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Abstract

LAUREN E FOVARGUE: Addressing the Computational Cost of the Immersed

Boundary Method through Multi-Implicit and Multi-Rate Strategies with Time

Parallelism

(Under the direction of Michael L Minion)

Many problems in biological fluid-structure interaction have been studied with Pe-

skin’s immersed boundary method (IBM). This method defines a relatively simple math-

ematical modeling framework, and allows for the use of standard fluid solvers. However,

when evaluated computationally in many applications, a very small time step is required.

This time step is not restricted by accuracy, but stability, causing the temporal problem

to be stiff. Previous attempts to address the stability restriction of IBM use semi or fully

implicit schemes that require the code, including the fluid solver, to be rewritten, and

these have yet to be implemented in application focused studies.

Here, new ideas for addressing the computational cost of IBM are presented, which

rely on a novel method for splitting the spatial field into stiff and non-stiff components.

With this splitting, the impact on the largest stable time step and computational cost

for stiff problems is investigated through multi-implicit, multirate and time parallel tech-

niques. All of the algorithms presented here improve upon the stability restriction of

IBM, whether with a larger stable time step or overall speedup. In addition, they are

focused on the treatment of the immersed boundary and no changes to the fluid solver

are necessary, making them more accessible to applications.
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CHAPTER 1

Introduction

There are two categories of interaction for dynamic systems that involve a viscous

incompressible fluid and a flexible, dynamic object, one-way and two-way coupling. A

system is considered to have a one-way coupling when the dynamics of the fluid or object

are prescribed and unaffected by the others motion. Two way coupling occurs when the

motion of the fluid and object are mutually dependent on each other, creating a coupled

system of equations that are difficult to extract information from, both analytically and

numerically. Here the focus is on two-way coupling, specifically problems of biological

fluid-structure interaction (FSI), where an elastic, biological structure interacts with a

viscous incompressible fluid.

This introduction aims to motivate this class of problems and provide an overview

of a particular framework for modeling such problems. This framework, the immersed

boundary method, is a popular method for studying biological FSI problems, however

when discretized, it can become very computationally expensive. It has been well docu-

mented that the time step of this method for many applications has to be small for the

purposes of stability, not accuracy, causing it to be computationally expensive.

Although some attempts have been made to address the small time step needed for

IBM, widespread use with applications are not yet seen. Thus there is still a need for

techniques which address the computational bottlenecks seen in IBM without large re-

writes of existing IB implementations. The purpose of thesis is to present new ways

of addressing this computational expense, using techniques that are more accessible to

applications. This introduction will conclude by describing this purpose in more detail,

and mapping out the progression of this thesis.



Figure 1.1. Thysanoptera, or a thrip, is a tiny wasp [47].

1.1. Motivation

Although the application of mathematics to biology can be dated back at least to

the days of Gregor Mendel (1822-1884), recently there has been a surge in the field

of mathematical biology [52]. From biologically inspired design, to cancer research,

to improving medical procedures, mathematics and computation have helped advance

biological research. Not only does using mathematics answer fundamental questions,

aiding the direction of biological research, but it advances the field of mathematics, as

new techniques are being developed to tackle such problems [52]. Here, contributions

to the field of mathematical biology are made by expanding upon current techniques in

computational biological fluid (biofluid) dynamics.

There are many questions in biofluid dynamics, such as ‘how do tiny insects fly?’,

‘what happens in the endothelial surface layer’, and ‘what is the optimal design for a

mitral valve replacement?’, and computational techniques have helped to provide some

understanding [69, 67, 42].

Consider three examples, shown in Figures 1.1, 1.2, 1.3. In each of these cases, there

is a coupled dynamic between a viscous incompressible fluid and an elastic biological

structure. The first figure (1.1) shows the thrip, a small wasp believed to achieve lift

based on the unique structure and Weis-Fogh, “clap and fling”, motion of its wings

[67, 68]. The second figure, Fig. 1.2, shows a schematic of a heart, highlighting a mitral

2



Figure 1.2. Heart with prosthetic mitral valve [35].

Figure 1.3. Glycocalyx in a rat capillary [75].

valve prolapse, where the leaflets of the heart fall back into the left atrium. This condition

may be treated with an artificial replacement of this valve, the optimal design for which

has been studied mathematically [42]. Finally, Figure 1.3 shows the endothelial surface

layer, or glycocalyx, in a rat capillary. This hair-like structure lines the lumen, or inner

region, of capillaries and is widely believed to be a mechanotransducer, that is, it converts

mechanical hemodynamic stress into a chemical response [70].

In each of these three examples, there are thin elastic structures (e.g. the wing on

the thrip, the ’strings’ on the mitral valve and the glycocalyx itself) with complicated

geometry, interacting with a fluid. Fluid behavior can be categorized by the value of the

Reynolds number, a dimensionless ratio of inertial forces to viscous forces. It is defined

as

Re =
ρuL

µ
,

3



where u is a characteristic velocity, L is a characteristic length scale, ρ the density of

the fluid and µ the dynamic viscosity. This definition allows for dynamic similarity, i.e.

flows categorized by the same Reynolds number behave in the same way. For example,

when viscous forces are increasingly dominant and inertial forces less noticeable, the Re

becomes small. This is sometimes mathematically modeled by using the Stokes equations,

which neglect the inertial terms. However, fluid where both viscous and inertial forces

cannot be ignored, can be modeled with the Navier-Stokes equations. Applications in

this fluid regime are targeted here.

Creating a computational simulation for particular FSI problems may requires many

discretization points and high resolution, becoming highly computationally expensive.

This overwhelming cost leads to the utilization of simplified studies, without the full

complexity of the geometry [59, 70, 68, 67, 69]. Although these studies are a necessary

first pass to looking at the underlying biological phenomena, more robust simulations

could help to further understanding.

1.2. The Immersed Boundary Model

The immersed boundary method (IBM) is a framework to model and simulate biologi-

cal FSI problems that has been used in many applications, from hearts to insects [79, 69].

Its popularity with application studies can be pointed to the ‘simplicity’ of the framework

and the ability to the use standard fluid solvers. However, there are well known computa-

tional bottlenecks with IBM, as the time step required for numerical stability can be very

small. That is, the problem becomes stiff, a term meaning that the time step is restricted

not by accuracy but stability. This has inspired semi and fully implicit implementations

of IBM, to increase the largest stable time step [85, 61, 74, 50, 58, 15]. Most of these

methods, though they may achieve a larger stable time step, are more computationally

expensive per time step, resulting in little gain in overall run time. Additionally, to date,

there has been virtually no use of these methods in applications, which is likely a result

of the work it takes to implement these solutions.

4



In the literature, there tends to be a division between those who work on the algo-

rithms for IBM and those that apply the IBM framework to get biologically significant

results, with some important exceptions [81, 62, 42]. In the case of the latter, there

is more emphasis on the biological modeling and results, with less focus on involved

computing. Once one has implemented the IB framework, significant changes do not

need to be made to study different applications, and in particular no changes need to

be made to the fluid solver. Thus it may not be efficient to spend time, for example,

implementing a nonlinear solver or preconditioning for a moderate run time reduction.

Additionally, many of these semi and fully implicit techniques require an entire rewrite of

the IBM code, including the fluid solver, and the time it takes to do so may not be worth

it to those interested in application. There does not appear, to date, to be a sufficient

approach that can reduce simulation run time and not require great changes to existing

IBM code.

1.3. Thesis statement

What follows is an investigation into effective ways of addressing the large computa-

tional cost of the IBM framework without making changes to the fluid solver, providing

algorithms that are accessible for applications. It is known that the source of stiffness in

the IBM is due to forces generated on the immersed boundary, meaning it can be com-

putationally addressed separately from the fluid solver. Here new ideas on how to handle

the stiffness of IBM problems is presented, based on a new splitting the spatial field into

stiff and non-stiff parts, coupled with the use of mutli-rate and multi-implicit strategies.

In addition, time parallelization will be considered to address the computational cost of

IBM applications. Although the ideas presented here are not trivial to implement, they

can be used with existing fluid solvers, eliminating the need to rewrite this part of the

code. Each of the proposed new ideas are improvements over current techniques, whether

it be in the largest stable time step allowed, the amount of numerical accuracy gained

from a given time step, or run time savings.
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Spatial splitting, multi-rate, multi-implicit methods, and time parallelization have

been used in other types of stiff problems, and the success of these implementations is

what motivated the work presented here. Bouzarth et. al. split the spatial field for FSI

problems where viscous forces overpower inertial forces, known as the Stokes regime,

and employed multirate methods to increase the efficiency of the method of regularized

Stokeslets [8]. Effectively, the work here is an extension of the ideas of Bouzarth, to flow

where inertial forces cannot be ignored and the use of IBM, as well as multi-implicit and

time parallelism considerations. Other studies, such as Bourlouix et. al. found that using

a multi-implicit technique for advection-diffusion-reaction equations yielded a computa-

tional advantage when the reaction term was significantly stiffer than the other parts

of the equation [7]. Time parallelization with the parallel full approximation scheme in

space and time (PFASST) has shown better convergence and lower error, although with-

out increased efficiency, in the work of Emmett and Minion, where the Viscous Burgers

equation and the Kuramoto-Silvashinky equation were considered [29]. Potenetially, a

combination of these methods is promising to reducing computational time while keeping

error low. The critical common denominator in all of these works is the use of spectral

deferred corrections (SDC), a stable, high order method for time integration. Thus it is

employed here as well, and details about this choice and the particular benefits of using

this method with the IB model will be addressed in Chapter 3.

The new algorithms and implementations will be presented after first establishing

necessary background material. The details of the IB model and relevant variations are

presented first in Chapter 2, followed by a discussion of SDC in Chapter 3. Chapter 4

begins the new material with a discussion of splitting of the spatial field. This is followed

by Chapters 5 and 6 and 7, where the new multi-implicit, multi-rate and time parallel

implementations are presented, respectively. This discussion will include numerical ef-

ficiency tests, discussions on convergence and accuracy, as well as a comparison to the

existing techniques, done with a representative two dimensional test problem. Finally, a

discussion of these approaches is found in Chapter 8.
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CHAPTER 2

The Immersed Boundary Method and Variants

In general, fluid structure interaction (FSI) problems are difficult to study compu-

tationally because of the mutually dependent motion of the fluid and structure. The

immersed boundary method (IBM) is a popular and relatively simple mathematical frame-

work used to study such problems. IBM is also the basis for the blob projection method

(BPM), which is utilized in subsequent chapters, the reason for which will be stated later.

These mathematical models define an elastic boundary, Γ, submerged in a viscous

incompressible fluid in a domain, Ω. This is shown in two dimensions in Fig. 2.1 for

visualization purposes, although the extension to three dimensions is natural and dis-

cussed later. It is prudent to establish notation for the quantities defined on the fluid

Figure 2.1. The two dimensional FSI problem with domain Ω and im-
mersed fiber Γ

domain, Ω and those defined on the immersed boundary domain, Γ. As is conventional,

all quantities defined on Ω are notated by lower case letters, and all quantities defined on

Γ are capitalized. Additionally, it should be noted that from here on, all bold variables

indicate vectors. A full list of notation can be found in ??.



Both IBM and BPM rely on a projection formulation for the incompressible Navier-

Stokes equations, and IBM can easily be explained in this formulation, thus this is pre-

sented first in this chapter. Following this, the IBM model is given, with its computa-

tional formulation, and finally BPM is discussed. This will complete the spatial methods

necessary for later discussions.

2.1. The Projection Formulation

Projection methods for computational fluids were originated by Chorin [16, 17], and

their implementation has been a frequent topic in the the literature, for examples see

Brown or Guermond and Shen, [10, 43]. It is based on the idea that the time integration

of the incompressible Navier-Stokes equations

uuut + (uuu · ∇) = −∇p+ uuu
1

Re
∆uuu + fff ,

∇ · uuu = 0,

(2.1)

can be made divergence free with the use of the Hodge decomposition, given proper

treatment of the boundary conditions. Commonly, boundary conditions are taken to be

the no flow conditions

n̂ · uuu = 0,

which is used in the definition of the Hodge condition, however it should be noted that

the following holds for periodic boundary conditions as well.

Theorem 2.1.1. The Hodge Decomposition

A vector field vvv in a bounded domain Ω ∈ R3, with boundary ∂Ω, can be written

uniquely as the sum of a divergence free vector, uuu, and the gradient of a scalar, η.

(2.2) vvv = uuu +∇η,

where uuu satisfies ∇ · uuu = 0 in Ω and on the boundary, there is no flow in the normal

direction, n̂ · vvv|∂Ω = 0.
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Proof. Consider taking the divergence of both sides of equation (2.2). This gives

∇2η = ∇ · vvv in Ω,(2.3)

n̂ · ∇η = n̂ · vvv on ∂Ω.(2.4)

uuu is the projection of vvv onto a divergence free space and denoted equally as uuu =

P (vvv) = vvv − ∇η. In addition, the compatibility conditon for a Poisson equation with

Neumann boundary conditions is nessicarily satisified by the divergence theroem.

Thus, defining the scalar function η as the solution equation (2.3) provides the proof

of the Theorem as well as a way to construct the divergence free projection of fff , Pfff . 2

With this definition, we can uphold the incompressibility constraint,∇ ·uuu = 0, of the

Navier-Stokes Equations, (2.1), by taking the projection of both sides,

(2.5) uuut = P (uuut) = P
(

(uuu · ∇)uuu −∇p+
1

Re
∇2uuu + fff

)
.

Further, the projection operator is linear and thus can be distributed across the right

hand side terms of (2.5). Additionally, the projection of the gradient of the pressure, ∇p,

is zero, and thus the term can be dropped from (2.5). With this, (2.5) can be rewritten

as

(2.6) uuut = P
(

(uuu · ∇)uuu +
1

Re
∇2uuu

)
+ Pfff .

The pressure does not need to be tracked for the purposes of the work presented here,

thus this form of the Navier-Stokes equations will subsequently be used instead of (2.1).

2.2. The Immersed Boundary Method

The immersed boundary method (IBM) was initially introduced by Peskin with the

intention of studying cardiac fluid dynamics [79, 81]. It has, however, subsequently been

applied to diverse problems in biofluid dynamics and other applications in which an elastic

structure is immersed in a viscous incompressible fluid. Examples range from blood flow
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[66, 62, 63, 64, 65], aquatic locomotion [32, 31, 49, 91, 20] , platelet aggregation

during clotting [33, 86, 34], parachutes [55], foams [88], cell motility [27], insect flight

[69, 67, 68] and jellyfish pulsation [48]. This list is by no means comprehensive, but

does show the diversity of applications that utilize IBM. The accessibility of this method

to so many applications is a result of its relatively ‘simple’ approach. It relies on treating

the immersed boundary in a Lagrangian sense, while defining the fluid in a Eulerian

sense and then coupling the two domains. This allows for the fluid to be discretized

on a standard Cartesian mesh and the use of grid based fluid solvers, without direct

consideration of the domain Γ. The mathematical model for the IBM is now presented.

Again consider Fig. 2.1 with an elastic boundary, Γ, immersed in a viscous incom-

pressible fluid domain Ω. The immersed boundary, also referred to here as a fiber, is

taken to be a two dimensional line. This simplification is often seen in IBM literature, as

even the most complicated complex immersed surfaces in three dimensions, e.g. a heart

model [81], are made of a network of such fibers. Additionally, the IBM assumes the

fiber to be mass-less, occupy zero volume fracture and be neutrally buoyant, thus moving

at the local fluid velocity [79].

The motion of fluid is described by the non-dimensional, incompressible Navier-Stokes

Equations, given in (2.1). The equation of motion for the immersed boundary is a con-

sequence of the no slip condition, which states that at the boundary between a structure

and fluid, the velocity of the fluid, uuu(xxx, t), is equal to the velocity of the structure, defined

as UUU (XXX, t). This is stated mathematically by the advection equation

XXX t = UUU (XXX, t) ,(2.7)

where UUU (XXX, t) is the velocity of the fluid at the structure position, XXX .

To complete the equations, a definition for fff (xxx, t), the body force on Ω, is required.

In the IBM model, this force is a result of the forces, FFF (XXX, t), generated and defined on

the fiber. The fiber is taken to be an elastic material and thus it is assumed that the
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elastic energy is determined by an energy functional E[XXX (t)], which is the energy stored

in the material at time t [80].

Consider a perturbation dXXX of a fiber with configuration XXX . The perturbation of the

energy functional, up to first order terms, is a linear functional of the perturbation in

the material position [80]. This can be written as

(2.8) dE[XXX ] =

∫
(−FFF (q, r, s, t)) · dXXX (q, r, s, t)dqdrds,

where −FFF is the Fréchet derivative of E evaluated on XXX . FFF is interpreted as the force

density, with respect to q, r, s and is written

(2.9) FFF = − dE

dX
.

