REPLICATION AND PLACEMENT FOR SECURITY IN DISTRIBUTED SYST EMS

Peng Li

A dissertation submitted to the faculty of the UniversityNidrth Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor ofi@ophy in the Department of
Computer Science.

Chapel Hill
2014

Approved by:

James H. Anderson
Peter M. Chen

Debin Gao

Kevin Jeffay

Michael K. Reiter, Chair

©2014
Peng Li
ALL RIGHTS RESERVED

ABSTRACT

Peng Li: Replication and placement for security in distidolisystems
(Under the direction of Michael K. Reiter)

In this thesis we show how the security of replicated objectiistributed systems, in terms of
either the objects’ confidentiality or availability, can ingproved through the placement of objects’
replicas so as to carefully manage the nodes on which objegitcas overlap.

In the first part of this thesis we preseftopWatch a system that defends against timing-
based side-channel attacks that arise from coresidencyictiing and attackers in infrastructure-
as-a-service clouds and threaten confidentiality of vistidata. StopWatchtriplicates each cloud-
resident guest virtual machine (VM) and places replicashab the three replicas of a guest VM
are coresident with nonoverlapping sets of (replicas dfeoWVMs. StopWatchuses the timing of
I/O events at a VM’s replicas collectively to determine thmings observed by each one or by an
external observer, so that observable timing behaviorsianiéarly likely in the absence of any other
individual, coresident VM. We detail the design and impletadon of StopWatchin Xen, evaluate
the factors that influence its performance, demonstraslitantages relative to alternative defenses
against timing side-channels with commodity hardware, atdress the problem of placing VM
replicas in a cloud under the constraintsSsbpWatchso as to still enable adequate cloud utilization.

We then explore the problem of placing object replicas oresad a distributed system to maxi-
mize the number of objects that remain available when natleda occur. In our model, failing (the
nodes hosting) a given threshold of replicas is sufficierdisable each object, and the adversary
selects which nodes to fail to minimize the number of objélctd remain available. We specifi-
cally explore placement strategies based on combinatstriattures called-packings; provide a
lower bound for the object availability they offer; show thiaese placements offer availability that
is c-competitive with optimal; and propose an efficient aldamtfor computing combinations of
t-packings that maximize their availability lower bound. ¥édempare the availability offered by our

approach to that of random replica placement, owing to tipeilaoity of the latter approach in previ-

ous work. After quantifying the availability offered by @om replica placement in our model, we
show that our combinatorial strategy yields placementh ttter availability than random replica
placement for many realistic parameter values. Finallyprogide parameter selection strategies to

concretely instantiate our schemes for different systeessi

To my family in China, my wife Qing, and my son Lucas.

ACKNOWLEDGEMENTS

The completion of this dissertation would not have beeniptessvithout the guidance of my
advisors, Prof. Mike Reiter and Prof. Debin Gao, whom | fesgtemely fortunate to have met and
worked with and owe all my gratitude to. Throughout the l&sten years, weekly meetings with
them have shaped the pace of my life and marked the path of omtlyboth as a researcher and as
a person. One afternoon back in 2007, a phone call from Dabungit me to Singapore, and the
days | spent there working with him were beyond pleasant aechanable. Through Debin | met
Mike, simply the best mind | have had the fortune to work witht only because of his masterful
understanding and insight of the field, prompt and wise d&tsshe has made on all matters, always-
correct direction and advise, but also because of his gillgss to share frustrations when things
turn out in an unexpected way and his embodiment of sometiéggnd an academic advisor. His
high expectation kept me awake solving problems in mangsinénights, but it also lifted me up
to stand on a higher ground to watch around. For these mamg,yd&éike and Debin” have been
the most frequent openning of the emails | sent and the miieibles“oracles” for me to count on.

I would also like to thank Dr. James Anderson, Dr. Peter Claed, Dr. Kevin Jaffey for
serving on my dissertation committee. | am very gratefublbof them to take time from their busy
schedules to hold meetings with me and providing invaluédsebacks.

With all my friends in the security lab and in Chapel Hill, | dot feel | am alone. | appreciate
gratefully for their help in my academic studies and in mg.lif

One of the luckiest things that have ever happened to me wasngeavith my wife Qing, who
moved to the States with all trust in me and supports me noemattat happens. She was born
with the abilities of viewing things positively, of beingrid to and thinking good of other people,
and of discovering amazement in everyday life. | am the hegtphan having her aside.

Studying and living abroad has been not easy, luckily | haygarents, my brother, and all my

family support me unconditionally. All | did and will do is fahem.

Vi

PREFACE

Object replication, and careful placement of those replgaas to manage the overlap between
any two objects’ replicas, can be used to support securitysgo distributed systems. This the-
sis demonstrates two specific uses of replication and placefor this purpose, namely to limit
side-channel information leakage between virtual mashin&eompute clouds and to improve the

availability of objects despite targeted failures of comepsi that host their replicas.

Vii

TABLE OF CONTENTS

LIST OF TABLES ... e e e

LIST OF FIGURES ... e e e e e e e e

1 INTRODUCTION ..ttt et e e mn e aae e

2 MITIGATING ACCESS-DRIVEN TIMING CHANNELS IN CLOUDS US-
ING STOPWATCH. . ..ot e e e e e e

2.1

2.2

2.3

2.4

Related WOrK
2.1.1 Timing Channel Defenses. ...t e e

2.1.2 RePlCalioN.t e e

2.2.2 Defense Stralegyc.vvriiit i s
2.2.3 Justification for the Median ...t
RT CIOCKS ..o e
2.3] S A . et
2.3.2 Implementation iN X&Nttt e e
2.3.2.1 TiMerinterruptsovinri i e s e
2.3.22 rdtsccallsand CMOSRTCvaluescovivinnnn.
2.3.2.3 Reading COUNTEISotiiit et e e ee e
[O ClOCKS . .t e
2.4] S AIEY . ettt
2.4.1.1 Diskand DMAINEITUPLS . ..c.voiniiie s ee e

2.4.1.2 Networkinterrupts. ...t i e

viii

2.4.2.1 Network card emulation.coiioieaiiiiii. 20
2.4.2.2 Diskand DMAemulation..............ciiiiiimmmieennan.. 22
2.5 Collaborative Attacksot e 22
2.5.1 External Collaborators ...t 22
2.5.2 Collaborating Victim-VM Clients ...t 23
2.5.3 Collaborating Attacker VIMS ...ttt i 24
2.6 Performance Evaluationoiiiiim i 25
2.6.1 Selected Implementation Detailscommmeiiiieiiiienann.. 25
2.6.2 EXperimental SetUDoiiiii e e 26
2.6.3 NetWOrk SeIVICESttt 27
2.6.3.1 Filedownloadscciiiiiiii 27
2.6.3.2 NFS L e 29
2.6.4 COmMPUIAIONSttt i e 30
2.7 Comparison to ARErNAtiVESot e e e 31
2.7.1 Comparison to Uniformly Random Noiseccovevenn. 32
2.7.2 Comparison to TiIMme SlCINg.ottt e i 33
2.7.2.1 DESION .ttt e e 34
2.7.2.2 Evaluation.o 36
2.7.3 DISCUSSION ...ttt e e et e e e 37
2.8 Replica Placementinthe Cloudoiimmmn i 38
2.9 CONCIUSION .. e e e e 45
REPLICA PLACEMENT FOR AVAILABILITY IN THEWORSTCASE............... 47
3.1 Related WOrK 49
3.2 Overlap-Based Placement Strate€giesoumwmeeire e iiannnns 50
3.2.1 TheSimpleOverlap(z, A) Placement Strategycooviivinin... 51
3.2.2 TheComboOverlap(Ag, ..., s—1) Placement Strategy 54

2.4.2 Implementation iN X&Nttt e i e 20

3.2.2.1 Computing &omboOverlap(\g, ..., As—1) to Maxi-

MIZE IDAVAIL (A0, - oy As1) c e et 56
3.2.2.2 SensitivitytoChoice Gf ... 57
3.2.3 Parameter Selectiont 58
3.3 Comparison to Random ReplicaPlacementcooceii i, 61
3.3.1 The Worst-Case Availability &fandom 61
3.3.2 Comparison RESUILS ...ttt e it aaeas 64
3.3.3 Breakdown o€omboOverlap Placements 68
334 Thes = 1 CaSe. ..ttt e 68
3.4 CONCIUSION .. e e e e e e 74
4 CONCLUSION .. e e e e e e 75
BIBLIOG R APHY L. 77

LIST OF TABLES

2.1 Length of time slicesficeLen) and of cleansingdleanseLen)......................

2.2 Configurations

Xi

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

2.11

3.1

3.2

3.3

3.4

3.5

3.6

3.7

LIST OF FIGURES

Justification for median; baseline distributiBrp(\), A = 1, and victim
distribUtioNEXp(N) .o e 12
Delivering a packet to guest VM replicas. ...ttt 19
Emulation of network I/O device iStopWatch 21
Virtual inter-packet delivery times to attacker VM rigpl with coresident

victim (“two baselines, one victim”) and in a run where nolregp was

coresident with a victim (“three baselines”) ..., 21
HTTP and UDP file-retrieval latency. 28
Tests of NFS server usimpf sstone ... s 29
Tests of PARSEC applicationsoiiti it iiie it aaaess 31

Expected delay induced §topWatchvs. by uniform noise, as a func-
tion of confidence with which attacker distinguishes the tigtributions
(coresident victim or not) after the same number of obsemat baseline

distributionExp()\), A = 1; victim distributionExp(\')o 33
Time-sliced execution of three VMS i 34
StopWatchvs. time slicing: comparison of slowdown anddelay 37
Progress of file download ViaHTTP ... e 38
N O AL ON ..t e e e e e 51
Avail () — IbAvail *°(x,\) forn =71,z =1,andr =3 53
IbAvail «°(xo,....As_1)

TBAVAIT ™ (N o\, expressed asapercentagecciiiiiiimninnn. 57
Values ofn, used inthischapter i i 58

CDFs showing the fraction of system sizes [50, 800] for which the
capacity gap (indicated on the horizontal axis, where lagéetter) can

be achieved using up te = 3 Steiner systemsuf;; = 1) ..., 60
Re-plot of Figure 3.5 for = 5 andz € {2,3}, but allowing i, =

lem{ a1y -« s fam b = L e 60
FPrAVaIl ™ Or b= 38400 ...t 64

Xii

3.8 IbAvail ©()\g, ..., \s_1)—prAvail ™ for an optimalComboOverlap(Ag, . .., As_1)

placement as a percentage of the maximum possible impraovdme
prAvail ™

3.9 IbAvail *°(z,\) — prAvail ™ for SimpleOverlap(z, \) placements and
IbAvail (g, . .., As—1)—prAvail ™ for bestComboOverlap(Xg, . . ., As_1)
placement (right most column) whern> 2, as a percentage of the maxi-
mum possible improvement— prAvail ™, whenn = 31

3.10 IbAvail *°(z,\) — prAvail ™ for SimpleOverlap(z, \) placements and
IbAvail °(Xg, . .., \s_1)—prAvail ™ for bestComboOverlap(Ao, . . ., As_1)
placement (right most column) when> 2, as a percentage of the maxi-
mum possible improvement— prAvail ™, whenn = 71

3.11 IbAvail *°(z,\) — prAvail ™ for SimpleOverlap(z, \) placements and
IbAvail (g, . .., Xs_1)—prAvail ™ for bestComboOverlap(Xg, ..., As_1)
placement (right most column) when> 2, as a percentage of the maxi-
mum possible improvement— prAvail ™, whenn = 257

312 (1- %)WJ for variousn andr, as a function ok

Xiii

CHAPTER1 INTRODUCTION

Traditionally, the topic of computer security has been abtarized as protecting three attributes
of data (and/or computation) (e.g., [40, Chapter Qanfidentialityor, in other words, that the
data is disclosed only to whom the data owner intemaggrity, or that the data is modified only
in intended ways and by intended parties; awailability, so that the data is accessible when
required and with the performance expected. Security iddthat adapts to include new computer
and data misuses as they become known, and some of thes@snfeug, combating spam email)
stretch the above characterization of computer securiiyl, tBis characterization is adequate for
the discussions of primary interest in this thesis.

It has long been argued that the goals of confidentialitggrity and availability are themselves
in conflict, in the sense that availability focuses on emgudata’s accessibility, whereas confiden-
tiality and integrity seek to limit its accessibility (to mended disclosure and update, respectively).
This tension has specifically been highlighted in the useatd gplication since replicating data
to potentially far-flung locations might greatly enhancaikability but put the data at risk of unin-
tended disclosure or modification (e.g., [83]). Conversedeping the data in a high-security vault
might enhance its confidentiality and integrity, but it ntiglot be easily accessible when needed or
might be destroyed in a fire inside the vault, hurting its kiviity.

There is a long history of research focused on striking artcaldoetween availability by replica-
tion on the one hand, and confidentiality and integrity ofr@icated data/computation on the other.
Examples include the division of certificate authoritiemionline (highly available) and offline (and
hence more secure) components (e.g., [56]), data storagedmbines redundancy for data avail-
ability with cryptographic techniques to enhance intggehd/or confidentiality (e.g., [46]), and
the entire field of Byzantine fault-tolerant computatioeese.qg., [55, 73, 24, 18, 45] and citations

therein) to balance integrity and availability.

Despite this attention, we show in this thesis that therenstreer facet of replication that,
to our knowledge, has not yet been exploited in the contexdectirity but that provides a new
opportunity to explore the design space of secure systeragiely, the manner in which replicas
are placed on nodes. More specifically, in this thesis wecegpivo applications of the general idea
of constraining how the replicas of different data/compataobjects overlap on nodes to improve

security for the objects. Specifically, this thesis levesareplica placement in two ways:

* In Chapter 2, we consider the problem of protecting virtorgchines (VMs) submitted to
public compute clouds from the inference of their secretother VMs utilizing timing-
based side-channel attacks (e.g., [97]). We develop agirdor the cloud to execute VMs
that involves replicating each VM and placing its replicastisat they overlap (reside on
the same host as) a limited number of replicas of any other ¥hén, by ensuring that the
timing of each event observable by any VM is an aggregatiotheftimings of this event
observable by (the machines hosting) its replicas, thaduroverlap policy ensures that any
(victim) VM can influence the timing of events observable Impther (attacker) VM only
minimally. We show that timing-based side-channels ak#léo an attacker VM are thereby
substantially mitigated. To our knowledge, this work isevebrthy in demonstrating how
replication carimproveconfidentiality of data by illustrating a scenario in whiaplication

supports confidentiality.

* In the context of using replication for availability, theepious work that considered replica
placement did so only in scenarios where computers failaiiistically. Protecting thae-
curity of a system entails considering intelligent attackers, dw@#; in particular ones whose
behaviors may not be characterized by a known distributrombm can target a system adap-
tively. Therefore, in Chapter 3 we study the problem of mazing the availability of repli-
cated objects against an attacker who can disable compuitetargeted fashion, with knowl-
edge of where object replicas are placed and limited only bydget on the total number
of computers it can disable. We show how carefully managweylaps in the placement
of object replicas can substantially enhance object dhilitha against this type of targeted

attacker.

The above contributions do not eliminate the aforementdeasions between replication on
the one hand and confidentiality and integrity on the othenéler, they do provide new insights
into unchartered parts of the tradeoff space. Specifidalgy provide new ways of using replication
and specifically replica placement to enhance a singularisggoal—improved confidentiality via
timing side-channel defense in the first case above, andiedravailability against targeted attacks
in the second—that might be possible to leverage in conjpmetith other technologies previously
described (though we leave this exploration to future woik)gether, we believe that these works
add a new dimension to previous thinking about security ragisims for replicated systems, namely
that replica placement is a critical factor influencing thiéty of replication for both conventional

purposes (availability) and unconventional ones (confidbty) in systems subject to attack.

CHAPTER 2 MITIGATING ACCESS-DRIVEN TIMING CHANNELS INCLOU DS
USING STOPWATCH

Implicit timing-based information flows threaten the usectfuds for very sensitive compu-
tations. In an “infrastructure as a service” (laaS) cloutthsan attack could be mounted by an
attacker submitting a virtual machine (VM) to the cloud thiates the duration between events that
it can observe, to make inferences abowicim VM with which it is running simultaneously on
the same host but otherwise cannot access. Such “access’dattacks [97] were first studied
in the context of timing-basedovert channelsin which the victim VM is infected with a Trojan
horse that intentionally signals information to the ate&xckKM by manipulating the timings that the
attacker VM observes. Of more significance in modern cloudrenments, however, are timing-
basedside channelswhich leverage the same principles to attack an uninfdmié¢dblivious victim
VM (e.qg., [74, 97]).

In this chapter we propose an approach to defend agains timg attacks and a system,
called StopWatch that implements this method for laaS clouds. A timing sstiannel can arise
whenever an attacker VM uses an event sequence it obseritanad another, independent event
sequence that might reflect the victim VM’s behavior [88fopWatchis thus designed to system-
atically remove independence of observable event seqgsiamicere possible, first by making all
real-time clocks accessible from a guest VM to be determinsigtad by the VM’s own execution.

To address event sequences on which it cannot intervenavlyisnamely for input/output
(I/O) events,StopWatchalters 1/0 timings observed by the attacker VM to mimic thokareplica
attacker VM that isot coresident with the victim. Sinc8topWatchcannot identify attackers and
victims a priori, realizing this intuition in practice requires replicagieach VM on multiple hosts
and enforcing that the replicas are coresident with nohapping sets of (replicas of) other VMs
— so that, in particular, at most one attacker VM replica ises@ent with a replica of the victim

VM. StopWatchthen delivers any I/O event to each attacker VM replica atre tiletermined by

“microaggregating” the delivery times planned by the VMMssting those replicas. Specifically,
StopWatchuses three replicas per VM that coreside with nonoverlappets of (replicas of) other
VMs and microaggregates the timing of I/0O events by takir@rtmedian across all three replicas.
(Two replicas per VM seems not to be enough: one might be icemswith its victim, and by
symmetry, its I/O timings would necessarily influence tiaitigs imposed on the pair.) Even if the
median timing of an 1/O event is that which occurred at anciattareplica that is coresident with
a victim replica, timings both below and above the mediarugea! at attacker replicas that do not
coreside with the victim.

We detail the implementation dtopWatchin Xen, specifically to intervene on all real-time
clocks and, notably, to enforce this median behavior onckdd available via the I/O subsystem
(e.g., network interrupts). Moreover, for a uniprocessbt {{.e., one limited to using only a single
virtual CPU, even when running on a physical platform withltiple physical CPUs)StopWatch
enforces deterministic execution across all of the VM'diogg, making it impossible for an attacker
VM to utilize other internally observable clocks and ensgrihe same outputs from the VM replicas.
By applying the median principle to the timing of these otp&topWatchfurther interferes with
inferences that an observer external to the cloud could roakbe basis of output timings.

We evaluate the performance of o8topWatchprototype for supporting web service (file
downloads) and various types of computations. Our anabsisvs that the latency overhead of
StopWatchis less thar2.8 x even for network-intensive applications. We also idengifiaptations
to a service that can vastly increase its performance wherovar StopWatch e.g., making file
download overStopWatchcompetitive with file download over unmodified Xen. For cortgu
tional benchmarks, the latency induced 8ippWatchis less thar2.3x and is directly correlated
with their amounts of disk 1/0O. Overall, the latency overthed StopWatchis qualitatively simi-
lar to other modern systems that use VM replication for otkasons (e.g., [25]). Moreover, we
demonstrate thaStopWatchcan substantially outperform competing defenses agamstg side-
channel attacks, namely adding uniformly random noise émetimings or running VMs on shared
hardware in a time-slicing fashion.

We also study the impact @topWatchon cloud utilization, i.e., how many guest VMs can be
simultaneously executed on an infrastructurezahachines, each with a capacity ©fuest VMs,

under the constraint that the three replicas for each gukktdteside with nonoverlapping sets

of (replicas of) other VMs. We show that for any< "T‘l ©(cn) guest VMs (three replicas of
each) can be simultaneously executed; we also identifytipeh@lgorithms for placing replicas
to achieve this bound. We extend this resultet6;~) guest VMs when guest VMs can place
different demands, up ..., on machine resources of capacityThese results distinguisBtop-
Watchfrom the alternative of simply running each guest VM on a ssjgacomputer, which permits
simultaneous execution of ontyguest VMs.

To summarize, our contributions are as follows: First, visoriuce a novel approach for defend-
ing against access-driven timing side-channel attacksniinaStructure-as-a-service” (laaS) com-
pute clouds that leverages replication of guest VMs withdbestraint that the replicas of each
guest VM coreside with nonoverlapping sets of (replicasodfier VMs. The median timings of
I/O events across the three guest VM replicas are then irdpaise¢hese replicas to interfere with
their use of event timings to extract information from a mictvM with which one is coresident.
Second, we detail the implementation of this strategy in,X@#lding a system calle@topWatch
and evaluate the performance SffopWatchon a variety of workloads. This evaluation sheds light
on the features of workloads that most impact the performaicapplications running otop-
Watch and how they can be adapted for best performance. We furkbendethis evaluation with
a comparison to other plausible alternatives for defentimigstically against access-driven timing
side-channel attacks, such as adding random noise to tleevabge timing of events or running
VMs on shared hardware in a time-sliced fashion. Third, wenshow to place replicas under the
constraints ofStopWatchto utilize a cloud infrastructure more effectively than ming each guest
VM in isolation.

The rest of this chapter is structured as follows. We desaditated work in Section 2.1. We
provide an overview of the design &ftopWatchin Section 2.2 and detail how we address classes
of internal “clocks” used in timing attacks in Section 2.3l@ection 2.4. In Section 2.5, we then
discuss howStopWatchextends to address richer attacks involving collaboragsiernal to the
cloud or collaborative attacker VMs. We evaluate perforoganf our StopWatchprototype in
Section 2.6. We extend this evaluation to provide a compartis other holistic timing side-channel
defenses in Section 2.7. Section 2.8 treats the replicamplant problem that would be faced by

cloud operators usin§topWatch and we conclude in Section 2.9.

