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ABSTRACT 

 

Kelly Marie Houck: Early Life Effects of a Dual Burden Environment: Childhood Intestinal 

Health and Immune Function in Galápagos, Ecuador  

(Under the direction of Amanda Thompson and Mark Sorensen) 

 

Early life pathogenic and nutritional environments impact health over the life course by 

training the immune system to adapt to local microbial conditions and developing metabolic 

trajectories based on resource availability. Exposure to environmental microbes during 

childhood, common throughout evolutionary history, can provide immunoregulatory properties 

that strengthen the immune system’s ability to resolve inflammation. In populations with 

childhood undernutrition, pathogenic exposures due to unsanitary living conditions can cause 

chronic intestinal inflammation. This condition, known as environmental enteric dysfunction, 

allows for microbes to enter the blood causing endotoxemia and systemic infection. Chronic 

immunostimulation during childhood is energetically demanding and often results in growth 

deficits.  

This dissertation uses the emerging field of the gut microbiome as pathway to investigate 

the early life effects of overnutrition and poor water quality on childhood intestinal health and 

immune function in Galápagos, Ecuador. Residents of San Cristóbal are unfortunately 

experiencing a dual burden of both increasing rates of obesity, coupled with persistent rates of 

infectious disease. Data was collected from 169 children aged two to ten and their 119 mothers. 

Interviews obtained information concerning household water use and sanitation practices, and 

children’s hygiene behaviors, illness histories and diets. Household water samples were collected 

to quantify fecal pathogens. Anthropometric assessments provided indicators of nutritional 
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status. Blood spots were measured for immune biomarkers and fecal samples were collected to 

examine gut microbial compositions.  

Novel hypotheses are tested for the dual burden environment that examine the 

relationship between pathogenic and obesogenic factors on inflammation, endotoxemia and gut 

microbial composition, and provide insight into the early life health impacts of the dual burden 

environment on childhood intestinal health and immune function. The significant of this research 

is that even in the context of a pro-inflammatory state, driven by overweight and obesity, early 

life exposure to Escherichia coli contaminated water, which does not result in diarrhea, can 

provide an immunoregulatory effect among children in Galápagos. Identifying gut microbial 

symbiosis as a possible mechanism underlying this protective effect is an original contribution to 

the evolutionary “old friends” hypothesis and is of particular importance to public health 

research on environmental enteric dysfunction.  
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To Mom, Dad, Héctor and Luka.  

I hope to make you proud. 
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CHAPTER 1. INTRODUCTION 

Exponential growth of the tourism industry over the past several decades has ignited 

economic and urban development and mass migration to the three major populated islands of the 

Galápagos Archipelago (Epler 2007; Taylor et al. 2009), causing rapid changes to human health 

and the environment (Walsh et al. 2010). While the islands are famous for research on the 

biodiversity of natural systems and the social impacts of human-environment interactions 

(Santander et al. 2008), much less is known about how these changes are influencing human 

health and nutrition of residents. Emerging population health research in the Galápagos identifies 

the lack of clean water, poor sanitation and limited access to medical services as major health 

concerns (Page et al. 2013; Walsh et al. 2010). A 2013 water quality study on the island of San 

Cristóbal reported high levels of Escherichia coli in the municipal water network, with 72% of 

point-of-use samples at high health risk and additional 18% at very high risk (Gerhard et al. 

2016). Common illnesses are typical of populations with poor environmental quality, such as 

gastrointestinal, respiratory, urinary and skin infections (CGREG 2010a; Walsh et al. 2010); yet 

there are also concern for growing rates of obesity and diabetes (Page et al. 2013; Tufton and 

Chowdhury 2015). The lack of access to fresh produce and the reliance on processed foods 

shipped from the mainland further limit dietary diversity and nutritional quality. A recent study 

on the island of Isabella reflects a pattern seen elsewhere in Ecuador (Freire et al. 2014b; Houck 

et al. 2013), where overweight mothers are found in the same households as both underweight 

and overweight children (Waldrop et al. 2016). This suggests that Galápagos and Ecuador, like 

many developing countries are now undergoing nutrition transitions with a shift to calorically-
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dense diets, high in sugars and fats and low in fiber (Popkin et al. 2012). Ecuador’s 2012 

National Health and Nutrition Survey reported that Galápagos children have the highest rates of 

overweight and obesity in the entire country (Freire et al. 2014a). A better understanding of the 

health impact of living in a dual burden environment, where higher infectious disease burdens 

are coupled with increasing rates of obesity and cardio-metabolic disorders, is crucial to improve 

the lives of children from Galápagos, Ecuador.   

Adverse environmental conditions and events early in life have consequences for adult 

health (e.g. Barker 1994). The developmental origins of health and disease (DOHaD) framework 

investigates the health impact of a mismatch between changing nutritional and disease 

environments from early to later life (Adair and Prentice 2004; Gluckman and Hanson 2006). 

Much attention is focused on the link between prenatal undernutrition and postnatal overnutrition 

with later risk of cardio-metabolic disease (Adair and Cole 2003; Gluckman et al. 2007). Studies 

on the development of the immune system suggest that inflammation is a key mechanism linking 

childhood health and growth with adult risk of cardio-metabolic disease (Danesh et al. 2004; 

Tzoulaki et al. 2008). Infants are born immunologically naïve, and evolutionary theory suggests 

that early life disease exposure influences the development of immune function and 

inflammatory trajectories throughout the life course. The “old friends” mechanism suggests that 

modern lifestyles and improved living conditions in high income countries limit exposure to 

immunoregulatory pathogens common throughout human evolution, causing 

immunodysregulation and higher rates of asthma, allergies and other autoimmune disorders 

(Rook et al. 2017). Conversely, exposure to these pathogens will provide immunoregulatory 

benefits and strengthen anti-inflammatory networks (Yazdanbakhsh et al. 2002). Only a few 

studies have investigated the impacts of early environments on inflammation and immune health 
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in children from non-Western populations with low resources (Blackwell et al. 2010; McDade et 

al. 2005; McDade 2005; Nazmi et al. 2009) and little is known about the early life consequences 

of a dual burden environments on immune regulation. 

The energetic costs of maintaining robust immune function during childhood in 

environments with heavy pathogen burdens comes at the expense of linear growth restrictions, 

often resulting in stunting (McDade et al. 2008; Stephensen 1999). Evolutionary life history 

theory provides a framework to study human variation in terms of energetic investments in life 

history strategies or events throughout the life course, such as birth, growth, maturation, and 

pregnancy, which have been shaped by natural selection (Hill 1993). Studies modeling energetic 

life history tradeoffs between immunocompetence (normal immune response to pathogens) and 

growth during childhood have traditionally focused on populations with scarce food resources. In 

malnourished environments, chronic intestinal inflammation and systemic immune activation 

caused by repeated pathogen exposure due to poor sanitation contributes childhood stunting 

(Campbell et al. 2003a; Humphrey 2009; Prendergast et al. 2014). This is known as 

environmental enteric dysfunction (environmental enteropathy), a subclinical condition 

characterized by local inflammation and poor intestinal barrier function allowing for the 

translocation of microbes into the blood stream resulting in endotoxemia (Syed et al. 2016). This 

chronic state of immune dysfunction can divert energetic resources from normal growth and 

development during childhood in populations experiencing undernutrition. However, in countries 

already plagued by overnutrition, excess adiposity also induces an inflammatory response 

(Hotamisligil 2006) and some have argued that dietary-induced gut inflammation creates a 

feedback loop resulting in obesity (Cani et al. 2007; Ding and Lund 2011; Zhang et al. 2008). 

Under the traditional life history framework described above, we expect to find little evidence of 
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growth restrictions in high food resource environments during childhood because the amount of 

energetic resources available would cover the cost of pathogenic immunocompetence (McDade 

2003). In dual burden environment, concurrent pathogenic and obesogenic exposures may 

further contribute to gut immunodysregulation, creating a new synergism between overnutrition 

and infection contributing to environmental enteric dysfunction.  

The emerging field of gut immunology has the potential to contribute to evolutionary 

theory and broader health concerns by providing a new pathway, the gut microbiome, to examine 

the effects of the pathogenic, nutritional and social environments on human physiology and 

consequently variation in human growth and development. Over the course of human evolution, 

gut microbiota have developed a symbiotic relationship with their host, and their bacterial 

metabolites play a vital role in regulating metabolic and immune function (O'Hara and Shanahan 

2006). Pathogens and dietary patterns can influence the composition of microbiota and 

consequently alter the production of metabolites causing gut immunodysregulation (De Filippo 

et al. 2010; Kau et al. 2011). Although changes to the gut microbiome caused by habitual 

ingestion of fecal pathogens in contaminated water and food have been hypothesized to underlie 

the etiology of environmental enteric dysfunction (Brown et al. 2015; Kau et al. 2011), its role 

remains untested in human populations.  

This project modifies versions of life history theory and the DOHaD framework to fit the 

dual burden environment, accounting for the traditional pathogen-induced immunocompetence 

and incorporating obesity-induced immunostimulation (Figure 1.1). These evolutionary 

anthropological frameworks are used as the foundation for this dissertation examining the effects 

of early life environments on childhood gut and immune health in Galápagos, Ecuador. New 

predictions are tested about immunoregulation in the dual burden environment through the 
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innovative use of gut microbial analysis, as an indicator of intestinal health, in relation to 

systemic inflammation and endotoxemia associated with environmental enteric disorder.  

1.1. Paper 1- Measuring Chronic Low-Grade Inflammation 

The objective of Paper 1 is methodological in disentangling the use of C-reactive protein 

(CRP) as a marker of inflammation in mothers and children living in a dual burden environment. 

CRP is both reactive to infection causing acute, high elevations and obesity, resulting in chronic, 

low-grade elevations. Elevated ranges commonly used to indicate chronic, low-grade 

inflammation as cardiovascular disease risk in populations with low infectious disease burdens, 

may be problematic due to infection-induced elevations in high pathogenic environments. 

Several methods are tested for measuring low-grade, chronic inflammation using cross-sectional 

and longitudinal data, to determine which is the most discriminating in predicting obesity using 

specificity and sensitivity analyses. The findings provide methods for estimating chronic, low 

grade inflammation in a dual burden population, along with practical health statistics for the 

study population.  

1.2. Paper 2- E. coli Exposure and Immune Function 

 The aim of Paper 2 is to determine the impact of early life fecal pathogen exposure from 

contaminated household (non-drinking) tap water on inflammation and endotoxemia in children. 

Studies on environmental enteric dysfunction suggest that high levels of Escherichia coli, an 

indicator of fecal contamination, is associated with chronic immunostimulation (Humphrey 

2009); however, using the “old friends” theory I hypothesize that habitual exposure that does not 

result in acute infection may lower immune levels. Regression models are used to test this 

hypothesis that E. coli exposure provides immunoregulatory benefits to inflammation and 

endotoxemia, separately. This study contributes to the public health literature on water, 
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sanitation and hygiene studies (WASH) and evolutionary theory by providing novel evidence of 

an early life protective effect of exposure to fecal contamination on immunostimulation among 

children living in a dual burden environment.  

1.3. Paper 3- Gut Microbiota Mediate Immunostimulation 

 The purpose of Paper 3 is to determine whether the gut microbiome is a mechanism 

underlying the immunoregulatory effect of exogenous fecal pathogen exposure among children 

from Galápagos. First, gut microbial taxa that are significantly influenced by fecal pathogen 

exposure in household tap water are identified. The effects of those taxa on levels of 

immunostimulation in children are determined. Specific gut microbiota are determined to be 

responsible for the protective effect on inflammation and endotoxemia if fecal pathogen 

exposures provide gut immune symbiosis, as opposed to causing dysbiosis. These results identify 

several candidate gut microbial taxa as key modifiers of the immunoregulatory effects of early 

life fecal pathogen exposure in children from Galápagos, Ecuador.  
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CHAPTER 2. LIFE, HEALTH AND NUTRITION IN GALÁPAGOS, ECUADOR 

2.1. Ecuadorian Health Landscape 

Urbanization, industrialization and globalization are key processes shaping the disease 

landscape of the second epidemiological transition in affluent developed countries where 

declines in infectious diseases and malnutrition are taken over by chronic, non-infectious 

degenerative disease (Armelagos and Harper 2010; Barrett et al. 1998; Omran 2005). 

Urbanization has extensively transformed human health, not only in changing social structure, 

behavior and lifestyles, but also in the form of exposures to new stresses (Schell 1997) and 

protections from others (McMichael 2000; Satterthwaite 1993). Improvements in nutrition 

(McKeown 1976), public health, sanitation and living conditions (Woods 1990) are regarded as 

being primarily responsible for the second transition in the high income countries. However in 

many low and middle income countries, social inequality, especially in urban areas, results in an 

overlap of both infectious and chronic disease due to the lack of adequate drinking water, 

sanitation infrastructures and medical services, along with changing dietary patterns and physical 

activity levels. The introduction and reliance on new food products in developing markets 

through international trade and globalizing forces is particularly concentrated in urbanized areas 

(Popkin and Gordon-Larsen 2004). This transition is responsible for increasing rates of 

overweight and obesity in the developing countries and has created a dual burden situation where 

stunting and obesity are associated at the individual and household levels (Doak et al. 2004; 

Sawaya et al. 1998). 
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Ecuador is currently experiencing this dual burden of chronic and infectious diseases 

(Waters 2006). Ecuador’s Living Standards Survey in 2014 reports that 78% of households have 

access to the public water networks, though only 60% of bathrooms are connected to the public 

sewage system (INEC 2014). Although these indicators of basic household sanitation needs have 

been steadily improving since 1999, health effects of are still evident among children. Roughly 

25% of children under five experienced acute diarrheal disease and 46% had acute respiratory 

infection at the time of study (INEC 2014), which may be due to increasing levels of air 

pollution (PAHO 2012). Infectious diseases, such as gastrointestinal infections, influenza and 

pneumonia are among the top causes of death in Ecuadorian children under five (PAHO 2010). 

Poor hygiene and inadequate sanitation infrastructures are major health risks among children 

who are more susceptible to pathogens due to their developing immune system. However, more 

research is need to better understand how household sanitation and hygiene deficits impact 

childhood health and risk of infection in Ecuador. 

Despite achieving middle income country status, chronic childhood malnutrition in 

Ecuador is a major health concern and is strongly associated with socio-economic disparities, 

lifestyle differences between ethnicities, and the urban-rural divide (Larrea and Freire 2002; 

Walker 2007; Waters 2006). In 2012, approximately 25% of Ecuadorian children under the age 

of five were stunted, indicating a state of chronic malnutrition, which has dropped from 34% in 

2004 (Freire et al. 2013). However, Ecuador is also undergoing a nutrition transition with a shift 

from low calorie plant-based foods to a high calorie diet rich in refined carbohydrates, fats and 

sugars, resulting in increasing rates of obesity and cardio-metabolic disorders (Bernstein 2008). 

Freire and colleagues (2014b) found that 13% of households nationwide in Ecuador had 

overweight or obese mothers and stunted children, and at the individual level, 3% of children 
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aged five to ten were overweight or obese and stunted. The health effects of this transition in 

Ecuador are evident in the top five causes of death for adults over 45 years according the Pan 

American Health Organization, of which three are attributable to cardio-metabolic problems 

(PAHO 2010). Since levels of economic development and urbanization are highly influential in 

shaping dietary patterns associated with both chronic childhood malnutrition and overweight and 

obesity in Ecuador, nutritional status is a vital component of the disease ecology of Ecuador.  

Rapid economic and urban development driven by the tourism industry has transformed 

health and nutrition on the Galápagos Islands (Walsh et al. 2010). Over the past several decades 

the population has quadrupled (INEC 2010), increasing pressure on the islands’ water and 

sanitation infrastructures. With a heavy reliance on processed foods shipped from the mainland, 

residents of Galápagos currently have the highest rates of overweight and obesity in all of 

Ecuador (Freire et al. 2014a; Page et al. 2013). High levels of infectious disease, due to poor 

water quality and inadequate sanitation, are found alongside increasing rates of chronic 

conditions such as hypertension and diabetes (CGREG 2010b; Gerhard et al. 2016). The 

Galápagos Islands provide a unique research setting to investigate the health consequences of a 

dual burden environment.   

2.2. Tourism, Economic Growth and Urban Development on the Galápagos Islands 

The history of human populations on the uninhabited islands began with early visitors 

including whalers, pirates and naturalists (Oxford and Watkins 2009). These groups were 

followed by several failed attempts at colonization, the development of a profitable agricultural 

plantation, prisoner camps, and an American military base during WII (Astudillo 2017; Oxford 

and Watkins 2009). Attempts to conserve the unique biological and ecological diversity of the 

islands began in the 1950s when the Charles Darwin Foundation was founded to promote 
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conservation and research (Epler 2007). Meanwhile the Ecuadorian government established 97% 

of the undeveloped land on the islands as the Galápagos National Park (Walsh and Mena 2013). 

At that time, the four populated islands of San Cristóbal, Santa Cruz, Isabella and Floreana had 

limited infrastructure with residents working in agriculture and fishing. The islands became a 

United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage 

Site in the 1978 (Walsh and Mena 2013). Although the tourism industry began much earlier, it 

was not until the late 1980s with a fundamental shift from boat-based tourism to land 

accommodations that the islands’ residents started engaging in the economic development of 

tourism (Epler 2007). Mainland Ecuadorians also began to migrate to Galápagos seeking 

opportunity in the profitable tourism industry, especially since Ecuador’s economy was suffering 

due to the devaluation of oil prices (Epler 2007).  

Since that time, the population has expanded from around 6,000 in the early 1980s to 

over 25,000 in 2010 (INEC 2010), with over 200,000 visitor annually (Schep et al. 2014). 

Although the Ecuador government has instated laws to regulate immigration to the island, illegal 

residency is still a problem (Walsh and Mena 2013). The tourism industry in Galápagos is 

growing rapidly with a 78% surge in gross domestic product during the first half of the 2000s 

(Taylor et al. 2009). According the Galápagos Conservatory Organization, tourism contributes 

$418 million US dollars to the Ecuadorian economy with less than 7% returning to the islands’ 

economy. In 2009, the provincial government of Galápagos received a total of 14.5 million 

dollars, with over 94% being invested in the construction of public roads and buildings (CGREG 

2010b). However, living conditions have not improved. Less than 1% was spent on municipal 

drinking water and sewer systems, which was below the 3% investment in urban beautification 

projects. The impact of population growth and economic and urban development driven by 
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tourism has undoubtedly change the ecological and social environments of the islands, increasing 

pressure on the limited infrastructures and resources (Walsh and Mena 2013). 

2.3. People of San Cristóbal  

The 2010 Ecuadorian census reports that 7,475 people live in the canton of San 

Cristóbal1, which is the second largest populated canton following Santa Cruz (INEC 2010), and 

represents 30% of the total population for Galápagos (Figure 2.1) (CGREG and INEC 2010). 

The island has experienced high population growth over the past several decades, mainly from 

migration from the mainland. In 2010, approximately 66% of the islands’ population were 

migrants, mostly from mainland Ecuador moving to join family on the island or for economic 

opportunities (CGREG and INEC 2010). Most Galápagos residents live in concentrated urban 

areas consisting of 3% of the islands’ land, since the majority is protected national park space. 

On San Cristóbal, people live in the urban port town and surrounding neighborhoods of Puerto 

Baquerizo Moreno (Figure 2.2), which comprises 82% of the canton of San Cristóbal  (CGREG 

and INEC 2010). Thus, the town provides a good representation of the survey area for this 

dissertation project.  

The dominant ethnicity in San Cristóbal is mestizo (which represents a mix between 

Indigenous Ecuadorian and Spanish descent) at 81%, followed by indigenous ethnicities from the 

mainland at 9%, European ancestry at 6% and Afro-Ecuadorian ethnicity at 4% (CGREG and 

INEC 2010). As in the rest of Ecuador, Spanish is the most common spoken language followed 

by indigenous languages.  

                                                             
1 Inhabitants of the small island of Floreana and rural residence of the highland town of El 

Progresso on San Cristóbal are included in the reported statistics for San Cristóbal Canton. 
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The average age of women is 45 years and women were considered the head-of-

household in 16% of homes on the island (CGREG and INEC 2010). In terms of demographic 

dependence, which provides a measure accounting for the proportion of active-working age to 

dependent children under 15 or adults over 65 years, 54% of residents are dependent on working 

age residents. Roughly 64% of adults are either married or living in a common law marriage, 

while the divorce or separation rate in San Cristóbal is low at 4% (CGREG and INEC 2010).    

Education and literacy in Galápagos are high. Around 96% of children attend primary 

school and 90% attend secondary school, while 35% of children under five years attended 

preschool (CGREG and INEC 2010). There are four primary schools on the island, two are 

public and two private. Universidad de San Francisco de Quito has a campus on the island and a 

well-attended English language program. Under 3% of children cannot read or write by the age 

of 15. Among adults, 47% finished secondary school while 21% finished higher levels of 

education (CGREG and INEC 2010).  

Roughly 68% of residents are of working age in San Cristóbal, including 62% of women, 

with an unemployment rate of just above 2% (CGREG and INEC 2010). A high percentage of 

workers are engaged in some form of public administration at 23%, which is much higher 

compared to other islands because Puerto Baquerizo Moreno is the capital town of the province 

(CGREG and INEC 2010). This is followed by commerce at 12%, transportation at 11%, and 

then tourism and agriculture or farming at around 8% each (CGREG and INEC 2010). In a 

somewhat conflicting report on 2009 data from the employment management system in 

Galápagos, around 21% of jobs on San Cristóbal are in public administration, with an additional 

21% in the tourism industry (CGREG 2010b). Approximately 10% of jobs are in agriculture and 

less than 1% are from the fishing industry. Home businesses are also quite common in 
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Galápagos, with most participating in vending food and other goods, or small restaurants and 

hotels (CGREG and INEC 2010).  

