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Abstract

Background: The understanding of evolutionary relationships is a fundamental aspect of modern
biology, with the phylogenetic tree being a primary tool for describing these associations. However,
comparison of trees for the purpose of assessing similarity and the quantification of various
biological processes remains a significant challenge.

Results: We describe a novel approach for the comparison of phylogenetic distance information
based on the alignment of representative high-dimensional embeddings (xCEED: Comparison of
Embedded Evolutionary Distances). The xCEED methodology, which utilizes multidimensional
scaling and Procrustes-related superimposition approaches, provides the ability to measure the
global similarity between trees as well as incongruities between them. We demonstrate the
application of this approach to the prediction of coevolving protein interactions and demonstrate
its improved performance over the mirrortree, tol-mirrortree, phylogenetic vector projection, and
partial correlation approaches. Furthermore, we show its applicability to both the detection of
horizontal gene transfer events as well as its potential use in the prediction of interaction specificity
between a pair of multigene families.

Conclusions: These approaches provide additional tools for the study of phylogenetic trees and
associated evolutionary processes. Source code is available at http://gomezlab.bme.unc.edu/tools.

Background
Understanding historical relationships between genes,
proteins and species is a core aspect of evolutionary biology,
with the phylogenetic tree playing a fundamental role in
analysis and visualization. However, major challenges still
exist in the representation and analysis of the information
encoded within phylogenetic trees. For instance, inferring
the “true” tree is fundamentally a difficult problem, leading
to continuous refinement of reconstruction methods [1].
Similarly, methodologies for tree comparison are also
undergoing significant development [2]. In this instance,

the typical goal is to compare trees in order to determine
their degree of similarity, providing onemechanism to test a
variety of hypotheses regarding evolutionary associations.
For example, comparison of gene treeswith organismal trees
allows the detection of non-standard events such as
horizontal gene transfer [3,4]. Comparison of species trees
can be used to give a picture of host-parasite symbiosis as is
seen, for example, in the case of attine ants, their fungal
cultivars, and the Escovopsis parasite [5]. Another example
is the prediction of protein-protein interactions, as it has
been shown that interacting proteins often appear to
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coevolve with one another [6-8]. Such instances of
coevolution are largely based on the premise that in order
to maintain their interaction (and thus their broader
functionality), changes in one gene/protein will be coordi-
nated with changes in the other, and this process of
coevolution or correlated evolution can be observed
through the similarity of their phylogenetic trees [9,10].

While there are a variety of methods available for the
comparison of trees, two general categories of approaches
are clearly distinguishable. The first class of approaches
focuses on comparing trees through topological features, for
example quantifying the number of shared/non-shared
substructures (e.g. subtrees of four leaf nodes) between a
pair of trees [11,12] or finding the minimum number of
operations (e.g. nearest neighbor interchange) to transform
one tree into another [13-15]. The second class of
approaches compares the distance or path length informa-
tion directly. Specifically, in these approaches assessing the
similarity between two trees is reduced to a problem of
finding the degree of correlation (most commonly the
Pearson correlation) between the elements within the
respective distance matrices. The “mirrortree” method is
based on such an approach and was developed for the
prediction of protein-protein interactions [16]. Continued
work in this area has led to multiple modifications of the
basic mirrortree approach including the use of patristic
distances obtained from the corresponding neighbor-join-
ing tree instead of the observed inter-protein distances [17],
the correction of patristic distancematrices for their inherent
similarity due to background “tree of life” evolution
[17-19], and the incorporation of ancestor node informa-
tion into the distance matrices [20].

While methods based on distance matrix similarities have
proven to be of particular value, several substantial
disadvantages exist. For instance, these methods assume
that each value in a distance matrix is independent of the
other distance values. This is generally not the case as, if a
distance (path length) between two leaf nodes changes,
lengths of all other paths involving the modified edge(s)
also change. Therefore, any method in which the distance
matrices are directly manipulated without considering
this dependency may bias the reported correlations. It is
also difficult to extend these existing approaches, for
example, to incorporate robust estimation into the
identification of outlying lineages between compared
trees. Furthermore, by definition, it is not possible to
handle trees of different size or to align multiple trees
simultaneously. Finally, prior knowledge cannot be
readily incorporated so as to help guide comparisons.

Here, we report a novel method for the comparison of
evolutionary distance matrices (and hence trees) based
on the superimposition of Euclidean embeddings that

best realize the given distance relationships. Specifically,
we start from a set of aligned sequences and generate
distance matrices based on either distance information
calculated directly from the alignment, or distances
derived from a corresponding neighbor joining tree.
From these distance matrices we then map each sequence
to a Euclidean space via metric multidimensional scaling
(MDS). This operation produces a multidimensional
structure or point pattern, where each point represents a
taxon, and the distance relationships between all points
is maintained from the original distance matrix. For the
purpose of comparing two trees, the same operation is
applied to the second distance matrix, generating the
second Euclidean embedding. Finally, we superimpose
one embedded point pattern onto the other with the
degree of fit being determined by the least squares sum
of deviations between corresponding point pairs or by
some other measure as described below.

In this paper, we refer to the general comparative
approach of Euclidean embedding creation and align-
ment as “xCEED”, the Comparison of Embedded
Evolutionary Distances. However, this general approach
actually contains three different superimposition meth-
ods, differing with regard to the question being asked or
the data available (see Figure 1). Briefly, the first
approach is an indirect superimposition of target
structures (trees) that is guided by a low-noise reference
structure, 16S ribosomal RNA phylogenies. While similar
to the tol-mirrortree and vector-projection methods
[17,18], this approach, rCEED, provides a new way to
remove background correlation caused by tree-of-life
evolution and thus helps in providing an accurate
measure of coevolution (see Figure 2). Like the tol-
mirrortree and vector-projection methods, rCEED
requires both a reference structure as well as correspon-
dence information for proper alignment (e.g. protein A
in tree 1 maps to protein B in tree 2). We describe the
application of rCEED to the prediction of coevolving
protein interactions and demonstrate its improved
performance over the mirrortree, tol-mirrortree [16,17],
phylogenetic vector projection [18], and partial correla-
tion methods [19].

