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ABSTRACT  

Courtney Ellen Cox: Evaluating Strategies for Restoring Parrotfish Populations in Belize  
(Under the direction of John F. Bruno)  

  

Parrotfish populations have declined throughout the Caribbean due to overfishing.   

Functional loss of these key grazers has contributed to a shift in reef community structure  

from coral to algal dominance. Marine protected areas (MPAs) and a national ban on the  

harvesting of herbivorous fishes are two management strategies implemented in Belize to  

recover parrotfish populations. Restricting or eliminating fishing is thought to promote high  

biomass of herbivorous fish that suppress macroalgae facilitating coral recruitment and  

population recovery. The success of these strategies not only depends on reduced fishing  

pressure, but also on the connectivity between parrotfish populations.   

My doctoral dissertation research examined the effectiveness of the MPA network in  

Belize and the ban on herbivorous fish harvesting in restoring fish communities and coral  

reef assemblages. From 2009 to 2013, I quantified the density and biomass of reef fishes,  

coral cover, and macroalgal cover at 16 reefs in Belize, including 8 protected sites and 8  

unprotected sites. I then tested the effects of MPAs and the ban on herbivorous fish  

harvesting on coral reef community structure, projected parrotfish population recovery, and  

assessed connectivity between parrotfish populations in Belize and Honduras using nine  

nuclear microsatellite loci. Over the five year monitoring period, density or biomass  

increased for four parrotfish species. Population models indicate recovery is underway, and  

predict that a minimum of 9 years is needed to reach complete population recovery. Although  
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the ban has been beneficial for parrotfish populations, my results also suggest that Belize’s  

current network of MPAs have not provided general and measurable ecological benefits for  

parrotfish biomass or the benthic community. I found only weak genetic population structure  

among populations within the Southern Mesoamerican Barrier Reef suggesting that these  

populations are connected via larval dispersal. My results highlight the importance of  

establishing a management approach that crosses international boundaries and suggest that  

improved enforcement of MPAs and additional restrictions on fishing effort may be  

necessary to restore parrotfish populations and coral reef health.  
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CHAPTER 1: GENETIC TESTING REVEALS SOME MISLABELING BUT 
GENERAL COMPLIANCE WITH A BAN ON HERBIVOROUS FISH 

HARVESTING IN BELIZE 
 

Introduction 

In recent decades, coral reef ecosystems have experienced a substantial decline in 

coral health and fish abundances (Hughes 1994, Jackson et al. 2001, Gardner et al. 2003) and 

thus resource managers have implemented various measures to mitigate coral loss and restore 

fish populations. However, overexploitation of fish populations continues to occur despite 

conservation efforts in part because of illegal, unregulated, and unreported (IUU) fishing and 

fish mislabeling (Baker et al. 2007, Jacquet and Pauly 2008, Miller et al. 2011). The Belize 

Fisheries Department has developed a number of progressive marine management strategies 

including the establishment of no-take zones, protection of spawning aggregation sites, bans 

on bottom trawling and on the capture and possession of herbivorous fishes (Scaridae and 

Acanthuridae). Parrotfish comprised an average of 28% of the catch at Glover’s Reef from 

2005 to 2008 (Wildlife Conservation Society 2010). In 2009, resource managers 

implemented the national ban on herbivorous fish harvesting to mitigate high (~50%) 

macroalgal cover on much of the Belize Barrier Reef, which has largely been attributed to the 

loss of herbivorous fishes (Hughes et al. 2005). The new regulation was communicated to the 

public, specifically local fishermen, through public meetings in coastal fishing towns. Belize 

is the first country to implement a regional ban on herbivorous fish harvesting. 
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However, evaluation of compliance with the ban is needed to fully assess the value of the  

approach.  

  

Fishing is economically, culturally, and socially important for many coastal  

communities in Belize with finfishes historically being an important local fishery and more  

recently an important export fishery (Belize Ministry of Agriculture and Fisheries 2008).  

Specifically, snapper and grouper are highly sought after by fishermen to meet demand from  

locals and tourists. Other important species in Belize include common snook, mackerels,  

kingfish, cobia, small tunas, bonito, pompano, permit, and hogfish (Belize Ministry of  

Agriculture and Fisheries 2008). In Belize, the Nassau grouper is protected from December 1  

to March 31 and only individuals between 20 cm and 30 cm can be harvested year round. In  

addition, snapper and grouper aggregation sites require special permits from the fisheries  

department. However, snapper and grouper populations have been declining throughout the  

Caribbean including in Belize (Sala et al. 2001, Graham et al. 2008, RT et al. 2009, Paddack  

et al. 2009, Stallings 2009b, Mumby et al. 2012). Despite the declines in snapper and grouper  

populations, purported fillets of these species are still readily available in restaurants, fish  

markets, and supermarkets, which suggests that fish vendors may be selling less desirable  

species - including herbivorous species such as parrotfish and surgeonfish - as snapper and  

grouper. Mislabeling fillets of less desirable fish species as more popular and more expensive  

fish species has been well documented in the U.S. and other parts of the world  (Jacquet and  

Pauly 2008, Miller and Mariani 2011). Marko et al. (2004) found that 77% of fish labeled as  

the overfished red snapper (L. campechanus) on the East Coast of the US were identified as  

less desirable species. Logan et al. (2008) found that 56% of fish labeled as Pacific red  
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snapper (genus Sebastes) in California and Washington were identified as overfished species  

of Sebastes. In the US, studies such as these have resulted in fines for seafood fraud (up to $1  

million) and states developing programs to use DNA testing to prevent mislabeling.   

  

According to marine reserve managers, few arrests have been made for the possession  

of herbivorous fish (Annelise Hagan, person. comm, 2011). However, it is difficult to  

evaluate true compliance with this ban based on arrest records because of the lack of detailed  

record keeping by enforcement rangers. An alternative approach to detecting illegal fishing is  

to use genetic identification to determine if illegal species are being sold as fillet in  

markets.This study documents the prevalence of illegal, herbivorous fish and fish mislabeling  

in local markets from fiver major Belizean towns over a two year period.   

  

Methods  

Sample and data collection   

We designed the sampling methodology to maximize spatial coverage within Belize,  

maximize the type of vendors sampled, and replicate the data collection over time. We  

purchased 111 fish fillets from open fish markets, supermarkets, restaurants, and/or fishing  

co-operatives in five major fishing and/or tourist towns along the Belize coast in May/June  

and October/November from 2009 to 2011 (Appendix A). We removed approximately 1  

gram of muscle tissue from the fillets and stored in either 95% ethanol or 150 proof liquor in  

2 ml screw cap tubes. The number of fish fillets purchased varied between towns and  

sampling periods due to availability from fishermen and number of fish vendors. A detailed  

account of sampling conducted in each town in included in Appendix A. We could not be  
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certain whether each fillet was cut from a different fish or if multiple fillets were cut from  

one large fish. Therefore, we analyzed the data under two assumptions; 1) each fillet was cut  

from a different fish and 2) fillets identified as the same species purchased from one vendor  

were cut from one large fish.  For the purpose of proportion comparisons, we defined an  

individual sampling as data collected at one vendor in one town during one sampling period  

as summarized in Table S1.   

  

DNA Extraction and PCR Amplification   

We extracted genomic DNA from sample tissue with the Qiagen Puregene Mousetail  

kit (former Gentra cat. no. D-7010B) and stored at −20°C.  A 658 base pair (bp) fragment of  

the mtDNA cytochrome oxidase I (COI) gene was amplified by PCR using a combination of  

LCO1490/HCO2198 (Folmer et al. 1994) or FishF1/FishR1 (Ward et al. 2005)  

oligonucleotide primers. A detailed description of the PCR reactions is included in Appendix  

A. We ran PCR products on a 1% agarose gel to confirm amplification of the correct  

fragment.   

  

DNA Sequencing and Sequence Alignment  

We purified PCR products using Zymo DNA Clean and Concentrator -25 (cat. no.  

D4033). All DNA was sequenced in one direction using PCR primers. Sequence  

identification was determined using both BOLD to search the Barcode of Life Data Systems  

and BLAST to search GenBank. We established confidence values for both BLAST (e-value  

< 1e-100) and BOLD (probability of placement > 95%) to ensure that only high quality  

sequences were used to identify samples. Sequences obtained from unknown samples and  
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reference species were aligned with ClustalX.  

  

Phylogenetic Analysis  

We constructed phylograms using MEGA 5.1 using neighbor joining analysis and a  

Kimura two parameter (K2P) model to provide a graphic representation of the patterning of  

divergence between species (Tamura et al. 2011). The K2P model was selected by the  

MEGA 5.1 Best Fit DNA Model. Confidence in phylograms was assessed by the  

nonparametric bootstrap method with 1000 replications. Deep nodes within the phylogram  

could not be resolved using COI alone; therefore, BLAST and BOLD were used to verify our  

sample identification.    

  

 Statistical Analyses  

We utilized Fisher’s Exact Tests to analyze differences in mislabeling proportions  

between sampling periods, vendors and towns. The Bonferroni correction was used to adjust  

the level of significance when conducting multiple significance tests.   

  

Results   

The purchased fish fillets were from fifteen fish genera (Fig. 1.1). Most samples were  

identified to species using BOLD and/or BLAST. We confirmed that a total of 69 out of the  

111 fillets were cut from different individual fishes. It is possible that all fillets were cut from  

different fishes; however, 42 of the fillets were identified as the same species and sold from  

the same vendor.   
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Figure 1.1: Evolutionary relationships of samples   
The evolutionary history was inferred using the neighbor-joining method. The percentage of  
replicate trees in which the associated taxa clustered together in the bootstrap test (1000  
replicates) are shown next to the branches. Tips are labeled by town and vendor (number of  
fillets) or reference species. PG=Punta Gorda, P=Placencia, D=Dangriga, SP=San Pedro,  
BC=Belize City, M=fish market, S=supermarket, R=restaurant, C=fishing co-operative.  
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Therefore, we assumed that these 42 fillets were cut from one of the 69 fishes when  

calculating minimum proportions of mislabeling and parrotfish. When we treated each fillet  

as an individual fish, the mean proportion, (i.e., across towns, vendors and sampling periods)  

of mislabeled samples was 51±25% (± 1 SE), 7±17% of which were herbivorous fish. When  

we treated multiple fillets of the same species purchased from an individual vendor as one  

large fish, the mean proportion of mislabeled samples was 32±24% (± 1 SE), 5±13% of  

which were herbivorous fish. Fillets purchased were labeled as snapper, grouper,  

snapper/grouper, snapper/grouper/hogfish, cobia, tuna or snook. Only fillets labeled as  

snapper or grouper were mislabeled (Fig. 1.2).   

  

Figure 1.2: Proportion of Mislabeling by market label.   
We pooled samples from each town/vendor to calculate the percentage of mislabeling.  
Sample size is listed at the end of each row.  
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We genetically identified fillets labeled as snapper or grouper to one of 11 families  

(Fig.1. 3). The proportion of fillets that were identified as parrotfish in San Pedro (43%) was  

significantly higher than Placencia (0%) and Belize City (2%) when each fillet was treated as  

an individual fish (Table 1.1). However, the proportion of parrotfish was not significantly  

different between towns when we treated multiple fillets of the same species purchased from  

an individual vendor as one large fish. The proportion of mislabeling was not significantly  

different between Belize City, Placencia, Dangriga, and San Pedro (Table 1.1).   

  
Figure 1.3: Species composition of samples labeled as snapper, grouper, and  
snapper/grouper.  
  

  
  

The proportion of mislabeled samples and parrotfish were zero in Punta Gorda;  

however there was not a significant difference between this town and other towns with much  
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higher proportions. The small sample size in Punta Gorda (N=3) likely accounts for the lack  

of significance between Punta Gorda and any of the other towns. We calculated total  

proportions by averaging (weighted average) the proportion of mislabeling or parrotfish  

estimated by each sampling in a particular town (Appendix A).  

  
Table 1.1: Summary of Fish Mislabeling by Town.   
The proportions of mislabeled samples were not significantly different between towns for  
total mislabeled samples (p=0.09). The proportion of parrotfish was significantly higher in  
San Pedro than in Placencia (p<0.001) and Belize City (p<0.001) when each fillet was  
treated as an individual fish. Proportions were not significantly different when fillets  
identified as the same species from an individual vendor were treated as one fish.   
  
  

Town 
Number 

of 
Samplings 

Number of fillets 
(minimum number of 

individual fishes) 

Fillets Identified  
as Parrotfish 
(Mean%±SE) 

Total Mislabeled 
Fillets 

(Mean%±SE) 
Punta Gorda 2 3 (3) 0±0 0±0 
Belize City 11 46 (28) 2±10 - 4±10** 50±42 - 60±42** 
Placencia 4 44/37* (24/23) 0±0 39±32** - 47±35 
Dangriga 1 5 (5) 20 60 
San Pedro 3 13 (10) 33±23** - 43±33 66±24** - 73±25 

*   7 of these samples were confiscated from restaurants by the Belize Fisheries Department  
and the market label was not known. These samples were only used to calculated proportions  
of parrotfish.  
** Mean calculation assumed that fillets identified as the same species at an individual  
vendor were cut from one fish.   
  

The proportion of parrotfish sold was significantly higher in supermarkets than in  

restaurants or co-operatives and the proportion of mislabeling was significantly higher in  

open fish markets than in restaurants when fillets were treated as individual fishes, but was  

not significantly different when fillets of the same species were treated as one fish (Table  

1.2). We calculated total proportion of mislabeling per vendor type by averaging (weighted  

average) the proportion of mislabeling from each individual vendor at each sampling period  

(Appendix A).   
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Table 1.2: Summary of Fish Mislabeling by Vendor.   
The proportion of total mislabeled samples was significantly higher in the open fish markets  
than in restaurants (p=0.004) and the proportion of parrotfish sold was significantly higher in  
supermarkets than in restaurants (p<0.001) and in supermarkets when compared to that in co-  
operatives (p<0.001) when each fillet was treated as an individual fish. Proportions were not  
significantly different when fillets identified as the same species from an individual vendor  
were treated as one fish.   
  

Vendor 
Number 

of 
Samplings 

 
Number of fillets 

(minimum number of 
individual fishes) 

Fillets Identified 
as Parrotfish 
(Mean%±SE) 

Total Mislabeled 
Fillets 

(Mean%±SE) 

Restaurant 3 34/29* (23/22) 0±0 28±32**  - 32±33 
Fish Market 4 15 (11) 7±9 - 9±10** 53±20** - 80±20 

Co-op 7 39 (20) 0±0 34±50** - 54±50 
Supermarket 7 24 (19) 10±25** - 21±25 33±34** - 50±37 
*  7 of these samples were confiscated from restaurants by the Belize Fisheries Department and the market label  
was not known. These samples were only used to calculated proportions of parrotfish.   
**  Mean calculation assumed that fillets identified as the same species at an individual vendor were cut from  
one fish.   
  
  

The proportion of total mislabeled samples was significantly lower in June 2011 than  

in all other sampling periods; however, the proportion of fillets identified as parrotfish was  

not significantly different between sampling periods when fillets were treated as individual  

fishes and when fillets of the same species were treated as one fish (Table 1.3). Fish  

mislabeling and parrotfish sold in local markets increased from November 2009 to May 2010  

and then decreased from May 2010 to June 2011.   

  

Discussion  

We found that 5% to 7% of fish fillets sold in local markets were illegal, parrotfish  

species and 32% to 51% were mislabeled. The proportion of mislabeling is similar to that in  
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many parts of the world (Baker et al. 2007, 2008, Wong and Hanner 2008, Ardura et al.  

2010, Garcia-Vazquez et al. 2011, Marko et al. 2011).  

  

Table 1.3: Summary of Fish Mislabeling by Sampling Period.   
The proportion of total mislabeled samples was significantly lower in June 2011 when  
compared to proportions calculated for all other sampling periods (p<0.004). The proportion  
of fillet identified as parrotfish was not significantly different between samplings periods.   
  