2.1 Related Work

2.1.1 Timing Channel Defenses

Defenses against information leakage via timing channelsl@erse, taking numerous differ-
ent angles on the problem. Research on type systems andtségoed languages to eliminate
timing attacks offers powerful solutions (e.g., [3, 94, 9@t this work is not immediately appli-
cable to our goal here, namely adapting an existing virtuatimine monitor (VMM) to support
practical mitigation of timing channels today. Other resbdas focused on the elimination of tim-
ing side channels within cryptographic computations (¢3@]) or as enabled by specific hardware
components (e.g., [72, 54]), but we seek an approach thamgehensive.

Askarov et al. [4] distinguish betwednternal timing channels that involve the implicit or
explicit measurement of time from within the system, axtiernaltiming channels that involve
measuring the system from the point of view of an externakoles. Defenses for both internal
(e.g., [49, 3, 94, 85]) and external (e.g., [51, 39, 4, 42) 98}ing channels have received signif-
icant attention individually, though to our knowledg8topWatchis novel in addressing access-
driven timing channels through a combination of both teghes.StopWatchincorporates internal
defenses to interfere with an attacker’s use of real-timekd or “clocks” that it might derive from
the I/O subsystem. In doing s&topWatchimposes determinism on uniprocessor VMs and then
uses this feature to additionally build an effective exa¢defense against such attacker VMs.

StopWatcfs internal and external defense strategies also diffewididally from prior work,
in interfering with timing channels by allowing replicas {he internal defenses) and external ob-
servers (in the external defenses) to observe only medatirflings across the three replicas. The
median offers several benefits over the alternative of aaflirsg event timings by adding random
noise (without replicating VMs): to implement random neiaalistribution from which to draw the
noise must be chosen without reference to an execution iatikence of the victim—i.e., how the
execution “should have” looked—and so ensuring that thesehmoise distribution is sufficient to
suppress all timing channels can be quite difficdtopWatchuses replication and careful replica
placement (in terms of the other VMs with which each repliogesides) exactly to provide such a

reference. Moreover, we show that the median permits theygehcurred by the system to scale

better than uniformly random noise allows for the same ptaig, as the distinctiveness of victim

behavior increases.

2.1.2 Replication

To our knowledge StopWatchis novel in utilizing replication for timing channel defensThat
said, replication has a long history that includes techedggimilar to those we use here. For exam-
ple, state-machine replication to mask Byzantine faul® Ehsures that correct replicas return the
same response to each request so that this response cantifeediby “vote” (a technique related
to one employed irStopWatch see Section 2.2 and Section 2.5.1). To ensure that coaplitas
return the same responses, these systems enforce thendelivequests to replicas in the same
order; moreover, they typically assume that replicas ateragenistic and process requests in the
order they are receivedEnforcingreplica determinism has also been a focus of research ih (bot
Byzantine and benignly) fault-tolerant systems; most .(¢13, 64, 6]), but not all (e.g., [15]), do
so at other layers of the software stack ti&topWatchdoes.

More fundamentally, to our knowledge all prior systems #rdbrce timing determinism across
replicas permit one replica to dictate timing-related évdar the others, which does not suffice
for our goals: that replica could be the one coresident with victim, and so permitting it to
dictate timing related events would simply “copy” the infaation it gleans from the victim to the
other replicas, enabling that information to then be leadatdof the cloud. Rather, by forcing the
timing of events to conform to the median timing across thrédereplicas, at most one of which
is coresident with the victim, the enforced timing of eacbkravis either the timing of a replica not
coresident with the victim or else between the timing of teplicas that are not coresident with the
victim. This strategy is akin to ones used for Byzantine tiamlerant clock synchronization (e.qg.,
see [77, Section 5.2]) or sensor replication (e.g., see$éstion 5.1]), though we use it here for
information hiding (versus integrity).

Aside from replication for fault tolerance, replicationshiaeen explored to detect server pen-
etration [34, 23, 66, 35]. These approaches purposely smgil@rse replica codebases or data
representations so as to reduce the likelihood of a singil#gxsucceeding on multiple replicas. Di-

vergence of replica behavior in these approaches is thératinge of an exploit succeeding on one

but not others. In contrast to these approacls#spWatchleverages (necessarilijentical guest
VM replicas to address a different class of attacks (timidg shannels) than replica compromise.
Research on VM executiaeplay (e.g., [89, 32]) focuses on recording nondeterministicesve
that alter VM execution and then coercing these events tarabe same way when the VM is
replayed. The replayed VM is a replica of the original, allaeiemporally delayed one, and so this
can also be viewed as a form of replicatid®topWatchsimilarly coerces VM replicas to observe the
same event timings, but again, unlike these timings beitgraened by one replica (the original),
they are determined collectively using median calcul&joso as to interfere with one attacker
VM replica that is coresident with the victim from simply pagating its timings to all replicas.
That said, the state-of-the-art in VM replay (e.g., [32]deebses multiprocessor VM execution,
which our present implementation StopWatchdoes not.StopWatchcould be extended to support
multiprocessor execution with techniques for determimistultiprocessor scheduling (e.g., [27]).
Mechanisms for enforcing deterministic execution thro@y®-level modifications (e.g., [5]) are
less relevant to our goals, as they are not easily used bya&xlaud provider that accepts arbitrary

VMSs to execute.

2.2 Design

Our design is focused on “infrastructure as a service” (Jad®uds that accept virtual ma-
chine images, or “guest VMs,” from customers to execute. 2an&EC2 bt t p: / / aws. amazon.
cont ec2/) and Rackspaceh(t p: / / www. r ackspace. coni) are example providers of pub-
lic laaS clouds. Given the concerns associated with sidewodl attacks in cloud environments
(e.g., [74, 97]), we seek to develop virtualization softeviirat would enable a provider to construct
a cloud that offers substantially stronger assurancesisigaakage via timing channels. This cloud
might be a higher assurance offering that a provider runsgaide its normal cloud (while presum-
ably charging more for the greater assurance it offers) oivate cloud with substantial assurance

needs (e.g., run by and for an intelligence or military comity).

2.2.1 Threat Model

Our threat model is a customer who subnattacker VMsfor execution that are designed to
employ timing side channels. We presume that the attackelis/isigned to extract information
from a particular victim VM, versus trying to learn generttsstics about the cloud such as its
average utilization. We assume that access controls greéheattacker VMs from accessing victim
VMs directly or from escalating their own privileges in a wtnat would permit them to access
victim VMs. The cloud’s virtualization software (in our ggsXen and our extensions thereof) is
trusted.

According to Wray [88], to exploit a timing channel, the altar VM measures the timing of
observable events usingchbock that is independent of the timings being measured. Whilertost
common such clock is real time, a clock can be any sequendesefwable events. With this general
definition of a “clock,” a timing attack simply involves measig one clock using another. Wray

identified four possible clock sources in conventional cotars [88]:

TL: the “CPU instruction-cycle clock” (e.g., a clock constedt by executing a simple timing

loop);

* Mem: the memory subsystem (e.g., data/instruction fetches);

10: the 1/O subsystem (e.g., network, disk, and DMA interrypasd

RT: real-time clocks provided by the hardware platform (dime-of-day registers).

2.2.2 Defense Strategy

StopWatchs designed to interfere with the usel&fandRT clocks and, for uniprocessor VMs,
TL or Mem clocks, for timing attacks. (As discussed in Section 2.1emsion to multiprocessor
VMs is a topic of future work.JO andRT (especiallyRT) clocks are an ingredient in every timing
side-channel attack in the research literature that we faaued, undoubtedly because real time is
the most intuitive, independent and reliable referencekcfor measuring another clock. So, inter-
vening on these clocks is of paramount importance. MoredkierwayStopWatchdoes so forces
the scheduler in a uniprocessor guest VM to behave detesticialy, interfering with attempts to

useTL or Mem clocks.

10

More specifically, to interfere withO clocks, StopWatchreplicates each attacker VM (i.e.,
every VM, since we do not presume to know which ones are ata¢kis) threefold so that the
three replicas of a guest VM are coresident with nonoventappets of (replicas of) other VMs.
Then, when determining the timing with which &b event is made available to each replica, the
median timing value of the three is adopte8topWatchaddresseRT clocks by replacing a VM’s
view of real time with avirtual time that depends on the VM'’s own progress, an idea due tokPope
and Kline [70].

A side effect of howStopWatchaddresse$O andRT clocks is that it enforces deterministic
execution of uniprocessor attacker VM replicas, also disghts ability to useTL or Mem clocks.
These mechanisms thus deal effectively with internal alagiems of time, but it remains possible
that an external observer could glean information from #a-time duration between the arrival of
packets that the attacker VM sends. To interfere with tmsngy channel, we emit packets to an

external observer with timing dictated by, again, the mediaing of the three VM replicas.

2.2.3 Justification for the Median

Permitting only the median timing of d® event to be observed limits the information that an
attacker VM can glean from being colocated with a victim VMmkrest, because the distribution
of the median timings substantially dampens the visibiity victim’s activities.

To see why, consider a victim VM that induces observablengsithat are exponentially dis-
tributed with rate)’, versus a baseline (i.e., non-victim) exponential distiin with rate) > \'.*
Figure 2.1a plots example distributions of the attacker Vdlservations undeStopWatchwhen
an attacker VM is coresident with the victim (“Median of twadglines, one victim”) and when
attacker VM is not (“Median of three baselines”). This figgtews that these median distributions
are quite similar, even wheh is substantially larger thai’; e.g.,A = 1 and)\ = 1/2 in the
example in Figure 2.1a. In this case, to even reject the mplbthesis that the attacker VM is not
coresident with the victim using g-square test, the attacker can do so with high confidenceein th

absence oftopWatchwith only a single observation, but doing so un@&opWatchrequires almost

It is not uncommon to model packet inter-arrival time, foample, using an exponential distribution (e.g., [52]).

11

1 T T T T T
Baseline
08 Victim ------- s
B > Median of three baselines —8&—
5 0.6 .y Median of two baselines, ---0---]
_g ° one victim
S 0.4 e Ny -
£
02 - \"':;:;‘; """""""""""""""""""" T
0] RS o]
0 1 2 3 4 5 6
X
(a) Distribution of median)’ = 1/2
£ 80 2800
2 70 f w/ StOpV\Ifatch - ,.- 2 700 - w/ StopV\llatch - *
g 60 - W/oStopWatch —HB— /] g 600 b W/oStopWatch —B— 7]
/ -
D50 [D500 [e TR
e J/ Re) e
O 40 [D00 [e T
B30 300 BT
G20 g B 200 e
S om—m—RFR @ @ m __on 5 oB—/m—m—m —m—m—F
Z 0.70 0.75 080 0.85 090 095 0.99 Z 0.70 0.75 080 085 090 095 099
confidence confidence
(b) Observations needed to detect victim; (c) Observations needed to detect victim;
)\/:1/2)\/:10/11

Figure 2.1: Justification for median; baseline distribatitxp(A), A = 1, and victim distribution
Exp(X)

two orders of magnitude more (Figure 2.1b). This improvenhb&tomes even more pronounced if
A and) are closer; the case= 1, \' = 10/11 is shown in Figure 2.1c.

In terms of the number of observations needed to extract imgfah information from the
victim VM, this assessment is very conservative, since ttaeker would face numerous pragmatic
difficulties that we have not modeled here [97]. But even #imsple example shows the power
of disclosing only median timings of three VM replicas, andSection 2.4.2 we will repeat this
illustration using actual message traces.

The above illustration of the benefits of allowing only thedia® timing of anlO event to
be observed by an attacker is not specific to timing behavlwt are exponentially distributed.
Instead, it generalizes to any distribution. To make thésglletX,..,, denote the random variable
that takes on the value of theth smallest of then values obtained by sampling random variables
X1 ... X, Let F;(x) denote the CDF oK (i.e., F;(z) = P (X; < x)) and letF,.,,(x) denote the
CDF of X,..,,,. The security ofStopWatchhinges on the distribution of the media#y.3 of three

12

independent random variablés, X,, X3 defined as the difference in virtual times (or, in the case
of an external observer, real times) between two subsedQentents.

Specifically, due to the construction StopWatch the adversary is relegated to learning in-
formation from the difference between (i) the CDE3(z) for random variablesy;, X», X3 cor-
responding to attacker VM replicas that aret coresident with a victim VM of interest, and (ii)
the CDF F}.4(x) for random variables(], X», X35 where X/ corresponds to an attacker VM that
is coresident with the victim VM of interest. An example mea&sof the distance between two
CDFs F(x) and F(z) is their Kolmogorov-Smirnov distance [28, p. 179], definadl¥ F,) =
max, |F(z) — F(x)|.

The following theorem shows that adopting the median miggoagation function can only

interfere with the adversary’s goal:

Theorem 1. If the distributions ofX, and X3 are overlapping (i.e., for n@ is F»(z) = 0 and

F3(xz) =1, or Fp(z) = 1 andF3(x) = 0), thenD(Fy.3, F}.4) < D(F, FY).

Proof. Due to well-known results in order statistics (e.g., seadgii et al. [41, Result 2.4P:

Fon) =30 (071) Y[R

(=r IC{1..m}: i€l
[1|=¢

In particular,

ngg(w) :Fl(x)Fg(x) + Fl(x)Fg(x) + Fg(x)Fg(w) — 2F1 (x)Fg(x)Fg(ac)

Fy3(x) =F{(2) Fa(x) + F{(2) Fy(x) + Fa(2) Fy(x) — 2F] (2) Fa(x) F3(x)
whereF (z) represents the CDF of}. So,
D(Fys, Fy.3) = max|[Fy(x) + Fs(z) — 2P (2) F3 ()] [Fi (x) — F{(2)]]

Noting thatD(F}, F|) = max, |Fi(z) — F(x)], it suffices to show thaf, (z) + F5(z) — 2F,(z) F(z)| <
1 for all z. However, sincé (z) € [0, 1] andFs(x) € [0, 1] for all z, | Fa(x) + F3(x) — 2F5(x) F3(z)| <

This equation assumes ea#h(x) is continuous. See Glngodr et al. [41] for the case when sBie) is not
continuous.

13

1 and, moreover, equalsonly if for somez, one of F»(x) and F3(z) is 1 and the other i§. This

last case is precluded by the theorem. O

In the limit, when the distributions oXs and X3 overlap exactly, we get a much stronger result:

Theorem 2. If X, and X are identically distributed, theD (Fy.3, F}.5) < 2 D(Fy, FY).

Proof. In this case}F,; = F3 and so
|Fa(x) + Fy(x) — 2F3 () F3(2)]
reaches its maximum value éfat the valuer yielding F»(z) = F3(z) = 1. O

2.3 RT clocks

Real-time clocks provide reliable and intuitive referemtecks for measuring the timings of
other events. In this section, we describe the high-levatesjy taken irGtopWatchto interfere with
their use for timing channels and detail the implementatibthis strategy in Xen with hardware-

assisted virtualization (HVM).

2.3.1 Strategy

The strategy adopted iGtopWatchto interfere with a VM's use of real-time clocks is to virtu-
alize these real-time clocks so that their values obseryedMM are a deterministic function of the
VM's instructions executed so far [70]. That is, after the \ékkcutesnstr instructions, the virtual

time observed from within the VM is
virt (instr) < slope X instr + start (2.1)

To determinestart at the beginning of VM replica execution, the VMMs hosting ¥iVI’s replicas

exchange their current real timesgrt is initially set to the median of these valuegope is initially

set to a constant determined by the tick rate of the machineghich the replicas reside.
Optionally, the VMMs can adjusitart and slope periodically, e.g., after the replicas execute

an “epoch” ofI instructions, to coarsely synchronizét and real time. For example, after theh

14

epoch, each VMM can send to the others the durafiprover which its replica executed thoge
instructions and its real tim&,, at the end of that duration. Then, the VMMs can select the amedi

real timeR; and the duratiorD;; from that same machine and reset

startyyq < virt,(I)

Ry —wvirty(I) + D;
slopey. 1 < arg min i = virt (1) + Dy —v
vE[L,u] I

for a preconfigured constant ranffeu], to yield the formula forvirt, .2 The use of¢ andu
ensures thatlope,, , | is not too extreme and, #f > 0, thatslope,, , ; is positive. In this wayyirt;
should approach real time on the computer contributing thdiam real timeR; over the next/
instructions, assuming that the machine and VM workloadg siughly the same. Of course, the
smaller-values are, the moreirt follows real time and so poses the risk of becoming useful in
timing attacks. Soypirt should be adjusted only for tasks for which coarse synchadion with

real time is important and then only with largevalues.

2.3.2 Implementation in Xen

Real-time clocks on a typical x86 platform include timeemtpts and various hardware coun-
ters. Closely related to these real-time clocks is the titamp counter register, which is accessed

using ther dt sc instruction and stores a count of processor ticks sincd.rese

2.3.2.1 Timer interrupts

Operating systems typically measure the passage of timeunytiag timer interrupts; i.e., the
operating system sets up a hardware device to interruppgieaily at a known rate, such aso
times per second [87]. There are various such hardware etethat can be used for this purpose.
Our current implementation dstopWatchassumes the guest VM uses a Programmable Interval
Timer (PIT) as its timer interrupt source, but our implenagioin for other sources would be similar.

The StopWatchVMM generates timer interrupts for a guest on a schedulawidtby that guest’s

®In other words, if(Ry — virt,(I) + Di)/I € [¢, u] then this value becomesope,, ,. Otherwise, eithef or u
does, whichever is closer (&}, — virtx(I) + Dj)/I.

15

virtual time virt as computed in Equation 2.1. To do so, it is necessary for fi&\fo be able to
track the instruction countstr executed by the guest VM.

In our present implementatiostopWatchuses the guediranch counfor instr, i.e., keeping
track only of the number of branches that the guest VM exascu&everal architectures support
hardware branch counters, but these are not sensitive tadhiplexing of multiple guests onto a
single hardware processor and so continue to count branepasdless of the guest that is currently
executing. So, to track the branch count for a guSgbpWatchimplements avirtualized branch
counter for each guest.

A question is when to inject each timer interrupt. Intel VTgments 1A-32 with two new
forms of CPU operations: virtual machine extensions (VM#égtroperation and VMX non-root
operation [84]. While the VMM uses root operation, guest Vide VMX non-root operation. In
non-root operation, certain instructions and events caddd exitto the VMM, so that the VMM
can emulate those instructions or deal with those eventse @ampleted, control is transferred
back to the guest VM via &M entry. The guest then continues running as if it had never been
interrupted.

VM exits give the VMM the opportunity to inject timer intepts into the guest VM as the
guest’s virtual time advances. However, so that guest VMaapobserve the same timer interrupts
at the same points in their executior&ppWatchinjects timer interrupts only after VM exits that
are caused by guest execution. Other VM exits can be induceddnts external to the VM, such as
hardware interrupts on the physical machine; these wouldrgdly occur at different points during
the execution of the guest VM replicas but will not be visitwghe guest [50, Section 29.3.2]. For
VM exits caused by guest VM execution, the VMM injects anydezktimer interrupts on the next

VM entry.

2.3.2.2 rdt sc calls and CMOS RTC values

Another way for a guest VM to measure time is vidt sc calls. Xen already emulates the
return values to these calls. More specifically, to prodingereturn value for a dt sc call, the
Xen hypervisor computes the time passed since guest raagtitssreal-time clock, and then this
time value is scaled by a constant factStopWatchreplaces this use of a real-time clock with the

guest’s virtual clock (Equation 2.1).

16

A virtualized real-time clock (RTC) is also provided to HVMgsts in Xen; this provides time
to the nearest second for the guest to read. The virtual RT€upelated by Xen using its real-time

clock. StopWatchresponds to requests to read the RTC using the guest'sMirne

2.3.2.3 Reading counters

The guest can also observe real time from various hardwaretexs, e.g., the PIT counter,
which repeatedly counts down to zero (at a pace dictated &lytirae) starting from a constant.
These counters, too, are already virtualized in modern VMMsh as Xen. In Xen, these return

values are calculated using a real-time cloSkppWatchuses the guest virtual time, instead.

2.4 10 clocks

10 clocks are typically network, disk and DMA interrupts. (@thdevice interrupts, such as
keyboards, mice, graphics cards, etc., are typically nelvaat for guest VMs in clouds.) We
outline our strategy for mitigating their use to implementihg channels in Section 2.4.1, and then

in Section 2.4.2 we describe our implementation of thigatyain StopWatch

2.4.1 Strategy

The method described in Section 2.3 for dealing viRth clocks by introducing virtual time
provides a basis for addressing sourcekKoflocks. A component of our strategy for doing so is to
synchronize I/O events across the three replicas of eadt §in virtual time, so that every 1/0O
interrupt occurs at the same virtual time at all replicas. ofsgnother things, this synchronization
will force uniprocessor VMs to execute deterministicaliy it alone will not be enough to interfere
with 10 clocks; it is also necessary to prevent the timing behaviane replica’s machine from
imposing I/O interrupt synchronization points for the a#)eas discussed in Section 2.1-2.2. This
is simpler to accomplish for disk accesses and DMA trans$erse replica VMs initiate these
themselves, and so we will discuss this case first. The mdiieuli case of network interrupts,
where we explicitly employ median calculations to dampem itifluence of any one machine’s

timing behavior on the others, will then be addressed.

17

2.4.1.1 Disk and DMA interrupts

The replication of each guest VM at start time includes ogping its entire disk image, and so
any disk blocks available to one VM replica will be availatbell. By virtue of the fact that (unipro-
cessor) VMs execute deterministically SiopWatch replicas will issue disk and DMA requests at
the same virtual time. Upon receiving such a request fronpkceeat timeV, the VMM adds an
offset A, to determine a “delivery time” for the interrupt, i.e., attvial timeV + Ay, and initiates
the corresponding I/O activities (disk access or DMA transfThe offsetA; must be large enough
to ensure that the data transfer completes by the virtuadatgltime. Once the virtual delivery time
has been determined, the VMM simply waits for the first VM exdtised by the guest VM (as in
Section 2.3.2) that occurs at a virtual time at least as lagythis delivery time. The VMM then
injects the interrupt prior to the next VM entry of the gueshis interrupt injection also includes
copying the data into the address space of the guest, so esvenpthe guest VM from polling for

the data in advance of the interrupt to create a form of cledal. (see [49, Sec 4.2.2]).