As an example, consider a fiber where q, r are constant along the fiber. Then the

force density comes from a resistance to bending and stretching. Resistance to torque

could be included in these forces, however when using a network of fibers, it is unlikely

that it is necessary to include [80]. Thus

FFF = −
(
dES
dX

+
dEB
dX

)
= FFFB +FFF S,

where the subscripts S and B denote the energy and forces due to stretching and bending,

respectively. The force per unit length of bending is given by

(2.10) FFFB = −kB
∂4XXX

∂4s
,

where kB is stiffness coefficient. Similarly, the force due to stretching is

(2.11) FFF S = −kS
∂

∂s

((
∂XXX

∂s
− 1

)
τ

)
,

where τ = (∂XXX/∂s)/|∂XXX/∂s| is the unit directional vector and ks the spring stiffness

coefficient [69].
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These forces are defined on the Lagrangian domain and thus they can be taken as a

distribution, and defined on the fluid domain by the convolution,

fff (xxx, t) =

∫
Γ

FFF (XXX, t)δ (xxx −XXX ) dXXX.(2.12)

This definition of the forces is singular, as it is a line integral of a delta function.

Similarly, the velocity of the immersed boundary can also be defined with a convolu-

tion, since it is to be taken as the local fluid velocity. This defines UUU (XXX, t) as

UUU (XXX, t) =

∫
Ω

uuu(xxx, t)δ (uuu (xxx, t)−XXX ) dxxx(2.13)

Equations (2.1), (2.7) - (2.9), and (2.12) and (2.13) give a closed, coupled system of

equations. For the sake of future reference, the continuous equations that make up the

mathematical model of the IBM are restated here.

uuut(xxx, t) = P
(

(uuu(xxx, t) · ∇)uuu(xxx, t) +
1

Re
∇2uuu(xxx, t)

)
+ Pfff ,(2.14)

fff (xxx, t) =

∫
Γ

FFF (XXX, t)δ (xxx −XXX ) dXXX,(2.15)

XXX t = UUU (XXX, t) ,(2.16)

=

∫
Ω

uuu(xxx, t)δ (xxx −XXX ) dxxx,

FFF (XXX, t) = − dE

dX
(2.17)

where equation (2.14) is the fluid equation, (2.17) is the fiber equation and (2.15)−(2.17)

are the interaction equations.

2.2.1. Computational Formulation. Consider a standard three dimensional Carte-

sian computational domain Ω defined on the unit cube [0, 1] × [0, 1] × [0, 1], with grid

spacing hx = 1/Nx, hy = 1/Ny, hz = 1/Nz, where the fluid is defined at each grid point

xxxi,j,k = (ihX , jhy, khz) ∈ Ω. In conjunction with this grid, an immersed boundary is de-

fined on an independent Lagrangian grid by NΓ points, XXXγ(q, r, s) = XXXq,r,s, γ = 1...NΓ,

with curvilinear coordinates q, r, s, separated by a distance of ∆l. It is again assumed

12



that the geometry of any immersed boundary is made up of a network of q fibers, thus

all discussion of the immersed equations are in this context. The discretization of Ω and

Γ is shown in figure 2.2 in two dimensions for ease of visualization.

Figure 2.2. Close up on part of Ω and Γ, discretized in 2D.

Here the popular method of lines approach (MOL) for PDEs is used, discretizing PDE

spatially first, resulting in a system of coupled temporal ODEs. The spatial discretization

of equations (2.14)− (2.17) gives the following system of ODEs.

duuui,j,k
dt

= P
(
−
(
uuui,j,k · ∇h

)
uuui,j,k +

1

Re
∇2
huuui,j,k + fff i,j,k

)
,(2.18)

fff i,j,k =

NΓ∑
γ=0

FFF γ Dh
(
xxxi,j,k −XXXγ

)
∆lγ,(2.19)

dXXXq,r,s

dt
= UUU q,r,s,(2.20)

=
∑
i,j,k

uuui,j,k Dh
(
xxxi,j,k −XXXq,r,s

)
hxhyhz,(2.21)

FFF q,r,s = FFF Str,q,r,s +FFFBend,q,r,s.(2.22)

Where ∆h and ∇h are the discretized forms of their respective continuous operators, Dh

is a discretized delta function.

13



The forces, FFF Str and FFFBend are the resistance to stretching and bending, given by

FFF Str,q,r,s = −k
((
XXXq,r,s+1 −XXXq,r,s − Ls

)
n̂s(2.23)

+
(
XXXq,r,s −XXXq,r,s−1 − Ls−1

)
n̂s
)
,(2.24)

FFFBend,q,r,s = σκn̂.(2.25)

Ls is the resting length of the spring located between XXXq,r,s+1 and XXXq,r,s, k is the spring

constant, n̂ is the normal vector, σ is the bending stiffness and κ is the curvature. This

model reflects a commonly used IBM technique, to define the fiber as a series of points

attached by simple linear springs, resulting in the force given by Hooke’s law [82, 81],

shown in Figure 2.3.

Figure 2.3. Springs connecting points on Γ, producing a force, FFF γ at
point XXXγ .

There are many choices for the discrete delta function; an example of a definition see

frequently is

Dh(xxx) = δh(x)δh(y)δh(z),(2.26)

where δh(x) =


1

4h

(
1 + cos πx

2h

)
, |x| ≤ 2h

0 |x| > 2h.

(2.27)
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This definition satisfies the conditions for a delta function approximation, as it is C1(R),

has unit mass and satisfies
∫∞

0
xδh(x)dx = 0. Note that this definition of Dh is dependent

on grid size, and as the grid spacing decreases, it becomes more singular. This is a com-

mon trait of the spreading functions used for the immersed boundary method, although

there have been smoother versions used in recent publications [40].

Immersed Boundary method is generally implimented with a second order implimen-

tation, although higher order schemes have been presented [56, 41, 87]. Excluding the

fully and semi-implicit implimentations, when IBM is used for applications, diffusion is

often evaluated implicitly and the movement of the boundary (2.22) explictly [41, 68].

This, along with high forces due to large values of k or σ, contribute to the need for small

time steps in the interest of stability.

2.3. The Blob Projection Method

The blob projection method, as introduced by Cortez and Minion (2000), is a high-

order finite-difference method for modeling the interaction between an elastic structure

and an incompressible fluid [21]. This method follows the same basic framework as the

immersed boundary method, presented in 2.2.

There are two key differences between IBM and BPM, the first being how the spread-

ing function is defined. In IBM the spreading function is dependent on the grid size,

where the regularized delta function or ‘blob’ in BPM is grid independent. The other

major difference is that with classic IBM, the effect of the immersed boundary’s motion

on the fluid, the projection of the force, Pfff , is evaluated with discretized finite difference

operators, by solving the Poisson equation (2.3). BPM evaluates the projection of the

force with an analytic function, which reduces error and gives flexibility in how this term

is computationally evaluated. These differences improve the loss of formal order at the

immersed boundary and reduce leaking across the boundary.

BPM is selected here because of the analytic function for Pfff , which gives the potential

to split the forcing into stiff and non-stiff parts. The drawback of this approach is that
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the analytic Pfff evaluation is expensive, so a hybrid approach is taken, details of which

are discussed in 2.3.2

2.3.1. The Spreading Function. With IBM, forces are spread with the use of a grid

dependent approximation to the Dirac delta function, δ ≈ Dh (see (2.26)). The subscript,

h, refers to this grid dependence. Instead consider a regularized function, or blob, denoted

Bδ (XXX ), dependent on a grid independent cutoff parameter δ. This gives the following

approximation for the forces

(2.28) fff (xxx, t) ≈
∫

Γ

FFF (XXX, t) Bδ

(
xxx −XXXγ

)
dXXX,

where

(2.29) Bδ (XXX ) =
1

δ2
B(|XXX |/δ),

and B(r) is a radially symmetric cutoff function that satisfies the proper conditions for

an approximation to the delta function, mentioned in Section 2.2.1. An example of the

blob on a two dimensional grid is given in Figure 2.4.

Figure 2.4. Regularized blob, Bδ (r)

Choosing a grid independent spreading function gives an analytic expression for the

forces, allowing for the derivation of an analytic formula for the projection of the forces,

Pfff . Additionally, the spreading radius can be varied to minimized error at the boundary.
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From here on, a specific, compact, cutoff function will be used, given by

Bδ (XXX ) =
1

δ2
B(|XXX |/δ),(2.30)

B(χ) =
6

π
(1− χ2)5 for χ ≤ 1(2.31)

Although this blob is chosen here, the derivation of Pfff and its resulting formula, discussed

below is independent of specific blob function choice.

2.3.2. Projection of the Forces, Pfff . Again refer to Equations (2.14)− (2.17), specif-

ically the evaluation of the term, Pfff in (2.14). In traditional IBM implementations, this

is evaluated by first solving the Poisson equation, (2.3), with discrete operators, (denoted

by subscript h, as before)

∇2
hη = ∇h · fff ,(2.32)

n̂ · ∇η = n̂ · fff .(2.33)

Then, subtracting the gradient of the resulting solution η from fff gives the final form of

the term,

Pfff = fff −∇hη.

In this process, discrete approximations, commonly finite difference, are used for the

divergence, gradient and Laplacian operators. It is well known that to obtain an exact

projection, where the divergence of Pfff is identically zero, an adjoint condition is neces-

sary [17]. There are ways to formulate the discrete operators such that an exact, not

approximate, projection is found, however one must be careful of this condition.

Instead of computing ∇hη through finite difference operators, including taking the

divergence of a discretized delta function, the BPM uses an analytic formula for Pfff .

This is derived from the analytic formula for FFF , (2.28) with the idea from vortex and

impulse methods [5, 12, 19, 22]. The full derivation of this formula can be found in the

Appendix, here only the main result is given. The analytic projection of the forces at
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any grid point xxx is

(2.34) Pfff (xxx) =

NΓ∑
γ=0

(
rF′(r)− F(r)

2πr2

)
fffγ∆l−

(
rF′(r)− 2F(r)

2πr2

)
x̂xxγ(fffγ∆l·x̂xxγ),

where

r = |xxx −XXX |, x̂xx = (xxx −XXX )/r, and F(r) = 2π

∫ r

0

sBδ (s) ds.

Note that this function is global, however the force can defined locally, as is done here

through the choice of a compact blob function, Bδ () .

As mentioned, evaluating this term is expensive, the cost is on the order ofO(NΓNxNyNz)

where NΓ is the number of points that discritize Γ, and the number of grid points in the

x, y and z directions are given by Nx = Ny = Nz. Therefore, using it directly is not

practical when the goal is to reduce computational run time. Thus a hybrid approach is

taken where, like (2.32), a discrete operator is used to solve the Poisson problem, however

the right hand side is the analytic expression for ∇ · fff . That is,

∇2
hη = (∇ · fff )analytic,(2.35)

n̂ · ∇η = 0.(2.36)

This still avoids the error from taking the discrete divergence of a delta function and

is not as costly as evaluating (2.34) outright. There are other choices that could be

made here, for example, using the fast multipole method (FMM), which is used for fast

summations for the n-body problem [39]. Even though the choice made here does not

use the full equation, (2.34) is still useful because it can be used locally to split up the

spatial field into near and far field components, which is presented in detail in Chapter

4.

2.4. Stiffness in IBM

Stiffness, which is described more in Section 3.4, is the notion that the computational

time step for explicit schemes is restricted not by accuracy, but stability. The system
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of time ODEs given in (2.18)-(2.22) for IBM (and likewise BPM) is a stiff system of

ODE’s. This has been documented many times in the literature and directly linked to

the magnitude of the forcing term [79, 85]. This causes the computational run time to

be very costly, and has restricted the physical problems that can be studied.

Investigations into the cause of this stiffness for IBPM were conducted by Stockie

and Wetton [83, 82]. In their first attempt to isolate the cause of stiffness, Stockie and

Wetton showed that the restriction on the time step was dominated by the presence of

the force generated on the fiber, not the usual limitation from the Reynolds number [83].

Next, they used the Stokes’ equations and a local linearization of the fiber position with

force spreading to examine the eigenvalues, λ, of an idealized solution. This analysis

determined that stiffness in IBM comes from two sources:

(1) Large variation in Re(λ), indicating fiber mode components that decay on a

wide variety of time scales.

(2) Large variation in Im(λ), indicating disparate frequencies of physical oscillations

in the fiber solution.

Additionally, they stated the combination of large fiber forces and small viscosity were

the components that effected numerical stability the most. Finally, they conclude that

stiffness is likely traced to the tangential oscillations of the fiber motion, and recommend

that a potential solver could be more efficient if it directly isolated these oscillations. Here

these recommendations are considered by the forces and motion of the fiber, using both

spatial and temporal splitting. The spatial splitting is presented in detail in Chapter

4 and the temporal splitting, by means of multi-rate methods, are discussed next in

Chapter 3.

19



CHAPTER 3

Spectral Deferred Corrections Methods

3.1. Spectral Deferred Corrections

Spectral deferred corrections (SDC) is a class of algorithms that provides high order,

stable solutions to initial value ODE problems. It was introduced by Dutt, Greengard and

Rokhlin in 2000 as a stable improvement to classical defect or deferred correction meth-

ods, for stiff ODEs [28]. Defect corrections first appeared in the work of P. Zadunaisky

in the 1960’s, and is frequently seen in the literature thereafter [89, 90, 6, 78]. The

general strategy is to start with a low-order approximation of the solution and through

successive iterations, to correct the previous approximation, with a low-order estimate of

the error, giving a more accurate solution each time.

SDC methods are comparable to Runge-Kutta (R-K) and multi-step methods, how-

ever these other methods are not easily extend to multiple time scales [11, 38, 44, 45].

Additionally, in contrast to R-K methods, SDC methods are easily constructed for any

order of accuracy [71].

Here, SDC methods are used for the ease of handling implicit-explicit (IMEX) im-

plementations, multiple terms in the ODE, and different time scales. In the following

section SDC is derived, followed by extensions of the method, and a discussion of SDC

in stiff problems.

Consider the general initial value ODE

φ′(t) = f(φ(t), t) t ∈ [0, T ],(3.1)

φ(0) = φ0,



Figure 3.1. A full time step, [tn, tn+1] with SDC nodes tm

where φ(t) ∈ CN is continuous in t, φ0 ∈ CN , and f(φ(t), t), assumed to be Lipschitz

continuous, maps R x CN → CN . The time domain, [0, T ], is discretized into N sub-steps

with intervals [tn, tn+1] = [tn, tn + ∆tn]. Further, each interval is subdivided into M SDC

intervals, where tn = tm=1 < tm=1 < ... < tm=M−2 < tm=M = tn+1 and tm+1 = tm + ∆tm,

shown in Figure 3.1. Note that the SDC nodes, are not necessarily uniformly distributed,

this will be important to the formulation of the method. In the interest of simple notation,

tn will refer to the larger interval nodes and tm, the SDC nodes, even though each tm is

a node belonging to a particular n interval.

Let φ[0] = [φ[0](t0), φ[0](t1), ..., φ[0](tM)] denote a provisional solution to (7.1) on the

SDC nodes, computed with a standard numerical method, e.g. forward Euler for explicit

problems. The superscript [0] indicates that this is the initial iteration, also sometimes

referred to as the predictor. The error of this solution is given by

(3.2) E(t) = φ(t)− φ[0](t)

A better solution is φ[1], where φ[1](t) = φ[0](t) + Ẽ(t), with Ẽ(t) approximating the

error. In classic defect corrections, the error, E(t), is approximated by differentiating φ[0]

and formulating an ODE for E(t). However, SDC employs the Picard integral equation

formulation for (7.1),

(3.3) φ(t) = φ0 +

∫ t

0

f(φ(τ), τ)dτ.

Using (3.3), the residual, R, of the provisional solution at time tm is given by

(3.4) R(φ[0], tm) = φ0 +

∫ tm

0

q[0](τ)dτ − φ[0],
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where q[0](tm) is the polynomial that interpolates f(φ[0], tm). Subsequently the resulting

error E at time tm satisfies

(3.5) E(tm) = Em = φ(tm)− φ[0]
m =

∫ tm

0

f(φ(τ), τ)− q[0](τ)dτ +R(φ[0], tm).

With (5.40), it is possible to write the error at time tm+1 as an update from the error at

time tm

(3.6) Em+1 = Em +

∫ tm+1

tm

f(φ(τ), τ)− q[0](τ)dτ +R(φ[0], tm+1)−R(φ[0], tm).

In the integral, f(φ(t), t) is unknown, however it is equivalent to f(φ(t), t) = f(φ[0](t) +

E(t), t), which gives

(3.7) Em+1 = Em +

∫ tm+1

tm

f(φ[0](τ) + E(τ), τ)− q[0](τ)dτ +R(φ[0], tm+1)−R(φ[0], tm).

Combining (5.40) and (3.7), the difference in the residuals is defined by

R(φ[0], tm+1)−R(φ[0], tm) =

∫ tm+1

tm

q[0](τ)dτ − (φ
[0]
m+1 − φ[0]

m ),(3.8)

and equation (3.7) can be written as

Em+1 = Em +

∫ tm+1

tm

f(φ[0](τ) + E(τ), τ)− q[0](τ)dτ +

∫ tm+1

tm

q[0](τ)dτ(3.9)

− (φ
[0]
m+1 − φ[0]

m ),

which is a full expression for the error, Em+1, at tm+1.

