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Summary
Background The relationship between agriculture, Anopheles mosquitoes, and malaria in Africa is not fully understood, 
but it is important for malaria control as countries consider expanding agricultural projects to address population 
growth and food demand. Therefore, we aimed to assess the effect of agriculture on Anopheles biting behaviour and 
malaria risk in children in rural areas of the Democratic Republic of the Congo (DR Congo).

Methods We did a population-based, cross-sectional, spatial study of rural children (<5 years) in the DR Congo. We 
used information about the presence of malaria parasites in each child, as determined by PCR analysis of dried-blood 
spots from the 2013–14 DR Congo Demographic and Health Survey (DHS). We also used data from the DHS, a 
longitudinal entomological study, and available land cover and climate data to evaluate the relationships between 
agriculture, Anopheles biting behaviour, and malaria prevalence. Satellite imagery was used to measure the percentage  
of agricultural land cover around DHS villages and Anopheles sites. Anopheles biting behaviour was assessed by Human 
Landing Catch. We used probit regression to assess the relationship between agriculture and the probability of malaria 
infection, as well as the relationship between agriculture and the probability that a mosquito was caught biting indoors.

Findings Between Aug 13, 2013, and Feb 13, 2014, a total of 9790 dried-blood spots were obtained from the DHS, of 
which 4612 participants were included in this study. Falciparum malaria infection prevalence in rural children was 
38·7% (95% uncertainty interval [UI] 37·3–40·0). Increasing exposure to agriculture was associated with increasing 
malaria risk with a high posterior probability (estimate 0·07, 95% UI –0·04 to 0·17; posterior probability 
[estimate >0]=0·89), with the probability of malaria infection increased between 0·2% (95% UI –0·1 to 3·4) and 
2·6% (–1·5 to 6·6) given a 15% increase in agricultural cover, depending on other risk factors. The models predicted 
that large increases in agricultural cover (from 0% to 75%) increase the probability of infection by as much as 
13·1% (95% UI –7·3 to 28·9). Increased risk might be due to Anopheles gambiae sensu lato, whose probability of biting 
indoors increased between 11·3% (95% UI –15·3 to 25·6) and 19·7% (–12·1 to 35·9) with a 15% increase in agriculture.

Interpretation Malaria control programmes must consider the possibility of increased risk due to expanding 
agriculture. Governments considering initiating large-scale agricultural projects should therefore also consider 
accompanying additional malaria control measures.
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Malaria Initiative, and Royster Society of Fellows at the University of North Carolina at Chapel Hill.
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Introduction
Understanding the ecology of malaria and its vectors is an 
essential component of successful malaria control.1 In 
sub-Saharan Africa, agriculture is an important aspect of 
this ecology.2,3 Agriculture is of concern because more 
than half of the global population growth from now to 
2050 is expected to occur in Africa,4 and UN projections 
suggest the population could double, from 1·2 billion 
in 2015 to 2·5 billion in 2050, with much of this growth 
occurring in rural areas.5,6 Such growth places considerable 
demand on Africa’s food supply, and governments are 
considering large-scale agricultural projects to meet this 

increased need.6,7 However, agricultural projects might 
reverse reductions in malaria transmission that have been 
achieved over the past decade, because expanding 
agriculture might produce habitat characteristics favoured 
by Anopheles gambiae sensu lato mosquitoes, sub-Saharan 
Africa’s most efficient malaria vectors. Specifically, 
agricultural uses might increase the availability of the 
pools of water with little or no surrounding vegetation that 
are the preferred breeding sites for A gambiae sensu lato 
mosquitoes.8–10

Few studies collect data on both vector populations and 
malaria prevalence. Entomological studies tend to focus 
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on the relationship between the environment and 
transmission-related indicators. Findings from these 
studies suggest that agricultural development is associated 
with changes in mosquito indoor resting density, human 
biting rates, sporozoite rates, entomological inoculation 
rates, larval abundance, reproduction rates, gonotrophic 
cycles, and vector capacity.11–17 Such changes, however, do 
not necessarily increase malaria risk. Increased larval 
density, for example, is associated with longer larval 
development times,15,18 and different agricultural practices 
and crop types have had varying effects on malaria risk.7,19,20 
Importantly, individual studies tend to be done in a small 
number of sites, are not representative of a country’s 
broader population, and are not generalisable across its 
ecological zones. They also frequently have a paucity of  
data on other key factors governing transmission, such as 
bednet use, limiting inferences on risk.21 Therefore, given 
the diversity of vectors and human ecosystems, additional 
work in this area is needed.

