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ABSTRACT 

Melanie Denise Napier: Exposure To Human Source-Associated Fecal Indicators And 
Self-Reported Illness Among Swimmers  

(Under the direction of Charles Poole and Timothy Wade) 

 

 Background: Current fecal indicator bacteria used to assess illness risks in 

recreational waters (E. coli, enterococci) cannot discriminate among sources of 

contamination. To address this limitation, human-associated Bacteroides and chemical 

markers have been proposed, but the risk of illness associated with human fecal 

indicators is unclear. We estimated associations between microbial and chemical markers 

of human fecal pollution and self-reported illness among body immersion swimmers at 

U.S. beaches during 2003 – 2007.  

 Methods: Participants were surveyed about beach activities and water exposure on 

the day of their beach visit and followed up 10 to 12 days later to document illness 

experienced since the beach visit. At 6 beaches, water was analyzed for the presence of 

human-associated Bacteroides markers: HF183, BsteriF1, BuniF2, HumM2. At 5 

beaches, water was analyzed for 56 anthropomorphic chemicals. Adjusted standardized 

risk differences (RD) and 95% confidence intervals (CI) for the indicator-illness 

associations were estimated using model-based standardization. Human associated 

markers were assessed as modifiers of the association between general Enterococcus and 

illness using interaction contrast. 



 

 
iv 

 Results: Overall we observed little evidence of association between Bacteroides 

markers and illness, and between chemical markers and illness among body immersion 

swimmers. There was a pattern of increased risks of GI illness (RD=1.9%; 0.1%, 3.7%), 

diarrhea (RD=1.3%; -0.2%, 2.7%), and respiratory illness (RD=1.1%; -0.2%, 2.5%) 

associated with the BsteriF1 marker. There was no evidence that Bacteroides markers 

acted as modifiers of general Enterococcus and illness. Several chemicals also showed a 

pattern of increased risks, including bisphenol A-GI illness, cholesterol-GI illness, 

household wastewater products-respiratory illness, and tributyl phosphate-respiratory 

illness. Phenol exposure increased the magnitude of association between general 

Enterococcus dichotomized at policy-relevant cut-points and GI illness, eye ailments, and 

respiratory illness by 3-5%.  

 Conclusions: Human-associated Bacteroides and chemical markers were not 

consistently associated with swimming-associated illness, though patterns suggest 

possible increased risks. It is not clear that these findings are generalizable to beach sites 

impacted predominantly by animal sources, runoff, or sporadic sources of contamination. 

Additional research is needed to support the use of human-associated indicators in 

predicting illness risks from human fecal pollution of recreational water. 
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CHAPTER 1.  INTRODUCTION 

 

 Monitoring recreational water quality using fecal indicator organisms (FIOs) has become 

standard practice in the US and other countries seeking to reduce the burden of swimming-

related illnesses. An estimated 170 million respiratory and enteric illnesses worldwide are 

attributed to swimming in and consuming shellfish from polluted marine coastal waters each 

year (1). Exposure to water contaminated by human fecal sources is believed to pose a greater 

risk to human health than that from non-human sources (2,3) because they most likely contain 

human enteric pathogens. In particular, viruses are believed to cause a high proportion of 

swimming-associated gastrointestinal (GI) infections (e.g. hepatitis A, Norwalk virus, norovirus) 

(4-7) and enteric viral pathogens usually do not readily transmit infection to a host of a different 

species (2,3). However, enumerating conventional indicator bacteria – fecal and total coliforms, 

Escherichia coli (E. coli), enterococci – cannot be used to discriminate between human and 

animal sources because of their widespread distribution in the feces of animals and humans. 

Previous epidemiologic research investigating the human health effects of water pollution often 

relied on proximity to sewage effluent from wastewater treatment plants as a proxy for human 

presence. Recently, source tracking methods that include microbial indicators capable of 

distinguishing human from animal fecal matter, as well as chemical markers of human presence 

are increasingly available, allowing the effect of human fecal pollution to be disentangled from 

that from nonhuman fecal pollution (8).  
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 In this dissertation, I estimated associations between exposure to microbial indicators of 

human fecal contamination and chemical markers of human presence, and self-reported illness 

among swimmers 10-12 days after exposure.  I explored whether the identification of human 

source strengthened the association between general Enterococcus and illness association. By 

investigating these associations, results from this study may help determine the utility of human-

associated markers for source tracking of fecally-contaminated recreational waters. 
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CHAPTER 2. BACKGROUND AND SIGNIFICANCE 

 

Use of fecal indicator organisms to track pathogens 

Fecal contamination of water has always been a major human public health concern.  

Disease-causing pathogens can be present in sewage and transmitted via the fecal oral route 

(Table 2.1). For over 100 years, the quality and safety of recreational waters has depended on the 

enumeration of non-pathogenic microorganisms that normally inhabit the human and animal 

gastrointestinal tract and are shed in feces. As such, these FIOs signal the presence of fecal 

contamination, and are a convenient substitute for the costly and difficult task of directly 

measuring viral, bacterial, and protozoan pathogens. Measuring the pathogens directly would be 

ideal, but that approach is fraught with barriers. There are simply too many potential pathogens 

to practically monitor them all as a part of routine surveillance. Waterborne pathogens often 

occur at low concentrations and are unevenly distributed in the environment; their detection 

requires the collection of large volumes of water and assays specific to individual agents or 

classes of agents (9). In addition to being technically complicated and expensive to implement, 

these assays have not been optimized for every pathogen and methods to simultaneously 

enumerate multiple pathogens at once are still under development (9). It is much more feasible 

and cost-effective to measure and enumerate FIOs that are generally more abundant and easily 

measured.   
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Ideally, a FIO shares biological characteristics with the pathogens of interest so that 

measuring the FIO might give an “indication” of whether fecal contamination might be present. 

In addition to being non-pathogenic residents of the GI tract of warm-blooded animals, there is a 

general consensus that an indicator with the following characteristics would be most useful 

(2,10,11): 

• Being present when pathogens are present and absent in uncontaminated samples 

• Being present at densities correlated to the amount of pathogenic microorganisms 

• Being present at densities correlated to a health hazard 

• Being unable to grow in extra-intestinal environments 

• Surviving as long or longer than the pathogen for which it is an indicator  

• Being more resistant to environmental stress and disinfection than the pathogen 

for which it is an indicator 

• Occurring in greater numbers than the pathogen to permit ease of detection 

• Being rapidly detected and easily enumerated 

• Being present in all types of water 

 

No single indicator meets all the above characteristics, neither can any one indicator 

successfully identify or predict the presence or source of all classes of potential pathogens (3). 

 

Conventional fecal indicators  

Under the authority of the Clean Water Act and Beaches Environmental Assessment and 

Coastal Health Act (BEACH) of 2000, the U.S. Environmental Protection Agency (EPA) issues 

recommendations for indicator organism levels in recreational water settings. Beginning in 1976, 

the EPA recommended using fecal coliform bacteria as FIOs, and set a threshold of 200 fecal 

coliform colony forming units (CFU) per 100 ml (12) Based on research showing that E. coli and 
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enterococci were good predictors of GI illness, the 1986 criteria recommended using culturable 

E. coli in freshwater and culturable enterococci in marine and freshwater instead of fecal 

coliforms (13).  In fresh waters, the geometric mean of ≥ five samples taken over a 30-day period 

should not exceed 33 CFU of Enterococcus per 100 ml or 126 CFU of E. coli per 100 ml. In 

marine waters, the threshold was 35 CFU of Enterococcus per 100 ml. Most recently, in 2012, 

the EPA revised the criteria; while E. coli and enterococci remained as the recommended 

indicators, they revised the threshold values to reflect different illness rates and research with 

non-GI illnesses (Table 2.2). Also, for the first time, the EPA provided thresholds for 

Enterococcus by qPCR (Table 2.3). 

 Since the EPA recommendations are intended as guidance, some states and jurisdictions 

choose to use coliforms or Clostridium perfringens to monitor their waters instead of, or in 

addition to E. coli and enterococci. To provide the foundation for further discussion of indicators 

that can distinguish source, a brief review of these conventional FIOs, their uses, and their 

limitations, follows. 

 

Total and fecal coliforms 

Coliform is the term for a group of bacteria that are gram-negative, catalase positive, non-

spore-forming, aerobic and facultative anerobic rod-shaped that inhabit the GI tract of all 

vertebrates. Total coliforms (TC) are bacteria that ferment lactose to gas within 48 hours when 

incubated at 35°C. At this temperature, some members can be routinely found in the 

environment. Fecal coliforms (FC) are a subset of total coliforms that ferment lactose at the 

higher temperature of 44.5°C, which suppresses the growth and activity of environmental total 

coliform bacteria (14). While the FC group contains other genera, such as Klebsiella, 
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Enterobacter and Citrobacter (15), E. coli has been a strong indicator of fecal contamination 

because it is present in high numbers in feces and does not grow in the environment. Fecal 

source tracking studies have sought to use differences in the ratio of total coliforms to fecal 

coliforms as an indicator of host source, however, studies have concluded that the ratio is not 

able to distinguish between human and animal source (16). 

 

E. coli 

E. coli along with enterococci discussed below, are two microorganisms that have 

consistently performed well as indicators. E. coli is a common gram-negative facultative 

anaerobe found in numbers up to 109 per gram of mammalian feces (14). It can act as both an 

indicator and a pathogen. Non-pathogenic E. coli is termed commensal, and considered to be a 

beneficial, normal inhabitant of the gastrointestinal (GI) tract of warm-blooded mammals, 

although they can cause disease in immune-compromised hosts. Pathogenic E. coli cause disease 

either inside (diarrheagenic) or outside (extra-intestinal) the GI tract. E. coli has been widely 

used as an indicator of fecal contamination because of its property as a stable member of the 

intestinal community and abundance in feces. However studies have shown that E. coli is 

affected by environmental factors including temperature, UV radiation, and can survive in water 

4 to 12 weeks, undermining its usefulness as an indicator of recent contamination (14). 

 

Enterococci 

Bacteria in the genus Enterococcus are gram-positive, catalase negative, facultative 

anaerobic diplococci that occur in the GI tract at densities ranging from 105 to 108 colony 

forming units per gram feces (17) and make up 1% of human intestinal flora (14). Enterococci 
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are found in soil, water, dairy products, food and plants, as well as feces. In humans, 90-95% of 

enterococcus is E. faecalis (which can act as a pathogen causing urinary tract infection, or an 

indicator) and 5-10% is E. faecium (which acts as an indicator). Enterococci are useful indicators 

because they are present in human and animal feces, have survival rates similar to waterborne 

pathogens, and are usually unable to multiply in the environment.  Enterococcus surface protein 

may be a specific marker of human fecal contamination (18). Enterococcus is also the indicator 

recommended for marine recreational water quality monitoring by the WHO (19). 

 

Clostridium perfringens 

C. perfringens is a gram-positive, obligate anerobic, rod-shaped bacterium ubiquitous in 

soil, but also commonly associated with feces. It is prevalent in human feces (14) at 

concentrations of 105 to 107 CFU/g of feces (18,20), although concentrations vary between 

individuals. Some studies suggest C. perfringens is more prevalent in the feces of domesticated 

animals such as cats, dogs, pigs and poultry, than in cattle, sheep, and horses (18,21).  Under the 

appropriate conditions, C. perfringens can cause a variety of diseases, including gangrene and 

food poisoning (22). C. perfringens may be a useful indicator of both past and present pollution 

because of its ability to occur in both vegetative and spore forms. Since it does not appear to 

grow in aquatic/soil environments, it is a useful fecal indicator for tropical environments where 

the regrowth of E. coli and enterococci in sand, sediment and water make them less useful (23). 

 

Limitations of conventional indicators 

Coliforms, enterococci, and E. coli, enumerated by culture-base methods, have 

documented limitations that undermine their usefulness as surrogates of fecal contamination and 
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support the identification of alternative indicators. A designated concentration of FIO is 

presumed to indicate fecal contamination, but studies in recent decades indicate these organisms 

may have an ability to persist and regrow in contaminated soils, sediments, marine waters (24), 

and other extra-intestinal environments (8,9,25-29), including areas removed from human 

activity (27). In addition, conventional FIOs have been criticized for being poor representatives 

of the fate, transport, and survival of human pathogens, particularly viruses and protozoa 

(8,27,28,30-32). They can be more susceptible to the disinfection process and inactivation by 

environmental stressors, like sunlight (33). Finally, none of the conventional FIO can be used to 

discriminate the source of fecal pollution in the water as human or non-human because these 

bacteria are found in various warm-blooded animals (8,9). Furthermore, standard culture-based 

methods of measuring FIO also do not distinguish between human and animal sources of 

pollution and limit their usefulness for water quality monitoring. Culture-based detection 

methods require growing FIO from filtered water samples to estimate their concentrations, a 

process that can take up to 24 hours for viable cells to be grown. Beach closings and advisories 

are then issued based on the previous day’s indicator levels, which may differ widely from the 

present day’s risk of fecal contamination due to weather, human events, or other factors. 

Understanding the dominant source of microbial contamination can inform the remediation of 

impaired water systems that support recreation. 

 

Alternative indicators: Source tracking markers 

Due to the limitations of conventional indicators, it is widely acknowledged that 

alternative indicators for assessing water quality are needed, but a clear consensus has not 

emerged. Fecal source tracking markers (FST) (such as members of the Bacteroidales order), 
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chemical source tracking markers, and rapid molecular-based measurement methods have been 

proposed that can discriminate the presence and source of fecal pollution and quantify the 

differential risk from various contamination sources.  

 

Bacteroides spp. as human-associated source tracking markers 

First proposed as fecal indicator bacteria in 1985 (34), members of the genus Bacteroides 

are one of the most promising library-independent FST markers currently available. Bacteroides 

spp. are gram-negative, obligate anaerobic bacilli that are commonly found in the GI tract of 

warm-blood animals. They are one of the most abundant bacteria in the intestinal tract of 

humans, found in up to 1011 CFU/g of feces (35), a concentration 1,000 fold greater than E. coli. 

Bacteroides spp. can account for up to 30% of the total fecal isolates (14). Since the 1990s, 

members of the genus Bacteroides have been suggested as FST markers because of their ability 

to indicate recent contamination and host specificity. Host-specific strains of Bacteroides 

(representing between 1 and 10% of the total Bacteroides fecal population (36)), particularly 

certain 16S rRNA genes, have been identified that may be strictly associated with human vs. 

animal feces (37). Although difficult to culture, quantitative polymerase chain reaction (qPCR) 

assays that measure gene copies of host-specific genetic markers of 16S rRNA are promising 

methods for source tracking of fecal contamination (37).  It is unknown whether Bacteroides spp. 

performs as well as a FST marker in temperate vs. tropical zones of the world.  

Advantages of Bacteroides spp. as FST markers of human fecal contamination include 

(1) presence in high concentrations in sewage; (2) inability to survive for long periods in the 

environment; (3) relatively high persistence through wastewater treatment plants, compared to 

conventional FIO like E. coli and fecal coliforms (coliphages may behave similarly to human 
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viruses during wastewater treatment); (4) molecular methods for detection of highly human-

associated Bacteroides spp. has already been developed and has proven robust (37); and (5) 

specificity in the human vs. animal strains. Limitations of Bacteroides spp. as FST markers 

include limitations of the molecular assays used, which cannot distinguish between viable and 

nonviable cells; thus recent and past contamination events cannot be distinguished since DNA of 

selected pathogens can persist after cell death for up to three weeks (38).  

 

Chemical compounds as human-associated source tracking markers 

Certain chemical markers are also attractive as human source tracking markers because 

they typically require less time required for sample preparation and analysis than culture 

methods, they cannot regrow in the environment, and some may be more geographically or 

temporally stable (11).  In comparison to many microbiological methods, chemicals have the 

advantage of low detection limits and relatively easy analysis. A wide range of chemical 

compounds has been investigated as potential tools for the identification of human fecal sources 

(2,11,39). These compounds fall into several classes:  

• those that are produced and excreted by humans (e.g. Coprostanol); 

• those that are ingested almost exclusively by humans (e.g. caffeine, nicotine, and 

certain pharmaceuticals like carbamazepine and diphenhydramine); and 

• those that make it into the human waste stream (e.g. surfactants, fluorescent whitening 

agents). 

 

Chemical compounds in the first two classes mentioned above that pass through the 

human digestive tract provide the most direct evidence that the fecal contamination is of human 
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origin. Compounds in the third class above may still indicate co-mingling with human sewage, 

but the compound may have originated from industrial sources or from the disposal of 

pharmaceuticals down the drain without passing through the human digestive tract or from 

surface runoff. Chemical compounds that appear to have the greatest potential include: (1) 

pharmaceuticals; (2) plant/animal fecal sterols; (3) household waste products, including personal 

care products, flame retardants and detergents; (4) industrial wastewater compounds; and (5) 

pesticides.  

Pharmaceutical chemicals have been successfully detected in freshwater, seawater, 

estuaries, sediments, and wastewater effluents (11,40) and they have been examined as indicators 

of human wastewater pollution because of high water solubility and low levels in the background 

environment (41,42). Specific pharmaceuticals carbamazepine, codeine, dehydronifedipine, 

diltiazem, and fluoxetine have been found to indicate a uniquely fecal source because these 

pharmaceuticals are consumed and have no external uses and have been detected in 73 to 91% of 

wastewater treatment plant (WWTP) effluents at concentrations significantly greater than 

upstream locations (40). 

The term “sterols” is a collective name for all sterols and stanols, and denotes a steroidal 

alcohol with some degree of unsaturation. Fecal sterols are commonly produced in the digestive 

tract of humans and other warm-blooded animals by microbial hydrogenation of cholesterol (42). 

The most commonly known fecal sterol, coprostanol (5β-cholestan-3β-ol), comprises 50-80% of 

total sterols found in human feces and was 10 times more abundant than cows, horses, sheep, 

hens, ducks, pigs, cats, dogs, and several other animals studied (11,42). Though largely of fecal 

origin, low-levels of coprostanol can be found in natural sediments because of re-isomerization 

of a α-configured form. To be used for identification of human waste pollution, both absolute 
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concentrations and ratios of various stereoisomers are needed.  For example, a high relative 

amount of coprostanol-to-24-ethylcoprostanol is one useful ratio for identification of human 

contamination; a ratio of ≥1.5 indicates 100% human contamination (43). 

Household and industrial waste products can contain endocrine-disrupting chemicals. 

Household wastes can include various personal care products such as d-limonene (fragrance in 

aerosols), acetophenone (fragrance in detergent, flavor in beverages), 1,4-dicholorobenzene 

(moth repellant, deoderant), triclosan (disinfectant), and DEET (N,N-diethyl-meta-toluamide, 

mosquito repellent). Industrial wastewater compounds encompass a broad range of chemicals 

that can be toxic to humans. 

Optical brighteners, or fluorescent whitening agents, are compounds that emit light in the 

blue range (415-445 nanometers) and are added to 97% of laundry detergents in the US, used in 

toilet paper, and present in other home products (44). They are associated with human sewage in 

septic systems because household plumbing systems mix effluent from toilets and washing 

machines together. Optical brighteners are present in effluent regardless of how effective the 

treatment has been at inactivating pathogens, and so must be accompanied by counts of fecal 

indicator bacteria to be a useful indicator of human contamination. Advantages of the use of 

optical brighteners include rapid, simple, and low cost detection methods using fluorometry 

(11,45), and the abundance of optical brighteners in sewage.  The limitations are dilution of the 

optical brighteners in large water bodies and potential interference from unknown compounds. 

There is interest in caffeine as a potential human marker because of its high consumption 

levels in the US (210 mg/day) and high concentration in surface water. Both metabolized and un-

metabolized caffeine in the form of coffee, tea, and caffeinated beverages may represent 

significant quantities in wastewater. Caffeine has been detected in septic tank effluent (46) and 
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wastewater effluent (47) and has been successfully isolated in freshwater, marine waters, and 

storm waters (11). 

Lastly, certain pesticides may be useful as a human source marker because of their use in 

the controlling pests in a variety of settings, and release into the environment during production 

and formulation of pesticides. In a recent study of 110 chemicals, one insecticide, diazinon, was 

among the 35 chemical compounds found in >50% of the WWTP effluent samples associated 

with wastewater (40). 

 

A tiered, “toolbox” approach to source tracking  

A recurrent theme in the fecal source tracking literature is to use source-specific 

indicators like Bacteroides spp. and chemical markers as part of a tiered, “toolbox” approach 

incorporating multiple indicators or markers and analytical methods (e.g. qPCR, fluorometry, 

and antibody detection) to assess water quality and determine human and other fecal 

contamination sources (31,48-53). This can be done in many ways, but in one such approach, 

water quality assessment would begin by measuring conventional FIOs appropriate for a 

particular recreational water site, and then progress to more refined methods (e.g. molecular 

methods) and indicators that detect human, animal or environmental sources of fecal 

contamination (e.g. human-associated Bacteroides and chemical markers), if necessary (48).  

Human source markers can contribute additional confirmation of human source in situations 

where certainty about human source is critical or as a screening tool. For example, Coprostanol, 

caffeine, and pharmaceuticals carbamazepine and diphenhydramine are compounds highly 

specific to human sources that can be used for confirmation in the former case. In the latter case, 

using fluorometry to detect optical brighteners has been proposed as a low-cost initial screening 
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tool for detecting human fecal contamination that yields rapid results (11). By using multiple 

tools, investigators can utilize the strengths of each to ascertain and remediate poor water quality. 

 

Illness risks associated with human fecal indicators  

Numerous epidemiological studies have demonstrated an increased risk of GI, diarrhea, 

respiratory, skin, eye, and ear illnesses among swimmers exposed to elevated FIO levels in 

sewage-impacted waters (54-60).  Findings from studies where non-point sources of pollution is 

the predominant contaminant have been more inconsistent, with some studies reporting an 

association between indicator and illness (59,61-63), while others do not (62,64,65). But even a 

non-point source-impacted water body may have a human source of fecal contamination nearby 

(59). Our study assessed the source of fecal contamination from human source indicators in the 

water, instead of relying on proximity to sewage as a proxy. In addition, this analysis provides 

additional evidence regarding indicator organism-illness relationships for skin, eye, and ear 

infections, which tend to be less commonly reported than GI and respiratory illness.  

Studies estimating human health illness from exposure to human source indicators are 

rare. In 2007, Colford et al. (64) assessed for two human pathogenic viruses, adenovirus 40 and 

41, and norovirus, as human-associated fecal indicators. In a cohort study of the health effects 

experienced by 8,797 swimmers at a nonpoint source beach in Mission Bay, California, the 

authors reported that both viruses were not associated with an increased risk of GI illness, 

respiratory symptoms, skin symptoms, fever, eye irritation, earache, or ear discharge. However, 

very low viral detection (adenovirus was detected in only one sample, and norovirus was not 

detected at all) casts doubt on the conclusion of no association (64,66). They also reported no 

elevated risk of illness from exposure to conventional indicators (fecal/total coliforms and 
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enterococcus) or alternative indicators (Bacteroides and somatic phage) (66). They did however 

find an increased risk of GI, nausea, cough and fever with male-specific coliphage, but few 

people were exposed. 

Arnold et al. (67) and Colford et al. (65) used the qPCR assay Scorpion-2 for 

Enterococcus, which includes a primer-probe complex that amplified two common Enterococcus 

species found in human fecal contamination: E. faecium and E. faecalis (68). However, there is 

some doubt that this primer-probe design is exclusive to humans (69). In studies that examined 

marine beaches impacted by urban runoff, Arnold found that Enterococcus density was not 

consistently associated with swimmer illness (67), whereas Colford reported an association 

between log10 increase in Enterococcus density among swimmers who swallowed water on 

berm-open days and diarrhea (adjusted odds ratio (OR)=2.30 (1.46, 3.61)) and GI ((OR=1.70 

(1.10, 2.63)) (65).  (An open berm freely allowed an untreated creek to flow into the surf). 

However, Bacteroides species makes up a larger portion of the human intestinal bacteria (70) 

and is more abundant in feces than Enterococcus (71). As a result, human-associated Bacteroides 

spp. markers may be more sensitive markers of swimming-associated illness risks. Very few 

studies have been conducted to evaluate Bacteroides spp. as predictive indicators of human 

illness risks from recreational use of water and in sites known to be impacted by human sources 

(e.g. sewage). 

Sinigalliano et al. enumerated a suite of fecal indicators including 2 human Bacteroides 

markers by qPCR (HF8 (36,72) and UCD) during a prospective randomized exposure study in 

which each participant randomized to marine recreational water exposure sampled the water 

where they swam (62).  The site of the study was a nonpoint source subtropical marine beach in 

Florida. Except for enterococci and skin illness, the authors found no significant relationships 
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between any of the indicator organisms and self-reported GI, diarrheal, respiratory, or skin 

illness 7 days after beach exposure. The strength of this report is in its randomized design, which 

may have avoided self-selection bias that non-swimmers are inherently different or less healthy 

than swimmers, and individual exposure samples. However, the limited size of the cohort 

prevented investigation of associations between specific alternative markers and specific 

diseases.  

As stated earlier, a wide range of chemical compounds has been investigated as potential 

tools for the identification of human fecal sources. These studies demonstrate the feasibility of 

using chemical compounds to assess the human origin of pollution (9,40,73,74), or the 

relationship between chemicals and microbial FIO (11,75,76). However, the literature examining 

the relationship between the presence or concentration of chemicals and illnesses caused by 

human fecal pollution is even more limited than for microbial FIOs. To our knowledge, this 

research is the first study to examine the association between chemical indicators of human fecal 

contamination and illness risks due to contaminated recreational water. 

 

Summary 

Determining the source of fecal contamination in recreational environments is essential 

for estimating the illness risks associated with pollution and facilitating measures to remediate 

polluted waterways. Individually each fecal indicator is unlikely to give a complete picture of the 

source of fecal pollution and associated risks posed by fecal contamination. Together, microbial 

and chemical source tracking methods can be used to enable investigators to determine the 

sources of fecal pollution, but epidemiology studies are needed to investigate the utility of these 

source-tracking methods as indicators of fecal contamination. In this research, we aim to address 
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this gap in the literature using a prospective cohort. The human fecal indicators and associated 

detection assays considered for this research include some, but not all those that are proposed by 

the literature as showing promise for being host-specific (40). Bacteroides spp. is the most 

abundant inhabitant of the human gut and assays to detect host-specific species have been 

validated in different water types. The Bacteroides spp. microbial indicators considered – 

HF183, BsteriF1, BuniF2, and HumM2 – all use qPCR enumeration methods that produce results 

within 2-4 hours, allowing beach staff to make decisions about beach advisories and closures 

based on same-day sample collection. Chemical markers of human fecal contamination are 

under-studied. The 50 chemicals included in this study include those that are produced and 

excreted by humans, those ingested almost exclusively by humans (e.g. caffeine, nicotine, and 

certain pharmaceuticals like carbamazepine and diphenhydramine), and those that make it into 

the human waste stream (e.g. surfactants, fluorescent whitening agents). 

Each of the indicators and assays discussed has limitations that may ultimately restrict 

their usefulness as a human source-specific marker. An important determinant of their usefulness 

is how well they correlate with human illness. To the best of our knowledge, this research is one 

of the first studies to investigate the association between the above Bacteroides markers and 

health outcomes; and the first study to examine the association between chemical indicators of 

human fecal contamination and illness risks due to contaminated recreational water in a large 

population-based prospective cohort.  
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Tables and Figures 

Table 2.1. Select human pathogens associated with recreational water settings 

Pathogen Disease/ role Symptoms Incubation 
Period 

Source 

Bacteria     
Pathogenic E. coli 

(ETEC, EPEC, EAEC, 
EIEC, STEC) 

Gastroenteritis 
(all), urinary tract 
infection (EIEC) 

Diarrhea, bloody 
diarrhea 

2-6 days Animal/ 
Human feces 

Campylobacter spp. Acute 
enterocolitis, 
Guillain-Barré, 
infectious 
diarrhea 

Diarrhea (occasionally 
bloody), cramping, 
abdominal pain, fever 

2-5 days Human feces, 
cow/bird 
feces 

Salmonella spp. Gastroenteritis, 
Typhoid fever 

High fever, diarrhea, 
abdominal cramps 

7-28 days Human feces/ 
sewage 

Shigella spp. Shigellosis, 
bacillary 
dysentery 

Fever, stomach cramps, 
bloody diarrhea 

1-7 days Human feces/ 
sewage 

Vibrio spp. Gastroenteritis, 
Cholera, 
Vibriosis, 
Necrotizing 
wound infections 

Vomiting, diarrhea, 
abdominal pain, skin 
infections, fever, chills, 

1- 6 days Marine and 
estuarine 
environments 

Enteric Viruses     
Norovirus Gastroenteritis Diarrhea, nausea, 

vomiting, abdominal 
pain and cramps 

24-48 hours Human feces/ 
sewage 

Non-polio enterovirus Gastroenteritis, 
heart anomalies, 
meningitis 

Mild flu-like 
symptoms, skin rash, 
Paralytic disease, 
respiratory illness 

3-14 days Human feces 

Adenovirus Gastroenteritis, 
conjunctivitis, 
pharyngitis, 
pneumonia, 
appendicitis 

Diarrhea, fever, 
vomiting, cough, sore 
throat, headache, eye 
infection 

~10 days Human feces, 
aquatic 
environments 

Viral hepatitis – A and E Infectious 
hepatitis 

Jaundice, fever, 
anorexia, malaise 

15-50 days Human feces/ 
sewage 

Rotavirus Acute 
gastroenteritis 

Gastroenteritis with 
nausea, vomiting 

2-3 days Human feces 

Protozoa     
Entamoeba histolytica Amoebiasis Abdominal pain, 

bloody diarrhea 
2-4 weeks Human feces 

Cryptosporidium spp. Cryptosporidiosis Watery diarrhea, 
stomach cramps, 
nausea, vomiting, mild 
fever 

1-2 weeks Human feces, 
animal feces 

Giardia lamblia Giardiasis Acute diarrhea, 
dehydration, flatulence, 
abdominal cramps and 
nausea 

5-25 days Human feces, 
animal feces 

Abbreviation: EAEC, enteroaggregative E. coli; EIEC, enteroinvasive E. coli; EPEC, enteropathogenic E. coli; 
ETEC, enterotoxigenic E. coli; STEC, shiga-toxin producing E. coli. Source: (3,77-92). 
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Table 2.2. 2012 EPA recreational water quality criteria for culture-based methods 

 
a EPA recommends using EPA Method 1600 (93) (or another equivalent method) to measure culturable enterococci 
and using EPA Method 1603 (94) (or another equivalent method) to measure culturable E. coli. Source: EPA 2012 
(95) 

 

Table 2.3. 2012 EPA recreational water quality criteria for qPCR-based methods 

 
a EPA Enterococcus spp. Method 1611 for qPCR (95) Source: EPA 2012 (95) 
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CHAPTER 3. SPECIFIC AIMS 

   

Research Question 1: Are human-associated Bacteroides indicators associated with an 

increased risk of illness among swimmers in contact with water? 

• Specific Aim 1: Estimate the association between the presence/absence of human-associated 

Bacteroides indicators of fecal contamination and the 10-12 day risk of seven self-reported 

symptoms and illnesses (gastrointestinal, diarrhea, respiratory, rash, eye ailment, earache, 

urinary tract infection) among swimmers. Objectives of this aim are to: 

a. Stratify by type of water (i.e. marine vs. fresh). 

b. Examine effect measure modification by level of swimming exposure (head 

immersion, body immersion, swallowing water) on the additive scale. 

c. Examine effect measure modification by general indicator total Enterococcus 

measured by qPCR. 

 

Research Question 2: Are human-associated chemical markers associated with an increased risk 

of illness among swimmers in contact with water? 

• Specific Aim 2: Estimate the association between chemical markers of human-associated 

fecal contamination and the 10-12 day risk of seven selected self-reported symptoms and 

illnesses among swimmers. This aim is identical to Aim 1 except it examines chemical 

markers. Objectives of this aim are to: 
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a. Stratify by type of water (i.e. marine vs. fresh). 

b. Examine effect measure modification by level of swimming exposure (head 

immersion, body immersion, swallowing water) on the additive scale. 

c. Examine effect measure modification by general indicator total Enterococcus 

measured by qPCR. 

 

 These aims were met through secondary analyses of the National Environmental and 

Epidemiologic Assessment of Recreational Water (NEEAR) study, an observational cohort of 

approximately 54,000 visitors to four United States (US) freshwater and five marine beaches 

during 2003-2009. For both Aims, the self-reported symptoms and illnesses included 

gastrointestinal illness, diarrhea, and several non-enteric illnesses: respiratory illness, rash, eye 

ailments, earache, and urinary tract infection. Through the use of this large cohort, I estimated 

whether including a human-associated marker improves the general indicator-illness associations 

published by Wade et al. 2008, 2010 (56,57). Results from this study may help to characterize 

illness risks specific to human sources of fecal pollution from point and non-point sources.  
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CHAPTER 4. RESEARCH DESIGN AND METHODS 

Overview 

 We addressed the two aims using data from the National Epidemiological and 

Environmental Assessment of Recreational (NEEAR) Water study, a prospective cohort study of 

50,000+ visitors to four US freshwater and five marine beaches during 2003-2009. The aims 

estimated the association between exposure to human-associated Bacteroides  (Aim 1) and 

chemical (Aim 2) fecal indicators in recreational waters and 10-12 day risk of self-reported 

illnesses. In our examination of these aims, we assessed type of water, level of swimming 

exposure, and additive interaction by the general fecal indicator, Enterococcus. Since the 

investigation of these aims involved secondary de-identified data analysis of NEEAR 

participants, the UNC Public Health-Nursing institutional review board granted an exemption 

because it did not constitute human subjects research (13-2274). 

 

Parent Study: National Epidemiological and Environmental Assessment of Recreational 

(NEEAR) Water Study 

 

1. Study design and population 

 The NEEAR water study was a prospective cohort study that enrolled 54,250 men, 

women and children visiting four US freshwater and five marine beaches during 2003-2009 to 
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examine associations between swimming exposure, water quality and swimming-associated 

illnesses. The study also collected and analyzed numerous chemical and microbial fecal 

indicators of water quality. Study design, population, and data collection details have been 

previously published (56,57,96) but is summarized in detail below.  

 

2. Beach descriptions 

 The NEEAR study focused on beaches impacted by nearby sewage effluents because 

such pollution is believed to contain potential human fecal contamination and cause the highest 

human illness risks (97). Although it was conducted at nine beaches, this secondary analysis 

focuses on the seven beaches studied between 2003 and 2007. In 2003 and 2004, NEEAR studies 

were conducted at four freshwater beaches: Huntington Beach on Lake Erie near Cleveland, 

Ohio; West Beach on Lake Michigan at Indiana Dunes National Seashore in Portage, Indiana; 

Silver Beach on Lake Michigan near St. Joseph, Michigan; and Washington Park Beach on Lake 

Michigan in Michigan City, Indiana. In 2005 and 2007, NEEAR studies were conducted at three 

temperate marine beaches: Edgewater Beach near Biloxi, Mississippi; Fairhope Municipal Beach 

in Fairhope, Alabama; and Goddard Beach near Warwick, Rhode Island.  