Sampling 
Period 

Number 
of 

Samplings 

Number of fillets 
(minimum number 

of individual 
fishes) 

Fillets Identified 
as Parrotfish 
(Mean%±SE) 

Total Mislabeled 
Fillets 

(Mean%±SE) 

November 2009 5 22 (15) 0±0 53±34** - 64±34 
May 2010 5 22 (14) 14±19** - 23±29 71±23** - 82±17 

October 2010* 6 39/32 (29/28) 5±10 - 8±17** 63±20** - 72±23 
June 2011 4 28 (17) 0±0 4±3 - 6±4** 

* 7 of these samples were confiscated from restaurants by the Belize Fisheries Department and the market label  
was not known. These samples were only used to calculated proportions of parrotfish.  
**  Mean calculation assumed that fillets identified as the same species at an individual vendor were cut from  
one fish  
  

Low proportions of parrotfish were detected in Belize City (2%-4%), Placencia (0%),  

and Punta Gorda (0%) while proportions were higher in Dangriga (20%) and San Pedro  

(33%-43%). Proportions of mislabeling were relatively consistent among towns except for  

Punta Gorda where no mislabeling was detected. Local fishing culture, population size, and  

tourism activity varies between towns, which may provide insight into proportional  

differences in mislabeling and parrotfish sold in the markets (Table 1.4). The Belize Tourism  

Board reports the contribution of each region or town to the national hotel room revenue,  

which was used as a proxy for tourism activity (Belize Tourism Board 2008). Most of the  

fishermen are from rural and coastal communities and travel long distances (> 50 km) to  
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fishing grounds; therefore, it is difficult to determine where the fishermen in each town are  

harvesting.   

  

San Pedro, is the main town on Ambergris Caye, and the most popular tourist  

destination in Belize. Ambergris Caye generates the highest national hotel revenue in Belize.  

Fishermen on Ambergris Caye mostly sell their catch directly to restaurants and hotels.  

Placencia is the fastest growing tourist destination and generates the second highest national  

hotel revenue. The number of fishermen in Placencia has decreased by approximately 95%  

(Noella Gray et al. 2010).   

  
Table 1.4: Town Tourism and Population Statistics  
  

District Town Populatio
n 

% 
National 

Hotel 
Revenue 

Number 
of 

fisherme
n 

Fillets 
Identified 

as Parrotfish 
(Mean%) 

Total 
Mislabeled 

Fillets 
(Mean%) 

 

Toledo 
Punta Gorda 5,205 

1.2 ≈107 
0 0 

Toledo Rural 25,333   

Belize 
District 

Belize City 53,532 12.1 >500 2 - 4** 50 - 60** 

Belize Rural 24,305   
Ambergris Caye/ 

San Pedro 11,510 42.3 * 33** - 43 66** - 73 

Stann 
Creek 

Dangriga 9,096 
7.3 ≈30 

20 60 
Stann Creek 

Rural 23,070   

Placencia 750 12.4 ≈25 0±0 39** - 47 
* data not available  
**  Mean calculation assumed that fillets identified as the same species at an individual vendor were cut from  
one fish.   
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Belize City is the largest town in Belize and main port of entry, but only ranks third in  

national hotel revenue. Fishermen from all over Belize come to Belize City to sell their catch  

to the two major fishing co-operatives, local fish markets and restaurants. Dangriga is the  

cultural center of the Garifuna people and with the surrounding rural areas ranks fourth in  

national hotel revenue. Fishermen sell their catch in one fish market in Dangriga and directly  

to restaurants and hotels.  Punta Gorda is a small fishing village and with the surrounding  

rural areas generates the lowest national hotel revenue. Approximately 107 fishermen are  

based out of Punta Gorda (Heyman and Graham 2000). Fishermen sell their catch in one fish  

market in Punta Gorda, one small co-operative and directly to restaurants and hotels.  

  

Although proportional differences were not significant, our data show that high levels  

of mislabeling are associated with towns that have relatively high tourist activity (San Pedro,  

Placencia, and Belize City). In contrast, a high level of mislabeling was also found in  

Dangriga, which has relatively low tourist activity. Small sample size may account for the  

high level of mislabeling in Dangriga. Punta Gorda has relatively low tourist activity and a  

low level of mislabeling. Tourist activity may be increasing the demand for snapper and  

grouper fillet and thereby increasing mislabeling.  

  

Sufficient data was not available to calculate a national average of harvested  

parrotfish prior to implementation of the ban; however, we compared our results to catch data  

collected at Glover’s Reef Marine Reserve from 2005 to 2008 to determine the extent of the  

decrease in parrotfish harvesting (Wildlife Conservation Society 2010). Across Belize, 5% to  

7% of fillets were parrotfish, which is signifcatly lower than the proportion of parrotfish  
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(28%) harvested from 2005 to 2008 at Glover’s Reef Marine Reserve (p< 0.001). The  

proportion of parrotfish was much higher in San Pedro (43%) and Dangriga (20%). A small  

sample size may account for the relatively high percentage of parrotfish fillets sold in  

Dangriga. Parrotfish fillets were also found in Belize City at a much lower frequency (2%).  

Although overall compliance with the ban seems to be fairly high, spatial variation in the  

proportion of parrotfish fillets indicates a need for stronger enforcement in San Pedro and  

possibly Dangriga. Fisheries officers have a strong presence in Belize City and Placencia.  

These towns have low proportions of parrotfish in the markets suggesting that the presence of  

enforcement officers may be discouraging parrotfish marketing.   

  

Snapper and grouper population declines have reduced the availability of snapper and  

grouper in Belize, forcing fishermen to supply the high demand for these target species with  

alternative fish species (Sala et al. 2001, Graham et al. 2008, RT et al. 2009, Paddack et al.  

2009, Stallings 2009a, Mumby et al. 2011). We identified most of the mislabeled fillet  

samples as Labridae (hogfish), Scaridae (parrotfish), and Balistidae (triggerfish) (Fig. 3).  

Hogfish - a wrasse - is a popular fish in Belize and is often referred to as a hog snapper  

throughout the Greater Caribbean region. Culturally, labeling hogfish as a snapper would not  

be considered mislabeling. However, for the purposes of fisheries management, it is  

important to report fish correctly by taxonomic classification. We identified 9% of the  

mislabeled samples as triggerfish (Balistidae), which are not considered a desirable fish  

species in Belize. We identified 4% of the mislabeled samples as catfish (Ictaluridae). These  

are brackish species that are often seen in open canals in Belize City and rarely eaten by  

Belizeans. The remaining species that were sold as snapper or grouper are not necessarily  
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undesirable, but are less expensive than snapper and grouper.   

  

The main incentives for fish mislabeling are meeting consumer demand and  

increasing profits. The supply chain in Belize is fairly short. Belizean fishermen sell their  

catch directly to locals in local fish markets, to co-operatives who then export catch or sell to  

local businesses, or directly to restaurants and hotels. It is unclear where along the supply  

chain most mislabeling is occurring and it is possible that vendors are unknowingly  

mislabeling fillets, but marketing and selling an undesirable fish as a popular and expensive  

fish can be highly profitable. For example, in Belize, snapper can be sold for twice the price  

of non-target species (Wendy’s Restaurant (local restaurant), pers. comm. 2011). We found  

that snapper, grouper and hogfish fillets were sold at an average of US$5.55 per pound, while  

cobia and snook fillets were sold at an average of US$2.60 per pound (Table S2). Therefore,  

consumers may be unknowingly overpaying for desired fish, restaurant and hotel owners  

may be unknowingly deceiving customers, and honest fishermen may be losing profits to  

fraudulent competitors. Many fishermen have observed the decline in snapper and grouper  

abundances and support increased enforcement and fishing regulations (Heyman & Graham  

2000). However, demand in restaurants remains high and supply seems to meet the demand  

potentially because of mislabeling. Therefore, many consumers are unaware of the fragile  

state of popular fish species.  Fish mislabeling produces a false sense of availability, which  

reduces consumer power to control the market and causes even sustainable consumer choices  

to lead to overexploitation. For example, Marko et al. (2011) found Chilean sea bass with the  

Marine Stewardship Certification (MSC) labels, which indicate that the fish was harvested  

from the sustainable fishery, actually came from the unsustainable fishery.   
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Conclusions and Recommendations  

In Belize, recovery of fragile coral reef ecosystems would support the local economy  

by directly benefiting tourism and fishing industries. Random fillet analysis would provide  

additional catch data that could be used to identify herbivorous fish sold in markets.  

However, funds for enforcement are already limited and providing resources for a project to  

analyze fillet may not be reasonable for Belize. An alternative approach would be to develop  

conservation campaigns that encourage local consumers and tourists to purchase more  

abundant species.  Reducing the demand for snapper and grouper would reduce the  

prevalence of illegal fish in markets and the level of mislabeling. In addition, increasing  

demand for other species would benefit fishermen by increasing the cost of currently less  

desirable species. The results of this study suggest a decrease in parrotfish harvesting after  

implementation of the ban indicating that a regional harvesting ban has the potential to  

contribute to coral reef ecosystem recovery.  
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CHAPTER 2: NATIONAL FISHING BAN PROMOTES RECOVERY OF  
PARROTFISH POPULATIONS ON CARIBBEAN CORAL REEFS  

  

Introduction  

Species loss due to overfishing leads to potentially devastating shifts is species composition  

particularly in reef systems with limited functional diversity (Roberts 1995a). The region-  

wide mass mortality of the black sea urchin (Diadema antillarum) in 1983/84 resulted in the  

loss of a keystone grazer on Caribbean coral reefs leaving parrotfishes (Scarus sp. and  

Sparisoma sp.) as one of the few herbivores capable of controlling the abundance of fleshy  

macroalgae (Carpenter 1986, 1990, Liddell and Ohlhorst 1986, Mumby et al. 2006b).  

Consequently, the subsequent functional loss of these herbivorous fishes (i.e., grazing  

pressure) caused by overfishing (Hughes 1994, Pauly et al. 1998, Hughes et al. 2005,  

Paddack et al. 2009) has largely caused observed shifts in Caribbean reef communities from  

coral to algal dominance (Knowlton 1992, Done 1992, Hughes 1994, Hughes et al. 2003,  

McManus and Polsenberg 2004). Recent conservation management strategies designed to  

reverse algal dominance and improve coral reef health have focused on restoring parrotfish  

populations by reducing fishing pressure. However, no studies have assessed the response of  

these populations over time to reduced fishing pressure, which is the first step needed to test  

the effectiveness of this management approach. The number and body size of parrotfish on  

the Belize Barrier Reef (BBR) have declined considerably in the past decade, including reefs  

inside marine protected areas (MPAs) (Mumby et al. 2012).  



  
 

 30 

  

Parrotfish biomass at Glover’s Reef marine reserve declined by 41% from 2002 to  

2008/09, with a major decline in the large and dominant fish herbivore, the Stoplight  

parrotfish (Sparisoma viride) (Mumby et al. 2012). Concurrently, macroalgal cover has  

increased across the BBR since the late 1990s from roughly 10% to 50% (McClanahan and  

Muthiga 1998, McClanahan et al. 1999). With D. antillarum functionally extinct in Belize  

and recovering at very slow rates and evidence that MPAs may not be effective at restoring  

herbivorous fishes (Huntington et al. 2011), resource managers implemented a national ban  

on herbivorous fish harvesting in April 2009. The new regulation prevents the harvesting of  

any species of parrotfish (Scarids) or surgeonfish (Acanthurids) nationwide (Statutory  

Instrument No. 49 of 2009). Parrotfish comprised an average of 28% of the catch at Glover’s  

Reef in Belize from 2005 to 2008 (Wildlife Conservation Society 2010). Genetic testing  

revealed that only 7% of fish fillets collected in five major towns in Belize from 2009 to  

2011 were parrotfish suggesting a decrease in parrotfish harvesting following the ban (Cox et  

al. 2013).   

  

The response of fish populations to overfishing and subsequent reduced exploitation  

varies among species and is related to the life history traits of the species (Adams 1980,  

Hutchings 2001, Fernandes and Cook 2013). Fish populations with a long life span, late  

maturity, large body size and low rates of natural mortality and recruitment are expected to  

decline in abundance quickly due to overfishing and recover slowly when fishing stops,  

relative to populations with opposite life history characteristics (Adams 1980, Russ and  

Alcala 1998). Parrotfishes are relatively fast growing species that reach maturity at an early  
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age (approximately 1-2 years) and spawn year round (Robertson and Warner 1978). These  

life history traits may improve their potential to recover relatively quickly from overfishing  

(Adams 1980).   

  

The rate of population recovery is also directly correlated with the extent of  

population decline, fishing mortality during recovery, intrinsic rate of increase, and  

exploitation history (Neubauer et al. 2013). Recovery can be predictable and achievable  

within a decade for fish populations with average exploitation histories and intrinsic rates of  

increase if fishing mortality is rapidly reduced prior to collapse (Neubauer et al. 2013).  

However, reducing fishing pressure may not always result in the recovery of depleted species  

potentially due to an Allee effect, a phenomenon characterized by reduced reproductive  

success resulting from very low population density (Kuparinen et al. 2014). For example,  

most Northwest Atlantic cod (Gadus morhua) populations collapsed in the early 1990s due to  

overexploitation (Hutchings and Myers 1994) and few populations have exhibited signs of  

recovery despite significant reductions in fishing pressure (Hutchings and Rangeley 2011).  

Results of model simulations predicting the recovery of Northwest Atlantic cod populations  

suggest that Allee effects not only slowed populations recovery but also increased the  

uncertainty of recovery time (Kuparinen et al. 2014).   

  

If overharvesting was the prime cause of the decline of herbivores, the ban on  

herbivorous fish harvesting should lead to some extent of ecosystem recovery measured first  

by an increase in parrotfish density and biomass. The extent of ecosystem recovery (i.e.,  

reduction of macroalgae cover) will depend on the top-down forces exhibited by herbivorous  
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fishes on algae communities in the absence of D. antillarum. In this paper, we first assess the  

effect of the ban and other factors potentially influencing parrotfish density after 4 years of  

ban establishment, and second, we predict the recovery response of S. viride over time using  

a size structured model and then compare model projections to observed post-ban changes in  

parrotfish demography (Crouse et al. 1987, White et al. 2010b, 2011). S. viride was chosen as  

a model species because they are one of the most abundant species on the BBR, one of the  

most targeted parrotfishes, and sufficient data required to conduct model simulations is  

available on life history traits such as growth and mortality rates.    

  

Methods  

Fish Censuses  

We monitored reef fish communities at 16 sites (15-18 m) along the BBR during May  

and June in 2009, 2010, 2012 and 2013 (Fig. S1, Table S1). Sites were selected to maximize  

spatial coverage along the fore reef track, include a range of protection zones, and to coincide  

with sites monitored in previous years by local NGOs. Monitoring sites included (a) fully-  

protected reserves in which all fishing is banned (Conservation Zone 1), (b) reserves where  

some fishing and extractive activities are allowed (Conservation Zone 2) and (c) unprotected  

reefs on which fishing is permitted (None). To minimize habitat variability of survey sites,  

we only surveyed spur-and-grove reef formations at each site and focus on Orbicella (former  

Monstastrea) dominated habitat. Refer to Appendix S1 for additional details regarding  

the visual fish censuses.  
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Statistical Analysis   

We used linear mixed effects models to test the effect of the ban on total parrotfish  

biomass and density annually over the five-year monitoring period. We also used generalized  

linear mixed effects models to test the effect of the ban on individual parrotfish species and  

to test the effect of the number of mature individuals on juvenile density in the following  

year. Total parrotfish density (log-transformed) and parrotfish biomass were modeled with a  

Gaussian distribution and identity link through a linear mixed effect model. The density of  

each individual parrotfish species was modeled with an inverse Gaussian distribution through  

a generalized linear mixed effects model. The number of years following ban implementation  

(i.e., post 2009) and 10 covariates that could influence parrotfish biomass and density were  

coded as fixed effects and sites were coded as random effects. Covariates included protection  

status (C1, C2 or none), human population density within 50 km radius of each site, reef  

structural complexity, reef area and mangrove perimeter within 10 km of each site, minimum  

average sea surface temperature (2002-2011), wave exposure, predator biomass, macroalgal  

cover, and average oceanic net primary productivity (2002-2012). Refer to Appendix S2 for  

details regarding covariate data collection. To evaluate collinearity among all explanatory  

variables, we calculated the variance inflation factors (VIF). We sequentially removed each  

covariate for which the VIF value was above 2 (Graham 2003). Wave exposure and  

protection status were sufficiently correlated to compromise interpretation when modeled  

together (Spearman rank correlation  rs =0.50): therefore, we modeled these covariates  

separately (Graham 2003). Model A included wave exposure and a covariate and Model B  

included protection status as a covariate. We generated sets of models with combinations of  

the terms in each global model. To select the best model we averaged the subset of models  
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with a delta Akaike’s Information Criterion corrected (AICc) for small samples of less than  

2. Homogeneous and normal distribution errors of final models were confirmed in the plot of  

residuals against predicted values and quantile-quantile plots, respectively (Zuur et al. 2009).  

