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Abstract

Background: Nucleosome free regions (NFRs) play important roles in diverse biological processes including gene regulation. A
genome-wide quantitative portrait of each individual NFR, with their starting and ending positions, lengths, and degrees of
nucleosome depletion is critical for revealing the heterogeneity of gene regulation and chromatin organization. By averaging
nucleosome occupancy levels, previous studies have identified the presence of NFRs in the promoter regions across many
genes. However, evaluation of the quantitative characteristics of individual NFRs requires an NFR calling method.

Methodology: In this study, we propose a statistical method to identify the patterns of NFRs from a genome-wide
measurement of nucleosome occupancy. This method is based on an appropriately designed segmental semi-Markov
model, which can capture each NFR pattern and output its quantitative characterizations. Our results show that the majority
of the NFRs are located in intergenic regions or promoters with a length of about 400–600bp and varying degrees of
nucleosome depletion. Our quantitative NFR mapping allows for an investigation of the relative impacts of transcription
machinery and DNA sequence in evicting histones from NFRs. We show that while both factors have significant overall
effects, their specific contributions vary across different subtypes of NFRs.

Conclusion: The emphasis of our approach on the variation rather than the consensus of nucleosome free regions sets the
tone for enabling the exploration of many subtler dynamic aspects of chromatin biology.
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Introduction

Nucleosomes, the building blocks of chromatin, are critical

regulators in many biological processes, such as transcription,

DNA repair and replication [1]. The presence of nucleosomes in

many occasions hinders the accessibility of the transcriptional

machinery to access the underlying DNA. Conversely, nucleosome

depletion allows access of transcriptional regulators to DNA

sequences [2–6]. This underlines the importance of locating

nucleosome positions, a goal that has been attained by several

groups in yeast [2–6] and mammals [7–8].

Despite the availability of genome wide nucleosome distribution

profiles, several fundamental questions regarding the nature of

nucleosome free regions (NFRs) remain unknown. First, it is not

clear whether NFRs occur exclusively at the promoter regions.

NFRs in non-promoter regions (including coding regions) may have

functions that have not been identified. Second, it has been

controversial whether histones are depleted only from the promoters

of activated genes. Several studies suggested the existence of

transcription-independent NFRs at individual promoters [7–10].

Finally, the transcriptional machinery and DNA sequence have

been shown to be involved in histone eviction [9–11], however, they

may have distinct effects for different subtypes of NFRs

To investigate the above issues, it is important to bring out the

dynamic aspects of NFRs. Due to the complex interplay between

gene regulation and chromatin remodeling, the lengths of NFRs

may differ from one another. Likewise, the degree of nucleosome

depletion (DoND) in each NFR is likely to vary as well. However,

while many previous studies have described nucleosome occupan-

cy in quantitative terms, most of them focused on ensemble

properties of NFRs. For instance, representative nucleosome

occupancy in the promoter regions have been reported by

averaging the enrichments of nucleosomes across all genes aligned

by the start codons of ORFs or transcription start sites (TSSs)

[5,6]. Although this ‘‘representative NFR’’ reveals a shared pattern

of nucleosome depletion for many genes, it also masks character-
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istics specific for individual NFRs. On the other hand, reports such

as Fig. 4 of Lee et al. [6] and Fig. 2 of Whitehouse et al. [14] did

indicate length variation among NFRs. However, the location and

quantitative features of each individual NFR have not been

systematically explored.

In order to examine an individual NFR across the whole

genome, an automatic ‘‘NFR calling’’ algorithm is required that

can dissect an NFR pattern from a noisy background. Currently

the major existing algorithms facilitating the analysis of genome-

wide DNA-protein interaction data were adapted from those

initially designed for detecting the binding of transcription factors

(TFs) [12–16]. These algorithms are however inadequate for

capturing NFRs for the following reasons: first, as most TFs are

sparsely localized across the genome, many algorithms for

identifying TF binding sites (TFBSs) are designed under the

assumption that TF binding is an uncommon event, thus the

majority of array data is considered background noise. However,

this assumption becomes problematic for exploring epigenetic

events that are often abundant, including the occupancy of

nucleosomes and a variety of histone modifications. Second, the

signal of TF binding obtained from microarrays typically occurs

within a short region and tends to form a sharp ‘‘peak’’

(Supplementary Figure 1a in Supplementary Materials S1). In

contrast, the pattern of nucleosome occupancy or the occurrence

of histone modifications can be much longer with various lengths

(Supplementary Figure 1b in Supplementary Materials S1). Third,

while the binding of a TF at a promoter only requires a qualitative

description (i.e. presence/absence), quantitative characterizations

such as the DoND are essential for NFRs.

To our knowledge, there are only two published algorithms

specifically designed for detecting the presence of nucleosomes.

Yuan et al. [5] employed a Hidden Markov Model (HMM) to

characterize positioned or delocalized nucleosomes. This algo-

rithm was further modified to analyze higher resolution nucleo-

some occupancy data by Lee et al. [6]. This method only infers the

positions of nucleosomes, but does not provide quantitative

properties of the NFRs such as DoND. Alternatively, Ozsolak et

al. [17] proposed a two-step procedure to detect positioned

nucleosomes, consisting mainly of (1) smoothing the raw probe-

level data by wavelet decomposition and (2) decomposing the

entire chromosome into ‘‘peaks’’ and ‘‘troughs’’ by an edge-

detection technique. A peak-to-trough ratio was used to quantify

the signal of nucleosome occupancy, which is a conservative

measurement since it is estimated using only a few extreme values.

As Ozsolak et al. mentioned in their supplementary methods ‘‘This

method gives a very conservative definition of peak and trough

heights and eliminates many false positives’’.

