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Abstract

Background. The novel coronavirus SARS-CoV-2 spread across the world causing many waves of COVID-19.
Children were at high risk of being exposed to the disease because they were not eligible for vaccination during the
first 20 mo of the pandemic in the United States. While children 5 y and older are now eligible to receive a COVID-
19 vaccine in the United States, vaccination rates remain low despite most schools returning to in-person instruction.
Nonpharmaceutical interventions (NPIs) are important for controlling the spread of COVID-19 in K-12 schools. US
school districts used varied and layered mitigation strategies during the pandemic. The goal of this article is to ana-
lyze the impact of different NPIs on COVID-19 transmission within K-12 schools. Methods. We developed a deter-
ministic stratified SEIR model that captures the role of social contacts between cohorts in disease transmission to
estimate COVID-19 incidence under different NPIs including masks, random screening, contact reduction, school
closures, and test-to-stay. We designed contact matrices to simulate the contact patterns between students and teach-
ers within schools. We estimated the proportion of susceptible infected associated with each intervention over 1
semester under the Omicron variant. Results. We find that masks and reducing contacts can greatly reduce new infec-
tions among students. Weekly screening tests also have a positive impact on disease mitigation. While self-
quarantining symptomatic infections and school closures are effective measures for decreasing semester-end infec-
tions, they increase absenteeism. Conclusion. The model provides a useful tool for evaluating the impact of a variety
of NPIs on disease transmission in K-12 schools. While the model is tested under Omicron variant parameters in US
K-12 schools, it can be adapted to study other populations under different disease settings.

Highlights

� A stratified SEIR model was developed that captures the role of social contacts in K-12 schools to estimate
COVID-19 transmission under different nonpharmaceutical interventions.

� While masks, random screening, contact reduction, school closures, and test-to-stay are all beneficial
interventions, masks and contact reduction resulted in the greatest reduction in new infections among
students from the tested scenarios.

� Layered interventions provide more benefits than implementing interventions independently.
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The novel coronavirus SARS-CoV-2, with its many highly
contagious variants, has spread across the world causing
waves of COVID-19 since early 2020. In the United States,
young children were not eligible to receive vaccines until
November 2, 2021.1 Childhood vaccination rates remain
low across the United States. As of September 2022,
according to the North Carolina State Profile Report,
26.3% of people aged 5 to 11 y were fully vaccinated, and
51.5% of people aged 12 to 17 y were fully vaccinated.2

While vaccination rates remain low, most schools in the
United States have returned to in-person instruction
and lifted mask requirements. Moreover, variants can
continue to emerge over time, and K-12 students may be
at higher risk of infection while in school or attending
extracurricular activities if there are insufficient prevention
strategies in place.

The return of K-12 students to school usually occurs
after holidays or vacations; thus, they are often returning
from activities such as summer camps or family trips, in
which they come in contact with individuals outside of
their usual community. As such, the start of school bring-
ing new mixing patterns among students often coincides
with surges also associated with increased travel or social
interactions. This occurred with the Delta variant in July
2021 (start of fall 2021 semester) and the Omicron variant
in January 2022 (start of spring 2022 semester), and it
could occur in future academic years. As students return
to school, nonpharmaceutical interventions (NPIs) can
play an important role in reducing transmission during

the school year. Many interventions have been implemen-
ted across schools since the beginning of the pandemic,
including mask requirements, in-school testing, school
closures, and recent test-to-stay practices.3 While most
evidence suggests that school-based interventions can
reduce transmission, it is difficult to quantify since rando-
mized control trials were not widely adopted. Thus, we
propose a mathematical model that can be used when
empirical data may be incomplete.

In this article, we model the spread of COVID-19 in
K-12 school settings using a compartmental SEIR model
that captures cohorts within schools. Compartmental
SIR/SEIR models are a widely used mathematical tool in
epidemiology that can be used to examine infectious dis-
ease spread and the impact of interventions. Several stud-
ies have implemented in-school testing and masks within
a single-grouped SIR model to capture the disease trans-
mission of COVID-19 within schools.4–6 Towers and
Feng7 built an age-stratified SIR model to examine the
control of influenza among the elderly and concluded
that direct contact with infected children caused more
than half of the infections among older adults. del Valle
et al.8 also used an age-stratified SIR model to analyze
and compare the effect of different mixing patterns on
smallpox-like disease prevalence. Several empirical stud-
ies of the COVID-19 pandemic stated that implementing
sufficient physical distancing, mask usage, and other
mitigation policies can help ensure schools reopen
safely.9,10 Nonetheless, to the best of our knowledge, we
are the first to design a multigrouped SEIR model to spe-
cifically simulate social dynamics and quantify COVID-
19 transmission within K-12 schools.