 Beaches that were impacted by sources of human fecal contamination were specifically 

selected. All of the beaches were located within 7 miles of WWTPs or sewage effluent 

discharges providing a point source that discharged into a receiving stream, or one of its 

tributaries, in the beach watershed. All beach sites were selected so that they had sufficient 

variability in water quality so that the relationship between water quality and illness could be 

investigated without a control beach. Each beach also had to be generally compliant with local or 
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state water quality guidelines. Beach site locations and descriptions are shown in Figure 4.1 and 

Table 4.1.   

 

3. Data collection: Health surveys 

 Trained interviewers approached all beach visitors as they arrived between 11:00 AM and 

5:00 PM, and were enrolled if they provided verbal informed consent. Each participant 

completed three surveys, with an adult (≥18 years old) answering questions for other household 

members. At baseline, each participant completed an enrollment questionnaire about illnesses in 

the three days prior to their beach visit. Upon departure, participants completed a beach 

questionnaire about beach activities, water exposure (extent, time, duration and location), 

presence of underlying acute and chronic health conditions (including allergies), food and drink 

consumption, animal contact in the past 48 h, contact with sick persons in the past 48 h, other 

swimming in the past week, and demographics.  A low-cost incentive was offered after 

completion of the beach questionnaire. Follow-up telephone interviews were conducted 10–12 

days after the beach interview to collect information about the enteric and non-enteric illnesses 

(gastrointestinal, diarrhea, upper respiratory, skin rash, ear, eye, urinary tract infection) each 

beachgoer experienced since the beach visit, burdens experienced as a result of illness (e.g. 

missed days of work), and other swimming or water related activities, contact with animals, and 

consumption of high-risk foods since the beach visit. Interviews were conducted on weekends 

and holidays between May and September.  Because of the acute nature and short duration of the 

enteric and non-enteric symptoms and illnesses in this study, repeated enrollment of participants 

was allowed. However, participants were ineligible if they had already completed the study in 
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the previous 28 days, were unaccompanied minors (<18 years), or did not speak English or 

Spanish. 

 

4. Data collection: Outcome assessments 

 In a telephone interview 10-12 days following beach exposure, interviewers asked 

beachgoers to self-report if they had experienced any gastrointestinal illness, diarrhea, upper 

respiratory illness, eye ailments, earache, skin rash or urinary tract infection since their beach 

interview. The time period accounts for pathogens with longer incubation times, such as 

Cryptosporidium spp., a common waterborne pathogen. These heath outcomes are consistent 

with previous reports investigating the association between fecal indicator organisms and illness, 

to facilitate comparison (56,57,62,65,98,99). Responses to questions about symptoms or illness 

could take the form of Yes, No, Refused, or Don't know. 

“Gastrointestinal illness” (GI illness) refers to any of the following:  diarrhea (≥3 loose 

stools in a 24-hour period); vomiting; nausea and stomachache; or nausea or stomachache 

and interference with regular activities (missed time from work/regular activities due to 

illness).  

‘‘Respiratory illness’’ refers to any two of the following: sore throat, cough, runny nose, 

cold, or fever.  

‘‘Rash’’ refers to a rash or itchy skin.   

‘‘Eye ailments’’ refers to eye infection or watery eye.  

‘‘Earache’’ refers to earache, ear infection, or runny ears.  

 “Urinary tract infection” (UTI) refers to urinary tract infection or burning sensation 

when urinating. 
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 Diarrhea was also be considered as a stand-alone outcome because it is frequently used as 

a definition of gastroenteritis in population-based surveillance e.g.(100,101). 

Participants ill within the three days prior to their beach visit were excluded from analysis of the 

health outcome related to their baseline symptoms, but were eligible to be included in analyses of 

other outcomes. 

 

Aim 1: Human-associated Bacteroides indicators and risk of illness 

1. Study population 

 Participants eligible to be included in this Aim were those who visited beaches in which 

human-associated Bacteroides indicators were collected: Fairhope, Goddard, Huntington, Silver, 

Washington Park, and West Beaches (n=25,288). 

 

2. Definition of swimming 

 The primary exposure is detection of human-associated Bacteroides indicator from water 

exposure. Beach visitors self-reported water exposure in three different ways that were not 

mutually exclusive: “body immersion” (immersion to the waist or higher); “head immersion”; 

and “swallowed water.” Although some studies include head immersion in their definition of 

swimming (e.g. Fleisher et al. (61)), a previous report on two of the NEEAR beaches did not find 

appreciable differences in risk between those who immersed their head vs. their body (55). 

Therefore, our main analysis considered those who reported “body immersion” as being exposed 

to water. Other categories of water exposure (i.e. head immersion, swallowed water) were 

considered in sensitivity analyses. Participants who reported no water contact (i.e. “non-



   

 
27

swimmers”) and those who reported having water contact, but not “body immersion” were 

excluded from analysis because they comprise a group with heterogeneous water exposure. 

 

3. Exposure assessment 

Water sample collection and analysis  

 Water samples were collected three times a day (8:00 AM, 11:00 AM, and 3:00 PM) 

along three transects perpendicular to the shoreline (57,102). At each transect, one-liter of water 

was collected in waist-high water (1m deep) and one-liter was collected in shin-high water (0.3m 

deep). Transects were at least 60m apart to encompass the entire swimming area. After 

collection, samples were maintained on ice at 1-4°C in coolers for up to 6h before polycarbonate 

membrane filtration. Filters were kept at -20°C and shipped on dry ice to EPA, Cincinnati for 

qPCR analysis. Filters were stored at -40 °C for up to six years before analysis. DNA was 

extracted from the filters by a simple bead milling procedure and aliquots corresponding to two-

thirds of the total crude extracts were concentrated 2-fold and purified using a commercially 

available 96-well silica column based system (DNeasy, Qiagen, Valencia, CA) with binding and 

elution buffers from another system (DNA-EZ, Gene-Rite, North Brunswick, NJ) essentially as 

previously described (103). 

 Purified DNA extracts were analyzed for total Enterococcus (102) using a previously 

described and validated qPCR calibrator cell equivalent (CCE) method (55) and Bacteroidales 

markers using five different qPCR assays—GenBac3, HF183, BsteriF1, BuniF2, and HumM2— 

as indicated below. Total Enterococcus and total Bacteroidales (GenBac3) genetic markers 

detect general, non-source-specific fecal pollution (Siefring et al. 2008).  QPCR assays targeting 

16S rRNA gene markers of human-associated Bacteroides species clusters included HF183 
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TaqMan (hereafter HF183), BsteriF1, and BuniF2 (104). Of those, the HF183 assay has shown 

promise because of its abundance in human feces and sewage (i.e. high sensitivity, detection in 

samples that are actually of human origin), low cross-reactivity in chicken and dog feces, and 

absence in many other animals including cattle, pig, gull, and cat feces (104-107). The BsteriF1 

and BuniF2 assays have shown high sensitivity, but lower specificity due to cross-reactivity with 

animal feces (104,105). The HumM2 assay targets a hypothetical protein potentially involved in 

remodeling surface lipopolysaccharides and polysaccharides (71). It has been found to be highly 

sensitive and specific to human feces and wastewater samples, but cross-reacted with sheep and 

elk feces at levels approaching those in human feces (71,105).   

 All qPCR analyses were performed in an Applied Biosystems StepOnePlus® using the 

above-mentioned primer and TaqMan™ hybridization probe assays (71,104,108). QPCR 

amplification was performed by using 5 µL of purified DNA extracts in a total reaction volume 

of 25 µL. Reagent mixes were prepared by combining 12.5 µL of TaqMan® Universal Master 

Mix (Applied Biosystems, Foster City, CA), 2.5 µL of 2 mg/ml bovine serum albumin, 1 µM of 

each primer, and 80 nM of probe for each reaction. Amplification occurred with an initial 

incubation at 50°C for 2 min followed by 95°C for 10 min, then forty PCR cycles of 95°C for 

15s and 60°C for 1 min. Serial dilutions of commericially prepared plasmid DNA templates 

(Integrated DNA Technologies, Coralville, IA) containing the amplicons for each assay were 

analyzed as positive controls in each reaction plate. Limits of detection for each assay were 

based on the estimated plasmid copy number per reaction of the highest dilution of these 

templates that was routinely analyzed and detected (6 copies per reaction). Extracts of blank 

filters that were prepared in the same manner as the sample extracts were also analyzed as 

negative controls in each reaction plate. Potential interferences by the sample extracts to the 
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qPCR analyses were assessed by analyses of each extract with a multiplex version of the HF183 

assay using an internal amplification control (IAC) template and by analyses with the Sketa22 

assay for salmon testes DNA which was added to each sample as a sample processing control 

(SPC) prior to extraction (104). Criteria for classifying sample measurements as being 

unacceptable were offset Ct values from corresponding control samples of >1.5 and >3.0 for the 

IAC and SPC assays, respectively, as previously described (57,104). 

 

Exposure coding  

 Due to a large proportion of human-associated Bacteroides data that was below the 

detection limit (~50-90%), I considered categorical classifications. In order to be the most 

sensitive, I initially created a binary variable for each Bacteroides marker that took the value of 

‘1’ if it was detected in 1 or more samples, and ‘0’ otherwise. This resulted in very few exposed 

swimmers with illness, and would have presented problems estimating associations. Therefore, I 

modified the categorization so that each marker took the value of ‘1’ if it was detected in at least 

two samples per day, and ‘0’ otherwise. Thus, the primary exposure of interest in Aim 1 was the 

presence/absence of human-associated Bacteroides fecal indicators measured in water samples as 

one of four assays (HF183, BsteriF1, BuniF2, and HumM2). Because non-swimmers are 

unexposed to fecal indicator organisms from water, this aim was restricted to body immersion 

swimmers only. Alternative classifications of water exposure were explored in sensitivity 

analyses. 
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4. Outcome assessment 

 As stated in the previous section, health outcomes were assessed in a telephone interview 

conducted 10-12 days following beach exposure: GI illness, diarrhea, respiratory illness, earache, 

eye ailment, rash, and UTI. 

 

5. Covariate assessment 

 Potential confounding factors plausibly associated with poor water quality and illness 

were identified from published literature or those associated with outcome and available from the 

health/enrollment questionnaire included environmental as well as demographic and beach 

characteristics. Potentially relevant environmental and meteorological covariates were recorded 

at each sampling time (8:00 AM, 11:00 AM, and 3:00 PM). These measures were available for 

inclusion as covariates, and included time, date, air temperature, water temperature, ultraviolet 

radiation, rainfall, cloud cover, wind speed, wind direction, water current direction, wave height, 

turbidity, pH, bather density, number of boats, number of animals and birds, and presence of 

debris. Potentially relevant demographic and beach covariates for this analysis were collected 

during the beach questionnaire at the end of the day of the beach visit and at the follow up 

telephone interview. They include age; sex; race/ethnicity; swimming within 48h before the 

beach visit or between the beach visit and telephone interview; beach site; allergies; contact with 

animals; contact with other persons with gastrointestinal illness; number of other beach visits; 

any other chronic illnesses (GI, skin, asthma); presence of beach festivals; eating any food or 

drink while at the beach; bather density; and boat density. For respiratory illness, rash, and eye 

ailments, use of insect repellent and sunblock were also considered. 
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 We used directed acyclic graphs (DAG) (109,110) (visualized using DAGity (111)) to 

analyze these potential environmental, demographic, and beach covariates for confounders that 

would need to be adjusted to achieve the least biased estimate of association (Figure 4.2 – 4.4). It 

is worth noting that because fecal indicators by nature are non-pathogenic and act as a proxy for 

disease-causing microbes, the primary path of interest on this DAG is non-causal: Indicator � 

Human source � Pathogen � Outcome. Thus, the least biased estimates would be produced 

with an adjustment set that closed all other non-causal, back-door paths and included Pathogen 

as a variable in the set.  

 In the construction of the DAG, environmental risk factors were further evaluated for 

their plausible influence on the outcome independent of exposure, as well as amount of missing 

data. Sunlight, water/air temperature, and rainfall totals from 3 PM the previous day to 8 AM on 

the current day (hereafter, rainfall) were conditions with the fewest missing data and most 

plausible association with a subset of the health outcomes. The DAG analysis identified a 

minimally sufficient adjustment set for each exposure-outcome relationship: beach, bather 

density, rainfall, sand exposure, water temperature (for GI illness, diarrhea, earache, and UTI 

outcomes); and beach, bather density, rainfall, sand exposure (for respiratory, rash, and eye 

outcomes). A second adjustment set consisting of the covariates in the minimally sufficient set 

plus age was also evaluated because it can be argued that age encompasses certain characteristics 

associated with intensity of swimming exposure (which was not captured in the DAG), and thus 

exposure to Bacteroides (e.g. children swim longer, swallow more water (56)) as well as being 

strongly associated with most outcomes. Covariates were coded as follows: beach (indicator 

coding: Fairhope, Goddard, Huntington, Silver, West, Washington Park), age (0-4, 5-11, 12-19, 

20-34, ≥35), mean bathers (continuous), sand exposure (digging in sand or burying body in the 
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sand) (binary), rainfall (continuous), and water temperature (continuous). Results from a study 

day that occurred during a festival at Silver Beach were dropped from analysis because they 

were not representative of typical beach days.     

 

6. Effect measure modifiers 

 A potential effect measure modifier (EMM) of the association between human-associated 

Bacteroides and illness was identified a priori: type of water matrix (marine/saltwater vs. 

freshwater). Type of water matrix was investigated as an EMM due to the possibility that it 

influences the concentration of microbial fecal indicators in water, particularly for molecular 

markers used in this study. In addition, there is limited research on the persistence of genetic 

material of human-associated Bacteroides markers in various water matrices to inform a 

decision. Nevertheless, modification of these marker-illness effect estimates by water matrix was 

of secondary interest, so was assessed by stratification.  

 A priori, we were also interested in whether the human-associated Bacteroidales markers, 

which proportedly indicate human source, act as modifiers of the association between non-

specific total Enterococcus assayed by qPCR Method 1611 (CCE/ml) and illness. For that 

modification analysis, Enterococcus was treated as the main exposure and the Bacteroides 

marker was the binary modifier. For the primary effect measure modification analyses with the 

general indicator Enterococcus, the quantitated values were dichotomized in two ways according 

to 2012 EPA recreational water quality guidelines: above and below a geometric mean of 470 

CCE/100ml (for an estimated illness rate of 36/1000 primary contact recreators), and above and 

below a geometric mean of 300 CCE/100ml (for an estimated illness rate of 32/1000 primary 

contact recreators) (95). Secondary effect measure modification analyses were also performed 
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with Enterococcus coded as a continuous variable (average log10 count of Enterococcus per day 

(CCE/100ml)). Risk difference modification was estimated with product interactions of 

Enterococcus and Bacteroides markers and then assessed by an interaction contrast (i.e., 

difference of risk differences) (112). The interaction contrast takes on the value of zero when the 

joint effects of two factors are simply additive (112). 

 

7. Data analysis 

 Univariate analyses were conducted to explore the distribution of demographic, covariate 

data, non-specific and human-associated Bacteroides indicators, and health outcomes to identify 

the completeness and consistency of the data. They were examined using frequencies and 

percents for categorical variables, and descriptive statistics for continuous variables. The 

frequency of missing data was also evaluated for each variable. To reconcile inconsistencies, the 

environmental microbiologist responsible for data collection was consulted as needed.  

 We sought to use a binomial model to directly estimate risk differences (RD) and 95% 

confidence intervals (95% CI) for the relationship between human-associated Bacteroides 

markers and risk of illness among swimmers. However, due to well-documented problems with 

non-convergence (113-116), we explored other recommended alternatives, including modified 

Poisson regression with an identity link (115,117), the COPY method (114,118) and inverse-

probability of exposure weighting (119) but encountered non-convergence issues for some 

indicator-illness associations. We decided to use model-based standardization (116,120-122) to 

produce standardized marginal risks and RD with 95% CI estimated using the delta method (123) 

and the total group as the standard. Logistic regression was used to estimate predicted 

probabilities of the outcome for every value of observed confounders and then combined as a 
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weighted average separately for both levels of the binary exposure. Thus, the effect estimates are 

estimated using predicted probabilities standardized to the same confounder distribution. The 

predicted probabilities were subtracted to produce a marginal estimate of the risk difference 

comparing Bacteroides marker exposure to no exposure. Robust standard errors were used to 

account for dependence of observations within a household (124).   

 As previously mentioned, we excluded participants ill within the three days prior to their 

beach visit from analysis of the health outcome related to their baseline symptoms, but they were 

eligible to be included in analyses of other outcomes. All analyses were completed using SAS 

version 9.4 (SAS Institute, Inc., Cary, NC, ) and Stata version 13 (StataCorp, College Station, 

TX). 

 

8. Sensitivity analyses 

 We investigated the robustness of our estimates through sensitivity analyses that tested 

several alternate ways of classifying swimming and Bacteroides exposure. First, we repeated our 

analyses using two additional definitions of swimmer: as participants who reported immersing 

their head under water, and participants who reported swallowing water. Second, we explored 

alternate exposure classifications since our primary one did not take into account intensity (i.e. 

cannot distinguish between situations when human fecal contamination is detected in multiple 

samples per day vs. two samples). We therefore explored exposure defined as 1) quartiles of 

each Bacteroides marker, with the referent (1st) quartile being non-detect; and 2) a count of the 

number of Bacteroides markers detected per day (ranging from 0 to 4), where “detected” meant 2 

or more of the daily samples taken were positive for the marker. Ultimately, we were unable to 
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investigate quartiles because of limitations in the quantitation of the Bacteroides markers (See 

discussion of limitations in Chapter 5 “Discussion” section). 

 

Aim 2: Human-associated chemical markers and risk of illness 

1. Study population 

 Participants eligible to be included in this aim were those who visited beaches in which 

human-associated chemical markers were collected: Edgewater, Huntington, Silver, Washington 

Park, and West Beaches (n=17,753). 

 

2. Definition of swimming 

 The primary exposure for aim 2 was detection of human-associated chemical markers 

from water exposure. Similar to aim 1, the main analysis for this aim considered those who 

reported “body immersion” as being exposed to water. Participants who reported no water 

contact (i.e. “non-swimmers”) and those who reported having water contact, but not “body 

immersion” were excluded from analysis because they comprise a group with heterogeneous 

water exposure. Other categories of water exposure (i.e. head immersion, swallowed water) were 

considered in sensitivity analyses. 

 

3. Exposure assessment 

Water sample collection and chemical analysis  

 Water samples for chemical analysis were collected in baked amber glass bottles on the 

Sunday of the weekend collection at 11:00 AM (Glassmeyer, personal communication). At West 
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and Huntington beaches, three one-liter water samples were collected in waist-high water (1m), 

for a total of 3 samples per day. At Silver, Washington Park, and Edgewater beaches, water 

samples were collected along two transects perpendicular to the shoreline and closest to the 

effluent.  Two samples were collected at waist depth and two samples at shin depth (0.3m deep), 

for a total of 4 samples per day. After collection, samples were packed in coolers with ice during 

transport and at ≤4 °C alongside a travel blank (de-ionized water) until the following day, when 

they were packed on dry ice and shipped to USGS National Water Quality Laboratory in 

Lakewood, Colorado and the USGS Organic Geochemistry Research Laboratory in Lawrence, 

Kansas for extraction and analysis. 

 Because of the different physiochemical properties of the chemical compounds, three 

different analytical methods were used (40). For wastewater compounds and some 

pharmaceutical compounds, a whole-water sample was extracted using continuous liquid-liquid 

extraction and then analyzed using gas chromatography/mass spectrometry (GC/ MS) (125).  

Most pharmaceutical compounds were extracted by first passing 500 – 1000 ml filtered water 

through solid-phase extraction cartridges, then eluent was concentrated, and the final extract was 

analyzed using liquid chromatography/mass spectrometry positive-ion electrospray (126). 

Antibiotic compounds were extracted and analyzed by solid-phase extraction using tandem 

cartridges, and analyzed by liquid chromatography/mass spectrometry positive-ion electrospray 

on a single quadrapole mass spectrometer (127). Concentration is reported in μg/L. 

 

Chemical marker exposure coding 

 Although 56 chemicals were assayed across the five beaches, only nine chemicals were 

assayed at every beach: acetaminophen, beta-sitosterol, bisphenol A, caffeine, cholesterol, 
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diethoxyoctylphenol, DEET, phenol and tributyl phosphate.  I evaluated continuous (log10 

transformed), categorical, and binary coding schemes for chemical concentrations. Continuous 

chemical concentrations were log10-transformed because they were right-skewed. To avoid 

implausible values once transformed, chemical concentrations that had a value of zero were 

imputed with ½ the minimum non-zero value for that chemical. A daily average chemical 

concentration was provided for each beach-day, computed as the average of the log10 

concentrations of all samples collected that day. 

 Due to a high proportion of chemical concentrations that were below the detection limit 

(~50-90%), I explored only categorical classifications. Each chemical marker was dichotomized 

by giving it a value of ‘1’ if it was detected in all samples per day, and 0 otherwise. Thus, the 

primary exposure of interest in Aim 2 is the presence/absence of these nine chemical compounds 

that are markers of human presence in water samples that were measured at all 5 beaches in 

participants with body immersion exposure (n=9,109). Alternative classifications of this primary 

exposure were explored in sensitivity analyses. For a secondary analysis, all 56 chemicals were 

grouped into five broad categories:  pharmaceuticals, fecal sterols/stanols, household waste 

products, industrial waste products, and chemicals with a potential for runoff (hereafter, runoff). 

The value of each category was a count of the number of chemical compounds belonging to it 

that were detected in all samples per day. For example, for a given beach and day, a value of ‘2’ 

for the pharmaceutical category meant that there were ‘2’ pharmaceutical compounds that were 

detected in all samples collected that day. Non-swimmers were considered unexposed to 

chemical compounds from water, and therefore excluded from the analysis. 
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Fecal indicator bacteria  

 Intestinal enterococci are validated, nonspecific indicators of fecal pollution used to 

measure water quality throughout the world. Total Enterococus spp. by qPCR (calibrator cell 

equivalents (CCE)/100 ml) was enumerated following water sample collection and subsequent 

membrane filtration according to previously published protocols (57,102,108).  

 

4. Outcome assessment 

 The outcomes assessed for aim 2 were identical to aim 1: GI illness, diarrhea, respiratory 

illness, earache, eye ailment, rash, and UTI. 

 

5. Covariate assessment 

 The same DAG used in aim 1 was used for aim 2 for the reason that both the Bacteroides 

and chemical markers represent two types of indicators of human fecal contamination in water. 

Though the mechanisms may arguably differ, the research question was still to determine the 

association between potential human-associated fecal markers and health outcomes, so the same 

DAG and minimally sufficient sets were used. 

   

6. Effect measure modifiers 

 The effect measure modifiers assessed for aim 2 were identical to aim 1. Type of water 

matrix was investigated as an EMM of the association between human-associated chemical 

markers and illness using stratification. And the human-associated chemical markers (primary 

analysis) or chemical categories (secondary analysis) were investigated as binary modifiers of 
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the association between non-specific total Enterococcus assayed by qPCR Method 1611 

(CCE/ml) and illness using an interaction contrast. Thus, the chemical categories were 

dichotomized for the modification analyses as follows: a value of ‘1’ any chemicals belonging to 

that category were detected in all samples per day, and ‘0’ otherwise. 

 

7. Data analysis 

 Univariate analyses were conducted to explore the distribution of demographic, covariate 

data, non-specific and human-associated chemical indicators, and health outcomes to identify the 

completeness and consistency of the data. They were examined using frequencies and percents 

for categorical variables, and descriptive statistics for continuous variables. The frequency of 

missing data was also evaluated for each variable. To reconcile inconsistencies, the 

environmental microbiologist responsible for data collection was consulted as needed.  

 Because 56 chemicals encompassing ten broad categories were analyzed, we intended to 

use empirical Bayes modeling, a form of hierarchical regression in which all of the parameters 

for the Bayesian prior are generated from the data. Empirical Bayes methods offers 

improvements over conventional statistical methods in analyses of multiple exposures (or 

outcomes), particularly if the exposures can be grouped into categories according to similarity of 

expected effects on a particular outcome (referred to as “exchangeability of effects”); and in 

analyses of correlated exposures when there is limited prior information on the exposure-disease 

relationships (128-131).  However, due to the fact that only nine chemicals were assayed at all 

five beaches, we chose to focus on those nine because they were generally more frequently 

detected and would have a larger sample size than the remaining chemicals. So for this aim, we 

examined the effects of the nine human-associated chemical markers (acetaminophen, caffeine, 
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cholesterol, beta-sitosterol, bisphenol A, diethoxyoctylphenol, n-n-diethyl-meta-toluamide 

(DEET), phenol, and tributyl phosphate measured at all five beaches on self-reported illness 

among body immersion swimmers. 

 Similar to aim 1, we used model-based standardization (116,120-122) to produce 

standardized marginal risks and RD with 95% CI estimated using the delta method (123) and the 

total group as the standard. Logistic regression was used to estimate predicted probabilities of the 

outcome for every value of observed confounders and then combined as a weighted average 

separately for both levels of the binary exposure. Thus, the effect estimates are estimated using 

predicted probabilities standardized to the same confounder distribution. The predicted 

probabilities were subtracted to produce a marginal estimate of the risk difference comparing 

each chemical marker exposure to no exposure. Robust standard errors were used to account for 

dependence of observations within a household (124). As previously mentioned, we excluded 

participants ill within the three days prior to their beach visit from analysis of the health outcome 

related to their baseline symptoms, but they were eligible to be included in analyses of other 

outcomes. All analyses were completed using SAS version 9.4 (SAS Institute, Inc., Cary, NC) 

and Stata version 13 (StataCorp, College Station, TX). 

 

8. Sensitivity analyses 

 To determine if estimates were robust to different exposure categorizations, we examined 

additional classifications of swimming and chemical exposure.  First, we repeated our analyses 

using two additional definitions of swimmer: as participants who reported immersing their head 

under water, and participants who reported swallowing water. Second, we explored a more 

sensitive binary chemical classification where each chemical was given the value of ‘1’ if it was 
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detected in 1 or more samples per day, and 0 otherwise. The data did not permit classifications 

that make use of quantitative values. 
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Tables and Figures 

Figure 4.1. NEEAR beach sites included in this study 

 
 

 Table 4.1. Description of NEEAR beach sites included in this study 
Beach Year Location Water body type Source of fecal pollution 

Freshwater     
Huntington  
 

2003 Lake Erie,  
(near Cleveland, OH) 

Temperate Treated WWTP 

Silver  
 

2004 Lake Michigan,  
(near St. Joseph, MI) 

Temperate  Treated WWTP 

Washington Park  
 

2004 Lake Michigan,  
(in Michigan City, IN) 

Temperate  Treated WWTP 

West  
 

2003 Lake Michigan,  
(Indiana Dunes National Seashore, IN) 

Temperate  Treated WWTP 

Marine     
Edgewater 
 

2005 Biloxi, MS Temperate  Treated WWTP 

Fairhope 
 

2007 Fairhope, AL Temperate  Treated WWTP 

Goddard 2007 West Warwick, RI Temperate  Treated WWTP 

Abbreviation: WWTP, wastewater treatment plant;  
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Figure 4.2. Directed acyclic graph - GI illness, diarrhea 
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Figure 4.3. Directed acyclic graph - respiratory illness, eye ailment, rash 
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Figure 4.4. Directed acyclic graph - earache, UTI 
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CHAPTER 5. EXPOSURE TO HUMAN-ASSOCIATED FECAL INDICATORS AND 

SELF-REPORTED ILLNESS AMONG SWIMMERS AT RECREATIONAL BEACHES 

 

Overview 

 Although fecal indicator bacteria are used to indicate the presence of fecal pollution and 

assess associated illness risks in recreational waters, few studies have examined illness risks 

associated with human-source-associated fecal bacteria. Our objective was to estimate 

associations between genetic markers of human-associated fecal bacteria and self-reported illness 

among swimmers at select U.S. beaches. We used data from 12,060 swimmers enrolled in the 

National Epidemiological and Environmental Assessment of Recreational Water study in 2003-

2007. Participants were surveyed about beach activities, water exposure, and baseline symptoms 

on the day of their beach visit, and 10-12 days later, they were surveyed about illness symptoms 

experienced since the beach visit. Up to 18 water samples per day were tested for highly human-

associated Bacteroides genetic markers using four assays (HF183, BsteriF1, BuniF2, HumM2). 

Adjusted standardized risk differences (RD) and 95% confidence intervals (CI) for the 

Bacteroides-illness associations among swimmers who immersed their bodies to the waist or 

higher were estimated using model-based standardization. Bacteroides markers were assessed as 

modifiers of the association between Enterococcus and illness using interaction contrast. A total 

of 2,422 water samples were analyzed for the four human-associated Bacteroides markers.  The 

occurrence of the markers varied widely by beach and assay target. Among body immersion 

swimmers, we observed suggestive associations between risk of GI illness, diarrhea, and 
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respiratory illness and exposure to the human-associated Bacteroides marker BsteriF1. Small, 

positive associations were observed between the Bacteroides markers and earache and UTI, 

while small inverse associations were observed for HumM2 and HF183 markers and rash. 

Human-associated Bacteroides markers did not act as modifiers of general Enterococcus and 

illness. Patterns of risk were largely similar when stratified by water matrix (freshwater vs. 

saltwater). Sensitivity analyses indicated that risk estimates could be improved when combining 

multiple Bacteroides markers, although a clear dose-response pattern still did not emerge. It is 

not clear that these findings are generalizable to sites impacted predominantly by animal sources, 

runoff, or sporadic and diffuse sources of contamination.  

 

Introduction 

 Fecal contamination of waters used for drinking, shellfish harvesting, and recreation is an 

important public health concern because of possible exposure to a wide range of disease-causing 

microorganisms. An estimated 170 million enteric and respiratory illnesses worldwide are 

attributed to swimming in and consuming shellfish from polluted water each year (1). Water 

pollution comes from a variety of point (e.g. sewage) and nonpoint (e.g. surface runoff, wildlife, 

leaky septic systems) sources. In recent decades, point source pollution and its effect on human 

health has received considerable attention due to legislation, such as the Beaches Environmental 

Assessment and Coastal Health (BEACH) Act of 2000 (132), a recent amendment to the Clean 

Water Act (133). However, the impacts of less-easily-identified-and-remedied nonpoint sources 

of pollution on water quality and health effects have not been addressed in current legislation; 

therefore, nonpoint sources are largely treated as if they were point sources. The growing 

demand for water resources has drawn attention to these issues and the need for more 
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information about this important aspect of water quality. Currently, the enumeration of fecal 

indicator bacteria (FIB) such as Escherichia coli (E. coli), fecal coliforms, and enterococci are 

used to monitor water bodies for the presence of and potential risk from exposure to waterborne 

pathogens that can cause human illness. These FIB have long been used because they are non-

pathogenic, found in high levels in sewage and feces, and can be correlated with human health 

effects, but an important limitation is that they are found in both animal and human feces, and 

cannot be used to distinguish the source of pollution (15,134).  

 The identification of fecal pollution sources is vitally important for informing 

remediation of impaired water resources, in order to minimize the impact to public health. 

Human fecal contamination is generally considered of greater illness risk than contamination 

from non-human sources (9,97) since many waterborne pathogens transmitted via the fecal-oral 

route that cause human illnesses predominantly infect humans. In particular, much of the 

waterborne disease burden in developed countries is attributed to enteric viruses (e.g. Hepatitis A 

virus, Norwalk virus, and Norwalk-like virus) (7,15), which do not readily transmit infection to a 

host of a different species (2,3). Thus, elevated concentrations of FIB resulting from human 

sources are more likely to contain human-specific enteric pathogens (2,3) and be a major source 

of risk. Swimming in fecally-contaminated waters has been associated with self-limiting illness 

such as enteric and respiratory illness but can also result in more severe illness that warrants 

medical treatment, hospitalization, and lost days of school or work (135). Considering the 

approximately 301 million swimming visits made in the U.S. each year (136), the disease 

burden, even for self-limiting illness, is substantial. 

 Previous epidemiology studies that reported an increased risk of gastroenteritis 

(56,57,59,137), respiratory illness (138), ear ailments (139), and skin illness (59,61,62) among 
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swimmers exposed to increasing FIB levels relied on proximity to sewage effluent from 

wastewater treatment plants as a proxy for human fecal water contamination. In recent years, 

fecal source tracking (FST) tools capable of distinguishing human from animal fecal matter have 

been developed and validated (8,134). These tools include both new, host-associated microbial 

genetic markers, such as those from the genus Bacteroides, and new, rapid methods, such as 

quantitative polymerase chain reaction (qPCR) for detection of these markers. Critical questions 

that remain to be answered include whether these markers are associated with human illness and 

whether they represent an improvement over general, non-specific fecal indicator bacteria in 

terms of characterizing risk. To help determine the best applications for such human-associated 

markers, the relationship between these markers and human illness outcomes must be 

determined. The studies that have investigated this relationship are somewhat limited in size and 

scope (62,64,65,67). This paper seeks to address this gap. The primary objective of this study 

was to estimate the association between four human-associated Bacteroidales markers and self-

reported illness among swimmers at six U.S. marine and fresh water beaches 10-12 days after 

exposure. A secondary objective was to determine whether these Bacteroidales markers, which 

purportedly indicate human source, act as modifiers of the association between a general 

Enterococcus indicator and illness.  

 

Materials and Methods 

Study design and beach descriptions 

 This study used data collected as part of the National Epidemiological and Environmental 

Assessment of Recreational Water (NEEAR) study from 2003-2007. The NEEAR study was a 

prospective cohort study that examined associations between microbial water quality and 
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swimming associated illnesses in visitors to freshwater and marine beaches. Beaches that were 

impacted by sources of human fecal contamination, including publicly owned treatment works, 

were specifically selected. The six beaches (four freshwater, two marine) used in this analysis 

were located within 7 miles of wastewater treatment plants or sewage effluent discharges 

believed to impact fecal contamination at the beach (Figure 5.1).  In 2003 and 2004, NEEAR 

studies were conducted at four freshwater beaches: Huntington Beach on Lake Erie near 

Cleveland, Ohio; West Beach on Lake Michigan at Indiana Dunes National Seashore in Portage, 

Indiana; Silver Beach on Lake Michigan near St. Joseph, Michigan; and Washington Park Beach 

on Lake Michigan in Michigan City, Indiana. In 2007, NEEAR studies were conducted at two 

temperate marine beaches: Fairhope Beach in Fairhope, Alabama; and Goddard Beach near 

Warwick, Rhode Island. Criteria for beach selection are described previously (55-57,96). 