In this study, we developed an algorithm for capturing complex

signal patterns from high-density genome-wide data. This

algorithm is based on a segmental semi-Markov model (SSMM)

which is an extension of HMM. In addition to identifying desired

patterns (e.g., NFR patterns) and capturing their quantitative

features, our algorithm also enjoys more flexible model assump-

tions and higher efficiency compared to regular HMM. A

schematic representation of our study is shown in Figure 1,

depicting how SSMM is used in characterizing genome-wide

NFRs and exploring the driving forces of nucleosome depletion.

Results

Data collection and validation
To measure nucleosome occupancy genome wide in yeast using

ChIP-chip assays, we isolated yeast nucleosomal DNA by

chromatin immunoprecipitation (ChIP) using anti-H3 antibodies

and hybridized both immunoprecipitated and input DNA to the

Affymetrix Saccharomyces cerevisiae Tiling 1.0R Array featuring a 4-

bp high resolution (See Methods). Two different H3 antibodies

(each with two biological replicates) were utilized which generated

highly reproducible results (Pearson correlation R = 0.82 across

,2.6 millions probes). We used the average of the four replicates

for the following analysis.

We first validated our data using previously published

nucleosome occupancy data. A coarse-grained version of our data

show consistency with previous works including those from

Bernstein et al. [2] (R = 0.66, ,6000 probes), Lee et al. [3]

(R = 0.77, ,12000 probes) and Pokholok et al. [4] (R = 0.62,

,41000 probes) (Supplementary Tables 1–3 in Supplementary

Materials S1). We further compared our data to two recent

nucleosome maps at higher resolution [5,6]. Using an averaging

window of 500bp, the correlations between our data and the data

from Lee et al. [6] and Yuan et al. are 0.75 and 0.59, respectively.

Therefore our data are of high quality and are consistent with

published works.

Nucleosome occupancy levels for various chromosome
features

We first examined nucleosome occupancy at various chromo-

somal features. Previous studies reported relatively low nucleo-

some occupancy in regions such as promoters and enhancers [1–

3,5,11]. A more comprehensive survey was performed for H2A.Z-

containing nucleosomes at different chromosome features [18].

Here we carried out a systematic study for average nucleosome

occupancy on all annotated chromosome features, including

Figure 1. A schematic representation of our study. A flow chart is
shown to illustrate the experimental and computational strategies
employed in this study. In the central panel, the solid orange line
indicates observed histone binding signals and the green dash line
indicates the fitted result using our SSMM model.
doi:10.1371/journal.pone.0004721.g001

Dissection of NFR
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ORFs, ARSs, rRNAs, tRNAs, snRNAs, snoRNAs, telomeric

elements, introns, long terminal repeats and transposons. Specif-

ically, We measure the nucleosome occupancy in one chromosome

feature, e.g., ORF, by the log ratio (the ChIP enriched signals

versus the signals from genomic control) averaged across all the

instances of the chromosome feature, e.g., all individual ORFs.

Our findings reveal that ORFs, transposons, rRNAs, telomeres

(except the telomeric repeats where there is presumably no histone

binding [19]) have higher nucleosome occupancy on average than

intergenic regions. In contrast, genes coding for tRNAs and

snoRNAs have significantly lower nucleosome occupancy than

intergenic regions, presumably due to their intense transcriptional

activities [20]. Interestingly, introns and ARSs also have low

nucleosome occupancy (Supplementary Table 4 in Supplementary

Materials S1).

NFR identification by SSMM
In order to examine individual NFR across the whole genome,

we developed an automatic ‘‘NFR calling’’ algorithm based on a

segmental semi-Markov model (SSMM) to capture the quantita-

tive properties of each NFR. A schematic plot is shown in Figure 2

to illustrate our SSMM, which includes four states. States 1 and 2,

represented by two horizontal lines, reflect signals from a

nucleosome occupied region (NOR) and an NFR, respectively.

These two states have the same shape, but different state duration

and transition probabilities. State 3, represented by a line with

negative slope, models the transition from the NOR to the NFR;

and state 4, represented by a line with positive slope, models the

transition from the NFR to the NOR. Initial inspection of the

nucleosome occupancy data revealed two types of NFR patterns:

triangles (Figure 2(a)) and trapezoids (Figure 2(b)). A triangle or

trapezoid pattern corresponds to the path: 1R3R4R1 or

1R3R2R4R1, respectively (Figure 2(c)). Therefore our SSMM

algorithm can be considered as a stochastic curve-fitting algorithm

to capture both triangular and trapezoidal patterns.

To implement this SSMM algorithm, we organized the data

into three hierarchical levels: probes, bins, and segments (Figure 3).

We first grouped probes within a 50-bp window into a ‘‘bin’’.

Then ‘‘segments’’ were constructed from one or several ‘‘bins’’ so

that all the probes within a segment are emitted from the same

hidden state. The emission probability (i.e., the probability to

observe this segment given the underlying state) was calculated

based on linear model fitting. This design has greatly improved the

efficiency and robustness of our method (see Methods section for

details).

SSMM fitting enables us to derive four quantitative features of

each NFR: (1) the location, (2) the length, (3) the absolute DoND

level (‘‘absolute depletion’’), and (4) the relative DoND level

(‘‘relative depletion’’). As a triangle pattern is a special case of a

trapezoid pattern with its bottom degenerated to one point, we

only describe how to obtain the quantitative features for

trapezoids. As illustrated in Figure 4, we define the location of

an NFR as the position of the mid-point of its bottom. The length

of an NFR is defined as the horizontal distance between the mid-

points of two opposite sides. The ‘‘absolute depletion’’ (‘‘A’’ for

short) measures the signal level (log ratio) at the bottom. The

‘‘relative depletion’’ (‘‘R’’ for short) measures the signal decrease in

an NFR compared to its neighborhood, which is the difference

between the signal level at the bottom and the lower signal level of

the two neighboring regions.