Spline spatial correlograms were plotted to corroborate that the final model residuals were  

not spatially autocorrelated (Zuur et al. 2009). All analyses were performed in R v.2.15.2 (R  

Core Team 2013) using the package nlme v.3.1-113 for the linear mixed-effect models, lme4  

v.0.99-2 for generalized linear mixed-effect models and MuMin v. 1.9.13 for the model  

averaging.  

  

Stage-Structured Model  

To predict parrotfish population recovery we developed a closed population stage-  

structured model based on recruitment rate, growth rate, and natural survival rate of  

individuals in four stage classes. We assumed a closed population because adequate  

recruitment data is not available to build a reliable open population model.   

  

Density data was categorized into four stage classes: (1) juveniles 0-10 cm, (2) sub-  

adults 11-20 cm, (3) adults 21-30 cm, and (4) large adults 31-50 cm. For each stage class, we  

estimated the recruitment (R), the probability of surviving and growing into the next stage  

size class (G) and the probability of surviving and remaining in the same stage (P). We used  

the best available vital parameters taken from the literature or calculated parameters based on  

our observed density data (Table 1). The resulting stage-based projection model is as follows:  

A= �

𝑃1 𝑅2 𝑅3 𝑅4
𝐺1 𝑃2 0 0
0 𝐺2 𝑃3 0
0 0 𝐺4 𝑃4

�  
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The transition probabilities G, and P, were estimated using Equation 1 and Equation 2  

(Crouse et al. 1987).  

𝑃𝑖 = �1−𝑝𝑖
𝑑𝑖−1

1−𝑝𝑖𝑑𝑖
� 𝑝𝑖      (1)  

𝐺𝑖 = �𝑝𝑖𝑑𝑖�(1−𝑝𝑖)
1−𝑝𝑖𝑑𝑖

      (2)  

where pi, is the stage-specific survival probability and di  is the stage duration (in years).  We  

calculated the stage duration (di) using the von Bertalanffy equation:    

𝐿𝑖𝐿𝑡 = 𝐿∞(1 − 𝑒−𝑘(𝑑𝑖)𝑒−𝑘(𝑡𝑛−𝑡𝑜)),     (3)  

where L∞ is the asymptotic maximum size, k is the growth rate, and 𝐿𝑖 is the change in length  

over di (Table 2.1).   

  

Table 2.1: Life History Traits for Stoplight Parrotfish, Sparisoma viride   
S=survival rate, R=recruitment rate  
  
Size Class S   

(%/yr)a 
R  

(#/yr) 
Growth 

Rate 
(#/yr)b 

Asymptotic 
maximum 
size (cm)c 

Duration 
in size 

class (yr) 

ce bd,e 

0-5 cm 44 0 0.45 35.7 0.28 0.0004 2.93 
6-10 cm 44 0 0.45 35.7 0.39 0.0004 2.93 
11-20 cm 54 0.034 0.45 35.7 1.10 0.0004 2.93 
21-30 cm 81 0.499 0.45 35.7 2.95 0.0004 2.93 
31-50 cm 86 1.337 0.45 35.7 5.28 0.0004 2.93 

a. van Rooij and Videler1997  
b. Choat et al 2003  
c. Chaot et al 2003  
d. Bohnsack and Harper 1988  
e. Parameters in equation R =cTLb  

  

Fishing presumably ceased in 2009 following implementation of the ban on herbivorous  

fish harvesting. Therefore, the model assumed zero fishing pressure and survival rates in the  

11-50 cm size classes were based only on natural mortality rates estimated by van Rooij and  

Videler. (1997). The projected population densities are based on size-specific natural survival  
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rates estimated from S. viride populations in Bonaire, Netherlands Antiles in 1997 (van Rooij  

and Videler 1997) because natural survival rates have not been estimated for S. viride  

populations in Belize. Natural survival rates are dependent on numerous factors including  

predation pressure, resource limitation, and competition (Shulman and Ogden 1987, Hixon  

1991, Carr and Hixon 1995, Stewart and Jones 2001). We acknowledge that natural mortality  

rates for S. viride in Belize may differ from those estimated in Bonaire due to variation in  

ecological or environmental conditions; however, estimating parrotfish mortality at each size  

class in Belize was out of the scope of this study. Survival rate for the 0-10 cm size class was  

estimated by calculating the proportion of individuals recorded in the 0-10 cm class size that  

were again recorded in the 11-20 cm size in the following year. S. viride were estimated to  

spend approximately 8 months in the 0-10 cm size class and 1 year in the 11-20 cm size  

class; therefore, the juveniles that survived would have grown into the next size class by the  

following year.   

  

Population Projection  

We conducted model simulations to project population density over 50 years by  

multiplying successively higher powers of the projection matrix and by an initial population  

vector consisting of densities observed in 2010. The fishing ban in Belize was implemented  

in April 2009 and our monitoring surveys were conducted in May 2009. Parrotfish harvesting  

most likely continued for a period of time after implementation as the new regulation was  

disseminated through the fishing community. Therefore, we concluded that the assumption of  

zero fishing pressure used in the population projection model was most closely met after  
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2010 and used 2010 size class densities as the initial population vector to predict long-term  

population dynamics.   

  

This type of model has asymptotic (i.e., long-term) behavior described by the  

dominant eigenvalue (λ) of A: geometric growth (λ > 0) or decline (λ < 0). We examined the  

resulting stable size distribution (SDD), and the elasticity of λ to parameter changes. In the  

long term, the matrix will converge to a stable size distribution, i.e., a consistent proportion  

of individuals in each age class, given by the dominant right eigenvector of A. The model  

predicted the number of years to reach SSD, which was used as an estimate for the time  

required for S.viride populations to recover. We identified the matrix parameters that are  

most important contributors to λ through an elasticity analysis, which measures the change in  

λ in response to a proportional change in the parameters.   

  

This model does not predict the stable nonzero equilibrium density because it lacks  

density dependence. However, this is adequate for describing the initial transient response of  

a population that is at low density because of harvesting (White et al. 2013). Population  

modeling was performed in R v.2.15.2 (R Core Team 2013) using the package popbio v.2.4   

  

Results   

We observed 10 parrotfish species during the monitoring surveys (Table S2). Of the  

10 species, only four exhibited an average annual density over 2 individuals/100m2 and a  

significant change in density over time. The four most abundant species were the striped  
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parrotfish (Scarus iseri), princess parrotfish (Scarus taeniopterus), stoplight parrotfish  

(S.viride), and redband parrotfish (Sparisoma aurofrenatum).   

  

Overall parrotfish density increased by 188% from 2009 (0.17 (±0.01)  

individuals/m2) to 2013 (0.50 (±0.05) individuals/m2). The most substantial increase of 269%  

occurred between 2009 and 2010 and the average annual increase over the 5-year monitoring  

period was 84%. Density changes in the five size classes varied by species (Fig. 1). S. iseri  

density was greater in each year following 2009 for the 6-20 cm size classes (p<0.01 for each  

year) and greater in 2010 and 2013 for the 0-5 cm size class (p<0.01 and p<0.05,  

respectively). S. taeniopterus density was greater in 2012 and 2013 for the 6-10 cm size class  

(p<0.01 for each year) and the 11-20 cm size class (p<0.05 for each year). S. taeniopterus  

density was greater in 2010 for the 21-30 cm size class (p<0.01) and subsequently decreased  

in 2012 , while S.viride density increased in the 0-10 cm size classes in 2012 (p<0.01) and  

then decreased in 2013. The 11-20 cm and 21-30 cm size classes densities show similar  

trends with density increasing in 2010 and 2012 (p<0.01) and decreasing in 2013 for S.  

viride. S. viride showed an increase in the largest size class (31-50 cm) in 2013 (p<0.05)  

relative to all other previous years. S. aurofrenatum increased in the 0-5 cm size class in 2013  

relative to densities observed in 2009 (p<0.01).  S. aurofrenatum increased in the 6-10 cm  

and 11-20 cm size classes in 2010 and remained greater than 2009 densities in 2012 and 2013  

(p<0.01) (Fig. 2.1). Average total length of terminal phase S. taeniopterus, S. aurofrenatum  

and S. iseri individuals falls within the 21-30 cm size class (Böhlke and Chaplin 1993).   

Therefore, we did not expect to observe individuals in the 31-50 cm size.   
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Figure 2.1: Mean density by class size for four species of parrotfish across 16 reefs from  
2009 to 2013.   
Error bars represent the 95% confidence interval. Significant increases from densities  
observed in 2009 are identified by * or ** (* indicates a p-value of <0.01 and ** indicates a  
p-value of <0.05).   

  

Parrotfish biomass increased by 54% from 2009 (25.14 (±1.74) g/m2) to 2013 (38.79  

(±3.58) g/m2) with an average annual increase of 17%. S. viride, which is the largest of the  

four species, contributed an average of 46% to the total parrotfish biomass over the five-year  
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monitoring period. S. taeniopterus, S. aurofrenatum and S. iseri  contributed 6%, 26%, and  

23% to the total parrotfish biomass, respectively. We found a significant increase in S. viride  

biomass from 2009 (8.62±1.49) to 2013 (16.12±1.96) (p<0.01), but did not find increases in  

biomass for the other three species (Fig 2.2.).  

  

Figure 2.2: Mean Biomass (± 95% confidence interval) by class size for four species of  
parrotfish across 16 reefs from 2009 to 2013.   
S. viride biomass increased from 2009 to 2013 (p<0.05) indicated by * in the figure.   

  

  

Model averaging for total parrotfish density resulted in final linear mixed effects  

models that included wave exposure, reef area, years since implementation of the fishing ban  

(ban year), and human population density (Density Model A) and predator biomass, ban year,  

and SST minimum (Density Model B) as the best predictor variables. The final models for  

parrotfish biomass included wave exposure, predator biomass, macroalgal cover, and  
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population density (Density Model A) and predator biomass, population density, mangrove  

area, and macroalglal cover (Density Model B) as predictor variables. These models revealed  

that each year following implementation of the harvesting ban had a positive effect on total  

parrotfish density (p<0.02 for each year) and a positive effect on parrotfish biomass in 2013  

(Fig. 2.3). Wave exposure had a negative effect on both parrotfish density and biomass,  

human population density and macroalgal cover had a weak negative effect on parrotfish  

biomass, and predator biomass had a weak positive effect on parrotfish biomass (Fig. 2.3,  

p<0.001, p=0.04, p=0.04, and p=0.02, respectively). Parrotfish density increased at 12 out of  

16 sites, but protection status had no effect on parrotfish density or biomass.   

  

For S. viride, the SSD was projected as 39.7% (0-10 cm), 17.6% (11-20 cm), 18.7%  

(21-30 cm), and 23.9% (31-50 cm).  The elasticity analysis of the matrix parameters showed  

that S. viride populations were more sensitive to adult and large adult survival (21-50 cm size  

class) than to changes in juvenile survival or recruitment rates. The closed population  

projection predicts that SSD will be reached by year 2019 if fishing pressure ceased in 2010  

and remains constant. In 2019, the total S. viride density at SDD is estimated at 0.06±0.01  

individuals/m2 (greater than 21 cm in length), which is equal to 29.7±3.9 g/ m2. We did not  

find a difference between projected and observed S. viride density in 2012 (p=0.84) or 2013  

(p=0.15) nor did not find a difference between projected and observed S. viride biomass in  

2012 (p=0.07) or 2013 (p=0.35) (Fig 2.4).  
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Figure 2.3: Coefficient estimates (mean ± 95% confidence interval) resulting from  
linear mixed effects models testing the effect of the harvesting ban and 10 covariates on  
parrotfish density and biomass over time.    
Covariates identified here are the variables included in the final averaged models. Solid  
circles represent coefficient values from the model that included wind exposure as a fixed  
effect and the open diamonds represent coefficient values from the model that included  
protection status as a fixed effect. These variables were highly correlated (e.g., rs=0.50) and  
could not be run in the same model.  
  

  

Discussion  

Restoring parrotfish populations is the primary management strategy for reducing  

macroalgal cover and reestablishing coral dominance on Caribbean coral reefs. Our results  

suggest reduced fishing pressure achieved through the harvesting bans Belize has  

implemented could be effective in a relatively short time frame for fast growing species such  

as parrotfish. However, reduced fishing does not guarantee population recovery even if this  

regulation is enforced with full compliance (Kuparinen et al. 2014). Therefore, monitoring  

these populations over time is needed to track the progression of recovery and determine  

whether further measures are needed to reduce macroalagal cover.   
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Figure 2.4: Comparison of stage-structured population model predictions (light grey)  
and data collected during monitoring surveys (dark grey) for S. viride biomass (mean ±  
95% confidence interval).   

  

We found that density increases for four parrotfish species and an increase in biomass  

for one species over the five-year monitoring period following the ban on parrotfish  

harvesting. We accounted for other covariates that can affect fish population dynamics over  

time and our statistical models suggest the observed initial recovery could be due to the ban.   

  

Prior to the ban on parrotfish harvesting, fishermen typically used spear guns to target  

parrotfish greater than 20 cm. Being the largest of the four abundant parrotfish species  

currently observed on the BBR, S. viride was the most fished species (James Azueta pers.  

comm. 2012). We predicted to see an increase in the 21-50 cm size classes over time as a  

result of reduced spear fishing, specifically in S. viride. S. viride densities increased by an  

average of 89% in these larger size classes over the 5 year monitoring period suggesting  
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decreased fishing pressure for S. viride and preliminary evidence that the ban has been  

effective for this species (Fig 2.1).   

  

We observed increases in density for the 0-20 cm size classes for S. taeniopterus, S.  

aurofrenatum and S. iseri (Fig. 2.1). These sizes and species are not typically targeted by  

spear fishermen. However, parrotfish greater than 5 cm, particularly those between 15 and 34  

cm, are vulnerable to fish traps (Recksiek et al. 1991, Rakitin and Kramer 1996, Mumby et  

al. 2006a). Observed increases in these species could suggest a decrease in individuals being  

caught in fish traps or an increase in juvenile survival rate.   

  

The average length at maturity for most parrotfish species is between 15 and 17 cm  

(Reeson 1983). Therefore, an increase in the 11-20 cm size class would increase the  

population reproductive potential possibly explaining increases in the 0-10 cm size classes in  

the following year. However, we did not find a relationship between the number of mature  

individuals and the number of juveniles (0-10 cm) in the following years on a regional scale  

(p> 0.14 for each species).  Juvenile density is not only influenced by the number of mature  

fishes, but also by variability in natural mortality due to environmental factors and predation  

pressure (Hixon and Carr 1997) which most likely explains the temporal variation we  

observed in juveniles.   