2.4. Childhood Health and Nutritional Status 

Childhood health and nutritional status are important indicators of overall population 

health, and are of particular interest given the dual burden environment of Galápagos since 

children are more susceptible to changing nutritional and pathogenic environments (DeBoer et 

al. 2012). Only 38% of children under five years of age receive annual health checkup on the 

island (CGREG and INEC 2010), which may be due to the lack of trust mothers have with the 

public hospital and staff (Page et al. 2013). However, vaccination rates are high with 100% of 

children receiving tuberculosis BCG, 96% receiving poliomyelitis OPV and 92% receiving the 

measles, mumps, rubella (MMR) vaccine. During the time of the Galápagos Living Conditions 

Survey, around 8% of mothers reported that their children under five had acute diarrheal disease, 

all of whom were under doctor’s care and the majority were taking medication or oral-

rehydration fluids (CGREG and INEC 2010). The rate of diarrheal infection on the island was 

much lower than the national average, yet the rate of respiratory infections was equivalent (INEC 

2014). Again, the majority of children with symptoms were receiving medication and medical 

attention. Although estimates for children are unknown, around 64% of the total island 

population had received deworming medication, yet it is unclear whether this reflects preventive 

or active treatments of infection (CGREG and INEC 2010). 

According to Ecuador’s National Health and Nutrition Survey in 2012 (ENSANUT), 

children living in Galápagos have the lowest rates undernutrition and highest rates of 

overnutrition compared to all other regions in Ecuador (Freire et al. 2014a). Among Galápagos 

children under five, only 11% are stunted, compared to 25% on the national level (Figure 2.3). 
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Galápagos was also the only province were no child exhibits wasting, a short-term indicator of 

severe weight loss, compared to 4% of all children in Ecuador. At the national level, childhood 

stunting is strongly linked to poverty, limited maternal education and indigenous ethnicity 

(Freire et al. 2014a).   

Conversely, rates of overweight and obesity are high. Approximately 13% of Galápagos 

children under five are either overweight or obese, compared to 9% in all of Ecuador (Figure 2.3) 

(Freire et al. 2014a). Similar to low income countries, there is a positive relationship between 

obesity and income quintiles at the national level, except for the highest quintile that has the 

lowest rate. Yet more like a pattern seen in higher income countries, obesity is inversely related 

to mother’s education, again with the exception of the highest level of education exhibiting the 

highest obesity rate (Freire et al. 2014a). Research at the national level is needed to understand 

the relationship between mother’s education and household income quintiles and their impact on 

childhood obesity. 

The divergence in rates of overnutrition and stunting between Galápagos and all of 

Ecuador are even more extreme in children aged five to ten (Figure 2.3). The prevalence of 

overweight or obesity is almost three time greater among Galápagos children and the prevalence 

of stunting is almost four times lower (Freire et al. 2014a). The highest rates of obesity in this 

age group at the national level are found among the ethnic group including mestiza and European 

ancestry (Freire et al. 2014a). It will be important to investigate what specific dietary and activity 

related factors, among other socio-demographic and environmental issues, are contributing to 

these extreme rates of overnutrition in Galápagos.     
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2.5. Adult Nutritional Status and Health  

Overnutrition among the adult population in Galápagos is a growing concern, especially 

in relation to chronic disease risk. Rates of overweight or obesity in Galápagos adults are the 

highest in the country at 76%, over 10% higher than the national prevalence (Figure 2.3) (Freire 

et al. 2014a). Around 66% of Ecuadorian women and 60% of Ecuadorian men are overweight or 

obese. Rates increase with age and are the highest among Afro-Ecuadorians and the 

mestiza/European ethnic groups (Freire et al. 2014a). Although declining over the past decade, 

cardiovascular disease remains the leading cause of death in Ecuador (WHO 2014) and, between 

2005 and 2016, obesity replaced malnutrition as the number one risk factor for deaths and 

disability according to the Global Burden of Disease Study (2017). Rates of diabetes in 

Galápagos have seen an dramatic 12-fold increase, whereas hypertension has more than doubled 

(CGREG 2010a). Considering the high obesity rates, it is surprising that 47% of residence 

reported playing sports or being active for almost two hours each day (CGREG and INEC 2010). 

There are several public sports centers scattered throughout the island’s neighborhoods and one 

private gym. Due to the concentrated nature of urban development on the island, most residents 

walk as a primary means of transportation. A study of the mothers’ perceptions of body size on 

the island of Isabella found that women preferred to be smaller and wished their children were 

larger (Waldrop et al. 2016). A better understanding of the factors underlying high rates of 

obesity in Galápagos are crucial in preventing cardio-metabolic disease on the islands. 

Approximately 63% of the adult population in San Cristóbal has some form of health 

insurance, which is comparable to the average in Galápagos (CGREG and INEC 2010). In 2009, 

there were two doctors for every 1,000 residents in Galápagos (CGREG 2010a) and at the time 
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of the dissertation study, there was one public hospital, one social security health center and one 

rural health center on the island.  

Galápagos residents are experiencing the effects of a dual burden environment, with 

increasing rates of cardiovascular and metabolic disorders, coupled with infectious disease. 

According to a report on data from the public hospital, diarrhea and gastrointestinal infections, 

and urinary infections were among the top ten causes of hospital internments in 2009, among 

complications due to pregnancy, bone fractures and injuries, and disease of the gallbladder and 

appendix (CGREG 2010a). Based on weekly reports submitted to the Ministry of Public Health 

in Galápagos of all diseases and illnesses treated at the hospitals and public health centers in 

2009, 59% of all cases on San Cristóbal were acute respiratory infections, followed by over 8% 

due to acute diarrhea disease, 6% from sexually transmitted diseases, 2% caused by violence or 

accidents, including domestic and work related issues, and less than 1% of each: hypertension, 

diabetes, anxiety, depression and suicide attempts (CGREG 2010a). Respiratory infections in all 

of Galápagos have seen a sharp rise between 2006 and 2009 with more than a 150% increase, 

whereas rates of diarrheal disease has shown a more steady increase of 13%. More research is 

needed to better understand the causes underlying increasing rates of both chronic, non-

communicable and infectious diseases, and their implications for residents of Galápagos.    

2.6. Diet and Food Availability 

Food availability is a critical issue in Galápagos since the majority of the island is 

national park land and there are limited areas for agriculture and food production. Most food 

items are shipped from the main land by boat, which can take up to two weeks, or sometimes 

arrive by plane. Thus, most foods are packaged staple items and fresh produce is often limited or 

spoiled (Page et al. 2013). There is a weekly farmers’ market where residents from the highlands 
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sell produce; yet diversity, availability and pricing vary. The limited availability and 

consumption of fresh fruits and vegetables is evident from data on household food expenses. 

Monthly expenditures on foodstuffs on the island reveal that chicken is the most common 

purchased item, followed by bread, beef, fresh fish, rice, milk and cheese (CGREG and INEC 

2010). Some researchers have suggested that there is a lack of education concerning the 

nutritional consequences of highly processed, low value foods that may be contributing to poor 

diets (Waldrop et al. 2016).  

As a possible indicator of food insecurity, a 2013 report on children and adolescents in 

Galápagos found that 17% never eat breakfast and 20% only sometimes eat breakfast during 

weekdays (Granda Leon et al. 2013a). However, it is unclear whether this is a direct result of a 

lack of resources. Especially given than there are several social programs where families can 

receive fortified cereals, drinks and school lunches for their children (CGREG and INEC 2010).  

2.7. Household Income, Living Conditions and Assets 

Approximately 47% of households on San Cristóbal own their homes, which is the same 

for all of Galápagos (CGREG and INEC 2010). Although poverty is apparent on San Cristóbal, 

most people do not consider their household as being financially poor (CGREG and INEC 2010). 

A 2013 report assessing measures of poverty in all of Galápagos found that 10% of households 

are in extreme poverty, based on two or more unsatisfied needs, such as inadequate sanitation, 

overcrowding, children not attending school or high economic dependence (Granda Leon et al. 

2013b). In contrast, the same study revealed that based on the extreme poverty line method, 

which accounts for household income per capita in relation to expenditures on food 

consumption, no households were below the line. Income in Galápagos is higher than on the 

mainland, yet the cost of living is more expensive. The top quintile for average monthly 
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household income in San Cristóbal is $2,610 (US dollars are the currency for Ecuador), 

compared to the lowest quintile at $1,230 (CGREG and INEC 2010). As food availability is 

sometimes limited, prices can fluctuate and the majority of household expenditures go to food 

and drinks, followed by public utilities and transportation.  

Perception of quality of life on San Cristóbal is somewhat low. Only 15% of residents 

consider themselves as having a good standard life, 79% consider their lives as more or less well, 

and 6% consider their lives as bad (CGREG and INEC 2010). In terms of perception of 

neighborhood cleanliness and noise pollution, only 16% of households report a low level of 

cleanliness and 16% also report high levels of noise pollution (CGREG and INEC 2010). The 

Galápagos Living Standards Survey categorizes deficits in living arrangements based on the 

quality of material used to construct the home (floor, walls and roof), the space provided per 

person (over 3 people per bedroom was deficient), and the basic services utilized, such as 

electricity, municipal water and indoor toilets (CGREG and INEC 2010). Around 57% of 

residents on the island have adequate housing in all three categories, compared to only 41% all 

of Galápagos. The majority of deficits were due to the use of poor materials for household 

construction, followed by overcrowding and a few did not have adequate access to basic services 

(CGREG and INEC 2010). Over 99% of households are connected to the municipal power grid 

and pay around $20 per month, and 90% receive municipal trash collection. Approximately 75% 

of residents of San Cristóbal have indoor bathrooms with toilets connected to the municipal 

sewage system, and an additional 23% are connected to septic tanks (CGREG and INEC 2010). 

Only a few households have outdoor latrines or no toilet in the home. During the time of the 

dissertation study, waste water from the municipal sewage system was untreated and discarded 

directly into the ocean near several frequented beaches. For household cooking purposes, over 
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99% of residents use gas, and for heating, 56% use gas while others rely on coal, firewood, 

candles or fuel, spending approximately $5 per month (CGREG and INEC 2010). As almost all 

homes have electricity, the use of technology in Galápagos is high. The national census reports 

that 46% of Galápagos residence used the internet within the past six months, 54% used 

computers and 79% used cellular phones (INEC 2010).   

2.8. Water Use and Availability 

Water quality and availability are a great matter of public health concern on the islands 

(Page et al. 2013; Walsh et al. 2010). San Cristóbal is the only inhabited island with highland 

fresh water sources, which supply water for the municipal network year-around. Roughly 93% of 

households receive municipal piped water that is collected and stored in household cisterns, 

where others rely on water delivery trucks or rain water (Guyot-Tephany et al. 2013). Some 

researchers have suggested that free municipal water has created a paradoxical supply and 

demand problem. While almost all residents are connected to the system, over half report that 

they do not receive enough water for their household uses (Guyot-Tephany et al. 2013). During 

the time of this dissertation, the city had just begun to install water meters to account for and 

regulate household water use. Water waste is a large concern with almost half of residents with 

cisterns admitting that they allow them to overflow when full (Guyot-Tephany et al. 2013). 

It is a common assumption on the island that the municipal water is contaminated and not 

suitable for drinking. City water is used for household sanitation practices, such as washing 

dishes and clothes, and personal hygiene behaviors, such as showering, washing hands and 

brushing teeth. Based on observation, the majority of households rely on purchasing bottled 

water for drinking. However, the Ecuador Living Conditions Survey reports that for drinking, 

only 44% of residence buy bottled water, 39% boil their water, 8% treat it with chlorine, 5% 
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have their own filters, and 4% drink their water without any treatment (CGREG and INEC 

2010). On average, households in San Cristóbal spend $20 on drinking water per month. A study 

on perceptions of water quality found that on San Cristóbal, 71% of participants agreed that they 

could not use water on the island in the same ways as on the mainland, commonly citing that it 

was polluted or that it can cause disease, followed by viewing water as a limited resource 

(Guyot-Tephany et al. 2013). 

During the time of this dissertation project, in August 2013, the municipality on San 

Cristóbal opened a new water treatment plant (personal communication with city engineers). 

Although the city is continuing to install a new distribution network, the treated water was 

delivered through the old distribution infrastructure. A recent study investigating fecal 

contamination of the municipal water supply before and after the new water treatment plant 

found significant improvements in the reduction of E. coli and total coliforms throughout the 

distribution system (Gerhard et al. 2016). However, possible contamination at the point-of-use 

sites or through the distribution system continued to provide indicators of fecal pathogens of 

non-human origin.   
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Figure 2.1 Populated Islands of Galápagos, Ecuador 

Note: Data are from the Ecuadorian 2010 Census (INEC 2010) 

 

 

 
Figure 2.2 Neighborhoods of Puerto Baquerizo Moreno, San Cristóbal 
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Figure 2.3 Prevalence of stunting and overweight/obesity in Galápagos and Ecuador 

Note: Data are from ENSANUT 2012 (Freire et al. 2014a). 
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CHAPTER 3. LITERATURE REVIEW 

3.1. Dual Burden Life History Theory  

In populations living in dual burden environments, both pathogenic and obesogenic 

factors may synergistically contribute to gut immunodysregulation. This new synergism between 

overnutrition and infection may be contributing to the pattern of childhood stunting and obesity 

afflicting rapidly developing countries. Life history tradeoff hypotheses that conceptualize diet as 

exclusively energy availability need to be redesigned to account for the interaction between diet, 

gut immunocompetence and linear growth and obesity. Traditional hypotheses suggest that in 

developing countries with populations experiencing high pathogen loads and low food resources, 

we would expect to find stunting due to the limited energetic resources that are diverted from 

linear growth to maintaining immune function (McDade 2003). In populations with adequate 

food resources, the impact on growth would be reduced since additional resources could buffer 

the cost of immunocompetence. However, this framework does not account for dietary quality in 

which high-fat, low-fiber diets, characteristic of populations undergoing nutrition transition, 

produce direct effects on inflammation and may cause indirect effects due gut microbial 

dysbiosis. This situation can possibly lead to a synergistic relationship between dietary-induced 

and pathogens-induced gut immunodysregulation. This research proposes that gut 

immunodysregulation indicated by elevated inflammation (CRP), high microbial translocation 

(EndoCAb), and poor gut health (dysbiosis of microbial colonies) could result in greater 

energetic costs of maintaining immunocompetence. In addition to linear growth restriction 
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caused by the increased cost of gut immunodysregulation, higher inflammation levels could also 

divert resources from bone growth to adiposity deposits.  

This dissertation expands upon life history theory studies of childhood tradeoffs between 

maintenance and growth by providing a new application for the dual burden environment that 1) 

uses three measures of gut immune function: inflammation, microbial composition and antibody 

response to microbial translocation, 2) disentangles the use of CRP levels associated with acute 

infection and chronic low-grade inflammation using a longitudinal method, 3) models the 

possible synergistic effect of early life overnutrition and pathogen exposure on gut 

immunodysregulation, and 4) determines the roles of the gut microbial symbiosis in mediating 

immunoregulation due to exogenous fecal pathogen exposure on environmental enteric 

dysfunction (EED).  

3.2. Developmental Origins of Health and Disease 

The developmental origins of health and disease (DOHaD) framework uses evolutionary 

and ecological developmental biology to link early life nutritional environments to 

developmental trajectories leading to later adult risk of cardio-metabolic diseases (Barker 1994). 

Drawing on the concept of fetal origins of developmental plasticity, Kuzawa and Adair (2004) 

suggest that a mismatch occurs between programming for poor nutritional environments in early 

life and later experiencing nutritional abundance, increasing risk for cardiovascular disease in 

adulthood. Gluckman and colleagues (2007) use the mismatch concept and propose that 

predictive adaptive responses use epigenetic changes in early life to set developmental 

trajectories, which allows for a range of phenotypic diversity from a single genotype. The 

foundational principle of DOHaD is that early life nutritional and energetic environments have 

lasting impacts on adult risk of cardio-metabolic diseases. This is of particular importance in 
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dual burden environments, since the impact on later life effects of simultaneous mismatched 

early life environments between infections resulting in programing for nutritional stress and 

overnutrition programing for resource abundance, are unknown. The DOHaD framework 

provides the foundation of the dissertation in investigating the impact of early life nutritional and 

pathogenic environments on childhood health in a dual burden environment. 

3.3. Early Life Infectious Disease  

Growth faltering in low and middle income countries typically occurs within the first two 

years of life (Shrimpton et al. 2001), further indicating that the nutritional and disease 

environments during this time are crucial. Nutrition, including the role of macro- and micro-

nutrients and the impacts to the intestinal microbiome, can significantly alter immune function 

(De Rosa et al. 2015). Synergistic forces between malnutrition and infection during childhood 

can often result in stunting (Scrimshaw and SanGiovanni 1997; Ulijaszek 1996), and are highly 

influenced by dietary quality and quantity, along with weaning practices. The feeding of 

supplementary foods during weaning often exposes infants to unclean water and is correlated 

with diarrheal disease in Ecuador (Brussow et al. 1992). Significant associations between 

stunting and both diarrheal disease and helminthic infections are evident in children from the 

developing countries (Martorell et al. 1975; Moore et al. 2001). Bacterial and parasitic infections 

have critical implications to Ecuadorian children, who by the age of two, exhibit a 90% 

prevalence of Escherichia coli antibody titers (Brüssow et al. 1990). Solomons (1993) suggests 

that chronic inflammation resulting from a subclinical acute phase response, due to living in 

overcrowded housing and unsanitary conditions, could be responsible for stunting not directly 

attributed to disease or dietary quality. Improved sanitation infrastructures, such as clean 

drinking water, availability of household toilets and trash disposal, are associated with lower 
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diarrheal disease in Ecuadorian children under five years old (Brussow et al. 1995). Early life 

infectious disease burdens and unsanitary living conditions are significant drivers of childhood 

nutritional deficiencies and growth restrictions, and may set up trajectories of future conditions 

of nutritional stress.  

3.4. Traditional Life History Theory 

Life history theory provides an evolutionary framework for examining how natural 

selection influences energetic tradeoffs between growth, maintenance and reproduction at 

different life stages based on ecological conditions (Hill and Hurtado 1996; Stearns 1992). Key 

tradeoffs during childhood can occur between growth and maintenance of the 

immunocompetence (McDade 2003). Anthropological studies have found direct effects of 

immunostimulation on linear growth caused by non-specific inflammation among Tsimané 

children in the Bolivian Amazon (McDade et al. 2008) and Shuar children in Ecuador (Blackwell 

et al. 2010). In addition, chronic inflammation in combination with the humoral immune 

response, due to environmental enteropathy, were associated with reduced growth measures 

among infants in Gambia (Campbell et al. 2003a), Nepal (Panter-Brick et al. 2009) and 

Bangladesh (Mondal et al. 2012). Due to the concern of undernutrition in these populations, 

traditional life history theory frameworks have concentrated on energetic resource availability, 

which has limited our understanding of the energetic cost of immunocompetence in newly 

emerging dual burden environments. Investigating immunocompetence as a life history trait has 

also been critiqued for its use of a single measure of immune function (Long and Nanthakumar 

2004). My research builds on this scholarship by examining the relationships between 

immunocompetence and measures of growth and body composition, relative to intestinal 

immune health at three different levels: 1) high-sensitivity C-reactive protein (CRP), an acute 
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phase protein used as an indicator of the innate, indirect response of inflammation (Du Clos 

2000); 2) endotoxin core immunoglobulin-G (EndoCAb IgG) antibodies signifying endotoxemia 

and the humoral response to microbial translocation into the blood (Barclay 1995); and 3) the gut 

microbiome, as indicators of gut immune health (symbiosis) (Maslowski and Mackay 2011; 

Turnbaugh et al. 2006). 

3.5. C-Reactive Protein and Inflammation 

C-reactive protein (CRP) is an acute-phase protein stimulated by the pro-inflammatory 

cytokine interleukin-6 (Du Clos 2000). Acute levels indicate pathogenic infection (Pearson et al. 

2003) and moderately elevated levels indicate risk factors for cardiovascular and metabolic 

disorders (Ridker et al. 2000). In anthropological research in developing countries, childhood 

CRP has been studied in association with infectious disease and malnutrition (Blackwell et al. 

2009; Shell-Duncan and McDade 2004). For example, disease exposures from unsafe drinking 

water and measures of acculturation were associated with moderate childhood inflammation 

levels in an indigenous Bolivian population (McDade et al. 2005). In contrast, moderate 

childhood inflammation in the United States is associated with measures of adiposity, weight 

gains, ethnicity and socio-economic status (Dowd et al. 2010; Ford et al. 2003; Pirkola et al. 

2010). In recent studies investigating environmental disease exposures related to contact with 

domesticated animals did not find any significant predictive effects on childhood low-grade 

inflammation in Western Europe (Mustonen et al. 2012) or in China (Thompson et al. 2013). 

Household environmental exposures such as inadequate sanitation, limited access to water and 

the presence of animal feces also failed to significantly influence levels of moderate 

inflammation among Chinese children and adolescents, where the primary driver was overweight 

and high waist circumference (Thompson et al. 2013). The number of siblings and infections of 
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Helicobacter pylori were also not predictive of inflammation levels among British children 

(Cook et al. 2000). These moderately elevated levels indicate risk factors for cardiovascular and 

metabolic disorders (Ridker et al. 2000), which are associated with obesity and not infection.  

Using CRP levels to evaluate both acute inflammation due to infection or injury and 

chronic low-grade inflammation associated with obesity and cardiovascular disease risk is 

complicated. A common practice in epidemiology studies is using a cross-sectional measure of 

CRP and discarding high levels indicative of infection. This could be highly problematic in 

populations with high infectious disease burdens. It has been suggested that longitudinal 

measures are need to evaluate intra-individual variability related to infectious exposures, as 

demonstrated in an indigenous Ecuadorian population with high variability, yet no chronic low-

grade elevations (McDade et al. 2012b). This dissertation uses repeated measures CRP to explore 

variations due to infectious and obesogenic factors present in dual burden environments. 

3.6. Environmental Enteric Dysfunction and Endotoxin Core Antibodies  

Environmental enteric dysfunction is thought to be caused by chronic mucosal exposure 

to bacteria from fecal contaminated water and food, which induces the T-cell mediated pro-

inflammatory response causing chronic gut inflammation and reduced barrier function (Campbell 

et al. 2003b). This results in the translocation of microbes across the intestinal barrier into the 

blood stream, initiating endotoxemia and a systemic antibody immune response. Previously 

referred as tropical or environmental enteropathy, it is typically found in middle and low income 

countries where the majority of the population lives in unsanitary conditions characterized by 

unsafe drinking water, poor hygiene practices, and inadequate sanitation (Humphrey 2009; Neto 

et al. 1994). EED is marked by structural changes to intestinal villi causing poor nutrient 

absorption. Furthermore, the energetic costs of gut immune dysfunction can divert significant 



 

30 

resources from linear growth and weight gains in infants and children, and the condition is 

thought to contribute to chronic malnutrition and growth faltering in these environments 

(Humphrey 2009; Mondal et al. 2012; Panter-Brick et al. 2009).  

