to perfusate or plasma at 1 µM. 
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Table 3.4. Kinetic parametersa, generated from Model 2, associated with the hepatic 
excretion of unbound active metabolites in rat isolated perfused livers. 
 

kA_net efflux,u kA_bile,u Unbound Active 
Metabolite Estimate 

(h-1) 
CV 
(%) 

Estimate 
(h-1) 

CV 
(%) 

Furamidine 0.66 16 6.0 19 
CPD-0801 0.60 42 0.74 40 

aDefined in the legend to Fig. 3.2. 
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Table 3.5. Kinetic parametersa, generated from Model 1, associated with disposition of 
prodrugs (pafuramidine and CPD-0868) and derived metabolites in Day-4 sandwich-cultured 
rat hepatocytes. 
 

Pafuramidine / Metabolites CPD-0868 / Metabolites 
Parameters 

Estimate  
(h-1) 

CV 
(%) 

Estimate 
(h-1) 

CV  
(%) 

kP_net uptake 0.30 7 0.40 4 
kP→M1 N.A.b N.A. 67 37 

kM1_reuptake N.A. N.A. 3.5 29 
kM1_efflux N.A. N.A. 71 42 
kP→M3 1.3 26 N.A. N.A. 
kM1→M3 N.A. N.A. 12 40 

kM3_reuptake 0.080 90 0.15 30 
kM3_efflux N.A. N.A. 0.35 27 
kM3_bile N.A. N.A. 0.050 55 
kM3→A 0.46 16 0.66 15 

kA_reuptake 0.83 >100 0.27 >100 
kA_efflux 0.0080 >100 0.015 >100 

kA_net efflux
c
 0.00076 >100 0.0046 27 

kA_bile N.A. N.A. N.A. N.A. 
aDefined in the legend to Fig. 3.2. No discernable correlation between parameters was observed by 
evaluation of the correlation matrix (absolute correlation value ≤0.5).  See Supplemental Fig. 3.S2 for 
the plot of weighted residual versus time data. 
 
bNot applicable. 
 
cDue to the high variability associated with the parameter estimates for kA,reuptake and kA_efflux, Model 1 
was modified to include a net efflux term, kA_net efflux. 



 85

N
O

N
NH

2

N
O

H
N

H 2
N

O
H 3

C

N
O

N
N

H 2

N
O

H
N

H
2N

HO

N
O

N
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

O
NH

2

NH
H

N

H 2
N

N
O

N
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

N
O

N
NH

2

NH
H

N

H 2
N

O
NH

2

N
O

H
N

H 2
N

O
H 3

C

O
NH

2

N
O

H
N

H 2
N

HO

O
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

NH
N

H 2
N

HO

N
O

N
N

H 2

N
H

N

H
2N

HO

C
P

D
-0

80
1

Fu
ra

m
id

in
e

A
ct

iv
e 

M
et

ab
ol

ite

M
4a

M
3

M
2

M
1

C
P

D
-0

86
8

P
af

ur
am

id
in

e
Pr

od
ru

g

Ac
tiv

e 
M

et
ab

ol
ite

P
ro

dr
ug

M
1

M
4

M
3

M
2

B
io

tra
ns

fo
rm

at
io

n 
of

 
Pr

od
ru

g 
→

A
ct

iv
e 

M
et

ab
ol

ite

a D
ue

to
 la

ck
 o

f c
he

m
ic

al
 s

ta
bi

lit
y,

 p
ur

e 
sy

nt
he

si
ze

d 
st

an
da

rd
s 

of
 M

4
fo

r p
af

ur
am

id
in

e 
an

d 
C

P
D

-0
86

8 
w

er
e 

no
t a

va
ila

bl
e.

 

N
O

N
NH

2

N
O

H
N

H 2
N

O
H 3

C

N
O

N
N

H 2

N
O

H
N

H
2N

HO

N
O

N
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

O
NH

2

NH
H

N

H 2
N

N
O

N
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

N
O

N
NH

2

NH
H

N

H 2
N

O
NH

2

N
O

H
N

H 2
N

O
H 3

C

O
NH

2

N
O

H
N

H 2
N

HO

O
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

NH
N

H 2
N

HO

N
O

N
N

H 2

N
H

N

H
2N

HO

C
P

D
-0

80
1

Fu
ra

m
id

in
e

A
ct

iv
e 

M
et

ab
ol

ite

M
4a

M
3

M
2

M
1

C
P

D
-0

86
8

P
af

ur
am

id
in

e
Pr

od
ru

g

Ac
tiv

e 
M

et
ab

ol
ite

P
ro

dr
ug

M
1

M
4

M
3

M
2

B
io

tra
ns

fo
rm

at
io

n 
of

 
Pr

od
ru

g 
→

A
ct

iv
e 

M
et

ab
ol

ite

a D
ue

to
 la

ck
 o

f c
he

m
ic

al
 s

ta
bi

lit
y,

 p
ur

e 
sy

nt
he

si
ze

d 
st

an
da

rd
s 

of
 M

4
fo

r p
af

ur
am

id
in

e 
an

d 
C

P
D

-0
86

8 
w

er
e 

no
t a

va
ila

bl
e.

 

N
O

N
NH

2

N
O

H
N

H 2
N

O
H 3

C

N
O

N
N

H 2

N
O

H
N

H
2N

HO

N
O

N
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

O
NH

2

NH
H

N

H 2
N

N
O

N
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

N
O

N
NH

2

NH
H

N

H 2
N

O
NH

2

N
O

H
N

H 2
N

O
H 3

C

O
NH

2

N
O

H
N

H 2
N

HO

O
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

NH
N

H 2
N

HO

N
O

N
N

H 2

N
H

N

H
2N

HO

C
P

D
-0

80
1

Fu
ra

m
id

in
e

A
ct

iv
e 

M
et

ab
ol

ite

M
4a

M
3

M
2

M
1

C
P

D
-0

86
8

P
af

ur
am

id
in

e
Pr

od
ru

g

Ac
tiv

e 
M

et
ab

ol
ite

P
ro

dr
ug

M
1

M
4

M
3

M
2

B
io

tra
ns

fo
rm

at
io

n 
of

 
Pr

od
ru

g 
→

A
ct

iv
e 

M
et

ab
ol

ite

N
O

N
NH

2

N
O

H
N

H 2
N

O
H 3

C

N
O

N
N

H 2

N
O

H
N

H
2N

HO

N
O

N
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

O
NH

2

NH
H

N

H 2
N

N
O

N
NH

2

N
O

CH
3

N

H 2
N

O
H

3C

N
O

N
NH

2

NH
H

N

H 2
N

O
NH

2

N
O

H
N

H 2
N

O
H 3

C

O
NH

2

N
O

H
N

H 2
N

HO

O
NH

2

NH
N

H 2
N

O
H 3

C

O
NH

2

NH
N

H 2
N

HO

N
O

N
N

H 2

N
H

N

H
2N

HO

C
P

D
-0

80
1

Fu
ra

m
id

in
e

A
ct

iv
e 

M
et

ab
ol

ite

M
4a

M
3

M
2

M
1

C
P

D
-0

86
8

P
af

ur
am

id
in

e
Pr

od
ru

g

Ac
tiv

e 
M

et
ab

ol
ite

P
ro

dr
ug

M
1

M
4

M
3

M
2

B
io

tra
ns

fo
rm

at
io

n 
of

 
Pr

od
ru

g 
→

A
ct

iv
e 

M
et

ab
ol

ite

a D
ue

to
 la

ck
 o

f c
he

m
ic

al
 s

ta
bi

lit
y,

 p
ur

e 
sy

nt
he

si
ze

d 
st

an
da

rd
s 

of
 M

4
fo

r p
af

ur
am

id
in

e 
an

d 
C

P
D

-0
86

8 
w

er
e 

no
t a

va
ila

bl
e.

 

G.        FIGURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Biotransformation of prodrug to active metabolite and corresponding chemical 
structures. 
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Figure 3.2. Model schemes depicting disposition of prodrugs/metabolites in rat IPLs and 
SCH (Model 1) and hepatic excretion of unbound active metabolite in rat IPLs (Model 2). 
kP_net uptake represents the first-order rate constant for net hepatic uptake of prodrug; kP→M1 
represents the first-order rate constant for metabolic conversion from prodrug to 
intermediate metabolite M1; kM1_efflux and kM1_reuptake represent the first-order rate constants 
for hepatic basolateral efflux and reuptake of M1; kP→M3 represents the first-order rate 
constant for metabolic conversion from prodrug (pafuramidine only) to intermediate 
metabolite M3; kM1→M3 represents the first-order rate constant for metabolic conversion from 
M1 to M3; kM3_efflux, kM3_reuptake and kM3_bile represent the first-order rate constants for hepatic 
basolateral efflux, reuptake and biliary excretion of M3; kM3→A represents the first-order rate 
constant for metabolic conversion from M3 to active metabolite; kA_efflux, kA_reuptake, kA_net effulx 
and kA_bile represent the first-order rate constants for hepatic basolateral efflux, reuptake, net 
basolateral efflux and biliary excretion of active metabolite; fu,L represents hepatic unbound 
fraction of active metabolite; kA_net efflux,u and kA_bile,u represent first-order rate constants for 
hepatic basolateral net efflux and biliary excretion of unbound active metabolite. 
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Figure 3.3. Disposition of prodrugs, pafuramidine (A) and CPD-0868 (B), and corresponding 
metabolites over 120 min in rat isolated perfused livers. Prodrug (10 µM) was administered 
as a bolus to the perfusion reservoir, which contained 80 ml of 20% (v/v) rat blood. , 

prodrug; , M1; , M3; , active metabolite. Symbols and error bars for perfusate 
concentrations denote means and SDs, respectively, of n=5 livers. Symbols and error bars 
for liver mass denote means and SDs, respectively, of n=5 livers, using a destructive 
sampling strategy. Solid lines represent perfusate concentration-time profile of prodrug and 
derived metabolites. Dashed lines represent liver amount-time profile of active metabolite. 
Solid and dashed Lines represent the computer-generated best fit of the pharmacokinetic 
scheme depicted in Fig. 3.2 (Model 1) to the data. Note: pafuramidine contained 5-10% 
impurities, largely as M3; M1 from pafuramidine is not included in (A) because of low 
recovery in perfusate, as described in Results.   
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Figure 3.4.  Extent of formation of active metabolites represented as total amount of active 
metabolite recovered in perfusate, liver and bile as a percentage of the initial amount of 
prodrug added to the perfusate reservoir from isolated perfused rat liver experiments (A; 
mean ± SD, n=5 livers), and total amount of active metabolite recovered in medium, cells 
and bile as a percentage of the initial amount of prodrug added to the culture medium from 
sandwich-cultured rat hepatocyte experiments (B; mean ± SD, n=2 livers in duplicate). 
*p<0.05 versus furamidine (two-tailed Student’s t test). 
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Figure 3.5. Disposition of prodrugs, pafuramidine (A) and CPD-0868 (B) and corresponding 
metabolites over 24 h in day-4 sandwich-cultured rat hepatocytes. Prodrug (10 µM) was 
administered as a bolus to each well, which contained 1.5 ml culture medium. , prodrug; 

, M1; , M3; , active metabolite. Symbols and error bars denote means and SDs, 
respectively, of n=2 livers in duplicate. Solid lines represent medium concentration-time 
profile of prodrug and derived metabolites. Dashed lines represent hepatocyte amount-time 
profile of active metabolite. Solid and dashed lines represent the computer-generated best 
fit of the pharmacokinetic model depicted in Fig. 3.2 (Model 1) to the data. Note: 
pafuramidine contained 5-10% impurities, primarily M3; M1 from pafuramidine is not 
included in (A) because of low recovery in medium, as described in Results. 
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Supplemental Fig. S1. Plot of the weighted residual versus time data from the computer-
generated best fit of Model 1 to the rat isolated perfused liver data depicted in Fig. 3.3.  
Pafuramidine/metabolites (A) and CPD-0868/metabolites (B) are denoted as follows: , 

prodrug in perfusate; , M1 in perfusate; , M3 in perfusate; , active metabolite in 

perfusate; , active metabolite in liver. A weighting factor of 1/y2 was applied. 
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Supplemental Fig. 3.S2. Plot of the weighted residual versus time data from the computer-
generated best fit of Model 1 to the rat sandwich-cultured hepatocyte data depicted in Fig. 
3.5.  Pafuramidine/metabolites (A) and CPD-0868/metabolites (B) are denoted as follows: , 

prodrug in medium; , M1 in medium; , M3 in medium; , active metabolite in medium; 

, active metabolite in hepatocytes. A weighting factor of 1/y2 was applied. 
 



 92

H.          REFERENCES 

Abe K, Bridges AS, Yue W and Brouwer KLR (2008) In vitro biliary clearance of angiotensin 
II receptor blockers and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors 
in sandwich-cultured rat hepatocytes: comparison with in vivo biliary clearance. J 
Pharmacol Exp Ther 326:983-990. 

Barrett MP (2010) Potential new drugs for human African trypanosomiasis: some progress 
at last. Curr Opin Infect Dis 23:603-608. 

Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S and Suter L (2003) Gene 
expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices 
compared to the in vivo liver gene expression in rats: possible implications for 
toxicogenomics use of in vitro systems. Toxicol Sci 73:386-402. 

Boykin DW, Kumar A, Hall JE, Bender BC and Tidwell RR (1996) Anti-Pneumocystis carinii 
activity of bis-amidoximes and bis-O-alkylamidoxime prodrugs. Bioorg Med Chem 
6:3017-3020. 

Brouwer KLR and Thurman RG (1996) Isolated perfused liver. Pharm Biotechnol 8:161-192. 

Generaux CN (2010) Effects of Parasitic Infection on the Pharmacokinetics and Disposition 
of Pentamidine Ananalogs. PhD thesis, in UNC Eshelman School of Pharmacy, 
University of North Carolina, Chapel Hill. 

Hewitt NJ, Lechon MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson 
L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis 
GM and Hengstler JG (2007a) Primary hepatocytes: current understanding of the 
regulation of metabolic enzymes and transporter proteins, and pharmaceutical 
practice for the use of hepatocytes in metabolism, enzyme induction, transporter, 
clearance, and hepatotoxicity studies. Drug Metab Rev 39:159-234. 

Hewitt NJ, Lecluyse EL and Ferguson SS (2007b) Induction of hepatic cytochrome P450 
enzymes: methods, mechanisms, recommendations, and in vitro-in vivo correlations. 
Xenobiotica 37:1196-1224. 

Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM and Brouwer KL (2005) Multiple 
transport systems mediate the hepatic uptake and biliary excretion of the 
metabolically stable opioid peptide [D-penicillamine2,5]enkephalin. Drug Metab 
Dispos 33:287-293. 

Ismail MA and Boykin DW (2006) Synthesis of deuterium and 15N-labelled 2,5-Bis[5-
amidino-2-pyridyl]furan and 2,5-Bis[5-(methoxyamidino)-2-pyridyl]furan. Journal of 
Labelled Compounds and Radiopharmaceuticals 49:985–996. 

Ismail MA, Brun R, Easterbrook JD, Tanious FA, Wilson WD and Boykin DW (2003) 
Synthesis and antiprotozoal activity of aza-analogues of furamidine. J Med Chem 
46:4761-4769. 