Our objective is to estimate the impact of different
and potentially layered NPIs, including masks, random
screening, contact reduction, school closures, and test-
to-stay on COVID-19 transmission within K-12 schools
using a mathematical SEIR model. This research was
conducted while the Omicron variant was dominant and
thus results were based on parameters associated with
this variant. However, the methods can be generalized
for other variants, and modeling these interventions is
important, as it allows us to plan for future outbreaks.
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Methods

To implement the interventions, we built a ‘‘classroom-
stratified’’ SEIR model to project infections over the
length of 1 semester (about 107 d). We extended the
homogeneous SIR model built by Yu et al.4 to a multi-
grouped SEIR model to take school social dynamics into
consideration. Moreover, 2 additional compartments:
‘‘exposed’’ and ‘‘presymptomatic infection’’ were added
to capture the distinct characteristic of COVID-19–
infected individuals being contagious before developing
symptoms.

Disease States

The SEIR model we developed has 13 compartments for
each cohort group. As shown in Figure 1, each rectangle
represents a mutually exclusive compartment of
individuals in different disease states. We discuss each
state below; state names are shown in quotations.
‘‘Susceptible’’ are the individuals who are at risk for
developing infections from COVID-19. ‘‘Exposed’’ are
the people who made contact with an infectious individ-
ual and will become infectious later. After being exposed,

they move to either the ‘‘presymptomatic infection’’ state
and develop symptoms later or to the ‘‘asymptomatic
infection’’ state, which represents individuals who have
no signs of illness but can still transmit to others. People
who show symptoms later stay in the ‘‘presymptomatic
infection’’ state for a mean of 2 d before moving to the
‘‘symptomatic infection’’ state. We include a ‘‘presympto-
matic infection’’ state as research shows that people
infected with COVID-19 can spread the disease 2 d
before they show any symptoms.11 The incubation
period, from virus exposure to showing symptoms, is
about 5 d for the Alpha variant, 4 d for the Delta var-
iant, and 3 d for the Omicron variant.12,13 Thus, we
assumed a latent period of 1 day after patients were
exposed to the virus and a presymptomatic period of 2 d
in which patients are contagious with the Omicron var-
iant. Moreover, we considered ‘‘symptomatic infection’’
and ‘‘asymptomatic infection’’ separately, as evidence
shows that the transmission rates differ between them:
the asymptomatic transmission rate is about 45% lower
than the symptomatic rate.14 Among all infections,
about 40% show no symptoms through their entire
infectious period.15

Figure 1 Diagram of the multigrouped SEIR model. The staged progression of a total number of m groups is shown in this
figure. Each arrow represents a movement between the 2 adjacent states. Susceptible individuals become infected at rate b. If
they are randomly selected for in-school weekly screening, they will progress to 1 of the 6 postscreening states; if not selected,
they are categorized as RU (‘‘recovered unknown’’) when they progress to recovery.
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Random screening in schools is embedded into the
model. Each of the infectious states is followed by 3 post-
testing states: ‘‘tested and isolation,’’ ‘‘tested and no iso-
lation,’’ and ‘‘tested and false negative.’’ Teachers and
students who tested positive will isolate themselves with
an isolation compliance rate of 90% if they are sympto-
matic and 70% if they are asymptomatic. Polymerase
chain reaction (PCR) tests and rapid tests are not 100%
accurate. We assumed a false-negative rate of 15% and
30% for the PCR test and rapid test, respectively.16

Two noncontagious recovery states were considered
in our model. Students and teachers who test positive,
whether or not isolated, will stay in the ‘‘recovered
known’’ state for approximately 8 d. While the latest gui-
dance from the Centers for Disease Control and
Prevention (CDC) ranges from 5 to 20 d, depending on
the level of illness or the patient’s preexisting health con-
ditions, we implemented an isolation period of 10 d,
which is the recommendation for people who have mod-
erate COVID-19 illness.17 We presumed the recovery/iso-
lation period of 8 d in the model to account for
weekends, as our model treats every day as a school day.
Those who were not picked to receive the random
screening tests or received false-negative testing results
are moved to the ‘‘recovered unknown’’ state, as their
infections are unknown outside of the model. Students
and teachers will go back to school when the isolation
period ends.