Lipopolysaccharides (LPS) or endotoxins are components of gram negative bacteria 

released from the cell wall after destruction. Circulating levels in blood (endotoxemia) indicate 

microbial translocation due to a compromised intestinal barrier (Brenchley et al. 2006), and are 

highly correlated with bacterial DNA levels (Jiang et al. 2009). Endotoxin core antibodies 

(EndoCAb) provide a measure of the humoral immune response to LPS from four gut microbial 

species: Escherichia coli, Pseudomonas aeruginosa, Klebsiella aerogenes and Salmonella 

typhimurium (Barclay 1995). Initial exposure to LPS activates the humoral immune response 

producing EndoCAbs: immunoglobulin G, M and A (IgG/M/A). EndoCAb levels are a more 

robust measure compared to endotoxins themselves because the antibodies remain in the blood 

for a longer period (Gardiner et al. 1995). Since EndoCAb varies by Ig type, IgG was chosen for 

this study because it is present from birth and stabilizes by age six (Barclay 1995). EndoCAb 

IgG has been tested in infants and children from diverse populations (Pasternak et al. 2010; 

Stephens et al. 2006) and has long been used as a marker of tropical and environmental 

enteropathy (Fagundes-Neto et al. 1984). For example, in a study of the effects of environmental 

enteropathy on infant growth faltering in Gambia, elevated EndoCAb IgG levels were negatively 

associated with linear growth and explained over 40% of growth faltering in infants under 15 

months (Campbell et al. 2003a). Although it is clear that chronic immunostimulation associated 

with environmental enteric dysfunction impacts life history tradeoffs in linear growth in infants 

from poor resource setting, much less is known about its presence in children experiencing 

overnutrition in dual burden environments. Since chronic intestinal inflammation and impaired 
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intestinal barrier function are key component of inflammatory gut disorders common in high 

income countries (Pasternak et al. 2010), this dissertation proposes that obesogenic risk factors 

and high-fat, low-fiber diets typical of population experiencing nutrition transition, may 

contribute to elevated EndoCAb levels and endotoxemia.  

3.7. Gut Microbiota and Immune Dysregulation  

Within anthropology, limited attention has focused on the relationship between obesity 

and infection (Solomons 2007). However, awareness of the role of gut microbiota in immune 

function, obesity and chronic disorders is growing (Clemente et al. 2012). Gut microbiota 

produce short chain fatty acids (SCFAs) metabolites from the fermentation of dietary fiber, 

which are used for lipid and glucose synthesis (Maslowski and Mackay 2011). In mice, gut 

microbiota can regulate fat storage by the increased processing of plant polysaccharides (dietary 

fiber) (Bäckhed et al. 2004). The beneficial effects of SCFAs have also been demonstrated to 

help control appetites and regulate energy homeostasis (Byrne et al. 2015). In rural African 

children who typically consume a low-fat, high-fiber diet had more than double the amount of 

total SCFAs, indicating enhanced gut health compared to European children with a high-fat, low-

fiber diet (De Filippo et al. 2010). Along with providing an important source of energy, SCFAs 

are ligands for G protein-coupled receptors that influence cytokine production, resolve 

inflammation and maintain the intestinal barrier (Maslowski and Mackay 2011). Animal studies 

demonstrate increased intestinal permeability in obese mice and those fed high-fat, low-fiber 

diets (Brun et al. 2007; Cani et al. 2007); yet, this has not been confirmed in human population 

(Teixeira et al. 2012).  

Variations in microbial compositions and their metabolites are an important mechanism 

linking diet, immune function and obesity to intestinal health. When intestinal microbial colonies 
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are balanced, gut symbiosis allows for the proper regulation of inflammatory responses and 

immune homeostasis (Maslowski and Mackay 2011). Alterations to the microbiome and SCFA 

production associated with undernutrition may cause decreased immune responses. This can 

exacerbate the synergism between malnutrition and infection by increasing susceptibility to 

gastrointestinal infections and environmental enteric dysfunction (Kau et al. 2011). Conversely, 

environmental pathogens, obesity and high-fat, low-fiber diets can disrupt this balance, leading 

to microbial dysbiosis that causes immune dysregulation and inflammation. Due to the role of 

the gut microbiome in regulating immune function, it has been hypothesized that changes to the 

intestinal microbiota caused by environmental microbial exposures or diets may be underlying 

the “old friends” mechanism discussed below (Kau et al. 2011; Maslowski and Mackay 2011). 

This dissertation investigates the relationship between overnutrition and immunoregulation 

through the examination of the gut microbiome. 

3.8. Early life Pathogen Exposures and Immunoregulation: the “Old Friends” 

Mechanism 

Social and environmental factors characteristic of modern lifestyles, such as increases in 

sanitation practices, use of antibiotics in food sources, the hospitalization of births and 

vaccinations, all reduce exposure to pathogens in early life among high income countries (Bach 

2002; Rook 2009). Originally called the hygiene hypothesis, the terminology has changed 

because the mechanism is not solely focused on hygiene. Now, the “old friends” mechanism 

suggests that without proper stimulation of the immune system through exposures to 

immunoregulatory pathogens found in soil, water and with animal contact, immune 

dysregulation occurs resulting in higher rates of inflammatory, allergic and autoimmune 

disorders (Rook et al. 2017). These “old friends”, such as helminths, Mycobacterium 

tuberculosis, H. pylori and environmental microbiota, increase regulatory T cells or direct the 
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differentiation of dendritic cells allowing them to induce regulatory T cells, which downregulate 

the inflammatory autoimmune responses by producing suppressive cytokines (Rook et al. 2014). 

Similarly, exposures to these pathogens help to regulate inflammatory pathways and cytokine 

profiles through the differentiation of Helper T cells (Th) into the Th1-subset, which offsets the 

allergic response of IgE driven by Th2-subset (Yazdanbakhsh et al. 2002).  

Evidence of the “old friends” mechanism has been demonstrated in studies from the 

United States and Europe. Early life environmental microbial exposures associated with farms, 

household pets and day-care centers have shown to provide protection against allergies (Braun-

Fahrländer et al. 2002; Krämer et al. 1999; Lynch et al. 2014). However, a study in the 

Philippines found that both early life disease episodes, as indicated by prevalence of diarrhea in 

the second year of life, and pathogen exposure, as indicated by the presents of animal feces in the 

household, significantly lowered the risk of elevated levels of inflammation in adulthood 

(McDade et al. 2010). These findings are significant to health research in human disease ecology 

since they suggest that traditional epidemiological models of environmental microbial exposures 

and infection may need to incorporate an evolutionary approach to better understand the impact 

on immune function and regulation, in addition to disease risk. Additional research is needed to 

measure and conceptualize early life infectious environments from other low and middle income 

countries with low rate of allergies, asthma and other autoimmune disorders. This project 

addresses this gap in the literature by researching the impact of early life pathogenic exposures 

on immunoregulation due to poor water quality and inadequate sanitation infrastructures in 

Galápagos, Ecuador.  
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CHAPTER 4. DISSERTATION PROJECT OVERVIEW 

4.1. Pilot Project 

The pilot project during field season one was carried out on the island of San Cristóbal 

from June to August 2013 in two phases: formative research and initial fieldwork. For the 

formative stage, I conducted interviews with five health workers and five mothers of children 

who had at least one child between the ages of two and five years old. Questions addressed 

health workers’ and mothers’ local perceptions of childhood illness and infections, water quality, 

healthy and unhealthy foods, childhood growth and obesity, and concerns regarding health 

research and the collection of blood and fecal samples among children. The objective of this 

formative research was to determine whether the study’s methods of explaining the project, 

obtaining informed consent, collecting blood spots and fecal samples, and interviewing mothers 

were cultural accepted, appropriate and feasible for the proposed study population on San 

Cristóbal.  

For the initial fieldwork stage, I sampled 81 children aged two to ten years and 

interviewed their 59 mothers or caregivers. I collected detailed survey data on the child’s diet, 

symptom history, socio-demographics and household sanitation and water use. I conducted 

anthropometric assessments, performed household water quality tests of fecal pathogens, and 

collected blood spots for biomarker assay of inflammation and microbial translocation 

(endotoxemia). Fecal samples were collected to determine gut microbial composition. The 

objective of the initial fieldwork stage was to provide the first round of project data and conduct 

preliminary data explorations of the range and variation of measures used to address the project’s 
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larger theoretical objectives. These initial data were used to address the following specific aims 

of the pilot fieldwork: 

Pilot Aim 1) To describe the range and variation of gut health, immune function, and 

adiposity and growth measures in children from the island of San Cristóbal.   

Pilot Aim 2) To determine possible pathogenic, dietary, social and demographic 

predictors of childhood gut immunodysregulation and adiposity and growth outcomes. 

Pilot Aim 3) To explore the relationship between gut immunodysregulation and adiposity 

and growth outcomes.  

4.2. Dissertation Project 

 The second field season began in January 2014 and was carried out over four months. 

First, a follow-up study was conducted by re-visiting participants from field season one, and 

then, an additional 88 children were sampled along with their 60 mothers or caregivers, bringing 

the total to 169 children and 119 mothers. The final season fieldwork was conducted in July and 

August 2014 to perform the follow-up study on participants recruited during field season two. 

Data from all three field seasons were used to address the following dissertation project aims.  

Dissertation Aim 1) To test the synergistic relationship between overnutrition and 

infection on gut immunodysregulation. I hypothesized that the interaction between dietary 

overnutrition and poor water quality was associated with higher levels of gut 

immunodysregulation, compared to healthy diets and poor water quality or overnutrition and safe 

water quality. The results of these analyses provided the foundation and were reformulated for 

Paper 2- E. coli Exposure and Immune Function.  

Dissertation Aim 2) To determine the energetic cost of pathogenic and obesogenic 

immunocompetence on adiposity and childhood linear growth by testing modified LHT 
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hypotheses for the dual burden environment. A) I hypothesized that high levels of gut 

immunodysregulation was associated with high levels of adiposity and low linear growth 

measures, separately. B) In addition, I hypothesized that high levels of adiposity was associated 

with low linear growth measures. The results of these analyses were presented at the Annual 

Meeting for the Human Biology Association in 2015 (Houck et al. 2015).       
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CHAPTER 5. STUDY DESIGN, DATA COLLECTION AND MEASURES 

The pilot study’s protocols, recruitment, research design and informed consent 

documents were based on my previously fieldwork experience with a similar project 

investigating childhood health in the Ecuadorian Amazon (Houck et al. 2013) and modified to 

the Galápagos setting based on suggestions from other University of North Carolina (UNC) 

researchers who have conducted fieldwork in the Galápagos in association with the Galápagos 

Science Center. The Galápagos Science Center is a state of the art research facility on the island 

of San Cristóbal, jointly partnered by UNC and Universidad de San Francisco de Quito to 

promote science and education. As a graduate research associate, I was able to use the center’s 

infrastructures to acquire appropriate permits, carry out my fieldwork and perform laboratory 

analyses. The center’s microbiology laboratory provided use of their equipment to conduct water 

quality tests and urine analyses. According to the Ecuadorian Natural Health Law (Ley Orgánica 

de Salud (CND 2006)), blood samples may not be taken from the country and all biomarker 

assays were performed at the center (Law 67, Part 2, Chapter 4, Section 80). I was loaned a 

microplate reader from the Amazon project and shipped it to the island to run the blood spot 

assays. The fecal samples were transported back to UNC and analyzed at the Microbiome Core 

Facility. Since participating in health research focused on mothers and children may be a 

personal and culturally sensitive topic, a local mother was hired as a research assistant for the 

project to help recruit and conduct all interviews with mothers and caregivers. All research 

protocols for this dissertation project were approved by the human subject research ethics 

committees for UNC, the Galápagos Science Center and Universidad de San Francisco de Quito. 
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5.1. Fieldwork 

Two rounds of recruitment were conducted during field seasons one and two. A total of 

169 children ages two to ten years old and 119 of mothers or caregivers (3 grandmothers) were 

sampled from 12 neighborhoods in Puerto Baquerizo Moreno, the capital of Galápagos, which 

constitutes the densely populated urban zone of San Cristóbal. This represents 14% of the town’s 

population of children under ten years (CGREG 2013). We recruited mothers by going door-to-

door in each neighborhood with the highest number of children (according to local informants) 

until saturation was reached. We anticipated and met a high rate of participation based on 

mothers’ expressed interest in public health research (Page et al. 2013), their concern with a lack 

of health services (Walsh et al. 2010) and the project’s association with the Galápagos Science 

Center. Recruitment incentives for mothers included information on the height, weight, body 

composition and iron status of themselves and their child (and other family members if 

requested). This provided feedback on health and nutritional status that would not otherwise be 

available without consultation by a physician. In addition, mothers were informed of their 

household drinking water quality, which was of high local interest according the results from the 

pilot study. If fecal pathogen levels were deemed unhealthy according to the World Health 

Organization’s (WHO) recommendations (WHO 2011b), culturally appropriate preventive 

strategies were discussed. A total of 71 children and 50 mothers participated in the follow-up 

study collectively during field season two and three.  

Data collection included interviews with mothers about their children and households, 

anthropometric assessments, one fecal sample, two rounds of blood spots collected 

approximately ten days apart, and one household tap water sample for each child. After 

recruitment into the project and informed consent was obtained for each mother and child, they 
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were visited three times over approximately two weeks to conduct interviews and obtain 

necessary samples. Interviews and sample collection took place in their household unless 

otherwise requested by the mother. 

5.2. Visit One   

During the first visit, mothers were interviewed and given detailed instructions for the 

child’s fecal sample collection. We performed anthropometric assessments and collected the first 

round of blood spots from the child and water samples for each household.  

Mother’s Interview: Each mother or caregiver was asked a structured oral questionnaire 

in Spanish and with relevant sections on 1) household socio-demographics, 2) household water 

and sanitation characteristics, 3) child’s demographics including birth, breastfeeding, weaning 

and health information and 4) child’s hygiene practices including bathing, hand washing and 

defecation, 5) one-week symptom history and 6) 24-hour diet food recall and food frequency 

questionnaire. The one-week child symptom history section asked whether the child experienced 

any symptoms of diarrhea, cough, vomiting, urinary tract infection, skin rash, allergies and other 

possible illnesses within the past week, along with their duration. The dietary recall asked for all 

types and quantities of foods, drinks and medicines consumed by the child within the past 24 

hours (Buzzard 1998). 

Water Sample: We collected a small 100mL sample of household tap water in a sterile 

container, which was tested for the presence of E. coli and total coliforms at the Galápagos 

Science Center. Results of the baseline test were given to the mothers during the second visit. If 

levels are deemed unhealthy according to the WHO recommendations (WHO 2011b), preventive 

practices, such as boiling water, washing fresh produce and hand washing, were discussed. Since 

it is well known that the municipal water supply is contaminated, households rely on purchasing 
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bottled water for drinking and sometimes cooking uses. During field season one, we also 

collected household drinking water samples and tested for E. coli and total coliforms.     

Round One Blood Spots: Blood samples were collected during visit one and three, after 

approximately ten days, from each child. A minimally invasive 50μL blood sample was obtained 

by pricking the finger with a sterile, disposable microlancet (pin prick). This typically resulted in 

three to five drops of blood. One drop was analyzed for hemoglobin levels in the field using the 

HemoCue HB201 point-of-care device (HemoCue Cypress,CA), which indicated iron status. The 

hemoglobin results were immediately given to the mothers. If iron status was low we referred 

them to the free public hospital. The rest of the drops were stored and allowed to dry on protein 

saver cards (Whatman 903) (McDade et al. 2007). Once dried, the cards were sealed in plastic 

bags with packets to absorb moisture and stored in the freezers at the Galápagos Science Center 

until assayed.  

Fecal Sample: Each mother was given oral and written detailed instructions for the 

collection of the fecal sample, and a sample collection kit including gloves, a paper plate, a 

spatula, a small container similar to ones given at the doctor’s office and a sealed ziptop bag to 

store the sample. Mothers were asked to collect a small sample of feces (400mg, roughly the size 

of a vitamin) and store it in the provided containers inside their freezers. If freezers were not 

available or they did not feel comfortable, we provided them with insulted bags and ice-packs. 

We checked with the households each day following visit one to pick up the sample. Once we 

collected the fecal samples, they were then stored in freezers at the Galápagos Science Center 

until transported to UNC for analysis after the completion of fieldwork.   

Urine Sample: Based on the high rates of reported urine tract infections during field 

season one, we decided to collect urine samples during field season two for urinalysis. Each 
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mother was given oral and written instructions for the collection of urine for both themselves and 

their child, including a sample collection kit with gloves, hygiene wipes, sealed bags and urine 

collection containers similar to those given at the doctor’s office. They were asked to collect the 

required amount specified on the container the following morning. The sealed container was then 

stored in their refrigerator or provided insulated cooler until it was picked up later that day.  

Anthropometric Assessment: Height, weight, waist and mid-upper arm circumference 

and triceps, subscapular and suprailiac skinfolds were taken from each child following 

standardized methods (WHO 1995). Only height and weight were taken from mothers. Portable 

equipment was used including a SECA stadiometer, an electronic scale, measuring tape and 

Lange skinfold calipers. These results were given to the mothers or caregivers immediately.   

Blood Pressure Assessment: Blood pressure assessments were taken from mothers using 

an automated Omron wrist monitor.  

5.3. Visit Two 

The following day, we went by each household interviewed the previous day to check 

whether they had collected the fecal and urine samples. If ready, we collected them immediately 

and if not, we continued to check with them daily to arrange for their pickup.  

5.4. Visit Three   

After approximately ten days from the visit one, we returned to each household to collect 

the second round of blood spots. Mothers were again given the one-week symptom questionnaire 

to account for illness between blood spot collections. The results from the household water 

quality test were given to the mothers. To assess variation in water quality over time, we 

collected and analyzed an additional household tap water sample during field season two.  
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5.5. Follow-Up Study 

 During the following field season after recruitment and baseline interviews (including 

visits one to three), we attempted to follow-up with each household to collect a second round of 

anthropometrics to determine linear growth and weight gains, and collect additional blood spots. 

Growth and weight gain results were given to the mothers immediately. One final household tap 

water sample was collected and analyzed to assess for long-term changes in water quality. 

Follow-up data was collected for a total of 71 children and 50 mothers. 

5.6. Key Study Measures 

Household Water Quality: Escherichia coli levels are a highly reliable of measures of 

fecal contamination of water sources and are an indicator of inadequate sanitation (Edberg et al. 

2000). Household water samples were tested for the presence and most probable number (MPN) 

of E. coli and total coliforms using the culture-based IDEXX Colilert test (IDEXX Laboratories, 

Inc. Westbrook, Maine) at the Galápagos Science Center (Cochran 1950; Eckner 1998). 

Reagents were added to each sample and sealed in the IDEXX counting tray. After incubation, 

the sample was fluoresced to obtain the upper and lower bacterial concentrations using the 

Quanti-tray 2000’s most probable number methodology (IDEXX Laboratories, Inc. Westbrook, 

MA). Based on the WHO’s recommendations, household water samples were categorized based 

on potential health risk (Havelaar et al. 2001; WHO 2011b) and were used as the primary 

pathogenic predictor variable in Pilot Aim 2 and Dissertation Papers 2 and 3. 

Blood Immune Biomarkers: Three rounds of blood spots were assayed for CRP and 

EndoCAb levels using double sandwich enzyme-linked immunosorbent assay (ELISA) 

technique at the Galápagos Science Center’s microbiology laboratory. Eluted blood spots were 

analyzed using Quantikine’s Human High Sensitivity C-Reactive Protein ELISA (R&D Systems, 
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Inc. Minneapolis, MN) (McDade et al. 2004) and Hycult’s EndoCAb IgG ELISA kit (Hycult 

Biotech Inc. Plymouth, PA) (Barclay 1995). CRP cut-points for low (<1 mg/L), moderate (1 to 3 

mg/L) and elevated inflammation (3 to 10 mg/L) are taken from clinical practice (Pearson et al. 

2003; Ridker 2003). Children with acute levels (>10 mg/L) are considered to have infections. 

Since there are no standardized cut-points for endotoxemia using EndoCAb IgG levels, the 75th 

percentile expressed as median unit (MU) per mL was used as the reference point for high 

microbial translocation (Barclay 1995). These blood immune function measures were examined 

as indicators of immunodysregulation for both the Pilot and Dissertation Aims, along with the 

primary outcomes in all three Dissertation Papers.  

 Iron Status: Hemoglobin status indicating iron deficiency was determined using the 

WHO age-specific cut-points for children women (WHO 2011a). Iron deficiency was used as a 

dietary predictor of nutritional deficiency for Pilot Aim 2. 

Gut Microbial Composition: DNA was isolated using protocols from the Qiagen 

BioRobot Universal (Qiagen, Valencia, CA) and was quantified using Quant-iTTM PicoGreen® 

dsRNA Reagent (Molecular Probes, Life Technologies division of Thermo Fisher Scientific, 

Waltham, MA). A Roche GS FLX Titanium instrument was used to perform 16S rDNA bacterial 

amplicon pyrosequencing (Microbiome Core Facility, UNC). The QIIME pipeline (Caporaso et 

al. 2010) was used to analyze sequencing data and assign operational taxonomic units (OTUs). 

Gut health was assessed by exploring each taxonomic level to identify relevant microbial 

compositions related to pathogenic and obesogenic risk factors, as well as influence on immune 

function in both Pilot Aims and Dissertation Papers. We chose to analyze microbial 

compositions at the family level because it allows for a broad array of bacterial types without 
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being too extensive, and is the primary outcome used in Paper 3- Gut Microbiota Mediate 

Immunostimulation.  

Urine Immune Biomarker: Urinalysis was performed on the urine samples at the 

Galápagos Science Center using URS-11 reagent strips (Cortez Diagnostics, Inc., Calabasas, 

CA) to determine levels of leukocytes, nitrates and blood indicative of urinary tract infections. 

These urinary immune function measures were used to complement blood immune function 

measures for outcomes and to adjust for infection in the Pilot and Dissertation Aims.  