In this study, we examine the relationship between 
agriculture, the mosquito population, and malaria risk in 
children living in the Democratic Republic of the Congo 
(DR Congo)—a large and ecologically diverse country 
containing 47% of Africa’s potential agricultural land and 
accounting for 10% of global malaria deaths in 20156,22—
and we consider possible mechanisms through which 
increases in agriculture might lead to a hypothesised 
increase in malaria risk.

Methods
Study design and population
We did a population-based, cross-sectional, spatial study 
of children from the DR Congo. The study population 

comprised children younger than 5 years sampled as part 
of the 2013–14 DR Congo Demographic and Health 
Survey (DHS), which is a population-based cluster 
household survey. Because the DHS did not provide 
survey information about children aged 5 years or older, 
these children were excluded. Additionally, we included 
only children living in rural areas (as defined by the DHS, 
which uses each country’s definition) because agriculture 
in the DR Congo is predominantly rural. The sampling 
methods for the DHS are described elsewhere.23 We used 
information about the presence of malaria parasites in 
each child, as determined by PCR analysis of dried-blood 
spots according to a previously published protocol.24–26 
Dried-blood spots were obtained from the DHS for 
malaria DNA extraction, of which some samples were 
randomly selected for use for other projects and were 
therefore excluded from this study. We also excluded 
samples that were negative for human β tubulin.

Parental consent for children’s participation in the 
2013–14 DHS was obtained by the DHS Programme. 
The 2013–14 DR Congo DHS was reviewed and 
approved by the institutional review board at ICF 
International—a global consulting firm and the 
contractor responsible for implementing the DHS 
survey—and the University of Kinshasa (Kinshasa, DR 
Congo). This study was approved by the institutional 
review board at the University of North Carolina 
(Chapel Hill, NC, USA).

Exposure to agriculture
We derived measures of agricultural cover using the 
Moderate Resolution Imaging Spectroradiometer Land 
Cover Type data product (MCD12Q1), which provides 

Research in context

Evidence before this study
The relationship between agriculture, mosquito populations, and 
malaria risk in human beings is complex. We searched PubMed 
and Google Scholar with the terms “agriculture”, “anopheles”, 
“land use”, “land use change”, and “environment” in combination 
with “malaria”. We applied no language or publication date 
restrictions. Agriculture has been consistently associated with 
several malaria-related transmission parameters, such as indoor 
resting density, human biting rates, entomological inoculation 
rates, larval abundance, gonotrophic cycles, and vector capacity. 
By contrast, no consistent effect of agriculture on malaria risk has 
been found. However, these studies tend to be done in a small 
number of sites, and are not representative of the broader 
population or across different ecological zones. Additionally, we 
found these studies also often had a paucity of data on important 
factors that govern transmission.

Added value of this study
To our knowledge, this is the first study attempting to 
understand the agriculture–malaria relationship across 

multiple ecological zones using population-based human 
survey data, contemporaneous mosquito vector surveillance, 
and satellite imaging.