 

Data collection 

 Data collection methods have been described previously (55-57). Briefly: all beachgoers 

were approached as they arrived, and were enrolled once they provided verbal informed consent. 

Each household group completed three surveys, with an adult (≥18 years old) answering 

questions for other household members. Upon arrival, each household completed an enrollment 

questionnaire about illnesses experience in the three days prior to their beach visit. Upon 

departure, participants completed an exit interview about beach activities, water exposure 

(extent, time, duration and location), presence of underlying acute and chronic health conditions 

(including allergies), food and drink consumption, animal contact in the past 48 h, contact with 

sick persons in the past 48 h, and demographic information for each household member.  Follow-

up telephone interviews were conducted 10–12 days after the beach interview to collect 
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information about the illness symptoms each household member experienced since the beach 

visit. Interviews were conducted on weekends and holidays between May and September.  

Respondents were ineligible if they had already completed the study in the previous 28 days, 

were unaccompanied minors (<18 years), or did not speak English or Spanish.  

 Study procedures, questionnaires, protocols and consent process were reviewed and 

approved by the Institutional Review Board (IRB) of the Centers for Disease Control and 

Prevention for the original study. For the analyses in this paper, IRB exemption was granted by 

University of North Carolina at Chapel Hill as the dataset was de-identified (Study# 13-2274).   

 

Swim exposure definitions 

 Because we were interested in microbial markers present in fecally-contaminated water, 

this analysis was restricted to swimmers. For the purposes of this analysis, “swimmers” were 

those who reported “body immersion”, defined as immersion to the waist or higher. Participants 

who reported no water contact (i.e. “non-swimmers”) and those who reported having water 

contact, but not “body immersion” were excluded from analysis because they comprise a group 

with heterogeneous water exposure. Other categories of water exposure (i.e. head immersion, 

swallowed water) were considered in sensitivity analyses.  

 

Health outcomes 

 In the telephone interview 10-12 days following beach exposure, several health outcomes 

were assessed, consistent with previous reports (56,57,65,98). “Gastrointestinal (GI) illness” 

referred to any of the following:  diarrhea (≥3 loose stools in a 24-hour period); vomiting; nausea 

and stomachache; or nausea or stomachache and interference with regular activities (missed time 
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from work/regular activities due to illness). Diarrhea alone was also assessed as a separate 

outcome. ‘‘Respiratory illness’’ referred to any two of the following: sore throat, cough, runny 

nose, cold, or fever. ‘‘Rash’’ referred to a rash or itchy skin.  ‘‘Eye ailments’’ referred to eye 

infection or watery eye. ‘‘Earache’’ referred to earache, ear infection, or runny ears. In addition 

to these previously reported outcomes, “urinary tract infection” (UTI) was also assessed and 

referred to urinary tract infection or burning sensation when urinating. 

 Participants ill within the three days prior to their beach visit were excluded from analysis 

of the health outcome related to their baseline symptoms, but were eligible to be included in 

analyses of other outcomes (e.g. those sick with respiratory illness were excluded from the 

respiratory analyses, but included in analyses of GI, diarrhea, rash, eye illness, earache, and 

UTI). 

 

Water sample collection and analysis 

 Procedures for water sample collection and filtration have been described elsewhere 

(Haugland et al. 2005; Wade et al. 2010).  Briefly: water samples were collected three times a 

day (8:00 AM, 11:00 AM, and 3:00 PM) along three transects perpendicular to the shoreline. At 

each transect, one-liter of water was collected in waist-high water (1m deep) and one-liter was 

collected in shin-high water (0.3m deep). Transects were at least 60m apart within the swimming 

area. After collection, samples were maintained on ice at 1-4°C in coolers for up to 6h before 

polycarbonate membrane filtration. The filters were kept at -20°C and shipped on dry ice to 

EPA, Cincinnati for qPCR analysis. Filters were stored at -40 °C for approximately two to six 

years  before analysis. DNA was extracted from the filters by a simple bead milling procedure 

and aliquots corresponding to two-thirds of the total crude extracts were concentrated 2-fold and 
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purified using a commercially available 96-well silica column based system (DNeasy, Qiagen, 

Valencia, CA) with binding and elution buffers from another system (DNA-EZ, Gene-Rite, 

North Brunswick, NJ) essentially as previously described (103). 

 Purified DNA extracts were analyzed for Bacteroidales markers using four qPCR 

assays—HF183, BsteriF1, BuniF2, and HumM2— as indicated below. QPCR assays targeting 

16S rRNA gene markers of highly human-associated Bacteroides species clusters included 

HF183 TaqMan (hereafter HF183), BsteriF1, and BuniF2 (104) while the HumM2 assay targets 

a hypothetical protein potentially involved in remodeling surface lipopolysaccharides and 

polysaccharides in other unidentified, highly human-associated Bacteroides species (71). Among 

these assays, the HF183 and HumM2 assays have shown the greatest promise for human source 

tracking due to their high sensitivity in detecting samples that are actually of human origin (e.g. 

human feces and sewage) as well as their low or nondetectable cross-reactivity with feces from 

many other animals (71,104-107). The BsteriF1 and BuniF2 assays have similarly shown high 

human source sensitivity, but lower specificity due to substantial cross-reactivity with feces from 

several animal groups including cats and dogs for BsteriF1 and pigs, sheep and chickens for 

BuniF2 (71,105). In addition, total Bacteroidales genetic markers were also analyzed using the 

GenBac3 qPCR assay as a marker of general, nonsource-specific fecal pollution (108).  

 All qPCR analyses were performed in an Applied Biosystems StepOnePlus® using the 

above-mentioned primer and TaqMan™ hybridization probe assays (71,104,108). QPCR 

amplification was performed by using 5 µL of purified DNA extracts in a total reaction volume 

of 25 µL. Reagent mixes were prepared by combining 12.5 µL of TaqMan® Universal Master 

Mix (Applied Biosystems, Foster City, CA), 2.5 µL of 2 mg/ml bovine serum albumin, 1 µM of 

each primer, and 80 nM of probe for each reaction. Amplification occurred with an initial 
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incubation at 50°C for 2 min followed by 95°C for 10 min, then forty PCR cycles of 95°C for 

15s and 60°C for 1 min. Serial dilutions of commericially prepared plasmid DNA templates 

(Integrated DNA Technologies, Coralville, IA) containing the amplicons for each assay were 

analyzed as positive controls in each reaction plate. Limits of detection for each assay were 

based on the estimated plasmid copy number per reaction of the highest dilution of these 

templates that was routinely analyzed and detected (6 copies per reaction). Extracts of blank 

filters that were prepared in the same manner as the sample extracts were also analyzed as 

negative controls in each reaction plate. Potential interferences by the sample extracts to the 

qPCR analyses were assessed by analyses of each extract with a multiplex version of the HF183 

assay using an internal amplification control (IAC) template and by analyses with the Sketa22 

assay for salmon testes DNA which was added to each sample as a sample processing control 

(SPC) prior to extraction (104). Criteria for classifying sample measurements as being 

unacceptable were offset Ct values from corresponding control samples of >1.5 and >3.0 for the 

IAC and SPC assays, respectively, as previously described (57,104). Out of a total of 2,422 water 

samples, 2,336 samples passed the acceptance criteria for the HF183/IAC and Sketa22 control 

assays. 

 

Fecal indicator bacteria  

 Intestinal enterococci are validated, nonspecific indicators of fecal pollution used to 

measure water quality throughout the world. Total Enterococcus spp. by qPCR (calibrator cell 

equivalents (CCE)/100 ml) was enumerated following water sample collection and subsequent 

membrane filtration according to previously published protocols (57,102,108).  
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Statistical analysis  

 The exposure of interest was the presence (detected in ≥2 samples/day)/absence (detected 

in 0-1 sample/day) of human-associated Bacteroides markers. We made this determination 

because although all beaches showed some indication of human contamination, there was a high 

proportion of samples where the human-source associated Bacteroides assays failed to detect 

genetic markers (Table 5.2). Alternative classifications of exposure were explored in sensitivity 

analyses. The outcome was a binary indicator of illness. Potential confounding factors plausibly 

associated with poor water quality and illness identified in published literature or those 

associated with outcome and available from the health/enrollment questionnaire included age; 

sex; race/ethnicity; swimming within 48h before the beach visit or between the beach visit and 

telephone interview; allergies; contact with animals; contact with other persons with 

gastrointestinal illness; number of other beach visits; any other chronic illnesses (gastrointestinal, 

skin, asthma); presence of beach festivals; eating any food or drink while at the beach; bather 

density; boat density; and environmental conditions such as sunlight, water/air temperature, and 

rainfall totals from 3 PM the previous day to 8 AM on the current day. For respiratory illness, 

rash, and eye ailments, use of insect repellent (binary) and sunblock (binary) were considered. 

Indicator variables representing beach were included in all models to control for differences in 

baseline illness among beaches. We used directed acyclic graphs (109,110) (visualized using 

DAGity (111)) to analyze the potential confounders and identified a minimally sufficient 

adjustment set for each exposure-outcome relationship: beach, bather density, rainfall, sand 

exposure, water temperature (for GI, diarrhea, earache, and UTI outcomes); and beach, bather 

density, rainfall, sand exposure (for respiratory, rash, and eye outcomes). A second adjustment 

set consisting of the covariates in the minimally sufficient set plus age was also evaluated 
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because it can be argued that age encompasses certain characteristics associated with 

intensity/duration of swimming exposure, and thus exposure to Bacteroides (e.g. children swim 

longer, swallow more water (56)) as well as being strongly associated with most outcomes. 

Estimates were similar using both adjustment sets, therefore we only present estimates using the 

adjustment set with age (results using the alternate set provided upon request). Covariates were 

coded as follows: beach (categorical: Fairhope, Goddard, Huntington, Silver, West, Washington 

Park), age (0-4, 5-11, 12-19, 20-34, ≥35), mean bathers (continuous), sand exposure (digging in 

sand or burying body in the sand) (binary), rainfall (continuous), and water temperature 

(continuous). Robust standard errors were used to account for dependence of observations within 

a household (124).   

 We used model-based standardization (116,120-122) to estimate standardized marginal 

risks, risk differences (RD), and 95% confidence intervals (95% CI) using the delta method (123) 

and the total group as the standard. Logistic regression was used to estimate predicted 

probabilities of the outcome for every value of observed confounders and then combined as a 

weighted average separately for both levels of the binary exposure. Thus, the effect estimates are 

estimated using predicted probabilities standardized to the same confounder distribution. The 

predicted probabilities were subtracted to produce a marginal estimate of the risk difference 

comparing Bacteroides marker exposure to no exposure. Modification of these marker-illness 

effect estimates by water matrix (freshwater vs. saltwater) was of secondary interest, so was 

assessed by stratification. 

 Effect measure modification of the association between Enterococcus assayed by qPCR 

Method 1611 (CCE/ml) and illness was examined to evaluate whether the occurrence of each of 

the Bacteroides markers improved the association of the general indicator with illness. In this 
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analysis, Enterococcus was treated as the main exposure and the Bacteroides marker was the 

binary modifier. For the primary effect measure modification analyses with the general indicator 

Enterococcus, the quantitated values were dichotomized in two ways according to 2012 EPA 

recreational water quality guidelines: above and below a geometric mean of 470 CCE/100ml (for 

an estimated illness rate of 36/1000 primary contact recreators), and above and below a 

geometric mean of 300 CCE/100ml (for an estimated illness rate of 32/1000 primary contact 

recreators) (95). Secondary effect measure modification analyses were also performed with 

Enterococcus coded as a continuous variable (average log10 count of Enterococcus per day 

(CCE/100ml)). Risk difference modification was estimated with product interactions of 

Enterococcus and Bacteroides markers and then assessed by an interaction contrast (i.e., 

difference of risk differences) (112). The interaction contrast takes on the value of zero when the 

joint effects of two factors are simply additive (112). 

 As previously mentioned, we excluded participants ill within the three days prior to their 

beach visit from analysis of the health outcome related to their baseline symptoms, but they were 

eligible to be included in analyses of other outcomes. All analyses were completed using SAS 

version 9.4 (SAS Institute, Inc., Cary, NC) and Stata version 13 (StataCorp, College Station, 

TX). 

 

Sensitivity analyses 

 We investigated the robustness of our estimates through sensitivity analyses that test 

several alternate ways of classifying swimming and Bacteroides exposure. First, we repeated our 

analyses using two additional definitions of swimmer: as participants who reported immersing 

their head under water, and participants who reported swallowing water. Second, we explored 



   

 
58

alternate exposure classifications since our primary one did not take into account intensity (i.e. 

cannot distinguish between situations when human fecal contamination is detected in multiple 

samples per day vs. two samples). We therefore explored exposure defined as a count of the 

number of Bacteroides markers detected per day (ranging from 0 to 4), where “detected” meant 2 

or more of the daily samples taken were positive for the marker. 

 

Results 

Demographic characteristics  

 Data were available for 25,288 participants at six beaches between 2003 and 2007 (Table 

5.1). More than one-third of participants (36%) did not have any contact with the water during 

their visit.  A total of 12,060 of them (48%) immersed their body up to the waist or higher during 

their visit. Compared to non-swimmers, swimmers were younger (mean age 22.8 years vs. 35.5 

years; p<0.0001), male (48% vs. 37%) and Hispanic (13% vs. 10%; p<0.0001); travelled farther 

to get to the beach (mean of 45 miles vs. 38 miles; p<0.0001); and had more sand contact (56% 

vs. 21%; p<0.0001). A quarter of both swimmers and non-swimmers reported having a chronic 

illness at the beach interview. Few participants (≤6%) reported acute illnesses ranging from GI to 

rash in the three days prior to their beach visits. Though descriptive statistics are provided for all 

participants here, the final analysis was restricted to body immersion swimmers only (n=12,060). 

 

Distribution of human-associated Bacteroides markers 

 While the human-associated Bacteroides markers were detected at all of the beaches, the 

frequency of samples with detected markers varied widely by beach and by marker target (Table 

5.2; Figure 5.2). Silver and Goddard Beaches had the highest frequencies of detects, regardless 
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of marker, while Fairhope Beach had the lowest. Within-beach, BuniF2 and BsteriF1 assay 

markers were generally detected more frequently than HF183 and HumM2. For BuniF2, the 

proportion of human-associated Bacteroides detected ranged from 15% (Fairhope) to 63% 

(Silver) of samples; for BsteriF1, the range was 11% (Fairhope) to 46% (Goddard). HF183 

markers were detected in between 4% (Fairhope) and 49% (Silver) of samples. HumM2 assay 

markers were detected least often across all beaches, with 2% (Fairhope) to 17% (Silver) of 

samples testing positive. Non-specific general Bacteroides fecal contamination was widely 

present in >98% of samples tested using the GenBac3 assay.  

 

Illness risk associated with human-associated Bacteroides markers 

Frequencies and standardized marginal estimates of the RD (95% CI) comparing 

exposure to each Bacteroides marker vs. no exposure and illness are shown in Figure 5.3 and 

Supplemental Table A.1a-c. The strongest associations were those with the BsteriF1 marker, and 

occasionally the BuniF2 marker. Across all beaches, we observed an increase in risk of GI 

illness, diarrhea, and respiratory illness associated with detection of human fecal contamination 

by the BsteriF1 marker (RD=1.9% (0.1%, 3.7%); RD=1.3% (-0.2%, 2.7%); and RD=1.1% (-

0.2%, 2.5%), respectively). Smaller increases of <1.0% were seen for BsteriF1 and eye ailments, 

earache, and UTI. Unexpectedly, detection of human fecal contamination by the HumM2 and 

HF183 markers was associated with a decreased risk of rash (RD=-1.0% (-1.9%, -0.2%) and 

RD=-1.1% (-2.4%, 0.3%), respectively). In general, many estimates were close to the null, and 

estimates closer to the null were more precise than those farther from the null. Estimates of GI 

illness risk were most precise (reflecting the high incidence) and UTI estimates were least 

precise. Similar patterns were seen when fresh and marine water were examined separately with 
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the exception of the BuniF2 marker and respiratory illness, and the BuniF2 marker and eye 

ailments. Marine beach estimates were less precise than fresh water estimates.  

 

Assessing modification of Enterococcus-illness association with Bacteroides markers 

 We investigated whether the presence of Bacteroides markers of human fecal 

contamination strengthened the previously observed association between the general 

Enterococcus indicator and illness (56,57). Standardized marginal estimates of the RD (95% CI) 

for the association of Enterococcus and GI illness, diarrhea, and respiratory illness modified by 

each Bacteroides marker are shown in Table 5.3 and Supplemental Table A.3a-d (for 

Enterococcus < and ≥470 CCE/ml). Overall, interaction contrast estimates were imprecise and 

did not suggest the presence of modification between strata of Bacteroides marker. However, 

one pattern that did emerge for GI illness and diarrhea were that RD estimates were closer to the 

null when human-associated Bacteroides markers were present than in the absence of the 

markers. Interaction contrast values for BuniF2 were unable to be estimated for diarrhea and 

respiratory illness due to small sample size. Similarly, the associations between Enterococcus 

dichotomized at 300 CCE/ml and illness did not vary by presence of any Bacteroides marker; 

interaction contrast estimates were imprecise (Table 5.4 and Supplemental Table A.4a-d). 

Results for modification with Enterococcus assessed continuously are shown in Supplemental 

Table A.5. As shown previously in 2008 and 2010 by Wade et al. (56,57), we see an increased 

risk of GI illness and diarrhea with each 1-log10 increase in Enterococcus qPCR value (RD=1.4% 

(0.6%, 2.3%) and RD=1.1% (0.6%, 1.7%), respectively). However, consistent with results from 

the analysis with binary Enterococcus, interaction contrast estimates are imprecise and do not 
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suggest that human-associated Bacteroides markers are modifying the association between 

Enterococcus and swimming-associated illnesses. 

 

Sensitivity analyses 

 An exploration of two alternate categorizations of exposure in sensitivity analyses (as 

one, two, three, or four Bacteroides markers vs. no exposure) showed little evidence of 

association between Bacteroides markers and illness (Supplemental Tables A.2a-c). While a 

clear dose-response pattern was not observed, the greatest risk of illness appeared to occur when 

2 or 3 Bacteroides markers were detected. Because intensity of water contact might determine 

the extent of exposure to general fecal indicators and human-associated Bacteroides, we also 

repeated our analysis among those who had immersed their head in water (Supplemental Table 

A.6) and among those who swallowed water (Supplemental Table A.7). Estimates for head 

immersion swimmers were consistent with what was found for body immersion swimmers, but 

more imprecise. Estimates for swimmers who swallowed water were generally farther from the 

null, and imprecise. 

  

Discussion 

The primary goal of this study was to describe the association between the occurrence of 

four different human-associated Bacteroides markers and self-reported illness among swimmers. 

In this study, we found little clear evidence of an association between these markers and illness, 

though we observed a pattern of increased risks for GI illness, diarrhea, and respiratory illness 

with BsteriF1 exposure, and a pattern of decreased risks with rash and HumM2 and HF183 

detection. In addition, none of the four markers modified the association between the currently-
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used general indicator, Enterococcus by qPCR, and the outcomes assessed. That finding suggests 

that having an indicator of human source does not add any additional information to the 

prediction of illness risks above and beyond what the general indicator provides.  

Our findings of no association between human-associated Bacteroides markers and 

swimming-associated illness were unexpected in light of findings from previously published 

reports of general, non-specific Enterococcus and Bacteroides at NEEAR beaches. General 

Enterococcus by qPCR was associated with an increased risk of GI illness in Great Lakes 

beaches and marine beaches, and general Bacteroides qPCR was associated with increased risk 

of GI illness in marine beaches (56,57). While our findings may seem counter-intuitive, there are 

potential reasons for the disparate findings between the general and human-specific markers. 

First and perhaps most importantly, human-associated Bacteroides markers are less persistent 

and less abundant than general Enterococcus markers, which may account for why health 

associations have previously been established with general enterococci measured by qPCR, but 

not among Bacteroides markers in this analysis.  Several authors have reported that general, non-

specific fecal indicator organisms such as total Enterococcus qPCR (Entero1a), total Bacteroides 

qPCR (GenBac3, AllBac), and E. coli (140) persist longer compared to human-associated FST 

genetic markers, including HF183 (140-142), HumM2 (142), BacHum (141), and BuniF2 (143). 

These studies were largely conducted in river, marine, and freshwater microcosms spiked with 

human sewage, but the findings suggest that human-associated markers are most useful as a 

conservative indicator of indicators of recent human fecal contamination.  

While relatively little is known about factors influencing the decay of human-associated 

Bacteroides markers in aquatic environments, as an obligate anaerobes, their survival in the 

ambient aquatic environment is thought to be limited (Kreader 1998; Korajkic 2014}. Lower 
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temperature is believed to result in longer persistence for both fecal indicators and human-

associated markers (141,144), while the effect of sunlight is mixed. In general, ambient sunlight 

has not been found to affect the survival or persistence of molecular FST markers (141,143,145), 

but other studies report shorter persistence of Bacteroides molecular markers HF183 and 

HumM2 (142).  The source of environmental factors (e.g. artificial vs. natural sunlight) may also 

have a profound effect on relative rates of decay of genetic markers.  

Second, the human-associated Bacteroides markers in this analysis were detected at 

relatively low densities, which may have limited our ability to estimate associations. Between 

58% and 90% of the Bacteroides samples were below the limit of detection of the assay, 

prompting us to dichotomize them for analysis. In contrast, general, nonsource specific 

Bacteroides and Enterococcus were detected at relatively high densities >98%. This hypothesis 

seems supported by the fact that among the four assays in this study, the ones that showed 

patterns of association consistent with what we would expect also tended to be the more 

commonly occurring targets (e.g. BsteriF1). In addition, low target densities were also the main 

explanation for a finding of no association from one of the few previous studies of illness risks 

and human-associated markers. In a study of 8,797 beach visitors at a non-point source beach in 

California, Colford et al. (64) concluded that the association between illness and human-specific 

viruses adenovirus 40, 41 and norovirus could not adequately be evaluated because the viruses 

were rarely detected.   

A third possibility is that the sensitivity of the detection of human marker may have been 

impacted by long-term freezer storage at -40 °C, but it is difficult to predict the magnitude of the 

impact.  Reduced sensitivity would mean a decreased ability to detect the marker if it was indeed 

present, leading to false negatives, an underestimation of Bacteroides markers, and possibly 
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resulting in bias towards the null, which is what we observed. Thus, our findings of no 

association may be a consequence of extended storage times, but it is impossible to know for 

certain. 

Finally, it is possible that human specific markers may be better associated with illness at 

sites without a known source of sewage contamination, impacted by a wider range of fecal 

contaminants, or with lower levels of overall fecal contamination. This analysis was performed 

among beaches with known human sewage inputs and high nonspecific fecal contamination, as 

evidenced by >98% of samples being positive for general Bacteroides. The level of fecal 

contamination may have been so high that the addition of a human marker did not add any 

additional information to the estimation of illness risk. Indeed, in our analysis, Table 4 and 5 RD 

estimates were closer to the null when human-associated Bacteroides markers were present 

compared to when they were absent for GI illness and diarrhea. In beaches with lower levels of 

overall fecal contamination, perhaps human markers would be more informative. 

Our findings will help inform the limited evidence base of studies estimating the 

association between human source-associated bacterial fecal indicators and human illnesses. Our 

result of no association is consistent with the findings from three previous studies, though each 

used assays targeting different human-associated markers and all were conducted at non-point-

source beaches. In a study of a marine beach impacted by urban runoff, Arnold et al. found 

Enterococcus faecium and Enterococcus faecalis densities were not consistently associated with 

swimmer illness (67) using the Scorpion-2 qPCR illness. And in the California study mentioned 

earlier, Colford et al. found no association between viruses adenovirus and norovirus and illness. 

Similarly, in a small study of 1,303 beach visitors at a marine beach, Sinigalliano et al. (62) 

found no association with the HF8 and UCD Bacteroides markers. An additional study by 
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Colford in 2012 at a marine beach impacted by urban runoff did find an increased risk of enteric 

illness with exposure to human fecal contamination measured by the Scorption-2 Enterococcus 

qPCR marker. To the best of our knowledge, our study represent the largest study to date 

investigating human-associated fecal markers and risk of illness, and the first conducted in 

settings where sewage is the primary source of pollution. Future studies investigating HF183, 

HumM2, BsteriF1, and BuniF2 may need to be even larger to be able to estimate associations 

given the low abundance in this study. 

Though there are few studies that have investigated illness risks from human-associated 

fecal indicators, numerous previous studies have demonstrated an increased risk of 

gastrointestinal, diarrhea, respiratory, skin, eye, and ear illnesses among swimmers exposed to 

elevated general fecal indicator bacteria levels (54-60). Although these studies demonstrated the 

value of fecal indicators, many relied on proximity to sewage effluent as a proxy for human 

presence. Findings from studies where non-point sources of pollution are the predominant 

contaminant have been more inconsistent, with some studies reporting an association due to 

point and non-point sources (59,61-63,65), while others do not (64,65). But even with these non-

point sources, a known human source of fecal contamination may have been nearby ((59)). One 

strength of our study is that it did not rely on a proxy; instead, the source of fecal contamination 

was directly assessed from the water via the Bacteroides markers. This approach may be of 

particular interest for investigating water bodies that are impacted by non-point sources. 

 This study has several limitations. As a proxy for an individual swimmer’s exposure, we 

relied on measures of daily average water quality. Although these average daily measures may 

not be indicative of actual individual exposure, characterizing individual exposure would have 

been difficult and impractical. Body immersion swimmers entered the water at multiple time 
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periods and locations and were exposed for varying durations of time (mean duration=65 min±60 

min). The study design allowed for the collection of water samples three times a day (8:00AM, 

11:00AM, and 3:00PM) and at two water depths (shin height (0.3m) and waist height (1.0m)) 

and three beach locations to capture the variety of fecal indicator exposures a participant may 

experience in the water.  The cohort design also allowed us to measure water quality over a wide 

range of study days, so we were able to capture varying water quality conditions in a large study 

population. 

Additionally, a common limitation of this type of large-scale study of water quality is the 

reliance on self-reported, non-specific symptoms and signs (e.g. eye ailment). Such broadly-

defined symptoms may have obscured more specific effects of fecal indicators. However, the 

prospective nature allowed us to determine temporality and the 10-12 day follow up period 

reflected the incubation time for likely pathogens that would cause the symptoms of interest. In 

addition, the use of self-reported outcomes allowed us to capture the diversity of symptoms 

potentially associated with recreational water exposure. While the health outcomes may have 

been affected by recall bias, it is unlikely that recall would be differential by varying levels of 

water quality.   

 Among the strengths of this study was its focus on members of the Bacteroidales order as 

targets for qPCR methods to detect human-specific fecal pollution.  Because Bacteroidales are 

among the most dominant bacteria in the human gut (70), these organisms have been at the 

forefront of efforts to develop methods that target human sources. HF183 and HumM2 are two of 

the most promising markers for human fecal source tracking (106). While less studied and 

showing apparently greater cross-reactivity with other animal sources, BsteriF1 and BuniF2 have 

also shown promise as potentially more environmentally abundant human associated markers 
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(71,104,105). Nevertheless, high frequencies of samples giving either non-detects or otherwise 

generally weak qPCR signals (high Ct measurements) were encountered with all of the assays in 

this study. Because of this, the Bacteroides markers were not analyzed as quantitative variables, 

which may have limited the ability to make inferences. The decision to dichotomize was also 

influenced by our uncertainty about the effects of the long-term freezer storage on the filter 

samples as mentioned previously, which may have also limited the ability to make inferences.  

To mitigate these potential limitations, sensitivity analyses were performed with exposure 

defined as a count of whether 0, 1, 2, 3, or 4 of the Bacteroides markers were detected per day. 

Findings were robust to different exposure definitions although risk estimates did improve with 

use of multiple markers.  Nevertheless, findings from this study make an important contribution 

to the literature determining the suitability of these assays as alternative fecal indicators. Also, 

even without a strong association with health, human-associated markers may help identify the 

source of pollution, which provides water quality managers with information to efficiently and 

effectively focus remediation efforts. 

 

Conclusion 

 In this study, we found that human-associated Bacteroides markers did not strongly 

improve associations with swimming-associated illness compared to general, non-source specific 

indicators already in use at beach sites impacted by sewage effluent. However, patterns of 

increased disease risks were observed for the BsteriF1 marker and several outcomes that deserve 

further investigation. These findings may have been influenced by long storage times of 

membrane filters or other methodological challenges that could be overcome in the future. 

Human-associated markers may also better characterize risk at sites without a known impact 
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from sewage, or at sites impacted by runoff or a broader range of fecal contamination. This is 

one of the first and largest studies to evaluate associations between exposure to human-

associated Bacteroides markers and self-reported illness among swimmers. 

 

Disclaimer: The views expressed in this paper do not necessarily reflect EPA policy 
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Tables and Figures 

 

Figure 5.1. Freshwater and marine beach sites 
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Table 5.1. Characteristics of NEEAR participants by body immersion status (n=25,288) 

  No water contact Water contact 

  

No body 

immersion† 

Body  

immersion† 

(n=9091) (n=4137) (n=12060) 

  N* (%) N* (%) N* (%) 

Sex 

    Male 3729 (41) 1511 (37) 5814 (48) 

    Female 5356 (59) 2621 (63) 6225 (52) 

    Missing 6 5 21 

Age in years (mean (SD), min/max) 35.5 (18), 0/101 31.9 (17.6), 0/85 22.8 (16.7), 0/103 

    0-4 503 (6) 364 (9) 1218 (10) 

    5-11 390 (4) 355 (9) 2953 (25) 

    12-19 911 (10) 367 (9) 1848 (16) 

    20-34 2399 (27) 991 (24) 2534 (22) 

    35 and over 4748 (53) 1981 (49) 3182 (27) 

    Missing 140 79 325 

Race 
 

    White 7266 (80) 3514 (85) 9501 (79) 

    Black 562 (6) 191 (5) 518 (4) 

    Asian 171 (2) 72 (2) 140 (1) 

    American Indian 22 (0) 17 (0) 29 (0) 

    Hispanic 905 (10) 248 (6) 1520 (13) 

    Multi-race / other 148 (2) 78 (2) 298 (2) 

    Missing 17 17 54 

Illnesses in the 3 days prior to 
beach visit 

    GI illness 247 (3) 93 (2) 221 (2) 

    Vomiting 94 (1) 50 (1) 123 (1) 

    Sore throat 510 (6) 227 (5) 676 (6) 

    Earache 114 (1) 39 (1) 167 (1) 

    Eye ailment 45 (0) 22 (1) 56 (0) 

    Rash 225 (2) 89 (2) 261 (2) 

    Urinary tract infection 44 (0) 22 (1) 49 (0) 

Any history of chronic GI, skin, 
respiratory illness or allergies 

    No 6521 (72) 2943 (71) 8970 (74) 

    Yes 2568 (28) 1192 (29) 3090 (26) 

    Missing 2 2 0 

Swam in last week 
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  No water contact Water contact 

  

No body 

immersion† 

Body  

immersion† 

(n=9091) (n=4137) (n=12060) 

  N* (%) N* (%) N* (%) 

    No 6689 (74) 2830 (69) 6844 (57) 

    Yes 2388 (26) 1295 (31) 5198 (43) 

    Missing 14 12 18 

Miles travelled to beach 

    0-20 5168 (58) 2114 (52) 5447 (46) 

    20-60 2531 (28) 1229 (30) 4141 (35) 

    60-100 561 (6) 349 (9) 1110 (9) 

    >100 720 (8) 408 (10) 1204 (10) 

    Missing 111 37 158 

Frequency of travel to beach in 
summer    

   0-1 times 2891 (32) 1648 (40) 4166 (35) 

   2-5 times 3071 (32) 1389 (34) 4483 (37) 

   >5 times 3110 (34) 1091 (26) 3396 (28) 

    Missing 0 0 0 

Sand contact 
   

    Dug in sand 1884 (21) 1797 (43) 6662 (55) 

    Buried body in sand 261 (3) 267 (6) 1871 (16) 

    Missing 0 0 0 

Consumed food 

    No 4613 (51) 1764 (43) 4226 (35) 

    Yes 4417 (49) 2348 (57) 7805 (65) 

    Missing 61 25 29 

Animal contact 2 days prior to or 
after beach visit, or between beach 
visit and phone interview 

    No 2586 (28) 942 (23) 2849 (24) 

    Yes 6505 (72) 3195 (77) 9211 (76) 

    Missing 0 0 0 

All beaches 

    Fairhope  853 (9) 340 (8) 823 (7) 

    Goddard  1584 (17) 305 (7) 1080 (9) 

    Huntington  1535 (17) 548 (13) 757 (6) 

    Silver  3140 (35) 1742 (42) 5372 (45) 

    West  722 (8) 475 (11) 1668 (14) 

    Washington Park 1257 (14) 727 (18) 2360 (20) 
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NEEAR, National Environmental and Epidemiologic Assessment of Recreational Water study; 
N, number; SD, standard deviation  
* Sums may not add up to totals because of missing values 

† Swimmers were those with body immersion (defined as immersion to the waist or higher). 
Those without water contact or with water contact but not body immersion were not included in 
the analysis but are shown in this descriptive table for completeness. 
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Table 5.2. Human Bacteroides markers detected by qPCR (n=2336 total samples) 

Indicator Detected in 
samples 
N (%) 

Non-detected 
samples 
N (%) 

Missing 
samples* 

N (%) 

False 
positive rate† 

(%) 

HumM2  233 (10) 2103 (90) 0 0.00 
HF183  646 (28) 1690 (72) 0 0.15 
BsteriF1  671 (29) 1665 (71) 0 0.20 
BuniF2  972 (42) 1364 (58) 0 0.10 
* Missing out of the 2,336 samples that passed quality control measures. 
† Proportion of samples that test positive for the assay but are in fact negative.  
 