Applying SSMM to our nucleosome occupancy data led to the

identification of 9593 NFRs in total, among which 35% are

trapezoid patterns and 65% are triangle patterns. To determine

the efficacy of SSMM in detecting the desired geometric shapes,

we computed a goodness of fitness measure (R2 value) for each

detected NFR and found the value to be extremely high, hovering

near 0.95 (see section 2.5 of in Supplementary Materials S1 for

details). Figure 5 exemplifies how NFRs are identified by SSMM

based on our tiling array data. The lower left panel shows an NFR

located in the shared promoter region by genes HHT2 and HHF2

encoding histones H3 and H4 respectively. The lower right panel

shows another NFR in the promoter region of RPS17B, encoding

a ribosomal protein [21]. To compare SSMM outputs to those

generated by HMM, we also show in Figure 5 the raw data and

HMM calls from Lee et al. [6] in the upper panels. In contrast to

SSMM, HMM outputs do not distinguish NFRs from the linker

regions and do not provide DoND information for NFRs.

It is worth noting that despite the overall consistency, Lee et al.’s

data generally depicts higher resolution nucleosome occupancy

than our data, as a micrococcal nuclease based nucleosomal DNA

isolation approach was used instead of a sonication based method

employed in this study (see Methods). However, the micrococcal

nuclease based protocol also introduces complexity in distinguish-

ing NFRs from inter-nucleosomal linker regions. This is less

problematic for our data as the linker regions are already smeared

(see Figure 5). Our SSMM can also be applied to the micrococcal

nuclease-based data after appropriate data smoothing.

Both Yuan et al. [5] and Lee et al. [6] referred to all the regions

that are not occupied by nucleosomes (well-positioned or

delocalized) as the linker DNA. After taking a closer look at the

probe intensity (the log ratio of nucleosome occupancy) within the

linker DNA defined by Lee et al., we found that those genomic loci

with lower probe intensities are more likely to fall into the NFRs

that we identified (Figure 6). For example, among 314,457 linker

probes with intensity higher than 21.0 (in log ratio), only 35.5%

reside in NFRs, while for those 259,494 probes with signal lower

than 21.0, 64% fall in NFRs. This agrees well with the

anticipation that NFRs tend to have lower nucleosome occupancy

than inter-nucleosomal linker regions.

Effects of DoND on distributions and lengths of NFRs
The heterogeneity of nucleosome depletions at different

chromosome features highlights the importance of quantifying

the degree of nucleosome depletion. For each NFR, we introduced

two measurements, absolute DoND (A) and relative DoND (R).

These two measurements are well correlated as determined by

plotting R against A for all 9593 NFRs detected in this work

(Supplementary Figure 3 in Supplementary Materials S1). In fact,

the relation between A and R can be approximated using a simple

linear relation A = -R. Therefore to simplify the discussion, we shall

use R.a and A,-a as the primary cutoff criteria for selecting

NFRs according to DoND.

Figure 2. Four states in segmental semi-Markov model. (a) A
triangle pattern with multiple states is shown representing the first type
of NFR signal observed from tiling array-based ChIP-chip data. (b) A
trapezoid pattern with multiple states is shown representing the
second type of NFR signal observed from tiling array-based ChIP-chip
data. (c) The allowed transitions between any two of the four states in
(a) and (b).
doi:10.1371/journal.pone.0004721.g002

Dissection of NFR
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Nucleosomes are often depleted from promoters and intergenic

regions [2,3,11]. Our results have also confirmed these observa-

tions. We further showed that DoND is a critical factor for the

distribution of NFRs. NFRs with higher DoNDs are more likely to

be located in the intergenic regions or upstream of coding regions

(Figure 7, Supplementary Figure 4–5 in Supplementary Materials

S1). In addition, those intergenic regions that are also upstream of

coding regions are more likely to contain NFRs (Chi-square test p-

value,561025 for any DoND cutoffs from 0.2 to 1.0).

NFRs with a higher DoND are preferentially located in divergent

intergenic regions, in which the neighboring genes share the 59

upstream sequences. As the DoND increases, the proportion of NFRs

located in divergent regions increases. In contrast the proportion in

convergent regions (where the neighboring genes share the 39

downstream sequences) decreases, and the proportion in tandem

intergenic regions (where the neighboring genes are transcribed in the

same direction) is roughly constant when the DoND increases

(Supplementary Figure 6–8 in in Supplementary Materials S1).

Our data show that the occurrence of NFRs is related to DNA

sequence properties, a relationship that is strengthened as DoND

increases. We found the proportion of NFRs within TATA box-

containing promoters [22] increases as the DoND increases

(Supplementary Figure 9–11 in Supplementary Materials S1),

which is consistent with a prediction by Segal et al. [11] using a

computational model. Previous work has shown that TFBSs are

over-represented in nucleosome-depleted promoters [2]. We

further demonstrated that the proportion of NFRs harboring

TFBSs increases as DoND increases (Supplementary Figure 12–

14 in Supplementary Materials S1).

