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ABSTRACT 

 

 

Hexuan Liu: Integration of Sociology with Genomic Data in Studies of Social Stratification and 

Delinquency 

(Under the direction of Guang Guo) 

 

This dissertation demonstrates how social theories and genomics can be integrated to 

improve our understanding of sociological issues. I conduct the following studies combining 

genomic data and conventional sociological measures.  

First, I investigate the interaction of social environment and genetic factors on 

delinquency and violence. Using data from the National Longitudinal Study of Adolescent to 

Adult (Add Health), I find that adverse social environments are associated with greater genetic 

risk of delinquency and violence, while favorable social environments are associated with 

smaller genetic risk of delinquency and violence. 

Second, I assess genetic and environmental contributions to socioeconomic stability and 

mobility over the life course. I examine genetic and environmental influences on socioeconomic 

achievement at different life stages, taking advantage of the genome-wide data in HRS. I provide 

evidence that both genetic and environment factors make significant contributions to stability 

and mobility of socioeconomic achievement over the life span. 

Third, I investigate genetic and environmental influences on educational attainment 

across generations. In this study, I conceptualize a model of multigenerational influences and test 

the model using educational measures from three generations in conjunction with genome-wide 



  

 
iv 

data in HRS. I find significant genetic correlations in educational attainment across three 

generations. This suggests genetic factors play an important role in stabilizing intergenerational 

educational attainment in the U.S. Also, I provide evidence that about half of parent’s genetic 

influence on children’s education can be ascribed to genetic transmission and the other half is 

medicated by parents’ own education. 
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CHAPTER 1 INTRODUCTION 

1.1 Opportunities of Genomic Data for the Social Sciences 

In the social sciences it is commonly assumed that human beings are homogeneous at 

birth and that differences across individuals are attributed to social, cultural, and environmental 

influences. This assumption has been challenged by rapid development in molecular genetics. In 

recent decades, considerable effort and resources have been devoted to discovering genetic 

causes of human diseases (Visscher et al. 2012). The National Institutes of Health (NIH)’s 

Catalog of Published Genome-Wide Association Studies (GWAS) of early 2015 includes more 

than 2,000 publications that have established associations between thousands of genetic loci and 

human diseases as well as other traits (Hindorff et al.). Reviewing evidence from behavior 

genetics based on biometrical analyses, Freese (2008) notes that most of social science outcomes 

at the individual level are genetically influenced to some extent, and that genetic effects on the 

outcomes must be mediated through a chain of biological and psychological mechanisms.  

Many social science outcomes such as cognitive development, educational attainment, 

occupational status, binge drinking, and substance abuse are likely to be influenced by numerous 

interacting genetic and socioenvironmental factors. Incorporating genomic measures will help 

social scientists better understand the complex interplay among these socioenvironmental and 

genetic factors. In this chapter, I outline specific ways social science research may benefit from 

incorporating genomic information (see Belsky and Israel 2014; Belsky et al. 2013c; Boardman 

et al. 2012a; Boardman et al. 2013; Boardman et al. 2014; Boardman et al. 2015; Conley et al. 
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2015; Conley and Rauscher 2013; Conley et al. 2013a; Conley et al. 2013b; Domingue et al. 

2015; Domingue et al. 2014a; Domingue et al. 2014b; Guo et al. 2008a; Guo et al. 2015a; Guo 

et al. 2015b; Guo et al. 2008b; Li et al. 2015; Liu and Guo 2015; Liu et al. 2015; Mitchell et al. 

2015; Mitchell et al. 2014; Mitchell et al. 2013; Perry 2016; Pescosolido et al. 2008; Shanahan et 

al. 2008; Simons et al. 2011). Genomic sciences are still under rapid development and new types 

of genomic data have been produced all the time. Therefore, the ways in which social science 

research may benefit from genomic advances are likely to be extended considerably in the future.  

First, studies of gene-environment interactions probably represent the most important 

opportunities for social scientists. Gene-environment interaction refers to the interdependence 

between an environmental effect and a genotypic effect. Gene-environment interaction implies 

that an environmental influence is sensitive to the effect of a genotype and vice versa. Ignoring 

gene-environment interactions forces us to estimate only an average genetic effect (averaged 

over all environments) or an average environmental effect (averaged over all genotypes), thus 

potentially dismissing genetic, environmental or both effects. For example, suppose we estimate 

a model in which body mass index (BMI) is predicted by variants in the FTO gene and 

educational attainment. Gene-environment interaction is present when the effect of FTO on BMI 

depends on education or when the effect of education depends on FTO. Frayling et al. (2007) 

reported that individuals who carry particular variants of the FTO gene were found to weigh, on 

average, 1.2 kg more than those who do not carry such variants. This effect of 1.2 kg is obtained 

without considering the environment. The effect may be smaller than 1.2 kg (or even absent) for 

some individuals under certain social conditions but greater for others.  

Findings from gene-environment interaction studies can be used in the development of an 

intervention strategy if there is evidence for exogenous environmental influences (Conley 2009; 



  

 

3 

Fletcher and Conley 2013; Guo et al. 2015b). The strategy removes or adjusts influences of 

social exposures resulted from genetic propensities (e.g., alcoholics cluster due to their shared 

genetic propensities to drinking). The strategy is based on the idea that genotypes are fixed, but 

social exposures might be alterable. A variety of gene-environment interaction models have been 

proposed, theoretically discussed and empirically tested in the social sciences (Boardman et al. 

2013; Conley et al. 2013b; Daw et al. 2013; Guo et al. 2015b; Liu and Guo 2015; Mitchell et al. 

2015; Shanahan and Hofer 2005). 

Second, genomic data could help social science researchers obtain evidence for a causal 

argument. At least two strategies have been developed for this purpose. The more obvious 

strategy is to use genomic data for isolating socioenvironmental effects from genetic and other 

biological confounders. Socioenvironmental effects yielded by conventional social science 

models are often a mixture of social and genomic effects due to genomic confounding. In such 

cases, socioenvironmental effects are likely to be misestimated. For example, parental influences 

(measured by parental education, parental occupation, and parental income) on children’s 

educational attainment are rarely purely environmental. Because parents and children share 50% 

of their DNA, parental influences on children are ambiguously social and genetic. This 

ambiguity is the so-called gene-environment correlation (Jaffee and Price 2007; Wagner et al. 

2013). Parental genetic effects and socioenvironmental effects are correlated and entangled. 

Purer social effects can be isolated when relevant genetic measures correlated with parental 

measures are explicitly included in the analysis (Conley et al. 2015). 

As another strategy, certain genetic variants can be used as instrumental variables to 

establish causal relationships (Fletcher and Lehrer 2009). For example, variants in the ALDH2 

(Aldehyde dehydrogenase 2 family) gene may be used to establish a causal relationship between 
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alcohol consumption and a social science outcome such as educational attainment or 

occupational status. This approach takes advantage of the biological property that those with 

certain forms of ALDH2 have lower alcohol tolerance and higher allergy to alcohol 

consumption. These reactions essentially amplify the negative effects of alcohol consumption. 

The resulting variation in alcohol consumption can then be treated as an exogenous variable in a 

study on the effect of alcohol consumption. More generally, as Freese (2011):88) notes that 

“(T)he strict intragenerational exogeneity of the DNA sequence—that the DNA sequence does 

not change as a result of external events or internal development,” DNA data may be explored in 

the design of a natural experiment.  

Third, even if genomic measures are non-interactive and uncorrelated with social science 

measures, these genomic measures could still contribute to social science research. Non-

interaction and non-correlation mean that disregarding genomic information does not bias the 

estimated socioenvironmental effects; nevertheless, these genomic measures will improve 

prediction of the outcome under study. As more and more different types of genomic data and 

more and more measures within a type of genomic data are discovered and utilized, the 

predictability of human genome for human outcomes will increase. Improved predictability can 

enrich and deepen our understanding of social science models (Freese 2011). 

1.2 Types of Genomic Data 

The role of genes in human traits has been traditionally investigated based on studies of 

twins, adoptees, or other family data. Such studies have been adopted in social science research 

to examine genetic and environmental contributions to social outcomes or to illuminate crucial 

biological mechanisms through which social context shapes individual outcome (e.g., Boardman 

et al. 2010; Boardman et al. 2012b; Guo and Stearns 2002; Nielsen 2006; Nielsen and Roos 
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2015; Nielsen 2008; Turkheimer et al. 2003). In twin/family studies, genetic variants at the 

molecular level are not observed, and genetic and environmental contributions are estimated as 

latent variables based on relatedness among genetic relatives. Also, twin/family studies rely on 

critical statistical assumptions. These assumptions are questioned and violation of these 

assumptions may lead to biases in the estimates of genetic and environmental influences 

(Goldberger 1979). 

With the availability of candidate gene data in the late 1990s and the first ten years of the 

21st century, many studies have been carried out linking human traits with DNA variants. 

Candidate genes allow social science researchers interested in gene-environment interactions to 

examine variations in the environmental influences on individuals with different genotypes (e.g., 

Caspi et al. 2003; Caspi et al. 2002; Daw et al. 2013; Guo et al. 2008b; Guo et al. 2007; Mitchell 

et al. 2015; Mitchell et al. 2011; Simons et al. 2011). This candidate gene approach, however, 

has been criticized because its findings are often not replicated in subsequent studies, and the 

reliability of this approach has become a concern (Charney and English 2012; Risch et al. 2009). 

The need to produce more robust and replicable findings called for genome-wide methods with 

more comprehensive genetic variant coverage and more conservative gene-selection thresholds 

(Caspi et al. 2010; Duncan and Keller 2011). 

A major data revolution has occurred in genomic studies since the middle of the first 

decade of the 21st century. During the period, advances in genomic sciences and technology have 

produced a dazzling range of genomic data. In this section we describe four major types of data 

that are already generated and analyzed routinely in the field of genomics: genome-wide 

genotype data (i.e., GWAS data), DNA sequencing data, epigenomic data, and gene expression 

data. Genome-wide genotype data have been the most familiar to social scientists (e.g., 
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Boardman et al. 2014; Conley et al. 2015; Domingue et al. 2014b; Guo et al. 2015a). Although 

the usefulness of other types of genomic data to the social sciences remains less examined, 

making these data known will help draw attention to them and get their usefulness investigated.  

1.2.1 Genome-wide genotype data 

The human genome includes approximately 3 billion DNA base pairs (e.g., A-T or C-G) 

and about 1/300 of them vary across individuals (IHGSC 2004). Genome-wide genotype data use 

tag single-nucleotide polymorphisms (SNPs) to capture most of the DNA variation across the 

human genome. Such data typically measure 100,000-2,500,000 SNPs for each individual. These 

data are analyzed to identify DNA variants associated with specific phenotypes in the population 

(Hirschhorn and Daly 2005). Measuring genome-wide genotype data has been becoming 

increasingly less expensive over the years, rendering it feasible to large-scale social science 

surveys. The Health and Retirement Study (HRS), for example, has genotyped more than two 

million genetic variants from each of about 20,000 respondents who provided DNA samples.1 

Genome-wide genotype data of a similar scale have been collected in the National Longitudinal 

Study of Adolescent to Adult Health (Add Health)2. All of these data have been or will be 

publicly available through the NIH database of Genotypes and Phenotypes (dbGaP) 

(http://www.ncbi.nlm.nih.gov/gap). Together with longitudinally tracked health and social 

outcomes, as well as social contexts, these genome-wide genotype data are poised to make major 

contributions to the social sciences.  

                                                 

1 Health and Retirement Study GWAS Data. (http://hrsonline.isr.umich.edu/gwas accessed July 12, 2015) 

 
2 Add Health GWAS data (http://www.cpc.unc.edu/projects/addhealth/design/wave4 accessed July 12,   

  2015) 

http://www.ncbi.nlm.nih.gov/gap
http://hrsonline.isr.umich.edu/gwas
http://www.cpc.unc.edu/projects/addhealth/design/wave4
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Social science research can benefit from genome-wide genotype data in various ways. 

Most importantly, such data can be used to assess interactions of the social environment and 

genes. In contrast to candidate gene studies that focus on one or a few genetic variants, studies 

based on genome-wide genotype data can provide a more comprehensive picture of gene-

environment interactions by incorporating information from the whole genome. Genome-wide 

genotype data have been successfully used in assessing gene-environment interactions in medical 

research (Garcia-Closas et al. 2013; Wu et al. 2012). Similarly, social scientists can take 

advantage of such data to study social outcomes such as personality, delinquency, and 

educational attainment. In addition, genotype-wide genotype data can be used to isolate social 

environmental effects from genetic confounders. Conley et al. (2015), for example, estimate 

parental influence on children’s educational attainment by controlling a polygenic score 

constructed using genome-wide genotype data. This approach can be extended to estimate “pure” 

environmental influences on other outcomes of interest to social scientists.  

1.2.2 DNA sequencing data 

DNA sequencing is the process of establishing the precise order of all base pairs within a 

DNA molecule. Current genome-wide genotype data typically cover common variants (the 

frequency of each alternative form of the same genetic variant is greater than 5%). Yet rare 

variants (the frequency of at least one alternative form of the same genetic variant is below 5%) 

largely outnumber common variants and may significantly contribute to human phenotypes 

(Altshuler et al. 2010a). Data on rare variants were limited due to the high cost of DNA 

sequencing. Recent technological advances made it possible to sequence a genome faster and at a 

lower cost. Heretofore, through sequencing, the Human Genome Project, the SNP Consortium, 

the International HapMap Project, and the 1000 Genome Project have collectively identified 
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approximately 40 million common and rare variants (Altshuler et al. 2010a; Altshuler et al. 

2012; Altshuler et al. 2010b; Consortium 2001; Consortium 2004; Consortium 2005; Frazer et 

al. 2007; Sachidanandam et al. 2001).  

Rare variants may also play an important part influencing complex social outcomes. If 

rare variants are dismissed, the genetic contribution to the phenotype of interest can be 

substantially underestimated. Take educational attainment as an example. While the heritability 

of educational attainment is estimated to be around 40% (Branigan et al. 2013), all measured 

common variants together explain only 2% of the total variation in educational attainment 

(Rietveld et al. 2013a). Such a discrepancy might be, at least partially, due to unmeasured rare 

variants. Although methods to handle sequencing data are still in their infancy, such data will 

likely prove valuable for the social sciences. They can provide a rich database to assess genetic 

contribution and thus improve our understanding of gene-environment interactions and genetic 

confounding.  

1.2.3 Genome-wide DNA methylation data 

Social scientists are particularly excited about the opportunities provided by epigenetic 

data (Landecker and Panofsky 2013; Shanahan 2013). The exceptional interest in epigenetics 

derives from that epigenetic mechanisms could alter how genes are expressed without 

modifying the underlying DNA sequence. Epigenetics is often considered a bridge that 

connects nature and nurture. Epigenetic processes are highly interactive with environment: 

environmental variation may routinely change epigenetic patterns, which can, in turn, affect 

phenotypes. Epigenetics is therefore poised to make major breakthroughs in understanding how 

genes are regulated and expressed in relation to environmental exposures and life course 

experiences.  
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DNA methylation is an epigenetic mechanism used by cells to control gene expression. 

By adding methyl groups to DNA, methylation modifies the function of the DNA. As a 

consequence, the same genetic variant may express distinct phenotypes depending on the state of 

epigenetics. Beach et al. (2014), for example, find that cumulative socioeconomic 

disadvantage is associated with methylation patterns in promoter regions that may lead to 

mental and physical health risks in African American young adults. In another study, 

Yehuda et al. (2015) show that holocaust exposure affects FK506 binding protein 5 (FKBP5) 

methylation that is observed in exposed parents as well in their offspring. 

Recent development in genomic sciences has made it possible to measure epigenetic 

markers across the whole genome in large population-based samples (Rakyan et al. 2011). 

Genome-wide DNA methylation profiling, for example, can measure 500,000 to 1 million 

methylation sites per individual (Michels et al. 2013). An integration of such genome-wide DNA 

methylation data with longitudinal socioenvironmental measures will enable social scientists to 

improve our understanding on how epigenetic mechanisms mediate effects of the social 

environment on a phenotype over time (Mitchell et al. 2016; Notterman and Mitchell 2015; 

Shanahan and Hofer 2011).  

1.2.4 Gene expression data 

Genes affect phenotypes only when they are expressed, that is, when genetic information 

is used in syntheses of functional gene products such as enzymes and hormones. There are 

several steps in the process of gene expression, including the transcription, RNA splicing, 

translation, and post-translational modification of a protein. Gene expression is typically 

measured by the amount of messenger RNA (mRNA) produced by a gene. Various techniques 

can be used to detect gene expression level, including differential display, northern/southern 
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blots, DNA microarray, serial analysis of gene expression (SAGE), and RNA sequencing (RNA-

seq). RNA-seq, currently the most advanced technique, for example, can detect the presence and 

quantity of RNA in a biological sample at a given moment in time. 

Gene expression has been shown to be associated with the social environment (Cole 

2013). Findings based on animal experiments have provided evidence that the social 

environment regulates gene expression. In an assessment of genetic and environmental 

influences on aggressive behavior of rhesus monkeys, the expression of MAOA is found to be 

sensitive to early social experiences (Newman et al. 2005). Findings from another study show 

that a female macaque’s ranking within her social environment affects the expression of nearly 

700 genes (Tung et al. 2012).  

There are increasing human studies concerning the relationship between socioeconomic 

status (SES) and gene expression. Cole et al. (2007), for example, find that individuals who 

experienced chronic social isolation (i.e., loneliness) and those who experienced consistent social 

integration systematically differed in the expression of more than 200 genes in white blood cells. 

In a more recent study, Knight et al. (2016) show that low SES is associated with increased 

expression of stress-related gene expression profiles in hematopoietic stem cell transplant 

recipients. These human studies are mostly based on observational designs and the associations 

between variations in the social environment and gene expression may not be causal (see Conley 

2009; Fletcher and Conley 2013). Nevertheless, such studies may provide additional insights that 

help understand and explain the complex relationships among the social environment, genes, and 

phenotypes.  

Advances in high-throughput RNA-seq technologies now allow researchers to survey 

expression of genes throughout the whole genome (Wang et al. 2009). Large social science 
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surveys may collect whole-genome expression data when they become more affordable. These 

data in conjunction with genome-wide genotype data and social science measures can reveal new 

insights to important research questions, for example, which genes of interest are subject to 

social regulation, how the social environment provokes the dynamics, and what social, 

psychological and biological mechanisms mediate the effects. 

1.3 Analytical Challenges: Genome-Wide Genotype Data as An Example 

Analyzing genomic data is often quite different from traditional social science data 

analysis. Because of their massive sample size and high dimensionality, conventional statistical 

methods and data processing packages are often inadequate. In this section, I demonstrate recent 

statistical and computational advances in handling genome-wide genotype data. I focus on 

genome-wide genotype data because these data were made available the earliest, because 

geneticists and social scientists have had the most time to develop appropriate methods for such 

data, and because these data are already widely available for social scientists. 

1.3.1 Genome-wide association 

The standard genome-wide association approach typically involves two procedures. First, 

each genetic variant is used to predict the trait in a statistical model. Because the prediction 

involves a large number of genetic variants, it is likely that some small p-values are due to 

chances. To address the multiple testing issue, a conservative p-value threshold (e.g., 5×10-8 or 

smaller) is used to select associative variants. Second, even extremely small p-values do not 

completely rule out all possible false-positives (i.e., variants that do not contribute to the 

phenotype are claimed as associative ones), thus replication using independent data is required to 

establish validity of the results. 
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The genome-wide association approach has been extended to study gene-environment 

interactions (Cornelis et al. 2012; Mukherjee et al. 2012; Thomas et al. 2012). In contrast to the 

traditional GWAS approach that assumes homogeneous genetic effects across samples, the 

genome-wide gene-environment interaction (GWGEI)  approach allows genetic effects to vary 

across levels of the environmental indicator or vice versa. The first social science research using 

the GWGEI approach is the study of Boardman et al. (2014). Using more than 260, 000 SNPs, 

this study examines the interaction between each SNP and educational status (measured by 

whether the respondent has a colleague degree) on BMI. However, no consistent gene-

environment interaction patterns were reported.  