Implications of all the available evidence
Our results show that increasing agricultural land cover 
increases the probability of infection with Plasmodium 
falciparum malaria with high posterior probability across 
ecologically diverse settings. This increase in infection 
probability might be mediated by changes in the biting 
behaviour of Anopheles gambiae sensu lato mosquitoes. 
Interestingly, bednets impregnated with permethrin were not 
protective whereas bednets impregnated with deltamethrin 
were protective. Malaria control programmes and policy makers 
must consider potential increases in malaria risk due to 
expanding agriculture.
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yearly estimates of land cover at 500-m resolutions. In 
that dataset, two different classification schemes 
measured agricultural land cover: the International 
Geosphere-Biosphere Programme measure, which 
includes two agricultural land cover classes, and the 
University of Maryland measure, which includes one 
agricultural land cover class. We estimated the proportion 
of agricultural land cover within 10 km of each DHS 
cluster using each of the classification schemes, and then 
averaged the two estimates to lessen the effect any 
extreme measures in one classification might have on 
inference. We chose a 10-km radius because it 
corresponds to the maximum flight distance of a female, 
human blood-fed A gambiae mosquito, representing the 
maximum extent in which human and mosquito 
populations interact.27

Population, behavioural, and environmental 
confounders
We derived population, behavioural, and environmental 
confounders from the DHS and satellite remote sensing 
sources. We extracted data from the DHS that consisted 
of age, sex, individual and community bednet use, 
altitude, and household construction materials, which 
represent both socioeconomic status and paths or 
barriers to mosquito entry. Individual bednet use was 
measured as use of a net treated with deltamethrin or 
alphacypermethrin, permethrin, or other kind of net 
(ie, nets for which we could not identify the insecticide). 
We consider net use in this manner because of high 
numbers of observed insecticide resistance to permethrin 
and remaining efficacy of deltamethrin and alpha-
cypermethrin.28 Similarly, we calculate community 
bednet coverage according to the proportion of other 
respondents in the community sleeping under a 
deltamethrin-treated or alphacypermethrin-treated net, 
because these nets can still kill mosquitoes on contact. 
Household wall construction was coded as natural, 
rudimentary, finished, or other material according to the 
DHS. Roof construction was dichotomised as either 
finished (eg, metal or tin) or not, because of the small 
sample sizes in the rudimentary and other categories.

Precipitation and temperature were derived from 
multiple satellite platforms. We calculated the average 
temperature in °C the month the survey was done using 
the University of East Anglia’s Climate Research Unit 
TS3.23 data product, together with data from the National 
Centers for Environmental Prediction and the National 
Oceanic and Atmospheric Administration. Precipitation 
was measured as the total rainfall in cm the month before 
the survey with use of Tropical Rainfall Monitoring 
Mission and the University of East Anglia’s Climate 
Research Unit data. We calculated and averaged these 
measures within a 10-km radius of each survey cluster. 
Several studies have investigated different lag periods for 
precipitation and their effects on malaria transmission, 
with important lags identified ranging from 1 month to 

5 months.29–32 Therefore, we chose a lag of 1 month to be 
consistent with other studies of malaria in the DR Congo.33

Entomological monitoring
We consider the effect of agriculture on the vector 
population using entomological surveillance of A gambiae 
sensu lato, Anopheles paludis, Anopheles moucheti sensu 
lato, Anopheles funestus sensu lato, and Anopheles nili. 
In 2013, the Africa Indoor Residual Spraying Project did 
two rounds of mosquito surveillance in August and 
November across four sites chosen to represent equatorial, 
tropical, and mountainous ecological regions of the 
DR Congo. In 2014, three more sites were added, yielding 
seven total sites for 2014 surveillance, which occurred in 
February, April, and July. One of these sites was in an 
urban setting (Kinshasa, DR Congo), and was excluded 
since interest is in rural transmission. Mosquito collection 
occurred both indoors and outdoors with use of human 
landing catch (HLC). HLC was done in eight households 
in each site. Households were chosen with use of 
convenience sampling, with an effort to select houses that 
were not immediately adjacent to one another. HLC was 
done in two households each night for four nights by 
two mosquito collectors between 1800 h and 0600 h, for a 
total of eight person-nights per site. One collector did 
HLC indoors and the other outdoors. The two collectors 
switched places hourly to prevent mosquito attraction 
bias. Identification of mosquito species was done 
morphologically.

Our outcome of interest is whether or not a mosquito 
was caught indoors. We assume mosquitoes caught 
indoors were intending to bite; therefore, we treated 
them as indoor-biting mosquitoes. We used the same 
strategy to measure agricultural cover, temperature, and 
precipitation around mosquito surveillance sites as the 
one we used for the DHS survey.