 93

Ito K and Houston JB (2004) Comparison of the use of liver models for predicting drug 
clearance using in vitro kinetic data from hepatic microsomes and isolated 
hepatocytes. Pharm Res 21:785-792. 

Kienhuis AS, Wortelboer HM, Maas WJ, van Herwijnen M, Kleinjans JC, van Delft JH and 
Stierum RH (2007) A sandwich-cultured rat hepatocyte system with increased 
metabolic competence evaluated by gene expression profiling. Toxicol In vitro 
21:892-901. 

LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of 
cytochrome P450 expression and regulation. Eur J Pharm Sci 13:343-368. 

LeCluyse EL, Audus KL and Hochman JH (1994) Formation of extensive canalicular 
networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J 
Physiol 266:C1764-1774. 

Lee JK, Leslie EM, Zamek-Gliszczynski MJ and Brouwer KLR (2008) Modulation of 
trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated 
proteins (Mrps) may prevent hepatotoxicity. Toxicol Appl Pharmacol 228:17-23. 

Lee JK, Marion TL, Abe K, Lim C, Pollock GM and Brouwer KLR (2010) Hepatobiliary 
disposition of troglitazone and metabolites in rat and human sandwich-cultured 
hepatocytes: use of Monte Carlo simulations to assess the impact of changes in 
biliary excretion on troglitazone sulfate accumulation. J Pharmacol Exp Ther 332:26-
34. 

Liu X, LeCluyse EL, Brouwer KR, Gan LS, Lemasters JJ, Stieger B, Meier PJ and Brouwer 
KLR (1999a) Biliary excretion in primary rat hepatocytes cultured in a collagen-
sandwich configuration. Am J Physiol 277:G12-21. 

Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI and Brouwer KLR (1999b) Use of 
Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J 
Pharmacol Exp Ther 289:1592-1599. 

Midgley I, Fitzpatrick K, Taylor LM, Houchen TL, Henderson SJ, Wright SJ, Cybulski ZR, 
John BA, McBurney A, Boykin DW and Trendler KL (2007) Pharmacokinetics and 
metabolism of the prodrug DB289 (2,5-bis[4-(N-methoxyamidino)phenyl]furan 
monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal 
drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride). Drug Metab Dispos 
35:955-967. 

Paine MF, Wang MZ, Generaux CN, Boykin DW, Wilson WD, De Koning HP, Olson CA, 
Pohlig G, Burri C, Brun R, Murilla GA, Thuita JK, Barrett MP and Tidwell RR (2010) 
Diamidines for human African trypanosomiasis. Curr Opin Investig Drugs 11:876-883. 

Pang KS, Lee WF, Cherry WF, Yuen V, Accaputo J, Fayz S, Schwab AJ and Goresky CA 
(1988) Effects of perfusate flow rate on measured blood volume, disse space, 
intracellular water space, and drug extraction in the perfused rat liver preparation: 
characterization by the multiple indicator dilution technique. J Pharmacokinet 
Biopharm 16:595-632. 



 94

Pang KS, Morris ME and Sun H (2008) Formed and preformed metabolites: facts and 
comparisons. J Pharm Pharmacol 60:1247-1275. 

Pessayre D, Mansouri A, Haouzi D and Fromenty B (1999) Hepatotoxicity due to 
mitochondrial dysfunction. Cell Biol Toxicol 15:367-373. 

Rowland M (1985) Physiologic pharmacokinetic models and interanimal species scaling. 
Pharmacol Ther 29:49-68. 

Swift B, Pfeifer ND and Brouwer KLR (2009) Sandwich-cultured hepatocytes: an in vitro 
model to evaluate hepatobiliary transporter-based drug interactions and 
hepatotoxicity. Drug Metab Rev 42:446-471. 

Turncliff RZ, Hoffmaster KA, Kalvass JC, Pollack GM and Brouwer KLR (2006) Hepatobiliary 
disposition of a drug/metabolite pair: Comprehensive pharmacokinetic modeling in 
sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 318:881-889. 

Wang MZ, Saulter JY, Usuki E, Cheung YL, Hall M, Bridges AS, Loewen G, Parkinson OT, 
Stephens CE, Allen JL, Zeldin DC, Boykin DW, Tidwell RR, Parkinson A, Paine MF 
and Hall JE (2006) CYP4F enzymes are the major enzymes in human liver 
microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 
[2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime]. Drug Metab Dispos 
34:1985-1994. 

Wenzler T, Boykin DW, Ismail MA, Hall JE, Tidwell RR and Brun R (2009) New treatment 
option for second-stage African sleeping sickness: in vitro and in vivo efficacy of aza 
analogs of DB289. Antimicrob Agents Chemother 53:4185-4192. 

Wu H, Ming X, Wang MZ, Tidwell R and Hall JE (2007) Comparative Pharmacokinetics of 
the Antitrypanosomal Diamidines DB75, DB820 and DB829 Following Oral 
Administration of Their Dimethamidoximes Prodrugs in Mice. The AAPS Journal. 
2007; 9(S2). 

Zhou L, Thakker DR, Voyksner RD, Anbazhagan M, Boykin DW, Hall JE and Tidwell RR 
(2004) Metabolites of an orally active antimicrobial prodrug, 2,5-bis(4-
amidinophenyl)furan-bis-O-methylamidoxime, identified by liquid 
chromatography/tandem mass spectrometry. J Mass Spectrom 39:351-360. 

 
 

 

 



 

 

 
 
 
 
 
 

CHAPTER 4 
 
 

 
 
 
 
 
 

A SEMI-PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING APPROACH TO 

PREDICT THE DOSE-EXPOSURE RELATIONSHIP OF AN ANTIPARASITIC 

PRODRUG/ACTIVE METABOLITE PAIR  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

This chapter was submitted to the Drug Metabolism and Disposition. 



 96

A.        ABSTRACT 

Dose selection during antiparasitic drug development in animal models and humans 

traditionally has relied on correlations between plasma concentrations obtained at or below 

maximally tolerated doses that are efficacious. The objective of this study was to improve 

the understanding of the relationship between dose and plasma/tissue exposure of the 

model antiparasitic agent, pafuramidine, using a semi-physiologically-based 

pharmacokinetic (PBPK) modeling approach.  Preclinical and clinical data generated during 

the development of pafuramidine, a prodrug of the active metabolite, furamidine, were 

utilized. A whole-body semi-PBPK model for rats was developed based on a whole-liver 

semi-PBPK model using rat isolated perfused liver data.  A whole-body semi-PBPK model 

for humans was developed based on the whole-body rat model.  Scaling factors were 

calculated using metabolic and transport clearance data generated from rat and human 

sandwich-cultured hepatocytes. Both whole-body models described pafuramidine and 

furamidine disposition in plasma and predicted furamidine tissue (liver, kidney) exposure 

and excretion profiles (biliary, renal). The whole-body models predicted that the intestine 

contributes significantly (30-40%) to first-pass furamidine formation in both rats and humans.  

The predicted terminal elimination half-life of furamidine in plasma was three- to four-fold 

longer than that of pafuramidine in rats (170 versus 47 h) and humans (64 versus 19 h). The 

dose-plasma/tissue exposure relationship for the prodrug/active metabolite pair was 

determined using the whole-body models.  The human model proposed a dose regimen of 

pafuramidine (40 mg once daily) based on a pre-defined efficacy-safety index. A similar 

strategy could be used to guide dose-ranging studies in humans for next-in-class 

compounds.  
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B.        INTRODUCTION 

The primary goal of preclinical drug development is to identify compounds with 

optimal efficacy and safety profiles and desirable pharmacokinetic properties to advance to 

clinical trials. The design of safe and effective dosage regimens that are compatible with the 

target patient population and disease remains a major challenge. Suboptimal dose selection 

can adversely influence progression of a drug development program, resulting in additional 

time and expense for the dose-ranging study (dose too low), or a poor understanding of 

risk/benefit, causing unnecessary early termination of promising drug candidates (dose too 

high).   

Human African trypanosomiasis (HAT), a life-threatening parasitic disease, afflicts 

the world’s poorest populations (Barrett, 2010). HAT is characterized by a first stage, when 

parasites proliferate in the hemolymphatic system, and a second stage, when parasites 

cross the blood brain barrier and invade the central nervous system.  The disease is fatal if 

untreated. All current chemotherapies are unsatisfactory due to toxicity and/or inconvenient 

parenteral administration regimens (Barrett, 2010). Pafuramidine, a prodrug of furamidine, is 

the only orally-active agent that has shown efficacy in clinical trials for treatment of first 

stage infection (Paine et al., 2010). However, clinical development of pafuramidine was 

placed on hold due to transiently elevated liver transaminases observed in an expanded 

Phase I safety trial (www.immtechpharma.com/documents/news_022208.pdf) (Paine et al., 

2010). Bioconversion of pafuramidine to furamidine is believed to occur primarily in the liver.  

The metabolic pathway involves sequential oxidative and reductive reactions, producing four 

intermediate metabolites (Zhou et al., 2004). Following a single oral dose of 14C-

pafuramidine (10 mg/kg) to rats, tissue retention of total radioactivity, predominately as 

furamidine, was extensive (Midgley et al., 2007). The highest concentration of radioactivity 

was detected in liver, which was three orders of magnitude higher than that measured in 

plasma 24 h post-administration; radioactivity was still detectable in liver after seven days.  
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Unlike with animal models, collection of liver tissue from human subjects over a prolonged 

period of time is impossible due to obvious ethical reasons. Alternatively, a semi-

physiologically-based pharmacokinetic (PBPK) modeling approach could be used to predict 

the furamidine hepatic exposure-time profile in humans, permitting an improved 

understanding of the relationship between the dose of pafuramidine and plasma/hepatic 

exposure of furamidine. 

Hepatic clearance is a fundamental PBPK model parameter. Several approaches 

have been developed to predict human hepatic clearance, including 1) empirical allometric 

scaling; 2) physiologically-based direct scaling of in vitro human clearance; and 3) 

normalized scaling of in vivo animal clearance based on in vitro animal and human data 

(Luttringer et al., 2003; Ito and Houston, 2005). Empirical allometric scaling, a conventional 

technique based on body weight, frequently fails when drug disposition demonstrates large 

species differences (Lave et al., 1999). With physiologically-based direct scaling, intrinsic 

clearance, determined from human hepatocytes or liver microsomes, is corrected by a 

physiologically-based scaling factor, and subsequently scaled up based on a liver model 

(well-stirred or parallel-tube) (Ito and Houston, 2004). Although preferred to empirical 

allometric scaling, physiologically-based direct scaling consistently underestimates human 

clearance due to decreased enzyme activity or incomplete enzyme composition associated 

with in vitro systems (Ito and Houston, 2005). Normalized scaling, via integration of in vivo 

and in vitro data, represents an alternative approach to predict human pharmacokinetics 

(Lave et al., 1997; Luttringer et al., 2003). Application of these approaches has been limited 

primarily to the estimation of metabolic clearance of parent compounds; interspecies 

extrapolation of both metabolic and transport clearance values are reported rarely for 

metabolites (Pang et al., 2008). In the current work, normalized scaling was applied to 

isolated perfused rat liver (IPL) and rat/human sandwich-cultured hepatocyte (SCH) data to 

predict the metabolic/transport clearance of pafuramidine/furamidine. The following 
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modeling strategy was used: 1) develop a whole-liver PBPK model using rat IPL data; 2) 

develop and validate a whole-body PBPK model for rats based on the IPL model; 3) develop 

a whole-body PBPK model for humans to predict furamidine plasma and tissue exposure 

under various multiple-dose scenarios of pafuramidine. This strategy could be used to guide 

dose-ranging human studies for next-in-class compounds. 
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C.         MATERIALS AND METHODS 

Materials and Chemicals.  Dulbecco’s modified Eagle’s medium (DMEM) was 

purchased from Invitrogen/GIBCO (Carlsbad, CA). ITS+TM (insulin/transferring/selenium) 

culture supplement and MatrigelTM were obtained from BD Biosciences (Bedford, MA). 

Penicillin, streptomycin, non-essential amino acids (NEAA), dexamethasone (DEX), Hanks’ 

balanced salt solution (HBSS), modified HBSS (HBSS without Ca2+ and Mg2+, with 0.38 g/l 

EGTA), and phosphate buffered saline (PBS) were purchased from Sigma-Aldrich (St. Louis, 

MO). Human plasma was obtained from Biological Specialty Corporation (Colmar, PA). 

Pafuramidine, furamidine, and internal standards (d8-pafuramidine and d8-furamidine) were 

synthesized in the laboratory of Dr. David W. Boykin (Georgia State University, Atlanta, GA) 

as described (Boykin et al., 1996). All other chemicals and reagents were of analytical grade 

and were used without further purification. 

Animals. Male Wistar and Sprague-Dawley (SD) rats (250-300 g) were purchased 

from Charles River Laboratories (Raleigh, NC). Animals had free access to water and food 

before surgery. All animal procedures were compliant with guidelines of the University of 

North Carolina Institutional Animal Care and Use Committee. 

Disposition of Pafuramidine and Furamidine in Isolated Perfused Livers (IPLs) 

from Rats. Data were obtained from a previous recirculating rat IPL study, in which 

pafuramidine was added as a bolus to the perfusate reservoir to yield an initial concentration 

of 10 µM (Yan et al., 2011). In brief, perfusions were conducted ex situ over designated 

times (up to 2 h) in a temperature-controlled chamber. Aliquots of perfusate (~400 µl) were 

collected from the IPL reservoir at 5-min intervals from 0-40 min and at 10-min intervals 

thereafter, and bile was collected at 10-min intervals; the liver was harvested at the end of 

perfusion. 

Determination of Unbound Fraction. The unbound fractions of furamidine in liver 

and perfusate from rat IPL experiments and rat plasma, determined using rapid equilibrium 
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dialysis devices (Pierce Biotechnology, ThermoFisher Scientific, Waltham, MA), were 

provided from a previous study (Yan et al., 2011). In the present study, the unbound 

fractions of pafuramidine in liver and perfusate from rat IPL experiments and rat plasma, as 

well as unbound fractions of pafuramidine and furamidine in human plasma, were 

determined using the same method. In brief, pafuramidine or furamidine was added to 

thawed rat liver homogenates/perfusate/plasma to yield a concentration of 1 µM, and a 200-

μl aliquot, and 350 μl of 0.1 M PBS, was placed in tissue and buffer chambers, respectively, 

and incubated (37°C) on a thermomixer (350 rpm) (Eppendorf AG, Hamburg, Germany). 

After 6 h, aliquots (100 µl) were collected from the sample and buffer chambers and 

analyzed for total (bound+unbound) and unbound pafuramidine or furamidine, respectively, 

by LC-MS/MS.  

Determination of Blood-to-Plasma (B/P) Ratio in Rats. The B/P ratios of 

pafuramidine and furamidine in rats were determined using an in vitro method described 

previously (Berry et al., 2010). In brief, pafuramidine or furamidine was added to pre-

warmed fresh rat blood and reference (blank) plasma to yield a concentration of 0.1 µM. 

After incubation at 37 °C for 1 h in a humidified and oxygenated incubator, compound-

treated rat blood was centrifuged at 1500 g for 10 min, and plasma was separated from 

blood cells. Plasma was analyzed for pafuramidine and furamidine by LC-MS/MS. The B/P 

ratios were calculated by dividing the peak area observed in the reference plasma 

(representing nominal blood concentration) by the peak area observed in the compound-

treated plasma (representing plasma concentration).  