Figure 4. Quantitative characterizations of NFRs. This figure
shows how to calculate quantitative features of NFRs based on a
trapezoid pattern. Four quantities can be estimated as follows: location,
0.5*(pBottom1+pBottom2); ‘‘absolute depletion’’, xBottom; ‘‘relative
depletion’’, min(xLeft, xRight)-xBottom; range, [0.5(pLeft+pBottom1),
0.5(pRight+pBottom2)]. The triangle pattern is just one special case of
trapezoid pattern, with pBottom1 = pBottom2.
doi:10.1371/journal.pone.0004721.g004

Figure 3. The organization of our segmental semi-Markov model. (a) The yellow solid line represents observed data and the green dash line
indicates the model fitting by SSMM. The state of each bin is labeled by numbers 1, 2, 3, or 4 as shown at the bottom. A magnified seven-bin long
segment between the two vertical dotted lines is shown in part (b). A single 50-bp bin from segment in (b) containing 11 probes is shown in (c). It can
be seen that the distances between adjacent probes are not constant.
doi:10.1371/journal.pone.0004721.g003

Dissection of NFR
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All previous studies identifying the locations and lengths of

NFRs have been carried out only at the ensemble-level by

averaging the nucleosome occupancy curves from a large number

of promoter regions. Yuan et al. [5] reported a consensus NFR

that is 150bp long at 200bp upstream of the ORF start site. Lee et

al. [6] further identified a more coherent relation between the

location of the consensus NFR and the TSS [23]. However,

although the location and length of each individual NFR vary,

neither paper provided such important information. In contrast,

by characterizing individual NFRs using SSMM, we can study the

location and length of each NFR in detail instead of merely

conveying the ‘‘average’’ pattern.

We first examined the locations of NFRs relative to TSSs or

ORFs. We found a total of 3448 NFRs at the promoter regions of

3447 distinct genes (within 500 upstream of ORFs), among which

we obtained the TSS positions for 2601 ORFs [23]. Consistent

with the aforementioned literature, the centers of these NFRs were

found to lie around 100–200bp upstream of the TSS. Interestingly,

NFRs with a higher DoND are observed further away from the

TSS (i.e., shifted towards the 59 direction) (Figure 8(a)). We found

the starting point (59) of NFRs appearing 350–450bp upstream of

the TSS, and the end points (39) of NFRs primarily occurring

100bp downstream of the TSS. The distributions of NFR

boundaries (59 and 39) also shift to 59 direction as DoND increases

(Figure 8(b)). We obtained similar results (but with more variations)

when measuring the positions of NFRs relative to the start codons

of the ORFs (Supplementary Figure 15 in Supplementary

Materials S1).

We next examined the distribution of NFR lengths. The

majority of the NFRs within the promoter regions are found to be

Figure 5. A comparison between the nucleosome occupancy data from this study and those from Lee et al. [6]. Two representative
NFRs are shown using data from both this study and Lee et al. [6]. In the upper panels, trimmed raw nucleosome occupancy signals from Lee et al. are
shown (blue), under which the rectangles show the nucleosome calls by HMM [5]. Dark and light green rectangles represent localized and delocalized
nucleosomes respectively; white spaces represent linker regions. In the lower panels, the nucleosome binding is shown in yellow and the green
broken lines are the SSMM output from this study. Vertical broken lines show the start, the end of the triangle/trapezoid patterns and the boundaries
of NFRs. The absolute depletion (A) and relative depletion (R) are also annotated. The bottom panels show the names of ORFs in these regions.
Similar figures for each of the 295 NFRs with highest DoND (R.1.0 and A,21.0) can be downloaded at http://www.bios.unc.edu/,wsun/NFR/
compare_Lee07_NFRs.pdf.
doi:10.1371/journal.pone.0004721.g005

Figure 6. A comparison of intensities of linker probes between
those that are inside NFRs and those that are outside of NFRs.
The probe intensity is measured by the raw data of nucleosome
occupancy, i.e., log(ratio) from Lee et al. [6]. A density distribution
(green line) is plotted for the intensity of linker probes (defined in Lee et
al. [6]) that are also present in NFRs (defined in this study). A similar
curve was shown for linker probes that locate outside of NFRs (red line).
doi:10.1371/journal.pone.0004721.g006

Dissection of NFR
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around 500bp, which is even more evident when the DoND

increases (Figure 8(c)). A similar distribution was observed when

using all NFRs (including those outside of the promoter regions)

(Supplementary Figures 16–18 in Supplementary Materials S1).

We conclude that NFRs have a typical length of 400–600bp,

which is approximately the length of DNA wrapping around two-

to-three nucleosomes plus linkers. Due to the variations in the

locations and lengths of NFRs, most of them are expected to be

longer than their consensus pattern derived by curve averaging

(c.f. aforementioned results of [5,6]).

Factors of nucleosome depletion: transcriptional activity
versus DNA affinity for histones

One of the long-standing puzzles in chromatin studies is the

mechanism by which histones are evicted from NFRs. At least two

major driving forces were reported. It has been shown that

histones are depleted from active promoters by transcription-

coupled machinery [2–5]. It is also known that certain DNA

sequences have low intrinsic affinity for histones [7–11]. However,

the relative effects of these two factors and their relationship

remain unclear. We sought to address these questions based on the

NFRs identified by our SSMM.

For each NFR, we first quantified the levels of transcriptional

activity and DNA affinity for histones. To measure the

transcriptional activity, a genome-wide RNA Polymerase II (Pol

II) binding assay was performed using ChIP-chip (See Methods).

We found that the DoND of NFRs correlates best with the Pol II

binding levels within the neighboring regions of NFRs rather than

those within the NFRs (Supplementary Tables 5–6 in Supple-

mentary Materials S1). Presumably this is because NFRs typically

occur at gene promoters, while the strongest Pol II binding mostly

occurs on the neighboring coding regions, which could be either

upstream or downstream of NFRs. Based on this observation, we

averaged the Pol II binding signal within 1kb upstream or

downstream of an NFR, and defined the higher signal as the local

transcriptional activity. To measure the DNA affinity for histones

Figure 7. Mapping the locations of NFRs with various DoND. The proportions of NFR patterns located at intergenic regions, 500bp upstream
regions of ORFs, and either regions given different cutoffs of DoND. Specifically, the cutoff a (a,0) indicates that the absolute depletion is smaller
than a and the relative depletion is bigger than -a. The dash line indicates the total number of NFR patterns at different cutoffs (corresponding to the
axis on the right side).
doi:10.1371/journal.pone.0004721.g007