Adiposity and Growth: Body mass index (BMI) was calculated using 

mass(kg)/height(m)². Sex- and age- specific z-scores were calculated using the WHO reference 

data and cut-points for comparison across sex and age (de Onis and Lobstein 2010; de Onis et al. 

2006; WHO 2006). Height-for-age z-scores were used to assess linear growth restrictions. BMI-

for-age, skinfold and waist circumference z-scores were used to assess adiposity. These variables 

were examined as the main adiposity and linear growth outcomes for Pilot Aims and Dissertation 

Aim 2. Obesity was defined by a BMI z-score over 2 and used to adjust models in Papers 2 and 

3, and used as the sensitivity and specificity predictor in Paper 1- Measuring Chronic Low-Grade 

Inflammation.   

Blood Pressure: Diastolic and systolic blood pressure was determined for each mother 

and risk of hypertension was evaluated using American Heart Association’s cut-points (AHA 

2017). These measures were explored to determine chronic disease risk associated with 

obesogenic factors among women in the Pilot Aims. 

Household Sanitation: Using data from mothers’ interviews, household sanitation 

measures were created, including housing type, drinking water source, household water use, 
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water treatment, bathroom type, trash disposal and the presence of domesticated animals near the 

household. These variables were explored and used as pathogenic predictors in Pilot Aim 2.  

Household Socio-Demographics: Data from mothers’ interviews were used to create 

household socio-demographics variables, including parental marital status, family size, mother’s 

education, parental employment, home ownership, land ownership elsewhere on the island, 

household assets, co-residence of grandparents, and smoking in the household. These measures 

were used as social predictors in Pilot Aim 2. 

Child’s Demographics: Age, sex, ethnicity, birth weight, delivery mode, birth place, 

breastfeeding practices, formula use, introduction to solid foods, and school attendance were 

created from mothers’ interviews and used as the demographic predictors in Pilot Aim 2. Age 

and sex variables were used to adjust all aims and papers. 

Child’s Hygiene: Data from mothers’ interviews were used to create hygiene variables, 

including the toilet use, diaper use, bathing water source, oral hygiene practices, hand washing 

practices, frequency of swimming in the ocean, last deworming and interactions with animals. 

These variables were used as pathogenic predictors in Pilot Aim 2.  

Infectious Symptoms: Infectious symptom measures were created using data from the 

two one-week symptom histories taken during visits one and three. The presence of diarrhea, 

fever, vomiting, cough, cold, urinary tract infection, skin rash, allergies and asthma were used as 

pathogenic predictors in Pilot Aim 2. If mothers reported that a child experienced diarrhea, 

vomiting and fever during either visits one or three, the child was considered to have infectious 

symptoms used to adjust and stratify models in Papers 2 and 3.   

Dietary Composition: Data from food frequency questionnaires administered during 

field season two were used to calculate reported average consumption of high-fiber foods, sugary 
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drinks, dairy products, fried foods and other local unhealthy food items. Consumption was 

categorized into high and low quantities and used as the main dietary predictor for Pilot Aim 2. 

Alternative to dietary intake, food preferences for field season two and household staple food 

items for the entire sample were explored as dietary predictors.   
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CHAPTER 6. PAPER 1- MEASURING CHRONIC LOW GRADE INFLAMMATION 

Can cross-sectional measures of C-reactive protein adequately estimate chronic, low-grade 

inflammation in populations living in dual burden environments? 

6.1. Introduction 

C-reactive protein (CRP) is an acute phase protein of the inflammatory immune response 

with the primary purpose of responding to infection or injury. Short-term elevations in CRP over 

10mg/L indicate clinical infections and can occur within hours and remain elevated until the 

infection is cleared or treated (Grønn et al. 1986). The production of CRP is stimulated by the 

pro-inflammatory cytokine interleukin-6 (Il-6) and can rise to 5mg/L six hours after pathogenic 

exposure, peaking at 48 hours (Pepys and Hirschfield 2003). CRP has a half-life of 19 hours and 

is cleared at a constant rate regardless of infection type (Vigushin et al. 1993). Thus the acute 

phase response to non-specific infection results in high variability of CRP levels within an 

individual during the active infection and resolution period.  

Moderately elevated, stable levels of high-sensitivity CRP from 3-10mg/L, on the other 

hand, indicate chronic, low-grade inflammation and are highly correlated with increased risk of 

cardiovascular disease and stroke among adults (Ridker 2007; Rifai and Ridker 2001). Even 

among children, moderate elevations of CRP are related to indicators of cardiovascular health 

such as HDL cholesterol and systolic blood pressure (Cook et al. 2000). In settings with low 

infectious disease burdens, individual CRP levels are considered stable over time (Macy et al. 

1997; Ockene et al. 2001; Platz et al. 2010) and the principle driver of moderate elevations is 

adiposity (Park et al. 2005), not infection. Consequently, intra-individual variability due to 

infection is rarely examined or measured in epidemiology studies of chronic inflammation, 
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obesity and cardiovascular disease risk in high income countries. In 2003, the Centers for 

Disease Control and Prevention (CDC) and the American Heart Association (AHA) 

recommended that in order to use CRP as an indicator of cardiovascular disease risk in the 

clinical setting two measures should be taken approximately two weeks apart and averaged, with 

retesting of levels over 10mg/L (Pearson et al. 2003). Despite these recommendations, the 

common practice in population studies is to use a single measure of CRP and exclude individuals 

over the 10mg/L acute cut-point (e.g. National Health and Nutrition Examination Survey (Ford 

et al. 2003)), possibly due to logistical and financial limitations. The biologic variability of CRP, 

especially in relation to infection, is a crucial factor influencing the validity of its use as an 

indicator of chronic, low-grade inflammation and needs further investigation (Braga and 

Panteghini 2012).  

The purpose of this paper is to assess whether the standard use of a single CRP measure 

is sufficient, or if multiple measures used to account for intra-individual variability are needed to 

adequately capture chronic low-grade inflammation among populations living in high pathogenic 

environments coupled with overnutrition, conditions that are increasingly common in low and 

middle income countries. Using the clinical cut-point of CRP values over 10mg/L from a single 

measure to indicate individuals experiencing infection commonly used in high income countries 

could be problematic in populations with greater infectious disease burdens (McDade et al. 

2012a). With higher infection rates, individuals are more likely to exhibit elevated CRP levels 

with a single measure taken during active infection (>10mg/L) or the inflammatory resolution 

phase (<10mg/L). This methodology may overestimate chronic, low-grade inflammation and risk 

of cardiovascular disease at the population level. In these environments, longitudinal measures 

may be needed to determine intra-individual variability in response to infection.  



 

49 

Using sensitivity and specificity analyses in relation to obesity, this study examines the 

accuracy of four different methods for excluding individuals with probable infections when 

estimating moderately elevated inflammation (Table 6.1). Levels of inflammation are measured 

using two CRP measurements taken at baseline (time-1) and again after approximately ten days 

(time-2) in 113 women and 159 children from Galápagos, Ecuador. The first method examined is 

common in epidemiology and uses the cross-sectional measures at time-1 and time-2, separately, 

excluding individuals over the clinical cut-point of 10mg/L for acute infection. The next method 

is also taken from population studies and uses a single measure of CRP at time-1 and discards 

observations with self-reported infectious symptoms. The third method is longitudinal and 

calculates the mean of both time points, removing values over 10mg/L as suggested by the CDC 

and AHA for clinical use. The last method is unique to this study and also utilizes the mean of 

both time points, but excludes individuals with a change in CRP of more than 3mg/L between 

time points. The receiver operator characteristic (ROC) curves and area under the curves are 

compared for each method to determine their accuracy in predicting obesity as an indicator of 

cardiovascular disease risk. The clinical range of 3-10mg/L is widely used for indicating 

moderate inflammation associated with high risk and the more relaxed range of 1-10mg/L is used 

to include intermediate risk (Ridker 2007). This study compares the sensitivity, specificity and 

percent correctly classified for all methods using these two ranges to identify which combination 

of method and range is more precise in excluding elevations related to infection and estimating 

chronic, low-grade inflammation in the sample. Since adults and children have distinct patterns 

of risk for obesity and infectious disease (DeBoer et al. 2012), the four methods will be evaluated 

separately for women and children. 
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Contrary to the CDC and AHA recommendation of using the mean of two measures 

excluding values over 10mg/L (Pearson et al. 2003) or other common practices using single 

measures, we hypothesize that the mean CRP value of the two time points excluding high change 

over 3mg/L will be more precise in identifying and removing elevated CRP levels due to 

infections. We expect that excluding individuals with high CRP change will better capture those 

undergoing an acute phase response to infection, compared to excluding those over the 10mg/L 

cut-point. Individuals recovering from an acute infection in the resolution phase may still have 

elevated levels under the 10mg/L cut-point. This study proposes that excluding high change will 

provide a more accurate measure of moderately elevated CRP, inferring the prevalence of 

chronic, low-grade inflammation in a dual burden environment. Similar to developing countries, 

residents of Galápagos are undergoing rapid nutrition transition resulting in increased rates of 

obesity (Freire et al. 2014a), alongside high infectious disease burdens caused by poor water 

quality and inadequate sanitation infrastructures (Gerhard et al. 2016; Page et al. 2013; Walsh et 

al. 2010). This study is the first to estimate chronic, low-grade inflammation among women and 

children in Galápagos, Ecuador.  

6.2. Sample and Data Collection 

Data are drawn from an anthropological study investigating the impact of early life 

nutritional and disease environments on immune function and intestinal health among residents 

of the island of San Cristóbal. One hundred and thirteen women aged 17 to 57 and their 159 

children aged two to ten were sampled. Mothers were recruited door-to-door from 12 

neighborhoods in the urban area of Puerto Baquerizo Moreno until neighborhood saturation was 

met. Interviews were conducted during two field seasons between June 2013 and May 2014 to 

obtain demographic information, perform anthropometric assessments and collect blood samples. 
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This research received human subject ethics approval by the University of North Carolina, 

Chapel Hill (UNC) and Universidad de San Francisco de Quito, Ecuador.  

6.3. Measures 

Obesity: Women and children were weighed and their standing height was measured 

following standard protocols (WHO 1995) using a portable scale and stadiometer during the 

baseline visit. Body mass index (BMI) was calculated using weight(kg)/height(m)². The World 

Health Organization’s (WHO) growth references were used to calculate BMI-for-age z-scores 

for children (de Onis et al. 2007; WHO 2006). Obesity was defined as a BMI-for-age z-scores of 

two or above for children and a BMI of 30 or greater for women.      

CRP Assays: Two blood samples were taken from each participant. One at baseline and 

a second after approximately ten days. A minimally-invasive finger-stick was used to draw blood 

spots, which were collected on protein-saver card (Whatman 903), allowed to dry and then stored 

in freezers for subsequent laboratory analysis. Dried blood spot methods for CRP have been 

previously validated and found to be relatively reliable and accurate (McDade et al. 2007). Each 

sample was measured for high-sensitivity C-reactive protein (CRP) levels, as an indicator of 

inflammation, using a double sandwich enzyme-linked immunosorbent assay (Quantikine CRP 

immunoassay, R&D Systems, Inc. Minneapolis, MN). The detectable range of CRP was .003 to 

13.030mg/L, with an inter-assay coefficient of variation of 10%. Assays were performed in the 

microbiology laboratory at the Galápagos Science Center, San Cristóbal, Ecuador. 

Measures of Chronic, Low-Grade Inflammation: Four methods for detecting chronic, 

low-grade inflammation using cross-sectional and longitudinal CRP values were identified a 

priori (Table 6.1). Measures 1 and 2 use the first method of removing values over 10mg/L 

analyzed from cross-sectional collection at time-1 and time-2, respectively. Measure 3 also uses 
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the cross-sectional levels of CRP at time-1 and discards observations where participants reported 

having at least one infectious symptoms of diarrhea, fever or vomiting within the last week. 

Measure 4 is longitudinal and uses the mean values of both time points, excluding single values 

over 10mg/L and replacing the mean with the remaining value. Finally, measure 5 uses the mean 

of two time points excluding individuals when the difference between the time points is greater 

than or equal to 3mg/L. Using the previously defined ranges of 3-10mg/L for high risk of 

cardiovascular disease and also a more relaxed range of 1-10mg/L to include intermediate risk 

(Pearson et al. 2003; Ridker 2007), the prevalence of moderately elevated CRP is calculated 

using each measure for women and children, separately.  

6.4. Statistical Analyses 

To evaluate the accuracy of each of the five measures of moderately elevated CRP for 

distinguishing between normal and obese individuals based on the four different methods of 

excluding individuals with potential infection, we analyze the receiver operator characteristic 

(ROC) curves for women and children. Sensitivity and specificity analyses using ROC curves 

can evaluate the diagnostic abilities of an indicator variable to predict an outcome (Florkowski 

2008). Sensitivity is calculated as true positives/(true positives + false negatives) of the indicator 

at a given cut-point in predicting the outcome, and represents the rate of true positives. For 

example, the sensitivity in this analysis provides the probability that a given cut-point of CRP 

will correctly identify obese individuals, when the individuals are in fact obese. Specificity 

represents the rate of true negatives and is calculated as true negatives/(true negatives + false 

positives). In this study, specificity provides the probability that CRP at a given cut-point will 

predict that an individual is not obese, when they actually are not obese. ROC curves graphically 

display the relationship between sensitivity and 1-specificity (rate of false positives) of an 
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indicator variable’s ability to predict an outcome for all possible cut-point values of that 

indicator. The area under the curve provides a measure of the indicator’s ability to discriminate 

between the presence and absence of the outcome and represents the average true positive rate 

for the distribution of all cut-points.  

First, non-parametric estimates of the ROC curves were examined for each measure 

(Table 6.1) in women and children, regardless of cut-points. To test the hypothesis that the 

measure 5, mean excluding high change, is a more precise estimation of moderately elevated 

CRP excluding elevated levels of infection, the area under the ROC curve was calculated and we 

compared each measures’ ability to discriminate between obese and normal individuals. The 

estimated areas under the curve were determined to be significant at a 95% confidence level and 

differences were evaluated using test of equality for different subsamples (Cleves 2002). Next, 

each measure of moderately elevated CRP was evaluated for sensitivity, specificity, and the 

percent correctly identified using both the 3-10mg/L and 1-10mg/L ranges. Measures in relation 

to specific ranges were thought to be sufficient in estimating chronic, low-grade inflammation if 

they exhibited 50% sensitivity and 70% specificity, with over 60% correctly classified. A higher 

level of specificity was chosen to lessen the chance of incorrectly identifying ambiguous CRP 

levels as elevated in relation to obesity.   

6.5. Results 

The mean age of women was 30 years and approximately 31% were obese. Among 

children aged two to ten, 21% of the 81 boys and 15% of the 78 girls were obese. Figures 6.1 and 

6.2 display the mean and intra-individual ranges of CRP levels between the two time points for 

women and children, respectively. Each dot represents the mean value between time points, and 

are arranged by rank order of mean CRP level. Each bar displays the range of variation for 
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individuals between time points. Grey bars indicate that the individual experienced a change in 

CRP levels over 3mg/L, suggested by measure 5. There was considerable variation in means and 

intra-individual variability in both children and women. Dots falling below the 1mg/L or 3mg/L 

cut-points with short bars indicate stable, low CRP levels suggesting no increased risk of 

cardiovascular disease associated with chronic inflammation.  

Approximately one quarter of the 159 children demonstrated high variability between the 

time points (see the right side of the distribution in Figure 6.2), indicating an acute response to 

infection or injury. Although there was more inter-individual variability between women, there 

were a considerable number of women who experienced a high range of variation between time 

points. Among both women and children, some individuals who experienced high variability, 

indicating elevations due to infection, had both CRP levels fall below the 10mg/L clinical cut 

point. If using a cross-sectional method described in measures 1 and 2, or the mean measure 4 

excluding level over 10mg/L, these individuals would be considered to have moderately elevated 

CRP levels with high risk for cardiovascular disease.     

 The areas under the ROC curve are listed for all measures among women and children in 

Table 6.2. Measure 5, mean excluding high change, had these highest ROC areas for both 

women and children, indicating that this measure provided the greatest level of discrimination 

between normal and obese individuals compared to other measures. The average rate of true 

positives for this measure was 70% among women and 80% among children. The cross-sectional 

measures 1 and 2 discarding CRP levels over 10mg/L provided the second largest areas under 

the ROC curve for women at 66% and children at 77%. Yet in children, measure 1 had the 

lowest discriminating ability, and in women, measure 2 tied for the lowest area under the curve. 
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In comparing areas under the ROC curve for each measure, we found no statistical differences 

between measures for women or children.  

 Tables 6.3 and 6.4 report the sensitivity, specificity and percent correctly classified of 

each measure using the 3-10mg/L and 1-10mg/L ranges in women and children, respectively. 

Among women, no measure using either range met our criteria of 50% sensitivity, 70% 

specificity and 60% correctly classified. Although the specificity and percent correctly classified 

for the 3-10mg/L range was sufficient for measure 2, cross-sectional at time-2, and measure 5, 

mean excluding high change, sensitivity was low at 28% and 18%, respectively. For the 1-

10mg/L range for all measures in women, the sensitivity was higher, which lowered specificity. 

For measure 5, mean excluding high change, the sensitivity and percent correctly classified met 

the criteria, yet the specificity was only 52%.  

  Among children, the measures using the range of 3-10mg/L to indicate moderately 

elevated CRP exhibited unbalanced sensitivity and specificity. Sensitivity levels were all under 

14% while specificity levels were over 91%, and the percent correctly classified were also high. 

The range of 1-10mg/L yielded greater balance between sensitivity and specificity. Both 

longitudinal measures met our criteria for estimating moderately elevated CRP. Measure 4, mean 

excluding levels over 10mg/L, demonstrated 55% sensitivity, 80% specificity and 74% correctly 

classified, whereas measure 5, mean excluding high change, exhibited 52% sensitivity, 88% 

specificity and 81% correctly classified.  

According to measure 5, mean excluding high change, with the range of 1-10mg/L, the 

estimated prevalence of moderately elevated CRP in children from Galápagos was 20% 

compared to 24% using measure 2, cross-sectional CRP at time-2. Although no measures among 

women satisfied our selection criteria for adequate sensitivity-specificity balance, measure 2 
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using the 3-10mg/L range provided the closest specifications. Using this measure and range, the 

estimated prevalence of moderately elevated CRP was 24%.    

6.6. Discussion 

Women and children living in Galápagos demonstrated high levels of inter- and intra-

individual variability in CRP. Such intra-individual variability over ten days, especially among 

children, is likely caused by an acute phase response to infection or injury. This pattern was 

expected given the high pathogenic environment on San Cristóbal associated with poor water 

and inadequate sanitation infrastructures (Gerhard et al. 2016), and has also been demonstrated 

in an adult indigenous population in the Ecuadorian Amazon (McDade et al. 2012a). This pattern 

of variability is in contrast to studies in the US and other high income countries, where CRP 

levels are typically considered to be stable over time and where intra-individual variation is 

minimal (Chen 2009; Macy et al. 1997; Ockene et al. 2001; Parrinello et al. 2015). Yet, unlike 

the indigenous Amazonian population and more similar to the US population, approximately 

24% of women and 20-24% children from the Galápagos demonstrated some evidence of 

chronic, low-grade inflammation based on sensitivity-specificity analyses of measures and 

ranges used in this study. 

We found that the longitudinal method of excluding observations of high change resulted 

in the greatest area under the curve for both women and children compared to other methods. 

These findings support our hypothesis that this measure of excluding high CRP change was more 

precise than the other measures at identifying and discarding elevations due to infection when 

estimating moderately elevated CRP. However, we found no statistical differences between the 

estimated area under the curve for any measures in women or children. These results suggest 

that, while the method of using the mean excluding high change provides more discriminating 
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abilities in regards to obesity, the other measurements may be sufficient at estimating chronic, 

low-grade inflammation at a given cut-point. Among cross-sectional measures, time-2 had the 

greatest area under the curve in women, whereas time-1 had the greatest area under the curve in 

children. This may suggest that while not statistically different, using a single measure of CRP at 

baseline to estimate moderately elevated inflammation may not be the most reliable.  

The irregularity of using cross-sectional measures is demonstrated by our findings that a 

considerable proportion of women exhibited levels above and below the 3mg/L cut point 

between time points (Figures 6.1 and 6.2). Evidence from the multi-ethnic study of 

atherosclerosis (MESA) also demonstrated significant intra-individual variability in adult CRP 

levels, as compared to measures of total cholesterol and non-HDL cholesterol (DeGoma et al. 

2012). While excluding individuals with levels over 10mg/L or a history of infection, asthma and 

other inflammatory disorders, 38% of the variance in CRP was attributed to intra-individual 

factors between three time points at baseline, 24 and 48 months. More concerning is the finding 

that 69% of adults in the high-risk 3-10mg/L range at baseline fell to below 3mg/L at follow-up 

time points, signifying that a substantial proportion considered high-risk at baseline might have 

had moderately elevated levels caused by infection or injury, unrelated to obesity or risk of 

cardiovascular disease.  

In another study of CRP variability over a four week period, high variability related to 

high infectious disease burdens was found among the indigenous Shuar living in the Ecuadorian 

Amazon (McDade et al. 2012a). Although the study did not exclude individuals over 10mg/L, 

approximately 95% of the variance in the four CRP measures was due to characteristics within 

the individual that change over time, such as having an infection. While 35% of individuals who 

had CRP levels in the 3-10mg/L range at one measure, no individual demonstrated a repeated 
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measure in the high risk range, indicating that those individuals were not experiencing chronic, 

low-grade inflammation as would have been reported using cross-sectional measures. Using 

single measures to assess moderately elevated CRP, even in low infectious disease burden 

countries, may be capturing individuals undergoing an acute phase response due to infection and 

over estimating the prevalence of chronic, low-grade inflammation.  