Disposition of Pafuramidine and Furamidine in Rat and Human Sandwich-

Cultured Hepatocytes (SCH).  Rat SCH data were obtained from a previous study (Yan et 

al., 2011). Freshly-isolated suspended human hepatocytes, provided by Invitrogen (Durham, 

NC), were seeded at 1.5 x 106 cells/well onto 6-well plates and overlaid with MatrigelTM in 

the same manner as described for rat hepatocytes (Yan et al., 2011). The liver donors were 
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reported as Caucasian (two women and one man; 50, 56, and 57 years old, respectively). 

Culture medium (DMEM supplemented with 1% (v/v) ITS+TM, 1 µM DEX, 2 mM L-glutamine, 

1% (v/v) NEAA, 100 units penicillin G sodium, and 100 µg/ml streptomycin sulfate) was 

changed daily for 5-7 days until extensive canalicular networks were formed. On the day of 

experimentation, SCH were incubated with culture medium (1.5 ml) containing pafuramidine 

at the same concentration (10 µM) as that used in rat SCH experiments (Yan et al., 2011). 

At designated times up to 24 h, aliquots of medium (500 µl) were collected, and cells were 

washed twice and incubated at 37°C for 5 min with 2 ml standard HBSS (to maintain bile 

canalicular networks; cells+bile) or Ca2+-free HBSS (to open bile canalicular spaces; cells) 

(Turncliff et al., 2006). After incubation, buffer was removed, and cells were washed three 

times with 2 ml ice-cold standard HBSS and lysed with 1 ml ice-cold methanol/water (7:1 

v/v) containing 0.1% (v/v) trifluoroacetic acid (TFA). Media and cell lysates were stored at -

80°C pending analysis for pafuramidine and furamidine by LC-MS/MS.  

In Vivo Studies  

Rats. Data were provided from a previous study, in which four Sprague Dawley rats 

were administered a single dose of pafuramidine (7.5 μmol/kg) by oral gavage (Generaux, 

2010). Pafuramidine was prepared as a suspension in acidified water (pH = 3)/70% Tween 

80 in ethanol (7:3 v/v). Blood (0.2 ml) was collected via a jugular vein cannula over 24 h 

after pafuramidine administration. Plasma was separated from blood cells by centrifugation 

(1500 g for 10 min) and analyzed for pafuramidine and furamidine by LC-MS/MS. 

Humans. Data were provided from a previous clinical study (Olson, 2008). 

The Institutional Review Board reviewed and approved the study protocol. In brief, male 

Caucasian volunteers (n=6) were administered a single oral dose of 14C-pafuramidine (100 mg). 

The dose was prepared in capsule form, containing 0.7 MBq (19 µCi) of radioactivity, and 

administered following a high fat meal to facilitate absorption. After administration of 14C-

pafuramidine, blood was collected at designated times over 168 h. Urine and feces were 



 103

collected for up to 14 and 21 days, respectively, post pafuramidine administration.  Total 

radioactivity was measured in whole blood, plasma, urine, and feces by high performance liquid 

radiochromatography; pafuramidine and furamidine concentrations in plasma were measured by 

LC-MS/MS. 

LC-MS/MS Analysis. In vitro samples and rat plasma. Pafuramidine and furamidine 

were quantified using an API 4000 triple quadrupole mass spectrometer (Applied Biosystems, 

Foster City, CA) equipped with a Turbo IonSpray interface (MDS Sciex, San Francisco, CA). 

The sample preparation procedure and LC-MS/MS conditions for the quantification of 

pafuramidine and furamidine were detailed previously (Yan et al., 2011). Briefly, 

pafuramidine/furamidine and internal standards (d8-pafuramidine/d8-furamidine) were separated 

on an Aquasil C18 HPLC column (2.1 mm × 50 mm, 5 µm) (Thermo Electron, Waltham, MA) 

with a high-pressure linear gradient program.  Calibration curves were prepared in appropriate 

matrices (0.05-5 µM in liver homogenates; 1-10,000 nM in perfusate, medium, cell lysates, 

human plasma, and PBS) and were linear over the respective ranges (R2 > 0.98).  The limit of 

quantification was 5 nM for both compounds. Human plasma. Quantification of pafuramidine 

and furamidine was carried out by Tandem Labs (Salt Lake City, UT). The stock solutions of 

analytes (pafuramidine and furamidine) and internal standards (d8-pafuramidine and d8-

furamidine) were prepared in 100% methanol to yield concentrations of 0.37, 0.41, 0.21, and 0.3 

mg/ml, respectively. Stock solutions of pafuramidine and furamidine were diluted in blank 

human plasma to yield working concentrations of 5000 and 2000 ng/ml for preparation of 

calibration standards and quality controls, respectively. Calibration standards (0.25-250 ng/ml) 

and quality controls (0.75, 75, and 200 ng/ml) for pafuramidine and furamidine were prepared by 

serial dilution of the corresponding working solution with blank human plasma. The working 

internal standards (100 ng/ml for d8-pafuramidine and d8-furamidine) were prepared by diluting 

the respective stock solution with 0.05% TFA in water:methanol (5:5 v/v); 50 µl of the diluted 

stock solution and 500 µl of 50 nM ammonium acetate buffer (pH = 3) were added to 100 µl of 
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human plasma, standards, and quality controls. After vortex-mixing, all samples were loaded 

onto Polycrom B1000 1cc, 20-mg extraction cartridges (Cera, Inc., Baldwin Park, CA), followed 

by serial washing of the solid phase with 300 µl of 50 mM ammonium acetate buffer (pH 3), 

followed by 300 µl of 50 mM ammonium acetate buffer (pH = 3):methanol (8:2 v/v). Analytes 

were eluted with 300 µl of acetonitrile, followed by 300 µl of 0.1% hydrochloric acid in methanol. 

After evaporation at 45°C (TurboVap®; Zymark Corp., Hopkinton, MA), samples were 

reconstituted with 50 µl of 0.05% TFA in water:acetonitrile (9:1 v/v) and transferred to HPLC 

vials.  Pafuramidine and furamidine were quantified on an API 3000 triple quadrupole mass 

spectrometer (PE Sciex, Concord, Ontario). Analytes were separated on a BDS Hypersil Phenyl 

HPLC column (2 mm x 50 mm, 5 µm) at 35°C with a high-pressure linear gradient program 

consisting of 0.05% TFA in HPLC-grade water (A) and HPLC-grade acetonitrile (B) delivered by 

a Hewlett Packard HP 1100 pumping system (Hewlett Packard, Palo Alto, CA) at a flow rate of 

300 µl/min.  Mobile phase composition was increased from 10% to 70% B from 0 to 3.5 min, 

and then decreased to 10% B from 3.5 to 3.6 min; the column was re-equilibrated for 2 min 

before the next injection. Calibration curves for pafuramidine and furamidine were linear from 

0.25-250 ng/ml (R2 > 0.99). Intra- and Inter-day precision (expressed as CV%) and accuracy 

(expressed as bias%) of quality controls for both compounds were <15%. The mass 

spectrometers were operated in positive ion mode using multiple reaction monitoring: 

pafuramidine, 365.1→334.1 m/z; furamidine, 305.3→288.1 m/z; d8-pafuramidine, 373.1→242.0 

m/z; d8-furamidine, 313.3→296.1 m/z. 

Semi-Physiologically-Based Pharmacokinetic (PBPK) Modeling 

Modeling Strategy 

Kinetic parameters associated with hepatic disposition of pafuramidine and 

furamidine were generated from the whole-liver semi-PBPK model and utilized to develop 

the whole-body rat semi-PBPK model. Preclinical data on preformed furamidine kidney-to-

plasma partitioning and renal excretion were incorporated to predict formed furamidine 
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disposition in rats. In vivo rat data were used to develop the semi-PBPK model structure and 

associated parameters. Kinetic parameters for humans (see model parameterization) were 

utilized to predict the disposition of pafuramidine and furamidine and, ultimately, to predict 

the relationship between dose and plasma or tissue exposure. 

Model Structure   

Rats. Whole-liver. Pafuramidine and furamidine submodels were linked by 

pafuramidine metabolism in the liver (Fig. 4.1A). The pafuramidine submodel for rat IPLs 

was composed of two compartments: perfusate reservoir and liver (Fig. 4.1A).  The 

furamidine submodel was composed of three compartments: perfusate reservoir, liver, and 

bile. Pafuramidine is highly lipophilic (Log DpH_7 = 4.3) (Zhou et al., 2002) and poorly-soluble, 

qualifying as a class II compound according to the Biopharmaceutics Classification System 

(BCS) (Wu and Benet, 2005).  As such, pafuramidine was assumed to diffuse passively 

through the hepatic basolateral membrane. In contrast to pafuramidine, furamidine is 

hydrophilic (Log DpH_7 = -3) (Zhou et al., 2002). Furamidine basolateral reuptake and efflux 

clearances (ClF_up, u and ClF_eff, u; Table 4.1) estimated by the whole-liver model (Fig. 4.1A) 

were at least two-fold lower than perfusate flow rate (4 l/h/kg), suggesting that diffusional 

barriers exist for furamidine.  Therefore, distribution of pafuramidine and furamidine in liver 

was assumed to be flow- and diffusion-limited, respectively (Fig. 4.1A). 

Whole-body. The whole-liver rat model was expanded into a whole-body rat model 

by substituting the perfusion reservoir with the blood compartment (Fig. 4.1B).  Based on the 

high lipophilicity of pafuramidine, fat was added as a storage organ in the pafuramidine 

submodel. The kidney was incorporated as an additional storage organ in the furamidine 

submodel based on the significant kidney retention of furamidine (Midgley et al., 2007; 

Goldsmith, 2011); all other tissues were grouped together as “rest of body” in both 

submodels to maintain mass balance (Fig. 4.1B). Pafuramidine distribution into the liver was 

assumed to be flow-limited, whereas furamidine distribution into the liver was assumed to be 
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diffusion-limited. To avoid over-parameterization, distribution of both compounds into all 

other organs was assumed to be flow-limited (Fig. 4.1B).  

Based on the high hepatic extraction ratio calculated from IPL data (EH = 0.88) (Yan 

et al., 2011), pafuramidine was assumed to be cleared from the body primarily via hepatic 

metabolism.  Based on in vivo data, furamidine was assumed to be eliminated via both 

biliary and renal excretion (Midgley et al., 2007; Goldsmith, 2011). To simulate pafuramidine 

and furamidine plasma concentration-time profiles, the model incorporated a single gut 

compartment for pafuramidine absorption following oral administration. Absorption of 

pafuramidine from gut to liver was assumed to be a first-order process. Because the initial 

model failed to describe the prompt appearance of furamidine in plasma, the model was 

modified to include the gut as a site of furamidine formation during pafuramidine absorption.  

Humans. The final whole-body rat model was utilized initially to predict the 

disposition of pafuramidine/furamidine in humans. However, model predictions failed to 

describe the delayed absorption of pafuramidine observed in humans, which may be 

attributed to the capsule formulation and concurrent administration of a high fat meal. 

Therefore, three consecutive transit compartments were added between the site of 

administration (oral route) and site of absorption (gut) in the pafuramidine submodel (Fig. 

4.1B) to represent dissolution from the dosage form (capsule), stomach emptying, and/or 

partitioning from the fat components of the concomitant high fat meal. 

Model Parameterization 

Absorption and Metabolism in the Gut. Absorption and metabolism of 

pafuramidine/furamidine in the gut have not been characterized extensively in rats and 

humans.  Thus, the relevant kinetic parameters, including the fraction of the dose absorbed 

into enterocytes (fa), the rate constants associated with absorption of pafuramidine or 

furamidine (ka_P or ka_F), and the rate constant associated with metabolic conversion from 
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pafuramidine to furamidine in the gut (kG_P→F) were estimated by fitting the semi-PBPK 

models (Fig. 4.1B) to in vivo rat and human data. 

Tissue Distribution. Tissue-to-perfusate/plasma partition coefficients were 

optimized by fitting relevant PBPK models (Fig. 4.1A and 4.1B) to IPL and in vivo rat data. 

The pafuramidine liver-to-plasma partition coefficient in rats was calculated based on the 

liver-to-perfusate partition coefficient generated from the rat IPL data after correction for the 

5-fold difference in unbound fraction between plasma and perfusate (Table 4.1). Due to the 

lack of human tissue data, tissue partition coefficients and liver binding for 

pafuramidine/furamidine in humans were assumed to be equal to those in rats (Table 4.1).  

Clearances 

Hepatic. Rat hepatic clearance (Clrat_liver) values were derived by fitting the whole-

liver rat model to the rat IPL data. Clrat_liver, which represented metabolic and/or active 

transport capacities, was normalized by a scaling factor (SF) and corrected for liver weight 

(LW) to estimate the human hepatic clearance value: 

Clhuman_liver= Clrat_liver × SF × (LWhuman/LWrat)), 

where SF = Clhuman SCH / Clrat SCH or khuman SCH / krat SCH 

Because biliary Cl of formed furamidine was too small to measure in both rat and human 

SCH, in vivo human biliary Cl was estimated by scaling in vivo rat biliary Cl based on liver 

weight. 

Renal. Furamidine unbound renal clearance from plasma in rat (ClR_rat,u) was 

calculated based on preclinical data in rats administered furamidine intravenously (10 

µmol/kg) (Goldsmith, 2011). In brief, rats (n = 3-7) were sacrificed at designated timepoints 

up to 16 days post furamidine administration, after which kidneys were harvested and 

homogenized; urine was collected at 0-3, 3-6, 6-12, and 12-24 h intervals post furamidine 

administration. ClR_rat,u was calculated by dividing the total amount of furamidine recovered 

in urine from 0-24 h by the area under the concentration-time curve (AUC) in plasma within 
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the same time interval, and was corrected by the unbound fraction of furamidine in plasma 

(Table 4.1). The unbound renal clearance of furamidine from plasma in humans (ClR_human,u; 

l/h/kg) was estimated by the “glomerular filtration rate (GFR) ratio approach” (Lin, 1998): 

ClR_human,u = ClR_rat,u / GFR ratio, where the GFR ratio between rats and humans is 4.8.  

PBPK Modeling and Simulation  

Pharmacokinetic Analysis. PBPK modeling and simulation were performed with 

Berkeley Madonna (v 8.0.2, University of California, Berkeley, CA), a differential equation-

based modeling software program used extensively in the development of PBPK models 

(Rowland et al., 2004). The goodness-of-fit of model simulations was assessed based on 

visual comparison of predicted mass/concentration-time profiles and observed in vivo rat 

and human data. Observed and predicted plasma/tissue concentration-time profiles were 

analyzed for plasma/tissue AUC values and terminal half-lives (t1/2,terminal) of 

pafuramidine/furamidine by non-compartmental analysis using WinNonlin (v 5.0.1, Pharsight 

Corp., Mountain View, CA).   