Figure 8. The distributions of locations and lengths of NFRs within promoter regions. NFRs that locate within 500bp upstream of ORFs
were used and classified according to their DoND (A: absolute depletion, R: relative depletion). (a) The distributions of NFR positions (measured by
the centers of NFR relative to TSSs) are plotted for NFRs with different DoND, as shown by curves with various colors. (b) The distributions of NFR
boundaries (relative to TSSs) are plotted for NFRs with different DoND. The color codes are the same as in (a). (c) The distributions of NFR lengths are
plotted for NFRs with different DoND.
doi:10.1371/journal.pone.0004721.g008

Dissection of NFR
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within an NFR, we computed the average DNA affinity (measured

as a probability of nucleosome occupancy) across all the

nucleotides in that NFR using a previously published data set [11].

Next, in order to examine the contributions of transcriptional

activity and DNA affinity in nucleosome depletion, we used a

bivariate additive linear model with DoND (either absolute

depletion or relative depletion) as a response and the two factors

as covariates. The contribution of each factor is evaluated based

on the variance of DoND it explains. It is worth noting that the

linear regression and correlation analysis, as powerful tools to

estimate the relative effect of different factors, however cannot be

simply regarded as causal inference. Specifically, the variance of

DoND is decomposed into three parts: the variance explained by

DNA affinity, the variance explained by Pol II binding, and the

covariance. We observed a positive covariance in all cases we

considered and we referred to this covariance as the variance

explained by both factors (See section 6 in Supplementary

Materials S1 for details).

Initial examination of the entire 9593 NFRs by our additive

bivariate linear model confirmed that both factors have significant

effects on nucleosome depletion in NFRs, while the effect of

transcriptional activity is dominant overall (Supplementary

Table 6 in Supplementary Materials S1). For example, if we use

absolute depletion to measure DoND, 12.6% of the DoND

variance in total can be explained by either DNA affinity for

histones or transcriptional activity, among which the majority

(90.4%) is attributed to transcriptional activity. Only 7.6% is

attributed to DNA affinity for histones, and less than 2% can be

explained by either factor (Figure 9, see Supplementary Table 10

in Supplementary Materials S1 for details). Similar conclusions

can be drawn using relative depletion to measure DoND

(Supplementary Table 11 in Supplementary Materials S1).

To ask whether the effects of these two factors may differ in

various NFR subgroups, we further compared the contribution of

transcriptional activity and DNA affinity in the following NFR

subgroups (Figure 9, see Supplementary Tables 6–11 in Supple-

mentary Materials S1 for details of each subgroup): NFRs located

in intergenic regions or 500bp upstream of ORFs (Inter/Up) or

other genomic regions (Others); NFRs located in convergent

(Converge), tandem (Tandem), and divergent (Diverge) intergenic

regions; NFRs located in TATA-containing or TATA-less

promoters (500bp upstream of ORFs); TFBS-containing NFRs

or TFBS-less NFRs.

Several interesting results were revealed. (1) While both Pol II

and DNA affinity affect DoND in intergenic/promoter regions as

expected, Pol II has an overall larger effect than DNA affinity,

indicating that Pol II is a major deterministic factor of nucleosome

depletion in intergenic/promoter regions. (2) Pol II binding

explains more variance of DoND in regions with higher

transcription activity, such as divergent and tandem intergenic

regions. In contrast, DNA affinity has a larger effect in regions

with less transcription activity such as convergent intergenic

regions (Supplementary Tables 10–11 in Supplementary Materials

S1). For example, when relative depletion is used as the

measurement of DoND, DNA affinity contributes to 9%, 24.4%,

and 78.7% of the total variance explained by the two factors in

divergent, tandem, and convergent intergenic regions, respectively

(Supplementary Table 11). (3) DNA affinity effect increases

dramatically in NFRs containing TATA box or TFBS. For

example, the contribution of DNA affinity increases 28 times more

in TFBS-containing NFRs than in TFBS-less NFRs, and 6 times

more in NFRs within TATA-containing promoters than TATA-

less promoters (using absolute depletion, see Figure 9 and

Supplementary Table 10 for details). In contrast, the Pol II

binding effect remains comparable (less than 2 fold change)

regardless of the presence of TFBS or TATA-box (Supplementary

Table 10 in Supplementary Materials S1). Using relative depletion

yields similar results (Supplementary Table 11 in Supplementary

Materials S1). Interestingly, among those TFBS or TATA box-

containing genes where DoND are dominated by DNA sequence

properties, a number of them are stress response genes. For

example, GAC1 is a gene that is repressed in rich medium and

induced upon diauxic transition when glucose is limited [24]. We

found GAC1 is depleted of nucleosomes at its promoter under a

repressive state (Figure 10). YMR279C, a gene that is activated

upon heat stress [25] and also loses histones from its promoter

despite the fact that it is not transcribed (Supplementary Figure 19

in Supplementary Materials S1). Both promoter regions of these

genes have been predicted to contain sequences that are poorly

bound by nucleosomes [11]. Moreover, this may be a general

phenomenon as it has been reported that TATA-box containing

genes are highly enriched by stress-response genes [22]. The DNA

Figure 9. Dissection of the effects of DNA affinity for histones and Pol II for nucleosome depletion. The upper panel shows the total R2

(percentage of variance) that can be explained by either DNA affinity for histones or transcriptional activity (Pol II binding), which is further divided
into three parts: those explained by DNA affinity for histones (R2_DNA), by Pol II binding (R2_PolII), or by both (R2_both). Part of the variance can be
explained by both factors due to their weak correlation between each other, as shown in the lower panel.
doi:10.1371/journal.pone.0004721.g009
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sequences in the promoters of these genes could have evolved to

enable strong repulsion against histones. In this way histones may

be pre-cleared at these promoters prior to the entry of

transcription machinery, presumably to allow the rapid binding

of TBP (TATA-box binding protein) under environmental stresses.