Although the GWGEI approach is useful to identify genetic variants whose effects on 

traits vary under different environmental conditions, it only estimates the interaction for one 

genetic variant and one environmental indicator at a time. An extremely stringent p-value 

threshold (e.g., 10-10) is required to minimize false positive findings (Hutter et al. 2013). Using 

such stringent standards may result in failures to identify interactions with moderate or small 

effects (i.e., Type II error) without a sufficiently large sample (Boardman et al. 2014).  

1.3.2 Polygenic scores 

Unlike the GWGEI approach that focuses on one genetic variant at a time, the polygenic 

score approach takes into account multiple variants simultaneously. The first successful 

polygenic score analysis using genome-wide genotype data was conducted in a study of 

schizophrenia (Purcell et al. 2009), which found few individual variants associated with the 

outcome, but a large number of variants together significantly predicted schizophrenia. The 

polygenic score approach has also been applied for other health-related traits such as height 
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(Thorleifsson et al. 2010; Wood et al. 2014), BMI (Locke et al. 2015; Speliotes et al. 2010), and 

cardiovascular risk (Simonson et al. 2011).  

There are two approaches to construct polygenic scores based on findings of extant 

GWAS: “top-hits” and “whole-genome.” The “top-hits” approach calculates polygenic scores by 

summing the number of risk alleles across genetic variants that pass a genome-wide significance 

threshold (p-values < 5 × 10-8) (e.g., Belsky et al. 2013c; Domingue et al. 2014a; Liu and Guo 

2015; Qi et al. 2012). The “whole-genome” approach is more liberal. In the “whole-genome” 

approach, polygenic scores are constructed using all or a large number of measured genetic 

variants (i.e., more liberal or less stringent p-value thresholds), assuming that these variants have 

moderate or small effects on the outcome (e.g., Conley et al. 2015; Domingue et al. 2015). 

Belsky and Israel (2014) summarize three applications of polygenic scores in social 

science research. First, polygenic scores can be employed to investigate developmental 

processes. As an example, Belsky et al. (2012) examine associations between body weights at 

different life stages from birth to young adulthood and polygenic scores based on GWAS. They 

find that children had similar weights at birth in spite of their genetic predisposition, but those 

with higher genetic risks grew at a high rate than those with lower genetic risks, and variations in 

the growth mediated genetic influences on obesity at later life. Similarly, polygenic scores have 

also been used in investigations of developmental characteristics of smoking and asthma (Belsky 

et al. 2013a; Belsky et al. 2013d). Second, polygenic scores allow social scientists to assess the 

complex interplay between social context and multiple genetic variants on complex traits. For 

example, Demerath et al. (2013) construct a polygenic score based on 32 obesity-related SNPs 

[based on findings of Speliotes et al. (2010)], and examine birth-year variation in the genetic 

association with obesity-related traits. They show that the genetic association with BMI for 
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males born in 1970s was three times as great as that for those born in 1930s. In another study, 

using polygenic scores based on the same 32 SNPs, Liu and Guo (2015) provide evidence that 

cumulative socioeconomic advantage over the life course compensates for the genetic influence 

on BMI in middle and late adulthood, whereas cumulative socioeconomic disadvantage amplifies 

such genetic influence. Third, polygenic scores provide a way to study genetic and 

environmental contributions to social outcomes. Using genomic data from HRS, Domingue et al. 

(2014b) examine genetic and educational contributions to human homogeny (individuals tend to 

marry those who are similar to them). They show significant genetic correlation between married 

couples, but the strength of the genetic correlation is only about 10% of the assortative mating by 

education levels.  

In recent years, there are increasingly GWAS on social outcomes, such as personality 

(Moor et al. 2012), cognitive functions (Davies et al. 2016), educational attainment (Rietveld et 

al. 2013a), antisocial behavior (Tielbeek et al. 2012), and subjective wellbeing (Benjamin et al. 

2016). Social scientists can take advantage of findings in these studies to construct polygenic 

scores for traits of interest. 

There are also limitations in applying polygenic scores in social science research. First, 

polygenic scores lack molecular specificity. While polygenic scores provide an individual-level 

measure of genetic predisposition to a trait, they offer little purchase on specific biological 

mechanisms through which genetic predisposition operates. Moreover, polygenic score results 

can be affected by population stratification. Currently most GWAS samples are of European 

descent. Differences in ancestry from this population may introduce noise into polygenic scores 

applied in other populations. Finally, genetic correlation between the discovery sample (i.e., the 

sample used to discover genetic associations with the trait and estimate their effects) and the 
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study sample (i.e., the sample that provides genotypes in the calculation of polygenic scores) 

may bias the polygenic score results (Wray et al. 2013). GWAS meta-analysis often uses 

samples from different sources. If the study sample is part of the discovery sample, polygenic 

scores in the study sample might be biased. For example, HRS is included in some GWAS 

discovery samples and so polygenic scores constructed based on those GWAS may have inflated 

effect sizes in HRS.  

1.3.3 Genomic-relatedness-matrix restricted maximum likelihood estimation (GREML) 

GREML is another innovative approach that handles genome-wide genotype data. 

GREML was initially developed to tackle the “missing heritability” issue in GWAS (Yang et al. 

2010). To illustrate, while about 80% of variance in human height is believed to be heritable, 

height-related genetic variants identified in GWAS collectively explain less than 20% of 

observed height variation (Wood et al. 2014). A major explanation of the gap in the estimate of 

genetic contribution is that there are more genetic variants associated with the trait, but these 

variants cannot be identified using the traditional GWAS approach due to a lack of statistical 

power (Visscher et al. 2012). Using GREML, Yang et al. (2011) show that genome-wide data 

account for more than 40% of the variation in human height.   

GREML can be applied by social scientists to study gene-environment interactions. Guo 

et al. (2015a), for instance, conduct a GREML analysis to examine how the collective influence 

of SNPs across the whole human genome on BMI differs by age and historical period. They find 

that the genomic influence on BMI weakened with age across the life course, and the genomic 

influence on BMI was substantially and significantly larger after the mid-1980s than in the few 

decades before the mid-1980s within each age group of 21-40, 40-50, 51-60 and 60 and older. In 

other two studies, GREML is used to estimate the collective influence of a large number of SNPs 



  

 

16 

on delinquency and violence under conditions with different levels of social control (Li et al. 

2015; Liu et al. 2015). There is evidence that the collective genetic influence is greater among 

adolescents who live under conditions with lower levels of social control than those who live 

under conditions with higher levels of social control. 

GREML is not without shortcomings. It assumes that all SNP effects follow a normal 

distribution. Violation of this assumption may bias the results (Wang et al. 2015). In addition, 

GREML requires genetically unrelated individuals. Due to common environmental effects, the 

inclusion of related individuals could result in a biased estimate of the genetic variance. This 

requirement often leads to a reduction of the effective sample size. Finally, GREML estimates 

are sensitive to the sample size and the number of SNPs used in the analysis. The standard errors 

may increase dramatically when the sample size and the number of SNPs decrease (Kumar et al. 

2016; Yang et al. 2016). 

1.3.4 Analytic and computing infrastructure 

Big genomic data frequently requires non-generic software and powerful computing 

capabilities. Along with the explosion of large-scale genomic data, the computing infrastructure 

has been revolutionized. Specialized bioinformatics tools have been developed to manage and 

analyze these data. These tools can be freely downloaded and they provide researchers with great 

computational efficiency. PLINK (Purcell et al. 2007), for example, can finish a genome-wide 

analysis that estimates over 2,000,000 regression models using a dataset including more than 

10,000 individuals in minutes. However, some genomic analysis requires such a computing 

power that it is impractical to process genomic data on a single computer. In such cases, we can 

partition big analytical tasks into smaller manageable subtasks that can be processed in parallel 
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using computing clusters. Computational innovations (e.g., the MapReduce programming 

paradigm) have been developed to facilitate management and analysis of big data. 
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CHAPTER 2: INTERPLAY OF SOCIAL ENVIRONMENT AND THE WHOLE 

GENOME ON DELINQUENCY AND VIOLENCE 

2.1 Introduction   

Previous studies have shown that gene-environment interplay contributes to a variety of 

behavioral and social outcomes (Boardman et al. 2012; Caspi et al. 2002; Fowler et al. 2011; 

Guo et al. 2008; Pescosolido et al. 2008; Shanahan et al. 2008; Simons et al. 2011). Yet these 

studies have typically focused on one or only a few candidate genes at a time. The aim of this 

research is to provide a more comprehensive view of the gene-environment interplay by 

incorporating genome-wide genotype data; particularly, to show how the social environment 

moderates genetic associations with youth delinquent and violent behaviors. 

Traits determined by a single gene or allele are rare in human beings (Glazier et al. 

2002). The vast majority of human diseases (e.g., cancer, heart disease, and diabetes) are 

complex traits affected by a large number of genes (Crabbe 2002; Plomin et al. 2001). Likewise, 

almost all human traits of interest to social scientists are complex, such as personality, cognition, 

motivation, and health behaviors. These traits are likely the consequence of many genetic and 

environmental factors, as well as interactions among them (Hirschhorn and Daly 2005; Lander 

and Botstein 1986; Lander and Schork 1994). Therefore it is important to incorporate multi-

genetic and multi-environmental factors in gene-environment interaction (G×E) research on 

complex social outcomes
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This study focuses on influences of the whole genome on delinquency. It assesses 

genomic contributions to youth delinquency and violence using a recently developed mixed 

linear model approach in genomics studies that simultaneously accounts for a large number of 

genetic variables in a single regression analysis (Yang et al. 2011b). Moreover, it investigates the 

extent to which the social environment moderates the genomic contribution to delinquency. To 

achieve this, I compare genomic contributions to delinquency and violence between individuals 

exposed to environments with lower levels of social control and those who were exposed to 

environments with higher levels of social control (e.g., low parental attachment versus high 

parental attachment; loose school discipline versus strict school discipline; and disadvantaged 

neighborhoods versus non-disadvantaged neighborhoods). This study provides evidence that the 

genetic risk for adolescent delinquency and violence is largely context-dependent: the genetic 

risk is amplified among individuals under low-social-control (LSC) conditions, but suppressed 

among those under high-social-control (HSC) conditions. 

2.2 Background 

2.2.1 Social regulation of gene expression 

Genetic factors affect but do not determine human behavior, and their impact is 

moderated by the environment (Freese 2008; Rutter et al. 2006; Shanahan and Boardman 2009). 

Findings from both animal and human studies provide evidence that changes in environmental 

conditions induce gene expression to varying degrees.  

Animal studies have demonstrated the influence of social experiences on gene expression 

using rhesus monkeys. As shown by Suomi and colleagues, infant monkeys reared by their 

mothers, compared to those reared by other adults, differ in the effect of 5-HTTLPR (the 

serotonin transporter gene-linked polymorphic region) on cerebrospinal fluid concentrations of 
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5-hydroxyindoleacetic acid (Bennett et al. 2002), ethanol consumption among females (Barr et 

al. 2004b), and adreno-corticotropic hormone (ACTH) levels (Barr et al. 2004a). In an 

assessment of genetic and environmental influences on aggressive behavior, the expression of 

MAOA (the monoamine oxidase A) is found to be sensitive to early social experiences (Newman 

et al. 2005). Findings from a more recent study show that a female macaque’s ranking within her 

social environment affects the expression of nearly 700 genes (Tung et al. 2012). 

In human studies, there is increasing evidence of social regulation of gene expression. 

Cole et al. (2007) find that people who experienced chronic social isolation (e.g., loneliness) and 

those who experienced consistent social integration systematically differ in the expression of 

more than 200 genes in white blood cells. In a more recent study, Cole et al. (2010) identify a 

genetic polymorphism (IL6 – 174G/C) that interacts with adverse socioenvironmental conditions 

to increase chronic inflammation and mortality among older adults. Specifically, during periods 

of significant life adversity, people who bear the G allele of the polymorphism tend to show 

increased IL6 gene transcription and increased risk of inflammation-related diseases and 

mortality. Additionally, there is evidence that gene expression is subject to other social 

conditions such as low socioeconomic status and low social support. Chen et al. (2009) 

investigate the association between low socioeconomic status (SES) and gene expression in 

children with asthma. Their study shows that children with asthma from a low SES background, 

relative to those from high SES background, tend to show overexpression of gene regulating 

inflammatory processes. Moreover, in a study of women with ovarian cancer, 266 genes are 

shown to be differentially expressed in tumors from women with low social support and high 

depressive symptoms (Lutgendorf et al. 2009). 
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2.2.2 Gene-environment interaction for delinquency  

As discussed above, the social environment plays a crucial role in the expression of genes 

related to various phenotypes. Of greater importance for the purpose of this research is social 

regulation of the expression of the genes related to delinquency. The environmental 

triggering/suppressing perspective offers important contributions to our understanding of how 

the social environment and genetic factors interactively affect delinquent and violent behaviors. 

There are two components to the environmental triggering/suppressing perspective. First, 

adverse environments are likely to “trigger” the expression of risk alleles (Shanahan and Hofer 

2005).  This “triggering” mechanism is well demonstrated in the works of Caspi and colleagues 

(Caspi et al. 2003; Caspi et al. 2002), and is referred to as the diathesis stress model (Ellis et al. 

2011). Central to this “triggering” mechanism is the coaction of the risky allele and the risky 

environment. For example, Caspi et al. (2002) identify an association between the MAOA 

genotypes and antisocial behaviors, but mainly among test subjects who experience childhood 

maltreatment. Second, favorable environments may suppress the expression of risk alleles. 

Particularly, social norms and structural constraints can inhibit individuals’ behavior and 

choices, thereby reducing genetic effects (Shanahan and Hofer 2005). As shown by Pescosolido 

et al. (2008), the association between gamma-aminobutyric acid receptor subunit alpha-2 

(GABRA2) and alcoholism is reduced by family support. Similarly, DRD2 (dopamine D2 

receptor) is found to contribute less to delinquency among male youths who have regular meals 

with a parent and those who live with both biological parents, compared respectively to those 

who do not have regular meals with a parent and those who do not live with both biological 

parents (Guo et al. 2008). 
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Most of these studies focus on a single or only a few genetic variants at a time (Beaver et 

al. 2008; Caspi et al. 2002; Foley et al. 2004; Guo et al. 2007; Kim-Cohen et al. 2006; Simons et 

al. 2011; Vanyukov et al. 2007).  However, delinquent and violent behaviors are complex human 

traits that can be affected by a large number of genetic factors with small to moderate effects. 

Therefore, it is crucial to investigate the collective contribution of multi-genetic factors to 

delinquency and violence.  

2.2.3 Social moderators for delinquency 

In this chapter, I focus on interaction of genetic variants and three important social 

institutions in childhood or adolescence: the family, the school, and the neighborhood. These 

social institutions not only contribute to inhibiting or reducing children’s deviant acts, but also 

have long-term impact on their development of characteristics relevant to future delinquency or 

crime (Gottfredson and Hirschi 1990; Hirschi 1969; Sampson and Laub 1993). Of particular 

interest to this study are the roles of these institutions in shaping individual propensity or self-

control that can have persistent influence over the life course. 

Parenting factors, such as parental attachment and supervision, are the most important 

source of self-control. According to Gottfredson and Hirschi (1990), self-control is cultivated 

during early childhood through careful rearing and effective discipline, whereas low self-control 

is mainly attributed to ineffective parenting. That is, if the caregivers of a child neglect to 

monitor his/her behavior, fail to recognize his/her deviant behaviors or punish such behaviors, as 

a consequence, the child may lack the ability to delay gratification, be insensitive to others’ 

needs and interests, as well as be unwilling to accept restrictions on his/her behavior, and 

become more likely to use forcible or violent means to achieve his/her ends. Cullen et al. (2008) 

summarize results from 13 empirically studies examining the relationship between self-control 
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and various dimensions of parenting factors. Twelve of the 13 studies have provided evidence 

that less effective parenting is associated with weaker self-control.   

School is another powerful social institution in the development self-control (Gottfredson 

and Hirschi 1990). Because the school has a particular interest in maintaining a good educational 

environment, it is expected to recognize and prevent antisocial behavior and it has the authority 

and means to implement effective discipline. As Denise Gottfredson (2001) suggests, “schools 

have the potential to teach self-control and to engage informal social controls to hold youthful 

behavior in check.” Turner et al. (2005) show that the influence of school socialization on self-

control is more effective for children of parents who failed in their task to teach self-control. 

Accordingly, school socialization may work to “pick up the slack” for inadequate parenting 

practices. This is consistent with the study of Meldrum (2008), in which self-control is found to 

be significantly predicted by school monitoring, even after controlling for familial factors.  

In addition to family and school, neighborhood conditions are also critical in shaping 

self-control. Wikström and Sampson (2003) propose that individuals with weaker self-control are 

more likely to be found in disadvantaged neighborhoods with weak community capital and low 

collective efficacy (i.e., weak social cohesion among neighbors and their expectations to achieve 

common good), because these neighborhoods often lack resources and services, such as time, 

money, and knowledge, to support familial socialization practices. Empirical studies have 

provided mixed support for this position. Pratt et al. (2004) provide evidence that self-control is 

predicted by neighborhood conditions. In a more recent study, Gibson et al. (2010) also found 

support for associations between neighborhood structural characteristics and self-control, but 

these associations became nonsignificant after taking into account individual-level 

characteristics. 
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In summary, prior studies have demonstrated associations among the social environment, 

delinquency, and self-control. Although they do not directly address genetic factors, these studies 

are consistent with the G×E interaction view that the social environment may moderate 

individual propensities for delinquency. From the environmental triggering/suppressing 

perspective, I hypothesize that genetic risks for delinquency and violence are greater among 

individuals who were weakly attached to parents and schools, loosely disciplined by parents or 

school authorities, or lived in disadvantaged neighborhoods than those who were closely 

attached to their parents and schools, strictly disciplined by parents or school authorities, or 

lived in non-disadvantaged neighborhoods.  This study extends previous G×E research by using 

genome-wide genotype data.   

2.3 Data and Measurement  

2.3.1 Data 

Data for this study come from the National Longitudinal Study of Adolescent Health 

(Add Health). Add Health is a longitudinal survey of U.S. adolescents in grades 7 through 12 

from 1994 to 1995 (In-School, N = 90,118; Wave I, N = 20,745). The Add Health cohort was 

followed up in 1996 (Wave II, N = 14,738) and again from 2001 to 2002 (Wave III, N = 15,197) 

(Harris,  Florey, and Tabor et al.2003). In total 8,266 samples (3,831 males and 4,435 females) 

were put into genotyping production using the Illumina Human Omni-1.0 Quad beadchip and 

2311 (1,156 males and 1,155 females) using Illumina Human Omni-2.5 Quad beadchip. 

Genotype samples from 9,695 individuals passed quality control. There are 629,757 autosomal 

SNPs with a missing rate less than 10%. To minimize confounding effects of population 

stratification, this study focuses on the whites. Since the genomic-relatedness-matrix restricted 

maximum likelihood (GREML) method used to analyze the genome-wide data requires to 
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exclude genetically related individuals to obtain unbiased results, I removed pairs with genetic 

relation greater than .025. As a result, 4972 genetic unrelated individuals compose the analytical 

sample of this study. 

2.3.2 Variable measurement 

Outcome variables: serious delinquency and violence scores.  The outcome variables 

are based on 11 items from Add Health questionnaires at Wave III: (1) deliberately damaged 

others’ property, (2) so badly hurt someone that medical treatment was needed, (3) used a 

weapon to get something from someone, (4) took part in group fights, (5) pulled a knife or gun 

on someone, (6) shot or stabbed someone, (7) took part in fights in which self was injured, 

(8)stole something worth more than $50, (9) broke into a house or building to steal, (10) sold 

drugs, and (11) stole something worth less than $50. (Cronbach’s alpha = .69). To be consistent 

with the delinquency literature (Hagan and Foster 2003; Hannon 2003), I divided the 11 

questions into violent and nonviolent categories. The serious delinquency score is the average of 

all eleven items, with higher scores indicating greater delinquency. The violence score is the 

average of the first 7 items. I chose outcomes from a single wave because the analytic model 

does not allow repeated measures. Also, I used outcomes measured at Wave III and social-

environmental measures from Wave I to minimize reverse causality.  