We found that no measure in combination with either the clinical 3-10mg/L or the more 

relax 1-10mg/L ranges met our sensitivity and specificity criteria among women. Using the 

clinical range, levels of sensitivity were too low, and conversely using the relaxed range led to 

low levels of specificity. When sensitivity is low, the measure is weak at correctly identifying 

individuals without the condition, and when specificity is low, the measure is weak at correctly 

identifying individuals with the condition. To provide a more conservative estimate given the 

condition of high rates of infections, we chose to limit false positives and allow for lower 

sensitivity using the clinical range. The cross-sectional measure at time-2 provided the highest 

level of sensitivity while meeting our specifications for specificity and the percent correctly 

classified. Research in China has shown that both pathogenic and obesogenic factors 

independently increased relative risk of moderately elevated CRP and acute CRP separately in 

adults (Thompson et al. 2013). This suggests that accurate estimation of the prevalence of 

chronic, low-grade inflammation using cross-sectional measures among populations living in 

conditions of the dual burden environment, with high infectious disease burdens and 

overnutrition, presents even more challenges in attempting to increase specificity.  

Similarly among the indigenous Tsimané population in Bolivia, 50% of adults over 40 

years fell within the 3-10mg/L range, suggesting a high percentage of individuals were at risk of 

cardiovascular disease (Gurven et al. 2009). However, only 4% adults had hypertension 
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indicating the measure had a high rate of false positives. Furthermore, 23% were over the 

10mg/L CRP cut-point for clinical infection, 17% had elevated white blood cell counts and 82% 

had elevated erythrocyte sedimentation. This demonstrates that high levels of immune activation 

due to infection, and not chronic, low-grade inflammation driven by obesity caused the elevated 

CRP levels. While less evident in rural Ghana, 12% of older females and 19% of older males had 

moderately elevated CRP; however, with a 78% malaria infection rate among the population, it is 

likely that these elevations are not associated with cardiovascular disease risk (Koopman et al. 

2012). Taken with the results of this research, these studies demonstrate the necessity of using 

repeated measures of CRP to assess for acute changes in highly pathogenic environments to 

more accurately identify risk of chronic, low-grade inflammation and prevent overestimations.  

Among children, both longitudinal measures using the mean between time points and 

discarding values over 10mg/L or values with a high change of 3mg/L were found to be 

sufficient measures using 1-10mg/L range. This may be due to the fact that the distribution of 

high intra-individual variability among children was more consistent, with fewer children 

experiencing intermediate levels of variability and overall less moderately elevated CRP levels 

associated with obesity. This reduced the probability of misclassifying ambiguously elevated 

CRP levels as being related to obesity, thus allowing for higher levels of specificity. Although 

both longitudinal measures fit our sensitivity and specificity criteria, the method using the mean 

between time points and discarding high change demonstrated a 7% higher level of individuals 

correctly classified, suggesting that it provides a more precise estimate.  

Using single measures to assess for moderately elevated CRP indicating chronic, low-

grade inflammation in epidemiology studies may be adequate in populations with previously 

demonstrated low intra-individual variability. However in populations experiencing a high 
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infectious disease burden typical of low and middle income countries, it is methodologically 

challenging because of high levels intra-individual variability due to pathogenic exposure. Even 

when using longitudinal measures of CRP in this study, some women and children experiencing 

an acute reaction to infections identified by high variability did not have at least one measure 

over the 10mg/L clinical cut-point. According to the CDC and AHA recommendation of 

calculating the mean of repeated measures excluding acute levels over 10mg/L, both measures 

would have been used, leading to an overestimated mean value. If that mean value was within 

the 3-10mg/L range, as it was for some women in this study, it would result in a higher 

prevalence of chronic, low-grade inflammation.   

In recognition of this issue of overestimation among populations with high disease 

burdens, we suggest that using the mean values of repeated measures excluding high change of 

over 3mg/L may better capture and exclude individuals experiencing acute infectious reactions. 

We hypothesized that this measure would have the greatest area under the ROC curve compared 

to all other measures since it is more robust in excluding individuals with possible acute 

infections. Thus, the individuals captured in the category may more accurately reflect those with 

obesity-associated elevations. Surprisingly, we did not find any statistically significant 

differences between the areas under the ROC curves calculated for each measure. This suggest 

that although cross-sectional measure may not provide as reliable estimates as longitudinal 

measures, they may be sufficient given a specific cut-point. However among women in 

Galápagos, the use of a single measure while using the 3-10mg/L clinical range for moderately 

elevated CRP was not sufficient in predicting chronic, low-grade inflammation associated with 

cardiovascular disease risk.  
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This study was limited by a number of factors. First, we assess the accuracy of each 

measure in its ability to discriminate between normal and obese individuals. This assumes that 

all chronic, low-grade inflammation indicating elevated cardiovascular risk is exclusively 

associated with elevations due to obesity. Although excess adiposity provides a site for increased 

production of the pro-inflammatory cytokine IL-6 (Després 2012), chronic elevations of CRP 

due to low-grade infections may also contribute to the inflammatory etiology of heart disease. 

This study would be strengthen by testing the diagnostic capabilities of our measures in 

predicting other indicators of cardiovascular disease risk, such as hypertension and cholesterol 

levels (Hage 2014; Ockene et al. 2001). In addition to examining intra-individual variability to 

identify CRP elevations caused by infections, the examination of other pro-inflammatory 

cytokines and immune function measures would have increased our ability to detect individuals 

undergoing immunostimulation due to pathogenic exposures. Similarly, our study was limited to 

two repeated measures of CRP over approximately ten days, which may not have fully captured 

all elevations due to infection considering the half-life of CRP. Lastly, it is unclear whether our 

findings can be generalized to other dual burden populations or other areas of Ecuador. More 

research is needed to assess the functional ability of using cross-sectional and repeated measures 

of CRP to estimate chronic, low-grade inflammation in high infectious disease burden 

populations. 

6.7. Conclusion 

To our knowledge, this study was the first to assess inter-individual variation in CRP 

levels among women and children from a population experiencing a dual burden of increasing 

rates of obesity and cardiovascular disease, coupled with persistently high rates of infections. 

Our findings indicate a moderate presence of both acutely elevated inflammation due to 
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infections and chronic, low-grade inflammation in children and women in Galápagos, Ecuador. 

Further research is needed to incorporate additional inflammatory cytokines and specific 

indicators of cardiovascular disease risk to test the predictive strengthens of our measures of 

moderately elevated CRP. However, the significance of these findings caution that the common 

use of cross-sectional measures and the recommendation by the CDC and AHA for using the 

mean values and excluding values >10mg/L may lead to overestimated prevalence of chronic, 

low-grade inflammation in adults and children that are not associated with obesity and 

cardiovascular disease risk. This is especially relevant among populations with high infectious 

disease burdens. To alleviate this problem, we suggest using the mean of two CRP values, 

excluding those with a change over 3mg/L, when estimating the prevalence of moderately 

elevated CRP levels.  
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Figure 6.1 Mean and range of variation of CRP between time-1 and time-2 for women. 
 

 
Figure 6.2 Mean and range of variation of CRP between time-1 and time-2 for children. 
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Table 6.1 Measures of moderately elevated CRP using four different methods of discarding 

Table 6.2 Area under the ROC curve for all measures in women and children 

Women Children 

# Measure n ROC area 95%CI n ROC area 95%CI 

1 Time-1 106 0.65 (0.55-0.75) 153 0.767 (0.67-0.86) 

2 Time-2 109 0.661 (0.56-0.77) 157 0.728 (0.64-0.82) 

3 No infectious symptoms 93 0.649 (0.53-0.75) 102 0.745 (0.62-0.86) 

4 Mean 112 0.649 (0.55-0.75) 159 0.74 (0.65-0.83) 

5 Mean excluding high 

change 
90 0.695 (0.59-0.80) 137 0.8 (0.71-0.89) 

n= total observations 

 n= total observations; ROC= receiver operator characteristic 

# Measures Definition 

1 Time-1 Cross-sectional measure at time-1, discarding values >10mg/L 

2 Time-2 Cross-sectional measure at time-2, discarding values >10mg/L 

3 No infectious 

symptoms 

Cross-sectional measure at time-1, discarding observations with 

self-reported infectious symptoms 

4 Mean Longitudinal measure of the mean values, discarding values 

>10mg/L

5 Mean excluding high 

change 

Longitudinal measure of mean values, discarding measures

experiencing a change of +/- 3mg/L or values >10mg/L
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CHAPTER 7. PAPER 2- E. COLI EXPOSURE AND IMMUNE FUNCTION 

Protective effects of E. coli exposure on immunostimulation associated with environmental 

enteric dysfunction in children from Galapágos, Ecuador 

7.1. Introduction 

A fundamental shift is occurring within epidemiology, replacing diarrheal disease and 

pathogen-centered explanations of malnutrition and stunting among infants in the developing 

world. Now, a more complex understanding of the relationship between intestinal immune health 

and patterns of growth and development is emerging. Early works hypothesized that chronic 

immunostimulation, rather than episodes of diarrhea or the suppression of nutrient absorption 

caused by gastrointestinal infection, was responsible for stunting in resource poor environments 

(Campbell et al. 2003a; Lunn et al. 1993; Solomons et al. 1993). Environmental enteric 

dysfunction (EED), previously referred to as environmental enteropathy, is characterized by 

chronic, systemic immune activation caused by intestinal inflammation and increased 

permeability, allowing for the translocation of gram-negative bacteria across the intestinal barrier 

into the blood stream initiating endotoxemia (Watanabe and Petri 2016). Typical in low and 

middle income countries, EED is attributed to repeated fecal pathogen exposures caused by poor, 

unsanitary environments with limited access to clean water (Humphrey 2009; Korpe and Petri 

2012). However to this date, only a few observational studies have investigated risk factors or 

effects of poor environmental conditions on EED (e.g. George et al. 2015b). We are aware of no 

empirical studies that have measured the direct effects of fecal pathogen exposure in 

contaminated water on immune activation related to EED.  
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While the majority of EED studies are conducted within low-resource settings with high 

pathogen environments notorious for unsafe drinking water, such as the Gambia (Campbell et al. 

2003b), Bangladesh (Mondal et al. 2012), and Nepal (Panter-Brick et al. 2009), the etiology in 

relation to water quality remains uncertain. EED is often cited as “poorly understood” with no 

definitive guidelines for identification or non-invasive diagnostic criteria (Korpe and Petri 2012; 

Kosek et al. 2014). Several studies from Bangladesh have linked EED with observational 

measures of household environmental conditions (Lin et al. 2013), contact with animals and 

visibly dirty hands of caregivers (George et al. 2015b), and geophagy (George et al. 2015a). 

Despite these findings, a hand-washing intervention targeted at mothers in Nepal failed to 

improve infant biomarker levels related to EED (Langford et al. 2011). Significant money and 

efforts have been invested into several large scale EED studies to determine its consequences on 

growth, vaccine response and cognitions (Acosta et al. 2014), and the impact of improvements in 

sanitation and hygiene practices (Humphrey et al. 2015). However, the hypothesis that EED is 

caused by habitual fecal pathogen exposures in water and food during childhood remains 

untested (Korpe and Petri 2012; Watanabe and Petri 2016).  

Our study is the first to systematically measure the effects of exposure to fecal pathogens, 

estimated by Escherichia coli concentrations in household tap water, on childhood 

immunostimulation associated with EED. Epidemiology theory suggests a positive association 

between high levels of E. coli exposure and increased risk of diarrhea and EED; we hypothesize 

the relationship is more complex. E. coli has a great amount of genetic diversity, and evidence 

from human studies reveals that both commensal and pathogenic strains can provide protection 

from other pathogenic overgrowth in the gut (Henker et al. 2007; Lodinová-Žádniková and 

Sonnenborn 1997; Valentiner-Branth et al. 2003). Early life microbial and pathogenic exposures 
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provide the necessary environmental inputs for proper immune development (MacGillivray and 

Kollmann 2014). Further, the evolutionary-based “old friends” hypothesis proposes that chronic 

exposure to mild or immunoregulatory pathogens help guide development and regulation of the 

immune system during infancy and childhood (Rook et al. 2014). We test the hypothesis that 

habitual, low-grade E. coli exposure from non-drinking water sources that does not cause 

diarrhea or infection, provides protection against immune activation of biomarkers for EED 

among children from Galapágos, Ecuador. Since the immune systems of children with 

gastrointestinal infections will already be active (Borgnolo et al. 1996), we propose that children 

with infections and lower levels of E. coli exposure will have the highest levels of 

immunostimulation.  

The Galapágos islands are an important research setting to investigate EED in 

relationship to water quality since access to clean water is a major public health concern (Page et 

al. 2013; Walsh et al. 2010). Residents rely on drinking bottled or treated water because of high 

levels of fecal contamination of the municipal water supply. A water quality study on San 

Cristóbal found that in 2013 90% of point-of-use sites were classified as having high or very 

high health risk from microbial contamination (Gerhard et al. 2016). In 2010, 90% of the island 

households received this piped water from the municipality, yet an additional 44% purchased 20-

liter bottles from two private companies on the island, 39% boiled their water, 8% treated it with 

chlorine, and 5% had their own filters for drinking use (CGREG and INEC 2010). Although 

residents have access to cleaner drinking water, they depend on the contaminated municipal 

water for daily hygiene behaviors and household sanitation practices (Guyot-Tephany et al. 

2013). E. coli exposures are still likely to occur with contact of fecal-contaminated water used 

for washing hands, brushing teeth, bathing, washing dishes and consuming raw fruits and 
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vegetables rinsed with unclean water. Consequently, the island’s public hospital reports high 

rates of water-borne illnesses and other gastrointestinal infections, with a 12% increase between 

2006 to 2009 (CGREG 2010a). Among children under five years, 8% experienced acute diarrhea 

and 53% experienced respiratory infections within two weeks of a health and living conditions 

survey in 2010 (CGREG and INEC 2010).  

7.2. Sample and Data Collection 

Data for this analysis are from a study investigating childhood intestinal health and 

immune function of mothers and children living on the island of San Cristóbal, Galapágos. 

Baseline data collection took place over two periods in June-August 2013 and January-May 

2014. Mothers of children aged two to ten years were recruited door-to-door in 12 barrios of the 

Galapágos capital town of Puerto Baquerizo Moreno, until saturation was met in each 

neighborhood. This analysis uses data from 118 mothers, along with their 166 children. Mothers 

were interviewed and detailed information was collected about their children’s birth, diet, illness 

history, and hygiene behaviors, along with household demographics, socioeconomic status, 

sanitation practices, and water use and availability. For each child participant, anthropometric 

assessments were performed and two blood spot samples were collected to measure biomarkers 

of inflammation and intestinal barrier function. Household tap water samples were collected at 

baseline to determine levels of E. coli contamination. All blood and water analyses were 

conducted in the microbiology laboratory at the Galapágos Science Center on San Cristóbal, co-

sponsored by the University of North Carolina and Universidad de San Francisco de Quito. 

Human subjects ethics approval for this research project was obtained from both universities.  
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7.3. Measures 

Immune Function Biomarkers: A minimally invasive finger-stick was used on the 3rd 

or 4th fingertip to draw approximately 50µL of blood collected on protein saver cards (Whatman 

903). Samples were allowed to dry and then stored in freezers at the Galapágos Science Center. 

Eluted blood spots were analyzed for high-sensitivity C-reactive protein (CRP) and endotoxin 

core IgG antibodies (EndoCab IgG) using commercially available enzyme-linked 

immunosorbent assays.  

Quantikine’s Human C-reactive protein/CRP immunoassay (R&D Systems, Inc. 

Minneapolis, MN) was used to quantify levels of CRP, as a marker of systemic inflammation, 

within the range of .003-13 mg/L and a coefficient of variation of 10% across assays. Due to 

high intra-individual variability of CRP in this pathogenic environment, two measures were used 

for this study, one at baseline and another after approximately ten days. Median values are 

reported for measures of association due to the positively skewed distribution and logarithmic 

transformations were performed for modeling. To provide context in relation to other studies, 

prevalence and tests of association are reported for acute inflammation indicated by the clinical 

cut point of over 10mg/L and an additional measure of above 3mg/L change between the two 

time points, previously found to better indicate an acute phase response to infection. Only 

logarithmic transformed continuous models are used for hypothesis testing. 

Hycult’s EndoCAb IgG ELISA kit (Hycult Biotech Inc. Plymouth, PA) was used to 

quantify levels of endotoxin core immunoglobulin-G antibodies as an indicator endotoxemia and 

immunostimulation caused by the translocation of endotoxins across a compromised intestinal 

barrier, characteristic of EED (Keusch et al. 2014; Korpe and Petri 2012). This composite 

measure provides the IgG response to lipopolysaccharides from four gram negative bacteria: 
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Escherichia coli, Klebsiella aerogenes, Pseudomonas aeruginosa, and Salmonella typhimurium 

(Barclay 1995). Since there are no standard units of EndoCAb or established cut-point for EED, 

levels are expressed in median units (MU) per mL standardized as a percentage from the median 

of 1,000 healthy adults (Barclay 1995; Hycult year not specified). The range for the kits was 13-

800 MU/mL, with a coefficient of variation of 14% across assays. Since EndoCAb IgG is a long-

term marker of “cumulative” EED risk (Benzoni et al. 2015) and intra-individual variability is 

minimal, only baseline measures are used in this analysis. As with CRP, medians are reported for 

measures of association and logarithmic transformations are used for the final models. However, 

prevalence and tests of associations are reported for the percentage of children over the 75th 

percentile of the total sample indicating elevated levels, as standard cut-points are not available.  

E. coli Exposure from Household Water: A sample of 100mL of water was collected 

from non-drinking water sources in each household at baseline. The most common source was 

the kitchen or bathroom faucets. However, 8% of households did not have piped water inside the 

home, and samples were taken directly from the cistern or holding tank. Samples were stored in 

an insulted bag with icepacks for transport and analyzed daily for levels of E. coli using 

Colilert’s reagents and Quanti-tray 2000 most probable number (MPN) method (IDEXX 

Laboratories, Inc. Westbrook, Maine). Although the World Health Organization (WHO) 

recommends zero MPN E. coli per 100mL of water for drinking (Havelaar et al. 2001), this 

standard is not easily attainable in rural Ecuador, much like other low and middle income 

countries (Levy et al. 2012). Therefore, levels were dichotomized as above or below two 

separate thresholds of 10 MPN E. coli per 100mL and 100 MPN per 100mL as developed by 

Moe and colleagues (1991) for both tests of associations and statistical models.  
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Infection Status: Mothers were asked whether their children experienced infectious 

symptoms of diarrhea, vomiting or fever within the last week at baseline and during the second 

blood spot collection. If one or more symptoms were reported, the child is considered to have an 

infection for this analysis.   

Obesity: Standing height and weight were measured using a portable stadiometer and 

digital scale. Body mass index (BMI) was calculated using weight(kg)/height(m)2 and 

transformed into z-scores using WHO reference data (de Onis et al. 2007; WHO 2006). Although 

the extent to which overnutrition may influence intestinal inflammation and barrier function is 

unclear, CRP is greatly affected by obesity (Ford et al. 2003) and statistical models are adjusted 

for obesity using a BMI z-score over two. 

Other Measures: Highest socio-economic status (SES) was determined by land 

ownership elsewhere on the island as 47% of households own their homes (CGREG and INEC 

2010). Other measures such as maternal education and employment, and ethnicity were explored 

and found to have no significant effect in statistical models. Since baseline data were collected 

over two periods less than one year apart, field season is included to adjust statistical models for 

possible sampling biases or seasonal effects.   

7.4. Statistical Analyses 

A mix of parametric and non-parametric tests were used to determine significant 

differences between the presence of infectious symptoms and E. coli levels for CRP and 

EndoCAb measures. Differences in age groups were also explored as both CRP and EndoCAb 

levels are age dependent (Barclay 1995; Dowd et al. 2010). Since exposure to fecal pathogens 

may cause diarrhea and gastrointestinal illness (Elliott 2007), we further tested for significant 
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associations between infection status and E. coli levels of over 10 and over 100 bacteria per mL, 

separately.  

Mixed effects linear models were used to test the effects of E. coli levels and infection on 

log-transformed CRP while adjusting for intra-individual variability between the two time points 

and ordinary least squares regression was used to test the effects on log-transformed EndoCab. 

The estimates and standard errors were adjusted for clustering at the household level for both 

types of models. Both E. coli thresholds were modeled separately with infection status and no 

other covariates to determine which E. coli level to use in the fully adjusted model with other 

covariates. To test the hypothesis that children with infections and low E. coli exposure have the 

highest levels of immunostimulation, fully adjusted models with the interaction variable between 

E. coli exposure and infection status were used to calculate the predicted exponentiated estimates 

of CRP and EndoCAb, while holding covariates at their observed values.  

7.5. Results 

Sample Characteristics: Summary statistics are described for the total sample in Table 

7.1. Approximately 48 % of the sample were recruited and interviewed during the first field 

season and slightly more than half (52%) of the 116 children were boys. The mean age was 5.7 

(SD 2.6) years and 19% were considered obese. Ten children came from households that own 

private property elsewhere on the island, indicating the highest socio-economic status. Mothers 

reported infectious symptoms in 36% of the children. The mean E. coli level in household non-

drinking water samples was 128 (SD 277) MPN per 100mL of water, with 42% of households 

having over 10 MPN E. coli per 100mL and 12% having over 100 MPN E. coli per 100mL.  

Associations with Age, Reported Infections, E. coli Levels on Immune Function and 

the Relationship between E. coli and Reported Infections: Table 7.2 summarizes key outcome 
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measures for CRP and EndoCAb. No significant differences were found between sexes and age 

groups in median CRP levels at both time points. Older children had significantly higher 

EndoCAb levels than younger (154 vs. 134MU/ml, respectively; p<0.01). Children with reported 

infections had higher CRP levels, though the difference was not significant. Yet, 30% of children 

with a change of CRP levels 3mg/L or greater between time points reported infections, compared 

to only 4% without infectious symptoms (p<0.01). EndoCAb levels were also higher in children 

with infections (150 vs. 144MU/mL), but the difference was not significant. No significant 

differences in children with elevated EndoCAb levels were found. Children from households 

with high E. coli levels over 10 bacteria reported a greater percentage of infections than children 

from households with lower bacteria levels (44% vs. 30%).  

CRP levels were significantly lower at both time points among children from households 

with E. coli levels over 10 MPN per 100mL compared to under 10 MPN bacteria (time-1: 0.26 

vs. 0.46mg/L, time-2: 0.27 vs. 0.43mg/L, respectively; p<0.05). The median CRP level at time-2 

was even lower among households with E. coli over 100 MPN per 100ml at 0.11mg/L, also 

statistically significant compared to children from household with below 100 MPN E. coli 

(p<0.01).  The median EndoCAb level among children from households with over 10 MPN E. 

coli per 100mL water was slightly higher than from under 10 MPN bacteria (150 vs. 