In cases where the identification of incongruent region
between trees is desired, robust structure alignment
(vCEED) can be performed using “Verboonian” Pro-
crustes [21], which penalizes less for the existence of
outliers when compared to rCEED. As a result, one can
detect local regions of similarity even in the presence of
outliers and/or identify outliers relative to a common
shared structure. The identification of horizontal gene
transfer (HGT) events is an area where outlier detection
within a phylogenetic tree is needed and we provide an
example of the applicability of vCEED to this problem.
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As with rCEED, we can also use vCEED to detect
coevolving protein interactions, especially in cases
where a reference structure is not available and/or target
structures (trees) contain outlying taxa and show its in
this. We also compare the performance of vCEED with
that of rCEED and other existing methods.

Finally, alignment without either a reference structure or
mapping information can be performed with a Gaussian
mixture model superimposition approach (gCEED). As a
proof-of-concept for the potential broader utility of this
approach, we describe its application to the prediction of
protein interaction specificity between multigene
families. As a whole, the xCEED methodology provides
a novel approach to the tree comparison problem and
the study of related evolutionary processes.

Results and Discussion
Prediction of protein interactions
We first applied both rCEED and vCEED to the
prediction of protein interactions through the detection

of a coevolutionary signal between orthologous protein
families. While analogous to the approaches of [17,18],
rCEED attempts to address some of their weaknesses.
Specifically, in the tol-mirrortree approach, Pazos and
colleagues subtracted the distance matrix of 16S rRNA
from that of each protein, and then measured the
correlation between these “difference of distance”
matrices [17]. However, direct subtraction of rRNA
from protein distances is problematic, as their evolu-
tionary rates are different and it is not clear as to how to
properly scale such differencing procedures. In phyloge-
netic vector projection, Sato and colleagues formed a
vector from the lower triangular region of each distance
matrix [18] and computed a difference vector between a
gene vector and the same gene vector projected onto that
of 16S rRNA. Again the correlation between distance
matrices is measured with these difference (normalized)
vectors. While avoiding direct subtraction of amino acid
and rRNA distances, this approach (as does the tol-
mirrortree approach) still assumes that all pairwise
distances are independent. Not accounting for non-
independence between distances can potentially cause
bias in evaluation of correlation between two distance
matrices [22].

The rCEED approach addresses these issues by viewing
the leaf nodes in an embedded structure as independent
variables. To measure the degree of coevolution, we
estimate how similar the deviations from the reference
structure are for each embedded structure. Doing this
makes it possible to remove the background tree-of-life
correlation without direct subtraction of rRNA distances
from amino acid distances or assuming independence
between distances. Specifically, we fit the reference
structure(s) onto the first embedded structure and then
onto the second structure separately (see Figure 2).
Afterwords, we superimpose these two reference struc-
tures onto each other while carrying along their
associated structures, which are the actual targets of
interest. After this superimposition we can remove the
reference structures, and then measure the degree of
similarity between the remaining two target structures.
As a single outlier can make the estimation of correlation
coefficients unreliable [23] we also evaluated the use of
vCEED in this application as it is specifically tailored for
dealing with outliers (see following section as well as
Methods for more details).

We compared the predictions of rCEED and vCEED to
those of the mirrortree, tol-mirrortree, phylogenetic
vector projection, and partial correlation methods
using the data of Pazos and colleagues [17]. This data
consisted of 388 protein interactions (true positives) out
of a total of 19,972 possible between 188 E. coli
proteins. Results are shown in Table 1 where we

Figure 1
The three different types of embedded structure
alignment described in this work. (a) rCEED aligns two
target structures indirectly using a reference structure. This
alignment is based on classical Procrustes superimposition.
(b) For the detection of outliers and/or common
substructures, we use vCEED to perform a local alignment
(rather than global in the case of rCEED). (c) If neither a
reference structure nor correspondence information is
available, we can align the structures using gCEED which
adapts a Gaussian mixture model approach for the accurate
superimposition.

BMC Bioinformatics 2009, 10:423 http://www.biomedcentral.com/1471-2105/10/423

Page 3 of 15
(page number not for citation purposes)



benchmarked the performance of all methods by
computing the area under receiver operating character-
istic curve (AUC) and estimated the significance by
using the method of DeLong et al. [24]. We also provide
the area under precision-recall curve, with the full
precision-recall curves provided in additional file 1. As
shown in Table 1, the AUC for the precision-recall curve
was the greatest for vCEED with a value of 0.091,
followed by rCEED using either patristic (0.083) or
observed (0.069) distances. The worst performer was the
mirrortree method with an PR-AUC of 0.048. Similar
trends are observed when using the ROC score with
rCEED having a score of 0.763, with that of mirrortree
and tol-mirrortree being 0.687 and 0.722 respectively.
The phylogenetic vector projection and partial correla-
tion approach had ROC scores of 0.704 and 0.687
respectively. In all cases, the difference in AUC between
rCEED and other methods was statistically significant
(p-values ≈ 10-6). We also found that the AUC of vCEED
was 0.763 - nearly that of rCEED using patristic
distances.

Figure 2
Schematic overview of rCEED approach. (a) Genetic distances obtained from sequence alignment or patristic distance
obtained from phylogenetic tree are mapped into Euclidean space by multidimensional scaling. Orthologous protein families
X1 and X2 along with two identical reference structures (16S rRNA orthologs), Xr, are embedded in a Euclidean space.
(b) Next, each reference structure is superimposed onto their respective protein families. (c) All four structures are now
superimposed based on estimated transformations between each set of references. Since both reference structures
were orthogonally transformed in (b), they will match exactly at this step. (d) The final superimposition result after removal
of the reference structures.

Table 1: AUCs of tested approaches for detecting protein
interactions via coevolution

Methods AUC
(PR curve)1

AUC
(ROC curve)2

p-value3

rCEED4 0.069 0.763 ± 0.013 N/A
rCEED5 0.083 0.766 ± 0.012 0.7965
vCEED 0.091 0.763 ± 0.013 0.9919
mirrortree 0.048 0.687 ± 0.013 <0.0001
tol-mirrortree 0.063 0.722 ± 0.014 <0.0001
phylogenetic vector
projection

0.053 0.704 ± 0.013 <0.0001

partial correlation 0.050 0.687 ± 0.013 <0.0001

Interactions
identified in DIP6

388

1Area under precision-recall curve.
2Area under receiver operating characteristic curve.
3The significance was computed using rCEED (observed distances) as
reference according to [24]..
4Based on observed distances.
5Based on patristic distances after the reconstruction of neighbor joining
trees.
6August 2009 version of DIP.
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Detection of horizontal gene transfer
With the basic xCEED approach, we are able to estimate
how well two trees match in a global sense through a
least squares model. Specifically, if there exists an
incongruent region between two trees, the least squares
approach will tend to smooth away large local errors by
allowing greater errors in other, otherwise well-aligning
regions. However, in some cases we would prefer to
maintain the best alignment of a substructure and/or be
able to identify outliers that are not consistent with a
comparison structure. To address this need, we adapted a
robust Procrustes method previously proposed by
Verboon and Heiser [21], with the difference between
this and globally optimal superimposition diagrammed
in Figure 3.