Statistical analysis
We used probit regression to assess the relationship 
between agriculture and the probability of malaria 
infection. We fitted three models to assess the relationship 
between agriculture and malaria risk using DHS data. The 
three models addressed the survey sampling design, the 
unobserved vector population, and variability in crop types, 
with unobserved vector population and variability in crop 
types representing confounding sources. The first model 
incorporates an independently varying random intercept to 
account for the correlation induced by the survey’s cluster 
sampling design. Such a model assumes unmeasured 
confounders exhibit no spatial structure. Given that the 
vector population is dependent on environmental 
conditions, which are spatially structured, we extended this 
model and incorporated spatial correlation in the intercept, 
thereby allowing for in ference of unmeasured confounding 
variables across the DR Congo. Notably, both specifications 
assume no unmeasured confounding variables in the 
agriculture–malaria relationship. However, there might be 
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variability in the effect due to different crop types, and 
different vectors might respond to agriculture in different 
ways. Therefore, we introduce a spatially varying coefficient 
process for the agriculture–malaria relationship.34

To generate a sense of how large-scale agricultural 
expansion might affect children younger than 5 years in 

the DR Congo, we used the best-fitting model output to 
plot the hypothetical probability of malaria infection for 
each child as a function of agriculture, with coverage 
ranging from 0% to 75% (ie, the minimum and 
maximum observed values in the data). We stratified 
each unique child according to their risk on the basis of 
other covariates from the model. To aid visualisation, we 
further stratified these children according to whether 
their risk fell into the lowest 25%, middle 50%, or highest 
25% quantiles (ie, IQRs).

We also used probit regression models to assess the 
relationship between agriculture and the probability that 
a mosquito was caught biting indoors. Three separate 
models were fitted for indoor biting behaviour among 
A gambiae sensu lato, A paludis, and A funestus sensu 
lato mosquitoes. Insufficient numbers of A moucheti 
sensu lato and A nili mosquitoes prevented modelling. 
All three models included a random intercept that 
varied independently across surveillance sites, and 
controlled for temperature, precipitation, and month of 
surveillance.

We fitted all models in a Bayesian setting. Continuous 
covariates (age, agriculture, temperature, precipitation, 
and community bednet coverage) were first mean-
centred and scaled, such that regression coefficients 
represent effects per SD increase in these variables. 
We assigned standard normal prior distributions to 
regression coefficients, and spatial structure was 
modelled using a Gaussian process with exponential 
covariance, consistent with other spatial models of 
malaria transmission.35,36 We initially withheld a third of 
the data, and assessed performance of models on malaria 
risk using Brier scores, area under the receiver operating 
characteristic curve, and deviance information criterion. 
Final inferences were based on the best fitting model. 
The appendix provides a full discussion about the model 
specifications.

All data management and model fitting were done 
using R (version 3.3.1).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
Between Aug 13, 2013, and Feb 13, 2014, a total of 
9790 dried-blood spots were obtained from the DHS, of 
which 8812 were included for malaria DNA extraction. 
Four of these samples were negative for human β tubulin 
and were excluded, and spatial information was 
unavailable for 44 DHS clusters, reducing the sample 
size to 7997. Accounting for the other exclusion criteria, 
only 4612 participants in 331 survey clusters were 
included in this study (figure 1). Figure 2 shows the DHS 

9790 dried-blood spots

978 excluded because randomly 
selected for serology QC

8812 malaria DNA extracted

815 excluded
4 human β-tubulin negative

811 excluded because of 
missing GPS coordinates 
for DHS clusters

3385 excluded
1336 children older than 

5 years
2045 living in urban areas

4 individuals missing 
covariate information

7997 PCR amplifications

4612 included in analysis

Lodja

Kabondo

Kapolowe

Tshikaji

Mikalayi

Kingasani

Fungurume

Angola

Cameroon

Central African Republic

Congo
(Brazzaville)Gabon

Rwanda

Tanzania

Uganda

Zambia

South Sudan

Burundi

DHS clusters
Entomological surveillance sites
Tropical rainforest
Tropical monsoon
Tropical savannah
Temperate, dry winter, and hot 
summer
Temperate, dry winter, and warm 
summer

DR Congo

Figure 1: Study flow diagram
QC=quality control. DHS=Demographic and Health Survey.