 
Figure 5.2. Proportion of Bacteroides samples detected by beach 
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Figure 5.3. Standardized risk differences (95% CI) for the association between illness and human-associated Bacteroides markers 
among body immersion swimmers in all beaches, fresh water and marine beaches 

 
 
Arrows show estimates that extend beyond field of vision of diagram.  
*Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table 5.3(a-c). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 470 CCE/100ml for an illness rate of 36/1000) with detection/non-detection 
of Bacteroides markers among body immersion swimmers in all beaches 
 

Table 5.3(a). GI illness 

Gastrointestinal Illness 

Marker 

(samples) 

Enterococcus 

(CCE/100ml) 

Cases N Crude 

Risk 

(%) 

Adjusted 

Risk 

(%)* 

Adjusted  

RD  

(95% CI)* 

Interaction 

Contrast  

(95% CI) 

-- Main 
association 

    0.6%  
(-2.5%, 3.7%) 

 

HumM2               

0-1  <470 466 5397 8.6 8.4 Ref  

 ≥470 42 317 13.2 9.9 1.6%  
(-2.5%, 5.6%) 

 

 ≥ 2  <470 429 5781 7.4 8.2 Ref  

 ≥470 20 195 10.3 7.5 -0.7%  
(-4.8%, 3.4%) 

-2.3%  

(-7.5%, 2.9%) 
HF183               

0-1  <470 216 2231 9.7 7.8 Ref  

 ≥470 38 274 13.9 9.6 1.8%  
(-2.5%, 6.0%) 

 

 ≥ 2  <470 679 8947 7.6 8.5 Ref  

 ≥470 24 238 10.1 7.7 -0.8%  
(-4.7%, 3.1%) 

-2.5%  

(-7.9%, 2.8%) 
BsteriF1               

0-1  <470 153 1796 8.5 7.0 Ref  

 ≥470 4 72 5.6 3.7 -3.3% 
 (-7.1%, 0.4%) 

 

 ≥ 2  <470 742 9382 7.9 8.6 Ref  

 ≥470 58 440 13.2 9.3 0.7%  
(-2.8%, 4.2%) 

4.1%  

(-0.9%, 9.1%) 
BuniF2               

0-1  <470 50 559 8.9 6.8 Ref  

 ≥470 1 17 5.9 3.9 -2.8%  
(-9.9%, 4.2%) 

 

 ≥ 2  <470 845 10619 8.0 8.4 Ref  

 ≥470 61 495 12.3 8.8 0.3%  
(-2.9%, 3.6%) 

3.2%  

(-4.6%, 11%) 

NA, Not able to be estimated.  
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table 5.3(b). Diarrhea 

Diarrhea 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

0.5%  
(-2.0%, 3.1%) 

HumM2             
0-1  <470 322 5397 6.0 5.7 Ref 

≥470 30 317 9.5 6.6 0.8%  
(-2.3%, 4.0%) 

 ≥ 2  <470 270 5781 4.7 5.4 Ref 
≥470 17 195 8.7 5.7 0.3%  

(-3.4%, 3.9%) 
-0.6% 

(-4.9%, 3.7%) 
HF183        
0-1  <470 162 2231 7.3 5.8 Ref 

≥470 28 274 10.2 6.7 0.9%  
(-2.7%, 4.4%) 

 ≥ 2  <470 430 8947 4.8 5.5 Ref 
≥470 19 238 8.0 5.7 0.2%  

(-3.1%, 3.6%) 
-0.6% 

(-5.1%, 3.8%) 
BsteriF1        
0-1  <470 104 1796 5.8 4.8 Ref 

≥470 2 72 2.8 1.9 -2.8%  
(-5.8%, 0.1%) 

 ≥ 2  <470 488 9382 5.2 5.8 Ref 
≥470 45 440 10.2 6.5 0.7%  

(-2.1%, 3.5%) 
3.5% 

(-0.5%, 7.6%) 
BuniF2        
0-1  <470 38 559 6.8 5.3 Ref 

≥470 0 17 0.0 0.0 NA 
 

 ≥ 2  <470 554 10619 5.2 5.6 Ref 
≥470 47 495 9.5 6.3 0.7%  

(-2.1%, 3.4%) NA 

NA, not able to estimated. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table 5.3(c). Respiratory illness 

Respiratory illness 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

-1.3% 
(-4.0%, 1.4%) 

HumM2           

0-1  <470 321 5236 6.1 5.9 Ref 
≥470 14 309 4.5 4.8 -1.1% 

(-4.2%, 2.0%) 

 ≥ 2  <470 328 5603 5.9 6.1 Ref 
≥470 8 187 4.3 4.5 -1.7% 

(-6.4%, 3.1%) 
-0.5% 

(-6.1%, 5.1%) 

HF183      

0-1  <470 141 2182 6.5 5.6 Ref 
≥470 8 268 3.0 3.0 -2.6% 

(-5.3%, 0.0%) 

 ≥ 2  <470 508 8657 5.9 6.2 Ref 
≥470 14 228 6.1 6.3 0.1% 

(-4.5%, 4.8%) 
2.8% 

(-2.7%, 8.3%) 

BsteriF1      

0-1  <470 97 1726 5.6 5.1 Ref 
≥470 2 68 2.9 2.5 -2.6% 

(-6.2%, 1.0%) 

 ≥ 2  <470 552 9113 6.1 6.3 Ref 
≥470 20 428 4.7 4.8 -1.4% 

(-4.4%, 1.6%) 
1.2% 

(-3.4%, 5.8%) 

BuniF2      

0-1  <470 38 546 7.0 6.0 Ref 
≥470 0 17 0.0 0.0 NA 

 

 ≥ 2  <470 611 10293 5.9 6.0 Ref 
≥470 22 479 4.6 4.9 -1.1% 

(-4.0%, 1.8%) NA 

NA, not able to estimated 
*Adjusted for beach, age, mean bathers, sand, rain 
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Table 5.4(a-c). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 300 CCE/100ml for an illness rate of 32/1000) with detection/non-detection 
of Bacteroides markers among body immersion swimmers in all beaches 

Gastrointestinal Illness 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

1.6%  
(-1.0%, 4.3%) 

HumM2          

0-1  <300 429 5104 5.8 8.2 Ref 
≥300 79 610 6.7 10.8 2.6%  

(-0.6%, 5.8%) 

 ≥ 2  <300 428 5752 5.7 8.1 Ref 
≥300 21 224 4.5 7.5 -0.7%  

(-4.6%, 3.2%) 
-3.3%  

(-7.9%, 1.4%) 

HF183          

0-1  <300 195 2048 6.1 7.8 Ref 
≥300 59 457 5.5 10.3 2.6%  

(-1.1%, 6.3%) 

 ≥ 2  <300 662 8808 5.6 8.3 Ref 
≥300 41 377 6.9 8.8 0.4%  

(-3.1%, 3.9%) 
-2.1%  

(-7%, 2.7%) 

BsteriF1          

0-1  <300 131 1643 4.9 6.5 Ref 
≥300 26 225 8.0 9.3 2.8%  

(-1.9%, 7.4%) 

 ≥ 2  <300 726 9213 5.9 8.6 Ref 
≥300 74 609 5.4 9.1 0.5%  

(-2.4%, 3.5%) 
-2.2%  

(-7.6%, 3.1%) 

BuniF2          

0-1  <300 33 444 5.9 5.6 Ref 
≥300 18 132 9.1 12.0 6.4%  

(-0.6%, 13.3%) 

 ≥ 2  <300 824 10412 5.7 8.4 Ref 
≥300 82 702 5.6 8.8 0.3%  

(-2.4%, 3.1%) 
-6.0%  

(-13.4%, 1.3%) 

NA, Not able to be estimated.  
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table 5.4(b). Diarrhea 

Diarrhea 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

2.0%  
(-0.4%, 4.3%) 

HumM2               

0-1  <300 291 5104 5.7 5.5 Ref 
≥300 61 610 10.0 8.2 2.6%  

(-0.2%, 5.4%) 

 ≥ 2  <300 269 5752 4.7 5.3 Ref 
≥300 18 224 8.0 6.0 0.6%  

(-3.0%, 4.2%) 
-2.0%  

(-6.2%, 2.1%) 

HF183          

0-1  <300 144 2048 7.0 5.7 Ref 
≥300 46 457 10.1 8.4 2.7%  

(-0.8%, 6.1%) 

 ≥ 2  <300 416 8808 4.7 5.3 Ref 
≥300 33 377 8.8 6.9 1.6%  

(-1.6%, 4.7%) 
-1.1%  

(-5.5%, 3.2%) 

BsteriF1           

0-1  <300 87 1643 5.3 4.4 Ref 
≥300 19 225 8.4 7.4 3.0%  

(-1.3%, 7.3%) 

 ≥ 2  <300 473 9213 5.1 5.7 Ref 
≥300 60 609 9.9 6.9 1.2%  

(-1.4%, 3.8%) 
-1.8%  

(-6.5%, 3.0%) 

BuniF2          

0-1  <300 25 444 5.6 4.5 Ref 
≥300 13 132 9.8 10.2 5.7%  

(-1.6%, 13.0%) 

 ≥ 2  <300 535 10412 5.1 5.5 Ref 
≥300 66 702 9.4 6.8 1.3%  

(-1.2%, 3.8%) 
-4.4%  

(-12.1%, 3.3%) 

NA, not able to estimated 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table 5.4(c). Respiratory illness 
Respiratory Illness 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

0.2%  
(-2.1%, 2.6%) 

HumM2               

0-1 <300 294 4947 5.9 5.8 Ref 
 ≥300 41 598 6.9 6.5 0.6%  

(-1.9%, 3.2%) 
≥ 2 <300 326 5572 5.9 6.1 Ref 
 ≥300 10 218 4.6 5.1 -0.9%  

(-5.5%, 3.7%) 
-1.6%  

(-6.6%, 3.4%) 

HF183          
0-1 <300 124 2001 6.2 5.5 Ref 
 ≥300 25 449 5.6 5.0 -0.5%  

(-3.1%, 2.1%) 
≥ 2 <300 496 8518 5.8 6.1 Ref 
 ≥300 26 367 7.1 6.9 0.8%  

(-3.0%, 4.6%) 
1.3%  

(-3.3%, 5.9%) 

BsteriF1           
0-1 <300 81 1577 5.1 4.8 Ref 
 ≥300 18 217 8.3 6.7 1.9%  

(-2.2%, 5.9%) 
≥ 2 <300 539 8942 6.0 6.2 Ref 
 ≥300 33 599 5.5 5.5 -0.8%  

(-3.3%, 1.8%) 
-2.6%  

(-7.2%, 1.9%) 

BuniF2          
0-1 <300 26 435 6.0 5.5 Ref 
 ≥300 12 128 9.4 6.0 2.3%  

(-3.6%, 8.2%) 
≥ 2 <300 594 10084 5.9 6.0 Ref 
 ≥300 39 688 5.7 5.8 -0.2%  

(-2.7%, 2.3%) 
-2.5%  

(-8.7%, 3.8%) 

NA, not able to estimated 
*Adjusted for beach, age, mean bathers, sand, rain 
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CHAPTER 6. EXPOSURE TO HUMAN-ASSOCIATED CHEMICAL INDICATORS OF 

FECAL CONTAMINATION AND SELF-REPORTED ILLNESS AMONG SWIMMERS 

AT RECREATIONAL BEACHES 

 

Overview 

 Fecal indicator bacteria, commonly used to regulate recreational water quality, cannot 

discriminate among sources of contamination. The use of anthropomorphic chemicals as host-

specific indicators of fecal contamination requires an understanding of relationships with illness 

risks; however, this research has not been conducted to date. We estimated associations between 

chemical markers of human fecal pollution and self-reported illness among body immersion 

swimmers at five U.S. beaches enrolled in the National Epidemiological and Environmental 

Assessment of Recreational Water. NEEAR participants were surveyed about beach activities, 

water exposure, and baseline symptoms on the day of their beach visit, and illness symptoms 

experienced 10-12 days later. RDs were estimated using model-based standardization, adjusted 

for beach, bather density, sand contact, rain at 8A.M., and water temperature. Robust standard 

errors were calculated due to clustering within household. Chemical markers were assessed as 

modifiers of the association between Enterococcus and illness using interaction contrast. Human-

associated chemical markers were detected at all beaches at low levels (parts per billion or 

smaller). We observed little evidence of association between chemical markers and illness but 

several patterns were visible. For the more plausible outcomes of GI illness and diarrhea, 

bisphenol A and cholesterol showed positive associations of approximately 1.7% and 1.0%, 
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respectively. Implausible inverse associations were also observed between several chemicals and 

respiratory illness. Risk differences for the association between general Enterococcus and GI 

illness, eye ailments, and respiratory illness were greater in magnitude by 3-5% in the presence 

of phenol than in the absence of phenol. Among the chemical categories, exposure to household 

wastewater chemicals was associated with an increased risk of respiratory illness. All other 

chemical markers and chemical categories were not consistently associated with elevated risks of 

illness, nor were they an improvement over general Enterococcus at beaches impacted by human 

sources of fecal contamination. Under the conditions observed in this study, human-associated 

chemicals were not consistently associated with swimming-associated illness. Additional 

research is needed to support the use of chemical biomarkers to quantify risk of illness and 

identify sources contributing to fecal pollution of recreational water. 

 

Introduction 

 The quality of water used for drinking and recreation is currently monitored through the 

enumeration of fecal indicator bacteria (FIB), which indicate the probable presence of 

pathogenic contaminants associated with human and animal waste. Fecal waste is a major cause 

of poor water quality resulting in environmental degradation, economic losses (146,147), and 

illness risks such as gastrointestinal, respiratory, eye, ear, and skin infections (1,60,135,148). In 

the US, E.coli and enterococcus are the FIB recommended for detection of fecal contamination 

in fresh and marine recreational waters (95). Culture-based methods of measuring these 

traditional indicators require 24-48 hours to complete and the indicators cannot be used to 

differentiate between sources of fecal contamination (15,134), which are often necessary for 

effective remediation because contamination can arise from numerous human and non-human 
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sources. In recent years, pollution from non-point sources such as surface runoff, agricultural 

deposits and leaky septic systems, has surpassed that from point sources, which are remediated 

through federal regulation, as the leading cause of water quality problems (149). Accurate and 

reliable methods of identifying pollution sources will provide an indication of types of pathogens 

that may be expected and risk of infection from them. 

 To address the limitations of traditional FIB, rapid methods for identifying fecal 

contamination sources that target host-specific microbial or chemical markers have been 

developed (2,11,36,42,150-152). Much of the source-tracking research has focused on host-

specific gene products of microbial markers such as members of the genus Bacteriodales or 

Bifidobacterium using rapid methods such as real-time or quantitative polymerase chain reaction 

(11,144). In addition, chemical compounds such as caffeine (40,153), pharmaceuticals (73,154), 

personal care products (40,73), and industrial chemicals (40) associated with septic, manure and 

wastewater treatment plant effluent as well as fecal sterols and their derivatives (42,155,156) 

have also been suggested as anthropogenic markers in sewage. These compounds provide 

evidence as to source because they are associated with human metabolism, activity or sanitary 

sewage. They fall into three broad categories: compounds produced and excreted by humans 

(e.g. coprostanol); compounds ingested almost exclusively by humans (e.g. caffeine, 

carbamazepine); and those that make it into the human waste stream (e.g. fluorescent whitening 

agents). As many as 35 compounds have been shown to be useful as indicators of anthropogenic 

pollution in wastewater effluent in the US (40) and river and coastal environments in Japan (73).  

 The differing patterns of fate, transport, survival, and persistence between human-source 

chemical markers and microbial markers means they may be able to be used in combination as 

part of a source tracking “toolbox” to yield greater confidence in source-water quality 
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assessment since no single indicator is ideal (11,157). Chemicals have the advantage of low 

detection limits, more rapid sample preparation and analysis times than culture methods, and 

some may be more temporally or geographically stable (11,75). Further, chemicals do not have 

problems of regrowth in the environment (144), though they may degrade (75,158) or persist 

downstream of the effluent (40). However, the relationship between chemical compounds (as an 

indicator of human-derived fecal pollution) and illnesses caused by waterborne human fecal 

pollution (e.g. gastroenteritis) is unknown. The lack of this information limits the utility of 

chemicals as a fecal source marker. This paper seeks to address that gap. 

 To determine if there is a link between chemical concentration and negative health 

impacts associated with exposure to waterborne pathogens, we used data from a large, multi-site 

cohort study.  Our primary objectives were to (1) estimate the association between chemical 

markers of human-derived fecal pollution and self-reported illness among bathers, and (2) 

determine whether chemical markers were able to identify source when used in combination with 

conventional fecal indicator Enterococcus by qPCR and culture. The investigation of an 

association between chemical source tracking markers and incidence of illness is an important 

step in the evaluation of these chemicals to serve as indicators of human fecal material. 

 

Materials and Methods  

Study design and population 

 This study uses data gathered from beachgoers participating in the National 

Epidemiological and Environmental Assessment of Recreational Water (NEEAR) study from 

2003-2005 (56,57).  The NEEAR study was a prospective cohort study that examined 

associations between microbial water quality and swimming associated illnesses in visitors to 
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freshwater and marine beaches impacted by sewage. Participants included in this analysis 

include those enrolled four freshwater beaches: Huntington Beach on Lake Erie near Cleveland, 

Ohio; West Beach on Lake Michigan at Indiana Dunes National Seashore in Portage, Indiana; 

Silver Beach on Lake Michigan near St. Joseph, Michigan; and Washington Park Beach on Lake 

Michigan in Michigan City, Indiana; and one temperate marine beach, Edgewater Beach near 

Biloxi, Mississippi. 

 

Data collection 

 Data collection methods have been described previously (55-57). Briefly: all beachgoers 

were approached as they arrived, and were enrolled once they provided verbal informed consent. 

Each household group completed three surveys, with an adult (≥18 years old) answering 

questions for other household members. Upon arrival, each household completed an enrollment 

questionnaire about illnesses experience in the three days prior to their beach visit. Upon 

departure, participants completed an exit interview about beach activities, water exposure 

(extent, time, duration and location), presence of underlying acute and chronic health conditions 

(including allergies), food and drink consumption, animal contact in the past 48 h, contact with 

sick persons in the past 48 h, and demographic information for each household member.  Follow-

up telephone interviews were conducted 10–12 days after the beach interview to collect 

information about the illness symptoms each household member experienced since the beach 

visit. Interviews were conducted on weekends and holidays between May and September.  

Respondents were ineligible if they had already completed the study in the previous 28 days, 

were unaccompanied minors (<18 years), or did not speak English or Spanish.  
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 The study procedures, questionnaires, protocols and consent process were reviewed and 

approved by the Institutional Review Board (IRB) of the Centers for Disease Control and 

Prevention for the original study. For the analyses in this report, IRB exemption was granted by 

University of North Carolina at Chapel Hill (Study #13-2274).   

 

Swim exposure definitions 

 We were interested in exposure to these potential chemical markers from swimming in 

fecally-contaminated water. Therefore, this analysis was restricted to swimmers who reported 

“body immersion”, defined as immersion to the waist or higher. Non-swimmers (i.e. those who 

reported no water contact) and all participants who reported going in the water but not at least 

having body immersion were excluded because they represent a heterogeneous level of water 

exposure. Other categories of water exposure (i.e. head immersion, those who swallowed water) 

were considered in sensitivity analyses. 

 

Health outcomes 

 In the telephone interview 10-12 days following beach exposure, several health outcomes 

were assessed, consistent with previous reports (56,57,65,98). “Gastrointestinal illness” (GI 

illness) referred to any of the following:  diarrhea (≥3 loose stools in a 24-hour period); 

vomiting; nausea and stomachache; or nausea or stomachache and interference with regular 

activities (missed time from work/regular activities due to illness). Diarrhea was also assessed as 

a stand-alone outcome because it is frequently used as a definition of gastroenteritis in 

population-based surveillance, e.g.(100,101). ‘‘Respiratory illness’’ referred to any two of the 

following: sore throat, cough, runny nose, cold, or fever. ‘‘Rash’’ referred to a rash or itchy skin.  
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‘‘Eye ailments’’ referred to eye infection or watery eye. ‘‘Earache’’ referred to earache, ear 

infection, or runny ears. “Urinary tract infection” (UTI) was also assessed and referred to urinary 

tract infection or burning sensation when urinating. 

 Participants ill within the three days prior to their beach visit were excluded from analysis 

of the health outcome related to their baseline symptoms, but were eligible to be included in 

analyses of other outcomes. 

 

Water sample collection and chemical analysis 

 Water samples for chemical analysis were collected in baked amber glass bottles at 11:00 

AM on weekends and holidays between May and September at each beach. Specifically, at West 

and Huntington beaches, three one-liter water samples were collected in waist-high water (1 m), 

for a total of 3 samples per day. At Silver, Washington Park, and Edgewater beaches, one-liter 

water samples were collected along two transects perpendicular to the shoreline and closest to 

the effluent. Two samples were collected at waist depth and two samples at shin depth (0.3 m 

deep), for a total of 4 samples per day. Four additional quality control (QC) samples were 

collected on alternate weekends. After collection, samples were packed in coolers with ice 

during transport and at ≤4 °C alongside a travel blank (de-ionized water) until the following day, 

when they were packed on dry ice and shipped to USGS National Water Quality Laboratory in 

Lakewood, Colorado and the USGS Organic Geochemistry Research Laboratory in Lawrence, 

Kansas for extraction and analysis. 

 Chemical analysis has been previously described (40). Briefly: because of the different 

physiochemical properties of the chemical compounds, three different analytical methods were 

used. For wastewater compounds and some pharmaceutical compounds, a whole-water sample 
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was extracted using continuous liquid-liquid extraction and then analyzed using gas 

chromatography/mass spectrometry (GC/ MS) (125). Most pharmaceutical compounds were 

extracted by first passing 500 – 1000 ml filtered water through solid-phase extraction cartridges, 

then eluent was concentrated, and the final extract was analyzed using liquid 

chromatography/mass spectrometry (LC/MS) positive-ion electrospray (126). Antibiotic 

compounds were extracted and analyzed by solid-phase extraction using tandem cartridges, and 

analyzed by LC/MS positive-ion electrospray on a single quadrapole mass spectrometer (127). 

Concentrations were reported in μg/L. 

  

Fecal indicator bacteria  

 Intestinal enterococci are validated, nonspecific indicators of fecal pollution used to 

measure water quality throughout the world. Total Enterococcus spp. by qPCR (calibrator cell 

equivalents (CCE)/100 ml) was enumerated following water sample collection and subsequent 

membrane filtration according to previously published protocols (57,102,108).  

 

Statistical analysis  

 We examined the effects of the nine human-associated chemical markers measured at all 

five beaches on self-reported illness among body immersion swimmers; they can be grouped into 

the following broad chemical categories: (1) pharmaceuticals (acetaminophen, caffeine); (2) 

fecal sterols/stanols (cholesterol, beta-sitosterol); (3) compounds associated with household 

waste (bisphenol A, diethoxyoctylphenol, n-n-diethyl-meta-toluamide (DEET)); and (4) 

compounds associated with industrial waste (phenol, tributyl phosphate). Due to a high 

proportion of samples where chemical assays failed to detect a signal (concentrations were below 
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the detection limit) (Table 6.2), each chemical marker was dichotomized by giving it a value of 

‘1’ if it was detected in all samples per day, and 0 otherwise. Thus, the primary exposure of 

interest was the presence/absence of these nine chemical compounds that function as markers of 

human presence in water samples. Alternative classifications of this primary exposure were 

explored in sensitivity analyses. For a secondary analysis, we grouped all 56 chemicals into five 

broad categories:  pharmaceuticals, fecal sterols/stanols, household waste products, industrial 

waste products, and chemicals with a potential for runoff (hereafter, runoff). Prior to grouping, 

the collinearity of each pair-wise combination of chemical markers was investigated using 

Spearman rank correlations. The value of each category was a count of the number of chemical 

compounds belonging to it that were detected in all samples per day. For example, for a given 

beach and day, a value of ‘2’ for the pharmaceutical category meant that there were ‘2’ 

pharmaceutical compounds that were detected in all samples collected that day. Non-swimmers 

represent a distinct group from swimmers and could not have been exposed to chemical 

compounds from water; thus non-swimmers were therefore excluded from the analysis. 

 Potential confounding factors plausibly associated with poor water quality and illness 

identified in published literature or those associated with outcome and available from the 

health/enrollment questionnaire included age; sex; race/ethnicity; swimming within 48 h before 

the beach visit or between the beach visit and telephone interview; allergies; contact with 

animals; contact with other persons with gastrointestinal illness; number of other beach visits; 

any other chronic illnesses (gastrointestinal, skin, asthma); presence of beach festivals; eating 

any food or drink while at the beach; bather density; boat density; and environmental conditions 

such as sunlight, water/air temperature, and rainfall totals from 3pm the previous day to 8 am on 

the current day. Indicator variables representing beach were included in all models to control for 
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differences in baseline illness among beaches. We used directed acyclic graphs (109,110) to 

analyze the potential confounders and identified minimally sufficient adjustment sets for each 

chemical-illness pair: beach, bather density, sand contact, rain at 8A.M., and water temperature 

(for GI, diarrhea, earache, and UTI outcomes); and beach, bather density, rainfall, and sand (for 

respiratory, rash, and eye outcomes). A second adjustment set consisting of the covariates in the 

minimally sufficient set plus age was also evaluated because it can be argued that age 

encompasses certain characteristics associated with swimming exposure, and thus exposure to 

chemicals in water (e.g. children swim longer, swallow more water (56)) as well as being 

strongly associated with most outcomes. Estimates were similar using both adjustment sets, 

therefore we only present estimates using the adjustment set without age for reasons of 

parsimony.  Covariates were coded as follows: beach (categorical: Fairhope, Goddard, 

Huntington, Silver, West, Washington Park), age (0-4, 5-11, 12-19, 20-34, ≥35), mean bathers 

(continuous), sand (binary), rainfall (continuous), and water temperature (continuous). Robust 

standard errors were used to account for dependence of observations within a household (124).   

 To examine the association between human-associated chemical markers and swimming-

associated illness, model-based standardization (116,120-122) was performed to estimate 

standardized marginal risks, risk differences (RD), and 95% confidence intervals (95% CI) using 

the delta method (123) and the total group as the standard. Logistic regression was used to 

estimate predicted probabilities of the outcome for every value of observed confounders and then 

combined as a weighted average separately for both levels of the binary exposure. Thus, the 

effect estimates are estimated using predicted probabilities standardized to the same confounder 

distribution. The predicted probabilities were subtracted to produce a marginal estimate of the 

risk difference comparing chemical marker exposure to no exposure. Modification of these 
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marker-illness effect estimates by water matrix (freshwater vs. saltwater) was of secondary 

interest, so was assessed by stratification. As previously mentioned, we excluded participants ill 

within the three days prior to their beach visit from analysis of the health outcome related to their 

baseline symptoms, but they were eligible to be included in analyses of other outcomes. All 

analyses were completed using SAS version 9.4 (SAS Institute, Inc., Cary, North Carolina) and 

Stata version 13 (StataCorp, College Station, TX). 

  Effect measure modification of the association between Enterococcus assayed by qPCR 

Method 1611 (CCE/ml) and illness was examined to evaluate whether the occurrence of each of 

the chemical markers improved the association of the general indicator with illness. In both the 

primary (chemical marker) and secondary (chemical categories) analyses, Enterococcus was 

treated as the main exposure and the chemical marker/category was the binary modifier. Thus, 

the chemical categories were dichotomized for the modification analyses as follows: a value of 

‘1’ any chemicals belonging to that category were detected in all samples per day, and ‘0’ 

otherwise. For the primary effect measure modification analyses with the general indicator 

Enterococcus, the quantitated values were dichotomized in two ways according to 2012 EPA 

recreational water quality guidelines: above and below a geometric mean of 470 CCE/100ml (for 

an estimated illness rate of 36/1000 primary contact recreators), and above and below a 

geometric mean of 300 CCE/100ml (for an estimated illness rate of 32/1000 primary contact 

recreators) (95). Secondary effect measure modification analyses were also performed with 

Enterococcus coded as a continuous variable (average log10 count of Enterococcus per day 

(CCE/100ml)). Risk difference modification was estimated with product interactions of 

Enterococcus and chemical markers and then assessed by an interaction contrast (i.e., difference 
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of risk differences) (112). The interaction contrast takes on the value of zero when the joint 

effects of two factors are simply additive (112). 

 

Sensitivity Analyses 

 To determine if estimates were robust to different exposure categorizations, we examined 

additional classifications of swimming and chemical exposure.  First, we repeated our analyses 

using two additional definitions of swimmer: as participants who reported immersing their head 

under water, and participants who reported swallowing water. Second, we explored a more 

sensitive binary chemical classification where each chemical was given the value of ‘1’ if it was 

detected in 1 or more samples per day, and 0 otherwise. The data did not permit classifications 

that make use of quantitative values. 

 

Results 

Demographic characteristics 

 Data were available for 17,753 participants at five beaches between 2003 and 2005, 

including 9,109 swimmers (body immersion), 5,591 non-swimmers and 3,053 beach visitors who 

had water contact but no body immersion (Table 6.1). Compared to non-swimmers, more 

swimmers were younger (mean age 23 years vs. 35 years), male (49% vs. 41%), Hispanic (11% 

vs. 8%); and travelled farther to get to the beach (mean of 56 miles vs. 46 miles). Similar 

proportions of swimmers and non-swimmers reported having a chronic illness, and few reported 

acute illnesses in the three days prior to the beach visit. Because non-swimmers may represent a 

group distinct from swimmers in several behavioral characteristics and they would not, by 
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definition, have been exposed to chemical indicators in water, the final analysis was restricted to 

body immersion swimmers only (n=9,109). 

 

Distribution of human-associated chemical markers in recreational waters 

 Chemicals detected by beach. A total of 318 chemical samples were collected over 88 

days: 18 days at Edgewater, Silver, and Washington Park Beaches, 15 days at Huntington Beach, 

and 19 days at West Beach.  Human-associated chemical markers were found at all beaches. 

They were detected in at least 1 sample almost every day samples were collected (87/88 days), 

but rarely detected in all of a day’s samples (27/88 days), and were quantified at low levels 

(Table 6.2). 

 The least amount of chemical contamination occurred at Silver and Washington Park 

beaches, where for 12 and 13 days, respectively, no chemical markers were detected. The 

greatest amount of chemical contamination occurred at Huntington Beach, where at least two 

chemicals were detected in all samples every day chemicals were measured. 

 Prevalence of chemical markers. According to chemical category, non-prescription 

pharmaceuticals were the chemical compounds detected most often, followed by industry 

wastewater products and household wastewater products. Detergents and prescription 

pharmaceuticals were detected least often. Of the 9 chemicals measured at all five beaches, 

DEET, caffeine, and phenol were detected most frequently, in 59%, 54%, and 53% of non-

missing samples respectively (Table 6.2). The proportion of samples with non-detectable (below 

limit of detection) concentrations exceeded 40% for all chemicals, ranging from a low of 41% 

for DEET to a high of 93% for diethoxyoctylphenol. Average daily concentrations varied widely 

by type of chemical and beach, as evidenced by geometric means ranging from 0.019 μg/L for 
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acetaminophen to 1.438 μg/L for cholesterol. Of the group of 11 chemicals measured at 4 out of 

the 5 beaches, cotinine was the only chemical detected in more than 50% of non-missing 

samples; the remaining chemicals were detected in less than 40% of samples. Average daily 

concentrations among these 11 chemicals were smaller than those in the 9 chemicals at each 

beach; geometric means ranged from 0.0004 μg/L for pharmaceuticals cotinine and 

diphenhydramine to 0.481 μg/L for monoethoxyoctylphenol. The remaining chemicals were 

detected infrequently and/or at low concentrations. For our investigation of chemicals and 

illness, we focused on the subset of 9 chemicals measured at all 5 beaches.   

 

Illness risk associated with presence/absence of human-associated chemical markers 

 Frequencies and standardized marginal estimates of the RD (95% CI) comparing 

exposure to each chemical marker vs. no exposure and illness are shown in Figure 3 and 

Supplemental Table B.1. In general, across all beaches, RD estimates crossed the null, and 95% 

CI were narrow. We observed little evidence of association between chemical markers and 

illness but several patterns were visible. For the more plausible outcomes of GI illness and 

diarrhea, bisphenol A and cholesterol showed positive associations of approximately 1.7% and 

1.0% respectively. Additional positive associations were seen for less plausible non-enteric 

outcomes such as respiratory illness and rash with tributyl phosphate exposure; for rash with 

phenol exposure; and earache with acetaminophen and caffeine exposure. Inverse associations 

for respiratory illness were also observed with exposure to bisphenol A (RD=-1.9%; -3.0%, -

0.5%), phenol (RD=-2.4%; -4.4%, -0.3%; respectively), and cholesterol (RD=-1.8%; -3.0%, -

0.5%). Due to a high percentage of non-detects, associations with diethoxyoctylphenol were 

imprecise and unavailable for associations with rash and UTI, the least prevalent outcomes. 
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Modification of Enterococcus-illness association with chemical markers as indicators of source 

 We investigated whether the presence of chemical markers of human fecal contamination 

or human presence strengthened the association of the general Enterococcus indicator with 

illness. Interaction contrast estimates (95% CI) for the association of Enterococcus 

(dichotomized at < and ≥470 CCE/ml) and GI illness, diarrhea, and respiratory illness modified 

by each chemical marker are shown in Table 6.3; the remaining outcomes are in Supplemental 

Table B.2. Overall, interaction contrast estimates were imprecise and did not suggest the 

presence of modification between strata of most chemical markers, with the exception of phenol. 

Exposure to phenol modified the association for GI illness by 5.2% (ICR=5.2%; 0.3%, 10.2%) 

and for eye ailments by 3.0% (ICR=3.0%; 0.8%, 5.2%). Modification by phenol was also 

suggested for associations with Enterococcus dichotomized at < and ≥300 CCE/ml and 

respiratory illness (ICR=4.2%; 1.0%, 7.4%) and eye ailments (ICR=2.4%; 0.1%, 4.6%), but not 

GI illness (ICR=4.4%; -0.2%, 9.1%) (Supplemental Table B.3).   

 Results for modification with Enterococcus assessed as a daily average QPCR CCE 

concentration (CCE/100ml) are shown in Supplemental Table B.4. As shown previously in 2008 

and 2010 by Wade et al. (56,57), we see an increased risk of GI illness and diarrhea with each 1-

log10 increase in daily average QPCR CCE Enterococcus concentration (RD=1.3% (0.2%, 2.4%) 

and RD=1.1% (0.4%, 1.7%), respectively) (Supplemental Table B.4a-b). No modification by 

phenol was observed for GI illness, respiratory illness or eye ailment. Other chemicals did not 

show strong or consistent modification of the association between Enterococcus and the 

remaining outcomes. Interaction contrast estimates were imprecise overall, particularly for 

chemicals that were infrequently detected (e.g. acetaminophen, beta-sitosterol, and 

diethoxyoctylphenol).  
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Illness risk associated with categories of human-associated chemical markers  

 Frequencies and standardized marginal estimates of the RD (95% CI) comparing 

participants exposed to increasing counts of chemicals detected within each category vs. no 

chemicals detected in that category for each illness outcome are shown in Supplemental Table 

B.5. As the number of chemicals detected increased in each category, the adjusted risk of illness 

for most outcomes was relatively flat, indicating that a dose-response relationship was not 

present. Notable exceptions include chemicals in the household wastewater category, which 

showed a peak in adjusted risk of illness at 4 or 5 chemicals for GI illness, diarrhea, respiratory 

illness, and eye ailments. Across all beaches, we observed little evidence to suggest an 

association between chemical categories and illness.  