Socioenvironmental variables: Parenting factors. To simplify the G×E analysis, I 

constructed each social-environmental variable as a dichotomous variable.  I assessed parental 

attachment using two Wave I questions asking how close a respondent felt to his or her mother 

and father and a question concerning the respondent’s feeling about how his or her parents cared 

about him or her (alpha = .72). If the average of a respondent’s answers to three questions was 

greater than or equal to the sample median, for him or her, Parental attachment was coded as 1, 
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indicating high parental attachment, and 0 otherwise (indicating low parental attachment). 

Parental supervision is constructed based on seven Wave I questions asking the respondent if his 

or her parents allowed him or her to make their decisions about the following: the time they must 

be home on weekend nights; the people they hang around with; what they wear; how much 

television they watch; which television programs they watch; what time they go to bed on week 

nights; and what they eat (alpha = .63). Parental supervision was coded as 1 if the average of a 

respondent’s answers to seven questions was greater or equal to the sample median (indicating 

strict parental supervision), and 0 otherwise (indicating loose parental supervision). 

School factors. I used two Wave I measures to assess school factors: school attachment 

and school discipline. To measure school attachment, I averaged responses to three questions 

(alpha = .77) asking whether a respondent (rated on a scale of 1 to 5) felt close to people at 

school, felt like being part of the school, or felt happy at school. I then constructed a school-level 

attachment variable by averaging school attachment of all students from each school. To 

measure school discipline, I averaged school administrators’ responses to eleven questions (alpha 

= .87) asking in their schools what happens to a student who is caught the second time fighting 

with another student, injuring another student, possessing alcohol, possessing an illegal drug, 

possessing a weapon, drinking alcohol at school, using an illegal drug at school, smoking at 

school, verbally abusing a teacher, physically injuring a teacher, and stealing school property (1 

= no policy; 2 = verbal warning; 3 = minor action; 4 = in-school suspension; 5 = out-of-school 

suspension;6 = expulsion). Like parental attachment and parental supervision, school 

attachment and school discipline were dichotomized on the basis of the sample median (coded as 

1 if the average of the items was equal to or greater than the median, indicating high school 
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attachment and strict school discipline, and 0 otherwise, indicating low school attachment or 

loose school discipline). 

Neighborhood. I assessed neighborhood environment using four Wave I block level 

variables from the Add Health Public Contextual Database: proportion of aged 25+ individuals 

with college degree or more, proportion of households with income less than $15,000, 

unemployment rate and proportion of own children under 18 years in families and subfamilies 

not living with both parents. Block is a geographic area defined by the U.S. Bureau of the 

Census, which in 1990, averaged 452 housing units or 1,100 people (U.S. Bureau of the Census 

1993). It is the lowest level of geography in sample data published by the census bureau, and 

therefore captures the most localized available contextual characteristics of the areas in which 

individuals live (Billy, Wenzlow, and Grady 1998). I recoded each of the four variables into a 0-

1 indicator. For example, the unemployment variable was coded as 1 if the unemployment rate of 

the block where the respondent lived was lower than or equal to the sample median (indicating 

non-disadvantaged neighborhoods). 

Control variables. I controlled for biological sex, age, and age squared for all analyses 

of the genomic contribution to serious delinquency and violence. In addition, to account for 

potential population stratification, I adjusted all the analyses for the first ten principal 

components (PCs) computed from PLINK 1.9 (Chang et al. 2015; Price et al. 2010; Price et al. 

2006). 

2.4 Analytical Strategy 

At the first stage of the analysis, I employed a mixed linear model to estimate the 

genomic contribution to delinquency. The model was fit using the Genome-wide Complex Trait 
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Analysis (GCTA) software package, a tool based on the work of Yang et al. (2011b) to estimate 

the overall genetic variance for complex human traits.  

The mixed linear model offers the substantial advantage of simultaneously accounting for 

a large number of genetic variants. It was developed to address the “missing heritability” issue in 

genome-wide association studies (GWAS) (Yang et al. 2010). For example, whereas 80% of 

variance in human height is believed to be heritable, SNPs discovered by GWAS together can 

explain less than 10% of observed height variation (Visscher et al. 2012). In contrast to single-

variant association analysis where each SNP is tested against an adjusted p-value (e.g., 5x10-8 or 

smaller), the mixed linear model approach treats all SNP effects as random effects. Using this 

approach, Yang et al. (2011a) show common SNPs collectively explain 41.9%, 15.9%, 25.4%, 

and 16.8% of the total phenotypic variances in human height, body mass index (BMI), von 

Willebrand factor (vWF), and OT interval (QTi), whereas highly significant and well replicated 

SNPs identified by GWAS merely account for 10%, 1.5%, 13%, and 7%, respectively.  This 

method has also been employed for common diseases (Lee et al. 2011), schizophrenia (Lee et al. 

2012), intelligence (Chabris et al. 2012; Davies et al. 2011),  personality traits (Vinkhuyzen et al. 

2012), subjective well-being (Rietveld et al. 2013), economic and political behaviors (Benjamin 

et al. 2012). 

The model is described by the following equation:  

                                          Y=Xβ + Wµ + ε,                                        (Equation 2.1) 

where Y is the outcome variable; β is a vector of the coefficients of fixed effects such as age, sex 

and other controls; µ is a vector of SNP effects with µi~ N (0, σµ
2)  where i = 1,…, I, with I being 

the number of SNPs; ε is a vector of residual effects with εj ~ N (0, σε
2) where j = 1,…, J, with J 

being the number of individuals; W is a standardized genotype matrix with the ijth element wij = 
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(sij - 2𝑝𝑖)/√[2𝑝𝑖(1 −  𝑝𝑖)] where sij is the number of copies of the reference allele for the ith SNP 

of the jth individual and 𝑝𝑖  is the frequency of the reference allele.  

Yang et al. (2010) innovatively applied a previous result that has been known in animal 

genetics (Goddard et al. 2009). The result defines g = Wµ, A = WWT/I and σg
2 = Iσµ

2. Then 

Equation 2 is mathematically equivalent to Equation 1: 

Y=Xβ + g + ε, with Var(Y) = Aσg
2+ Iεσε

2,        (Equation 2.2) 

where g is a J*1 vector of the total genetic effects of the individuals with g ~ N (0, Aσg
2), A is the 

genetic relationship matrix (GRM) between individuals and σg
2 is the total genetic variance 

explained by the SNPs. Hence σg
2 can be estimated by the restricted maximum likelihood 

(REML) approach, depending on the GRM estimated from all SNPs. In this study, the collective 

genetic contribution is assessed using the proportion of total variance in the outcome explained 

by all SNPs, which can be expressed as σg
2/(σg

2 +σε
2). 

Next, I compared the genomic contribution to delinquency between individuals under 

LSC conditions and those under HSC conditions. I obtained residuals of linear regression models 

predicting Wave III delinquency/violence using, gender, age, age squared, Wave I 

delinquency/violence, and the first ten principal components. I split the residuals into two strata 

on the basis of each constructed dichotomous socioenvironmental variable (e.g., one stratum 

only includes individuals under LSC conditions and the other includes those under HSC 

conditions), and estimated the proportion of variance in the residuals explained by the SNPs. 

2.5 Results 

2.5.1 Genomic contribution to delinquency and violence 

Table 2.2 displays the estimates of the genomic contribution to serious delinquency and 

violence. As can be seen, approximately 4% of the total variance in serious delinquency and 0% 
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of the total variance in violence is attributable to the SNPs in the analysis. In the face of G×E, I 

expect a greater genetic risk for individuals exposed to LSC environments, and a weaker effect 

for those who were exposed to HSC environments in the sample. Next, I tested whether the 

genomic contribution to serious delinquency and violence differs under LSC and HSC 

conditions. 

2.5.2 Genomic contribution under differential conditions 

Table 2.3 shows the results of comparing the genomic contributions to delinquency and 

violence under differential conditions. Columns 1 and 3 contain estimates of the genomic 

contribution to serious delinquency under HSC and LSC conditions, and columns 5 and 7 

contain estimates for violence. In Table 2.3, most estimates of the genomic contribution under 

LSC conditions are greater than those under HSC conditions (with the exception of 

neighborhood education and income for violence). For example, the proportion of total variance 

in the serious delinquency score explained by whole-genome SNPs is estimated to be 25.8% for 

adolescents poorly attached to school, but the proportion drops to 0% for those who were 

closely/moderately attached to school.  To summarize, there is evidence that the genetic risks for 

delinquency and violence are greater for adolescents who were weakly attached to parents and 

school, loosely disciplined by parents or school authorities, or lived in neighborhoods with 

higher unemployment levels and higher single-parent household rates as opposed to those who 

were closely attached to their parents and school, strictly disciplined by parents or school 

authorities, or lived in neighborhoods with lower unemployment rates and lower single-parent 

household rates.     
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2.5.3 Gene-environment correlations 

Gene-environment correlation (rG) occurs when one’s exposure to an environment 

depends upon his or her genotype. The existence of rG may confound the G×E effects (Caspi and 

Moffitt 2006; Jaffee and Price 2007; Wagner et al. 2013). I applied bivariate mixed linear 

models to detect rGs between the socio-environment variables and two outcomes. Table 2.4 

shows that parental supervision and serious delinquency or violence are likely to be influenced 

by common SNPs, while there is no consistent evidence of rG for school- and neighborhood- 

level socioenvironmental variables.  

2.5.4 Discussion and Conclusions 

In this paper I hypothesize that high social control suppresses genetic risks for youth 

delinquency and violence, and low social control exacerbates the same risks. I examine the 

influences of crucial social institutions, such as the family, the school, and the neighborhood, on 

the collective contribution of the whole genome to delinquency and violence. Consistent with the 

environmental triggering/suppressing perspective, I find that favorable social conditions are 

associated with smaller genomic contribution, whereas adverse social conditions are associated 

with greater genomic contribution to adolescent delinquency and violence. 

This study makes several important contributions to the G×E literature. First, this is the 

first studies assessing genetic risk of delinquent and violence behaviors using genome-wide data. 

This is a crucial improvement over previous research, which normally studies one genetic factor 

or only a few at a time. Delinquent and violent behaviors are complex human traits, meaning 

they could be affected by a large number of genetic and environmental factors. It is likely that 

the effects of many genetic variants are too small to be detected by testing each one individually 
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for an association with the phenotype. However, these variants, collectively, could make a 

substantial contribution.  

Second, I find that the genomic influence is smaller under favorable conditions than 

adverse conditions. These findings are consistent with results in previous G×E research based on 

a one or a few genetic variants (Caspi et al. 2002; Guo et al. 2008; Pescosolido et al. 2008). 

What is more, the findings highlight the influence of social control on the genetic risks of many 

variants at the same time. These findings illuminate one mechanism through which social control 

affects delinquency and violence: it is possible that the presence of social control simultaneously 

prevents the expression of a large number of genetic variants associated with aggression and 

violence. In an environment under high social control, such as high family attachment, there may 

be adolescents varying in their genetic propensities for delinquent behaviors; some may possess 

risk alleles related to delinquency. Yet, the expression of risk alleles is prevented due to strong 

social control. When the control is weakened, for example, parents pay less attention, the 

adolescent with high genetic propensities for delinquency, relative to one with low genetic 

propensities, may be more apt to show gene expression. 

The third contribution is methodological. I test G×E involving a large number of genetic 

variants. This method is an extension of the mixed linear model approach (Yang et al. 2011b). 

Compared to conventional linear regression models, the key advantage of the mixed linear model 

is its ability to simultaneously account for a large number of genetic variants. To illustrate, in 

conventional linear models, one socioenvironmental factor and the 629,757 SNPs would 

generate 629,757 two-way interaction terms in total. Analyses dependent on such models 

typically do not have sufficient statistical power to produce significant results. However, in the 

mixed linear model, being treated as random effects, SNPs across the whole genome could be 
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considered simultaneously. That allows us to estimate and compare the genomic influence under 

differential social conditions. 

Although this study provides important insights to understanding how the social 

environment moderates genetic influence on delinquency and violence, some limitations should 

be noted.  The mixed linear model approach does not allow genetically related individuals and 

repeated measures, leading to a reduction of the effective sample size. Also, because of the 

relatively small sample size, I have to dichotomize the social-environmental variables (if there 

were more categories, the G×E analysis would require a much larger sample to have sufficient 

statistical power), which might result in some loss of information. The mixed linear model 

assumes random SNP effects are uncorrelated with covariates in the model. Violation of this 

assumption may bias the results. Moreover, I do not include minority samples in the analysis. 

Although genetic information is available for some minorities (e.g., blacks and Asians), their 

sample size is insufficient to achieve adequate statistical power for separate G×E analysis. Future 

research can use more refined measures and extend the analysis in this study to other racial 

populations when data become available. 

Despite these limitations, this study makes important contributions to social sciences. 

It underscores the significance of the dialogue between the biological and social sciences. Social 

scientists traditionally have assumed homogeneous human nature at birth and focused on social 

structural influences on individuals. However, there is growing evidence that the social 

environment modifies gene expression (Morgan et al. 2002; Norman et al. 2012), and genetic 

variability, in turn, affects individuals’ responses to the environment (Freese 2008). Increasingly 

available molecular genetic data in large-scale datasets (e.g., Add Health, the Fragile Families 

Study, and the Health and Retirement Study) enable social scientists to investigate how 
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socioenvironmental factors shape human behavior through moderating the effects of a large 

number of genes. The conceptual framework and methodology in this study can be expanded to 

study other behavioral and social consequences of the complex interplay of multi-genetic and 

multi-environmental factors. 
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CHAPTER 3 GENOMIC STRUCTURE OF SOCIOECONOMIC ACHIEVEMENT 

OVER THE LIFE COURSE 

3.1 Introduction 

There has long been an interest in decomposing genetic and environmental contributions 

to traits related to socioeconomic achievement (Eckland 1967; Eckland 1979; Guo and Stearns 

2002; Jencks 1980; Nielsen 2006; Nielsen and Roos 2015; Scarr and Weinberg 1978; Taubman 

1976). Yet previous studies have mostly concentrated on one socioeconomic measure at a time 

(e.g., educational attainment). How the roles of genes and the environment change over time is 

still a mystery. This chapter aims to examine the life-course dynamics of genetic and 

environmental contributions to socioeconomic achievement combining recently available 

genome-wide data and longitudinal socioeconomic measures. 

While sociological research has traditionally focused on socioenvironmental influences 

that shape an individual’s socioeconomic achievement, there is increasing evidence that one’s 

socioeconomic achievement can also be affected by individual characteristics, such as 

intelligence (Nielsen 2006; Nielsen 2008) and personality (Shanahan et al. 2014). All these 

individual characteristics are heritable to some degree (Benyamin et al. 2014; Deary et al. 2009; 

Johnson et al. 2008; Okbay et al. 2016a). There is also evidence that genetic factors largely 

contribute to stability in personal characteristics, and socioenvironmental factors are responsible 

for changes in these characteristics (Deary et al. 2012; Lyons et al. 2009). 
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However, very few studies have examined the life-course dynamics of genetic and 

socioenvironmental influences on socioeconomic achievement. Socioeconomic achievement is 

multidimensional, and the roles of different dimensions vary over the life course. Specifically, 

one’s socioeconomic status (SES) in childhood primarily depends on his/her parents’ education 

and occupation. Parental SES is transferred to one’s own occupational status through education. 

In late adulthood, the role of wealth becomes more and more important. It is unclear, however, 

how genetic and environmental factors contribute to socioeconomic achievement at different life 

stages. Specifically, what are the magnitudes of genetic and environmental influences on 

different socioeconomic achievement measures such as educational attainment, occupational 

status, and wealth? Do the same or distinct genetic influences on socioeconomic achievement 

operate at different life stages? What are the genetic and environmental contributions to stability 

and mobility in socioeconomic achievement over time?  

To address these issues, this study integrates genome-wide genotype data with 

longitudinal measures of socioeconomic achievement in the Health and Retirement Study (HRS). 

First, I estimate and compare social and genetic contributions to three socioeconomic 

achievement measures, namely educational attainment, occupational status, and wealth in late 

adulthood. Second, I investigate the extent to which the three measures are influenced by the 

same genetic variants. Finally, I examine genetic and environmental contributions to changes in 

socioeconomic achievement over the life course.  

3.2 Social and Genetic Contributions to Socioeconomic Achievement 

Conventional social stratification and social mobility theories typically view one’s 

socioeconomic experience as a linear process over the life course. The process begins with 

family background typically measured as parental education and occupation, through education, 
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and ends with occupational status indicated as occupational prestige and income. This process, as 

numerous studies have demonstrated, is shaped by the social context in which one lives (Blau 

and Duncan 1967; Boudon 1974; Bourdieu and Passeron 1977; Di Maggio 1982; Hout 1988; 

Mare 1980; Sewell et al. 1969).  

Additionally, as noticed by Blau and Duncan (1967), unmeasured individual 

characteristics also play a pivotal role in influencing socioeconomic achievement. In a meta-

analysis of twin/family studies, Branigan et al. (2013) show that the mean heritability of 

educational attainment is around 40%, and the shared environmentality accounts for about 36% 

variance in educational attainment. Using genome-wide DNA data, Rietveld et al. (2013) 

identify three genetic variants as significant predictors of educational attainment (p-value < 

5×10-8). In a more recent genome-wide association study (GWAS), Okbay et al. (2016b) identify 

74 genome-wide significant variants associated with the number of years of schooling 

completed. 

The composition of genetic and socioenvironmental influences on socioeconomic 

achievement, however, has been found to vary across social context. A classic example is the 

study of Heath et al. (1985). Using samples of three cohorts of Norwegian twins, the authors find 

that the heritability of educational attainment is substantially greater, while the contribution of 

shared environmentality is smaller for younger cohorts than older ones. Also, they find that this 

change merely existed among males. They attribute this change to liberal reforms that produced 

more equal opportunities for younger cohorts, yet the equality of opportunity for females did not 

improve to the same extent as for males. Branigan et al. (2013) summarize gene-environment 

interaction findings on educational attainment. They show that heritability of educational 

attainment varies by gender, nation, and birth cohort.  
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The present study extends this line of research to examine social and genomic structure of 

socioeconomic achievement over the life course. It addresses three critical questions: (1) what is 

the impact of genetic and environmental influences on socioeconomic achievement at different 

life stages? (2) Are the same or different genetic influences in operation at various life stages? 

(3) What are the genetic and environmental contributions to stability and mobility in 

socioeconomic achievement over time?  

3.3 Research Questions 

3.3.1 What is the impact of genetic and environmental influences on socioeconomic 

achievement at different life stages? 

There are at least two different perspectives that contribute to our understanding of life-

course variations in weights of genetic and environmental components. A natural perspective is 

that as people age, they are increasingly subject to environmental influences, “the slings and 

arrows of outrageous fortune” in life, and therefore genetic influences decrease. The study of 

Deary et al. (2012), for example, show that additive genetic effects explain 48 percent of the 

variation in intelligence at age 11, but only 28 percent at ages 65-79. A contrasting “niche 

picking” perspective predicts that genetic influences grow with age. Accordingly, when people 

are young, they are constrained in a rearing environment provided by their parents. As they grow 

up, they shift away from parental influences, and are increasingly able to select their own 

experiences (Scarr and McCartney 1983). Evidence from twin and family studies shows that the 

genetic contribution to cognitive abilities rises with age, whereas the contribution of shared 

environmental factors reduces with age, at least until middle adulthood (McCartney et al. 1990; 

McGue et al. 1993; Plomin and Spinath 2004).   
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It is unknown that how overall genetic and environment contributions to socioeconomic 

achievement vary over the life span. Also, most studies on life-course patterns in genetic and 

environmental components rely on cross-sectional data, in which age effects may be confounded 

by cohort effects.  Aim 1 of this study is to assess overall genetic and environmental 

contributions to socioeconomic achievement at different life stages using longitudinal data. From 

the “slings and arrows” perspective, the genetic contribution to wealth in later life is expected to 

be smaller than to occupational status than to educational attainment, while the order is reversed 

for environmental contribution. From the “niche picking” perspective, the genetic contribution to 

wealth in later life is expected to be greater than to occupational status than to educational 

attainment. 