  

S. viride, population projection models predicted that a minimum of 9 years is  

required for the population to reach a stable stage distribution (i.e., population recovery) if  

fishing pressure ceased in 2010 and remains at zero. This projection provides resource  
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managers with a goal for population recovery. If parrotfish harvesting ceased in 2010 (with  

minimal poaching), managers should expect to see 0.06±0.01 individuals/m2 or 29.7±3.9 g/  

m2 of large (>21 cm) of S. viride by 2019. Projected biomass values can be used by managers  

to assess population recovery by comparing the observed biomass of large individual S.  

viride to the projected biomass. For instance, the population model predicted S. viride  

biomass to be 21.3±2.8 g/m2 in 2013. The S. viride biomass observed in 2013 (17.9±2.7  

g/m2) was not significantly different from that predicted (Welch t-test, t=-0.959, p=0.347).  

Based on this comparison, S. viride biomass is consistent with the population projection  

models suggesting that these populations are beginning to recover (Fig. 2.4).  

  

Our results suggest that the ban on parrotfish harvesting has had a positive effect on  

parrotfish density and biomass over a five-year period. This indicates that fishing pressure  

has been reduced as a result of the harvesting ban. For the ban to fully accomplish its goals  

parrotfish population recovery must result in decreased macroalgal cover and coral  

recruitment must increase in response to reduced macroalgae. Because a minimum of 9 years  

is projected for populations to recover, further monitoring is needed to track increases in  

large individuals that exert strong grazing pressure in the next 5 years and the effect of  

increased parrotfish biomass on benthic structure. Overall, our findings provide promising  

evidence that the ban on parrotfish harvesting is an effective conservation strategy for  

restoring these key herbivores and would be beneficial to other nations in the Caribbean.  
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CHAPTER 3: ESTABLISHMENT OF MARINE PROTECTED AREAS ALONE  
DOES NOT RESTORE CORAL REEF COMMUNITIES  

  
  

Introduction   

Caribbean coral reef ecosystems have experienced more than three decades of coral  

mortality and habitat degradation (Hughes 1994, Jones et al. 2004, Bellwood et al. 2004),  

with coral cover declining from ~50% in the 1970s to ~15% at present (Gardner et al. 2003,  

Schutte et al. 2010). The proximate causes of coral loss in the greater Caribbean include  

disease outbreaks, hurricanes, altered land-use practices that lead to increased sedimentation  

and nutrient pollution, and coral bleaching events related to anthropogenic climate change  

causing mass mortalities (Woodley et al. 1981, Hughes 1994, Eakin et al. 2010). Declines in  

coral cover and subsequent loss of structural complexity (Alvarez-Filip et al 2011) can  

negatively affect reef fish abundance and biodiversity, as many species rely on the presence  

of living coral assemblages for habitat (Bell and Galzin 1984, Jones et al. 2004). Across the  

Caribbean, reef fish density has declined at rates of 2.7% to 6.0% per year for more than a  

decade (Paddack et al. 2009) associated with the loss of available habitat and overfishing.  

These ecosystem-level changes continue to have far-reaching effects on coastal communities  

that depend on coral reefs for fisheries, tourism, and other ecosystem services.  
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This decline in coral cover was followed by a drastic increase in benthic macroalgae  

resulting from a combination of interrelated factors including: 1) increased availability of  

habitable substrate (Aronson and Precht 2001), 2) a regional decrease in grazing pressure  

caused by a decline of the keystone sea urchin Diadema antillarum  (Hughes 1994, Woodley  

1999), and 3) overfishing of herbivorous/detritivorous including parrotfish (scarids) and  

surgeonfish (acanthurids) (Bellwood et al. 2004). Large amounts of macroalgae on a reef can  

suppress coral growth and recruitment through several mechanisms including shading,  

abrasion, allelochemicals, limiting suitable settlement substrate  (e.g., by covering encrusting  

coralline algae that enhance coral settlement) and potentially via the enhancement of  

microbes and disease (River and Edmunds 2001, Kuffner et al. 2006, Smith et al. 2006, Box  

and Mumby 2007, Rasher and Hay 2010). The ecological role of grazers, including urchins  

and herbivorous reef fishes, and their importance in controlling macroalgal growth and  

enhancing coral recruitment has been well documented since the mid-1980’s (Hay 1984,  

Carpenter 1986, Lewis 1986, Williams and Polunin 2001, Carpenter and Edmunds 2006,  

Mumby 2006, Mumby et al. 2007).  

   

The establishment of marine protected areas (MPAs) is the principal strategy for  

restoring fish populations (including commercially important species and herbivorous fishes)  

and facilitating recovery of coral reef benthic communities (Polunin and Roberts 1993,  

Halpern and Warner 2002, Mumby et al. 2006a). Specifically, restoring the ecological role of  

grazers including urchins and herbivorous reef fish to control macroalgal growth and enhance  

coral recruitment has become a key goal of coral reef management (Mumby and Steneck  

2008, Jackson et al. 2014b). Potential immediate and long-term benefits of MPAs include  



  
 

 48 

reductions in fishing pressure and destructive fishing practices, increases in organismal  

biomass and diversity, and increases in fish stocks in adjacent fisheries due to larval export  

and adult migration(Lester et al. 2009, Harrison et al. 2012). Target fish populations are  

capable of responding quickly to reductions in fishing pressure resulting in increased density  

and biomass (Polunin and Roberts 1993, Mosquera et al. 2000, Côté et al. 2001, Halpern  

2003). However, these benefits are not realized for some species because many MPA  

networks do not link larval supply and settlement areas or lack adequate enforcement  

(Roberts 1995b, Mora et al. 2006, Huntington et al. 2011).   

  

Although reduced fishing pressure within MPAs has lead to increased density and  

biomass of some fish species (Roberts 1995b, Aburto-Oropeza et al. 2011), there is little  

conclusive evidence that protection from fishing promotes positive effects on coral   

community structure under all environmental conditions (Mumby and Steneck 2008). For  

example, within the Exuma Cays Land and Sea Park, Bahamas, increases in coral cover over  

a 2.5 year period were higher at protected sites than fished sites. However, macroalgal cover  

was extremely low at these sites (3.1±1%) throughout the duration of the study (Mumby and  

Harborne 2010). In contrast, in regions where macroalgal cover is higher such as Belize and  

Florida, MPAs have not influenced coral or macroalgal cover (McClanahan and Muthiga  

1998, McClanahan et al. 1999, Huntington et al. 2011, Toth et al. 2014). For instance, no-  

take areas within the Florida Keys National Marine Sanctuary have not promoted an increase  

in coral cover or a decline in macroalgal cover despite having a higher abundance of adult  

herbivorous fishes than fished reefs (Kramer and Heck 2007, Toth et al. 2014). Similarly,  

after 10 years of reserve designation, Glover’s Reef Marine Reserve in Belize has had no  
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effect on herbivorous fish abundance, macroalgal cover, or coral cover (Huntington et al.  

2011). This failure of MPAs alone to promote herbivory and coral assemblage recovery  

suggests that new fisheries policies may be required to restore coral reef ecosystems (Mumby  

and Steneck 2008).  

  

The Belize Barrier Reef has one of the most extensive MPA networks in the  

Caribbean consisting of 18 MPAs that cover approximately 2,525 km2 of territorial waters.  

Two of these MPAs (Glover’s Reef Marine Reserve and Hol Chan Marine Reserve) have  

been the focus of most reserve effect studies in Belize but have not consistently promoted  

positive effects on reef communities (Polunin and Roberts 1993, Roberts and Polunin 1994,  

McClanahan et al. 2001, Huntington et al. 2011). In 2009, the Belize Fisheries Department  

implemented a national ban on herbivorous fish harvesting as an additional conservation  

strategy to restore herbivorous fish populations. Here, we test the effectiveness of Belize’s  

national MPA network in protecting and restoring reef fishes, as well as promoting the  

recovery of benthic communities at a regional scale. The uniqueness of our study is that we  

accounted for several abiotic and biotic variables that could affect coral reef community  

structure and potentially MPA success that have not been considered in previous studies  

allowing us to identify other key characteristics contributing to reef health and the  

performance of Belize’s MPA network. We then compare the effects of the MPA network  

and the ban on herbivorous fish harvesting.  
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Methods  

Study locations   

We monitored reef fish communities at 16 fore reef sites (15-18 m) along the Belize  

Barrier Reef during the summer months of May and June in 2009, 2010, 2012 and 2013  

(Appendix C, Table 3.1). Sites were selected to maximize spatial coverage along the fore  

reef, include a range of protection zones, and to coincide with sites monitored in previous  

years by local NGOs.  To minimize habitat variability of survey sites, we only surveyed spur-  

and-grove reef formations at each site and focus on Orbicella (former Monstastrea)  

dominated habitat. Survey sites included (a) fully-protected MPAs where only non-extractive  

sport fishing was permitted (Conservation Zone 1); (b) partially protected MPAs where  

special restrictions were in place that include limited fishing licenses and banned use of traps,  

nets, and long-lines (Conservation Zone 2); and (c) unprotected reefs where fishing was  

unrestricted except for herbivorous fishes and Nassau grouper (see Belize National Statutory  

Instrument No. 49 of 2009) (control) (Appendix C, Table 3.1). Information regarding zoning  

of protected areas was provided by the Belize Fisheries Department (www.fisheries.gove.bz).   

  

We classified level of enforcement at each MPA site according to qualitative  

estimations published in the Healthy Reefs 2014 EcoAudit for Belize (McField 2014).  

Managers at each reserve were asked to score the overall level of enforcement as good,  

moderate, or inadequate. Sites with good enforcement were those that had regular patrols and  

overall satisfactory compliance. Sites with moderate enforcement were those with regular  

patrols, but limited poaching and insufficient legal outcomes. Sites with inadequate  
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enforcement were those with irregular patrols, poaching, insufficient legal outcomes, and a  

high level of concern from the local community.  

  

Fish surveys  

We performed visual fish censuses to estimate reef fish species composition and  

density using a modification of the standard Atlantic and Gulf Rapid Reef Assessment  

(AGRRA) v5.4 techniques (Lang et al. 2010). Fish species were identified, counted, and  

sizes were estimated in 10 cm intervals. Total lengths were recorded for species with rounded  

or truncated caudal fins, while fork lengths were recorded for all other species. At each site,  

we recorded fishes within 2 x 30 m transects for individuals < 40 cm in length and within 10  

x 50 m transects for individuals > 40 cm in length. We also counted and identified all smaller  

fish (< 5 cm) within 15x1 m transects. We deployed six to eight belt transects per site at least  

10 meters apart and conducted surveys during daylight from 0800 to 1600hr. Experienced  

and trained divers performed all fish surveys. Divers were trained by estimating fish sizes in  

the water against artificial fish models of known size and comparing these sizes to those  

estimated by a diver experienced in fish surveys. Fish biomass was calculated through the  

allometric weight-length relationship, W = aTLb, where W is the weight of each individual (in  

grams), TL is the length of each fish (in cm) estimated from visual surveys, and the  

parameters a and b are species specifics (Froese and Pauly 2011). When these variables were  

not available, we used the values of congeneric species of similar size and morphology. We  

used the mid-point of the 10 cm interval to calculate biomass.  
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Table 3.1: Monitoring Site Details  

Site Latitude Longitude Reserve ID Year 
Established 

Size 
(km2) 

Protection 
Status 

Enforcement 
Level 

Calabash 17.261470 -87.819700 No Status N/A N/A None None 

Half moon 17.205600 -87.546790 Half Moon Caye National 
Monument 

1982 39.2 C1 Moderate 

Middle Caye 16.737030 -87.805360 Glover's Reef Marine 
Reserve 

1993 350.7 C2 Moderate 

South of Middle 
Caye 16.728750 -87.828670 Glover's Reef Marine 

Reserve 
1993 350.7 C2 Moderate 

Tobacco Caye 16.919110 -88.047570 No Status N/A N/A None None 

South Water Caye 16.813460 -88.077560 South Water Caye Marine 
Reserve 

1996 476.7 C2 Inadequate 

Alligator Caye 17.196600 -88.051150 No Status N/A N/A None None 
Tackle Box 17.910560 -87.950830 No Status N/A N/A None None 
Hol Chan 17.863430 -87.972380 Hol Chan Marine Reserve 1987 4.2 C1 Good 
Mexico Rocks 17.987820 -87.903820 No Status N/A N/A None None 

Bacalar Chico 18.162820 -87.822220 Bacalar Chico Marine 
Reserve 

1996 9.2 C1 Moderate 

Gallows 17.495920 -88.042550 No Status N/A N/A None None 
Pampion  Caye 16.373100 -88.089130 No Status N/A N/A None None 
Ranguana Caye 16.285010 -88.150310 No Status N/A N/A None None 

Nicholas Caye 16.112300 -88.255860 Sapadilla Cayes Marine 
Reserve 

1996 4.9 C1 Inadequate 

Southwest Caye 16.71087 -87.8461 Glover's Reef Marine 
Reserve 

1993 350.7 C2 Moderate 
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Benthic surveys  

Benthic cover was estimated using point-intercept methods according Lang et al.  

(Lang et al. 2010). At each site, six 10 m lead-core transect lines were laid on the substrate  

along the spur and grove formation (45-50 ft deep) spaced approximately 10 m apart. Benthic  

groups were identified at every 10 cm intervals along the 10 m transect line. We broadly  

categorized the benthos in hard corals, macroalgae, crustose coralline algae, turf algae,  

zoantids, sponges, gorgonians, rubble, sand, pavement, and other live categories that  

included bryozoans, anemones, and corallimorpharians. Hard corals and macroalgae were  

identified up to species and genus, respectively. Benthic transects occurred along the first 10  

m of the fish transects.  

  

Covariates  

To examine the effectiveness of the Belize Barrier Reef MPA network, we examined  

four reef community indicators of reef performance and health (predator and parrotfish  

biomass, coral and macroalgae cover).  Additionally, we accounted for 8 additional variables  

that could influence coral reef community structure and potentially compromise management  

efforts including sea surface temperature anomalies, average oceanic net primary  

productivity (2002-2012), wave exposure, reef structural complexity, mangrove perimeter  

within 5 km, reef area within 5 km, distance to deep water, and year (Table 1). For detailed  

descriptions, measurements, and justifications for each covariate refer to Appendix C.  
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Data Analysis  

We used linear mixed effects models to test the effect of protection status and  

enforcement level of Belize’s MPAs on predatory fish and parrotfish biomass, and coral and  

macroalgal cover. We generated a global model with protection status, enforcement level and  

a subset of 12 covariates that could influence fish biomass or benthic community structure  

coded as fixed effects and sites coded as random effects. To evaluate collinearity among all  

explanatory variables and generate models without correlated variables, we calculated the  

variance inflation factors (VIF) and sequentially removed each covariate for which the VIF  

value was above 2 (Graham 2003). Among the covariates, wave exposure, protection status,  

and enforcement level were sufficiently correlated to compromise interpretation when  

modeled together (Spearman rank correlation  rs > 0.50), therefore, we modeled these  

covariates separately (Graham 2003). Predatory fish biomass was x^(1/6) transformed and  

coral cover was square root transformed to improve homogeneity of variance and model fit.  

Numerical covariates were standardized and centered (mean of zero and standard deviation  

of one) to aid in model comparisons. Meaningful interactions and quadratic terms were  

included in exploratory models.   

  

Based on the global model we ran all possible combinations of co-variables fitted by  

maximum likelihood to identify the top models that best explain the response indicators.  

Final models (those with a ΔAICc < 2) were then run and averaged fitted by restricted  

maximum likelihood (Burnham and Anderson 2002). For each final model, a marginal and  

conditional R squared was calculated, which gives an estimation of model fit (Nakagawa and  

Schielzeth 2013).   
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Homogeneous and normal distribution errors of final top models were confirmed in  

the plot of residuals against predicted values and by using the normal scores of standardized  

residuals deviance, respectively (Zuur et al. 2009). Spline spatial correlograms were plotted  

to corroborate that the final model residuals were not spatially autocorrelated (Zuur et al.  

2009). All analyses were performed in R v.2.15.2 (R Core Team 2013) using the package  

nlme v.3.1-113 for the linear mixed-effect models and MuMin v. 1.9.13 for the model  

averaging.  

  

Results  

We found no difference between coral cover or macroalgal cover at protected or well-  

enforced sites and control sites between 2009 and 2013 (Table 3.2, Fig 3.3 and Fig 3.4).  

