
REPLICATION AND PLACEMENT FOR SECURITY IN DISTRIBUTED SYST EMS

Peng Li

A dissertation submitted to the faculty of the University ofNorth Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2014

Approved by:

James H. Anderson

Peter M. Chen

Debin Gao

Kevin Jeffay

Michael K. Reiter, Chair

©2014
Peng Li

ALL RIGHTS RESERVED

ii

ABSTRACT

Peng Li: Replication and placement for security in distributed systems
(Under the direction of Michael K. Reiter)

In this thesis we show how the security of replicated objectsin distributed systems, in terms of

either the objects’ confidentiality or availability, can beimproved through the placement of objects’

replicas so as to carefully manage the nodes on which objects’ replicas overlap.

In the first part of this thesis we presentStopWatch, a system that defends against timing-

based side-channel attacks that arise from coresidency of victims and attackers in infrastructure-

as-a-service clouds and threaten confidentiality of victims’ data.StopWatchtriplicates each cloud-

resident guest virtual machine (VM) and places replicas so that the three replicas of a guest VM

are coresident with nonoverlapping sets of (replicas of) other VMs. StopWatchuses the timing of

I/O events at a VM’s replicas collectively to determine the timings observed by each one or by an

external observer, so that observable timing behaviors aresimilarly likely in the absence of any other

individual, coresident VM. We detail the design and implementation ofStopWatchin Xen, evaluate

the factors that influence its performance, demonstrate itsadvantages relative to alternative defenses

against timing side-channels with commodity hardware, andaddress the problem of placing VM

replicas in a cloud under the constraints ofStopWatchso as to still enable adequate cloud utilization.

We then explore the problem of placing object replicas on nodes in a distributed system to maxi-

mize the number of objects that remain available when node failures occur. In our model, failing (the

nodes hosting) a given threshold of replicas is sufficient todisable each object, and the adversary

selects which nodes to fail to minimize the number of objectsthat remain available. We specifi-

cally explore placement strategies based on combinatorialstructures calledt-packings; provide a

lower bound for the object availability they offer; show that these placements offer availability that

is c-competitive with optimal; and propose an efficient algorithm for computing combinations of

t-packings that maximize their availability lower bound. Wecompare the availability offered by our

approach to that of random replica placement, owing to the popularity of the latter approach in previ-

iii

ous work. After quantifying the availability offered by random replica placement in our model, we

show that our combinatorial strategy yields placements with better availability than random replica

placement for many realistic parameter values. Finally, weprovide parameter selection strategies to

concretely instantiate our schemes for different system sizes.

iv

To my family in China, my wife Qing, and my son Lucas.

v

ACKNOWLEDGEMENTS

The completion of this dissertation would not have been possible without the guidance of my

advisors, Prof. Mike Reiter and Prof. Debin Gao, whom I feel extremely fortunate to have met and

worked with and owe all my gratitude to. Throughout the last seven years, weekly meetings with

them have shaped the pace of my life and marked the path of my growth both as a researcher and as

a person. One afternoon back in 2007, a phone call from Debin brought me to Singapore, and the

days I spent there working with him were beyond pleasant and memorable. Through Debin I met

Mike, simply the best mind I have had the fortune to work with,not only because of his masterful

understanding and insight of the field, prompt and wise decisions he has made on all matters, always-

correct direction and advise, but also because of his willingness to share frustrations when things

turn out in an unexpected way and his embodiment of somethingbeyond an academic advisor. His

high expectation kept me awake solving problems in many stressful nights, but it also lifted me up

to stand on a higher ground to watch around. For these many years, “Mike and Debin” have been

the most frequent openning of the emails I sent and the most reliable “oracles” for me to count on.

I would also like to thank Dr. James Anderson, Dr. Peter Chen,and Dr. Kevin Jaffey for

serving on my dissertation committee. I am very grateful forall of them to take time from their busy

schedules to hold meetings with me and providing invaluablefeedbacks.

With all my friends in the security lab and in Chapel Hill, I donot feel I am alone. I appreciate

gratefully for their help in my academic studies and in my life.

One of the luckiest things that have ever happened to me was meeting with my wife Qing, who

moved to the States with all trust in me and supports me no matter what happens. She was born

with the abilities of viewing things positively, of being kind to and thinking good of other people,

and of discovering amazement in everyday life. I am the happiest man having her aside.

Studying and living abroad has been not easy, luckily I have my parents, my brother, and all my

family support me unconditionally. All I did and will do is for them.

vi

PREFACE

Object replication, and careful placement of those replicas so as to manage the overlap between

any two objects’ replicas, can be used to support security goals in distributed systems. This the-

sis demonstrates two specific uses of replication and placement for this purpose, namely to limit

side-channel information leakage between virtual machines in compute clouds and to improve the

availability of objects despite targeted failures of computers that host their replicas.

vii

TABLE OF CONTENTS

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

1 INTRODUCTION .. 1

2 MITIGATING ACCESS-DRIVEN TIMING CHANNELS IN CLOUDS US-
ING STOPWATCH. 4

2.1 Related Work .. 7

2.1.1 Timing Channel Defenses .. 7

2.1.2 Replication .. 8

2.2 Design. .. 9

2.2.1 Threat Model .. 10

2.2.2 Defense Strategy .. 10

2.2.3 Justification for the Median .. 11

2.3 RT clocks .. 14

2.3.1 Strategy .. 14

2.3.2 Implementation in Xen .. 15

2.3.2.1 Timer interrupts 15

2.3.2.2 rdtsc calls and CMOS RTC values . 16

2.3.2.3 Reading counters 17

2.4 IO clocks .. 17

2.4.1 Strategy .. 17

2.4.1.1 Disk and DMA interrupts 18

2.4.1.2 Network interrupts 18

viii

2.4.2 Implementation in Xen .. 20

2.4.2.1 Network card emulation. 20

2.4.2.2 Disk and DMA emulation 22

2.5 Collaborative Attacks .. 22

2.5.1 External Collaborators .. 22

2.5.2 Collaborating Victim-VM Clients 23

2.5.3 Collaborating Attacker VMs .. 24

2.6 Performance Evaluation .. 25

2.6.1 Selected Implementation Details 25

2.6.2 Experimental setup .. 26

2.6.3 Network Services .. 27

2.6.3.1 File downloads 27

2.6.3.2 NFS 29

2.6.4 Computations .. 30

2.7 Comparison to Alternatives .. 31

2.7.1 Comparison to Uniformly Random Noise 32

2.7.2 Comparison to Time Slicing. .. 33

2.7.2.1 Design 34

2.7.2.2 Evaluation. .. 36

2.7.3 Discussion .. 37

2.8 Replica Placement in the Cloud .. 38

2.9 Conclusion .. 45

3 REPLICA PLACEMENT FOR AVAILABILITY IN THE WORST CASE. 47

3.1 Related Work .. 49

3.2 Overlap-Based Placement Strategies 50

3.2.1 TheSimpleOverlap(x, λ) Placement Strategy . 51

3.2.2 TheComboOverlap(λ0, . . . , λs−1) Placement Strategy . 54

ix

3.2.2.1 Computing aComboOverlap(λ0, . . . , λs−1) to Maxi-
mize lbAvail co(λ0, . . . , λs−1) . 56

3.2.2.2 Sensitivity to Choice ofk . 57

3.2.3 Parameter Selection .. 58

3.3 Comparison to Random Replica Placement 61

3.3.1 The Worst-Case Availability ofRandom . 61

3.3.2 Comparison Results .. 64

3.3.3 Breakdown ofComboOverlap Placements . 68

3.3.4 Thes = 1 Case. 68

3.4 Conclusion .. 74

4 CONCLUSION .. 75

BIBLIOGRAPHY .. 77

x

LIST OF TABLES

2.1 Length of time slice (sliceLen) and of cleansing (cleanseLen) . 34

2.2 Configurations .. 36

xi

LIST OF FIGURES

2.1 Justification for median; baseline distributionExp(λ), λ = 1, and victim
distributionExp(λ′) 12

2.2 Delivering a packet to guest VM replicas. 19

2.3 Emulation of network I/O device inStopWatch. 21

2.4 Virtual inter-packet delivery times to attacker VM replicas with coresident
victim (“two baselines, one victim”) and in a run where no replica was
coresident with a victim (“three baselines”) 21

2.5 HTTP and UDP file-retrieval latency. 28

2.6 Tests of NFS server usingnhfsstone . 29

2.7 Tests of PARSEC applications .. 31

2.8 Expected delay induced byStopWatchvs. by uniform noise, as a func-
tion of confidence with which attacker distinguishes the twodistributions
(coresident victim or not) after the same number of observations; baseline
distributionExp(λ), λ = 1; victim distributionExp(λ′) . 33

2.9 Time-sliced execution of three VMs 34

2.10 StopWatchvs. time slicing: comparison of slowdown and delay 37

2.11 Progress of file download via HTTP 38

3.1 Notation .. 51

3.2 Avail (π)− lbAvail so(x, λ) for n = 71, x = 1, andr = 3 . 53

3.3 lbAvail co
(λ0,...,λs−1)

lbAvail co
(λ′

0
,...,λ′

s−1
)

expressed as a percentage 57

3.4 Values ofnx used in this chapter 58

3.5 CDFs showing the fraction of system sizesn ∈ [50, 800] for which the
capacity gap (indicated on the horizontal axis, where loweris better) can
be achieved using up tom = 3 Steiner systems (µxi = 1) . 60

3.6 Re-plot of Figure 3.5 forr = 5 andx ∈ {2, 3}, but allowingµx =
lcm{µx1, . . . , µxm} ≥ 1 60

3.7 1
bprAvail rnd for b = 38400 64

xii

3.8 lbAvail co(λ0, . . . , λs−1)−prAvail rnd for an optimalComboOverlap(λ0, . . . , λs−1)
placement as a percentage of the maximum possible improvement b −
prAvail rnd 65

3.9 lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1)−prAvail rnd for bestComboOverlap(λ0, . . . , λs−1)
placement (right most column) whens > 2, as a percentage of the maxi-
mum possible improvementb− prAvail rnd, whenn = 31 . 69

3.10 lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1)−prAvail rnd for bestComboOverlap(λ0, . . . , λs−1)
placement (right most column) whens > 2, as a percentage of the maxi-
mum possible improvementb− prAvail rnd, whenn = 71 . 70

3.11 lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1)−prAvail rnd for bestComboOverlap(λ0, . . . , λs−1)
placement (right most column) whens > 2, as a percentage of the maxi-
mum possible improvementb− prAvail rnd, whenn = 257 . 71

3.12
(

1− 1
b

)k⌊ℓ⌋
for variousn andr, as a function ofk . 72

xiii

CHAPTER 1 INTRODUCTION

Traditionally, the topic of computer security has been characterized as protecting three attributes

of data (and/or computation) (e.g., [40, Chapter 1]):confidentialityor, in other words, that the

data is disclosed only to whom the data owner intends;integrity, or that the data is modified only

in intended ways and by intended parties; andavailability, so that the data is accessible when

required and with the performance expected. Security is a field that adapts to include new computer

and data misuses as they become known, and some of these misuses (e.g., combating spam email)

stretch the above characterization of computer security. Still, this characterization is adequate for

the discussions of primary interest in this thesis.

It has long been argued that the goals of confidentiality, integrity and availability are themselves

in conflict, in the sense that availability focuses on ensuring data’s accessibility, whereas confiden-

tiality and integrity seek to limit its accessibility (to unintended disclosure and update, respectively).

This tension has specifically been highlighted in the use of datareplication, since replicating data

to potentially far-flung locations might greatly enhance availability but put the data at risk of unin-

tended disclosure or modification (e.g., [83]). Conversely, keeping the data in a high-security vault

might enhance its confidentiality and integrity, but it might not be easily accessible when needed or

might be destroyed in a fire inside the vault, hurting its availibility.

There is a long history of research focused on striking a balance between availability by replica-

tion on the one hand, and confidentiality and integrity of thereplicated data/computation on the other.

Examples include the division of certificate authorities into online (highly available) and offline (and

hence more secure) components (e.g., [56]), data storage that combines redundancy for data avail-

ability with cryptographic techniques to enhance integrity and/or confidentiality (e.g., [46]), and

the entire field of Byzantine fault-tolerant computation (see, e.g., [55, 73, 24, 18, 45] and citations

therein) to balance integrity and availability.

1

Despite this attention, we show in this thesis that there is another facet of replication that,

to our knowledge, has not yet been exploited in the context ofsecurity but that provides a new

opportunity to explore the design space of secure systems—namely, the manner in which replicas

are placed on nodes. More specifically, in this thesis we explore two applications of the general idea

of constraining how the replicas of different data/computation objects overlap on nodes to improve

security for the objects. Specifically, this thesis leverages replica placement in two ways:

• In Chapter 2, we consider the problem of protecting virtualmachines (VMs) submitted to

public compute clouds from the inference of their secrets byother VMs utilizing timing-

based side-channel attacks (e.g., [97]). We develop a strategy for the cloud to execute VMs

that involves replicating each VM and placing its replicas so that they overlap (reside on

the same host as) a limited number of replicas of any other VM.Then, by ensuring that the

timing of each event observable by any VM is an aggregation ofthe timings of this event

observable by (the machines hosting) its replicas, the limited-overlap policy ensures that any

(victim) VM can influence the timing of events observable by another (attacker) VM only

minimally. We show that timing-based side-channels available to an attacker VM are thereby

substantially mitigated. To our knowledge, this work is noteworthy in demonstrating how

replication canimproveconfidentiality of data by illustrating a scenario in which replication

supports confidentiality.

• In the context of using replication for availability, the previous work that considered replica

placement did so only in scenarios where computers fail probabilistically. Protecting these-

curity of a system entails considering intelligent attackers, however, in particular ones whose

behaviors may not be characterized by a known distribution or who can target a system adap-

tively. Therefore, in Chapter 3 we study the problem of maximizing the availability of repli-

cated objects against an attacker who can disable computersin a targeted fashion, with knowl-

edge of where object replicas are placed and limited only by abudget on the total number

of computers it can disable. We show how carefully managing overlaps in the placement

of object replicas can substantially enhance object availability against this type of targeted

attacker.

2

The above contributions do not eliminate the aforementioned tensions between replication on

the one hand and confidentiality and integrity on the other. However, they do provide new insights

into unchartered parts of the tradeoff space. Specifically,they provide new ways of using replication

and specifically replica placement to enhance a singular security goal—improved confidentiality via

timing side-channel defense in the first case above, and improved availability against targeted attacks

in the second—that might be possible to leverage in conjunction with other technologies previously

described (though we leave this exploration to future work). Together, we believe that these works

add a new dimension to previous thinking about security mechanisms for replicated systems, namely

that replica placement is a critical factor influencing the utility of replication for both conventional

purposes (availability) and unconventional ones (confidentiality) in systems subject to attack.

3

CHAPTER 2 MITIGATING ACCESS-DRIVEN TIMING CHANNELS IN CLOU DS
USING STOPWATCH

Implicit timing-based information flows threaten the use ofclouds for very sensitive compu-

tations. In an “infrastructure as a service” (IaaS) cloud, such an attack could be mounted by an

attacker submitting a virtual machine (VM) to the cloud thattimes the duration between events that

it can observe, to make inferences about avictim VM with which it is running simultaneously on

the same host but otherwise cannot access. Such “access-driven” attacks [97] were first studied

in the context of timing-basedcovert channels, in which the victim VM is infected with a Trojan

horse that intentionally signals information to the attacker VM by manipulating the timings that the

attacker VM observes. Of more significance in modern cloud environments, however, are timing-

basedside channels, which leverage the same principles to attack an uninfectedbut oblivious victim

VM (e.g., [74, 97]).

In this chapter we propose an approach to defend against these timing attacks and a system,

calledStopWatch, that implements this method for IaaS clouds. A timing side-channel can arise

whenever an attacker VM uses an event sequence it observes to“time” another, independent event

sequence that might reflect the victim VM’s behavior [88].StopWatchis thus designed to system-

atically remove independence of observable event sequences where possible, first by making all

real-time clocks accessible from a guest VM to be determinedinstead by the VM’s own execution.

To address event sequences on which it cannot intervene thisway, namely for input/output

(I/O) events,StopWatchalters I/O timings observed by the attacker VM to mimic thoseof a replica

attacker VM that isnot coresident with the victim. SinceStopWatchcannot identify attackers and

victims a priori, realizing this intuition in practice requires replicating each VM on multiple hosts

and enforcing that the replicas are coresident with nonoverlapping sets of (replicas of) other VMs

— so that, in particular, at most one attacker VM replica is coresident with a replica of the victim

VM. StopWatchthen delivers any I/O event to each attacker VM replica at a time determined by

4

“microaggregating” the delivery times planned by the VMMs hosting those replicas. Specifically,

StopWatchuses three replicas per VM that coreside with nonoverlapping sets of (replicas of) other

VMs and microaggregates the timing of I/O events by taking their median across all three replicas.

(Two replicas per VM seems not to be enough: one might be coresident with its victim, and by

symmetry, its I/O timings would necessarily influence the timings imposed on the pair.) Even if the

median timing of an I/O event is that which occurred at an attacker replica that is coresident with

a victim replica, timings both below and above the median occurred at attacker replicas that do not

coreside with the victim.

We detail the implementation ofStopWatchin Xen, specifically to intervene on all real-time

clocks and, notably, to enforce this median behavior on “clocks” available via the I/O subsystem

(e.g., network interrupts). Moreover, for a uniprocessor VM (i.e., one limited to using only a single

virtual CPU, even when running on a physical platform with multiple physical CPUs),StopWatch

enforces deterministic execution across all of the VM’s replicas, making it impossible for an attacker

VM to utilize other internally observable clocks and ensuring the same outputs from the VM replicas.

By applying the median principle to the timing of these outputs, StopWatchfurther interferes with

inferences that an observer external to the cloud could makeon the basis of output timings.

We evaluate the performance of ourStopWatchprototype for supporting web service (file

downloads) and various types of computations. Our analysisshows that the latency overhead of

StopWatchis less than2.8× even for network-intensive applications. We also identifyadaptations

to a service that can vastly increase its performance when run overStopWatch, e.g., making file

download overStopWatchcompetitive with file download over unmodified Xen. For computa-

tional benchmarks, the latency induced byStopWatchis less than2.3× and is directly correlated

with their amounts of disk I/O. Overall, the latency overhead of StopWatchis qualitatively simi-

lar to other modern systems that use VM replication for otherreasons (e.g., [25]). Moreover, we

demonstrate thatStopWatchcan substantially outperform competing defenses against timing side-

channel attacks, namely adding uniformly random noise to event timings or running VMs on shared

hardware in a time-slicing fashion.

We also study the impact ofStopWatchon cloud utilization, i.e., how many guest VMs can be

simultaneously executed on an infrastructure ofn machines, each with a capacity ofc guest VMs,

under the constraint that the three replicas for each guest VM coreside with nonoverlapping sets

5

of (replicas of) other VMs. We show that for anyc ≤ n−1
2 , Θ(cn) guest VMs (three replicas of

each) can be simultaneously executed; we also identify practical algorithms for placing replicas

to achieve this bound. We extend this result toΘ(cn
dmax

) guest VMs when guest VMs can place

different demands, up todmax , on machine resources of capacityc. These results distinguishStop-

Watch from the alternative of simply running each guest VM on a separate computer, which permits

simultaneous execution of onlyn guest VMs.

To summarize, our contributions are as follows: First, we introduce a novel approach for defend-

ing against access-driven timing side-channel attacks in “infrastructure-as-a-service” (IaaS) com-

pute clouds that leverages replication of guest VMs with theconstraint that the replicas of each

guest VM coreside with nonoverlapping sets of (replicas of)other VMs. The median timings of

I/O events across the three guest VM replicas are then imposed on these replicas to interfere with

their use of event timings to extract information from a victim VM with which one is coresident.

Second, we detail the implementation of this strategy in Xen, yielding a system calledStopWatch,

and evaluate the performance ofStopWatchon a variety of workloads. This evaluation sheds light

on the features of workloads that most impact the performance of applications running onStop-

Watch and how they can be adapted for best performance. We further extend this evaluation with

a comparison to other plausible alternatives for defendingholistically against access-driven timing

side-channel attacks, such as adding random noise to the observable timing of events or running

VMs on shared hardware in a time-sliced fashion. Third, we show how to place replicas under the

constraints ofStopWatchto utilize a cloud infrastructure more effectively than running each guest

VM in isolation.

The rest of this chapter is structured as follows. We describe related work in Section 2.1. We

provide an overview of the design ofStopWatchin Section 2.2 and detail how we address classes

of internal “clocks” used in timing attacks in Section 2.3 and Section 2.4. In Section 2.5, we then

discuss howStopWatchextends to address richer attacks involving collaboratorsexternal to the

cloud or collaborative attacker VMs. We evaluate performance of ourStopWatchprototype in

Section 2.6. We extend this evaluation to provide a comparison to other holistic timing side-channel

defenses in Section 2.7. Section 2.8 treats the replica placement problem that would be faced by

cloud operators usingStopWatch, and we conclude in Section 2.9.

6

2.1 Related Work

2.1.1 Timing Channel Defenses

Defenses against information leakage via timing channels are diverse, taking numerous differ-

ent angles on the problem. Research on type systems and security-typed languages to eliminate

timing attacks offers powerful solutions (e.g., [3, 94, 96]), but this work is not immediately appli-

cable to our goal here, namely adapting an existing virtual machine monitor (VMM) to support

practical mitigation of timing channels today. Other research has focused on the elimination of tim-

ing side channels within cryptographic computations (e.g., [82]) or as enabled by specific hardware

components (e.g., [72, 54]), but we seek an approach that is comprehensive.

Askarov et al. [4] distinguish betweeninternal timing channels that involve the implicit or

explicit measurement of time from within the system, andexternal timing channels that involve

measuring the system from the point of view of an external observer. Defenses for both internal

(e.g., [49, 3, 94, 85]) and external (e.g., [51, 39, 4, 42, 95]) timing channels have received signif-

icant attention individually, though to our knowledge,StopWatchis novel in addressing access-

driven timing channels through a combination of both techniques.StopWatchincorporates internal

defenses to interfere with an attacker’s use of real-time clocks or “clocks” that it might derive from

the I/O subsystem. In doing so,StopWatchimposes determinism on uniprocessor VMs and then

uses this feature to additionally build an effective external defense against such attacker VMs.

StopWatch’s internal and external defense strategies also differ individually from prior work,

in interfering with timing channels by allowing replicas (in the internal defenses) and external ob-

servers (in the external defenses) to observe only median I/O timings across the three replicas. The

median offers several benefits over the alternative of obfuscating event timings by adding random

noise (without replicating VMs): to implement random noise, a distribution from which to draw the

noise must be chosen without reference to an execution in theabsence of the victim—i.e., how the

execution “should have” looked—and so ensuring that the chosen noise distribution is sufficient to

suppress all timing channels can be quite difficult.StopWatchuses replication and careful replica

placement (in terms of the other VMs with which each replica coresides) exactly to provide such a

reference. Moreover, we show that the median permits the delays incurred by the system to scale

7

better than uniformly random noise allows for the same protection, as the distinctiveness of victim

behavior increases.

2.1.2 Replication

To our knowledge,StopWatchis novel in utilizing replication for timing channel defense. That

said, replication has a long history that includes techniques similar to those we use here. For exam-

ple, state-machine replication to mask Byzantine faults [78] ensures that correct replicas return the

same response to each request so that this response can be identified by “vote” (a technique related

to one employed inStopWatch; see Section 2.2 and Section 2.5.1). To ensure that correct replicas

return the same responses, these systems enforce the delivery of requests to replicas in the same

order; moreover, they typically assume that replicas are deterministic and process requests in the

order they are received.Enforcing replica determinism has also been a focus of research in (both

Byzantine and benignly) fault-tolerant systems; most (e.g., [13, 64, 6]), but not all (e.g., [15]), do

so at other layers of the software stack thanStopWatchdoes.

More fundamentally, to our knowledge all prior systems thatenforce timing determinism across

replicas permit one replica to dictate timing-related events for the others, which does not suffice

for our goals: that replica could be the one coresident with the victim, and so permitting it to

dictate timing related events would simply “copy” the information it gleans from the victim to the

other replicas, enabling that information to then be leakedout of the cloud. Rather, by forcing the

timing of events to conform to the median timing across threeVM replicas, at most one of which

is coresident with the victim, the enforced timing of each event is either the timing of a replica not

coresident with the victim or else between the timing of two replicas that are not coresident with the

victim. This strategy is akin to ones used for Byzantine fault-tolerant clock synchronization (e.g.,

see [77, Section 5.2]) or sensor replication (e.g., see [78,Section 5.1]), though we use it here for

information hiding (versus integrity).