Prediction of Dose-Exposure Relationship.  Furamidine plasma concentration-

time profiles were simulated under different multiple-dose regimens based on the single-

dose human semi-PBPK model (Fig. 4.1B). The efficacy and safety indices of furamidine 

were defined by a minimum effective concentration (Ceff,min) and a hypothetical no 

observable adverse effect level (NOAEL), respectively. Selection of an optimal multiple-dose 

regimen of pafuramidine was based on the assumption that furamidine concentrations in 

plasma must be above Ceff,min at least 80% of the time during the dosing interval, whereas 

the average steady-state and maximum concentrations in plasma (Css,ave and Css,max) must 

be less than the NOAEL. Ceff,min was determined based on an in vitro 50% inhibitory 

concentration (IC50; 1 ng/ml ≈ 3 nM) of furamidine against the Trypanosoma brucei 

rhodesiense strain, STIB900 (Wenzler et al., 2009). This trypanosome strain is used 

routinely at the Swiss Tropical and Public Health Institute to assess in vitro and in vivo 



 109

activity of diamidine compounds (Ismail et al., 2005). The IC50, determined with culture 

medium containing 15% heat-inactivated horse serum, was converted to Ceff,min based on 

the following assumptions: 1) no species differences in plasma binding (fu,p_F = 25%, Table 

4.1); 2) binding in 15% horse serum (fu,ser_F) approximated that in rat perfusate (fu,per_F), 

which consisted of 20% rat blood; that is, fu,ser_F = fu,per_F = 44% (Table 4.1). Ceff,min for total 

(bound+unbound) furamidine in plasma was corrected to 5 nM (Ceff,min = IC50 x fu,ser_F / fu,p_F = 

3 nM x 44% / 25% = 5 nM). The NOAEL has not been determined for furamidine. A 

concentration of 100 nM, which is 20% less than the predicted Css,ave under the dosage 

regimen used in the expanded Phase I safety study (100 mg twice daily for 14 days), was 

selected to define the NOAEL.  Dose safety was evaluated by comparing the furamidine 

concentrations in plasma with the hypothetical NOAEL, and comparing furamidine exposure 

in liver between the clinically-used and semi-PBPK model-predicted dosage regimens. 
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D.        RESULTS 

Whole-Liver Rat PBPK Model Prediction. The disposition of pafuramidine and 

furamidine in rat IPLs was characterized in a previous study (Yan et al., 2011). In summary, 

pafuramidine was taken up by IPLs and eliminated primarily by metabolism, with negligible 

biliary excretion; at the end of the 2-h perfusion, >98% of total formed furamidine was 

recovered in the liver.  Pafuramidine distribution between perfusate and liver reached 

equilibrium after ~20 min. The liver-to-perfusate partition coefficient for pafuramidine, 

generated based on the whole-liver model (Fig. 4.1A), was 70 (Table 4.1). Pafuramidine 

was highly bound to proteins in plasma, perfusate (composed of 20% blood), and liver tissue 

(Table 4.1), whereas furamidine was highly bound only to liver tissue.  The unbound fraction 

of furamidine in liver (fu,L_F) was at least 80-fold lower than that in plasma (fu,p_F) and 

perfusate (fu,per_F) (Table 4.1). The hepatic unbound intrinsic formation clearance of 

furamidine (ClL_P→F, u) accounted for approximately one-third of total hepatic unbound 

intrinsic clearance of pafuramidine (ClL_P→F, u + ClL_P→M, u) (Table 4.1). The unbound intrinsic 

clearance for furamidine hepatic basolateral reuptake (ClF_up, u) was 24-fold higher than that 

for basolateral efflux (ClF_eff, u) (Table 4.1), whereas the unbound intrinsic clearance for 

furamidine biliary excretion (ClF_bile, u) was similar to ClF_eff, u (Table 4.1).  

Disposition of Pafuramidine and Furamidine in Rat and Human Sandwich-

Cultured Hepatocytes. The disappearance of pafuramidine from medium was faster in 

human compared to rat SCH (Fig. 4.2), as reflected by the 3-fold higher intrinsic clearance 

of pafuramidine in human compared to rat SCH (Table 4.2). Disposition profiles of formed 

furamidine were similar between rat and human SCH (Fig. 4.2). The kinetic parameters 

associated with pafuramidine and furamidine hepatic disposition in rat and human SCH 

were derived from a previously developed compartmental model (Yan et al., 2011). The rate 

constants for furamidine basolateral efflux were similar between rats and humans, whereas 
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the rate constant for furamidine basolateral reuptake in human SCH was three-fourths of 

that in rat SCH (Table 4.2). Furamidine was not detected in bile in both rat and human SCH. 

Disposition of Pafuramidine and Furamidine in Rats. Pafuramidine was absorbed 

and metabolized to furamidine rapidly after oral administration; both compounds in plasma 

reached a maximum concentration at ~1 h and declined approximately in parallel for up to 

12 h (Fig. 4.3A, inset). The apparent terminal half-life (t1/2,app) of pafuramidine, based on the 

0-12 h plasma concentration-time profile, was similar to that of furamidine (4 h).  

Whole-Body Rat Semi-PBPK Model Prediction. Physiologic and pafuramidine- 

and furamidine-specific parameters (Table 4.1) were utilized to develop the rat semi-PBPK 

model (Fig. 4.1B). Pafuramidine and furamidine hepatic disposition parameters were 

obtained from the rat whole-liver model (Fig. 4.1A). The partition coefficient of pafuramidine 

in fat was much higher than that in other tissues, which could be due to the high lipophilicity 

(Zhou et al., 2002; Andersen et al., 2008). Based on previous data from rats administered 

preformed furamidine intravenously, the furamidine kidney-to-plasma partition coefficient 

was estimated to be as high as 4000 (Table 4.1); the renal clearance of furamidine from 

plasma (ClF_renal,u) in rats was approximately 3-fold less than GFR (Table 4.1) (Goldsmith, 

2011). The rate constant for pafuramidine absorption (ka_P) was 7-fold higher than that for 

metabolic conversion of pafuramidine to furamidine in the gut (kG_P→F). The overall fraction 

of furamidine formed from pafuramidine in the rat was about 40%, of which the liver 

contributed approximately twice as much as the gut (Table 4.3). The semi-PBPK model (Fig. 

4.1B) adequately described pafuramidine/furamidine disposition observed in plasma up to 

12 h (Fig. 4.3A, inset). Based on model predictions through 360 h, the terminal elimination 

half-lives (t1/2,terminal) of both pafuramidine and furamidine were at least 10-fold longer than 

those measured from the 0-12 h observed in vivo data (t1/2,app); t1/2,terminal of furamidine was 

~4-fold longer than that of pafuramidine (170 versus 47 h) (Fig. 4.3A). The semi-PBPK 

model predicted that liver and kidney accumulation of furamidine was extensive, accounting 
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for 63 and 32% of total formed at 12 h, respectively; ~1% of furamidine was recovered in 

plasma at 12 h. Furamidine exposure in liver and kidney reached a maximum at ~24 h (Fig. 

4.3B), and then declined in parallel with that in plasma (Fig. 4.3A). Furamidine was 

eliminated in rat primarily by biliary excretion; renal excretion was <10% (Table 4.3 and Fig. 

4.3B).  

Disposition of Pafuramidine and Furamidine in Humans. Following oral 

administration, pafuramidine was detected in plasma at 0.5 h in five of the six subjects. 

Pafuramidine concentrations increased to maximum values between 1.5-4 h (median Tmax = 2.8 

h). Pafuramidine concentrations declined, with apparent terminal half-lives of 4-46 h (harmonic 

mean t1/2,app = 11.5 h). Furamidine was not consistently detected in plasma until 2 h after 

pafuramidine administration and increased to a maximum concentration between 4-10 h 

(median Tmax = 6 h).  Furamidine concentrations declined, with a harmonic mean half-life (t1/2,app) 

of 14.5 h. Both pafuramidine and furamidine were above the limit of quantification (BLQ) in 

plasma of all subjects up to 24 h post-administration. Within 168 h of dosing (during which 

complete collections of excreta were available), the major route of elimination of radioactivity 

was via feces (a mean of 36% of the dose, primarily as furamidine, and one of the intermediate 

metabolites, M3), with a mean of 13% of the dose eliminated in urine (primarily as M3). 

Extrapolations of the data available after 168 h indicated that about 13% and 39% of the dose (a 

total of 52%) would be eliminated in urine and feces, respectively.  

Whole-Body Human Semi-PBPK Model Prediction. Physiologic and 

pafuramidine/furamidine-specific parameters (Table 4.1) were utilized to develop the human 

semi-PBPK model. No significant difference in plasma binding of pafuramidine and 

furamidine was observed between rats and humans (Table 4.1). Pafuramidine/furamidine 

hepatic clearance values in humans were predicted by scaling the corresponding in vivo rat 

values normalized by scaling factors derived from rat and human SCH studies, as described 

in Materials and Methods. Similar to rats, the renal clearance of furamidine from plasma 
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(ClF_renal,u), estimated by the GFR approach, was approximately 3-fold less than GFR (Table 

4.1). Because a one-compartment oral absorption model failed to predict the delayed 

absorption of pafuramidine, transit compartments were added to the human semi-PBPK 

model (Fig. 4.1B).  The rate constants for pafuramidine absorption along the transit 

compartments (kP_12, kP_23, kP_3g) were similar (Table 4.1); the rate constant for pafuramidine 

absorption from gut to liver (ka_P) was comparable to kP_12, kP_23, and kP_3g, but was 5-fold 

higher than that for furamidine absorption (ka_F) (Table 4.1); the rate constant for metabolic 

conversion of pafuramidine to furamidine in the gut (kG_P→F) was approximately 4-fold lower 

than ka_P (Table 4.1). The overall fraction of furamidine generated from pafuramidine in the 

gut and liver was about 50%; similar to rats, the contribution by the liver was higher than that 

by the gut (Table 4.3). Model predictions, based on the scheme depicted in Fig. 4.1B, 

adequately described pafuramidine and furamidine disposition observed in plasma up to 24 

h (Fig 4.4A, inset). Prolonged (up to 240 h) predictions indicated that the t1/2,terminal of both 

pafuramidine and furamidine were 1.5- and 4-fold longer, respectively, than those measured 

from the 24-h observed in vivo data; the t1/2,terminal of furamidine was ~3-fold longer than that 

of pafuramidine (64 versus 19 h) (Fig. 4.4A). Similar to rats, the semi-PBPK model for 

human disposition predicted that the liver and kidney are the major organs for furamidine 

accumulation. Furamidine distribution between tissues (liver, kidney) and plasma reached 

equilibrium after ~36 h, as reflected by the parallel terminal plasma concentration- and 

tissue mass-time profiles (Fig. 4.4A and 4.4B). Furamidine was eliminated in humans 

primarily by biliary excretion; renal excretion was negligible (Table 4.3 and Fig. 4.4B).  

Prediction of Dose-Exposure Relationship.  The human semi-PBPK model (Fig. 

4.1B) was used to simulate plasma- and liver-time profiles associated with various 

pafuramidine oral dosing regimens. Based on the pre-defined hypothetical efficacy and 

safety indices, a regimen (40 mg once daily for 14 days) that maintained furamidine plasma 

concentrations above the Ceff,min for ~99% of the time throughout the 14 days was selected 
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(Fig. 4.5). Based on the predicted plasma t1/2,terminal of furamidine, plasma concentrations of 

furamidine reached steady-state at approximately 12-13 days; Css,ave  was approximately 4-

fold higher than the Ceff,min and was 4-fold lower than the hypothetical NOAEL (Fig. 4.5). 

Predicted furamidine liver exposure, expressed as the area under the liver concentration-

time curve (AUC0-14 d), was 5-fold lower with this alternate dosage regimen compared to the 

dosage regimen administered in the expanded Phase I safety study (100 mg twice daily for 

14 days) (Fig. 4.5). 
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E.        DISCUSSION 

Accurate prediction of the pharmacokinetics of generated active metabolites in 

humans is essential in the selection of appropriate prodrug doses prior to clinical trials.  

Pafuramidine is a prodrug of the antiparasitic agent, furamidine, that demonstrated efficacy 

in animal models of first stage human African trypanosomiasis (Mdachi et al., 2009; Wenzler 

et al., 2009). Dose selection for antiparasitic drug development traditionally has relied on 

achieving efficacious plasma drug concentrations in humans that correlate with those in 

animal models.  A similar strategy was applied to pafuramidine, only plasma concentrations 

of furamidine were correlated between species.  The current work represents the first 

attempt to optimize this prodrug dose-selection strategy using whole-body semi-PBPK 

models for rats and humans to predict plasma and tissue exposure and excretion profiles of 

the active metabolite. Preclinical and clinical data generated during pafuramidine 

development were used as a training set to demonstrate the utility of PBPK modeling to 

examine the relationship between pafuramidine dose and furamidine plasma/tissue 

exposure, which could be used to guide clinical dose-ranging studies of next-in-class 

compounds.  

The final model structure and pafuramidine absorption characteristics in rats were 

used initially to predict pafuramidine and furamidine disposition in humans. However, the 

model prediction underestimated the Cmax and Tmax of pafuramidine and furamidine, which 

possibly could be attributed to differences in dosage formulation (suspension versus 

capsule) and/or concomitant diet (standard versus high fat meal) between rats and humans. 

Either or both of these factors could extend the Tmax of pafuramidine in humans. As such, 

three transit compartments were added sequentially to the pafuramidine human submodel to 

describe the dissociation of pafuramidine from the dosage form and the high fat meal before 

reaching the absorption site (gut). Pafuramidine is a BCS class II compound (Zhou et al., 

2002); the high fat meal was administered intentionally to facilitate pafuramidine absorption 
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(Wu and Benet, 2005). This food effect was substantiated by the enhanced fa estimated 

from the human compared to the rat semi-PBPK model (Table 4.1). These observations 

emphasized that formulation/diet may be significant determinants of 

pafuramidine/furamidine disposition. 

Tissue-to-plasma partitioning (Kp) is another factor that influences the disposition of 

compounds in the body. The in vivo Kp values for pafuramidine and furamidine were not 

available for human tissues. Unbound Kp values in rats and humans were assumed to be 

similar (Kp,u,rat = Kp,u,human) (Arundel, 1997). Because no significant species difference in 

plasma binding of pafuramidine/furamidine was observed (Table 4.1), Kp values derived from 

the rat model were applied to describe the distribution of pafuramidine/furamidine in humans.  

Extrapolation of metabolite kinetics from animals to humans remains a major 

challenge in PBPK modeling. Disposition of furamidine in the liver involves formation from 

pafuramidine, hepatocellular binding, basolateral efflux/reuptake, and biliary excretion. 

Empirical allometric scaling and physiologically-based direct scaling were not utilized for the 

following reasons: 1) marked species differences in pafuramidine metabolism (Table 4.2); 2) 

physiologically-based direct scaling using rat SCH underestimated metabolic Cl of 

pafuramidine in rat IPLs; and 3) in vitro biliary Cl of furamidine was too small to measure in 

rat and human SCH (Table 4.2) (Yan et al., 2011). Normalized scaling via integration of IPL 

and SCH data was utilized in the current work, as this method successfully predicted hepatic 

metabolic Cl of ten extensively metabolized drugs in humans (Lave et al., 1997). In addition, 

incorporation of Cl, predicted by normalized scaling using conventionally-cultured 

hepatocytes, into the PBPK model of an antimalarial drug, epiroprim, provided more 

accurate predictions of epiroprim disposition in humans (Luttringer et al., 2003). SCH, rather 

than conventionally-cultured hepatocytes, were utilized in the current study due to the ability 

to characterize both sinusoidal/biliary transport and metabolism (Swift et al., 2009). The 

human semi-PBPK model, based on these scaled parameters, adequately described 
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pafuramidine/furamidine concentration-time profiles in human plasma and predicted the 

dose-plasma/tissue exposure relationship and excretion profiles (Fig. 4.4). To the authors’ 

knowledge, the current work represents the first effort to extrapolate metabolism/transport 

clearance from rats to humans for a prodrug/active metabolite pair. 