Figure 2: DHS survey sites, entomological surveillance sites, and the DR Congo ecoclimate regions
The Kingasani site was excluded from the analysis because it was in the DR Congo capital of Kinshasa, a major 
urban centre with more than 10 million inhabitants. Ecoclimate regions are based on the Köppen–Geiger Climate 
Classification.37 DHS=Demographic and Health Survey. DR Congo=Democratic Republic of the Congo.

See Online for appendix
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and entomological surveillance sites identified and used 
in this study.

Prevalence of infection with Plasmodium falciparum 
malaria in rural children was 38·7% (95% uncertainty 
interval [UI] 37·3–40·0). Table 1 presents descriptive 
statistics on malaria infection prevalence according to 
the agricultural exposure and potential confounders, 
together with their expected relationships on malaria 
risk. Malaria-infected and malaria-uninfected children 
were exposed to almost the same agricultural land cover, 
temperature, and precipitation. Malaria prevalence was 
7·5% higher in children living at altitudes less than 

1000 m than in those living at 1000 m or more. Children 
sleeping under a bednet the previous night tended to 
sleep under nets treated with deltamethrin or 
alphacypermethrin. Among the 2829 malaria-negative 
children, 1367 (48·3%) slept under a net treated with 
deltamethrin or alphacypermethrin compared with 665 
(37·3%) of 1783 children who tested positive for malaria. 
Whereas in children sleeping under permethrin-treated 
nets, a relatively increased proportion of malaria-positive 
children (165 [9·3%]) were reported compared with 
malaria-negative children (191 [6·8%]). Furthermore, 
malaria-negative children tended to live in communities 
with higher numbers of community bednet protection 
(47·1%) than were malaria-positive children (39·2%). 
Malaria-positive children also tended to live in poorer 
quality housing, with 157 (36·2%) sleeping in homes 
with finished wall construction compared with 277 
(63·8%) of malaria-negative children.

Among the three models fitted to the DHS data, the 
model with an independently varying intercept yielded 
the best fit to the data. The appendix presents the fit 
statistics. Table 2 presents results from the best-fitting 
model, parameter estimates, 95% UIs, and the posterior 
probability that the exposure increases malaria risk. 

Malaria-positive 
children 
(n=1783)

Malaria-
negative 
children 
(n=2829)

Expected 
relationship 
to malaria

Individual-level variables

Mean age (years) 2·9 
(SD 1·26)

2·6 
(SD 1·30)

Increase risk

Sex

Girls 860 (48·2%) 1417 (50·1%) Increase risk

Boys 923 (51·8%) 1412 (49·9%) Decrease risk

Bednet use

Deltamethrin or 
alphacypermethrin

665 (37·3%) 1367 (48·3%) Decrease risk

Permethrin 165 (9·3%) 191 (6·8%) Unknown risk

Other 37 (2·1%) 32 (1·1%) Unknown risk

No net 916 (51·4%) 1239 (43·8%) Increase risk

Household wall material

Natural 245 (13·7%) 617 (21·8%) Increase risk

Rudimentary 1370 (76·8%) 1873 (66·2%) Increase risk

Finished 157 (8·8%) 277 (9·8%) Decrease risk

Other 11 (0·6%) 62 (2·2%) Unknown risk

Household roof material

Natural 1574 (88·3%) 2408 (85·1%) Increase risk

Rudimentary 11 (0·6%) 16 (0·6%) Increase risk

Finished 196 (11·0%) 397 (14·0%) Decrease risk

Other 2 (0·1%) 8 (0·3%) Unknown risk

Community-level variables

Mean community 
bednet use* (%)

39·2% 
(SD 26·8)

47·1% 
(SD 28·7)