 

Modification of Enterococcus-illness association with categories of chemical markers as 

indicators of source 

 Risk difference estimates for the association between Enterococcus and illness were 

similar among participants exposed and unexposed to chemical marker categories; no 

modification of RD estimates was observed. This was true for Enterococcus assessed 

dichotomously at < and ≥470 CCE/ml (Supplementary Table B.6) and continuously 

(Supplementary Table B.7). Interaction contrast estimates were imprecise overall. 

 

Sensitivity analyses 

 Because intensity of water contact might determine the extent of exposure to human-

associated chemical markers, we also repeated our analysis among those who had immersed their 

head in water (Supplemental Table B.8) and among those who swallowed water (Supplemental 
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Table B.9). Estimates for head immersion swimmers were consistent with what was found for 

body immersion swimmers, but more imprecise. Estimates for swimmers who swallowed water 

were generally farther from the null, and very imprecise. 

 Exploration of a more sensitive, less stringent categorization of exposure showed that RD 

estimates were moderately affected by choice of dichotomization category (Supplemental Tables 

B.10). Overall results were similar to the primary analysis but greater in magnitude (though not 

always in the same direction (e.g. bisphenol A and GI illness)) and precision. Similar to the 

primary analysis, most RD estimates crossed the null and had narrow 95% CIs; little evidence of 

association was observed except for respiratory illness. As before, cholesterol and phenol were 

associated with decreased risk of respiratory illness (RD=-3.0%; -4.3%, -1.7% and RD=-3.7%; -

5.2%, -2.2%, respectively). However, bisphenol A was no longer associated with respiratory 

illness. Instead DEET was associated with a decreased risk of respiratory illness (RD=-1.4%; -

2.7%, -0.2%). Additional chemicals that showed suggestive evidence of association included 

acetaminophen and diarrhea, DEET and eye ailments, and caffeine and rash/earache. 

 

Discussion 

 We analyzed exposure to a select group of anthropomorphic chemical markers as 

indicators of human fecal contamination and incidence of swimming-associated illnesses in a 

well-characterized cohort of visitors to US beaches. Overall our findings demonstrate little clear 

evidence that the individual chemical markers or categories of chemical markers were associated 

with swimming-associated illness, though we observed a pattern of increased risks for several 

outcomes: GI illness and bisphenol A, GI illness and cholesterol, respiratory illness and 

household wastewater products, respiratory illness and tributyl phosphate, and rash and tributyl 
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phosphate. At the same time, several implausible, inverse associations were observed with 

respiratory illness. Phenol was the only chemical that may act as a modifier in associations 

between the currently-used FIB, general Enterococcus, and GI illness, eye ailments and 

respiratory illness.  

 To the best of our knowledge, this study is the first to investigate the illness risks 

associated with exposure to chemical markers of human fecal pollution. This research question is 

of public health importance because there is a recognized need for alternative fecal indicators (1) 

that can be used to distinguish the sources of fecal pollution to help direct remediation efforts 

efficiently; (2) whose survival and fate correlate better with viral pathogens that cause 

waterborne illness; and (3) that can be rapidly assessed so that beach advisory and closing 

decisions can be made in real-time (11,29,40,151,159). While a wide range of chemicals specific 

to human wastewater have been investigated for potential differentiation of fecal sources in 

aquatic environments (40,42,45,73,156,159), the relationship of these chemical compounds to 

the incidence of illness has not been determined. In this study, some of the most promising 

chemical markers in the literature – caffeine and fecal sterols/stanols – were measured at all 5 

beaches. Though detected relatively frequently, the concentrations detected were low and did not 

show an association with risk of any measured health illness. No chemical marker investigated 

was associated with enteric illnesses, which are the illnesses most commonly associated with 

swimming in fecally-contaminated water (55-57,60,61,99), though patterns of increased illness 

were identified with bisphenol A, an industrial wastewater compound used in the manufacture of 

polycarbonate resins; cholesterol, a plant and animal sterol; and tributyl phosphate, an 

antifoaming agent and flame retardant. 
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 Several chemical markers showed an inverse association with respiratory illness. They 

included bisphenol A; phenol, a disinfectant and industrial wastewater compound; and 

cholesterol. The magnitudes of the inverse associations were small (~2%) and the significance of 

this finding is unclear. Similarly, the significance of the finding that phenol modified the 

association between binary Enterococcus and several illnesses is also unclear. Given that 

modification by phenol was not present with continuous Enterococcus, this finding may be an 

artifact of dichotomization, though the cut-points used coincide with recreational water quality 

criteria levels set by the EPA for determining fecal contamination that result in illness (95). 

Although there are no epidemiology studies that have examined the relationship between 

chemical markers and incidence of illness, several studies have identified specific chemicals and 

groups of chemicals that have the greatest potential to assess human-origin pollution (see (11) for 

a review). Bisphenol A, phenol, cholesterol, and tributyl phosphate were among 35 chemicals 

suggested as potentially useful indicators of human fecal contamination in an extensive survey of 

110 chemicals from wastewater effluent samples collected in 10 rivers in the US (40) due to 

being abundant and present in sufficient concentration. In fact, chemical markers investigated in 

this study included 27 of the 35 compounds suggested as potential indicators by Glassmeyer et 

al. The finding that most chemical markers we investigated were not associated with illness is 

not unexpected, given that chemicals specific to human waste streams are often at low 

concentrations and are further diluted below detection limits once wastewater enters 

environmental waters (11). This was true in our study, where, although human-associated 

chemical markers were detected in at least 1 sample almost every day samples were collected, 

chemical concentrations were in parts per billion or smaller (Table 6.2). For this reason, it is 

unlikely that human-associated chemical compounds will replace microbial source tracking 
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markers in determining source of fecal contamination. Chemical markers will most likely be 

used in combination with microbial source tracking fecal markers or to validate results obtained 

using microbial markers, as part of a source-tracking “toolbox” approach. In such an approach, a 

suite of source tracking tools that includes both microbial and chemical human-associated 

indicators is more likely to provide information about source-specificity than any one indicator 

(11,75,144,151,159).  Each indicator has varying patterns of fate, transport, survival, and 

persistence that together may yield greater confidence in an assessment of water quality source. 

 This study has several strengths and limitations. For our exposure, we dichotomized 

exposure into presence/absence based on the number of daily samples in which the chemical 

concentration was above zero (where presence means detected in all samples).  This measure 

then became a proxy for an individual swimmer’s exposure to chemical markers. Although these 

dichotomized daily measures may not be indicative of actual individual exposure, characterizing 

individual exposure would have been difficult, costly and impractical given the size of the 

NEEAR cohort. The study design allowed for the collection of 3-4 water samples at two water 

depths (shin height (0.3m) and waist height (1.0m)) in an attempt to capture some of the variety 

of chemical exposures a participant may experience in the water at a time when participants 

would likely have arrived. The cohort design also allowed us to measure water quality over a 

wide range of study days, so we were able to capture varying water quality conditions over the 

summer months. Nevertheless, exposure classification based on a single time point is imperfect 

and the results may reflect residual or unmeasured confounding. 

 Related to that, though measured quantitatively, a high proportion of chemical samples 

were below the limit of detection and could not be analyzed quantitatively, thus our ability to 

make inferences was limited. While quantitative categorizations of exposure were explored, 
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ultimately the low frequencies of detection necessitated the decision to dichotomize. To mitigate 

these potential limitations, sensitivity analyses were performed with exposure dichotomized 

using a more sensitive definition, where a chemical was given the value of ‘1’ if it was detected 

in ≥1 samples collected that day. The choice of a dichotomization cutpoint moderately affected 

the estimation of RD estimates by affecting the proportion of cases with chemical exposure. 

When using the more sensitive, but less stringent categorization where ‘1’ means detected in 1 or 

more samples per day, the proportion of cases with chemical exposure increased substantially in 

some cases. A striking example is diethoxyoctylphenol, whose estimates were unstable, 

imprecise, and often unable to be estimated when using the more sensitive categorization, but 

well-behaved when using the less sensitive categorization. This issue was likely exacerbated 

because chemicals were not present in high levels. Ideally the amount of non-detection would 

have been low enough to permit us to use quantitative exposure levels. Future studies should 

make every effort to use quantitative measures of chemical exposure, particularly when 

concentrations are low. 

 An additional limitation was a reliance on non-specific, self-reported illness symptoms 

(e.g. eye ailment) as outcomes rather than confirmed diagnoses. This was done in an effort to 

reflect the diversity of symptoms potentially associated with recreational water exposure, 

especially since most are self-limiting and infrequently result in doctor’s visits. Such broadly-

defined symptoms may have obscured more specific effects of human-associated fecal 

indicators. However, the prospective nature of the study allowed us to determine temporality and 

the 10-12 day follow up period reflected the incubation time for likely pathogens that would 

cause the symptoms of interest. It is possible that our health outcomes may also have been 
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affected by recall bias, though it is unlikely that recall would be differential by varying levels of 

water quality/chemical exposure.   

 

Conclusion 

 Despite these limitations, findings from this study of beach sites impacted by sewage 

effluent highlight the need for further epidemiology studies to investigate the relationship 

between human-associated chemical markers and swimming-related illnesses. Few human-

associated chemicals were associated with swimming-associated illness; however, bisphenol A, 

cholesterol, tributyl phosphate, and phenol may deserve further study because we observed a 

pattern of increased risk for several outcomes. Similarly, phenol was the only chemical to 

improve associations with swimming-associated illness compared to general, non-source specific 

Enterococcus indicators already in use at beach sites. These findings may have been influenced 

by low/no abundance of chemical markers or indicate that human-associated markers are better 

suited to characterize risk at sites impacted by non-point sources of fecal contamination. To our 

knowledge, this is the first study to evaluate associations between exposure to human-associated 

chemical markers of fecal contamination and health outcomes among swimmers. This study 

suggests that additional research is needed to support the use of chemical biomarkers to identify 

human sources contributing to fecal pollution of recreational water.  

 

Disclaimer: The views expressed in this paper do not necessarily reflect EPA policy.  
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Tables and Figures 

Figure 6.1. Freshwater and marine beach sites 
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Table 6.1. Characteristics of NEEAR participants by body immersion status (n=17,753) 

  No water contact Water contact 

  

No body 

immersion†  

Body 

immersion† 

(n=5591) (n=3053) (n=9109) 

  N* (%) N* (%) N* (%) 

Sex 
    Male 2315 (41) 1118 (37) 4437 (49) 
    Female 3276 (59) 1933 (63) 4652 (51) 
   Missing 0 2 20 
Age in years (mean, SD, min/max) 34.8 (17), 0/93 32.3 (17), 0/85 23.4 (17), 0/103 

    0-4 283 (5) 248 (8) 851 (9) 
    5-11 241 (4) 235 (8) 2115 (23) 
    12-19 606 (11) 291 (10) 1424 (16) 
    20-34 1440 (26) 743 (24) 1978 (22) 
    35 and over 2945 (53) 1478 (48) 2496 (27) 
   Missing 76 58 245 
Race   
    White 4695 (84) 2626 (86) 7434 (82) 
    Black 276 (5) 137 (4) 357 (4) 
    Asian 96 (2) 52 (2) 112 (1) 
    American Indian 15 (0) 14 (0) 20 (0) 
    Hispanic 428 (8) 163 (5) 975 (11) 
    Multi-race 39 (1) 22 (1) 106 (1) 
    Other 34 (1) 28 (1) 68 (1) 
   Missing 8 11 37 
Illnesses in the 3 days prior to 
beach visit 
    GI illness 150 (3) 70 (2) 163 (2) 
    Vomiting 46 (1) 32 (1) 88 (1) 
    Sore throat 295 (5) 174 (6) 515 (6) 
    Earache 74 (1) 25 (1) 129 (1) 
    Eye ailment 33 (1) 13 (0) 41 (0) 
    Rash 124 (2) 60 (2) 203 (2) 
    Urinary tract infection 27 (0) 14 (0) 38 (0) 
History of chronic GI, skin, 
respiratory illness or allergies 

1583 (28) 865 (28) 2293 (25) 

Miles travelled to beach 
    0-20 2987 (53) 1450 (47) 3765 (41) 
    20-60 1503 (27) 843 (28) 2979 (33) 
    60-100 425 (8) 300 (10) 983 (11) 
    >100 614 (11) 442 (14) 1278 (14) 
   Missing 62 18 104 
Swam in last week 1446 (26) 922 (30) 3848 (42) 

Sand contact 
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  No water contact Water contact 

  

No body 

immersion†  

Body 

immersion† 

(n=5591) (n=3053) (n=9109) 

  N* (%) N* (%) N* (%) 

    Dug in sand 1288 (23) 1300 (43) 5179 (57) 
    Buried body in sand 170 (3) 201 (7) 1469 (16) 
Consumed food 2629 (47) 1677 (55) 5729 (63) 

Animal contact 2 days prior to or 
after beach visit, or between beach 
visit and phone interview 

4120 (74) 2349 (77) 7022 (77) 

All beaches 
    Edgewater Beach 305 (5) 202 (7) 639 (7) 
    Huntington Beach 1535 (27) 548 (18) 757 (8) 
    Silver Beach 2224 (40) 1328 (44) 4281 (47) 
    West Beach 689 (12) 468 (15) 1665 (18) 
    Washington Park Beach 838 (15) 507 (17) 1767 (19) 

NEEAR, National Environmental and Epidemiologic Assessment of Recreational Water study; 
N, number; SD, standard deviation  
* Sums may not add up to totals because of missing values. 

† Swimmers were those with body immersion (defined as immersion to the waist or higher). 
Those without water contact or with water contact but not body immersion were not included in 
the analysis but are shown in this descriptive table for completeness.
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Table 6.2. Concentrations of chemicals in the NEEAR study (µg/L) 

    N 
samples 
collected 
at beach 

N samples 
collected 
of 
chemical* 

Chemical samples detected Missing 
N 

Non-
detects  

N (%)† 

Category N Min Max Geo 
Mean 

Chemicals measured at all 5 beaches                 
Acetaminophen Pharmaceutical 318 315 67 (21) 0.0005 0.5 0.019 3 248 (79) 
Beta sitosterol Fecal sterol/stanol 318 290 48 (17) 0.4 2 1.075 28 242 (83) 
Bisphenol A Industrial waste 318 278 92 (33) 0.06 1 0.185 40 186 (67) 
Caffeine Pharmaceutical 318 315 171 (54) 0.0004 0.3 0.021 3 144 (46) 
Cholesterol Fecal sterol/stanol 318 290 132 (46) 0.2 20 1.438 28 158 (54) 
Diethoxyoctylphenol Detergent/ Household waste 318 290 20 (7) 0.05 0.2 0.096 28 270 (93) 
DEET 
 

Insect repellent /Household 
waste 

318 
 

290 
 

172 (59) 
 

0.01 
 

20 
 

0.074 
 

28 
 

118 (41) 
 

Phenol Industrial waste 318 286 151 (53) 0.08 3 0.512 32 135 (47) 
Tributyl phosphate Flame retardant/ Household 

waste 
318 

 
290 

 
116 (40) 
 

0.02 
 

0.2 
 

0.045 
 

28 
 

174 (60) 
 

Chemicals measured at 4 beaches                 
2-methylnaphthalene PAH/ Runoff 261 240 18 (8) 0.01 0.2 0.039 21 222 (93) 
Cotinine Pharmaceutical 246 246 128 (52) 0.0001 0.01 0.004 0 118 (48) 
Diphenhydramine Pharmaceutical 261 258 19 (7) 0.0001 0.04 0.004 3 239 (93) 
Fluoranthene PAH/ Runoff 246 225 60 (27) 0.003 4 0.027 21 165 (73) 
Isophorone Industrial waste 261 240 35 (15) 0.005 0.07 0.013 21 205 (85) 
Metolachlor Pesticide; runoff  246 226 86 (38) 0.02 0.5 0.062 20 140 (62) 
Monoethoxyoctylphenol Detergent/ Household waste 246 222 9 (4) 0.07 0.7 0.481 24 213 (96) 
Naphthalene PAH/ Runoff 261 240 25 (10) 0.01 0.2 0.042 21 215 (90) 
P-cresol Inudstrial waste product 246 221 22 (10) 0.01 0.6 0.038 25 199 (90) 
Phenanthrene PAH/ Runoff 261 240 23 (10) 0.006 2 0.028 21 217 (90) 
Pyrene PAH/ Runoff 246 225 57 (25) 0.003 3 0.026 21 168 (75) 

Chemicals measured at 3 beaches                 

1,7-dimethylxanthine Pharmaceutical 174 174 31 (18) 0.02 0.1 0.038 144 143 (82) 
1-methylnaphthalene PAH/ Runoff 189 172 13 (8) 0.01 0.2 0.033 146 159 (92) 
3-beta-coprostanol Fecal sterol/stanol 174 161 4 (2) 0.6 0.8 0.670 157 157 (98) 
Beta-stigmastanol Fecal sterol/stanol 174 158 5 (3) 0.4 1 0.784 160 153 (97) 
Diethoxynonylphenol (total) Detergent/ Household waste 174 157 8 (5) 1 3 1.883 161 149 (95) 
Fluoxetine Pharmaceutical 189 189 10 (5) 0.01 0.2 0.033 129 179 (95) 
Tri(2-chloroethyl) phosphate Flame retardant/ Household 

waste 
174 

 
157 

 
9 (6) 
 

0.02 
 

0.07 
 

0.040 
 

161 
 

148 (94) 
 

Triclosan Household waste 189 175 9 (5) 0.02 0.2 0.073 143 166 (95) 
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    N 
samples 
collected 
at beach 

N samples 
collected 
of 
chemical* 

Chemical samples detected Missing 
N 

Non-
detects  

N (%)† 

Category N Min Max Geo 
Mean 

Triphenyl phosphate Industrial waste 174 157 15 (10) 0.005 0.09 0.017 161 142 (90) 

Chemicals measured at 2 beaches                 

2,6-dimethylnaphthalene PAH Runoff 117 107 12 (11) 0.006 0.03 0.013 211 95 (89) 
4-tert-octylphenol Detergent/ Household waste 129 115 2 (2) 0.08 0.2 0.126 203 113 (98) 
AHTN Fragrance/ Household waste 144 132 25 (19) 0.01 0.08 0.020 186 107 (81) 
Anthracene PAH/ Runoff 117 111 4 (4) 0.04 0.8 0.204 207 107 (96) 
Benz(a)pyrene PAH/ Runoff 102 93 6 (6) 0.01 2 0.059 225 87 (94) 
Benzophenone Fragrance/ Household waste 117 107 45 (42) 0.008 0.2 0.028 211 62 (58) 
Camphor Fragrance/ Household waste 117 107 11 (10) 0.006 0.01 0.009 211 96 (90) 
Carbamazapine Pharmaceutical 102 102 16 (16) 0.0003 0.02 0.006 216 86 (84) 
Codeine Pharmaceutical 117 117 5 (4) 0.003 0.01 0.005 201 112 (96) 
D-limonene Household waste 117 107 5 (5) 0.01 0.03 0.014 211 102 (95) 
Pentachlorophenol Industrial waste 117 111 1 (1) 0.2 0.2 0.200 207 110 (99) 
Tri(2-butoxyethyl) 
phosphate 

Flame retardant/ Household 
waste 

117 107 29 (27) 0.1 6 0.495 211 78 (73) 

Tri(dichloroisopropyl) 
phosphate 

Flame retardant/ Household 
waste 

117 107 20 (19) 0.01 0.09 0.041 211 87 (81) 

Chemicals measured at 1 beach 

  
                

1,4-dichlorobenzene Household waste 45 43 10 (23) 0.04 0.4 0.111 275 33 (77) 
5-methyl-1h-benzotriazole Industrial waste 72 64 1 (2) 0.5 0.5 0.500 254 63 (98) 
Anthraquinone Pesticide; runoff product 72 64 10 (16) 0.02 0.05 0.032 254 54 (84) 
Carbazole Industrial waste 45 43 1 (2) 0.2 0.2 0.180 275 42 (98) 
Dehydronifedipine Pharmaceutical 57 57 4 (7) 0.001 0.002 0.002 261 53 (93) 
Diltiazem Pharmaceutical 72 72 1 (1) 0.004 0.004 0.004 246 71 (99) 
Isopropylbenzene (cumene) Industrial waste 72 64 6 (9) 0.006 0.02 0.012 254 58 (91) 
Menthol Fragrance/ Household waste 72 64 6 (9) 0.02 0.03 0.024 254 58 (91) 
Methyl salicylate Fragrance/ Household waste 72 64 13 (20) 0.007 0.02 0.010 254 51 (80) 
Miconazole Pharmaceutical 72 72 1 (1) 0.007 0.007 0.007 246 71 (99) 
Para-nonylphenol (total) Detergent/ Household waste 72 68 1 (1) 0.3 0.3 0.300 250 67 (99) 
Sulfamethoxazole Pharmaceutical 45 45 4 (9) 0.0003 0.001 0.001 273 41 (91) 
Tetrachloroethylene Industrial waste 72 64 3 (5) 0.01 0.02 0.016 254 61 (95) 
Trimethoprim Pharmaceutical 45 45 1 (2) 0.003 0.003 0.003 273 44 (98) 

Min, minimum; Max, maximum; N, number; PAH, polycyclic aromatic hydrocarbon. * Number of samples collected of chemical = 
Number of chemical samples detected + Non-detects. † Percent of non-detects out of non-missing samples collected of chemical 
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Figure 6.2. Standardized risk differences (95% CI) for the association between illness and 
human-associated chemical markers (detected in all daily samples vs. <all) among body 
immersion swimmers in all beaches 

 
NA, not able to estimated.* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain
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Table 6.3(a-c). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 470 CCE/100ml for an illness rate of 36/1000) with chemical markers 
(detected in all daily samples vs. <all) among body immersion swimmers in all beaches 

GI Illness 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- Main assoc 0.7% (-2.3%, 3.6%) 

  Acetaminophen              

Not detected <470 641 7884 8.6 Ref 
≥470 57 457 10.3 1.7% (-1.9%, 5.3%) 

Detected in all <470 43 383 9.2 Ref 
≥470 13 150 6.6 -2.5% (-7.4%, 2.3%) -4.3% (-10.4%, 1.8%) 

Beta-sitosterol             
Not detected <470 640 7750 8.6 Ref 

≥470 63 528 9.5 1.0% (-2.3%, 4.2%) 
Detected in all <470 39 428 8.9 Ref 

≥470 7 79 7.6 -1.2% (-8.0%, 5.5%) -2.2% (-9.7%, 5.3%) 

Bisphenol A             
Not detected <470 562 6800 8.4 Ref 

≥470 66 565 9.2 0.8% (-2.2%, 3.9%) 
Detected in all <470 110 1297 10.0 Ref 

≥470 4 42 8.9 -1.1% (-10.7%, 8.4%) -1.9% (-11.6%, 7.8%) 

Caffeine             
Not detected <470 502 6593 8.5 Ref 

≥470 41 287 11.6 3.1% (-1.6%, 7.8%) 
Detected in all <470 182 1674 8.8 Ref 

≥470 29 320 7.5 -1.3% (-4.9%, 2.2%) -4.4% (-10.1%, 1.3%) 

Cholesterol             

Not detected <470 461 5931 8.3 Ref 
≥470 31 292 8.9 0.5% (-3.4%, 4.4%) 

Detected in all <470 218 2247 9.2 Ref 
≥470 39 315 10.0 0.8% (-3.3%, 4.9%) 0.3% (-5.0%, 5.5%) 

DEET             
Not detected <470 474 6081 8.7 Ref 

≥470 10 108 7.7 -1.0% (-6.9%, 4.9%) 
Detected in all <470 205 2097 8.5 Ref 

≥470 60 499 9.6 1.1% (-2.2%, 4.3%) 2.1% (-4.4%, 8.6%) 

Diethoxyoctylphenol           
Not detected <470 672 8123 8.6 Ref 

≥470 70 607 9.3 0.7% (-2.3%, 3.6%) 
Detected in all <470 7 55 9.0 Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 487 6284 9.4 Ref 

≥470 22 241 6.4 -3.0% (-7.1%, 1.1%) 
Detected in all <470 192 1894 7.3 Ref 

≥470 48 366 9.5 2.3% (-1.2%, 5.7%) 5.2% (0.3%, 10.2%) 

Tributyl phosphate           
Not detected <470 609 7384 8.7 Ref 

≥470 52 413 9.5 0.7% (-2.7%, 4.1%) 
Detected in all <470 70 794 7.8 Ref 

≥470 18 194 8.1 0.4% (-4.3%, 5.0%) -0.4% (-5.9%, 5.2%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table 6.3(b). Diarrhea 
Diarrhea 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- Main assoc 1.1% (-1.5%, 3.7%) 

  Acetaminophen              

Not detected <470 415 7884 5.7 Ref 
≥470 46 457 7.9 2.2% (-1.0%, 5.5%) 

Detected in all <470 32 383 6.5 Ref 
≥470 10 150 4.5 -2.1% (-6.0%, 1.9%) -4.3% (-9.4%, 0.8%) 

Beta-sitosterol             
Not detected <470 410 7750 5.6 Ref 

≥470 51 528 7.3 1.7% (-1.3%, 4.6%) 
Detected in all <470 33 428 6.9 Ref 

≥470 5 79 5.5 -1.4% (-7.2%, 4.5%) -3.0% (-9.6%, 3.5%) 

Bisphenol A             
Not detected <470 364 6800 5.5 Ref 

≥470 52 565 6.6 1.1% (-1.6%, 3.7%) 
Detected in all <470 75 1297 7.3 Ref 

≥470 4 42 9.1 1.7% (-8.1%, 11.6%) 0.7% (-9.3%, 10.6%) 

Caffeine             
Not detected <470 319 6593 5.9 Ref 

≥470 33 287 8.4 2.5% (-1.6%, 6.6%) 
Detected in all <470 128 1674 5.3 Ref 

≥470 23 320 5.3 0.0% (-2.9%, 2.9%) -2.5% (-7.2%, 2.2%) 

Cholesterol             

Not detected <470 281 5931 5.3 Ref 
≥470 26 292 6.8 1.5% (-2.0%, 5.0%) 

Detected in all <470 162 2247 6.5 Ref 
≥470 30 315 7.4 0.9% (-2.7%, 4.5%) -0.6% (-5.2%, 4.0%) 

DEET             
Not detected <470 292 6081 5.5 Ref 

≥470 8 108 6.2 0.7% (-5.0%, 6.4%) 
Detected in all <470 151 2097 6.1 Ref 

≥470 48 499 7.4 1.3% (-1.7%, 4.3%) 0.6% (-5.6%, 6.8%) 

Diethoxyoctylphenol           
Not detected <470 438 8123 5.7 Ref 

≥470 56 607 6.8 1.1% (-1.5%, 3.7%) 
Detected in all <470 5 55 5.5 Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 295 6284 5.7 Ref 

≥470 18 241 5.3 -0.5% (-4.2%, 3.3%) 
Detected in all <470 148 1894 5.7 Ref 

≥470 38 366 8.0 2.3% (-1.2%, 5.8%) 2.8% (-1.8%, 7.3%) 

Tributyl phosphate           
Not detected <470 394 7384 5.8 Ref 

≥470 41 413 6.7 0.9% (-2.1%, 3.8%) 
Detected in all <470 49 794 5.3 Ref 

≥470 15 194 7.0 1.7% (-2.8%, 6.2%) 0.9% (-4.3%, 6.0%) 

NA, not able to estimated 
* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table 6.3(c). Respiratory illness 
Respiratory Illness 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- Main assoc -1.8% (-4.2%, 0.6%) 

  Acetaminophen              

Not detected <470 474 7628 6.1 Ref 
≥470 17 441 4.2 -1.9% (-4.3%, 0.5%) 

Detected in all <470 25 377 6.9 Ref 
≥470 6 148 5.2 -1.7% (-9.2%, 5.7%) 0.1% (-7.7%, 8.0%) 

Beta-sitosterol             
Not detected <470 466 7496 6.1 Ref 

≥470 19 509 4.1 -2.0% (-4.7%, 0.7%) 
Detected in all <470 21 423 5.8 Ref 

≥470 4 80 5.5 -0.4% (-6.1%, 5.4%) 1.6% (-4.8%, 8.0%) 

Bisphenol A             
Not detected <470 429 6577 6.5 Ref 

≥470 20 545 4.1 -2.4% (-5.0%, 0.1%) 
Detected in all <470 57 1260 4.4 Ref 

≥470 3 44 6.1 1.7% (-5.4%, 8.7%) 4.1% (-3.2%, 11.5%) 

Caffeine             
Not detected <470 385 6388 6.1 Ref 

≥470 11 282 4.3 -1.8% (-5.1%, 1.6%) 
Detected in all <470 114 1617 6.3 Ref 

≥470 12 307 4.4 -1.9% (-5.5%, 1.7%) -0.1% (-5.1%, 4.8%) 

Cholesterol             

Not detected <470 378 5730 6.6 Ref 
≥470 14 280 5.4 -1.2% (-5.3%, 3.0%) 

Detected in all <470 109 2189 4.9 Ref 
≥470 9 309 3.1 -1.9% (-4.1%, 0.4%) -0.7% (-5.3%, 4.0%) 

DEET             
Not detected <470 369 5874 6.3 Ref 

≥470 3 102 2.7 -3.6% (-6.7%, -0.6%) 
Detected in all <470 118 2045 5.6 Ref 

≥470 20 487 4.5 -1.1% (-4.0%, 1.8%) 2.6% (-1.6%, 6.7%) 

Diethoxyoctylphenol           
Not detected <470 483 7866 6.1 Ref 

≥470 23 589 4.4 -1.8% (-4.2%, 0.7%) 
Detected in all <470 4 53 5.8 Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 394 6079 7.3 Ref 

≥470 9 233 3.2 -4.1% (-7.6%, -0.6%) 
Detected in all <470 93 1840 3.8 Ref 

≥470 14 356 3.3 -0.6% (-2.7%, 1.5%) 3.5% (-0.4%, 7.5%) 

Tributyl phosphate           
Not detected <470 428 7147 5.9 Ref 

≥470 12 401 3.3 -2.6% (-5.3%, 0.1%) 
Detected in all <470 59 772 7.8 Ref 

≥470 11 188 8.0 0.2% (-5.9%, 6.2%) 2.8% (-3.8%, 9.3%) 

NA, not able to estimated 
* Adjusted for beach, mean bathers, sand, rain 
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CHAPTER 7. CONCLUSIONS 

 

Summary of overall study aims and findings 

This study examined the associations between human-associated Bacteroides and 

chemical markers of fecal contamination, and the risk of swimming-associated illness among 

body immersion swimmers using a large prospective cohort. We estimated risk differences for 

exposure to four Bacteroides assays: HumM2, HF183, BsteriF1, and BuniF2 in the first aim. In 

the second aim, our primary analysis estimated risk differences for exposure to nine chemicals 

(acetaminophen, caffeine, cholesterol, beta-sitosterol, bisphenol A, diethoxyoctylphenol, DEET, 

phenol, and tributyl phosphate) and five chemical categories (pharmaceuticals, fecal 

sterols/stanols, household waste products, industrial waste products, and chemicals with a 

potential for runoff). For both aims, we also investigated whether the human marker modified the 

association between general Enterococcus and each illness. 

 To accomplish the first aim, we estimated risk differences for body immersion swimmers 

who swam on days when human-associated Bacteroides markers were detected in 2 or more 

samples in the water vs. on days when markers were detected in 0-1 samples. Among body 

immersion swimmers, we observed suggestive associations between risk of GI illness, diarrhea, 

and respiratory illness and exposure to the human-associated Bacteroides marker BsteriF1. We 

did not observe consistent associations between disease risk from fecally-contaminated water 

and occurrence of other human-associated Bacteroides markers, nor did we see an improvement 
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over general Enterococcus at beaches impacted by human sources of fecal contamination. 

Patterns in disease risk were largely similar when stratified by water matrix (freshwater vs. 

saltwater). Sensitivity analyses indicated that risk estimates could be improved when combining 

multiple Bacteroides markers, although a clear dose-response pattern still did not emerge.  

 Results from our first aim were unexpected in light of findings from previous NEEAR 

findings that Enterococcus by qPCR was associated with an increased risk of GI illness in 

sewage-impacted freshwater and marine beaches, and general Bacteroides qPCR was associated 

with increased risk of GI illness in sewage-impacted marine beaches (56,57).  However, there are 

a number of plausible explanations. Human-associated Bacteroides markers used in this study 

(HF183, HumM2, BuniF2) are reported to be less persistent in than culture-based or qPCR-based 

general Enterococcus (141-143). Although this evidence comes from microcosm studies using 

water from a variety of settings spiked with sewage, they include in situ microcosms. This 

finding is believed to extend to waters in the ambient environment. If human-associated 

Bacteroides markers are indeed less persistent and abundant than general Enterococcus, this may 

have limited our ability to estimate associations with swimming-associated illness. Extended 

freezer storage times may also have affected the sensitivity or abundance of Bacteroides 

samples, but the impact is impossible to know for certain. A final possibility is that human-

specific markers may be more strongly associated with illness at sites without a known source of 

sewage contamination, impacted by a wider range of fecal contaminants, or with lower levels of 

overall fecal contamination. Thus it is not clear that our findings are generalizable to those other 

settings. 

 Our findings were consistent with three previous studies of human-associated fecal 

markers and swimming-associated illness, despite a number of differences between our study 
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and those previous. In particular, previous studies were smaller, used different assays targeting 

either Enterococcus or Bacteroides, and the source of fecal contamination was from non-point 

sources (62,64,67). Our study was not consistent with an additional study (65) which did find an 

increased risk of enteric illness with exposure to a human-associated Enterococcus marker. 

Given our findings and the limited number of existing studies, future research investigating 

HF183, HumM2, BsteriF1, and BuniF2 in point and non-point source-impacted beaches may 

need to be even larger to estimate consistent associations. 

To accomplish the second aim, we examined exposure to human-associated chemicals 

and chemical categories, and estimated risk differences for associations with swimming-related 

illness.  Overall we observed little evidence of association between chemical markers and illness, 

but there were several chemicals that did show a pattern of increased risks, including bisphenol 

A and GI illness, cholesterol and GI illness, household wastewater products and respiratory 

illness, and tributyl phosphate and respiratory illness. At the same time, several implausible, 

inverse associations were observed with respiratory illness. Phenol exposure increased the 

magnitude of association between general Enterococcus dichotomized at policy-relevant cut-

points and GI illness, eye ailments, and respiratory illness by 3-5%. All other chemical markers 

and chemical categories were not consistently associated with elevated risks of illness, nor were 

they an improvement over general Enterococcus at beaches impacted by human sources of fecal 

contamination. To the best of our knowledge, our study is the first investigation of the 

relationship between human-associated chemical markers and swimming-related illnesses.   