Accounting for Classrooms and Subgroups

Single-class SEIR models assume uniform mixing among
individuals in the population. We split the population
into smaller cohorts to capture the potential impacts of

realistic contact patterns. Specifically, we took the K-12
school structure into consideration. North Carolina gen-
eral statutes about elementary and secondary education
state that the student-to-teacher ratio shall not exceed
18, 16, 17, and 17 for kindergarten, first grade, second
grade, and third grade, respectively.18 Thus, for elemen-
tary schools (K-5), we modeled 19 groups, representing
grades from kindergarten to grade 5 with 3 classes per
grade and an additional group representing teachers
(6 3 3 + 1 = 19). We assumed that the size of an ele-
mentary school is about 500, resulting in 26 students per
class and a total of 32 teachers (primary teachers, teach-
er’s aides, counselors, coaches, etc.). For middle school
and high school, we split the population into smaller
class groups as well. In addition, mixing patterns are
described below and differ by educational stage (K-5,
middle, and high school)—capturing realistic nuances.
For example, high school students are rarely kept in class
cohorts throughout the day/week but instead mix more
fully across different classes throughout the day/across
days.

We parameterized 3 distinct types of contact matrices
to simulate the interactions in school. Each row of the
contact matrices sums to 1. Figure 2 shows how the con-
tacts are distributed across different groups in the K-5
structure. ‘‘Well-mixed’’ means every individual is equally
likely to make contact with another individual, regardless
of his or her group. ‘‘Cohort’’ creates a large number of
contacts within classes, fewer contacts within grades,
with teachers coming into contact with all 18 classes
evenly. ‘‘Isolated’’ is an extreme case in which individuals
make contact only with individuals from their own
group. We assumed elementary students and teachers
make contacts following the ‘‘cohort’’ pattern, whereas

Figure 2 Distribution of contacts under different contact pattern assumptions (K-5 structure).

4 MDM Policy & Practice 7(2)



high school students and teachers are well-mixed as they
take courses with different groups of students and teach-
ers every day. Social behaviors of middle school students
are somewhere between elementary school and high
school, as they take courses with different people and
have home rooms at the same time.

Because vaccines are not 100% effective and because of
potential immunity loss or immune escape from the
Omicron variant,19 we make conservative assumptions
about the level of incoming protection (immunity) against
COVID-19. Note that this incoming immunity accounts
for protection from either vaccination or previous infec-
tion. Based on vaccination rates in North Carolina and
COVID-19 cases as of December 3, 2021, the level of
incoming protection was roughly assumed to be 30% for
K-5 students, 50% for high school students, and 60% for
teachers by early December 2021.2,20,21 For the Omicron
variant, which became dominant in the United States by
late December 2021, the level of incoming protection
reduces to accommodate observed breakthrough infection.
Table 1 demonstrates the levels of incoming protection we
examined for the Omicron variant.

Model Equations and Basic Reproduction
Number

R0 is the basic reproduction number defined as ‘‘the
expected number of secondary infections produced by a
typical infected individual in a completely susceptible
population.’’23 With a specific model setup, this value
can be calculated as the largest eigenvalue of the next-
generation matrix of the model.7,8,24 Let Mij be the
contact matrix of our school population, representing
the average number of contacts per day an individual in
group i makes with an individual in group j. Let b equal
the transmission rate of symptomatic infections, h is the
discount rate for asymptomatic transmission, 1=d is
the presymptomatic period, 1=s is the latent period, a is
the proportion of asymptomatic among all the infections,
and g is the recovery rate. Each ordinary differential
equation below represents transitions between disease
states (Box 1).

We partitioned Eqs. (2) to (11) and calculated the par-
tial derivatives to obtain 2 matrices named F and V ,
where F represents the matrix of the partial derivatives

Table 1 Assumed Incoming Protection Level of Students and Teachers for the Omicron Varianta

Omicron

Scenario I: Lower (50%) Immune
Escape, Higher Transmissibility

Scenario II: Higher (80%) Immune
Escape, Lower Transmissibility

K-5 students 0.15 0.06
High school students 0.25 0.1
Teachers 0.3 0.12

aEach of the rows presents a specific group of people in school. The columns present the scenarios defined by Centers for Disease Prevention’s

scenario hub (round 11).22 For example, for K-5 students, the incoming protection level is 15% under scenario I and 6% under scenario II.