3.3.2 Are the same or different genetic influences in operation influencing socioeconomic 

achievement at various life stages?  

Even if heritability is constant over the life course, specific genetic variants at work are 

not necessarily the same at different ages (Plomin et al. 1993). This is because that heritability 

only estimates how much of the phenotypic variation can be attributed to genetic differences 

among individuals, not which genes or genetic variants matter. Since an individual’s genotype is 

fixed at conception, it is tempting to view genetic influences as static. However, as Francis 

Galton noted more than one century ago, “it must be borne in mind that the divergence of 

development, when it occurs, need not be ascribed to the effect of different nurtures, but it is 

quite possible that it may be due to the appearance of qualities inherited at birth, though 

dormant,…,in early life” (Galton 1876:402). Although an individual’s genotype does not change 

over the life course, different genes may operate at different developmental periods (Vogler 

2006). In other words, it is likely that new genetic variants are “tuned on” in a later course of a 
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trait (genetic innovation), while the ones operate at earlier stages become less influential over 

time (genetic attenuation). Previous studies have shown new genetic influences emerging during 

childhood and adolescence (Cardon et al. 1992; DeFries et al. 1987; Eaves 1982; Lyons et al. 

2009; Petrill et al. 2004; Wilson and Matheny 1983). There is also evidence that the same 

genetic influences operate from early adulthood to late middle age (Lyons et al. 2009) 

There has been limited investigation of the extent to which the same or different genetic 

influences are in operation affecting socioeconomic achievement at various life stages. Aim 2 of 

this study is to examine this issue using life-course socioeconomic measures together with 

genome-wide genotype data. 

3.3.3 What are the genetic and environmental contributions to socioeocnomic stability and 

mobility? 

Previous research has assessed genetic and environmental contributions to stability and 

mobility in individual traits related to socioeconomic achievement. Based on a longitudinal study 

of individuals in their second half of life, Plomin et al. (1994) show that the genetic factors 

contribute to 90% of cognitive stability. Lyons et al. (2009) examine genetic and environmental 

contributions to stability and change in cognitive ability during 35 years of adulthood. They 

observe a genetic correlation of 1.0 between cognitive ability measured in young adulthood and 

that measured in late middle age. Using an accelerated longitudinal design of twin samples, 

McGue and Christensen (2002) find a heritability of 6% for the linear change in cognitive 

abilities. Reynolds et al. (2005) examine linear and quadratic change at age 65. For linear 

change, they observe a heritability of 1% and non-shared environmentality 99%; for quadratic 

change, they find a heritability of 43% and non-shared environmentality 57%. Their findings 
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suggest that genetic factors were primarily responsible for stability, and non-shared 

environmental factors were primarily responsible for changes in cognitive ability. 

It is unclear that what roles genetic and environmental factors play in determining 

stability and mobility in socioeconomic achievement over the life course. Aim 3 of this study is to 

disentangle genetic and environmental contributions to stability and mobility in socioeconomic 

achievement over the life span. 

3.4 Data 

Data for this study come from the Health and Retirement Study (HRS). HRS is a 

longitudinal study of Americans over age 50 conducted every two years from 1992 to 2012; it 

collects information on economic, health, social, and other factors relevant to aging and 

retirement. HRS includes six birth cohorts with different entry years: the Study of Assets and 

Health Dynamics Among the Oldest Old (AHEAD) cohort (born before 1924) surveyed in 1993, 

1995, and 1998-2012; Children of Depression (CODA) cohort (born 1924-1930) surveyed in 

1998-2012; HRS cohort (born 1931-1941) surveyed from 1992-2012; War Baby (WB) cohort 

(born 1942-1947) surveyed in 1998-2012; Early Baby Boomers (EBB) cohort (born 1948-1953) 

surveyed in 2004-2012; and Mid Baby Boomers (MBB) cohort (born 1954-60) surveyed in 2010 

and 2012. When the present study is conducted, genetic data are available for AHEAD, CODA, 

HRS, WB, and EBB. 

Genetic Samples. DNA samples were collected in 2006 and 2008. Of the collected 

samples, 13,129 were put into genotyping production using the Illumina Human Omni-2.5 Quad 

beadchip, with coverage of approximately 2.5 million single nucleotide polymorphisms (SNPs), 

and 12,507 passed the University of Washington Genetics Coordinating Center’s (GCC) 
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standardized quality control processes. To minimize confounding effects of population 

stratification, this study focuses on non-Hispanic whites. 

Socioeconomic Achievement Measures. Three life-course socioeconomic achievement measures 

are used in this study: educational attainment, occupational status, and late-adulthood wealth. 

Educational attainment is measured using years of education (“What is the highest grade of 

school or year of college you completed?”). Occupational status is based on the occupational 

prestige score of respondents’ current job or last job for retirees. Late-adulthood wealth is based 

on household wealth (sum of all types of assets, pensions, etc.).  Details of the variables are 

provided in Table 3.1. 

These socioeconomic achievement measures may have different meanings for different 

birth cohorts. For example, a high school degree might indicate high socioeconomic achievement 

for earlier cohorts, but medium/low socioeconomic achievement for later cohorts. This issue was 

addressed by within-cohort standardization. Specifically, the three life-course socioeconomic 

achievement measures were recoded into relative indicators based on a baseline sample. The 

baseline sample includes onset measures for all respondents (either provided DNA or did not). 

These measures were taken in 1992 for HRS, 1993 for AHEAD, 1998 for CODA and WB, and 

2004 for EBB. Respondents were divided into 10 categories on the basis of the 9 deciles of each 

of the three socioeconomic achievement measures within each birth cohort in the baseline 

sample. In addition to cohort effects, education and occupation measures might also be subject to 

gender differences. These two variables therefore were also standardized by gender within each 

cohort.  

3.5 Methods 

Genomic-relatedness-matrix Restricted Maximum Likelihood Method (GREML) 
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The genomic-relatedness-matrix restricted maximum likelihood (GREML) method is 

developed by Yang et al.(2011). In contrast to single-variant association analysis where each 

SNP is tested against an adjusted p-value, GREML treats all SNP effects as random effects. The 

basic GREML model can be described by the following equation:  

Y=Xβ + Wµ + ε,                                        (Equation 3.1) 

where Y is the outcome variable; β is a vector of the coefficients of fixed covariates such as age, 

sex and other controls; µ is a vector of genetic effects with µi~ N (0, σµ
2), where i = 1,…, I, with I 

being the number of SNPs; ε is a vector of residual effects with εj ~ N (0, σε
2), where j = 1,…, J, 

with J being the number of individuals; W is a standardized genotype matrix. Yang et al. (2010) 

innovatively applied a previous result that has been known in animal genetics (Goddard et al. 

2009). The result defines g = Wµ, A = WWT/I and σg
2 = Iσµ

2. Then Equation 2 is mathematically 

equivalent to Equation 1: 

 

Y=Xβ + g + ε, with Var(Y) = Aσg
2  + Iεσε

2,        (Equation 3.2) 

where g is a J*1 vector of the total genetic effects of the individuals with g ~ N (0, Aσg
2), A is the 

genomic relatedness matrix (GRM) and σg
2 is the total genetic variance explained by the SNPs. 

Hence σg
2 can be estimated by the restricted maximum likelihood (REML) approach, depending 

on the GRM estimated from all SNPs. The genetic contribution to the outcome can be assessed 

using the proportion of total variance in the outcome explained by all SNPs, which can be 

expressed as σg
2/(σg

2 +σε
2), and the environmental contribution can be expressed as σε

2/(σg
2 +σε

2). 

The GREML approach has been extended to estimate the genetic correlation (rG) 

between different traits (Lee et al. 2012). The bivariate GREML model can be described by the 

following equation: 
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Yt = Xtbt + gt + et, gt ~N(0, Aσgt
2 ), et~N(0, σet

2 ),                 (Equation 3.3) 

where Yt is a vector of observations for trait t (t = 1 or 2). For example, Y1 may represent 

respondents’ educational attainment and Y2 represents their occupational status or wealth. 

Equation (4) demonstrates the covariance matrix between two traits: 

Cov(Y1, Y2) = (
Aσg1

2 + Iσe1
2 Aσg1g2 + Iσe1e2

Aσg1g2 + Iσe2e1 Aσg2
2 + Iσe2

2 ).                (Equation 3.4) 

The rG is defined as 
σg1g2

σg1σg2
. A high rG between two traits indicates that SNP effects on 

two traits are relatively similar. Substantively speaking, an rG of 1 implies that the two traits are 

affected by the same genetic variants, so that any variation between the two traits is 

environmental. At the other extreme, an rG of 0 suggests genetically independent traits; in other 

words, the two traits are affected by completely different genetic variants.  

The bivariate GREML model has been employed to assess genetic correlations between 

phenotypes such as intelligence, education, and health outcomes. For example, Deary et al. 

(2012) estimate a highly significant rG of .62 between intelligence in adolescence (age 11) and 

that in late adulthood (age 65-78). In a more recent study, Boardman et al. (2015) examine the 

genetic correlations between education and health measures such as BMI, depression, and self-

rated health. They find that the phenotypic correlation between depression and education (rG = -

.75) and that between self-rated health and education (rG = -.91) were largely explained by 

common genetic factors, while there was no evidence that the correlation between BMI and 

education is influenced by common genetic factors (rG = -.03). 

Polygenic Score 

Polygenic scores (PS) are typically constructed based on existing GWAS results. They 

can be calculated using the following formula: 
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PSi =  ∑ βj
J
j=1 ∗ xij,                (Equation 3.5) 

where PSi is the PS of individual i, βj is the coefficient for variant j estimated using GWAS data, 

xij is the number of risk alleles on variant j that individual i possesses.   

The first PS analysis is conducted in a study of schizophrenia (Purcell et al. 2009), which 

found few individual variants associated with the outcome, but a large number of variants 

together significantly predicted schizophrenia. The polygenic score approach has also been 

applied for other health-related traits such as height (Thorleifsson et al. 2010; Wood et al. 2014), 

BMI (Locke et al. 2015; Speliotes et al. 2010), and cardiovascular risk (Simonson et al. 2011). 

This approach has been employed to advance sociological research. Liu and Guo (2015), 

for example, provide evidence that cumulative socioeconomic advantage significantly decreased 

an individual’s BMI in middle to late adulthood only for those with a higher genetic propensity 

for obesity [measured by a polygenic score constructed using the 32 obesity-related SNPs in 

Speliotes et al. (2010)], but not for those with lower genetic propensities. In another recent study, 

Conley et al. (2015) decompose the intergenerational association in educational attainment into 

genetic and environmental components by including a polygenic score [constructed based on 

results in the study of Rietveld et al. (2013)] as a predictor in the traditional intergenerational 

model. They find that genetic factors account for approximately a sixth and social inheritance 

accounts for five-sixths of the intergenerational association in educational attainment.  

3.6 Analytical Strategy 

Three analyses were conducted in this chapter. I first performed univariate GREML 

analyses to estimate the proportion of phenotypic variance explained by genome-wide SNPs for 

each of the three socioeconomic achievement outcomes. Also, to assess genetic and 

environmental contributions to socioeconomic mobility, I estimated the proportion of variance in 
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occupational status explained by genome-wide SNPs after adjusting for educational attainment, 

and the proportion of variance in wealth explained by genome-wide SNPs after adjusting for 

educational attainment and occupational status. 

Secondly, I conducted bivariate GREML analyses to test genetic correlations for three 

pairs of the socioeconomic achievement measures (i.e., education and occupation, education and 

wealth, and occupation and wealth). For each genetic correlation, likelihood ratio test (LRT) was 

performed to compare (1) the fitted model and a null model assuming no genetic correlation (i.e., 

rG = 0, substantively meaning that two traits are affected by completely different SNPs); (2) and 

the fitted model and a null model assuming perfect genetic correlation (i.e., rG = 1, substantively 

meaning that two traits are affected by the same SNPs).  

Finally, I conducted a polygenic score constructed based on SNPs found to be associated 

with intelligence. Before the polygenic score calculation, I matched SNPs in HRS with the most 

recent GWAS results reported by Benyamin et al. (2014) and used the 501, 484 matched SNPs to 

‘score’ each of respondent’s genetic predisposition to intelligence. I then calculated the 

polygenic scores according to the methods described by Dudbridge (2013) using the PRsice 

software (Euesden et al. 2015). Polygenic scores range from -34.30-53.48 and are normally 

distributed in HRS (M=12.80, SD=12.23). I standardized the scores to have mean=0, sd=1 for 

analysis. Greater scores are associated with higher levels of intelligence. I estimated and 

compared the associations between polygenic scores and the three socioeconomic achievement 

outcomes. 

To account for potential population stratification, I adjusted all the analyses for the first 

ten principal components computed from the genome-wide SNP data using the EIGENSOFT 

software (Price et al. 2010; Price et al. 2006). In addition, all three analyses were also conducted 
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for males and females separately to detect gender differences in genetic and environmental 

contributions to life-course socioeconomic achievement. 

3.7 Results  

3.7.1 Bivariate correlations among key variables 

Table 3.2 shows the Pearson’s correlations between the standardized life-course 

socioeconomic achievement measures. All the correlations are statistically significant (P<.001). 

Pearson’s correlation is about .50 between educational attainment and occupational status, .30 

between educational attainment and wealth, and .22 between occupational status and wealth. 

While the correlation between occupational status and wealth is significantly greater for male 

than for females, there are no significant gender differences in the correlations between 

educational attainment and occupational status and between educational attainment and wealth. 

3.7.2 What is the impact of genetic and environmental influences on socioeconomic 

achievement at different life stages? 

Table 3.3 displays univariate GREML results for estimating genetic and environmental 

contributions to SES at different life stages. As can be seen, the proportion of variance explained 

by genome-wide SNPs is 42% for educational attainment. This result is similar to heritability 

estimates from many twin and sibling studies (Branigan et al. 2013). As indicated by the 

significant p value (p < .001) in the bottom, dropping the genetic component causes a significant 

loss of information in the model. The SNP heritability is 35% for occupational status (p < .001), 

and 33% for wealth (p < .001). Consistent with the “slings and arrows” hypothesis, these results 

suggest that the genetic contribution to socioeconomic achievement decreases as people age. Yet 

differences in the genetic contribution estimates are not large among three socioeconomic 

achievement measures. 
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The differences in the estimated genetic contribution to three socioeconomic measures 

may be due to different number of observations used in estimating three models (e.g., there are 

more missing values in occupational status than in educational attainment and wealth). To test 

this possibility, I conducted a robustness test in which all models were estimated using 

observations without missing values in all three outcomes. The results remain, suggesting that 

differences in estimated genetic contribution to three socioeconomic measures are not driven by 

missing values. 

Moreover, as previous research has shown gender differences in genetic influences on 

socioeconomic achievement (Branigan et al. 2013; Heath et al. 1985), I also estimated the 

univariate GREML models for males and females separately. As results in Table 3.3 show, the 

overall pattern (i.e., genetic contribution declines over the life course) holds for males but not for 

females. Among females, the genetic contribution to occupational status (17%) is smaller than 

the genetic contribution to wealth (33%). Again, I tested whether this is because of varying 

missing patterns in the three socioeconomic achievement measures by fitting the models to the 

same number of observations for females. As a result, the estimated genetic contribution to 

occupational status is still around 17%, but the estimated genetic contribution to wealth drops to 

15%. This suggests that deviance from the linear pattern for females is due to variation in sample 

size used to estimate the GREML models.   

3.7.3 Are the same or different genetic influences in operation influencing socioeconomic 

achievement at various life stages?  

Table 3.4 demonstrates results of bivariate genomic association among educational 

attainment, occupational status, and wealth in late adulthood. Each column of Table 3.4 includes 

bivariate GREML results between two socioeconomic achievement measures. For example, 
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column 7 demonstrates results of estimating genetic and environmental contributions to the 

correlation between educational attainment and occupational status for both genders. It shows 

42% and 35% variances in education and occupation are explained by genome-wide genotypes. 

These estimates are very similar to estimates in Table 3.3 produced by univariate GREML 

models. The genetic correlation is around .70 between educational attainment and occupational 

status (p < .001 for testing H0: rG = 0 and p < .001 for testing H0: rG = 1), .83 between 

educational attainment and wealth (p < .001 for testing H0: rG = 0 and p = .071 for testing H0: rG 

= 1), and .43 (p = .003 for testing H0: rG = 0 and p < .001 for testing H0: rG = 1) between 

occupational status and wealth. These results show that the three life-course socioeconomic 

achievement outcomes are significantly genetically correlated with each other, yet the genetic 

variants in operation are not exactly the same at different life stages.  

The bivariate GREML models are also estimated by gender. For males, the genetic 

correlation is .50 between educational attainment and occupational status (p = .09 for testing H0: 

rG = 0 and p < .02 for testing H0: rG = 1), 1 between educational attainment and wealth (p < .01 

for testing H0: rG = 0 and p = .5 for testing H0: rG = 1), and .05 (p = .46 for testing H0: rG = 0 

and p = .01 for testing H0: rG = 1) between occupational status and wealth. For females, the 

genetic correlation is .81 between educational attainment and occupational status (p = .01 for 

testing H0: rG = 0 and p = .29 for testing H0: rG = 1), .90 between educational attainment and 

wealth (p < .001 for testing H0: rG = 0 and p = .31 for testing H0: rG = 1), and .52 (p = .08 for 

testing H0: rG = 0 and p = .19 for testing H0: rG = 1) between occupational status and wealth. 

There are more variations in the genetic correlation among three socioeconomic measures in 

males than in female. This is probably due to smaller male sample sizes.  
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3.7.4 What are the genetic and environmental contributions to socioeocnomic stability and 

mobility? 

Based on the bivariate GREML results in Table 3.4, over 50% of the covariance between 

each two of the three socioeconomic achievement measures can be explained by genome-wide 

SNPs. This suggests that stability in socioeconomic achievement is largely attributable to genetic 

factors. To estimate genetic and environmental contributions to mobility, I estimated a univariate 

GREML model predicting respondents’ occupation after adjusting for their education, and a 

model predicting respondent’s wealth after adjusting for their education and occupation. The 

results show that for individuals with the same levels of educational attainment, 74% of variation 

in their occupational status can be explained by non-genetic environmental factors; for those 

with the same levels of educational attainment and occupational status, 77% of variation in their 

wealth can be explained by non-genetic environmental factors. Social mobility, therefore, is 

mainly a consequence of the environmental changes.  

The mobility models are also estimated by gender. For males with the same levels of 

educational attainment, 69% of variation in their occupational status can be explained by 

environmental factors; for males with the same levels of educational attainment and occupational 

status, 83% of variation in wealth can be explained by environmental factors. For females with 

the same levels of educational attainment, 91% of variation in their occupational status can be 

explained by environmental factors; for females with the same levels of educational attainment 

and occupational status, 78% of variation in wealth can be explained by environmental factors. 

3.8 An Example of Genetic Stability and Mobility 

Above results have shown that while commons genetic variants are associated with three 

socioeconomic achievement outcomes, the genetic influences tend to decrease over the life 
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course. Some genes influencing education are likely to be “turned off” at some stages of life and 

therefore they have no impact on occupation and wealth. Here I demonstrate genetic stability and 

mobility using polygenic scores constructed based on intelligence-related SNPs. First, the 

intelligence polygenic score is significantly associated with all three socioeconomic achievement 

outcomes. This suggests that intelligence-related genetic variants continuously influence one’s 

socioeconomic achievement over the life course. However, it is noticeable that magnitudes of the 

genetic associations with occupational status and wealth are about half of that of the genetic 

association with educational attainment (see Table 3.6). This provides evidence for genetic 

attenuation, namely that the importance of intelligence-related genetic variants for 

socioeconomic achievement declines when one ages.  