The finding that most chemical markers we investigated were not associated with illness 

is not unexpected, given that chemicals specific to human waste streams are often at low 

concentrations and are further diluted below detection limits once wastewater enters 
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environmental waters (11). This was true in our study, where, although human-associated 

chemical markers were detected in at least 1 sample almost every day samples were collected, 

chemical concentrations were low (Table 6.2).  Thus, chemical markers may be most appropriate 

when used in combination with microbial source tracking fecal markers or to validate results 

obtained using microbial markers, as part of a source-tracking “toolbox” approach to yield 

greater confidence in an assessment of water quality source.  

 

Strengths 

 This research makes use of an existing prospective cohort with objective exposure 

measurements for a wide range of potential human-associated Bacteroides and chemical 

indicators and multiple health outcomes to investigate the research aims. Thus, we did not rely 

on proxy measures of human fecal contamination (i.e. proximity to effluent from sewage 

treatment plants) to assign exposure; instead, exposure was assessed directly from the water 

using fecal indicators. The Bacteroides fecal indicator measures included were those that are 

considered highly human-associated (HF183, HumM2, BsteriF1 and BuniF2) and make use of 

rapid, qPCR-based molecular methods for detection. The analysis included several sensitivity 

analyses testing alternate exposure categorizations and results were robust to intensity of 

swimming exposure as defined by head immersion and swallowing water.  

 Strengths of the study design included its prospective nature, which allowed us to 

establish a temporal relationship between the presence/concentration of human-associated 

markers and subsequent risk of illness, and thus we were able to investigate their association 

with the risk of illness. The 10-12 day follow-up period of the study reflected the incubation time 

for likely waterborne pathogens that cause gastrointestinal, respiratory, rash, ear, eye, and 
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urinary tract symptoms that are our outcomes of interest. The study design allowed for the 

collection of water samples multiple times per day at two water depths (shin height (0.3 m) and 

waist height (1.0 m)) and three beach locations to capture the variety of fecal indicator exposures 

a beachgoer may experience in the water.  This study is also the largest and most comprehensive 

investigation of associations between human-associated microbial and chemical markers (12,060 

body immersion swimmers in 4 freshwater and 2 marine beaches for Aim 1-Bacteroides; 9,109 

swimmers in 4 freshwater and 1 marine beaches for Aim 2-chemicals). 

 

Limitations 

 Despite the large cohort, our results may not be generalizable to sites affected by fecal 

contamination from other, non-point sources (e.g. bird-impacted), settings (e.g. tropical climates, 

estuaries), or geographical locations. Additionally, analyses of less frequent, non-enteric illnesses 

(i.e. rash, eye ailment, earache, urinary tract infection), and sensitivity analyses among swimmers 

with head immersion exposure or who swallowed water was limited by smaller sample sizes, and 

thus produced less precise estimates. The smaller sample size of certain illnesses also led to 

instability of binomial regression models and limited our ability to estimate the risk difference 

directly as a measure of association. We therefore used model-based standardization to estimate 

risk differences adjusted for covariates identified by directed acyclic graph. Our ability to make 

inferences was also limited by the high proportion of human-associated markers that were below 

the limit of detection, particularly for chemical markers. We therefore dichotomized exposure to 

human-associated markers and examined other categorizations in sensitivity analyses.  These 

exposures do not necessarily reflect each swimmer’s individual exposure; however, 

characterizing individual exposures would have been costly and logistically difficult. There is 
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likely some exposure misclassification, but the magnitude is difficult to predict. In an effort to 

capture the diversity of health outcomes potentially associated with recreational water exposure, 

particularly because they can be self-limiting and of short duration, the health outcomes 

examined in this research focus on self-reported symptomology rather than physician- or 

laboratory-confirmed cases. While health outcomes may have been affected by recall bias, it is 

likely nondifferential with respect to water quality fecal indicator exposure because swimmers 

were unaware of the water quality values recorded in the samples on the day of their beach visit. 

Lastly, it is unknown what effect freezing and long-term storage had on the concentration of 

human-associated Bacteroides indicators measured by qPCR, but the concentration of general 

Enterococcus samples similarly stored was lower than the concentration of samples assayed soon 

after collection. Thus, the concentration of human-associated Bacteroides may also have lowered 

after storage. 

 

Public health impact 

 This investigation of the relationship between human-associated markers and human 

illness outcomes was conducted to estimate effects related to human fecal exposure, and use that 

information to help determine the best applications for such markers. Alternative fecal indicators 

that can distinguish sources of fecal pollution and are measured using rapid methods are an 

active area of water quality research. This research provides some insight into two critical 

questions that remain to be answered: (1) are human-associated fecal markers associated with 

human illness?; and (2) do human-associated markers represent an improvement over general, 

non-specific fecal indicator bacteria, such as E. coli and enterococci, in terms of characterizing 

risk? For the human-associated Bacteroides indicators HumM2, HF183, BsteriF1, and BuniF2, 
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several patterns of disease risk were suggested for GI illness, diarrhea, respiratory illness, and 

rash. A combination of Bacteroides markers seemed to improve the strength of risk estimates. 

For the human-associated chemical indicators, bisphenol A, phenol, and cholesterol were 

inversely associated with respiratory illness. Thus, our results suggest that human-associated 

markers may be associated with human illness, but the importance of the associations we 

observed remains unclear and in some cases unexpected.  As indicators of human-source, no 

single Bacteroides indicator or chemical marker strongly improved associations between general, 

non-specific Enterococcus and risk of swimming-related illnesses. These findings highlight the 

need for further epidemiology studies to investigate the illness risks associated with human-

associated markers in different geographical locations, at rivers and estuarine settings, at sites 

dominated by non-point sources, and at sites impacted by a broader range of fecal contamination. 

The true public health impact may not be readily apparent until that time. Until then, our findings 

offer an initial step toward the goal of using microbial and chemical markers to identify fecal 

sources. 

 

Future directions 

 This research represents an initial investigation of the illness risks associated with several 

promising human-associated fecal indicators. The elucidation of illness risks associated with 

human-associated indicators is an important research question that can benefit from further 

research in several directions.  First, because we observed patterns of increased risk for GI 

illness, diarrhea, and respiratory illness associated with BsteriF1 detection, and patterns of 

decreased risk for rash and HumM2 and HF183 detection, future studies should collect 

quantitative fecal indicator measures by qPCR to further clarify the potential illness risks we 
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observed. If the markers are more abundant in the beaches chosen by the replication study than 

in this study and if quantitative measures can be collected, then the ability to make inferences 

will improve. This could lead to more refined exposure classification than was possible at the 

NEEAR beaches. Similarly, replicating our investigation using a different suite of human-

associated fecal markers, such as F+ specific coliphage, enteric viruses, Bifidobacteria, and 

Methanobrevibacter smithii, and different chemical markers might reveal novel associations with 

illness risk that could inform the use of a fecal source tracking toolbox.  

 Another research question that deserves further investigation is whether the relationships 

observed at the beaches in this study can be extended to other settings where sewage is not 

believed to be the primary source of pollution. We hypothesized that one reason for our findings 

of no association could be that human-associated markers may be better associated with illness at 

sites which do not have a known source of sewage contamination, are impacted by a wider range 

of fecal contaminants, or have lower levels of overall fecal contamination. To answer these 

questions, future studies should be conducted at beaches impacted predominantly by animal 

sources, runoff-impacted beaches, or beaches impacted by sporadic and diffuse sources of 

contamination. Studies conducted in other settings such as rivers, estuaries, temperate beaches 

outside the US, and tropical beaches are also needed. Evaluating relationships at beaches in a 

variety of settings may also help to clarify the extent to which human-associated indicators are 

associated with swimming-associated illness. 

 Improving outcome classification can also strengthen future studies by removing 

subjectivity. While a study focused on physician- or laboratory-confirmed cases would 

underestimate health outcomes, the incorporation of saliva samples may be a practical, non-

invasive way to obtain objective information on the production of antibodies to common enteric 
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illnesses associated with swimming, including Giardia, norovirus, legionella, rotavirus, and 

Cryptosporidium) (160,161). Because of its non-invasive nature, it has the added advantage that 

it can be collected from non-swimmers as well, providing the investigator with a measure of the 

amount of disease circulating in the community. 

 Lastly, although our findings suggest little consistent association between human-

associated Bacteroides/chemical markers and illness risks, the markers we investigated may be 

useful as part of a predictive model for human fecal contamination. Since no single microbial or 

chemical marker has been shown to determine the source of fecal pollution on its own 

(151,162,163), a predictive model that combines both chemical and microbial host-specific 

markers as well as environmental parameters can enable a more confident discrimination of 

human source.  

 

Final conclusions 

 This is one of the first and largest studies to evaluate associations between exposure to 

human-associated Bacteroides markers and self-reported illness among swimmers, and the first 

study, to our knowledge, to evaluate associations between exposure to human-associated 

chemical markers and illness. Overall, neither human-associated Bacteroides markers nor 

chemical markers were consistently associated with swimming-associated illnesses, although a 

pattern of increased illness risk was observed for BsteriF1, bisphenol A, tributyl phosphate, and 

cholesterol. In addition, when phenol exposure was detected, the associations between general, 

non-source specific Enterococcus and several illnesses were greater in magnitude than when 

phenol was not detected, indicating that it might be a useful addition to estimating risk at beach 

sites impacted by sewage effluent. Collecting quantitative fecal indicator measures, replicating 
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our investigation using different indicators and in beaches influenced by non-point sources, and 

improving outcome classification are a few ways to clarify the associations between human fecal 

contamination and illness among swimmers.  These improvements could help inform the use of 

human-associated fecal indicators in determining illness risks and remediating fecal pollution. 
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APPENDIX A. CHAPTER 5 SUPPLEMENTAL TABLES AND FIGURES 

 
This appendix contains supplemental tables and figures associated with analyses involving 

human-associated Bacteroides markers shown in Chapter 5. 

Table A.1a. Frequencies and standardized RD (95% CI) for the association between illness and 
human-associated Bacteroides markers among body immersion swimmers in all beaches 

    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI)  

GI illness* 

  HumM2  0-1 samples 508 5712 8.9% 8.5% Ref 

 ≥2 samples 449 5976 7.5% 8.2% -0.3% (-1.7%, 1.1%) 

  HF183  0-1 samples 254 2503 10.1% 8.1% Ref 

 ≥2 samples 703 9185 7.7% 8.4% 0.3% (-1.6%, 2.2%) 

  BsteriF1  0-1 samples 51 575 8.9% 6.8% Ref 

 ≥2 samples 906 11113 8.2% 8.7% 1.9% (0.1%, 3.7%) 

  BuniF2 0-1 samples 696 8453 8.2% 6.6% Ref 

 ≥2 samples 261 3235 8.1% 8.5% 1.8% (-0.8%, 4.4%) 

Diarrhea* 

  HumM2  0-1 samples 352 5707 6.2% 5.8% Ref 

 ≥2 samples 287 5971 4.8% 5.5% -0.3% (-1.5%, 0.9%) 

  HF183  0-1 samples 190 2501 7.6% 5.9% Ref 

 ≥2 samples 449 9177 4.9% 5.5% -0.4% (-2.1%, 1.3%) 

  BsteriF1  0-1 samples 38 575 6.6% 4.6% Ref 

 ≥2 samples 601 11103 5.4% 5.9% 1.3% (-0.2%, 2.7%) 

  BuniF2 0-1 samples 462 8449 5.5% 5.1% Ref 

 ≥2 samples 177 3229 5.5% 5.7% 0.6% (-1.6%, 2.9%) 

Respiratory† 

  HumM2  0-1 samples 335 5543 6.0% 5.9% Ref 

 ≥2 samples 336 5790 5.8% 6.0% 0.1% (-1.0%, 1.3%) 

  HF183  0-1 samples 149 2448 6.1% 5.3% Ref 

 ≥2 samples 522 8885 5.9% 6.2% 0.8% (-0.8%, 2.5%) 

  BsteriF1  0-1 samples 38 562 6.8% 5.1% Ref 

 ≥2 samples 633 10771 5.9% 6.2% 1.1% (-0.2%, 2.5%) 

  BuniF2 0-1 samples 472 8202 5.8% 6.0% Ref 

 ≥2 samples 199 3131 6.4% 6.0% -0.1% (-2.6%, 2.5%) 

Earache* 
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    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI)  

  HumM2  0-1 samples 107 5775 1.9% 1.9% Ref 

 ≥2 samples 114 6058 1.9% 1.9% 0.0% (-0.6%, 0.6%) 

  HF183  0-1 samples 46 2541 1.8% 1.7% Ref 

 ≥2 samples 175 9292 1.9% 2.0% 0.3% (-0.6%, 1.1%) 

  BsteriF1  0-1 samples 15 574 2.6% 1.4% Ref 

 ≥2 samples 206 11259 1.8% 2.0% 0.6% (-0.1%, 1.4%) 

  BuniF2 0-1 samples 157 8554 1.8% 2.9% Ref 

 ≥2 samples 64 3279 2.0% 1.9% -1.0% (-3.1%, 1.0%) 

Eye ailment† 

  HumM2  0-1 samples 171 5834 2.9% 2.9% Ref 

 ≥2 samples 157 6112 2.6% 2.7% -0.3% (-1.0%, 0.5%) 

  HF183  0-1 samples 69 2558 2.7% 2.4% Ref 

 ≥2 samples 259 9388 2.8% 2.9% 0.5% (-0.5%, 1.5%) 

  BsteriF1  0-1 samples 17 582 2.9% 2.3% Ref 

 ≥2 samples 311 11364 2.7% 2.9% 0.7% (-0.2%, 1.6%) 

  BuniF2 0-1 samples 247 8640 2.9% 2.6% Ref 

 ≥2 samples 81 3306 2.5% 2.8% 0.2% (-1.3%, 1.7%) 

Rash† 

  HumM2  0-1 samples 201 5740 3.5% 3.7% Ref 

 ≥2 samples 166 5995 2.8% 2.6% -1.0% (-1.9%, -0.2%) 

  HF183  0-1 samples 87 2523 3.4% 4.0% Ref 

 ≥2 samples 280 9212 3.0% 2.9% -1.1% (-2.4%, 0.3%) 

  BsteriF1  0-1 samples 17 576 3.0% 3.1% Ref 

 ≥2 samples 350 11159 3.1% 3.1% 0.1% (-1.0%, 1.1%) 

  BuniF2 0-1 samples 272 8491 3.2% 3.0% Ref 

 ≥2 samples 95 3244 2.9% 3.1% 0.2% (-1.7%, 2.0%) 

UTI* 

  HumM2  0-1 samples 34 5845 0.6% 0.6% Ref 

 ≥2 samples 42 6099 0.7% 0.7% 0.1% (-0.3%, 0.5%) 

  HF183  0-1 samples 16 2557 0.6% 0.6% Ref 

 ≥2 samples 60 9387 0.6% 0.7% 0.1% (-0.5%, 0.6%) 

  BsteriF1  0-1 samples 3 585 0.5% 0.4% Ref 

 ≥2 samples 73 11359 0.6% 0.7% 0.4% (-0.1%, 0.8%) 

  BuniF2 0-1 samples 50 8640 0.6% 0.4% Ref 

   ≥2 samples 26 3304 0.8% 0.7% 0.2% (-0.4%, 0.9%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.1b. Frequencies and standardized risk differences (95% CI) for the association between 
illness and human-associated Bacteroides markers among body immersion swimmers in fresh 
water beaches 

    Freshwater beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI)  

GI illness* 

  HumM2  0-1 samples 403 4474 9.0% 8.7% Ref 

 ≥2 samples 416 5373 7.7% 8.4% -0.3% (-1.7%, 1.2%) 

  HF183  0-1 samples 186 1734 10.7% 8.4% Ref 

 ≥2 samples 633 8113 7.8% 8.6% 0.2% (-1.9%, 2.3%) 

  BsteriF1  0-1 samples 19 208 9.1% 7.0% Ref 

 ≥2 samples 800 9639 8.3% 8.7% 1.7% (-0.4%, 3.9%) 

  BuniF2 0-1 samples 585 6925 8.4% 6.1% Ref 

 ≥2 samples 234 2922 8.0% 8.6% 2.5% (-1.1%, 6.1%) 

Diarrhea* 

  HumM2  0-1 samples 282 4469 6.3% 5.9% Ref 

 ≥2 samples 265 5368 4.9% 5.7% -0.2% (-1.5%, 1.0%) 

  HF183  0-1 samples 142 1732 8.2% 6.1% Ref 

 ≥2 samples 405 8105 5.0% 5.7% -0.4% (-2.3%, 1.4%) 

  BsteriF1  0-1 samples 13 208 6.3% 4.7% Ref 

 ≥2 samples 534 9629 5.5% 6.0% 1.2% (-0.5%, 3.0%) 

  BuniF2 0-1 samples 388 6921 5.6% 4.1% Ref 

 ≥2 samples 159 2916 5.5% 5.8% 1.8% (-1.2%, 4.7%) 

Respiratory† 

  HumM2  0-1 samples 253 4319 5.9% 5.8% Ref 

 ≥2 samples 312 5197 6.0% 6.2% 0.4% (-0.8%, 1.6%) 

  HF183  0-1 samples 99 1686 5.9% 5.4% Ref 

 ≥2 samples 466 7830 6.0% 6.1% 0.7% (-1.1%, 2.6%) 

  BsteriF1  0-1 samples 7 201 3.5% 5.0% Ref 

 ≥2 samples 558 9315 6.0% 6.1% 1.1% (-0.4%, 2.7%) 

  BuniF2 0-1 samples 388 6700 5.8% 3.4% Ref 

 ≥2 samples 177 2816 6.3% 6.1% 2.7% (0.1%, 5.3%) 

Earache* 

  HumM2  0-1 samples 78 4512 1.7% 1.8% Ref 

 ≥2 samples 107 5440 2.0% 2.0% 0.2% (-0.5%, 0.9%) 

  HF183  0-1 samples 28 1750 1.6% 1.4% Ref 

 ≥2 samples 157 8202 1.9% 2.0% 0.6% (-0.3%, 1.4%) 

  BsteriF1  0-1 samples 5 204 2.5% 1.2% Ref 

 ≥2 samples 180 9748 1.8% 2.0% 0.8% (-0.1%, 1.7%) 

  BuniF2 0-1 samples 126 6996 1.8% 2.0% Ref 
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    Freshwater beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI)  

 ≥2 samples 59 2956 2.0% 1.9% -0.1% (-2.3%, 2.1%) 

Eye ailment† 

  HumM2  0-1 samples 135 4561 3.0% 3.0% Ref 

 ≥2 samples 139 5493 2.5% 2.6% -0.3% (-1.2%, 0.5%) 

  HF183  0-1 samples 48 1762 2.7% 2.4% Ref 

 ≥2 samples 226 8292 2.7% 2.9% 0.5% (-0.5%, 1.6%) 

  BsteriF1  0-1 samples 3 209 1.4% 2.1% Ref 

 ≥2 samples 271 9845 2.8% 2.9% 0.8% (-0.2%, 1.8%) 

  BuniF2 0-1 samples 202 7072 2.9% 0.9% Ref 

 ≥2 samples 72 2982 2.4% 2.8% 1.9% (0.7%, 3.1%) 

Rash† 

  HumM2  0-1 samples 156 4484 3.5% 3.6% Ref 

 ≥2 samples 143 5390 2.7% 2.5% -1% (-1.9%, -0.2%) 

  HF183  0-1 samples 56 1733 3.2% 3.2% Ref 

 ≥2 samples 243 8141 3.0% 2.9% -0.3% (-1.5%, 1.0%) 

  BsteriF1  0-1 samples 6 204 2.9% 3.0% Ref 

 ≥2 samples 293 9670 3.0% 3.0% -0.1% (-1.2%, 1.0%) 

  BuniF2 0-1 samples 219 6946 3.2% 2.5% Ref 

 ≥2 samples 80 2928 2.7% 3.0% 0.5% (-1.9%, 2.9%) 

UTI* 

  HumM2  0-1 samples 28 4570 0.6% 0.7% Ref 

 ≥2 samples 35 5481 0.6% 0.7% 0.0% (-0.4%, 0.4%) 

  HF183  0-1 samples 12 1759 0.7% 0.6% Ref 

 ≥2 samples 51 8292 0.6% 0.7% 0.1% (-0.6%, 0.7%) 

  BsteriF1  0-1 samples 1 209 0.5% 0.4% Ref 

 ≥2 samples 62 9842 0.6% 0.7% 0.4% (-0.2%, 0.9%) 

  BuniF2 0-1 samples 44 7070 0.6% 0.3% Ref 

   ≥2 samples 19 2981 0.6% 0.7% 0.4% (-0.4%, 1.2%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.1c. Frequencies and standardized risk differences (95% CI) for the association between 
illness and human-associated Bacteroides markers among body immersion swimmers in marine 
beaches 

    Marine beaches 

  Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness* 

  HumM2  0-1 samples 105 1238 8.5% 7.9% Ref 

 ≥2 samples 33 603 5.5% 6.1% -1.8% (-5.4%, 1.9%) 

  HF183  0-1 samples 68 769 8.8% 6.7% Ref 

 ≥2 samples 70 1072 6.5% 8.3% 1.6% (-2.7%, 5.9%) 

  BsteriF1  0-1 samples 32 367 8.7% 6.3% Ref 

 ≥2 samples 106 1474 7.2% 8.0% 1.7% (-1.6%, 5.1%) 

  BuniF2 0-1 samples 111 1528 7.3% 6.7% Ref 

 ≥2 samples 27 313 8.6% 7.6% 0.9% (-3.1%, 4.9%) 

Diarrhea* 

  HumM2  0-1 samples 70 1238 5.7% 5.3% Ref 

 ≥2 samples 22 603 3.6% 3.6% -1.7% (-4.7%, 1.3%) 

  HF183  0-1 samples 48 769 6.2% 5.0% Ref 

 ≥2 samples 44 1072 4.1% 4.7% -0.3% (-4.3%, 3.8%) 

  BsteriF1  0-1 samples 25 367 6.8% 4.3% Ref 

 ≥2 samples 67 1474 4.5% 5.2% 1.0% (-1.8%, 3.7%) 

  BuniF2 0-1 samples 74 1528 4.8% 5.3% Ref 

 ≥2 samples 18 313 5.8% 4.7% -0.6% (-4.1%, 2.9%) 

Respiratory† 

  HumM2  0-1 samples 82 1224 6.7% 6.3% Ref 

 ≥2 samples 24 593 4.0% 4.7% -1.5% (-4.3%, 1.3%) 

  HF183  0-1 samples 50 762 6.6% 5.3% Ref 

 ≥2 samples 56 1055 5.3% 6.5% 1.3% (-2.3%, 4.9%) 

  BsteriF1  0-1 samples 31 361 8.6% 5.2% Ref 

 ≥2 samples 75 1456 5.2% 6.2% 1.0% (-2.1%, 4%) 

  BuniF2 0-1 samples 84 1502 5.6% 8.7% Ref 

 ≥2 samples 22 315 7.0% 5.1% -3.6% (-8.9%, 1.7%) 

Earache* 

  HumM2  0-1 samples 29 1263 2.3% 2.5% Ref 

 ≥2 samples 7 618 1.1% 1.0% -1.5% (-3.0%, 0.0%) 

  HF183  0-1 samples 18 791 2.3% 3.3% Ref 

 ≥2 samples 18 1090 1.7% 1.4% -1.9% (-5.0%, 1.2%) 

  BsteriF1  0-1 samples 10 370 2.7% 1.6% Ref 

 ≥2 samples 26 1511 1.7% 2.1% 0.5% (-1.2%, 2.3%) 

  BuniF2 0-1 samples 31 1558 2.0% 3.8% Ref 
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    Marine beaches 

  Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

 ≥2 samples 5 323 1.5% 1.6% -2.2% (-6.8%, 2.4%) 

Eye ailment† 

  HumM2  0-1 samples 36 1273 2.8% 2.8% Ref 

 ≥2 samples 18 619 2.9% 3.2% 0.4% (-1.7%, 2.6%) 

  HF183  0-1 samples 21 796 2.6% 2.6% Ref 

 ≥2 samples 33 1096 3.0% 3.2% 0.6% (-2.2%, 3.4%) 

  BsteriF1  0-1 samples 14 373 3.8% 3.1% Ref 

 ≥2 samples 40 1519 2.6% 2.8% -0.3% (-2.8%, 2.1%) 

  BuniF2 0-1 samples 45 1568 2.9% 5.5% Ref 

 ≥2 samples 9 324 2.8% 2.5% -3.0% (-8.2%, 2.1%) 

Rash† 

  HumM2  0-1 samples 45 1256 3.6% 4.2% Ref 

 ≥2 samples 23 605 3.8% 3.1% -1.1% (-3.6%, 1.4%) 

  HF183  0-1 samples 31 790 3.9% 9.4% Ref 

 ≥2 samples 37 1071 3.5% 2.5% -6.9% (-12.6%, -1.2%) 

  BsteriF1  0-1 samples 11 372 3.0% 3.4% Ref 

 ≥2 samples 57 1489 3.8% 3.9% 0.5% (-2.6%, 3.6%) 

  BuniF2 0-1 samples 53 1545 3.4% 3.7% Ref 

 ≥2 samples 15 316 4.7% 3.8% 0.1% (-3.5%, 3.7%) 

UTI* 

  HumM2  0-1 samples 6 1275 0.5% 0.5% Ref 

 ≥2 samples 7 618 1.1% 1.9% 1.4% (-1.2%, 4.0%) 

  HF183  0-1 samples 4 798 0.5% 0.5% Ref 

 ≥2 samples 9 1095 0.8% 1.0% 0.4% (-0.1%, 1.0%) 

  BsteriF1  0-1 samples 2 376 0.5% 0.5% Ref 

 ≥2 samples 11 1517 0.7% 0.8% 0.4% (-0.5%, 1.3%) 

  BuniF2 0-1 samples 6 1570 0.4% 0.8% Ref 

   ≥2 samples 7 323 2.2% 0.8% 0.0% (-1.8%, 1.7%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.2a. Frequencies and standardized risk differences (95% CI) for the association between 
illness and number of human-associated Bacteroides markers among body immersion swimmers 
in all beaches 

All beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness* 

0 39 440 6.4% Ref 

1 82 899 7.0% 0.7% (-2.4%, 3.7%) 

2 121 1044 9.3% 2.9% (-0.2%, 6.1%) 

3 326 4112 8.8% 2.5% (-0.7%, 5.6%) 

4 389 5193 8.3% 1.9% (-1.2%, 5.1%) 

Diarrhea* 

0 29 440 5.1% Ref 

1 61 897 4.9% -0.2% (-2.9%, 2.6%) 

2 88 1044 6.7% 1.7% (-1.1%, 4.4%) 

3 211 4109 5.8% 0.8% (-2.1%, 3.7%) 

4 250 5188 5.5% 0.4% (-2.5%, 3.3%) 

Respiratory† 

0 26 430 4.2% Ref 

1 52 868 4.7% 0.5% (-2.0%, 3.0%) 

2 58 1029 4.4% 0.1% (-2.2%, 2.5%) 

3 245 3964 6.9% 2.7% (0.1%, 5.2%) 

4 290 5042 6.2% 2.0% (-0.6%, 4.5%) 

Earache* 

0 12 437 2.3% Ref 

1 10 907 1.1% -1.3% (-3.0%, 0.5%) 

2 21 1068 1.8% -0.5% (-2.4%, 1.3%) 

3 78 4158 2.0% -0.3% (-2.4%, 1.8%) 

4 100 5263 1.9% -0.4% (-2.5%, 1.6%) 

Eye ailment† 

0 11 443 1.9% Ref 

1 20 910 2.0% 0.1% (-1.4%, 1.6%) 

2 35 1078 2.9% 1.0% (-0.5%, 2.5%) 

3 131 4208 3.2% 1.4% (-0.1%, 2.9%) 

4 131 5307 2.7% 0.8% (-0.7%, 2.4%) 

Rash† 

0 11 437 3.2% Ref 

1 27 903 3.5% 0.3% (-2.3%, 2.9%) 
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All beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

2 44 1060 5.2% 2% (-0.7%, 4.7%) 

3 147 4130 3.4% 0.2% (-2.3%, 2.7%) 

4 138 5205 2.5% -0.7% (-3.3%, 1.8%) 

UTI* 

0 3 445 0.4% Ref 

1 4 914 0.4% 0.0% (-0.7%, 0.6%) 

2 6 1075 0.4%  0.0% (-0.7%, 0.7%) 

3 26 4205 0.8% 0.4% (-0.4%, 1.1%) 

4 37 5305 0.8% 0.3% (-0.5%, 1.1%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.2b. Frequencies and standardized risk differences (95% CI) for the association between 
illness and number of human-associated Bacteroides markers among body immersion swimmers 
in fresh water beaches 

Fresh water beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness*    

0 19 208 6.3% Ref 

1 57 576 7.1% 0.8% (-3.4%, 5.0%) 

2 91 765 9.7% 3.4% (-0.6%, 7.4%) 

3 295 3683 8.9% 2.7% (-1.3%, 6.7%) 

4 357 4615 8.4% 2.1% (-1.8%, 6.1%) 

Diarrhea*    

0 13 208 4.4% Ref 

1 44 574 5.1% 0.7% (-3.0%, 4.3%) 

2 69 765 7.0% 2.6% (-0.9%, 6.1%) 

3 192 3680 6.0% 1.6% (-1.9%, 5.0%) 

4 229 4610 5.6% 1.3% (-2.2%, 4.7%) 

Respiratory†    

0 7 201 2.8% Ref 

1 35 556 4.9% 2.2% (-0.6%, 4.9%) 

2 37 744 3.9% 1.1% (-1.3%, 3.5%) 

3 219 3545 6.8% 4.0% (1.5%, 6.5%) 

4 267 4470 6.2% 3.4% (1.0%, 5.9%) 

Earache*    

0 5 204 1.6% Ref 

1 6 578 1.0% 0.0% (-0.03, 0.0%) 

2 14 776 1.6% -0.1% (-2.0%, 1.8%) 

3 66 3724 2.0% 0.3% (-1.7%, 2.3%) 

4 94 4670 2.1% 0.4% (-1.6%, 2.4%) 

Eye ailment†    

0 3 209 0.9% Ref 

1 11 578 1.6% 0.8% (-0.7%, 2.2%) 

2 28 783 3.0% 2.1% (0.5%, 3.7%) 

3 118 3771 3.3% 2.4% (1.1%, 3.6%) 

4 114 4713 2.6% 1.8% (0.5%, 3.1%) 

Rash†    

0 6 204 3.0% Ref 

1 13 575 2.5% -0.5% (-3.7%, 2.6%) 
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Fresh water beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

2 32 766 4.6% 1.6% (-1.5%, 4.7%) 

3 132 3704 3.5% 0.5% (-2.5%, 3.5%) 

4 116 4625 2.4% -0.6% (-3.6%, 2.5%) 

UTI*    

0 1 209 0.2% Ref 

1 4 582 0.5% 0.3% (-0.6%, 1.1%) 

2 4 780 0.4% 0.1% (-0.6%, 0.8%) 

3 24 3768 0.9% 0.6% (-0.2%, 1.4%) 

4 30 4712 0.7% 0.4% (-0.3%, 1.2%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.2c. Frequencies and standardized risk differences (95% CI) for the association between 
illness and number of human-associated Bacteroides markers among body immersion swimmers 
in marine beaches 

Marine beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness* 

0 20 232 6.5% Ref 

1 25 323 6.9% 0.4% (-4.3%, 5.2%) 

2 30 279 9.1% 2.7% (-3.1%, 8.5%) 

3 31 429 7.9% 1.4% (-4.1%, 6.9%) 

4 32 578 6.8% 0.3% (-6.3%, 6.9%) 

Diarrhea* 

0 16 232 6.1% Ref 

1 17 323 4.8% -1.3% (-6.1%, 3.5%) 

2 19 279 7.2% 1.2% (-4.5%, 6.8%) 

3 19 429 4.6% -1.5% (-7.1%, 4.2%) 

4 21 578 3.3% -2.8% (-9.2%, 3.6%) 

Respiratory† 

0 19 229 6.9% Ref 

1 17 312 5.4% -1.5% (-6.8%, 3.7%) 

2 21 285 5.9% -1.0% (-6.5%, 4.4%) 

3 26 419 6.6% -0.3% (-6.5%, 5.8%) 

4 23 572 4.8% -2.1% (-8.5%, 4.2%) 

Earache* 

0 7 233 8.1% Ref 

1 4 329 1.9% -6.3% (-16.2%, 3.7%) 

2 7 292 7.6% -0.5% (-11.4%, 10.3%) 

3 12 434 2.4% -5.7% (-17.9%, 6.6%) 

4 6 593 0.6% -7.5% (-19.4%, 4.4%) 

Eye ailment† 

0 8 234 3.7% Ref 

1 9 332 3.3% -0.4% (-4.3%, 3.4%) 

2 7 295 2.5% -1.2% (-4.9%, 2.5%) 

3 13 437 2.6% -1.1% (-5.8%, 3.6%) 

4 17 594 2.9% -0.8% (-5.9%, 4.3%) 

Rash† 

0 5 233 6.2% Ref 

1 14 328 8.5% 2.3% (-4.8%, 9.5%) 
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Marine beaches 

Number of Markers 

Detected Cases N 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

2 12 294 12.3% 6.0% (-4.5%, 16.5%) 

3 15 426 2.7% -3.5% (-11.1%, 4.1%) 

4 22 580 2.4% -3.9% (-11.6%, 3.9%) 

UTI* 

0 2 236 0.5% Ref 

1 0 332 NA NA 

2 2 295 0.5% -0.1% (-1.2%, 1.1%) 

3 2 437 0.7% 0.2% (-0.7%, 1.1%) 

4 7 593 3.0% 2.4% (-2.8%, 7.7%) 

GI, gastrointestinal; NA, not able to be estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain  
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Table A.3(a-d). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 470 CCE/100ml for an illness rate of 36/1000) with detection/non-detection 
of Bacteroides markers among body immersion swimmers in all beaches 
 

Table A.3(a). Eye ailments 

Eye Ailments 

Marker 

(samples) 

Enterococcus 

(CCE/100ml) 

Cases N Crude 

Risk 

(%) 

Adjusted 

Risk 

(%)* 

Adjusted  

RD  

(95% CI)* 

Interaction 

Contrast  

(95% CI) 

-- Main 
association 

-1.3%  
(-2.6%, 0.0%) 

HumM2        

0-1 <470 164 5515 3.0 3.0 Ref  

 ≥470 7 321 2.2 2.7 -1.2% 
(-3.0%, 0.5%) 

 

≥ 2 <470 154 5917 2.6 2.7 Ref  

 ≥470 3 195 1.5 1.3 -1.4% 
(-3.1%, 0.2%) 

-0.2%  

(-2.5%, 2.1%) 
HF183        

0-1 <470 64 2283 2.8 2.5 Ref  

 ≥470 5 277 1.8 1.3 -1.2% 
(-2.9%, 0.5%) 

 

≥ 2 <470 254 9149 2.8 3.0 Ref  

 ≥470 5 239 2.1 1.7 -1.3% 
(-2.9%, 0.4%) 