A similar mechanism could apply to TFBS-containing genes.

Indeed, the low nucleosome occupancy on TATA-box has been

reported to be encoded by the intrinsic properties of DNA

sequences [11,26]. The histone depletions around TFBSs were

also observed elsewhere [2,5,6,11]. However, a lingering question

is that whether the depletion of histones in those TATA-box or

TFBS containing promoters is simply due to their high

transcriptional activity. Our study addressed this question by

showing that low histone occupancy still exists even after excluding

the transcription effect.

Discussion

We have proposed an algorithm based on a structured

segmental semi-Markov model, which extends hidden Markov

model to detect and quantify segmental patterns using high

resolution DNA-protein interaction data. In contrast to many

algorithms designed to detect the binding of TFs, our algorithm is

especially useful to characterize segmental features, which are

commonly observed in epigenetic studies. We have applied this

algorithm to a genome-wide nucleosome occupancy data and

identified all NFRs across the entire yeast genome at 4bp high

resolution. The location, length and DoND were quantified for

each NFR. We showed that DoND, as measured by SSMM,

closely associates with the distributions of NFRs.

We also studied the relative contributions of transcription

machinery and DNA sequence in evicting histones from NFRs.

The DoND measure we introduced plays a key role in formulating

this biological question mathematically. A genome-wide RNA

Polymerase II (Pol II) binding was used to evaluate the

transcriptional activity based on ChIP-chip assay. We showed

that Pol II and DNA play distinct roles in different types of NFRs.

Taken together our study is a novel example of genome-wide

investigations by combining transcription activity, genetic code

and epigenetic information to address biological questions.

It is interesting to take a close look at the NFRs that are located

outside of intergenic regions or the promoter regions. For

example, with a stringent cutoff (R.0.4 and A,20.4), we

obtained 1863 NFRs with significant histone depletion. Although

the majority of these NFRs are within intergenic regions or 500bp

upstream of coding regions, we found there are still 145 NFRs

(7.8%) located elsewhere (Supplementary Table 12 in Supple-

mentary Materials S1). Among them, 52 are associated with tRNA

genes, presumably due to their high transcription rate [22]. In

addition there are 16 NFRs falling into ARS regions, which raises

an interesting possibility for the involvement of NFRs in DNA

replications. We also found 58 NFRs lie in 58 distinct ORFs (25

verified ORFs, see Supplementary Table 13 in Supplementary

Materials S1; 12 uncharacterized and 21 dubious ORFs, see

Supplementary Table 14 in Supplementary Materials S1). It is

possible that these genic NFRs may harbor regulatory regions for

the neighboring genes that are located more than 500bp away.

Alternatively, these NFRs could affect genes in which they reside.

For example, they may contain cryptic transcription start sites

within coding regions allowing transcription to initiate there under

certain conditions [26,27]. Therefore our study highlights the need

for further study towards the functional roles of NFRs within genic

regions.

It is also worth noting that our methodology is not limited to the

tiling array based NFR study as demonstrated above. The

generality of our method allows for flexible applications to other

high-throughput data in computational biology that may exhibit

segmental patterns. For example, SSMM can be applied to the

nucleosome occupancy data generated using micrococcal nuclease

[6] or ChIP-seq [8] after appropriate smoothing. Moreover, our

method also allows the choice of different segmental models

depending on research interests, which make it general enough to

be adapted for analyzing many other types of genomic data

including those for DNA replication [28–30] and chromosome

translocation [31–33].

Materials and Methods

ChIP-chip assay and data pre-processing
Three sets of ChIP-chip data were used in this study. The first

set of ChIP-chip data of histone H3 was published previously [27].

Briefly, yeast chromatin was sheared by sonication into fragments

with an average size of 500bp. Chromatin Immunoprecipitation

(ChIP) was performed using antibody against histone H3 (a kind

gift from Dr. Alain Verreault [28]), and then DNA crosslinked

with nucleosomes was extracted and purified. Immunoprecipitated

DNA was amplified and hybridized to Affymetrix Saccharomyces

cerevisiae Tiling 1.0R Array to map the nucleosome occupancy

Figure 10. Histones are depleted from the promoter of gene
GAC1 prior to its activation. This figure shows the RNA polymerase II
binding (log ratio from our ChIP-chip results), DNA affinity for histone
(posterior probability of histone binding from Segal et al. [11]), and
nucleosome occupancy (log ratio from our ChIP-chip results) around
gene GAC1 in rich medium.
doi:10.1371/journal.pone.0004721.g010
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along chromosomes in a 4-bp high-resolution manner. Raw

intensities were computed by the Two-Sample Analysis method

using Affymetrix Tiling Analysis Software v1.1. The tiling array

features 2,635,714 oligo probes (25-mer) with 4 bp gaps (i.e. 21 bp

overlaps) between the majority (91.5%) of adjacent probes. Only

less than 1% of neighbor probes are separated by gaps longer than

20 bp. The entire yeast genome except centromeres is well

represented on the arrays.

We further generated a new histone H3 ChIP-chip data set (two

biological repeats) with a commercial H3 antibody (Abcam

ab1791) using Affymetrix tiling arrays. The data obtained from

these two antibodies are highly consistent (see Results). The

average of all four repeats was used in our study.

An alternative approach to isolate nucleosomal DNA was

employed in Yuan et al. [5] and Lee et al. [6], in which

micrococcal nuclease (MN) was used to digest the linker DNA.

While MN-based method produces relatively high resolution of

nucleosome mapping, both approaches have been widely used and

produce consistent results as shown in the paper.