Decrease risk

Altitude

Children living 
<1000 m

1562 (87·6%) 2265 (80·1%) Increase risk

Children living 
≥1000 m

221 (12·4%) 564 (19·9%) Decrease risk

Mean precipitation 
(cm)

16·2 
 (SD 5·5)

16·5 
(SD 4·8)

Increase risk

Mean temperature 
(°C)

24·7 (SD 1·4) 24·4 (SD 2·1) Increase risk

Mean agricultural 
land cover (%)

11·1% 
(SD 15·5)

11·2% 
(SD 14·8)

Increase risk

Data are n (%) or mean (SD). *Defined as the proportion of other community 
members sleeping under a deltamethrin-treated or alphacypermethrin-treated 
bednet.

Table 1: Descriptive statistics for variables included in probit models

Estimate 2·5% UI 97·5% UI Posterior 
probability 
(estimate >0)

Individual-level variables

Intercept –0·34 –0·51 –0·16 0·00

Age (years) 0·18 0·14 0·23 1·00

Girls 0·03 –0·06 0·11 0·73

Bednet use (reference is no net)

Deltamethrin or 
alphacypermethrin

–0·15 –0·25 –0·05 0·00

Permethrin 0·02 –0·17 0·21 0·58

Other 0·19 –0·18 0·56 0·84

Community-level variables

Household wall material (reference is natural)

Rudimentary 0·11 –0·04 0·27 0·92

Finished 0·05 –0·18 0·29 0·66

Other –0·26 –0·77 0·26 0·17

Finished household roof 
material

–0·12 –0·29 0·06 0·09

Community bednet use 
(Z score)

–0·21 –0·31 –0·12 0·00

Altitude (>1000 m) –0·30 –0·70 0·11 0·07

Precipitation (Z score) –0·07 –0·19 0·04 0·11

Temperature (Z score) 0·17 0·03 0·32 0·99

Agricultural land cover 
(Z score)

0·07 –0·04 0·17 0·89

Posterior probability (estimate >0) values near or at 0 indicate that the effect is 
protective, whereas values at or near 1 indicate that the covariate is a risk factor. 
Values near 0·5 indicate no effect. UI=uncertainty interval.

Table 2: Results for final probit regression model on agriculture and 
malaria risk
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Increasing exposure to agriculture was associated with 
increased malaria risk with a high posterior probability 
(estimate 0·07, 95% UI –0·04 to 0·17; posterior 
probability [estimate >0]=0·89), with a 15% increase in 
agricultural cover associated with increased probabilities 
of malaria infection ranging from 0·2% (95% UI 
–0·1 to 3·4) to 2·6% (–1·5 to 6·6), depending on other 
risk factors such as bednets treated with deltamethrin or 
alphacypermethrin, age, housing quality, and altitude.

Figure 3 plots the hypothetical change in malaria risk as 
a result of a large-scale agricultural expansion from 0% to 
75% coverage. As shown, children at the extremes—
ie, those at very low or very high risk for malaria based on 
other risk factors—exhibit a small increase in risk due to 
large-scale agricultural expansion. For those whose risk is 
not at either extreme, however, substantial increases in 
agriculture are accompanied by sizeable increases in 
malaria risk, as high as 13·1% (95% UI –7·3 to 28·9), 
indicating increases in malaria risk due to potential large-

scale agricultural development might be offset through 
simultaneous investments in housing quality, bednets, 
and other interventions.

A gambiae sensu lato and A paludis were the dominant 
mosquitoes collected across all sites and periods (table 3). 
A funestus sensu lato, A moucheti sensu lato, and A nili 
were relatively rare across all sites and times. Furthermore, 
relative abundance between A gambiae sensu lato and 
A paludis varied in some sites. In the Kapolowe site, 
relative abundance of A gambiae sensu lato declined over 
the course of surveillance, during which time abundance 
of A paludis increased, although relative abundance 
appears unrelated to season (figure 4).