Box 1

Disease State Equations and Number

Susceptible dSi

dt
¼ �bSi tð Þ

Xn

j¼1

Mijh � Ia
j tð Þ+TFNa

j tð Þ+UTISOa
j tð Þ

h i
=Nj

+ I
ps
j tð Þ+ I s

j tð Þ+TFNs
j tð Þ+UTISOs

j tð Þ
h i

=Nj

(1)

Exposed dEi

dt
¼ bSi tð Þ

Xn

j¼1

Mijh � Ia
j tð Þ+TFNa

j tð Þ+UTISOa
j tð Þ

h i
=Nj

+ I
ps
j tð Þ+ I s

j tð Þ+TFNs
j tð Þ+UTISOs

j tð Þ
h i

=Nj � sEi tð Þ
(2)

Infected dIa
i

dt
¼ asEi tð Þ � Tpcra +gð ÞIa

i tð Þ (3)

(continued)

Zhang et al. 5



of all the flow-in transitions and V represents the matrix
of the partial derivatives of all the flow-out transitions:

F ¼

0 hbMijS
0
i =Nj bMijS

0
i =Nj bMijS

0
i =Nj hbMijS

0
i =Nj bMijS

0
i =Nj 0 0 hbMijS

0
i =Nj bMijS

0
i =Nj

0 . . . 0

..

. . .
. ..

.

0 . . . 0

0
BBBB@

1
CCCCA
;

V ¼

s 0 0 0 0 0 0 0 0 0

�as Tpcra+g 0 0 0 0 0 0 0 0

� 1�að Þs 0 d 0 0 0 0 0 0 0

0 0 �d Tpcrs+m+g+Qs 0 0 0 0 0 0

0 �Tpcra �FNpcra 0 0 g 0 0 0 0 0

0 0 0 �Tpcrs �FNpcrs 0 g+m 0 0 0 0

0 �Tpcra 1�FNpcrað ÞCa 0 0 0 0 g 0 0 0

0 0 0 �Tpcrs 1�FNpcrsð ÞCs�Qs 0 0 0 g+m 0 0

0 �Tpcra 1�FNpcrað Þ 1�Cað Þ 0 0 0 0 0 0 g 0

0 0 0 �Tpcrs 1�FNpcrsð Þ 1�Csð Þ 0 0 0 0 0 g+m

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Then, we obtained the closed-form solution of R0 as

R0 ¼ l1
# F � V�1
� �

¼ l1
# MijS

0
i =Nj

� �
� b

1� a+ahð Þ=g + 1� að Þ=d½ �:

The detailed derivation is provided in the supplementary
material.

Our model returns a basic reproduction number (R0)
of 6.44, representing the context of infectivity under the
scenario I Omicron variant. This value is lower than

CDC estimates as a reflection that not all students’ infec-
tions occur within school.

Simulation of Interventions

We assumed that there are no infections within the
school at the beginning of the semester. This is a conser-
vative estimate. All students and teachers are either sus-
ceptible to COVID-19 or recovered from it, due to
previous infections or vaccinations. The disease-free
equilibrium (DFE) is

Box 1 (continued)

Disease State Equations and Number

dI
ps

i

dt
¼ 1� að ÞsEi tð Þ � dI

ps
i tð Þ (4)

dIs
i

dt
¼ dI

ps
i tð Þ � Tpcrs +m+g +Qsð ÞI s

i tð Þ (5)
Posttesting dTFNa

i

dt
¼ Tpcra � FNpcra � Ia

i tð Þ � gTFNa
i tð Þ (6)

dTFNs
i

dt
¼ Tpcrs � FNpcrs � I s

i tð Þ � g +mð ÞTFNs
i tð Þ (7)

dTISOa
i

dt
¼ Tpcra 1� FNpcrað ÞCaIa

i tð Þ � gTISOa
i tð Þ (8)

dTISOs
i

dt
¼ Tpcrs 1� FNpcrsð ÞCs +Qsð ÞI s

i tð Þ � g +mð Þ � TISOs
i tð Þ (9)

dUTISOa
i

dt
¼ Tpcra 1� FNpcrað Þ 1� Cað ÞIa

i tð Þ � g � UTISOa
i tð Þ (10)

dUTISOs
i

dt
¼ Tpcrs 1� FNpcrsð Þ 1� Csð ÞI s

i tð Þ � g +mð Þ � UTISOs
i tð Þ (11)

Recovery dRK
dt
¼ g TISOa

i tð Þ+UTISOa
i tð Þ+TISOs

i tð Þ+UTISOs
i tð Þ

� �
(12)

dRU
dt
¼ g Ia

i tð Þ+TFNa
i tð Þ+ I s

i tð Þ+TFNs
i tð Þ

� �
(13)

Death dD
dt
¼ m Is

i tð Þ+ TFNs
i tð Þ+TISOs

i tð Þ+UTISOs
i tð Þ

� �
(14)
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x0¼ S1;...;Sm;Ia1;...;Iam;...;RK1;...;RKm;RU1;...;RUm;D1;...;Dmð Þ
¼ S1;...;Sm;0;...;0;...;0;...;0;RU1;...;RUm;0;...;0ð Þ