2.4.1.2 Network interrupts

Unlike the initiation of disk accesses and DMA transfers, dlativity giving rise to a network
interrupt, namely the arrival of a network packet that istidesl for the guest VM, is not synchro-
nized in virtual time across the three replicas of the guéét S$o, the VMMs on the three machines
hosting these replicas must coordinate to synchronize dheedy of each network interrupt to the
guest VM replicas. To prevent the timing of one from dictgtthe delivery time at all three, these
VMMs exchange proposed delivery times and select the mediudiscussed in Section 2.2. To
solicit proposed timings from the three, it is necessarygairse, that the VMMs hosting the three
replicas all observe each network packet. StopWatchreplicates every network packet to all three
computers hosting replicas of the VM for which the packehiemnded. This is done by a logically
separate “ingress node” that we envision residing on a degticcomputer in the cloud. (Of course,
there need not be only one such ingress for the whole cloud.)

When a VMM observes a network packet to be delivered to thetgitesends its proposed
virtual time — i.e., in the guest’s virtual time, see Sectih — for the delivery of that interrupt

to the VMMs on the other machines hosting replicas of the sgnest VM. (We stress that these

18

proposals are not visible to the guest VM replicas.) Each Vigdherates its proposed delivery
time by adding a constant offse%,, to the virtual time of the guest VM at its last VM exitA,,
must be large enough to ensure that once the three prop@seaisben collected and the median
determined at all three replica VMMs, the chosen mediamairtime has not already been passed
by any of the guest VMs. The virtual-time offs&t, is thus determined using an assumed upper
bound on the real time it takes for each VMM to observe thalinfe and to propagate its proposal
to the other$, as well as the maximum allowed difference between the fastesreplicas’ virtual
times. This difference can be limited by slowing the examutif the fastest replica.

Once the median proposed virtual time for a network intdrhgs been determined at a VMM,
the VMM simply waits for the first VM exit caused by the guest \(& in Section 2.3.2) that occurs
at a virtual time at least as large as that median valliee VMM then injects the interrupt prior to
the next VM entry of the guest. As with disk accesses and DMAdfers, this interrupt injection
also includes copying the data into the address space ofuié,gs0 as to prevent the guest VM
from polling for the data in advance of the interrupt to ceemform of clock (e.g., [49, Section 4.2.2
D

ReplicaA ReplicaB ReplicaC

C’s proposal
B’s proposal °
___________ b o @ = = = - H=—F === -—— -

A’s proposal P+A, §+A”
° : :
A, -

Virtual time

Rl . RZ Rl . RZ Rl . RZ
Realtime Realtime Real time

OArrivaI of packet at VMM O Arrival of proposal at VMM DDeIivery of packet to guest

Figure 2.2: Delivering a packet to guest VM replicas.

The process of determining the delivery time of a networkkpato a guest VM's replicas is

pictured in Figure 2.2. This figure depicts a real-time iR, Rs| at the three machines at

“In distributed computing parlance, we thus assursgrehronousystem, i.e., there are known bounds on processor
execution rates and message delivery times.

5If the median time determined by a VMM has already passed, ¢lue synchrony assumption was violated by the
underlying system. In this case, that VMM’s replica has djeel from the others and so must be recovered by, e.g.,
copying the state of another replica.

19

which a guest VM is replicated, showing at each machine: theaof a packet at the VMM, the
proposal made by each VMM, the arrival of proposals from ioteplica machines, the selection of
the median, and the delivery of the packet to the guest mepkach stepped diagonal line shows

the progression of virtual time at that machine.

2.4.2 Implementation in Xen

Xen presents to each HVM guest a virtualized platform the¢mebles a classic PC/server plat-
form with a network card, disk, keyboard, mouse, graphispldy, etc. This virtualized platform
support is provided by virtual 1/O devices (device modetsDiom0O, a domain in Xen with spe-
cial privileges. QEMUtt p: //fabrice. bel | ard. free. fr/ genu)is used to implement

device models. One instance of the device models is run in@wen HYM domain.

2.4.2.1 Network card emulation

In the case of a network card, the device model running in DoenBives packets destined for
the guest VM. WithoutStopWatchmodification, the device model copies this packet to the tyues
address space and asserts a virtual network device intefiufhe virtual Programmable Interrupt
Controller (vPIC) exposed by the VMM for this guest. HVM gtgesannot see real external hard-
ware interrupts since the VMM controls the platform’s imigat controllers [50, Section 29.3.2].

In StopWatch we maodify the network card device model so as to place eackepaestined
for the guest VM into a buffer hidden from the guest, rathemtlelivering it to the guest. The
device model then reads the current virtual time of the g(assbf the guest’s last VM exit), adds
A, to this virtual time to create its proposed delivery (vifjuame for this packet, and multicasts
this proposal to the other two replicas (step 1 in Figure.28)memory region shared between
Dom0 and the VMM allows device models in DomO to read guesti@irtime.

Once the network device model receives the two proposaldditian to its own, it takes the
median proposal as the delivery time and stores this dglivere in the memory it shares with the
VMM. The VMM compares guest virtual time to the delivery timtwored in the shared memory
upon every guest VM exit caused by guest VM execution. Onesstguirtual time has passed the
delivery time, the network device model copies the packiet fhe guest address space (step 2 in

Figure 2.3) and asserts a virtual network interrupt on tHE€yRior to the next VM entry (step 3).

20

— DomO
HVM Guest

(2) Copydata Device (1) Proposalsto/from
Model other replicas
VM VM | < >

exit entry

Alowa
paleys

vPIC |€
(3) Request interrupt VMM

Figure 2.3: Emulation of network I/O device BtopWatch

1 7 g 120 T T T T T

0.9 4 £ 100 w/ StopWatch --#-- .-
o : g w/o StopWatch —F— e o
£ 08 1 B 80 f gt
8 0.7 K Median of three baselines n e 60 7
S Ol Median of two baselines, ---0--- 8
E 0.6 s ~-one-vietim ° 40

05} - -°-é 20

0.4 1 1 1 = 0

0 20000 40000 60000 80000 < 070 075 0.80 085 090 095 0.99
Inter-packet delivery times (virtual) confidence
(a) Distribution of median (CDF) (b) Observations needed to detect victim

Figure 2.4: Virtual inter-packet delivery times to attack@/ replicas with coresident victim (“two
baselines, one victim”) and in a run where no replica wassideait with a victim (“three baselines”)

Figure 2.4a shows the CDF of virtual inter-packet delivémyess to replicas of an attacker VM
in an actual run where one replica is coresident with a vidfikh continuously serving a file, in
comparison to the virtual delivery times with no victim peas This plot is directly analogous
to that in Figure 2.1a but is generated from a r8&pWatchrun and shows the distribution as a
CDF for ease of readability. Figure 2.4b shows the numbetstrvations needed to distinguish
the victim and no-victim distributions in Figure 2.4a usiag-squared test, as a function of the
desired confidence. This figure is analogous to Figure 2.#@llkbcanfirms thatStopWatchstrength-
ens defense against timing attacks by an order of magnituttés scenario. Again, the absolute
number of observations needed to distinguish these disitils is likely quite conservative, owing

to numerous practical challenges to gathering these odusemg [97].

21

2.4.2.2 Disk and DMA emulation

The emulation of the IDE disk and DMA devices is similar to tiework card emulation above.
StopWatchcontrols when the disk and DMA device models complete ragusesd notify the guest.
Instead of copying data read to the guest address spaceguive dnodel inStopWatchprepares a
buffer to receive this data. In addition, rather than assgdn appropriate interrupt via the vPIC
to the guest as soon as the data is available StiapWatchdevice model reads the current guest
virtual time from memory shared with the VMM, adds;, and stores this value as the interrupt
delivery time in the shared memory. Upon the first VM exit eliby guest execution at which the
guest virtual time has passed this delivery time, the dewiodel copies the buffered data into the
guest address space and asserts an interrupt on the vPICwviiss are handled similarly, in that
the interrupt indicating write completion is delivered astated by adding\, to the virtual time at

which the write was initiated.

2.5 Collaborative Attacks

The mechanisms described in Section 2.3—-2.4 intervene orsignificant sources of clocks;
though VM replicas can measure the progress of one relatitieet other, for example, their mea-
surements will be the same and will reflect the median of ttigiing behaviors. Moreover, by
forcing each guest VM to execute (and, in particular, scleeds internal activities) on the basis
of virtual time and by synchronizing I/O events across gsiin virtual time, uniprocessor guest
VMs execute deterministically, stripping them of the abilio leverageTL and Mem clocks, as
well. (More specifically, the progress aiL and Mem clocks are functionally determined by the
progress of virtual time and so are not independent of itg@r&mevertheless remains the possibil-
ity of various collaborative attacks that leverage an &#a®/M in conjunction with other attacker

components that we discuss below.

2.5.1 External Collaborators

One possible collaborative attack involves conjoiningdttacker VM with a collaborator with

which it interacts that is external to the cloud and, in gattr, on whose real-time clock we cannot

22

intervene. By interacting with the attacker VM, the extémr@laborator might attempt to discern
information using the real-time behavior of his attacker VM

Because guest VM replicas will run deterministically, thvall output the same network pack-
ets in the same ordeiStopWatchuses this property to interfere with a VM’s ability to exfdte
information on the basis of its real-time behavior as seearbgxternal observeStopWatchdoes
so by adopting the median timing across the three guest ViNtespfor each output packet. The
median is selected at a separate “egress node” that is tedlifta this purpose (c.f., [90]), anal-
ogous to the “ingress node” that replicates every netwodketadestined to the guest VM to the
VM'’s replicas (see Section 2.4). Like the ingress node etmered not be only one egress node for
the whole cloud.

To implement this scheme in Xen, every packet sent by a gulgstéplica is tunneled by the
network device model on that machine to the egress node. gitessnode forwards an output
packet to its destination after receiving the second copthatf packet (i.e., the same packet from
two guest VM replicas). Since the second copy of the packeti#ives exhibits the median output
timing of the three replicas, this strategy ensures thatithieag of the output packet sent toward its
destination is either the timing of a guest replica not ddexg with the victim VM or else a timing
that falls between those of guest replicas not coresidethttivé victim.

An alternative strategy that the external collaboratorhiigke is to send real-time timestamps
to his attacker VM, in the hopes of restoring a notion of itirak to that VM (that was stripped away
as described in Section 2.3). Again, however, since eackepag the attacker VM is delivered
on a schedule dictated by the median progress of the attAereplicas (Section 2.4), those
timestamps will reflect only on the behavior of the mediaricep As such, it matters little whether
the external collaborator sends real-time timestampsdattacker VM or the attacker VM sends
virtual-time timestamps (or events reflecting them) to tkeemal collaborator; either way, the
power offered by the external collaborator is the same, hamedating progress of the median

progress of the attacker VM replicas to real time.

2.5.2 Collaborating Victim-VM Clients

While the type of external collaborator addressed in Se@i®.1 interacts with the attacker

VM, a more powerful collaborator is one that might additibnanteract with the victim VM, e.g.,

23

as one of its clients. This possibility raises the issue ofate timing attacks (e.g., [16]) that do not
involve coresidence of attacker VMs with victim VMs at allich attacks are not our concern here,
as we are motivated only lccess-driverattacks.

That said, recent investigations have paired remote timitagks with access-driven elements:
e.g., Bates et al. [7] and Herzberg et al. [47] developectladtdoy which a victim-VM's client
could detect the impact of a coresident attacker-VM’s comigation on the timing of the victim’'s
communication to it, thereby confirming the coresidencehefdttacker VM with the victim VM,
for example.

While the goal ofStopWatchis not to defend against all remote timing attacks, it dodgyate
the access-driven elements of attacks such as those of &aaésand Herzberg et al. Specifically,
in StopWatchthe observable timing of a victim VM’'s communication to iteeats will be dictated
by the median progress of its three replicas (Section 2.B4hown in Section 2.2.3, this reveals
quantifiably less information to the client than the obsklwampact of a coresident attacker VM
on a (non-replicated) victim VM would. In particular, anaatker VM could perturb the victim
VM'’s observable communication timings only if it is coresid with the victim VM replica whose
progress is the median of the victim’'s three replicas, arlg thren constrained above and below
according to the other replicas’ progress.

The defenses suggested by Herzberg et al. to the attacknestigate include a rate-limiting
firewall that interferes with the remote attacker’s abitiyinduce load on VMs hosted in the cloud.
Our ingress node (Section 2.4.1.2) could trivially be addpo rate-limit inbound traffic, as well, as

a secondary defense against such attacks.

2.5.3 Collaborating Attacker VMs

Another possible form of attacker collaboration involvesltiple attacker VMs working to-
gether to mount access-driven timing attacks. The appaskst of such collaboration can be seen
in the following possibility: replicas of one attacker VMM1") reside on machines A, B, and
C; one replica of another attacker VM (“VM2") resides on miaehA; and a replica of the victim
VM resides on machine C. If VM2 induces significant load onnitachines, then this may slow

the replica of VM1 on machine A to an extent that marginalit®smpact on median calculations

24

among its replicas’ VMMs. The replicas of VM1 would then obv&etimings influenced by the
larger of the replicas on B and C — which may well reflect tinsimgfluenced by the victim.

Mounting such an attack, or any collaborative attack invmvmultiple attacker VMs on one
machine, appears to be difficult, however. Just as arguedeahat an attacker VM detecting its
coresidence with a victim VM is made much harder $ppWatch one attacker VM detecting
coresidence with another using timing covert channels evalgo be impeded. If the cloud takes
measures to avoid disclosing coresidence of one VM withterdby other channels, it should be
difficult for the attacker to even detect when he is in a positdb mount such an attack or to interpret
the results of mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be maderhsill by increasing the num-
ber of replicas of each VM. If the number were increased fromad to, say, five, then inducing
sufficient load to marginalize one attacker replica fronmitsdian calculations would not substan-
tially increase the attacker’s ability to mount attacks aniciim. Rather, the attacker would need to

marginalize multiple of its replicas, along with accombiiyy the requisite setup to do so.

2.6 Performance Evaluation

In this section we evaluate the performance of StopWatchprototype. We present addi-
tional implementation details that impact performance éat®n 2.6.1, our experimental setup in

Section 2.6.2, and our tests and their results in SectiaB-26.4.

2.6.1 Selected Implementation Details

Our prototype is a modification of Xen version 4.0.2-rc1;amounting to insertions or changes
of roughly 1500 source lines of code (SLOC) in the hyperviStrere were also about 2000 SLOC
insertions and changes to the QEMU device models distdbartth that Xen version. In addition to
these changes, we incorporated OpenP@&M (: / / code. googl e. coni p/ openpgnt) into
the network device model in Dom0. OpenPGM is a high-perfoweareliable multicast implemen-
tation, specifically of the Pragmatic General Multicast fGpecification [81]. In PGM, reliable
transmission is accomplished by receivers detecting ledsequesting retransmission of lost data.

OpenPGM is used itstopWatchfor replicating ethernet packets destined to a guest VMItofal

25

that VM’s replicas and for communication among the VMMs hugguest VM replicas. We also
extended the network device model on a host to tunnel eaenmnethpacket emitted from a local
VM replica to the appropriate egress node (see Section)2%et a persistent TCP connection.
Recall from Section 2.4 that each VMM proposes (via an Opévilrtalticast) a virtual deliv-
ery time for each network interrupt, and the VMMs adopt theliave proposal as the actual delivery
time. As noted there, each VMM generates its proposal byngdaliconstant offsed,, to the cur-
rent virtual time of the guest VMA,, must be large enough to ensure that by the time each VMM
selects the median, that virtual time has not already passt® guest VM. However, subject to
this constraintA,, should be minimized since the real time to whih translates imposes a lower
bound on the latency of the interrupt delivery. (Note thatduseA,, is specified in virtual time
and virtual time can vary in its relationship to real timeg #xact real time to which,, translates
can vary during execution.) We select&g, to accommodate timing differences in the arrivals of
packets destined to the guest VM at its three replicas’ VM delays for delivering each VMM's
proposed virtual delivery time to the others, and the maxmaliowed difference in progress be-
tween the two fastest guest VM replicas (whistopWatchenforces by slowing the fastest replica,
if necessary). For the platform used in our experiments &asion 2.6.2) and under diverse net-
working workloads, we found that a value Af, that typically translates to a real-time delay in the
vicinity of 7-12ms sufficed to meet the above criteria. Thalagous offset\; for determining the
virtual delivery time for disk and DMA interrupts was deténmed based on the maximum observed

disk access times and translates to roughly 8-15ms.

2.6.2 Experimental setup

Our “cloud” consisted of three machines with the same hare\wanfiguration: 4 Intel Core2
Quad Q9650 3.00GHz CPUs, 8GB memory, and a 70GB rotating drard. DomO was config-
ured to run Linux kernel version 2.6.32.25. Each HVM guest bae virtual CPU, 2GB memory
and 16GB disk space. Each guest ran Linux kernel 2.6.32.84nvas configured to use the Pro-
grammable Interrupt Controller (PIC) as its interrupt colkér and a Programmable Interrupt Timer
(PIT) of 250Hz as its clock source. The Advanced Programenltierrupt Controller (APIC) was
disabled. An emulated ATA QEMU disk and a QEMU Realtek RTI3®B139C/8139C+ were

26

provided to the guest as its disk and network card. In eacluiofests, we installed an application
(e.g., aweb server or other program) in the guest VM, as williéscribed later.

After the guest VM was configured, we copied it to our three mvaes and restored the VM at
each. In this way, our three replicas started running froerséiime state. In addition, we copied the
disk file to all three machines to provide identical diskestatthe three replicas.

Once the guest VM replicas were started, inbound packethifoguest VM were replicated to
all three machines for delivery to their replicas as disedss Section 2.4. These three machines had
100Mb/s ethernet connectivity via a NetGear FS108 switdteyTwere part of a /24 subnet within
the UNC campus network. Broadcast traffic on the network (AP requests) was replicated for
delivery as in Section 2.4. These broadcasts averaged Ilyob@100 packets per second. As such,
this background activity was present throughout our expents and is reflected in our numbers.
Since a cloud operator would presumably place the replitaaah VM in close network proximity
to one another so as to minimize the networking penaltieoofdinating across those machines,
we believe that our doing likewise provides a reasonablecjipation of the networking costs that

StopWatchmight encounter in practice.

2.6.3 Network Services

In this section we describe tests involving network sewideployed on the cloud. In all of
our tests, our client that interacted with the cloud-residervice was a Lenovo T400 laptop with
a dual-core 2.8GHz CPU and 2GB memory attached to an 802.rEless network on the UNC

campus.

2.6.3.1 File downloads

Our first experiments tested the performance of file downmathe client from a web server
in the cloud. The total times for the client to retrieve filévarious sizes over HTTP are shown in
Figure 2.5. This figure shows tests in which our guest VM raadke version 2.2.14, and the file
retrieval was from a cold start (and so file-system caches wepty). The “HTTP Baseline” curve
in Figure 2.5 shows the average latency for the client toenatra file from an unmodified Xen guest
VM. The “HTTP StopWatch curve shows the average cost of file retrieval from &topWatch

implementation. Every average is for ten runs. Note that baes are log-scale.

27

100000

T T T
HTTP Baseline —13F--
10000 HTTP StopWatch ------ .
UDP Baseline --0Q--- - .
1000 UDP StopWatch @

100

Time (ms)

File size (KB)

Figure 2.5: HTTP and UDP file-retrieval latency.

Figure 2.5 shows that for HTTP download, a service runningancurrentStopWatchpro-
totype loses less thah8x in download speed for files afdOKB or larger. Diagnosing this cost
reveals that the bottleneck, by an order of magnitude or pveas the network transmission delay
(vs. disk access delay) in both the baseline andStopWatch Moreover, the performance cost of
StopWatchin comparison to the baseline was dominated by the time floreste of inboundpackets
to the web-server guest VM, i.e., the TCP SYN and ACK messagibe three-way handshake, and
then additional acknowledgments sent by the client. Eirigra median timing on output packets
(Section 2.5.1) adds modest overhead in comparison.

This combination of insights, namely the detriment of inbdypackets (mostly acknowledg-
ments) toStopWatchfile download performance and the fact that these costs seeaht disk
access costs, raises the possibility of recovering file dmachperformance using a transport pro-
tocol that minimizes packets inbound to the web server, aging negative acknowledgments or
forward error correction. Alternatively, an unreliablansport protocol with no acknowledgments,
such as UDP, could be used; transmission reliability coludshtbe enforced at a layer above UDP
using negative acknowledgments or forward error corracfidlhough TCP does not define negative
acknowledgments, transport protocols that implemenabéity using them are widely available,
particularly for multicastwhere positive acknowledgments can lead to “ack implosidndeed,
recall that the PGM protocol specification [81], and so thed@RGM implementation that we use,

ensures reliability using negative acknowledgments.

28

=i
T T T 9 12 : . .
20f R — .
______ g 10 |- s .
~ Lo RS il T
g 15 I - S ; 8 — — = — -
5 . m topWatch --m-- 2 Do 6.
g 10~ e Baseline ---©-- - z 6r : RS v o 8
= o Qe q
S i @ e — g 4t R :
a2 Client to Server---@-. o]
0 ! ! ! 8 Server to Client---- |
25 50 100 200 400 0,5 %0 00 300 200
Load (Operations per second) Load (Operations per second)
(a) Average latency per op (b) Average packets per op

Figure 2.6: Tests of NFS server usingf sst one

To illustrate this point, in Figure 2.5 we repeat the experits using UDP to transfer the fffe.
The "UDP Baseline” curve shows the performance using unfieatiXen; the “UDPStopWatch
curve shows the performance usiitppWatch Not surprisingly, baseline UDP shows performance
comparable to (but slightly more efficient than, by less thdéactor of two) baseline TCP, but rather
than losing an order of magnitude, UDP o&opWatchs competitivewith these baseline numbers

for files of 100KB or more.

2.6.3.2 NFS

We also set up a Network File System (NFSv4) server in ourtgéigls On our client machine,
we installed an NFSv4 client; remotely mounted the filesysexported by the NFS server; per-
formed file operations manually; and then ransst at on the NFS server to print its server-side
statistics, including the mix of operations induced by octivity. We then used thahf sst one
benchmarking utility to evaluate the performance of the ME&er with and withouStopWatch
nhf sst one generates an artificial load with a specified mix of NFS openat The mix of NFS
operations used in our tests was the previously extractedil@’ In each test, the client machine
ran five processes using the mounted file system, makingatalsonstant rate ranging from 25 to

400 per second in total across the five client processes.