-0.1% 

(-2.4%, 2.2%) 
BsteriF1        

0-1 <470 47 1820 2.6 2.2 Ref  

 ≥470 1 73 1.4 0.9 -1.3% 
(-3.2%, 0.6%) 

 

≥ 2 <470 271 9612 2.8 3.0 Ref  

 ≥470 9 443 2.0 1.6 -1.5% 
(-2.9%, -0.1%) 

-0.1% 

(-2.5%, 2.2%) 
BuniF2        

0-1 <470 17 565 3.0 2.5 Ref  

 ≥470 0 18 0.0 0.0 NA  

≥ 2 <470 301 10867 2.8 2.9 Ref  

 ≥470 10 498 2.0 1.6 -1.3% 
(-2.6%, 0.1%) 

NA 

NA, not able to be estimated. * Adjusted for beach, age, mean bathers, sand, rain 
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Table A.3(b). Rash 

Rash 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) 

Cases N Crude 
Risk 
(%) 

Adjusted 
Risk 
(%)* 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- Main 
association 

-0.3%  
(-1.9%, 1.3%) 

HumM2               

0-1  <470 188 5424 3.5 3.7 Ref 
 ≥470 13 318 4.1 3.7 0.0%  

(-2.4%, 2.4%) 
 ≥ 2  <470 162 5810 2.8 2.7 Ref 

 ≥470 4 192 2.1 1.9 -0.7%  
(-2.7%, 1.3%) 

-0.7%  

(-3.7%, 2.2%) 
HF183           

0-1  <470 78 2251 3.5 4.1 Ref 
 ≥470 9 274 3.3 3.2 -0.9%  

(-3.4%, 1.6%) 
 ≥ 2  <470 272 8983 3.0 2.9 Ref 

 ≥470 8 236 3.4 3.1 0.2%  
(-2.3%, 2.7%) 

1.1%  

(-2.3%, 4.6%) 
BsteriF1            

0-1  <470 51 1796 2.8 2.9 Ref 
 ≥470 4 73 5.5 5.1 2.2%  

(-2.9%, 7.3%) 
 ≥ 2  <470 299 9438 3.2 3.2 Ref 

 ≥470 13 437 3.0 2.5 -0.7%  
(-2.4%, 1.0%) 

-2.9%  

(-8.1%, 2.3%) 

BuniF2           
0-1  <470 15 559 2.7 2.5 Ref 

 ≥470 2 18 11.1 9.1 6.6%  
(-5.8%, 18.9%) 

 ≥ 2  <470 335 10675 3.1 3.2 Ref 

 ≥470 15 492 3.0 2.6 -0.6%  
(-2.3%, 1.0%) 

-7.2%  

(-19.5%, 5.1%) 

NA, not able to estimated. * Adjusted for beach, age, mean bathers, sand, rain 
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Table A.3(c). Earache 

Earache 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%) 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

0.0%  
(-1.5%, 1.6%) 

HumM2               

0-1 <470 102 5463 1.9 1.9 Ref  

 ≥470 5 316 1.6 1.5 -0.5% 
(-2.0%, 1.1%) 

 

≥ 2 <470 109 5866 1.9 1.9 Ref  

 ≥470 5 192 2.6 2.8 0.9% 
(-1.8%, 3.7%) 

1.4% 

(-1.5%, 4.2%) 

HF183        

0-1 <470 44 2272 1.9 1.9 Ref  

 ≥470 2 273 0.7 0.6 -1.3% 
(-2.5%, -0.1%) 

 

≥ 2 <470 167 9057 1.8 1.9 Ref  

 ≥470 8 235 3.4 3.5 1.6% 
(-1.2%, 4.4%) 

2.9% 

(-0.1%, 5.9%) 

BsteriF1        

0-1 <470 29 1802 1.6 1.4 Ref  

 ≥470 1 72 1.4 1.0 -0.4% 
(-2.5%, 1.7%) 

 

≥ 2 <470 182 9527 1.9 2.0 Ref  

 ≥470 9 436 2.1 1.9 -0.1% 
(-1.7%, 1.5%) 

0.3% 

(-2.2%, 2.8%) 

BuniF2        

0-1 <470 15 558 2.7 3.1 Ref  

 ≥470 0 17 0.0 0.0 NA 
 

 

≥ 2 <470 196 10771 1.8 1.8 Ref  

 ≥470 10 491 2.0 2.2 0.4% 
(-1.4%, 2.2%) 

NA 

NA, not able to estimated. * Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table A.3(d). Urinary tract infection 

Urinary tract infection 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%) 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 

association 
-0.2% 

(-0.9%, 0.5%) 

HumM2               

0-1  <470 33 5529 0.6 0.6 Ref 
≥470 1 320 0.3 0.3 -0.3%  

(-1.0%, 0.4%) 

 ≥ 2  <470 41 5910 0.7 0.7 Ref 
≥470 1 196 0.5 0.7 -0.1%  

(-1.4%, 1.3%) 
0.2%  

(-1.3%, 1.8%) 

HF183          

0-1  <470 16 2289 0.7 0.7 Ref 
≥470 0 277 0.0 0.0 NA 

 

 ≥ 2  <470 58 9150 0.6 0.7 Ref 
≥470 2 239 0.8 1.0 0.3%  

(-1.2%, 1.8%) NA 

BsteriF1           

0-1  <470 9 1820 0.5 0.4 Ref 
≥470 0 73 0.0 0.0 NA 

 

 ≥ 2  <470 65 9619 0.7 0.7 Ref 
≥470 2 443 0.5 0.5 -0.2%  

(-1.0%, 0.5%) NA 

BuniF2          

0-1  <470 3 570 0.5 0.5 Ref 
≥470 0 18 0.0 0.0 NA 

 

 ≥ 2  <470 71 10869 0.7 0.7 Ref 
≥470 2 498 0.4 0.5 -0.2%  

(-1.0%, 0.6%) NA 

NA, not able to estimated. Note estimates are based on small cell sizes. * Adjusted for beach, 
age, mean bathers, sand, rain, water temperature 
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Table A.4(a-d). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 300 CCE/100ml for an illness rate of 32/1000) with detection/non-detection 
of Bacteroides markers among body immersion swimmers in all beaches 
 

Table A.4(a). Eye Ailment 

Eye Ailment 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk  
(%) 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

-0.8%  
(-2.0%, 0.3%) 

HumM2               

0-1  <300 155 5215 3.0 3.0 Ref 
≥300 16 621 2.6 2.3 -0.7%  

(-2.1%, 0.7%) 

 ≥ 2  <300 153 5886 2.6 2.7 Ref 
≥300 4 226 1.8 1.6 -1.1%  

(-2.9%, 0.6%) 
-0.5%  

(-2.6%, 1.7%) 

HF183          

0-1  <300 59 2096 2.8 2.5 Ref 
≥300 10 464 2.2 1.7 -0.8%  

(-2.3%, 0.6%) 

 ≥ 2  <300 249 9005 2.8 3.0 Ref 
≥300 10 383 2.6 2.2 -0.8%  

(-2.4%, 0.8%) 
0.0%  

(-2.1%, 2.2%) 

BsteriF1           

0-1  <300 40 1667 2.4 2.0 Ref 
≥300 8 226 3.5 2.8 0.8%  

(-1.4%, 2.9%) 

 ≥ 2  <300 268 9434 2.8 3.1 Ref 
≥300 12 621 1.9 1.6 -1.5%  

(-2.8%, -0.3%) 
-2.3%  

(-4.5%, 0.0%) 

BuniF2          

0-1  <300 12 450 2.7 2.1 Ref 
≥300 5 133 3.8 3.1 1.0%  

(-2.0%, 4.0%) 

 ≥ 2  <300 296 10651 2.8 2.9 Ref 
≥300 15 714 2.1 1.7 -1.2%  

(-2.4%, 0.0%) 
-2.2%  

(-5.3%, 1.0%) 

NA, not able to estimated. 
* Adjusted for beach, age, mean bathers, sand, rain 
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Table A.4(b). Rash 

Rash 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk  
(%) 

Adjusted  
RD  

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

-0.8%  
(-2.1%, 0.5%) 

HumM2               

0-1  <300 187 5124 3.6 3.8 Ref 
≥300 14 618 2.3 2.3 -1.5%  

(-3.0%, 0.1%) 

 ≥ 2  <300 158 5778 2.7 2.6 Ref 
≥300 8 224 3.6 3.1 0.5%  

(-2.1%, 3.0%) 
1.9%  

(-1.0%, 4.8%) 

HF183          

0-1  <300 77 2066 3.7 4.3 Ref 
≥300 10 459 2.2 2.3 -2.0%  

(-3.9%, -0.1%) 

 ≥ 2  <300 268 8836 3.0 2.9 Ref 
≥300 12 383 3.1 3.1 0.2%  

(-2.0%, 2.4%) 
2.2%  

(-0.7%, 5.1%) 

BsteriF1           

0-1  <300 50 1645 3.0 3.1 Ref 
≥300 5 224 2.2 2.1 -0.9%  

(-3.2%, 1.3%) 

 ≥ 2  <300 295 9257 3.2 3.2 Ref 
≥300 17 618 2.8 2.4 -0.8%  

(-2.4%, 0.7%) 
0.1%  

(-2.5%, 2.7%) 

BuniF2          

0-1  <300 15 445 3.4 3.1 Ref 
≥300 2 132 1.5 1.5 -1.6%  

(-4.2%, 1.0%) 

 ≥ 2  <300 330 10457 3.2 3.2 Ref 
≥300 20 710 2.8 2.5 -0.7%  

(-2.2%, 0.8%) 
0.9%  

(-2.2%, 4.0%) 

NA, not able to estimated. 
* Adjusted for beach, age, mean bathers, sand, rain 
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Table A.4(c). Earache 

Earache 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk  
(%) 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

0.5%  
(-0.9%, 1.8%) 

HumM2           

0-1  <300 94 5165 1.8 1.9 Ref 
≥300 13 614 2.1 2.2 3.0%  

(-1.2%, 1.7%) 

 ≥ 2  <300 108 5834 1.9 1.8 Ref 
≥300 6 224 2.7 3.0 1.2%  

(-1.5%, 3.8%) 
0.9%  

(0.9%, 3.6%) 

HF183          

0-1  <300 38 2086 1.8 1.8 Ref 
≥300 8 459 1.7 1.6 3.2%  

(-1.6%, 1.1%) 

 ≥ 2  <300 164 8913 1.8 1.9 Ref 
≥300 11 379 2.9 3.2 1.3%  

(-0.8%, 3.4%) 
1.5%  

(-0.9%, 3.9%) 

BsteriF1           

0-1  <300 25 1650 1.5 1.3 Ref 
≥300 5 224 2.2 1.8 0.5%  

(-1.3%, 2.3%) 

 ≥ 2  <300 177 9349 1.9 2.0 Ref 
≥300 14 614 2.3 2.2 0.2%  

(-1.2%, 1.7%) 
-0.3%  

(-2.4%, 1.8%) 

BuniF2          

0-1  <300 11 443 2.5 3.0 Ref 
≥300 4 132 3.0 3.8 0.7%  

(-3.3%, 4.8%) 

 ≥ 2  <300 191 10556 1.8 1.8 Ref 
≥300 15 706 2.1 2.5 0.6%  

(-0.9%, 2.2%) 
-0.1%  

(-4.4%, 4.3%) 

NA, not able to estimated 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table A.4(d). Urinary tract infection 

Urinary tract infection 

Marker 
(samples) 

Enterococcus 
(CCE/100ml) Cases N 

Crude 
Risk 
(%) 

Adjusted 
Risk 
(%) 

Adjusted  
RD 

(95% CI)* 

Interaction 
Contrast  
(95% CI) 

-- 
Main 
association 

0.2%  
(-0.6%, 1.0%) 

HumM2               

0-1  <300 30 5227 0.6 0.6 Ref 
≥300 4 622 0.6 0.7 0.1%  

(-0.7%, 0.8%) 

 ≥ 2  <300 40 5879 0.7 0.7 Ref 
≥300 2 227 0.9 1.2 0.5%  

(-1.3%, 2.2%) 
0.4%  

(-1.4%, 2.2%) 

HF183          

0-1  <300 14 2102 0.7 2.2 Ref 
≥300 2 464 0.4 0.5 -0.2%  

(-0.9%, 0.6%) 

 ≥ 2  <300 56 9004 0.6 0.6 Ref 
≥300 4 385 1.0 1.1 0.5%  

(-0.9%, 1.8%) 
0.7%  

(-0.9%, 2.2%) 

BsteriF1           

0-1  <300 8 1666 0.5 0.4 Ref 
≥300 1 227 0.4 0.4 0.0%  

(-0.8%, 0.9%) 

 ≥ 2  <300 62 9440 0.7 0.7 Ref 
≥300 5 622 0.8 0.8 0.1%  

(-0.8%, 1.0%) 
0.1%  

(-1.1%, 1.2%) 

BuniF2          

0-1  <300 2 454 0.4 0.4 Ref 
≥300 1 134 0.7 0.7 0.3%  

(0.1%, 1.8%) 

 ≥ 2  <300 68 10652 0.6 0.7 Ref 
≥300 5 715 0.7 0.8 0.1%  

(-0.7%, 1.0%) 
-0.1%  

(-1.9%, 1.6%) 

NA, not able to estimated. Note estimates are based on small cell sizes. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
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Table A.5. Risk difference modification of the association between Enterococcus general 
indicator measured continuously by qPCR (CCE/100ml) and illness with human-associated 
Bacteroides markers in all beaches 

GI illness 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- 1.4% (0.6%, 2.3%) 

HumM2       

0-1  4.4 Ref 

6.3 1.8% (1.0%, 2.7%) 

 ≥ 2  5.9 Ref 

6.9 1.0% (-0.5%, 2.4%) -0.9% (-2.3%, 0.6%) 

HF183       

0-1  4.4 Ref 

6.1 1.7% (0.6%, 2.7%) 

 ≥ 2  5.7 Ref 

6.9 1.3% (0.2%, 2.4%) -0.4% (-1.7%, 0.9%) 

BsteriF1        

0-1  7.2 Ref 

7.2 0.0% (-3.7%, 3.7%) 

 ≥ 2  5.6 Ref 

7.0 1.4% (0.4%, 2.4%) 1.4% (-2.4%, 5.1%) 

BuniF2       

0-1  1.1 Ref 

2.5 1.5% (0.4%, 2.5%) 

 ≥ 2  5.7 Ref 

7.0 1.3% (0.3%, 2.3%) -0.2% (-1.5%, 1.1%) 

Diarrhea 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- 1.1% (0.6%, 1.7%) 

HumM2       

0-1  2.6 Ref 

4.0 1.4% (0.9%, 1.9%) 

 ≥ 2  3.3 Ref 

4.2 0.9% (0.0%, 1.8%) -0.5% (-1.4%, 0.4%) 

HF183       

0-1  3.6 Ref 

4.8 1.2% (0.1%, 2.3%) 

 ≥ 2  2.7 Ref 

3.9 1.2% (0.7%, 1.7%) 0% (-1.1%, 1.1%) 
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BsteriF1        

0-1  5.5 Ref 

5.2 -0.3% (-4.0%, 3.5%) 

 ≥ 2  3.0 Ref 

4.2 1.2% (0.7%, 1.7%) 1.5% (-2.3%, 5.2%) 

BuniF2       

0-1  0.9 Ref 

2.1 1.2% (0.3%, 2.1%) 

 ≥ 2  3.2 Ref 

4.3 1.1% (0.5%, 1.7%) -0.1% (-1.1%, 0.9%) 

Respiratory 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- 0.6% (-0.7%, 1.8%) 

HumM2       

0-1  6.4 Ref 

6.4 0.0% (-2.0%, 2.0%) 

 ≥ 2  4.6 Ref 

5.6 1.0% (-0.4%, 2.3%) 0.9% (-1.2%, 3.1%) 

HF183       

0-1  13.9 Ref 

9.5 -4.4% (-10.8%, 2.0%) 

 ≥ 2  3.9 Ref 

5.1 1.3% (0.4%, 2.1%) 5.7% (-0.7%, 12%) 

BsteriF1        

0-1  8.7 Ref 

6.7 -1.9% (-7.8%, 4.0) 

 ≥ 2  5.7 Ref 

6.2 0.5% (-0.9%, 1.9%) 2.5% (-3.3%, 8.3%) 

BuniF2       

0-1  1.5 Ref 

2.7 1.2% (0.7%, 1.8%) 

 ≥ 2  5.6 Ref 

6.1 0.5% (-0.9%, 1.8%) -0.8% (-2.1%, 0.5%) 

Eye 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- -1.8% (-4.2%, 0.7%) 

HumM2       

0-1  6.8 Ref 
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4.3 -2.4% (-6.5%, 1.6%) 

 ≥ 2  4.5 Ref 

3.4 -1.0% (-3.5%, 1.4%) 1.4% (-3.1%, 5.9%) 

HF183       

0-1  6.0 Ref 

3.7 -2.3% (-7.8%, 3.3%) 

 ≥ 2  5.9 Ref 

4.1 -1.8% (-4.5%, 1.0%) 0.5% (-5.6%, 6.6%) 

BsteriF1        

0-1  5.2 Ref 

3.2 -2.0% (-7.5%, 3.6%) 

 ≥ 2  6.7 Ref 

4.4 -2.3% (-5.4%, 0.8%) -0.4% (-6.5%, 5.7%) 

BuniF2       

0-1  1.9 Ref 

2.0 0.1% (-2.8%, 3.1%) 

 ≥ 2  5.9 Ref 

4.0 -1.9% (-4.5%, 0.7%) -2.0% (-5.8%, 1.8%) 

Rash 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- -0.2% (-1.3%, 1.0%) 

HumM2       

0-1  4.4 Ref 

4.0 -0.4% (-2.4%, 1.6%) 

 ≥ 2  2.1 Ref 

2.4 0.3% (-0.5%, 1.0%) 0.7% (-1.3%, 2.7%) 

HF183       

0-1  5.9 Ref 

4.9 -1% (-4.6%, 2.6%) 

 ≥ 2  2.7 Ref 

2.8 0.1% (-0.8%, 1.1%) 1.1% (-2.5%, 4.8%) 

BsteriF1        

0-1  8.0 Ref 

4.8 -3.2% (-12.6%, 6.3%) 

 ≥ 2  3.2 Ref 

3.2 0.0% (-1.1%, 1.0%) 3.1% (-6.2%, 12.5%) 

BuniF2       

0-1  9.1 Ref 

5.6 -3.6% (-29.2%, 22%) 

 ≥ 2  3.4 Ref 
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3.2 -0.1% (-1.3%, 1.0%) 3.5% (-22.1%, 29%) 

Earache 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- 0.1% (-0.6%, 0.8%) 

HumM2       

0-1  1.7 Ref 

1.8 0.1% (-0.7%, 1.0%) 

 ≥ 2  1.7 Ref 

1.8 0.1% (-0.9%, 1.1%) 0.0% (-1.2%, 1.1%) 

HF183       

0-1  1.5 Ref 

1.6 0.1% (-0.7%, 0.9%) 

 ≥ 2  1.8 Ref 

1.9 0.1% (-0.8%, 1.0%) 0.0% (-1.1%, 1.0%) 

BsteriF1        

0-1  0.5 Ref 

0.8 0.3% (0.1%, 0.6%) 

 ≥ 2  2.2 Ref 

2.1 -0.1% (-1.2%, 1.0%) -0.4% (-1.4%, 0.6%) 

BuniF2       

0-1  0.1 Ref 

0.4 0.3% (-0.2%, 0.8%) 

 ≥ 2  1.8 Ref 

1.8 0.0% (-0.8%, 0.8%) -0.3% (-1.2%, 0.6%) 

Urinary tract infection 

Marker 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- -0.2% (-1.2%, 0.7%) 

HumM2       

0-1  1.4 Ref 

0.9 -0.5% (-2.4%, 1.3%) 

 ≥ 2  0.9 Ref 

0.8 -0.1% (-1.0%, 0.9%) 0.4% (-1.5%, 2.4%) 

HF183       

0-1  2.0 Ref 

1.1 -0.9% (-4.1%, 2.3%) 

 ≥ 2  0.9 Ref 

0.8 -0.1% (-0.9%, 0.7%) 0.8% (-2.4%, 4.0%) 

BsteriF1        
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0-1  0.8 Ref 

0.5 -0.3% (-2.4%, 1.8%) 

 ≥ 2  1.5 Ref 

1.0 -0.5% (-1.9%, 1.0%) -0.2% (-2.7%, 2.3%) 

BuniF2       

0-1  0.5 Ref 

0.4 0.0% (-2.1%, 2.0%) 

 ≥ 2  1.1 Ref 

0.9 -0.3% (-1.3%, 0.7%) -0.2% (-2.6%, 2.1%) 

GI, gastrointestinal; NA, not able to estimated. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.6. Frequencies and standardized risk differences (95% CI) for the association between 
illness and human-associated Bacteroides markers among head immersion swimmers in all 
beaches 

    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness* 

  HumM2  0-1 samples 365 4115 8.9% 8.4% Ref 

 ≥2 samples 301 4230 7.1% 7.9% -0.6% (-2.1%, 1.0%) 

  HF183  0-1 samples 173 1776 9.7% 7.1% Ref 

 ≥2 samples 493 6569 7.5% 8.6% 1.6% (-0.4%, 3.5%) 

  BsteriF1  0-1 samples 111 1328 8.4% 6.6% Ref 

 ≥2 samples 555 7017 7.9% 8.5% 1.9% (-0.1%, 3.9%) 

  BuniF2 0-1 samples 39 424 9.2% 6.8% Ref 

 ≥2 samples 627 7921 7.9% 8.3% 1.4% (-1.7%, 4.6%) 

Diarrhea* 

  HumM2  0-1 samples 250 4112 6.1% 5.7% Ref 

 ≥2 samples 180 4227 4.3% 4.9% -0.8% (-2.1%, 0.5%) 

  HF183  0-1 samples 128 1774 7.2% 5.2% Ref 

 ≥2 samples 302 6565 4.6% 5.4% 0.3% (-1.4%, 2.0%) 

  BsteriF1  0-1 samples 73 1326 5.5% 4.6% Ref 

 ≥2 samples 357 7013 5.1% 5.5% 1.0% (-0.6%, 2.6%) 

  BuniF2 0-1 samples 30 424 7.1% 5.6% Ref 

 ≥2 samples 400 7915 5.1% 5.4% -0.3% (-3.2%, 2.6%) 

Respiratory† 

  HumM2  0-1 samples 241 4015 6.0% 5.9% Ref 

 ≥2 samples 246 4092 6.0% 6.3% 0.4% (-1.0%, 1.7%) 

  HF183  0-1 samples 107 1745 6.1% 5.4% Ref 

 ≥2 samples 380 6362 6.0% 6.3% 0.9% (-1.2%, 2.9%) 

  BsteriF1  0-1 samples 71 1273 5.6% 5.0% Ref 

 ≥2 samples 416 6834 6.1% 6.3% 1.3% (-0.3%, 2.9%) 

  BuniF2 0-1 samples 28 413 6.8% 6.1% Ref 

 ≥2 samples 459 7694 6.0% 6.1% 0.0% (-3.0%, 3.0%) 

Earache* 

  HumM2  0-1 samples 83 4165 2.0% 2.1% Ref 

 ≥2 samples 78 4280 1.8% 1.8% -0.3% (-1.0%, 0.4%) 

  HF183  0-1 samples 35 1808 1.9% 2.0% Ref 

 ≥2 samples 126 6637 1.9% 1.9% 0.0% (-1.1%, 1.0%) 

  BsteriF1  0-1 samples 22 1330 1.7% 1.7% Ref 

 ≥2 samples 139 7115 2.0% 2.0% 0.3% (-0.5%, 1.2%) 

  BuniF2 0-1 samples 12 423 2.8% 3.8% Ref 
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    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

 ≥2 samples 149 8022 1.9% 1.9% -1.9% (-4.8%, 1.0%) 

Eye ailment† 

  HumM2  0-1 samples 120 4205 2.9% 3.0% Ref 

 ≥2 samples 103 4318 2.4% 2.4% -0.6% (-1.5%, 0.3%) 

  HF183  0-1 samples 43 1819 2.4% 2.4% Ref 

 ≥2 samples 180 6704 2.7% 2.7% 0.4% (-0.8%, 1.6%) 

  BsteriF1  0-1 samples 28 1341 2.1% 2.0% Ref 

 ≥2 samples 195 7182 2.7% 2.8% 0.7% (-0.3%, 1.7%) 

  BuniF2 0-1 samples 13 429 3.0% 3.8% Ref 

 ≥2 samples 210 8094 2.6% 2.6% -1.2% (-3.6%, 1.3%) 

Rash† 

  HumM2  0-1 samples 141 4130 3.4% 3.5% Ref 

 ≥2 samples 117 4238 2.8% 2.6% -1.0% (-1.9%, -0.1%) 

  HF183  0-1 samples 59 1791 3.3% 4.1% Ref 

 ≥2 samples 199 6577 3.0% 2.8% -1.3% (-2.9%, 0.4%) 

  BsteriF1  0-1 samples 38 1327 2.9% 3.0% Ref 

 ≥2 samples 220 7041 3.1% 3.0% 0.0% (-1.2%, 1.2%) 

  BuniF2 0-1 samples 8 424 1.9% 1.6% Ref 

 ≥2 samples 250 7944 3.1% 3.1% 1.5% (0.1%, 2.9%) 

UTI* 

  HumM2  0-1 samples 25 4216 0.6% 0.6% Ref 

 ≥2 samples 26 4314 0.6% 0.7% 0.1% (-0.3%, 0.5%) 

  HF183  0-1 samples 11 1819 0.6% 0.5% Ref 

 ≥2 samples 40 6711 0.6% 0.6% 0.1% (-0.4%, 0.6%) 

  BsteriF1  0-1 samples 8 1343 0.6% 0.6% Ref 

 ≥2 samples 43 7187 0.6% 0.6% 0.1% (-0.4%, 0.6%) 

  BuniF2 0-1 samples 4 431 0.9% 1.0% Ref 

   ≥2 samples 47 8099 0.6% 0.6% -0.4% (-1.7%, 0.8%) 

GI, gastrointestinal; NA, not able to estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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Table A.7. Frequencies and standardized risk differences (95% CI) for the association between 
illness and human-associated Bacteroides markers among swimmers who swallowed water in all 
beaches 

    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

GI illness* 

  HumM2  0-1 samples 101 1009 10.0% 9.4% Ref 

 ≥2 samples 99 1076 9.2% 10.2% 0.8% (-2.7%, 4.2%) 

  HF183  0-1 samples 52 493 10.5% 9.2% Ref 

 ≥2 samples 148 1592 9.3% 10.0% 0.8% (-3.5%, 5.2%) 

  BsteriF1  0-1 samples 34 341 10.0% 8.1% Ref 

 ≥2 samples 166 1744 9.5% 10.1% 2.0% (-2.4%, 6.5%) 

  BuniF2 0-1 samples 17 140 12.1% 12.7% Ref 

 ≥2 samples 183 1945 9.4% 9.6% -3.2% (-12%, 5.7%) 

Diarrhea* 

  HumM2  0-1 samples 75 1008 7.4% 7.1% Ref 

 ≥2 samples 60 1076 5.6% 6.1% -1.0% (-3.8%, 1.8%) 

  HF183  0-1 samples 39 493 7.9% 7.1% Ref 

 ≥2 samples 96 1591 6.0% 6.5% -0.6% (-4.4%, 3.3%) 

  BsteriF1  0-1 samples 24 341 7.0% 5.4% Ref 

 ≥2 samples 111 1743 6.4% 6.9% 1.5% (-2.0%, 5.1%) 

  BuniF2 0-1 samples 13 140 9.3% 9.3% Ref 

 ≥2 samples 122 1944 6.3% 6.4% -2.8% (-10.4%, 4.7%) 

Respiratory† 

  HumM2  0-1 samples 79 981 8.1% 7.4% Ref 

 ≥2 samples 88 1029 8.6% 9.3% 1.9% (-1.4%, 5.2%) 

  HF183  0-1 samples 40 481 8.3% 6.4% Ref 

 ≥2 samples 127 1529 8.3% 9.1% 2.7% (-1.8%, 7.2%) 

  BsteriF1  0-1 samples 28 319 8.8% 7.9% Ref 

 ≥2 samples 139 1691 8.2% 8.4% 0.5% (-3.2%, 4.3%) 

  BuniF2 0-1 samples 17 133 12.8% 14.4% Ref 

 ≥2 samples 150 1877 8.0% 7.9% -6.5% (-17.3%, 4.3%) 

Earache* 

  HumM2  0-1 samples 26 1028 2.5% 2.7% Ref 

 ≥2 samples 26 1093 2.4% 2.3% -0.4% (-2.2%, 1.3%) 

  HF183  0-1 samples 10 506 2.0% 1.7% Ref 

 ≥2 samples 42 1615 2.6% 2.9% 1.2% (-0.7%, 3.1%) 

  BsteriF1  0-1 samples 9 347 2.6% 2.8% Ref 

 ≥2 samples 43 1774 2.4% 2.5% -0.4% (-2.7%, 2.0%) 

  BuniF2 0-1 samples 6 141 4.3% 8.6% Ref 



   

 
150

    All beaches 

    Cases N 

Crude 

Risk 

Adjusted 

Risk 

Adjusted 

RD (95% CI) 

 ≥2 samples 46 1980 2.3% 2.3% -6.3% (-18.1%, 5.5%) 

Eye ailment† 

  HumM2  0-1 samples 36 1037 3.5% 3.6% Ref 

 ≥2 samples 34 1102 3.1% 3.0% -0.6% (-2.5%, 1.3%) 

  HF183  0-1 samples 15 510 2.9% 2.9% Ref 

 ≥2 samples 55 1629 3.4% 3.4% 0.5% (-2.1%, 3.1%) 

  BsteriF1  0-1 samples 13 347 3.7% 4.1% Ref 

 ≥2 samples 57 1792 3.2% 3.1% -1.0% (-3.7%, 1.7%) 

  BuniF2 0-1 samples 6 143 4.2% 6.3% Ref 

 ≥2 samples 64 1996 3.2% 3.1% -3.2% (-9.0%, 2.6%) 

Rash† 

  HumM2  0-1 samples 35 1017 3.4% 4.0% Ref 

 ≥2 samples 44 1081 4.1% 3.6% -0.4% (-2.6%, 1.8%) 

  HF183  0-1 samples 12 500 2.4% 3.1% Ref 

 ≥2 samples 67 1598 4.2% 3.9% 0.7% (-2.1%, 3.6%) 

  BsteriF1  0-1 samples 11 341 3.2% 4.3% Ref 

 ≥2 samples 68 1757 3.9% 3.7% -0.7% (-3.5%, 2.1%) 

  BuniF2 0-1 samples 2 140 1.4% 3.7% Ref 

 ≥2 samples 77 1958 3.9% 3.7% 0.0% (-5.0%, 5.0%) 

UTI* 

  HumM2  0-1 samples 13 1042 1.2% 1.2% Ref 

 ≥2 samples 11 1095 1.0% 1.1% -0.1% (-1.2%, 0.9%) 

  HF183  0-1 samples 8 504 1.6% 1.8% Ref 

 ≥2 samples 16 1633 1.0% 1.0% -0.7% (-2.3%, 0.8%) 

  BsteriF1  0-1 samples 6 345 1.7% 1.8% Ref 

 ≥2 samples 18 1792 1.0% 1.0% -0.8% (-2.5%, 0.9%) 

  BuniF2 0-1 samples 3 144 2.1% 2.7% Ref 

   ≥2 samples 21 1993 1.1% 1.1% -1.6% (-6.1%, 2.9%) 

GI, gastrointestinal; NA, not able to estimated; UTI, urinary tract infection. 
* Adjusted for beach, age, mean bathers, sand, rain, water temperature 
† Adjusted for beach, age, mean bathers, sand, rain 
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APPENDIX B. CHAPTER 6 SUPPLEMENTAL TABLES AND FIGURES 

This appendix contains supplemental tables and figures associated with analyses involving 

human-associated chemical markers shown in Chapter 6. 