In Figure 3(a) it can be seen that errors are distributed
across all pairs, as would be done using the basic xCEED
method using least squares (e.g. rCEED with a reference
structure). However, in this example there is a sub-
structure that is in fact identical between the two that is
lost as a result of the spreading of errors throughout the
alignment. In contrast, Figure 3(b) shows the case where

we have used Verboonian robust Procrustes (vCEED) for
the alignment. In this case we have found and aligned
the identical substructures; allowing identification of
both this region of high-similarity as well as the outliers
which deviate significantly between the two distance
matrices.

This ability to detect local similarity and/or outliers is of
particular utility in the identification of horizontal gene
transfer (HGT) events. In HGT, a gene or group of genes
is transferred laterally from another species, rather than
inherited vertically from the parent(s). There are a variety
of approaches to predict the occurrence of HGT based
on, for example, codon usage, patterns of sequence
homology, and patterns of gene distribution [25,26].
However, the most robust method for detecting HGT is
through the comparison of phylogenetic trees of
different genes. When a species accepts a gene laterally
from another species, the location of the recipient
species in the phylogenetic tree will be unusually close
to the location of the donor species, which can be
detected through manual analysis of the tree. Using
vCEED, we can detect possible HGT by comparing a tree
that potentially harbors one or more HGT events with a
reference tree that does not, and then identifying the
associated outliers as likely HGT candidates.

As a proof-of-concept, we applied vCEED to the case of
the RuvB (COG2255) gene family described in [27]. In E.
coli, the RuvA and RuvB proteins catalyze branch
migration of Holliday junctions during genetic recombi-
nation and form an operon conserved in the majority of
sequenced bacterial genomes. In contrast with the RuvA
family, the RuvB gene is believed to have undergone HGT
[27]. We compared the trees (as MDS-constructed
embedding) of RuvB orthologous proteins collected
from 41 bacterial species (see Methods) to that of 16S
rRNA, with errors in the superimposition plotted in
Figure 4. In this example, we expect that the lineages that
underwent HGT will show up as outliers in the super-
imposition of the reference structure (16S rRNA) onto
that of RuvB. As can be observed, genes with errors larger
than the threshold of 0.01 for c (Equation (6), see
Methods), in the superimposition are those from
Ureaplasma and Mycoplasma and include M. pulmonis
(MYPU_6570), U. urealyticum (UU449), M. pneumoniae
(MPN535), and M. genitalium (MG358) (in blue). These
four were the same species identified by Omelchenko
and colleagues as being related to the HGT of the RuvB
gene. In addition, vCEED was also able to identify
sll0613, a Cyanobacterial gene from Synechocystis which,
as can be observed in the phylogentic tree of RuvB, is
closer to the Firmicutes rather than the Proteobacteria or
Actinobacteria as opposed to RuvA.

Figure 3
Schematic of the difference between classical
Procrustes alignment and Verboonian robust
alignment (vCEED). Classical Procrustes alignment is
shown in (a) with errors distributed across all corresponding
pairs during global alignment. This is in contrast to vCEED
(b), where an outlier becomes clearly distinguishable due to
the alignment of a matching (local) substructure.
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We also tested our approach with the more complicated
case of the UppS gene family (COG0020) which, as also
described in [27], is believed to harbor multiple HGT
events. Figure 5 shows the outlying genes according to
vCEED using 16S rRNA as the reference and using the
same threshold value of 0.01 for c as in the previous
example. As can be observed, we found that APE1385
from A. pernix, an archaeal gene, has the greatest
divergence in the comparison to the 16S rRNA tree. We
also see in the phylogenetic tree that it has atypical
affinity to bacterial genes from C. jejuni (Cj0824) and
B. burgdorferi (BB0120), both of which are also identified
as weak outliers with errors just above threshold. Both
Cj0824 and BB0120 would generally be expected to

appear in the tree under the proper phyla, Proteobacteria
(orange) and Spirochaetes (light green), respectively.
Further examination of the identified outlier genes
within the phylogenetic tree shows a bacterial branch
(green) of D. radioduran (DR2447), C. glutamicum
(Cgl0966), M. tuberculosis H37Rv (Rv1086) and M. leprae
(ML2467), embedded within an archaeal phylum, the
Euryarchaeota. We also see in the archaeal branch that a
Crenarchaeota gene, SSO0163, stands out in its grouping
with other genes from the Euryarchaeota phylum.

The Rickettsiales (blue) identified by Omelchenko and
colleagues were also included in our outlier list,
although they were not the most deviating. Note that

Figure 4
HGT detection via vCEED for RuvB. The phylogenetic tree of the RuvB (COG2255) family is shown on the left (redrawn
from [27]). Shown on the right are the vCEED alignment errors between COG2255 and 16S rRNA. The vertical line at
0.01 was the threshold c we used in this analysis (see Equation (6)).
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being an outlier does not certify that the gene was
horizontally transferred. Other mechanisms for this
deviation can also occur including large differences in
evolutionary rate or poor quality of the sequence
alignment. Therefore, while this approach can poten-
tially aid in the automatic prediction of potential HGT
events, manual inspection of the phylogenetic tree may
still be required. For example, the Firmicutes genes,
L183602 and SA1103, while being slight outliers, are in a
monophyletic subtree of Firmicutes (purple) and can
thus be excluded from further consideration.

Interaction specificity between multigene families
As demonstrated earlier, we can use either rCEED or
vCEED to compare trees so as to predict the potential
interaction of a pair of protein families. Again, these
approaches require the use of mapping information to
link the leaves of the two trees. There are applications,
however, where one would like to compare trees that
lack mapping information or where the recovery of
mapping information is the primary goal. An important
example of this type is in trying to determine likely
interaction specificity between a pair of protein or

Figure 5
HGT detection via vCEED for uppS. The phylogenetic tree of the UppS (COG0020) family is shown on the left (redrawn
from [27]). In addition to RP425 and RC0590 which was previously identified, an archaeal gene, APE1385, is clustered within a
group of bacterial genes. Also observable is a bacterial branch consisting of DR2447, Cgl0966, Rv1086, and ML2467, with
abnormal affinity to archaeal species. Both examples appear as outliers with vCEED (right) and indicate possible horizontal
gene transfer. See Results for further details.
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domain families (e.g. receptor-ligand binding, etc.)
[8,28-30].