3.8 Discussion and Conclusions 

To date, few studies have investigated genetic and environmental contributions to 

stability and mobility of socioeconomic achievement over the life span. Recently available 

genome-wide data in together with longitudinal socioeconomic achievement measures in HRS 

provide a unique opportunity for this investigation. Results in this study suggest that both genetic 

and environment factors make important contributions to stability and mobility of socioeconomic 

achievement. Accordingly, additive genetic effects account for about 42% variation in education, 

35% in occupation, and 33% in wealth. This provides suggestive evidence for a decreasing 

genetic influence and an increasing environmental influence on SES over the life span. As an 

individual ages, his/her socioeconomic achievement becomes more likely to be a consequence of 

contextual opportunities and constraints, rather than a consequence of his/her intrinsic 

characteristics determined by genes.  
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Moreover, results show highly significant rG among educational attainment, occupational 

status, and wealth. These results provide evidence for stable genetic influences. This means that 

the three socioeconomic achievement measures are, to a large extent, influenced by the same 

genetic variants. Yet the rGs among three socioeconomic achievement measures are not perfectly 

1. It suggests that although the DNA sequence is stable across the life-course, the effects of some 

genes may only be apparent at certain life stages. There are more than one possible explanations 

for genetic innovation and attenuation. Genetic innovation might depict new rGs that occur as 

the individual is exposed to new experiences, and genetic attenuation might represent the 

disappearance of rGs as the individual’s exposure to certain experiences reduce. Alternatively, or 

probably in addition to rGs, genetic innovation might represent certain developmental steps in 

the brain which were not previously important but become pertinent at later life, and genetic 

attenuation might indicate the steps previously important but become minor at later life (Pickles 

et al. 1998). I demonstrate genetic attenuation using intelligence polygenic score as an example. 

I find that the association between the score and occupation and wealth is only half of the genetic 

association with educational attainment. Mechanisms of genetic innovation and attenuation, 

however, are still unclear. Future research may extend this study to examine the specific 

mechanisms of genetic innovation and attenuation over the life course when data become 

available. 

The findings in this chapter is summarized in Figure 3.1. As it shows, life-course 

socioeconomic achievement is subject to both common and uncommon genetic influences. Some 

genes may continuously play an important role in influencing socioeconomic achievement over 

time, while others may only operate at certain life stages. This finding provides important 

insights for sociological studies concerning complex relationships among educational attainment, 
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occupational status, income, and wealth. These relationships are often a mixture of 

socioenvironmental and genetic effects.  

Social scientists have noticed that socioenvironmental effects are likely to be confounded 

by genetic factors. A current approach to address such confounding is to include genetic 

influences as covariates in regression models (Conley et al. 2015). While these models can rule 

out genetic confounding factors that are time-constant, they do not take into account time-

varying heterogeneity. In particular, although DNA typically does not change over time, genetic 

influences could be time-varying due to genetic innovation and attenuation. As a consequence, 

the models can be biased if all genetic influences are treated as time-invariant. 

It is possible that the use of different measures at different life stages might result in 

variability in genetic contribution estimates. Three different indicators are used in assessing 

socioeconomic achievement at different life stages. A more refined lifetime SES indictor might 

be a composite measure with varying weights on different dimensions of SES (e.g., educational 

attainment has more weight in measuring young adulthood SES and household wealth has more 

weight in measuring late adulthood socioeconomic achievement). In HRS, however, income and 

wealth information is only available after age 50, and educational attainment is the only indicator 

of young adulthood SES. Additionally, sample size is too small for GREML to identify gender 

differences in genetic and environmental contributions to socioeconomic achievement. Although 

genetic information is available for some minorities (e.g., blacks and Asians), their sample sizes 

are insufficient to achieve adequate statistical power for separate analyses. Future research can 

use more refined measures and extend the analysis in this study to other population groups when 

data become available. 
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Despite these limitations, this study demonstrates the complicated roles played by genes 

and social environment in influencing socioeconomic achievement over the life course. The 

theoretical framework and methods in this article could be expanded to study other complex 

traits of interest to social scientists.
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CHAPTER 4 SOCIAL AND GENOMIC CONTRIBUTIONS TO 

MULTIGENERATIONAL STABILITY AND MOBILITY OF EDUCATIONAL 

ATTAINMENT 

4.1 Introduction 

Intergenerational transmission of education is a central theme in the social stratification 

and mobility literature. Yet the mechanisms through which educational attainment is transmitted 

from one generation to another have remained unclear. In this chapter, I take advantage of the 

recently available molecular genomic data to assess the roles of genes and environment in 

intergenerational stability and mobility of educational attainment. 

Education is a central concept in the social stratification and mobility literature as it is 

both a key process of social reproduction and a source of social mobility. While sociologists 

have traditionally focused on economic and cultural explanations of intergenerational 

transmission of education, there is an increasing awareness of the role of genetic inheritance 

(Conley et al. 2015; Guo and Stearns 2002; Nielsen 2006; Nielsen and Roos 2015; Nielsen 

2008). Importantly, parents and children share 50% of their DNA. Because of that, parental 

influences on children are often ambiguously social and genetic. To obtain an accurate estimate 

of the social effects, it is important to identify and adjust for the genetic influences (Conley et al. 

2015; Liu and Guo 2016).  

The heritability of educational attainment is estimated to be around 40% on average 

(Branigan et al. 2013). As Jencks (1980) pointed out more than three decades ago, however,
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heritability estimates only set an upper limit on educational attainment traceable to genetic 

variation, they cannot separate exogenous environmental variance (i.e., variation in 

educationalattainment due to environmental factors independent of genotypes) and endogenous 

environmental variance (i.e., variation in educational attainment due to environmental factors 

that vary in response to genotypes). Therefore, heritability estimates can provide limited use for 

public policy as they cannot be used to assess effects of creating new environments.  

Advances in genomic science and technology have provided sociologists opportunities to 

reinvestigate genetic and environmental contributions to intergenerational transmission of 

educational attainment. Molecular genetic data are now available from thousands of genetically 

independent individuals. These data allow us to examine influences of the whole human genome 

on phenotypes based on observed genetic measures without making assumptions in heritability 

studies (e.g., equal environments for identical and fraternal twins, absence of assortative mating, 

and generalizability of the twin/family sample).  

 Taking advantage of genome-wide genotype data in the Health and Retirement Study, 

this chapter examines the role of genes and the environment in multigenerational processes of 

educational attainment. I first conceptualize a model of genetic and environmental influences on 

multigenerational processes of educational attainment. I then test this model using genome-wide 

data in conjunction with educational measures from three generations in HRS. 

4.2 Multigenerational Transmission of Educational Attainment 

4.2.1 Intergenerational influences  

There is a long tradition in sociology to assess intergenerational influences based on 

statistical associations between parents’ and children’s social status (Blau and Duncan 1967; 

Featherman and Hauser 1976; Hout 1984; Hout 1988; Mare 1993). Large intergenerational 
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associations mean that the offspring’s socioeconomic status is largely dependent upon their 

family background, or in other words, children are mostly likely to obtain the same level of 

socioeconomic status as their parents and less likely to fall far behind or surpass their parents. 

Smaller intergenerational associations indicate more independence of offspring’s status from 

their family background, and therefore more opportunities for social mobility. 

Sociologists have typically focused on economic and cultural explanations of 

intergenerational transmission of education. The economic perspective emphasizes family 

resources’ direct (e.g., tuition) and indirect (e.g., forgone earnings) influences on education 

(Bailey and Dynarski 2011; Blossfeld and Shavit 1993; Boudon 1974; Reardon 2011). 

Accordingly, higher levels of family economic resources should be associated with higher levels 

of educational attainment. The cultural perspective highlights the importance of cultural capitals 

such as norms, values, attitudes, expectations (Bourdieu and Passeron 1977; De Graaf and 

Ganzeboom 1993; Di Maggio 1982; Sakamoto et al. 2009). Transmitted within the family, these 

cultural capitals are necessary for educational success. Compared to those from culturally 

disadvantaged groups, children from culturally advantaged groups are more likely to continue 

their education and obtain higher levels of educational attainment. 

In addition to the socioeconomic and cultural explanations, there is a growing realization 

in the role of biological mechanisms in intergenerational transmission of educational outcomes 

(Conley et al. 2015; Guo and Stearns 2002; Mare 2011; Nielsen 2006; Nielsen and Roos 2015; 

Nielsen 2008; Turkheimer et al. 2003). There is no such an “education gene” that determines 

one’s educational attainment. Yet genes can influence education indirectly through various 

pathways. Genetic influences on education can be mediated by psychological characteristics 

including intelligence, self-control, and interpersonal skills. Also, some genes may affect 
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education through behaviors such as geographic mobility and mate choice (Belsky et al. 2016). 

Importantly, genetic effects and socioenvironmental effects are correlated and entangled (Jaffee 

and Price 2007; Wagner et al. 2013). If the genetic effects are ignored, estimates of pure 

socioenvironmental effects are likely to be biased (Conley et al. 2015; Liu and Guo 2016).   

It has been a challenge to estimate genetic effects as gene effects were not directly 

observable. Recent advances in molecular genetics provide social scientists an opportunity to 

address this issue (Okbay et al. 2016; Rietveld et al. 2013a). This study takes the opportunity to 

disentangle social and biological mechanisms in intergenerational transmission of educational 

attainment. Moreover, this study extends the analysis of intergenerational influences on 

educational attainment to three generations.   

4.2.2 Multigenerational processes 

Research of intergenerational transmission of socioeconomic status (SES) has been 

extended to investigate the effects of grandparents and other family members. There are two 

different models on grandparents’ influence on grandchildren: Markovian model and non-

Markovian model. The Markovian model assumes that grandparents’ influences on 

grandchildren are completely medicated by parents’ SES. Several empirical studies have 

provided evidence for the Markovian model. For example, in their landmark book “The new 

American grandparent: A place in the family, a life apart,” Cherlin and Furstenberg (1992) 

conclude that grandparents do not play a pivotal role directly influencing their grandchildren. 

Using data from the Wisconsin Longitudinal Studies, two studies show limited grandparental 

effects on grandchildren’s educational success (Jæger 2012; Warren and Hauser 1997). Yet 

findings from other studies suggest that grandparents can influence their grandchildren 

independent of parents. Research has shown multiple pathways through which grandparents can 
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directly affect their grandchildren’s education, including providing financial assistance (Aldous 

1995), offering advice (Cherlin and Furstenberg 1992), and monitoring grandchildren’s school 

activities (Deleire and Kalil 2002).  

Other than the socioeconomic pathways, biological mechanisms may also play an 

important role in the mutigenerational processes. Since grandparent and grandchildren share 25% 

of their DNA, associations in traits between grandparents and grandchildren might be partially 

ascribed to genetic inheritance. A unique grandparents’ effect is through genetic transmission in 

the female line. As a woman’s eggs are made shortly after conception, the eggs that contain her 

children’s DNA spend about nine months in their grandmother’s uterus. This allows for indirect 

environmental influences of grandmothers on their grandchildren’s genetic and epigenetic 

processes, and therefore health and development in the long term (Gluckman et al. 2008). 

Although the biological pathway of multigenerational influence is well-established, it has not 

been incorporated in studies of social stratification and mobility. 

4.2.3 A model of multigenerational transmission of educational attainment 

In this section, I conceptualize a model of multigenerational transmission of educational 

attainment. This model focuses on genetic and environmental contributions to multigenerational 

processes of transmission of education. To simplify, this model is based on the Markovian 

assumption.  

A parent’s genes can contribute to his/her child’s education in at least two different ways. 

The parent’ DNA is inherited by the child and the inherited genes may influence the child’s 

education through pathways as stated above. Moreover, the parent’s genes may influence the 

parent’s educational status which, in turn, interact with exogenous socioeconomic experiences 

over time shaping the child’s education (Dickens and Flynn 2001; Jencks 1980; Scarr and 
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McCartney 1983).While the social pathway is part of sociologists’ interest, the existence of the 

biological pathways may bias the estimates of social influences in intergenerational models.   

Effects of grandparents on children’s education are even more complicated. First, a 

quarter of a grandparent’ DNA is directly transmitted to his/her grandchildren and these genes 

may influence their education attainment (Bio + Bio). Second, grandparents’ genes inherited by 

parents may play a role in creating an endogenous environment for grandchildren (Bio + Soc). 

Third, grandparents’ genes influence their own education, and therefore provide a context for 

parents, which will, in turn, influence grandchildren later (Soc + Soc).  

Figure 4.1 demonstrates multigenerational transmission of educational status. Suppose 

gi,j represents the genetic association between generation i and j; pi,j represents the 

environmental association in education between generation i and j; ai represents the genetic 

association with education in generation i. Assume ri,j is the overall educational correlation 

between generation i and j. Then, the educational correlation between generation 1 (G1) and 

generation 2 (G 2) can be expressed as: 

r1,2 = p1,2+ a1 ∗ g1,2 ∗ a2 

The educational correlation between generation 1 (G1) and generation 3 (G3) is: 

r1,3 = p1,2 ∗ p2,3+ a1 * g1,2* a2 ∗ p2,3+ a1 ∗ g1,2 ∗ g2,3 ∗ a3 

As an extension, the educational correlation between generation 1 (G1) and generation n (Gn) is: 

r1,n = p1,2 ∗ p2,3 ∗ … ∗ pn−1,n +a1 ∗ g1,2 ∗ a2 ∗ p2,3 ∗ … ∗ pn−1,n +…+  a1 ∗ g1,2 ∗ … ∗ gn−2,n−1 ∗

an−1 ∗ pn−1,n  + a1 ∗ g1,2 ∗ … ∗ gn−1,n ∗ an 

Assume random mating (i.e., g1,2 = g2,3 =…= gn−1,n= g), the same genetic association with 

education across generations (i.e., a1 = a2 =…= an= a), and the same environmental association 

in education between two consecutive generations (i.e., p1,2 = p2,3 =...= pn−1,n= p), then 
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r1,n = pn−1 + a2 ∗ g ∗ pn−2 +…+ a2 ∗ gn−1 = pn−1 + a2 ∗ ∑ gi ∗n−1
i=1 p(n−1)−i 

The proportion of the genetic contribution (through both biological and social pathways) to 

educational correlation between G1 and Gn is:  

a2 ∗ ∑ gin−1
i=1 ∗ p(n−1)−i 

pn−1 + a2 ∗ ∑ gi ∗n−1
i=1 p(n−1)−i

 

The ratio of the genetic contribution (through both biological and social pathways) to the 

environmental contribution is:  

a2∗∑ gi∗n−1
i=1 p(n−1)−i 

pn−1   > 
a2∗g(n−1) 

pn−1  = a2 ∗ (
g

p
)(n−1) 

Due to assortative mating g is often greater than 0.5 and p is smaller than 0.5, the ratio will be 

larger as n increases. 

4.3 Increasingly Available Molecular Genetic Data and Analytical Methods 

The role of genes in human traits has been conventionally investigated based on studies 

of twins, adoptees, or other family data. Such studies have been adopted in social science 

research to examine genetic and environmental contributions to social outcomes or to illuminate 

crucial biological mechanisms through which social context shapes individual outcomes 

(e.g.,(Boardman et al. 2010; Boardman et al. 2012; Guo and Stearns 2002; Nielsen 2006; 

Nielsen and Roos 2015; Nielsen 2008; Turkheimer et al. 2003). In twin/family studies, genetic 

variants at the molecular level are not directly observed, and genetic and environmental 

contributions are estimated as latent variables based on relatedness among genetic relatives. 

Also, twin/family studies rely on critical assumptions such as equal environments for identical 

and fraternal twins and absence of assortative mating. These assumptions have been questioned 

and violation of these assumptions may lead to biases in the estimates of genetic and 

environmental influences (Goldberger 1979). 
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With the availability of candidate gene data in the late 1990s and the first ten years of the 

21st century, many studies have been carried out linking human traits with DNA variants. 

Candidate genes allow social science researchers interested in gene-environment interactions to 

examine variations in the environmental influences on individuals with different genotypes 

(e.g.,(Caspi et al. 2003; Caspi et al. 2002; Daw et al. 2013; Guo et al. 2008; Guo et al. 2007; 

Mitchell et al. 2015; Mitchell et al. 2011; Simons et al. 2011). This candidate gene approach, 

however, has been criticized because its findings are often not replicated in subsequent studies, 

and the reliability of this approach has become a concern (Charney and English 2012; Risch et 

al. 2009). The need to produce more robust and replicable findings called for genome-wide 

methods with more comprehensive genetic variant coverage and more conservative gene-

selection thresholds (Caspi et al. 2010; Duncan and Keller 2011). 

A major data revolution has occurred in genomic studies since the middle of the first 

decade of the 21st century. During the period, advances in genomic sciences and technology have 

produced a dazzling range of genomic data. In particular, genome-wide genotype data use tag 

single-nucleotide polymorphisms (SNPs) to capture most of the DNA variation across the human 

genome. Such data typically measure 100,000-2,500,000 SNPs for each individual. These data 

are analyzed to identify DNA variants associated with specific phenotypes in the population 

(Hirschhorn and Daly 2005). Genome-wide genotype data has been becoming increasingly less 

expensive over the years, rendering it feasible to large-scale social science surveys. The Health 

and Retirement Study (HRS), for example, has genotyped more than two million genetic variants 

from each of about 20,000 respondents who provided DNA samples. Genome-wide genotype 

data of a similar scale have been collected in the National Longitudinal Study of Adolescent to 

Adult Health (Add Health). All of these data have been or will be publicly available through the 
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NIH database of Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/gap). 

Together with longitudinally tracked health and social outcomes, as well as social contexts, these 

genome-wide genotype data are poised to make major contributions to the social sciences.  

Researchers have attempted to identify specific genetic variants associated with 

educational attainment. In a pioneer study, Rietveld et al. (2013a) conduct a GWAS using 

126,559 individuals. As a result, three SNPs are identified as significant predictors of educational 

attainment (p-value<5×10-8). In a more recent GWAS meta-analysis, Okbay et al. (2016) identify 

74 genome-wide significant loci associated with the number of years of schooling completed 

using 293,732 individuals. 

The genomic-relatedness-matrix restricted maximum likelihood estimation (GREML) 

method has been developed to assess contribution of the whole genome to phenotypes based on 

molecular genetic data. GREML allows the use of genetically unrelated samples to examine 

genetic, environmental effects, as well as gene-environmental interactions. This method has also 

been deployed for a variety of phenotypes, including height (Yang et al. 2010), BMI (Yang et al. 

2011), schizophrenia (Lee et al. 2012b), intelligence (Chabris et al. 2012; Davies et al. 2011), 

personality traits (Vinkhuyzen et al. 2012), subjective well-being (Rietveld et al. 2013b), and 

economic and political preferences (Benjamin et al. 2012).  

The GREML approach has also been used to estimate the genetic correlation (rG) 

between different traits (Lee et al. 2012a). Deary et al. (2012) estimate a highly significant rG of 

.62 between intelligence in adolescence (age 11) and in late adulthood (age 65-78). In a more 

recent study, Boardman et al. (2015) examine the genetic correlation between educational 

attainment and health measures such as BMI, depression, and self-rated health. They find that the 

correlation between depression and education (rG = -.75) and between self-rated health and 

http://www.ncbi.nlm.nih.gov/gap
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education (rG = -.91) were largely explained by common genetic factors, but there was no 

evidence that BMI and education were influenced by common genetic factors (rG = -.03).  

While bivariate GREML is useful in estimating genetic correlations, it does not directly 

assess intergenerational genetic mediation. Polygenic score analysis can be used to achieve this 

end. The first polygenic score analysis was conducted in a study of schizophrenia (Purcell et al. 