Previous studies in rats and monkeys indicated that pafuramidine has a low oral 

bioavailability (10-20%) (Midgley et al., 2007), suggesting that pafuramidine could undergo 

extensive first-pass biotransformation in the gut, as well as in the liver. One report examined 

pafuramidine metabolism in the gut; the intrinsic formation clearance of the first intermediate 

metabolite (M1) from pafuramidine in human intestinal microsomes was at least 10-fold 

lower than that in human liver microsomes (Wang et al., 2007).  As such, the liver was 

assumed initially to be the sole site of furamidine formation.  However, in vivo studies 

showed a near-simultaneous appearance of furamidine with pafuramidine in plasma in both 

rats and humans (Fig. 4.3A and 4.4A, insets). Initial model predictions showed a marked 

delay in the appearance of furamidine relative to pafuramidine. This discrepancy suggested 

that furamidine may be formed during pafuramidine absorption through the gut before 

entering the liver. Bioconversion from pafuramidine to furamidine involves sequential 

oxidative and reductive reactions mediated by cytochrome P450 enzymes and cytochrome 

b5/NADH cytochrome b5 reductases (Saulter et al., 2005; Wang et al., 2006). These 

enzymes are expressed in both the liver and gut. Previous studies demonstrated that 

CYP4F, a major catalyst of M1 formation, represented a significant portion of the human 

intestinal P450 “pie” (Wang et al., 2007). These observations prompted incorporation of a 

gut compartment, representing furamidine formation during pafuramidine absorption, in the 

furamidine rat/human submodel (Fig. 4.1B). The model described furamidine plasma 

disposition adequately (Fig. 4.3A and 4.4A, insets). Concordant with in vivo observations, 

the model predicted that, once absorbed, pafuramidine was converted efficiently to 

furamidine in rats and humans, as reflected by nearly 50% conversion from pafuramidine; 
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the gut contributed approximately 30-40% to furamidine formation in both species (Table 

4.3). These data suggested that the gut contributes significantly to furamidine formation after 

pafuramidine administration, and substantiated the value of PBPK modeling to uncover 

potentially important biologic determinants of drug disposition. Further studies are warranted 

to confirm that the gut is a major pre-systemic site of furamidine formation following oral 

administration of pafuramidine. 

In rats and humans administered a single oral dose of pafuramidine, the apparent 

terminal half-life (t1/2,app) of furamidine was approximately 4 and 14.5 h, respectively, similar 

to pafuramidine (Fig. 4.3A and 4.4A, insets). However, one week after 14C-pafuramidine 

administration, a considerable amount of radioactivity was retained in rats (Midgley et al., 

2007) and humans (CAO, unpublished observations), largely as furamidine. Due to LC-

MS/MS assay sensitivity limitations in the current study, furamidine was BLQ in plasma 

beyond 8 and 24 h after pafuramidine administration to rats and humans, respectively.  As 

such, the observed plasma profile of furamidine (Fig. 4.3A and 4.4A insets) represents the 

distribution phase.  In the absence of a more sensitive assay, the “true” terminal half-life 

(t1/2,terminal) of furamidine  was predicted using semi-PBPK modeling.  The model predicted 

that furamidine t1/2,terminal in rats was approximately 40-fold longer than t1/2,app (7 d versus 4 h). 

After intravenous administration of preformed furamidine (10 µmol/kg) to rats, furamidine 

was detected in the kidney for up to 16 days. The corresponding kidney t1/2,terminal was 

estimated to be 7 d (Goldsmith, 2011). The human plasma and tissue t1/2,terminal of furamidine 

was predicted to be 64 h (~2.5 d), demonstrating the utility of PBPK modeling to estimate 

long-term plasma and tissue exposure, which may not be possible to measure directly in 

vivo due to analytical sensitivity and/or inaccessibility to sampling sites such as the liver.  

A semi-PBPK modeling approach was used in the current work to examine the 

relationship between dose and plasma/tissue exposure for an antiparasitic prodrug/active 

metabolite pair in humans. The model predicted that the Css,ave of the active metabolite, 
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furamidine, was 25-fold higher than the estimated Ceff,min in plasma (Fig. 4.5) based on the 

dose administered (100 mg twice daily) in the expanded Phase I safety study. An alternate 

dosage regimen (40 mg once daily) was predicted to maintain furamidine plasma 

concentrations half-way between the pre-defined hypothetical efficacy and safety indices 

~99% of the time throughout the entire 14-day dosing period (Fig. 4.5), while reducing 

furamidine hepatic exposure (Fig. 4.5). Model predictions suggested that, if a patient were to 

inadvertently miss or double the projected dose, only modest fluctuations in plasma 

furamidine concentrations within the efficacy-safety range would result. Next-in-class 

compounds in development for both stages of HAT are under investigation (Wenzler et al., 

2009).  This PBPK modeling-based strategy, which requires estimated or known efficacy 

(e.g., Ceff,min) and safety (e.g., NOAEL) indices,  could be applied to next-in-class 

compounds to predict plasma/tissue disposition and guide dose-ranging studies in humans. 
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F.        APPENDIX 

MODEL PARAMETER ABBREVIATIONS 

Doral: oral dose; 

Atissue/compartment: amount in whole organ or compartment; 

AA: amount in arterial blood; 

CA: arterial blood concentration; 

CV: venous blood concentration; 

CVP: venous plasma concentration; 

B/P: blood-to-plasma ratio; 

CVtissue: vascular tissue concentration; 

Ctissue: tissue concentration; 

CO: cardiac output; 

Qtissue: tissue blood flow; 

Vtissue: tissue volume; 

Kp,tissue: tissue-to-plasma partition coefficient 

kP_12, kP_23, kP_3g: first-order rate constants for pafuramidine distribution along the transit 

compartments of gut; 

ka_P and ka_F: first-order rate constants for the movement from gut to liver of pafuramidine 

and formed furamidine, respectively; 

kG_P→F: first-order rate constant for metabolic conversion from pafuramidine to furamidine in 

the gut;   

fu,L, and fu,p: unbound fractions in liver and plasma, respectively; 

ClL_P→F, u: hepatic unbound intrinsic clearance for the formation of furamidine from 

pafuramidine; ClL_P→M, u: hepatic unbound intrinsic clearance for metabolic conversion from 

pafuramidine to other metabolites;  

ClF_up, u: unbound intrinsic clearance for hepatic basolateral uptake of furamidine;  
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ClF_eff, u: unbound intrinsic clearance for hepatic basolateral efflux of furamidine;  

ClF_bile, u: unbound intrinsic clearance for biliary excretion of furamidine;  

ClF_renal, u: unbound renal clearance of furamidine from plasma;  

Rabs_P: rate of pafuramidine movement from gut to liver  

Rabs_F: rate of intestinally-formed furamidine movement from gut to liver 

Rgut formation_F: rate of furamidine formation in the gut; 

Rliver formation_F: rate of furamidine formation in the liver; 

Rliver formation_M: rate of other metabolite formation in the liver; 

Rrenal_F: rate of furamidine renal excretion; 

Rbile_F: rate of furamidine biliary excretion; 

Brown et al., 1997P, pafuramidine; M, other metabolites; F, furamidine. 

Note: The volume of tissue and vascular blood in the liver represents 95% and 5%, 

respectively, of total liver volume (Nong et al., 2008). 

 

HUMAN SEMI-PBPK MODEL EQUATIONS 

Pafuramidine 

Disposition in the gut: 

1) Amount in transit compartment 1 (T1): 

     Single-dose: dAT1/dt = -(kp_12 × AT1) + Doral (t = 0); 

     Multiple-dose: dAT1/dt = -(kp_12 × AT1) + Doral (at the beginning of each dosing 

interval)  

2) Amount in transit compartment 2 (T2): 

      dAT2/dt = (kp_12 × AT1) – (kp_23 × AT2)  

3) Amount in transit compartment 3 (T3): 

      dAT3/dt = (kp_23 × AT2) – (kp_3g × AT3) 

4) Amount in the gut: 



 122

                 dAgut_P/dt =  (kp_3g × AT3) – Rabs_P – Rgut formation_F 

                 Rabs_P = ka_P × Agut_P 

     Rgut formation_F = kG_P→F × Agut_P 

Disposition in the liver (flow-limited): 

dAliver_P/dt = Qliver × (CAP – CVliver_P) – Rliver formation_F – Rliver formation_M + Rabs_P 

Cliver_P = Aliver_P/Vliver 

CVliver_P = Cliver_P /Kp_liver_P 

Rliver formation_F = Cliver_P × fu,L_P × ClL_P→F, u 

Rliver formation_M = Cliver_P × fu,L_P × ClL_P→M, u 

Disposition in the fat (flow limited): 

            dAfat_P/dt = Qfat × (CAP – CVfat_P)    

Cfat_P = Afat_P/Vfat 

CVfat_P = Cfat_P/Kp_fat_P 

Disposition in the rest of body (rest) (flow limited): 

            dArest_P/dt = Qrest × (CAP – CVrest_P)    

Crest_P = Arest_P/Vrest 

CVrest_P = Crest_P/Kp_rest_P 

Blood and plasma concentration: 

1) Venous blood concentration:  

CVP = (Qliver × CVliver_P + Qfat × CVfat_P + Qrest × CVrest_P)/CO  

            2) Venous plasma concentration: 

                 CVPP = CVP/(B/PP) 

3) Arterial blood concentration:    

dAAP/dt = QC × (CVP – CAP) 

CAP = AAP/Vblood 
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Furamidine 

Disposition in the gut: 

                 dAgut_F/dt =  Rgut formation_F – Rabs_F 

                 Rabs_F = ka_F × Agut_F 

Disposition in the liver (diffusion-limited): 

            1) Liver blood: 

                  dAVliver_F/dt = Qliver × (CAF – CVliver_F) + Rabs_P – Ruptake_F + Refflux_F  

                  CVliver_F = AVliver_F/(0.05 × Vliver)  

             2) Liver tissue: 

dAliver_F/dt = Rliver formation_F + Ruptake_F – Refflux_F – Rbile_F 

Cliver_F = Aliver_F/(0.95 × Vliver) 

Ruptake_F = CVliver_F × fu,p_F × ClF_up, u  

Refflux_F = Cliver_F × fu,L_F × ClF_eff, u 

                  Rbile_F = Cliver_F × fu,L_F × ClF_bile, u 

Disposition in the kidney (flow limited): 

            dAkidney_F/dt = Qkidney × (CAF – CVkidney_F)    

Ckidney_F = Akidney_F/Vkidney 

CVkidney_F = Ckidney_F/Kp,kidney_F 

Disposition in the rest of body (rest) (flow limited): 

            dArest_F/dt = Qrest × (CAF – CVrest_F)    

Crest_F = Arest_F/Vrest 

CVrest_F = Crest_F/Kp,rest_F 

Blood and plasma concentration: 

1) Venous blood concentration:  

CVF = (Qliver × CVliver_F + Qkidney × CVkidney_F + Qrest × CVrest_F)/CO 

            2) Venous plasma concentration: 
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                 CVPF = CVF/(B/PF) 

3) Arterial blood concentration:    

dAAF/dt = QC × (CVF – CAF) – Rrenal_F 

Rrenal_F = CAF × fu,p_F × ClF_renal, u 

CAF = AAF/Vblood 

Urine: 

dAurine_F/dt = Rrenal_F 

            Feces:  

dAfeces_F/dt= Rbile_F 
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G.        TABLES 

Table 4.1. Semi-physiologically-based pharmacokinetic model parameters associated with 
the disposition of pafuramidine and furamidine in rats and humans. 
 

Value Parameters 
Rat Human 

Source 

Physiologic    

Body weight (kg) 0.3 70 Measured  

Cardiac output (l/h/kg) 14 5 Brown et al., 1997 

Blood and tissue volumesa    
Blood 0.074 0.077 Brown et al., 1997 
Fat 0.07 0.2 Brown et al., 1997 
Liver 0.03 0.03 Brown et al., 1997 
Kidney 0.007 0.004 Brown et al., 1997 

Tissue blood flowsa   Brown et al., 1997 

Fat 0.07 0.05 Brown et al., 1997 
Liver 0.17 0.25 Brown et al., 1997 
Kidney 0.14 0.19 Brown et al., 1997 
Rest of body 0.62 0.51 Calculated 

Chemical specific    

Pafuramidine    

Unbound fractions (%)    
Liver (fu,L_P)b 0.07 ± 0.02 Same as rats Measured 
Perfusate (fu,per_P) 1.1 ± 0.1 N.A.c Measured 
Plasma (fu,p_P) 0.2 ± 0.02 0.2 ± 0.01 Measured 

Liver-to-perfusate partition coefficient 70 N.A. Fitted 

Tissue-to-plasma partition coefficients    
Liver  14 Same as rats Calculated 
Fat 260 Same as rats Fitted 
Rest of body  2 Same as rats Fitted 

Blood-to-plasma (B/P) ratiod 1.1 ± 0.1 Same as rats Measured 
Fraction of dose absorbed into 
enterocytes (fa) 

0.3 1 Fitted 

Gastrointestinal rate constants (h-1)e    
kP_12, kP_23, kP_3g  N.A. 1.1 Fitted 
ka_P  0.5 1.1 Fitted 
kG_P→F  0.07 0.3 Fitted 



 

 126

Hepatic clearance (l/h/kg BW)f    

ClL_ P→M, u 70 124 Fitted (Rat) 
Scaled (human) 

ClL_ P→F, u 40 71 Fitted (Rat) 
Scaled (human) 

Furamidine    

Unbound fractions (%)    
Liver (fu,L_F)b 0.3 ± 0.1 Same as rats Measured 
Perfusate (fu,per_F) 44 ± 5 N.A. Measured 
Plasma (fu,p_F) 24 ± 2 25 ± 3 Measured 

Tissue-to-plasma partition coefficients     
Kidney  4000 Same as rats Fitted 
Rest of body  1 Same as rats Fitted 

Blood-to-plasma (B/P) ratiod 0.9 ± 0.1 Same as rats Measured 
Gastrointestinal rate constants (h-1)e     

ka_F  2.4 0.2 Fitted 
Hepatic and renal clearances (l/h/kg 
BW)e    

ClF_up, u 1.9 1 Fitted (Rat) 
Scaled (human) 

ClF_eff, u 0.08 0.05 Fitted (Rat) 
Scaled (human) 

ClF_bile, u 0.08 0.05 Fitted (Rat) 
Scaled (human) 

ClF_renal, u 0.12 0.024 Calculated 
GFRg  0.4 0.08 Lin, 1998 

aTissue volumes and blood flows denote fractions of total body weight and cardiac output, 
respectively.  
 
bLiver unbound fractions in humans were assumed equal to those in rats. 
cNot applicable. 
 
dB/P ratio of pafuramidine or furamidine at 0.1 µM in rat blood (see Materials and Methods). 
 
eRate constants associated with pafuramidine and furamidine absorption and metabolism in the gut 
are defined in the legend to Fig. 4.1 and were optimized by fitting the semi-PBPK model (schemed 
depicted in Fig. 4.1B) to in vivo rat and human data. 
 
fClearance values associated with the disposition of both pafuramidine and furamidine in rat livers are 
defined in the legend to Fig. 4.1 and were optimized by fitting the semi-PBPK model (schemed 
depicted in Fig. 4.1A) to rat IPL data; corresponding hepatic clearances in humans were calculated as 
described in Methods; furamidine renal clearance in rats was calculated based on in vivo rat data; 
human renal clearance was estimated using a ‘GFR ratio approach’ proposed by Lin, 1998 (see 
Materials and Methods). 
 
gGFR, glomerular filtration rate, was obtained from Lin,1998. 
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Table 4.2. Kinetic parameters associated with disposition of pafuramidine and furamidine in 
rat and human sandwich-cultured hepatocytes (SCH). 
 