While parrotfish biomass and predator biomass increased over time (p<0.001, Fig 3.2), there  

was no difference between protected or well-enforced sites and control sites (Table 3.2, Fig  

3.3 and Fig 3.4).   

  

Final linear mixed effects models showed that reef complexity, wave exposure, coral  

cover, macroaglal cover, and parrotfish biomass had a significant effect on at least one of the  

four response variables (Fig. 3.1 and Fig. 3.2, Table 3.3). Reef complexity had a positive  

effect on predator biomass (p<0.001) while wave exposure had a negative effect on parrotfish  

biomass (p=0.01). Macroalgal cover and parrotfish biomass had a negative effect on coral  

cover (p<0.001 and p=0.03, respectively). Reef complexity and coral cover had a negative  

effect on macroalgal cover (p=0.03 and p<0.001, respectively).   
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Table 3.2: Mean value and standard error(SE) of each response variable by protection level  
and enforcement level. p-value represents results of linear mixed effects models.  
  
Response Variable Mean SE df p-value 
Coral Cover (%)     

Protection Status     
C1 22.4 1.9 10 0.69 
C2 14.5 0.9 10 0.35 

None 20.6 1.3 -- -- 
Enforcement Level     

Good 23.9 5.1 9 0.83 
Moderate 14.5 1.5 9 0.79 

Inadequate 19.0 1.5 9 0.50 
None 20.6 1.3 -- -- 

      
Macroalgal Cover (%)     

Protection Status     
C1 48.1 3.1 10 0.50 
C2 55.1 2.0 10 0.41 

None 47.1 1.5 -- -- 
Enforcement Level     

Good 48.2 4.6 9 0.57 
Moderate 58.0 1.7 9 0.60 

Inadequate 49.5 2.8 9 0.04 
None 47.1 1.5 -- -- 

Predator Biomass (g/m2)     
Protection Status     

C1 29.0 12.3 10 0.42 
C2 9.4 1.5 10 0.17 

None 19.2 4.0 -- -- 
Enforcement Level     

Good 17.2 8.0 9 0.30 
Moderate 9.0 2.3 9 0.59 

Inadequate 24.2 10.3 9 0.12 
None 19.2 4.0 -- -- 

Parrotfish Biomass (g/m2)     
Protection Status     

C1 31.1 3.9 10 0.35 
C2 31.9 2.8 10 0.50 

None 32.7 2.4 -- -- 
Enforcement Level     

Good 17.4 4.7 9 0.08 
Moderate 34.4 5.9 9 0.93 

Inadequate 33.3 2.4 9 0.93 
None 32.7 2.4 -- -- 
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Figure 3.1: Coefficient estimates (mean ± 95% confidence interval) resulting from  
linear mixed effects models testing the effect of the protection status and enforcement  
level and 15 covariates on predatory reef fish biomass, parrotfish biomass, macroaglal  
cover, and coral cover.   
Solid circles represent coefficient values from the model that included protection status as a  
fixed effect, solid squares represent coefficient values from the model that included wave  
exposure as a fixed effect and solid triangles represent coefficient values from the model that  
included enforcement level as a fixed effect. These variables were highly correlated (e.g.,  
rs>0.50) and could not be run in the same model.  
  

  

  

Discussion  

By quantifying fish biomass and benthic community composition at 16 reef sites  

inside and outside of five MPAs, we found that on average sites within MPAs or those well  

enforced did not have higher fish biomass, lower macroalgal cover, or higher coral cover  

when compared to unprotected or poorly enforced sites. Many MPA efficacy studies have  

found positive effects of MPA establishment on fish communities. For instance, protected  

areas within the Florida Keys show increased abundances of large predatory and adult  
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herbivorous fishes after more than two decades of reserve establishment (Kramer and Heck  

2007).  

  

Similarly, within the Exuma Cays Land and Sea Park (ECLSP) reserve, parrotfish  

biomass was two times higher than in unprotected areas along the same reef tract (Mumby et  

al. 2006a). In Belize, fish biomass was higher in Hol Chan Marine Reserve than outside the  

reserve during a 1993 study (Polunin and Roberts 1993). However, not all studies report a  

positive effect of protection on fish communities, highlighting the important role of poaching  

or lack of enforcement that can compromise the performance of MPAs. For example, a recent  

study at Glover’s Reef Marine Reserve found that the biomass of herbivorous fishes was  

similar within reserve sites when compared to adjacent control sites potentially due to a lack  

of sufficient enforcement or increased predatory reef fishes within reserves (Huntington et al.  

2011). We found no positive effect of protection or enforcement on either predatory reef  

fishes or parrotfishes. These results broaden the scale of the findings of Huntington et al.  

2011 demonstrating that current (2009-2013) mean fish biomass within Belize’s national  

MPA network is not higher than that in fished areas. The large spatial extent of our  

monitoring sites highlights that the poor performance of Belize’s MPAs is evident at a larger  

scale.   
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Table 3.3: Top linear mixed-effects models testing the effects of 15 covariates on four response variables  
Among the covariates, wave exposure, protection status, and enforcement level were sufficiently correlated to compromise  
interpretation when modeled together (Spearman rank correlation  rs > 0.50), therefore, we modeled these covariates separately  
(Model A: Wave Exposure, Model B: Protection Status, Model C: Enforcement Level). The top models considered are those with  
∆AICc <2. Relative variable importance (RI) is the sum of the weights of all models that contain that particular variable. Covariate  
abbreviations are as follows: PdB: Predator Biomass, HD: Human Density, NPP: Net primary productivity, W: Wave exposure, RC:  
Reef complexity, RA: Reef area, MP: Mangrove perimeter, C: Coral cover, M: Macroalgal cover, PB: Parrotfish Biomass, Y: Year,  
C1: Conservation zone 1, C2: Conservation zone 2. Enforcement level, distance to deep water and sea surface temperature anomalies  
were not retained in any of the top models.  
  
Response 
Variable PdB HD NPP W RC RA MP C M PB Y C1 C2 df logLik AICc ΔAICc wt 

Coral Cover                  
Model A                   

1  X   X    X X    7 -50.15 116.46 0.00 0.42 
2  X   X    X X X   8 -49.49 117.80 1.34 0.21 
3  X X  X    X X    8 -49.49 117.81 1.35 0.21 
4     X    X X    6 -52.41 118.41 1.95 0.16 
RI  0.84 0.21  1.00    1.00 1.00 0.21        

Model B                   
1  X   X    X X    7 -50.15 116.46 0.00 0.35 
2  X   X    X X X   8 -49.49 117.80 1.34 0.18 
3  X X  X    X X    8 -49.49 117.81 1.35 0.18 
4         X X  X X 7 -51.02 118.19 1.73 0.15 
5  X       X X    6 -52.41 118.41 1.95 0.13 
RI  0.72 0.18  0.85    1.00 1.00 0.18 0.15 0.15      

Model C                   
1  X   X    X X    7 -50.15 116.46 0.00 0.42 
2  X   X    X X X   8 -49.49 117.80 1.34 0.21 
3  X X  X    X X    8 -49.49 117.81 1.35 0.21 
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Response 
Variable PdB HD NPP W RC RA MP C M PB Y C1 C2 df logLik AICc ΔAICc wt 

4     X    X X    6 -52.41 118.41 1.95 0.16 
RI  0.84 0.21  1.00    1.00 1.00 0.21        

                  
Macroalgal Cover                  

Model A                   
1     X   X   X   6 -198.19 409.96 0.00 0.19 
2    X X   X   X   7 -196.94 410.04 0.08 0.18 
3     X   X  X X   7 -197.04 410.23 0.27 0.16 
4     X   X  X    6 -198.45 410.49 0.53 0.14 
5    X X   X  X X   8 -196.32 411.46 1.50 0.09 
6  X   X   X  X    7 -197.74 411.64 1.68 0.08 
7  X   X   X  X X   8 -196.42 411.67 1.71 0.08 
8  X   X   X   X   7 -197.78 411.72 1.76 0.08 

RI  0.21  0.27 1.00   1.00  0.56 0.78        
Model B                   

1     X   X   X   6 -198.19 409.96 0.00 0.26 
2     X   X  X X   7 -197.04 410.23 0.27 0.22 
3     X   X  X    6 -198.45 410.49 0.53 0.20 
4  X   X   X  X    7 -197.74 411.64 1.68 0.11 
5  X   X   X  X X   8 -196.42 411.67 1.71 0.11 
6  X   X   X   X   7 -197.78 411.72 1.76 0.11 

RI  0.32   1.00   1.00  0.64 0.69        
Model C                   

1        X   X   5 -200.65 412.41 0.00 0.19 
2        X  X X   6 -199.61 412.80 0.38 0.16 
3  X X     X  X    7 -198.52 413.19 0.78 0.13 
4        X  X    5 -201.18 413.48 1.06 0.11 
5  X X     X  X X   8 -197.37 413.56 1.14 0.11 
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Response 
Variable PdB HD NPP W RC RA MP C M PB Y C1 C2 df logLik AICc ΔAICc wt 

6  X      X  X X   7 -198.75 413.66 1.25 0.10 
7  X      X   X   6 -200.05 413.68 1.26 0.10 
8  X      X  X    6 -200.20 413.98 1.57 0.09 
RI  0.53 0.24     1.00  0.70 0.67        

                  
Parrotfish Biomass                  

Model A                   
1    X       X   5 -230.06 471.23 0.00 0.23 
2    X   X    X   6 -229.17 471.93 0.69 0.16 
3    X     X  X   6 -229.44 472.46 1.23 0.12 
4  X  X       X   6 -229.50 472.59 1.36 0.12 
5    X   X  X  X   7 -228.35 472.86 1.62 0.1 
6  X  X   X    X   7 -228.41 472.97 1.74 0.1 
7 X   X       X   6 -229.78 473.15 1.91 0.09 
8    X  X X    X   7 -228.52 473.20 1.97 0.09 

RI 0.09 0.21  1.00  0.09 0.44  0.22  1.00        
Model B                   

1       X    X   5 -232.21 475.54 0.00 0.27 
2           X   4 -233.51 475.75 0.22 0.24 
3       X  X  X   6 -231.47 476.52 0.98 0.16 
4         X  X   5 -232.96 477.02 1.49 0.13 
5      X X    X   6 -231.93 477.45 1.91 0.10 
6  X     X    X   6 -231.95 477.48 1.94 0.10 

RI  0.10    0.10 0.63  0.29  1.00        
Model C                   

1       X    X        
2           X   5 -232.21 475.54 0.00 0.30 
3       X  X  X   4 -233.51 475.75 0.22 0.27 
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Response 
Variable PdB HD NPP W RC RA MP C M PB Y C1 C2 df logLik AICc ΔAICc wt 

4         X  X   6 -231.47 476.52 0.98 0.18 
5  X     X    X   5 -232.96 477.02 1.49 0.14 
RI  0.11     0.59  0.32  1.00        

Predator Biomass             6 -231.95 477.48 1.94 0.11 
Model A                   

1     X      X   5 5.19 0.74 0.00 0.46 
2  X   X      X   6 5.98 1.62 0.88 0.30 
3    X X      X   6 5.80 1.98 1.24 0.25 

RI  0.30  0.25 1.00      1.00        
Model B                   

1     X      X   5 5.19 0.74 0.00 0.61 
2  X   X      X   6 5.98 1.62 0.88 0.39 

RI  0.39   1.00      1.00        
Model C                   

1           X   4 -0.46 9.65 0.00 0.73 
2        X   X   5 -0.25 11.61 1.96 0.27 

RI        0.27   1.00        
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Our results are also in agreement with Huntington et al. (2011) and Kramer and Heck  

(2007) who found no significant differences in coral cover inside and outside of Caribbean  

reserves. Without higher parrotfish biomass, it is not surprising that we did not observe lower  

macroalgal cover or higher coral cover with MPAs. However, mean macroalgal cover across  

protection levels, ranging from 47.1% to 55.1%, was higher than the average for the  

Caribbean (approximately 23%) (Bruno et al. 2009, Jackson et al. 2014b).   

  
Figure 3.2: Significant correlations between response variables and explanatory  
variables. Points are means per site.   
Black line is the mean (± 95% confidence interval) of the predicted response variable as a  
function of a given covariate.  
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Figure 3.3: Comparison of parrotfish biomass, predatory reef fish biomass, macroalgal  
cover, and coral cover within protected areas (C1 and C2) and unprotected areas.   
Boxplots represent means per site year.    
  

  

Figure 3.4:  Comparison of parrotfish biomass, predatory reef fish biomass, macroalgal  
cover, and coral cover by enforcement level.   
Boxplots represent means per site year.  
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Macroalgal cover in our study was also higher on average than Mumby and Harborne  

(2010) reported in the Bahamas (3.1±1%) where increases in coral cover were significantly  

higher at reserve sites than those in non-reserve sites as a result of higher parrotfish grazing  

within the reserve. Regional declines in coral cover and recruitment coupled with above  

average macroalgal cover in Belize suggests that a more severe coral to macroalgal phase-  

shift has occurred in this area than has occurred elsewhere in the Caribbean, which may  

preclude a potential cascading effect of herbivores on macroalgae abundance.   

  

While we did not observe positive effects of MPAs, there was an increase in  

predatory reef fish and parrotfish biomass over the five-year monitoring period (Fig 3.2).  

Parrotfish biomass increased by 54% from 2009 (25.1 ±1.7g/m2, mean ± standard error) to  

2013 (38.8±3.6 g/m2) most likely due to a ban on herbivorous fish harvesting implemented in  

2009 (Cox et al. in press), suggesting that effective restrictions on fishing effort are an  

important tool for coral reef management in addition to MPAs. We also observed an increase  

of approximately 300% in predatory reef fish biomass from 8.4±1.8 g/m2 in 2009 to  

34.2±13.5 g/m2 in 2013. Two sites (Tackle Box (fished) and Half Moon (C1) exhibited  

substantially higher predator biomass in 2012 and 2013 compared to other sites, driving the  

overall increase in mean predator biomass. Further analysis is necessary to understand site-  

specific community dynamics and environmental factors resulting in higher predator  

biomass.   

  

Enforcement is a key issue in the performance of Belize’s national MPA network.  

While 19.6% of Belize’s territorial waters are within MPAs, only 2.7% are within areas fully  
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protected from fishing. Of the 18 MPAs in Belize, 10 (56%) are considered to be relatively  

well-enforced (“good” or “moderate” enforcement ranking) (McField 2014). Our study  

included one fully protected, well-enforced MPA (Hol Chan Marine Reserve), two fully  

protected, moderately enforced MPAs (Bacalar Chico Marine Reserve and Half Moon Caye  

National Monument), and one partially protected, moderately enforced MPA (Glover’s Reef  

Marine Reserve). The other two MPA sites are partially protected and inadequately enforced  

(South Water Caye Marine Reserve and Sapadillo Caye Marine Reserve). Despite being  

designated as protected areas or being considered by local managers as well enforced or  

moderately enforced, these coral reef communities do not appear to be benefiting from local  

management suggesting that poaching may still be occurring in these areas. Our findings  

support a recent global analysis that found no-take, old (>10 years), well enforced, large  

(>100 km2) and isolated marine reserves have the most benefits for fish communities (Edgar  

et al. 2014). The MPAs evaluated in this study range from approximately 5 to 477 km2 size  

and were established 18 to 32 years ago (Table 3.1). Interestingly, two of the five MPAs  

included in this study are above the 100km2 size threshold and the 10 year threshold  

identified by Edgar et al (2014), but without effective enforcement even large and old marine  

reserves do not restore fish biomass (Table 3.1 and Fig. 3.4).   