Viruses eventually make their way into the school envi-
ronment due to infections happening in the community
and through out-of-school activities. We expanded the
‘‘exposed’’ population by 1 each week to capture the
community impact on schools (i.e., that some children
become infected through community connections—in the
home, friend groups, community mixing). To account for
the variability by which this infection enters the school,
we simulated multiple runs by randomly assigning the
infection to one of the cohorts. Thus, all results reported
are based on average outcomes across replications. We
defined masks and random screening as the baseline
interventions and defined contact reduction, school clo-
sures, and test-to-stay as layered strategies. Below we
explain how each baseline intervention and layered strat-
egy is implemented within the model.

Masks. Masks have been shown to be effective in reduc-
ing the spread of COVID-19,25 and many school systems
required the use of face coverings as infections increased
within the community.26 When masks were in place
within schools, we assumed it was required for all indi-
viduals to wear a face covering. While estimates of the
effectiveness of masks in reducing infection range from
15% to 75%,25,27–29 in the model, we assumed mask
usage reduces infectivity by 50%. This accounts for the
fact that the types of face coverings worn could vary
widely (e.g., from bandanas to N95), face coverings may
not always be worn properly (i.e., covering both nose
and mouth), and students are allowed to remove face
coverings during lunch and certain activities. During
Omicron, many schools tightened masking policies, for
example distributing and promoting more effective
masks and making it easier for students to eat outside.30

Random screening. The National Education Association
states that screening by testing a random sample of at
least 10% of students each week is a critical way to limit
the spread of COVID-19 and keep schools operating
safely.31 When random screening was in place in the
model, we assumed that all the individuals in school,
whatever their disease status, were equally likely to be
picked to get tested using PCR tests. The individuals
who were symptomatically or asymptomatically infected
advanced to 1 of the 3 posttesting states according to the
testing results and their behaviors regarding isolation.

Contact reduction. When daily cases surged during the
pandemic, schools put many safety measures into effect
such as practicing social distancing, splitting up lunch
periods/eating locations, changing locker assignments,
creating 1-way traffic in hallways, and reducing the num-
ber of students in classrooms and in school buses.32

These measures were all aimed at reducing contacts in
school. We incorporated this strategy in the model by
multiplying the baseline contact matrix by a factor less
than 1. Thus, the new contact matrix was scaled while
maintaining the same distribution as before. In other
words, if a student on average made 20 contacts with
others in school every day before the contact reduction,
reducing contacts by 30% means he or she makes 14
contacts with others instead.

School closures. School closures have been used as a
mitigation strategy against COVID-19 when cases in
schools were high.33,34 In our simulation model, the
threshold of shutting down the school was determined
by monitoring the number of symptomatic individuals
each day. School closure was triggered whenever the
number of daily symptomatic infections reached a cer-
tain level. We assumed that a school closure had a dura-
tion of 10 d (2 wk of school) each time it was triggered.
Here, school closure refers to in-person school. Some
schools may have stopped instruction, while others tran-
sitioned to virtual learning.

Test-to-stay. ‘‘Test-to-stay’’ is a practice recommended
by the CDC; it is considered as a layered prevention
strategy in addition to promoting child vaccination and
social distancing.35 Under this strategy, the disease was
closely monitored daily. If 1 student showed symptoms,
rapid tests were performed for all students in that class.
Students who received a positive test result would stay
home for isolation until fully recovered. We assumed
rapid tests are used when test-to-stay is implemented
because despite having a high false-negative rate, rapid
tests have a low false-positive rate.36 We also restricted
rapid tests such that they cannot be given to the same
class on 2 consecutive days.

Lastly, most schools have guidance in place regarding
self-quarantine based on symptoms, but this may not be
fully enforced. When students or teachers start to show
symptoms, such as coughing or sneezing, some will
decide to stay home to rest until recovery and some will
not (this may be due to the belief that symptoms are due
to another illness or because parents cannot afford to
take time off work37). Thus, we considered an additional

Zhang et al. 7



parameter called ‘‘self-quarantine rate.’’ This represents
the proportion of people with symptomatic infections
who choose to quarantine at home after they start to
show symptoms. Four levels of self-quarantine rate are
considered in the study.

The model we built generalizes across K-12. In this
article, we focused on the K-5 model results for all inter-
ventions under scenario I (defined in Table 1) in the
‘‘Results’’ section. We also provide results for high school
(9–12) for the contact reduction strategy. Analyses of K-
5 under scenario II, as well as a complete list of para-
meters, are presented in supplementary material.