5We are not advocating UDP for file retrieval generally buheatare simply showing the advantages $sopWatch
of a protocol that minimizes client-to-server packets. Wk bt use OpenPGM in these tests since the web site (as
the “multicast” originator) would need to initiate the camtion to the client; this would have required more sub&hnt
modifications. This “directionality” issue is not fundantainto negative acknowledgments, however.

"This mix wasl11.37% set at t r, 24.07% | ookup, 11.92% wri t e, 7.93% get at t r , 32.34% r ead and12.37%
create.

29

The average latency per operation is shown in Figure 2.6#hisrigure, the horizontal axis is
the rate at which operations were submitted to the servég;that this axis is log-scale. Figure 2.6a
suggests that an NFS server otopWatchincurs a less thaf.7x increase in latency over an
NFS server running over unmodified Xen. Since the NFS impfgat®n used TCP, in some sense
this is unsurprising in light of the file download results iiglire 2.5. That said, it is also perhaps
surprising thatStopWatcfs cost increased only roughly logarithmically as a functis the offered
rate of operations. This modest growth is in part beca&tepWatchschedules packets for delivery
to guest VM replicas independently — the scheduling of onesdwot depend on the delivery of
a previous one, and so they can be “pipelined” — and becawsaumber of TCP packets from
the client to the server actually decreases per operatiorgverage, as the offered load grows

(Figure 2.6b).

2.6.4 Computations

In this section we evaluate the performance of various cdatipms onStopWatchthat may
be representative of future cloud workloads. For this psepave employ the PARSEC bench-
marks [11]. PARSEC is a diverse set of benchmarks that caverisle range of computations that
are likely to become important in the near future (seép: / / par sec. cs. pri ncet on. edu/
over vi ew. ht n). Here we take PARSEC as representative of future cloud loads.

We utilized the following five applications from the PARSE@s (version 2.1), providing each
the “native” input designated for if.er r et is representative of next-generation search engines for
non-text document data types. In our tests, we configuredhkcation for image similarity search.
bl ackschol es calculates option pricing with Black-Scholes partial €iffntial equations and is
representative of financial analysis applicationgnneal is representative of engineering appli-
cations and uses simulated annealing to optimize routistyafoa chip designdedup represents
next-generation backup storage systems characterizeddsglaination of global and local compres-
sion.st r eantl| ust er is representative of data mining algorithms for online ttiag problems.
Each of these applications involves various activities|uding initial configuration, creating a lo-
cal directory for results, unpacking input files, performits computation, and finally cleaning up

temporary files.

30

8000 Bk 2 350 ——— To3
ascline =
7000 |- StopWatch s - g 300F [A
5754 8
- 6000 - S 250F B —
£ 5000} o =
b = g 200f 183 R
= 3000 F - : 2
2000 | 1530 . : S _“.é 100 f-- 38 e
1000 171350177401 I 290382 5 50p--3L.2 274
i | Z
TR w, %, % 0
0,}0 /O %) 0% %
i 1, s, K
% %
% %,
(a) Average runtimes (b) Disk interrupts

Figure 2.7: Tests of PARSEC applications

We ran each benchmark ten times in one guest VM over unmodifieq and then ten more
times with three guest VM replicas ov&topWatch Figure 2.7a shows the average runtimes of
these applications in both cases. In this figure, each atjglit is described by two bars; the
black bar on the left shows its performance over unmodified,>&nd the gray bar on the right
shows its performance ovetopWatch StopWatchimposed an overhead of at mas8x (for
bl ackschol es)to the average running time of the applications. Owing ®dbarth of network
traffic involved in these applications, the overhead impdseStopWatchis mostly due to the over-
head involved in intervening on disk I/O (see Section 2.4% shown in Figure 2.7b, there is a
direct correlation between the number of disk interruptdebiver during the application run and
the performance penalty (in absolute terms) tBaipWatchimposes. If the computers in our ex-
periments used solid-state drives (versus hard disks)onmgcture that their reduced access times

would permit us to shrink\; and so improve the performance $fopWatchfor these applications.

2.7 Comparison to Alternatives

In this section we pause to comp&wpWatcho two alternatives for defending against timing
side-channels of the form we consider here. The two alteesive consider, neither of which
involves VM replication at all, is (i) overcoming timing siechannels by the injection of random
noise, and (ii) temporally isolating guest VMs by time siigieach node and running only one guest
VM at a time on the node, resetting the machine to as clean@a atagpossible between each. We

discuss these alternatives in Section 2.7.1 and Sectiob, 2e6pectively.

31

The purpose of our comparisons is to illustrate certain aidwges thaStopWatchhas over these
alternatives, buhot to argue thatStopWatchis superior to these alternatives in all ways. Indeed,
it is appropriate to point out th&8topWatcPs approach comes with several deployment overheads
that these alternatives do not suffer. For exam@@pWatchrequires VM replication and the
placement of each VM’s replicas so that the replicas of anyar&icoresident with nonoverlapping
sets of (replicas of) other VMs, a nontrivial placement ¢ast discussed further in Section 2.8.
Moreover, for any VM for which networking performance is iorfant, the VM replicas should be
placed in close network proximity to one another (as we dised in Section 2.6.2). The cloud
must additionally provide (not necessarily physicallytidist) ingress nodes for replicating inbound
traffic to each VM’s replicas (Section 2.4), and egress nddekiding timing information in the
traffic (the replicas of) each VM sends to others (Sectiorl). Neither of the alternatives discussed

below impose such additional requirements.

2.7.1 Comparison to Uniformly Random Noise

An alternative toStopWatchis simply adding random noise (without replicating VMs) tme
found timing attacks. To illustrate advantages tB&apWatcfs approach has over this alternative,
we borrow notation first introduced in Section 2.2.3: Dgtdenote a random variable representing
the “baseline” timing behavior observed by an attacker VBplica) in the absence of the victim
of interest, and lef| be the random variable as observed by the attacker VM whegdresident
with the victim VM of interest. Again, inStopWatch the adversary learns information from the
difference between (i) the distribution &fs.5 for random variablesy;, X5, X3 corresponding to
attacker VM replicas that ameot coresident with a victim VM of interest, and (ii) the distuiin
of X3, for random variables(}, X, X3 whereX/ corresponds to an attacker VM thatcoresi-
dent with the victim VM of interest. More specifically, in titase whereXs.3 or X7, denotes the
logical time of a network interrupt delivery, for examplaetadversary observes eith®s.5 + A,
or X).5 + A,. (A, is discussed in Section 2.4.1.2.)

For simplicity, suppose that; and X/ are exponentially distributed with rate parameteed
X, respectively, as in the example of Figure 2.1. For the randariable Xy representing added
noise, assume thaty is drawn uniformly from|0, 4] (i.e., Xx ~ U(0, b)), a common choice to

mitigate timing channels (e.g., [49, 39]).

32

o 450 . . o 350 . :
£ 400 P £ 300 i
— 350 — e
-
= 290Q¢ R = S G BV = B X
S - E[X{+X\] -3¢ S [] -
= 20 g E[X'i+xs] 8- g 15Qggueee B E[X'1+XE] ~H
>120 EXz:3ty] ~0-] 2100 EXi5+y] O |
<100 E[Xpgthy] A1 & EX'pgty] A
8 50 8 50
------------------- SO . WO A Y
7 0.8 0.9 0.99 %.7 0.8 0.9 0.99
Confidence Confidence
@N=1/2 (b) N =10/11

Figure 2.8: Expected delay induced 8jopWatchvs. by uniform noise, as a function of confidence
with which attacker distinguishes the two distributionsrésident victim or not) after the same
number of observations; baseline distributiomp(\), A = 1; victim distributionExp(\")

We calculated expected delay imposed StppWatchand by adding uniformly distributed
noise. To make a fair comparison, we configured both appesath provide the same strength
of defense against timing attacks. Specifically, afterudating the number of observations the at-
tacker requires in the case SfopWatcho distinguish, for a fixed confidence level, the distribotio
Xos + A, and X,.5 + A, using ay-squared test, we calculated the minimérthat would give
the attacker the same confidence in distinguishiig+ Xn and X| + Xy after that number of
observations. Figure 2.8 shows the resulting expectegsi@leeach case.

This figure indicates thabtopWatchscales much better as the attacker’s required confidence
and the distinctiveness of the victim grows (as represemyed dropping). The delay of th&top-
Watch approach is tied most directly #,,, which is added to ensure that the replicas of each VM
remain synchronized (see Section 2.4.1.2); here we cédclilaso thatPr[| X, — X|| < A,] >
0.9999. That is, the probability of a desynchronization at thisreve less thar®).0001. Note that
E[X23+ A, andE[X}., + A,] are nearly the same in Figure 2.8, since their differencevsthe

attacker differentiates the two, and similarly X, + Xx] andE[X] + Xn].

2.7.2 Comparison to Time Slicing

In this section, we compar8topWatchto another alternative, namely time slicing, to defend
against timing attacks. Here, “time slicing” refers to extang each VM (without replication) in
isolation for a period of time. When multiple VMs coreside thie same physical machine, they

are scheduled to run in a one-at-a-time fashion. Specifidathe is divided intoslices and within

33

sliceLen (S) | cleanseLen (S)
Flush-A 0.4 0.001
Flush-B 2 0.2
Flush-C 2.5 0.25

Table 2.1: Length of time sliceslficeLen) and of cleansingdleanseLen)

each time slice, only one VM is allowed to execute, exclugieecupying all physical resources.
VMs are scheduled to consume time slices according to a roolrid scheduler (i.e., in turns). In

addition, each two consecutive time slices are separateal digansing period within which we

cleanse shared components in the system to simulate a reaesiet. As an example, Figure 2.9
depicts the execution of three time-sliced VMs running angame machine.

VM1 VM2 VM3 VM1 _ VM2 VM3

— a a a a a a5

End of Cleansing

I
I
i
IStart of Cleansing

@ CleansingPeriod

Figure 2.9: Time-sliced execution of three VMs

2.7.2.1 Design

To make VMs execute in turns, we unpause virtual CPUs (vCPUshe VM and leave vC-
PUs of all the other VMs paused for the duration of a time slicethis experiment, we designed
three sets of cleansing operations, described below andhatimed in Table 2.1, to flush shared
components in the system with varying degrees of thorougghrigven our most aggressive cleans-
ing operation falls short of a complete machine reset sineeetare some shared components (e.g.,
shared network stack of the host machine) with state thdtd @aurry information about one VM to
another. For each type of cleansing operation describenvbele set the length of each time slice
(sliceLen) to be larger than the length of the cleansing perideaf:seLen) by at least one order of

magnitude, in an effort to limit the impact of cleansing pes.

Flush-A: CPU caches and TLB In the “Flush-A” cleansing operation, we use Bl NVDinstruc-
tion to flush CPU instruction and data cach&®l NVD writes back all modified (instruction and

data) cache lines in the processor’s internal cache to mamary and invalidates (flushes) the inter-

34

nal caches. The instruction then directs external cachies tovalidated and to write back modified
data, though there are no external caches on our machinkts iexperiment. In our experiment,
VBl NVDis invoked at the beginning of each cleansing period, asctigpin Figure 2.9.

The TLB (Translation Lookaside Buffer) stores translasitietween virtual addresses and phys-
ical addresses. It gets flushed every time a context switgpdres and CR3 register is reloaded. The
flushing of the TLB is automatically carried out by the vitimation software we use (Xen).

When we choose the length of the cleansing perigehfiseLen), we choose a value that is big
enough to pause/unpause vCPUs (about 0.8ms in total on ahimea) and to complete all flushing
operations. In Flush-A, we usgiceLen = 0.4s andcleanseLen = 0.001s. (In contrast, Xen's CPU

schedule quantum is 30ms.)

Flush-B: Flush-A + Disk page cacheThe disk page cache is a buffer of disk-backed pages kept in
main memory (RAM) by the operating system for quicker accédisphysical memory that is not
directly allocated to applications is usually used by therafing system for the page cache. For a
VM running on Xen, the disk device is virtualized and prowd®sy a device model process running
in Dom0. QEMU [8] is used to implement such device models Whiy default, uses write-through
caching for all block devices (sée t p: / / wi ki . geru. or g/ downl oad/ genu- doc. ht m).
This means that the page cache of DomO will be used to read atel data. To flush the disk
page cache, we useS¥NC system call followed by writing té pr oc/ sys/ viml dr op_caches.
SYNC writes all dirty cache pages to the disk, while writing/tpr oc/ sys/ vl dr op_caches
frees all the page caches for reading. In Flush-B, in additicthe CPU and TLB caches, we flush
the disk page cache as well, which takes about 185ms in otersysn this case, we seticeLen

= 2.0s andcleanseLen = 0.2s.

Flush-C: Flush-B + On-drive disk cache buffer The disk cache buffer is the embedded memory
in a hard drive acting as a buffer between the rest of the ctenpund the physical hard disk plat-
ter that is used for storage. We use the utilitypar m - F, which takes roughly 25ms, to flush
this buffer in addition to operations included in Flush-B.this case, we sefliceLen = 2.5s and

cleanseLen = 0.25s.

35

VM (replicas) per host
total hosts| total VMs | vanilla Xen | time slicing | StopWatch
Baseline 3 1 Oorl N/A 1
Config-1 13 26 2 2 6
Config-2 19 57 3 3 9
Config-3 25 100 4 4 12

Table 2.2: Configurations

2.7.2.2 Evaluation

To fairly compare the performance of VMs running und&&opWatchand in a time-slicing
fashion, we first configure our system carefully so that tmesaumber of VMs are running on the
same number of physical machines in both modes. For instgivan 13 machines, if each is time
sliced by two VMs, then there are 26 VMs running in tot&topWatchcan also support 26 VMs (78
replicas in total) with 13 machines, each of which hosts @rdisreplicas without violatingstop-
WatcHs placement constraints. We have three configurationsisretraluation, shown in Table 2.2,
as well as a “Baseline” configuration in which there is at noost VM (replica) per host. In all tests,
one “target VM” is serving files via HTTP; half of the other VNi$ any, and rounding up if nec-
essary) with which it is coresident are serving NFS with akla@ad described below; and the rest
are receiving light ICMP traffic (i.e., beingi ng’ed). All VMs in this experiment are uniprocessor
VMs. The machines used to support these experiments aresastds in Section 2.6.2.

In Figure 2.10a we compare the performance of the target Wvirggfiles via HTTP in the
time slicing andStopWatchcases. Specifically, the target VM serves a file of size 100MB v
HTTP. In these tests, the downloading client was a machitiagsion the same campus network
as the nodes hosting these VMs, with a wired connection. Téds/shows the slowdown factor,
which is computed by dividing the time taken to fetch the fitaf the target VM running in either
StopWatchor time sliced mode by the “vanilla Xen” value for that configtion. Each shown data
point is the average over ten such downloads.

To help explain results shown in Figure 2.10a, in Figure 2v&khow the progress of download-
ing for various setups. (Flush-B is not shown, since it Iprgeerlays Flush-C.) Even in Flush-A,
the download speed suffers both from frequent context fet@mong VMs and from CPU cache

flushing. While in Flush-C, which has longer time slices, ttevnload speed roughly recovers

36

©w
12— ; ; £1000 ; ;
Vanilla Xen -1 a
10k StopWatch -—-©-- s KE%
Flush-A -1+ -‘-E] z g B
Flush-B -4 5 3
S 8 FushC -x- ® £ 100 8
= 2 =
2 5 Qo O @
@ 4 R T— PR W .
3
2 - g
--------------------------- Wl 3]
oL o : N . . |
Baseline Config-1 Config-2 Config-3 Baseline Config-1 Config-2 Config-3
(a) File downloading via HTTP (b) gr ep via NFS

Figure 2.10:StopWatchvs. time slicing: comparison of slowdown and delay

within one slice from a cleaned cache, the slice ends shibrlseafter. And also due to the longer
time slices, stepped effects become more obvious in Flush-C

Finally, in Figure 2.10b we confirm these effects by meaguittire latency of highly interactive
NFS operations. An NFS server was set up in the target VM, hactlient remotely mounted
the exported partition and then launchgdep operations, trying to find a target string in a 32B
file. gr ep operations were conducted with a frequency of 10 ops/s, lamdverage latency to
perform 200gr ep operations is reported. In this experiment, the effecteesl in the HTTP
case manifest themselves as paugedp commands owing to the NFS server not being scheduled

yet and so being unable to respond.

2.7.3 Discussion

The above analyses are not meant to conclude&SthpWatchwill always provide superior per-
formance to adding random noise or time slicing hosts, nowddelieve that is the case. For
example, machines with few physical cores and a compugmsite, batch workload would almost
certainly perform better with time slicing than it would WiStopWatch since StopWatchwould
triplicate the computations on machines allowing minin@@urrency. That said, the above analy-
ses do illustrate ways in whicBtopWatchcan outperform these alternative designs, while providing

an arguably more holistic defense against timing chanhels ¢ither of them.

37

100

Vanilla Xen ---a---
StopWatch ---e---

Cumulative Downloaded Data (MB)

Flush-A --=-- |
O | | I) FIUS‘h—C ,,,‘x,”
0 20 40 60 80 100 120
time (s)
(a) Config-1
2
£ 100—w— . I
S oo * § |
S sor
S 60 i
S 50!
S 404
g o Vanilla Xen ---a---
E 20 StopWatch ---e---
£ , Flush-A --&- |
g 18 i . .) ‘ Flu§h-c e
© Y0 20 40 60 80 100 120
time (s)
(b) Config-2
2
£100 | -
g % T
S V dm
g o ﬁ@‘“ o
2 70 M
g 60 7
c
% 50
A 40 ‘
'g o ’, Vanilla Xen ---a---
E 208 StopWatch ---e---
g ’ Flush-A --=-- |
= 18 ‘ ‘ ‘ Flush-C —x—
© 70 20 40 60 80 100 120
time (s)
(c) Config-3

Figure 2.11: Progress of file download via HTTP

2.8 Replica Placement in the Cloud

StopWatctrequires that the three replicas of each guest VM are caesigith nonoverlapping
sets of (replicas of) other VMs. This constrains how a clopdrator places guest VM replicas on

38

its machines. In this section we clarify the significance hedse placement constraints in terms
of the provider’s ability to best utilize its infrastructur After all, if under these constraints, the
provider were able to simultaneously run a number of guess '\t scales, say, only linearly in
the number of cloud nodes, then the provider should f@ggpWatchand simply run each guest
VM (non-replicated) in isolation on a separate node. Hereskmv that the cloud operator is not
limited to such poor utilization of its machines. We show samain theorems first and then show
their proofs with lemmas.

If the cloud hash machines, then consider the complete, undirected grajué€gli,, onn
vertices, one per machine. For every guest VM, the placenfdtt three replicas forms taiangle
in K,, consisting of the vertices for the machines on which theiecaplare placed and the edges
between those vertices. The placement constrainBagWatchcan be expressed by requiring that
the triangles representing VM replica placements be pa@gadge-disjoint As such, the number
of guest VMs that can simultaneously be run on a cloud afachines is the same as the number
of edge-disjoint triangles that can packedinto K,,. A corollary of a result due to Horsley [48,

Thm. 1.1] is:

Theorem 3. A maximum packing ofi,, with pairwise edge-disjoint triangles has exadtlyrian-
gles, where: (i) ifn is odd, ther¥: is the largest integer such thgt < (%) and(},) — 3k & {1,2};

and (ii) if n is even, therk is the largest integer such thit < (7)) — 2.

So, a cloud ofr machines usingtopWatchcan simultaneously execute = ©(n?) guest VMs.
The existence of such a placement, however, does not gaarant efficient algorithm to find it.
Moreover, this theorem ignores machine capacities. Belevaddress both of these shortcomings.
Under the constraints @topWatch one node in a cloud of nodes can simultaneously execute
up to ”T‘l guest VMs, since the other replicas of the guest VMs thatdtetes (two per VM) must
occupy distinct nodes. If each node has resources to sinealtesly execute < "T‘l guest VMs,
then the following theorem provides for an algorithm to édfintly place them subject to the per-

machine capacity constraint

Theorem 4. Letn = 3mod 6 andc < 271, If ¢ = 0or1mod 3, then there is an efficient
algorithm to place: < %cn guest VMs. Ifc = 2 mod 3, then there is an efficient algorithm to place

k < i(c—1)n+ 22 guest VMs.

39

A limitation of Theorem 4 is that it provides an efficient afiglom to place®(cn) VMs only in
the case that all VMs consume one unit of machine capacitpidrsense, the theorem is simplistic,
since VMs submitted to clouds frequently have different deds for some resources. For exam-
ple, if the capacity represents physical memory, then different VMs may haverdiht memory

demands. The following theorem provides for an efficient@haent of VMs even in this case.

Theorem 5. Letn = 6v + 3, and2v + 1 = 3% for someq € N. Suppose that each machine has

capacityc < "T‘l and each VM guest has a constant associated demand on theitgay at most

dmaz- There is an efficient algorithm to plaé¥ —<—n) VM guests.

dmaz

Next we prove these theorems and some lemmas required to do so

Let (Zay+1,®) denote the cyclic group of addition modubw + 1 for v € N, and letr :
Zoy+1 — Zoy+1 be abijection satisfying (i ©¢) = i forall i € Zy,11. (Note thati &4 £ ¢/ ¢ for
anyi, i’ € Zoyy1,1 # i, since2v + 1 is odd. As suchg is well defined.) Leto : Zo,11 X Zoys1 —
Zoy+1 be defined by © i/ = w(i @ i'). Then,® is idempotent{® i = i for all i € Zy,1) and
commutative{®@ i =i’ @i for all i,i’ € Zy,1). Moreover, for anyi, i’ € Zo, 1,7’ = 7 1(i') i
satisfies © ¢ =4/, and s0o(Z,,+1, ®) is an idempotent, commutative quasigroup.

Lemma 1. Fixanyt, 1 < ¢ <wv. Then,Za,+1 = J {io(iat)}.

1€142y+1
Proof.