Aside from replication for fault tolerance, replication has been explored to detect server pen-

etration [34, 23, 66, 35]. These approaches purposely employ diverse replica codebases or data

representations so as to reduce the likelihood of a single exploit succeeding on multiple replicas. Di-

vergence of replica behavior in these approaches is then indicative of an exploit succeeding on one

8

but not others. In contrast to these approaches,StopWatchleverages (necessarily)identical guest

VM replicas to address a different class of attacks (timing side channels) than replica compromise.

Research on VM executionreplay(e.g., [89, 32]) focuses on recording nondeterministic events

that alter VM execution and then coercing these events to occur the same way when the VM is

replayed. The replayed VM is a replica of the original, albeit a temporally delayed one, and so this

can also be viewed as a form of replication.StopWatchsimilarly coerces VM replicas to observe the

same event timings, but again, unlike these timings being determined by one replica (the original),

they are determined collectively using median calculations, so as to interfere with one attacker

VM replica that is coresident with the victim from simply propagating its timings to all replicas.

That said, the state-of-the-art in VM replay (e.g., [32]) addresses multiprocessor VM execution,

which our present implementation ofStopWatchdoes not.StopWatchcould be extended to support

multiprocessor execution with techniques for deterministic multiprocessor scheduling (e.g., [27]).

Mechanisms for enforcing deterministic execution throughO/S-level modifications (e.g., [5]) are

less relevant to our goals, as they are not easily used by an IaaS cloud provider that accepts arbitrary

VMs to execute.

2.2 Design

Our design is focused on “infrastructure as a service” (IaaS) clouds that accept virtual ma-

chine images, or “guest VMs,” from customers to execute. Amazon EC2 (http://aws.amazon.

com/ec2/) and Rackspace (http://www.rackspace.com/) are example providers of pub-

lic IaaS clouds. Given the concerns associated with side-channel attacks in cloud environments

(e.g., [74, 97]), we seek to develop virtualization software that would enable a provider to construct

a cloud that offers substantially stronger assurances against leakage via timing channels. This cloud

might be a higher assurance offering that a provider runs alongside its normal cloud (while presum-

ably charging more for the greater assurance it offers) or a private cloud with substantial assurance

needs (e.g., run by and for an intelligence or military community).

9

2.2.1 Threat Model

Our threat model is a customer who submitsattacker VMsfor execution that are designed to

employ timing side channels. We presume that the attacker VMis designed to extract information

from a particular victim VM, versus trying to learn general statistics about the cloud such as its

average utilization. We assume that access controls prevent the attacker VMs from accessing victim

VMs directly or from escalating their own privileges in a waythat would permit them to access

victim VMs. The cloud’s virtualization software (in our case, Xen and our extensions thereof) is

trusted.

According to Wray [88], to exploit a timing channel, the attacker VM measures the timing of

observable events using aclock that is independent of the timings being measured. While themost

common such clock is real time, a clock can be any sequence of observable events. With this general

definition of a “clock,” a timing attack simply involves measuring one clock using another. Wray

identified four possible clock sources in conventional computers [88]:

• TL: the “CPU instruction-cycle clock” (e.g., a clock constructed by executing a simple timing

loop);

• Mem: the memory subsystem (e.g., data/instruction fetches);

• IO: the I/O subsystem (e.g., network, disk, and DMA interrupts); and

• RT: real-time clocks provided by the hardware platform (e.g.,time-of-day registers).

2.2.2 Defense Strategy

StopWatchis designed to interfere with the use ofIO andRT clocks and, for uniprocessor VMs,

TL or Mem clocks, for timing attacks. (As discussed in Section 2.1, extension to multiprocessor

VMs is a topic of future work.)IO andRT (especiallyRT) clocks are an ingredient in every timing

side-channel attack in the research literature that we havefound, undoubtedly because real time is

the most intuitive, independent and reliable reference clock for measuring another clock. So, inter-

vening on these clocks is of paramount importance. Moreover, the wayStopWatchdoes so forces

the scheduler in a uniprocessor guest VM to behave deterministically, interfering with attempts to

useTL orMem clocks.

10

More specifically, to interfere withIO clocks, StopWatchreplicates each attacker VM (i.e.,

every VM, since we do not presume to know which ones are attacker VMs) threefold so that the

three replicas of a guest VM are coresident with nonoverlapping sets of (replicas of) other VMs.

Then, when determining the timing with which anIO event is made available to each replica, the

median timing value of the three is adopted.StopWatchaddressesRT clocks by replacing a VM’s

view of real time with avirtual time that depends on the VM’s own progress, an idea due to Popek

and Kline [70].

A side effect of howStopWatchaddressesIO andRT clocks is that it enforces deterministic

execution of uniprocessor attacker VM replicas, also disabling its ability to useTL or Mem clocks.

These mechanisms thus deal effectively with internal observations of time, but it remains possible

that an external observer could glean information from the real-time duration between the arrival of

packets that the attacker VM sends. To interfere with this timing channel, we emit packets to an

external observer with timing dictated by, again, the median timing of the three VM replicas.

2.2.3 Justification for the Median

Permitting only the median timing of anIO event to be observed limits the information that an

attacker VM can glean from being colocated with a victim VM ofinterest, because the distribution

of the median timings substantially dampens the visibilityof a victim’s activities.

To see why, consider a victim VM that induces observable timings that are exponentially dis-

tributed with rateλ′, versus a baseline (i.e., non-victim) exponential distribution with rateλ > λ′.1

Figure 2.1a plots example distributions of the attacker VMs’ observations underStopWatchwhen

an attacker VM is coresident with the victim (“Median of two baselines, one victim”) and when

attacker VM is not (“Median of three baselines”). This figureshows that these median distributions

are quite similar, even whenλ is substantially larger thanλ′; e.g.,λ = 1 andλ′ = 1/2 in the

example in Figure 2.1a. In this case, to even reject the null hypothesis that the attacker VM is not

coresident with the victim using aχ-square test, the attacker can do so with high confidence in the

absence ofStopWatchwith only a single observation, but doing so underStopWatchrequires almost

1It is not uncommon to model packet inter-arrival time, for example, using an exponential distribution (e.g., [52]).

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

P
ro

b
ab

il
it

y
x

Baseline
Victim

Median of three baselines
Median of two baselines,

 one victim

(a) Distribution of median;λ′ = 1/2

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u
m

b
er

 o
f

O
b
se

rv
at

io
n
s

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect victim;
λ′ = 1/2

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u
m

b
er

 o
f

O
b
se

rv
at

io
n
s

confidence

w/ StopWatch
w/o StopWatch

(c) Observations needed to detect victim;
λ′ = 10/11

Figure 2.1: Justification for median; baseline distribution Exp(λ), λ = 1, and victim distribution
Exp(λ′)

two orders of magnitude more (Figure 2.1b). This improvement becomes even more pronounced if

λ andλ′ are closer; the caseλ = 1, λ′ = 10/11 is shown in Figure 2.1c.

In terms of the number of observations needed to extract meaningful information from the

victim VM, this assessment is very conservative, since the attacker would face numerous pragmatic

difficulties that we have not modeled here [97]. But even thissimple example shows the power

of disclosing only median timings of three VM replicas, and in Section 2.4.2 we will repeat this

illustration using actual message traces.

The above illustration of the benefits of allowing only the median timing of anIO event to

be observed by an attacker is not specific to timing behaviorsthat are exponentially distributed.

Instead, it generalizes to any distribution. To make this clear, letXr:m denote the random variable

that takes on the value of ther-th smallest of them values obtained by sampling random variables

X1 . . . Xm. LetFi(x) denote the CDF ofXi (i.e.,Fi(x) = P (Xi ≤ x)) and letFr:m(x) denote the

CDF of Xr:m. The security ofStopWatchhinges on the distribution of the medianX2:3 of three

12

independent random variablesX1, X2, X3 defined as the difference in virtual times (or, in the case

of an external observer, real times) between two subsequentIO events.

Specifically, due to the construction ofStopWatch, the adversary is relegated to learning in-

formation from the difference between (i) the CDFF2:3(x) for random variablesX1, X2, X3 cor-

responding to attacker VM replicas that arenot coresident with a victim VM of interest, and (ii)

the CDFF ′
2:3(x) for random variablesX ′

1, X2, X3 whereX ′
1 corresponds to an attacker VM that

is coresident with the victim VM of interest. An example measure of the distance between two

CDFsF(x) and F̂(x) is their Kolmogorov-Smirnov distance [28, p. 179], defined as D(F, F̂) =

maxx

∣

∣

∣F(x)− F̂(x)
∣

∣

∣.

The following theorem shows that adopting the median microaggregation function can only

interfere with the adversary’s goal:

Theorem 1. If the distributions ofX2 andX3 are overlapping (i.e., for nox is F2(x) = 0 and

F3(x) = 1, orF2(x) = 1 andF3(x) = 0), thenD(F2:3, F
′
2:3) < D(F1, F

′
1).

Proof. Due to well-known results in order statistics (e.g., see Güngör et al. [41, Result 2.4]):2

Fr:m(x) =
m
∑

ℓ=r

(−1)ℓ−r

(

ℓ− 1

r − 1

)

∑

I⊆{1...m}:
|I|=ℓ

∏

i∈I

Fi(x)

In particular,

F2:3(x) =F1(x)F2(x) + F1(x)F3(x) + F2(x)F3(x)− 2F1(x)F2(x)F3(x)

F ′
2:3(x) =F ′

1(x)F2(x) + F ′
1(x)F3(x) + F2(x)F3(x)− 2F ′

1(x)F2(x)F3(x)

whereF ′
1(x) represents the CDF ofX ′

1. So,

D(F2:3, F
′
2:3) =max

x

∣

∣[F2(x) + F3(x)− 2F2(x)F3(x)][F1(x)− F ′
1(x)]

∣

∣

Noting thatD(F1, F
′
1) = maxx |F1(x)− F ′

1(x)|, it suffices to show that|F2(x) + F3(x)− 2F2(x)F3(x)| <

1 for all x. However, sinceF2(x) ∈ [0, 1] andF3(x) ∈ [0, 1] for all x, |F2(x) + F3(x)− 2F2(x)F3(x)| ≤

2This equation assumes eachFi(x) is continuous. See Güngör et al. [41] for the case when someFi(x) is not
continuous.

13

1 and, moreover, equals1 only if for somex, one ofF2(x) andF3(x) is 1 and the other is0. This

last case is precluded by the theorem.

In the limit, when the distributions ofX2 andX3 overlap exactly, we get a much stronger result:

Theorem 2. If X2 andX3 are identically distributed, thenD(F2:3, F
′
2:3) ≤

1
2D(F1, F

′
1).

Proof. In this case,F2 = F3 and so

|F2(x) + F3(x)− 2F2(x)F3(x)|

reaches its maximum value of12 at the valuex yieldingF2(x) = F3(x) =
1
2 .

2.3 RT clocks

Real-time clocks provide reliable and intuitive referenceclocks for measuring the timings of

other events. In this section, we describe the high-level strategy taken inStopWatchto interfere with

their use for timing channels and detail the implementationof this strategy in Xen with hardware-

assisted virtualization (HVM).

2.3.1 Strategy

The strategy adopted inStopWatchto interfere with a VM’s use of real-time clocks is to virtu-

alize these real-time clocks so that their values observed by a VM are a deterministic function of the

VM’s instructions executed so far [70]. That is, after the VMexecutesinstr instructions, the virtual

time observed from within the VM is

virt (instr) ← slope × instr + start (2.1)

To determinestart at the beginning of VM replica execution, the VMMs hosting the VM’s replicas

exchange their current real times;start is initially set to the median of these values.slope is initially

set to a constant determined by the tick rate of the machines on which the replicas reside.

Optionally, the VMMs can adjuststart andslope periodically, e.g., after the replicas execute

an “epoch” ofI instructions, to coarsely synchronizevirt and real time. For example, after thek-th

14

epoch, each VMM can send to the others the durationDk over which its replica executed thoseI

instructions and its real timeRk at the end of that duration. Then, the VMMs can select the median

real timeR∗
k and the durationD∗

k from that same machine and reset

startk+1 ← virtk(I)

slopek+1 ← arg min
v∈[ℓ,u]

∣

∣

∣

∣

R∗
k − virtk(I) +D∗

k

I
− v

∣

∣

∣

∣

for a preconfigured constant range[ℓ, u], to yield the formula forvirtk+1.3 The use ofℓ andu

ensures thatslopek+1 is not too extreme and, ifℓ > 0, thatslopek+1 is positive. In this way,virtk+1

should approach real time on the computer contributing the median real timeR∗
k over the nextI

instructions, assuming that the machine and VM workloads stay roughly the same. Of course, the

smallerI-values are, the morevirt follows real time and so poses the risk of becoming useful in

timing attacks. So,virt should be adjusted only for tasks for which coarse synchronization with

real time is important and then only with largeI values.

2.3.2 Implementation in Xen

Real-time clocks on a typical x86 platform include timer interrupts and various hardware coun-

ters. Closely related to these real-time clocks is the time stamp counter register, which is accessed

using therdtsc instruction and stores a count of processor ticks since reset.

2.3.2.1 Timer interrupts

Operating systems typically measure the passage of time by counting timer interrupts; i.e., the

operating system sets up a hardware device to interrupt periodically at a known rate, such as100

times per second [87]. There are various such hardware devices that can be used for this purpose.

Our current implementation ofStopWatchassumes the guest VM uses a Programmable Interval

Timer (PIT) as its timer interrupt source, but our implementation for other sources would be similar.

TheStopWatchVMM generates timer interrupts for a guest on a schedule dictated by that guest’s

3In other words, if(R∗

k − virtk(I) + D∗

k)/I ∈ [ℓ, u] then this value becomesslopek+1. Otherwise, eitherℓ or u
does, whichever is closer to(R∗

k − virtk(I) +D∗

k)/I .

15

virtual time virt as computed in Equation 2.1. To do so, it is necessary for the VMM to be able to

track the instruction countinstr executed by the guest VM.

In our present implementation,StopWatchuses the guestbranch countfor instr , i.e., keeping

track only of the number of branches that the guest VM executes. Several architectures support

hardware branch counters, but these are not sensitive to themultiplexing of multiple guests onto a

single hardware processor and so continue to count branchesregardless of the guest that is currently

executing. So, to track the branch count for a guest,StopWatchimplements avirtualized branch

counter for each guest.

A question is when to inject each timer interrupt. Intel VT augments IA-32 with two new

forms of CPU operations: virtual machine extensions (VMX) root operation and VMX non-root

operation [84]. While the VMM uses root operation, guest VMsuse VMX non-root operation. In

non-root operation, certain instructions and events causea VM exit to the VMM, so that the VMM

can emulate those instructions or deal with those events. Once completed, control is transferred

back to the guest VM via aVM entry. The guest then continues running as if it had never been

interrupted.

VM exits give the VMM the opportunity to inject timer interrupts into the guest VM as the

guest’s virtual time advances. However, so that guest VM replicas observe the same timer interrupts

at the same points in their executions,StopWatchinjects timer interrupts only after VM exits that

are caused by guest execution. Other VM exits can be induced by events external to the VM, such as

hardware interrupts on the physical machine; these would generally occur at different points during

the execution of the guest VM replicas but will not be visibleto the guest [50, Section 29.3.2]. For

VM exits caused by guest VM execution, the VMM injects any needed timer interrupts on the next

VM entry.

2.3.2.2 rdtsc calls and CMOS RTC values

Another way for a guest VM to measure time is viardtsc calls. Xen already emulates the

return values to these calls. More specifically, to produce the return value for ardtsc call, the

Xen hypervisor computes the time passed since guest reset using its real-time clock, and then this

time value is scaled by a constant factor.StopWatchreplaces this use of a real-time clock with the

guest’s virtual clock (Equation 2.1).

16

A virtualized real-time clock (RTC) is also provided to HVM guests in Xen; this provides time

to the nearest second for the guest to read. The virtual RTC gets updated by Xen using its real-time

clock. StopWatchresponds to requests to read the RTC using the guest’s virtual time.

2.3.2.3 Reading counters

The guest can also observe real time from various hardware counters, e.g., the PIT counter,

which repeatedly counts down to zero (at a pace dictated by real time) starting from a constant.

These counters, too, are already virtualized in modern VMMssuch as Xen. In Xen, these return

values are calculated using a real-time clock;StopWatchuses the guest virtual time, instead.

2.4 IO clocks

IO clocks are typically network, disk and DMA interrupts. (Other device interrupts, such as

keyboards, mice, graphics cards, etc., are typically not relevant for guest VMs in clouds.) We

outline our strategy for mitigating their use to implement timing channels in Section 2.4.1, and then

in Section 2.4.2 we describe our implementation of this strategy inStopWatch.

2.4.1 Strategy

The method described in Section 2.3 for dealing withRT clocks by introducing virtual time

provides a basis for addressing sources ofIO clocks. A component of our strategy for doing so is to

synchronize I/O events across the three replicas of each guest VM in virtual time, so that every I/O

interrupt occurs at the same virtual time at all replicas. Among other things, this synchronization

will force uniprocessor VMs to execute deterministically,but it alone will not be enough to interfere

with IO clocks; it is also necessary to prevent the timing behavior of one replica’s machine from

imposing I/O interrupt synchronization points for the others, as discussed in Section 2.1–2.2. This

is simpler to accomplish for disk accesses and DMA transferssince replica VMs initiate these

themselves, and so we will discuss this case first. The more difficult case of network interrupts,

where we explicitly employ median calculations to dampen the influence of any one machine’s

timing behavior on the others, will then be addressed.

17

2.4.1.1 Disk and DMA interrupts

The replication of each guest VM at start time includes replicating its entire disk image, and so

any disk blocks available to one VM replica will be availableto all. By virtue of the fact that (unipro-

cessor) VMs execute deterministically inStopWatch, replicas will issue disk and DMA requests at

the same virtual time. Upon receiving such a request from a replica at timeV , the VMM adds an

offset∆d to determine a “delivery time” for the interrupt, i.e., at virtual timeV +∆d, and initiates

the corresponding I/O activities (disk access or DMA transfer). The offset∆d must be large enough

to ensure that the data transfer completes by the virtual delivery time. Once the virtual delivery time

has been determined, the VMM simply waits for the first VM exitcaused by the guest VM (as in

Section 2.3.2) that occurs at a virtual time at least as largeas this delivery time. The VMM then

injects the interrupt prior to the next VM entry of the guest.This interrupt injection also includes

copying the data into the address space of the guest, so as to prevent the guest VM from polling for

the data in advance of the interrupt to create a form of clock (e.g., see [49, Sec 4.2.2]).

2.4.1.2 Network interrupts

Unlike the initiation of disk accesses and DMA transfers, the activity giving rise to a network

interrupt, namely the arrival of a network packet that is destined for the guest VM, is not synchro-

nized in virtual time across the three replicas of the guest VM. So, the VMMs on the three machines

hosting these replicas must coordinate to synchronize the delivery of each network interrupt to the

guest VM replicas. To prevent the timing of one from dictating the delivery time at all three, these

VMMs exchange proposed delivery times and select the median, as discussed in Section 2.2. To

solicit proposed timings from the three, it is necessary, ofcourse, that the VMMs hosting the three

replicas all observe each network packet. So,StopWatchreplicates every network packet to all three

computers hosting replicas of the VM for which the packet is intended. This is done by a logically

separate “ingress node” that we envision residing on a dedicated computer in the cloud. (Of course,

there need not be only one such ingress for the whole cloud.)

When a VMM observes a network packet to be delivered to the guest, it sends its proposed

virtual time — i.e., in the guest’s virtual time, see Section2.3 — for the delivery of that interrupt

to the VMMs on the other machines hosting replicas of the sameguest VM. (We stress that these

18

proposals are not visible to the guest VM replicas.) Each VMMgenerates its proposed delivery

time by adding a constant offset∆n to the virtual time of the guest VM at its last VM exit.∆n

must be large enough to ensure that once the three proposals have been collected and the median

determined at all three replica VMMs, the chosen median virtual time has not already been passed

by any of the guest VMs. The virtual-time offset∆n is thus determined using an assumed upper

bound on the real time it takes for each VMM to observe the interrupt and to propagate its proposal

to the others,4 as well as the maximum allowed difference between the fastest two replicas’ virtual

times. This difference can be limited by slowing the execution of the fastest replica.

Once the median proposed virtual time for a network interrupt has been determined at a VMM,

the VMM simply waits for the first VM exit caused by the guest VM(as in Section 2.3.2) that occurs

at a virtual time at least as large as that median value.5 The VMM then injects the interrupt prior to

the next VM entry of the guest. As with disk accesses and DMA transfers, this interrupt injection

also includes copying the data into the address space of the guest, so as to prevent the guest VM

from polling for the data in advance of the interrupt to create a form of clock (e.g., [49, Section 4.2.2

]).

Real �me

V
ir

tu
a

l �
m

e

R1

Replica A Replica B Replica C

B C A C A B

Arrival of packet at VMM

A’s proposal

Delivery of packet to guest

+∆n

+∆n

+∆n

B’s proposal
C’s proposal

Real �me Real �me
R1 R1R2 R2 R2

Arrival of proposal at VMM

Figure 2.2: Delivering a packet to guest VM replicas.

The process of determining the delivery time of a network packet to a guest VM’s replicas is

pictured in Figure 2.2. This figure depicts a real-time interval [R1, R2] at the three machines at

4In distributed computing parlance, we thus assume asynchronoussystem, i.e., there are known bounds on processor
execution rates and message delivery times.

5If the median time determined by a VMM has already passed, then our synchrony assumption was violated by the
underlying system. In this case, that VMM’s replica has diverged from the others and so must be recovered by, e.g.,
copying the state of another replica.

19

which a guest VM is replicated, showing at each machine: the arrival of a packet at the VMM, the

proposal made by each VMM, the arrival of proposals from other replica machines, the selection of

the median, and the delivery of the packet to the guest replica. Each stepped diagonal line shows

the progression of virtual time at that machine.

2.4.2 Implementation in Xen

Xen presents to each HVM guest a virtualized platform that resembles a classic PC/server plat-

form with a network card, disk, keyboard, mouse, graphics display, etc. This virtualized platform

support is provided by virtual I/O devices (device models) in Dom0, a domain in Xen with spe-

cial privileges. QEMU (http://fabrice.bellard.free.fr/qemu) is used to implement

device models. One instance of the device models is run in Dom0 per HVM domain.

2.4.2.1 Network card emulation

In the case of a network card, the device model running in Dom0receives packets destined for

the guest VM. WithoutStopWatchmodification, the device model copies this packet to the guest

address space and asserts a virtual network device interrupt via the virtual Programmable Interrupt

Controller (vPIC) exposed by the VMM for this guest. HVM guests cannot see real external hard-

ware interrupts since the VMM controls the platform’s interrupt controllers [50, Section 29.3.2].

In StopWatch, we modify the network card device model so as to place each packet destined

for the guest VM into a buffer hidden from the guest, rather than delivering it to the guest. The

device model then reads the current virtual time of the guest(as of the guest’s last VM exit), adds

∆n to this virtual time to create its proposed delivery (virtual) time for this packet, and multicasts

this proposal to the other two replicas (step 1 in Figure 2.3). A memory region shared between

Dom0 and the VMM allows device models in Dom0 to read guest virtual time.

Once the network device model receives the two proposals in addition to its own, it takes the

median proposal as the delivery time and stores this delivery time in the memory it shares with the

VMM. The VMM compares guest virtual time to the delivery timestored in the shared memory

upon every guest VM exit caused by guest VM execution. Once guest virtual time has passed the

delivery time, the network device model copies the packet into the guest address space (step 2 in

Figure 2.3) and asserts a virtual network interrupt on the vPIC prior to the next VM entry (step 3).

20

Dom0
HVM Guest

Device

Model
VM

exit

VM

entry

(3) Request interrupt
vPIC

S
h

a
re

d

M
e

m
o

ry

(2) Copy data

VMM

(1) Proposals to/from

other replicas

Figure 2.3: Emulation of network I/O device inStopWatch.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000

P
ro

b
ab

il
it

y

Inter-packet delivery times (virtual)

Median of three baselines
Median of two baselines,

one victim

(a) Distribution of median (CDF)

 0

 20

 40

 60

 80

 100

 120

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
u

m
b

er
 o

f
o

b
se

rv
at

io
n

s

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect victim

Figure 2.4: Virtual inter-packet delivery times to attacker VM replicas with coresident victim (“two
baselines, one victim”) and in a run where no replica was coresident with a victim (“three baselines”)

Figure 2.4a shows the CDF of virtual inter-packet delivery times to replicas of an attacker VM

in an actual run where one replica is coresident with a victimVM continuously serving a file, in

comparison to the virtual delivery times with no victim present. This plot is directly analogous

to that in Figure 2.1a but is generated from a realStopWatchrun and shows the distribution as a

CDF for ease of readability. Figure 2.4b shows the number of observations needed to distinguish

the victim and no-victim distributions in Figure 2.4a usinga χ-squared test, as a function of the

desired confidence. This figure is analogous to Figure 2.1b and confirms thatStopWatchstrength-

ens defense against timing attacks by an order of magnitude in this scenario. Again, the absolute

number of observations needed to distinguish these distributions is likely quite conservative, owing

to numerous practical challenges to gathering these observations [97].