As mentioned, a better approximation to the solution, φ[1], is obtained by updating

the provisional solution φ[0] at each tm with an discritized estimate of the error, Ẽm

φ[1]
m = φ[0]

m + Ẽm.(3.10)
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Further, equation 3.9 is equivalent to

φ
[0]
m+1 + Em+1 = φ[0]

m + Em +

∫ tm+1

tm

f(φ[0](τ) + E(τ), τ)− q[0](τ)dτ(3.11)

+

∫ tm+1

tm

q[0](τ)dτ,

and combining 3.10 and 3.9 results in

φ
[1]
m+1 = φ[1]

m +

∫ tm+1

tm

f(φ[1](τ), τ)− q[0](τ)dτ

∫ tm+1

tm

q[0](τ)dτ,(3.12)

a direct update for φ[1] on the tm nodes. This can be extended iteratively, k = 1...K

times, giving the solution φ[k+1] as follows

φ
[k+1]
m+1 = φ[k+1]

m +

∫ tm+1

tm

f(φ[k+1](τ), τ)− q[k](τ)dτ +

∫ tm+1

tm

q[k](τ)dτ.(3.13)

Equation 3.13 is sometimes called the correction equation and the evaluation of the

integrals should be remarked on. The first

(3.14)

∫ tm+1

tm

f(φ[k+1](τ), τ)− q[k](τ)dτ,

requires values at the k+ 1 iteration, and thus is evaluated with a simple rule, such as a

left hand rule. The second,

(3.15)

∫ tm+1

tm

q[k](τ)dτ,

only requires previously computed values, thus can be evaluated with a spectral integra-

tion rule, giving the Spectral in SDC [28]. This implies that the best estimation is found

by choosing the tm nodes with a spectral quadrature rule, such as Gaussian, or a high

precision rule like Clenshaw-Curtis quadrature [84]. That is,

(3.16)

∫ tm+1

tm

q[k](τ)dτ ≈
M∑
m=1

wmq
[k](tm),
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where tm and wm are the nodes and weight functions associated with the quadrature

rule. This a highly accurate estimation of the error gives a good approximation to the

solution.

To clarify, consider evaluating the first integral in Equation (3.13) with a forward Eu-

ler type approximation. The resulting predictor-corrector scheme for applying k iterative

corrections to φ[0], is

φ
[0]
m+1 = φ[0]

m + ∆tmf(φ[0]
m tm)(3.17)

φ
[k+1]
m+1 = φ[k+1]

m + ∆tm
(
f(φ[k+1]

m tm)− f(φ[k]
m , tm)

)
+ Im+1

m f(φ[k]),(3.18)

where Im+1
m f(φ[k]) is used to denote the quadrature approximation given in (3.16). Each

k iteration of correction raises the formal order of the initial solution by the order of the

approximation to (3.14). Thus the order for this example’s predictor (3.17) is one , and

applying (3.18), which is also order one, K times will increase the formal order to K+ 1.

Additionally, as the iterations increase f(φ
[k+1]
m , tm)−f(φ

[k]
m , tm) goes to zero, leaving only

the error from the quadrature rule. Note that this means high-order results simply from

iterating low order methods in a particular way, one of the main benefits of using SDC.

Additionally, upon convergence of SDC, (3.18) becomes

φ
[k+1]
m+1 = φ[k+1]

m + Im+1
m f(φ[k]),

which is equivilent to the fully implicit collocation method, or the implicit Runge-Kutta

Method [44, 45].

This method is chosen here not only because of the aforementioned property, but that

extensions to various terms on the right hand side are quite easy. This will be evident in

the next few sections, where extensions to multi-implicit and multi-rate formulations of

SDC are given.
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3.2. Semi-Implicit Spectral Deferred Corrections

Semi-Implicit Spectral Deferred Corrections (SISDC) is an extension of SDC pub-

lished by Minion, to target the incompressible Navier-Stokes equations (2.1) which have

both stiff and non-stiff components [71]. The stiff components are treated with an im-

plicit scheme, such as backward Euler, and the non-stiff terms with an explicit scheme

such as forward Euler. SISDC treats all terms with the same time step and is compa-

rable to IMEX or additive Runge-Kutta methods (e.g. [3, 54, 13]) or linear multi-step

schemes (e.g. [4, 37, 1]). Unlike these methods, SISDC can easily be constructed to any

order of accuracy, since it uses the SDC approach of successive low order iterations.

To formulate SISDC, consider the general initial value ODE

φ′(t) = f1(φ(t), t) + f2(φ(t), t) t ∈ [0, T ],(3.19)

φ(0) = φ0,

where f1(φ(t), t) is non-stiff and f2(φ(t), t) is stiff. Then the k + 1 update of an initial

solution φ[0] is given by

φ
[k+1]
m+1 = φ[k+1]

m +

∫ tm+1

tm

f1(φ[k+1](τ), τ)− q[k]
1 (τ)dτ(3.20)

+

∫ tm+1

tm

f2(φ[k+1](τ), τ)− q[k]
2 (τ)dτ +

∫ tm+1

tm

q
[k]
1 (τ) + q

[k]
2 (τ)dτ,

which is exactly equation (3.13) with the right hand side given in (3.19). Now, since

f1(φ(t), t) is non-stiff, it is evaluated explicitly and the stiff fi(φ(t), t) is evaluated im-

plicitly. Thus the predictor-corrector formula is formulated using an IMEX approach,

φ
[0]
m+1 = φ[0]

m + ∆tm

(
f1(φ[0]

m tm) + f2(φ
[0]
m+1tm+1)

)
(3.21)

φ
[k+1]
m+1 = φ[k+1]

m + ∆tm
(
f1(φ[k+1]

m tm)− f1(φ[k]
m , tm)

)
(3.22)

+∆tm

(
f2(φ

[k+1]
m+1 tm+1)− f2(φ

[k]
m+1, tm+1)

)
+ Im+1

m

(
f1(φ[k]) + f2(φ[k])

)
.
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This idea was extended to a multi-implicit implementation of SISDC (MISDC) by

Bourlioux et. al. for advection-diffusion-reaction equations and applied to gas dynamics

[7, 57]. A multi-implicit implementation of SDC follows the same principal and deriva-

tion as SISDC, with an extra stiff right hand side term, evaluated implicitly. Operator

splitting is used to handle the different terms in both SISDC and MISDC

Applications such as incompressible flow, turbulent flow and advection-diffusion-

reaction systems with complex chemistry, that have a combination of stiff and non-stiff

terms, have benefited from using SISDC [71, 2, 76]. However, there are some applica-

tions that call for the use of multiple time scales, which is the motivation for the next

section.

3.3. Multi-rate Spectral Deferred Corrections

In addition to handling IMEX schemes, SDC is easily extended to use different time

scales. Published by Bourlioux et. al. , and used by Bouzarth to evaluate stiff terms

explicitly on refined time scales, this approach subdivides the time domain further with

P sub-SDC nodes in each SDC interval [7, 8] . This is referred to as multi-rate spectral

deferred corrections (MRSDC), where the term multi-rate is used to imply that the ODE

has terms which are evaluated on different time scales.

Each SDC interval consists of P sub-SDC nodes, tp, such that [tm, tm+1] = [tm =

tp=0, t1, ..., tp=P = tm+1], p = 1, ..., P , and tp+1 = tp + ∆tp. The tp’s, are also chosen

according to a spectral integration quadrature and this setup is shown in the context of

a full time step [tn, tn+1] in Fig. 3.2. The same simplification in notation is used, where

tp denotes the sub-SDC node for a particular [tm, tm+1] ∈ [tn, tn+1] interval.

Consider the ODE

φ′(t) = f1(φ(t), t) + f2(φ(t), t) t ∈ [0, T ],(3.23)

φ(0) = φ0.
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Figure 3.2. A full time step, [tn, tn+1] with SDC nodes tm and sub-SDC
nodes, tp

where f2(φ(t), t) is stiff and f1(φ(t), t) is non-stiff. Both terms are evaluated with an

explicit scheme, however f2(φ(t), t) will be evaluated on multirate nodes, since it is stiff.

Again let φ[0] be the provisional solution where f1(φ(t), t) is evaluated on the tm nodes,

and f2(φ(t), t) on the tp nodes. This results in the the k+ 1 update to the initial solution

φ[0]

φ
[k+1]
m+1 = φ[k+1]

m +

∫ tm+1

tm

f1(φ[k+1](τ), τ)− q[k]
1 (τ)dτ(3.24)

+

∫ tm+1

tm

f2(φ[k+1](τ), τ)− q[k]
2 (τ)dτ +

∫ tm+1

tm

q
[k]
1 (τ) + q

[k]
2 (τ)dτ.

Since tp=1 = tm and tp=P = tm+1, the integral∫ tm+1

tm

f2(φ[k+1](t), τ)

can easily be evaluated as the sum of integrals over the sub-SDC nodes.

(3.25)

∫ tm+1

tm

f2(φ[k+1](t), τ) =

∫ tp=2

tp=1=tm

f2(φ[k+1](t), τ) + ...+

∫ tp=P =tm+1

tp=P−1

f2(φ[k+1](t), τ).

Similarly,

(3.26)

∫ tm+1

tm

q
[k]
1 (τ) + q

[k]
2 (τ)dτ =

∫ tm+1

tm

q
[k]
1 (τ)dτ +

P−1∑
p=1

∫ tp+1

tp

q
[k]
2 (τ)dτ

To construct a predictor-corrector scheme for MRSDC, first consider the initial solu-

tion update on the SDC nodes,

φ
[0]
m+1 = φ[0]

m + ∆tm
(
f1(φ[0]

m , tm) + f2(φ[0]
m , tm)

)
,(3.27)
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Fixing fN(φ
[0]
m , tm) across the sub-SDC interval gives the refined update on the tp nodes,

φ
[0]
p+1 = φ[0]

m +

ζ=p∑
ζ=1

∆tζ

(
f1(φ[0]

m , tm) + f2(φ
[0]
ζ , tζ)

)
(3.28)

This is equivalent to

φ
[0]
p=1 = φ[0]

m ,(3.29)

φ
[0]
p+1 = φ[0]

p + ∆tp
(
f1(φ[0]

m , tm) + f2(φ[0]
p , tp)

)
,(3.30)

whose result is f2(φ
[0]
P , tP ) = f2(φ

[0]
m+1, tm+1).

Extending Eq. 3.29 with 3.25 and 3.26 gives the kth correction equation with a

forward Euler implementation,

φ
[k+1]
m+1 = φ[k+1]

m + ∆tm
(
f1(φ[k+1]

m , tm)− f1(φ[k]
m , tm)

)
(3.31)

+ ∆tm
(
f2(φ[k+1]

m , tm) + f2(φ[k]
m , tm)

)
+ Im+1

m q
[k]
1 (t) + q

[k]
2 (t)

φ
[k+1]
p=1 = φ[k+1]

m(3.32)

φ
[k+1]
p+1 = φ[k+1]

p + ∆tp
(
f1(φ[k+1]

m , tm)− f1(φ[k]
m , tm)

)
(3.33)

+ ∆tp
(
f2(φ[k+1]

p , tp) + f2(φ[k]
p , tp)

)
+ Ip+1

p q
[k]
1 (t) + q

[k]
2 (t)

In the later, new approaches, a combination of SISDC and MRSDC will be used,

since there will be multiple terms defined implicitly, as well as terms defined on different

time scales. This will be discussed in detail in Chapter 6, however since the problems

targeted here are stiff, it is prudent to make a note about SDC in stiff problems first.

3.4. Stiff Problems and SDC

To discuss the notion of a stiff equation, it must first be established that there is not

a precise mathematical definition for the term. Thus, what will follow is a discussion of

how stiffness is generally characterized.
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The term ‘stiff’ was first used in 1952 by Curtiss and Hirschfelder [24], when com-

paring the preformance of implicit and explicit Euler methods to problems in chemical

kinematics. However, the behavior of stiff problems had been seen prior to that in the

works of Crank and Nicholson and Fox and Goodwin [23, 36, 46]. Generally, differential

equation is said stiff when solving it with an explicit scheme requires a very small time

step in order to be numerically stable. That is, the time step size is not determined by

considerations for accuracy, but stability. The effect of stiffness on order-reduction and

stability is seen throughout the literature, whether in conjunction with R-K methods or

SDC methods [25, 14, 71, 51].

The interest here is in how stiffness effects SDC in particular. As mentioned in Section

3.1, SDC was initially published to target both non-stiff and stiff problems. The work of

Dutt et.al. suggests that compared to the best initial value ODE solvers, SDC methods

are at least equal, possibly favorable, when solving stiff problems where high accuracy is

desired. However, subsequent work has found that when applied to stiff problems, SDC

methods loses the formal order of accuracy at large time steps [7, 71, 51]. Consider Eq.

(3.34),

φ
[0]
m+1 = φ[0]

m + ∆tmf(φ[0]
m tm)

φ
[k+1]
m+1 = φ[k+1]

m + ∆tm
(
f(φ[k+1]

m tm)− f(φ[k]
m , tm)

)
+ Im+1

m f(φ[k]).

As the number of SDC correction iterations increases,

lim
k→∞

f(φ[k+1]
m tm)− f(φ[k]

m , tm) = 0,

meaning the solution converges to the spectral approximation of the Picard integral,

Im+1
m f(φ[k]).

However, when problems are stiff, more SDC iterations are needed to converge, giving

order reduction.
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To illustrate this, consider the ODE

φ′(t) = g′(t) +
1

ε
(g(t)− φ(t)) ,(3.34)

φ(0) = φ0,

where g(t) is a slowly varying function. It is easy to verify that the exact solution to this

ODE is φ(t) = g(t), As ε decreases, (3.34) becomes stiff because there are varying time

scales, that for g′(t) that for 1
ε
(g(t)− φ(t)).

Equation (3.34) is evaluated by disrictizing the time domain [0, 1] with N = 100 steps,

where tn = n/N and ∆tn = 1/N . M SDC steps were then defined on every [tn, tn+1]

interval, with tn = tm=1, ..., tm=M = tn+1. The function g(t) = sin(2πt) is used along

with a forward Euler (FE) scheme, giving the following update on the tm nodes,

φm+1 = φm + ∆tm

(
g′(tm) +

1

ε
(g(tm)− φm))

)
.

This is then extended to a full SDC predictor-corrector scheme and run for different

values of ε to time t = 1. Figure 3.3 shows the error, compared to the exact solution

g(t), and it is clear that as the stiffness of an ODE increases, more SDC iterations are

necessary for full convergence, if it will converge at all.

There are a two key points that this example illustrates. First, that order of conver-

gence for SDC methods applied to stiff problems is a function of the number of iterations

and the stiffness of the problem. Second, that this dependence on stiffness appears to

be on a continuum, i.e. the stiffer the problem, the more SDC iterations needed for

convergence, if it will converge at all.

Additionally, it should be noted that this issue was addressed by Huang et. al., where

GMRES Krylov subspace methods were employed to successfully accelerate the conver-

gence of SDC, giving near full order under certain conditions [51]. The order is still

reduced, because the problem is stiff, however it is not an artifact of the treatement of

the method [45]. Although this technique is not used here, a more robust picture of
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Figure 3.3. Number of SDC correction sweeps vs. error, solving (3.34)
with different ε’s

SDC’s behavior with stiff problems is found in that work. Here, it is enough to note this

property about SDC, as it will appear again in later analysis.
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CHAPTER 4

Spatial Splitting in BPM

As previously discussed, the source of stiffness for both IBM and BPM is due to the

presence of fiber forces. The force itself is local to the fiber and although the projection

of the force is a global function, most of the magnitude of Pfff is near the fiber. Thus the

effects of Pfff away from the fiber is not as large. Overall, the locally spatial behavior of

the projection of the forces lends itself to the idea of splitting up the spatial field. This

can be done with BPM, unlike IBM, since Pfff can be analytically defined everywhere.

This chapter will present a spatial splitting of Pfff , with the intention that the local,

stiff part will be evaluated with a different technique than that used for the non-stiff,

non-local part.

4.1. Splitting Pfff

In order to decompose how Pfff effects the FSI equations, a quantitative metric for

stiffness from this term is necessary. Here, spring forces and bending forces are used,

as have been seen in application [21, 68]. The dependence of stiffness is linked to the

spring constant, and in turn the spring constant scales directly with both the magnitude of

Pfff ,|Pfff |, and the magnitude of its gradient, |∇Pfff |, (see Figure 4.1). Thus it is reasonable

to assume that these quantities can mirror the amount of stiffness in the ODE. The intent

of splitting this term is to evaluate the stiff parts implicitly, and/or on a refined time

step. Although adding another time scale will increase the computations, these will be

computations on the Lagrangian domain, Γ, and thus are less expensive compared to

the Eulerian evaluations on Ω. Additionally, it should be the case that the added cost is

much less than the savings gained from increasing the maximum stable time step.



Figure 4.1. Scaling of Pfff and ∇Pfff with the spring constant k

The splitting discussed in this section will be of the spatial domain (Γ ∪ Ω, with

definitions on both Γ and Ω, and will consist of two domains, the near field and far field.