In order to quantify the transcriptional activity at each genomic

locus, we also measured genome-wide RNA Polymerase II

(8WG16, Upstate) binding by ChIP-chip in a manner similar as

for histone H3.

We have deposited related array data to ArrayExpress (http://

www.ebi.ac.uk/microarray-as/ae/) with the accession number: E-

MEXP-1951.

Overview of SSMM
Segmental semi-Markov model (SSMM) is an extension from

hidden Markov model (HMM). Compared to standard HMM,

SSMM has two major generalizations. First, SSMM uses explicit

state length density instead of the implicated exponential density

[29]. For a standard HMM with transition probability aii from state

si to itself, the probability that d consecutive observations are emitted

from state si is (aii)
d-1(1-aii). This probability decreases exponentially

as d increases, which makes long segments impossible. For example,

if aii = 0.9 and there is one probe per 4bp, the probability that an

NFR is longer than 500bp (typical length of NFR, see result section)

is smaller than 261027. Thus adaptation of explicit state length

density is especially important for high density tilling array data.

The drawback of explicit state length density is that there are more

parameters to estimate, which may lead to over-fitting when sample

size is small. However, for tilling array with millions of probes, over-

fitting is unlikely to be a problem. Second, SSMM employs a

segmental model to calculate the emission probability so that

dependency is allowed for all observations within one segment [30].

This is desirable in analyzing tilling array data because this

dependency assumption is more realistic. Furthermore, the

segmental model can provide quantitative outputs characterizing

the shapes of signal patterns. Both HMM and SSMM have been

applied in speech recognition [29,30]. HMM has been introduced

to computational biology for sequence alignment and gene

detection [31–33], as well as identifying TFBSs [13,15] and NFRs

[5]. However, despite its flexibility in handling high density data,

SSMM has not been widely used for genomic studies. One possible

reason is its heavy computational burden. The algorithm we

introduced in this study incorporates several modifications of

regular SSMM, which greatly improve the computational efficien-

cy. We also designed the different hidden states and likelihood

evaluation scheme to fit the purpose of NFR identification.

Design of SSMM
Our SSMM is designed to capture two types of NFR patterns:

triangle and trapezoid patterns. We organized the data into three

hierarchical levels: probe, bin, and segment (Figure 3). We

organized data into ‘‘bins’’ before ‘‘segments’’ for the following

two reasons. First, it greatly reduces the computation burden by

enforcing all the probes in one bin having only one underlying

state. Second, discrete time SSMM assumes equally spaced

observations. However, in our data, the gaps between adjacent

probes are not constant. Grouping probes into bins ensures the

distances between most adjacent bins are constant. Other possible

solutions include modeling the transition probability between

adjacent probes as a function of their distance [34], or

implementing continuous time SSMM. However, these methods

would significantly increase the algorithm complexity and

computation time.

The bin size was empirically determined for the following

considerations. On one hand, each bin should be long enough to

include enough probes for linear model fitting. Long bins also help

filter out noise and reduce computation burden. On the other

hand, the signals will be over-smoothed if bins are too long. We

use a bin of 50bp which on average covers 10–12 probes. This

allows enough data points for model fitting while also avoids over-

smoothing, given the lengths of NFRs typically vary from several

hundred to a few thousand base pairs (see Result).

We compute the emission probability segment by segment. For

one segment, we simply fit a linear model using nucleosome

occupancy (log ratio) as the response and probe location as the

covariate and then we calculated the emission probability based on

the residuals. In order to obtain continuous prediction of

nucleosome occupancy, we require the fitted line to start from

the end point of previous segment. More details regarding the

emission probability calculation are included in section 2.2 of

Supplementary Materials S1.

Several parameters of SSMM need to be estimated: the

transition probabilities from state 3 to state 2/4 (other transition

probabilities are fixed as 0 or 1) and the probability distributions of

state durations. These parameters are estimated by an iterative

procedure as following. After generating the initial parameter

values by uniform distributions, we first identify the most likely

path (‘‘best path’’) by Viterbi algorithm [29]. We then estimate the

parameters based on the most likely path, and iterate until the

parameter estimations converge. The Viterbi algorithm for SSMM

is a dynamic programming algorithm, which is similar to the one

for HMM. The difference is that in order to determine the best

path ended at time k, state i, in addition to choose the previous

state j, we also need to choose the duration of state i. The details of

Viterbi algorithms are discussed in section 2.3 of in Supplementary

Materials S1. Given the ‘‘best path’’, the parameters are estimated

in the following way. We estimate the transition probabilities by

the corresponding proportions of transitions. The duration

probabilities are estimated by the proportions of observed

durations. For example, in order to estimate P(duration of state

i = k), we first take all the durations of state i, and then calculate the

proportion of the durations of length k. For our data, it takes 7

iterations for the SSMM to converge; the convergence criterion is

that the maximum change of either transition probabilities or

duration probabilities is smaller than 1025. One commonly used

method for parameter estimation in HMM/SSMM is Baum-

Welch algorithm (an EM algorithm) [29]. We do not use this EM

algorithm for two reasons. First, as mentioned before, we wish to

obtain continuous prediction of nucleosome occupancy; however

this is not feasible using EM algorithm. Second, even we allow

discontinuous prediction, the EM algorithm is computationally

demanding, taking more than 30 times of CPU time compared to

our iterative Viterbi algorithm (which takes about one day to finish

all the computation). Further details about the algorithm and the
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parameter estimations are provided in section 2.2 and 2.4 of

Supplementary Materials S1.