Zovn = |J {iei}= | lieiett= |J {rGeient= |J {ie(et)}

1€242y+1 1€242y+1 1€142y+1 1€L2y+1

O
Proof of Theorem 4Following Bose’s construction of a Steiner Triple Systei®, [Section 1.2], let
n = 6v + 3 and let(Z,,+1, ®) be the idempotent commutative quasigroup of ottles# 1 defined

above. LeZy,+1 x {0,1,2} denote the: nodes, and consider the following sétg 0 < ¢ < v, of

triangles:

Go = U {{(170)7(171)7(172)}}

0<i<2v

40

and forl < ¢ < v,

Go= |J {{G.0,(iet0),(e@®t),f+1mod 3)}}

0<i<2v
0<e<L2

There are2v + 1 triangles inGp and (2v 4+ 1) x 3 = 6v + 3 = n triangles inG, for each
1 <t < v. Moreover, all of these triangles are edge-disjoint [5&tiBa 1.2]. Triangles irG visit
each of then nodes exactly once. Triangles in a@y, 1 < ¢ < v, visit each nod€i*, /*) exactly
three times: when* = ¢ and¢* = ¢; wheni* = i @ ¢t and¢* = ¢; and when* = i © (i & t) and
¢* = ¢+ 1 mod 3. And due to the fact thatZ,+1, ©) is an idempotent, commutative quasigroup,
these three times are distinct. Due to Lemmael(it) also iterates through the membereef.,

exactly once (i.e.Zoy+1 = U {i@ (i ®t)}). So, collectively the triangles itry, ..., G,

1€42v+1
visit each nod&v + 1 = 251 > ctimes.

So, if ¢ = 0 mod 3, then we can placé < icn VMs using theicn triangles in groups
Gi,...,G3. If ¢ = 1 mod 3, then we can placé < %cn VMs by first using the2v + 1 = 7
triangles inGy and then th%(c — 1)ntriangles inG1, ..., G(._1)/3. If ¢ =2 mod 3, then we can
placek < 1(c—1)n + =2 VMs by first using the2v + 1 = 2 triangles inGy, then(c — 2)n
triangles inG1, ..., G(.—2)/3, and finally anyv = "T‘?’ triangles fromG,, that visit each node at

most one time (e.g{(¢,0), (: ® v,0), (i ® (i ®v),1)} for0 <i < v —1). O

From this point forward, we fix the bijectionto be

i/2 if i =0 mod 2
(i) =
(i+2v+1)/2 otherwise

Lemma 2. If 2v + 1 = 0 mod 3™, then:
o If i = 3™ mod 3™, thenr (i) = 2- 3™ ! mod 3™.
e If i=2-3""1 mod 3™, thenr(i) = 3™~ ! mod 3™.
Proof. Since2v + 1 = 0 mod 3™ by assumption, we know that + 1 = b - 3" for someb € N.

We first prove ifi = 3™~! mod 3™, thenr (i) = 2-3™~! mod 3™. Note that ifi = 3™~ ! mod 3™,

theni = a - 3™ + 3™~ for somea € N.

41

1. If a is odd and s@ = 2d’ + 1 for somed’ € N, theni = (2a’ + 1)3™ + 3™~1 = 24/ -
3m 4 3m 4+ 3™ = 24/ - 3™ + (34 1)3™~ L. In particular, note thatis even. As a result,

m(i) =i/2=a'-3™+2-3™ and sor(i) = 2 - 3™"! mod 3.

2. If ais even and sa = 24’ for somed’ € N, theni = (2a’)3™ + 3™~1, which is odd. Then
m(i) = (i+20+1)/2 = (2a' - 3™ + 3™ 4 20+ 1)/2 = o/ - 3™ 4 B H2AL _ 7 3m
SIS — f.gm 4 3b41. 3m-1 Note thath must be odd, i.el = 20/ + 1 for someb’ € N.
Sowe haver(i) = a’-3™+ %52 .3m=1 = ¢/.3m 1 3p.3m1 1.2.3m1 = (o' +-1/)37"4-2.3" 1,

So,7(i) =2 - 3™ mod 3™.

Now we prove that ifi = 2 - 3™~! mod 3™, thenn (i) = 3™~ mod 3™. Note that ifi =

2. 3™ mod 3™, theni = a - 3™ + 2 - 3™~ for somea € N.

1. If a is even and sa = 24’ for somed’ € N, theni = (2a/)3™ +2-3™~!. So,7(i) =i/2 =

a’ - 3™+ 3™~1 and thusr(i) = 3™ ! mod 3™.

2. If a is odd and s = 2a’ + 1 for somed’ € N, theni = (2a’ + 1)3™ +2-3™~L. Then
. . — — 3m 42041

m(i) = (i+20+1)/2 = ((2a' +1)-3™+2-3"" 14 204+1) /2 = o/ - 3™ 3m~ 1 4 S542utl —

a/-3m43m-ly TS — gf.gmg 3m-1y bEl.3m Note that must be odd, i.eh = 2b'+1

for somet’ € N. Sowe haver(i) = a’-3™4+3™" '+ (b +1)-3" = (a/ + ' +1)-3™ +3m~!

and thusr (i) = 3™~ ! mod 3™.
U
Lemma 3. Fix anyi, i’ € Zoy1. Thenforanyk, 0 <k <2v, i k) o (' ®k) = (1 @) @ k.

Proof. We show that foran¥, 0 < k < 2v, that(i®k®1)e (' kd 1) = ((idk)e (i ®k))® 1.

We consider four cases:

o If i@k)d(i'®k)isevenandi®k®1)® (i ®kd1)is even, them ((idk)® (i dk)) D1 =
i@k%i’@k ®1= i@k@l%i’@k@l — 7'('((1 Dk 1) ® (Z/ Dk 1))

s If (dk)® (i dk)isoddandi®kdl)® (('@kadl)isodd, themr((i®k)® (i Dk))d1l =

42

o If (i@k)®(@k)isoddandi®k® 1) (i @kd1) is even, theti o k) (i & k) = 2v—1
and(i s k®1) & (' kdl)=0.Son((iek) e (i’ ak) el =212 g1 =0=

m((iekdl)® (@ dkdl)).

s If(i®k)® (' @k)isevenandi bk ® 1)@ (' @k® 1) isodd, theni o k) @ (' ® k) = 2v
and(iekel)as(ekol)=1.Sor((iek) e (@ ok))el=2al=0val=

B2t — r(iokol) e (i okol)).

So, foranyk, 0 < k < 2v,we havethati ok ® 1) o (' @kdl) = ((idk)© (I k) O 1.
Therefore, forany:, 0 < k < 2v,(i® k) (i’ k)= (i) D k. O

Lemma 4. Letn = 6v + 3 and2v + 1 = 39 for someq € N. LetZq, 11 x {0,1,2} denote thex

nodes, and consider the following sétg 1 < t < v, of triangles:

Go= |J {60, (i@t,0),(i®(i@t),f+1mod3)}}

0<i<2v
0<e<L2

For each;, 1 <t < w, there exists a sdll; C G, of 2v + 1 triangles that partition the nodes.

Proof. To define the subgroup, of triangles, we first introduce some variables based onggrou
indext, 1 < t < v. Letm € N be the maximum value such that—! | t; therefore,t =
3™~ mod 3™ ort = 2-3™! mod 3™. Then the subgroup of triangles that partition theodes

is defined as:

H, = U Hiok,0),(i@tak0), (k) e (i@t®k)),L+1mod 3)}} (2.2)

iGZQU+1 : =0 mod 3™,
0<k<3m—1 0<¢<2

To show that (2.2) partitions the nodes, it suffices to shat th

Loy = U {iokiotok(i0k)o(iotdk)} (2.3)

1€Z2y+1 : 1=0 mod 3",
0<k<3m—1

Since2v + 1 = 34, we havev < 37. And sincet < v, t < 3%7. Because3™ ! | t, we have

3m~1 <t < 3%and som < q. Letp = ¢ — m. First, we have:

43

U fioky= |J {a-3"+k}

1€Z2yp+1 : 1=0 mod 3™, 0<a<3?,
0<k<3m—1 0<k<3m—1

(2.4)

Now supposé satisfiest = 3™~! mod 3™. (The case of = 2 - 3™! mod 3™ is similar.)

Denotingt = b - 3™ + 3™~ for some) < b < 37, we have:

U fiotekt= |J {@3Ma® 3"+3" ") ek}
1€Z2yp+1 : 1=0 mod 3™, 0<a<3P,
0<k<3m—1 0<k<3m—1

= (J {(a+bmod3r) 3™ +3™" 4k}
0<a<3P,
0<k<3m~1

= |J A{e3m+3ml 4k

0<c<3P,
0<k<3m—1

Equation 2.5 follows from the fact thé;» = {a + b mod 3P }y<,<3». Moreover,

U {iok)o(idtdk)}

iGZQU+1 : =0 mod 3™,
0§k<3m71

= U {ie(at)®k}
iGZQU+1 : =0 mod 3™,
0Sk<3m71

= U {nl@- 3™ (a3 @ ®-3"+3")) ok}
0<a<3P,
0<k<3m—1

= U {7(((2a + b mod 37) - 3™) 4+ 3’”‘1) @k}
0<a<3P,
0<k<3m—1

= |J A{e3m+2-37 4k}
0<c<3P,
0§k<3m71

(2.5)

(2.6)

2.7)

Equation 2.6 follows from Lemma 3 with = i & ¢t. Equation 2.7 follows from Lemma 2 and the

facts that (i)Zs» = {2a + b mod 3P }p<.<3», and (ii) = is a bijection.

44

Each of the sets in Equation 2.4, Equation 2.5, and Equatibmas size™ ! - 37, and they
clearly do not intersect. So, put together they have 3t7¢* = 37 = 2v + 1. So, Equation 2.3

holds true, and Equation 2.2 defirias+ 1 triangles that exactly partition thenodes. O

Proof of Theorem 5Let (Z,+1, ®) be the idempotent commutative quasigroup defined above, and

let Zs,+1 % {0,1,2} denote thex nodes. Consider the following sets, 0 < t < v, of triangles:

Go = U {{(170)7(171)7(1’2)}}

0<i<2v

and forl < ¢ < v,

Gi= |J {G.0,(i@t0),(io @ ®t),f+1mod3)}}

0<i<2v
0<e<L2

As proved in Lemma 4, eacti;, 1 < t < v, contains a subsetl; C G, of triangles that
partition then nodes. LetH, = Gy; this group of triangles also partitions thenodes. Moreover,
note that the triangles ifl, . . . , H, are all edge-disjoint, because all of the triangle&in. .. , G,
are [58, Section 1.2]. Thereforg),,., H; contains(v + 1)(2v + 1) edge-disjoint triangles that
visit each node 4 1 times. VMs can then be placed on any of these triangles tedteach node

no more thamin{v + 1, ¢/dq, } times. Sincev + 1 = O(n) and < = O(n) the number of

dm(n

VMs that can be placed B(z5-n). O

2.9 Conclusion

We proposed a new method to address timing side channela$hdampute clouds that em-
ploys three-way replication of guest VMs and placement eséhVM replicas so that they are
coresident with nonoverlapping sets of (replicas of) oWigls. By permitting these replicas to ob-
serve only virtual (vs. real) time and the median timing afverk events across the three replicas,
we suppress their ability to glean information from a viciin with which one is coresident. We
described an implementation of this technique in Xen, yigldh system calle&topWatch and we
evaluated the performance StopWatchon a variety of workloads. Though the performance cost

for our current prototype ranges up 28 x for networking applications, we used our evaluation

45

to identify the sources of costs and alternative applicatiesigns (e.g., reliable transmission us-
ing negative acknowledgments, to support serving fileg)dhia enhance performance considerably.
We also extended this evaluation to demonstrate workloadwtiich StopWatchprovides better
performance than alternatives that leverage commoditgwee, namely adding random noise to
observable event timings and eliminating concurrent VMcexien (time slicing). We showed that
clouds withn machines capable of each runningt "T‘l guest VMs simultaneously can efficiently
schedule©(cn) guest VMs under the constraints StopWatch or ©(;=-) guest VMs if each
guest VM makes demands on the per-machine capacityt mostd,,,... These results represent a
clear improvement over the alternative of running each gl on its own machine. We envision
StopWatchas a basis for a high-security cloud, e.g., suitable fortamilj intelligence, or financial
communities with high assurance needs.

An important topic for future work is extendin§topWatchto support multiprocessor guest
VMs. As discussed in Section 2.1, previous research onmétistic scheduling (e.g., [27]) should
provide a basis for extending our curredtopWatchprototype. A second direction for improve-
ment is that we have implicitly assumed in adbtopWatchimplementation — and in many of our
descriptions in this chapter — that the replicas of each VM @aced on a set of homogeneous
nodes. Expanding our implementation to heterogeneoussnuaies additional challenges that we

hope to address in future work.

46

CHAPTER 3 REPLICA PLACEMENT FOR AVAILABILITY IN THE WORST CA SE

In this chapter, we consider the problem of deploymaglicas of objectsonto a system of
physicalnodesso as to ensure the survival of as many objects as possible mduke failures occur.
This general problem occurs in practice in many computingeods: the “objects” might be virtual
machines, files, or servers, and the “replicas” could be &hbject copies or merely components
used in the implementation of the object. The survival of bject is achieved provided that fewer
than a given threshold number of its replicas were placechembdes that fail. This threshold
might range from all of the object replicas to only a few. Thestion we address in this chapter is:
How should the object replicas be placed on the nodes (asmidethe obvious requirement that the
replicas of an object all be placed on different nodes)?

Upon encountering this problem for the first time, it might he immediately obvious that the
placement matters. But consider the possibility that atheffailed nodes host replicas of mostly
the same objects. This scenario might fail objects thatirequany replica failures to do so, but
it fails fewer objects than it otherwise could if each objiils when only a few of its replicas do.
Alternatively, suppose the failed nodes host replicas ddtiyaifferent objects. Then, many objects
might fail if only few object replica failures suffice to faglach object, but fewer objects might fail
if many replica failures per object are required. As thisttast suggests, the placement certainly
matters and depends not only on the number of nodes, the mwhbbjects, the number of node
faults, and the replicas per object, but also the number aftgect’s replicas’ failures that prove
fatal to the object.

We are not the first to study the problem of object replica gaaent for availability (see Sec-
tion 3.1 for a discussion of related work), but to our knovgedour treatment is novel in at least
two ways. First, we consider \&orst-caseadversary that fails a specified number of nodéth
knowledge of how object replicas were placed on npdesas to maximize the number of objects

failed. This is in contrast to failures that occur probaiitially, for example. Second, by decoupling

47

the number of replicas per object from the number of replhrfes that disable each object, our
framework allows for treatment of a wide variety of objechfigurations, such as objects that are
accessed using majority quorums (e.g., [38, 36]) so thatjarityaof available replicas is required
for the object to survive, or objects for which even just agi@rsurviving replica suffices to keep
the object available (e.qg., in the primary-backup(s) apeind17]).

Our study is also general by virtue of what it leaves unspetifivhile we label nodes, replicas
and objects as “failed” or not, we remain agnostic to thetfenddel [79] (crash, Byzantine, etc.).
Indeed, our interest in this problem arose from our work f&ing virtual machine replication as a
defense against timing side-channels in an infrastruetsra-service compute cloud [57] (detailed
in Chapter 2), without attention to actual faults at all. Hamy, the protocols run among object
replicas or for objects to interact with others are not ourcgwn here. Rather, we simply assume
that a node failure fails all of the object replicas it hostsd that an object fails once a specified
number of its object replicas do. We also do not constraimtbans by which the adversary fails
the nodes it chooses to, whether that be disabling them bialdafrservice attacks, leveraging
vulnerabilities in object replicas they host, physicaltiaeking the nodes, etc.

In this context, we make the following contributions:

e We study the viability of block designs for replica placensenSpecifically, we first leverage
t-packings (e.g., see [61]), a relaxation of Steiner systa®ms replica placement strategy. We
provide a lower bound for the availability of these repli¢agements and show that they already
offer availability that isc-competitive with optimal placements (for a factothat we specify).
This suggests thatpackings are a useful starting point for constructing @haent strategies.

e We develop a placement strategy that improves on the uspaufkings in isolation by combining
them. We present an efficient algorithm to compute comhonatiof individualt-packings that
maximize our lower bound on availability (among any such boration) for a given number
of node failures. We further demonstrate that for a rangera€tmgal parameter values, the
placement strategy derived for a given target number afred provides good availability even
for different numbers of failures.

e We develop as our primary comparison point a placementeglyaif randomly placing replicas

on nodes subject to a load-balancing requirement, owindpeéopbpularity of this strategy in

48

previous work. We characterize availability for this plamnt strategy in our adversarial model,
and then we develop an expression for the limit of this memaarthe number of objects grows.
We further show that this limit already closely reflects tgdbr practical parameter values and

relatively small numbers of objects, allowing it to be useddasis to compare to the availabil-
ities offered by our strategies basediepackings. In this way, we show that our constructions
based ort-packings provide better availability for ranges of preatiparameter values than does

random replica placement.

As discussed above, the replica placement strategies ehexplore build fromt-packings, and
some of our analysis depends on useraximumi-packings (also called-designs). Based on
current knowledge of-designs (which we briefly survey in Section 3.2.3), we limit attention to
replication scenarios involving up to five replicas per cbj&ortunately, this decision is not limiting
for practical replication scenarios in data centers: VMioggion for fault tolerance typically uses
two (e.g., [86]) and many file systems default to three or feylicas per file or related structure

(as in GFS [37], Hadoop [80], and FARSITE [2]).

3.1 Related Work

Replica placement for availability (or durability) has hezxtensively studied in various fields
(e.q., [12, 31, 10, 93, 68, 91, 9, 75]), sometimes in conjonctvith other concerns. All related
work we have located focuses on leveraging node failurelgligtons, especially their independence
and/or heterogeneity as would be common in peer-to-peeagdcand computing, for example.
Here we make no assumptions about node failure distritgitialowing them to be controlled by
an arbitrary adversary constrained only by the number oéad@ can fail. This renders our analysis
both simpler in many cases and, at the same time, very general

We nevertheless draw from this work where possible. Notadly?ODC 2007, Yu and Gib-
bons [91] explored the following question: If each nodesfaiidependently with fixed probability
and if all replicas of an object must fail for the object td fien what placement strategy offers the
highest probability of success for operations involvingltiple objects, a given number of which
must be available for the operation to succeed? Their findiagwe most directly leverage here is

their identification of random replica placements as dfigrtlose to the best probability of opera-

49

tion success when an operation can tolerate some objeatefsil Together with the widespread use
and empirical study of random placements (e.g., [76, 2, 1093, 59]), this finding motivates our
choice of random replica placement as a comparison poimdomproposed placement strategies
in Section 3.3. That said, for drawing this comparison wednieedevelop our own analysis of
the availability of random placements, since we focus on estacase adversary that can choose
which nodes to fail; this analysis might be of interest inaten right. Our work also differs from
Yu and Gibbons’ in that we do not consider multi-object ofieres, asking instead only how many
objects remain available, but we do so while permitting gjeatlio remain available only if a spec-
ified number of its replicas survive (versus just one of theMgte that equating our “objects” to
their “operations” and our “replicas” to their “objects”aeh with only one replica) does not yield
the same problem—even setting aside our different advalsaodels—since replicas of the same
object in our case must be placed on different nodes, whdlie tibjects do not.

As discussed earlier, the cornerstone of the replica planesirategy we develop iggacking.
To our knowledge, we are the first to explore the use-péckings for replica placement in dis-
tributed systems. That said, such block designs have fopplication in several diverse domains,
as surveyed elsewhere (e.g., [22, 20, 71]). To our knowlettgemost conceptually related use
of block designs to our problem is their use in constructingrgm systems (e.g., [65]). Quorum
systems, however, must intersect, whereas we have no syheraent here for object placements,

a fact that we leverage.

3.2 Overlap-Based Placement Strategies

The strength of random replica placement in diminishing ltkelihood that random node
failures will fail many objects (see Section 3.1) derivesnirit inducing lowinter-object corre-
lation [91], a measure that reflects the overlaps of objects’ raglacements. However, random
placement induces small overlaps only probabilisticaligwing the possibility thatargetednode
failures could still impact many objects. In this sectionexplore “overlap-based” placement strate-
gies that manage these overlaps explicitly. We will retaranalyzing the impact of targeted node

failures on random placements in Section 3.3 and comparertoverlap-based strategies there.

50

The number of objects
r The number of replicas per object

The number of an object’s replicas
whose failure fails the object; < s < r
The number of nodes

The number of failed nodes;< k£ < n
A placement

The set of all objectdO| = b

The set of all nodegN| =n

ZQ3y =3

Figure 3.1: Notation

Before continuing, we first define some notation used in tisé @éthis document (see Fig-
ure 3.1). We presume a systemrofiodes denoted by the skt (|| = n). These nodes will host
a setO of b objects (O| = b), each replicated times. This hosting is represented bplacement
7 : O — 2V where2V is the power set alV. Specifically, for eaclbj € O, 7(obj) is a subset
of N of size|r(obj)| = r that indicates the nodes on which replicasbf are located. We uske
to denote the number of nodes that failKIfC A is the set oft failed nodes, then an objecb;j is
said to fail if and only if|w(obj) N KC| > s. This gives rise to the following natural definition of the

availability of a placement.

Definition 1. For any fixed placement, let Avail (w) denote the number of available objects, min-

imized over all set& of (potentially failed) nodes whelléC| = k. In other words,

Avail (1) = Kng\r} |{obj € O : |r(obj) N K| < s}
K=k

3.2.1 TheSimpleOverlap(x, \) Placement Strategy

Our intuition for developing a replica placement strateggs to maximize availability is simply
to limit the number of objects whose replicas overlap on #tmesnodes “too much.” This intuition
is captured in th&impleOverlap(x, \) strategy, which limits overlaps of more thamodes to at
most A objects. We limit our attention t@ < s, since oncer > s, arbitrarily many objects can
overlap ons nodes in &impleOverlap(x, \) placement, meaning that failures of those nodes could

fail arbitrarily many objects.

51

Definition 2. TheSimpleOverlap(x, \) placement strategy locates object replicas on nodes so that
forall N/ C NV where|]N'| = z+ 1 and all®’ C O, if on every node in\" is placed replicas of all

objects in®’, then|O'| < \.

So, for example, il = 1, then the replicas of any two objects can overlap on at mostdes.
It is important to note that &impleOverlap(z,) placement exists only for limited values of
b, oncen andr are fixed. Specifically, from design theory results, wheféngpleOverlap(z, \) is

otherwise known as @ + 1)-(n,r, A)-packing (e.g., [61]), we have:

Lemma e.g., [61]. A SimpleOverlap(z, \) placement exists only # < p\ (xil)/(xil)J :

While b < L/\ (xil)/(x_’;l)J is necessary for &impleOverlap(x, \) placement, it is not sufficient.