21

2.4.2.2 Disk and DMA emulation

The emulation of the IDE disk and DMA devices is similar to thenetwork card emulation above.

StopWatchcontrols when the disk and DMA device models complete requests and notify the guest.

Instead of copying data read to the guest address space, the device model inStopWatchprepares a

buffer to receive this data. In addition, rather than asserting an appropriate interrupt via the vPIC

to the guest as soon as the data is available, theStopWatchdevice model reads the current guest

virtual time from memory shared with the VMM, adds∆d, and stores this value as the interrupt

delivery time in the shared memory. Upon the first VM exit caused by guest execution at which the

guest virtual time has passed this delivery time, the devicemodel copies the buffered data into the

guest address space and asserts an interrupt on the vPIC. Disk writes are handled similarly, in that

the interrupt indicating write completion is delivered as dictated by adding∆d to the virtual time at

which the write was initiated.

2.5 Collaborative Attacks

The mechanisms described in Section 2.3–2.4 intervene on two significant sources of clocks;

though VM replicas can measure the progress of one relative to the other, for example, their mea-

surements will be the same and will reflect the median of theirtiming behaviors. Moreover, by

forcing each guest VM to execute (and, in particular, schedule its internal activities) on the basis

of virtual time and by synchronizing I/O events across replicas in virtual time, uniprocessor guest

VMs execute deterministically, stripping them of the ability to leverageTL andMem clocks, as

well. (More specifically, the progress ofTL andMem clocks are functionally determined by the

progress of virtual time and so are not independent of it.) There nevertheless remains the possibil-

ity of various collaborative attacks that leverage an attacker VM in conjunction with other attacker

components that we discuss below.

2.5.1 External Collaborators

One possible collaborative attack involves conjoining theattacker VM with a collaborator with

which it interacts that is external to the cloud and, in particular, on whose real-time clock we cannot

22

intervene. By interacting with the attacker VM, the external collaborator might attempt to discern

information using the real-time behavior of his attacker VM.

Because guest VM replicas will run deterministically, theywill output the same network pack-

ets in the same order.StopWatchuses this property to interfere with a VM’s ability to exfiltrate

information on the basis of its real-time behavior as seen byan external observer.StopWatchdoes

so by adopting the median timing across the three guest VM replicas for each output packet. The

median is selected at a separate “egress node” that is dedicated for this purpose (c.f., [90]), anal-

ogous to the “ingress node” that replicates every network packet destined to the guest VM to the

VM’s replicas (see Section 2.4). Like the ingress node, there need not be only one egress node for

the whole cloud.

To implement this scheme in Xen, every packet sent by a guest VM replica is tunneled by the

network device model on that machine to the egress node. The egress node forwards an output

packet to its destination after receiving the second copy ofthat packet (i.e., the same packet from

two guest VM replicas). Since the second copy of the packet itreceives exhibits the median output

timing of the three replicas, this strategy ensures that thetiming of the output packet sent toward its

destination is either the timing of a guest replica not coresident with the victim VM or else a timing

that falls between those of guest replicas not coresident with the victim.

An alternative strategy that the external collaborator might take is to send real-time timestamps

to his attacker VM, in the hopes of restoring a notion of real-time to that VM (that was stripped away

as described in Section 2.3). Again, however, since each packet to the attacker VM is delivered

on a schedule dictated by the median progress of the attackerVM replicas (Section 2.4), those

timestamps will reflect only on the behavior of the median replica. As such, it matters little whether

the external collaborator sends real-time timestamps to the attacker VM or the attacker VM sends

virtual-time timestamps (or events reflecting them) to the external collaborator; either way, the

power offered by the external collaborator is the same, namely relating progress of the median

progress of the attacker VM replicas to real time.

2.5.2 Collaborating Victim-VM Clients

While the type of external collaborator addressed in Section 2.5.1 interacts with the attacker

VM, a more powerful collaborator is one that might additionally interact with the victim VM, e.g.,

23

as one of its clients. This possibility raises the issue of remote timing attacks (e.g., [16]) that do not

involve coresidence of attacker VMs with victim VMs at all; such attacks are not our concern here,

as we are motivated only byaccess-drivenattacks.

That said, recent investigations have paired remote timingattacks with access-driven elements:

e.g., Bates et al. [7] and Herzberg et al. [47] developed attacks by which a victim-VM’s client

could detect the impact of a coresident attacker-VM’s communication on the timing of the victim’s

communication to it, thereby confirming the coresidence of the attacker VM with the victim VM,

for example.

While the goal ofStopWatchis not to defend against all remote timing attacks, it does mitigate

the access-driven elements of attacks such as those of Bateset al. and Herzberg et al. Specifically,

in StopWatchthe observable timing of a victim VM’s communication to its clients will be dictated

by the median progress of its three replicas (Section 2.5.1). As shown in Section 2.2.3, this reveals

quantifiably less information to the client than the observable impact of a coresident attacker VM

on a (non-replicated) victim VM would. In particular, an attacker VM could perturb the victim

VM’s observable communication timings only if it is coresident with the victim VM replica whose

progress is the median of the victim’s three replicas, and only then constrained above and below

according to the other replicas’ progress.

The defenses suggested by Herzberg et al. to the attack they investigate include a rate-limiting

firewall that interferes with the remote attacker’s abilityto induce load on VMs hosted in the cloud.

Our ingress node (Section 2.4.1.2) could trivially be adapted to rate-limit inbound traffic, as well, as

a secondary defense against such attacks.

2.5.3 Collaborating Attacker VMs

Another possible form of attacker collaboration involves multiple attacker VMs working to-

gether to mount access-driven timing attacks. The apparentrisks of such collaboration can be seen

in the following possibility: replicas of one attacker VM (“VM1”) reside on machines A, B, and

C; one replica of another attacker VM (“VM2”) resides on machine A; and a replica of the victim

VM resides on machine C. If VM2 induces significant load on itsmachines, then this may slow

the replica of VM1 on machine A to an extent that marginalizesits impact on median calculations

24

among its replicas’ VMMs. The replicas of VM1 would then observe timings influenced by the

larger of the replicas on B and C — which may well reflect timings influenced by the victim.

Mounting such an attack, or any collaborative attack involving multiple attacker VMs on one

machine, appears to be difficult, however. Just as argued above that an attacker VM detecting its

coresidence with a victim VM is made much harder byStopWatch, one attacker VM detecting

coresidence with another using timing covert channels would also be impeded. If the cloud takes

measures to avoid disclosing coresidence of one VM with another by other channels, it should be

difficult for the attacker to even detect when he is in a position to mount such an attack or to interpret

the results of mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be made harder still by increasing the num-

ber of replicas of each VM. If the number were increased from three to, say, five, then inducing

sufficient load to marginalize one attacker replica from itsmedian calculations would not substan-

tially increase the attacker’s ability to mount attacks on avictim. Rather, the attacker would need to

marginalize multiple of its replicas, along with accomplishing the requisite setup to do so.

2.6 Performance Evaluation

In this section we evaluate the performance of ourStopWatchprototype. We present addi-

tional implementation details that impact performance in Section 2.6.1, our experimental setup in

Section 2.6.2, and our tests and their results in Section 2.6.3–2.6.4.

2.6.1 Selected Implementation Details

Our prototype is a modification of Xen version 4.0.2-rc1-pre, amounting to insertions or changes

of roughly 1500 source lines of code (SLOC) in the hypervisor. There were also about 2000 SLOC

insertions and changes to the QEMU device models distributed with that Xen version. In addition to

these changes, we incorporated OpenPGM (http://code.google.com/p/openpgm/) into

the network device model in Dom0. OpenPGM is a high-performance reliable multicast implemen-

tation, specifically of the Pragmatic General Multicast (PGM) specification [81]. In PGM, reliable

transmission is accomplished by receivers detecting loss and requesting retransmission of lost data.

OpenPGM is used inStopWatchfor replicating ethernet packets destined to a guest VM to all of

25

that VM’s replicas and for communication among the VMMs hosting guest VM replicas. We also

extended the network device model on a host to tunnel each ethernet packet emitted from a local

VM replica to the appropriate egress node (see Section 2.5.1) over a persistent TCP connection.

Recall from Section 2.4 that each VMM proposes (via an OpenPGM multicast) a virtual deliv-

ery time for each network interrupt, and the VMMs adopt the median proposal as the actual delivery

time. As noted there, each VMM generates its proposal by adding a constant offset∆n to the cur-

rent virtual time of the guest VM.∆n must be large enough to ensure that by the time each VMM

selects the median, that virtual time has not already passedin the guest VM. However, subject to

this constraint,∆n should be minimized since the real time to which∆n translates imposes a lower

bound on the latency of the interrupt delivery. (Note that because∆n is specified in virtual time

and virtual time can vary in its relationship to real time, the exact real time to which∆n translates

can vary during execution.) We selected∆n to accommodate timing differences in the arrivals of

packets destined to the guest VM at its three replicas’ VMMs,the delays for delivering each VMM’s

proposed virtual delivery time to the others, and the maximum allowed difference in progress be-

tween the two fastest guest VM replicas (whichStopWatchenforces by slowing the fastest replica,

if necessary). For the platform used in our experiments (seeSection 2.6.2) and under diverse net-

working workloads, we found that a value of∆n that typically translates to a real-time delay in the

vicinity of 7-12ms sufficed to meet the above criteria. The analogous offset∆d for determining the

virtual delivery time for disk and DMA interrupts was determined based on the maximum observed

disk access times and translates to roughly 8-15ms.

2.6.2 Experimental setup

Our “cloud” consisted of three machines with the same hardware configuration: 4 Intel Core2

Quad Q9650 3.00GHz CPUs, 8GB memory, and a 70GB rotating harddrive. Dom0 was config-

ured to run Linux kernel version 2.6.32.25. Each HVM guest had one virtual CPU, 2GB memory

and 16GB disk space. Each guest ran Linux kernel 2.6.32.24 and was configured to use the Pro-

grammable Interrupt Controller (PIC) as its interrupt controller and a Programmable Interrupt Timer

(PIT) of 250Hz as its clock source. The Advanced Programmable Interrupt Controller (APIC) was

disabled. An emulated ATA QEMU disk and a QEMU Realtek RTL-8139/8139C/8139C+ were

26

provided to the guest as its disk and network card. In each of our tests, we installed an application

(e.g., a web server or other program) in the guest VM, as will be described later.

After the guest VM was configured, we copied it to our three machines and restored the VM at

each. In this way, our three replicas started running from the same state. In addition, we copied the

disk file to all three machines to provide identical disk state to the three replicas.

Once the guest VM replicas were started, inbound packets forthis guest VM were replicated to

all three machines for delivery to their replicas as discussed in Section 2.4. These three machines had

100Mb/s ethernet connectivity via a NetGear FS108 switch. They were part of a /24 subnet within

the UNC campus network. Broadcast traffic on the network (e.g., ARP requests) was replicated for

delivery as in Section 2.4. These broadcasts averaged roughly 50-100 packets per second. As such,

this background activity was present throughout our experiments and is reflected in our numbers.

Since a cloud operator would presumably place the replicas of each VM in close network proximity

to one another so as to minimize the networking penalties of coordinating across those machines,

we believe that our doing likewise provides a reasonable approximation of the networking costs that

StopWatchmight encounter in practice.

2.6.3 Network Services

In this section we describe tests involving network services deployed on the cloud. In all of

our tests, our client that interacted with the cloud-resident service was a Lenovo T400 laptop with

a dual-core 2.8GHz CPU and 2GB memory attached to an 802.11 wireless network on the UNC

campus.

2.6.3.1 File downloads

Our first experiments tested the performance of file downloadby the client from a web server

in the cloud. The total times for the client to retrieve files of various sizes over HTTP are shown in

Figure 2.5. This figure shows tests in which our guest VM ran Apache version 2.2.14, and the file

retrieval was from a cold start (and so file-system caches were empty). The “HTTP Baseline” curve

in Figure 2.5 shows the average latency for the client to retrieve a file from an unmodified Xen guest

VM. The “HTTP StopWatch” curve shows the average cost of file retrieval from ourStopWatch

implementation. Every average is for ten runs. Note that both axes are log-scale.

27

 0.1

 1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

T
im

e
(m

s)

File size (KB)

HTTP Baseline
HTTP StopWatch
UDP Baseline
UDP StopWatch

Figure 2.5: HTTP and UDP file-retrieval latency.

Figure 2.5 shows that for HTTP download, a service running onour currentStopWatchpro-

totype loses less than2.8× in download speed for files of100KB or larger. Diagnosing this cost

reveals that the bottleneck, by an order of magnitude or more, was the network transmission delay

(vs. disk access delay) in both the baseline and forStopWatch. Moreover, the performance cost of

StopWatchin comparison to the baseline was dominated by the time for delivery of inboundpackets

to the web-server guest VM, i.e., the TCP SYN and ACK messagesin the three-way handshake, and

then additional acknowledgments sent by the client. Enforcing a median timing on output packets

(Section 2.5.1) adds modest overhead in comparison.

This combination of insights, namely the detriment of inbound packets (mostly acknowledg-

ments) toStopWatchfile download performance and the fact that these costs so outweigh disk

access costs, raises the possibility of recovering file download performance using a transport pro-

tocol that minimizes packets inbound to the web server, e.g., using negative acknowledgments or

forward error correction. Alternatively, an unreliable transport protocol with no acknowledgments,

such as UDP, could be used; transmission reliability could then be enforced at a layer above UDP

using negative acknowledgments or forward error correction. Though TCP does not define negative

acknowledgments, transport protocols that implement reliability using them are widely available,

particularly for multicastwhere positive acknowledgments can lead to “ack implosion.” Indeed,

recall that the PGM protocol specification [81], and so the OpenPGM implementation that we use,

ensures reliability using negative acknowledgments.

28

 0

 5

 10

 15

 20

25 50 100 200 400

T
im

e(
m

s)

Load (Operations per second)

StopWatch
Baseline

(a) Average latency per op

 0

 2

 4

 6

 8

 10

 12

25 50 100 200 400

T
C

P
 p

ac
k

et
s

p
er

 o
p

er
at

io
n

Load (Operations per second)

Client to Server
Server to Client

(b) Average packets per op

Figure 2.6: Tests of NFS server usingnhfsstone

To illustrate this point, in Figure 2.5 we repeat the experiments using UDP to transfer the file.6

The “UDP Baseline” curve shows the performance using unmodified Xen; the “UDPStopWatch”

curve shows the performance usingStopWatch. Not surprisingly, baseline UDP shows performance

comparable to (but slightly more efficient than, by less thana factor of two) baseline TCP, but rather

than losing an order of magnitude, UDP overStopWatchis competitivewith these baseline numbers

for files of 100KB or more.

2.6.3.2 NFS

We also set up a Network File System (NFSv4) server in our guest VM. On our client machine,

we installed an NFSv4 client; remotely mounted the filesystem exported by the NFS server; per-

formed file operations manually; and then rannfsstat on the NFS server to print its server-side

statistics, including the mix of operations induced by our activity. We then used thenhfsstone

benchmarking utility to evaluate the performance of the NFSserver with and withoutStopWatch.

nhfsstone generates an artificial load with a specified mix of NFS operations. The mix of NFS

operations used in our tests was the previously extracted mix file.7 In each test, the client machine

ran five processes using the mounted file system, making callsat a constant rate ranging from 25 to

400 per second in total across the five client processes.

6We are not advocating UDP for file retrieval generally but rather are simply showing the advantages forStopWatch
of a protocol that minimizes client-to-server packets. We did not use OpenPGM in these tests since the web site (as
the “multicast” originator) would need to initiate the connection to the client; this would have required more substantial
modifications. This “directionality” issue is not fundamental to negative acknowledgments, however.

7This mix was11.37% setattr, 24.07% lookup, 11.92% write, 7.93% getattr, 32.34% read and12.37%
create.

29

The average latency per operation is shown in Figure 2.6a. Inthis figure, the horizontal axis is

the rate at which operations were submitted to the server; note that this axis is log-scale. Figure 2.6a

suggests that an NFS server overStopWatchincurs a less than2.7× increase in latency over an

NFS server running over unmodified Xen. Since the NFS implementation used TCP, in some sense

this is unsurprising in light of the file download results in Figure 2.5. That said, it is also perhaps

surprising thatStopWatch’s cost increased only roughly logarithmically as a function of the offered

rate of operations. This modest growth is in part becauseStopWatchschedules packets for delivery

to guest VM replicas independently — the scheduling of one does not depend on the delivery of

a previous one, and so they can be “pipelined” — and because the number of TCP packets from

the client to the server actually decreases per operation, on average, as the offered load grows

(Figure 2.6b).

2.6.4 Computations

In this section we evaluate the performance of various computations onStopWatchthat may

be representative of future cloud workloads. For this purpose, we employ the PARSEC bench-

marks [11]. PARSEC is a diverse set of benchmarks that coversa wide range of computations that

are likely to become important in the near future (seehttp://parsec.cs.princeton.edu/

overview.htm). Here we take PARSEC as representative of future cloud workloads.

We utilized the following five applications from the PARSEC suite (version 2.1), providing each

the “native” input designated for it.ferret is representative of next-generation search engines for

non-text document data types. In our tests, we configured theapplication for image similarity search.

blackscholes calculates option pricing with Black-Scholes partial differential equations and is

representative of financial analysis applications.canneal is representative of engineering appli-

cations and uses simulated annealing to optimize routing cost of a chip design.dedup represents

next-generation backup storage systems characterized by acombination of global and local compres-

sion.streamcluster is representative of data mining algorithms for online clustering problems.

Each of these applications involves various activities, including initial configuration, creating a lo-

cal directory for results, unpacking input files, performing its computation, and finally cleaning up

temporary files.

30

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ferret

blackscholes

canneal

dedup

stream
cluster

T
im

e
(m

s)

Baseline

171 177

1530

3730

290

StopWatch

350 401

3230

5754

382

(a) Average runtimes

 0

 50

 100

 150

 200

 250

 300

 350

ferret

blackscholes

canneal

dedup

stream
cluster

N
u

m
b

er
 o

f
d

is
k

 i
n

te
rr

u
p

ts

31 38

183

293

27

(b) Disk interrupts

Figure 2.7: Tests of PARSEC applications

We ran each benchmark ten times in one guest VM over unmodifiedXen, and then ten more

times with three guest VM replicas overStopWatch. Figure 2.7a shows the average runtimes of

these applications in both cases. In this figure, each application is described by two bars; the

black bar on the left shows its performance over unmodified Xen, and the gray bar on the right

shows its performance overStopWatch. StopWatchimposed an overhead of at most2.3× (for

blackscholes) to the average running time of the applications. Owing to the dearth of network

traffic involved in these applications, the overhead imposed byStopWatchis mostly due to the over-

head involved in intervening on disk I/O (see Section 2.4). As shown in Figure 2.7b, there is a

direct correlation between the number of disk interrupts todeliver during the application run and

the performance penalty (in absolute terms) thatStopWatchimposes. If the computers in our ex-

periments used solid-state drives (versus hard disks), we conjecture that their reduced access times

would permit us to shrink∆d and so improve the performance ofStopWatchfor these applications.

2.7 Comparison to Alternatives

In this section we pause to compareStopWatchto two alternatives for defending against timing

side-channels of the form we consider here. The two alternatives we consider, neither of which

involves VM replication at all, is (i) overcoming timing side-channels by the injection of random

noise, and (ii) temporally isolating guest VMs by time slicing each node and running only one guest

VM at a time on the node, resetting the machine to as clean a state as possible between each. We

discuss these alternatives in Section 2.7.1 and Section 2.7.2, respectively.

31

The purpose of our comparisons is to illustrate certain advantages thatStopWatchhas over these

alternatives, butnot to argue thatStopWatchis superior to these alternatives in all ways. Indeed,

it is appropriate to point out thatStopWatch’s approach comes with several deployment overheads

that these alternatives do not suffer. For example,StopWatchrequires VM replication and the

placement of each VM’s replicas so that the replicas of any VMare coresident with nonoverlapping

sets of (replicas of) other VMs, a nontrivial placement constraint discussed further in Section 2.8.

Moreover, for any VM for which networking performance is important, the VM replicas should be

placed in close network proximity to one another (as we discussed in Section 2.6.2). The cloud

must additionally provide (not necessarily physically distinct) ingress nodes for replicating inbound

traffic to each VM’s replicas (Section 2.4), and egress nodesfor hiding timing information in the

traffic (the replicas of) each VM sends to others (Section 2.5.1). Neither of the alternatives discussed

below impose such additional requirements.

2.7.1 Comparison to Uniformly Random Noise

An alternative toStopWatchis simply adding random noise (without replicating VMs) to con-

found timing attacks. To illustrate advantages thatStopWatch’s approach has over this alternative,

we borrow notation first introduced in Section 2.2.3: LetX1 denote a random variable representing

the “baseline” timing behavior observed by an attacker VM (replica) in the absence of the victim

of interest, and letX ′
1 be the random variable as observed by the attacker VM when itis coresident

with the victim VM of interest. Again, inStopWatch, the adversary learns information from the

difference between (i) the distribution ofX2:3 for random variablesX1, X2, X3 corresponding to

attacker VM replicas that arenot coresident with a victim VM of interest, and (ii) the distribution

of X ′
2:3 for random variablesX ′

1, X2, X3 whereX ′
1 corresponds to an attacker VM thatis coresi-

dent with the victim VM of interest. More specifically, in thecase whereX2:3 or X ′
2:3 denotes the

logical time of a network interrupt delivery, for example, the adversary observes eitherX2:3 +∆n

orX ′
2:3 +∆n. (∆n is discussed in Section 2.4.1.2.)

For simplicity, suppose thatX1 andX ′
1 are exponentially distributed with rate parametersλ and

λ′, respectively, as in the example of Figure 2.1. For the random variableXN representing added

noise, assume thatXN is drawn uniformly from[0, b] (i.e., XN ∼ U(0, b)), a common choice to

mitigate timing channels (e.g., [49, 39]).

32

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

0.7 0.8 0.9 0.99

D
el

ay
 in

 v
irt

ua
l t

im
e

Confidence

E[X1+XN]
E[X′1+XN]
E[X2:3+∆n]
E[X′2:3+∆n]

(a)λ′ = 1/2

 0
 50

 100
 150
 200
 250
 300
 350

0.7 0.8 0.9 0.99

D
el

ay
 in

 v
irt

ua
l t

im
e

Confidence

E[X1+XN]
E[X′1+XN]
E[X2:3+∆n]
E[X′2:3+∆n]

(b) λ′ = 10/11

Figure 2.8: Expected delay induced byStopWatchvs. by uniform noise, as a function of confidence
with which attacker distinguishes the two distributions (coresident victim or not) after the same
number of observations; baseline distributionExp(λ), λ = 1; victim distributionExp(λ′)

We calculated expected delay imposed byStopWatchand by adding uniformly distributed

noise. To make a fair comparison, we configured both approaches to provide the same strength

of defense against timing attacks. Specifically, after calculating the number of observations the at-

tacker requires in the case ofStopWatchto distinguish, for a fixed confidence level, the distributions

X2:3 + ∆n andX ′
2:3 + ∆n using aχ-squared test, we calculated the minimumb that would give

the attacker the same confidence in distinguishingX1 + XN andX ′
1 + XN after that number of

observations. Figure 2.8 shows the resulting expected delays in each case.

This figure indicates thatStopWatchscales much better as the attacker’s required confidence

and the distinctiveness of the victim grows (as representedby λ′ dropping). The delay of theStop-

Watch approach is tied most directly to∆n, which is added to ensure that the replicas of each VM

remain synchronized (see Section 2.4.1.2); here we calculated it so thatPr[|X1 − X ′
1| ≤ ∆n] ≥

0.9999. That is, the probability of a desynchronization at this event is less than0.0001. Note that

E[X2:3+∆n] andE[X ′
2:3+∆n] are nearly the same in Figure 2.8, since their difference is how the

attacker differentiates the two, and similarly forE[X1 +XN] andE[X ′
1 +XN].

2.7.2 Comparison to Time Slicing

In this section, we compareStopWatchto another alternative, namely time slicing, to defend

against timing attacks. Here, “time slicing” refers to executing each VM (without replication) in

isolation for a period of time. When multiple VMs coreside onthe same physical machine, they

are scheduled to run in a one-at-a-time fashion. Specifically, time is divided intoslices, and within

33

sliceLen (s) cleanseLen (s)
Flush-A 0.4 0.001
Flush-B 2 0.2
Flush-C 2.5 0.25

Table 2.1: Length of time slice (sliceLen) and of cleansing (cleanseLen)

each time slice, only one VM is allowed to execute, exclusively occupying all physical resources.