  

It is important to consider sites that support coral reef ecosystems that are healthier  

than the average across the MPA network. For example, of the 16 reef sites, Half Moon Caye  

(where fishing is prohibited and enforcement is moderate) exhibits relatively high average  

annual predator biomass (72±4 g/m2), relatively high coral cover (30±2 %), and low  

macroagal cover (37±2 %) (Appendix C). Parrotfish biomass (41±5 g/m2) at this reserve was  
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only higher than 4 other sites and was similar to the average annual parrotfish biomass across  

sites (Figure S2). As our models predicted, high reef complexity at Half Moon Caye (index  

of 5) supported high predator biomass and low macroalgal cover. Higher structural  

complexity is a strong correlate of fish biomass (Wilson et al 2007) including herbivorous  

fishes (Alvarez-Filip et al 2011). Our results indicated that structural complexity is of vital  

importance to the health of this reef leading to both relatively high fish biomass and low algal  

cover.    

  

While our results suggest that the reef management in Belize at the time of this study  

appeared to be limited in promoting fish and coral recovery, further temporal and  

geographical analyses will be necessary to identify subtler or delayed benefits of Belize’s  

protection programs. Benefits of protection and effective enforcement may take years or  

decades to be realized through the dynamic responses of the ecosystem (Babcock et al.  

2010). Continued monitoring at these sites would strengthen our ability to detect patterns that  

may arise over longer time scales such as reductions in macroalgal cover as herbivore  

biomass continues to increase.  

   

As a key conservation management strategy, MPAs have the potential to promote  

coral reef recovery by restoring reef fish populations and potentially reducing macroaglal  

cover. However, establishing MPA boundaries is not enough. Enforcement is imperative to  

MPA success particularly as reef systems increasingly face a multitude of natural and  

anthropogenic stressors that transcend MPA boundaries such as ocean warming and  

acidification, poor water quality, and introductions of invasive species. A lack of funding in  
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Belize and other Caribbean countries often limits enforcement efforts due to a wide range of  

challenges to be addressed such as watershed and invasive species management (McField  

2014). If faced with limited funds for reef conservation, our results suggest that local  

managers focus their enforcement efforts on those reefs with higher structural complexity,  

which support high predatory fish biomass and lower macroalgal cover.  Other management  

efforts are also important such as the recent ban on herbivorous fish harvesting in all national  

waters that provides additional protection that may promote parrotfish population recovery  

independent of MPA designation or enforcement. Strengthening enforcement, limiting  

poaching within MPA boundaries, and implementing additional fisheries policies such as  

Belize’s national ban on herbivorous fish harvesting, promote faster recovery of fish  

communities that would contribute to reversing the phase shift back toward coral dominance.    
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CHAPTER 4: GENETIC POPULATION STRUCTURE REVEALS CONNECTIVITY  
OF PARROTFISH POPULATIONS IN THE SOUTHERN MESOAMERICAN  

BARRIER REEF  
  
  

Introduction  

A primary focus of Caribbean coral reef management is restoring herbivorous fish  

populations to reduce macroalgae that inhibits coral assemblage recovery (Jackson et al.  

2014b). Overfishing of herbivorous fishes such as parrotfishes results in the functional loss of  

one of the few herbivores left on Caribbean coral reefs.  This loss has largely contributed to  

observed shifts in Caribbean reef communities from coral to algal dominance (Knowlton  

1992, Done 1992, McManus and Polsenberg 2004). Marine protected areas and regional  

scale fishing regulations are management strategies that have been implemented to reduce  

fishing pressure on herbivorous fish populations. However, the success of these strategies not  

only depends on reduced fishing pressure, but also on the connectivity of these fish  

populations across national boundaries as population recovery may be dependent on larval  

input from other sources.   

  

Reef fish connectivity is influenced by both ocean surface currents that transport  

pelagic larvae between both near and distant populations (up to 100 km from source  

population) (Sponaugle et al. 2002, Ezer et al. 2005, Cowen et al. 2006) and by the behavior  

of adult fishes and pelagic larvae, which can restrict or direct dispersal contributing to local  

retention (Cowen et al. 2000, 2003, Jones et al. 2005). Major surface currents in the  

Mesoamerican Barrier Reef that potentially link fish populations via passive larval dispersal  

include the Caribbean Current, a northwestward offshore flow in the deep water off the  
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continental shelves of Honduras and Belize; an equatorial coastal current that flows along the  

coasts of Belize, Guatemala and Honduras, and a cyclonic circulation in the Gulf of  

Honduras (Craig 1966, Ezer et al. 2005, Chérubin et al. 2008). Connectivity patterns also  

reflect adult fecundity and time and location of spawning events relative to currents, gyres,  

and tides (Shulman and Bermingham 1995, Sponaugle et al. 2002), vertical and horizontal  

swimming behavior and sensitivity to environmental cues of pelagic larvae (Cowen et al.  

2000, Paris et al. 2007); pelagic larval duration (PLD) (Jones et al. 2009); and larval  

mortality (Sponaugle et al. 2002, Paris et al. 2007). Late-stage pelagic larvae are competent  

swimmers that can control their trajectories including vertical migrations or directed  

horizontal swimming which may reduce passive dispersal and enhance self-recruitment (Leis  

and Carson-Ewart 1997, Stobutzki and Bellwood 1997, Sponaugle et al. 2002). Fish larvae  

are also capable of orienting themselves toward natal sites or other suitable habitat by sensing  

environmental cues such as variation in water chemistry, sound and vibrations, hydrography,  

magnetism, visibility and electrical fields (Kingsford et al. 2002, Lecchini et al. 2005,  

Gerlach et al. 2007). High connectivity between populations has been linked to a long pelagic  

larval duration resulting in long dispersal distances in some species, but this is not a universal  

trend among all fishes and even fish with long PLDs may recruit back to source populations  

(Shulman and Bermingham 1995, Swearer et al. 1999, Purcell et al. 2006, 2009, Jones et al.  

2009).   

  

Molecular markers have been widely used to detect genetic population structure and  

make inferences about larval dispersal in marine organisms (Hellberg et al. 2002, Jones et al.  

2009). Within the Greater Caribbean Region, barriers to larval dispersal identified through  
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genetic analysis of fish, invertebrates and corals separate the eastern and western Caribbean,  

the Mesoamerican Barrier Reef and the eastern Caribbean, and coastal and offshore sites in  

Belize (Purcell et al. 2009, Hogan et al. 2012, Foster et al. 2012, Iacchei et al. 2013, Jackson  

et al. 2014a). The separation between the Gulf of Honduras and the northern Mesoamerican  

Barrier Reed System was also detected by dispersal modeling and an assessment of larval  

fish assemblages across the Mesoamerican Barrier Reef (Cowen et al. 2006, Paris et al. 2007,  

Muhling et al. 2013). Muhling et al. (2013) suggest that the Gulf of Honduras is a potentially  

important retention area for pelagic larvae, whereas conditions further north favor dispersion.  

However, the degree of potential connectivity between the southern and northern MBRS  

varies seasonally and by species (Purcell et al. 2006, Hogan et al. 2010, Villegas-Sanchez et  

al. 2010, Kool et al. 2010, Jackson et al. 2014a).    

  

Parrotfishes are territorial fish species that forage and occasionally spawn in shallow  

reef areas and travel up to several hundred meters to deeper areas to spawn and find suitable  

sleeping habitat (Ogden and Buckman 1973, Lobel and Ogden 1981, Dubin and Baker 1982).  

They are relatively fast growing species that reach maturity at an early age (approximately 1-  

2 years or 17 cm to 27 cm) and spawn year round releasing gametes into the water column  

(Munro et al. 1973, Robertson and Warner 1978, Koltes 1993). The mean pelagic larval  

duration for parrotfishes ranges from 28 to 53 days (Schultz and Cowen 1994, Jones et al.  

2006). These life history traits may improve larval dispersal potential, but little is known  

about parrotfish larval behavior that may enhance self-recruitment. One previous study  

assessing connectivity of parrotfish in the Greater Caribbean, found high gene flow between  

Stoplight Parrotfish (Sparisoma viride) populations in five eastern Caribbean islands  
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(Geertjes et al. 2004). However, no studies have assessed potential larval dispersal and  

connectivity among western Caribbean populations including the Mesoamerican Barrier  

Reef.   

  

In 2009, the Belize Fisheries Department implemented a national ban on herbivorous  

fish harvesting including parrotfish to restore populations and reduce macroalgal cover.  

Currently, parrotfish are not legally protected in Honduras outside of no-fishing zones, which  

constitute only 2% of territorial seas, and none of these zones are well-enforced (McField  

2014). We expect the surface gyre between Belize and Honduras to facilitate larval dispersal  

and connect populations between these regions (Purcell et al. 2009). If larval dispersal  

effectively links these populations, high fishing pressure in Honduras may greatly impede  

population recovery (Gobert et al. 2005). Here, we assess the genetic population structure of  

S. viride populations within Belize and Honduras to detect connectivity or larval retention in  

these regions.   

  

Methods  

Sample Collection and Genomic DNA Isolation  

We collected fin clippings from 20-50 individual S. viride at 10 sites within Belize  

and Honduras (Fig. 4.1). We chose S. viride as a model species because it is a well-studied  

parrotfish species and is common throughout the Mesoamerican Barrier Reef.  
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Figure 4.1:Topographic map of mean current direction and sampling locations.   
Arrows represent the direction of mean ocean surface currents based on Ezer et al 2005 and  
Craig 1966. Points represent sampling locations. T=Turneffe, CB=Carrie Bow, HC=Hol  
Chan, HM=Half Moon, R=Roatan, and U=Utila.  
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Using either SCUBA or snorkel, we captured adult S. viride in a hand net between the  

hours of 9:00 pm and 12:00 am and removed a small portion (approximately 5 mm2) of the  

upper lobe of the caudal fin with scissors in situ. This was a non-lethal method of collecting  

genetic material and fish were released within 2 minutes. We stored the fin sample in 2 ml  

tubes filled with 95% ethanol. We isolated genomic DNA from sample tissue following the  

manufacturer’s protocol for the Qiagen Puregene Mousetail kit (former Gentra cat. no. D-  

7010B) and stored at −20°C.  

  

Amplification, Genotyping and Data Analysis   

  We amplified microsatellite loci (Table 4.1) in 5 multiplex PCR reactions with a  

Qiagen Type-it Microsatellite PCR kit. Primers were optimized under following conditions:  

DNA polymerase was activated in an initial activation step (95°C for 5 min), followed by 45  

thermocycles of denaturation (95°C for 30 s), annealing (60°C for 90 s), and extension (72°C  

for 30 s), and a final extension (30 min at 60°C). Florescent- labeled PCR products were  

size-separated and analyzed in a CEQ 8000 Genetic Analysis System (Beckman Coulter).   

  

We scored all microsatellites loci using GeneMapper version 3.7 (Applied  

Biosystems) and binned allele sizes with the MstatAllele package v1.05 (Alberto 2009) for R  

v3.0.2 (R Development Core Team 2013). An individual tissue sample was included in the  

genetic analyses if we could genotype at least seven of the ten microsatellite loci.  
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Table 4.1: Summary of 9 polymorphic nuclear microsatellite loci in Sparisoma viride.   
Number of alleles (Na), size range of amplicons (size of the cloned allele in parentheses), observed (Ho) and expected (He)  
heterozygosities.  
  
Locus ID Primer Sequences (5' to 3') Repeats Na Ho He 

PFish7 
F: TGAAAGCTTCACTGATGTCGC 

ATCT(144) ATCT(104)  17 0.930 0.945 R: CAGAGTGACAAATGTTTGAGGC 

Pfish 14 
F: CCATGAAAAGTGTCCCAGCC 

ATCT(96) ATCT(124)  20 0.885 0.908 R: CAAACTGAGAAAGAAAACTTGCTAGG 

Pfish19 
F: GGTGGAACCCAAAGAAAGACC 

ATCT(104) ATCT(104)  20 0.949 0.918 R: CATTTCAGGTTGCTATTCCCC 

PFish48 
F: TGTGGTCTTCACAAGTCAGAGG 

ATCT(68) ATCT(108)  22 0.693 0.908 R: CCCCTGGAGATAGACTGGC 

PFish51 
F: TTTCCTTTTGAGCAGTTACTTTAGC 

ATCT(72) ATCT(104)  35 0.831 0.820 R: AATGACATTGATTTTGAGTTTGG 

Pfish69 
F: AGAGGACAAATGGTCTCCCG 

ATCT(88) ATCT(72)  22 0.825 0.880 R: ACCTTCCTGTTTGTGAGGTGC 

Pfish158 
F: TGCCAATATAATTGTGTTCCATACC 

ATATC(60) ATATC(60)  33 0.808 0.838 R: TTTCCTTTCGCTTTGTTTCG 

Pfish164 
F: CTTTTGGCTTACTGAGCGGG 

ATCT(32) ATCT(84)  46 0.928 0.915 R; AAGGATTCAGATAGACATCCAGCC 

Pfish187 
F: ATTCAGAGGCAGTAGCGCCC 

ATCT(56) ATCT(56)  26 0.768 0.806 R: CAGTGCAAAGTTTGATTGAGATCC 
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We calculated number of alleles, expected heterozygosity (He), and observed  

heterozygosity (Ho) using the adegenet package v1.4-2 (Jombart 2008) for R v3.0.2 (R  

Development Core Team 2013) (Table 2). Exact tests for goodness of fit to Hardy–Weinberg  

equilibrium (HWE) using the Markov chain method (10,000 permutations) for each locus  

within each population were performed in GenoDive v2.0b27 (Table 4.2) (Meirmans and  

Van Tienderen 2004). Statistical significance of HWE values was assessed after a Bonferroni  

correction (p<0.0008). Departures from HWE can be caused by biological processes such as  

inbreeding or population substructure (i.e. the Wahlund effect) or by technical issues such as  

null alleles. We tested for the presence of null-alleles using MicroChecker v2.2.3 (Van  

Oosterhout et al. 2004) and for linkage disequilibrium using Genepop on the web (Morgan  

2000, Rousset 2008). We calculated population and individual inbreeding coefficients (FIS)  

using the inbreeding function available from the adegenet package v1.4-2 for R v3.0.2. We  

then examined the frequency distribution of inbreeding coefficients for all individuals.  

  

We estimated the number of genetically differentiated clusters using discriminant  

analysis of principal components (DAPC) (Jombart et al. 2010) available in the adegenet  

package v1.4-2 for R 3.0.2. DAPC has been shown to accurately characterize population  

subdivision and resolve the underlying structuring in more complex population genetics  

models. DAPC uses principal component analysis (PCA) to transform as a prior step to  

discriminant analysis (DA) and does not rely on assumptions about Hardy-Weinberg  

equilibrium or linkage disequilibrium (Jombart et al. 2010). We ran successive K-means  

clustering and identified the optimal number of clusters using the Bayesian Information  

Criterion (BIC). In all analyses, 68 principal components of principal component analysis  
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were retained in the data transformation step, and six axes were retained in the discriminant  

analysis step. The first two principal components of the DACP were plotted to evaluate  

relationships among clusters. We conducted an analysis of molecular variance (AMOVA) to  

test for population structure among populations using GenoDive 2.0b27. Both global and  

pairwise FST were tested for significance with 10,000 permutations.   

  

As a comparison to the DAPC analysis, we used the Bayesian clustering algorithm in  

STRUCTURE 2.3.4 (Pritchard et al. 2000). We ran STRUCTURE with an admixture model  

and assumed correlation among population allele frequencies. Default values for alpha and  

prior FST were used. Log-likelihood values were computed for each K (1-7) by  

running STRUCTURE 10 times with 100,000 repetitions each (burn-in: 100,000 iterations).    

  

We tested for IBD by implementing Mantel tests (10,000 permutations) based on the  

degree of genetic similarity calculated using Nei’s distance (Nei 1978) and Euclidean  

distance (km) between all sampling locations using the ade4 package v1.6-2 (Chessel et al.  

2004) and the adegenet package v1.4-2 for R v3.0.2. We then plotted patterns of IBD among  

all sampling locations to determine if geographical distance was driving genetic  

differentiation.  