Two primary methods for specificity prediction, MATRIX
[28] and MORPH [29], currently exist, and like all
methods, have their own inherent strengths and weak-
nesses. With MATRIX, a significant weakness is that the
tree structure is completely ignored throughout the
specificity search. MATRIX also requires multiple simu-
lated annealing runs (≥ 100 runs with trees of 15 leaves
or more) to determine which pairings are most frequent.
Perhaps most important, both MATRIX and MORPH
assume that there is a one-to-one correspondence
between members of the two protein families; i.e.
protein A from family 1 interacts solely with protein B
from family 2. Thus it is not possible to generalize to the
more realistic situation where we are looking at
specificities between protein families of different size.
In addition it precludes the possibility of many-to-many
or multiple interaction partners for a given protein.

Here we adapt the use of a registration algorithm based
upon Gaussian mixture models with our basic embed-
ding and alignment approach [31]. In this case, we
regard each vertex in the embedded structure (i.e. each
leaf in the phylogenetic tree) as the mean of a Gaussian
component such that the entire embedding is repre-
sented as a mixture model (see Methods). The central
idea is that if we have two structures that are highly
similar, as we align one structure closer to the other, their
corresponding mixture models become accordingly
similar. By trying to minimize the divergence between
the two mixture models, we can eventually find the best
superimposition. We refer to this method of alignment
as Gaussian CEED or gCEED for short. Using gCEED, we
attempted to determine the specificity information
between protein families provided in Ramani et al. [28].

The first example is the case of the interacting protein
family of GyrA and GyrB. Each protein family is known
to have a single paralog, ParC and ParE respectively, and
these paralogs are also known to interact. Figure 6(a)
shows the trees and interaction specificity (a leaf on one
tree interacts with the corresponding leaf on the other
tree) between these two multigene families. Results of
the initial superimposition are shown in Figure 6(b)-
Step1. The probability matrix is shown after having
converted probabilities to grayscale values such that
darker elements at [i, j] denote a higher probability of
correspondence between i-th protein of family 1 and j-th
protein of family 2. Proteins are arranged such that
correct individual binding partners lie along the diag-
onal. In this first step we see that the initial alignment
appears to have found the correct broader interaction
specificity of GyrA with GyrB (region “a” in upper left of

matrix) and ParC with ParE (region “b” and lower right)
as observed by the distinct segmentation of the prob-
ability matrix into two distinct regions. For ParC/ParE,
correct correspondence for three individual interactions
was also found in the initial alignment (CC_1566 ⇔
CC_1974 as well as NMA1802 ⇔ NMA1941 and
RSc0978 ⇔ RSc0976). Both regions a and b, being
indeterminate, are separately superimposed in an itera-
tive manner with results after each superimposition
shown in the submatrices of Figure 6(b).

The final result after complete alignment is shown in
Figure 6(c). Here we can see that gCEED successfully
predicted the interaction specificity for 12 out of 20
individual interactions. The other misassigned 8 pairs
were degenerate cases and their interaction specificity
could not be further defined due to a lack of structural
information. The reason for this can in part be observed
within Figure 6(a), where the four proteins from each
family (marked with arrows) can be observed to be very
close to each other (short branch lengths from their
common ancestor). In such instances it is difficult for the
algorithm to find a correct high-probability mapping as
multiple alignments are equally viable. Nevertheless, the
interaction specificity at the protein-family level was
correctly predicted. In addition, over half of the specific
interactions could be recovered solely from the align-
ment of these structures.

We performed the same specificity analysis using gCEED
to a total of 34 protein family pairs used in previous
studies and compared results to that of MATRIX and
MORPH in terms of stringent accuracy (Table 2). As can
be observed, there is no significantly superior approach
(Wilcoxon’s signed rank test -data not shown), as all
methods show instances where they have the greatest
accuracy of specificity prediction. However, we empha-
size the extra functionality of gCEED that is suited to
realistic situations where (1) the size of the protein
families at hand are unlikely to be identical, and/or (2)
there exist some a priori knowledge of validated inter-
acting protein interactions.

As a demonstration of this functionality within gCEED,
we again used the case of GyrA and GyrB interactions. We
first made the GyrA tree progressively smaller by
sampling from nineteen down to ten sequences from
the total of twenty GyrA orthologs, with 100 different
combinations for each size. We then performed specifi-
city prediction by aligning each sampled GyrA tree with
the complete 20-node GyrB tree. To evaluate our
performance, we introduce the vicinity hit rate as a
means to estimate how close each node’s true interacting
partner is in relation to others within the aligned
structures. Specifically, we define the vicinity hit rate as
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Figure 6
Prediction of interaction specificity with gCEED. (a) The phylogenetic trees and binding specificity between two
multigene families, GyrA/parC and GyrB/parE (redrawn from [28]). (b) A series of probability matrices that visualize the
recursive prediction of individual interaction specificities. Each colored box/arrow indicates the indeterminate block that was
chosen for further alignment via gCEED. (c) The final probability matrix with predicted mappings in black/grey. A perfect
prediction (assuming no cross-interactions) would be expected to show black squares along the diagonal and white squares
everywhere else in the matrix.
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the ratio of nodes that have their true interacting parter
within top three highest predicted probability partners.
Thus the vicinity hit rate allows for situations where the
true interacting partner is very close (but not the closest)
to the predicted interaction partner as determined
through the alignment.

Results of this analysis is shown in Figure 7(a). Again,
each histogram along the x-axis was generated from 100
samples of the GyrA tree of corresponding size and the
dark line shows how the average hit rate changes as the
size of this tree decreases. In this instance, the ability for
gCEED to determine binding specificities with a vicinity
hit rate of approximately 65% (the hit rate generated in
the original 20 vs. 20 superimposition) is relatively well
maintained out to approximately 15 leaves or a 25%
difference in tree sizes. As the difference between tree
sizes decreases, we also begin to observe greater numbers
of very poor predictions along with lesser numbers of
very good predictions. These arise in situations where the
the smaller tree fits very well, but in the wrong position
within the larger tree, resulting in a very poor vicinity hit

rate (shaded box in Figure 7(a)). The situation is
analogous, but far less common for the high vicinity
rate predictions (e.g. above 80%).