VMs are scheduled to consume time slices according to a round-robin scheduler (i.e., in turns). In

addition, each two consecutive time slices are separated bya cleansing period within which we

cleanse shared components in the system to simulate a machine reset. As an example, Figure 2.9

depicts the execution of three time-sliced VMs running on the same machine.

t

VM1 VM2 VM3 VM1 VM2 VM3

Start of Cleansing

End of Cleansing

Cleansing Period

Figure 2.9: Time-sliced execution of three VMs

2.7.2.1 Design

To make VMs execute in turns, we unpause virtual CPUs (vCPUs)of one VM and leave vC-

PUs of all the other VMs paused for the duration of a time slice. In this experiment, we designed

three sets of cleansing operations, described below and summarized in Table 2.1, to flush shared

components in the system with varying degrees of thoroughness. Even our most aggressive cleans-

ing operation falls short of a complete machine reset since there are some shared components (e.g.,

shared network stack of the host machine) with state that could carry information about one VM to

another. For each type of cleansing operation described below, we set the length of each time slice

(sliceLen) to be larger than the length of the cleansing period (cleanseLen) by at least one order of

magnitude, in an effort to limit the impact of cleansing periods.

Flush-A: CPU caches and TLB In the “Flush-A” cleansing operation, we use theWBINVD instruc-

tion to flush CPU instruction and data caches.WBINVD writes back all modified (instruction and

data) cache lines in the processor’s internal cache to main memory and invalidates (flushes) the inter-

34

nal caches. The instruction then directs external caches tobe invalidated and to write back modified

data, though there are no external caches on our machines in this experiment. In our experiment,

WBINVD is invoked at the beginning of each cleansing period, as depicted in Figure 2.9.

The TLB (Translation Lookaside Buffer) stores translations between virtual addresses and phys-

ical addresses. It gets flushed every time a context switch happens and CR3 register is reloaded. The

flushing of the TLB is automatically carried out by the virtualization software we use (Xen).

When we choose the length of the cleansing period (cleanseLen), we choose a value that is big

enough to pause/unpause vCPUs (about 0.8ms in total on our machines) and to complete all flushing

operations. In Flush-A, we usesliceLen = 0.4s andcleanseLen = 0.001s. (In contrast, Xen’s CPU

schedule quantum is 30ms.)

Flush-B: Flush-A + Disk page cacheThe disk page cache is a buffer of disk-backed pages kept in

main memory (RAM) by the operating system for quicker access. All physical memory that is not

directly allocated to applications is usually used by the operating system for the page cache. For a

VM running on Xen, the disk device is virtualized and provided by a device model process running

in Dom0. QEMU [8] is used to implement such device models which, by default, uses write-through

caching for all block devices (seehttp://wiki.qemu.org/download/qemu-doc.html).

This means that the page cache of Dom0 will be used to read and write data. To flush the disk

page cache, we use aSYNC system call followed by writing to/proc/sys/vm/drop_caches.

SYNC writes all dirty cache pages to the disk, while writing to/proc/sys/vm/drop_caches

frees all the page caches for reading. In Flush-B, in addition to the CPU and TLB caches, we flush

the disk page cache as well, which takes about 185ms in our system. In this case, we setsliceLen

= 2.0s andcleanseLen = 0.2s.

Flush-C: Flush-B+ On-drive disk cache buffer The disk cache buffer is the embedded memory

in a hard drive acting as a buffer between the rest of the computer and the physical hard disk plat-

ter that is used for storage. We use the utilityhdparm -F, which takes roughly 25ms, to flush

this buffer in addition to operations included in Flush-B. In this case, we setsliceLen = 2.5s and

cleanseLen = 0.25s.

35

VM (replicas) per host
total hosts total VMs vanilla Xen time slicing StopWatch

Baseline 3 1 0 or 1 N/A 1
Config-1 13 26 2 2 6
Config-2 19 57 3 3 9
Config-3 25 100 4 4 12

Table 2.2: Configurations

2.7.2.2 Evaluation

To fairly compare the performance of VMs running underStopWatchand in a time-slicing

fashion, we first configure our system carefully so that the same number of VMs are running on the

same number of physical machines in both modes. For instance, given 13 machines, if each is time

sliced by two VMs, then there are 26 VMs running in total.StopWatchcan also support 26 VMs (78

replicas in total) with 13 machines, each of which hosts 6 distinct replicas without violatingStop-

Watch’s placement constraints. We have three configurations in this evaluation, shown in Table 2.2,

as well as a “Baseline” configuration in which there is at mostone VM (replica) per host. In all tests,

one “target VM” is serving files via HTTP; half of the other VMs(if any, and rounding up if nec-

essary) with which it is coresident are serving NFS with a workload described below; and the rest

are receiving light ICMP traffic (i.e., beingping’ed). All VMs in this experiment are uniprocessor

VMs. The machines used to support these experiments are as described in Section 2.6.2.

In Figure 2.10a we compare the performance of the target VM serving files via HTTP in the

time slicing andStopWatchcases. Specifically, the target VM serves a file of size 100MB via

HTTP. In these tests, the downloading client was a machine sitting on the same campus network

as the nodes hosting these VMs, with a wired connection. The y-axis shows the slowdown factor,

which is computed by dividing the time taken to fetch the file from the target VM running in either

StopWatchor time sliced mode by the “vanilla Xen” value for that configuration. Each shown data

point is the average over ten such downloads.

To help explain results shown in Figure 2.10a, in Figure 2.11we show the progress of download-

ing for various setups. (Flush-B is not shown, since it largely overlays Flush-C.) Even in Flush-A,

the download speed suffers both from frequent context switches among VMs and from CPU cache

flushing. While in Flush-C, which has longer time slices, thedownload speed roughly recovers

36

 0

 2

 4

 6

 8

 10

 12

Baseline Config-1 Config-2 Config-3

S
lo

w
do

w
n

Vanilla Xen
StopWatch

Flush-A
Flush-B
Flush-C

(a) File downloading via HTTP

 1

 10

 100

 1000

Baseline Config-1 Config-2 Config-3La
te

nc
y

of
 g

re
p

ov
er

 N
F

S
 (

m
s)

(b) grep via NFS

Figure 2.10:StopWatchvs. time slicing: comparison of slowdown and delay

within one slice from a cleaned cache, the slice ends shortlythereafter. And also due to the longer

time slices, stepped effects become more obvious in Flush-C.

Finally, in Figure 2.10b we confirm these effects by measuring the latency of highly interactive

NFS operations. An NFS server was set up in the target VM, and the client remotely mounted

the exported partition and then launchedgrep operations, trying to find a target string in a 32B

file. grep operations were conducted with a frequency of 10 ops/s, and the average latency to

perform 200grep operations is reported. In this experiment, the effects observed in the HTTP

case manifest themselves as pausedgrep commands owing to the NFS server not being scheduled

yet and so being unable to respond.

2.7.3 Discussion

The above analyses are not meant to conclude theStopWatchwill always provide superior per-

formance to adding random noise or time slicing hosts, nor dowe believe that is the case. For

example, machines with few physical cores and a compute-intensive, batch workload would almost

certainly perform better with time slicing than it would with StopWatch, sinceStopWatchwould

triplicate the computations on machines allowing minimal concurrency. That said, the above analy-

ses do illustrate ways in whichStopWatchcan outperform these alternative designs, while providing

an arguably more holistic defense against timing channels than either of them.

37

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120C
um

ul
at

iv
e

D
ow

nl
oa

de
d

D
at

a
(M

B
)

time (s)

Vanilla Xen
StopWatch

Flush-A
Flush-C

(a) Config-1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120C
um

ul
at

iv
e

D
ow

nl
oa

de
d

D
at

a
(M

B
)

time (s)

Vanilla Xen
StopWatch

Flush-A
Flush-C

(b) Config-2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120C
um

ul
at

iv
e

D
ow

nl
oa

de
d

D
at

a
(M

B
)

time (s)

Vanilla Xen
StopWatch

Flush-A
Flush-C

(c) Config-3

Figure 2.11: Progress of file download via HTTP

2.8 Replica Placement in the Cloud

StopWatchrequires that the three replicas of each guest VM are coresident with nonoverlapping

sets of (replicas of) other VMs. This constrains how a cloud operator places guest VM replicas on

38

its machines. In this section we clarify the significance of these placement constraints in terms

of the provider’s ability to best utilize its infrastructure. After all, if under these constraints, the

provider were able to simultaneously run a number of guest VMs that scales, say, only linearly in

the number of cloud nodes, then the provider should forgoStopWatchand simply run each guest

VM (non-replicated) in isolation on a separate node. Here weshow that the cloud operator is not

limited to such poor utilization of its machines. We show some main theorems first and then show

their proofs with lemmas.

If the cloud hasn machines, then consider the complete, undirected graph (clique)Kn on n

vertices, one per machine. For every guest VM, the placementof its three replicas forms atriangle

in Kn consisting of the vertices for the machines on which the replicas are placed and the edges

between those vertices. The placement constraints ofStopWatchcan be expressed by requiring that

the triangles representing VM replica placements be pairwiseedge-disjoint. As such, the number

of guest VMs that can simultaneously be run on a cloud ofn machines is the same as the number

of edge-disjoint triangles that can bepackedinto Kn. A corollary of a result due to Horsley [48,

Thm. 1.1] is:

Theorem 3. A maximum packing ofKn with pairwise edge-disjoint triangles has exactlyk trian-

gles, where: (i) ifn is odd, thenk is the largest integer such that3k ≤
(n
2

)

and
(n
2

)

− 3k 6∈ {1, 2};

and (ii) if n is even, thenk is the largest integer such that3k ≤
(

n
2

)

− n
2 .

So, a cloud ofn machines usingStopWatchcan simultaneously executek = Θ(n2) guest VMs.

The existence of such a placement, however, does not guarantee an efficient algorithm to find it.

Moreover, this theorem ignores machine capacities. Below we address both of these shortcomings.

Under the constraints ofStopWatch, one node in a cloud ofn nodes can simultaneously execute

up to n−1
2 guest VMs, since the other replicas of the guest VMs that it executes (two per VM) must

occupy distinct nodes. If each node has resources to simultaneously executec ≤ n−1
2 guest VMs,

then the following theorem provides for an algorithm to efficiently place them subject to the per-

machine capacity constraintc.

Theorem 4. Let n ≡ 3 mod 6 and c ≤ n−1
2 . If c ≡ 0 or 1 mod 3, then there is an efficient

algorithm to placek ≤ 1
3cn guest VMs. Ifc ≡ 2 mod 3, then there is an efficient algorithm to place

k ≤ 1
3 (c− 1)n + n−3

6 guest VMs.

39

A limitation of Theorem 4 is that it provides an efficient algorithm to placeΘ(cn) VMs only in

the case that all VMs consume one unit of machine capacity. Inthis sense, the theorem is simplistic,

since VMs submitted to clouds frequently have different demands for some resources. For exam-

ple, if the capacityc represents physical memory, then different VMs may have different memory

demands. The following theorem provides for an efficient placement of VMs even in this case.

Theorem 5. Let n = 6v + 3, and2v + 1 = 3q for someq ∈ N. Suppose that each machine has

capacityc ≤ n−1
2 and each VM guest has a constant associated demand on that capacity of at most

dmax . There is an efficient algorithm to placeΘ(c
dmax

n) VM guests.

Next we prove these theorems and some lemmas required to do so.

Let (Z2v+1,⊕) denote the cyclic group of addition modulo2v + 1 for v ∈ N, and letπ :

Z2v+1 → Z2v+1 be a bijection satisfyingπ(i⊕ i) = i for all i ∈ Z2v+1. (Note thati⊕ i 6= i′⊕ i′ for

anyi, i′ ∈ Z2v+1, i 6= i′, since2v+1 is odd. As such,π is well defined.) Let⊚ : Z2v+1×Z2v+1 →

Z2v+1 be defined byi ⊚ i′ = π(i ⊕ i′). Then,⊚ is idempotent (i ⊚ i = i for all i ∈ Z2v+1) and

commutative (i⊚ i′ = i′⊚ i for all i, i′ ∈ Z2v+1). Moreover, for anyi, i′ ∈ Z2v+1, i′′ = π−1(i′)⊖ i

satisfiesi⊚ i′′ = i′, and so(Z2v+1,⊚) is an idempotent, commutative quasigroup.

Lemma 1. Fix anyt, 1 ≤ t ≤ v. Then,Z2v+1 =
⋃

i∈Z2v+1
{i⊚ (i⊕ t)}.

Proof.

Z2v+1 =
⋃

i∈Z2v+1

{i⊕ i} =
⋃

i∈Z2v+1

{i⊕ i⊕ t} =
⋃

i∈Z2v+1

{π(i ⊕ i⊕ t)} =
⋃

i∈Z2v+1

{i⊚ (i⊕ t)}

Proof of Theorem 4.Following Bose’s construction of a Steiner Triple System [58, Section 1.2], let

n = 6v + 3 and let(Z2v+1,⊚) be the idempotent commutative quasigroup of order2v + 1 defined

above. LetZ2v+1 × {0, 1, 2} denote then nodes, and consider the following setsGt, 0 ≤ t ≤ v, of

triangles:

G0 =
⋃

0≤i≤2v

{{(i, 0), (i, 1), (i, 2)}}

40

and for1 ≤ t ≤ v,

Gt =
⋃

0≤i≤2v
0≤ℓ≤2

{{(i, ℓ), (i ⊕ t, ℓ), (i ⊚ (i⊕ t), ℓ+ 1 mod 3)}}

There are2v + 1 triangles inG0 and(2v + 1) × 3 = 6v + 3 = n triangles inGt for each

1 ≤ t ≤ v. Moreover, all of these triangles are edge-disjoint [58, Section 1.2]. Triangles inG0 visit

each of then nodes exactly once. Triangles in anyGt, 1 ≤ t ≤ v, visit each node(i∗, ℓ∗) exactly

three times: wheni∗ = i andℓ∗ = ℓ; wheni∗ = i ⊕ t andℓ∗ = ℓ; and wheni∗ = i ⊚ (i ⊕ t) and

ℓ∗ = ℓ+ 1 mod 3. And due to the fact that(Z2v+1,⊚) is an idempotent, commutative quasigroup,

these three times are distinct. Due to Lemma 1,i⊚(i⊕t) also iterates through the members ofZ2v+1

exactly once (i.e.,Z2v+1 =
⋃

i∈Z2v+1
{i ⊚ (i ⊕ t)}). So, collectively the triangles inG0, . . . , Gv

visit each node3v + 1 = n−1
2 ≥ c times.

So, if c ≡ 0 mod 3, then we can placek ≤ 1
3cn VMs using the 1

3cn triangles in groups

G1, . . . , Gc/3. If c ≡ 1 mod 3, then we can placek ≤ 1
3cn VMs by first using the2v + 1 = n

3

triangles inG0 and then the13(c− 1)n triangles inG1, . . . , G(c−1)/3. If c ≡ 2 mod 3, then we can

placek ≤ 1
3(c − 1)n + n−3

6 VMs by first using the2v + 1 = n
3 triangles inG0, then 1

3(c − 2)n

triangles inG1, . . . , G(c−2)/3, and finally anyv = n−3
6 triangles fromGv that visit each node at

most one time (e.g.,{(i, 0), (i ⊕ v, 0), (i ⊚ (i⊕ v), 1)} for 0 ≤ i ≤ v − 1).

From this point forward, we fix the bijectionπ to be

π(i) =











i/2 if i ≡ 0 mod 2

(i+ 2v + 1)/2 otherwise

Lemma 2. If 2v + 1 ≡ 0 mod 3m, then:

• If i ≡ 3m−1 mod 3m, thenπ(i) ≡ 2 · 3m−1 mod 3m.

• If i ≡ 2 · 3m−1 mod 3m, thenπ(i) ≡ 3m−1 mod 3m.

Proof. Since2v + 1 ≡ 0 mod 3m by assumption, we know that2v + 1 = b · 3m for someb ∈ N.

We first prove ifi ≡ 3m−1 mod 3m, thenπ(i) ≡ 2 ·3m−1 mod 3m. Note that ifi ≡ 3m−1 mod 3m,

theni = a · 3m + 3m−1 for somea ∈ N.

41

1. If a is odd and soa = 2a′ + 1 for somea′ ∈ N, theni = (2a′ + 1)3m + 3m−1 = 2a′ ·

3m + 3m + 3m−1 = 2a′ · 3m + (3 + 1)3m−1. In particular, note thati is even. As a result,

π(i) = i/2 = a′ · 3m + 2 · 3m−1 and soπ(i) ≡ 2 · 3m−1 mod 3m.

2. If a is even and soa = 2a′ for somea′ ∈ N, theni = (2a′)3m + 3m−1, which is odd. Then

π(i) = (i+ 2v+ 1)/2 = (2a′ · 3m + 3m−1 +2v +1)/2 = a′ · 3m + 3m−1+2v+1
2 = a′ · 3m +

3m−1+b·3m

2 = a′ ·3m+ 3b+1
2 ·3m−1. Note thatb must be odd, i.e.,b = 2b′+1 for someb′ ∈ N.

So we haveπ(i) = a′·3m+ 6b′+4
2 ·3m−1 = a′·3m+3b′·3m−1+2·3m−1 = (a′+b′)3m+2·3m−1.

So,π(i) ≡ 2 · 3m−1 mod 3m.

Now we prove that ifi ≡ 2 · 3m−1 mod 3m, thenπ(i) ≡ 3m−1 mod 3m. Note that ifi ≡

2 · 3m−1 mod 3m, theni = a · 3m + 2 · 3m−1 for somea ∈ N.

1. If a is even and soa = 2a′ for somea′ ∈ N, theni = (2a′)3m + 2 · 3m−1. So,π(i) = i/2 =

a′ · 3m + 3m−1 and thusπ(i) ≡ 3m−1 mod 3m.

2. If a is odd and soa = 2a′ + 1 for somea′ ∈ N, theni = (2a′ + 1)3m + 2 · 3m−1. Then

π(i) = (i+2v+1)/2 = ((2a′+1) ·3m+2·3m−1+2v+1)/2 = a′ ·3m+3m−1+ 3m+2v+1
2 =

a′ ·3m+3m−1+ 3m+b·3m

2 = a′ ·3m+3m−1+ b+1
2 ·3m. Note thatb must be odd, i.e.,b = 2b′+1

for someb′ ∈ N. So we haveπ(i) = a′ ·3m+3m−1+(b′+1) ·3n = (a′+b′+1) ·3m+3m−1

and thusπ(i) ≡ 3m−1 mod 3m.

Lemma 3. Fix anyi, i′ ∈ Z2v+1. Then for anyk, 0 ≤ k ≤ 2v, (i⊕ k)⊚ (i′ ⊕ k) = (i⊚ i′)⊕ k.

Proof. We show that for anyk, 0 ≤ k ≤ 2v, that(i⊕k⊕1)⊚ (i′⊕k⊕1) ≡ ((i⊕k)⊚ (i′⊕k))⊕1.

We consider four cases:

• If (i⊕k)⊕(i′⊕k) is even and(i⊕k⊕1)⊕(i′⊕k⊕1) is even, thenπ((i⊕k)⊕(i′⊕k))⊕1 =

i⊕k⊕i′⊕k
2 ⊕ 1 = i⊕k⊕1⊕i′⊕k⊕1

2 = π((i⊕ k ⊕ 1)⊕ (i′ ⊕ k ⊕ 1)).

• If (i⊕k)⊕(i′⊕k) is odd and(i⊕k⊕1)⊕(i′⊕k⊕1) is odd, thenπ((i⊕k)⊕(i′⊕k))⊕1 =

(i⊕k)⊕(i′⊕k)+2v+1
2 ⊕ 1 = (i⊕k⊕1)⊕(i′⊕k⊕1)+2v+1

2 = π((i ⊕ k ⊕ 1)⊕ (i′ ⊕ k ⊕ 1)).

42

• If (i⊕k)⊕(i′⊕k) is odd and(i⊕k⊕1)⊕(i′⊕k⊕1) is even, then(i⊕k)⊕(i′⊕k) = 2v−1

and(i⊕ k ⊕ 1)⊕ (i′ ⊕ k ⊕ 1) = 0. So,π((i⊕ k)⊕ (i′ ⊕ k))⊕ 1 = 2v−1+2v+1
2 ⊕ 1 = 0 =

π((i ⊕ k ⊕ 1)⊕ (i′ ⊕ k ⊕ 1)).

• If (i⊕ k)⊕ (i′⊕ k) is even and(i⊕ k⊕ 1)⊕ (i′⊕ k⊕ 1) is odd, then(i⊕ k)⊕ (i′⊕ k) = 2v

and(i ⊕ k ⊕ 1) ⊕ (i′ ⊕ k ⊕ 1) = 1. So,π((i ⊕ k) ⊕ (i′ ⊕ k)) ⊕ 1 = 2v
2 ⊕ 1 = v ⊕ 1 =

1+2v+1
2 = π((i⊕ k ⊕ 1)⊕ (i′ ⊕ k ⊕ 1)).

So, for anyk, 0 ≤ k ≤ 2v, we have that(i⊕ k ⊕ 1)⊚ (i′ ⊕ k ⊕ 1) ≡ ((i⊕ k)⊚ (i′ ⊕ k))⊕ 1.

Therefore, for anyk, 0 ≤ k ≤ 2v, (i⊕ k)⊚ (i′ ⊕ k) ≡ (i⊚ i′)⊕ k.

Lemma 4. Let n = 6v + 3 and2v + 1 = 3q for someq ∈ N. LetZ2v+1 × {0, 1, 2} denote then

nodes, and consider the following setsGt, 1 ≤ t ≤ v, of triangles:

Gt =
⋃

0≤i≤2v
0≤ℓ≤2

{{(i, ℓ), (i ⊕ t, ℓ), (i ⊚ (i⊕ t), ℓ+ 1 mod 3)}}

For eachGt, 1 ≤ t ≤ v, there exists a setHt ⊂ Gt of 2v + 1 triangles that partition then nodes.

Proof. To define the subgroupHt of triangles, we first introduce some variables based on group

index t, 1 ≤ t ≤ v. Let m ∈ N be the maximum value such that3m−1 | t; therefore,t ≡

3m−1 mod 3m or t ≡ 2 · 3m−1 mod 3m. Then the subgroup of triangles that partition then nodes

is defined as:

Ht =
⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1, 0≤ℓ≤2

{{(i⊕k, ℓ), (i⊕ t⊕k, ℓ), (((i⊕k)⊚ (i⊕ t⊕k)), ℓ+1 mod 3)}} (2.2)

To show that (2.2) partitions the nodes, it suffices to show that

Z2v+1 =
⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1

{i⊕ k, i⊕ t⊕ k, (i ⊕ k)⊚ (i⊕ t⊕ k)} (2.3)

Since2v + 1 = 3q, we havev < 3q. And sincet ≤ v, t < 3q. Because3m−1 | t, we have

3m−1 ≤ t < 3q and som ≤ q. Let p = q −m. First, we have:

43

⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1

{i⊕ k} =
⋃

0≤a<3p,
0≤k<3m−1

{a · 3m + k} (2.4)

Now supposet satisfiest ≡ 3m−1 mod 3m. (The case oft ≡ 2 · 3m−1 mod 3m is similar.)

Denotingt = b · 3m + 3m−1 for some0 ≤ b < 3p, we have:

⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1

{i⊕ t⊕ k} =
⋃

0≤a<3p,
0≤k<3m−1

{(a · 3m)⊕ (b · 3m + 3m−1)⊕ k}

=
⋃

0≤a<3p,
0≤k<3m−1

{(a+ b mod 3p) · 3m + 3m−1 + k}

=
⋃

0≤c<3p,
0≤k<3m−1

{c · 3m + 3m−1 + k} (2.5)

Equation 2.5 follows from the fact thatZ3p = {a+ b mod 3p}0≤a<3p . Moreover,

⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1

{(i⊕ k)⊚ (i⊕ t⊕ k)}

=
⋃

i∈Z2v+1 : i≡0 mod 3m,
0≤k<3m−1

{(i ⊚ (i⊕ t))⊕ k} (2.6)

=
⋃

0≤a<3p,
0≤k<3m−1

{π((a · 3m)⊕ (a · 3m)⊕ (b · 3m + 3m−1))) ⊕ k}

=
⋃

0≤a<3p,
0≤k<3m−1

{π(((2a + b mod 3p) · 3m) + 3m−1)⊕ k}

=
⋃

0≤c<3p,
0≤k<3m−1

{c · 3m + 2 · 3m−1 + k} (2.7)

Equation 2.6 follows from Lemma 3 withi′ = i ⊕ t. Equation 2.7 follows from Lemma 2 and the

facts that (i)Z3p = {2a + b mod 3p}0≤a<3p , and (ii)π is a bijection.

44

Each of the sets in Equation 2.4, Equation 2.5, and Equation 2.7 has size3m−1 · 3p, and they

clearly do not intersect. So, put together they have size3p+m = 3q = 2v + 1. So, Equation 2.3

holds true, and Equation 2.2 defines2v + 1 triangles that exactly partition then nodes.