Results

We used a package called ‘‘deSolve’’38 to solve the multi-
grouped differential equations in R to examine the
impact of COVID-19 in schools under various interven-
tions and strategies. Results for scenario I for K-5
schools are discussed in detail in this section, where the
Omicron variant is assumed to have higher transmissibil-
ity and lower immune escape. We also discuss results for
high school under the contact reduction strategy.

Contact Reduction

First, we considered the impact of contact reduction.
The proportion of susceptible individuals infected with
COVID-19 under different levels of contact reduction
and different levels of self-quarantine is shown in Figure
3. We projected the baseline interventions of masks and
random screening in each of the subgraphs. The columns
represent the different levels of reduction in contacts,
and the rows represent different levels of self-quarantine.
Without weekly random screening, masks, or any reduc-
tion in social contacts, more than 90% of the susceptible
population in the school becomes infected within 3 mo.
Under the lowest level of self-quarantine, with a 50%
reduction in contact, we can achieve a 31 percentage
point reduction in the proportion of susceptible individu-
als infected without masks and an 83 percentage point
reduction with masks. The contact reduction levels
examined have a bigger impact on infection reduction
than the levels of self-quarantine examined. For instance,
without any baseline interventions, 30% reduction in
contacts results in a reduction of 9.8 percentage points in
proportion of susceptible individuals infected with
COVID-19, whereas increasing self-quarantine level

Figure 3 Proportion of susceptible individuals infected with COVID-19 under different levels of contact reduction and self-
quarantine. The results are calculated by taking the average of 10 replications.
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from 25% to 80% reduces the proportion of susceptible
individuals infected by 5.3 percentage points.

Also, under 30% contact reduction, ‘‘Universal masks:
No screening’’ reduces the end-of-semester infection by
68% compared with ‘‘No masks: No screening’’ with a
self-quarantine level of 25% and by 78% with a self-
quarantine level of 50%. These results are consistent with
the analysis of Boutzoukas et al.,29 who found that
schools that implemented a universal masking policy
(some of these schools also changed the lunch policy to
reduce social contacts during lunch time) reduced
secondary transmission by 72% compared with those
implementing an optional masking policy.

Next, we fixed the assumption of 10% random screen-
ing and took a closer look at the end-of-semester infec-
tions and days of school missed for the entire school
population under the varied levels of contact reduction

and self-quarantine. Days of school missed represents
the number of days students are not physically in school
due to quarantine or isolation. We also compared the
impact of social mixing patterns by assuming the K-5
students and teachers make contacts under the 3 differ-
ent mixing patterns considered: well-mixed, cohort, and
isolated. More segregated contact patterns result in fewer
infections and fewer days of school-missed (shown in
Figure 4). Under a well-mixed contact pattern, when the
self-quarantine level rises from 25% to 50%, days of
school missed declines from 853.4 to 753.2 d under a
50% contact reduction assumption, and end-of-semester
infections reduce from 274.9 to 211.7 infections. If the
level of self-quarantine rises to 80%, both days of school
missed and end-of-semester infections decrease even
more. However, under 0% contact reduction, when the
self-quarantine level increases, we see end-of-semester

Figure 4 Three-dimensional comparison of self-quarantine, level of contact reduction, and different mixing patterns in school on
the outcomes of end-of-semester infections and days of school missed under the assumption of no masks and 10% polymerase
chain reaction tests. The results are generated by taking the average of 10 replications.
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infections decrease while days of school missed increase.
This reveals a tradeoff associated with layered strategies;
when the disease transmits very quickly, it is possible
that self-quarantining can help reduce infection at the
cost of higher overall absenteeism.

Reducing social mixing in school is an effective mea-
sure to reduce absence from school and reduce total
infections throughout the semester. The reduction is
small when comparing cohort mixing with well-mixed, as
all the teachers are fully mixed in one group and they
make contact with all student groups. When R0 is high,
the disease can quickly be transmitted from students to
teachers and from teachers to more students. Although
isolated mixing is an extreme case in which individuals
make contact only with individuals from their own
group, it provides a lower bound on what can be
achieved by isolating classrooms from each other.

School Closures

We investigated the number of infections using a
school closure strategy. Our results assumed that
whenever the number of daily symptomatic infections

reaches 15, the school is shut down. We chose 15 infec-
tions as it represents 3% of the population being
infected in 1 d, which we believe is reasonable to signal
an outbreak in the school that could trigger a shut-
down. We compared the number of days school closed,
with or without other mitigation measures. The results
are shown in Figure 5.