To achieve a sufficient condition, we selectian < n and ayu, of which X\ is a multiple (i.e.,
pz | A), as a function of: (andr, which we generally consider a constant) so fhat,"",)/(,% ;)

is integral and, moreover, &impleOverlap(z, 11,) placement exists for any < p,(,"7)/(,% 1)
objects. Then, &impleOverlap(x, \) placement om, nodes can be obtained by “copying” the

SimpleOverlap(z, u1,) placement\ /i, times.

Observation 1. If there exist ann, < n and au, | A so that aSimpleOverlap(x, i, place-
ment exists for alb < u,(,"7)/(,},), then aSimpleOverlap(z, \) placement exists for all <
M)/ Gaa)-

Observation 2. Placing replicas on only, < n nodes can lead to a load-imbalanced system, but
only slightly if we can find a suitable, = n. If we cannot, then we can instead identify valugs,

<o Ngm Such thady " ngy < nbutd ™, ng, ~ n, and then extend the results below to account
for building aSimpleOverlap(z, X) placement o) " | n,; nodes for any < >3 A('#4)/(,%4)
objects from &impleOverlap(x, A) placement on each chunk of; nodes.

The extension in Observation 2 is straightforward but teslicand so we defer its discussion to
Section 3.2.3. For now, we simply assume that a suitabl@nd u, exist and can be found to

support Observation 1. We also adopt the convention the¢ngi.., u.., r, s, andb, A is chosen

minimally, so that

(3.1)

[\
(V)1

s=2k=2-o-
20 F l];:=431;
ISp k=3 g
= = —_—
TT0) e]
k=5 —% //

---------- §*§

600 1200 24;()0 4300 9600
Figure 3.2:Avail (r) — IbAvail *°(z, A) forn =71,z =1, andr = 3

We now briefly characterize the availability ®impleOverlap(z, A) placements, to justify their
use as a building block for a more useful placement strate@ection 3.2.2. The key observation
in characterizing the availability dimpleOverlap(x, \) placements is that the availability can be
lower-bounded by applying Lemma 5 to packistgized sets of replicas into thiefailed nodes, as

shown in the following lemma.

Lemma 6. For anySimpleOverlap(z, A) placementr, Avail () > IbAvail *°(x, \) where

) -

m—si-l)

IbAvail *°(z, \) = b — P

~—

Proof. An upper bound on the number of objects that become unalaitiaie to the failure of nodes
in KC is simply the number of objects for whichreplicas can be packed onto the nodésinder

the constraints of &impleOverlap(x, \) placement, i.e., in &impleOverlap(z, A) placement using
only s replicas per object (versugd and onlyk nodes (versus). Adapting Lemma 5 accordingly,

we get that at mosk/\ (x—lf-l)/(ril)J objects become unavailable. O

IbAvail *°(z, \) is a tight lower bound for some but not all parameter valussndicated in
Figure 3.2. In this figureAvail (w) was calculated explicitly after placing objects accordiog
SimpleOverlap(z, A) placementr and then simulating the worstfailures.

This lower bound forAvail (), together with Equation 3.1, permits us to relatail () to the
availability of any placementr’—and so, in particular, one offering optimal availability.

L) (S q -

Theorem 6. For constant, z (and son,, u.), 7, s, andk, define constants= [1 - Eﬁjzl)i(“ﬁ
z+1/\z+1

k:
anda = cux%. For any numbeb of objects, anysimpleOverlap(z, A) placementr, and any
xz+1

53

other placement’,

Avail (") < ¢ - Avail (1) + «

In this respectSimpleOverlap(z, A) placements arec:competitive” (c.f., [14]) with optimal place-

ments.

Proof. First note that Equation 3.1 implies

A Gh) | e
P .
By Lemma 6,
NED, ()
AV&”(?T) > \‘A(zil)J > b A(zil) o _i(wf—l) S 1— (:E-T—l) _1_& (:B—IT-I)
Avail (7)) = b = b () () 0)\

where the last step is simply substituting Equation 3.3.riReging, we get

H /
Avail (1) — ¢ - Avail () < (A‘/alTl(ﬂ)> a<a

wherec anda are as given in the theorem statement. O

To see an illustration of Theorem 6, suppose thatr so that(," ;) and(, ;) cancel. Then,

o= [y - 1 et T (1)

z+1
So, for example, if(?’i) = 0.2, then the availability of &impleOverlap(z, A) placement is

-1

1.25-competitive with the availability offered by an optimalpkement. On the other hand, under
other conditions (such as whers small relative ta-), this constant factor can be less favorable.
3.2.2 TheComboOverlap()y, ..., As—1) Placement Strategy

The previous section illustrated the potential utilitySddpleOverlap(x, \) placements, but we
stopped short of suggesting exactly how to selecfo see why this may not be straightforward,

consider a fixed, r, s, andk, but consider increasingly large valuesbofOn the one hand, if is

54

held constant, then the valdemust grow linearly withb, due to Equation 3.1. This, however, im-
plies that the (lower bound on) availability in Lemma 6 atéminishedinearly. On the other hand,
if x is increased so that need not be, then this increases the valuégstbét can be accommodated
exponentially (assuming eaeh ~ n andr < n); to accommodate some valuesbpthough, this
huge increase is unnecessary and results in a larger péoagailability than increasing would
have.

In this section we develop a new placement strategy, c&léeaboOverlap(Ag, ..., As—1), that
provides us the flexibility to tune parametexg . .., A\;_1 corresponding to the possible values of
z,0 < x < s, to best match a giveb. That is, ComboOverlap(Ag, ..., As—1) takes a value\,

corresponding to each 0 < z < s, subject to the constraint

(3.4)

and then divides the objects over placem&itspleOverlap(0, \g), . . . , SimpleOverlap(s — 1, As_1).

Equation 3.4 ensures th@bmboOverlap(\, ..., As—1) can accommodate dllobjects, since each

T

SimpleOverlap(z, \;) placement can accommodatg(,"",) /(,% 4

) of them (see Observation 1).

Definition 3. A ComboOverlap(Xo, ..., As—1) placement strategy locates object replicas on nodes

Ny

by placing up toA. (7,

)/ (%) objects according to &impleOverlap(z, A.) placement for each
x > 0.

Lemma 7. For anyComboOverlap(\, ..., As—1) placementr, Avail (7) > IbAvail “°(Ag, ..., As—1)

where
s—1 (k)
IbAvail ©©(Xo, ..., As—1) =b— PI vt J (3.5)
Proof. Under aComboOverlap(\g, ..., As—1) placement, eacKimpleOverlap(z, \,) placement

ng k
accounts for placing at moat, E*‘jl% objects, of which up tc{/\x wa” might be rendered unavail-

xz+1 z+1

k
able byk node failures, as in Lemma 6. As such, at mEs;t;% {/\x E*“;J objects can be rendered
z+1

unavailable in total by: node failures. Since onlyobjects can be placed, the result follows. O

55

3.2.2.1 Computing aComboOverlap(\y, ..., As—1) to Maximize IbAvail ©°(\g, ..., As—1)

To maximize availability usingcomboOverlap(Ao, ..., As—1) for a given value of, we thus
take it as our goal to seleat, . . . , A;_1 SO as to maximize the lower bouftAvail “°(\g, ..., A\s—1)
subject to Equation 3.4. This problem lends itself to théofeing recurrence folbav (x, '), which
denotes this maximum value @Avail <°(\, ..., s—1) for &’ objects placed using placements

SimpleOverlap(0, \g), . . ., SimpleOverlap(x, A,) under any selection ofy, ..., A,.

Va,Vb' < 0: Ibav (w, b/) =0 (3.6)

Wi >0 Ibav (0,5') = max {O,b’ - K[b—/iw uo> EJ } (3.7)
Mo 1o S

vz >0,V > 0: Ibav (z,b) =
fim (- 10— 0.6 i 00 0] [, 20
max av |z — 1,0 —duz7 4+ min < b, du, dprz 7
“ (:c-i—l)
(3.8)

(a1)
(o51)

<d< b_’@ (SL‘)
o=d= { (1) "

In words, Equation 3.6 encodes that zero availability canffered if there are no objects’ (< 0).
Equation 3.7 encodes that when= 0 the availability that can be achieved fdr> 0 objects is that
resulting from setting\o = [(b'/10)(7)/("°) | o = [(b'/110)(r/no)] po @nd using Lemma 6 (or
simply 0 if this value turns out to be negative). Finally, Equatio8 &xcodes that when > 0, avail-
ability can be maximized by considering every optionXgr= du,. and, for each option, adding the
availability contributed by this setting of, (i.e., min {b’, Ao (x’:fl)/(zfrl)} - P“" (mﬁl)/(zil)J)
to the availability that can be achieved for the remairiihg . (,"7,)/(, ;) objects by optimally
settingAs, ..., o1 (i€ lbav (2 = 1,6 = A (1) /(1)).

So,lbav (s — 1, b) for a given numbetk: of failed nodes is the maximuitbAvail (Ao, ..., As—1)
that aComboOverlap(Ag, ..., As—1) placementr can achieve. This recurrence gives rise to the nat-
ural dynamic programming algorithm (e.g., see [26, Ch. ®f)dhoosing)\, ..., As_1 that runs

O(sb) time, treating all other parameters as constants.

56

= 3] mmmp=7] n =257
b = 4800 b=1200

= 3] mmmgy=7] n =257

100 b=2400 b =600 b = 9600

= 3] mm =71 n=257
100 b =600 b = 9600 b = 4800
o
899.8
5 99.6

£99.4

3]

a 99.2
99

IbAvail «°(xo,....2s_1)

Figure 3.3 I avair (v -ox)

expressed as a percentage

3.2.2.2 Sensitivity to Choice ok

A potential disadvantage of tt@mboOverlap(A, ..., A\s—1) placement strategy, or more pre-
cisely of the algorithm described in Section 3.2.2.1 to @pni)\, . . ., A1 for optimal availability,
is that it does so only for the specified valbe A concern is that £omboOverlap(Ag, ..., As—1)
placementr configured fork node failures might fare poorly when subjectedito# k failures,
at least in comparison to its availability were it configufed &’ failures. This could occur if the
Ao, - - -, As—1 resulting from the configuration with and those values resulting from configuration

with &’ were different.

57

n 2 3 4 5

31 ny= 31 n; = 31[58 n = 28[29] ni = 25 [29]
ny = 31 no = 28 [44] ne = 26 [43]

ng = 31
71 ni = 71 ny = 6958 n1 = 70[29] n: = 65 [29]
ne = 71 ng = 70 [44] ng = 65 [21]
ng = 71 ny = 71 [69]

ng = 71
257 np =257 ng = 255 [58] n; = 256 [29] n; = 245 [29]
ny = 257 ny = 256 [44] n. = 257 [67]

ng = 257

Figure 3.4: Values of, used in this chapter
We have explored parameter spaces of interest to identiipge for which)g, ..., As_1 would

be different when configured fdr or &’ failed nodes, and then compared the resulting availabil-

ity lower bounds. Figure 3.3 shows some representative pben This figure plots the ratio

IbAvail “(xo,...,As—1)
IbAvail “°(xy,...\,_,)

figured fork node failures and &omboOverlap(Xj, ..., \,_;) placement configured fot' node

expressed as a percentage f@anboOverlap(Ag, ..., A\s—1) placement con-

failures. As such, whek' = k this ratio will be100%, for example. As this plot indicates, for some
parameter values, this ratio dips bel®®0%, though we have not found cases in parameter regions

of interest where this ratio drops bel®8%.

3.2.3 Parameter Selection

Creating aSimpleOverlap(z, A) placement for a set of nodes can be achieved by identify-

ing ann, < n and ayu, that divides), for which u,(,"7)/(,%,) is integral and, moreover, a

T

SimpleOverlap(z, u1,) placement exists for any < p,(,"7)/ (.54

) objects (see Observation 1).
For such am, and x,, a SimpleOverlap(x,) placement corresponds to(a + 1)-(ng, r, piz)-
design [61]. The study of the existence of such constructs is a fomradal question in design
theory (e.g., [58]).

The need fon, to divide A can be discharged ji, = 1, in which case &z + 1)-(ng, r, itz)-
design is a Steiner system. Lettindpe any prime power and for amly> 2, known infinite designs

include[21]2x+1:2,7‘:q,andnx:qd;x—l—l:3,r:q—|—1,andnx:qd—l—l;x—|—1:2,

r=q+1l,andny, =¢*+---+qg+1Lx+1=2r=qg+1,andn, =¢*+ 1;andz +1 = 2,

58

r = 2% andn, = 244 4 24 _ 24 for anyd’ > d. In addition, there are numerous known finite
designs forr < 5, as surveyed by Colbourn and Mathon [21]. Known designs eih8t systems
suffice to implemen$impleOverlap(z, \) for a wide array of practical parameter values, including
all of the parameter settings investigated in this chafigure 3.4 shows the Steiner systems used
in our evaluations, as well as citations to where they carohad. (Note that whem + 1 = r, the
constraints for a Steiner system are vacuously satisfiegtsyo$ sizer.)

As discussed in Observation 2, if a suitablg ~ n cannot be found, then an alternative is to
deconstruct the nodes into “chunks” of size, 1, . . ., n.n,, €ach admitting &impleOverlap(x, 1i5;)
placement, and to build$impleOverlap(z, 1i,;) placement fog, = lem{ g1, ..., fham} OND 0y Ny
nodes by building &impleOverlap(z, i,.) placement on each chunkf; nodes individually. This
observation introduces a wide range of placement optionarfaitraryn. This is demonstrated in
Figure 3.5 foru, = 1, which explores possible placements when even anly= 3. Each CDF
shows the fraction of. values in the rangé0, 800] for which the “capacity gap” is at most the
value on the horizontal axis, where the “capacity gap” isdifference between the ideal capacity

(i.e., Vx (mf‘rl)/(x_’;l)J) and the capacity achievable (using concrete Steinerragdtey decompos-

T

ing n into up tom = 3 chunks (i.e.,>"7") i (177) /(5

) with eachp,; = 1) expressed as a
fraction of the ideal capacity. As shown there, in the cases {2, 3,4}, a very low (i.e., good)
capacity gap can be achieved for nearly all system sizasd all values of. This is not the case
for r = 5, however, where only about 10% of the system sizeglmit constructions (of which we
are aware) for: = 2 or x = 3 with up tom = 3 chunks that yield a reasonably small capacity gap.
One way to address difficult cases like these (i.e=, 5 along withx = 2 or z = 3) is to simply
select one’s system size from the fraction of possible system sizes for which a smafiacity

gap can be achieved. Another alternative, however, is targkgonsideration tp, > 1, in which

case numerous additional constructions are possibleiallyivior any x + 1 < r, the collection

fay)]

of all r-subsets of:, nodes suffices as SimpleOverlap(z, i) placement foru, = (
There are many other classes(of+ 1)-(n,, r, 1,)-designs withu, > 1, as have been surveyed
elsewhere [60, 1, 53]. In particular, Khosrovshahi and L& Table 4.3.7] survey a number of
infinite designs foB < x + 1 < 5.

To see the power of permitting, > 1 for realistic parameter settings, in Figure 3.6 we re-plot

thex = 2 andz = 3 cases forr = 5 but allowing ., to beyu, < 5 (left) or u, < 10 (right). As

59

1 1A+
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2 = 0|
=0 =1+
0 =1+ 0 =2-%
0 02 04 06 08 1 70 02 04 06 08 1
capacity gap capacity gap
r=2 r=3
1%*—)# 1 N— 0
* Y/
0.8 0.8
0.6 0.6 % f
0.4 0.4 25 = 0x
Sox ol
0.2 -1+ 0.2 ,,(Egﬁ 2%
= 2% _ K =35
0 =35 g | - 4o
0 02 04 06 08 1 0 02 04 06 08 1
capacity gap capacity gap
r=4 r=25

Figure 3.5: CDFs showing the fraction of system sizes [50,800] for which the capacity gap
(indicated on the horizontal axis, where lower is better) lsa achieved using up t@ = 3 Steiner
systems f; = 1)

1 SRR HoX 1 KKK S
e f)WV =
0.8 é 0.8
0.6 ju 72 0.6 ju
0.4 (ﬁ 0.4
O.ZJ M/)K/*) OZJ
M =2-% = 2%
0 =38 0 =3
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
capacity gap capacity gap
Ha <D pae < 10
Figure 3.6: Re-plot of Figure 3.5 for = 5 and x € {2,3}, but allowing p, =

lem {1, ooy flam} > 1

can be seen in Figure 3.6, allowipg < 5 yields significant improvements in the= 3 case, and
permitting ., < 10 additionally improves the = 2 case dramatically. As such, permitting even

modest growth ofi,, can greatly shrink the capacity gap in difficult cases.

60

3.3 Comparison to Random Replica Placement

As discussed in Section 3.1, the work of Yu and Gibbons [9¢hlighted random replica place-
ments as being very effective in ensuring the completion oftimebject operations when some
objects’ loss could be tolerated, in a system model wheresiéll independently with fixed prob-
ability. Given this result and the more general prominenteandom replica placement in the
research literature, we compare the availability offereditr ComboOverlap(A, ..., As—1) place-
ment strategy to that offered by random replica placemepéeciically, we compare to a random
placement strategy that (as in Yu and Gibbon’s work) is Ibatdnced, where the average number
of replicas per node 6= %"

Definition 4. The Random placement strategy locates object replicas using a plateam®sen

uniformly at random from all placements that locate at niésteplicas on each node.

3.3.1 The Worst-Case Availability ofRandom

Evaluating the worst-case availability Rindom placement is more subtle than for our previous
placements, sincany (load-balanced) placement can result from this placenteategy. So, in the
truly worst caseRandom would produce the worst possible placement for availgbilithat said,
Random would do so with very low probability, and so this does notyidle a representative view
of how Random fares.

A more representative evaluation would take into accoumegtpectedoehavior of the place-
ment strategy. In some sense, the previous work of Yu anddaibf1] did so, but they did not
take into account thevorst-casebehavior of theadversary That is, their adversary failed nodes
independently with a fixed probability, but ours adaptivehooses which nodes to fail based on
the placement. So, to quantify the availability offeredRandom in this worst case, we start by

defining thevulnerability of Random:?®

Definition 5. For anyf, the vulnerabilityof Random, denotedvuln™(f), is the expected number
of pairs (K, F) whereKX C N, |K| =k, F C O, |F| > f, and at least replicas of each object in
F are placed on the nodes fin The expectation is taken with respect to the random choizete

by theRandom placement strategy.

Definition 5 and Definition 6 trivially generalize to any ramdized placement strategy.

61

If Vuln™d(f) > 1, then in expectation, there will be a setiohodes that, if failed, will fail a
set of at leasf objects. Itis then natural to define the number of objectsatreprobably available

as follows:

Definition 6. In aRandom placement, the number of objects that are probably availabl

prAvail ™ = b — max{f : uln™(f) > 1}

We now seek to quantify the probable availabilityRafndom.

Theorem 7. As ¢/ — oo,

= ()0) (5 (oo () -wsr)

wherea(n, k, r,s) = S5 (B) (nok),

s'=s r—s’

Proof. Consider a variarRandom’ of the Random placement in which the replicas of each object
are placed omr distinct nodes selected uniformly at random, but withonriting the number of
replicas placed at each node. L€t .; be an indicator random variable definedag on; = 1 if
areplica ofobj is placed abhd and X4 on; = 0 otherwise. Letlq = ZobjeO Xndobj: 1.€.,Lng iS @
random variable denoting the number of replicas placed @ nd.

While Random enforces that the number of replicas placed on each nodeisstf/], Random’
allows more. Specifically, for a fixead, { X4 obj }objeo are independent, identically distributed
Bernoulli random variables; i.eX g o ~ B() for eachobj € O. ThereforeE (Lng) = br —y

n

and, applying well-known Chernoff bounds (see, e.g., [6&oTary 4.6]),
P (|Log —] > 6¢) < 2e710°/3

forany0 < § < 1. Consequently, the distribution of object replicas to reodaderRandom’
(quickly) approaches the distribution inducedRyndom as¢ — oo, and so we can reason about

the asymptotic distribution induced IRandom using the one induced Wandom’.

62

Let failedNodes(K) denote the event that sktC N is the complete set of failed nodes, and
failedObjs(F) denote the event that the sEtC O is the complete set of objects that failed due

to the failure of the nodes ik. Now, underRandom’,

IP’(failedObjs(]—") | failedNodes(K
[H b <Ob_] replicas placed og’ > s obj replicas placed or’ < i)
obje]-‘ nodes inkC andr — s others objeo\; nodes inC andr — s’ other

min{r} (nk) s nk)
e HHZ]

| objeF s'=s obje O\ F s'=0 7”
min{r I s— b—f
o\ Z{jk} K\ (n—k Zl K\ (n—k
\r o s'J\r—¢g = s'J\r—¢g

_ <Z> k) ((Z) - a(n,k,r,s))b_f (3.9)

To complete the proof, for ankk C N, |[K| = k, and anyF C O, define an indicator random
variable Xic as follows: X = 1 if F is the set of objects failed when the nodédail, and

Xk, 7 = 0 otherwise. The expected value &k = is then

E (Xk,7) = P(failedObjs(F) ‘ failedNodes(K))

By linearity of expectationyuln™(f) is then:

Win™(f)=E| > > Xer|=) > EXxr)

KCN: FCO: KCN: FCO:
IKI=k |F|=f IKI=k |F|=f
Plugging in Equation 3.9 yields the result. O

For the rest of this chapter, we use the Iimit\ziflnmd(f) given in Theorem 7 to calculate
prAvail ™ as defined in Definition 6. By comparingrAvail ™ to simulation results for param-
eter ranges of interest that are feasible to simulate, wedfidbat onceb > 600, prAvail md has

converged to withinl0% of the empirical average dAvail (7) for Random placementsr. So, in

63

n=71r=5&

O.96’n =257.r=3e 1 0992 n=71,r=5&
qN=257r=5® T T
09% "4 5 6 78 910 %% 5 6 78 910 99 6 7 8 9 10
k k k
s=3 s=4 s=25

Figure 3.7:1 prAvail ™ for b = 38400

drawing our comparisons betwe®&ndom and ComboOverlap placements, we will restrict our
attention tab > 600, to be fair toRandom.