Proof of Theorem 5.Let (Z2v+1,⊚) be the idempotent commutative quasigroup defined above, and

let Z2v+1 × {0, 1, 2} denote then nodes. Consider the following setsGt, 0 ≤ t ≤ v, of triangles:

G0 =
⋃

0≤i≤2v

{{(i, 0), (i, 1), (i, 2)}}

and for1 ≤ t ≤ v,

Gt =
⋃

0≤i≤2v
0≤ℓ≤2

{{(i, ℓ), (i ⊕ t, ℓ), (i ⊚ (i⊕ t), ℓ+ 1 mod 3)}}

As proved in Lemma 4, eachGt, 1 ≤ t ≤ v, contains a subsetHt ⊂ Gt of triangles that

partition then nodes. LetH0 = G0; this group of triangles also partitions then nodes. Moreover,

note that the triangles inH0, . . . ,Hv are all edge-disjoint, because all of the triangles inG0, . . . , Gv

are [58, Section 1.2]. Therefore,
⋃

0≤t≤v Ht contains(v + 1)(2v + 1) edge-disjoint triangles that

visit each nodev + 1 times. VMs can then be placed on any of these triangles that visit each node

no more thanmin{v + 1, c/dmax } times. Sincev + 1 = Θ(n) and c
dmax

= O(n) the number of

VMs that can be placed isΘ(c
dmax

n).

2.9 Conclusion

We proposed a new method to address timing side channels in IaaS compute clouds that em-

ploys three-way replication of guest VMs and placement of these VM replicas so that they are

coresident with nonoverlapping sets of (replicas of) otherVMs. By permitting these replicas to ob-

serve only virtual (vs. real) time and the median timing of network events across the three replicas,

we suppress their ability to glean information from a victimVM with which one is coresident. We

described an implementation of this technique in Xen, yielding a system calledStopWatch, and we

evaluated the performance ofStopWatchon a variety of workloads. Though the performance cost

for our current prototype ranges up to2.8× for networking applications, we used our evaluation

45

to identify the sources of costs and alternative application designs (e.g., reliable transmission us-

ing negative acknowledgments, to support serving files) that can enhance performance considerably.

We also extended this evaluation to demonstrate workloads for which StopWatchprovides better

performance than alternatives that leverage commodity hardware, namely adding random noise to

observable event timings and eliminating concurrent VM execution (time slicing). We showed that

clouds withn machines capable of each runningc ≤ n−1
2 guest VMs simultaneously can efficiently

scheduleΘ(cn) guest VMs under the constraints ofStopWatch, or Θ(cn
dmax

) guest VMs if each

guest VM makes demands on the per-machine capacityc of at mostdmax . These results represent a

clear improvement over the alternative of running each guest VMs on its own machine. We envision

StopWatchas a basis for a high-security cloud, e.g., suitable for military, intelligence, or financial

communities with high assurance needs.

An important topic for future work is extendingStopWatchto support multiprocessor guest

VMs. As discussed in Section 2.1, previous research on deterministic scheduling (e.g., [27]) should

provide a basis for extending our currentStopWatchprototype. A second direction for improve-

ment is that we have implicitly assumed in ourStopWatchimplementation — and in many of our

descriptions in this chapter — that the replicas of each VM are placed on a set of homogeneous

nodes. Expanding our implementation to heterogeneous nodes poses additional challenges that we

hope to address in future work.

46

CHAPTER 3 REPLICA PLACEMENT FOR AVAILABILITY IN THE WORST CA SE

In this chapter, we consider the problem of deployingreplicas of objectsonto a system of

physicalnodesso as to ensure the survival of as many objects as possible when node failures occur.

This general problem occurs in practice in many computing contexts: the “objects” might be virtual

machines, files, or servers, and the “replicas” could be whole object copies or merely components

used in the implementation of the object. The survival of an object is achieved provided that fewer

than a given threshold number of its replicas were placed on the nodes that fail. This threshold

might range from all of the object replicas to only a few. The question we address in this chapter is:

How should the object replicas be placed on the nodes (aside from the obvious requirement that the

replicas of an object all be placed on different nodes)?

Upon encountering this problem for the first time, it might not be immediately obvious that the

placement matters. But consider the possibility that all ofthe failed nodes host replicas of mostly

the same objects. This scenario might fail objects that require many replica failures to do so, but

it fails fewer objects than it otherwise could if each objectfails when only a few of its replicas do.

Alternatively, suppose the failed nodes host replicas of mostly different objects. Then, many objects

might fail if only few object replica failures suffice to faileach object, but fewer objects might fail

if many replica failures per object are required. As this contrast suggests, the placement certainly

matters and depends not only on the number of nodes, the number of objects, the number of node

faults, and the replicas per object, but also the number of anobject’s replicas’ failures that prove

fatal to the object.

We are not the first to study the problem of object replica placement for availability (see Sec-

tion 3.1 for a discussion of related work), but to our knowledge, our treatment is novel in at least

two ways. First, we consider aworst-caseadversary that fails a specified number of nodeswith

knowledge of how object replicas were placed on nodes, so as to maximize the number of objects

failed. This is in contrast to failures that occur probabilistically, for example. Second, by decoupling

47

the number of replicas per object from the number of replica failures that disable each object, our

framework allows for treatment of a wide variety of object configurations, such as objects that are

accessed using majority quorums (e.g., [38, 36]) so that a majority of available replicas is required

for the object to survive, or objects for which even just a single surviving replica suffices to keep

the object available (e.g., in the primary-backup(s) approach [17]).

Our study is also general by virtue of what it leaves unspecified. While we label nodes, replicas

and objects as “failed” or not, we remain agnostic to the fault model [79] (crash, Byzantine, etc.).

Indeed, our interest in this problem arose from our work for using virtual machine replication as a

defense against timing side-channels in an infrastructure-as-a-service compute cloud [57] (detailed

in Chapter 2), without attention to actual faults at all. Similarly, the protocols run among object

replicas or for objects to interact with others are not our concern here. Rather, we simply assume

that a node failure fails all of the object replicas it hosts,and that an object fails once a specified

number of its object replicas do. We also do not constrain themeans by which the adversary fails

the nodes it chooses to, whether that be disabling them by denial-of-service attacks, leveraging

vulnerabilities in object replicas they host, physically attacking the nodes, etc.

In this context, we make the following contributions:

• We study the viability of block designs for replica placements. Specifically, we first leverage

t-packings (e.g., see [61]), a relaxation of Steiner systems, as a replica placement strategy. We

provide a lower bound for the availability of these replica placements and show that they already

offer availability that isc-competitive with optimal placements (for a factorc that we specify).

This suggests thatt-packings are a useful starting point for constructing placement strategies.

• We develop a placement strategy that improves on the use oft-packings in isolation by combining

them. We present an efficient algorithm to compute combinations of individualt-packings that

maximize our lower bound on availability (among any such combination) for a given number

of node failures. We further demonstrate that for a range of practical parameter values, the

placement strategy derived for a given target number of failures provides good availability even

for different numbers of failures.

• We develop as our primary comparison point a placement strategy of randomly placing replicas

on nodes subject to a load-balancing requirement, owing to the popularity of this strategy in

48

previous work. We characterize availability for this placement strategy in our adversarial model,

and then we develop an expression for the limit of this measure as the number of objects grows.

We further show that this limit already closely reflects reality for practical parameter values and

relatively small numbers of objects, allowing it to be used as a basis to compare to the availabil-

ities offered by our strategies based ont-packings. In this way, we show that our constructions

based ont-packings provide better availability for ranges of practical parameter values than does

random replica placement.

As discussed above, the replica placement strategies that we explore build fromt-packings, and

some of our analysis depends on use ofmaximumt-packings (also calledt-designs). Based on

current knowledge oft-designs (which we briefly survey in Section 3.2.3), we limitour attention to

replication scenarios involving up to five replicas per object. Fortunately, this decision is not limiting

for practical replication scenarios in data centers: VM replication for fault tolerance typically uses

two (e.g., [86]) and many file systems default to three or fourreplicas per file or related structure

(as in GFS [37], Hadoop [80], and FARSITE [2]).

3.1 Related Work

Replica placement for availability (or durability) has been extensively studied in various fields

(e.g., [12, 31, 10, 93, 68, 91, 9, 75]), sometimes in conjunction with other concerns. All related

work we have located focuses on leveraging node failure distributions, especially their independence

and/or heterogeneity as would be common in peer-to-peer storage and computing, for example.

Here we make no assumptions about node failure distributions, allowing them to be controlled by

an arbitrary adversary constrained only by the number of nodes he can fail. This renders our analysis

both simpler in many cases and, at the same time, very general.

We nevertheless draw from this work where possible. Notably, at PODC 2007, Yu and Gib-

bons [91] explored the following question: If each node fails independently with fixed probability

and if all replicas of an object must fail for the object to fail, then what placement strategy offers the

highest probability of success for operations involving multiple objects, a given number of which

must be available for the operation to succeed? Their findingthat we most directly leverage here is

their identification of random replica placements as offering close to the best probability of opera-

49

tion success when an operation can tolerate some object failures. Together with the widespread use

and empirical study of random placements (e.g., [76, 2, 10, 37, 92, 59]), this finding motivates our

choice of random replica placement as a comparison point forour proposed placement strategies

in Section 3.3. That said, for drawing this comparison we need to develop our own analysis of

the availability of random placements, since we focus on a worst-case adversary that can choose

which nodes to fail; this analysis might be of interest in itsown right. Our work also differs from

Yu and Gibbons’ in that we do not consider multi-object operations, asking instead only how many

objects remain available, but we do so while permitting an object to remain available only if a spec-

ified number of its replicas survive (versus just one of them). Note that equating our “objects” to

their “operations” and our “replicas” to their “objects” (each with only one replica) does not yield

the same problem—even setting aside our different adversarial models—since replicas of the same

object in our case must be placed on different nodes, while their objects do not.

As discussed earlier, the cornerstone of the replica placement strategy we develop is at-packing.

To our knowledge, we are the first to explore the use oft-packings for replica placement in dis-

tributed systems. That said, such block designs have found application in several diverse domains,

as surveyed elsewhere (e.g., [22, 20, 71]). To our knowledge, the most conceptually related use

of block designs to our problem is their use in constructing quorum systems (e.g., [65]). Quorum

systems, however, must intersect, whereas we have no such requirement here for object placements,

a fact that we leverage.

3.2 Overlap-Based Placement Strategies

The strength of random replica placement in diminishing thelikelihood that random node

failures will fail many objects (see Section 3.1) derives from it inducing low inter-object corre-

lation [91], a measure that reflects the overlaps of objects’ replica placements. However, random

placement induces small overlaps only probabilistically,allowing the possibility thattargetednode

failures could still impact many objects. In this section weexplore “overlap-based” placement strate-

gies that manage these overlaps explicitly. We will return to analyzing the impact of targeted node

failures on random placements in Section 3.3 and compare to our overlap-based strategies there.

50

b The number of objects
r The number of replicas per object
s The number of an object’s replicas

whose failure fails the object;1 ≤ s ≤ r
n The number of nodes
k The number of failed nodes;s ≤ k < n
π A placement
O The set of all objects;|O| = b
N The set of all nodes;|N | = n

Figure 3.1: Notation

Before continuing, we first define some notation used in the rest of this document (see Fig-

ure 3.1). We presume a system ofn nodes denoted by the setN (|N | = n). These nodes will host

a setO of b objects (|O| = b), each replicatedr times. This hosting is represented by aplacement

π : O → 2N , where2N is the power set ofN . Specifically, for eachobj ∈ O, π(obj) is a subset

of N of size|π(obj)| = r that indicates the nodes on which replicas ofobj are located. We usek

to denote the number of nodes that fail. IfK ⊆ N is the set ofk failed nodes, then an objectobj is

said to fail if and only if|π(obj) ∩ K| ≥ s. This gives rise to the following natural definition of the

availability of a placementπ.

Definition 1. For any fixed placementπ, let Avail (π) denote the number of available objects, min-

imized over all setsK of (potentially failed) nodes where|K| = k. In other words,

Avail (π) = min
K⊆N :
|K|=k

|{obj ∈ O : |π(obj) ∩ K| < s}|

3.2.1 TheSimpleOverlap(x, λ) Placement Strategy

Our intuition for developing a replica placement strategy so as to maximize availability is simply

to limit the number of objects whose replicas overlap on the same nodes “too much.” This intuition

is captured in theSimpleOverlap(x, λ) strategy, which limits overlaps of more thanx nodes to at

mostλ objects. We limit our attention tox < s, since oncex ≥ s, arbitrarily many objects can

overlap ons nodes in aSimpleOverlap(x, λ) placement, meaning that failures of those nodes could

fail arbitrarily many objects.

51

Definition 2. TheSimpleOverlap(x, λ) placement strategy locates object replicas on nodes so that

for all N ′ ⊆ N where|N ′| = x+1 and allO′ ⊆ O, if on every node inN ′ is placed replicas of all

objects inO′, then|O′| ≤ λ.

So, for example, ifλ = 1, then the replicas of any two objects can overlap on at mostx nodes.

It is important to note that aSimpleOverlap(x, λ) placement exists only for limited values of

b, oncen andr are fixed. Specifically, from design theory results, where aSimpleOverlap(x, λ) is

otherwise known as a(x+ 1)-(n, r, λ)-packing (e.g., [61]), we have:

Lemma 5 e.g., [61].A SimpleOverlap(x, λ) placement exists only ifb ≤
⌊

λ
(

n
x+1

)

/
(

r
x+1

)

⌋

.

While b ≤
⌊

λ
(n
x+1

)

/
(r
x+1

)

⌋

is necessary for aSimpleOverlap(x, λ) placement, it is not sufficient.

To achieve a sufficient condition, we select annx ≤ n and aµx of which λ is a multiple (i.e.,

µx | λ), as a function ofx (andr, which we generally consider a constant) so thatµx

(

nx

x+1

)

/
(

r
x+1

)

is integral and, moreover, aSimpleOverlap(x, µx) placement exists for anyb ≤ µx

(nx

x+1

)

/
(r
x+1

)

objects. Then, aSimpleOverlap(x, λ) placement onnx nodes can be obtained by “copying” the

SimpleOverlap(x, µx) placementλ/µx times.

Observation 1. If there exist annx ≤ n and aµx | λ so that aSimpleOverlap(x, µx) place-

ment exists for allb ≤ µx

(nx

x+1

)

/
(r
x+1

)

, then aSimpleOverlap(x, λ) placement exists for allb ≤

λ
(

nx

x+1

)

/
(

r
x+1

)

.

Observation 2. Placing replicas on onlynx ≤ n nodes can lead to a load-imbalanced system, but

only slightly if we can find a suitablenx ≈ n. If we cannot, then we can instead identify valuesnx1,

. . ., nxm such that
∑m

i=1 nxi ≤ n but
∑m

i=1 nxi ≈ n, and then extend the results below to account

for building aSimpleOverlap(x, λ) placement on
∑m

i=1 nxi nodes for anyb ≤
∑m

i=1 λ
(nxi

x+1

)

/
(r
x+1

)

objects from aSimpleOverlap(x, λ) placement on each chunk ofnxi nodes.

The extension in Observation 2 is straightforward but tedious, and so we defer its discussion to

Section 3.2.3. For now, we simply assume that a suitablenx andµx exist and can be found to

support Observation 1. We also adopt the convention that, givennx, µx, r, s, andb, λ is chosen

minimally, so that

(λ − µx)

(nx

x+1

)

(r
x+1

) < b ≤ λ

(nx

x+1

)

(r
x+1

) (3.1)

52

 0

 5

 10

 15

 20

 25

600 1200 2400 4800 9600
b

s = 2 k = 2
k = 3
k = 4
k = 5

s = 3 k = 3
k = 4
k = 5

Figure 3.2:Avail (π)− lbAvail so(x, λ) for n = 71, x = 1, andr = 3

We now briefly characterize the availability ofSimpleOverlap(x, λ) placements, to justify their

use as a building block for a more useful placement strategy in Section 3.2.2. The key observation

in characterizing the availability ofSimpleOverlap(x, λ) placements is that the availability can be

lower-bounded by applying Lemma 5 to packings-sized sets of replicas into thek failed nodes, as

shown in the following lemma.

Lemma 6. For anySimpleOverlap(x, λ) placementπ, Avail (π) ≥ lbAvail so(x, λ) where

lbAvail so(x, λ) = b−

⌊

λ

(

k
x+1

)

(

s
x+1

)

⌋

(3.2)

Proof. An upper bound on the number of objects that become unavailable due to the failure of nodes

in K is simply the number of objects for whichs replicas can be packed onto the nodesK under

the constraints of aSimpleOverlap(x, λ) placement, i.e., in aSimpleOverlap(x, λ) placement using

only s replicas per object (versusr) and onlyk nodes (versusn). Adapting Lemma 5 accordingly,

we get that at most
⌊

λ
(k
x+1

)

/
(s
x+1

)

⌋

objects become unavailable.

lbAvail so(x, λ) is a tight lower bound for some but not all parameter values, as indicated in

Figure 3.2. In this figure,Avail (π) was calculated explicitly after placing objects accordingto a

SimpleOverlap(x, λ) placementπ and then simulating the worstk failures.

This lower bound forAvail (π), together with Equation 3.1, permits us to relateAvail (π) to the

availability ofanyplacementπ′—and so, in particular, one offering optimal availability.

Theorem 6. For constantn, x (and sonx, µx), r, s, andk, define constantsc =

[

1−
(r

x+1)(
k

x+1)
(nx
x+1)(

s

x+1)

]−1

andα = cµx
(k

x+1)
(s

x+1)
. For any numberb of objects, anySimpleOverlap(x, λ) placementπ, and any

53

other placementπ′,

Avail (π′) < c · Avail (π) + α

In this respect,SimpleOverlap(x, λ) placements are “c-competitive” (c.f., [14]) with optimal place-

ments.

Proof. First note that Equation 3.1 implies

λ

b
<

(r
x+1

)

(nx

x+1

) +
µx

b
(3.3)

By Lemma 6,

Avail (π)
Avail (π′)

≥

b−

⌊

λ
(k
x+1)
(s
x+1)

⌋

b
≥

b− λ
(k
x+1)
(s
x+1)

b
= 1−

λ

b

(k
x+1

)

(s
x+1

) > 1−

(
(r
x+1

)

(nx

x+1

) +
µx

b

)(
(k
x+1

)

(s
x+1

)

)

where the last step is simply substituting Equation 3.3. Rearranging, we get

Avail (π′)− c · Avail (π) <
(

Avail (π′)

b

)

α ≤ α

wherec andα are as given in the theorem statement.

To see an illustration of Theorem 6, suppose thats = r so that
(r
x+1

)

and
(s
x+1

)

cancel. Then,

c =

[

1−

(r
x+1

)(k
x+1

)

(nx

x+1

)(s
x+1

)

]−1

=

[

1−
k(k − 1) · · · (k − x)

nx(nx − 1) · · · (nx − x)

]−1

≤

[

1−

(

k

nx

)x+1
]−1

So, for example, if
(

k
nx

)x+1
= 0.2, then the availability of aSimpleOverlap(x, λ) placement is

1.25-competitive with the availability offered by an optimal placement. On the other hand, under

other conditions (such as whens is small relative tor), this constant factor can be less favorable.

3.2.2 TheComboOverlap(λ0, . . . , λs−1) Placement Strategy

The previous section illustrated the potential utility ofSimpleOverlap(x, λ) placements, but we

stopped short of suggesting exactly how to selectx. To see why this may not be straightforward,

consider a fixedn, r, s, andk, but consider increasingly large values ofb. On the one hand, ifx is

54

held constant, then the valueλ must grow linearly withb, due to Equation 3.1. This, however, im-

plies that the (lower bound on) availability in Lemma 6 alsodiminisheslinearly. On the other hand,

if x is increased so thatλ need not be, then this increases the values ofb that can be accommodated

exponentially (assuming eachnx ≈ n andr ≪ n); to accommodate some values ofb, though, this

huge increase is unnecessary and results in a larger penaltyto availability than increasingλ would

have.

In this section we develop a new placement strategy, calledComboOverlap(λ0, . . . , λs−1), that

provides us the flexibility to tune parametersλ0, . . . , λs−1 corresponding to the possible values of

x, 0 ≤ x < s, to best match a givenb. That is,ComboOverlap(λ0, . . . , λs−1) takes a valueλx

corresponding to eachx, 0 ≤ x < s, subject to the constraint

b ≤
s−1
∑

x=0

λx

(

nx

x+1

)

(

r
x+1

) (3.4)

and then divides the objects over placementsSimpleOverlap(0, λ0), . . . ,SimpleOverlap(s− 1, λs−1).

Equation 3.4 ensures thatComboOverlap(λ0, . . . , λs−1) can accommodate allb objects, since each

SimpleOverlap(x, λx) placement can accommodateλx

(nx

x+1

)

/
(r
x+1

)

of them (see Observation 1).

Definition 3. A ComboOverlap(λ0, . . . , λs−1) placement strategy locates object replicas on nodes

by placing up toλx

(nx

x+1

)

/
(r
x+1

)

objects according to aSimpleOverlap(x, λx) placement for each

x ≥ 0.

Lemma 7. For anyComboOverlap(λ0, . . . , λs−1) placementπ, Avail (π) ≥ lbAvail co(λ0, . . . , λs−1)

where

lbAvail co(λ0, . . . , λs−1) = b−
s−1
∑

x=0

⌊

λx

(k
x+1

)

(s
x+1

)

⌋

(3.5)

Proof. Under aComboOverlap(λ0, . . . , λs−1) placement, eachSimpleOverlap(x, λx) placement

accounts for placing at mostλx
(nx
x+1)
(r

x+1
)

objects, of which up to

⌊

λx
(k

x+1)
(s

x+1
)

⌋

might be rendered unavail-

able byk node failures, as in Lemma 6. As such, at most
∑s−1

x=0

⌊

λx
(k
x+1)
(s
x+1)

⌋

objects can be rendered

unavailable in total byk node failures. Since onlyb objects can be placed, the result follows.

55

3.2.2.1 Computing aComboOverlap(λ0, . . . , λs−1) to Maximize lbAvail co(λ0, . . . , λs−1)

To maximize availability usingComboOverlap(λ0, . . . , λs−1) for a given value ofk, we thus

take it as our goal to selectλ0, . . . , λs−1 so as to maximize the lower boundlbAvail co(λ0, . . . , λs−1)

subject to Equation 3.4. This problem lends itself to the following recurrence forlbav (x, b′), which

denotes this maximum value oflbAvail co(λ0, . . . , λs−1) for b′ objects placed using placements

SimpleOverlap(0, λ0), . . ., SimpleOverlap(x, λx) under any selection ofλ0, . . . , λx.

∀x,∀b′ ≤ 0 : lbav
(

x, b′
)

= 0 (3.6)

∀b′ > 0 : lbav
(

0, b′
)

= max

{

0, b′ −

⌊(⌈

b′

µ0

r

n0

⌉

µ0

)

k

s

⌋}

(3.7)

∀x > 0,∀b′ > 0 : lbav
(

x, b′
)

=

max

0≤d≤

⌈

b′

µx

(r
x+1)
(nx
x+1)

⌉

{

lbav

(

x− 1, b′ − dµx

(

nx

x+1

)

(

r
x+1

)

)

+min

{

b′, dµx

(

nx

x+1

)

(

r
x+1

)

}

−

⌊

dµx

(

k
x+1

)

(

s
x+1

)

⌋}

(3.8)

In words, Equation 3.6 encodes that zero availability can beoffered if there are no objects (b′ ≤ 0).

Equation 3.7 encodes that whenx = 0 the availability that can be achieved forb′ > 0 objects is that

resulting from settingλ0 =
⌈

(b′/µ0)
(r
1

)

/
(n0

1

)⌉

µ0 = ⌈(b′/µ0)(r/n0)⌉µ0 and using Lemma 6 (or

simply0 if this value turns out to be negative). Finally, Equation 3.8 encodes that whenx > 0, avail-

ability can be maximized by considering every option forλx = dµx and, for each option, adding the

availability contributed by this setting ofλx (i.e.,min
{

b′, λx

(nx

x+1

)

/
(r
x+1

)

}

−
⌊

λx

(k
x+1

)

/
(s
x+1

)

⌋

)

to the availability that can be achieved for the remainingb′ − λx

(nx

x+1

)

/
(r
x+1

)

objects by optimally

settingλ1, . . . , λx−1 (i.e., lbav
(

x− 1, b′ − λx

(

nx

x+1

)

/
(

r
x+1

)

)

).

So,lbav (s− 1, b) for a given numberk of failed nodes is the maximumlbAvail co(λ0, . . . , λs−1)

that aComboOverlap(λ0, . . . , λs−1) placementπ can achieve. This recurrence gives rise to the nat-

ural dynamic programming algorithm (e.g., see [26, Ch. 6]) for choosingλ0, . . . , λs−1 that runs

O(sb) time, treating all other parameters as constants.