We would expect that additional information in the
form of prior knowledge of an existing protein interac-
tion pair would help to improve predictive performance.
Such knowledge can be readily introduced into the
gCEED alignment scheme and results of knowing just a
single pair a priori are shown in Figure 7(b). Here we
picked a random, but correct pair of interacting proteins
between the two trees to serve as the a priori known
information. As these proteins interact, we assume that
they must be near each other in the final superimposi-
tion. We thus impose a constraint in the optimization of
Equation (12), where the two proteins are kept within a
pre-specified distance range (0.05 in this work).

Results show that use of prior knowledge provides a
significant improvement in the stability of the vicinity
hit rate, with a mean hit rate of approximately 60% even
when reducing tree size to nearly half of its original

Table 2: Stringent accuracy of specificity prediction

Protein Family Name size correlation MATRIX MORPH gCEED

GyrA/B, ParC/E (a-proteobacteria) 20 0.9932 50.0 50.0 50.0
ParC/ParE (a-proteobacteria) 12 0.9921 50.0 66.7 66.7
Lyt-type regulator/sensors (E. coli/B. subtilis) 4 0.9709 50.0 50.0 50.0
GyrA/GyrB (Gram positive bacteria) 18 0.9795 33.3 44.4 55.5
Acetyl CoA carboxylase a/b (proteobacteria) 16 0.9756 75.0 75.0 62.5
ParC/ParE (bacteria) 26 0.9757 46.2 38.5 61.5
GyrA/GyrB (a-proteobacteria) 20 0.9723 90.0 80.0 50.0
ParC/ParE (Gram positive bacteria) 14 0.9634 14.3 28.6 28.6
CheA/CheB (bacteria) 8 0.9712 100.0 100.0 75.0
Pyruvate dehydrogenase a/b (bacteria) 17 0.9599 64.7 70.6 35.3
GyrA/B, ParC/E (Gram positive bacteria) 28 0.9484 10.7 7.1 10.7
DNA polymerase III E2/E3 (bacteria) 20 0.9378 20.0 40.0 70.0
Succinate CoA synthetase a/b (archaea) 13 0.9182 7.7 30.8 23.1
Ntr-type regulator/sensors (8 bacteria) 14 0.9025 28.6 42.9 21.4
Succinate CoA synthetase a/b (proteobacteria) 22 0.8959 54.6 50.0 54.5
Omp-type regulator/sensors (5 bacteria) 16 0.9307 0.0 68.8 31.3
CCR-type chemokine/receptor (mouse/human) 6 0.8790 66.7 66.7 33.3
Acetyl CoA carboxylase a/b (Gram positive bacteria) 9 0.8818 55.6 55.6 77.8
Chemokine/receptor (mouse/human/rat) 31 0.8789 19.4 16.1 3.2
CKR-type chemokine/receptor (mouse/human/rat) 18 0.8511 22.2 0.0 11.1
CheA/CheY (11 bacteria) 13 0.8370 23.1 15.4 23.1
Nar-type regulator/sensors (8 bacteria) 22 0.8488 18.2 9.1 13.6
GyrA/GyrB (archaea) 10 0.7948 20.0 20.0 10.0
Cit-type regulator/sensors (E. coli/B. subtilis) 5 0.7497 60.0 60.0 60.0
ABC transporter membrane/binding protein (E. coli) 17 0.4203 5.9 5.9 0.0
ABC transporter membrane protein 1/2 (E. coli) 19 0.6219 0.0 10.5 10.5
ABC transporter membrane binding protein (H. influenzae) 13 0.0427 15.4 23.1 7.7
Two-component sensor/regulators (E. coli) 27 0.6028 14.8 14.8 11.1
Chemokine/receptor (human) 13 0.5004 23.1 15.4 0.0
ABC transporter membrane protein 1/2 (H. influenzae) 14 0.3916 21.4 21.4 21.4
Omp-type regulator/sensors (E. coli/B. subtilis) 27 0.5314 7.4 33.3 3.7
Omp-type regulator/sensors (E. coli) 14 0.4295 28.6 14.3 14.3
Omp-type regulator/sensors (B. subtilis) 13 0.5628 15.4 7.7 15.4
Lyt, Ple, and other type regulator/sensors (8 bacteria) 20 0.4899 5.0 20.0 30.0
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value. In addition, using the structural information
provided by the known interaction pair, we were able
to avoid degenerate cases (shaded box in Figure 7(b)). In
the comparisons between trees with greatest difference in
size, the average vicinity hit rate of ten-node sample trees
was 32.0% without prior knowledge versus 53.2% when
using a single known protein pair. Together, these results
suggest the potential for using gCEED in realistic
situations where differences in tree sizes exist and/or
prior information is available.

Conclusions
In this work, we have described a novel approach for the
comparison of phylogenetic trees, represented as
embedded structures, and shown several examples of
its application. First, when applied to the prediction of
protein interactions, we see an improvement in predic-
tion accuracy using the rCEED/vCEED approach when
compared to other available approaches. We note, that

high similarity between two embedded structures does
not require that there is a physical interaction between
members, but is only suggestive of the possibility.
Similarly, the physical interaction between two proteins
does not necessitate coevolution. Thus coevolutionary
approaches such as those presented here can only
identify a portion of the complete interactome within a
given species. For the enhanced prediction of protein
interactions, approaches such as rCEED/vCEED may
show their greatest efficacy when combined with other
computational approaches (e.g. [32-34]).

With vCEED, we were also able to perform a local
alignment between structures, providing the opportunity
to detect outliers that often indicate unusual evolution-
ary events including the horizontal gene transfer
described here. While phylogenetic methods which
detect incongruity between trees are generally considered
the gold-standard for HGT detection, these methods are
not readily automatable and require extensive manual
analysis. Our results suggests that vCEED has significant
potential in aiding such identifications.

By using the information inherent in the representation
of a tree as an embedded structure, we were able to
demonstrate the ability to align and measure the
similarity between trees even when correspondence
information is not available or when their sizes are
different. While a basic example, the need to establish
interaction specificity between interacting protein
families supports the development of new approaches,
and in this regard, gCEED shows significant promise.