Figure 3.7 pIot%prAvaiI md i.e., prAvail ™ as a fraction ob, for various values of, r, andn
whenb = 38400. Plotted in this way as a fraction éf the curves look very similar for the various
values ofb that we have explored. One takeaway from these graphs iththatises = 1 performs
quite poorly relative to larges (notice the vertical axes are not the same scale), and we fmov

Section 3.3.4 that this is true fRandom placements in general.

3.3.2 Comparison Results

We now comparé&omboOverlap and Random placements usinégpAvail (g, ..., As—1) —
prAvail ™ across a range of parameter settings, i.e., usi@gnaboOverlap(), ..., A\s_1) place-
ment computed to maximizbAvail (), . .., \,_1) (Section 3.2.2.1). We use the limit gtiin™d(f)
in Theorem 7 to geprAvail ™ as defined in Definition 6. The measubavail (Ao, ..., As_1) —

prAvail ™ is conservative in the sense thhvail ©()\g,...,A\,_1) iS alower bound whereas

64

e
e
e

o
N
w
IN
o
(o2}
~
o
N
w
I
o
o
~
o
w
IN
o
(2]
~

600 75 57 45 33 25 16 6000 83 72 66 61 55 51 600 66 50 50 28 22
1200 80 70 60 52 46 40 1200 75 62 53 48 42 37 12040 66 20 14
2400 8 76 71 67 64 61 2400 63 50 41 34 28 23 2400 66 20
4800 77 68 62 57 53 50 4800 56 44 36 30 25 20 4800 75 42, 0
9600 69 58 52 47 43 40 9600 50 37 30 24 20 17 9600 80 50 23
19200 60 48 42 37 34 31 1920 40 29 23 19 15 12 19204 83 63 44 25 10
38400 48 38 32 28 25 23 38404 30 21 15 11 8 5 3840 8 71 60 50 40
r=28= r=3,s=2 r=3,s=3
k
b 2 3 4 5 6 7 b 3 4 5 6 7 b 4 5 8 7
600] 75 62 53 47 40 34 6000 66 20 25 9 O 600] 50 33
1200 72 62 55 49 44 40 1209 75 4200 1200 50 33
2400 62 52 44 38 33 29 2400 80 50 23 2400 66 50 0O
4800 53 41 34 28 24 19 4800 83 63 41 23 7 4800 66 50 16/ 0
9600 42 32 25 20 15 11 9600 85 71 60 48 38 9600 66 60 28 11
19200 33 23 17 12 8 5 19200 77 60 45 34 23
38404 25 16 11 7 4 1 38400 76 60 48 39 31
r=4,s = r=4,s=3
k k k
b b 3 4 5 b 5 68 7
60! 6000 75 42 9 o 600 50 33[0
120 1209 80 55 28 1200 50 33 25
240 2400 83 66 47 2400 50 33 25
480 4800 75 50 28 20 12 480 50
960 9600 70 47 28 1300 9604 66
19201 1920 64 42 25 12 0 19204 75
3840 3840 57 34 18 7| 38400 83
r=25,s=3 r=25,8s=>5
@n="11
k k k
b

b 2 3 4 5 6 7 8 b 3 4

T 6000 66 25 Ol 0RE g 6000 66 50 25 9 6000 50 33
1201 66 40 1201 75 57 40 28 11 0 120 50 33
240! 75 50 16 240 80 66 53 44 34 27 20 240 66 50

480 75 62 45 480 83 72 64 58 53 47 42 480 66 50
960! 80 70 60 960 87 80 75 70 67 64 61 960 66 50
1920 85 75 70 64 59 55 51 1920 80 71 65 60 56 53 501920 66 20
3840 77 64 57 50 44 40 36 3840 71 61 54 49 45 42 393840 7% 20

r=2s=2 r=3,s=2 r=3,s=3
k k k
b 2 3 4 5 6 7 8 b 3 4 5 6 7 b 4 5 6 7 8
600| 75 57 40 28 11 0- 600 66 50 40 16 0- 600 50 66 33 25 0
120 80 66 53 44 34 25 17 120 66 50 40 16 12 120 50 66 33 25 0

2401 83 72 64 58 51 47 41 240 66 50 50 28 22 18 2401 50 66 33 25 20
480! 87 80 75 70 66 63 61 480 66 60 57 37 36 30 480 50 66 50 25 20

960 80 71 64 60 56 52 50 960 75 20 25 0 960 50 33
1920 71 61 54 49 44 41 381920 75 33 1920 66 33
3840 61 50 42 37 33 30 273840 80 42 9 3840 66 50 0

=4,s=2 r=4,s=3 r=4,s=4
k

b 2 3 4 6 7 8 b 3 4 5 6 7 8 b 4 5 6 7 8 b 5 6 7 8

6000 80 62 50 37 28 19 9 60 66 50 40 28 12 10 6000 50 66 33 25 20 6000 50 50 33 33
120 83 70 62 54 48 41 36120 66 50 50 37 22 50 66 50 40 20 120 50 50 33 33

2400 8 78 72 67 63 59 562400 66 60 57 44 50 33 2400 50 50 33 33

480! 77 68 61 55 50 46 42480 75 33 25 66 480 50 33 0-

9600 69 57 48 42 36 32 289600 75 420070 66 9600 50 33 0

19200 63 51 43 37 32 28 239200 80 50 16 66 19200 66 50

38400 55 43 36 31 27 23 268400 83 60 33 4 75 38400 75 60 40 16
r=>5,s=2 r=>5s5=3 r=5s=4 r=>5,s=5

(b) n = 257

Figure 3.8: IbAvail ©°(), ..., As_1) — prAvail ™ for an optimalComboOverlap(Xg, ..., As_1)
placement as a percentage of the maximum possible improwémeprAvail ™

prAvail ™ is only a probabilistic estimate of the number of objects tiemnain available under

Random and so it is not guaranteed.

65

Here and elsewhere in this chapter, we use {31, 71, 257}, both because these values span a
reasonably wide range and because suitable: n andu, can be found for them without resorting
to Observation 2. (These are by no means the only values teat these criteria, though.) In
particular, this means that tti@mboOverlap(Ao, ..., As—1) placements represented in this section
have concrete implementations. The selection of egcfwith 1, = 1) is detailed in Section 3.2.3,
as is an exploration of Observation 2.

A summary of results is given in Figure 3.8, where the top ({Fég3.8a) shows the results with
n = 71 and the bottom (Figure 3.8b) shows the results wita 257. Each portion shows a table
for2 <r <5and2 < s <r. (The cases = 1 is further discussed in Section 3.3.4.) The number
k of failed nodes is ranged over < k < 7inthen = 71 case, and oves < k£ < 8in the
n = 257 case; both ranges encompass a substantial rate of nodedailn each table, the number
b of objects begins @ = 600 and is repeatedly doubled until it reaches- 38400. Each table
entry indicateslbAvail (), ..., \s—1) — prAvail ™ as a percentage of the maximum possible
improvementh — prAvail ™ that could be achieved overAvail ™. To ease readability, cells
where IbAvail (), ..., s_1) > prAvail ™ (and soComboOverlap “wins”) are colored white;
cells wherelbAvail (X, ..., s_1) = prAvail ™ (neither ComboOverlap nor Random “wins”)
are colored light gray; and cells whek@Avail (), ..., \s_1) < prAvail™ (Random “wins”)
are colored dark gray.

Itis evident upon a cursory glance tlaimboOverlap “wins” most of the time, and the percent-
age by which it does so is often very substantial. For exantipdetable in the very upper-left corner
of Figure 3.8a indicates that in the case- 71, r = 2, s = 2, b = 2400 andk = 2, ComboOverlap
guaranteesto preserve the availability of5% of the objects that will fail in expectation under
Random.

Since eaciComboOverlap placement is a combination &impleOverlap(z, \;) placements,
in Section 3.3.3 we show the contribution of eg&impleOverlap(z, \,) placement to the final
ComboOverlap(y, ..., As—1) placement fom = 71 (Figure 3.10) anch = 257 (Figure 3.11), as
well as forn = 31 (Figure 3.9). (The: = 31 case is excluded from discussion in this section due to
space limitations.) These figures do not stwipleOverlap(0, \¢) placements to save space, since
they contribute so minimally. In particular, the figureslexie breakdowns when= 2, since in this

case, onlyr = 1 contributes tadComboOverlap; i.e., SimpleOverlap(1, A;) andComboOverlap(A;)

66

are identically the same. Very briefly, we distill out theléaing observations from the figures in

Section 3.3.3.

e Whenb grows andn andz are held constan§impleOverlap(x, \) availability improves rela-
tive to Random until A has to grow to satisfy Equation 3.1. This can be seen, for pgnn
ther = s = 3, x = 1 table in the upper-left corner of Figure 3.14 & 257). As shown
there, while\ can remain at (see rightmost column of leftmost tablé&impleOverlap(x, \)
(and soComboOQverlap, as shown in the rightmost table on the same row) “wins” mbug its
performance diminishes asgrows.

e One way to offset the need to grolWis to adjustz, since whenk ~ s, doing so impacts
availability only a small amount (Equation 3.2) but canwall@SimpleOverlap(z, \) placement
to accommodate many more objects (assuming> r). This is shown clearly in, e.g., the
r = s = 3 cases in Figure 3.%(= 31) and Figure 3.10/{ = 71), where moving fromz = 1
to x = 2 relieves the pressure onto increase, allowing the advantagesCoimboOverlap to be
preserved as grows.

e Another way to slow the growth of is to increase:. For a fixed numbeb of objects and as
n grows, ComboOverlap will increasingly select to place objects usiBgnpleOverlap(z, A;)
placements for smaller. To see this, compare the contributions of, exgs 1 andx = 2 to the
resultingComboQverlap placement forr = 3, s = 3 in the top rows of Figure 3.%(= 31) and
Figure 3.11 4 = 257). This can be explained by observing thataand so each. grows, the
smallestz that suffices to achieve Equation 3.1 can shrink while kegpithe same. This, in
turn, yields better availability (Equation 3.2).

e Even at specific parameter valu€smboOverlap can outperfornbimpleOverlap(z, \) for any
singlez. This is illustrated in the top row(= 3, s = 3) of Figure 3.9, for example, in which at
b = 4800 andk € {5,6}, the ComboOverlap table includes entriest{ and36) that exceed the
corresponding entries of any of tBémpleOverlap(z, A\,) tables in its row. This occurs at a value
of b at whichSimpleOverlap(2, A\y) must increase\, from Ay = 1to Ay = 2 to satisfy Equa-
tion 3.1. In this case, it turns out to be better to bliltmboOverlap using aSimpleOverlap(2, 1)
placement in conjunction with &impleOverlap(1,2) placement to satisfy Equation 3.4, rather

than using &impleOverlap(2, 2) placement alone. This advantageC@mboOverlap is not fre-

67

quently illustrated in Section 3.3.3, though testing modeagistively with different values df

would elicit it more.

3.3.3 Breakdown ofComboQOverlap Placements

Recall thatComboOverlap(A, . . ., As—1) placement combines individu@impleOverlap(z, A;)
placements. In this section we detail for various pararsetew individualSimpleOverlap(x, ;)
placements contribute to tli@mboOverlap(Ag, . .., As—1) placements computed via the algorithm
described in Section 3.2.2.1, or more specifically how thaytribute to the results showing the
improvement ofComboOverlap placements oveRandom placements in Section 3.3.2.

We demonstrate these contributions through Figures 3l®:-8hich isolate three cases: =
31 (Figure 3.9),n = 71 (Figure 3.10), anch = 257 (Figure 3.11). In each figure, each row
corresponds to a particular setting forand s. The rightmost table in each row represents the
ComboOverlap(y, ..., As—1) placement for its row’s ands and, in the case = 71 orn = 257,
is an exact copy of the table in Figure 3.8a or Figure 3.8lpeaetvely, for the same and s.
(Then = 31 case was elided from Section 3.3.2 due to space limitatitthreajgh many of the
ComboOverlap(y, ..., As—1) tables forn = 31 are included in Figure 3.9.) The other tables in its
row represen$impleOverlap(x, A,) placements for the samends. As in Figure 3.8, a white table
cell indicates that for the parameter settings it representr placement outperforms (i.e., achieves
better availability than) &andom placement; a light gray cell indicates that both performadigiu
well (setting aside the conservative nature of the comparisee Section 3.3.2); and a dark gray

cell indicates thaRandom provides (potentially) better availability.

3.3.4 Thes =1 Case

In our comparisons betweegtomboOverlap(Ag, ..., As—1) and Random placements in Sec-
tion 3.3.2, we deferred the case= 1. In this case, &omboOverlap(Ao, ..., As—1) placement is
just aSimpleOverlap(0, Ag) placement. Our analysis in this chapter applies tostke 1 case, and
a comparison usinghAvail «©(\g) — prAvail ™ as in Section 3.3.2 indicates tHadéndom slightly
outperformsSimpleOverlap(0, \g) in this measure, for the parameter values we tested. Neverth
less, we relegated this case to this section simply becatbeRbndom andSimpleOverlap(0, o)

perform poorly in this case. The following lemma formalizkis claim forRandom placements.

68

b 3 4 5 6
60 75 33 0
120 75 50 23 0
240 83 63 47 33
480 71 50 44 36
960! 70 47 33 23
1920 64 45 33 24
3840 59 40 30 23

ComboOQverlap

b 3 4 5 6
60 83 63 44 28
120 71 46 28 9
240! 70 47 31 17
480 57 33 16 3
960! 45 20 3
1920 29 5
3840 17|

ComboOverlap

k
A b 4 5 6
1 6000 66 50 16
1 1201 66 0
1
1

240 75 16
480 75 37
2111 960 80 50 21
44| 1 1920 85 64 44
30| 2 3840 77 52 30

ComboOverlap

NEowN ke[~

N P

k k
5 6 A b 5 6
66, 1 60l 66 25
1201 66, 1 1201 66 25
240 66, 1 2401 66
480 66 1 480 66)
960 75 141 960! 75 14
1920 80 251 1920 80 25
3840 80 451 3840 80 45
xr=4 ComboOverlap

Figure 3.9: IbAvail *°(x,\) — prAvail™ for SimpleOverlap(z,)\) placements and
IbAvail (X, ..., As—1) — prAvail ™ for best ComboOverlap(\o, ..., s—1) placement (right
most column) whes > 2, as a percentage of the maximum possible improvermenprAvail ™,
whenn = 31

69

k k
b 3 4 5 6 7 X b 3 4 5 6 7
600 66 0 1 6000 66 50 50 28 22
120 66 20 1 120 66 20 14
240 66 20| 1 240 66 20
480! 75 42 0 1 480 75 42 0
960 80 50 23 1 960 80 50 23
1920 83 63 44 25 10|1 1920 83 63 44 25 10
3840 8 71 60 50 40|1 3840 85 71 60 50 40
T = ComboOQverlap
r=4,s=3
k k
b 3 4 5 6 7 X b 3 4 5 6 7
600, 66 20 1 6000 66 20 25 9 0
1200 75 420 1 1200 75 42 o-
240 80 50 23 1 240 80 50 23
480! 83 63 41 23 711 480 83 63 41 23 7
960 85 71 60 48 38|1 960 85 71 60 48 38
1920 77 60 45 34 23(2 1920 77 60 45 34 23
3840 76 60 48 39 313 3840 76 60 48 39 31
ComboOverlap
k
A b 4 5 6 7
1 6000 50 33
1 120 50 33
1 2401 66 50 0
1 480! 66 50 16 0
1 960! 66 60 28 11
1 1920 75 0
1 3840 75 16|

ComboOverlap

k
b 3 4 5 6 7
600 75 42 9 0
120 80 55 28 0
2400 83 66 47 31 16
4800 75 50 28 20 12
9600 70 47 28 13070
19200 64 42 25 12 0O
38400 57 34 18 7
ComboOverlap
K
A b 4 5 6 7
1 6000 66 50, OpEM
1 120 66 50 16 0
1 2400 66 60 28 11
1 4800 75 16
1 9600 75 28
1 1920 80 37|
1 3840 83 54 16
ComboOQverlap

600
1201
240
480
960

1920
3840

Figure 3.10:

IbAvail (o, . ..

k
b 5 6 7

b 5 6 7 A b 5 7 X b 5 6 7 X
3 6000 50 33 0|1 60 50 0 1 600 50 1 60 50 33 0
6 120 50 33 251 120 50 0 1 120 50 1 120 50 33 25
12 2401 50 33 25|1 240 50 0 1 240 50 1 240 50 33 25
24 480! 0 2 4801 50 0 1 480 50 1 480 50 0
47 960 0 3 960 66 25 1 960! 66 1 960 66 25
93 1920 5 1920 75 25 1 1920 75 1 1920 75 25
3840 9 3840 83 40 01 3840 83| 1 3840 83 40 0
=2 x=3 x = ComboOverlap

placements and
,As—1) placement (right

IbAvail *°(z,\) — prAvail™ for SimpleOverlap(z, \)
,As—1) — prAvail ™ for best ComboOverlap(\o, . . .

most column) when > 2, as a percentage of the maximum possible improvermenprAvail ™,

whenn = 71

70

r=3s=3
k k k
b 3 4 5 6 7 8 X\ b 3 4 5 6 7 8 X b 3 4 5 6 7 8
600 50 33 25 0 1 600 1 600 50 33 25 0
120 50 33 25 0 1 120 1 120 50 33 25 0
240 66 50 40 16 0 1 240 1 240 66 50 40 16 0
480 66 50 40 16 12 0| 1 480 1 480! 66 50 40 16 12 0
960 66 50 50 28 22 18| 1 960 1 960 66 50 50 28 22 18
1920 33 20 14 0 21920 1 1920 66 20 14 0
3840 0 43840 1 3840 75 20 9
z=1 ComboOverlap
k k

b 3 4 5 6 7

8 A b 3 4 5 6 7 8 X b 3 4 5 6 7 8
6000 66 50 40 16, OJMEEE| 1 600 66 1 6000 66 50 40 16 O
120 66 50 40 16 12 0|1 120 66 1 120 66 50 40 16 12 0
240 66 50 50 28 22 18[1 240 66 1 240 66 50 50 28 22 18
480! 66 60 57 37 36 30|1 480 66 1 480! 66 60 57 37 36 30
960 50 20 25 0 2 960 75 1 960 75 20 25 0,
1920 0 419201 75 1 1920 75 33
3840 83840 80 1 3840 80 42 9
r=1 T = ComboOverlap
=4,s=4
k k k k
b 4 5 6 7 b 4 A b A b 4 5 6 7 8
600 50 66 33 25 600 50 1 60 1 600 50 66 33 25 0
120 50 66 33 25 120 50 1 120 1 120 50 66 33 25 0
240 50 66 33 25 240 50 1 240 1 240 50 66 33 25 20
480! 50 66 50 25 1 480 50 1 480 1 480! 50 66 50 25 20
960 0 0 2 960 50 1 960 1 960 50 33
1920 419201 66 11920 1 1920 66 33
3840 83840 66 13840 1 3840 66 50 0
rz=1 ComboOverlap
r=2>5,8=
k k k
b 3 4 5 6 7 3 4 5 6 7 8 X b 3 4 5 6 7 8
600 66 50 40 28 12 66 1 600 66 50 40 28 12 10
120 66 50 50 37 22 66 1 120 66 50 50 37 22 18
240 66 60 57 44 36 66 1 240 66 60 57 44 36 35
480! 50 33 25 9 0, 75 1 480! 75 33 25 9 0,
960 0 75 1 960 75 42 0
1920 80 1 1920 80 50 16
3840 83 1 3840 83 60 33 4
=1 ComboOverlap
r=>5s=4
k k k k
b 4 5 6 7 8 X b 4 5 6 7 8 X b 4 5 6 7 8 A\ b 4 5 6 7 8
600 50 66 33 25 20| 1 600 50 33 1 60l 50 1 600 50 66 33 25 20
120 50 66 50 40 20| 1 120 50 33 1 120 50 1 120 50 66 50 40 20
240 50 66 50 40 33| 1 240 50 33 1 240 50 1 240 50 66 50 40 33
480! 33 0 2 480 66 33 1 480 66 1 480! 66 33
960 4 960 66 50 0 1 960 66 1 960 66 50 0
1920 71920 66 50 16 11920 66 1 1920 66 50 16
3840 133840 75 60 28 0, 13840 75 0 1 3840 75 60 28 0,
r=1 r=3 ComboOverlap
k k k k
5 6 8 A b 5 6 7 8 A b 5 6 7 8
50 0 1 600 1 600 50 50 33 33
50 0 1120 1 120 50 50 33 33
50 0 1240 1 240 50 50 33 33
50 33 1480 1 480 50 33 0
50 33 1960 1 960 50 33 0
66 50 1920 1 1920 66 50 25 0
75 60 2840 1 3840 75 60 40 16
=1 T = x=4 ComboOverlap
: . i| SO i1 rnd H
Figure 3.11: IbAvail *°(z, \) prAvail for SimpleOverlap(xz,\) placements and
. . rnd .
IbAvail ©°(Xo, ..., s—1) — prAvail for best ComboOverlap(Ag,...,As—1) placement (right

most column) when > 2, as a percentage of the maximum possible improvermenprAvail ™,

whenn = 257

71

—

06 n=71r=3%

n=71r=5H&

0.5 =257r =36

4n:257,r:51—
O'1 2 3 4

5 6 7 8 9 10
k

b = 2400

0.9f
=2 o
*4,\
go.
o6 n=71,r=3-x%
n=71r=5&
0.5rn=257r =3©
04n:257,r:51-
"1 2 3 4 5 6 7 8 9 10
k
b = 9600
0.9F
= o8
_\‘/\
$o.—
206 n=71,r=3-x
n=71r=5&
0.5n=257r =36
04n:‘2573r:"5l—‘ ‘ ‘ ‘ ‘
"1 2 4 5 6 7 8 9 10
k
b = 38400

Figure 3.12:(1 — 1)*“) for variousn andr, as a function of;

72

Lemma 8. Supposes = 1, k < n/2, andl = %" Then,

ke
if rnd _ l L
prAvail ™ < b (1 2

Proof. In choosingk nodes to fail, our adversary is guaranteed to be able takfgil replicas
(becausé: < n/2) and, sinces = 1, every object with one or more replicas in thésg/| replicas.
Let F' denote the number of failed objects after the adversaryciesfunode failures. Contrast this
scenario to sampling | /] objects with replacement from the objeets, . .., obj,, and letY” be

a random variable capturing the numberdédtinct objects sampled. We claim th&t(F > f) >

P (Y > f) due to two key differences between our adversary’s sceaadsimply sampling objects
at random with replacement: First, since a placement plaglysone replica per object on any node,
once the adversary selects a node to fail, gusranteedno repetitions of the same object on that
node. Second, our adversary can encounter at nregtlicas of any object (versus upkd/| when

sampling objects uniformly at random with replacement) sAsh,

o0 1¢]
Z]P’F>f ZZ Y >f)= (Y):b[1—<1_%>w]
f=1 f=1

rn rn k(L]
haveVuln™d(f) > 1, and soprAvail ™ < b (1 — £)""".]