The total number of days school closed declines as the
level of self-quarantine increases. Overall, with baseline
intervention of masks in place, the school is more likely
to operate safely. There is no outbreak in school trigger-
ing a shutdown when masks are in place and the self-
quarantine level is at least 80%. On the other hand, with-
out baseline interventions of masks or random screening,
outbreaks will trigger shutdowns, which result in the
school being closed for more than one-third of the
semester.

Test-to-Stay

Results of simulating the test-to-stay strategy are shown
in Figure 6. Without random screening or masks, the
test-to-stay strategy reduced the proportion infected

Figure 5 Proportion of susceptible individuals infected with COVID-19 and daily symptomatic infections in school under the
school closures strategy. The number of days school closed is calculated by taking the average of 100 repeated experiments, while
graphs of the proportion of susceptible infected with COVID-19 and daily symptomatic infection represent 1 simulation result.
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individuals by approximately 19 percentage points; yet
more than 5000 rapid tests were given during the seme-
ster under all 3 self-quarantine levels. Masks layered with
test-to-stay not only significantly reduces the cumulative
infections but also reduces the number of rapid tests
needed in school. We found that by implementing the
baseline intervention of masks with the test-to-stay strat-
egy, the number of rapid tests needed was reduced by
more than 4000.

When comparing across different strategies, we see
from Figure 6 that without random screening or masks,
it took about 6100 rapid tests for the end-of-semester
proportion of susceptible infected to decrease by 18 per-
centage points. The same level of reduction in infection
can be achieved without rapid tests by reducing contacts
by between 30% and 50%.

Contact Reduction in High Schools

We also tested the impact of the contact reduction strat-
egy in a high school environment, where we split stu-
dents and teachers into smaller groups but assumed their
contact patterns were well-mixed. In this case, the

number of student groups was doubled, as we assumed a
high school population of 1000. In addition, the incom-
ing protection of high school students is higher (25%
compared with 15% for K-5 under scenario I). Figure 7
shows the proportion of susceptible infected individuals
over time under different levels of self-quarantine and
contact reduction. Under the same levels of contact
reduction and self-quarantine as K-5 (Figure 3), by the
end of the semester, there was a lower proportion of sus-
ceptible infected individuals in high school than in K-5.
For example, under no contact reduction, 25% self-quar-
antine, and the baseline intervention of masks, K-5 has
67.1% of susceptible individuals infected by the end of
the semester, whereas high school had 51.9%. This dif-
ference is increased at higher contact reduction and self-
quarantine levels, and as more baseline interventions are
layered on. These results suggest that even with a more
mixed contact pattern, the number of infections within a
school can be lowered if the incoming protection level is
higher. This highlights the importance of increasing
vaccine uptake. We also note that the benefit of contact
reduction is greater in the high school well-mixed
environment than in the K-5 setting. For example, the

Figure 6 Proportion of susceptible infected under no strategy and test-to-stay strategy. Each dot represents a day when at least 1
group of students or teachers receive rapid tests. Subgraphs of baseline cumulative infection and contact tracing cumulative
infection are generated from a single simulation. The number of rapid tests is calculated by averaging more than 100 replications.
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proportion of susceptible infected individuals by the end
of the semester in high school without baseline interven-
tions and 25% self-quarantine decreases from 94.3% to
52.0% as contact reduction goes from 0% to 50%, while
in K-5 (Figure 3), the decrease is from 97.6% to 67.1%.

Sensitivity Analysis: Uncertainty of Mask
Efficacy and Susceptibility

We assumed the efficacy of masks in reducing infections
was 50% throughout the simulations of different inter-
ventions. Note that we define efficacy as a combination
of adherence and the ability of masks to effectively
reduce virus transmission. Due to the uncertainty of
mask efficacy, we conducted a sensitivity analysis by
considering only the intervention of masks and changing
the efficacy levels under the assumptions of scenario I
and a 25% level of self-quarantine. The possible efficacy
levels we considered range from 0% to 75%.

In addition, the true level of susceptibility of students
in school can be difficult to estimate due to waning
immunity after prior infection or vaccination. Thus, in
addition to the 15% (30% incoming protection with
50% immune escape under scenario I) incoming protec-
tion level we implemented in the primary analysis, we

also replicated the sensitivity analysis by considering
additional incoming protection levels of 20% and 25%
for K-5 students.

Figure 8 shows the results of varying mask efficacy
levels (lines within the graphs) under different levels of
incoming protection (shown in the different panels). By
comparing the simulated results under different levels of
mask efficacy and incoming protection, we see that
higher levels of mask efficacy and incoming protection
result in a lower proportion of susceptible individuals
infected by the end of the semester. Furthermore, higher
levels of mask efficacy are even more effective at reducing
the infections with higher levels of incoming protection.