The near field is taken as the compact area near the boundary and designed to capture

most of the stiffness. The far field is a smooth representation of Pfff on Ω near Γ and

away from it does not change rapidly, thus can be considered non-stuff. Thus, Pfff is

decomposed into

(4.1) Pfff = nf + ff,

with

near field : nf = Pfff −HR(r),(4.2)

far field : ff = Pfff − nf = HR(r),(4.3)

where HR(r) is an approximation function and R is the radius of the near field in terms

of δ. That is, for a near field defined as the area within 3δ of each fiber point, R = 3

and the corresponding approximation function is denoted, HR=3(r). Note that both the

near and far field are defined with the choice of HR(r), thus this term will be examined

with careful and detailed analysis, presented below.
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(a) p1(r) (b) p2(r)

Figure 4.2. The two radially symmetric terms of Pfff , for a fixed δ

4.1.1. Defining HR(r). There are two main constraints that guide the construction of

the near field. First, this quantity should capture the majority of the stiffness. Second,

when it is used to construct the far field, ff = Pfff − nf, the subtraction of the local nf

from the global Pfff , should not leave any analytic discontinuities.

As discussed in section 2.3, BPM analytically defines Pfff at any arbitrary point xxx on

the grid, using the following sum over the NΓ Lagrangian fiber points, with corresponding

position XXX . This is given here again for reference, for a fiber XXX ∈ R2 or XXX ∈ R3with

force fff ∈ R3

Pfff =

NΓ∑
γ=0

(
rF′(r)− F(r)

2πr2

)
fffγ∆l−

(
rF′(r)− 2F(r)

2πr2

)
x̂xxγ(fffγ∆l·x̂xxγ),(4.4)

where F(r) = 2π

∫ r

0

sBδ (s) ds, r = |xxx −XXXγ|, x̂xx = (xxx −XXXγ)/r.

To define HR(r), first denote each radially symmetric term in (4.4), as p1(r) and

p2(r), where

Pfff =

NΓ∑
γ=0

p1(r)fffγ∆l − p2(r)x̂xxγ(fffγ∆l·x̂xxγ),
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and

(4.5) p1(r) =
rF′(r)− F(r)

2πr2
, p2(r) =

rF′(r)− 2F(r)

2πr2
.

These are shown in Fig. 4.2 and gives the following general form of HR(r):

(4.6) HR(r) =


H1(r)fffγ∆l −H2(r)x̂xxγ(fffγ∆l · x̂xxk) if r

δ
> R,

Pfff if r
δ
≤ R.

We choose H1(r) and H2(r) to be fourth degree polynomials of form

H1,2(r) = a1,2 + b1,2

((r
δ

)2

− (R)2

)
+ c1,2

((r
δ

)2

− (R)2

)2

,(4.7)

with coefficients a1,2, b1,2, c1,2 for H1(r) and H2(r) respectively. These are constructed

by the polynomial approximation technique of matching conditions. H1(r) will be con-

structed matching the conditions of p1(r) and H2(r) matching p2(r), which are given in

detail in the following sections. This definition of HR(r) gives the following definition of

the near field, which is indeed compact and local.

(4.8) nf =


Pfff −HR(r) if r

δ
≤ R,

0 if r
δ
> R.

An example of H1(r), p1(r), H2(r), p1(r), p2(r) and their the resulting near field

components are depicted in Figure 4.3.

4.1.2. Polynomial Approximation. To ensure that the near field is local, the match-

ing value

(4.9) H1,2(Rδ) = p1,2(Rδ)
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(a) H1(r), p1(r) (b) H2(r), p2(r)

Figure 4.3. Components of the splitting function

is always used. To define the other matching conditions, the following parameters are

needed for both H1(r) and H2(r)

R : the ratio of the radius of the near field and δ from each point on Γ,(4.10)

α1 : matching point where H1,2(α1) = p1,2(α1), respectively,(4.11)

α2 : matching point where H ′1,2(α2) = p′1,2(α2), respectively.(4.12)

To explore this parameter space, a Mathematica program was created, where R, α1

and α2 were variables. The range for α1 and α2 was from 0 to Rδ, stepping by increments

of 1
10
Rδ and for visual purposes δ = 1/100 was used to how α1 and α2 effected the scaling

of the nf. Figures 4.4 - 4.5 show the result of this program with R = 1. In these figures,

the orange line represents H1,2(r), the blue line is p1,2(r) and the dotted line is the

resulting near field component nf1,2. Additional figures for different cases of R can be

found in the Appendix.

The dependence of the computational cost of the near field on R should be noted.

The near field each is evaluated at each point defining Γ, XXXγ, where the contribution

from the points XXX γ̃, such that

||XXXγ −XXX γ̃|| ≤ Rδ.
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As R increases, a larger percentage of points XXX γ̃/NΓ contributes to this sum, thus the

computational cost increases. This is revisited later when talking about specific tech-

niques, but should be mentioned in context of an analysis of the near field.

(a) α1 = 0 and α2 = 0 (b) α1 = 0.3δ and α2 = 0.6δ

Figure 4.4. H1(r) with R = 1 and labeled matching conditions

For each R, four sets of matching conditions were chosen to compare. The choice was

made for those values of α1 and α2 that captured the majority of the magnitude of the

near field, while reducing the magnitude of the far field. These new values, as well as the

coefficients a1,2, b1,2, c1,2 are given in Tables 4.1 and 4.2 and graphs of these conditions

with R = 1 are given in Figures 4.6 and 4.7. Graphs of R = 2, 3 with the conditions

listed in Tables 4.1 and 4.2, respectively, can be found in the Appendix.

The ratio of |Pfff |/|ff| and |∇Pfff |/|∇ff| is considered with all the possible coefficients

for varying grid sizes and δ’s, in two dimensions. To do so, a perturbed ellipse test

problem, as seen in Cortez and Minion, is used [21]. This is chosen because forces are

generated immediately in the system, allowing for the relative magnitude of the near and

far field to be determined quickly.
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(a) α1 = δ and α2 = 0.4δ (b) α1 = 0.2δ and α2 = 5δ

Figure 4.5. H2(r) with R = 1 and labeled matching conditions

Initially the ellipse, immersed in a fluid at rest, is defined by the parametrization

(4.13) XXX (θ) = (r(θ) cos(θ − θ0), r(θ) sin(θ − θ0)) ,

where

r2(θ) = a2 cos2(θ) + b2 sin(θ) + ε

(
−4

3
e−3(θ−π)2 − e−5(θ−θ1)2

+ e−8(θ−θ2)2

)
.

The parameters used are a = 0.2, b = 0.25, ε = 0.012, θ0 = π/3, θ1 = 4π/5, and θ2 = 2π/3.

The grid is subdivided into Nx = Ny = 128 grid cells and the immersed boundary is

discretized by NΓ = 400 points, unless otherwise noted. Forces are defined by linear

springs, with resting length zero and spring constant ks = 1010, attaching each point on

the immersed boundary.

SDC is used to preform the time integration with K = 3 SDC sweeps and M = 5 SDC

nodes. The time step used is ∆tn = 0.00006, and the simulation evolves to T = 0.0006s.

The choice of time scale and ks are arbitrary, as using a smaller spring constant and
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Table 4.1. Coefficients for H1(r)

H1(r) a1 b1 c1 Figure

R = 1

(i)
α1 = 0

− 1
2πδ2

1
2πδ2

1
πδ2 4.6a

α2 = δ

(ii)
α1 = 0.6δ

− 1
2πδ2

1
2πδ2

13031
31250πδ2 4.6b

α2 = δ

(iii)
α1 = 0.5δ

− 1
2πδ2

1
2πδ2

149
128πδ2 4.6c

α2 = δ

(iv)
α1 = 0.9δ

− 1
2πδ2

13170879083
16600000000πδ2

20107253
20750000πδ2 4.6d

α2 = 0.7δ

R = 2

(i)
α1 = 0

− 1
8πδ2

1
32πδ

1
64πδ

9.5a
α2 = 2δ

(ii)
α1 = 0.8(2δ)

− 1
8πδ2

26275
373248πδ2

100625
6718464πδ2 9.5b

α2 = 0.9(2δ)

(iii)
α1 = .9(2δ)

− 1
8πδ2

1
32πδ

− 25
2592πδ2 9.5c

α2 = 2δ

(iv)
α1 = 0.2(2δ)

− 1
8πδ2

1
32πδ

6311441
128000000πδ

9.5d
α2 = 2δ

R = 3

(i)
α1 = 0

− 1
18πδ2

1
162πδ2

1
729πδ2 9.6a

α2 = 3δ

(ii)
α1 = .5(3δ)

− 1
18πδ2

1
162πδ2 − 2

729πδ2 9.6b
α2 = 3δ

(iii)
α1 = .9(3δ)

− 1
18πδ2

1
162πδ2 − 50

59049πδ2 9.6c
α2 = 3δ

(iv)
α1 = 0.7(3δ)

− 1
18πδ2 − 175025

16503102πδ2 − 1126250
222791877πδ2 9.6d

α2 = 0.6(3δ)
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(a) (b)

(c) (d)

Figure 4.6. H1(r) with R = 1 and matching conditions (i)-(iv), given in
Table 4.1

longer time scale would produce the same problem. The initial configuration and the

motion captured at T = 0.0006s later are shown in Figure 4.8.

Two examples of the coefficient comparison tests are shown in Figures 4.9 and 4.10,

more are seen in the Appendix. In these figures, the x axis is an index given by the

condition case, C, such that if the cases for H1(r) are notated c1 = 1, 2, 3, 4, corresponding

to cases i,ii,iii,iv, and similarly for H2(r), c2 = 1, 2, 3, 4, then C = c2 + 4(c1 − 1). The

optimal coefficients, those that produce the largest ratio of |Pfff |/|ff| and |∇Pfff |/|∇ff|,

are reported in Tables 4.3 - 4.6 for different cases, where ∆x is the grid size.

Tables 4.3 and 4.4 show that α1 does not vary with change in grid size, and does not

vary across R at all, with the exception of δ = 2∆x on a 256 grid. This is not an unusual

case to see a difference because a blob radius of that size is more singular and not well
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Table 4.2. Coefficients for H2(r)

H2(r) a2 b2 c2 Figure

R = 1

(i)
α1 = 0

− 1
πδ2

1
πδ2

2
πδ2 4.7a

α2 = δ

(ii )
α1 = 0.3δ

− 1
πδ2

1
πδ2

205951
200000πδ2 4.7b

α2 = δ

(iii)
α1 = 0.3δ

− 1
πδ2 − 3903971

5781250πδ2 − 6002981
7400000πδ2 4.7c

α2 = 0.6δ

(iv)
α1 = 0.4δ

− 1
πδ2

1
πδ2

1306
3125πδ2 4.7d

α2 = δ

R = 2

(i)
α1 = 0

− 1
4πδ2

1
16πδ2

1
32πδ2 9.7a

α2 = 2δ

(ii)
α1 = 0.9(2δ)

− 1
4πδ2

1
16πδ2 − 25

1296πδ2 9.7b
α2 = δ

(iii)
α1 = 0.5(2δ)

− 1
4πδ2 − 1

2πδ2 − 1
4πδ2 9.7c

α2 = 0.5(2δ)

(iv)
α1 = 0.1(2δ)

− 1
4πδ2 − 38964269

142656250πδ2 − 997349
11412500πδ2 9.7d

α2 = 0.3(2δ)

R = 3

(i)
α1 = 0

− 1
9πδ

1
81πδ2

2
729πδ2 9.8a

α2 = 3δ

(ii)
α1 = 0.9(3δ)

− 1
9πδ

1
81πδ2 − 100

59049πδ2 9.8b
α2 = 3δ

(iii)
α1 = 0.5(3δ)

− 1
9πδ

− 8
81πδ2 − 16

729πδ2 9.8c
α2 = 0.5(3δ)

(iv)
α1 = 0.7(3δ)

− 1
9πδ

− 200
194481πδ2 − 10000

1750329πδ2 9.8d
α2 = 0.7(3δ)
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(a) (b)

(c) (d)

Figure 4.7. H2(r) with R = 1 and matching conditions (i)-(iv), given in
Table 4.2

(a) t = 0 (b) t = 0.0006

Figure 4.8. Perturbed Ellipse.
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resolved. For the case of α2, it has less uniform behavior. With large near field areas,

such as R = 2 and δ = 4∆x on a 128× 128 grid, or R = 3 and δ = 4∆x on a 256× 256

grid, the optimal α2 almost always condition (i).

Figure 4.9. Coefficients with 128× 128 grid, NΓ = 400 with δ = 4/128,
and R = 1

Tables 4.5 and 4.6 show different grid sizes vs. gain from the optimal coefficients,

measured by the ratio of |Pfff /ff| and |∇Pfff /∇ff|, with a δ that varied with grid size

(Table 4.5), and with fixed δ = 4/128 (Table 4.6). Table 4.5 shows that the blob radius

does not have a large effect on the on the gain from the splitting. Conversely, Table 4.12

shows that the gain achieved is proportional to the near field size, which would mean it

Figure 4.10. Coefficiens with 256 × 256 grid with δ = 4/256, NΓ = 800
and R = 1
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Table 4.3. Optimal coefficients for H1(r), H2(r) on a 128 x 128 grid

δ = 2∆x δ = 3∆x δ = 4∆x δ = 8∆x

R = 1 α1: (iii) α1 : (iii) α1: (iii) α1 : (iii)

α2: (iii) α2 : (i) α2: (i) α2 : (i)

R = 2 α1 : (i) α1 : (i) α1 : (i) α1 : (i)

α2: (iv) α2 : (iv) α2 : (i) α2 : (i)

R = 3 α1 : (i) α1 : (i) α1 : (i) α1: (i)

α2 : (ii) α2 : (i) α2 : (i) α2 : (i)

Table 4.4. Optimal coefficients for H1(r), H2(r) on a 256 x 256 grid

δ = 2∆x δ = 3∆x δ = 4∆x δ = 8∆x

R = 1 α1: (i) α1 : (iii) α1: (iii) α1 : (iii)

α2: (ii) α2 : (iii) α2: (ii) α2 : (iii)

R = 2 α1 : (ii) α1 : (i) α1 : (i) α1 : (i)

α2: (ii) α2 : (iv) α2 : (iv) α2 : (i)

R = 3 α1 : (i) α1 : (i) α1 : (i) α1: (i)

α2 : (ii) α2 : (ii) α2 : (i) α2 : (i)

does depend on R. This is to expected since a larger near field captures more effect from

Pfff .

Table 4.5. Optimal coefficients for H1(r), H2(r) for δ = 4∆x

Nx 64 128 256 512

R = 1 α1: (iii) α1 : (iii) α1: (iii) α1 : (iii)

α2: (i) α2 : (i) α2: (ii) α2 : (ii)

R = 2 α1 : (i) α1 : (i) α1 : (i) α1 : (i)

α2: (i) α2 : (i) α2 : (iv) α2 : (iv)

R = 3 α1 : (i) α1 : (i) α1 : (i) α1: (i)

α2 : (ii) α2 : (ii) α2 : (ii) α2 : (ii)
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Figure 4.11. Grid size vs. Ratio of |Pfff /ff| and |∇Pfff /∇ff|, δ = 4/128

Figure 4.12. Grid size vs. Ratio of |Pfff /ff| and |∇Pfff /∇ff|, δ = 4∆x
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Table 4.6. Optimal coefficients for H1(r), H2(r) for δ = 4/128

Nx 64 128 256 512

R = 1 α1: (iii) α1 : (iii) α1: (iii) α1 : (iii)

α2: (iv) α2 : (iii) α2: (i) α2 : (iii)

R = 2 α1 : (ii) α1 : (i) α1 : (i) α1 : (i)

α2: (iii) α2 : (iv) α2 : (i) α2 : (i)

R = 3 α1 : (iii) α1 : (i) α1 : (i) α1: (i)

α2 : (iii) α2 : (ii) α2 : (i) α2 : (i)

The choice of coefficients for H1(r) and H2(r) in the implementation will be remarked

on for the different new strategies in the next three chapters. The last consideration to

make is the evaluation of the near field quantities on the two domains, Γ and Ω. The

near field on the grid is evaluated by spreading the near field equations to the grid. That

is, for each fiber point, XXX , the near field is evaluated analytically at the grid points, xxx

within its radius, R, where r = |XXX − xxx| determines the strength of the near field terms.

For the Lagrangian fiber points,the near field can be evaluated directly at each fiber

point. At each XXXγ ∈ NΓ, adding the contributions from all the other points is straight

forward, however the force fromXXXγ atXXXγ, causes p1,2(r) to become singular and therefore

the limit is used. This limit as r → 0 of (4.4) is,

p1(r = 0) = limr−>0
rF′(r)−F(r)

2πr2 =
3

πδ2
,(4.14)

p2(r = 0) = limr−>0
rF′(r)−2F(r)

2πr2 = 0.(4.15)

This concludes the spatial splitting discussion.

46



CHAPTER 5

Multi-implicit techniques

With the background methodology and spatial splitting discussed in the previous

chapters, the new multi-implicit approach can now be presented. Since the stiffness in

the IBM equations are a result of the forces generated on the boundary, handling these

implicitly could increase the largest stable time step. With the spatial splitting presented

in the previous chapter, these forces can be split into near and far field effects, allowing

for a local definition of the stiffest part of the forces. Thus, the idea presented in this

chapter is to combine the spatial splitting with a multi-implicit algorithm, where the stiff

terms are defined on Γ and evaluated implicitly.

The numerical results that are presented in this section will use BPM and SDC

together with a new multi-implicit implementation. In Cortez and Minion, the original

BPM implementation, all terms in the fluid time update are evaluated explicitly with a

standard Runge-Kutta algorithm [21]. Here, a new, slightly different algorithm is used

for comparison and called the standard algorithm.