To see one implication of this lemma, recall tiiat- %)b converges te~! asb — oco. So, for
large enougth, prAvail ™ is at most approximateli(e~"/")*. In terms of parameter values tested
elsewhere in this chapter, Figure 3.12 shows HgmAvail ™ = (1 — 1/b)l*] behaves for small
numbers of node failures (c.f., the= 1 case of Figure 3.7). Figure 3.12 is plotted for= 2400,

b = 9600 andb = 38400 (all three are virtually indistinguishable). This graplogis that the
availability of Random placements, as a fraction of decays essentially linearly in the number
of failed nodes, with a slope that grows smallemascreases or decreases (since each node then

hosts fewer object replicas).

73

3.4 Conclusion

In this chapter we explored replica placement strategissdant-packings, which we here
called SimpleOverlap(z, \) placements, for maximizing the availability of objects hetface of
the worstk node failures out of: nodes total. We showed thatSampleOverlap(x, \) place-
ment provides availability that is-competitive with optimal, for a specified constan{for con-
stantn, k, replicasr, and fatality thresholds). We then devised a placement strategy called
ComboOverlap(\y, . .., As—1) that combines multipl&impleOverlap(x, \) placements, and a dy-
namic programming algorithm that selectg, ..., As_1 so as to maximize (our lower bound on)
the availability of the resultingComboOverlap placement for a choseh. We showed that a re-
sulting ComboOverlap placement is not particularly sensitive to the valuekofvith which it is
configured, however; for the parameter values we explotexdfers availability for nearby’ # &
within ~ 99% of what the bes€ComboOverlap placement fork’ failed nodes would have. Finally,
we demonstrated and dissected the improvements offer€@iaypoOverlap over Random replica
placement, based on our analysis of the expected avajabipported byRandom placement in
our worst-case model.

Our algorithms leveragepackings for parameters for which maximurpackings (also called
t-designs, see Section 3.2.3) are known to exist, meanirid#z®d on current knowledge, realis-
tically our results are limited te < 5. Fortunately, this suffices for a wide array of data center
applications in practice. Our work does, however, provighier impetus to advance the state-of-

the-art inz-packing construction.

74

CHAPTER4 CONCLUSION

In this thesis we have identified a previously under-exglaspportunity for improving the se-
curity of replicated objects in distributed systems, nantie placemenbf their replicas to manage
the degree to which objects’ replicas reside together osdnge physical nodes. Specifically, we
have leveraged placements in two novel ways to improve reitieeconfidentiality or the availability
of replicated objects.

The first example, presented in Chapter 2, is the systemdc8llepWatch from which an
infrastructure-as-a-service cloud can be constructedctivvincingly defends its tenant VMs from
timing-based side-channel attacks mounted by other tardst The basic idea behin8StopWatch
is to eliminate independent sources of clocks where passipimaking some clock sources func-
tions of others, and then to leverage VM replication and griaent to mitigate those independent
clock sources that could otherwise not be eliminated — ngaithelse arising from the I/O subsystem
(network interrupts, disk interrupts, etc.). Then, by plgoeach VM'’s replicas so that sufficiently
few overlap with each other VM'’s replicas§topWatchensures that no VM observes timings that
are substantially influenced by the behavior of any other particular, this is done by ensur-
ing that any VM'’s replicas observe event timings that repnéshe median timing of each event
across all of its replicas. In this way, if only a minority of\@M’s replicas are co-located with
the replicas of any other single VM, the behaviors of eaclerotfiM will influence these median
timings minimally. We showed th&8topWatchcan accomplish timing side-channel defense in this
way while incurring overheads that we believe to be readeniablight of the strong defenses it
provides, including much less th&x overhead for even 1/O intensive applications in our tests.

The second example in this thesis, described in Chaptere3, placement of object replicas
to improve availability of objects. While enhanced availibis a conventional use of replication,
in this chapter we specifically targeted improved availgbibf objects against an adversary that

can intelligently choose which physical nodes to fail (leai only by a budget of nodes it can fail),

75

in contrast to previous treatments of replica placementdtiress only probabilistic failures. We
showed that in our threat model, careful placement can b tasachieve better object availability
than the most popular placement approach under probabiiistle failures, namely random replica
placement. The specific placement that we demonstrated $o dovolved placing replicas so as
to manage the overlaps of different objects’ replicas, andptimally tune those overlaps (using
a dynamic programming algorithm) to accommodate the nurabebject replicas, the number of
node failures, the number of object replica failures thatdies the object, the number of nodes,
and the number of objects.

Recall from our discussion of Chapter 1 that security isdslty viewed as addressing con-
fidentiality, availability, or integrity. This thesis hagmhonstrated that in replicated systems and
specific threat models, placement of replicas can be managaeth a way that improves either
confidentiality or availability. A natural question, thas,whether placement can be used to effec-
tively improve object integrity. This is undoubtedly trdetie compromise of all of one object’s
replicas by an attacker (e.g., due to a software vulnetghilithe object) can be leveraged (e.g.,
through privilege escalation) to compromise the nodesigp#tose replicas and so all replicas that
those nodes host. In this case, managing the overlaps aftebjeplicas can contain the damage
to other objects, particularly if each object leveragesa@yine fault-tolerant replica coordination
protocols (e.g., [55, 73, 24, 18, 45]) among its replicasviercome these compromises. We leave
as future work the exploration of other such opportunit@susing replica placement to improve

facets of security.

76

BIBLIOGRAPHY

[1] Abel, R. J. R. and Greig, M. (2007BIBDs with small block sizehapter 3. In [19], second edition.

[2] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiké&, Douceur, J. R., Howell, J., Lorch,
J. R., Theimer, M., and Wattenhofer, R. P. (2002). FARSIT&ldtrated, available, and reliable
storage for an incompletely trusted environment. 5th Symposium on Operating Systems
Design and Implementatiopages 1-14.

[3] Agat, J. (2000). Transforming out timing leaks.2iith ACM Symposium on Principles of Program-
ming Languagespages 40-53.

[4] Askarov, A., Myers, A. C., and Zhang, D. (2010). Predietblack-box mitigation of timing chan-
nels. In17th ACM Conference on Computer and Communications Sgcpaties 520-538.

[5] Aviram, A., Weng, S.-C., Hu, S., and Ford, B. (2010). H#it system-enforced deterministic
parallelism. In9th USENIX Symposium on Operating Systems Design and |epiation

[6] Basile, C., Kalbarczyk, Z., and lyer, R. K. (2006). Aaiveplication of multithreaded applications.
IEEE Transactions on Parallel and Distributed Systefi&5):448—-465.

[7] Bates, A., Mood, B., Fletcher, J., Pruse, H., Valafar, léhd Butler, K. (2012). Detecting co-
residency with active fraffic analysis techniques2012 ACM Workshop on Cloud Computing
Security pages 1-12.

[8] Bellard, F. (2005). QEMU, a fast and protable dynamiostator. INUSENIX 2005 Annual Techni-
cal Conference, FREENIX Trackages 41—46.

[9] Bernard, S. and Le Fessant, F. (2009). Optimizing pegreer backup using lifetime estimations.
In 2009 EDBT/ICDT Workshoppages 26—33.

[10] Bhagwan, R., Savage, S., and Voelker, G. M. (2002). iRafibn strategies for highly available peer-
to-peer storage systems. Technical Report CS2002-072@ribeent of Computer Science
and Engineering, University of California, San Diego.

[11] Bienia, C. (2011) Benchmarking modern multiprocessoRhD thesis, Princeton University.

[12] Bolosky, W. J., Douceur, J. R., Ely, D., and Theimer, K0Q0). Feasibility of a serverless dis-
tributed file system deployed on an existing set of desktop. R€2000 ACM SIGMETRICS
International Conference on Measurement and Modeling oh@ater Systemgages 34-43.

[13] Borg, A., Blau, W., Graetsch, W., Herrmann, F., and Q&ew. (1989). Fault tolerance under
UNIX. ACM Transactions on Computer Systeifd):1-24.

[14] Borodin, A. and El-Yaniv, R. (1998)Online Computation and Competitive AnalysS8ambridge
University Press.

[15] Bressoud, T. C. and Schneider, F. B. (1996). Hypenissed fault-tolerancéACM Transactions
on Computer System$4(1):80-107.

[16] Brumley, D. and Boneh, D. (2003). Remote timing attaakes practical. Irl2th USENIX Security
Symposiumpages 1-14.

77

[17] Budhiraja, N., Marzullo, K., Schneider, F. B., and Tgu8. (1993).The primary-backup approagch
chapter 8. In [63], second edition.

[18] Castro, M. and Liskov, B. (2002). Practical Byzantirailf tolerance. ACM Transactions on
Computer System20(4):398-461.

[19] Colbourn, C. J. and Dinitz, J. H., editors (200Handbook of Combinatorial Design&hapman
Hall/CRC, second edition.

[20] Colbourn, C. J., Dinitz, J. H., and Stinson, D. R. (199®pplications of combinatorial designs
to communications, cryptography, and networking. In Lathli). and Preece, D. A., editors,
Surveys in Combinatorics, 1998ages 37—100. Cambridge University Press.

[21] Colbourn, C. J. and Mathon, R. (200Bteiner systemsghapter 5. In [19], second edition.

[22] Colbourn, C. J. and Van Oorschot, P. C. (1989). Appiaret of combinatorial designs in computer
science ACM Computing Survey21(2):223-250.

[23] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Bi@son, J., Knight, J., Nguyen-Tuong, A.,
and Hiser, J. (2006). N-variant systems: A secretless fnariefor security through diversity.
In 15th USENIX Security Symposium

[24] Cristian, F., Aghili, H., Strong, R., and Dolev, D. (139 Atomic broadcast: From simple message
diffusion to Byzantine agreemennformation at Computation118(1):158-179.

[25] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchon, N., and Warfield, A. (2008). Remus:
High availability via asynchronous virtual machine regtion. In5th USENIX Symposium on
Networked Systems Design and Implementapages 161-174.

[26] Dasgupta, S., Papadimitriou, C., and Vazirani, U. @0@Ilgorithms McGraw-Hill.

[27] Devietti, J., Lucia, B., Ceze, L., and Oskin, M. (2010MP: Deterministic shared memory multi-
processinglEEE Micro, 30:41-49.

[28] Deza, E. and Deza, M. (200aDictionary of DistancesElsevier.
[29] Dinitz, J. H. and Stinson, D. R. (1992&). brief introduction to design theorghapter 1. In [30].

[30] Dinitz, J. H. and Stinson, D. R., editors (1992l§}ontemporary Design Theory: A Collection of
Surveys Wiley-Interscience.

[31] Douceur, J. and Wattenhofer, R. (2001). Competitivedlimbing strategies for replica placement
in a distributed file system. Ib5th International Symposium on Distributed Computipages
48-62.

[32] Dunlap, G. W., Lucchetti, D. G., Chen, P. M., and FetteannM. A. (2008). Execution replay of
multiprocessor virtual machines. #th ACM Conference on Virtual Execution Environments
pages 121-130.

[33] Feller, W. (1968). An Introduction to Probability Theory and Its Applicatigngolume 1. John
Wiley & Sons, Inc., third edition.

[34] Gao, D., Reiter, M. K., and Song, D. (2005). Behavionatahce for intrusion detection. Recent
Advances in Intrusion Detection: 8th International Synipws pages 63—-81.

78

[35] Gao, D., Reiter, M. K., and Song, D. (2009). Beyond ouitpoting: Detecting compromised
replicas using HMM-based behavioral distaniéeEE Transactions on Dependable and Secure
Computing 6(2):96-110.

[36] Garcia-Molina, H. and Barbara, D. (1985). How to assigtes in a distributed systerdournal of
the ACM 32:841-860.

[37] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). Twmogle file system. Irl9th ACM
Symposium on Operating Systems Principbeges 29-43.

[38] Gifford, D. K. (1979). Weighted voting for replicatecth. In7th ACM Symposium on Operating
System Principles

[39] Giles, J. and Hajek, B. (2002). An information-the@retnd game-theoretic study of timing chan-
nels. IEEE Transactions on Information Theo®8(9).

[40] Goodrich, M. T. and Tamassia, R. (201Itroduction to Computer Securitydddison-Wesley.

[41] Glngor, M., Bulut, Y., and Calik, S. (2009). Distufions of order statisticf\pplied Mathemathical
Sciences3(16):795-802.

[42] Haeberlen, A., Pierce, B. C., and Narayan, A. (2011)ffdpential privacy under fire. Ir20th
USENIX Security Symposium

[43] Hanani, H., Hartman, A., and Kramer, E. S. (1983). Oredhdesigns of small ordeDiscrete
Mathematics45(1):75-97.

[44] Hanani, M. (1960). On quadruple systen@anad. J. Math.12:145-157.

[45] Hendricks, J., Sinnamohideen, S., Ganger, G. R., arittlRéM. K. (2010). Zzyzx: Scalable
fault tolerance through Byzantine locking. #®th IEEE/IFIP International Conference on
Dependable Systems and Netwopages 363—-372.

[46] Herlihy, M. P. and Tygar, J. D. (1988). How to make regtid data secure. lAdvances in
Cryptology — CRYPTO '87 Proceedingslume 293 ofLecture Notes in Computer Science
pages 379-391.

[47] Herzberg, A., Shulman, H., Ullrich, J., and Weippl, EO{3). Cloudoscopy: Services discovery
and topology mapping. 18013 ACM Workshop on Cloud Computing Secupges 113-122.

[48] Horsley, D. (2011). Maximum packing of the completemravith uniform length cyclesJournal
of Graph Theory68(1):1-7.

[49] Hu, W.-M. (1991). Reducing timing channels with fuzzgé. In 1991 IEEE Symposium on
Security and Privacypages 8-20.

[50] Intel Manual (2011).Intel 64 and 1A-32 Architectures Software Developer's Manuntel Corpo-
ration.

[51] Kang, M. H. and Moskowitz, I. S. (1993). A pump for rapigliable, secure communication. In
ACM Conference on Computer and Communications Secpatyes 119-129.

[52] Karagiannis, T., Molle, M., Faloutsos, M., and Broida,(2004). A nonstationary Poisson view of
Internet traffic. INNFOCOM, pages 1558-1569.

79

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Khosrovshahi, G. B. and Laue, R. (20073designs witlt > 3, chapter 4. In [19], second edition.

Kim, T., Peinado, M., and Mainar-Ruiz, G. (2012XEALTHMEM: System-level protection against
cache-based side channel attacks in the clou@1&t USENIX Security Symposium

Lamport, L., Shostak, R., and Pease, M. (1989). The Byaa generals problemACM Transac-
tions on Programming Languages and Systef(3):382—401.

Lampson, B., Abadi, M., Burrows, M., and Wobber, E. (2R9Authentication in distributed sys-
tems: Theory and practicCM Transactions on Computer Systei3(4):265-310.

Li, P., Gao, D., and Reiter, M. K. (2013). Mitigating &ss-driven timing channels in clouds
using StopWatch. 143rd IEEE/IFIP International Conference on Dependablet&ys and
Networks

Lindner, C. C. and Rodger, C. A. (2008)esign Theorychapter 1. CRC Press.

MacCormick, J., Murphy, N., V.Ramasubramanian, Wretle, Yang, J., and Zhou, L. (2009). Ki-
nesis: A new approach to replica placement in distributethge systemsACM Transactions
on Storage4.

Mathon, R. and Rosa, A. (2007R-(v, k, \) designs of small orderchapter 1. In [19], second
edition.

Mills, W. H. and Mullin, R. C. (1992) Coverings and packingshapter 9. In [30].
Mitzenmacher, M. and Upfal, E. (2005probability and ComputingCambridge University Press.
Mullender, S., editor (1993Distributed SystemsAddison-Wesley, second edition.

Narasimhan, P., Moser, L. E., and Melliar-Smith, P. l999). Enforcing determinism for the
consistent replication of multithreaded CORBA applicasioInlEEE Symposium on Reliable
Distributed Systempages 263-273.

Ng, W. K. and Ravishankar, C. V. (1995). Coterie temgdatA new quorum construction method.
In 15th International Conference on Distributed Computingt&ms pages 92—-99.

Nguyen-Tuong, A., Evans, D., Knight, J. C., Cox, B., &alidson, J. W. (2008). Security through
redundant data diversity. B8th IEEE/IFPF International Conference on Dependable&ys
and Networks

Ogilvy, C. S. (1990).Excursions in Geometrghapter 3-4. Dover.

On, G., Schmitt, J., and Steinmetz, R. (2003). Qualitsnailability: Replica placement for widely
distributed systems. Ihlth International Conference on Quality of Seryipages 325-342.

Ostergard, P. R. and Pottonen, O. (2008). There extStainer systeny(4,5,17). Journal of
Combinatorial Theory, Series,A15(8):1570 — 1573.

Popek, G. and Kline, C. (1974). Verifiable secure opegasystem software. IAFIPS National
Computer Confereng@ages 145-151.

Raghavarao, D. and Padgett, L. V. (2005). Balancednmete block designs — applications. In
Block Designs: Analysis, Combinatorics and Applicatiartsapter 5. World Scientific.

80

[72] Raj, H., Nathuji, R., Singh, A., and England, P. (200®esource management for isolation en-
hanced cloud services. BCM Workshop on Cloud Computing Securjiages 77-84.

[73] Reiter, M. K. (1994). Secure agreement protocols: ddd and atomic group multicast in Rampart.
In 2nd ACM Conference on Computer and Communication Secpetes 68—30.

[74] Ristenpart, T., Tromer, E., Shacham, H., and Savag€®9). Hey, you, get off of my cloud:
Exploring information leakage in third-party compute asu In16th ACM Conference on
Computer and Communications Securjtages 199-212.

[75] Rzadca, K., Datta, A., and Buchegger, S. (2010). Repliacement in P2P storage: Complexity
and game theoretic analyses.3Bth IEEE International Conference on Distributed Compgti
Systemgpages 588—-609.

[76] Santos, J. R., Muntz, R. R., and Ribeiro-Neto, B. (2000pmparing random data allocation and
data striping in multimedia servers. 2000 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systigrages 44-55.

[77] Schneider, F. B. (1987). Understanding protocols fgedhtine clock synchronization. Technical
Report 87-859, Department of Computer Science, Corneldisity.

[78] Schneider, F. B. (1990). Implementing fault-toleraatvices using the state machine approach: A
tutorial. ACM Computing Survey22(4).

[79] Schneider, F. B. (1993)What good are models and what models are goad@apter 2. In [63],
second edition.

[80] Shvachko, K., Kuang, H., Radia, S., and Chansler, RL§2Z0The Hadoop distributed file system.
In 26th IEEE Symposium on Mass Storage Systems and Techspfmages 1-10.

[81] Speakman, T. et al. (2001). PGM reliable transportquok specification. Request for Comments
3208, Internet Engineering Task Force.

[82] Tromer, E., Osvik, D. A., and Shamir, A. (2010). Efficierache attacks on AES, and countermea-
sures.Journal of Cryptology23(1):37-71.

[83] Turn, R.and Habibi, J. (1986). On the interactions aisity and fault-tolerance. 18th NBS/NCSC
National Computer Security Conferengages 138-142.

[84] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Mast F. C. M., Anderson, A. V., Bennett,
S. M., Kagi, A., Leung, F. H., and Smith, L. (2005). Intel valization technology.l[EEE
Computer 38(3):48-56.

[85] Vattikonda, B. C., Das, S., and Shacham, H. (2011). mBlting fine grained timers in Xen. In
ACM Cloud Computing Security Workshop

[86] VMWare, Inc. (2009). Protecting mission-critical vikbmads with VMware fault tolerancent t p:
[ww. vimnvar e. cond resour ces/ t echresour ces/ 1094.

[87] VMWare Information Guide (2010)Timekeeping in VMware Virtual Machine§MWare Inc.

[88] Wray, J. C. (1991). An analysis of covert timing charsndin 1991 IEEE Symposium on Security
and Privacy pages 2—7.

81

[89] Xu, M., Malyugin, V., Sheldon, J., Venkitachalam, GadaWeissman, B. (2007). ReTrace: Collect-
ing execution trace with virtual machine deterministiclagp In 3rd Workshop on Modeling,
Benchmarking and Simulation

[90] Yin, J., Venkataramani, A., Martin, J.-P., L. Alvisind Dahlin, M. (2002). Byzantine fault-tolerant
confidentiality. Ininternational Workshop on Future Directions in Distribdt€omputing

[91] Yu, H. and Gibbons, P. B. (2007). Optimal inter-objeatrelation when replicating for availability.
In 26th ACM Symposium on Principles of Distributed Compuytpages 254-263.

[92] Yu, H., Gibbons, P. B., and Nath, S. (2006). Availailiff multi-object operations. 18rd USENIX
Symposium on Networked Systems Design & Implementation

[93] Yu, H. and Vahdat, A. (2002). Minimal replication costrfavailability. In21st ACM Symposium
on Principles of Distributed Computingages 98-107.

[94] Zdancewic, S. and Myers, A. C. (2003). Observation&tarinism for concurrent program security.
In 16th IEEE Computer Security Foundations Workshaages 29—43.

[95] Zhang, D., Askarov, A., and Myers, A. C. (2011). Predietmitigation of timing channels in
interactive systems. 1h8th ACM Conference on Computer and Communications Sgcurit

[96] zZhang, D., Askarov, A., and Myers, A. C. (2012a). Langeroased control and mitigation of

timing channels. 1183rd ACM Conference on Programming Language Design anddmeh-
tation.

[97] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, 2012b). Cross-VM side channels and
their use to extract private keys. 19th ACM Conference on Computer and Communications
Security

82