While the embedding and superimposition of taxa
within a Euclidean space in no way supersedes the use
of a phylogenetic tree, it does provide several useful
capabilities. For instance, embedding generates a deter-
ministic structure that bypasses ambiguities associated in
direct tree comparisons by transforming a specific
distance matrix into a single specific shape enabling
consistent comparison between trees. Similarly, use of a
representative embedding also makes it possible to take
into account the entire point-pattern structure all at once
when determining correlation, rather than examining
pair-by-pair correlation as in the mirrortree or related
approaches. Finally, the representation of trees as
embedded structures provides the capability to compare
trees of different size, which is a built-in limitation of
correlation-based methods. In this case, it becomes a
matter of comparing two structures using procedures
based on registration approaches such as the gCEED
approach proposed in this work. As a whole, the xCEED
approach provides an additional set of tools for the
study of phylogenetic trees and associated evolutionary
processes.

Figure 7
Comparison of trees of different size. The large tree is a
20-node GyrB tree. The smaller is a GyrA tree, formed from
random sampling of nodes with sizes ranging from nineteen
to ten nodes (x-axis). For each size of the smaller tree a
histogram of vicinity hit rate is shown on the y-axis, based on
100 randomly-formed trees of a given size. The dark line
specifies the average hit rate. (a) Accuracy of comparison
without using any known interaction information. (b)
Accuracy of comparison when using a single correct protein
interaction pair as prior information.
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Methods
Data
For the prediction of protein interactions, we tested our
method using data identical to that used by Pazos and
colleagues [17]. This data set consists of experimentally
characterized interactions among Escherichia coli proteins
deposited in the February 2004 version of the DIP
database [35]. For each protein in the interaction data,
orthologs from 43 other prokaryotic species were
collected to form each protein family. Among all the
possible pairs of protein families, those that have less
than ten common matching species (or taxa) were
removed, leaving 19,972 suitable test protein interaction
pairs (118 different proteins in total). From this complete
set of protein interaction data, there were 115 experi-
mentally characterized, true-positive, interaction pairs.
We updated this set of interactions by checking all the
19,972 test interactions with the July 2007 version of DIP,
and found that 388 of them were experimentally
validated (an increase of 223 true-positive interactions
from the 2004 version of DIP). We used this updated data
set when measuring the discrimination power of our
method. Along with this set of true interactions, a set of
negative interactions was formed from the complement
of this data - i.e. protein pairs not experimentally shown
to be interacting. Thus a total of 19,584 negative
interactions were formed in this way. For specificity
prediction we used the data from [28].

Each protein family was aligned with clustalw[36], and
distance matrices were calculated with the protdist
routine from phylip[37]. These distance matrices are
different from those used in [17] in that our data are
created directly from the sequence alignments rather
than from neighbor-joined trees. However, for compar-
ison we also performed the same test with those used in
[17]. The sequences and distance matrices of 16S
rRNA were downloaded from the Ribosomal Database
Project II [38].

The basic xCEED approach: Classical MDS and
superimposition with Procrustes
The approach we have developed is based upon
extensions to the methods of multidimensional scaling
and Procrustes analysis and we discuss these two
fundamental approaches now. First, classical MDS
attempts to find a Euclidean embedding of the data
while simultaneously trying to preserve their interpoint
distances [39]. Given distance matrix D = [dij], we first
compute the contrast matrix M which is defined to
be equivalent to CDC , where C is the centering matrix
I - 1

n
1’1 (1 is a row vector of ones and n is the number of

nodes), and D = − ⎡
⎣

⎤
⎦

1
2

2dij . After performing eigenvalue
decomposition on M, which gives M = QΛQ’, we get

X = QΛ1/2, which gives the coordinates of the points
embedded in a, potentially high-dimensional, Euclidean
space. Note that we truncate the negative eigenvalues in
Λ since D is a Euclidean matrix if and only if M is
positive semi-definite, which then defines the maximum
dimensionality. Again, distances between points in this
new structure representation are those that were pro-
vided by the original distance matrix for the tree.

Superimposition between two point sets of the same
size, W and Z, is performed by Procrustes analysis. With
Procrustes, we can superimpose point pattern Z onto
point pattern W by applying s (dilation), t (translation),
and R (rotation and reflection) to Z. Procrustes
computes the optimal l inear transformation,

W ZR 1 t= + ′ˆ ˆs , such that tr((W - W )(W - W )’) is
minimized. Such minimum can be achieved when

ˆ , ˆ
ˆ
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ˆ ˆ
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where U and V is the left and right singular matrices that
are coming from the singular value decomposition of
Z’CW(= UΣV’), where Σ is the matrix of singular values.

Reference-based comparison of embedded evolutionary
distances (rCEED): application to the quantification of
protein coevolution
We first collect two sets of orthologous sequences from
two potentially interacting protein families; respectively
designated F1 and F2. In addition, we also assemble Fr,
which is a set of orthologous 16S rRNA sequences.
Distance matrices, D1, D2, and Dr, are then derived with
respect to the species that are common to all F1, F2, and
Fr. The coordinates X1, X2, and Xr, where each row
represents the coordinate vector of a species embedded
in Euclidean space, are produced from D1, D2, and Dr by
MDS. In cases where the dimensionality of the coordi-
nate matrices are different, we zero-fill until the size of
X1, X2, and Xr are all minimally equivalent. We then find
the robust superimposition between X1 and X2 by first
superimposing Xr onto both X1 and X2 independently

ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆX X R 1 t X X R 1 t1 r 1 1 2 r 2 2= + ′ = + ′s s1 2 (2)

such that tr((X1 - X̂1 )(X1 - X̂1 )’) and tr((X2 - X̂ 2 )(X2 -
X̂ 2 )’) are minimized. Here X̂ i denotes the reference
structure, Xr, fitted to Xi. Then we compute transformation
parameters, s, t, and R, by superimposing X̂ 2 onto X̂1 .

ˆ ˆ ˆ ˆ ˆX X R 1 t1 2 r r= + ′sr (3)

Since both X̂1 and X̂ 2 represent the different orthogo-
nal transformations of the same reference structure Xr,
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this superimposition is an exact match. The final
superimposition of X2 onto X1 is computed by simply
applying to X2 the same parameters, ŝ r , R̂ r , and t̂ r
obtained by (3).