5.1. The Standard Algorithm

To define this standard algorithm, again the MOL is used. Recall the time evolution

equations for BPM,

uuut(xxx, t) = P
(

(−uuu(xxx, t) · ∇)uuu(xxx, t) +
1

Re
∇2uuu(xxx, t)

)
+ Pfff (xxx, t),(5.1)

XXX t = UUU (XXX, t) .(5.2)



From here on, the following notation will be used for spatially discretized advection and

diffusion term in the Navier Stokes Equations (N-S),

Ai,j,k = −
(
uuu(xxxi,j,k, t) · ∇h

)
uuu(xxxi,j,k, t),(5.3)

Di,j,k =
1

Re
∇2
huuu(xxxi,j,k, t).(5.4)

Again,∇h and∇2
h are the discrete operators of their continuous counterparts. In addition,

it is assumed that the velocity UUU (XXXq,r,s, t) at point XXXq,r,s is the interpolation of the

surrounding uuu(xxxi,j,k, t)’s at time t.

To discretize in time, the time interval [0, T ] is divided into N sub-steps, divided

further intoM SDC nodes, as given in Section 3.1. Additionally, let the following notation

simplifications be made, uuu(xxx, tm) = uuum, fff (XXX, tm) = fffm and UUU (xxx, tm) = UUUm. The multi-

implicit technique presented here, as well as the multi-rate and time parallel methods,

mainly deal with methods of temporal integration, thus unless otherwise specified, spatial

indices’s are assumed and not written.

The standard algorithm is constructed with an first order, IMEX scheme, where

diffusion is evaluated implicitly. Diffusion is sometimes considered a stiff term, however

with IBM, it seems to have less of an effect on stability than Pfff [83, 82]. Nevertheless,

this will be evaluated implicitly here to focus the stability discussion solely on Pfff . This

approach results in the following zero-th order SDC iteration, or predictor, along with

the corresponding SDC corrector.

5.1.1. Predictor.

uuu
[0]
m+1 = uuu[0]

m + ∆tmP
(
A[0]
m + D[0]

m+1

)
+ ∆tmPfff [0]

m ,(5.5)

XXX
[0]
m+1 = XXX [0]

m + ∆tmUUU
[0]
m .(5.6)
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5.1.2. Corrector.

uuu
[k+1]
m+1 = uuu[k+1]

m + ∆tmP
(
A[k+1]
m − A[k]

m + D[k+1]
m+1 − D[k]

m+1

)
(5.7)

+ ∆tm
(
Pfff [k+1]

m − Pfff [k]
m

)
+ Im+1

m P
(
A[k] + D[k]

)
+ Pfff [k],

XXX
[k+1]
m+1 = XXX [k+1]

m + ∆tm
(
UUU [k+1]
m −UUU [k]

m

)
+ Im+1

m UUU [k].(5.8)

From here on the standard algorithm will refer to the algorithms given in 5.1.1 and

5.1.2.

5.2. Multi-Implicit Algorithm

The purpose of the multi implicit technique is to use implicit methods for the stiff

terms, along with the splitting Pfff , presented in Chapter 4.

In the fluid equation (5.1), the stiff terms are Pfff and D. Thus the IMEX fluid update

is given by

uuum+1 = uuum + ∆tmP
(
Am + Dm+1

)
+ ∆tmPfffm+1,(5.9)

where the only actual implicit evaluation is Dm+1, as Pfffm+1 is not explicitly dependent

on uuum+1, but computed from the XXXm+1 position. To construct XXXm+1, the fluid velocity

is also evaluated implicitly, keeping consistent with (5.9). That is,

XXXm+1 = XXXm + ∆tmUUUm+1,(5.10)

= XXXm + ∆tmI
(
uuum+1,XXXm+1

)
,(5.11)

where I (uuu,XXX ) is the interpolation of the fluid to the points on the fiber. To avoid fully

implicitly coupling (5.9) and (5.11), uuum+1 in (5.11) is replaced with a estimation of uuum+1.
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To formulate this estimate, consider UUUm+1,

UUUm+1 = I
(
uuum+1,XXXm+1

)
,(5.12)

= I
(
uuum + ∆tmP

(
Am + Dm+1

)
+ ∆tmPfffm+1,XXXm+1

)
,(5.13)

= I
(
uuum + ∆tmP

(
Am + Dm+1

)
+ ∆tm

(
nfm+1 + ffm+1

)
,XXXm+1

)
.(5.14)

The goal is to only evaluate (5.12) implicitly with quantities defined on Γ, and it is

assumed that the far field does not change significantly over the course of one SDC step,

thus reasonable approximations for Dm+1 and ffm+1 are made in the form

(5.15) ffm+1 ≈ ffm and D ≈ D̃,

where the estimate of the diffusion is given by,

(5.16) ũuu∗m+1 = uuum + ∆tm

(
Am + D̃m+1(ũuu∗m+1 + ffm

)
.

Therefore, UUUm+1 is approximated by

UUUm+1 ≈ I
(
uuum + ∆tmP

(
Am + D̃m+1

)
+ ∆tm

(
nfm+1 + ffm

)
,XXXm+1

)
, ,(5.17)

≈ I
(
uuum + ∆tmP

(
Am + D̃m+1

)
+ ∆tmffm,XXXm+1

)
+ ∆tmnfm+1.(5.18)

where nf is analytically defined on Γ.

Letting ũuum+1 = uuum + ∆tm

(
P
(
Am + D̃m+1

)
+ ffm

)
, gives the following predictor-

corrector SDC update. It is important to note that the implicit terms in (??) are only

evaluated on the immersed boundary points, not the grid.

50



5.2.1. Predictor.

ũuu
[0]
m+1 = uuu[0]

m + ∆tm

(
P
(
A[0]
m + D̃[0]

m+1

)
+ ff[0]

m

)
,

UUU
[0]
m+1 = I

(
ũuu

[0]
m+1,XXXm+1

)
+ ∆tm

(
nf

[0]
m+1

)
XXX

[0]
m+1 = XXX [0]

m + ∆tmUUU
[0]
m+1,

uuu
[0]
m+1 = uuu[0]

m + ∆tm

(
P
(
A[0]
m + D[0]

m+1

)
+ Pfff [0]

m+1

)
.

5.2.2. Corrector.

ũuu
[k+1]
m+1 = uuu[k+1]

m + ∆tmP
(
A[k+1]
m − A[k]

m + D̃[k+1]
m+1 − D̃[k]

m+1

)
+ ∆tm

(
ff[k+1]
m − ff[k]

m

)
+ Im+1

m P
(
A[k] + D[k]

)
+ Pfff [k],

UUU
[k+1]
m+1 = I

(
ũuu

[k+1]
m+1 ,XXXm+1

)
+ ∆tm

(
nf

[k+1]
m+1 − nf

[k]
m+1

)
,

XXX
[k+1]
m+1 = XXX [k+1]

m + ∆tm

(
UUU

[k+1]
m+1 −UUU

[k]
m+1

)
+ Im+1

m UUU [k],

uuu
[k+1]
m+1 = uuu[k+1]

m + ∆tmP
(
A[k+1]
m − A[k]

m + D[k+1]
m+1 − D[k]

m+1

)
+ ∆tm

(
Pfff [k+1]

m+1 − Pfff [k]
m+1

)
+ Im+1

m P
(
A[k] + D[k]

)
+ Pfff [k]

In first equation of 5.2.2 the SDC integration term is the integration of the actual velocity,

uuum+1, not the integration of the right had side of (??). This is done because as the SDC

iterations converge, ũuum+1 will converge to the actual velocity at tm+1, uuum+1, instead of

its estimate.

The cost in terms of operations for one SDC step of the multi-implicit algorithm

compared with the standard algorithm in d dimensions is shown in Table 5.1. The

number of nonlinear solver operations, denoted κ, is not known a priori but is dependent

on the formulation of the initial guess, and has been observed to depend on the time

step. Thus, this table gives a good comparison for the cost of the algorithms, but is not

a complete pitcture. The number of iterations needed for the nonlinear solver will be

looked at in the following stiff test problems, to quantify the computational cost per time

step for this algorithm.
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Table 5.1. Operation count for the standard and multi-implicit algorithms.

Term Standard Alg. Multi-implicit Alg.

A O(Nd) O(Nd)

D O(Nd) O(Nd)

D̃ - O(Nd)

Pfff O(Nd) O(Nd)

UUU O(NΓ) O(κNΓ)

nf - O((2R)dNΓ)

P O(Nd) 2O(Nd)

Total: 4(O(Nd)) +O(NΓ) 6(O(Nd)) +O(κNΓ) +O((2R)dNΓ)

With the multi-implicit algorithm and its associated costs established, it is now ex-

amined in the context of a stiff and a non-stiff test problem.

5.3. Numerical Implementation

To compare the multi-implicit and standard algorithms, (5.2.1)-(5.2.2) and (5.1.1)-

(5.1.2) respectively, they are implemented on a 2-D grid with fourth order finite difference

and semi-spectral schemes in both space and time. It should be noted that the parameters

and choices presented in this section will be valid for the numerical comparisons done in

Chapter 6 and 7 as well.

5.3.1. Spatial discretization. The Eulerian domain, Ω = [0, 1] × [0, 1] is discretized

with a 128 × 128 grid, where N denotes Nx = Ny = 128 and the spacing is denoted

h = hx = hy = 1/128. The Lagrangian domain Γ is discretized with NΓ = 400 points,

separated by an initially fixed distance of ∆l. To prevent leaking across the immersed

boundary, the initial distance ∆l is taken to be less than h/2. This is a common metric

with immersed boundary simulations [79, 21].

Periodic boundary conditions on Ω are prescribed so the FFT can be utilized. Thus,

the advection and diffusion terms are computed with spectral operators, and along with

uuu, are defined at the grid nodes xxxi,j = (ih, jh).
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The spring force density model, given in 2.2.1, is used with a fourth order stencil to

find the arc length between points, ∆l. The blob is taken as the compact blob, given

in (2.30) and the cutoff parameter is fixed at δ = 3h. The forces, and projection of the

forces, Pfff , are evaluated with the semi-analytic formulation given in Section 2.3.2. That

is, Pfff is solved by computing

∇2
hη = (∇ · fff )analytic,(5.19)

n̂ · ∇η = 0,(5.20)

where

fff (xxx) =

NΓ∑
γ=1

FFF γBδ

(
xxx −XXXγ

)
∆lγ,(5.21)

∇ · fff =

NΓ∑
γ=1

FFF γ

(
∇ ·Bδ

(
xxx −XXXγ

))
∆lγ.(5.22)

Equation (5.22) can be determined by using the analytic expression for the blob

(2.30). With the choice of a compact blob, both (5.21) and (5.22) are local and thus

spread to the grid on a compact patch of size Lpatch = 2δ × 2δ. With these definitions,

the Poisson equation (5.19) is solved with spectral methods and the computation of ∇hη

is computed with a spectral operator, resulting in Pfff .

The choice of near field splitting should now be revisited. Recall that there were

different cases of matching conditions for the near field approximation polynomials, H1(r)

and H2(r) (See Tables 4.1 and 4.2). Each case (i) - (iv) for each R = 1, 2, 3 was tested

using the standard algorithm and the perturbed ellipse, described in Chapter 4, the

resulting errors, of which are reported in Figure 5.1. It appears that the first case for all

values of R results in the lowest error. This does not line up exactly with the analysis

done in Chapter 4, however that analysis was done based on the criteria of the magnitude

of |Pfff |. This suggests that the effectiveness of the near field is still in need of exploration.
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Figure 5.1. Error of different near field matching condition cases.

Figure 5.2. Error and computational cost for different values R

Additionally, in this case, using R = 1 is sufficient, which is significant because the cost

of using this splitting is effected by size of the near field, reflected in Figure 5.2. This

figure uses the mutlirate algorithm, where P denotes the number of multi-rate nodes and

is slightly out of context here, however it does display the cost associated with the choice

of R, which is given by the data at P = 2, and will be revisited in the next chapter.

Thus from here on, unless specified, R = 1 with matching conditions (i) will be used,

given the information in Figures 5.1 and 5.2.

5.3.2. Temporal discretization. The temporal domain, [0, T ], where T is the final

time, is subdivided into N uniform intervals with M SDC nodes, as mentioned in 5.1

and detailed in 3.1.
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The SDC nodes are prescribed by Clenshaw-Curtis (CC) quadrature [18] which makes

the change of variable,

(5.23) t = cos (θ) .

This choice of quadrature was made with the multi-rate implementation in mind, since

the nodes would easily correspond with different levels of refinement. To define the weight

functions, such that on each time interval [tn, tn+1],

∫ tn+1

tn
f(τ)dτ =

M∑
m=1

wm(t)f(tm),(5.24)

where tm = cos (θm) , θm =
2πm

M
(5.25)

first consider the integration of
∫ 1

−1
f(τ)dτ with the change of variables given by (5.23).

This gives ∫ 1

−1

f(τ)dτ = −
∫ 0

π

f(cos(θ)) sin(θ)dθ(5.26)

=
1

2

∫ π

−π
f(cos(θ)) sin(θ)dθ.(5.27)

Since f(cos(θ) = a0

2
+
∑∞

k=1 akcos(kθ), this gives

∫ π

−π
f(cos(θ)) sin(θ)dθ =

∫ π

−π

(
a0

2
+
∞∑
k=1

akcos(kθ)

)
sin(θ)dθ(5.28)

=

(∫ π

−π

a0

2
sin(θ)dθ +

∞∑
k=1

∫ π

−π
akcos(kθ) sin(θ)dθ

)
,(5.29)

where only the even k contribute.

To determine the numerical weight functions, first (5.27) is numerically evaluated for

f = e1, e2, ..., eM , where

(5.30) (ei)j =


0 if i 6= j,

1 if i = j.
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Then equation (5.27) is computed on tm=1, ..., tm=M , using spectral techniques. First

notice that for the contributing wave numbers,

f(cos(θ)) = f̂N/2 cos

(
N

2
θ

)
+

N/2+1∑
k=−N/2+1

f̂ke
ikθ.(5.31)

Combining this with the identity sin(θ) =
(
eikθ − e−ikθ

)
/2i, (5.31) results in

f(cos(θ)) sin(θ) = f̂N/2 cos

(
N

2
θ

)
sin(θ) +

N/2+1∑
k=−N/2+1

f̂k
ei(k+1)θ − ei(k−1)θ

2i
.(5.32)

The first term in (5.32) can be integrated exactly and the summation can be integrated

spectrally. This will result in the needed weight functions, wm, to evaluate (5.24).

Here, the values K = 3 and M = 5, unless otherwise specified, which gives a formally

fourth-order method in the temporal direction.

5.3.3. Implicit solver. Solving Equations (5.19) and (5.19) requires the use of an

implicit, nonlinear solver, since equation (5.19), UUUm+1 is dependent on XXXm+1. Here,

C. T. Kelley’s Newton-Krylov solver, available through www.siam.org, is used [53]. This

code solves the inexact Newton condition [26, 53, 77]

(5.33) ||F′(XXXψ)dψ + F(XXXψ)|| ≤ c||F(XXXψ)||

where F′ is the Jacobian of the function F, XXXψ is the solution increment at the ψth step

and c ∈ [0, 1) is a forcing term to enhance the convergence. Additionally, F(XXX ) is defined

as

F(XXX ) = XXX −∆tV(XXX )−H = 0,(5.34)

where

XXX −∆tV(XXX ) = H,(5.35)
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Figure 5.3. Spring force model for the immersed boundary.

and H is known. Iterations of GMRES are applied until the solution to (5.33) is within a

specified tolerance, τ = τa+τr||F||, with τa and τr referred to as the absolute and relative

tolerance, respectively.

5.4. Results

In an effort to fully examine the algorithms, two test problem were chosen, a forced

circle, that is non-stiff and straight wings, that is stiff. The non-stiff problem is used to

establish convergence and accuracy properties of the algorithms considered here, and the

stiff problem to compare stability and computational cost. These two problems will be

used to compare not only the algorithm presented in this chapter, but those presented in

the next two chapters. Thus, in the following subsections the test problem is described

first, followed by the results of using the multi-implicit algorithm.

5.4.0.1. Non-stiff problem. The forced circle begins with a periodic, circular immersed

boundary, immersed in a fluid at rest in the unit square, [0, 1] × [0, 1]. The points on Γ

are ’attached’ with a linear spring model, and the immersed boundary is initially defined

in polar coordinates as

XXX (θ) = (0.5 + r cos(θ), 0.5 + r sin(θ)) ,
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Figure 5.4. Depiction of target points attached to half of the immersed
boundary.

where the value r = 0.2 is used and (0.5, 0.5) is the center of the computational box.

The immersed boundary is then forced by ‘target points’, a common technique used

to prescribe motion in IBM [48, 69, 67, 68]. This technique also uses springs to model

a connection from the points on Γ to the target points, as shown in Figure 5.3. Here,

the target points, denoted TTT , are based on a time dependent function, chosen to force

the right half of the immersed boundary (θ ∈ [−π/2, π/2]) into the shape of an ellipse,

conserving area, this is depicted in Figure 5.4.