  

Results  

We scored 214 individuals over ten nuclear microsatellite loci with 17 to 46 alleles  

per locus. Microsatellite sequences were deposited to Genbank (PFish48, Pfish55, PFish51,  

PFish187, PFish69, PFish14, PFish7, PFish158, PFish164, PFish19). We removed 8  
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individuals that could not be genotyped at seven of the ten loci from the analysis. Of the ten  

microsatellite loci developed for this study (Cox et al, in prep), one (PFish55) showed  

significant deviations from Hardy–Weinberg equilibrium at all sampling localities and  

showed evidence of substantial null alleles. Consequently, this locus was excluded from all  

analyses (although its inclusion did not alter the results substantially—data not shown). For  

the remaining nine loci, there were significant deviations from HWE in 2 of 56 (~4%)  

comparisons after correcting for multiple comparisons Table 4.2.  We found no evidence of  

scoring errors due to large allele dropout or stutter; however, four of nine markers (PFish7,  

PFish48, PFish69, PFish14) showed patterns consistent with null alleles, which are the  

likely cause of the deviations from HWE. There were no consistent, across-samples effects of  

null alleles, and given that null alleles only have minor effects on F ST estimates and the  

accuracy of assignment testing, these loci were included in the all analyses (Carlsson 2008).   

  

For the nine loci, mean allelic richness per population ranged from 8.13 (site U) to  

9.21 (site CB) and there appeared to be no geographic trend in values. Observed  

heterozygosities ranged from 0.87 to 0.90 and expected heterozygosities ranged from 0.85 to  

0.88 (Table 4.3). Population level FIS ranged from 0.14 to 0.19 with a mean of 0.17 (Table  

4.3). The majority of individuals within each population had a low inbreeding coefficient  

with only four individuals (among four populations) having a probability of greater than 0.40  

to inherit two identical alleles from a single ancestor (Fig 4.2).   
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Table 4.2: Results of Hardy-Wienburg Equilibrium analysis.   
Values in bold represent significant  p-values after Bonferonni correction (p<0.0008).   
  
Population PFish48 PFish158 PFish51 Pfish164 Pfish14 Pfish187 Pfish19 Pfish7 PFish69 
Turneffe 0.002 0.550 0.272 0.212 0.021 0.461 0.633 0.520 0.454 
Carrie Bow 0.000 0.411 0.422 0.424 0.294 0.243 0.317 0.021 0.002 
Glovers 0.113 0.227 0.037 0.500 0.547 0.570 0.205 0.450 0.269 
Hol Chan 0.004 0.192 0.233 0.201 0.330 0.470 0.544 0.512 0.068 
Half Moon 0.540 0.308 0.637 0.460 0.087 0.604 0.459 0.512 0.598 
Roatan 0.001 0.179 0.221 0.409 0.382 0.139 0.537 0.197 0.234 
Utila 0.000 0.193 0.269 0.388 0.178 0.188 0.303 0.509 0.514 
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Table 4.3: Summary Statistics. Sample size (N); average allelic richness (Na); expected  
and observed heterozygosity (HE, HO); and inbreeding coefficient (FIS) for the 7  
sampling locations included in this study.  
  
Population N Na HE HO FIS 
Turneffe 18 8.72 0.85 0.87 0.17 

Carrie Bow 32 9.21 0.88 0.89 0.19 

Glovers 17 8.31 0.85 0.87 0.14 

Hol Chan 34 8.45 0.86 0.87 0.17 

Half Moon 10 8.78 0.86 0.9 0.16 

Roatan 46 8.71 0.88 0.89 0.18 

Utila 48 8.13 0.87 0.87 0.18 
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Figure 4.2: Frequency distribution of individual inbreeding coefficients by population.   
  

  

  

Tests for linkage disequilibrium (LD) were significant in 4 of 196 comparisons (~2%)  

after correcting for multiple tests, and there were no locus-specific patterns. The four  

significant tests were detected from samples collected from Hol Chan Marine Reserve,  

Belize.   

  

The among-population global FST value was low (0.001) and not significant (p =  

0.48). Pair-wise (among sampling sites) FST values ranged between -0.001 and 0.011 (Table  

4.4). Significant population differentiation was found in pairwise comparisons between  
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Turneffe and Glover’s, Utila, and Roatan (Table 4.4). The DAPC analysis identified two  

clusters within the data. The two main components of the DAPC analysis based on the  

number of sampling locations (k = 7) supported the weak differentiation of Turneffe (Fig.  

4.3).  

Table 4.4: Pairwise Fst values (below diagonal) and corresponding p-values (above  
diagonal) after 10,000 permuntations.   
Significant p-values are shown in bold (p<0.05).  
  

 Turneffe Carrie Bow Glovers Hol Chan Half Moon Roatan Utila 
Turneffe -- 0.143 0.018 0.192 0.227 0.012 0.040 
Carrie Bow 0.004 -- 0.747 0.536 0.938 0.861 0.917 
Glovers 0.012 -0.003 -- 0.251 0.342 0.766 0.521 
Hol Chan 0.003 0.000 0.003 -- 0.646 0.108 0.324 
Half Moon 0.005 -0.009 0.003 -0.003 -- 0.936 0.671 
Roatan 0.009 -0.003 -0.003 0.003 -0.008 -- 0.731 
Utila 0.007 -0.003 -0.001 0.001 -0.003 -0.001 -- 
  

STRUCTURE analysis did not detect the weak differentiation between Turneffe and  

the other six islands (Fig 4.4). However, because STRUCTURE clusters individuals by  

minimizing Hardy–Weinberg and gametic disequilibrium, complex spatial structure is often  

not identified (Pritchard et al. 2000, Evanno et al. 2005, Jombart et al. 2010). The  

multivariate analysis used in DAPC does not make any assumption on the population genetic  

models and may be more efficient at identifying genetic clines and hierarchical structure  

(Jombart et al. 2010).   

  

Mantel tests of IBD over all populations did not show a positive relationship between  

geographical and linearized genetic distances. Instead, we detected a negative relationship  

between geographical and linearized genetic distances (R2=-0.476, p=0.06) (Fig 4.5).   
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Figure 4.3: Discriminant analysis of principal components (DAPC) of Sparisoma  
viride allelic data.   
The scatterplot shows the first two principal components of the DAPC, using sampling  
locations as prior clusters. Populations are shown by different colors and inertia ellipses and  
points represent individuals. T=Turneffe, CB=Carrie Bow, HC=Hol Chan, HM=Half Moon,  
R=Roatan, and U=Utila.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 4.4: Triangular plot of STRUCTURE results.   
No genetic differentiation was detected by this analysis.   
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Figure 4.5: Correlation between genetic distance (Nei’s Distance) and geographic  
distance (km) to evaluate isolation by distance (IBD).   
  
  

  

  

  

  

  

  

  

  

  

  

  

Discussion  

Effective management to foster grazer recovery requires a thorough understanding of  

ecological processes that control population gene flow including larval dispersal and  

population connectivity. Using nine microsatellite markers, we did not detect genetic  

differentiation between four S. viride populations in Belize and two populations in Honduras  

indicating that these populations are connected through larval dispersal. The population at  

Turneffe Atoll was weakly differentiated from one population in Belize (Glover’s) and two  

populations in Honduras (Utlia and Roatan). Our findings of larval connectivity between  

populations in Belize and Honduras are consistent with Purcell et al. 2009, who found no  
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genetic differentiation between S. partitus populations from Glover’s Reef, Belize and Cayos  

Cohcinos, Honduras  

  

Connectivity of fish populations through larval dispersal is influenced by  

oceanographic circulation and larval behavior (Cowen et al. 2000, White et al. 2010a).  

Genetic differentiation between the eastern and western Caribbean was detected for  

populations of bicolor damselfish (Stegastes partitus) and french grunts (Haemulon  

flavolineatum), but not for bluehead wrasse (Thalassoma bifasciatum) suggesting that the  

former species have more restricted larval dispersal (Purcell et al. 2006, 2009). These genetic  

differences were attributed to differences in PLD. S. partitus and H. flavolineatum have  

PLDs of ranging from 14 to 30 days, while T. bifasciatum have a PLD  of 45 days or more  

(McFarland et al. 1985, Wellington and Robertson 2001). There was a positive relationship  

between genetic and geographical distance for S. partitus and H. flavolineatum in the eastern  

Caribbean, but no spatial pattern in the western Caribbean, which highlights the importance  

of oceanographic currents in larval dispersal. However, local retention was identified for the  

California spiny lobster (Panulirus interruptus) despite a PLD of 240 to 330 days and high  

potential for connectivity through ocean surface currents, which underscores the importance  

of larval behavior in limiting dispersal (Iacchei et al. 2013). Thus, genetic population  

structure cannot be extrapolated from one species to another (Díaz-Ferguson et al. 2011) and  

predicting larval dispersal for species of particular importance such as parrotfish should be  

assessed independently and incorporated into fisheries management approaches (Reiss et al.  

2009, Ovenden et al. 2011). However, in many cases, genetic population structure is not  

sufficiently considered in management practices resulting in potential loss of genetic  
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diversity and ineffective fish stock recovery or sustainability (Laikre et al. 2005, Reiss et al.  

2009).   

  

Extensive connectivity and gene flow between management areas should enhance  

genetic diversity and has the potential to promote population recovery (Berry et al. 2012).  

However, population recovery may be compromised if source populations located outside  

jurisdictional boundaries are overfished. In other words, depleted fish populations would not  

be replaced by immigrants or recruits from other populations. Local conservation  

organizations are monitoring the biomass of herbivores throughout the Mesoamerican Barrier  

Reef and encouraging local governments and communities to conserve this important  

functional group, but Belize is currently the only country with a regulation in place that  

nationally protects parrotfishes. Our results provide evidence of parrotfish population  

connectivity between Belize and Honduras highlighting the importance of establishing a  

management approach that crosses international boundaries to restore parrotfish populations  

and coral reef health.  
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APPENDIX A  
  

Sample and data collection  

Belize City is the largest coastal settlement in Belize and had three types of vendors  

selling fish fillets. There are two fishing co-operatives that sell seafood in the city; however  

only one sold fillets during the sampling periods. In addition, in Belize City we purchased  

fillets from two major supermarkets and two open fish markets. The fishing co-operative is  

the only establishment that sells fillets in Placencia. We purchased fish fillets from the  

Placencia co-operative in November 2009 and May 2010, but none were available during the  

October 2010 or June 2011 sampling periods. In October 2010 only whole fish was available  

and in June 2011 only lobster was available. A fisheries officer accompanied us to obtain  

samples from local restaurants in Placencia in October 2010 and June 2011. This was the  

only town in which a fisheries officer was available and willing to assist with restaurant  

surveys. Seven of the samples collected in Placencia were confiscated from restaurants by the  

Belize Fisheries Department and the market label was not known. These samples were only  

used to calculated proportions of parrotfish. Punta Gorda has one open fish market and one  

fishing co-operative office. The open fish market only sells whole fish and other seafood.  

The co-operative was selling fillets in June 2011 only. Fish fillets are only sold at one  

supermarket in San Pedro. We purchased fillets at this supermarket in November 2009, May  

2010 and October 2010. The supermarket did not sell fillets in June 2011. One open fish  

market is located in Dangriga and fillets were only sold at this market in October 2010. We  

visited open fish markets when they were most active, which was in the early morning in  

Dangriga and Punta Gorda and midafternoon in Belize City. We visited co-operatives and  
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supermarkets in the morning to increase the chances that fillets would be available. In  

Placencia, we visited restaurants when fisheries officers were available to assist.   

  

Due to differences in the availability of fish fillets between towns and vendors, our  

sampling design was unbalanced and replication was uneven. For instance, whole fish are  

sold more frequently than fillets in Punta Gorda and Dangriga resulting in low sample sizes.  

Only one supermarket in San Pedro sold fillets, which also resulted in a low sample size. The  

low sample sizes associated with these towns resulted in an uncertainty of the accuracy of  

mislabeling proportions. In contrast, we purchased or collected fillets from three vendor  

types (fish market, supermarket, and co-operative) in Belize City and two vendor types  

(restaurants and co-operative) in Placencia resulting in larger sample sizes.   

  

PCR Amplification  

Each PCR reaction mixture consisted of 1.0 μl 10x PCR buffer for Hotstart Taq  

(Apex), 0.5 μl of 50 mM MgCl2, 0.5 μl of 10 mM dNTP mix, 0.3 μl each of 10 mM primer,  

0.1 μl  Hotstart taq (Apex), and 0.5-2.0 μl of template DNA. Reactions using LCO/HCO  

primers were amplified with a thermal program consisting of an initial step of 15 min at 95°C  

followed by 35 cycles of 1 min at 95°C, 45 s at 42°C, and 1 min at 72°C, followed by a final  

extension step at 72°C for 7 minutes. Reactions using FishF1/FishR1 primers were amplified  

with a thermal program consisting of an initial step of 15 min at 95°C followed by 35 cycles  

of 35 cycles at the following parameters: 1 min at 95°C, 45 s at 52°C, and 1 min at 72°C,  

followed by a final extension step at 72°C for 5 minutes  
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Table A1: Summary of Data Collection. Proportion of mislabeling (Number of fillet analyzed). M = open fish market, S =  
supermarket, C = co-operative, R = restaurant, NA = no fillet sold  
  

Sampling Period 

 
Mean 

(Total N) Belize City Placencia Punta Gorda Dangriga San Pedro 

M S C C R C R M S 

           

November 2009 1.0 (6) 1.0 (2) 0.0 (5) 0.80(5) NA NA NA NA 0.40(4) 0.64 (22) 

May 2010 1.0 (2) 1.0 (3) 0.57 (7) 1.0 (5) NA NA NA NA 0.8 (5) 0.82 (22) 

October 2010 0.50(2) 0.33(3) 1.0 (6) NA 0.67 
(19)* NA NA 0.60 (5) 1.0(4) 0.72 (39) 

June 2011 NA 0.20(3) 0.0(7) NA 0.07 (15) 0.0(1) 0.0(2) NA NA 0.04 (28) 

Mean 
(Total N) 

0.90 (10) 0.55 
(11) 0.40 (25) 0.90 (10) 0.33 (34) 0.0(1) 0.0(2) 0.60 (5) 0.73(13) 0.51 

(111) 0.50 (46) 0.47 (44) 0.0 (3) 0.60(5) 0.73(13) 

  
* 7 of these samples were confiscated from restaurants by the Belize Fisheries Department and the market label was not known. These  
samples were not used to calculate proportions of mislabeling, but were used to calculated proportions of parrotfish.  
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Table A2: Summary of prices of fish fillets  
  

Market Label N Minimum Price 
(US$/lb) 

Maximum Price 
(US$/lb) 

Mean Price 
(US$/lb) 

Snapper 62 4.00 6.23 5.39 

Grouper 20 4.30 6.05 5.30 

Snapper/Grouper 15 7.50 7.50 7.50 

Snapper/Grouper/Hogfish 8 4.00 4.00 4.00 

Cobia 2 3.00 3.00 3.00 

Snook 3 2.25 2.50 2.33 
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APPENDIX B 
 

Table B1: Monitoring Site Details 

Site Latitude Longitude Reserve ID Protection 
Status 

Calabash 17.261470 -87.819700 No Status None 

Half moon 17.205600 -87.546790 Half Moon Caye 
National Monument C1 

Middle Caye 16.737030 -87.805360 Glover's Reef Marine 
Reserve C2 

South of Middle 
Caye 16.728750 -87.828670 Glover's Reef Marine 

Reserve C2 

Tobacco Caye 16.919110 -88.047570 No Status None 

South Water Caye 16.813460 -88.077560 South Water Caye 
Marine Reserve C1 

Alligator Caye 17.196600 -88.051150 No Status None 
Tackle Box 17.910560 -87.950830 No Status None 

Hol Chan 17.863430 -87.972380 Hol Chan Marine 
Reserve C1 

Mexico Rocks 17.987820 -87.903820 No Status None 

Bacalar Chico 18.162820 -87.822220 Bacalar Chico Marine 
Reserve C1 

Gallows 17.495920 -88.042550 No Status None 
Pampion  Caye 16.373100 -88.089130 No Status None 
Ranguana Caye 16.285010 -88.150310 No Status None 

Nicholas Caye 16.112300 -88.255860 Sapadilla Cayes Marine 
Reserve C1 

Southwest Caye 16.71087 -87.8461 Glover's Reef Marine 
Reserve C2 
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Table B2: Mean density (individual/m2), biomass (g/m2), and standard error (SE) from 2009 
to 2013 by species.  
 