56

 99
 99.2
 99.4
 99.6
 99.8
 100

4 5 6 7 8

P
er

ce
nt

ag
e

k′

n = 31
b = 4800

n = 71
b = 1200

n = 257
b = 9600

r = 5, s = 3, k = 6

 99
 99.2
 99.4
 99.6
 99.8
 100

4 5 6 7 8

P
er

ce
nt

ag
e

k′

n = 31
b = 2400

n = 71
b = 600

n = 257
b = 9600

r = 4, s = 4, k = 6

 99
 99.2
 99.4
 99.6
 99.8
 100

4 5 6 7 8

P
er

ce
nt

ag
e

k′

n = 31
b = 600

n=71
b = 9600

n=257
b = 4800

r = 5, s = 4, k = 6

Figure 3.3:lbAvail co
(λ0,...,λs−1)

lbAvail co
(λ′

0
,...,λ′

s−1
)

expressed as a percentage

3.2.2.2 Sensitivity to Choice ofk

A potential disadvantage of theComboOverlap(λ0, . . . , λs−1) placement strategy, or more pre-

cisely of the algorithm described in Section 3.2.2.1 to configureλ0, . . . ,λs−1 for optimal availability,

is that it does so only for the specified valuek. A concern is that aComboOverlap(λ0, . . . , λs−1)

placementπ configured fork node failures might fare poorly when subjected tok′ 6= k failures,

at least in comparison to its availability were it configuredfor k′ failures. This could occur if the

λ0, . . . , λs−1 resulting from the configuration withk and those values resulting from configuration

with k′ were different.

57

r

n 2 3 4 5

31 n1 = 31 n1 = 31 [58] n1 = 28 [29] n1 = 25 [29]
n2 = 31 n2 = 28 [44] n2 = 26 [43]

n3 = 31 n3 = 23 [69]
n4 = 31

71 n1 = 71 n1 = 69 [58] n1 = 70 [29] n1 = 65 [29]
n2 = 71 n2 = 70 [44] n2 = 65 [21]

n3 = 71 n3 = 71 [69]
n4 = 71

257 n1 = 257 n1 = 255 [58] n1 = 256 [29] n1 = 245 [29]
n2 = 257 n2 = 256 [44] n2 = 257 [67]

n3 = 257 n3 = 243 [69]
n4 = 257

Figure 3.4: Values ofnx used in this chapter

We have explored parameter spaces of interest to identify settings for whichλ0, . . . , λs−1 would

be different when configured fork or k′ failed nodes, and then compared the resulting availabil-

ity lower bounds. Figure 3.3 shows some representative examples. This figure plots the ratio

lbAvail co
(λ0,...,λs−1)

lbAvail co
(λ′

0
,...,λ′

s−1
)

expressed as a percentage for aComboOverlap(λ0, . . . , λs−1) placement con-

figured fork node failures and aComboOverlap(λ′
0, . . . , λ

′
s−1) placement configured fork′ node

failures. As such, whenk′ = k this ratio will be100%, for example. As this plot indicates, for some

parameter values, this ratio dips below100%, though we have not found cases in parameter regions

of interest where this ratio drops below98%.

3.2.3 Parameter Selection

Creating aSimpleOverlap(x, λ) placement for a set ofn nodes can be achieved by identify-

ing annx ≤ n and aµx that dividesλ, for which µx

(

nx

x+1

)

/
(

r
x+1

)

is integral and, moreover, a

SimpleOverlap(x, µx) placement exists for anyb ≤ µx

(nx

x+1

)

/
(r
x+1

)

objects (see Observation 1).

For such annx andµx, a SimpleOverlap(x, µx) placement corresponds to a(x+ 1)-(nx, r, µx)-

design [61]. The study of the existence of such constructs is a fundamental question in design

theory (e.g., [58]).

The need forµx to divideλ can be discharged ifµx = 1, in which case a(x+ 1)-(nx, r, µx)-

design is a Steiner system. Lettingq be any prime power and for anyd ≥ 2, known infinite designs

include [21]:x+ 1 = 2, r = q, andnx = qd; x+ 1 = 3, r = q + 1, andnx = qd + 1; x+ 1 = 2,

r = q + 1, andnx = qd + · · · + q + 1; x + 1 = 2, r = q + 1, andnx = q3 + 1; andx + 1 = 2,

58

r = 2d, andnx = 2d+d′ + 2d − 2d
′

for anyd′ > d. In addition, there are numerous known finite

designs forx < 5, as surveyed by Colbourn and Mathon [21]. Known designs of Steiner systems

suffice to implementSimpleOverlap(x, λ) for a wide array of practical parameter values, including

all of the parameter settings investigated in this chapter.Figure 3.4 shows the Steiner systems used

in our evaluations, as well as citations to where they can be found. (Note that whenx+ 1 = r, the

constraints for a Steiner system are vacuously satisfied by sets of sizer.)

As discussed in Observation 2, if a suitablenx ≈ n cannot be found, then an alternative is to

deconstruct then nodes into “chunks” of sizenx1, . . ., nxm, each admitting aSimpleOverlap(x, µxi)

placement, and to build aSimpleOverlap(x, µx) placement forµx = lcm{µx1, . . . , µxm} on
∑m

i=1 nxi

nodes by building aSimpleOverlap(x, µx) placement on each chunk ofnxi nodes individually. This

observation introduces a wide range of placement options for arbitraryn. This is demonstrated in

Figure 3.5 forµx = 1, which explores possible placements when even onlym = 3. Each CDF

shows the fraction ofn values in the range[50, 800] for which the “capacity gap” is at most the

value on the horizontal axis, where the “capacity gap” is thedifference between the ideal capacity

(i.e.,
⌊

µx

(

n
x+1

)

/
(

r
x+1

)

⌋

) and the capacity achievable (using concrete Steiner systems) by decompos-

ing n into up tom = 3 chunks (i.e.,
∑m

i=1 µxi

(nxi

x+1

)

/
(r
x+1

)

with eachµxi = 1) expressed as a

fraction of the ideal capacity. As shown there, in the casesr ∈ {2, 3, 4}, a very low (i.e., good)

capacity gap can be achieved for nearly all system sizesn and all values ofx. This is not the case

for r = 5, however, where only about 10% of the system sizesn admit constructions (of which we

are aware) forx = 2 or x = 3 with up tom = 3 chunks that yield a reasonably small capacity gap.

One way to address difficult cases like these (i.e.,r = 5 along withx = 2 or x = 3) is to simply

select one’s system sizen from the fraction of possible system sizes for which a small capacity

gap can be achieved. Another alternative, however, is to expand consideration toµx > 1, in which

case numerous additional constructions are possible. Trivially, for any x + 1 ≤ r, the collection

of all r-subsets ofnx nodes suffices as aSimpleOverlap(x, µx) placement forµx =
(nx−x−1
r−x−1

)

.

There are many other classes of(x+ 1)-(nx, r, µx)-designs withµx > 1, as have been surveyed

elsewhere [60, 1, 53]. In particular, Khosrovshahi and Laue[53, Table 4.3.7] survey a number of

infinite designs for3 ≤ x+ 1 ≤ 5.

To see the power of permittingµx > 1 for realistic parameter settings, in Figure 3.6 we re-plot

thex = 2 andx = 3 cases forr = 5 but allowingµx to beµx ≤ 5 (left) or µx ≤ 10 (right). As

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 0
x = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 0
x = 1
x = 2

r = 2 r = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 0
x = 1
x = 2
x = 3 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 0
x = 1
x = 2
x = 3
x = 4

r = 4 r = 5

Figure 3.5: CDFs showing the fraction of system sizesn ∈ [50, 800] for which the capacity gap
(indicated on the horizontal axis, where lower is better) can be achieved using up tom = 3 Steiner
systems (µxi = 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 2
x = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
capacity gap

x = 2
x = 3

µx ≤ 5 µx ≤ 10

Figure 3.6: Re-plot of Figure 3.5 forr = 5 and x ∈ {2, 3}, but allowing µx =
lcm{µx1, . . . , µxm} ≥ 1

can be seen in Figure 3.6, allowingµx ≤ 5 yields significant improvements in thex = 3 case, and

permittingµx ≤ 10 additionally improves thex = 2 case dramatically. As such, permitting even

modest growth ofµx can greatly shrink the capacity gap in difficult cases.

60

3.3 Comparison to Random Replica Placement

As discussed in Section 3.1, the work of Yu and Gibbons [91] highlighted random replica place-

ments as being very effective in ensuring the completion of multi-object operations when some

objects’ loss could be tolerated, in a system model where nodes fail independently with fixed prob-

ability. Given this result and the more general prominence of random replica placement in the

research literature, we compare the availability offered by ourComboOverlap(λ0, . . . , λs−1) place-

ment strategy to that offered by random replica placement. Specifically, we compare to a random

placement strategy that (as in Yu and Gibbon’s work) is load-balanced, where the average number

of replicas per node isℓ = rb
n .

Definition 4. TheRandom placement strategy locates object replicas using a placement chosen

uniformly at random from all placements that locate at most⌈ℓ⌉ replicas on each node.

3.3.1 The Worst-Case Availability ofRandom

Evaluating the worst-case availability ofRandom placement is more subtle than for our previous

placements, sinceany(load-balanced) placement can result from this placement strategy. So, in the

truly worst case,Random would produce the worst possible placement for availability. That said,

Random would do so with very low probability, and so this does not provide a representative view

of howRandom fares.

A more representative evaluation would take into account the expectedbehavior of the place-

ment strategy. In some sense, the previous work of Yu and Gibbons [91] did so, but they did not

take into account theworst-casebehavior of theadversary. That is, their adversary failed nodes

independently with a fixed probability, but ours adaptivelychooses which nodes to fail based on

the placement. So, to quantify the availability offered byRandom in this worst case, we start by

defining thevulnerabilityof Random:1

Definition 5. For anyf , the vulnerabilityof Random, denotedVuln rnd(f), is the expected number

of pairs(K,F) whereK ⊆ N , |K| = k, F ⊆ O, |F| ≥ f , and at leasts replicas of each object in

F are placed on the nodes inK. The expectation is taken with respect to the random choicesmade

by theRandom placement strategy.

1Definition 5 and Definition 6 trivially generalize to any randomized placement strategy.

61

If Vuln rnd(f) ≥ 1, then in expectation, there will be a set ofk nodes that, if failed, will fail a

set of at leastf objects. It is then natural to define the number of objects that areprobably available

as follows:

Definition 6. In aRandom placement, the number of objects that are probably available is

prAvail rnd = b−max{f : Vuln rnd(f) ≥ 1}

We now seek to quantify the probable availability ofRandom.

Theorem 7. As ℓ −→ ∞,

Vuln rnd(f) −→

(

n

k

)(

n

r

)−b




b
∑

f ′=f

(

b

f ′

)

α(n, k, r, s)f
′

((

n

r

)

− α(n, k, r, s)

)b−f ′





whereα(n, k, r, s) =
∑min{r,k}

s′=s

(k
s′

)(n−k
r−s′

)

.

Proof. Consider a variantRandom′ of theRandom placement in which ther replicas of each object

are placed onr distinct nodes selected uniformly at random, but without limiting the number of

replicas placed at each node. LetXnd,obj be an indicator random variable defined asXnd,obj = 1 if

a replica ofobj is placed atnd andXnd,obj = 0 otherwise. LetLnd =
∑

obj∈O Xnd,obj ; i.e.,Lnd is a

random variable denoting the number of replicas placed at nodend.

WhileRandom enforces that the number of replicas placed on each node is atmost⌈ℓ⌉,Random′

allows more. Specifically, for a fixednd, {Xnd,obj}obj∈O are independent, identically distributed

Bernoulli random variables; i.e.,Xnd,obj ∼ B(rn) for eachobj ∈ O. Therefore,E (Lnd) =
br
n = ℓ

and, applying well-known Chernoff bounds (see, e.g., [62, Corollary 4.6]),

P (|Lnd − ℓ| ≥ δℓ) ≤ 2e−ℓδ2/3

for any 0 < δ < 1. Consequently, the distribution of object replicas to nodes underRandom′

(quickly) approaches the distribution induced byRandom asℓ −→ ∞, and so we can reason about

the asymptotic distribution induced byRandom using the one induced byRandom′.

62

Let failedNodes(K) denote the event that setK ⊆ N is the complete set of failed nodes, and

failedObjs(F) denote the event that the setF ⊆ O is the complete set of objects that failed due

to the failure of the nodes inK. Now, underRandom′,

P
(

failedObjs(F)
∣

∣ failedNodes(K)
)

=





∏

obj∈F

P

(

obj replicas placed ons′ ≥ s

nodes inK andr − s′ others

)



 ·





∏

obj∈O\F

P

(

obj replicas placed ons′ < s

nodes inK andr − s′ others

)





=





∏

obj∈F

min{r,k}
∑

s′=s

(k
s′

)(n−k
r−s′

)

(n
r

)



 ·





∏

obj∈O\F

s−1
∑

s′=0

(k
s′

)(n−k
r−s′

)

(n
r

)





=

(

n

r

)−b




min{r,k}
∑

s′=s

(

k

s′

)(

n − k

r − s′

)





f (
s−1
∑

s′=0

(

k

s′

)(

n − k

r − s′

)

)b−f

=

(

n

r

)−b

α(n, k, r, s)f
((

n

r

)

− α(n, k, r, s)

)b−f

(3.9)

To complete the proof, for anyK ⊆ N , |K| = k, and anyF ⊆ O, define an indicator random

variableXK,F as follows:XK,F = 1 if F is the set of objects failed when the nodesK fail, and

XK,F = 0 otherwise. The expected value ofXK,F is then

E (XK,F) = P
(

failedObjs(F)
∣

∣ failedNodes(K)
)

By linearity of expectation,Vuln rnd(f) is then:

Vulnrnd(f) = E









∑

K⊆N :
|K|=k

∑

F⊆O:
|F|≥f

XK,F









=
∑

K⊆N :
|K|=k

∑

F⊆O:
|F|≥f

E (XK,F)

Plugging in Equation 3.9 yields the result.

For the rest of this chapter, we use the limit ofVuln rnd(f) given in Theorem 7 to calculate

prAvail rnd as defined in Definition 6. By comparingprAvail rnd to simulation results for param-

eter ranges of interest that are feasible to simulate, we found that onceb ≥ 600, prAvail rnd has

converged to within10% of the empirical average ofAvail (π) for Random placementsπ. So, in

63

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10
k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

 0.8

 0.84

 0.88

 0.92

 0.96

 1

2 3 4 5 6 7 8 9 10
k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

s = 1 s = 2

 0.95

 0.96

 0.97

 0.98

 0.99

 1

3 4 5 6 7 8 9 10
k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

 0.99

 0.992

 0.994

 0.996

 0.998

 1

4 5 6 7 8 9 10
k

n = 71, r = 5
n = 257, r = 5

 0.998

 0.9984

 0.9988

 0.9992

 0.9996

 1

5 6 7 8 9 10
k

n = 71, r = 5
n = 257, r = 5

s = 3 s = 4 s = 5

Figure 3.7:1bprAvail rnd for b = 38400

drawing our comparisons betweenRandom andComboOverlap placements, we will restrict our

attention tob ≥ 600, to be fair toRandom.

Figure 3.7 plots1bprAvail rnd, i.e.,prAvail rnd as a fraction ofb, for various values ofs, r, andn

whenb = 38400. Plotted in this way as a fraction ofb, the curves look very similar for the various

values ofb that we have explored. One takeaway from these graphs is thatthe cases = 1 performs

quite poorly relative to largers (notice the vertical axes are not the same scale), and we prove in

Section 3.3.4 that this is true forRandom placements in general.

3.3.2 Comparison Results

We now compareComboOverlap andRandom placements usinglbAvail co(λ0, . . . , λs−1) −

prAvail rnd across a range of parameter settings, i.e., using aComboOverlap(λ0, . . . , λs−1) place-

ment computed to maximizelbAvail co(λ0, . . . , λs−1) (Section 3.2.2.1). We use the limit ofVulnrnd(f)

in Theorem 7 to getprAvail rnd as defined in Definition 6. The measurelbAvail co(λ0, . . . , λs−1)−

prAvail rnd is conservative in the sense thatlbAvail co(λ0, . . . , λs−1) is a lower bound, whereas

64

k

b 2 3 4 5 6 7
600 75 57 45 33 25 16

1200 80 70 60 52 46 40
2400 85 76 71 67 64 61
4800 77 68 62 57 53 50
9600 69 58 52 47 43 40

19200 60 48 42 37 34 31
38400 48 38 32 28 25 23

r = 2, s = 2

k

b 2 3 4 5 6 7
600 83 72 66 61 55 51

1200 75 62 53 48 42 37
2400 63 50 41 34 28 23
4800 56 44 36 30 25 20
9600 50 37 30 24 20 17

19200 40 29 23 19 15 12
38400 30 21 15 11 8 5

r = 3, s = 2

k

b 3 4 5 6 7
600 66 50 50 28 22

1200 66 20 14 -11 -27
2400 66 20 -25 -81 -100
4800 75 42 0 -42 -84
9600 80 50 23 -5 -29

19200 83 63 44 25 10
38400 85 71 60 50 40

r = 3, s = 3
k

b 2 3 4 5 6 7
600 75 62 53 47 40 34

1200 72 62 55 49 44 40
2400 62 52 44 38 33 29
4800 53 41 34 28 24 19
9600 42 32 25 20 15 11

19200 33 23 17 12 8 5
38400 25 16 11 7 4 1

r = 4, s = 2

k

b 3 4 5 6 7
600 66 20 25 9 0

1200 75 42 0 -7 -10
2400 80 50 23 -5 -34
4800 83 63 41 23 7
9600 85 71 60 48 38

19200 77 60 45 34 23
38400 76 60 48 39 31

r = 4, s = 3

k

b 4 5 6 7
600 50 33 -25 -40

1200 50 33 -25 -33
2400 66 50 0 -33
4800 66 50 16 0
9600 66 60 28 11

19200 75 0 -25 -54
38400 75 16 -50 -85

r = 4, s = 4
k

b 2 3 4 5 6 7
600 70 57 48 41 34 28

1200 60 45 35 27 21 14
2400 47 32 23 15 8 1
4800 35 20 11 4 -2 -8
9600 24 11 3 -3 -9 -14

19200 14 3 -3 -9 -15 -20
38400 7 -2 -9 -14 -19 -22

r = 5, s = 2

k

b 3 4 5 6 7
600 75 42 9 0 -5

1200 80 55 28 0 -25
2400 83 66 47 31 16
4800 75 50 28 20 12
9600 70 47 28 13 0

19200 64 42 25 12 0
38400 57 34 18 7 -1

r = 5, s = 3

k

b 4 5 6 7
600 66 50 0 -14

1200 66 50 16 0
2400 66 60 28 11
4800 75 16 -25 -41
9600 75 28 -50 -73

19200 80 37 -15 -75
38400 83 54 16 -25

r = 5, s = 4

k

b 5 6 7
600 50 33 0

1200 50 33 25
2400 50 33 25
4800 50 0 -75
9600 66 25 -40

19200 75 25 -16
38400 83 40 0

r = 5, s = 5

(a)n = 71

k

b 2 3 4 5 6 7 8
600 66 25 0 -25 -50 -75 -100

1200 66 40 14 0 -25 -40 -64
2400 75 50 33 16 0 -10 -27
4800 75 62 45 33 25 12 3
9600 80 70 60 50 42 36 30

19200 85 75 70 64 59 55 51
38400 77 64 57 50 44 40 36

r = 2, s = 2

k

b 2 3 4 5 6 7 8
600 66 50 25 9 -7 -23 -40

1200 75 57 40 28 11 0 -7
2400 80 66 53 44 34 27 20
4800 83 72 64 58 53 47 42
9600 87 80 75 70 67 64 61

19200 80 71 65 60 56 53 50
38400 71 61 54 49 45 42 39

r = 3, s = 2

k

b 3 4 5 6 7 8
600 50 33 25 0 -16 -28

1200 50 33 25 0 -16 -28
2400 66 50 40 16 0 -12
4800 66 50 40 16 12 0
9600 66 50 50 28 22 18

19200 66 20 14 0 -16 -38
38400 75 20 9 -66 -115 -131

r = 3, s = 3
k

b 2 3 4 5 6 7 8
600 75 57 40 28 11 0 -12

1200 80 66 53 44 34 25 17
2400 83 72 64 58 51 47 41
4800 87 80 75 70 66 63 61
9600 80 71 64 60 56 52 50

19200 71 61 54 49 44 41 38
38400 61 50 42 37 33 30 27

r = 4, s = 2

k

b 3 4 5 6 7 8
600 66 50 40 16 0 -12

1200 66 50 40 16 12 0
2400 66 50 50 28 22 18
4800 66 60 57 37 36 30
9600 75 20 25 0 -7 -12

19200 75 33 -11 -66 -75 -85
38400 80 42 9 -33 -75 -115

r = 4, s = 3

k

b 4 5 6 7 8
600 50 66 33 25 0

1200 50 66 33 25 0
2400 50 66 33 25 20
4800 50 66 50 25 20
9600 50 33 -25 -40 -50

19200 66 33 -25 -60 -133
38400 66 50 0 -33 -100

r = 4, s = 4
k

b 2 3 4 5 6 7 8
600 80 62 50 37 28 19 9

1200 83 70 62 54 48 41 36
2400 85 78 72 67 63 59 56
4800 77 68 61 55 50 46 42
9600 69 57 48 42 36 32 28

19200 63 51 43 37 32 28 25
38400 55 43 36 31 27 23 20

r = 5, s = 2

k

b 3 4 5 6 7 8
600 66 50 40 28 12 10

1200 66 50 50 37 22 18
2400 66 60 57 44 36 35
4800 75 33 25 9 0 -5
9600 75 42 0 -53 -64 -76

19200 80 50 16 -25 -59 -100
38400 83 60 33 4 -20 -47

r = 5, s = 3

k

b 4 5 6 7 8
600 50 66 33 25 20

1200 50 66 50 40 20
2400 50 66 50 40 33
4800 66 33 -25 -40 -50
9600 66 50 0 -33 -100

19200 66 50 16 -14 -75
38400 75 60 28 0 -55

r = 5, s = 4

k

b 5 6 7 8
600 50 50 33 33

1200 50 50 33 33
2400 50 50 33 33
4800 50 33 0 -25
9600 50 33 0 -25

19200 66 50 25 0
38400 75 60 40 16

r = 5, s = 5

(b) n = 257

Figure 3.8: lbAvail co(λ0, . . . , λs−1) − prAvail rnd for an optimalComboOverlap(λ0, . . . , λs−1)
placement as a percentage of the maximum possible improvement b− prAvail rnd

prAvail rnd is only a probabilistic estimate of the number of objects that remain available under

Random and so it is not guaranteed.

65

Here and elsewhere in this chapter, we usen ∈ {31, 71, 257}, both because these values span a

reasonably wide range and because suitablenx ≈ n andµx can be found for them without resorting

to Observation 2. (These are by no means the only values that meet these criteria, though.) In

particular, this means that theComboOverlap(λ0, . . . , λs−1) placements represented in this section

have concrete implementations. The selection of eachnx (with µx = 1) is detailed in Section 3.2.3,

as is an exploration of Observation 2.

A summary of results is given in Figure 3.8, where the top (Figure 3.8a) shows the results with

n = 71 and the bottom (Figure 3.8b) shows the results withn = 257. Each portion shows a table

for 2 ≤ r ≤ 5 and2 ≤ s ≤ r. (The cases = 1 is further discussed in Section 3.3.4.) The number

k of failed nodes is ranged overs ≤ k ≤ 7 in the n = 71 case, and overs ≤ k ≤ 8 in the

n = 257 case; both ranges encompass a substantial rate of node failures. In each table, the number

b of objects begins atb = 600 and is repeatedly doubled until it reachesb = 38400. Each table

entry indicateslbAvail co(λ0, . . . , λs−1) − prAvail rnd as a percentage of the maximum possible

improvementb − prAvail rnd that could be achieved overprAvail rnd. To ease readability, cells

wherelbAvail co(λ0, . . . , λs−1) > prAvail rnd (and soComboOverlap “wins”) are colored white;

cells wherelbAvail co(λ0, . . . , λs−1) = prAvail rnd (neitherComboOverlap nor Random “wins”)

are colored light gray; and cells wherelbAvail co(λ0, . . . , λs−1) < prAvail rnd (Random “wins”)

are colored dark gray.

It is evident upon a cursory glance thatComboOverlap “wins” most of the time, and the percent-

age by which it does so is often very substantial. For example, the table in the very upper-left corner

of Figure 3.8a indicates that in the casen = 71, r = 2, s = 2, b = 2400 andk = 2, ComboOverlap

guaranteesto preserve the availability of85% of the objects that will fail in expectation under

Random.