Agricultural coverage across all six sites ranged from 
3·7% to 25·3% (mean 15, SD 7), while total precipitation 
ranged from 0 to 265 cm (mean 79, SD 948). Average 
temperatures ranged from 19 to 26°C (mean 24, SD 2). 
Results from the probit models assessing the probability 
that an Anopheles mosquito was caught biting indoors 
varied across species. Among A gambiae sensu lato 
mosquitoes, increasing exposure to agriculture was 
associated with increased probability of biting indoors with 
a high posterior probability (estimate 0·50 95% UI 
–0·55 to 1·52; posterior probability [estimate >0]=0·84; 
table 4), controlling for available confounders. Given a 
15% increase in agricultural cover, for example, this 
estimate was associated with increased probabilities of 
A gambiae sensu lato mosquitoes being caught biting 
indoors ranging from 11·3% (95% UI –15·3 to 25·6) to 
19·7% (–12·1 to 35·9), depending on factors such as 
season (month of surveillance), temperature, and 
precipitation. Conversely, there was only a slight indoor 
biting response to agriculture in A paludis mosquitoes 
(posterior point estimate 0·15 [95% UI –0·93 to 1·17]; 
posterior point [estimate >0]=0·62). In A funestus sensu 
lato, increasing agriculture is associated with decreased 
probability of being caught biting indoors with a high 
posterior probability (estimate –0·72, 95% UI 
–2·33 to 0·82; posterior probability [estimate <0]=0·82). 
However, this mosquito species was not present in high 
abundance in any site. Table 4 presents the full model 
results, with parameter estimates, 95% UIs, and the 
probability that each variable increases indoor biting.

Discussion
Our data suggest that increasing agriculture is associated 
with increased malaria risk. This relationship does not 
meaningfully vary over space because of confounding 
variables from the unobserved vector population or crop 
types. Our model suggests that exposure to large-scale 
agricultural expansion will have a minimal effect on those 
with low risk of infection or where malaria infection rates 
are saturated. However, it could have profound effects on 
those not at either of these extremes. Such an effect is of 
concern in the DR Congo, which has the largest proportion 
of potentially available cropland in sub-Saharan Africa as 
well as one of the world’s highest malaria burdens.
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Figure 3: Hypothetical changes in malaria risk due to large-scale agricultural expansion in children younger 
than 5 years in the DR Congo
The black line represents the mean trend lines within each quantile. DR Congo=Democratic Republic of the Congo.

Collection period Total 
caught

August, 
2013

November, 
2013

February, 
2014

April,  
2014

July,  
2014

Anopheles gambiae 
sensu lato

327 (56·4%) 630 (83·2%) 1320 (59·6%) 639 (63·0%) 761 (35·9%) 3677

Anopheles paludis 240 (41·4%) 120 (15·9%) 862 (38·9%) 350 (34·5%) 1328 (62·8%) 2900

Anopheles funestus 
sensu lato

13 (2·2%) 5 (0·6%) 32 (1·4%) 1 (0·1%) 25 (1·2%) 76

Anopheles moucheti 
sensu lato

0 0 0 10 (1·0%) 0 10

Anopheles nili 0 2 (0·3%) 0 14 (1·4%) 2 (0·1%) 18

Total caught 580 757 2214 1014 2116 6681

Data are n (%), unless otherwise stated.

Table 3: Proportion of each Anopheles species by collection period of human landing catch
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Results from our entomological analyses suggest that 
increases in agriculture are associated with increased 
probability of indoor biting among A gambiae sensu lato 
mosquitoes, but not among A paludis, and is associated 
with decreased probability of indoor biting in A funestus 
sensu lato. Given the high abundance of A gambiae sensu 
lato, these results suggest that the agriculture–malaria 
relationship might be mediated through effects on 
indoor biting among A gambiae sensu lato; and despite 
A funestus sensu lato showing a decreased probability of 

indoor biting with increasing agriculture, it only 
accounted for 1% of the mosquitoes collected. That said, 
given the preference for these mosquitoes to occupy 
larger, semi-permanent or permanent bodies of water, we 
hypothesise that the expansion of agriculture in these 
areas might lead to a decrease in the A funestus 
population, where it might be replaced by A gambiae. 
Important seasonal patterns also existed among vectors, 
with the relative abundances of A paludis and A gambiae 
sensu lato varying in some sites, while indoor biting 
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Figure 4: Relative abundance of Anopheles mosquitoes by human landing catch by site