2009), which find few individual variants associated with the outcome, but a large number of 

variants together significantly predicted schizophrenia. The polygenic score approach has also 

been applied for other health-related traits such as height (Thorleifsson et al. 2010; Wood et al. 

2014), BMI (Locke et al. 2015; Speliotes et al. 2010), and cardiovascular risk (Simonson et al. 

2011). This approach has been employed to advance sociological research. Liu and Guo (2015), 

for example, provide evidence that cumulative socioeconomic advantage significantly decreased 

an individual’s BMI in middle to late adulthood only for those with a higher genetic propensity 

for obesity [measured by a polygenic score constructed using the 32 obesity-related SNPs in 

Speliotes et al. (2010)], but not for those with lower genetic propensities. In another recent study, 

Conley et al. (2015) decompose the intergenerational association in educational attainment into 

genetic and environmental components by including a polygenic score [constructed based on 

results in the study of Rietveld et al. (2013a)] as a predictor in the traditional intergenerational 

model. They find that genetic factors account for approximately a sixth and social inheritance 

accounts for five-sixths of the intergenerational association in educational attainment. The 

polygenic influence on educational attainment has been replicated using AddHealth (Domingue 

et al. 2015).  

4.4 Aims of the Study 
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In this study, I assess the multigenerational transmission of education model using 

bivariate GREML and polygenic scores based on genome-wide genotype data in the Health and 

Retirement Study (HRS). There are four specific aims of this study.  

Aim 1: Examine genetic and environmental contributions to the parent-child association in 

educational attainment. I estimate the exogenous environmental effects on children’s education. 

Aim 2: Extend Aim 1 to three generations by assessing genetic and environmental contributions 

to the grandparent-grandchild association in educational attainment. 

Aim 3: Investigate the extent to which parents’ genes influence children’s educational attainment 

through biological and social pathways. 

Aim 4: Examine genetic and environmental contributions to intergenerational mobility in 

educational attainment. 

4.5 Data 

Data for this study come from the Health and Retirement Study (HRS). HRS is a 

longitudinal study of Americans over age 50 conducted every two years from 1992 to 2012; it 

collects information on economic, health, social, and other factors relevant to aging and 

retirement. DNA samples were collected in 2006 and 2008. Of the collected samples, 13,129 

were put into genotyping production using the Illumina Human Omni-2.5 Quad beadchip, with 

coverage of approximately 2.5 million single nucleotide polymorphisms (SNPs), and 12,507 

passed the University of Washington Genetics Coordinating Center’s (GCC) standardized quality 

control processes. To minimize confounding effects of population stratification, this study 

focuses on non-Hispanic whites. 

HRS respondents provided information about their parents’ and children’s educational 

attainment. There are two issues in the data that might affect the analysis. First, some children 
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were not old enough to complete their highest grade when their parents were interviewed. 

Second, GREML analysis requires genetically unrelated individuals to obtain unbiased results, 

yet a number of HRS respondents had more than one child. To address these issues, I selected 

the oldest child in each household who was most likely to complete the highest grade of school, 

and excluded those who had not reached 30 years of age when the last wave of data was 

collected. Years of education is time-sensitive. Completion of twelve years of education is more 

common in more recent cohorts than in earlier ones. Also, women typically received less 

education than men in older generations. To address these issues, years of education is 

standardized by cohort and gender. 

4.6 Methods 

Genomic-relatedness-matrix Restricted Maximum Likelihood Method (GREML) 

The genomic-relatedness-matrix restricted maximum likelihood (GREML) method was 

developed by Yang et al. (2011). In contrast to single-variant association analysis where each 

SNP is tested against an adjusted p-value, GREML treats all SNP effects as random effects. The 

basic GREML model can be described by the following equation:  

Y=Xβ + Wµ + ε,                                        (Equation 4.1) 

where Y is the outcome variable; β is a vector of the coefficients of fixed covariates such as age, 

sex and other controls; µ is a vector of genetic effects with µi~ N (0, σµ
2), where i = 1,…, I, with I 

being the number of SNPs; ε is a vector of residual effects with εj ~ N (0, σε
2), where j = 1,…, J, 

with J being the number of individuals; W is a standardized genotype matrix. Yang et al. (2010) 

innovatively applied a previous result that has been known in animal genetics (Goddard et al. 

2009). The result defines g = Wµ, A = WWT/I and σg
2 = Iσµ

2. Then Equation 2 is mathematically 

equivalent to Equation 1: 
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Y=Xβ + g + ε, with Var(Y) = Aσg
2  + Iεσε

2,        (Equation 4.2) 

where g is a J*1 vector of the total genetic effects of the individuals with g ~ N (0, Aσg
2), A is the 

genomic relatedness matrix (GRM) and σg
2 is the total genetic variance explained by the SNPs. 

Hence σg
2 can be estimated by the restricted maximum likelihood (REML) approach, depending 

on the GRM estimated from all SNPs. The genetic contribution to the outcome can be assessed 

using the proportion of total variance in the outcome explained by all SNPs, which can be 

expressed as σg
2/(σg

2 +σε
2), and the environmental contribution can be expressed as σε

2/(σg
2 +σε

2).  

The GREML approach has been extended to estimate the genetic correlation (rG) 

between different traits (Lee et al. 2012a). The bivariate GREML model can be described by the 

following equation: 

Yt = Xtbt + gt + et, gt ~N(0, Aσgt
2 ), et ~N(0, σet

2 ),                 (Equation 4.3) 

where Yt is a vector of observations for trait t (t = 1 or 2). For example, Y1 may represent 

respondents’ educational attainment and Y2 represents their children’s educational attainment. 

Equation (4.4) demonstrates the covariance matrix between two traits: 

Cov(Y1, Y2) = (
Aσg1

2 + Iσe1
2 Aσg1g2 + Iσe1e2

Aσg1g2 + Iσe2e1 Aσg2
2 + Iσe2

2 ).                (Equation 4.4) 

The rG is defined as 
σg1g2

σg1σg2
. A high rG between two traits indicates that SNP effects on 

two traits are relatively similar. Substantively speaking, an rG of 1 implies that the two traits are 

affected by the same genetic variants, so that any variation between the two traits is 

environmental. At the other extreme, an rG of 0 suggests genetically independent traits; in other 

words, the two traits are affected by completely different genetic variants.  

Polygenic Score (PS) 



  

 
90 

Polygenic scores are typically constructed based on existing GWAS results. They can be 

calculated using the following formula: 

PSi =  ∑ βj
J
j=1 xij,                (Equation 4.5) 

where PSi is the PS of individual i, βj is the coefficient for variant j estimated using GWAS data, 

xij is the number of risk alleles on variant j that individual i possesses.   

Polygenic scores in this study were constructed using the P-values and β-weights from 

the recent GWAS based on years of education (Okbay et al. 2016) according to the methods 

described by Dudbridge (2013) using the PRsice software (Euesden et al. 2015). Polygenic 

scores ranged from 2.13 to 113.60 and were normally distributed in HRS (mean = 58.54, sd 

=14.88). I standardized the scores to have mean = 0, sd = 1 for analysis. Greater polygenic scores 

are associated with higher levels of educational attainment.  

4.7 Analytic Strategy 

First, I performed a bivariate GREML analysis to assess the overall genetic correlations 

in education among three generations. I estimated the proportion of covariance in education 

between each pair of generations (i.e., G1 and G2, G2 and G3, and G1 and G3). This estimate 

can be interpreted as the genetic contribution to educational attainment through both biological 

and social pathways. 

Second, I performed a polygenic score analysis to examine intergenerational genetic 

mediation of educational attainment. Specifically, I predicted G2’s educational attainment using 

G1’s educational attainment adjusting for the G2’s polygenic score. This is a replication of 

analysis in the study of Conley et al. 2015 but is based on better-powered polygenic scores. This 

analysis focuses on the association between two generations’ educational attainment for children 

with the same level of genetic propensity to education. It eliminates the biological pathway and 
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estimates the exogenous intergenerational association in educational attainment. This analysis 

was then stratified for father-son, father-daughter, mother-son, and mother-daughter pairs. 

Third, I extended the polygenic score analysis to three generations. I predicted G3’s 

educational attainment using G1’s educational attainment adjusting for the G2’s polygenic score. 

Since HRS only has genotype data from G2, I used G2’s polygenic score as a proxy of the 

polygenic score of G3. This analysis was then stratified based on the gender combination of the 

grandparent (G1), the parent (G2), and the child (G3) (i.e., father’s father, father, and son; 

father’s mother, father, and son; mother’s father, mother, and son; mother’s mother, mother, and 

son; father’s father, father, and daughter; father’s mother, father, and daughter; mother’s father, 

mother, and daughter; mother’s mother, mother, and daughter). 

Finally, I predicted G3’s educational attainment using G2’s educational attainment 

adjusting for G2’s polygenic score. This analysis examined the association between two 

generations’ educational attainment for parents with the same level of genetic propensity to 

educational attainment. By doing this, I assessed the extent to which parents’ genes influence 

children’s educational attainment through biological and social pathways. This analysis was also 

stratified for father-son, father-daughter, mother-son, and mother-daughter pairs. 

4.8 Results 

4.8.1 Bivariate correlations  

Table 4.2 shows the Pearson’s correlations in educational attainment among three 

generations. All the correlations are statistically significant (P<.001). The correlations in 

educational attainment between G1 and G2 and between G2 and G3 are around .40. This is 

consistent with the findings of Blau and Duncan (1967). The correlation between G1 and G3 

(.17) is slightly lower than half the correlation between G1 and G2.  
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The polygenetic scores constructed based on G2’s genotypes are significantly associated 

with educational attainment of all three generations. Assuming the level of gene expression is the 

same across generations, since one shares ½ DNA with his/her parent and child, the association 

between one’s genes and his/her parent or child’s phenotype is supposed to be half of the genetic 

association with his/her own phenotype if intergenerational genetic influences work only through 

biological pathways. Yet results in Table 4.2 shows that while the association between G2’s 

polygenic score and G1’ educational attainment (.14 for father and .12 for mother) is 

approximately half of the association between G2’s polygenic scores and G2’s educational 

attainment (.26), the association between G2’s polygenic scores and G3’ educational attainment 

(.19) is significantly greater than half of the association between G2’s polygenic scores and G2’s 

educational attainment. One possible explanation is that in addition to genetic transmission, 

parents’ genes can influence their children’s phenotype through non-biological pathways. 

Alternatively, this might be due to increasing educational assortative mating or genetic 

innovation in younger generations (i.e., some education-related genes are more likely to be 

expressed in younger generations than in older generations). 

4.8.2 Genomic contribution to multigenerational association in educational attainment 

Bivariate GREML models were estimated for father-child and mother-child pairs 

separately. As shown by Table 4.3, rGs in educational attainment among three generations are all 

significant at the .05 level. Consistent with results in Table 4.2, genetic correlations between G1 

and G3 (rG=.464 between [G1] grandfather and [G3] grandchildren; rG= .393 between [G1] 

grandmother and [G3] grandchildren) are about, if not smaller than, half of the genetic 

correlations between G2 and G3 (rG=.940 between [G2] father and [G3] children; rG= .984 

between [G2] mother and [G3] children). Genetic correlations between G2 and G3 are greater 
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than that between G1 and G2. Again, this might be because genotypes of G2 is linked to G1’s 

phenotypes only through biological pathways, while genotypes of G2 can affect G3’s phenotypes 

through both biological and non-biological pathways. 

4.8.3 Genetic mediation of the association in educational attainment between parents and 

children 

Table 4.4 shows results of assessing genetic mediation of the educational association 

between G1 and G2. As can be seen in Panel 1, the association in educational attainment 

between (G1) fathers and (G2) children reduces 10% after controlling for (G2) children’s PGS, 

the association between (G1) mothers and (G2) children reduces 7% after controlling for (G2) 

children’s PGS. Panels (2) and (3) display the results by G2’s gender. Whereas associations 

between (G1) fathers and mothers and (G2) sons respectively reduce 6% and 6% after 

controlling for (G2) sons’ PGS, associations between (G1) fathers and mothers and (G2) 

daughters respectively reduces 9% and 8% after controlling for (G2) daughters’ PGS. 

4.8.4 Genetic mediation of the association in educational attainment between grandparents 

and grandchildren 

Table 4.5 demonstrates results of testing genetic mediation of the educational association 

between G1 and G3. The association in educational attainment between (G1) father’s father and 

(G3) children reduces 14%, and the association between (G1) father’s mother and (G3) children 

reduces 11% adjusting for father (G2)’s PGS. The association between (G1) mother’s father and 

(G3) children reduces 13%, and the association between (G1) mother’s mother and (G3) children 

reduces 12% adjusting for (G2) mother’s PGS. The genetic contribution to educational 

association between G1 and G3 is greater than that between G1 and G2. This is consistent with 

the prediction of the multigenerational transmission of education model. 
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4.8.5 Social and biological pathways of the influence of parents’ genes on children’s 

educational attainment 

The association between G2’s PGS and G3’s educational attainment reduces about 50% 

after controlling for G2’s educational attainment. As results in Table 4.6 demonstrate, around 

half of parents’ genetic influence on children’s educational attainment is through biological 

pathways and the other half through non-biological pathways. This analysis is conducted for 

each possible parent-child gender combination: father and son (bio: 58%; soc: 42%), mother and 

son (bio: 52%; soc: 48%), father and daughter (bio: 52%; soc: 48%), mother and daughter (bio: 

41%; soc: 59%). This suggests that father’s genes influence son’s education more through 

biological pathways, mother’s genes influence daughter’s education more through social 

pathways. 

I replicate the analysis using univariate GREML models. The first model predicts G3’ 

education using G2’s whole-genome SNPs (see columns 3 and 4 in Table 4.7). As a result, 34% 

of variance in G3’s educational attainment can be predicted by G2’s genomic information. The 

second univariate GREML models predicts G3’education using G2’s whole-genome SNPs 

adjusting for G2’s education. The results show the SNP heritability reduces to 15%. Similarly, 

this suggests that half of parental genetic influence on children’s education is through biological 

pathways, and the other half through socioenvironmental pathways.  

4.8.6 Genetic and environmental contributions to intergenerational mobility in educational 

attainment 

Self PGS still significantly predicts educational attainment adjusting for both parents’ 

education (see Table 4.4). This suggests that genes also play an important role in educational 

mobility. I replicated the analysis using univariate GREML models (see columns 1 and 2 in 
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Table 4.7). The first model predicts G2’ education using G2’s whole-genome SNPs. As a result, 

40% of variance in G2’s educational attainment can be predicted by the SNPs. The second 

univariate GREML model is adjusted for G1’s education (both father and mother). The results 

show the SNP heritability reduces to 23%, about half of the estimate in the first model. This says, 

for those with the same level of parental education, genetic factors account for 23% of the 

remaining variation in education.  

The differences in the estimated genetic contribution to education may be due to different 

number of observations used in estimating the two models (e.g., missing values in G1’s 

education). To test this possibility, a robustness test is conducted using observations without 

missing values in both G1 and G2’s education. The results remain. Therefore the difference in 

estimated genetic contribution to education between the two models is not driven by missing 

values. 

4.9 Discussions and Conclusion 

This study makes important contributions to the social stratification and mobility 

literature. First, one of the biggest challenges in social stratification and mobility research is to 

address previously unmeasured genetic/biological confounding variables in the estimation of the 

intergenerational influence. In this study, I conceptualize a model of multigenerational influence 

and test the model using educational measures from three generations in conjunction with 

genome-wide genotype data in HRS. I find significant genetic correlations in educational 

attainment across three generations. This suggests genetic factors play an important role in 

stabilizing intergenerational educational attainment in the U.S. Importantly, the parent-child 

association in education is reduced around 6-10% adjusting for (either parents’ or children’s) 

polygenic scores.   



  

 
96 

Secondly, I extend the two-generation model to three or more generations. Bivariate 

GREML results show that genetic correlation in education between grandparents and 

grandchildren is about half of the genetic correlation between parents and children. I also find 

that the grandparent-grandchild association in education reduces 10-15% adjusting for parents’ 

polygenic scores. This finding is consistent with the prediction of the multigenerational 

transmission model, namely that genes play a larger role in educational association between 

more distal generations. 

Thirdly, I examine the biological and social pathways through which parents’ genes 

influence children’s educational attainment. Results from both polygenic score and GREML 

models provide evidence that about half of parent’s genetic influence can be ascribed to genetic 

transmission and the other half is medicated by parents’ education. Moreover, I stratify the 

analysis by gender. Around 60% of the association between fathers’ polygenic scores and sons’ 

education is mediated by fathers’ education, while only 40% of the association between mothers’ 

polygenic scores and daughters’ educational is medicated by mothers’ education. One interesting 

speculation is that fathers’ genes influence sons mainly through biological pathways, whereas 

mothers’ genes influence daughters mainly through socioenvironmental pathways. This finding 

needs to be replicated using other independent samples. 

Finally, this study also provides evidence for genetic contribution to intergenerational 

mobility in educational attainment. GREML results show genome-wide SNPs of G2 can still 

predict 23% variation in G2’s education adjusted for G1’s education. It is possible that some 

genes that were silent in the previous generation are expressed in the subsequent generation. 

Genes do not determine educational destiny, instead, they provide opportunities for change. 
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Genetic influences are largely intertwined with the environment. Genes may affect people by 

modifying the environment in various ways. 

Some limitations need to be acknowledged. First, the polygenic score approach often 

suffers from lacking of power in assessing genetic variation. According to GREML results, the 

genome-wide SNPs explains around 40% of variation in education, while the polygenic scores 

only result in a Rsq of 6.6%. This discrepancy may be because the true GWAS coefficients differ 

across cohorts, perhaps due to heterogeneity in phenotype measurement or gene-environment 

interactions, or the failure of some of the assumptions underlying the calculation of Rsq (Okbay 

et al. 2016). Second, genomic data are only available for G2. Because of that, it is impossible to 

estimate the genetic association with education for G1 and G3. Third, minority samples are not 

included in the analysis. Although genetic information is available for some minorities (e.g., 

blacks and Asians), their sample size is insufficient to achieve adequate statistical power for 

separate analysis. Future research can extend the analysis in this study to other racial populations 

when data become available. 

Despite these limitations, this study demonstrates how incorporating genetic information 

into social science research can help enrich our understanding of critical social issues.  Molecular 

genetic data are increasingly available in large-scale datasets (e.g., the Fragile Families Study, 

the Framingham Heart Study, the National Longitudinal Study of Adolescent to Adult Health, 

and the Wisconsin Longitudinal Study), providing researchers unprecedented opportunities 

to study interactive influences of socioenvironmental factors and genetic factors on sociological 

outcomes.   



  

 
98 

REFERENCES 

 

Aldous, Joan. 1995. "New Views of Grandparents in Intergenerational Context." Journal of 

Family Issues 16(1):104-122. 

 

Bailey, Martha J. and Susan M.  Dynarski. 2011. "Inequality in Postsecondary Education." Pp. 

117–131 in In Whither Opportunity?, edited by G. J. Duncan and R. J. Murnane. New 

York: Russell Sage Foundation. 

 

Benjamin, Daniel. J. , Magnus Johannesson, Peter Visscher, M., David Cesarini, Matthijs. J. H. 

M. van der Loos, et al. 2012. "The Genetic Architecture of Economic and Political 

Preferences." Proceedings of the National Academy of Sciences 109(21):8026-8031. 

 

Blau, P. M. and O. D. Duncan. 1967. The American Occupational Structure. New York: Wiley. 

 

Blossfeld, Hans-Peter and Yossi  Shavit. 1993. "Persisting Barriers: Changes in Educational 

Opportunities in Thirteen Countries." Pp. 1-23 in Persistent Inequality: Changing 

Educational Attainment in Thirteen Countries., edited by Y. Shavit and H.-P. Blossfeld. 

Boulder, CO: Westview Press. 

 

Boardman, Jason D., Casey L. Blalock, and Fred C. Pampel. 2010. "Trends in the Genetic 

Influences on Smoking." Journal of Health and Social Behavior 51(1):108-123. 