Since eachComboOverlap placement is a combination ofSimpleOverlap(x, λx) placements,

in Section 3.3.3 we show the contribution of eachSimpleOverlap(x, λx) placement to the final

ComboOverlap(λ0, . . . , λs−1) placement forn = 71 (Figure 3.10) andn = 257 (Figure 3.11), as

well as forn = 31 (Figure 3.9). (Then = 31 case is excluded from discussion in this section due to

space limitations.) These figures do not showSimpleOverlap(0, λ0) placements to save space, since

they contribute so minimally. In particular, the figures exclude breakdowns whens = 2, since in this

case, onlyx = 1 contributes toComboOverlap; i.e.,SimpleOverlap(1, λ1) andComboOverlap(λ1)

66

are identically the same. Very briefly, we distill out the following observations from the figures in

Section 3.3.3.

• Whenb grows andn andx are held constant,SimpleOverlap(x, λ) availability improves rela-

tive to Random until λ has to grow to satisfy Equation 3.1. This can be seen, for example, in

the r = s = 3, x = 1 table in the upper-left corner of Figure 3.11 (n = 257). As shown

there, whileλ can remain at1 (see rightmost column of leftmost table),SimpleOverlap(x, λ)

(and soComboOverlap, as shown in the rightmost table on the same row) “wins” more,but its

performance diminishes asλ grows.

• One way to offset the need to growλ is to adjustx, since whenk ≈ s, doing so impacts

availability only a small amount (Equation 3.2) but can allow aSimpleOverlap(x, λ) placement

to accommodate many more objects (assumingn ≫ r). This is shown clearly in, e.g., the

r = s = 3 cases in Figure 3.9 (n = 31) and Figure 3.10 (n = 71), where moving fromx = 1

to x = 2 relieves the pressure onλ to increase, allowing the advantages ofComboOverlap to be

preserved asb grows.

• Another way to slow the growth ofλ is to increasen. For a fixed numberb of objects and as

n grows,ComboOverlap will increasingly select to place objects usingSimpleOverlap(x, λx)

placements for smallerx. To see this, compare the contributions of, e.g.,x = 1 andx = 2 to the

resultingComboOverlap placement forr = 3, s = 3 in the top rows of Figure 3.9 (n = 31) and

Figure 3.11 (n = 257). This can be explained by observing that asn and so eachnx grows, the

smallestx that suffices to achieve Equation 3.1 can shrink while keeping λ the same. This, in

turn, yields better availability (Equation 3.2).

• Even at specific parameter values,ComboOverlap can outperformSimpleOverlap(x, λ) for any

singlex. This is illustrated in the top row (r = 3, s = 3) of Figure 3.9, for example, in which at

b = 4800 andk ∈ {5, 6}, theComboOverlap table includes entries (44 and36) that exceed the

corresponding entries of any of theSimpleOverlap(x, λx) tables in its row. This occurs at a value

of b at whichSimpleOverlap(2, λ2) must increaseλ2 from λ2 = 1 to λ2 = 2 to satisfy Equa-

tion 3.1. In this case, it turns out to be better to buildComboOverlap using aSimpleOverlap(2, 1)

placement in conjunction with aSimpleOverlap(1, 2) placement to satisfy Equation 3.4, rather

than using aSimpleOverlap(2, 2) placement alone. This advantage ofComboOverlap is not fre-

67

quently illustrated in Section 3.3.3, though testing more exhaustively with different values ofb

would elicit it more.

3.3.3 Breakdown ofComboOverlap Placements

Recall thatComboOverlap(λ0, . . . , λs−1) placement combines individualSimpleOverlap(x, λx)

placements. In this section we detail for various parameters how individualSimpleOverlap(x, λx)

placements contribute to theComboOverlap(λ0, . . . , λs−1) placements computed via the algorithm

described in Section 3.2.2.1, or more specifically how they contribute to the results showing the

improvement ofComboOverlap placements overRandom placements in Section 3.3.2.

We demonstrate these contributions through Figures 3.9–3.11, which isolate three cases:n =

31 (Figure 3.9),n = 71 (Figure 3.10), andn = 257 (Figure 3.11). In each figure, each row

corresponds to a particular setting forr and s. The rightmost table in each row represents the

ComboOverlap(λ0, . . . , λs−1) placement for its row’sr ands and, in the casen = 71 or n = 257,

is an exact copy of the table in Figure 3.8a or Figure 3.8b, respectively, for the samer and s.

(The n = 31 case was elided from Section 3.3.2 due to space limitations,though many of the

ComboOverlap(λ0, . . . , λs−1) tables forn = 31 are included in Figure 3.9.) The other tables in its

row representSimpleOverlap(x, λx) placements for the samer ands. As in Figure 3.8, a white table

cell indicates that for the parameter settings it represents, our placement outperforms (i.e., achieves

better availability than) aRandom placement; a light gray cell indicates that both perform equally

well (setting aside the conservative nature of the comparison, see Section 3.3.2); and a dark gray

cell indicates thatRandom provides (potentially) better availability.

3.3.4 Thes = 1 Case

In our comparisons betweenComboOverlap(λ0, . . . , λs−1) andRandom placements in Sec-

tion 3.3.2, we deferred the cases = 1. In this case, aComboOverlap(λ0, . . . , λs−1) placement is

just aSimpleOverlap(0, λ0) placement. Our analysis in this chapter applies to thes = 1 case, and

a comparison usinglbAvail co(λ0) − prAvail rnd as in Section 3.3.2 indicates thatRandom slightly

outperformsSimpleOverlap(0, λ0) in this measure, for the parameter values we tested. Neverthe-

less, we relegated this case to this section simply because bothRandom andSimpleOverlap(0, λ0)

perform poorly in this case. The following lemma formalizesthis claim forRandom placements.

68

r = 3, s = 3
k

b 3 4 5 6 λ

600 0 -33 -30 -42 4
1200 -100 -100 -100 -100 8
2400 -166 -190 -178 -166 16
4800 -342 -287 -255 -229 31
9600 -520 -439 -357 -297 62

19200 -785 -570 -450 -366 124
38400 -1027 -713 -535 -425 248

x = 1

k

b 3 4 5 6 λ

600 75 33 0 -42 1
1200 75 50 23 0 1
2400 83 63 47 33 1
4800 71 50 31 14 2
9600 70 47 33 23 3

19200 64 45 33 24 5
38400 59 40 30 23 9

x = 2

k

b 3 4 5 6
600 75 33 0 -42

1200 75 50 23 0
2400 83 63 47 33
4800 71 50 44 36
9600 70 47 33 23

19200 64 45 33 24
38400 59 40 30 23

ComboOverlap

r = 4, s = 3
k

b 3 4 5 6 λ

600 -33 -45 -44 -42 8
1200 -128 -113 -89 -81 16
2400 -220 -178 -140 -119 32
4800 -350 -250 -191 -154 63
9600 -468 -316 -235 -184 125

19200 -635 -390 -276 -211 250
38400 -775 -448 -309 -233 499

x = 1

k

b 3 4 5 6 λ

600 83 63 44 28 1
1200 71 46 28 9 2
2400 70 47 31 17 3
4800 57 33 16 3 6
9600 45 20 3 -9 12

19200 29 5 -8 -19 24
38400 17 -3 -15 -25 47

x = 2

k

b 3 4 5 6
600 83 63 44 28

1200 71 46 28 9
2400 70 47 31 17
4800 57 33 16 3
9600 45 20 3 -9

19200 29 5 -8 -19
38400 17 -3 -15 -25

ComboOverlap

r = 4, s = 4
k

b 4 5 6 λ

600 -166 -225 -233 8
1200 -433 -420 -400 16
2400 -700 -783 -700 32
4800 -1475 -1212 -1107 63
9600 -2400 -1980 -1542 125

19200 -3471 -2871-2214 250
38400 -5444 -3857-2800 499

x = 1

k

b 4 5 6 λ

600 66 50 16 1
1200 33 0 -25 2
2400 25 -16 -50 3
4800 -50 -87 -130 6
9600 -140 -200 -215 12

19200 -242 -328 -344 24
38400 -422 -457 -446 47

x = 2

k

b 4 5 6 λ

600 66 -25 -150 1
1200 66 0 -87 1
2400 75 16 -50 1
4800 75 37 -15 1
9600 80 50 21 1

19200 85 64 44 1
38400 77 52 30 2

x = 3

k

b 4 5 6
600 66 50 16

1200 66 0 -25
2400 75 16 -50
4800 75 37 -15
9600 80 50 21

19200 85 64 44
38400 77 52 30

ComboOverlap

r = 5, s = 3
k

b 3 4 5 6 λ

600 -75 -64 -48 -45 14
1200 -145 -107 -83 -68 27
2400 -231 -158 -117 -92 53
4800 -320 -204 -146 -113 105
9600 -422 -248 -172 -131 209

19200 -514 -287 -195 -146 418
38400 -590 -319 -213 -157 835

x = 1

k

b 3 4 5 6 λ

600 62 29 3 -25 3
1200 54 23 -2 -25 5
2400 37 2 -23 -44 10
4800 24 -10 -33 -54 19
9600 7 -23 -45 -63 37

19200 -8 -37 -57 -74 74
38400 -22 -48 -66 -82 148

x = 2

k

b 3 4 5 6
600 62 29 16 -4

1200 54 23 -2 -25
2400 37 2 -18 -37
4800 24 -10 -33 -52
9600 7 -23 -45 -63

19200 -8 -37 -57 -74
38400 -22 -48 -66 -82

ComboOverlap

r = 5, s = 4
k

b 4 5 6 λ

600 -250 -228 -218 14
1200 -440 -462 -378 27
2400 -783 -700 -560 53
4800 -1400 -993 -773 105
9600 -2222 -1413 -1010 209

19200 -3115 -1888 -1239 418
38400 -4294 -2340 -1457 835

x = 1

k

b 4 5 6 λ

600 25 0 -36 3
1200 0 -50 -78 5
2400 -66 -127 -150 10
4800 -171 -193 -216 19
9600 -311 -300 -293 37

19200 -469 -428 -374 74
38400 -678 -549 -452 148

x = 2

k

b 4 5 6 λ

600 75 28 -36 1
1200 80 37 -7 1
2400 66 9 -50 2
4800 57 6 -50 3
9600 33 -30 -91 6

19200 15 -57 -111 11
38400 -15 -92 -146 22

x = 3

k

b 4 5 6
600 75 28 -36

1200 80 37 -7
2400 66 9 -50
4800 57 6 -50
9600 33 -30 -91

19200 15 -57 -111
38400 -15 -92 -146

ComboOverlap

r = 5, s = 5
k

b 5 6 λ

600 -366 -425 14
1200 -800 -900 27
2400 -1666 -1480 53
4800 -3400 -3040 105
9600 -5125 -4371 209

19200 -8260 -7737 418
38400

-
16600

-
11281 835

x = 1

k

b 5 6 λ

600 0 -50 3
1200 -66 -150 5
2400 -233 -300 10
4800 -533 -660 19
9600 -825 -957 37

19200 -1380 -1750 74
38400 -2860 -2590 148

x = 2

k

b 5 6 λ

600 66 25 1
1200 66 25 1
2400 33 -20 2
4800 0 -80 3
9600 -50 -157 6

19200 -120 -312 11
38400 -340 -500 22

x = 3

k

b 5 6 λ

600 66 -50 1
1200 66 -50 1
2400 66 -20 1
4800 66 -20 1
9600 75 14 1

19200 80 25 1
38400 80 45 1

x = 4

k

b 5 6
600 66 25

1200 66 25
2400 66 -20
4800 66 -20
9600 75 14

19200 80 25
38400 80 45

ComboOverlap

Figure 3.9: lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1) − prAvail rnd for best ComboOverlap(λ0, . . . , λs−1) placement (right
most column) whens > 2, as a percentage of the maximum possible improvementb− prAvail rnd,
whenn = 31

69

r = 3, s = 3
k

b 3 4 5 6 7 λ

600 66 50 50 28 22 1
1200 33 20 14 -11 -27 2
2400 -33 -60 -62 -81 -100 4
4800 -75 -100 -130 -150 -157 7
9600 -160 -225 -230 -242 -237 13

19200 -316 -354 -361 -362 -348 25
38400 -614 -614 -564 -525 -493 50

x = 1

k

b 3 4 5 6 7 λ

600 66 0 -66 -185 -288 1
1200 66 20 -42 -122 -218 1
2400 66 20 -25 -81 -150 1
4800 75 42 0 -42 -84 1
9600 80 50 23 -5 -29 1

19200 83 63 44 25 10 1
38400 85 71 60 50 40 1

x = 2

k

b 3 4 5 6 7
600 66 50 50 28 22

1200 66 20 14 -11 -27
2400 66 20 -25 -81 -100
4800 75 42 0 -42 -84
9600 80 50 23 -5 -29

19200 83 63 44 25 10
38400 85 71 60 50 40

ComboOverlap

r = 4, s = 3
k

b 3 4 5 6 7 λ

600 33 20 25 9 0 2
1200 25 14 0 -7 -10 3
2400 -20 -50 -53 -57 -61 6
4800 -100 -118 -135 -130 -121 12
9600 -242 -242 -220 -207 -194 24

19200 -433 -380 -332 -293 -265 48
38400 -638 -540 -451 -384 -336 96

x = 1

k

b 3 4 5 6 7 λ

600 66 20 -25 -81 -150 1
1200 75 42 0 -42 -84 1
2400 80 50 23 -5 -34 1
4800 83 63 41 23 7 1
9600 85 71 60 48 38 1

19200 77 60 45 34 23 2
38400 76 60 48 39 31 3

x = 2

k

b 3 4 5 6 7
600 66 20 25 9 0

1200 75 42 0 -7 -10
2400 80 50 23 -5 -34
4800 83 63 41 23 7
9600 85 71 60 48 38

19200 77 60 45 34 23
38400 76 60 48 39 31

ComboOverlap

r = 4, s = 4
k

b 4 5 6 7 λ

600 0 0 -25 -40 2
1200 -50 -66 -75 -66 3
2400 -100 -150 -200 -250 6
4800 -300 -400 -400 -425 12
9600 -700 -700 -757 -833 24

19200 -1100 -1500 -1400 -1427 48
38400 -2300 -2566 -2300 -2300 96

x = 1

k

b 4 5 6 7 λ

600 50 33 -25 -60 1
1200 50 33 -25 -33 1
2400 66 50 0 -33 1
4800 66 50 16 0 1
9600 66 60 28 11 1

19200 50 0 -25 -54 2
38400 25 -16 -50 -85 3

x = 2

k

b 4 5 6 7 λ

600 50 -66 -275 -600 1
1200 50 -66 -275 -483 1
2400 66 -25 -200 -483 1
4800 66 -25 -150 -337 1
9600 66 0 -114 -288 1

19200 75 0 -87 -218 1
38400 75 16 -50 -150 1

x = 3

k

b 4 5 6 7
600 50 33 -25 -40

1200 50 33 -25 -33
2400 66 50 0 -33
4800 66 50 16 0
9600 66 60 28 11

19200 75 0 -25 -54
38400 75 16 -50 -85

ComboOverlap

r = 5, s = 3
k

b 3 4 5 6 7 λ

600 25 14 9 0 -5 3
1200 -20 -33 -42 -50 -50 6
2400 -100 -100 -110 -106 -100 12
4800 -200 -200 -185 -172 -162 24
9600 -370 -308 -271 -240 -216 47

19200 -564 -431 -362 -307 -269 93
38400 -780 -572 -454 -374 -317 185

x = 1

k

b 3 4 5 6 7 λ

600 75 42 9 -33 -75 1
1200 80 55 28 0 -25 1
2400 83 66 47 31 16 1
4800 75 50 28 20 12 2
9600 70 47 28 13 0 3

19200 64 42 25 12 0 5
38400 57 34 18 7 -1 9

x = 2

k

b 3 4 5 6 7
600 75 42 9 0 -5

1200 80 55 28 0 -25
2400 83 66 47 31 16
4800 75 50 28 20 12
9600 70 47 28 13 0

19200 64 42 25 12 0
38400 57 34 18 7 -1

ComboOverlap

r = 5, s = 4
k

b 4 5 6 7 λ

600 0 -25 -40 -42 3
1200 -100 -150 -150 -162 6
2400 -300 -300 -328 -366 12
4800 -500 -566 -650 -600 24
9600 -1075 -1014 -1070 -933 47

19200 -1760 -1837-1684 -1525 93
38400 -2983 -2700 -2466 -2210 185

x = 1

k

b 4 5 6 7 λ

600 66 50 0 -14 1
1200 66 50 16 0 1
2400 66 60 28 11 1
4800 50 16 -25 -41 2
9600 25 0 -50 -73 3

19200 0 -50 -92 -115 5
38400 -50 -100 -150 -178 9

x = 2

k

b 4 5 6 7 λ

600 66 -25 -200 -400 1
1200 66 -25 -150 -337 1
2400 66 0 -114 -288 1
4800 75 16 -87 -191 1
9600 75 28 -50 -133 1

19200 80 37 -15 -75 1
38400 83 54 16 -25 1

x = 3

k

b 4 5 6 7
600 66 50 0 -14

1200 66 50 16 0
2400 66 60 28 11
4800 75 16 -25 -41
9600 75 28 -50 -73

19200 80 37 -15 -75
38400 83 54 16 -25

ComboOverlap

r = 5, s = 5
k

b 5 6 7 λ

600 -50 -33 -100 3
1200 -200 -200 -200 6
2400 -500 -500 -525 12
4800 -1100 -1100 -1150 24
9600 -1466 -1650 -1860 47

19200 -3000 -3375 -3150 93
38400 -6066 -6825 -5442 185

x = 1

k

b 5 6 7 λ

600 50 33 0 1
1200 50 33 25 1
2400 50 33 25 1
4800 0 -33 -75 2
9600 0 -50 -100 3

19200 -66 -150 -183 5
38400 -200 -350 -342 9

x = 2

k

b 5 6 7 λ

600 50 0 -133 1
1200 50 0 -133 1
2400 50 0 -75 1
4800 50 0 -75 1
9600 66 25 -40 1

19200 75 25 -16 1
38400 83 40 0 1

x = 3

k

b 5 6 7 λ

600 50 -100 -600 1
1200 50 -100 -425 1
2400 50 -100 -425 1
4800 50 -100 -425 1
9600 66 -50 -320 1

19200 75 -50 -250 1
38400 83 -20 -200 1

x = 4

k

b 5 6 7
600 50 33 0

1200 50 33 25
2400 50 33 25
4800 50 0 -75
9600 66 25 -40

19200 75 25 -16
38400 83 40 0

ComboOverlap

Figure 3.10: lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1) − prAvail rnd for best ComboOverlap(λ0, . . . , λs−1) placement (right
most column) whens > 2, as a percentage of the maximum possible improvementb− prAvail rnd,
whenn = 71

70

r = 3, s = 3
k

b 3 4 5 6 7 8 λ

600 50 33 25 0 -16 -28 1
1200 50 33 25 0 -16 -28 1
2400 66 50 40 16 0 -12 1
4800 66 50 40 16 12 0 1
9600 66 50 50 28 22 18 1

19200 33 20 14 0 -16 -38 2
38400 0 -60 -18 -66 -115 -131 4

x = 1

k

b 3 4 5 6 7 8 λ

600 50 -33 -150 -300 -483 -700 1
1200 50 -33 -150 -300 -483 -700 1
2400 66 0 -100 -233 -400 -600 1
4800 66 0 -100 -233 -337 -522 1
9600 66 0 -66 -185 -288 -409 1

19200 66 20 -42 -100 -191 -330 1
38400 75 20 9 -66 -169 -250 1

x = 2

k

b 3 4 5 6 7 8
600 50 33 25 0 -16 -28

1200 50 33 25 0 -16 -28
2400 66 50 40 16 0 -12
4800 66 50 40 16 12 0
9600 66 50 50 28 22 18

19200 66 20 14 0 -16 -38
38400 75 20 9 -66 -115 -131

ComboOverlap

r = 4, s = 3
k

b 3 4 5 6 7 8 λ

600 66 50 40 16 0 -12 1
1200 66 50 40 16 12 0 1
2400 66 50 50 28 22 18 1
4800 66 60 57 37 36 30 1
9600 50 20 25 0 -7 -12 2

19200 0 -33 -44 -66 -75 -85 4
38400 -60 -128 -136 -166 -180 -184 8

x = 1

k

b 3 4 5 6 7 8 λ

600 66 0 -100 -233 -400 -600 1
1200 66 0 -100 -233 -337 -522 1
2400 66 0 -66 -185 -288 -409 1
4800 66 20 -42 -150 -218 -330 1
9600 75 20 -25 -100 -169 -250 1

19200 75 33 -11 -66 -118 -180 1
38400 80 42 9 -33 -75 -115 1

x = 2

k

b 3 4 5 6 7 8
600 66 50 40 16 0 -12

1200 66 50 40 16 12 0
2400 66 50 50 28 22 18
4800 66 60 57 37 36 30
9600 75 20 25 0 -7 -12

19200 75 33 -11 -66 -75 -85
38400 80 42 9 -33 -75 -115

ComboOverlap

r = 4, s = 4
k

b 4 5 6 7 8 λ

600 50 66 33 25 0 1
1200 50 66 33 25 0 1
2400 50 66 33 25 20 1
4800 50 66 50 25 20 1
9600 0 0 -25 -40 -50 2

19200 -33 -100 -150 -180 -200 4
38400 -166 -225 -300 -366 -428 8

x = 1

k

b 4 5 6 7 8 λ

600 50 33 -66 -100 -250 1
1200 50 33 -66 -100 -250 1
2400 50 33 -66 -100 -180 1
4800 50 33 -25 -100 -180 1
9600 50 33 -25 -60 -133 1

19200 66 33 -25 -60 -133 1
38400 66 50 0 -33 -100 1

x = 2

k

b 4 5 6 7 8 λ

600 50 -66 -400 -775 -1650 1
1200 50 -66 -400 -775 -1650 1
2400 50 -66 -400 -775 -1300 1
4800 50 -66 -275 -775 -1300 1
9600 50 -66 -275 -600 -1066 1

19200 66 -66 -275 -600 -1066 1
38400 66 -25 -200 -483 -900 1

x = 3

k

b 4 5 6 7 8
600 50 66 33 25 0

1200 50 66 33 25 0
2400 50 66 33 25 20
4800 50 66 50 25 20
9600 50 33 -25 -40 -50

19200 66 33 -25 -60 -133
38400 66 50 0 -33 -100

ComboOverlap

r = 5, s = 3
k

b 3 4 5 6 7 8 λ

600 66 50 40 28 12 10 1
1200 66 50 50 37 22 18 1
2400 66 60 57 44 36 35 1
4800 50 33 25 9 0 -5 2
9600 0 -14 -30 -53 -64 -76 4

19200 -40 -75 -91 -118 -122 -132 7
38400 -116 -160 -186 -209 -213 -218 13

x = 1

k

b 3 4 5 6 7 8 λ

600 66 0 -100 -185 -337 -460 1
1200 66 0 -66 -150 -288 -409 1
2400 66 20 -42 -122 -218 -300 1
4800 75 33 -25 -81 -150 -229 1
9600 75 42 0 -53 -105 -166 1

19200 80 50 16 -25 -59 -100 1
38400 83 60 33 4 -20 -47 1

x = 2

k

b 3 4 5 6 7 8
600 66 50 40 28 12 10

1200 66 50 50 37 22 18
2400 66 60 57 44 36 35
4800 75 33 25 9 0 -5
9600 75 42 0 -53 -64 -76

19200 80 50 16 -25 -59 -100
38400 83 60 33 4 -20 -47

ComboOverlap

r = 5, s = 4
k

b 4 5 6 7 8 λ

600 50 66 33 25 20 1
1200 50 66 50 40 20 1
2400 50 66 50 40 33 1
4800 33 0 -25 -40 -50 2
9600 -33 -50 -100 -133 -157 4

19200 -133 -175 -183 -242 -300 7
38400 -225 -320 -357 -462 -566 13

x = 1

k

b 4 5 6 7 8 λ

600 50 33 -66 -100 -180 1
1200 50 33 -25 -60 -180 1
2400 50 33 -25 -60 -133 1
4800 66 33 -25 -60 -133 1
9600 66 50 0 -33 -100 1

19200 66 50 16 -14 -75 1
38400 75 60 28 0 -55 1

x = 2

k

b 4 5 6 7 8 λ

600 50 -66 -400 -775 -1300 1
1200 50 -66 -275 -600 -1300 1
2400 50 -66 -275 -600 -1066 1
4800 66 -66 -275 -600 -1066 1
9600 66 -25 -200 -483 -900 1

19200 66 -25 -150 -400 -775 1
38400 75 0 -114 -337 -677 1

x = 3

k

b 4 5 6 7 8
600 50 66 33 25 20

1200 50 66 50 40 20
2400 50 66 50 40 33
4800 66 33 -25 -40 -50
9600 66 50 0 -33 -100

19200 66 50 16 -14 -75
38400 75 60 28 0 -55

ComboOverlap

r = 5, s = 5
k

b 5 6 7 8 λ

600 50 50 33 33 1
1200 50 50 33 33 1
2400 50 50 33 33 1
4800 0 0 -33 -25 2
9600 -100 -100 -166 -175 4

19200 -133 -150 -250 -280 7
38400 -225 -280 -440 -500 13

x = 1

k

b 5 6 7 8 λ

600 50 0 0 -66 1
1200 50 0 0 -66 1
2400 50 0 0 -66 1
4800 50 33 0 -25 1
9600 50 33 0 -25 1

19200 66 50 25 0 1
38400 75 60 40 16 1

x = 2

k

b 5 6 7 8 λ

600 50 -50 -133 -366 1
1200 50 -50 -133 -366 1
2400 50 -50 -133 -366 1
4800 50 0 -133 -250 1
9600 50 0 -133 -250 1

19200 66 25 -75 -180 1
38400 75 40 -40 -133 1

x = 3

k

b 5 6 7 8 λ

600 50 -200 -600 -1766 1
1200 50 -200 -600 -1766 1
2400 50 -200 -600 -1766 1
4800 50 -100 -600 -1300 1
9600 50 -100 -600 -1300 1

19200 66 -50 -425 -1020 1
38400 75 -20 -320 -833 1

x = 4

k

b 5 6 7 8
600 50 50 33 33

1200 50 50 33 33
2400 50 50 33 33
4800 50 33 0 -25
9600 50 33 0 -25

19200 66 50 25 0
38400 75 60 40 16

ComboOverlap

Figure 3.11: lbAvail so(x, λ) − prAvail rnd for SimpleOverlap(x, λ) placements and
lbAvail co(λ0, . . . , λs−1) − prAvail rnd for best ComboOverlap(λ0, . . . , λs−1) placement (right
most column) whens > 2, as a percentage of the maximum possible improvementb− prAvail rnd,
whenn = 257

71

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10

(1
-1

/b
)k

l

k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

b = 2400

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10

(1
-1

/b
)k

l

k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

b = 9600

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10

(1
-1

/b
)k

l

k

n = 71, r = 3
n = 71, r = 5

n = 257, r = 3
n = 257, r = 5

b = 38400

Figure 3.12:
(

1− 1
b

)k⌊ℓ⌋
for variousn andr, as a function ofk

72

Lemma 8. Supposes = 1, k < n/2, andℓ = rb
n . Then,

prAvail rnd ≤ b

(

1−
1

b

)k⌊ℓ⌋

Proof. In choosingk nodes to fail, our adversary is guaranteed to be able to failk ⌊ℓ⌋ replicas

(becausek < n/2) and, sinces = 1, every object with one or more replicas in thesek ⌊ℓ⌋ replicas.