That is,

TTT (θ, t) = (0.5 + a(t) cos(θ), 0.5 + b(t) sin(θ)) ,

where,

a(t) = c(1 + ε sin 2πt),

b(t) = c/(1 + ε sin 2πt),
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(a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5 (g) t = 0.6 (h) t = 0.7

(i) t = 0.8 (j) t = 0.9 (k) t = 1

Figure 5.5. The forced circle, non-stiff test problem

and c2 = ab to preserve area inside Γ. The values c = 0.2 and ε = 0.4 are used, such that

half of the circle will be stretched by 40% of its original radius, in the x direction from

t = 0 to t = T/2, and then pushed back toward its original shape from t = T/2 + ∆tn to

t = T = 1, as shown in Figure 5.5.

The resulting force due to the the target points are modeled by a neo-Hookean linear

spring model, with resting length zero. The left half of the circle is not forced, but

passively follows due to the forces keeping the ellipse together. Additionally, a resistance

to bending is added using the curvature of the immersed boundary, giving the following
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complete definition for the force function,

FFF = FFFB +FFF S +FFF T ,(5.36)

FFFB = σκn̂,(5.37)

FFF S = −kS
∂

∂s

((
∂XXX

∂s
− 1

)
τ

)
,(5.38)

FFF T = −kT |XXX − TTT |.(5.39)

Finally, the fluid viscosity is chosen to be ν = 0.0001, giving a Reynolds number of

Re = 1000.

The error is measured with the velocity of the fluid, uuu, and the position of the im-

mersed boundaryXXX . These are calculated using a inf-norm relative error, where a refined,

reference solution uuur is computed to be the ‘exact’ solution. Additionally, the error in

the fluid is normalized by the maximum fluid value, so to show the percentage of error.

Thus the form of the two errors, Euuu and EXXX , for respective approximate solutions ũuu and

X̃XX are given by

(5.40) Euuu = max
u∈uuu,ũ∈ũuu

|u− ũ|
|ũ|

, EXXX = max
X∈XXX,X̃∈X̃XX

∣∣∣X − X̃∣∣∣ .
Applying the standard and multi-implicit algorithm to the non-stiff test problem pro-

duces the fourth order convergence rate, seen in Figure 5.6. Additionally, the convergence

of multi-rate algorithm and the combination of the multi-implicit and multi-rate algo-

rithms is shown, however this is better discussed in the next chapter. The splitting of

the multi-rate algorithm gives a higher error than with the standard method, however

since the goal is to increase the largest stable time step, this should not be a large factor

in the overall results.

As previously mentioned, the non-stiff case was only used to establish the convergence

of the methods, the main goal will now be addressed with the stiff problem.

5.4.0.2. Stiff problem. The purpose of the work done here is to address the computational

cost of the immersed boundary method. To properly do so, the algorithms are tested
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Figure 5.6. Convergence of the standard and multi-implicit algorithm.

on a problem designed to mimic the numerical properties of Miller and Peskin’s insect

wing [69, 67, 68]. This application, which used IBM to study the dynamics thrip wing,

discussed briefly in Chapter 1, has a time step dominated by stability over accuracy.

Here, a simplified problem, called the straight wings, is used to provide a stiff example

for which to test the multi-implicit, and later multi-rate and time-parallel, algorithms.

Initially, two flat vertical lines (wings), separated by a distance of 6∆x are submerged

in a fluid at rest. Each line is length Lw = 0.3 and discretized by 50 points, giving

NΓ = 100. All other discretization parameters remain the same as the previous example.

Motion is then induced by the use of target points, defined to have a one to one

correspondence with each point on Γ, that is each point on Γ follows a specific target

point of TTT . Note that there is no resistance to stretching or bending introduced in this

particular test. At time t ∈ T , TTT is defined on the left wing by

TTT left(t) =

(
XXX0 −

Lt

4T
,XXX0

)
,
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(a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5 (g) t = 0.6 (h) t = 0.7

(i) t = 0.8 (j) t = 0.9 (k) t = 1

Figure 5.7. The straight wings stiff test problem.

and on the right wing by,

TTT right(t) =

(
XXX0 +

Lt

4T
,XXX0

)
.

This causes the target points to move the length of L/4 over the time period, pulling

the wings in opposite directions, the evolution of which is seen in Figure 5.7.

The result of using the standard and multi-implicit algorithms with this test case are

shown in Figure 5.8. The left plot shows the size of the time step versus the relative

error Euuu and the center plot shows the same comparison with the error EXXX . In order

to understand how the algorithm affects run time, the number of nonlinear solver solves

are tracked over the entire simulation and shown in the third plot. The simulation time

is dependent on the nonlinear solver, which is in turn dependent on the tolerance τ , and

thus this could be optimized for a particular desired error. Note that it is not in general
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Figure 5.8. Multi-implicit and standard algorithms on the stiff test problem.

true that a smaller tolerance on the nonlinear solver gives a smaller error. In this case,

τr = 10−5 is used for all the simulations except the largest time step, where τa = 1 is

used.

From Figure 5.8, it is clear that the time step for the standard algorithm is restricted

by stability, not accuracy. Additionally, the opposite seems to be true, at least in this

particular test, for the multi-implicit algorithm. The multi-implicit algorithm does have

higher error than the standard algorithm, however O(1) error is acceptable for many

immersed boundary application studies, as the error put into the system due to modeling

tends to overshadows the numerical error. That is, when examining applications, small

relative errors, e.g. O(10−4), are simply an artifact of the numerical implementation, not

an accurate description of the precision for which the simulation captures the physical

FSI system.

The largest stable time step is increased by the multi-implicit algorithm by roughly

a factor of 2 − 3 in this stiff problem. It is possible in a more extreme case, where the

time step is further restricted, there could be a larger gain. Even if this is not the case, a

factor of 2-3 for application problems that have run times on the order of days and weeks

can still be considered significant. Clearly, the size of the largest stable time step is not

the only thing to consider, as it is only part of the overall computational cost. The cost

of the multi-implicit algorithm per time step is equally significant, and this quantity is

not easily determined. Optimal use of the nonlinear solver has yet to be explored, thus
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it remains to be seen if the multi-implicit method reduces the overall run time. It should

be stated again that this algorithm only evaluates quantities defined on Γ, and that one

iteration of the nonlinear solver is much less expensive than one grid evaluation. Thus

this could provide a reduction in overall cost in the long run.

Overall, it is clear that the multi-implicit algorithm increases the largest stable time

step, making this a viable avenue of further research into numerical methods to address

the computational cost of the immersed boundary method.
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CHAPTER 6

Multi-rate techniques

After using multi-implicit techniques, and observing that in some cases the nonlinear

solver had trouble computing the solution at large time steps, the focus shifted to using a

multi-rate implementation. This, either in conjunction with the multi-implicit algorithm

or alone, is again targeted at the stiff parts of the coupled equations. The near field

forces on Γ and its position update will be calculated on a refined time step, compared to

the calculations of the fluid on Ω, again with the purpose of increasing the largest stable

time step.

Here, multi-rate techniques will be implemented in various ways, relying mainly on

the MRSDC framework presented in Section 3.3, as well as the splitting given in Chapter

4. Recall that MRSDC splits the time domain into three levels of refinement, the coarsest

being the uniform time nodes tn, the next the SDC nodes tm and finally the fine tp nodes.

This is shown again here in Figure 3.2 for reference.

Figure 6.1. One time step [tn, tn + 1] with SDC nodes and sub-SDC nodes

Initially, to present the basics of this chapter, the position of the boundary will

be updated explicitly on the sub-SDC time scale. This will be compared against the

standard algorithm, given in 5.1 with the same implementation used in 5.3. Next, the

ideas of Chapter 5 will be combined with the multi-rate technique and the velocity at the



boundary will be evaluated implicitly. This too will be compared against the standard

case with the same implementation.

6.1. Multi-rate Algorithm, Explicit U

Again, the splitting of Pfff (Chapter 4) is employed, however here the near field, nf,

and the position of the fiber, XXX , are updated on a refined timescale.

The fluid equation with the stiff terms Pfff and D evaluated implicitly in a first order

IMEX update is given by

uuum+1 = uuum + ∆tmP
(
Am + Dm+1

)
+ ∆tmPfffm+1.(6.1)

The goal is to update the position of the fiber with an explicit scheme on the sub-SDC

nodes, without updating the fluid equation, since the purpose is to reduce computational

cost, while increasing the largest stable time step. Evaluating the fluid equations on

the refined time nodes would require full grid evaluations, which are expensive, O(Nd)

where d = 2, 3 is the dimension, compared to the updates done on the immersed fiber

O(NΓ). Therefore, it is descry to construct a good approximation to the fluid at tp. Using

the notation presented in Chapter 5, the sub-SDC first order update for the immersed

boundary position is given by

XXXp+1 = XXXp + ∆tpUUUp,(6.2)

= XXXp + ∆tpI
(
ũuup,XXXp

)
,(6.3)

where ũuup is the approximation to uuup, constructed next.

Consider (6.1) with Pfff split, as if it were evaluated at tp,

uuup+1 = uuup + ∆tpP
(
Ap + Dp+1

)
+ ∆tp

(
nfp+1 + ffp+1

)
.(6.4)

The terms A, D and ff, are evaluated on Ω, whereas nf can be analytically evaluated on

Γ. Therefore, since it is assumed A, D and ff do not change as much as nf on small time
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steps, these quantities can be fixed at tm, giving the approximation ũuu, on the tp nodes ,

ũuup+1 = ũuup + ∆tp

(
P
(
Am + D̃m+1

)
+ ffm

)
+ ∆tpnfp+1.(6.5)

Again, D̃m+1 is used to denote an approximate diffusion term, evaluated prior to the

sub-SDC time stepping, that solves (5.16). Combining (6.2) and (6.5) gives a full update

for the fiber position, on the sub-SDC nodes,

ũuup=1 = uuum(6.6)

XXXp+1 = XXXp + ∆tpUUUp(6.7)

UUUp+1 = I
(
ũuup+1,XXXp+1

)
+ ∆tpnfp+1.(6.8)

A few notes about this formulation. First, there are no grid operations being done on

the multi-rate nodes, since P
(
Am + D̃m+1

)
+ ffm, is fixed on the SDC nodes and nfp can

be defined on the immersed boundary. Second, the near field is computed for each point

defining Γ by summing the contributions from each of the other particles that fall within

the near field radius. For example, when the near field radius is Rδ = 1δ, the percentage

of particles that contribute to each particles near field is observed to be 3 − 7% of NΓ.

Even though as R grows, this percentage grows, computing nfp is of the order O(NΓ)

operations, not O(N2
Γ), as the definition, given in Equation (4.4), would suggest.

The predictor-corrector scheme for the multi-implicit implementation with UUU evalu-

ated explicitly is given by the following
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6.1.1. Predictor.

ũuu
[0]
p=1 = uuu[0]

m ,

Loop p = 1...P

XXX
[0]
p+1 = XXX [0]

p + ∆tpUUU
[0]
p ,

ũuu
[0]
p+1 = ũuu[0]

p + ∆tp

(
P
(
A[0]
m + D̃[0]

m+1

)
+ ff[0]

m

)
,

UUU
[0]
p+1 = I

(
ũuu

[0]
p+1,XXX

[0]
p+1

)
+ ∆tpnf

[0]
p+1,

XXX
[0]
m+1 = XXX

[0]
P ,

uuu
[0]
m+1 = uuu[0]

m + ∆tmP
(
A[0]
m + D[0]

m+1

)
+ ∆tmPfff [0]

m+1.

6.1.2. Corrector.

ũuu
[k+1]
p=1 = uuu[k+1]

m ,

Loop p = 1...P

XXX
[k+1]
p+1 =XXX [k+1]

p + ∆tp
(
UUU [k+1]
p −UUU [k]

p

)
+ Ip+1

p UUU [k],

ũuu
[k+1]
p+1 =ũuu[k+1]

p + ∆tpP
(
A[k+1]
m − A[k]

m + D̃[k+1]
m+1 − D̃[k]

m+1

)
+ ∆tp

(
ff[k+1]
m − ff[k]

m

)
+ Ip+1

p P
(
A[k] + D[k]

)
+ Pfff [k],

UUU
[k+1]
p+1 =I

(
ũuu

[k+1]
p+1 ,XXX

[k+1]
p+1

)
+ ∆tp

(
nf

[k+1]
p+1 − nf

[k]
p+1

)
XXX

[k+1]
m+1 = XXX

[k+1]
P

uuu
[k+1]
m+1 = uuu[k+1]

m + ∆tmP
(
A[k+1]
m − A[k]

m + D[k+1]
m+1 − D[k]

m+1

)
+∆tm

(
Pfff [k+1]

m+1 − Pfff [k]
m+1

)
+ Im+1

m P
(
A[k] + D[k]

)
+ Pfff [k]

Finally, with the multirate algorithm, there is the impact the cost to consider. Table

6.1 shows the cost of the standard algorithm and the multirate algorithm in one initial

SDC step, in two dimensions. In this table, it is assumed that N = Nx = Ny, and the

cost presented is computed M times per time step. This table shows two things, first that
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Table 6.1. Operation count for the standard and multirate algorithms

Term Standard Alg. Multirate Alg.

A O(Nd) O(Nd)

D O(Nd) O(Nd)

D̃ - O(Nd)

Pfff O(Nd) O(Nd)

nf - O((P + (2R)d)NΓ)

UUU O(NΓ) O(PNΓ)

P O(Nd) 2O(Nd)

Total: 4(O(Nd)) +O(NΓ) 6(O(Nd) + 2(O(2PNΓ))

there is an increase in cost from the extra grid computations of P and D̃ computations.

Second, since O(Nd) > O(PNΓ) ≈ O(NΓ), it is the case that adding more multirate

steps does not necessarily increase the cost of this algorithm significantly. Thus, there is

a ‘start up’ cost to use any amount of multi-rate nodes due to the two grid operations,

but after that the cost increase is not substantial. Although this was done for one SDC

predictor step, the cost for the remaining k steps of SDC corrections is roughly the same,

as each term is updated to its [k + 1] value.

6.1.3. Results. The multirate algorithm given in 6.1.1 and 6.1.2 is now compared

against the standard algorithm given by 5.1.1 and 5.1.2, using both the non-stiff forced

circle and the stiff straight wing tests. The implementation used for this comparison

is identical to that given in 5.3, without the need for a nonlinear solver (5.3.3). Here,

it is important to note that P = 2 corresponds to having no multirate refinement, as

tp=1 = tm and tp=2 = tm+1, and therefore P = 3 corresponds to having one multirate

node, P = 2 to two multirate nodes, and so on. Additionally, run time for the algorithms

will be reported by calculating the average cost per time step, as determined by the ‘wall

clock’, and extrapolated to T = 1s, for purposes of comparison.

Figure 6.2 shows the effect of the number of multirate nodes and the size of the near

field, R, on the the error and run time. This figure was shown in the previous chapter but
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Figure 6.2. Effect of R and P on error, with cost, in a non-stiff problem

is again presented. Using the perturbed ellipse, presented in Chapter 4, this shows the

error does decrease with the increase in P . It has been observed that using P > 10 only

increases the run time, without actually reducing the error. Therefore, the comparisons

made here will focus on using the values of P = 4, 5, 9.

6.1.3.1. Non-stiff problem. The non-stiff forced ellipse, presented originally in Section

5.4.0.1, is used to establish the convergence and accuracy of the multirate algorithm,

compared to the standard algorithm. Figure 6.3 shows the time step versus the error for

both the fluid velocity and the fiber position. It is evident that the error of the multirate

algorithm in both cases is lower than that of the standard algorithm for different values

of P , which is to be expected. The fourth order convergence of the multirate algorithm

is also shown in Figure 6.3, which rounds out the purpose of using the non-stiff test. The

target application for the multirate algorithm, the stiff test problem, is now discussed.

6.1.3.2. Stiff problem. The multirate algorithm is now compared against the standard al-

gorithm using the stiff straight wing test problem (see Section 5.4.0.2 for details). Figures

6.4 and 6.5 show the time step vs. error and the run time vs. error for the fluid velocity

and fiber position, respectively. The largest stable time step of the multirate algorithm

is larger than that of the standard algorithm, although not significantly.
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Figure 6.3. Convergence of the multirate algorithm on the non-stiff problem

In contrast to what was seen in the non-stiff problem, the error of the multirate al-

gorithm is larger than that of the standard algorithm. Although this is not altogether

intuitive, it does not seriously detract from the goal of reducing the computational cost

for stiff IBM applications. As stated in Section 5.4.0.2, the modeling error usually over-

shadows the numerical error of IBM application problems. Thus the efficiency of the

algorithm is more important in the goal of this work than the accuracy, granted that

accuracy is O(1) or lower. Additionally, this error behavior for the multi-rate algorithm

is believed to be the result of the splitting, because in the stiff regime, SDC does not

fully converge, and thus the velocity for which the boundary advects is not converging

to the true velocity. This phenomena of SDC failing to converge for stiff problems was

detailed in Section 3.4.

Although the multirate algorithm does not see the magnitude of increase in the largest

stable time step as the multi-implicit algorithm did, the time step was still an improve-

ment over that of the standard algorithm. In this particular case, the cost per time step

was high enough that the overall run time for the multirate algorithm was still larger than

that of the standard algorithm. Although, because the cost of the multirate algorithm is

fixed with the choice of P , and thus always known for future tests with this algorithm,
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Figure 6.4. Relative fluid velocity error for the stiff problem with the
multirate algorithm.