Discussion

Many studies have used compartmental models to proj-
ect COVID-19 transmission. However, few focused on
K-12 schools and demonstrated the impact of implement-
ing mitigation measures. To our knowledge, this is the
first study to model and quantitatively assess the impact
of layered interventions that were adopted across K-12
schools in the United States.

Our model is built to simulate COVID-19 transmis-
sion within K-12 schools at the beginning of the Omicron

Figure 7 Proportion of susceptible individuals infected with COVID-19 under different levels of contact reduction and self-
quarantine for high school.
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variant wave (or for a similar future scenario). Without
any interventions in school, we project that most K-12
students will be infected by the end of the semester. We
analyzed many of the widely used interventions and stra-
tegies: masks, random screening, contact reduction,
school closures, and test-to-stay. We found that all are
effective at reducing infections in school but at different
levels. Combinations of the baseline interventions and
strategies are even more effective. For example, if we
were to implement masks, random screening, 50% con-
tact reduction, and 80% self-quarantine together, only
7.7% of susceptible individuals would be infected by the
end of the semester. Furthermore, increased levels of
incoming protection, which can be achieved through
increased vaccine uptake, further increase the benefit of
NPIs with respect to relative reduction in infections. The
choice of NPI or a combination of NPIs chosen can be
based on priorities, feasibility, and cost.

Outbreaks in school not only raise concerns about
increasing school absences but also exacerbate infections
in communities as students are in contact with their par-
ents and grandparents when schools are not in session.

Results show that, while waiting for the childhood vacci-
nation rate to increase, layered NPIs can reduce as many
as 92% of school infections, which can also be beneficial
to the students’ households and communities.39

There is heated discussion over school closures among
the public.40 Our results show that school closures do
have a positive impact on reducing the total number of
infections in school, yet they can have other effects. For
example, we observe in our model that in-school infec-
tions surge immediately every time schools reopen.
School closures can be problematic as they can poten-
tially increase the disease burden in the community if
social mixing among students still occurs in a less moni-
tored environment when schools are shut down.41 Equity
is another big concern when schools are not able to oper-
ate safely. Here we do not distinguish between closures
that result in paused instruction versus a transition to
virtual learning. Learning loss may occur without online
learning or for families who are not able to accommo-
date online learning. Thus, our analysis of school clo-
sures can help inform guidance for keeping schools
operating safely.

Figure 8 Proportion of susceptible individuals infected with COVID-19 under 6 different levels of mask efficacy and 3 K-5
incoming protection levels (15%, 20% and 25%).
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COVID-19 transmission is highly dependent on social
mixing among the population. One of the strengths of
the study is that the model can capture the impact of dif-
ferent contact patterns. Our model splits the target popu-
lation into smaller cohort groups and considers the
effects of the interactions among different subgroups and
the different disease behaviors within each subgroup.
Second, testing results and people’s behavior are not
assumed to be perfect. The model makes concessions for
receiving false-negative testing results as well as account-
ing for some refusal to isolate or quarantine when an
individual is positively infected.

The model can be generalized in several ways. For
example, future variants of SARS-CoV-2 could develop
additional abilities to escape previous immunity, in which
case the model and results could apply quite directly.
Second, the model could apply to other respiratory dis-
eases, especially those for which screening or testing can
affect transmission. Also, by setting the testing rate to
zero, the model is simplified to a concise model that still
demonstrates the general flow of disease progression.

We recognize some limitations in our model. Even
though we split the population into smaller groups, it is
still assumed to be well-mixed within each group; this is
a general limitation for all SIR models. Nonetheless, the
simulation results are sufficient to evaluate the policies
implemented in schools. Second, we do not consider false
positives or the potential absences associated with them.
Third, while we account for some of the countereffects
of layered strategies, future work can be done around
comparing and analyzing the cost-effectiveness of each
of these strategies as well as simulation optimization to
find the best combination of NPIs.

Conclusion

The model assesses different nonpharmaceutical inter-
ventions applied to K-12 schools during the pandemic
and estimates their impact on COVID-19 under varying
assumptions. The results are presented using parameter
estimates associated with the Omicron variant, but the
model is general and can be applied to different
parameters. In addition, although we specify our tar-
geted population group as K-12 schools, the conceptual
model can be easily extended to implement other popula-
tion groups (e.g., nursing homes or prisons) if we have a
good quantitative understanding of their social contact
patterns.
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