 

Boardman, Jason D., Benjamin W. Domingue, and Jonathan Daw. 2015. "What Can Genes Tell 

Us About the Relationship between Education and Health?" Social Science and Medicine 

127:171-80. 

 

Boardman, Jason D., Michael E. Roettger, Benjamin W. Domingue, Matthew B. McQueen, Brett 

C. Haberstick, et al. 2012. "Gene–Environment Interactions Related to Body Mass: 

School Policies and Social Context as Environmental Moderators." Journal of 

Theoretical Politics 24(3):370-388. 

 

Boudon, Raymond. 1974. Education, Opportunity, and Social Inequality. New York: John 

Wiley. 

 

Bourdieu, Pierre and Jean-Claude Passeron. 1977. Reproduction in Education, Society, and 

Culture. Beverly Hills, CA: Sage. 

 

Branigan, Amelia R., Kenneth J. McCallum, and Jeremy Freese. 2013. "Variation in the 

Heritability of Educational Attainment: An International Meta-Analysis." Social Forces 

92(1):109-140. 

 

Caspi, Avshalom, Antony Braithwaite, Richie Poulton, Karen Sugden, Terrie E. Moffitt, et al. 

2003. "Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-

Htt Gene." Science (New York, N.Y.) 301(5631):386-389. 



  

 
99 

Caspi, Avshalom, Ahmad R. Hariri, Andrew Holmes, Rudolf Uher, and Terrie E. Moffitt. 2010. 

"Genetic Sensitivity to the Environment: The Case of the Serotonin Transporter Gene and 

Its Implications for Studying Complex Diseases and Traits." The American Journal of 

Psychiatry 167(5):509-527. 

 

Caspi, Avshalom, Joseph McClay, Terrie E. Moffitt, Jonathan Mill, Judy Martin, et al. 2002. 

"Role of Genotype in the Cycle of Violence in Maltreated Children." Science 

297(5582):851-854. 

 

Chabris, Christopher F., Benjamin M.   Hebert, Daniel J.   Benjamin, Jonathan P.  Beauchamp, 

David   Cesarini, et al. 2012. "Most Reported Genetic Associations with General 

Intelligence Are Probably False Positives." Psychological Science 23(11):1314-1323. 

 

Charney, Evan and William English. 2012. "Candidate Genes and Political Behavior." American 

Political Science Review 106(1):1-34. 

 

Cherlin, A. J. and F. F. Furstenberg. 1992. The New American Grandparent: A Place in the 

Family, a Life Apart. Cambridge, MA: Harvard University Press. 

 

Conley, Dalton, Benjamin W.   Domingue, David Cesarini, Christopher Dawes, Cornelius A. 

Rietveld , et al. 2015. "Is the Effect of Parental Education on Offspring Biased or 

Moderated by Genotype?" Sociological Science 2:82-105. 

 

Davies, G., M. Luciano, K. McGhee, L. Lopez, A. J. Gow, et al. 2011. "Genome-Wide 

Association Studies Establish That Human Intelligence Is Highly Heritable and 

Polygenic." Molecular Psychiatry 16(10):996-1005. 

 

Daw, Jonathan, Michael Shanahan, Kathleen Mullan Harris, Andrew Smolen, Brett Haberstick, 

et al. 2013. "Genetic Sensitivity to Peer Behaviors: 5httlpr, Smoking, and Alcohol 

Consumption." Journal of Health and Social Behavior 54(1):92-108. 

 

De Graaf, Paul M. and Harry B. G.  Ganzeboom. 1993. "Family Background and Educational 

Attainment in the Netherlands for the 1891–1960 Birth Cohorts." in Persistent 

Inequality: Changing Educational Attainment in Thirteen Countries, edited by Y. Shavit 

and H.-P. Blossfeld. Boulder, CO: Westview Press. 

 

Deary, Ian J., Janie Corley, Paul Redmond, Helen C. Fox, Suzanne J. Rowe, et al. 2012. 

"Genetic Contributions to Stability and Change in Intelligence from Childhood to Old 

Age." Nature 482(7384):212-215. 

 

Deleire, Thomas and Ariel Kalil. 2002. "Good Things Come in Threes: Single-Parent 

Multigenerational Family Structure and Adolescent Adjustment." Demography 

39(2):393-413. 

 



  

 
100 

Di Maggio, Paul. 1982. "Cultural Capital and School Success: The Impact of Status Culture 

Participation on the Grades of Us High School Students." American Sociological Review 

47(2):189-201. 

 

Dickens, William T. and James R. Flynn. 2001. "Heritability Estimates Versus Large 

Environmental Effects: The Iq Paradox Resolved." Psychological Review 108(2):346-

369. 

 

Domingue, Benjamin W, Daniel W. Belsky, Dalton Conley, Kathleen Harris, and Jason D 

Boardman. 2015. "Polygenic Influence on Educational Attainment: New Evidence from 

the National Longitudinal Study of Adolescent to Adult Health." AERA Open 1(3):1-13. 

 

Dudbridge, Frank. 2013. "Power and Predictive Accuracy of Polygenic Risk Scores." PLoS 

genetics 9(3):e1003348. 

 

Duncan, Laramie E. and Matthew C. Keller. 2011. "A Critical Review of the First 10 Years of 

Candidate Gene-by-Environment Interaction Research in Psychiatry." American Journal 

of Psychiatry 168(10):1041-1049. 

 

Euesden, J., C. M. Lewis, and P. F. O'Reilly. 2015. "Prsice: Polygenic Risk Score Software." 

Bioinformatics 31(9):1466-1468. 

 

Featherman, David L. and Robert M. Hauser. 1976. "Changes in the Socioeconomic 

Stratification of the Races, 1962-73." American journal of sociology 82(3):621-651. 

 

Gluckman, Peter D., Mark A. Hanson, Cyrus Cooper, and Kent L. Thornburg. 2008. "Effect of in 

Utero and Early-Life Conditions on Adult Health and Disease." The New England 

journal of medicine 359(1):61-73. 

 

Goldberger, Arthur S. 1979. "Heritability." Economica 46(184):327-347. 

 

Guo, Guang, Michael E. Roettger, and Tianji Cai. 2008. "The Integration of Genetic Propensities 

into Social-Control Models of Delinquency and Violence among Male Youths." 

American Sociological Review 73(4):543-568. 

 

Guo, Guang, Michael E. Roettger, and Jean C. Shih. 2007. "Contributions of the Dat1 and Drd2 

Genes to Serious and Violent Delinquency among Adolescents and Young Adults." 

Human Genetics 121(1):125-136. 

 

Guo, Guang and Elizabeth Stearns. 2002. "The Social Influences on the Realization of Genetic 

Potential for Intellectual Development." Social Forces 80(3):881-910. 

 

Hindorff, L. A. , J (European Bioinformatics Institute) MacArthur, J (European Bioinformatics 

Institute) Morales, H. A. Junkins, P. N. Hall, et al. "A Catalog of Published Genome-

Wide Association Studies.", vol. 2016. www.genome.gov/gwastudies. 

http://www.genome.gov/gwastudies


  

 
101 

Hirschhorn, Joel N. and Mark J.  Daly. 2005. "Genome-Wide Association Studies for Common 

Diseases and Complex Traits." Nature Reviews Genetics 6(2):95-108. 

 

Hout, Michael. 1984. "Status, Autonomy, and Training in Occupational Mobility." American 

Journal of Sociology 89(6):1379-1409. 

 

Hout, Michael. 1988. "More Universalism, Less Structural Mobility: The American 

Occupational Structure in the 1980s." American Journal of Sociology 93(May 88):1358-

1400. 

 

Jæger, Mads Meier. 2012. "The Extended Family and Children's Educational Success." 

American Sociological Review 77(6):903-922. 

 

Jaffee, S. R. and T. S. Price. 2007. "Gene-Environment Correlations: A Review of the Evidence 

and Implications for Prevention of Mental Illness." Molecular Psychiatry 12(5):432-442. 

 

Jencks, Christopher. 1980. "Heredity, Environment, and Public Policy Reconsidered." American 

Sociological Review 45(5):723-736. 

 

Lee, S. H., J. Yang, M. E. Goddard, P. M. Visscher, and N. R. Wray. 2012a. "Estimation of 

Pleiotropy between Complex Diseases Using Single-Nucleotide Polymorphism-Derived 

Genomic Relationships and Restricted Maximum Likelihood." Bioinformatics 

28(19):2540-2542. 

 

Lee, S. Hong, Teresa R. DeCandia, Stephan Ripke, Jian Yang, Patrick F. Sullivan, et al. 2012b. 

"Estimating the Proportion of Variation in Susceptibility to Schizophrenia Captured by 

Common Snps." Nature Genetics 44(3):247-U35. 

 

Liu, Hexuan and Guang Guo. 2015. "Lifetime Socioeconomic Status, Historical Context, and 

Genetic Inheritance in Shaping Body Mass in Middle and Late Adulthood." American 

Sociological Review 80(4):705-737. 

 

—. 2016. "Opportunities and Challenges of Big Data for the Social Sciences: The Case of 

Genomic Data." Social Science Research 59(2016):13-22. 

 

Locke, Adam E., Bratati Kahali, Sonja I. Berndt, Anne E. Justice, Tune H. Pers, et al. 2015. 

"Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology." Nature 

518(7538):197-U401. 

 

Mare, Robert D. 1993. "Educational Stratification on Observed and Unobserved Components of 

Family Background." in Persistent Inequality: Changing Educational Attainment in 

Thirteen Countries, edited by Y.Shavit and H. P. Blossfeld. Boulder, CO: Westview. 

 

—. 2011. "A Multigenerational View of Inequality." Demography 48(1):1-23. 



  

 
102 

Mitchell, C., J. Brooks-Gunn, I. Garfinkel, S. McLanahan, D. Notterman, et al. 2015. "Family 

Structure Instability, Genetic Sensitivity, and Child Well-Being." American Journal of 

Sociology 120(4):1195-1225. 

 

Mitchell, Colter, Daniel Notterman, Jeanne Brooks-Gunn, John Hobcraft, Irwin Garfinkel, et al. 

2011. "Role of Mother's Genes and Environment in Postpartum Depression." 

Proceedings of the National Academy of Sciences of the United States of America 

108(20):8189-8193. 

 

Nielsen, François. 2006. "Achievement and Ascription in Educational Attainment: Genetic and 

Environmental Influences on Adolescent Schooling." Social Forces 85(1):193-216. 

 

Nielsen, François and J. Micah Roos. 2015. "Genetics of Educational Attainment and the 

Persistence of Privilege at the Turn of the 21st Century." Social Forces  94(2):535-561. 

 

Nielsen, François. 2008. "The Nature of Social Reproduction: Two Paradigms of Social 

Mobility." Pp. 1-35 in Sociologica. 

 

Okbay, Aysu, Jonathan P. Beauchamp, Mark Alan Fontana, James J. Lee, Tune H. Pers, et al. 

2016. "Genome-Wide Association Study Identifies 74 Loci Associated with Educational 

Attainment." Nature advance online publication. 

 

Purcell, Shaun M., Naomi R. Wray, Jennifer L. Stone, Peter M. Visscher, Michael C. 

O'Donovan, et al. 2009. "Common Polygenic Variation Contributes to Risk of 

Schizophrenia and Bipolar Disorder." Nature 460(7256):748-752. 

 

Reardon, Sean F. 2011. "The Widening Achievement Gap between the Rich and the Poor: New 

Evidence and Possible Explanations." Pp. 91-115 in In Whither Opportunity?, edited by 

G. J. Duncan and R. J. Murnane. New York: Russell Sage Foundation. 

 

Rietveld, Cornelius A., Arpana Agrawal, Johan G. Eriksson, Eva Albrecht, Behrooz Z. Alizadeh, 

et al. 2013a. "Gwas of 126,559 Individuals Identifies Genetic Variants Associated with 

Educational Attainment." Science 340(6139):1467-1471. 

 

Rietveld, Cornelius A., Robert F. Krueger, Meike Bartels, David A. Collier, Daniel J. Benjamin, 

et al. 2013b. "Molecular Genetics and Subjective Well-Being." Proceedings of the 

National Academy of Sciences 110(24):9692-9697. 

 

Risch, Neil, Richard Herrell, Thomas Lehner, Kung-Yee Liang, Lindon Eaves, et al. 2009. 

"Interaction between the Serotonin Transporter Gene (5-Httlpr), Stressful Life Events, 

and Risk of Depression: A Meta-Analysis." The Journal of the American Medical 

Association 301(23):2462-2471. 

 

Sakamoto, Arthur, Kimberly Goyette, and Chang Hwan Kim. 2009. "Socioeconomic 

Attainments of Asian Americans." Annual Review of Sociology 35:255-176. 



  

 
103 

Scarr, Sandra and Kathleen McCartney. 1983. "How People Make Their Own Environments: A 

Theory of Genotype → Environment Effects." Child Development 54(2):424-435. 

 

Simons, Ronald L., Man Kit Lei, Steven R. H. Beach, Gene H. Brody, Robert A. Philibert, et al. 

2011. "Social Environment, Genes, and Aggression: Evidence Supporting the Differential 

Susceptibility Perspective." American Sociological Review 76(6):883-912. 

 

Simonson, Matthew A., Amanda G. Wills, Matthew C. Keller, and Matthew B. McQueen. 2011. 

"Recent Methods for Polygenic Analysis of Genome-Wide Data Implicate an Important 

Effect of Common Variants on Cardiovascular Disease Risk." BMC Medical Genetics 

12(1):146-146. 

 

Speliotes, Elizabeth K., Reedik Mägi, Thomas A. Buchanan, Joshua C. Randall, Sailaja 

Vedantam, et al. 2010. "Association Analyses of 249,796 Individuals Reveal 18 New 

Loci Associated with Body Mass Index." Nature Genetics 42(11):937-48. 

 

Thorleifsson, G., C. N. Palmer, T. Johnson, J. Luan, J. H. Park, et al. 2010. "Hundreds of 

Variants Clustered in Genomic Loci and Biological Pathways Affect Human Height." 

Nature 467(7317):832-838. 

 

Turkheimer, Eric, Andreana Haley, Mary Waldron, Brian D'Onofrio, and Irving I. Gottesman. 

2003. "Socioeconomic Status Modifies Heritability of Iq in Young Children." 

Psychological Science 14(6):623-628. 

 

Vinkhuyzen, A. A. E., M. Luciano, A. Payton, M. Horan, W. Ollier, et al. 2012. "Common Snps 

Explain Some of the Variation in the Personality Dimensions of Neuroticism and 

Extraversion." Translational psychiatry 2(4):e102. 

 

Wagner, Brandon, Jiang Li, Hexuan Liu, and Guang Guo. 2013. "Gene-Environment 

Correlation: Difficulties and a Natural Experiment-Based Strategy." American Journal of 

Public Health 103 Suppl 1(Journal Article):S167-73. 

 

Warren, John Robert and Robert M. Hauser. 1997. "Social Stratification across Three 

Generations: New Evidence from the Wisconsin Longitudinal Study." American 

Sociological Review 62(4):561-572. 

 

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers, et al. 2014. "Defining the Role of 

Common Variation in the Genomic and Biological Architecture of Adult Human Height." 

Nature Genetics 46(11):1173-1186. 

 

Yang, J., B Benyamin, B. P.  McEvoy, S.   Gordon, A. K.  Henders, et al. 2010. "Common Snps 

Explain a Large Proportion of the Heritability for Human Height." Nature Genetics 

42(7):565-569. 

 



  

 
104 

Yang, Jian, M. Geoffrey Hayes, William G. Hill, Maria Teresa Landi, Alvaro Alonso, et al. 

2011. "Genome Partitioning of Genetic Variation for Complex Traits Using Common 

Snps." Nature Genetics 43(6):519-525. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 
105 

CHAPTER 5: CONCLUDING REMARKS 

This dissertation demonstrates how social theories and genomics can be integrated to 

improve our understanding of sociological issues such as delinquency and violence, and social 

stratification and mobility. Chapter 1 overviews the opportunities provided by the recently 

available genomic data to social science researchers. It highlights different types of large-scale 

genomic data and recent advances in statistical methods and computational infrastructure used to 

address challenges in managing and analyzing such data. 

Chapters 2, 3, and 4 investigate three substantive sociological issues combining genomic 

data and conventional social science measures. Chapter 2 focuses on the interaction of social 

environment and genetic factors on delinquency and violence. Specifically, it examines how 

genetic influences on delinquent and violent behaviors differ between individuals who live under 

adverse social environments (e.g., low attachment to family and school, disadvantaged 

neighborhoods, etc.) and those who experience favorable social environments (e.g., high 

attachment to family and school, advantaged neighborhoods, etc.) using data from Add Health. 

Chapter 3 assesses genetic and environmental contributions to socioeconomic stability and 

mobility over the life course. It examines genetic and environmental influences on 

socioeconomic measures at different life stages (e.g., educational attainment, occupational status, 

wealth, etc.). Chapter 4 investigates the extent to which genetic and environmental factors 

contribute to stability and changes in educational attainment across generations. These two 

chapters take advantage of the longitudinal design of HRS and genome-wide data in HRS. 
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The increasing availability of genomic data and methods has opened up unprecedented 

opportunities for social scientists. Almost all human traits of interest to social scientists are 

complex traits influenced by both environmental and genetic factors. Various types of genomic 

data together with traditional social science measures will enable them to develop and test new 

research hypotheses and enrich existing theories.  

Social scientists not only take advantage of advances in genomics, but also can make 

unique contributions to understanding complicated relationships among genes, phenotypes, and 

environmental influences. For complex traits such as delinquency and educational attainment, 

effects of individual genetic variants are often small. To detect small genetic effects, data from 

different sources are combined to achieve sufficient statistical power. As a consequence, the 

large samples used in current GWAS may not represent a population of interest nor are there 

consistent phenotypic or environmental measures. Moreover, gene-environment interaction 

research has typically focused on proximate environmental exposures of risks—such as 

temperature, radiation, virus, and injury— that interact with genetic factors to influence health or 

behavioral outcomes. There is a recent awareness of considering group-level social and cultural 

processes in the investigation of gene-environment interactions. Social scientists can help design 

nationally representative samples with more consistent measures of phenotypes and 

environmental exposures of interest, and develop and test gene-environment interaction 

hypotheses informed by the social sciences.  

In summary, the human genome is a unique and valuable source millions of years in the 

making. Genomic data are becoming available at a phenomenal rate. It is time for social 

scientists to collaborate with biologists and geneticists to bring these data together with 

conventional social science data to advance scientific knowledge and innovation. 
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Table 2.1 Variable Description 
Variable Name Description Mean or 

Proportion 

SD 

Delinquency and Violence 

    Wave I Serious Delinquency Score, Wave I   .155 .288 

    Wave III Serious Delinquency Score, Wave III   .066 .167 

    Wave I Violence Score, Wave I   .155 .311 

    Wave III Violence Score, Wave III   .058 .169 

Demographics 

    Age Respondent’s age at the time of Wave I 16.152 1.738 

    Female Respondent’s gender     .505  

Parenting Factors 

High parental attachment High emotional attachment to resident parents at Wave I     .524  

     Low parental attachment Low emotional attachment to resident parents at Wave I     .476  

Strict parental supervision Strict parental supervision at Wave I     .501  

Weak parental supervision Weak parental supervision at Wave I     .499  

School Factors 

High school attachment High emotional attachment to school at Wave I     .586  

Low school attachment Low emotional attachment to school at Wave I     .414  

Strict school discipline Strict school discipline at Wave I     .518  

Low school discipline Weak school discipline at Wave I     .482  

Neighborhood 

High education Respondent lives in higher education blocks at Wave I     .500  

Low education Respondent lives in lower education blocks at Wave I     .500  

High income Respondent lives in higher income blocks at Wave I     .500  

Low income Respondent lives in lower income blocks at Wave I     .500  

Low unemployment  rate  Respondent lives in blocks with lower unemployment rate at Wave I     .500  

High unemployment Rate Respondent lives in blocks with higher unemployment rate at Wave I     .500  

Low single/no parent household rate Respondent lives in blocks with lower single/no-parent household rate at Wave I     .500  

High single/no parent household rate Respondent lives in blocks with higher single/no-parent household rate at Wave I     .500  
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Table 2.2 Genomic Contribution to Serious Delinquency and Violence and Standard Errors 
 Serious Delinquency 

(Wave III) 

Violence 

(Wave III) 

Genomic contribution 

(Proportion of total variance explained by SNPs) 

         .046(.094)   .000(.094) 

    Intercept          .704(.195)***   .412(.190)*** 

    Female        -.067(.005)*** -.065(.005)*** 

    Age        -.069(.024)**  -.031(.024) 

    Age2         .002(.001)*   .001(.001) 

    Prior delinquency or violence (Wave I)         .148(.009)***   .128(.009)*** 

    N          4075 4088 
Note: The genomic contribution is estimated by mixed linear models. Models are fit using the genome-wide complex trait analysis (GCTA) software package 

developed by Yang et al. (2010). The models also include the first 10 principle components as covariates to account for population stratification. 