Figure 6.5. Fiber position error for the stiff problem with the multirate
algorithm.

there could be problems for which it is more efficient. Altogether, the multirate algo-

rithm does provide an avenue toward the goal of reducing the computational cost of stiff

immersed boundary applications.

6.2. Multi-rate Algorithm, Implicit U

With the results of the multi-implicit and multirate algorithms presented, a next

natural step is to look at combining the two algorithms. The multi-implicit algorithm
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increased the largest stable time step by a larger amount than the multirate algorithm did,

but its run time is dependent on the performance of the nonlinear solver, which is known

to take more iterations when larger time steps are used. Thus, there is the potential that

combining it with the multirate algorithm will decrease the overall number of nonlinear

solves per time step, reducing the computational cost. This combination is presented

next, along with results from both the stiff and non-stiff test problems.

The multirate algorithm (6.1.1-6.1.2) can easily be used in conjunction with the multi-

implicit algorithm (5.2.1-5.2.2), by modifying the update on the tp nodes. The update

for XXX
[0]
p+1 simply changes from

XXX
[0]
p+1 = XXX [0]

p + ∆tpUUU
[0]
p ,

to

XXX
[0]
p+1 = XXX [0]

p + ∆tpUUU
[0]
p+1.

This gives a predictor corrector scheme of the form,

6.2.1. Predictor.

ũuu
[0]
p=1 = uuu[0]

m ,

tp nodes


ũuu

[0]
p+1 = ũuu[0]

p + ∆tp

(
P
(
A[0]
m + D̃[0]

m+1

)
+ ff[0]

m

)
,

UUU
[0]
p+1 = I

(
ũuu

[0]
p+1,XXX

[0]
p+1

)
+ ∆tpnf

[0]
p+1,

XXX
[0]
p+1 = XXX

[0]
p + ∆tpUUU

[0]
p+1,

XXX
[0]
m+1 = XXX

[0]
P ,

uuu
[0]
m+1 = uuu[0]

m + ∆tmP
(
A[0]
m + D[0]

m+1

)
+ ∆tmPfff [0]

m+1.
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6.2.2. Corrector.

ũuu
[k+1]
p=1 = uuu[k+1]

m ,

tp nodes



ũuu
[k+1]
p+1 = ũuu[k+1]

p + ∆tpP
(
A[k+1]
m − A[k]

m + D̃[k+1]
m+1 − D̃[k]

m+1

)
+ ∆tp

(
ff[k+1]
m − ff[k]

m

)
+ Ip+1

p P
(
A[k] + D[k]

)
+ Pfff [k],

UUU
[k+1]
p+1 = I

(
ũuu

[k+1]
p+1 ,XXX

[k+1]
p+1

)
+ ∆tp

(
nf

[k+1]
p+1 − nf

[k]
p+1

)
XXX

[k+1]
p+1 = XXX

[k+1]
p + ∆tp

(
UUU

[k+1]
p+1 −UUU

[k]
p+1

)
+ Ip+1

p UUU [k],

XXX
[k+1]
m+1 = XXX

[k+1]
P

uuu
[k+1]
m+1 = uuu[k+1]

m + ∆tmP
(
A[k+1]
m − A[k]

m + D[k+1]
m+1 − D[k]

m+1

)
+ ∆tm

(
Pfff [k+1]

m+1 − Pfff [k]
m+1

)
+ Im+1

m P
(
A[k] + D[k]

)
+ Pfff [k]

With these definitions for the multi-rate, multi-implicit (MM) algorithm established,

the performance of this algorithm is now shown for the non-stiff forced circle and the stiff

straight wing test problems.

6.2.2.1. Non-stiff problem. With this combined algorithm, the result of using it on the

non-stiff problem, along with using the standard algorithm and the non-multirate multi-

implicit algorithm are shown in Figure 6.6. The MM algorithm has lower error than that

of the multi-implicit algorithm for both the fluid velocity and the fiber position, and the

convergence of the algorithm is established with this figure.

6.2.2.2. Stiff problem. The MM algorithm is now tested on the stiff problem and the

results of time step vs. error and number of iterations needed are shown in Figure

6.7. The behavior of the algorithm seems to follow that of the multi-implicit algorithm,

where the choice of time step is restricted by accuracy, not stability, at least in this case.

In ‘more stiff’ examples, the multi-implicit and MM algorithms may see the time step

dominated by stability, but according to the tests done in this work, it will be a larger

step than the use of a standard algorithm.
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Figure 6.6. Convergence of the multi-rate, multi-implicit algorithm.

Figure 6.7. Result of using the multi-implicit, multirate algorithm on
the stiff problem

The iteration count, however, does not seem to be significantly lower than using

the multi-implicit algorithm, but this could change for other applications. Again, if the

problem is more stiff, and the time step increases further, the nonlinear solver needs more

iterations to resolve its solution and thus there could be a significant difference in the

iteration count between the MM and multi-implicit algorithms.

The algorithms presented in this chapter, along with that presented in Chapter 5,

increase the largest stable time step, but do not see an overall computational cost gain
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due to the cost per time step. In the next chapter, a method for amortizing the cost per

time step over multiple processors will be discussed in an effort to combine the largest

stable time step with a lower cost per time step, reducing the overall computational cost.
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CHAPTER 7

Time Parallelization

In the previous two chapters the multi-implicit and multirate algorithms had a high

cost per time step, compared with the standard algorithm. This high cost can be amor-

tized by using these techniques in conjunction with the parallel full approximation scheme

in space and time (PFASST) method, presented by Emmett and Minion [29]. PFASST

distributes the cost per time step over processors, thus combining it with multirate and

multi-implicit methods could increase the computational efficiency.

The PFASST method has three main components, the parareal algorithm for temporal

paralellization, spectral deferred corrections , and the full approximation scheme (FAS).

To properly introduce PFASST, a short review of these components will be presented

first, then PFASST itself is detailed.

7.1. Background

7.1.1. Parareal. With the introduction of the parareal algorithm in 2001, research

into parallel methods for ODEs and PDEs in the temporal direction has increased [60].

Parareal, and the related PITA scheme [30], take an iterative approach, where in each

iteration, each processor (assigned a distinct time step) uses both an accurate (or fine)

method and a coarse method to propagate an improved solution through time. The coarse

method is less computationally expensive than the fine method, and parallel speedup is

achieved because the fine solutions are computed in parallel.

To clarify, consider the initial value ODE

(7.1) φ′(t) = f(φ, t), φ(0) = φ0



Let the time domain [0, T ] be discretized into N intervals, where the solution is

evaluated in each interval by φn ≈ φ(tn). Further, assign each interval to a different

processor and let k denote the iteration number for the successive approximations of φkn.

The two numerical methods used to construct the parareal algorithm are typically

denoted F and G . These methods, although they can be any self-starting ODE method

(such as forward Euler), are typically chosen such that G is computationally less expensive

than F , for efficiency purposes. Thus, G is generally a low order method and F is a high

order method that limits the accuracy of parareal, and may use a smaller time step than

G. Thus F is referred to as the fine propagator and G, the coarse propagator.

The algorithm begins by computing an initial solution φ0 in serial for each n, often

with the coarse propagator G, giving φ0
n+1 = G(tn, tn+1, φ

0
n). It then proceeds iteratively

with k = 1, ..., K iterations, alternating between computing F(tn, tn+1, φ
0
n) in parallel

and updating the initial conditions at each processor by

(7.2) φk+1
n+1 = G(tn, tn+1, φ

k+1
n ) + F(tn, tn+1, φ

k
n)− G(tn, tn+1, φ

k
n).

Notice that the right hand side of (7.2) is the coarse approximation plus a correction

in the initial condition. Additionally, this can be allocated to processors in such a way

that the parallel computation G(tn, tn+1, φ
k+1
n ) is done upon completion of F(tn, tn+1, φ

k
n),

computed in serial [72].

After k iterations, the solution φkm for m ≤ k is equal to the solution of φkm computed

by the fine propagator. Therefore, after N iterations, the solution converges to the

solution using F in serial, although in practice this can happen in less than N iterations

[29].

Parareal’s main drawback is that the parallel efficiency is low. The cost is dominated

by the computation of F , and its parallel efficiency is bounded by 1/K. Combining

parareal with SDC (see Chapter 3), as done in [73, 72], reduces this cost in two ways.

First, the accuracy achieved in one step of SDC, because of the spectral implementation, is

much better after one iteration than would be with standard methods, like Runge-Kutta.
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Second, the high cost of SDC per time step is distributed over the parallel iterations,

since it is approximately M steps of the first-order method, not many more steps of F .

The result of combining these two methods, presented in [72], which suggests that the

hybrid scheme does have similar convergence behavior as parareal, while reducing the

parallel cost and achieving higher parallel efficiency. The details of this combination will

be seen in conjunction with PFASST, in Section 7.2.

Although there are disadvantages to the parareal/SDC approach, in this context of

the work done here, it is an appropriate way to look at the computational bottleneck

of IBM. The drawbacks include the need for large storage and the dependence on SDC,

which means it cannot function as a black box algorithm, like parareal.

7.1.2. FAS. When parallelizing PDEs in time, a way to reduce the cost using the above

method, is to coarsen the spatial discretization, along with the temporal. PFASST utilizes

the full approximation scheme (FAS) to do so [29]. FAS is a popular method in multigrid

approaches for nonlinear problems, a short description is presented next, further details

are found in [9].

Consider a non-linear equation of the form

(7.3) A(xxx) = bbb

where xxx is the solution, and bbb is the spatial discretization of some function. The corre-

sponding residual equation, for an approximate solution, x̃̃x̃x, is given by

(7.4) A(x̃̃x̃x+ eee) = rrr + A(x̃̃x̃x),

where eee is the error, and rrr = bbb − A(x̃̃x̃x). In a multigrid approach, (7.4) is solved on a

coarse level with the use of TGF , an operator that translates between the fine and coarse

grids. Letting the superscript G denote evaluations on the coarse grid, i.e. AG is the
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approximation of A on the coarse level, Equation (7.4) is

AG(x̃̃x̃xG + eeeG) = AG(x̃̃x̃xG) + rrrG(7.5)

= AG(x̃̃x̃xG) + TGF (bbb− A(x̃̃x̃x)(7.6)

= bbbG + AG(x̃̃x̃xG)− TGF (A(x̃̃x̃x).(7.7)

Letting yyyG = x̃̃x̃xG + eeeG, the residual equation (7.5) is equivalent to

(7.8) AGyyyG = bbbG + τττ ,

where τττ is the FAS correction term, given by

(7.9) τττ = AG(x̃̃x̃xG)− TGF AG(x̃̃x̃x).

This allows for a similar degree of accuracy at the coarse level as that of the fine level

solution, using the resolution of the coarse level [9]. Once this coarse solution yyy has been

computed, the fine solution is updated by

(7.10) x̃̃x̃x = T FG (yyyG − x̃̃x̃xG).

To detail how FAS interacts with SDC, first recall Equation (3.18), the direct k + 1

SDC update for a provisional solution φ[0] to (7.1), again stated here

(7.11) φ
[k+1]
m+1 = φ[k+1]

m + ∆tm
(
f(φ[k+1]

m tm)− f(φ[k]
m , tm)

)
+ Im+1

m f(φ[k]).

As previously mentioned, if SDC converges, it converges to the solution

φ
[k+1]
m+1 = φ[k+1]

m + Im+1
m f(φ[k]).(7.12)

Letting φφφ denote φφφ = [φ1, ..., φM ], as well as fff = [f(φ1, t1), ..., f(φM , tM)] and III =

[It2t1 , ..., I
tM
tM−1

], a matrix formulation of (7.12) is given by,

(7.13) φφφ = φφφ0 + ∆tSfSfSf,
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or equivalently

(7.14) φφφ−∆tSfSfSf = φφφ0,

where φφφ0 = [φ0, ..., φ0]. This can be combined with (7.9), to give the FAS correction for

coarse SDC iterations,

(7.15) τττ = ∆t
(
IIIGfffG − TGF IIIfff

)
.

Here, IG is the iteration matrix defined on the coarse nodes and fffG is the vector of

function values at the coarse level. This allows the coarse SDC to achieve the accuracy

of the fine SDC iterations, at the coarse level resolution.

7.2. PFASST

The PFASST algorithm is constructed from the three previously presented methods,

parareal, SDC and FAS, and thus can now be properly described.

First, the time domain [0, T ] is partitioned into N uniform intervals, [tn, tn+1] and

assigned to a unique processor, Pn, for n = 1, ..., N . Next, each n interval is discretized

by M + 1 SDC nodes, tttn = [tn,0, ..., tn,M ], where tn = tn,0 < ... < tn+1 = tn,M ; as well as

M̃ + 1 coarse SDC nodes t̃̃t̃t, such that tn = t̃n,0 < ... < t̃n,M = tn+1. The coarse nodes are

chosen as a subset of the fine nodes, in the interest of translating between the coarse and

fine levels. The solution at the mth fine node on the Pn processor during iteration kth

is denoted φ
[k]
n,m. Similarly, the corresponding fine node solution is φ

[k]
n,m̃. Additionally,

the notation φφφkn = [φ
[k]
n,0, ..., φ

[k]
n,M ] and fffkn = [f(φ

[k]
n,0, tn,0), ..., f(φ

[k]
n,M , tn,M)] is used, with

analogous notion for the coarse level (m̃ replaces m).

7.2.1. Initialization. PFASST initializes each processor by beginning coarse SDC sweeps

while the initial conditions are passed in serial. This is given in the following steps where

the two super-scripts denote PFASST iteration and initialization iteration, respectively.

(1) Receive the new initial value φ̃0,j
n,0 from processor PPP n−1 if n > 0 and j > 1 .
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(2) Do one or more coarse SDC sweeps using the values f̃̃f̃f 0,j−1
n computed previously

and the FAS correction τττ 0
n. This results in updated values for φφφ0,j

n and f̃̃f̃f 0,j
n .

(3) Send φ0,j
n,M to processor PPP n+1 (if n < N − 1). This will become the new initial

condition φ̃0,j+1
n+1,0 in the next iteration.

Once each processor PPP n has finished computing the value φ̃0,n

n,M̃
and sent it to PPP n+1,

the fine grid value φφφ0
n is computed by means of the correction φ̃̃φ̃φ0,n

n − φ̃̃φ̃φ0,0
n interpolated

from the coarse grid to the fine grid. With this new value, the PFASST iterations on the

processors are immediately started.

7.2.2. PFASST iterations. The PFASST iterations for k = 1, ...K are given on each

processor as follows. It is assumed that the fine solution and values φnk − 1 and fffk−1
n

are previously computed.

(1) Compute one fine SDC correction using the values fffk−1
n to yield provisional

solutions φk
′
nφ
k′
nφ
k′
n and fffk

′
n .

(2) Construct φ̃φφ
k′

n by restricting the fine nodes to the coarse nodes and compute ˜fffk′n

(3) Compute the FAS correction τ kn with fffk
′
n and ˜fffk′n

(4) Receive the updated initial value φkn,0 from PPP n−1 if n > 0.

(5) Perform nG coarse SDC correction steps with ˜fffk′n , τ kn and the restriction of the

new initial value φkn,0, yielding ˜φnk and f̃ffkn.

(6) Interpolate the spatial coarse correction φ̃k
′

n,M̃
and add to φ̃k

n,M̃
, giving φkn,M .

(7) Send φkn,M , to processorPPP n+1 (for n < N−1), where it is the new initial condition

φk+1
n+1,0 for the next iteration.

(8) Interpolate φφφk
′
n −φφφkn, the coarse grid correction, in space and time on the remain-

ing fine time nodes (0 < m < M) and add to φφφk
′
n , yielding φφφkn. Compute new fffkn

values.

Most of the cost in this approach is associated with FAS is done in step 8, which

does not start until the new initial condition is received, minimizing the amount of

computation done in each iteration.
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In Emmett and Minion [29], the theoretical efficiency is predicted to be higher than

that of the standard parareal method. That is, the efficiency was bounded above by

Ks/Kp rather than 1/Kp, where Ks is the number of SDC iterations needed to compute

a solution to desired accuracy in serial, and Kp is the number of PFASST/parareal

iterations. Additionally, the results suggest that it is possible to achieve some parallel

efficiency in the temporal direction. The main drawback of this approach is the high cost

of interpolation and recomputing explicit function values of FAS.

7.3. PFASST and BPM

Here, the PFASST algorithm is combined with BPM and compared against the stan-

dard algorithm. PFASST can be implemented in conjunction with BPM because δ is

not tied to grid size. The implementation presented here uses the PyPFASST package,

written by Emmett and was done in conjunction with Emmett.

In this implementation, the spatial direction is defined on the coarse level as Nx =

Ny = 64 and on the fine level Nx = Ny = 128. Only the grid is coarsened, since coarsening

the immersed boundary, although possible, would take a knowledge of forces on a coarse

level. However, the cost of operations on the immersed boundary is less than that of the

grid, this is not troublesome at this point, and can be left for future work. The temporal

coarsening is done with the number of SDC nodes, M = 5 at the fine time level, and

M = 3 at the coarse.