Anopheles gambiae sensu lato Anopheles paludis Anopheles funestus sensu lato

Estimate 2·5% UI 97·5% UI Posterior 
probability 
(estimate >0)

Estimate 2·5% UI 97·5% UI Posterior 
probability 
(estimate >0)

Estimate 2·5% UI 97·5% UI Posterior 
probability 
(estimate >0)

Intercept –0·78 –1·06 –0·50 0·00 –1·29 –1·59 –0·99 0·00 –0·51 –1·40 0·34 0·13

Agriculture 0·50 –0·55 1·52 0·84 0·15 –0·93 1·17 0·62 –0·72 –2·33 0·82 0·18

Precipitation –0·15 –0·22 –0·09 0·00 0·31 0·07 0·57 0·95 0·15 –0·80 1·11 0·21

Temperature –0·44 –0·59 –0·29 0·00 0·20 –0·04 0·07 0·99 –0·26 –0·90 0·39 0·61

Month

August, 2013 (ref) ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··

November, 2013 0·74 0·46 1·02 1·00 –0·57 –1·10 –0·04 0·02 –0·48 –2·12 1·15 0·29

February, 2014 1·01 0·74 1·28 1·00 0·49 0·20 0·77 1·00 0·70 –0·49 1·92 0·87

April, 2014 1·19 0·95 1·44 1·00 1·42 1·00 1·83 1·00 –0·50 –2·25 1·17 0·29

July, 2014 0·58 0·39 0·78 1·00 0·69 0·41 0·96 1·00 0·32 –0·97 1·61 0·68

Posterior probability (estimate >0) values near 1 indicate high probability of increased indoor biting. Values near 0 indicate high probability of decreased indoor biting, whereas values near 0·5 correspond to little 
or no effect. UI=uncertainty interval.

Table 4: Results of probit regression models assessing the effect of agriculture on indoor biting behavior in the DR Congo
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behaviour among both species also varied, peaking in 
April, 2014.

Considerable work will be needed to fully understand 
the relationship between agriculture and malaria risk in 
sub-Saharan Africa. Studies on human adults are limited, 
with one study in the DR Congo finding no effect 
between agriculture and malaria risk.33 Additionally, the 
relationship between agriculture, temperature, and 
precipitation needs additional examination. In this study, 
we treat them as confounders, but they might also 
mediate risk, and their roles are complex.32,38–44 That 
complexity, however, is not fully captured here. The 
irrigation scheme supplying water to agricultural land 
surrounding each survey cluster is a further unknown 
variable, and this is an important factor that deserves 
attention in future studies. How different crops affect 
malaria risk also deserves further consideration, although 
our modelling efforts indicated that the effect of any 
agriculture did not vary spatially, which in turn suggests 
that the crops present in the DR Congo increase risk. 
Finally, it is difficult to representatively sample the vector 
population over such a large land area, although our 
population was sampled in different ecological zones.

Work is also needed to understand the role of A paludis, 
which has received little attention in the malaria 
literature. Recent work to identify Africa’s predominant 
malaria vectors predicted that A gambiae sensu lato was 
the dominant vector in the DR Congo, consistent with 
our data.8 However, work from the 1990s suggested that 
A paludis might be an important vector in the DR Congo, 
and given its observed presence and the country’s high 
malaria burden, its role should not be discounted.45,46

In conclusion, this work provides the first evidence that 
increased exposure to agriculture increases malaria risk 
in children younger than 5 years across rural and 
ecologically diverse settings, and might be due to 
increased indoor biting rates among A gambiae sensu 
lato mosquitoes. This finding is an area of growing 
concern for public health as transmission declines,1 and 
as governments consider initiating large-scale 
agricultural projects to respond to population growth. 
Such projects should be accompanied by additional 
malaria control measures; for example, environmental 
management, which has proven effective in reducing 
transmission in many different contexts.7,10,47
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