142MU/mL, respectively); however, children with over 100 MPN E. coli had the lowest median 

level of 134 MPN yet not significant. All children with E. coli levels over 10 MPN per 100mL 

water had EndoCAb levels over the healthy adult median, compared to 84% with E. coli levels 

under 10 MPN (p<0.01). 

  Unadjusted and Adjusted Covariate Models: In the unadjusted models, E. coli levels 

over 10 MPN per 100mL had a significant negative effect on log-transformed CRP (β -0.59, 
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p=0.005) while only controlling for infection status (β 0.48, p=0.010) (Table 7.3). E. coli levels 

over 100 MPN had a similar negative effect (β -0.56, p=0.155) but was not statistically 

significant and thus E. coli over 10 MPN was used in the fully adjusted CRP covariate model. 

The negative effect of E. coli over 10 MPN per 100mL (β -0.52, p=0.034) and opposing positive 

effect of reported infectious symptoms (β 0.52, p=0.003) on log-transformed CRP held while 

adjusting for field season, sex, age, SES, and obesity. However, obesity is the only other 

covariate to have a significant effect of log-CRP, which is slightly stronger in increasing log-

CRP (β 0.90, p=0.000) than infection. 

Contrary to the unadjusted log-transformed CRP models, the higher E. coli threshold of 

over 100 MPN per 100ml water had a significant negative effect on log-transformed EndoCAb 

(β -0.12, p=0.027) while only adjusting for infection (β 0.05, p=0.368) (Table 7.4). E. coli over 

10 had a slight negative effect (β -0.01, p=0.905), yet was not significant and not used in the full 

model. Similar to the effects of high E. coli levels on log-CRP, E. coli over 100 has a significant 

negative effect on log-EndoCAb (β -0.12, p=0.016), while the opposing positive effect of 

infection was not significant (β 0.04, p=0.409). Age was the only other covariate to have a 

significant effect (β 0.03, p=0.003), which is consistent with the bivariate associations.  

Interactions Models: Table 7.5 summarizes the effects for the interaction terms where 

children with infections and low E. coli levels are the referent, while fully adjusting for 

covariates (coefficients not shown). In the log-transformed CRP model, among children with 

infections, we found a significant protective effect of high E. coli exposure (β -0.76, p=0.016) 

compared to low E. coli levels (referent). As expected, the effect of having no infection 

regardless of high or low E. coli exposure has a negative relationship with CRP. The negative 

effect size of no infection and high E. coli (β -1.04, p=0.000) is greater than no infection with 
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low E. coli exposure (β -0.73, p=0.002). All three interactions statistically lower CRP levels 

compared to infection with low E. coli. This suggests that children with infections and low E. 

coli exposure levels have the highest immune stimulation, compared to children with infections 

and the protective effect of high E. coli exposure levels, or not having an infection. The mean 

predicted exponentiated CRP levels are plotted for each group using the interaction model in 

Figure 7.1. Children with infection and low E. coli levels have the highest predicted CRP levels 

(1.00mg/L, SD 0.44), compared to children with infections and high E. coli levels (0.37mg/L, 

SD 0.13) or children without infections. Remarkably, the protective effect of high E. coli 

exposure lowers CRP levels 0.10mg/L more in children with infections than healthy children 

with low E. coli exposure (see the two inside bars in Figure 7.1).    

In the interaction model for log-transformed EndoCAb, the three interactions have similar 

negative effects on EndoCAb compared to the effect of children with infections and low E. coli 

exposure, yet only infections with high E. coli levels was significant. Among children with 

infections, we found a significant protective effect of high E. coli levels (β –0.20, p=0.003) on 

log-EndoCAb. However, as demonstrated in the fully adjusted covariate model, there are no 

protective benefits in lowering log-EndoCAb levels by the absence of infection. Figure 7.2 

displays the mean predicted exponentiated EndoCAb values by the interaction terms. Children 

with low E. coli exposure had higher predicted EndoCAb levels compared to high E. coli 

exposure, regardless of the presence of infectious symptoms. However, unlike the lower 

predicted CRP levels of children without infection, EndoCAb levels are only slightly affected by 

infection status. Children with low E. coli exposure and infection have the highest predicted 

EndoCAb levels at 150MU/mL (SD 13), followed by children with low E. coli levels and no 

infection at 141MU/mL (SD 10).     
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7.6. Discussion 

As hypothesized, we found that higher E. coli exposure from non-drinking water sources 

related to daily hygiene and sanitation practices provided protection from immune activation of 

EED biomarkers in children living Galapágos, Ecuador. Median CRP levels were more than 37% 

lower among children with higher E. coli exposure levels, compared to children with lower E. 

coli exposure, and the median EndoCAb levels were lowest among children with the highest 

exposures. Our adjusted covariate models showed negative relationships between E. coli levels 

in household water and both CRP and EndoCAb levels, suggesting a protective effect of daily, 

low-grade pathogenic exposure on inflammatory and antibody-mediated immunostimulation 

among these children. These findings complicate the common assumption that chronic exposure 

to fecal contaminated water is the driving factor in EED, providing possible evidence of the 

immunoregulatory benefits of habitual, mild E. coli exposure that does not result in direct 

intestinal infection.  

Acquired immunity could explain why we do not see higher levels of fecal contamination 

increasing immunostimulation associated with EED or infectious symptoms of diarrhea and 

vomiting. Children can acquire immunity to the pathogens found in their own feces and those of 

people living in the same household, which are likely to contaminate surfaces, floors and stored 

household water. An observational study of fecal contamination among squatter community 

households in Lima, Peru proposed that a child will acquire immunity to enteropathogens after 

they are initially exposed to a mild dose that does not cause clinical infection or diarrhea, but is 

able to break through the gastric barrier into the small intestine (Lanata et al. 1998). Similarly, 

chronic exposure to existing fecal coliforms commonly found in contaminated household water 

may not produce an immune challenge. Some strains of pathogenic E. coli (including attaching 
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and effacing E. coli and heat-labile toxin strain of enterotoxigenic E. coli) have been shown to 

provide protection against diarrhea caused by reinfection among Guinean (Valentiner-Branth et 

al. 2003) and Mexican infants (Cravioto et al. 1990). Among children in the Cebu Longitudinal 

Health and Nutrition Survey, in-house fecal coliform contamination of household drinking water 

did not predict episodes of diarrhea, while external contamination of novel coliforms did increase 

risk of diarrhea (Vanderslice and Briscoe 1993). Among Cebu children without diarrhea, 21% 

had enteropathogens present in fecal swabs indicating acquired immunity.  

Although we found that households with higher levels of E. coli reported more children 

with diarrhea, vomiting and fever, than households with lower bacteria levels, these differences 

were not statistically significant. Evidence of a causal link between ingesting fecal pathogens in 

contaminated drinking water and childhood diarrhea is inconsistent (Gundry et al. 2004). For 

example, weekly assessments over a year-long period of E. coli levels in public and household 

drinking water and childhood diarrhea in Pakistan revealed no significant relationship (Jensen et 

al. 2004). In Bangladesh, aggregated household monthly diarrhea rates were marginally 

associated with average E. coli concentrations in wells where household obtained drinking water 

(Escamilla et al. 2013). Some studies have demonstrated a direct relationship between fecal 

contamination of water sources and childhood diarrhea, while adjusting for other community and 

household sanitation practices (e.g., (VanDerslice and Briscoe 1995)), which may be due to 

exposure to new or higher doses of enteropathogens, such as viruses or protozoa, or simply other 

unidentified sources of contamination. Levy and colleagues (2012) have cautioned that 

environmental, host and pathogen considerations are vital in choosing which fecal indicator to 

use in representing exposure to enteropathogens, since they are commonly found in tropical 

climates. When comparing a variety of human fecal indicator organisms to detect water 
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contamination in relation to diarrhea episodes in coastal Ecuador, E. coli demonstrated the 

highest performance and reliability (Levy et al. 2012). However, all these complicating factors 

do not explain the strong significant protective effect of E. coli in lowering levels of 

immunostimulation. 

Our study found a strong protective effect of fecal pathogen exposure on lowering 

immunostimulation associated with EED, even when interacting exposure with the presence of 

infectious symptoms. In support of our hypothesis, children with infections and low E. coli 

exposure had the highest predicted CRP and EndoCAb levels, compared to all other interactions. 

Even among children without reported infectious symptoms of diarrhea or vomiting, higher E. 

coli exposure was significantly associated with lower CRP levels compared to low E. coli 

exposure. The most notable evidence of this protective effect of high fecal contamination 

exposure was that children with infectious symptoms who experienced high E. coli exposure had 

lower predicted CRP levels than children without infectious symptoms who experienced low E. 

coli exposure. Since habitual ingestion of fecal contaminated water is assumed to cause diarrhea 

and EED (Korpe and Petri 2012; Watanabe and Petri 2016), we would have expected to find that 

children with infections and high E. coli exposure would have the highest levels of 

immunostimulation. Infection status does not lower EndoCAb levels, which was anticipated 

since it is a subclinical condition. Yet higher E. coli exposure does lower predicted EndoCAb 

compared to lower E. coli exposure, which is significant among children with diarrhea and 

vomiting. Our results provide novel support for the “old friends” hypothesis that early life 

exposure to environmental immunoregulatory microbes help develop and regulate the immune 

system.  
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Our study contributes to this evolutionary perspective by 1) the use of a direct, empirical 

measure of E. coli contamination in household non-drinking water, 2) the immunoregulatory 

effect of early life exposure to fecal pathogens is demonstrated in lowering both predicted levels 

of inflammation (indicated by high-sensitive CRP) and the humoral response to endotoxins 

(indicated by EndoCAb IgG antibodies), and 3) this effect is present during early and middle 

childhood (ages 2-10 years). Rook and colleagues (2014) propose that the regulation and 

resolution of the inflammatory response are vital to proper immune functioning as inflammation 

causes damage to the host, can disrupt commensal microbial colonization and is energetically 

very costly. Common exposures to environmental “old friend” microbes in mammalian 

evolutionary past evolved to develop an immunoregulatory influence on the human immune 

system. Living conditions and lifestyle changes typical of high-income countries limit exposure 

to these “old friends” in soil, contaminated water and with contact to other animals. Lack of 

exposure to these pathogens early in life cause inadequate immune development, dysbiosis in the 

gut microbiota and inflammatory dysregulation, all leading to higher rates of autoimmune and 

chronic inflammatory disorders (Rook et al. 2013). In a longitudinal prospective study from the 

Philippines, increased frequency of diarrhea and exposure to animal feces during infancy 

significantly lowered the predicted CRP levels in young adults (McDade et al. 2010). McDade 

(2012) hypothesized that higher microbial exposures during infancy, typical of environmental 

living conditions in low and middle income countries, properly initiate inflammatory responses 

resulting in more episodes of the acute phase reaction and thus improving inflammatory 

networks and resolution later in life. This was further supported by the absence of low-grade, 

chronic inflammation found among an indigenous adults with a high infectious disease burden 

from the Ecuadorian Amazon (McDade et al. 2012b). To this date, only one other study has 
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shown a protective effect of the presence of E. coli on the hands of care-givers and in drinking 

water on lowering the risk of diarrhea among from Tanzanian children (Mattioli et al. 2014).  

Could E. coli be responsible for this immunoregulatory effect? E. coli has great genetic 

and phenotypic diversity resulting in both pathogenic and commensal strains, varying in 

virulence factors and their ability to provide protection against other bacterial overgrowth (Figler 

and Dudley 2016; Leimbach et al. 2013). E. coli is one of the first anaerobic bacteria to colonize 

the infant gut shortly after birth and is highly adapted to the mucosal lining of the intestines 

(Leimbach et al. 2013). Some E. coli strains have virulence factor genes, coding for fimbriae that 

carry adhesins to attach to mannose-receptors found on intestinal epithelial cells, facilitating 

rapid colonization of the gut (Wold et al. 1988). While most strains are transient only residing for 

several days, some can become resident for longer periods of time (Caugant et al. 1981). 

Exposure to higher levels of E. coli in fecal contaminated water provides a paradoxical situation 

that can both increase risk of ingestion of pathogenic strains, possibly causing illness, and 

commensal strains, providing resistance to pathogenic overgrowth.  

Several commensal E. coli strains have received much attention for their ability to 

prevent and treat clinical infection and diarrhea in human and animal models. In a double-blind 

clinical trial, newborn infants who received the Nissle 1916 strain within the first few days of life 

had significantly lower incidence and diversity of pathogenic E. coli and other enteropathogens 

at age six months (Lodinová-Žádniková and Sonnenborn 1997). In another trial, the probiotic 

Nissle 1917 stopped acute diarrhea due to nonspecific infection faster than placebo among 

children aged two to four (Henker et al. 2007). Similarly, infants colonized with the commensal 

E. coli strains (O83, O86 and Nissle 1917) experienced enhanced humoral and cellular immune 

responses with elevations in E. coli-specific IgA and non-specific polyclonal IgM antibodies, 
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compared to placebo-controls (Cukrowska et al. 2002; Lodinova-Zadnikova et al. 1991). These 

studies suggests that early colonization of commensal E. coli initiates the proliferation of 

lymphocytes in general, and multi-reactive, polyclonal antibodies with the ability to provide 

early life protection against pathogenic E. coli and a diverse array of other pathogenic exposures. 

Exposure to commensal E. coli among children in our study could be providing a protective 

immunoregulatory effect.   

In addition to immunoregulation, commensal E. coli and even some pathogenic strains 

have genetic virulence factors that provide defensive mechanisms against other enteropathogens. 

Commensal E. coli strains are highly antagonistic and Nissle 1917 has shown to outcompete 

Salmonella through nutrient requisition in mice (Deriu et al. 2013). Similarly, Nissle 1917 

outcompetes enterohemorrhagic E. coli by adhering to epithelial cells and reducing shiga-like 

toxins in vitro (Rund et al. 2013). The EMO strain has even been shown to outcompete 

pathogenic, drug-resistant E. coli in newborn human infants inoculated at birth (Duval-Iflah et al. 

1983). Some E. coli strains, J02 and J03, have the ability to produce microcin, small bacteriocin 

that inhibit the growth of similar Gram-negative bacteria (Portrait et al. 1999). The commensal 

E. coli EMO strain can provide a barrier effect against enterotoxigenic strains (which typically 

cause traveler’s diarrhea) in mice and pig models (Duval-Iflah et al. 1983). In other mice models 

with and without the inflammatory colitis, exposure to the Nissle 1917 increased zonula 

occludens-1 gene expression, strengthening epithelial tight junctions and providing protection 

against poor intestinal barrier function (Ukena et al. 2007). In mice models with 

lipopolysaccharide-induced sepsis, Nissle 1917 produced a systemic anti-inflammatory effect by 

reducing T cell cytokines and IgG antibodies (Arribas et al. 2009). Exposure to E. coli in fecal 

contaminated water is a possible candidate providing the protective effect in our study given its 
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abilities to outcompete other pathogens, initiate an anti-inflammatory responses and improve 

intestinal barrier function. However, E. coli are indicator bacteria for fecal contamination and 

many other pathogens, including viruses, protozoa and helminths, present in the water may be 

contributing to this immunoregulatory effect. Comprehensive microbial analysis of water quality 

is needed, in addition to investigating genetic variation of E. coli strains, to determine which 

combination of protective mechanisms are at work in our study sample.  

We found no evidence of a significant relationship between levels of inflammation and 

the antibody response to endotoxins in our sample (CRP time-1 & EndoCAb r=0.15; CRP time-2 

& EndoCAb r=0.02). Similarly, a recent study of EED in Bangladeshi infants demonstrated weak 

correlations between systemic inflammation with lactulose: mannitol (L:M) levels indicating 

EED, and with biomarkers for intestinal inflammation (Campbell et al. 2017). Among these 

infants, 60% demonstrated signs of systemic inflammation (CRP>5mg/L or AGP>100mg/dL), 

yet only 39% had EED (indicated by L:M>0.07). These results suggests that EED may not be the 

primary driver of elevated levels of systemic inflammation among these Bangladeshi infants. 

However, our study found higher levels of immunostimulation associated with EED and lower 

levels of systemic inflammation (5% had CRP>10mg/L at time-1 or -2) among Galapágos 

children. A direct comparison of the prevalence of EED cannot be determined since the 

EndoCAb IgG biomarker does not have clinical cut-points and changes to the assay over time 

make population comparisons somewhat problematic. However, the Galápagos children aged 

two to five years demonstrated higher mean EndoCAb levels than children of similar ages from 

both Malawi (Benzoni et al. 2015) and Bangladesh (Lin et al. 2013). We propose that variations 

in gut microbiome caused by nutritional and pathogenic environments may provide a protective 

effect against systemic inflammation caused by endotoxemia.  
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Our study was limited in number of ways, such as the use of one fecal indicator bacteria, 

E. coli, to measure exposure to fecal contamination. We were unable perform advanced

microbial testing to determine what other fecal pathogens were present in the water and 

contributing to the immunoregulatory effects in children. Similarly, we were unable to do genetic 

testing to determine which commensal or pathogenic E. coli strains were present, nor microbial 

source tracking to identify the source of contamination. However, a concurrent water study on 

the island concluded that the E. coli present in the household tap water was likely from 

environmental or animal sources and not from human waste (Gerhard et al. 2016). In addition, 

only a single measure of E. coli exposure was used, although longitudinal water quality measures 

were collected from a sub-sample to evaluate intra-household variability over time. No 

statistically significant differences were found in E. coli levels taken on average ten days apart 

from 82 households, suggesting that our measure reflects chronic exposure and not acute 

elevations. Invasive biopsies are necessary for clinical diagnosis of EED and no single set of 

EED biomarkers are universally used (Syed et al. 2016). Nonetheless, EndoCAb IgG is among 

the most commonly used, as lactulose: mannitol ratios have recently found to be uncorrelated 

with immune measures (Campbell et al. 2017). The limitations of using EndoCAb antibodies are 

that there are no standard units of measurement and thus assay levels are standardized around the 

mean of healthy adults (Barclay 1995), even when levels are taken from children. Furthermore, 

no clinical cut-points for EED exist, and changes to the assay development make between 

population comparisons challenging (Kosek et al. 2014). Lastly, our study is observational in 

design and we cannot confirm causal links between exposures and immune levels, nor were we 

able to capture all exogenous factors.  
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7.7. Conclusion 

Using a quantitative measure of fecal pathogens in household non-drinking water, our 

study is the first to our knowledge to empirically test the assumption that habitual, low-grade 

exposure to E. coli contaminated water impacts immunostimulation associated with EED among 

children in a dual burden environment. Contrary to clinical and epidemiological hypotheses, our 

results support the developmental “old friends” theory that early life exposure to some pathogens 

common in our evolutionary past provide an immunoregulatory effect in helping to initiate pro- 

and anti-inflammatory pathways. We expand on previous studies to demonstrate that E. coli is 

possibly an immunoregulatory pathogen with protective effects on lowering inflammation and 

enhancing intestinal barrier function in early and middle childhood. Our study differs from other 

investigations of EED in that the Galapágos children have access to clean drinking water and are 

experiencing overnutrition. Exposure to fecal contaminated water is primarily from daily hygiene 

behaviors and household sanitary practices, such as brushing teeth, washing hands, bathing, 

cleaning dishes and rinsing raw fruits and vegetables. In addition, the Galapágos children may be 

experiencing resource buffering covers the energetic cost of immunocompetence. Since the gut 

microbiome is a vital immunomodulator that can influence mucosal immunity, intestinal health 

and systemic immune function (Hand 2016; Kau et al. 2011), we propose that symbiotic changes 

to gut microbiota caused by nutritional and pathogenic environments may be underlying the 

protective effect of E. coil exposure on lowering immunostimulation among these children from 

Galapágos, Ecuador and future analysis of the gut microbial data from our sample will elucidate 

this hypothesis. 
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Figure 7.1 Mean predicted exponentiated CRP levels. 

Figure 7.2 Mean predicted exponentiated EndoCAb levels. 
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Table 7.1 Sample characteristics 

Total Sample 

N 166 

First Field Season 80 (48%) 

Boys 86 (52%) 

Mean Age 5.7 (SD 2.6) 

BMIᵃ 17.4 (SD 2.6) 

BMI z-score >2 31 (19%) 

Highest SESᵇ 10 (6%) 

Infectious Symptoms 60 (36%) 

Mean MPNc  E. coli per 100mL 128 (SD 277) 

E. coli >10 MPN per 100mL 70 (42%) 

E. coli >100 MPN per 100mL 19 (11%) 

ᵃ body mass index 

ᵇ social economic status 
c most probable number 
SD standard deviation 
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CHAPTER 8. PAPER 3- GUT MICROBIOTA MEDIATE IMMUNEOSTIMULATION 

Gut microbial symbiosis underlying the protective effect of fecal pathogen exposure on 

immunostimulation association with environmental enteric dysfunction 

8.1. Introduction 

Chronic immunostimulation caused by environmental enteric dysfunction is known to 

contribute to childhood stunting in the developing countries due to unhygienic living conditions 

and malnutrition (Campbell et al. 2003a; Humphrey 2009; Mondal et al. 2012; Prendergast et al. 

2014; Solomons 2003). Environmental enteric dysfunction (EED) is a subclinical condition of 

the small intestines characterized by chronic, local inflammation that compromises intestinal 

barrier function, allowing for the translocation of endotoxins into the bloodstream initiating 

endotoxemia and systemic immune responses (Korpe and Petri 2012; Watanabe and Petri 2016). 