ˆ̂ ˆ ˆ ˆX X R 1 t1 2 r r= + ′sr
(4)

where ˆ̂X1
denotes X2 indirectly fitted onto X1. A

schematic of our rCEED approach is given in Figure 2.
Notice that we obtain a robust analytical solution for the
superimposition parameters by putting the reference
structure (in this case, Xr and X̂ 2 in (2) and (3) always
on the right hand side of the fitting equations. The
standard root-mean-square deviation, std. rmsd, as a
measure of structure similarity is given by:

1
n

tr tr⋅ − − ′⎛
⎝⎜

⎞
⎠⎟

− ′ − ′ ′( )( )( ) ( )( )X X X X X 1 x X 1 x1 1 1 1 r r r r

(5)

where x r is the centroid of a reference structure. Because
the number of common species will be different from
one pair of protein families to another pair, their
distributions in the space will have different variances.
As a result, they are all normalized in (5), so that we can
compare the strength of the coevolutionary signal
among differently sized pair sets of protein families.

Verboonian robust superimposition (vCEED): application
to the detection of horizontal gene transfer
Verboon [21] proposed a robust method (Verboonian
Procrustes) by adopting an alternative objective func-
tions which put less penalty on errors over some
threshold boundary. The direct consequence of this
approach is that it brings us a better local alignment at
the expense of allowing some outliers. Formally speak-
ing, the transformation parameters are estimated by
minimizing the loss function L(s, R, t) = ∑if(εi) where εi is
the residual distance between two corresponding points,
and f(·) is a robust version of the error function. We
adopted the Huber kernel [40] in this work,

f
if c

c c if c
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i i

i i
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ε ε
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(6)

although other functions such as Lorentzian kernel or
biweight function [41] are available. According to
Verboon, we can minimize this loss function based on
a weighted least squares model

( , , ) arg min ( ) ( )
, ,

s tr s s
s

R t W ZR 1 t P W ZR 1 t
R t

= − − ′ ′ − − ′  

(7)

where P = [pii] is a diagonal matrix of weight
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Since both transformation parameters (s, R, and t) and
weight matrix (P) are unknown, we estimate them using
Expectation-Maximization, where we alternate between
the computation of transformation parameters using a
fixed weight matrix P and the updating of P based upon
the current estimation of transformation. Through this
iterative process, the weight value in P gets smaller if an
error term is larger than the pre-specified threshold, c. In
the work described here, we used an empirically chosen
value of 0.01 for c.

Superimposition without correspondence
information (gCEED): application to the
prediction of interaction specificity
We adapted a registration algorithm based upon the
Gaussian mixture model [31], where we regard each
point in the point sets, W = {wi} and Z = {zj}, as the
mean of each Gaussian component, N k . For this
application we performed superimposition in 3-dimen-
sional space due to the sparseness of the input tree data.
Here we have two different mixture models,

P Pw i i

i

m

z j j

j

n

( ) ( | , ), ( ) ( | , ).x x w x x zi i j j= =
= =
∑ ∑α βN NΣΣ ΣΣ

1 1

(9)

The central idea is that as we transform one point set
closer to the other, the corresponding mixture models
become similarly closer. We translate (t), rotate and
project (R) the point set Z as before; the mixture model
will then take the following form:

Pz
new

j j

j

n

( ) ( | , )x x z R t R Rj j= + ′
=

∑ β N  ΣΣ
1

(10)

Our goal then is to find the optimal R and t that
minimize the dissimilarity between the two models Pw
and Pz

new using the divergence D.

D P P P P d

P P P P

w z
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w z
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Both P dw
2 x∫ and P dz

2 x∫ are not a function of R and t. In
addition, ( )P d P dz

new
z

2 2x x∫ ∫= , because it is invariant
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with respect to R and t. Therefore, the minimization of
(11) reduces to the problem of

( , ) arg max

arg max (

,

,

R t x

w z R

R t

R t
i j

=

= −
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P P d

i j
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n
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α β
N −− + ′t 0 R Ri j| , )ΣΣ ΣΣ

(12)

For the derivation of (12), see [42]. We assumed
isotropy, so Σi = Σj = s2I for all i and j’s. We further
assumed that the weights of all Gaussian components
are equal such that ai = 1/m and bj = 1/n.

Authors’ contributions
KC and SMG conceived the study, performed the
research and analyzed the results. All authors wrote,
read and approved the final manuscript.

Additional material

Additional file 1
Precision-Recall curves for protein interaction predictions. Precision-
Recall curves for vCEED, rCEED (patristic distance), rCEED (observed
distance), tol-mirrortree, phylogenetic vector projection, partial
correlation, and mirrortree methods. The area under these Precision-
Recall curves are shown in Table 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-423-S1.PDF]

Acknowledgements
We would like to thank Suzy Vasa for her work in the early stages of this
project and Dr. Florencio Pazos for helpful conversations regarding his
data. We also thank Dr. Yufeng Liu and Dr. Marc Niethammer for useful
discussions regarding algorithmic aspects of this work. This material is
based upon work supported by, or in part by, an National Institute of
Health grant DK37871 and the U. S. Army Research Laboratory and the U.
S. Army Research Office under contract/grant number W911NF-09-0049.
Financial support for these studies was also provided, in part, by the
United States Environmental protection Agency grant RD833825.
However, the research described in this article has not been subjected
to the Agency’s peer review and policy review and therefore does not
necessarily reflect the views of the Agency and no official endorsement
should be inferred.

References
1. Felsenstein J: Inferring Phylogenies. Sinauer 2004.
2. Page RDM: Tangled Trees: Phylogeny, Cospeciation, and Coevolution

Chicago, IL 60637 USA: University of Chicago Press; 2002.
3. Addario-Berry L, Hallett MT and Lagergren J: Towards Identifying

Lateral Gene Transfer Events. Pacific Symposium on Biocomputing
2003, 279–290.

4. MacLeod D, Charlebois R, Doolittle F and Bapteste E: Deduction of
probable events of lateral gene transfer through comparison
of phylogenetic trees by recursive consolidation and rear-
rangement. BMC Evolutionary Biology 27.

5. Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG,
Sung GH, Spatafora JW and Straus NA: Ancient Tripartite

Coevolution in the Attine Ant-Microbe Symbiosis. Science
5605: 386–388.

6. Goh CS, Bogan AA, Joachimiak M, Walther D and Cohen FE: Co-
evolution of proteins with their interaction partners. J Mol
Biol 2000, 299(2):283–93.

7. Fryxell KJ: The coevolution of gene family trees. Trends Genet
1996, 12(9):364–369.

8. Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y and
Wang X: Co-evolution of ligand-receptor pairs. Nature 1994,
368(6468):251–255.

9. Yeang CH and Haussler D: Detecting Coevolution in and
among Protein Domains. PLoS Comput Biol 11: e211.

10. Kann MG, Shoemaker BA, Panchenko AR and Przytycka TM:
Correlated evolution of interacting proteins: looking behind
the mirrortree. J Mol Biol 2009, 385:91–98.