Parametera Rat SCH Human SCH Scaling Factorb 
ClL_P→M 0.0047 0.013 3 
ClL_P→F 0.0023 0.0067 3 

kF_up 0.8  0.6 0.75 
kF_eff 0.008  0.008 1 

kF_bile
c N.A.d N.A. N.A. 

aClL_P→M and ClL_P→F represent in vitro intrinsic clearance (ml/min/106 cells) for the metabolic 
conversion of pafuramidine to other metabolites and furamidine, respectively. kF_up, kF_eff, and kF_bile 
represent first-order rate constants (h-1) for furamidine hepatic basolateral uptake, efflux and biliary 
excretion, respectively. SCH values denote mean data from n = 3 separate livers. 
 
bDetermined by the ratio of rat-to-human hepatic clearances or rate constants determined with SCH. 
The scaling factor was used to normalize in vivo clearance values from rats prior to scaling to human 
clearance values (see Materials and Methods). 
 
cFuramidine biliary excretion  was undetectable in both rat and human SCH. 

dNot applicable. 
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Table 4.3. PBPK Model prediction of furamidine formation and excretion in rats and humans 
after administration of a single oral dose of pafuramidine (7.5 µmol/kg and 100mg, 
respectively). 
 

Measure Rat Human 
fm (%)a 40 52 

Formation (%)b   

Gut 30 40 
Liver 70 60 

Excretion (%)c   
Bile 93 96 

Urine 7 4 
afm represents the total fraction of pafuramidine converted to furamidine in gut and liver. 
 
bFormation (%) represents percent contribution of gut or liver in furamidine formation. 
 
cPercent excretion was calculated based on the cumulative amount of furamidine excreted in bile or 
urine up to time infinity. 
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Figure 4.1. Semi-PBPK model schemes depicting disposition of pafuramidine and 
furamidine in rat IPLs (A) and in vivo in rats and humans (B). Distinct PBPK structures were 
developed for the prodrug, pafuramidine, and the derived active metabolite, furamidine, and 
linked by liver (and gut) metabolism. Pafuramidine distribution in all tissue compartments 
was assumed to be flow-limited. Furamidine distribution in the liver was described as 
diffusion-limited, as depicted by the dashed line in the liver compartment; furamidine 
distribution in all other tissue compartments was assumed to be flow-limited. Compartments 
T1, T2, and T3 in the dashed square represent three consecutive transit compartments for 
pafuramidine before reaching the absorption site in the gut after oral administration in 
humans, where kP_12, kP_23, kP_3g represent the first-order rate constants for pafuramidine 
distribution along the transit compartments and gut. kG_P→F represents the first-order rate 
constant for metabolic conversion from pafuramidine to furamidine in the gut;  ka_P and ka_F 
represent the first-order rate constants for the movement from gut to liver of pafuramidine 
and formed furamidine, respectively. ClL_P→F, u represents hepatic unbound intrinsic 
clearance for the formation of furamidine from pafuramidine; ClL_P→M, u represents hepatic 
unbound intrinsic clearance for metabolic conversion from pafuramidine to other metabolites; 
ClF_up, u represents unbound intrinsic clearance for hepatic basolateral uptake of furamidine; 
ClF_eff, u represents unbound intrinsic clearance for hepatic basolateral efflux of furamidine; 
ClF_bile, u represents unbound intrinsic clearance for biliary excretion of furamidine; ClF_renal, u 
represents unbound renal clearance of furamidine from plasma. P, pafuramidine; M, other 
metabolites; F, furamidine. 
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Figure 4.2. Disposition of pafuramidine (diamonds) and furamidine (triangles) over 24 h in 
sandwich-cultured hepatocytes (SCH) from (A) rats and (B) humans. Rat SCH data were 
obtained from a previous study (Yan et al., 2011); human SCH data were obtained using a 
similar study design. Pafuramidine (10 µM) was administered as a bolus to each well, which 
contained 1.5 ml culture medium. Symbols and error bars denote mean values and SDs, 
respectively of n=3 livers. Lines represent the computer-generated best fit of a previously 
developed pharmacokinetic model  (Yan et al., 2011) to the data.  
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Figure 4.3.  Disposition of pafuramidine (diamonds) and furamidine (triangles) in rats 
administered a single oral dose of pafuramidine (7.5 µmol/kg). (A) Comparison of observed 
(symbols) and semi-PBPK model-predicted (scheme depicted in Fig. 4.1B) plasma 
concentration-time profiles of pafuramidine and furamidine over 12 h (inset) and 360 h. 
Symbols and error bars denote mean values and SD, respectively, of 4 rats. (B) Semi-PBPK 
model-predicted (scheme depicted in Fig. 4.1B) amount-time profiles of furamidine in 
liver/kidney (solid lines) and bile/urine (dashed lines) over 360 h.  
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Figure 4.4. Disposition of pafuramidine (diamonds) and furamidine (triangles) in healthy 
male subjects administered a single oral dose of 14C-pafuramidine (100 mg, equivalent to 
274 µmol) in capsule form.  (A) Comparison of observed (symbols) and semi-PBPK model-
predicted (scheme depicted in Fig. 4.1B) (lines) plasma concentration-time profiles of 
pafuramidine and furamidine over 24 h (inset) and 240 h.  Symbols and error bars denote 
mean values and SD, respectively, of 6 subjects. (B) Semi-PBPK model-predicted (scheme 
depicted in Fig. 4.1B) amount versus time profiles of furamidine in liver/kidney (solid lines) 
and bile/urine (dashed lines) over 240 h. 
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Figure 4.5. Semi-PBPK model-predicted (scheme depicted in Fig. 4.1B) plasma and liver 
concentration-time profiles of furamidine in humans following oral administration of 100 mg 
pafuramidine twice daily (gray lines) and 40 mg pafuramidine once daily (black lines). Dotted 
and dashed lines represent safety and efficacy indices defined by a hypothetical no-
observable-adverse-effect-level (NOAEL) and a minimum effective concentration (Ceff,min) of 
furamidine in plasma, respectively. NOAEL and Ceff,min were determined as described in 
Materials and Methods. Time > Ceff,min denotes the time that furamidine concentrations in 
plasma were above the Ceff,min as a percentage of the entire dosing period (14 days); Css,ave 
denotes average plasma concentration of furamidine at steady-state; “AUC0-14d ↓ 5x” 
denotes liver exposure of furamidine, expressed as the area under the liver concentration-
time curve (AUC0-14 d), which was 5-fold lower with the modified pafuramidine dosage 
regimen (40 mg once daily) compared to the dosage regimen administered in the expanded 
Phase I safety study (100 mg twice daily). 
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A. SUMMARY AND DISCUSSION 

An important objective in drug development is to identify the concentration/exposure 

range that provides the optimal benefit-to-risk ratio. An inadequate dose will result in 

ineffective therapy; an excessive dose will lead to unacceptable toxicity, which may prevent 

further development of a promising drug candidate. The clinical response (pharmacological 

and toxic effects) is a function of the dose.  Thus, selection of appropriate dosage regimens 

for clinical trials is the key to successful transition of preclinical drug candidates to clinical 

drug development (Reigner and Blesch, 2002). Accurate prediction of an efficacious and 

safe dose for humans relies on integration of pharmacokinetic/pharmacodynamic data from 

multiple sources, both in vitro and in vivo from animals and humans, using a variety of 

methods and approaches. For this reason, proper selection of validated preclinical models is 

imperative. 

Human African trypanosomiasis (HAT), also called sleeping sickness, is a parasitic 

disease caused by Trypanosoma brucei species; the disease is endemic throughout tropical 

Africa (Barrett, 2010). Almost all of the current chemotherapies for treatment of both first 

(hemolymphatic infection) and second (central nervous system infection) stages of HAT 

were introduced more than half a century ago and require complicated treatment regimens 

via parenteral administration (Fairlamb, 2003). An orally-active agent with a convenient 

dosing regimen would be beneficial in resource-constrained areas of Africa.  

Diamidine prodrugs have exhibited satisfactory oral activity against both stages of 

HAT (Paine et al., 2010). Pafuramidine and CPD-0868 are bis-O-methylamidoxime prodrugs 

of pentamidine analogs, furamidine and CPD-0801, respectively. To date, pafuramidine is 

the first and only orally-active agent that has entered clinical trials (phase I-III) for the 

treatment of first stage infection. However, during an expanded phase I safety study, 

transient elevation of liver transaminases was observed in 25% of subjects five days post 

completion of the dosage regimen of pafuramidine (100 mg twice daily for 14 days), which 
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placed pafuramidine program on clinical hold 

(http://www.immtechpharma.com/documents/news_022208.pdf) (Paine et al., 2010). 

Although pafuramidine is no longer under development, lessons learned from pafuramidine 

highlighted the need for an improved understanding of the dose-exposure relationship of 

these orally-active antiparasitic prodrugs. Preclinical studies showed that furamidine 

accumulated extensively in the liver and remained in this organ for a prolonged time 

following a single oral dose of pafuramidine; furamidine concentrations in plasma were lower 

by three orders of magnitude than those in the liver (Midgley et al., 2007). Both pafuramidine 

and furamidine were ineffective in a second stage (CNS) mouse model (Wenzler et al., 

2009). Structural analogs of pafuramidine/furamidine were synthesized and screened in vitro 

and in vivo to identify clinical candidates for the treatment of second stage HAT. To date, the 

most potent analog is CPD-0868, a prodrug of CPD-0801. Despite the structural similarity, 

CPD-0868 demonstrated superior efficacy against second stage infection (Wenzler et al., 

2009), and the systemic exposure of CPD-0801 was higher than that of furamidine in mice 

given the same dose of respective prodrug (Wu et al., 2007).  

Prior to this dissertation research, the mechanism responsible for the large 

differences in tissue and plasma exposure of furamidine, the reason for the improved 

systemic exposure of CPD-0801 compared to furamidine, and the relationship between 

dose of pafuramdine and plasma or tissue exposure of furamidine were unknown. In 

addition, pafuramidine preclinical and clinical studies in pharmacokinetics, efficacy, and 

safety were carried out by different researchers from various laboratories and institutes 

within the Consortium for Parasitic Drug Development (CPDD). Given the large body of 

experimental data obtained from a variety of sources, there was no quantitative strategy for 

leveraging prior knowledge to inform the dose selection of antiparasitic prodrugs. These 

unaddressed but important questions and issues guided the direction of this dissertation 

project. A variety of in vitro, ex vivo, and in vivo models, together with comprehensive 

http://www.immtechpharma.com/documents/news_022208.pdf
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pharmacokinetic modeling approaches were utilized to address the following objectives: 1) 

gain a mechanistic understanding of the overall disposition of these antiparasitic prodrugs 

and metabolites; 2) develop a quantitative strategy that allows preclinical data to be 

integrated and combined with historical information from clinical studies to predict the dose-

plasma/exposure relationship in humans. 

 

A.1.    Characterization and Comparison of the Intestinal and Hepatobiliary 

Disposition of Pafuramidine and CPD-0868 and Derived Metabolites in Preclinical 

Models. 

Using a well-established human intestine-derived absorption model, Caco-2 cell 

monolayers, absorption of pafuramidine and CPD-0868 through the intestinal epithelium 

was elucidated. In the absence of serum in the incubation medium, A→B and B→A 

translocation profiles of both pafuramidine and CPD-0868 were nearly superimposable (Fig. 

2.3), corresponding permeability coefficients of both prodrugs in both directions of transport 

were not significantly different, and efflux ratios were near unity (Table 2.1). These 

observations indicated that both prodrugs cross the intestinal epithelium by passive diffusion, 

without involvement of efflux transporters, which was consistent with previous results with 

pafuramidine using a different Caco-2 cell source (Zhou et al., 2002).  

To examine further the difference in the extent of absorption between the two 

prodrugs, the basolateral compartment (representing the blood side) was supplemented with 

4% bovine serum albumin (BSA), to mimic plasma protein binding. Under this more 

physiologically-relevant condition, absorptive (A→B) permeability of pafuramidine increased 

greatly, whereas that of CPD-0868 remained unchanged (Table 2.1). As a consequence, the 

Papp,A→B values of both prodrugs become comparable (Table 2.1). These findings were 

consistent with published observations that the presence of BSA increased the absorptive 

permeability of only highly lipophilic (logP > 3.0) and extensively protein bound (fu < 5%) 
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compounds (Aungst et al., 2000). Regardless of structural similarity, pafuramidine is more 

lipophilic than CPD-0868, as reflected by a 2-fold higher logP (4.0 versus 2.2) and 35-fold 

lower fu in human plasma (0.2 versus 7%).  The results from Chapter 2 suggested that 

plasma protein binding may have a much greater impact on pafuramidine absorption in vivo. 

In addition, comparable permeability coefficients of both prodrugs under “sink” conditions 

suggested that the extent of absorption between pafuramidine and CPD-0868 may be 

similar in vivo. Results presented in Chapter 2 further substantiated Caco-2 cells as a 

valuable screening tool to assess absorption properties of compounds across the intestinal 

epithelium, as well as emphasized the need of application of BSA in the basolateral 

compartment to evaluate more accurately the intestinal permeability of highly lipophilic 

compounds. Moreover, results from this study suggested that the enhanced systemic 

exposure of CPD-0801 compared to furamidine was not due to a higher intestinal 

permeability of the prodrug CPD-0868 compared to pafuramidine. The mechanisms 

underlying the difference in the systemic exposure of respective active metabolites were, 

therefore, investigated further in two well-established hepatic models, isolated perfused 

livers (IPLs) and sandwich-cultured hepatocytes (SCH) from rats, to characterize and 

compare the hepatic disposition of pafuramidine/CPD-0868 and derived metabolites.  