*p≤ .05; ** p≤ .01; *** p≤ .001 (two-tailed tests) 
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Table 2.3 Genomic Contribution to Serious Delinquency and Violence under High-Social-Control and Low-Social-Control 

Conditions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The genomic contribution is estimated by mixed linear models controlling for gender, age, age2, Wave I delinquency or violence, and first 10 PCs. 

 

 Serious Delinquency (Wave III)  Violence (Wave III) 

High-Social-Control 

Conditions 

 Low-Social-Control 

Conditions 

 High-Social-Control 

Conditions 

 Low-Social-Control 

Conditions 

Collective 

Genetic 

Contribution 

(1) 

Number  

of  

Persons 

(2) 

 Collective 

Genetic 

Contribution 

(3) 

Number  

of    

Persons 

(4) 

 Collective 

Genetic 

Contribution 

(5) 

Number  

of    

Persons 

(6) 

 Collective 

Genetic 

Contribution 

(7) 

Number  

of    

Persons 

(8) 

Parenting Factors         

    Parental attachment .000    1955         .217 2054  .061   1962  .112 2060 

    Parental supervision .000   1920         .177 2088  .000   1926  .029 2095 

School Factors         

    School attachment  .000 1325         .258 1703  .195 1327  .336 1710 

    School discipline .000  1785         .474     1217  .086   1791  .668    1220 

Neighborhood            

    High education .000   2131               .036 1900  .077   2138  .000 1906 

    High income .000   2253         .049 1773  .000   2260  .000 1779 

    Low unemployment  .000   2496         .340     1495  .000   2503  .110 1501 

Low single pare. rate .000   2696         .229 1276  .000   2705  .058 1280 
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Table 2.4 Gene-Environment Correlation 
 Serious 

Delinquency 

(Wave III) 

Violence 

 

(Wave III) 

Parenting Factors   

    Parental attachment -.374(.365) -.240(.497) 

    Parental supervision  .451(.424)* 1.000(1.430)** 

School Factors   

    School attachment -.110(.109) -.377(.432)** 

School discipline -.179(.157) -.022(.242) 

Neighborhood   

    High education  .211(.114)**  .089(.177) 

    High income  .044(.092) -.172(.304) 

    Low unemployment   .122(.115) -.105(.253) 

    Low single pare. rate -.095(.097) -.361(.566)* 

*p≤ .05; ** p≤ .01; *** p≤ .001 (Likelihood Ratio Test)  
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Table 3.1 Summary Statistics of Key Variables in the Genetic Sample  

Variable Mean (SD) Median 

Education (years of school)   13.16 (2.57)   12.00 

Occupation (occupational prestige score)   45.36 (12.86)   37.00 

Household Wealth (thousand dollars) 542.69 (1872.47) 252.00 
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Table 3.2 Bivariate Correlation between Standardized Key Variables (Standard Error)  

 

 Male Female Overall 

Education and Occupation .474(.013) .488(.013) .483(.008) 

Education and Wealth .305(.013) .295(.013) .301(.010) 

Occupation and Wealth .259(.015) .190(.015) .224(.013) 

Note: Three life-course socioeconomic achievement measures are recoded into relative indicators 

based on the basis of the 9 deciles of each measure.  

  

 



  

  

1
1
3
 

Table 3.3 Genetic and Environmental Contributions to Life-course Socioeconomic Achievement Outcomes 

 Males Females Males and Females 

 Education Occupation Wealth Education Occupation Wealth Education Occupation Wealth 

Genetic Variance 2.732(1.305) 1.832(1.046) 1.458(1.154) 3.694(1.013) 1.043(.941) 2.608(.887) 3.763(.598) 2.221(.535) 2.553(.525) 

Residual Variance  5.851(.911) 4.241(.732) 5.695(.812) 5.406(.701) 5.099(.663) 5.312(.618) 5.267(.411) 4.147(.372) 5.181(.366) 

Phenotypic variance    8.582(.452) 6.073(.358) 7.153(.095) 9.100(.367) 6.141(.321) 7.921(.319) 9.030(.237) 6.368(.201) 7.734(.205) 

SNP Heritability .318(.137)   .302(.156) .204(.151) .406(.097) .170(.145) .329(.100) .417(.057) .349(.061) .330(.061) 

logL -5317.078 -4047.185 -5082.129 -7576.101 -5204.096 -7335.415 -12934.148 -9299.131 -12464.753 

logL0 -5319.376 -4048.845 -5082.870 -7583.060 -5204.684 -7340.098 -12956.196 -9308.098 -12477.769 

LRT 4.598 3.320 1.481 13.918 1.177 9.366 44.097 17.935 26.033 

df 1 1 1 1 1 1 1 1 1 

p-value 0.01601 0.03422 .1118 9.549e-05 .139 .001 1.563e-11 1.143e-05 1.678e-07 

N 3519 3022 3531 4957 3800 4981 8476 6822 8512 

Note: All models control for the largest 10 principal components for adjusting population stratification.  
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Table 3.4 Genetic Correlations among Life-course Socioeconomic Achievement Measures  
 Males Females Males and Females 

 T1: Education 

T2: Occupation 

(1) 

T1: Education 

T2: Wealth 

(2) 

T1:Occupation 

T2: Wealth 

(3) 

T1: Education 

T2: Occupation 

(4) 

T1: Education 

T2: Wealth 

(5) 

T1:Occupation 

T2: Wealth 

(6) 

T1: Education 

T2: Occupation 

(4) 

T1: Education 

T2: Wealth 

(5) 

T1:Occupation 

T2: Wealth 

(6) 

Genetic variance          

  T1   2.717(1.305)   2.910(1.295)   1.677(1.033)   3.723(1.013)   3.708(1.011)   1.192(.937)   3.764(.598)   3.811(.596)   2.235(.530) 

  T2   2.005(1.013)   1.590(1.145)   1.454(1.154)   1.198(.889)   2.675(.882)   2.601(.887)   2.211(.509)   2.581(.520)   2.578(.525) 

  Cov(T1, T2)   1.190(.903)   2.151(.903)     .070(.798)   1.717(.741)   2.829(.700)     .920(.659)   1.918(.429)   2.599(.413)   1.029(.382) 

Residual variance          

  T1   5.861(.911)   5.716(.903)   4.355(.724)   5.387(.700)   5.396(.699)   5.001(.659)   5.266(.411)   5.234(.410)   4.144(.368) 

  T2   4.111(.708)   5.614(.804)   5.697(.812)   4.965(.626)   5.267(.614)   5.317(.618)   4.137(.354)   5.161(.362)   5.164(.365) 

  Cov(T1, T2)   2.230(.631)     .580(.630)   1.490(.562)   2.109(.517)     .158(.483)     .619(.461)   1.859(.296)     .317(.284)     .669(.266) 

Phenotypic 

variance 

         

  T1   8.579(.451)   8.627(.450)   6.032(.353)   9.109(.367)   9.104(.367)   6.194(.321)   9.031(.237)   9.045(.237)   6.380(.200) 

  T2   6.117(.349)   7.204(.391)   7.152(.392)   6.163(.307)   7.942(.318)   7.919(.319)   6.348(.194)   7.742(.203)   7.741(.205) 

SNP Heritability          

  T1     .316(.137)     .337(.134)     .278(.156)     .409(.097)     .407(.097)     .192(.142)     .417(.057)     .421(.057)     .350(.074) 

  T2     .328(.149)     .221(.148)     .203(.151)     .194(.136)     .337(.099)     .329(.100)     .348(.071)     .333(.060)     .333(.060) 

rG Test          

  rG     .510(.267)   1.000(.389)     .045(.501)     .813(.265)    .898(.197)     .522(.370)     .665(.100)     .829(.112)     .429(.144) 

  df   1   1   1   1   1   1   1   1   1 

  p-value (rG=0) 0.09334 0.008778 .4661 0.01073 2.076e-05 0.08372 2.406e-06 5.057e-11 .003469 

  p-value (rG=1) 0.01997 0.5 .01032 0.2856 0.3086 .1867 0.001 0.071 .0003 

  N 3271 3525 3277 4379 4969 4391 7649 8494 7667 
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Table 3.5 Genetic Contribute to Socioeconomic Mobility  

 Males Females Males and Females 

 Residuals 

(Occupation~

Education) 

Residuals 

(Wealth~ 

Education + 

Occupation) 

Residuals 

(Occupation~

Education) 

Residuals 

(Wealth~ 

Education + 

Occupation) 

Residuals 

(Occupation~

Education) 

Residuals 

(Wealth~ 

Education + 

Occupation) 

Genetic Variance 1.479(.789) 1.076(1.135)   .400(.703)   .144(.984) 1.254(.404) 1.503(.561) 

Residual 

Variance 

3.270(.552) 5.152(.800) 4.153(.498) 6.289(.701) 3.509(.284) 5.136(.396) 

Phenotypic 

variance   

4.749(.272) 6.228(.381) 4.554(.238) 6.433(.333) 4.763(.150) 6.639(.208) 

SNP Heritability   .311(.150) .173(.173) .088(.150) .224(.152)   .263(.078) .226(.078) 

logL -3667.223 -4146.509 -4683.321 -5378.302 -8399.241 -9574.165 

logL0 -3669.312 -4146.947 -4683.478 -5378.313 -8404.333 -9578.048 

LRT 4.791 0.875  .313 0.021 10.184 7.766 

df 1 1 1 1 1 1 

p-value 0.02046 0.1748 0.288 0.4418 0.0007084 0.002662 

N 3015 3015 3794 3794 6809 6809 
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Table 3.6 Associations between Intelligence-related Polygenic Scores and Socioeconomic Achievement Outcomes 

 Education Occupation Wealth 

Males .171(.045)*** .093(.041)* .123(.042)** 

Females .179(.039)*** .106(.038)** .067(.037) 

Males and Females .176(.030)*** .095(.028)*** .089(.028)** 
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Table 4.1 Summary Statistics of Key Variables in the Genetic Sample  

Variable Mean(SD) Median 

Generation 1’s (Grandfather’s) Education (years of school)   10.00(4.03)   11.52 

Generation 1’s (Grandmother’s) Education (years of school)   10.38(3.71)   11.52 

Generation 2’s  (Self) Education (years of school)   13.16 (2.57)   12.00 

Generation 3’s (Children’s) Education (years of school)   14.06(2.19)   14.00 

Generation 2’s Polygenic Scores on Education   58.54 (14.88)   58.87 

Note: Education is standardized by birth cohort and gender. 
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Table 4.2 Bivariate Correlation between Standardized Key Variables (95% Confidence Interval)  

 (1) (2) (3) (4) (5) 
Generation 1 Grandfather’ Education (1) 1     

Generation 1 Grandmother’ Education (2) .646(.633, .658) 1    

Generation 2 Self Education(3) .373(.354, .391) .357(.339, .376) 1   

Generation 3 Children’ Education(4) .164(.140, .188) .165(.141, .188) .390(.370, .410) 1  

Generation 2’s Polygenic Scores (5) .142(.121, .163) .120(.099, .140) .256(.237,.275) .192(.169,.214) 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

1
1
9
 

Table 4.3 Bivariate GREML Results for Educational Attainment 
 T1:Generation 1 

Father 

T2:Generation 2 

Self 

T1:Generation 1 

Mother 

T2:Generation 2 

Self 

T1:Generation 1 

Grandfather 

T2:Generation 3 

Grandchildren 

T1:Generation 1 

Grandmother 

T2:Generation 3 

Grandchildren 

T1:Generation 2 

Self (Father)  

T2:Generation 3 

Children 

T1:Generation 2 

Self (Mother) 

T2:Generation 3 

Children 

Genetic variance       

  T1     .388(.061)     .314(.049)     .373(.062)     .304(.049)     .300(.155)     .277(.083) 

  T2     .258(.043)     .260(.043)     .261(.068)     .272(.068)     .218(.187)     .230(.102) 

  Cov(T1, T2)     .259(.039)     .184(.035)     .145(.047)     .113(.042)     .240(.130)     .248(.071) 

Residual variance       

  T1     .493(.042)     .429(.035)     .497(.042)     .432(.034)     .404(.107)     .337(.057) 

  T2     .389(.030)     .388(.030)     .524(.048)     .516(.048)     .608(.131)     .516(.071) 

  Cov(T1, T2)     .074(.037)     .092(.024)     .018(.032)     .030(.029)     .084(.090)     .057(.049) 

Phenotypic variance       

  T1     .880(.024)     .743(.020)     .870(.024)     .736(.020)     .704(.052)     .614(.029) 

  T2     .648(.017)     .648(.017)     .785(.026)     .788(.026)     .825(.062)     .745(.036) 

SNP Heritability       

  T1     .440(.059)     .423(.056)     .429(.061)     .413(.058)     .426(.190)     .451(.116) 

  T2     .399(.057)     .402(.057)     .332(.078)     .345(.077)     .264(.208)     .308(.124) 

rG Test       

  rG     .817(.129)     .645(.089)     .464(.123)     .393(.134)     .940(.389)     .984(.217) 

  df   1   1   1   1   1   1 

  p-value 6.138e-13 5.255e-09     .0006     0.0022     .032     0.0001798 

  N 7958 8093 6895 7031 2268 3993 

Note: All models control for the largest 10 principal components for adjusting population stratification.  
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Table 4.4 Genetic Mediation of the Association in Educational Attainment between (G1) Parents and (G2) Selves  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Males and Females 

G2 PS .221(.009)***  .173(.008)***  .182(.008)***  .167(.008)*** 

G1 Father Edu   .324(.009)*** .290(.008)***   .201(.011)*** .182(.011)*** 

G1 Mother Edu    .326(.009)*** .302(.009)*** .182(.012)*** .174(.012)*** 

Rsq .066 .139 .180 .128 .173 .150 .191 

N 9301 8304 8304 8603 8603 8094 8094 

Males 

  Father and Son Mother and Son Father, Mother, and Son 

G2 PS .211(.014)***  .173(.013)***  .184(.013)***  .170(.013)*** 

G1 Father Edu  .309(.013)*** .289(.013)***   .212(.017)*** .197(.017)*** 

G1 Mother Edu    .296(.015)*** .279(.014)*** .147(.019)*** .141(.018)*** 

Rsq .059 .131 .174 .100 .173 .138 .191 

N 3909 3509 3509 3583 3583 3404 3404 

Females 

  Father and Daughter Mother and Daughter Father, Mother and Daughter 

G2 PS .228(.011)***  .172(.011)***  .178(.011)***  .163(.011)*** 

G1 Father Edu  .318(.011)*** .290(.011)***   .191(.015)*** .170(.015)*** 

G1 Mother Edu    .344(.012)*** .317(.011)*** .207(.016)*** .197(.015)*** 

Rsq .071 .144 .184 .148 .191 .174 .210 

N 5392 4795 4795 5020 5020 4690 4690 
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Table 4.5 Genetic Mediation of the Association in Educational Attainment between (G1) Grandparents and (G3) Children 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
  Father’s Father and Child Father’s Mother and Child Father’s Parents and Child 

G2 PS .195(.019)***  .178(.020)***  .177(.020)***  .175(.020)*** 

G1 Grandfather Edu  .136(.020)*** .117(.020)***   .088(.027)** .074(.027)** 

G1 Grandmother Edu    .137(.022)*** .122(.021)*** .075(.029)** .069(.028)* 

Rsq .039 .018 .051 .016 .049 .020 .051 

N 2563 2334 2334 2370 2370 2275 2275 

 

  Mother’s Father  and Child Mother’s Mother and Child Mother’s Parents and Child 

G2 PS .176(.014)***  .141(.015)***  .152(.015)***  .136(.015)*** 

G1 Grandfather Edu  .169(.015)*** .147(.015)***   .109(.020)*** .093(.020)*** 

G1 Grandmother Edu    .183(.015)*** .161(.015)*** .102(.021)*** .095(.021)*** 

Rsq .035 .033 .053 .034 .059 .040 .060 

N 4386 3888 3888 4078 4078 3809 3809 
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Table 4.6 Social and Biological Pathways of the Influence of (G2) Parents’ Genes on (G3) Children’s Educational Attainment 

 Model 1 Model 2  Model 3 Model 4 Model 5  Model 6 Model 7 

Males and Females        

G2 PS .184(.011)*** .195(.019)***  .109(.018)*** .176(.014)***  .084(.014)*** 

G2 Father Edu   .422(.020)*** .392(.021)***    

G2 Mother Edu      .439(.015)*** .413(.016)*** 

Rsq .037 .039 .147 .180 .035 .156 .163 

N 6949 2563 2563 2563 4386 4386 4386 

Males 

  Father and Son Mother and Son 

G2 PS .194(.016)*** .207(.026)***  .121(.013)*** .187(.020)***  .098(.018)*** 

G2 Father Edu   .433(.028)*** .399(.013)***    

G2 Mother Edu      .451(.021)*** .424(.022)*** 

Rsq .041 .045 .131 .166 .038 .168 .177 

N 3572 1314 1314 1314 2258 2258 2258 

Females 

  Father and Daughter Mother and Daughter 

G2 PS .171(.016)*** .183(.028)***  .096(.027)*** .164(.020)***  .067(.019)*** 

G2 Father Edu   .413(.029)*** .387(.029)***    

G2 Mother Edu      .426(.023)*** .402(.024)*** 

Rsq .032 .033 .142 .151 .031 .143 .148 

N 3377 1249 1249 1249 2128 2128 2128 
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Table 4.7 Genetic and Environmental Contributions to Intergenerational Mobility in Educational Attainment  

 Generation 2 Generation 2 

Adjusting for G1’s 

Education (both 

father and mother) 

Generation 3 Generation 3 

Adjusting for G2’s 

Education 

Genetic Variance .259(.043) .110(.037) .264(.069) .097(.057) 

Residual Variance .389(.030) .372(.026)  .521(.048)  .536(.040) 

Phenotypic variance   .648(.017) .482(.014)  .785(.026)  .633(.021) 

SNP Heritability .400(.058) .228(.071) .336(.078) .153(.086) 

logL -1792.371 -712.734 -2021.843 -1538.212 

logL0 -1812.427 -717.751 -2030.317 -1539.835 

LRT 40.112 10.034 156.946 3.246 

df 1 1 1 1 

p-value 1.199e-10 0.0007686 1.923e-05 0.0358 

N 8393 7380 6311 6310 

Note: All models control for the largest 10 principal components for adjusting population stratification.  
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Figure 3.1 Social and Genetic Contributions to Lifetime Socioeconomic Achievement 

 

 

Common Genetic 

Influences 

Education 

 

Occupation 

 

Wealth 

 

Social environment in 

early life 

Uncommon 

Genetic 

Influences  

Uncommon 

Genetic 

Influences  

Uncommon 

Genetic 

Influences  

Social environment in 

middle adulthood 

Social environment in 

late adulthood 



  

  

1
2
5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Multigenerational Transmission of Educational Attainment 
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