Our previous research revealed an unexpected protective effect of exposure to moderate levels of 

fecal pathogens in contaminated household (non-drinking) water sources on inflammation and 

endotoxemia associated with EED (Figure 8.1, top). Contrary to epidemiological theory, this 

work provided novel support of the “old friends” mechanism that suggests that modern lifestyles, 

improved living conditions and environmental changes may have limited our exposure to key 

immunoregulatory pathogens in water, soil and with contact to animals from our evolutionary 

past (Rook et al. 2014). The lack of these exposures inhibits the proper development and 

regulation of the human immune system in early life, hindering one of its essential functions of 

resolving inflammation following infection. Our findings are in agreement with work by 

McDade and colleagues (2010) that found exposure to animal feces and episodes of diarrhea 

during infancy lowered inflammation levels in early adulthood, and with other studies 



92 

documenting the early life effects of exposure to animals in preventing auto-immune disorders 

such as asthma and allergies (Ege et al. 2011; Waser et al. 2005). Researchers have mainly 

focused on the cellular pathways, such as increased production of regulatory T cells, in 

explaining this effect (Rook et al. 2017; Yazdanbakhsh et al. 2002). Given that the gut 

microbiome and its metabolites are important immunomodulators that can influence regulatory T 

cells and help promote intestinal health (Brown et al. 2013; Hand 2016; Kau et al. 2011), this 

paper will test whether changes in the gut microbial composition associated with fecal pathogen 

exposure provide immunoregulatory benefits associated with inflammation and endotoxemia.  

The human immune system is an adaptation for negotiating interactions with microbes. 

Humans and their ancestors have coevolved with microbes throughout our evolutionary history. 

Roughly 60% of the human genome was derived during the beginnings of life with the evolution 

of prokaryote and eukaryote cells (Domazet-Lošo and Tautz 2008). These shared genes have 

facilitated relationships with bacteria and eukaryote single-celled microbes, which led to the 

development of the adaptive immune system (Rook et al. 2017). Through the operation of natural 

selection on the host and microbe levels, commensal intestinal bacteria developed symbiotic 

functions with the human diet to breakdown plant carbohydrates, synthesize vitamins and 

regulate immune function (O'Hara and Shanahan 2006). Gut microbiota are responsible for 

nutrient metabolism, such as digesting dietary fiber and producing short chain fatty acid (SCFA) 

metabolites. SCFAs provide key signals to the inflammatory immune response and are 

responsible for maintaining the intestinal epithelium and barrier function (Kau et al. 2011; 

Maslowski and Mackay 2011). Pathogenic and dietary environments, along with genetic and 

other host factors, can influence microbial symbiosis providing for normal immunoregulation, or 

can disrupt the microbial balance leading to dysbiosis, immune dysregulation and chronic 
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inflammation (Levy et al. 2017; Liddicoat et al. 2016; Maslowski and Mackay 2011). For 

example, when stimulated by Escherichia coli and other pathogenic bacteria, microbial 

compositions can cause a pro-inflammatory immune phenotype due to specific metabolites that 

control levels of tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) (Schirmer et 

al. 2016). Although it has been suggested that chronic ingestion of fecal pathogens may cause 

gut microbial dysbiosis, leading to chronic inflammation, bacterial translocation and 

endotoxemia characteristic of EED (Brown et al. 2015; Kau et al. 2011), this pathway remains 

untested in population studies. A recent study of Malawian infants found that the abundance of 

the phylum Proteobacteria, along with other species level changes, were inversely associated 

with severity of EED, indicated by the lactulose: mannitol (L:M) sugar absorption test (Ordiz et 

al. 2017). However, the L:M ratio test’s use and ability to predict immunostimulation associated 

with EED has been questioned (Campbell et al. 2017; Denno et al. 2014).  

We propose that symbiotic modification of the gut microbiome is a mechanism 

underlying the link between high E. coli exposure in household tap water and lower levels of C-

reactive protein (CRP), as an indicator of inflammation, and endotoxin core immunoglobulin-G 

antibodies (EndoCAb IgG), indicating endotoxemia, in children from Galápagos, Ecuador 

(Figure 8.1, bottom). Exposure to high levels of exogenous fecal pathogens could cause 

beneficial changes (symbiosis) to the gut microbiome, decreasing harmful gut bacteria and 

increasing protective bacteria in healthy children without infectious symptoms. Gastrointestinal 

infections causing diarrhea and intestinal inflammation significantly reduce gut microbial 

diversity and allow for pathogenic overgrowth (Lupp et al. 2007); therefore, we stratified our 

sample into children with and without infectious symptoms. Among sick children, these 

intestinal bacteria may have a different functional role in altering immune function. To test our 
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hypothesis and identify which gut microbial taxa are responsible for the protective effect of fecal 

pathogen exposure from contaminated water, we examine the gut microbial colonies of 105 

healthy and 54 sick children aged two to ten years. The first step in our analytic strategy is 

identifying which intestinal taxa are significantly influenced by exogenous fecal pathogen 

exposure by estimating the odds ratios of elevated gut taxa and determining their statistical 

significance (Figure 8.1, middle). Then using only gut taxa that are statistically influenced by 

high fecal pathogen exposure in water, the second step is to test whether these gut microbial taxa 

are significantly associated with continuous levels of CRP and EndoCAb in healthy and sick 

children, separately. Finally, we identify candidate gut taxa for the independent protective effects 

on inflammation and endotoxemia if: A) exogenous fecal exposure increased odds of microbial 

taxa that are associated with lower immunostimulation, or B) exogenous fecal exposure lowered 

odds of microbial taxa that are associated with higher immunostimulation (Figure 8.1, bottom). 

8.2. Sample and Data Collection 

For this analysis, we sampled 159 children aged two to ten years living on the island of 

San Cristóbal, Galápagos, Ecuador. In-depth interviews were conducted with each mother or 

primary caregiver to obtain detailed information on the demographics, health and illnesses, and 

dietary patterns of the children. One point-of-use tap water sample was collected from each 

household to measure levels of fecal pathogen exposure. Two dried blood spots were collected 

from each child and assayed for levels of inflammation and endotoxemia associated with 

environmental enteric dysfunction. We conducted both water and blood analyses in the 

microbiology laboratory at the Galápagos Science Center. Each child contributed one fecal 

sample that was analyzed to determine gut microbial composition by the Microbiome Core 

Facility at the University of North Carolina, Chapel Hill (UNC). This study received approval for 
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human subject research by the UNC and the local review board at the Universidad de San 

Francisco de Quito.    

8.3. Measures 

Fecal Pathogen Exposure: A 100mL household tap water sample was collected at 

baseline and quantified for levels of E. coli and total coliforms using Colilert reagents and the 

Quanti-tray 2000’s most probable number (MPN) methodology (IDEXX Laboratories, Inc. 

Westbrook, MA). Bacteria levels ranged from zero to the upper detection limit of 2,420 MPN for 

both E. coli and total coliforms. Based on the distribution for this analysis, children in 

households above the 75th percentile of the MPN for the total sample of E. coli or total coliforms, 

independently, were considered to have high fecal pathogen exposure. We assume that these 

bacteria levels represent chronic exposure to fecal pathogens and do not reflect acute fluctuations 

in water quality. To test this assumption, we re-tested water samples from 82 households taken 

on average ten days after baseline. We classified levels at both time points based on the World 

Health Organization’s (WHO) health risk categories for E. coli levels in drinking water (per 

100mL): low risk (<1 MPN), intermediate risk (1-10 MPN), high risk (10-100 MPN), very high 

risk (>100 MPN) (WHO 2011b). Approximately 70% of households experienced no change in 

classification, 17% changed by one level, and 13% changed by two or three levels. We then re-

tested 27 households again on average 132 days after baseline and found that paired t-tests using 

a 95% confidence level indicated no significant differences in bacteria levels between baseline 

and ten days, or baseline and 132 days for E. coli or total coliforms. 

Gut Microbial Composition: Mothers were given detailed instructions for the collection 

and storage of fecal samples during the baseline interview. The fecal samples were collected 

within one week of the initial interview and processed and stored in freezers at the Galápagos 
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Science Center until fieldwork was completed. Samples were then transported to the Microbiome 

Core Facility at UNC for analysis. DNA isolation was performed using protocols in the Qiagen 

BioRobot Universal (Qiagen, Valencia, CA) and quantified using Quant-iTTM PicoGreen® 

dsRNA Reagent (Molecular Probes, Life Technologies division of Thermo Fisher Scientific, 

Waltham, MA). 16S rDNA bacterial amplicon pyrosequencing was performed on a Roche GS 

FLX Titanium instrument (Microbiome Core Facility, UNC Chapel Hill, NC). Sequencing data 

was analyzed using the QIIME pipeline (Caporaso et al. 2010) and assigned into operational 

taxonomic units (OTUs). We chose to analyze microbial compositions at the family level 

because it allows for a broad array of bacterial types without being too extensive. Family level 

OTUs above the total sample prevalence 0.35% were used to limit the analyses to bacteria 

contributing minimal proportion. For each child, the abundance of the top 26 family taxa were 

calculated as OTU percentages. A child is considered to have a relative elevated abundance of 

any specific family taxa if it was over the 75th percentile for the total sample. This arbitrary cut-

point was chosen based on the distribution of the data as it represents the highest quartile of the 

sample.  

Immunostimulation: Dried blood spots were collected at baseline and after 

approximately ten days. Around 50µL of blood were drawn from each child using a minimally 

invasive finger-stick on the 3rd or 4th fingertip and collected on specialized protein saver cards 

(Whatman 903). Cards were sealed and stored in freezers at the Galápagos Science Center until 

fieldwork was completed. Eluted blood spots were analyzed using enzyme-linked 

immunosorbent assays (ELISA) to quantify levels of immunostimulation associated with 

environmental enteric dysfunction. Quantikine’s Human C-reactive protein/CRP immunoassays 

(R&D Systems, Inc. Minneapolis, MN) were used to determine levels of high-sensitivity C-
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reactive protein (CRP) as an indicator of inflammation. Hycult’s EndoCAb IgG ELISA kits were 

used to quantify levels of endotoxin core immunoglobulin-G antibodies (EndoCAb IgG) as an 

indicator of endotoxemia. For statistical analyses, logarithmic transformations of CRP and 

EndoCAb levels were performed. Since intra-individual variability in CRP levels is high in 

environments with heavy disease burdens (McDade et al. 2012a), two time points were used for 

modeling. The single baseline measure of EndoCAb was used for models as intra-individual 

variability is low and it is considered a stable measure of cumulative EED risk (Benzoni et al. 

2015).  

Infectious Status: During the baseline interview and during the second collection of 

blood spots, mothers were asked whether their children experienced diarrhea, vomiting or fever 

within the past week. In this analysis, children were considered to be healthy if no infectious 

symptoms were reported or sick if any one symptom was reported. 

Other Covariates: Weight and standing height were measured using a portable scale and 

stadiometer for each child. Body mass index was calculated by weight(kg)/height(m)2 and 

converted to z-scores using the WHO’s references data (de Onis et al. 2007; WHO 2006). 

Children were considered obese if BMI-for-age z-scores were above two. Models were adjusted 

for obesity, age and sex. 

8.4. Statistical Analyses 

Difference in sample characteristics between healthy and sick children were explored 

using t-tests and Fisher’s exact tests. To examine the gut family taxa distribution for the entire 

sample, we calculated the mean percentage of the family taxa abundance, stratified by the 

presence/absence of infectious symptoms. We used t-tests to explore differences in gut microbial 

abundance by infection status. To determine the influence of exogenous fecal pathogen exposure 
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on gut family taxa abundance, we used logistic regression to estimate the odds ratios of high E. 

coli and total coliforms exposure, independently, on elevated family taxa abundance while 

adjusting for age, sex and infections status (Figure 8.1, middle). Each of the 26 gut family taxa 

were modeled separately, and taxa yielding statistically significant results with a 90% confidence 

level were chosen for the next analytical step. To test for the effects of the microbial families 

influencing immunostimulation, we standardized the percent abundance of each of the selected 

family taxa to allow for comparisons between effect sizes of the family taxa on immune levels. 

We used mixed effects linear models of log-transformed CRP, adjusted for intra-individual 

variability between the two CRP measures, to determine the effects on inflammation. Ordinary 

least squares models of log-transformed EndoCAb were used to examine the effects on 

endotoxemia. Since gut microbial composition can be a cause and consequence of 

gastrointestinal infection, the sample was stratified by present/absence of infectious symptoms. 

Each microbial family taxa predictor was modeled separately for healthy and sick children, 

adjusting for age and sex, and obesity in the CRP models. Sandwich estimators were used to 

adjust for clustering at the household level. We selected microbial families as candidates for the 

protective effect of exogenous fecal pathogen exposure on immunostimulation associated with 

environmental enteric dysfunction if they met one of the following criteria: A) fecal exposures 

were related to higher odds of elevated taxa that were associated with lowered immune levels, or 

B) fecal exposures were related to lower odds of elevated taxa that were associated increased 

immune levels (Figure 8.1, bottom).  

8.5. Results 

Approximately 34% of children experienced infectious symptoms of either diarrhea, 

fever or vomiting within the past two weeks (Table 8.1). The mean E. coli level in household 
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drinking water was 86 MPN per 100mL water and the mean total coliform level was 1,302 MPN 

per 100mL. Although sick children lived in households experiencing higher mean levels of E. 

coli and total coliforms, these differences were not statistically significant. Mean CRP levels for 

children with infectious symptoms were twice as high as healthy children at baseline; yet 

EndoCAb levels were not significantly different.  

Microbial composition of the top 26 abundant family taxa for the total sample are listed 

in Table 8.2. Three of the top five: Ruminococcaceae, Lachnospiraceae and Erysipelotrichaceae, 

belong to the phylum Firmicutes. Coriobacteriaceae is from the Actinobacteria phylum and 

Bacteroidaceae belongs to Bacteroidetes. We found significant differences in the abundance of 

Ruminococcaceae, Streptococcaceae and Actinomycetaceae between children with and without 

infectious symptoms.  

Odds ratios for elevated family taxa that were significantly (p<0.1) influenced by either 

high E. coli or total coliform exposures are reported in Figure 8.2 and are adjusted for age, sex, 

infection status and clustering at the household levels (covariates are not shown). High E. coli 

exposure was associated with significantly higher odds of elevated Bacteroidaceae (OR 2.46, 

95%CI 1.01-6.00) and Clostridiaceae (OR 2.55, 95%CI 1.01-6.47), and marginally higher odds 

of elevated Porphyromonadaceae (OR 2.07, 95%CI 0.90-4.78). Whereas E. coli exposure was 

related to lower odds of high levels of Bifidobacteriaceae (OR 0.41, 95%CI 0.16-1.04). High 

total coliforms were shown to lower odds of elevated Bifidobacteriaceae (OR 0.45, 95%CI 0.20-

.098), Enterobacteriaceae (OR 0.43, 95%CI 0.18-1.02) and Alcaligenaceae (OR 0.46, 95%CI 

0.22-0.97). 

The standardized effects of selected family taxa on levels of inflammation and 

endotoxemia were fully adjusted for age, sex and clustering at household level, and obesity in the 
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CRP models (Figure 8.3). Beta coefficients are interpreted as the effect on log-transformed CRP 

and EndoCAb levels resulting from one standard deviation change in family taxa abundance. 

Both Bacteroidaceae (β -0.10, SE 0.06, p=0.099) and Bifidobacteriaceae (β -.013, SE 0.07, 

p=0.041) were associated with marginally lower CRP levels in children with infections. In 

healthy children, Porphyromonadaceae was associated with reduced CRP levels (β -0.09, SE 

0.05, p=.051). Enterobacteriaceae was related to substantial elevated CRP levels among all 

children, regardless of infection status (healthy β 0.26, SE 0.04 p=0.000; sick β 0.33, SE 0.01, 

p=0.001). Contrary to the effect on inflammation, Bacteroidaceae (β 0.07, SE 0.01, p=0.000) 

was related to substantial increases in EndoCAb level among sick children. Alcaligenaceae (β 

0.03, SE 0.01, p=0.043) was shown to increase levels of EndoCAb and Clostridiaceae (β -0.04, 

SE 0.02, p=0.029) was shown to greatly reduce levels in healthy children.   

Based on our criteria for selecting family taxa responsible for the protective effect of 

fecal pathogen exposure on immunostimulation, we determined that Enterobacteriaceae was the 

strongest candidate for inflammation in both healthy and sick children (Figure 8.4). High total 

coliform exposure significantly lowered odds of having elevated Enterobacteriaceae levels, 

which increased CRP levels regardless of infection status. Alternatively, fecal bacterial exposure 

increased Bacteroidaceae and Porphyromonadaceae, which both slightly reduced CRP levels in 

children with infectious symptoms and without, respectively. However, their effects on lowering 

inflammation were only marginally significant (p<0.1). We found two equally likely candidates 

for the protective effect on endotoxemia in healthy children. High E. coli exposure increased the 

odds of elevated Clostridiaceae abundance, which reduced EndoCAb levels, while high coliform 

exposure decreased odds of elevated Alcaligenaceae, which increased levels of EndoCAb. No 
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family taxa met the criteria for a protective effect on endotoxemia among children with 

infectious symptoms.      

8.6. Discussion 

Our study provides novel evidence that compositional symbiotic differences in the gut 

microbiome may be an underlying mechanism of the “old friends” hypothesis, linking early life 

pathogenic exposures to immune health and protection from environmental enteric dysfunction. 

We found support for our hypothesis that changes in the gut microbiome associated with 

exposure to high fecal pathogens in household tap water provide immunoregulatory effects, 

lowering levels of inflammation and endotoxemia among healthy and sick children from 

Galapágos, Ecuador. High E. coli and total coliform exposures significantly impacted the odds 

ratios of elevated levels of six family taxa, out of the 26 most abundant in the study sample. E. 

coli and total coliforms exposures were associated with the abundance of families with the ability 

to influence measures of immunostimulation used in our study. To our knowledge, this is the 

first study to test the impact of empirical measures of fecal pathogen exposure from 

contaminated water on the gut microbiome and to determine the influence of microbiota on 

immunostimulation associated with environmental enteric dysfunction in children. We suggest 

that these differences contribute to the maintenance of gut symbiosis, or the balance of 

commensal bacteria allowing for proper immune regulation, clearing of pathogenic infection and 

resolution of inflammation (Levy et al. 2017).   

We determined that Enterobacteriaceae is the most likely candidate for the protective 

effect of fecal pathogens on CRP levels, signifying enhanced resolution of the inflammatory 

response (Figure 8.1, bottom: pathway B). Enterobacteriaceae was related to significantly higher 

CRP levels in our models, which was expected given about 10-20% of common gastrointestinal 
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infections in children are caused by bacteria from this family, such as E. coli, Shigella, 

Salmonella and Yersinia enterocolitica (Elliott 2007). However, high fecal pathogen exposure 

was associated with lower odds of elevated abundance of the pro-inflammatory 

Enterobacteriaceae. The fact that we observed a negative relationship between total coliforms 

and Enterobacteriaceae was unexpected since fecal coliforms also belong this this family. 

Unlike rare, acute exposures to fecal pathogens in contaminated food resulting in gut dysbiosis, 

diarrhea and vomiting, we suggest that chronic exposure to fecal pathogens from household 

water sources may over time entrain the gut to resist pathogenic overgrowth from this family. 

Antagonism between commensal and pathogenic bacteria for nutrients and adhesion to the 

intestinal epithelium prevent pathogenic overgrowth (Henker et al. 2007). Children exposed to 

higher levels may have commensal microbiota with the ability to outcompete pathogenic bacteria 

and initiate rapid immune responses, thus lowering total amounts pathogenic species in the gut. 

Enterobacteriaceae comprised less 0.47% of total bacterial composition in this sample (Table 

8.2); yet given it demonstrated the strongest effect size for increasing levels of CRP in children 

with and without infectious symptoms, small changes in the abundance could have significant 

impacts on immunostimulation. Local inflammation caused by gastrointestinal infection 

promoted the overgrowth of Enterobacteriaceae, especially nonpathogenic E. coli, replacing 

bacterial species of Firmicutes in mice models (Lupp et al. 2007). However after the infection 

was cleared, initial bacteria levels were restored indicating rapid resolution of inflammatory 

responses and the ability to reestablish microbial homeostasis following diarrheal infection.  

While the family level Enterobacteriaceae collectively was related to higher levels of 

inflammation and had no effect on endotoxemia levels in our sample, other studies have 

demonstrated that commensal E. coli strains provide enhanced antibody immune responses 
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(Lodinova-Zadnikova et al. 1992) and some anti-inflammatory effects by inhibiting pro-

inflammatory cytokines (Arribas et al. 2009). In a study of the gut microbiota and their 

associated endotoxins or lipopolysaccharides (LPS) in Eastern European and Russian infants, 

Vatanen and colleagues (2016) found that E. coli was one of the dominant bacteria contributing 

to the biosynthesis of lipid-A, which is key component of the LPS molecule that signals the 

innate immune response. The E. coli LPS-subtype produced high levels of pro-inflammatory 

cytokines TNFα and interleukin-1β (IL-1β), the anti-inflammatory IL-10, and IL-6, in addition to 

providing resistance to immunostimulation after re-exposure to endotoxins. This signifies that E. 

coli is a vital immunoregulatory pathogen that trains the innate immune system and can provide 

endotoxin tolerance in early life. However, the study also demonstrated that the relatively high 

contribution of Bacteroides species to the gut microbial composition prevented and blocked the 

protective cytokine response of co-occurring E. coli LPS-subtype (Vatanen et al. 2016). Since 

our sample is older in age and therefore has more abundant Bacteroidaceae bacteria (Koenig et 

al. 2011), the regulatory properties of E. coli on inflammation and endotoxemia may have been 

suppressed.   

Our study revealed opposing effects of Bacteroidaceae on immunostimulation. It was 

marginally associated with reduced systemic inflammation and higher levels of endotoxemia in 

children with infectious symptoms. Bacteroides fragilis has shown to decrease LPS-induced 

inflammatory cytokines and chemokines during childhood when colonized during early infancy 

(Sjogren et al. 2009). Although the authors speculate this suppressive effect may be due to 

endotoxin tolerance, other research indicates that Bacteroides LPS-subtypes failed to lower 

concentrations of TNFα after re-stimulation, signifying inability to produce endotoxin tolerance 

(Vatanen et al. 2016). Mice with elevated abundance of B. fragilis experienced higher levels of 
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microbial translocation and endotoxemia (Romond et al. 2008). Gambian infants with elevated 

amounts of Bacteroidaceae also experienced abnormally high levels of fecal calprotectin (Davis 

et al. 2017), suggesting intestinal inflammation characteristic of environmental enteric 

dysfunction (Keusch et al. 2014). In mice models, exposure to a mixture of several Bacteroidales 

species and E. coli, along with a malnourished diet, induced structural and functional changes to 

the small intestines mimicking human environmental enteric dysfunction (Brown et al. 2015). 