In both rat IPLs and SCH, the disposition profiles of both prodrugs and respective 

derived metabolites were similar (Fig. 3.3 and 3.5), whereas the extent of formation and 

AUC of CPD-0801 in perfusate (IPLs) or medium (SCH) were consistently higher compared 

to furamidine (Fig. 3.4 and Table 3.3). Initial compartmental modeling showed that the net 

basolateral efflux (6-fold difference) played a more important role than metabolism (2-fold 

difference) in the enhanced perfusate/medium exposure of CPD-0801 compared to 

furamidine (Table 3.2, 3.3 and 3.5). In addition, both active metabolites accumulated in the 

liver and hepatocytes at substantially higher concentrations compared to perfusate and 

medium (Fig. 3.3 and 3.5). Nevertheless, in both IPL and SCH, CPD-0801 exhibited less 
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hepatic retention compared to furamidine, as reflected by the 5- to 6-fold lower liver-to-

perfusate and hepatocyte-to-medium partition coefficients (Table 3.3), which substantiated 

SCH as a valuable in vitro tool to predict in vivo liver-to-plasma partitioning. Limited 

perfusate/medium exposure of both active metabolites, relative to liver, led to a subsequent 

investigation of the plasma/perfusate and liver binding properties of these compounds. The 

unbound fractions (fu) of both active metabolites in the liver were much lower (≥24-fold) than 

those in the plasma and perfusate; fu of CPD-0801 in the liver was >5-fold higher than that of 

furamidine (Table 3.3). Assuming that only unbound compound can translocate out of cells 

to the perfusate and bile, liver fu was, therefore, incorporated into the model (scheme 

displayed in Fig. 3.2B), which resulted in comparable rate constants associated with the net 

basolateral efflux of unbound active metabolites. These results provided further evidence 

that the enhanced perfusate/medium exposure of CPD-0801 was attributed largely to the 5-

fold lower hepatic binding compared to furamidine.  

The integrated approach involving two rat hepatic systems (IPLs and SCH) and 

pharmacokinetic modeling provided an improved mechanistic understanding of the impact of 

hepatic binding on the systemic and hepatobiliary exposure of these two antiparasitic active 

metabolites. A higher extent of formation and lower hepatic binding of CPD-0801, compared 

to furamidine (Table 3.3), at least in part, explained the enhanced systemic exposure of 

CPD-0801 (≥2-fold) observed in vivo. In addition, a ~2-fold higher fu in plasma (Table 3.3) 

can result in a further increase (~4-fold) in the systemic exposure of unbound CPD-0801 

compared to furamidine. Assuming only unbound compound can cross the blood brain 

barrier and both active metabolites have the similar membrane permeability, a higher 

systemic exposure of unbound CPD-0801 could lead to an increased brain exposure (~4-

fold) compared to furamidine. Tissue binding studies showed that CPD-0801 has a 

consistently higher fu (≥5-fold) in both liver and kidney than furamidine (Goldsmith, 2011; 

Yan et al., 2011). If the similar trend holds in brain, a much greater (≥one order of magnitude) 
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brain exposure of unbound CPD-0801 can be expected. In vitro studies showed that CPD-

0801 and furamidine had similar trypanocidal potency (Wenzler et al., 2009). Assuming that 

only unbound compound can be taken up by the parasites and both active metabolites have 

similar uptake properties, higher unbound concentrations of CPD-0801 in the brain could 

lead to an enhanced antitrypanosomal effect in the CNS.  The insights gained from this 

study not only supported CPD-0868 as a hopeful orally-active agent for treatment of second 

stage HAT, but also substantiated SCH as a useful tool to study hepatobiliary disposition of 

xenobiotics in preclinical species, and highlighted the potential application of this hepatic 

model in human studies. 

 

A.2.       Prediction of the Dose-Exposure Relationship via Semi-PBPK Modeling 

PBPK modeling takes into account the physiologic, metabolic, and chemical-specific 

parameters to simulate quantitatively the absorption, distribution, metabolism, and excretion 

of a compound under different dosing scenarios (Poulin and Theil, 2002). For this reason, a 

systematic strategy combining preclinical/clinical data and semi-PBPK modeling was 

developed to improve the understanding of the relationship between prodrug dose and 

plasma/tissue exposure of active metabolite using pafuramidine/furamidine as model 

compounds (Chapter 4). Because a large body of in vitro and in vivo data on pafuramidine 

and furamidine disposition was available for rats, the model strategy began with 

development of a whole-body rat semi-PBPK model. The liver is a major site of furamidine 

formation/accumulation in rats.  Thus, a whole-liver semi-PBPK model (scheme depicted in 

Fig. 4.1A) was developed first using the data generated from the rat IPL study (Yan et al., 

2011) to estimate parameters associated with the hepatic disposition of 

pafuramidine/furamidine in rats. The whole-body rat semi-PBPK model (scheme depicted in 

Fig. 4.1B) was developed based on the liver model, with addition of major organs of 

absorption, storage, and elimination for pafuramidine/furamidine. In vivo rat pharmacokinetic 
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data generated in a previous study (Generaux, 2010) were utilized to validate and refine the 

model structure and to optimize associated parameters.  

The whole-body rat semi-PBPK model adequately described the disposition of 

pafuramidine and furamidine in the plasma (Fig. 4.3A), and predicted furamidine disposition 

in key organs (liver and kidney) and excretion profiles (biliary and renal) (Fig. 4.3B). 

Consistent with in vivo results (Midgley et al., 2007; Generaux, 2010), predicted furamidine 

exposure in liver and kidney was much higher than that in plasma by 2-3 orders of 

magnitude (Fig. 4.3A and 4.3B); furamidine was cleared predominately by biliary excretion, 

accounting for >90% of the total excreted, whereas renal excretion played a minor role in 

furamidine elimination (<10%) (Table 4.3 and Fig. 4.3B).  

Upon development of the rat model, efforts focused on building a whole-body human 

semi-PBPK model. Without prior knowledge of pafuramidine/furamidine disposition in 

humans, the same model structure and pafuramidine absorption properties (fa and ka) for 

rats were applied initially to the human model. However, model predictions underestimated 

both Tmax and Cmax of pafuramidine in humans, which may be attributed to the differences in 

the dosage form of pafuramidine (suspension versus capsule), and concomitant diet (regular 

versus high fat meal) between rats and humans. Pafuramidine is a poorly water-soluble 

compound, for this reason, the dosage forms used in the animal studies were often 

prepared as a suspension in DMSO or acidified ethanol containing Tween 80 (Midgley et al., 

2007; Wenzler et al., 2009). The capsules used in human studies may delay the absorption 

of pafuramidine while passing through the intestine due to dissolution from the dosage form, 

causing an increased Tmax. It has been well documented that food and gastrointestinal (GI) 

motility can affect drug absorption (Welling, 1977; Evans, 2000; Jamei et al., 2009). As such, 

patient instructions for drug administration often include a direction to either take with food 

or on an empty stomach. Previous studies showed that food can delay gastric emptying and 

therefore delays absorption of antimicrobial agents, tetracyclines and penicillins (Welling 
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and Tse, 1982).  The extent of absorption of poorly water-soluble but highly lipophilic 

antimicrobial agents, such  as  spironotactone and griseofulvin, was enhanced when 

administered together with a fat-containing meal as compared to with water or in the fasting 

state (Palma et al., 1986). Based on these results, the concomitant high-fat meal also could 

have a significant impact on the rate and extent of absorption of the highly lipophilic 

antiparasitic agent, pafuramidine. 

To account for the formulation and food effect on the absorption of pafuramidine in 

humans, a three transit compartments were added sequentially between site of 

administration (oral route) and absorption (gut) into the pafuramidine human submodel (Fig. 

4.1B), which could represent dissolution from the capsule, gastric emptying, and/or 

partitioning from the fat components of accompanying meal. Model predictions showed that 

addition of these compartments was adequate to describe the delayed appearance of both 

pafuramidine and furamidine in the plasma (Fig. 4.4A). Consistent with previous 

observations on the other lipophilic antimicrobial agents, fa of pafuramidine predicted by the 

semi-PBPK model was near 100% in humans, which was much higher than that in rats 

(~30%). These results highlighted the importance of formulation/diet in the disposition of 

these antiparasitic prodrugs and active metabolites.  

The disposition profiles of pafuramidine/furamidine in SCH from rats and humans 

were similar between these two species. However, pafuramidine was metabolized in human 

SCH more quickly than in rat SCH, as reflected by a 3-fold higher intrinsic clearance (Table 

4.2) and faster appearance of furamidine in the hepatocytes (Fig. 4.2). The rate constant 

associated with reuptake of furamidine in human SCH was 25% lower than that in rat SCH 

(Table 4.2), which resulted in a decreased hepatocyte-to-medium partitioning of furamidine 

(Fig. 4.2). These observations suggested a species difference in the hepatic disposition of 

pafuramidine/furamidine between rats and humans. Traditionally, human clearance values 

have been predicted using empirical allometric scaling and physiologically-based direct 
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scaling from in vitro-derived intrinsic clearance values (Ito and Houston, 2004; Jones et al., 

2006). Allometric scaling, which is empirical in nature, fails to account for differences in 

pharmacokinetics across species (Mahmood, 2000).   Physiologically-based direct scaling 

from in vitro-derived intrinsic clearance values offers a more physiological rationale by 

incorporating blood flow and plasma protein binding, however, this method relies on an 

assumption of liver models (well-stirred, parallel tube, and/or dispersion) selected in the 

scaling process to relate the clearances obtained in vitro to in vivo conditions (Ito and 

Houston, 2004; Ito and Houston, 2005). In addition, scaling directly from in vitro derived 

metabolic clearance often underestimates in vivo values due to decreased enzyme activity 

associated with the in vitro systems (Ito and Houston, 2005). To balance between these two 

methods, normalized scaling, rat clearance determined from IPL data corrected with in vitro 

derived scaling factors, was utilized to account for species differences in the hepatic 

disposition of pafuramidine/furamidine between rats and humans (Fig. 4.2 and Table 4.2). 

To authors’ knowledge, prior to this dissertation project, there have been no reports utilizing 

this approach to extrapolate metabolic and transport clearance values for both parent and 

metabolites from rats to humans. SCH offer significant advantages over conventionally-

cultured hepatocytes, including the ability to characterize both metabolic and 

sinusoidal/biliary transport processes in a single cellular system (Turncliff et al., 2006; Swift 

et al., 2009), and in particular, the ability to predict the biliary clearance (Clbiliary) in humans, 

which remains a challenge in drug development (Abe et al., 2008). The biliary clearance of 

furamidine was too low to measure in rat and human SCH (Table 4.2); however, for 

compounds that exhibit large interspecies differences in biliary excretion, scaling of rat in 

vivo Clbiliary corrected by a scaling factor derived from rat and human SCH could be utilized 

for interspecies extrapolation of Clbiliary. 

Insights from the rat and human semi-PBPK models revealed two major findings: 1) 

the gut may play an important role in pre-systemic furamidine formation. The contribution of 
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the GI tract to the first-pass metabolism of pafuramidine, and the overall formation of 

furamidine, has not been characterized extensively. To date, only one report showed that 

the intrinsic formation clearance for the first intermediate metabolite (M1) from pafuramidine 

in human intestinal microsomes was at least 10-fold lower than that in human liver 

microsomes (Wang et al., 2007). PBPK models, for the first time, predicted that the intestine 

may contribute 30-40% of total furamidine formation from pafuramidine in both rats and 

humans. Corresponding confirmation experiments using appropriate intestinal models are 

warranted and represent a major focus for future studies. 2) The “true” terminal half-life of 

furamidine may be days, rather than hours (Fig. 4.3A and 4.4A). The terminal half-life of 

compounds is an important factor that determines the frequency of dosage regimens.  

However, due to the limitation of analytical assays, plasma concentrations of furamidine 

were not measurable 12 and 24 hours post oral administration of pafuramidine in rats and 

humans, respectively.  Thus, previous studies failed to identify the “true” elimination phase 

of furamidine, resulting in an underestimation of the “true” terminal half-life (t1/2,terminal). The 

semi-PBPK model-predicted plasma t1/2,terminal was verified further based on the measured 

tissue (kidney) t1/2,terminal in rats following IV administration of preformed furamidine, 

assuming the pharmacokinetic behavior did not differ between preformed and generated 

furamidine. The approach demonstrated the ability of PBPK modeling to predict drug 

disposition in plasma and tissue over a prolonged period of time without conducting the 

actual long-term in vivo experiments.  

Previous studies showed that the exposure time may contribute to the more 

pronounced inhibitory effect of another diamidine, pentamidine, against T. b. gambiense in 

vivo, whereas peak concentrations (Cmax) of short duration may be less important (Miezan et 

al., 1994).  As a pentamidine analog, furamidine may exhibit the antiparasitic effect in a 

similar time-dependent manner. The mechanism of pafuramidine-induced transiently 

elevated hepatic transaminases in humans is not known. If hepatic accumulation of 
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furamidine is the cause of this adverse effect, the elevated hepatic signals could be either 

concentration- or time-dependent, or a combination of both. Based on these assumptions, 

the following criteria were utilized in the dose selection for pafuramidine: 1) plasma 

concentrations of furamidine must be above a hypothetical therapeutic index (Ceff,min) >80% 

of the time throughout the dosing period (14 days); 2) average steady-state concentrations 

(Css,ave)  of furamidine must be below a hypothetical safety index (NOAEL). Hepatic 

exposure of furamidine was estimated by the human PBPK model and compared with the 

dosage regimen of 100 mg twice daily used in the expanded safety study. Accordingly, a 

modified dosage regimen of pafuramidine, 40 mg once daily, was predicted via model 

simulations of plasma and tissue concentration-time profiles of furamidine (Fig. 4.5). With 

this alternative daily regimen, plasma concentrations of furamidine could be maintained 

within the pre-defined hypothetical therapeutic-safety window while the hepatic exposure of 

furamidine was reduced by ~5-fold.  

In rats infected with T. b. brucei, furamidine systemic exposure increased markedly 

(up to 3-fold) compared to control animals administered the same oral dose of pafuramidine 

(Generaux, 2010). Simulations based on the IPL compartmental model described in Chapter 

3 (scheme depicted in Fig. 3.2B) showed that the perfusate exposure of furamidine was 

most sensitive to the rate constant associated with net basolateral efflux (a combination 

effect of basolateral uptake and efflux) and liver fu. Furamidine is a potent substrate for an 

uptake transporter, human OCT1, which is localized primarily on the sinusoidal membrane 

of hepatocytes (Ming et al., 2009). Nitric oxide, an inflammatory mediator of immunity, can 

down-regulate OCT1 expression during inflammation and infection (Heemskerk et al., 2008). 

Compromised activity of OCT1 could decrease the reuptake of furamidine after excretion 

from liver to blood, hence, increase systemic exposure of furamidine. As shown in Chapter 3, 

furamidine was highly bound to liver tissues from rats, as reflected by a much lower fu 

compared to plasma (Table 3.3). Based on model simulations, perturbation in tissue binding 
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that leads to a higher fu of furamidine in the liver can cause a proportional increase in 

systemic exposure. Whether infection can decrease the binding capacity of furamidine in the 

liver currently is unknown. However, with the aid of the developed tissue/plasma binding 

assay in this dissertation project, this issue can be addressed by measuring the fu in the liver 

from the infected animals and comparing with that from control animals (Table 3.3). Whether 

trypanosomal infection can alter the pharmacokinetics of pafuramidine/furamidine in humans 

remains unclear. If infection causes a similar effect on the systemic exposure of furamidine 

in humans, a further reduction in the amount and/or frequency of pafuramidine based on 

healthy individuals may be needed for infected patients. 