The results of applying PFASST to BPM for the non-stiff, forced circle problem are

shown in Figures 7.1 and 7.2. Using the stiff problem here is sufficient, as the goal in

using PFASST is to see the amortization of cost per time step, not an increase in the

stability. Figure 7.1 shows the error vs. iteration number for three cases, the fine level

(level 0), coarse level (level 1), and PFASST using 2 levels of refinement. Here, the coarse

and fine levels refers to the coarse and fine level in time and space respectively. This

shows that PFASST fully converges after only 4-5 iterations of the method.
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Figure 7.1. Error vs. iteration number for PFASST/BPM
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Figure 7.2. Error vs. time for PFASST/BPM
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Figure 7.2 shows the error for the three cases, as well as just using a predictor for the

PFASST iterations (no SDC) for the first 16 time steps of the simulation (∆t = 1
10

∆x).

Additionally, each case is shown for each successive iteration. This shows that PFASST

produces lower error than the alternative cases.

Theoretically, combining the spatial and temporal coarsening, this implementation

defines a G that is 2d+1 times faster than F in d dimensions. This is the key relationship,

as the speedup in the method is proportional to the ratio of the cost of G to F . When

PFASST and BPM were used together the actual speedup gained from using 16 time

processors was about 6.2.

Recall that the purpose of introducing PFASST into the pursuit of addressing the

computational bottle neck of the IBM was to amortize the cost per time step of the

multi-implicit and multirate implementations, as they decrease the number of time steps

necessary, but are more expensive per time step. Thus, this initial test shows it is in

fact possible to use PFASST with BPM to decrease the overall run time, by reducing the

cost per time step, without compromising accuracy. This suggests that a combination of

using PFASST with the multi-implicit and multi-rate algorithms will produce significant

savings for the computational cost of IBM.
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CHAPTER 8

Conclusion

This work has focused on the stability restriction and subsequent high computational

cost of applications which use IBM. Specifically targeting the treatment of the immersed

boundary, the methods presented in this work do not require changes to the fluid solver,

making these methods more accessible to application studies.

The new spatial splitting introduced Chapter 4, allows one to isolate the stiff terms

in the time update for IBM. This is a novel approach to IBM problems, and there is still

much more potential for exploiting this splitting in the interest of capturing the stiffness.

Chapters 5 and 6 used this splitting along with multi-implicit and multirate techniques

to handle the stiff terms. The multi-implicit algorithm allowed for the treatment of the

stiff terms implicitly, without a fully coupled system or nonlinear implicit solves on the

grid. The multirate algorithm evaluated the stiff terms explicitly, on a refined timescale,

using only the values defined on the immersed boundary, not the grid. Both methods,

and the combination of the two, increased the largest stable time step for the particular

representative stiff application test case. Although the cost per time step was too high

to achieve a reduction in the overall computational cost, this is an important result in

addressing the stability restriction for IBM. Further, the use time parallelism, shown in

Chapter 7, showed promise as it amortized the cost per time step, giving a reduction

of the overall computational time. The results presented here strongly suggest that a

combination of these three temporal methods could greatly reduce the computational

time for IBM application problems.

A robust picture of the stability properties for the temporal methods discussed here

is still necessary. The stiff problem used to test the methods did give results that suggest

that these methods are successful in increasing the time step, but did not find the limit



of their stability. It is not immediately clear how the increase in the time step will scale

with different applications and this is an avenue for further investigation.
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CHAPTER 9

Appendix

9.1. Derivation of analytic formulation of P(F )

9.1.1. Introduction. Derivation of the analytic formula for the projection of forces,

P(F ) which appears as equation 14 in The Blob Projection Method for Immersed Bound-

ary Problems by Cortez and Minion, 2000. This particular verbose derivation was done in

January 2010 by Lauren Cooper and followed the steps of the shortened derivation from

An impulse-based approximation of fluid motion due to boundary forces, Cortez 1996.

This particular derevation is done in 2D but extends to 3D. Equation 14 is given by

P(~F ) = ∆l
K∑
k=0

1

2
fffkφδ(r) +

1

2π
[fffk − 2(fffk · x̂xxk)x̂xxk]

rF ′(r)− 2F (r)

2r2

9.1.2. Definitions. Let us quickly define a few terms we will be using in the derivation.

Blob : Bδ(r) = δ−2B(|xxx|/δ)

Force : ~F = ∆l
K∑
k=0

fffkBδ(xxx− zzzk)

x̂xxk = xxx− zzzk r = |xxx− zzzk|

9.1.3. Derivation.

9.1.3.1. Impulse Method Formulation. Recall that the Helmholtz decomposition tells us

that any sufficiently smooth vector F can be decomposed into the sum of a divergence

free vector and the gradient of a scalar function :

~F = P(~F ) +∇φ

Where ∇ · P(~F ) = 0 and φ satisfies the equation ∆φ = ∇ · F



To find an analytic expression for P(~F ) lets start by solving ∆φ = ∇ · F . Note that

∆φ = ∇ · ~F = ∇ · (∆l
K∑
k=0

fffkBδ(xxx− zk)) = ∆l
K∑
k=0

fffk∇ ·Bδ(xxx− zk)

Now if ψ is a function that satisfies ∆ψ = Bδ(r) then we can write φ as

φ = ∆l
K∑
k=0

fffk · ∇ψ

Or letting mmmk = ∆lfffk we have the following system to solve

φ =
K∑
k=0

mmmk · ∇ψ(9.1)

∆ψ = Bδ(r)(9.2)

The proof of this identity is done (tediously) in the Appendix, section 1.

9.1.3.2. Solving equation (9.2). We want to solve ∆ψ = Bδ(r) to find the gradient of ψ,

thus giving φ as given in (9.1).

First let us transform the laplacian into polar coordinates

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
=

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2

Now since Bδ is a radially symmentric function and φ is also radially symmentric

because

φ =
K∑
k=1

mmmk · ∇ψ =
K∑
k=1

mmmk ·
(
∂ψ

∂r
,
1

r

∂ψ

∂θ

)

=
K∑
k=1

mmmk ·
(
∂ψ

∂r
, 0

)
We can solve

1

r

∂

∂r

(
r
∂ψ

∂r

)
= Bδ(r)
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for ∂ψ
∂r

since all we are looking for is the gradient of ψ to get φ.

∂ψ

∂r
=

1

r

∫ r

0

2πrBδ(r)dr =
1

2πr
F (r)

where F (r), called the ’Shape Factor’ in Cortez 1996, is defined as

F (r) =

∫ r

0

2πrBδ(r)dr =

∫ 2π

0

∫ r

0

rBδ(r)drdθ =

∫
|xxx|
Bδ(|xxx|)dxxx

9.1.3.3. Solving for φ,∇φ. Now that we have solved equation 2 , we can find φ and ∇φ

φ =
K∑
k=1

mmmk · ∇ψ =
K∑
k=1

mmmk ·
(
∂ψ

∂x
,
∂ψ

∂y

)

=
K∑
k=1

mmmk ·
(
∂ψ

∂r

∂r

∂x
,
∂ψ

∂r

∂r

∂y

)

Given that r2 = (x1 − zk,1)2(x2 − zk,2)2 we know that

∂r

∂x
=
x1 − zk,1

r

∂r

∂y
=
x2 − zk,2

r

Therefore

φ =
K∑
k=1

m1
F (r)

2πr

x1 − zk,1
r

+m2
F (r)

2πr

x2 − zk,2
r

φ =
K∑
k=1

(mmm · x̂xx)
F (r)

2πr

Now let us find ∇φ.

∇φ =
K∑
k=1

mmmk · ∇ψ = ∇
K∑
k=1

mmmk ·
(
∂ψ

∂x
,
∂ψ

∂y

)

=∇
K∑
k=1

(
m1

∂ψ

∂r

∂r

∂x
+m2

∂ψ

∂r

∂r

∂y

)

=
K∑
k=1

(
m1

∂

∂x

(
∂ψ

∂r

∂r

∂x

)
+m2

∂

∂x

(
∂ψ

∂r

∂r

∂y

)
,m1

∂

∂y

(
∂ψ

∂r

∂r

∂x

)
+m2

∂

∂y

(
∂ψ

∂r

∂r

∂y

))
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Since we have the following equalities (proved in the Appendix)

∂

∂x

(
∂ψ

∂r

∂r

∂x

)
=

(
rF ′(r)− 2F (r)

2πr2

)
x̂2

1 +
F (r)

2πr2

∂

∂x

(
∂ψ

∂r

∂r

∂y

)
=
∂

∂y

(
∂ψ

∂r

∂r

∂x

)
=

(
rF (r)− 2F (r)

2πr2

)
x̂1x̂2

∂

∂y

(
∂ψ

∂r

∂r

∂y

)
=

(
rF ′(r)− 2F (r)

2πr2

)
x̂2

2 +
F (r)

2πr2

we can find the components of ∇φ

(∇φ)1 =m1
∂

∂x

(
∂ψ

∂r

∂r

∂x

)
+m2

∂

∂x

(
∂ψ

∂r

∂r

∂y

)
=m1

((
rF ′(r)− 2F (r)

2πr2

)
x̂2

1 +
F (r)

2πr2

)
+m2

rF ′(r)− 2F (r)

2πr2
x̂1x̂2

=m1
F (r)

2πr2
+ (m1x̂

2
1 +m2x̂1x̂2)

rF ′(r)− 2F (r)

2πr2

(∇φ)2 =m1
∂

∂y

(
∂ψ

∂r

∂r

∂x

)
+m2

∂

∂y

(
∂ψ

∂r

∂r

∂y

)
=m1

(
rF ′(r)− 2F (r)

2πr2

)
x̂1x̂2 +m2

(
rF ′(r)− 2F (r)

2πr2
x̂2

2 +
F (r)

2πr2

)
=m2

F (r)

2πr2
+ (m1x̂1x̂2 +m2x̂

2
2)
rF ′(r)− 2F (r)

2πr2

Note that (also in Appendix)

x̂xx(mmm · x̂xx) =
(
m1x̂

2
1 +m2x̂1x̂2 , m1x̂1x̂2 +m2x̂

2
2

)
Therefore we can write ∇φ compactly as

∇φ =
K∑
k=0

F (r)

2πr2
mmm+

(
rF ′(r)− 2F (r)

2πr2

)
x̂xx(mmm · x̂xx)
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9.1.3.4. Solving for P(F ). Now that we have an analytic expression for ∇φ we can put

this back into the Helmholtz Decomposition to finish equation 14

P(F ) =~F −∇φ

=
K∑
k=0

~F − F (r)

2πr2
mmm+

(
rF ′(r)− 2F (r)

2πr2

)
x̂xx(mmm · x̂xx)

Note that

~F =
K∑
k=0

mmmjBδ(xxx− zzzk) =
K∑
k=0

m

2πr
F ′(r)

Therefore

P(F ) =
K∑
k=0

m

2πr
F ′(r)−

(
F (r)

2πr2
mmm+

(
rF ′(r)− 2F (r)

2πr2

)
x̂xx(mmm · x̂xx)

)
In this work the blob was taken as a compact blob

(9.3) Bδ (r) =
6

πδ2

(
1−

(r
δ

))5

This gives the following formulas

F(r) = −
(

1−
(r
δ

)2
)6

+ 1(9.4)

∂Bδ (r)

∂x
=

∂Bδ (r)

∂r

∂r

∂x
(9.5)

= −60r

πδ4

(
1−

(r
δ

)2
)4 |x|

r
(9.6)

∂Bδ (r)

∂y
=

∂Bδ (r)

∂r

∂r

∂x
(9.7)

= −60r

πδ4

(
1−

(r
δ

)2
)4 |y|

r
(9.8)

9.1.4. Used Identities.

9.1.4.1. Vector Calculus Identity. Proposition : If ∆ψ = Bδ and ∆φ =
∑
mmmk∇ ·Bδ then

φ =
∑
mmmk · ∇ψ

Proof :
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∆φ =
∑

mmmk · ∇Bδ =
∑

mmmk · ∇(∆ψ)

=
∑

mmmk ·
(
∂

∂x

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
,
∂

∂y

(
∂2ψ

∂x2
+
∂2ψ

∂y2

))
=
∑

m1
∂

∂x

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+m2

∂

∂y

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
=
∑

m1
∂3ψ

∂x3
+m1

∂3ψ

∂y2∂x
+m2

∂3ψ

∂x2∂y
+m2

∂3ψ

∂y3

=
∑

m1
∂3ψ

∂x3
+m2

∂3ψ

∂x2∂y
+m1

∂3ψ

∂y2∂x
+m2

∂3ψ

∂y3

=
∑ ∂2

∂x2

(
m1

∂ψ

∂x
+m2

∂ψ

∂y

)
+

∂2

∂y2

(
m1

∂ψ

∂x
+m2

∂ψ

∂y

)
=
∑

∆

(
m1

∂ψ

∂x
+m2

∂ψ

∂y

)
= ∆

∑
mmmk · ∇ψ

Thus since ∆φ = ∆
∑
mmmk · ∇ψ we have φ =

∑
mmmk · ∇ψ

9.1.4.2. Derivatives for ∇φ. If we recall the definitions we have already established

∂r

∂x
=
x1 − zk,1

r
= x̂1

∂ψ

∂r
=

1

2πr
F (r)

and use the folowing relationships

∂2ψ

∂r2
=
rF ′(r)− F (r)

2πr2

∂2r

∂x2
=

(x2 − zk,2)2

r3
=
x̂2

2

r

x̂2
1+x̂2

2 = 1

then we can derive derivatives that make the components of ∇φ.
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∂

∂x

(
∂ψ

∂r

∂r

∂x

)
=
∂2ψ

∂r2

(
∂r

∂x

)2

+
∂2r

∂x2

∂ψ

∂r

=

(
rF ′(r)− F (r)

2πr2

)
x̂2

1 +
F (r)

2πr

x̂2
2

r

=

(
rF ′(r)− F (r)

2πr2

)
x̂2

1 +
F (r)

2πr

1− x̂2
1

r

=

(
rF ′(r)− 2F (r)

2πr2

)
x̂2

1 +
F (r)

2πr2

∂

∂x

(
∂ψ

∂r

∂r

∂y

)
=
∂2ψ

∂r2

(
∂r

∂x

∂r

∂y

)
+

∂2r

∂x∂y

∂ψ

∂r

=

(
rF ′(r)− F (r)

2πr2

)
x̂1x̂2 −

F (r)

2πr

x̂1x̂2

r

=

(
rF ′(r)− 2F (r)

2πr2

)
x̂1x̂2

∂

∂y

(
∂ψ

∂r

∂r

∂x

)
=
∂

∂x

(
∂ψ

∂r

∂r

∂y

)
=

(
rF ′(r)− 2F (r)

2πr2

)
x̂1x̂2
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∂

∂y

(
∂ψ

∂r

∂r

∂y

)
=
∂2ψ

∂r2

(
∂r

∂y

)2

+
∂2r

∂y2

∂ψ

∂r

=

(
rF ′(r)− F (r)

2πr2

)
x̂2

2 +
F (r)

2πr

x̂1
2

r

=

(
rF ′(r)− F (r)

2πr2

)
x̂2

2 +
F (r)

2πr

1− x̂2
2

r

=

(
rF ′(r)− 2F (r)

2πr2

)
x̂2

2 +
F (r)

2πr2

9.1.4.3. Expanding x̂xx(mmm · x̂xx).

x̂xx(mmm · x̂xx) = (x̂1, x̂2) ((m1,m2) · (x̂1, x̂2))

= (x̂1, x̂2)(m1x̂1 +m2x̂2)

=
(
m1x̂

2
1 +m2x̂1x̂2 , m1x̂1x̂2 +m2x̂

2
2

)

9.2. Additional splitting figures

9.2.1. Screenshots. Additional screenshots of the Mathematica program used to de-

termine possible matching conditions for H1(r) and H2(r) are shown in Figures 9.1 - 9.4.

9.2.2. Graphs of Matching conditions. Here graphs of possible matching conditions

are given according to the variables given in Tables 4.1 and 4.2.
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(a) α1 = 2δ and α2 = 0.7(2δ) (b) α1 = 0.9(2δ) and α2 = 0.4(2δ)

Figure 9.1. Screenshots of H1(r) with R = 2 and labeled matching conditions

(a) α1 = 0.7(3δ) and α2 = 0.4(3δ) (b) α1 = 0.5(3δ) and α2 = 0.5(3δ)

Figure 9.2. Screenshots of H1(r) with R = 3 and labeled matching conditions
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(a) α1 = 0.1(2δ) and α2 = 0.9(2δ) (b) α1 = 0.5(2δ) and α2 = 2δ

Figure 9.3. Screenshots of H2(r) with R = 2 and labeled matching conditions

(a) α1 = 0.1(3δ) and α2 = 0.2(3δ) (b) α1 = 0.8(3δ) and α2 = 0.7(3δ)

Figure 9.4. Screenshots H2(r) with R = 3 and labeled matching conditions
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(a) (b)

(c) (d)

Figure 9.5. H1(r) with R = 2 and matching conditions (v)-(viii)

(a) (b)

(c) (d)

Figure 9.6. H1(r) with R = 3 and matching conditions (ix)-(xii)
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(a) (b)

(c) (d)

Figure 9.7. H2(r) with R = 2 and matching conditions (v)-(viii)

(a) (b)

(c) (d)

Figure 9.8. H2(r) with R = 3 and matching conditions (ix)-(xii)
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