Species Density SE Biomass SE 
S. atomarium 0.004 0.003 0.029 0.016 
S. aurofrenatum 0.102 0.021 6.973 0.713 
S. chrysopterum 0.008 0.002 1.885 0.353 
S. coelestinus 0.000 0.000 0.037 0.037 
S. coeruleus 0.000 0.000 0.128 0.128 
S. iseri 0.212 0.040 6.049 0.305 
S. rubripinne 0.008 0.002 2.597 0.749 
S. taeniopterus 0.047 0.015 1.625 0.633 
S. vetula 0.003 0.002 0.308 0.073 
S. viride 0.046 0.009 12.471 1.535 
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Figure B1: Monitoring Site Locations. Map created using ESRI ArcGIS 10.2.1. 
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Detailed description of covariates 
 
Human population density 

Humans within 50 km (maximum number of people that occurred within 50-km 

radius of each site) was used an the estimation for human population density. We chose 50 

km as radius for the first measured variable because it is reasonable range of anthropogenic 

influence on Caribbean reefs (Mora 2008). Projection estimates of human population counts 

were obtained from the Gridded Population of the World V.3 at 0.25 degree resolution 

(SEDAC 2010) and calculated in ArcGIS v10.0. 

Reef Area 

Reef areas within 10 km radius of each site was calculated from the Global 

Distribution of Coral Reefs (2010) database as available at the Ocean Data Viewer United 

Nations Environment Program's World Conservation Monitoring Centre (UNEP-WCMC) 

(http://data.unep-wcmc.org/datasets/13). This database represents the global distribution of 

warm water coral reefs compiled mostly from the Millennium Coral Reef Mapping Project 

validated and un-validated maps as well as other sources acquired by UNEP-WCMC. Reef 

areas within the interest region were calculated in ArcGIS v10.0. 

Reef structural complexity 

For each transect set we visually estimated structural reef complexity on a scale of 0-

5, where 0 was given to reefs with no vertical relief; 1, low and sparse relief; 2, low but 

widespread relief; 3, moderately complex relief; 4, very complex relief with numerous caves 

and fissures; and 5, reefs with exceptionally complex habitats, with numerous caves and 

http://data.unep-wcmc.org/datasets/13
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overhangs  (Polunin and Roberts 1993). This topographic measure provided an assessment of 

reef complexity at the seascape level which is relevant to large and medium-sized fish 

(Polunin and Roberts 1993, Wilson et al. 2007). To minimize estimation subjectivity among 

observers, at least two divers estimated reef structural complexity for each transect set and 

the average was calculated to be used in the models. We evaluated the accuracy of the 

estimations among observers by comparing the standard deviations (SD) among transects per 

site and found that SDs were 0-0.7 in all cases, meaning that average estimation differences 

were never over 1 unit. 

Mangrove Perimeter 

Mangrove abundance was quantified as the perimeter covered by mangrove within 10 

km radius of each site. Estimates of Caribbean mangrove distribution were obtained from the 

Global Distribution of Mangroves USGS (2011) database as available at the Ocean Data 

Viewer UNEP-WCMC (http://data.unep-wcmc.org/datasets/21). This database depicts the 

distributions of global mangroves based on Global Land Survey data and Landsat images. 

Landsat images (30 m resolution) were interpreted using unsupervised and supervised digital 

image classification techniques. Each image was atmospherically corrected, ground truth and 

validated with existing maps and databases.  

Net primary productivity  

We calculated mean oceanic net primary productivity (mg C m-2 day-1) for each site 

between 2002 and 2012 using remote-sensing. This was obtained from Aqua MODIS 

satellite monthly data combined in the vertical generalized production model (Behrenfeld and 

http://data.unep-wcmc.org/datasets/21
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Falkowski 1997) at a spatial resolution of 0.0833º (Oregon State University 2013). We used 

the mean of the last ten years period because primary productivity is inherently variable in 

time and established predatory communities may respond better to long term trends in 

primary productivity than to survey year or monthly mean values. Calculations were 

performed in ArcGIS 10.0. 

Sea surface temperature 

We used AHVRR Pathfinder Version 5.2 (PFV5.2) satellite data obtained from the 

US National Oceanographic Data Center and GHRSST (NOAA 2013). The PFV5.2 data are 

an updated version of the Pathfinder Version 5.0 and 5.1 collections described in Casey et al. 

(2010). We calculated average monthly sea surface temperature (SST, 2002-2011) for each 

source 4 km2 grid cell that corresponded to each reef site. We also calculated mean minimum 

monthly SST by selecting the lowest monthly average temperature per year to compute an 

average across years. Mean minimum monthly SST could be a better predictor of 

physiological constrains of some fish predator species (Jennings et al. 2008, Nadon et al. 

2012). We used mean temperature of nine years because it may represent better the 

temperature regimen these top consumers experience overtime. All calculations were 

performed in ArcGIS 10.0. 

Wave exposure 

The log of wind driven wave exposure (J m-3) was extracted in ArchGIS 10.0 from 

the wave stress map for the Caribbean basin built by Chollett et al. (2012) and available at 

(http://www.marinespatialecologylab.org/wp-content/uploads/2010/11/PECS1.png). This 

http://www.marinespatialecologylab.org/wp-content/uploads/2010/11/PECS1.png
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index does not include the influence of tides or swells, which are not generated by local 

wind, and it is an approximation of wave patterns in shallow areas (Chollett et al. 2012). 

Wave exposure has been a good predictor of spatial variation in reef building corals such as 

Orbicella sp. (former Montastrea sp.) (Chollett and Mumby 2012) and can partially explain 

beta diversity patterns of  benthic communities (Harborne et al. 2011). Wave exposure may 

also directly affect the biomass and diversity of tropical reef fish (Friedlander et al. 2003) and 

the distribution and abundance of temperate reef fish by compromising swimming abilities 

(Fulton and Bellwood 2004). Alternatively, by modifying the distribution of foundation 

species like corals, wave exposure could affect fish species that depend on them. The detailed 

description of the wave exposure calculations and assumptions can be found in Chollett & 

Mumby (Chollett and Mumby 2012). 

Macroalgal cover  

Macroalgal cover was measured at each site using point intercepts along 6-8 transect 

lines (Lang et al. 2010). Six 10 m lead-core transect lines were laid on the benthos at each 

site, with each transect spaced 10 m apart. Macroalgae were identified to genus at 10 cm 

intervals along the 10 m transect lines. These transects were directly adjacent to the fish 

transect lines.  

Predator Biomass 

We performed visual fish censuses to estimate predatory reef fish species 

composition and density using a modification of the standard Atlantic and Gulf Rapid Reef 

Assessment (AGRRA) v5.4 techniques as described in the main text (Lang et al. 2010). Fish 
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biomass was calculated through the allometric weight-length relationship, W = aTLb, where 

W is the weight of each individual (in grams), TL is the length of each fish (in cm) estimated 

from visual surveys, and the parameters a and b are species specifics (Froese and Pauly 

2011).
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APPENDIX C 
 
Detailed description of covariates 

Human population density 

As accurate information of human impacts (i.e., fishing efforts, direct pollution, 

diving activities, etc.) is unreliable for most of our sites, we expected that human population 

density closest to our study sites would be an adequate surrogate for fishing activity levels. 

This was based on studies that demonstrated that the number of people per unit of reef area 

has been positively correlated with fishing pressure (Newton et al. 2007, Stallings 2009b, 

Ward-Paige et al. 2010, Williams et al. 2011, Nadon et al. 2012). We used the number of 

humans within 50 km of each site as this radius of influence has been adequate in detecting 

anthropogenic effects in the wider Caribbean, including Belize (Mora 2008). Projection 

estimates of human population counts for the year 2010 were obtained from the Gridded 

Population of the World V.3 at 0.25 degree resolution (SEDAC 2010) and calculated in 

ArcGIS v10.0. 

Reef Area 

Reef areas within 5 km and 10 km radius of each site was calculated from the Global 

Distribution of Coral Reefs (2010) database as available at the Ocean Data Viewer United 

Nations Environment Program's World Conservation Monitoring Centre (UNEP-WCMC) 

(http://data.unep-wcmc.org/datasets/13). This database represents the global distribution of 

warm water coral reefs compiled mostly from the Millennium Coral Reef Mapping Project 

validated and un-validated maps as well as other sources acquired by UNEP-WCMC. Reef 

areas within the interest region were calculated in ArcGIS v10.0. 

http://data.unep-wcmc.org/datasets/13
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Reef structural complexity 

For each transect set we visually estimated structural reef complexity on a scale of 0-

5, where 0 was given to reefs with no vertical relief; 1, low and sparse relief; 2, low but 

widespread relief; 3, moderately complex relief; 4, very complex relief with numerous caves 

and fissures; and 5, reefs with exceptionally complex habitats, with numerous caves and 

overhangs  (Polunin and Roberts 1993). This topographic measure provided an assessment of 

reef complexity at the seascape level which is relevant to large and medium-sized fish 

(Polunin and Roberts 1993, Wilson et al. 2007). To minimize estimation subjectivity among 

observers, at least two divers estimated reef structural complexity for each transect set and 

the average was calculated to be used in the models. We evaluated the accuracy of the 

estimations among observers by comparing the standard deviations (SD) among transects per 

site and found that SDs were 0-0.7 in all cases, meaning that average estimation differences 

were never over 1 unit. 

Mangrove Perimeter 

Mangrove abundance was quantified as the perimeter covered by mangrove within 5 

km and 10 km radius of each site. Estimates of Caribbean mangrove distribution were 

obtained from the Global Distribution of Mangroves USGS (2011) database as available at 

the Ocean Data Viewer UNEP-WCMC (http://data.unep-wcmc.org/datasets/21). This 

database depicts the distributions of global mangroves based on Global Land Survey data and 

Landsat images. Landsat images (30 m resolution) were interpreted using unsupervised and 

supervised digital image classification techniques. Each image was atmospherically 

corrected, ground truth and validated with existing maps and databases.  

http://data.unep-wcmc.org/datasets/21
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Net primary productivity  

We calculated mean oceanic net primary productivity (mg C m-2 day-1) for each site 

between 2002 and 2012 using remote-sensing. This was obtained from Aqua MODIS 

satellite monthly data combined in the vertical generalized production model (Behrenfeld and 

Falkowski 1997) at a spatial resolution of 0.0833º (Oregon State University 2013). We used 

the mean of the last ten years period because primary productivity is inherently variable in 

time and established predatory communities may respond better to long term trends in 

primary productivity than to survey year or monthly mean values. Calculations were 

performed in ArcGIS 10.0. 

Sea surface temperature anomalies 

We created a 29-year dataset (1982-2010) of annual frequency of weekly thermal 

stress anomalies (TSA) for each surveyed reefs using the National Oceanic and Atmospheric 

Administration’s (NOAA) National Oceanographic Data Center (NODC) Coral Reef 

Temperature Anomaly Database (CoRTAD) Version 4.0 (Casey et al. 2010, Selig et al. 

2010) (available at http://data.nodc.noaa.gov/cortad/Version4) (Fig.1). Temperature 

anomalies for this database were calculated from the Pathfinder Version 5.2 data temperature 

with a spatial resolution of ~4 km grid cell (Casey et al. 2010, Selig et al. 2010) and with a 

quality flag of four or better (Kilpatrick et al. 2001). We defined TSA as deviations of one-

week where sea surface temperature (SST) was 1ºC or greater than the mean maximum 

climatological week or the long term average warmest week from 1982 to 2010(Selig et al. 

2010). This threshold is generally accepted for environmental conditions that may cause 

bleaching and coral mortality (Glynn 1993, Liu et al. 2003). We calculated the long term (29 

http://data.nodc.noaa.gov/cortad/Version4
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years) average and standard deviation annual-frequency TSA (weeks/year) for the grid cell 

that corresponded to each surveyed site to be used as fixed predictor in linear mixed effect 

models (Fig. 1). 

Enforcement level 

We used qualitative level of enforcement estimations published in the Healthy Reefs 

2014 EcoAudit for Belize. Managers at each reserve were asked to score the overall level of 

enforcement as good, moderate, or inadequate. Good-regular patrols, overall satisfactory 

compliance and ecological integrity is thought to be maintained, Moderate-regular patrols 

conducted, but limited poaching occurrs, legal outcomes are insufficient, and ecological 

integrity is slightly impacted, Inadequate-irregular patrols conducted, poaching persists, 

legal outcomes are insufficient, ecological integrity is impacted, and local community 

feedback demonstrates a high level of concern. 

Protection Status 

We classified the protection status of each site based on individual management plans 

for each MPA. Information regarding zoning of protected areas is provided by the Belize 

Fisheries Department (www.fisheries.gove.bz). Control sites had only national restrictions, in 

which fishing was unrestricted except for herbivorous fishes and Nassau grouper (see Belize 

National Statutory Instrument No. 49 of 2009).  Conservation Zone 1 sites are in areas 

designated for recreation use and only non-extractive sports fishing is permitted. 

Conservation Zone 2 sites are within marine protected areas where limited artisanal fishing is 
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allowed, with special restrictions in place that include limited fishing licenses, banned use of 

traps, nets, and long-lines.  

Wave exposure 

The log of wind driven wave exposure (J m-3) was extracted in ArchGIS 10.0 from 

the wave stress map for the Caribbean basin built by Chollett et al. (2012) and available at 

(http://www.marinespatialecologylab.org/wp-content/uploads/2010/11/PECS1.png). This 

index does not include the influence of tides or swells, which are not generated by local 

wind, and it is an approximation of wave patterns in shallow areas (Chollett et al. 2012). 

Wave exposure has been a good predictor of spatial variation in reef building corals such as 

Orbicella sp. (former Montastrea sp.) (Chollett and Mumby 2012) and can partially explain 

beta diversity patterns of  benthic communities (Harborne et al. 2011). Wave exposure may 

also directly affect the biomass and diversity of tropical reef fish (Friedlander et al. 2003) and 

the distribution and abundance of temperate reef fish by compromising swimming abilities 

(Fulton and Bellwood 2004). Alternatively, by modifying the distribution of foundation 

species like corals, wave exposure could affect fish species that depend on them. The detailed 

description of the wave exposure calculations and assumptions can be found in Chollett & 

Mumby (Chollett and Mumby 2012). 

Distance to Deep Water 

The distance from each site to the 30 m contour line identified on NOAA bathymetry 

charts was calculated in ArcGIS 10.0. 

Coral and Macroalgal cover  

http://www.marinespatialecologylab.org/wp-content/uploads/2010/11/PECS1.png
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Macroalgal cover was measured at each site using point intercepts along 6-8 transect 

lines (Lang et al. 2010). Six 10 m lead-core transect lines were laid on the benthos at each 

site, with each transect spaced 10 m apart. Macroaglae were identified to genus at 10 cm 

intervals along the 10 m transect lines. These transects were directly adjacent to the fish 

transect lines.  

Predator and Parrotfish Biomass 

We performed visual fish censuses to estimate predatory reef fish species 

composition and density using a modification of the standard Atlantic and Gulf Rapid Reef 

Assessment (AGRRA) v5.4 techniques as described in the main text (Lang et al. 2010). Fish 

biomass was calculated through the allometric weight-length relationship, W = aTLb, where 

W is the weight of each individual (in grams), TL is the length of each fish (in cm) estimated 

from visual surveys, and the parameters a and b are species specifics (Froese and Pauly 

2011). 
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Figure C1: Monitoring Site Locations  
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Figure C2: Comparison of parrotfish biomass, predatory reef fish biomass, macroalgal  
cover, and coral cover by site. Boxplots represent means per year.  Red represents fished  
sites, blue represents C2 sites, and green represents C1 sites.  
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