LetF denote the number of failed objects after the adversary inducesk node failures. Contrast this

scenario to samplingk ⌊ℓ⌋ objects with replacement from the objectsobj1, . . . , objb, and letY be

a random variable capturing the number ofdistinct objects sampled. We claim thatP (F ≥ f) ≥

P (Y ≥ f) due to two key differences between our adversary’s scenarioand simply sampling objects

at random with replacement: First, since a placement placesonly one replica per object on any node,

once the adversary selects a node to fail, it isguaranteedno repetitions of the same object on that

node. Second, our adversary can encounter at mostr replicas of any object (versus up tok ⌊ℓ⌋ when

sampling objects uniformly at random with replacement). Assuch,

E (F) =

∞
∑

f=1

P (F ≥ f) ≥
∞
∑

f=1

P (Y ≥ f) = E (Y) = b

[

1−

(

1−
1

b

)k⌊ℓ⌋
]

where the last step is well-known (e.g., [33, p. 31]). As such, whenf = b
[

1−
(

1− 1
b

)k⌊ℓ⌋
]

we

haveVuln rnd(f) ≥ 1, and soprAvail rnd ≤ b
(

1− 1
b

)k⌊ℓ⌋
.

To see one implication of this lemma, recall that(1− 1
b)

b converges toe−1 asb −→ ∞. So, for

large enoughb, prAvail rnd is at most approximatelyb(e−r/n)k. In terms of parameter values tested

elsewhere in this chapter, Figure 3.12 shows how1
bprAvail rnd = (1 − 1/b)k⌊ℓ⌋ behaves for small

numbers of node failures (c.f., thes = 1 case of Figure 3.7). Figure 3.12 is plotted forb = 2400,

b = 9600 and b = 38400 (all three are virtually indistinguishable). This graph shows that the

availability ofRandom placements, as a fraction ofb, decays essentially linearly in the numberk

of failed nodes, with a slope that grows smaller asn increases orr decreases (since each node then

hosts fewer object replicas).

73

3.4 Conclusion

In this chapter we explored replica placement strategies based ont-packings, which we here

calledSimpleOverlap(x, λ) placements, for maximizing the availability of objects in the face of

the worstk node failures out ofn nodes total. We showed that aSimpleOverlap(x, λ) place-

ment provides availability that isc-competitive with optimal, for a specified constantc (for con-

stantn, k, replicasr, and fatality thresholds). We then devised a placement strategy called

ComboOverlap(λ0, . . . , λs−1) that combines multipleSimpleOverlap(x, λ) placements, and a dy-

namic programming algorithm that selectsλ0, . . . , λs−1 so as to maximize (our lower bound on)

the availability of the resultingComboOverlap placement for a chosenk. We showed that a re-

sulting ComboOverlap placement is not particularly sensitive to the value ofk with which it is

configured, however; for the parameter values we explored, it offers availability for nearbyk′ 6= k

within ≈ 99% of what the bestComboOverlap placement fork′ failed nodes would have. Finally,

we demonstrated and dissected the improvements offered byComboOverlap overRandom replica

placement, based on our analysis of the expected availability supported byRandom placement in

our worst-case model.

Our algorithms leveraget-packings for parameters for which maximumt-packings (also called

t-designs, see Section 3.2.3) are known to exist, meaning that based on current knowledge, realis-

tically our results are limited tor ≤ 5. Fortunately, this suffices for a wide array of data center

applications in practice. Our work does, however, provide further impetus to advance the state-of-

the-art int-packing construction.

74

CHAPTER 4 CONCLUSION

In this thesis we have identified a previously under-explored opportunity for improving the se-

curity of replicated objects in distributed systems, namely theplacementof their replicas to manage

the degree to which objects’ replicas reside together on thesame physical nodes. Specifically, we

have leveraged placements in two novel ways to improve either the confidentiality or the availability

of replicated objects.

The first example, presented in Chapter 2, is the system called StopWatch, from which an

infrastructure-as-a-service cloud can be constructed that convincingly defends its tenant VMs from

timing-based side-channel attacks mounted by other tenantVMs. The basic idea behindStopWatch

is to eliminate independent sources of clocks where possible by making some clock sources func-

tions of others, and then to leverage VM replication and placement to mitigate those independent

clock sources that could otherwise not be eliminated — namely those arising from the I/O subsystem

(network interrupts, disk interrupts, etc.). Then, by placing each VM’s replicas so that sufficiently

few overlap with each other VM’s replicas,StopWatchensures that no VM observes timings that

are substantially influenced by the behavior of any other VM.In particular, this is done by ensur-

ing that any VM’s replicas observe event timings that represent the median timing of each event

across all of its replicas. In this way, if only a minority of aVM’s replicas are co-located with

the replicas of any other single VM, the behaviors of each other VM will influence these median

timings minimally. We showed thatStopWatchcan accomplish timing side-channel defense in this

way while incurring overheads that we believe to be reasonable in light of the strong defenses it

provides, including much less than3× overhead for even I/O intensive applications in our tests.

The second example in this thesis, described in Chapter 3, uses placement of object replicas

to improve availability of objects. While enhanced availability is a conventional use of replication,

in this chapter we specifically targeted improved availability of objects against an adversary that

can intelligently choose which physical nodes to fail (limited only by a budget of nodes it can fail),

75

in contrast to previous treatments of replica placement to address only probabilistic failures. We

showed that in our threat model, careful placement can be used to achieve better object availability

than the most popular placement approach under probabilistic node failures, namely random replica

placement. The specific placement that we demonstrated to doso involved placing replicas so as

to manage the overlaps of different objects’ replicas, and to optimally tune those overlaps (using

a dynamic programming algorithm) to accommodate the numberof object replicas, the number of

node failures, the number of object replica failures that disables the object, the number of nodes,

and the number of objects.

Recall from our discussion of Chapter 1 that security is typically viewed as addressing con-

fidentiality, availability, or integrity. This thesis has demonstrated that in replicated systems and

specific threat models, placement of replicas can be managedin such a way that improves either

confidentiality or availability. A natural question, then,is whether placement can be used to effec-

tively improve object integrity. This is undoubtedly true if the compromise of all of one object’s

replicas by an attacker (e.g., due to a software vulnerability in the object) can be leveraged (e.g.,

through privilege escalation) to compromise the nodes hosting those replicas and so all replicas that

those nodes host. In this case, managing the overlaps of objects’ replicas can contain the damage

to other objects, particularly if each object leverages Byzantine fault-tolerant replica coordination

protocols (e.g., [55, 73, 24, 18, 45]) among its replicas to overcome these compromises. We leave

as future work the exploration of other such opportunities for using replica placement to improve

facets of security.

76

BIBLIOGRAPHY

[1] Abel, R. J. R. and Greig, M. (2007).BIBDs with small block size, chapter 3. In [19], second edition.

[2] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., Douceur, J. R., Howell, J., Lorch,
J. R., Theimer, M., and Wattenhofer, R. P. (2002). FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In5th Symposium on Operating Systems
Design and Implementation, pages 1–14.

[3] Agat, J. (2000). Transforming out timing leaks. In27th ACM Symposium on Principles of Program-
ming Languages, pages 40–53.

[4] Askarov, A., Myers, A. C., and Zhang, D. (2010). Predictive black-box mitigation of timing chan-
nels. In17th ACM Conference on Computer and Communications Security, pages 520–538.

[5] Aviram, A., Weng, S.-C., Hu, S., and Ford, B. (2010). Efficient system-enforced deterministic
parallelism. In9th USENIX Symposium on Operating Systems Design and Implementation.

[6] Basile, C., Kalbarczyk, Z., and Iyer, R. K. (2006). Active replication of multithreaded applications.
IEEE Transactions on Parallel and Distributed Systems, 17(5):448–465.

[7] Bates, A., Mood, B., Fletcher, J., Pruse, H., Valafar, M., and Butler, K. (2012). Detecting co-
residency with active fraffic analysis techniques. In2012 ACM Workshop on Cloud Computing
Security, pages 1–12.

[8] Bellard, F. (2005). QEMU, a fast and protable dynamic translator. InUSENIX 2005 Annual Techni-
cal Conference, FREENIX Track, pages 41–46.

[9] Bernard, S. and Le Fessant, F. (2009). Optimizing peer-to-peer backup using lifetime estimations.
In 2009 EDBT/ICDT Workshops, pages 26–33.

[10] Bhagwan, R., Savage, S., and Voelker, G. M. (2002). Replication strategies for highly available peer-
to-peer storage systems. Technical Report CS2002-0726, Department of Computer Science
and Engineering, University of California, San Diego.

[11] Bienia, C. (2011).Benchmarking modern multiprocessors. PhD thesis, Princeton University.

[12] Bolosky, W. J., Douceur, J. R., Ely, D., and Theimer, M. (2000). Feasibility of a serverless dis-
tributed file system deployed on an existing set of desktop PCs. In 2000 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pages 34–43.

[13] Borg, A., Blau, W., Graetsch, W., Herrmann, F., and Oberle, W. (1989). Fault tolerance under
UNIX. ACM Transactions on Computer Systems, 7(1):1–24.

[14] Borodin, A. and El-Yaniv, R. (1998).Online Computation and Competitive Analysis. Cambridge
University Press.

[15] Bressoud, T. C. and Schneider, F. B. (1996). Hypervisor-based fault-tolerance.ACM Transactions
on Computer Systems, 14(1):80–107.

[16] Brumley, D. and Boneh, D. (2003). Remote timing attacksare practical. In12th USENIX Security
Symposium, pages 1–14.

77

[17] Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. (1993).The primary-backup approach,
chapter 8. In [63], second edition.

[18] Castro, M. and Liskov, B. (2002). Practical Byzantine fault tolerance. ACM Transactions on
Computer Systems, 20(4):398–461.

[19] Colbourn, C. J. and Dinitz, J. H., editors (2007).Handbook of Combinatorial Designs. Chapman
Hall/CRC, second edition.

[20] Colbourn, C. J., Dinitz, J. H., and Stinson, D. R. (1999). Applications of combinatorial designs
to communications, cryptography, and networking. In Lamb,J. D. and Preece, D. A., editors,
Surveys in Combinatorics, 1999, pages 37–100. Cambridge University Press.

[21] Colbourn, C. J. and Mathon, R. (2007).Steiner systems, chapter 5. In [19], second edition.

[22] Colbourn, C. J. and Van Oorschot, P. C. (1989). Applications of combinatorial designs in computer
science.ACM Computing Surveys, 21(2):223–250.

[23] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong, A.,
and Hiser, J. (2006). N-variant systems: A secretless framework for security through diversity.
In 15th USENIX Security Symposium.

[24] Cristian, F., Aghili, H., Strong, R., and Dolev, D. (1995). Atomic broadcast: From simple message
diffusion to Byzantine agreement.Information at Computation, 118(1):158–179.

[25] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., and Warfield, A. (2008). Remus:
High availability via asynchronous virtual machine replication. In5th USENIX Symposium on
Networked Systems Design and Implementation, pages 161–174.

[26] Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2008). Algorithms. McGraw-Hill.

[27] Devietti, J., Lucia, B., Ceze, L., and Oskin, M. (2010).DMP: Deterministic shared memory multi-
processing.IEEE Micro, 30:41–49.

[28] Deza, E. and Deza, M. (2006).Dictionary of Distances. Elsevier.

[29] Dinitz, J. H. and Stinson, D. R. (1992a).A brief introduction to design theory, chapter 1. In [30].

[30] Dinitz, J. H. and Stinson, D. R., editors (1992b).Contemporary Design Theory: A Collection of
Surveys. Wiley-Interscience.

[31] Douceur, J. and Wattenhofer, R. (2001). Competitive hill-climbing strategies for replica placement
in a distributed file system. In15th International Symposium on Distributed Computing, pages
48–62.

[32] Dunlap, G. W., Lucchetti, D. G., Chen, P. M., and Fetterman, M. A. (2008). Execution replay of
multiprocessor virtual machines. In4th ACM Conference on Virtual Execution Environments,
pages 121–130.

[33] Feller, W. (1968). An Introduction to Probability Theory and Its Applications, volume 1. John
Wiley & Sons, Inc., third edition.

[34] Gao, D., Reiter, M. K., and Song, D. (2005). Behavioral distance for intrusion detection. InRecent
Advances in Intrusion Detection: 8th International Symposium, pages 63–81.

78

[35] Gao, D., Reiter, M. K., and Song, D. (2009). Beyond output voting: Detecting compromised
replicas using HMM-based behavioral distance.IEEE Transactions on Dependable and Secure
Computing, 6(2):96–110.

[36] Garcia-Molina, H. and Barbara, D. (1985). How to assignvotes in a distributed system.Journal of
the ACM, 32:841–860.

[37] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). TheGoogle file system. In19th ACM
Symposium on Operating Systems Principles, pages 29–43.

[38] Gifford, D. K. (1979). Weighted voting for replicated data. In7th ACM Symposium on Operating
System Principles.

[39] Giles, J. and Hajek, B. (2002). An information-theoretic and game-theoretic study of timing chan-
nels. IEEE Transactions on Information Theory, 48(9).

[40] Goodrich, M. T. and Tamassia, R. (2011).Introduction to Computer Security. Addison-Wesley.

[41] Güngör, M., Bulut, Y., and Çalık, S. (2009). Distributions of order statistics.Applied Mathemathical
Sciences, 3(16):795–802.

[42] Haeberlen, A., Pierce, B. C., and Narayan, A. (2011). Differential privacy under fire. In20th
USENIX Security Symposium.

[43] Hanani, H., Hartman, A., and Kramer, E. S. (1983). On three-designs of small order.Discrete
Mathematics, 45(1):75–97.

[44] Hanani, M. (1960). On quadruple systems.Canad. J. Math., 12:145–157.

[45] Hendricks, J., Sinnamohideen, S., Ganger, G. R., and Reiter, M. K. (2010). Zzyzx: Scalable
fault tolerance through Byzantine locking. In40th IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 363–372.

[46] Herlihy, M. P. and Tygar, J. D. (1988). How to make replicated data secure. InAdvances in
Cryptology – CRYPTO ’87 Proceedings, volume 293 ofLecture Notes in Computer Science,
pages 379–391.

[47] Herzberg, A., Shulman, H., Ullrich, J., and Weippl, E. (2013). Cloudoscopy: Services discovery
and topology mapping. In2013 ACM Workshop on Cloud Computing Security, pages 113–122.

[48] Horsley, D. (2011). Maximum packing of the complete graph with uniform length cycles.Journal
of Graph Theory, 68(1):1–7.

[49] Hu, W.-M. (1991). Reducing timing channels with fuzzy time. In 1991 IEEE Symposium on
Security and Privacy, pages 8–20.

[50] Intel Manual (2011).Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corpo-
ration.

[51] Kang, M. H. and Moskowitz, I. S. (1993). A pump for rapid,reliable, secure communication. In
ACM Conference on Computer and Communications Security, pages 119–129.

[52] Karagiannis, T., Molle, M., Faloutsos, M., and Broido,A. (2004). A nonstationary Poisson view of
Internet traffic. InINFOCOM, pages 1558–1569.

79

[53] Khosrovshahi, G. B. and Laue, R. (2007).t-designs witht ≥ 3, chapter 4. In [19], second edition.

[54] Kim, T., Peinado, M., and Mainar-Ruiz, G. (2012). STEALTHMEM: System-level protection against
cache-based side channel attacks in the cloud. In21st USENIX Security Symposium.

[55] Lamport, L., Shostak, R., and Pease, M. (1989). The Byzantine generals problem.ACM Transac-
tions on Programming Languages and Systems, 4(3):382–401.

[56] Lampson, B., Abadi, M., Burrows, M., and Wobber, E. (1992). Authentication in distributed sys-
tems: Theory and practice.ACM Transactions on Computer Systems, 10(4):265–310.

[57] Li, P., Gao, D., and Reiter, M. K. (2013). Mitigating access-driven timing channels in clouds
using StopWatch. In43rd IEEE/IFIP International Conference on Dependable Systems and
Networks.

[58] Lindner, C. C. and Rodger, C. A. (2008).Design Theory, chapter 1. CRC Press.

[59] MacCormick, J., Murphy, N., V.Ramasubramanian, Wieder, U., Yang, J., and Zhou, L. (2009). Ki-
nesis: A new approach to replica placement in distributed storage systems.ACM Transactions
on Storage, 4.

[60] Mathon, R. and Rosa, A. (2007).2-(v, k, λ) designs of small order, chapter 1. In [19], second
edition.

[61] Mills, W. H. and Mullin, R. C. (1992).Coverings and packings, chapter 9. In [30].

[62] Mitzenmacher, M. and Upfal, E. (2005).Probability and Computing. Cambridge University Press.

[63] Mullender, S., editor (1993).Distributed Systems. Addison-Wesley, second edition.

[64] Narasimhan, P., Moser, L. E., and Melliar-Smith, P. M. (1999). Enforcing determinism for the
consistent replication of multithreaded CORBA applications. InIEEE Symposium on Reliable
Distributed Systems, pages 263–273.

[65] Ng, W. K. and Ravishankar, C. V. (1995). Coterie templates: A new quorum construction method.
In 15th International Conference on Distributed Computing Systems, pages 92–99.

[66] Nguyen-Tuong, A., Evans, D., Knight, J. C., Cox, B., andDavidson, J. W. (2008). Security through
redundant data diversity. In38th IEEE/IFPF International Conference on Dependable Systems
and Networks.

[67] Ogilvy, C. S. (1990).Excursions in Geometry, chapter 3-4. Dover.

[68] On, G., Schmitt, J., and Steinmetz, R. (2003). Quality of availability: Replica placement for widely
distributed systems. In11th International Conference on Quality of Service, pages 325–342.

[69] Ostergard, P. R. and Pottonen, O. (2008). There exists no Steiner systemS(4, 5, 17). Journal of
Combinatorial Theory, Series A, 115(8):1570 – 1573.

[70] Popek, G. and Kline, C. (1974). Verifiable secure operating system software. InAFIPS National
Computer Conference, pages 145–151.

[71] Raghavarao, D. and Padgett, L. V. (2005). Balanced incomplete block designs — applications. In
Block Designs: Analysis, Combinatorics and Applications, chapter 5. World Scientific.

80

[72] Raj, H., Nathuji, R., Singh, A., and England, P. (2009).Resource management for isolation en-
hanced cloud services. InACM Workshop on Cloud Computing Security, pages 77–84.

[73] Reiter, M. K. (1994). Secure agreement protocols: Reliable and atomic group multicast in Rampart.
In 2nd ACM Conference on Computer and Communication Security, pages 68–80.

[74] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S.(2009). Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In 16th ACM Conference on
Computer and Communications Security, pages 199–212.

[75] Rzadca, K., Datta, A., and Buchegger, S. (2010). Replica placement in P2P storage: Complexity
and game theoretic analyses. In30th IEEE International Conference on Distributed Computing
Systems, pages 588–609.

[76] Santos, J. R., Muntz, R. R., and Ribeiro-Neto, B. (2000). Comparing random data allocation and
data striping in multimedia servers. In2000 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 44–55.

[77] Schneider, F. B. (1987). Understanding protocols for Byzantine clock synchronization. Technical
Report 87-859, Department of Computer Science, Cornell University.

[78] Schneider, F. B. (1990). Implementing fault-tolerantservices using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4).

[79] Schneider, F. B. (1993).What good are models and what models are good?, chapter 2. In [63],
second edition.

[80] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The Hadoop distributed file system.
In 26th IEEE Symposium on Mass Storage Systems and Technologies, pages 1–10.

[81] Speakman, T. et al. (2001). PGM reliable transport protocol specification. Request for Comments
3208, Internet Engineering Task Force.

[82] Tromer, E., Osvik, D. A., and Shamir, A. (2010). Efficient cache attacks on AES, and countermea-
sures.Journal of Cryptology, 23(1):37–71.

[83] Turn, R. and Habibi, J. (1986). On the interactions of security and fault-tolerance. In9th NBS/NCSC
National Computer Security Conference, pages 138–142.

[84] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C. M., Anderson, A. V., Bennett,
S. M., Kagi, A., Leung, F. H., and Smith, L. (2005). Intel virtualization technology.IEEE
Computer, 38(3):48–56.

[85] Vattikonda, B. C., Das, S., and Shacham, H. (2011). Eliminating fine grained timers in Xen. In
ACM Cloud Computing Security Workshop.

[86] VMWare, Inc. (2009). Protecting mission-critical workloads with VMware fault tolerance.http:
//www.vmware.com/resources/techresources/1094.

[87] VMWare Information Guide (2010).Timekeeping in VMware Virtual Machines. VMWare Inc.

[88] Wray, J. C. (1991). An analysis of covert timing channels. In 1991 IEEE Symposium on Security
and Privacy, pages 2–7.

81

[89] Xu, M., Malyugin, V., Sheldon, J., Venkitachalam, G., and Weissman, B. (2007). ReTrace: Collect-
ing execution trace with virtual machine deterministic replay. In 3rd Workshop on Modeling,
Benchmarking and Simulation.

[90] Yin, J., Venkataramani, A., Martin, J.-P., L.Alvisi, and Dahlin, M. (2002). Byzantine fault-tolerant
confidentiality. InInternational Workshop on Future Directions in Distributed Computing.

[91] Yu, H. and Gibbons, P. B. (2007). Optimal inter-object correlation when replicating for availability.
In 26th ACM Symposium on Principles of Distributed Computing, pages 254–263.

[92] Yu, H., Gibbons, P. B., and Nath, S. (2006). Availability of multi-object operations. In3rd USENIX
Symposium on Networked Systems Design & Implementation.

[93] Yu, H. and Vahdat, A. (2002). Minimal replication cost for availability. In21st ACM Symposium
on Principles of Distributed Computing, pages 98–107.

[94] Zdancewic, S. and Myers, A. C. (2003). Observational determinism for concurrent program security.
In 16th IEEE Computer Security Foundations Workshop, pages 29–43.

[95] Zhang, D., Askarov, A., and Myers, A. C. (2011). Predictive mitigation of timing channels in
interactive systems. In18th ACM Conference on Computer and Communications Security.

[96] Zhang, D., Askarov, A., and Myers, A. C. (2012a). Language-based control and mitigation of
timing channels. In33rd ACM Conference on Programming Language Design and Implemen-
tation.

[97] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. (2012b). Cross-VM side channels and
their use to extract private keys. In19th ACM Conference on Computer and Communications
Security.

82