To investigate if our algorithm is easily trapped in a local

optimum, we have also tested different initial parameter values. For

example, we initiated the state transition/duration distributions

from different normal distributions. We also initiated the lengths of

states 1 and 2 from the empirical distributions of the lengths of

chromosome features and intergenic regions respectively. In all

cases we obtained almost identical final outputs. We have

implemented our algorithm in an R package, ss.hmm, which can

be downloaded at http://www.bios.unc.edu/,wsun/software.htm.

Supporting Information

Supplementary Materials S1 Supplementary Methods and

Results

Found at: doi:10.1371/journal.pone.0004721.s001 (0.76 MB

PDF)

Acknowledgments

We thank UCLA microarray core facility for array services. We are also

grateful for the helpful suggestions by an anonymous referee and the

editing by Jason Tchieu. The authors declare no conflict of interest.

Author Contributions

Conceived and designed the experiments: WX MG KCL. Performed the

experiments: WX FX. Analyzed the data: WS WX KCL. Contributed

reagents/materials/analysis tools: WS KCL. Wrote the paper: WS WX

MG KCL.

References

1. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome,

fundamental particle of the eukaryote chromosome. Cell 98: 285–294.

2. Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL (2004) Global

nucleosome occupancy in yeast. Genome Biol 5: R62.

3. Lee CK, Shibata Y, BRao, Strahl BD, Lieb JD (2004) Evidence for nucleosome

depletion at active regulatory regions genome-wide. Nat Genet 36: 900–905.

4. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, et al. (2005)

Genome-wide map of nucleosome acetylation and methylation in yeast. Cell

122: 517–527.

5. Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, et al. (2005) Genome-scale

identification of nucleosome positions in S. cerevisiae. Science 309: 626–630.

6. Lee W, Tillo D, Bray N, Morse RH, Davis RW, et al. (2007) A high-resolution

atlas of nucleosome occupancy in yeast. Nat Genet 39: 1235–1244.

7. Lee MS, Garrard WT (1992) Uncoupling gene activity from chromatin

structure: promoter mutations can inactivate transcription of the yeast HSP82

gene without eliminating nucleosome-free regions. Proc Natl Acad Sci U S A 89:

9166–9170.

8. Fascher KD, Schmitz J, Horz W (1993) Structural and functional requirements

for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae

upon PHO5 activation. J Mol Biol 231: 658–667.

9. Mai X, Chou S, Struhl K (2000) Preferential accessibility of the yeast HIS3

promoter is determined by a general property of the DNA sequence, not by

specific elements. Mol Cell Biol 20: 6668–6676.

10. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions

and low nucleosome density are important for preferential accessibility of

promoter regions in yeast. Mol Cell 18: 735–748.

11. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, et al. (2006) A

genomic code for nucleosome positioning. Nature 442: 772–778.

12. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, et al. (2004)

Unbiased mapping of transcription factor binding sites along human

chromosomes 21 and 22 points to widespread regulation of noncoding RNAs.

Cell 116: 499–509.

13. Ji H, Wong W (2005) TileMap: create chromosomal map of tiling array

hybridizations. Bioinformatics 21: 3629–3636.

14. Kim T, Barrera LO, Zheng M, Qu C, Singer MA, et al. (2005) A high-resolution

map of active promoters in the human genome. Nature 436: 876–880.

15. Li W, Meyer CA, Liu XS (2005) A hidden Markov model for analyzing ChIP-

chip experiments on genome tiling arrays and its application to p53 binding

sequences. Bioinformatics 21 Suppl 1: 274–282.

16. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, et al. (2006) Model-

based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 103:

12457–12462.

17. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the

chromatin structure of human promoters. Nat Biotechnol 25: 244–248.

18. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, et al. (2007) Translational
and rotational settings of H2A.Z nucleosomes across the Saccharomyces

cerevisiae genome. Nature 446: 572–576.
19. Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume

a non-nucleosomal chromatin structure. Genes Dev 6: 197–210.
20. Morse RH, Roth SY, Simpson RT (1992) A transcriptionally active tRNA gene

interferes with nucleosome positioning in vivo. Mol Cell Biol 12: 4015–4025.

21. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, et al. (1998)
Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.

22. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation
of yeast TATA box-containing genes. Cell 116: 699–709.

23. David L, Huber W, Granovskaia M, Toedling J, Palm CJ, et al. (2006) A high-

resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA
103: 5320–5325.

24. Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, et al. (1999) Dynamic
responses of reserve carbohydrate metabolism under carbon and nitrogen

limitations in Saccharomyces cerevisiae. Yeast 15: 191–203.
25. Sakaki K, Tashiro K, Kuhara S, Mihara K (2003) Response of genes associated

with mitochondrial function to mild heat stress in yeast Saccharomyces

cerevisiae. J Biochem 134: 373–384.
26. Ioshikhes IP, Albert I, Zanton SJ, Pugh BF (2006) Nucleosome positions

predicted through comparative genomics. Nat Genet 38: 1210–1215.
27. Xu F, Zhang Q, Zhang K, Xie W, Grunstein M (2007) Sir2 deacetylates histone

H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular

Cell 27: 890–900.
28. Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance

mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:
537–549.

29. Rabiner LR (1989) A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 77: 257–286.

30. Ostendorf M, Digalakis VV, Kimball OA (1996) From HMM’s to segment

models: a unified view of stochastic modelingfor speech recognition. IEEE
Transactions on Speech and Audio Processing 4: 360–378.

31. Krogh A, Mian IS, Haussler D (1994) A hidden Markov model that finds genes
in E.coli DNA. Nucl Acids Res 22: 4768–4778.

32. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids: Cambridge
University Press.

33. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.
34. Newton MA, Gould MN, Reznikoff CA, Haag JD (1998) On the statistical

analysis of allelic-loss data. Stat Med 17: 1425–1445.

Dissection of NFR

PLoS ONE | www.plosone.org 10 March 2009 | Volume 4 | Issue 3 | e4721