Significance: This dissertation project, via a quantitative integration of 

preclinical/clinical data with pharmacokinetic modeling/simulation, addressed key issues 

regarding the pharmacokinetics (including the absorption, metabolism, transport, 

plasma/tissue binding, biliary/renal excretion profiles) and the dose-exposure relationship of 

antiparasitic prodrugs and active metabolites. Future directions will include using these 

multifaceted tools and models, coupled with pharmacokinetic modeling/simulation, to predict 

the disposition profiles, and guide dose-ranging studies in humans for next-in-class 

compounds for oral treatment of HAT.  
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B.         FUTURE DIRECTIONS  

 

B.1.       Characterize the Intracellular localization of Active Metabolites in the Liver 

As noted in the current studies, extensive and prolonged hepatic accumulation of 

active metabolites, furamidine and CPD-0801, was observed in both IPLs and SCH from 

rats. Previous studies using centrifugal fractionation showed that furamidine was mainly 

localized in the mitochondrial fraction (Midgley et al., 2007). In the rat IPL study, subcellular 

fractions of liver homogenates (n=1 liver/compound) were collected using a differential 

centrifugation method described previously (Studenberg and Brouwer, 1993). Consistent 

with in vivo observations, furamidine was localized primarily in the mitochondrial fraction 

(43%) in rat IPLs; in contrast, CPD-0801 was localized primarily in the cytosolic fraction 

(45%), with negligible mitochondrial accumulation (≤1%) (Fig. 5.1). These observations 

suggested that the active metabolite formed inside the hepatocyte may not reside in a single 

homogeneous compartment, but may bind to certain intracellular compartments; moreover, 

the difference in intracellular localization could provide a potential mechanism for differences 

in the hepatobiliary disposition as well as hepatotoxic potential of these active metabolites.  

The subcellular localization of active metabolites showed in Fig. 5.1 was only based 

on one liver per compound. The reproducibility of these findings needs to be verified in 

future studies. It is worth noting that there are several concerns associated with the 

fractionation approach including: a) some degree of cross-contamination among isolated 

cellular fractions. Therefore, activity/content of specific organelle markers will need to be 

assessed to define the exact composition and purity of each fraction, i.e., ethidium bromide 

binding (nucleus) assays, marker enzymes of the main organelles, namely, lactate 

dehydrogenase (cytosol), inosine 5’-diphosphatase (plasma and endoplasmic reticulum 

membranes) and succinate dehydrogenase (mitochondria). If contamination is severe in 
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target organelles (e.g. mitochondria), alternative fractionation strategies will need to be 

employed: e.g. subfractionation of cytoplasmic organelles by isopycnic centrifugation in a 

sucrose gradient (Duvvuri et al., 2004); b) potential disruption of binding equilibrium between 

cellular compartments during fractionation procedures. This problem will be more evident for 

drugs that partition into cellular spaces and compartments is primarily via passive diffusion 

driven by the concentration gradient (Duvvuri et al., 2004). The cationic and hydrophilic 

properties of furamidine/CPD-0801, together with in vivo evidence of extensive and 

prolonged accumulation in cellular organelles, suggests that these active metabolites may 

bind to intracellular compartments with high affinity, therefore, the potential diffusion 

between cellular fractions during isolation would be expected to be negligible. 

These diamidine active metabolites are fluorescent compounds, which allows for 

monitoring of the hepatocellular trafficking by fluorescence microscopy. One advantage of 

SCH is that intracellular disposition of fluorescent substrates can be examined by confocal 

imaging (Bow et al., 2008). The experimental procedure is proposed as following: freshly 

isolated rat hepatocytes will be seeded onto collagen-coated 35-mm glass-bottomed culture 

dishes and cultured as described in Chapter 3. On day-4, cells will be incubated with either 

pafuramidine or CPD-0868 (10 µM) over 24 h. The real-time intracellular distribution of 

active metabolites will be imaged with a laser scanning confocal microscope at excitation 

and emission wavelengths of 359 nm and 461 nm, respectively. Using confocal imaging with 

SCH, the dynamic intracellular disposition of fluorescent active metabolites can be 

visualized, which will provide further evidence supporting the results from subcellular 

fractionation study. Furthermore, confocal imaging together with fractionation studies will 

improve our ability to investigate how changes in drug structure influence drug distribution 

within cellular compartments. An understanding of these structure-distribution relationships 

could lead to novel drug design for the treatment of HAT.  

 



 

 153

B.2.    Identify Transport Protein(s) Involved in the Hepatobiliary Disposition of 

Furamidine  

Once formed in the liver, furamidine needs to be excreted to the systemic circulation 

for antiparasitic effect and to the bile for elimination. Given the cationic and hydrophilic 

nature, it is likely that active transporters are involved in the translocation of furamidine from 

hepatocytes to the blood and bile. Pharmacokinetic modeling in both rat IPLs and SCH 

showed that the rate constant for basolateral reuptake were much higher that that for 

basolateral efflux, albeit the large variability associated with the parameter estimates (Fig. 

3.2 and 3.5), indicating that reuptake predominated over efflux in governing the basolateral 

transport of furamidine. Previous studies using stably-transfected Chinese hamster ovary 

(CHO) cells demonstrated that furamidine is a good substrate for human OCT1 (Ming et al., 

2009). OCT1, an uptake transporter localized mainly on the sinusoidal membrane of 

hepatocytes, could be involved in the basolateral reuptake of furamidine in humans. To date, 

little is known with regards to transporters involved in the basolateral and canalicular efflux 

of furamidine in the liver. Previous studies with Caco-2 cells showed that the efflux ratio of 

furamidine was 2.25, suggesting that furamidine may be a substrate for an efflux pump (e.g., 

P-gp) on the apical membrane of Caco-2 cells (Zhou et al., 2002). Ranitidine, also a cationic 

hydrophilic compound, was shown to be a substrate for P-gp and OCT1 (Bourdet et al., 

2005; Bourdet et al., 2006). Pentamidine, a structural analog of furamidine, demonstrated a 

significantly higher (up to 3-fold) brain exposure in P-gp knockout mice compared to control 

animals (Sanderson et al., 2009).  In the same study, coadministration of indomethacin, an 

inhibitor of MRP, increased pentamidine accumulation in choroid plexus of P-gp knockout 

mice; coadministration of adenosine, a nucleoside analog and a substrate for concentrative/ 

equilibrative nucleoside transporters (CNT and ENT) and MRP4/5 (Schuetz et al., 1999; 

Wijnholds et al., 2000; Molina-Arcas et al., 2009), also caused the similar effect (Sanderson 

et al., 2009). Previous studies showed that ENTs, but not CNTs, were expressed on the 
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basolateral membrane of human hepatocytes (Molina-Arcas et al., 2009; Fukuchi et al., 

2010), indicating that CNTs are unlikely to be involved in the furamidine uptake into 

hepatocytes. 4',6-diamidino-2-phenylindole (DAPI), another furamidine analog, was shown 

to be a substrate for hOCT1 and multidrug and toxin extrusion protein 1 (MATE1), which is 

an efflux transporter expressed mainly on the canalicular membrane of hepatocytes and the 

brush border of the renal epithelium (Yasujima et al., 2010). These candidate transporters 

could be responsible for the basolateral (MRP4/5, OCT1, and ENT) and canalicular (P-gp 

and MATE1) transport of furamidine in the liver. Future studies on identification of the role of 

these transporters in the hepatobiliary disposition of furamidine are warranted. Appropriate 

in vitro and in vivo models include, but are not limited to: stably-transfected cell lines (e.g., 

CHO), membrane vesicles, isolated perfused rat livers (in the presence or absence of 

inhibitors), and P-gp/MRP knockout animals.  

 

B.3.      Characterize First-Pass Metabolism of Prodrugs in the Gut 

The PBPK modeling study (Chapter 4) suggested that the gut may contribute 

significantly (30-40%) to furamidine formation in rats and humans following oral 

administration of pafuramidine (Table 4.3). These observations lead to a re-evaluation of the 

role of gut in the observed difference in the systemic exposure of furamidine and CPD-0801. 

Like liver, CPD-0801 may have a greater extent of formation during prodrug (CPD-0868) 

absorption in the gut compared to furamidine, which also could contribute to the enhanced 

systemic exposure of CPD-0801. Additional experiments would be needed to elucidate the 

differential role of the gut and liver in the first-pass metabolism of these prodrugs, and the 

overall formation of respective active metabolites.  

Previous studies showed that formation of a furamidine analog, CPD-0801, was 

negligible when the prodrug, CPD-0868, was incubated with liver microsomes, whereas 

CPD-0801 was detected readily in hepatocytes from both rats and humans (Generaux, 
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2010). In the current study (Chapter 3 and 4), both pafuramidine and CPD-0868 were 

biotransformed efficiently to the respective active metabolites, furamidine and CPD-0801, in 

rat and human SCH (Fig. 3.5 and Fig. 4.2). Phenotyping studies showed that 

biotransformation of pafuramidine/CPD-0868 to furamidine/CPD-0801 requires two enzyme 

systems: cytochrome P450s (CYP4F2/3B and possibly CYP3A4) and cytochrome b5/NADH 

cytochrome b5 reductases (Saulter et al., 2005; Wang et al., 2006). These reductases are 

essential in the final step of furamidine formation (Fig. 1.3) (Saulter et al., 2005).  

Cytochrome b5/NADH cytochrome b5 reductases are localized primarily in microsomes and 

other cellular organelles, including mitochondrial and cytosol (Saulter et al., 2005). In order 

to characterize the pre-systemic formation of furamidine and CPD-0801 in the gut, whole-

cell systems would be required, such as, 1α,25-(OH)2-D3-treated Caco-2 cells, Ussing 

chambers, single-pass perfused intestine from rats, or portal vein-cannulated rats (Fisher et 

al., 1999; Sinko et al., 2004; Masaki et al., 2007; Pang et al., 2008; Clarke, 2009). General 

experimental procedures for selected in vitro and in vivo studies are proposed as following:   

In 1α,25-(OH)2-D3-treated Caco-2 cells, midazolam, a probe substrate for CYP3A, 

showed similar absorption and metabolism characteristics as observed in vivo, which 

substantiated this modified Caco-2 cells as a suitable model system for studying drug 

absorption and first-pass intestinal metabolism (Fisher et al., 1999). For this reason, this 

modified system also could be useful to study the intestinal disposition of these antiparasitic 

prodrugs/active metabolites. Briefly, 1α,25-(OH)2-D3-treated Caco-2 cells will be incubated 

with pafuramidine or CPD-0868. At designated times, apical, cellular, and basolateral 

samples will be collected for quantification of prodrugs and active metabolites. A catenary 

model encompassing the apical, cellular, and basolateral compartments will be developed to 

quantitatively characterize and compare the distribution and intestinal metabolism of 

prodrugs/active metabolites (Fan et al., 2010).  
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For in vivo study, portal and jugular vein cannulated rats will be given a single dose 

of pafuramidine/CPD-0868 by oral gavage.  Blood will be sampled via the portal and jugular 

vein cannulas at designated times over 24 h. Intestine and liver will be harvested and 

homogenized at the end of experiment. Plasma and tissue samples will be analyzed for 

prodrug and derived active metabolites by LC-MS/MS. For prodrugs, portal vein 

concentrations represent the amount of prodrug absorbed across the gut, while 

concentrations in the jugular vein represent the amount of systemically available prodrug. 

Thus, the difference represents the extent of first-pass metabolism of prodrug in the liver. 

For active metabolites, portal vein concentrations represent the amount of active metabolite 

formed during prodrug absorption and escaped from the gut, while concentrations in the 

jugular vein represent the total amount of active metabolite formed and escaped from both 

formation sites (gut and liver). Tissue concentrations present the amount of generated active 

metabolites sequestered in the gut and liver over 24 h. Results from this study will provide 

mechanistic information on the relative contribution of gut and liver to the overall formation 

of these active metabolites.  

 

B.4.      Determine the Therapeutic-Safety Index of the Active Metabolites Furamidine 

and CPD-0801 

Due to the lack of knowledge regarding the dose-exposure relationships, the 

modified dosage regimen of pafuramidine (Chapter 4) was based on a hypothetical NOAEL 

(20% less than the Css,ave achieved with the dosage regimen that caused transiently elevated 

liver transaminases in the clinical trial Fig 4.5). The mechanism of elevated hepatic signals 

and the relationship with the dose of pafuramidine currently are being investigated in rodent 

models. The study results will provide a qualitative or semi-quantitative description of  

site(s), severity, and reversibility of this adverse effect, as well as the dose threshold 

associated with the NOAEL where no overt adverse effects can be observed. Once this 
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maximal-tolerated dose is determined, the rat PBPK model developed in the current study 

(Chapter 4, scheme depicted in Fig. 4.1B) can be utilized to predict the corresponding Css,ave 

of furamidine (NOAEL) via simulations, and hence, the safety margin of furamidine in rats. 

IC50 of furamidine against T.b. brucei strain was determined in the presence of 15% horse 

serum. Because the fu of furamidine in this matrix was unknown, the therapeutic index, 

Ceff,min, was corrected by the fu in perfusate (composed of 20% rat plasma) assuming the 

binding properties of furamidine were similar between the two matrices. In the future study, 

the fu of furamidine in 15% horse serum will need to be determined using the binding assay 

developed in this dissertation project (Chapter 3) to refine further the therapeutic-safety 

window. 

 

B.5.      Apply the PBPK Model-based Strategy to Future Drug Development 

Preclinical safety profiling is built on the assumption that similar drug exposures will 

result in similar preclinical and clinical outcomes. However, species-specific adverse events 

may not be realized until the results of preclinical and clinical studies are compared (Reigner 

and Blesch, 2002). Results from the expanded phase I safety study suggested that humans 

may be more sensitive to pafuramidine-induced elevated hepatic signals than rats and/or 

monkeys. As such, the human equivalent dose for safety will be considered to be the dose 

that leads to furamidine Css,ave similar to the NOAEL in rats corrected by a “sensitivity” factor, 

which adjusts for anticipated differences in sensitivity to pafuramidine between rats and 

humans. Empirically, the maximum starting dose for the first-in-human study is the smallest 

of the following three doses: 1/10 of the NOAEL dose in rodents, 1/6 of the NOAEL dose in 

dogs, or 1/3 of the NOAEL dose in monkeys (Boxenbaum and DiLea, 1995; Mahmood, 

2000). However, one rule cannot apply to all. A more rational and mechanistic approach is 

needed to determine the “sensitivity” factor in a compound-specific manner. Rat SCH have 

demonstrated success in prediction of the hepatotoxicity of trabectedin observed in vivo 
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using lactate dehydrogenase (LDH) as a biomarker (Lee et al., 2008). Similarly, differences 

in the LDH release measured in rat and human SCH could be utilized to estimate the 

“sensitivity” factor, and thus predict a safe dosage regimen for humans. 

In conclusion, the PBPK models developed and the studies proposed in this 

dissertation project can facilitate development of the therapeutic-safety index for future drug 

candidates in the treatment of HAT. With the aid of PBPK modeling, preclinical/clinical data 

on pharmacokinetics, efficacy, and safety can be leveraged quantitatively to guide dose-

ranging studies for next-in-class antiparasitic compounds. As new data from early clinical 

studies become available, the PBPK models can be updated and refined, and guide dose 

selection for later phase II/III trials, allowing for a more precise evaluation of toxicity and 

efficacy. 
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C.         FIGURES 
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Figure 5.1. Subcellular localization of generated active metabolites, furamidine and CPD-
0801, in rat isolated perfused livers. Prodrug, pafuramidine or CPD-0868 (10 µM) was 
administered as a bolus to the perfusion reservoir. 
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