11. Robinson DF and Foulds LR: Comparison of phylogenetic trees.
Mathematical Biosciences 1-2: 131–147.

12. Estabrook GF, McMorris FR and Meacham CA: Comparison of
Undirected Phylogenetic Trees Based on Subtrees of Four
Evolutionary Units. Systematic Zoology 2: 193–200.

13. Robinson DF: Comparison of labeled trees with valency three.
Journal of Combinatorial Theory, Series B105–119.

14. Waterman MS and Smith TF: On the similarity of dendrograms.
Journal of Theoretical Biology 789–800.

15. Hein J, Jiang T, Wang L and Zhang K: On the complexity of
comparing evolutionary trees. Discrete Appl Math 1996, 71(1-3):
153–169.

16. Pazos F and Valencia A: Similarity of phylogenetic trees as
indicator of protein-protein interaction. Protein Eng 2001, 14
(9): 609–614.

17. Pazos F, Ranea JAG, Juan D and Sternberg MJE: Assessing protein
co-evolution in the context of the tree of life assists in the
prediction of the interactome. J Mol Biol 2005, 352(4):
1002–1015.

18. Sato T, Yamanishi Y, Kanehisa M and Toh H: The inference of
protein-protein interactions by co-evolutionary analysis is
improved by excluding the information about the phyloge-
netic relationships. Bioinformatics 2005, 21(17):3482–3489.

19. Sato T, Yamanishi Y, Horimoto K, Kanehisa M and Toh H: Partial
correlation coefficient between distance matrices as a new
indicator of protein-protein interactions. Bioinformatics 2006,
22(20):2488–2492.

20. Craig RA and Liao L: Phylogenetic tree information aids
supervised learning for predicting protein-protein interac-
tion based on distance matrices. BMC Bioinformatics 2007, 8:6.

21. Verboon P and Heiser W: Resistant orthogonal procrustes
analysis. Journal of Classification 2: 237–256.

22. Allen MP: Understanding Regression Analysis Springer; 2004.
23. Warner RM: Applied Statistics: From Bivariate Through Multivariate

Techniques Sage Publications, Inc; 2007.
24. DeLong ER, DeLong DM and Clarke-Pearson DL: Comparing the

Areas under Two or More Correlated Receiver Operating
Characteristic Curves: A Nonparametric Approach. Bio-
metrics 3: 837–845.

25. Brown JR: Ancient horizontal gene transfer. Nat Rev
Genet121–132.

26. Ragan MA: Detection of lateral gene transfer among micro-
bial genomes. Current Opinion in Genetics Development 6: 620–626.

27. Omelchenko M, Makarova K, Wolf Y, Rogozin I and Koonin E:
Evolution of mosaic operons by horizontal gene transfer and
gene displacement in situ. Genome Biology 9: R55.

28. Ramani AK and Marcotte EM: Exploiting the co-evolution of
interacting proteins to discover interaction specificity. J Mol
Biol 2003, 327:273–84.

29. Jothi R, Kann MG and Przytycka TM: Predicting protein-protein
interaction by searching evolutionary tree automorphism
space. Bioinformatics 2005, 21(Suppl 1):i241–50.

30. Jothi R, Cherukuri PF, Tasneem A and Przytycka TM: Co-
evolutionary analysis of domains in interacting proteins
reveals insights into domain-domain interactions mediating
protein-protein interactions. J Mol Biol 2006, 362(4):861–875.

31. Jian B and Vemuri BC: A Robust Algorithm for Point Set
Registration Using Mixture of Gaussians. iccv 2005,
2:1246–1251.

32. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D and
Yeates TO: Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles. Proc Natl
Acad Sci USA 1999, 96(8):4285–4288.

33. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO and
Eisenberg D: Detecting protein function and protein-protein

BMC Bioinformatics 2009, 10:423 http://www.biomedcentral.com/1471-2105/10/423

Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/12603035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12603035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15819979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15819979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15819979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15819979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12532015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12532015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10860738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10860738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8855667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8145825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18930732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18930732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/703348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16882650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16882650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16882650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17212819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17212819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17212819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12560809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11682304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11682304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12614624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12614624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10427000?dopt=Abstract


interactions from genome sequences. Science 1999, 285
(5428):751–753.

34. Gomez SM, Noble WS and Rzhetsky A: Learning to predict
protein-protein interactions from protein sequences. Bioin-
formatics 2003, 19(1367-4803):1875–81.

35. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU and Eisenberg D:
The Database of Interacting Proteins: 2004 update. Nucl Acids
Ressuppl-1: D449–451.

36. Thompson JD, Higgins DG and Gibson TJ: CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic acids research 22:
4673–4680.

37. Felsenstein J: PHYLIP (Phylogeny Inference Package) version
3.6. Distributed by the author. Department of Genome Sciences,
University of Washington, Seattle 2005.

38. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS,
McGarrell DM, Bandela AM, Cardenas E, Garrity GM and Tiedje JM:
The ribosomal database project (RDP-II): introducing
myRDP space and quality controlled public data. Nucl Acids
Res suppl-1: D169–172.

39. Borg I and Groenen PJF: Modern Multidimensional Scaling: Theory and
Applications New York, NY 10013 USA: Springer New York; 2005.

40. Huber PJ: Robust Statistics New York, NY, USA: John Wiley & Sons,
Inc; 1981.

41. Beaton AE and Tukey JW: The Fitting of Power Series, Meaning
Polynomials, Illustrated on Band-Spectroscopic Data. Tech-
nometrics 2: 147–185.

42. Wand MP and Jones MC: Comparison of Smoothing Para-
meterizations in Bivariate Kernel Density Estimation. Journal
of the American Statistical Association 422: 520–528.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:423 http://www.biomedcentral.com/1471-2105/10/423

Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/10427000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090583?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Prediction of protein interactions
	Detection of horizontal gene transfer
	Interaction specificity between multigene families

	Conclusions
	Methods
	Data
	The basic xCEED approach: Classical MDS and superimposition with Procrustes
	Reference-based comparison of embedded evolutionary distances (rCEED): application to the quantification of protein coevolution
	Verboonian robust superimposition (vCEED): application to the detection of horizontal gene transfer
	Superimposition without correspondence information (gCEED): application to the prediction of interaction specificity

	Authors’ contributions
	Additional material
	Acknowledgements
	References