Bacteria belong to the Bacteroidaceae family may have differential abilities to increase risk of 

intestinal inflammation causing compromised barrier function and translocation of endotoxins 

into the bloodstream inducing endotoxemia, while others provide immunoregulatory effects on 

systemic inflammatory cytokines signaling.  

We identified Clostridiaceae and Alcaligenaceae as candidate bacterial families for 

providing endotoxin tolerance among healthy children, indicated by reducing endotoxin core IgG 

antibodies. Clostridiaceae was associated with a significant protective effect in lowering levels 

of endotoxemia, and E. coli was related to a higher odds ratio of elevated abundance. In mice 

models, helminth infection has been shown to increase the expansion Clostridiales colonization, 

which provided protection from some bacterial overgrowth through stimulation of Type 2 Helper 

T cells (Ramanan et al. 2016). Commensal bacteria strains from Clostridia have been found to 

have heighten immunoregulatory effects in promoting regulatory T cells and anti-inflammatory 

IL-10 isolated from human fecal samples, and have reduced abundance in patients with 

inflammatory bowel disease (Atarashi et al. 2013). In mice models with the inflammatory 

disorders of colitis and allergic diarrhea, administration of these Clostridia strains attenuated 

symptoms and reduced humoral and inflammatory responses (Atarashi et al. 2013). Thus, 

bacteria from Clostridiaceae exhibit immunoregulatory benefits in regards to reducing intestinal 
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inflammation under chronic conditions that are consistent with our findings of lowering 

endotoxemia levels induced by intestinal inflammation. However, our study is the first to our 

knowledge to identify the family Alcaligenaceae as inducing immunostimulation or being 

influenced by fecal pathogen exposures. We found no candidate microbial family for the 

protective effect on endotoxemia in sick children, which may be explained by the fact that 

environmental enteric dysfunction that causes endotoxemia is a subclinical condition. Thus, it is 

not associated with diarrhea or the other infectious symptoms we used to indicate sick children in 

our study. There is no theoretical reasoning behind stratifying childhood EndoCAb levels by 

infection status, other than methodological consistency with our analysis of CRP that is 

dependent infection status.    

Bifidobacteriaceae was related to decreased inflammation levels among sick children 

from our study. Human milk oligosaccharides are bioactive molecules found in breastmilk that 

help establish the colonization of the commensal genus Bifidobacterium and Bacteroides, which 

are their primary consumers (Marcobal and Sonnenburg 2012; Sela and Mills 2010). 

Bifidobacteria nourished by human milk oligosaccharides have been shown to improve 

immunoregulatory effects by increasing anti-inflammatory cytokine IL-10 and strengthened 

epithelial tight junctions by increasing levels of junctional adhesion molecule A (Chichlowski et 

al. 2012). Infants who are exclusively breastfed demonstrate higher proportions of 

Bifidobacterium and lower proportions of Bacteroidetes and Clostridiales than non-exclusively 

breastfed or formula fed infants (Thompson et al. 2015). When complimentary foods are given 

with age, the proportion of Bifidobacterium declines and Bacteroides increases (Koenig et al. 

2011), and thus children in our sample, aged two to ten years no longer have a dominance of 

Bifidobacterium (Table 8.2). However, the protective effects of lowering inflammation and 
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endotoxemia (although not statistically significant in our models) are experienced through 

adulthood. Oral administration of a commensal strain, Bifidobacteria infantis, for eight weeks 

significantly lowered levels of CRP and pro-inflammatory cytokines TNFα and IL-6 in patients 

with three chronic conditions (ulcerative colitis, chronic fatigue syndrome and psoriasis) and in 

healthy adults following LPS-stimulation (Groeger et al. 2013). Some Bifidobacteria strains 

increased metabolic production of the short-chain fatty acid, acetate, which enhances epithelial 

cells and intestinal barrier function, protecting against microbial translocation following 

exposure to enterohemorrhagic E. coli in mice (Fukuda et al. 2011). While Bifidobacteriaceae 

was not considered a candidate mechanism for the protective effect of fecal pathogen exposure 

since high E. coli and total coliform were associated with reduced abundance, our results 

revealed important immunoregulatory effects supported by other experimental studies.  

Although we establish that the presence of infectious symptoms and chronic fecal 

pathogen exposure in contaminated household water impacts the gut microbial composition in 

children while adjusting for demographics, our models were limited in capturing other factors 

impacting gut symbiosis. Birth delivery method (Dominguez-Bello et al. 2010), infant feeding 

practices (Koenig et al. 2011), antibiotic use (Jernberg et al. 2010) and long-term dietary patterns 

(De Filippo et al. 2010; Wu et al. 2011b) can influence gut microbiota. Data of delivery type was 

not collected for our entire sample; however, 47% of 135 children were born by cesarean section. 

Approximately 35% of children in our sample were exclusively breastfeed for six months, with a 

much higher percentage actually receiving breastmilk in combination with formula. To 

determine the effect of breastfeeding, we ran additional models adjusting and stratifying for 

infant feeding practices that yielded similar results and thus were excluded. Antibiotic or 

antiviral use were not included as only 3% of children in our study received these medications. 
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Environmental enteric dysfunction causes structural changes in the small intestine and microbial 

compositions analyzed from fecal samples in this study may not provide a regional 

representation of colonization specific to that area (Brown et al. 2015). While our interpretations 

assume causal relationships between fecal pathogen exposures, bacterial family abundance and 

immune function, our analytic design does not test for causality, and it is unknown whether 

family taxa increase immunostimulation or whether immune function can manipulate bacterial 

abundance. The effect of individual diets on microbial compositions remains unexplored in our 

sample; however based on ethnographic observation, children consumed high-fat, low-fiber diets 

typical of populations experiencing nutrition transition (Popkin et al. 2012). Other studies have 

demonstrated this dietary pattern is associated with higher levels of Bacteroides than Prevotella 

(Wu et al. 2011a). This finding is supported by a greater abundance of Bacteroidaceae compared 

to Prevotellaceae in our total sample and a high prevalence of childhood obesity. Future research 

will examine the relationships between diets, microbial compositions and immune function in 

our sample.  

8.7. Conclusion 

To the best of our knowledge, this is the first observational human health study to 

demonstrate that variation in the gut microbiome is a mechanism of adaption to chronic exposure 

to fecal pathogens that increases fitness by providing immunoregulatory effects. Previous studies 

have documented the many immunomodulatory properties of the gut microbiome in relation to 

intestinal health, symbiosis and systemic infection. However, these studies have been mostly 

experimental in design, performed in animal models, or only concerned with the impact of 

microbiota on immunostimulation and do not reflect on how the specific compositions are 

influenced by the pathogenic, dietary and physical environments in which people live. The 
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distinction between what is classified as gut immune symbiosis or dysbiosis will be dependent on 

the individual’s unique history of microbial exposures and nutrition status. Researchers 

previously assumed that habitual fecal exposure from contaminated water and food due to poor 

sanitation infrastructure and limited access to clean drinking water was the cause for increased 

levels of chronic immunostimulation characteristic environmental enteric dysfunction 

(Humphrey 2009; Watanabe and Petri 2016). Our results contradict this assumption and instead 

elucidate the mediating role of the gut microbiome and its immunoregulatory capacities. Using 

an evolutionary framework, we identified several microbial pathways linking early life fecal 

pathogen exposures on immunoregulation related to environmental enteric dysfunction in a 

human population model. The practical significance of these results help to better understand 

environmental-induced susceptibility to inflammation and endotoxemia in children living in high 

pathogenic environments, typical of low and middle income countries.  
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Figure 8.1 Observed and hypothesized relationships of fecal pathogen exposure on 

immunostimulation. 

Top: High fecal pathogen exposure was associated with lower levels of immunostimulation in 

previous work. Middle: Step 1) Determine the odds ratios of elevated abundance of gut tax 

based on high fecal pathogen exposure. Step 2) Test whether significant gut microbial taxa are 

associated with immune levels. Bottom: The two pathways for candidate selection of the 

protective effect of fecal pathogen exposure on immunostimulation: A) High fecal pathogen 

exposure is associated with increased abundance of beneficial bacteria that lowers immune 

levels. B) High fecal pathogen exposure is associated with decreased harmful bacteria that 

elevate immune levels. 
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CHAPTER 9. DISSERTATION SYNTHESIS 

9.1. Significance of Galápagos as a Dual Burden Environment Research Setting 

Due to economic growth and infrastructure development over the past several decades, 

lifestyles and health patterns in Galápagos have undergone dramatic transformations. Commerce 

and tourism have replaced subsistence farming and fishing, leading to a reliance on the 

importation of food and basic supplies by boat and plane. The dietary shift from local production 

to processed foods and a lower diversity in fresh produce has created a pattern of high-fat, low-

fiber diets consistent with the overnutrition seen in high income countries. In addition to lower 

physical activity levels, these changes likely explain why Galápagos currently has the highest 

rates of overweight and obesity among Ecuadorian children and adults. Rapid immigration from 

the mainland and an increasing number of tourists visiting each year are increasing the strain on 

the already weak water and sanitation infrastructures. High levels of fecal contamination in the 

municipal water supply and untreated sewage has generated a living environment with high risk 

of pathogen exposure and infectious disease among its residents. Understanding the early life 

health impacts of living in a dual burden environment, where obesity and cardiovascular diseases 

are coupled with infectious illness, is critical in preventing childhood obesity and gastrointestinal 

disease, and improving growth outcomes.  

9.2. Overall Strengths and Limitations of the Study Design 

The strengths of this dissertation were the use of traditional anthropological and 

evolutionary theories adapted to fit the conditions of the dual burden environment, and the 

testing of new hypotheses concerning the causes and consequences of the interaction between 
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immunostimulation from both pathogenic and obesogenic sources. In addition, intestinal health 

and immune function were measured at three different levels: 1) systemic inflammation 

measured by C-reactive protein (CRP); 2) poor intestinal barrier reflecting microbial 

translocation of endotoxins into the blood stream, initiating endotoxemia and the humoral 

antibody response function indicated by endotoxin core immunoglobulin-G antibodies 

(EndoCAb IgG); and 3) intestinal symbiosis/dysbiosis evaluated by gut microbial compositions. 

Incorporating immune biomarkers with data from the gut microbiome is uncommon among other 

anthropological health studies.  

Another strength of this study was the use of longitudinal measures of CRP. To estimate 

rates of elevated inflammation indicating cardiovascular disease risk in Paper 1, it was vital to 

examine intra-individual variability over time to determine whether elevations were stable and 

chronic, or fluctuating in response to infection or injury. To explore the influence of high 

Escherichia coli exposure and gut microbial compositions on inflammation in Papers 2 and 3 

respectively, using multiple measures in the statistical models allowed for flexibility in 

examining positive or negative relationships. This analytic strategy supported the conceptual 

objective in using the modified life history theory framework for the dual burden environment. 

Thus, the study was concerned with the effect of increasing or decreasing levels on the 

inflammatory response, and not determining the impact of predicting chronic, low-grade 

inflammation or acute inflammation over certain cut-points.   

The use of empirical measures to assess water quality for E. coli and total coliforms, 

instead of relying on proxy measures of fecal contamination, is innovative for human health 

studies in anthropology. In comparison to other water, sanitation and hygiene (WASH) studies, 

the age range from two to ten years investigated in this research includes the entire span of early 
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to middle childhood, instead of focusing on children under five. Another strength of this 

dissertation was the incorporation of a follow-up study after, on average, six and one-half months 

from recruitment. The purpose of this follow-up was to measure weight gains and linear growth 

in children, in order to model life history tradeoffs between immunocompetence and growth 

outcomes that have been presented at national meetings, though not a part of this dissertation. 

Rather than examine the mismatch that occurs between changing resource environment during 

early and later life, this dissertation used the developmental origins of health and disease 

(DOHaD) framework to explore the early life impacts of simultaneous pathogenic and 

obesogenic exposures on gut health and immune function.  

There are several general limitations of this study. First, the extent to which these results 

can be generalized to other dual burden populations is unclear. However, this study does provide 

methods for assessing chronic inflammation and frameworks to explore the impact of poor water 

quality on immune function and gut health in other similar dual burden populations. In addition, 

loss to follow-up for the final round of data collection was over 50%, which limited our analysis 

using linear growth and weight gain measures. The inability to infer causality from the statistical 

models is problematic for most observational studies, as are unidentified endogenous factors not 

captured in the analytic design. Limitations concerning measures are discussed below in relation 

to specific analyses. 

9.3. Paper Summaries and Contributions  

Paper 1- Measuring Chronic Low-Grade Inflammation examined different methods 

for measuring chronic, low-grade inflammation using cross-sectional and longitudinal measures 

of CRP to determine which measure most accurately predicts obesity, while excluding elevations 

associated with infection. Using sensitivity and specificity analyses and the area under the 



 

118 

receiver-operator characteristic (ROC) curve, this study found that the method of calculating the 

mean value of longitudinal CRP measures and excluding individuals with a high change had the 

greatest discriminatory ability in relation to obesity, although statistically similar to cross-

sectional measures. The methodological contribution of this work confirms that the common 

practice of using of a single measure of CRP provides a validate estimate of chronic, low-grade 

inflammation in this dual burden population, when values over 10mg/L are discarded. However, 

the results also suggest that when practical, using longitudinal measures to access high levels of 

change between time points to indicate and discard elevations of infectious origin, are a more 

consistent and reliable method of estimating inflammation rates associated with obesity.  

This work is significant in that there is limited research on the impact of infectious-

related elevation of CRP in estimating chronic, low-grade inflammation. Likewise, there are only 

a few studies that examine intra-individual variability in CRP measures among populations 

outside of the US, Canada and Europe. Unlike these countries, populations experiencing higher 

infectious disease burdens may have higher CRP levels due to an inflammatory response from 

infection or injury, which can lead to overestimated levels of chronic inflammation and 

cardiovascular disease risk. Prevalence of chronic, low-grade inflammation was estimated based 

on the methods in combination with ranges used to indicate moderately elevated CRP that 

revealed the greatest balance between sensitivity, specificity and percent correctly classified. 

Among Galápagos children, the method of discarding values with a change over 3mg/L and 

using the relaxed range of 1-10mg/L yielded the prevalence of 20%. According to the cross-

sectional measures at time-2 using the range of 3-10mg/L, the prevalence among women was 

24%. The limitation of this study is that it was unable to confirm whether the use of the 

particular method and range signifies cardiovascular disease risk, as the measure was only tested 
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in relation to obesity. The ideal strategy would have been to test the measures in relation to other 

inflammatory biomarkers and cardiovascular disease.  

Paper 2- E. coli Exposure and Immune Function tested the impact of early life 

habitual exposure to E. coli from fecal contaminated household (non-drinking) tap water on gut 

health and immune function in children, to determine if fecal pathogens may provide 

immunoregulatory effects. Statistical models indicated that high levels of E. coli in tap water 

were significantly associated with lower levels of both CRP and EndoCAb in children. The 

theoretical contribution of these findings provide novel support for the evolutionary “old friends” 

hypothesis suggesting that chronic E. coli exposure, which does not directly result in diarrhea or 

infection, may strengthen anti-inflammatory networks and enhance endotoxin tolerance. 

Epidemiological studies that have found high levels of immunostimulation associated with 

environmental enteric dysfunction (EED) in populations with inadequate sanitation, unsafe 

drinking water and undernutrition. To my knowledge, this is the first study to identify a possible 

protective effect of fecal pathogen exposures among children living in a dual burden 

environment with adequate nutrition. Prior studies have found that indirect measures of pathogen 

exposure, such as unsanitary household environments, poor hygiene practices and childhood 

behaviors such as geophagy, increase levels of EED. The methodological strength of this study is 

the direct, empirical measurement of E. coli contamination of household water quality.  

The significance of this research is that even in the context of a pro-inflammatory state, 

driven by overweight and obesity, early life exposure to E. coli contaminated (non-drinking) 

water can provide an immunoregulatory effect among children in Galápagos. Although the 

regulatory abilities of commensal E. coli have been demonstrated in probiotic clinical trials and 

in experimental animal models, that fact this effect was identified in an observational human 
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population study is novel. Further research is needed to determine what other fecal pathogens 

and which E. coli strains were present in the water and responsible for the protective effect. One 

of the strengths of this study is that it demonstrates that early life pathogen exposures may 

provide immunoregulatory effects even during childhood. Yet, to make significant contributions 

to the DOHaD theory, follow-up studies are necessary to test whether these effects persist into 

later life.  

Paper 3- Gut Microbiota Mediate Immunostimulation determined whether gut 

microbial compositions mediate the regulatory impact of fecal pathogen exposure in household 

tap water on immune function associated with EED. Gut microbial taxa were identified as 

possible candidates for a protective effect on inflammation and endotoxemia separately. Taxa 

were selected if exogenous exposure to fecal pathogens provided gut microbial symbiosis. For 

example, if models indicated fecal exposures were associations with higher levels of gut 

microbial taxa that lowered immunostimulation, or if models found that fecal exposures lowered 

levels of gut taxa that raised immunostimulation. The study identified that the gut family of 

Enterobacteriaceae was the strongest candidate for having a protective effect on inflammation. 

Both Clostridiaceae and Alcaligenaceae were candidates for having a protective effect on 

endotoxemia. 

Testing and identifying gut microbial symbiosis as a possible mechanism underlying the 

immunoregulatory effect of early life fecal pathogen exposure on inflammation and endotoxemia 

is an important contribution to the evolutionary “old friends” hypothesis. The significance of this 

research is its suggestion that the gut microbiome may allow for phenotypic plasticity in 

inflammatory profiles and endotoxin tolerance of the humoral immune response, based on local 

ecologies. Demonstration of this effect within the dual burden environment is particularly 
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interesting as the gut microbiome can also be highly influenced my obesogenic factors. Models 

for inflammation in this analysis were adjusted for obesity, yet the interaction with diets and 

body composition measures remains to be tested. Changes to the gut microbiome associated with 

ingestion of fecal pathogens, in combination with a malnourished diet, have shown to cause EED 

in mice models. To my knowledge, this is the first human health study to test the hypothesis that 

alterations in microbial composition due to exposure to fecal contamination, are associated with 

immune indicators of endotoxemia. This is of particular importance to public health research on 

EED since its pathological etiology is poorly understood.  

9.4. Directions for Future Research 

 Since the objective of this dissertation is the investigation of early life pathogenic and 

obesogenic environments on childhood intestinal health and immune function, incorporating the 

role of dietary factors would greatly strengthen this analysis. Dietary resources may be buffering 

the energetic costs of immunostimulation associated with inflammation and endotoxemia on 

childhood health and growth. This may be the reason why the study results are inconsistent with 

other research that has found an association between higher pathogenic conditions and indicators 

of environmental enteric dysfunction (Humphrey 2009). In these malnourished populations, 

environmental enteric dysfunction is responsible for a moderate proportion of stunting 

(Campbell et al. 2003a; Mondal et al. 2012; Panter-Brick et al. 2009), since resources are 

diverted from growth to immune function. It will be important to determine the impact of 

different diets and the role of food insecurity on immune function measures associated with 

EED. Children with lower caloric intake may have higher levels of immunostimulation since 

their energy reserves may not met the requirements to provide for adequate immunoregulation 
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over time. These children may also experience lower weight and height gains, compared to 

children with higher caloric intake. 

Both long and short term dietary patterns can also highly influence gut microbial 

symbiosis and diversity (David et al. 2014; Turnbaugh et al. 2009). Distinctions in microbial 

compositions have been found between children with high-fat, low-fiber diets typical of 

populations with overnutrition and those of a more traditional low-fat, high-fiber diets (De 

Filippo et al. 2010). The gut microbiome are responsible for nutrient metabolism of dietary fiber, 

and produce metabolites that have direct influence on cytokine production of the inflammatory 

immune response and also maintain intestinal barrier function protecting against endotoxemia 

(Kau et al. 2011). Similar to our findings that the gut microbiome may be modifying the 

immunoregulatory effect in the “old friends” hypothesis, the influence of dietary patterns need to 

be examined as they may also provide an immunoregulatory phenotype. The impact of diet on 

immune function, intestinal health and growth will be explored in future analyses.  

9.5. Conclusion 

This study used the emerging field of the gut microbiome as pathway to investigate the 

early life effects of overnutrition and poor water quality on childhood intestinal health and 

immune function in Galápagos, Ecuador. Building upon anthropological and evolutionary 

theory, this research developed and tested new hypotheses for the dual burden environment that 

1) examined the relationship between three measures of gut health and immune function: 

inflammation, poor intestinal barrier function (endotoxemia) and microbial symbiosis, 2) 

disentangled the use of CRP levels associated with acute infection and chronic low-grade 

inflammation using longitudinal measures, 3) identified an immunoregulatory effect of moderate 

fecal pathogen exposure, indicated by E. coli levels in contaminated household water on 
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childhood inflammation and endotoxemia, and 4) determined the possible role of gut microbial 

symbiosis underlying protective effects early life fecal pathogen exposure on 

immunostimulation. These findings provide novel insight into the early life health impacts of the 

dual burden environment on childhood intestinal health and immune function.  

The methodological contribution of this work confirms that the use of cross-sectional 

measures of CRP provide a validate estimate of chronic, low-grade inflammation in this dual 

burden population, when values over 10mg/L are discarded. Yet, longitudinal measures 

identifying and excluding intra-individual variability in elevations due of infections provide a 

more reliable method of estimating inflammation associated with obesity. The significance of 

this research is the finding that even in the context of overnutrition resulting in a pro-

inflammatory state, early life exposure to E. coli contaminated water, which does not result in 

diarrhea or infection, can provide an immunoregulatory effect among children in Galápagos, 

Ecuador. The theoretical contribution of this study in relation to the evolutionary “old friends” 

hypothesis is that gut microbial symbiosis is a possible mechanism underlying protective effects 

of fecal pathogens on inflammation and endotoxemia. This suggests that the gut microbiome 

may allow for phenotypic plasticity in inflammatory profiles and endotoxin tolerance of the 

humoral immune response, based on local pathogenic ecologies. Demonstration of this effect 

within the dual burden environment is particularly important as the gut microbiome can also be 

highly influenced my obesogenic factors. To my knowledge, this is the first human health study 

to show that alterations in microbial compositions, due to exposure to fecal contaminated water, 

are associated with immune indicators of endotoxemia. This is of particular importance to public 

health research on environmental enteric dysfunction since its pathological etiology is poorly 

understood.   
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