 
Table B.1(a-g). Frequencies and standardized risk differences (95% CI) for the association 
between illness and human-associated chemical markers (detected in all daily samples vs. <all) 
among body immersion swimmers in all beaches 

 
Table B.1(a). GI illness 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

GI illness* 

  Acetaminophen  
Not detected 685 8176 8.4% 8.7% Ref 

Detected§ 55 519 10.6% 8.2% -0.5% (-3.2%, 2.2%) 
  Beta-sitosterol 

Not detected 694 8189 8.5% 8.7% Ref 
Detected§ 46 506 9.1% 8.5% -0.2% (-3.6%, 3.1%) 

  Bisphenol A 
Not detected 627 7360 8.5% 8.4% Ref 

Detected§ 113 1335 8.5% 10.0% 1.6% (-0.7%, 3.8%) 
  Caffeine 

Not detected 536 6814 7.9% 8.8% Ref 
Detected§ 204 1881 10.8% 8.3% -0.5% (-2.9%, 1.8%) 

  Cholesterol 
Not detected 483 6137 7.9% 8.4% Ref 

Detected§ 257 2558 10.0% 9.3% 0.9% (-0.8%, 2.7%) 
  DEET 

Not detected 484 6187 7.8% 8.7% Ref 
Detected§ 256 2508 10.2% 8.7% 0.0% (-2.1%, 2.1%) 

  Diethoxyoctylphenol 
Not detected 733 8640 8.5% 8.7% Ref 

Detected§ 7 55 12.7% 9.0% 0.3% (-7.3%, 7.9%) 
  Phenol 

Not detected 505 6491 7.8% 8.9% Ref 
Detected§ 235 2204 10.7% 8.2% -0.6% (-3.1%, 1.8%) 

  Tributyl phosphate 
Not detected 653 7710 8.5% 8.8% Ref 

Detected§ 87 985 8.8% 7.8% -1.0% (-3.2%, 1.2%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all daily samples 
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Table B.1(b). Diarrhea 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Diarrhea* 

  Acetaminophen  
Not detected 453 8176 5.5% 5.9% Ref 

Detected§ 42 519 8.1% 5.6% -0.3% (-2.5%, 1.9%) 
  Beta-sitosterol 

Not detected 457 8189 5.6% 5.8% Ref 
Detected§ 38 506 7.5% 6.3% 0.5% (-2.4%, 3.4%) 

  Bisphenol A 
Not detected 416 7360 5.7% 5.6% Ref 

Detected§ 79 1335 5.9% 7.4% 1.8% (-0.3%, 3.9%) 
  Caffeine 

Not detected 347 6814 5.1% 6.2% Ref 
Detected§ 148 1881 7.9% 5.1% -1.1% (-2.9%, 0.7%) 

  Cholesterol 
Not detected 303 6137 4.9% 5.4% Ref 

Detected§ 192 2558 7.5% 6.6% 1.1% (-0.4%, 2.6%) 
  DEET 

Not detected 300 6187 4.8% 5.6% Ref 
Detected§ 195 2508 7.8% 6.2% 0.6% (-1.3%, 2.4%) 

  Diethoxyoctylphenol 
Not detected 490 8640 5.7% 5.8% Ref 

Detected§ 5 55 9.1% 5.6% -0.3% (-6.1%, 5.6%) 
  Phenol 

Not detected 312 6491 4.8% 5.7% Ref 
Detected§ 183 2204 8.3% 6.0% 0.2% (-1.6%, 2.1%) 

  Tributyl phosphate 
Not detected 431 7710 5.6% 5.9% Ref 

Detected§ 64 985 6.5% 5.5% -0.4% (-2.3%, 1.4%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all daily samples 
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Table B.1(c). Respiratory illness 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Respiratory illness* 

  Acetaminophen  
Not detected 479 7914 6.1% 6.0% Ref 

Detected§ 30 511 5.9% 6.9% 0.9% (-2.4%, 4.2%) 
  Beta-sitosterol  

Not detected 484 7923 6.1% 6.0% Ref 
Detected§ 25 502 5.0% 6.1% 0.1% (-2.6%, 2.8%) 

  Bisphenol A  
Not detected 449 7121 6.3% 6.4% Ref 

Detected§ 60 1304 4.6% 4.4% -1.9% (-3.3%, -0.5%) 
  Caffeine  

Not detected 393 6607 5.9% 6.0% Ref 
Detected§ 116 1818 6.4% 6.1% 0.1% (-2.3%, 2.5%) 

  Cholesterol  
Not detected 391 5928 6.6% 6.5% Ref 

Detected§ 118 2497 4.7% 4.7% 1.5% (-1.4%, 4.3%) 
  DEET  

Not detected 372 5976 6.2% 6.2% Ref 
Detected§ 137 2449 5.6% 5.6% -0.6% (-2.2%, 1.1%) 

  Diethoxyoctylphenol  
Not detected 505 8372 6.0% 6.0% Ref 

Detected§ 4 53 7.5% 5.8% -0.2% (-6.0%, 5.5%) 
  Phenol  

Not detected 402 6281 6.4% 6.7% Ref 
Detected§ 107 2144 5.0% 4.3% -2.4% (-4.4%, -0.3%) 

  Tributyl phosphate  
Not detected 439 7465 5.9% 5.8% Ref 

Detected§ 70 960 7.3% 8.0% 2.2% (-0.3%, 4.8%) 

* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all daily samples 
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Table B.1(d). Eye illness 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Eye ailment 

  Acetaminophen  
Not detected 234 8364 2.8% 2.8% Ref 

Detected§ 12 524 2.3% 2.1% -0.8% (-2.5%, 1.0%) 
  Beta-sitosterol 

Not detected 230 8364 2.7% 2.7% Ref 
Detected§ 16 524 3.1% 3.0% 0.0% (-1.6%, 1.6%) 

  Bisphenol A 
Not detected 211 7513 2.8% 2.8% Ref 

Detected§ 35 1375 2.5% 2.6% -0.1% (-1.2%, 0.9%) 
  Caffeine 

Not detected 195 6976 2.8% 2.9% Ref 
Detected§ 51 1912 2.7% 2.3% -0.4% (-1.7%, 0.9%) 

  Cholesterol 
Not detected 171 6275 2.7% 2.7% Ref 

Detected§ 75 2613 2.9% 2.8% -0.1% (-1.0%, 0.8%) 
  DEET 

Not detected 177 6333 2.8% 2.8% Ref 
Detected§ 69 2555 2.7% 2.5% -0.5% (-1.5%, 0.6%) 

  Diethoxyoctylphenol 
Not detected 242 8831 2.7% 2.7% Ref 

Detected§ 4 57 7.0% 7.2% 5.0% (-4.4%, 14.3%) 
  Phenol 

Not detected 179 6657 2.7% 2.6% Ref 
Detected§ 67 2231 3.0% 3.0% -0.1% (-1.7%, 1.6%) 

  Tributyl phosphate 
Not detected 221 7875 2.8% 2.7% Ref 

Detected§ 25 1013 2.5% 2.6% -0.3% (-1.5%, 1.0%) 

* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all daily samples 
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Table B.1(e). Rash 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Rash 

  Acetaminophen  
Not detected 216 8216 2.6% 2.7% Ref 

Detected§ 18 517 3.5% 2.6% -0.1% (-1.5%, 1.4%) 
  Beta-sitosterol 

Not detected 215 8215 2.6% 2.7% Ref 
Detected§ 19 518 3.7% 2.7% 0.0% (-1.3%, 1.4%) 

  Bisphenol A 
Not detected 202 7387 2.7% 2.7% Ref 

Detected§ 32 1346 2.4% 2.6% -0.1% (-1.1%, 0.9%) 
  Caffeine 

Not detected 177 6851 2.6% 2.6% Ref 
Detected§ 57 1882 3.0% 3.0% 0.3% (-0.8%, 1.4%) 

  Cholesterol 
Not detected 156 6149 2.5% 2.6% Ref 

Detected§ 78 2584 3.0% 2.8% 0.2% (-0.6%, 1.0%) 
  DEET 

Not detected 151 6208 2.4% 2.7% Ref 
Detected§ 83 2525 3.3% 2.7% 0.1% (-0.9%, 1.1%) 

  Diethoxyoctylphenol 
Not detected 234 8677 2.7% NA Ref 

Detected§ 0 56 0.0% NA NA  
  Phenol 

Not detected 150 6521 2.3% 2.2% Ref 
Detected§ 84 2212 3.8% 4.3% 2.1% (-0.1%, 4.3%) 

  Tributyl phosphate 
Not detected 195 7742 2.5% 2.6% Ref 

Detected§ 39 991 3.9% 3.7% 1.1% (-0.4%, 2.6%) 

* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all daily samples 
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Table B.1(f). Earache 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Earache* 

  Acetaminophen  
Not detected 145 8278 1.8% 1.7% Ref 

Detected§ 15 525 2.9% 3.9% 2.2% (-0.1%, 4.5%) 
  Beta-sitosterol 

Not detected 147 8287 1.8% 1.8% Ref 
Detected§ 13 516 2.5% 2.7% 1.0% (-0.8%, 2.7%) 

  Bisphenol A 
Not detected 138 7448 1.9% 1.8% Ref 

Detected§ 22 1355 1.6% 1.7% -0.1% (-1.0%, 0.7%) 
  Caffeine 

Not detected 122 6912 1.8% 1.6% Ref 
Detected§ 38 1891 2.0% 2.7% 1.1% (-0.3%, 2.4%) 

  Cholesterol 
Not detected 116 6217 1.9% 1.9% Ref 

Detected§ 44 2586 1.7% 1.7% -0.1% (-0.8%, 0.5%) 
  DEET 

Not detected 110 6272 1.8% 1.7% Ref 
Detected§ 50 2531 2.0% 2.3% 0.6% (-0.3%, 1.5%) 

  Diethoxyoctylphenol 
Not detected 158 8746 1.8% 1.8% Ref 

Detected§ 2 57 3.5% 5.2% 3.4% (-4.1%, 10.9%) 
  Phenol 

Not detected 122 6590 1.9% 1.8% Ref 
Detected§ 38 2213 1.7% 1.8% 0.0% (-1.3%, 1.4%) 

  Tributyl phosphate 
Not detected 143 7801 1.8% 1.8% Ref 

Detected§ 17 1002 1.7% 1.9% 0.1% (-1.0%, 1.2%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all daily samples 
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Table B.1(g). Urinary tract infection 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Urinary tract infection 

  Acetaminophen  
Not detected 51 8355 0.6% 0.6% Ref 

Detected§ 6 530 1.1% 1.2% 0.6% (-0.8%, 1.9%) 
  Beta-sitosterol 

Not detected 53 8360 0.6% 0.6% Ref 
Detected§ 4 525 0.8% 0.7% 0.0% (-0.7%, 0.8%) 

  Bisphenol A 
Not detected 48 7512 0.6% 0.6% Ref 

Detected§ 9 1373 0.7% 0.7% 0.1% (-0.5%, 0.6%) 
  Caffeine 

Not detected 38 6965 0.5% 0.5% Ref 
Detected§ 19 1920 1.0% 1.4% 0.9% (-0.1%, 1.8%) 

  Cholesterol 
Not detected 41 6269 0.7% 0.6% Ref 

Detected§ 16 2616 0.6% 0.6% 0.0% (-0.5%, 0.5%) 
  DEET 

Not detected 41 6322 0.6% 0.8% Ref 
Detected§ 16 2563 0.6% 0.4% -0.3% (-0.8%, 0.2%) 

  Diethoxyoctylphenol 
Not detected 57 8828 0.6% NA Ref 

Detected§ 0 57 0.0% NA NA 
  Phenol 

Not detected 45 6645 0.7% 0.8% Ref 
Detected§ 12 2240 0.5% 0.4% -0.4% (-1.0%, 0.1%) 

  Tributyl phosphate 
Not detected 48 7870 0.6% 0.6% Ref 

Detected§ 9 1015 0.9% 0.6% 0.0% (-0.5%, 0.5%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all daily samples 
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Figure B.1. Standardized risk differences (95% CI) for the association between illness and 
human-associated chemical markers (detected in all daily samples vs. <all) among body 
immersion swimmers in freshwater beaches 

 
NA, not able to estimated. 
* Adjusted for beach, mean bathers, sand, rain, water temperature 
† Adjusted for beach, mean bathers, sand, rain 
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Table B.2(a-d). Modification of the adjusted standardized RD (95% CI) for the association between illness and 
Enterococcus qPCR Method 1611 above and below EPA guidelines (geometric mean of 470 CCE/100ml for an 
illness rate of 36/1000) with chemical markers (detected in all daily samples vs. <all) among body immersion 
swimmers in all beaches – Table B.2(a) Eye ailment 

Eye Ailment  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- Main assoc -0.7% (-2.1%, 0.8%) 

  Acetaminophen              

Not detected <470 223 8067 2.8 Ref 
≥470 13 463 2.7 -0.1% (-2.0%, 1.8%) 

Detected in all <470 11 388 2.7 Ref 
≥470 1 150 0.5 -2.1% (-4.7%, 0.4%) -2.0% (-5.3%, 1.2%) 

Beta-sitosterol             
Not detected <470 220 7918 2.8 Ref 

≥470 11 532 1.8 -1.0% (-2.5%, 0.5%) 
Detected in all <470 13 444 2.5 Ref 

≥470 3 81 3.4 0.9% (-3.2%, 5.1%) 1.9% (-2.4%, 6.3%) 

Bisphenol A             
Not detected <470 199 6945 2.9 Ref 

≥470 12 569 1.9 -1.0% (-2.4%, 0.4%) 
Detected in all <470 33 1331 2.6 Ref 

≥470 2 44 5.5 2.9% (-4.9%, 10.8%) 3.9% (-4.0%, 11.8%) 

Caffeine             
Not detected <470 185 6749 2.8 Ref 

≥470 10 291 3.2 0.4% (-2.2%, 3.0%) 
Detected in all <470 49 1706 2.8 Ref 

≥470 4 322 1.2 -1.7% (-3.4%, 0.0%) -2.1% (-5.2%, 1.0%) 

Cholesterol             

Not detected <470 167 6067 2.9 Ref 
≥470 5 294 1.6 -1.3% (-2.8%, 0.3%) 

Detected in all <470 66 2295 2.7 Ref 
≥470 9 319 2.4 -0.2% (-2.4%, 1.9%) 1.0% (-1.5%, 3.5%) 

DEET             
Not detected <470 176 6221 3.0 Ref 

≥470 1 112 0.8 -2.2% (-3.9%, -0.5%) 
Detected in all <470 57 2141 2.4 Ref 

≥470 13 501 2.1 -0.3% (-1.8%, 1.3%) 1.9% (-0.4%, 4.2%) 

Diethoxyoctylphenol           
Not detected <470 229 8305 2.8 Ref 

≥470 14 613 2.1 -0.7% (-2.1%, 0.7%) 
Detected in all <470 4 57 7.7 Ref 

≥470 0 0 0.0 NA NA 

Phenol             
Not detected <470 177 6444 3.2 Ref 

≥470 2 244 0.6 -2.7% (-4.2%, -1.1%) 
Detected in all <470 56 1918 2.1 Ref 

≥470 12 369 2.4 0.3% (-1.4%, 2.1%) 3.0% (0.8%, 5.2%) 

Tributyl phosphate           
Not detected <470 213 7547 2.9 Ref 

≥470 9 415 1.8 -1.1% (-2.6%, 0.5%) 
Detected in all <470 20 815 2.4 Ref 

≥470 5 198 2.7 0.3% (-2.3%, 2.9%) 1.3% (-1.6%, 4.3%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.2(b). Rash 
Rash  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast  

(95% CI) 

-- Main assoc 0.0% (-1.4%, 1.3%) 

  Acetaminophen              

Not detected <470 202 7919 2.7 Ref 
≥470 17 456 2.6 -0.1% (-1.7%, 1.5%) 

Detected in all <470 13 383 2.6 Ref 
≥470 6 148 2.8 0.2% (-2.8%, 3.2%) 0.3% (-3.2%, 3.7%) 

Beta-sitosterol             
Not detected <470 200 7772 2.7 Ref 

≥470 18 524 2.3 -0.4% (-1.8%, 1.0%) 
Detected in all <470 14 439 2.3 Ref 

≥470 5 80 4.4 2.1% (-2.1%, 6.2%) 2.5% (-1.8%, 6.8%) 

Bisphenol A             
Not detected <470 182 6827 2.7 Ref 

≥470 20 561 2.5 -0.2% (-1.6%, 1.1%) 
Detected in all <470 29 1303 2.5 Ref 

≥470 3 43 4.9 2.4% (-3.6%, 8.4%) 2.6% (-3.4%, 8.7%) 

Caffeine             
Not detected <470 168 6625 2.6 Ref 

≥470 11 288 2.6 0.0% (-1.9%, 1.8%) 
Detected in all <470 47 1677 2.9 Ref 

≥470 12 316 2.9 -0.1% (-2.1%, 2.0%) 0.0% (-2.8%, 2.7%) 

Cholesterol             

Not detected <470 149 5943 2.6 Ref 
≥470 10 287 2.5 -0.1% (-2.0%, 1.9%) 

Detected in all <470 65 2268 2.8 Ref 
≥470 13 317 2.8 -0.1% (-1.9%, 1.8%) 0.0% (-2.6%, 2.6%) 

DEET             
Not detected <470 146 6101 2.6 Ref 

≥470 5 107 4.0 1.4% (-3.0%, 5.8%) 
Detected in all <470 68 2110 2.9 Ref 

≥470 18 497 2.5 -0.4% (-1.9%, 1.2%) -1.8% (-6.5%, 2.9%) 

Diethoxyoctylphenol           
Not detected <470 214 8155 NA Ref 

≥470 23 604 NA NA 
Detected in all <470 0 56 NA Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 141 6315 2.0 Ref 

≥470 9 237 5.2 3.2% (-1.7%, 8.1%) 
Detected in all <470 73 1896 5.8 Ref 

≥470 14 367 4.6 -1.2% (-4.4%, 1.9%) -4.4% (-10.6%, 1.7%) 

Tributyl phosphate           
Not detected <470 186 7413 2.6 Ref 

≥470 12 411 2.0 -0.6% (-2.0%, 0.8%) 
Detected in all <470 28 798 3.4 Ref 

≥470 11 193 4.8 1.4% (-4.5%, 5.0%) 1.9% (-1.8%, 5.7%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.2(c). Earache 

Earache  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc -0.9% (-1.8%, 0.1%) 

  Acetaminophen              

Not detected <470 142 7986 1.8 Ref 
≥470 4 455 0.9 -0.9% (-2.0%, 0.2%) 

Detected in all <470 13 388 4.0 Ref 
≥470 3 151 2.0 -1.9% (-5.2%, 1.3%) -1.1% (-4.5%, 2.3%) 

Beta-sitosterol             
Not detected <470 143 7843 1.8 Ref 

≥470 5 527 0.9 -0.9% (-1.9%, 0.2%) 
Detected in all <470 11 438 3.0 Ref 

≥470 2 79 2.6 -0.4% (-4.5%, 3.6%) 0.4% (-3.7%, 4.6%) 

Bisphenol A             
Not detected <470 132 6886 2.0 Ref 

≥470 6 563 0.9 -1.0% (-2.0%, -0.1%) 
Detected in all <470 21 1312 1.7 Ref 

≥470 1 43 3.0 1.4% (-5.1%, 7.8%) 2.4% (-3.9%, 8.8%) 

Caffeine             
Not detected <470 121 6686 1.7 Ref 

≥470 2 289 0.6 -1.1% (-2.2%, -0.1%) 
Detected in all <470 34 1688 2.6 Ref 

≥470 5 317 1.7 -0.9% (-2.8%, 1.0%) 0.2% (-1.9%, 2.3%) 

Cholesterol             

Not detected <470 113 6008 1.9 Ref 
≥470 4 292 1.4 -0.6% (-2.1%, 1.0%) 

Detected in all <470 41 2273 1.8 Ref 
≥470 3 314 0.7 -1.1% (-2.1%, 0.0%) -0.5% (-2.3%, 1.2%) 

DEET             
Not detected <470 109 6165 1.7 Ref 

≥470 1 107 1.2 -0.6% (-3.0%, 1.9%) 
Detected in all <470 45 2116 2.3 Ref 

≥470 6 499 1.2 -1.1% (-2.3%, 0.2%) -0.5% (-3.2%, 2.2%) 

Diethoxyoctylphenol           
Not detected <470 152 8224 1.9 Ref 

≥470 7 606 1.0 -0.9% (-1.8%, 0.1%) 
Detected in all <470 2 57 5.3 Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 118 6380 1.7 Ref 

≥470 4 241 1.2 -0.6% (-3.0%, 1.9%) 
Detected in all <470 36 1901 2.3 Ref 

≥470 3 365 1.2 -1.1% (-2.3%, 0.2%) -0.5% (-3.2%, 2.2%) 

Tributyl phosphate           
Not detected <470 138 7477 1.8 Ref 

≥470 6 408 1.7 -0.2% (-2.2%, 1.9%) 
Detected in all <470 16 804 2.0 Ref 

≥470 1 198 0.7 -1.3% (-2.5%, -0.1%) -1.1% (-3.7%, 1.5%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.2(d). Urinary tract infection 

Urinary tract infection 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc 0.1% (-0.7%, 1.0%) 

  Acetaminophen              

Not detected <470 48 8064 0.6 Ref 
≥470 3 463 0.6 0.0% (-0.8%, 0.8%) 

Detected in all <470 4 392 0.9 Ref 
≥470 2 152 2.4 1.5% (-2.3%, 5.3%) 1.5% (-2.3%, 5.3%) 

Beta-sitosterol             
Not detected <470 49 7919 0.6 Ref 

≥470 4 534 0.7 0.1% (-0.7%, 1.0%) 
Detected in all <470 3 445 0.9 Ref 

≥470 1 81 1.1 0.2% (-2.3%, 2.6%) 0.0% (-2.4%, 2.5%) 

Bisphenol A             
Not detected <470 43 6950 0.6 Ref 

≥470 5 571 0.8 0.1% (-0.7%, 1.0%) 
Detected in all <470 9 1329 0.9 Ref 

≥470 0 44 0.0 NA NA 

Caffeine             
Not detected <470 38 6743 0.5 0.5 

≥470 0 291 0.0 NA 
Detected in all <470 14 1713 1.0 1.0 

≥470 5 324 1.8 0.8% (-1.1%, 2.8%) NA 

Cholesterol             

Not detected <470 38 6067 0.6 Ref 
≥470 3 295 1.0 0.4% (-0.9%, 1.7%) 

Detected in all <470 14 2297 0.8 Ref 
≥470 2 320 0.6 -0.2% (-1.2%, 0.8%) -0.6% (-2.1%, 1.0%) 

DEET             
Not detected <470 40 6219 0.8 Ref 

≥470 1 111 0.4 -0.3% (-1.3%, 0.6%) 
Detected in all <470 12 2145 0.4 Ref 

≥470 4 504 0.6 0.2% (-0.6%, 1.0%) 0.6% (-0.6%, 1.7%) 

Diethoxyoctylphenol           
Not detected <470 52 8307 NA Ref 

≥470 5 615 NA NA 
Detected in all <470 0 57 NA Ref 

≥470 0 0 NA NA NA 

Phenol             
Not detected <470 42 6436 0.8 Ref 

≥470 3 245 1.0 0.4% (-1.2%, 1.7%) 
Detected in all <470 10 1928 0.4 Ref 

≥470 2 370 0.4 0.0% (-0.7%, 0.6%) -0.3% (-1.9%, 1.3%) 

Tributyl phosphate           
Not detected <470 45 7547 0.0 Ref 

≥470 3 417 0.8 0.2% (-0.9%, 1.2%) 
Detected in all <470 7 817 0.7 Ref 

≥470 2 198 0.7 0.1% (-1.3%, 1.4%) -0.1% (-1.7%, 1.5%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.3(a-g). Modification of the adjusted standardized RD (95% CI) for the association between illness and 
Enterococcus qPCR Method 1611 above and below EPA guidelines (geometric mean of 300 CCE/100ml for an 
illness rate of 32/1000) with chemical markers (detected in all daily samples vs. <all) among body immersion 
swimmers in all beaches – Table B.3(a) GI illness 

GI Illness  

Chemical (samples) 

Enterococcus 

(CCE/100ml) 

Cas

es N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc 0.4% (-2.3%, 3.1%) 

  Acetaminophen              

Not detected <300 617 7639 8.6 Ref 
≥300 81 702 9.8 1.2% (-2.1%, 4.6%) 

Detected in all <300 43 383 9.2 Ref 
≥300 13 150 6.6 -2.6% (-7.5%, 2.2%) -3.9% (-10.0%, 2.2%) 

Beta-sitosterol             
Not detected <300 631 7639 8.6 Ref 

≥300 72 639 9.2 0.6% (-2.6%, 3.7%) 
Detected in all <300 24 294 8.8 Ref 

≥300 22 213 8.5 -0.3% (-6.8%, 6.2%) -0.9% (-8.2%, 6.5%) 

Bisphenol A             
Not detected <300 552 6699 8.4 Ref 

≥300 76 666 8.8 0.4% (-2.4%, 3.2%) 
Detected in all <300 103 1234 10.0 Ref 

≥300 11 105 10.0 0.0% (-8.3%, 8.2%) -0.4% (-8.6%, 7.8%) 

Caffeine             
Not detected <300 492 6508 8.4 Ref 

≥300 51 372 11.8 3.5% (-1.2%, 8.2%) 
Detected in all <300 168 1514 9.1 Ref 

≥300 43 480 7.6 -1.6% (-4.8%, 1.7%) -5.1% (-10.4%, 0.3%) 

Cholesterol             

Not detected <300 445 5757 8.3 Ref 
≥300 47 466 8.8 0.5% (-3.1%, 4.1%) 

Detected in all <300 210 2176 9.3 Ref 
≥300 47 386 9.6 0.3% (-3.3%, 3.9%) -0.1% (-4.8%, 4.5%) 

DEET             
Not detected <300 474 6081 8.7 Ref 

≥300 10 108 7.7 -1.0% (-6.9%, 5.0%) 
Detected in all <300 181 1852 8.5 Ref 

≥300 84 744 9.1 0.6% (-2.3%, 3.5%) 1.6% (-4.7%, 7.8%) 

Diethoxyoctylphenol           
Not detected <300 648 7878 8.6 Ref 

≥300 94 852 9.0 0.4% (-2.4%, 3.1%) 
Detected in all <300 7 55 9.0 Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 476 6163 9.6 Ref 

≥300 33 362 6.7 -2.9% (-7.0%, 1.1%) 
Detected in all <300 179 1770 7.2 Ref 

≥300 61 490 8.7 1.5% (-1.5%, 4.5%) 4.4% (-0.2%, 9.1%) 

Tributyl phosphate           
Not detected <300 594 7232 8.8 Ref 

≥300 67 565 8.9 0.1% (-2.9%, 3.1%) 
Detected in all <300 61 701 7.7 Ref 

≥300 27 287 8.4 0.8% (-3.7%, 5.3%) 0.7% (-4.3%, 5.6%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.3(b). Diarrhea 

Diarrhea  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc 0.8% (-1.6%, 3.2%) 

  Acetaminophen              

Not detected <300 398 7639 5.6 Ref 
≥300 63 702 7.3 1.7% (-1.2%, 4.6%) 

Detected in all <300 32 383 6.5 Ref 
≥300 10 150 4.4 -2.2% (-6.1%, 1.8%) -3.9% (-8.9%, 1.2%) 

Beta-sitosterol             
Not detected <300 405 7639 5.6 Ref 

≥300 56 639 6.9 1.3% (-1.6%, 4.1%) 
Detected in all <300 21 294 7.1 Ref 

≥300 17 213 6.2 -0.9% (-6.7%, 4.8%) -2.2% (-8.9%, 4.5%) 

Bisphenol A             
Not detected <300 355 6699 5.5 Ref 

≥300 61 666 6.4 0.9% (-1.5%, 3.2%) 
Detected in all <300 71 1234 7.4 Ref 

≥300 8 105 7.3 -0.1% (-7.7%, 7.4%) -1.0% (-8.6%, 6.5%) 

Caffeine             
Not detected <300 312 6508 5.8 Ref 

≥300 40 372 8.6 2.7% (-1.3%, 6.7%) 
Detected in all <300 118 1514 5.5 Ref 

≥300 33 480 5.1 -0.3% (-2.9%, 2.3%) -3.1% (-7.4%, 1.3%) 

Cholesterol             

Not detected <300 272 5757 5.3 Ref 
≥300 35 466 6.3 0.9% (-2.2%, 4.1%) 

Detected in all <300 154 2176 6.5 Ref 
≥300 38 386 7.3 0.8% (-2.4%, 4.0%) -0.2% (-4.2%, 3.9%) 

DEET             
Not detected <300 292 6081 5.5 Ref 

≥300 8 108 6.3 0.8% (-5.0%, 6.6%) 
Detected in all <300 134 1852 6.1 Ref 

≥300 65 744 6.9 0.8% (-1.8%, 3.4%) 0.0% (-6.0%, 6.0%) 

Diethoxyoctylphenol           
Not detected <300 421 7878 5.7 Ref 

≥300 73 852 6.5 0.8% (-1.6%, 3.2%) 
Detected in all <300 5 55 5.5 Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 289 6163 5.9 Ref 

≥300 24 362 5.0 -0.9% (-4.5%, 2.7%) 
Detected in all <300 137 1770 5.5 Ref 

≥300 49 490 7.2 1.7% (-1.2%, 4.6%) 2.6% (-1.6%, 6.7%) 

Tributyl phosphate           
Not detected <300 382 7232 5.8 Ref 

≥300 53 565 6.4 0.6% (-2.0%, 3.1%) 
Detected in all <300 44 701 5.3 Ref 

≥300 20 287 6.7 1.4% (-2.8%, 5.6%) 0.8% (-3.7%, 5.4%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.3(c). Respiratory illness 

Respiratory illness  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc -2.6% (-4.5%, -0.7%) 

  Acetaminophen              

Not detected <300 465 7383 6.3 Ref 
≥300 26 686 3.4 -2.8% (-4.7%, -0.9%) 

Detected in all <300 25 377 6.4 Ref 
≥300 6 148 5.0 -1.4% (-8.5%, 5.7%) 1.4% (-6.0%, 8.8%) 

Beta-sitosterol             
Not detected <300 464 7385 6.2 Ref 

≥300 21 620 3.4 -2.9% (-5.1%, -0.6%) 
Detected in all <300 14 289 6.6 Ref 

≥300 11 214 4.5 -2.1% (-7.0%, 2.8%) 0.8% (-4.6%, 6.2%) 

Bisphenol A             
Not detected <300 423 6475 6.6 Ref 

≥300 26 647 4.1 -2.4% (-4.6%, -0.2%) 
Detected in all <300 55 1199 4.5 Ref 

≥300 5 105 4.1 -0.5% (-5.3%, 4.3%) 2.0% (-3.1%, 7.0%) 

Caffeine             
Not detected <300 383 6305 6.2 Ref 

≥300 13 365 3.5 -2.7% (-5.4%, 0.0%) 
Detected in all <300 107 1455 6.3 Ref 

≥300 19 469 3.8 -2.6% (-5.3%, 0.1%) 0.2% (-3.7%, 4.0%) 

Cholesterol             

Not detected <300 374 5558 6.8 Ref 
≥300 18 452 3.7 -3.0% (-6.0%, -0.1%) 

Detected in all <300 104 2116 4.9 Ref 
≥300 14 382 3.4 -1.6% (-3.6%, 0.5%) 1.5% (-1.9%, 4.9%) 

DEET             
Not detected <300 369 5874 6.4 Ref 

≥300 3 102 2.5 -3.9% (-6.8%, -1.0%) 
Detected in all <300 109 1800 5.9 Ref 

≥300 29 732 3.7 -2.2% (-4.4%, 0.0%) 1.8% (-1.7%, 5.2%) 

Diethoxyoctylphenol           
Not detected <300 474 7621 6.3 Ref 

≥300 32 834 3.7 -2.6% (-4.6%, -0.6%) 
Detected in all <300 4 53 5.6 Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 390 5958 7.8 Ref 

≥300 13 354 2.6 -5.2% (-7.9%, -2.4%) 
Detected in all <300 88 1716 3.7 Ref 

≥300 19 480 2.8 -1.0% (-2.6%, 0.7%) 4.2% (1.0%, 7.4%) 

Tributyl phosphate           
Not detected <300 422 6992 6.0 Ref 

≥300 18 556 3.4 -2.6% (-4.9%, -0.4%) 
Detected in all <300 56 682 7.9 Ref 

≥300 14 278 5.6 -2.3% (-6.9%, 2.3%) 0.3% (-4.5%, 5.2%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.3(d). Eye ailment 

Eye Ailment  

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc -1.0% (-2.2%, 0.1%) 

  Acetaminophen              

Not detected <300 220 7810 2.9 Ref 
≥300 16 720 2.1 -0.8% (-2.2%, 0.7%) 

Detected in all <300 11 388 2.5 Ref 
≥300 1 150 0.5 -2.0% (-4.4%, 0.4%) -1.2% (-4.3%, 1.8%) 

Beta-sitosterol             
Not detected <300 219 7802 2.9 Ref 

≥300 12 648 1.6 -1.3% (-2.6%, 0.0%) 
Detected in all <300 11 303 2.8 Ref 

≥300 5 222 2.1 -0.7% (-3.3%, 1.9%) 0.6% (-2.4%, 3.6%) 

Bisphenol A             
Not detected <300 199 6840 2.9 Ref 

≥300 12 674 1.6 -1.3% (-2.5%, -0.1%) 
Detected in all <300 31 1265 2.6 Ref 

≥300 4 110 4.2 1.6% (-3.4%, 6.5%) 2.9% (-2.1%, 7.9%) 

Caffeine             
Not detected <300 183 6660 2.8 Ref 

≥300 12 380 3.0 0.2% (-2.1%, 2.5%) 
Detected in all <300 48 1538 3.0 Ref 

≥300 5 490 1.0 -2.0% (-3.5%, -0.6%) -2.2% (-5.0%, 0.6%) 

Cholesterol             

Not detected <300 164 5885 2.9 Ref 
≥300 8 476 1.5 -1.4% (-2.7%, -0.1%) 

Detected in all <300 66 2220 2.8 Ref 
≥300 9 394 1.9 -0.9% (-2.5%, 0.8%) 0.6% (-1.5%, 2.6%) 

DEET             
Not detected <300 176 6221 3.0 Ref 

≥300 1 112 0.8 -2.3% (-3.9%, -0.6%) 
Detected in all <300 54 1884 2.5 Ref 

≥300 16 758 1.7 -0.8% (-2.0%, 0.4%) 1.5% (-0.5%, 3.5%) 

Diethoxyoctylphenol           
Not detected <300 226 8048 2.8 Ref 

≥300 17 870 1.7 -1.1% (-2.2%, 0.0%) 
Detected in all <300 4 57 7.5 Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 175 6317 3.4 Ref 

≥300 4 371 0.8 -2.6% (-4.3%, -1.0%) 
Detected in all <300 55 1788 2.1 Ref 

≥300 13 499 1.8 -0.3% (-1.6%, 1.0%) 2.4% (0.1%, 4.6%) 

Tributyl phosphate           
Not detected <300 212 7386 2.9 Ref 

≥300 10 576 1.5 -1.5% (-2.7%, -0.2%) 
Detected in all <300 18 719 2.3 Ref 

≥300 7 294 2.3 0.0% (-2.2%, 2.1%) 1.5% (-0.9%, 3.8%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.3(e). Rash 

Rash 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj 

Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc -0.7% (-1.8%, 0.3%) 

  Acetaminophen              

Not detected <300 199 7672 2.9 Ref 
≥300 20 703 1.8 -1.0% (-2.3%, 0.2%) 

Detected in all <300 13 383 2.3 Ref 
≥300 6 148 2.6 0.3% (-2.6%, 3.1%) 1.3% (-2.0%, 4.6%) 

Beta-sitosterol             
Not detected <300 197 7663 2.8 Ref 

≥300 21 633 2.1 -0.7% (-1.9%, 0.6%) 
Detected in all <300 14 301 3.2 Ref 

≥300 5 218 1.7 -1.4% (-3.9%, 1.0%) -0.7% (-3.5%, 2.0%) 

Bisphenol A             
Not detected <300 182 6723 2.8 Ref 

≥300 20 665 2.0 -0.8% (-1.9%, 0.4%) 
Detected in all <300 29 1241 2.8 Ref 

≥300 3 105 1.6 -1.2% (-3.5%, 1.1%) -0.5% (-2.9%, 2.0%) 

Caffeine             
Not detected <300 167 6541 2.7 Ref 

≥300 12 372 2.1 -0.7% (-2.2%, 0.9%) 
Detected in all <300 45 1514 3.1 Ref 

≥300 14 479 2.2 -0.9% (-2.5%, 0.7%) -0.2% (-2.4%, 2.0%) 

Cholesterol             

Not detected <300 146 5772 2.8 Ref 
≥300 13 458 1.7 -1.0% (-2.4%, 0.3%) 

Detected in all <300 65 2192 2.9 Ref 
≥300 13 393 2.3 -0.6% (-2.1%, 1.0%) 0.5% (-1.5%, 2.4%) 

DEET             
Not detected <300 146 6101 2.7 Ref 

≥300 5 107 3.7 1.0% (-3.0%, 5.1%) 
Detected in all <300 65 1863 3.1 Ref 

≥300 21 744 1.9 -1.1% (-2.4%, 0.1%) -2.2% (-6.4%, 2.0%) 

Diethoxyoctylphenol           
Not detected <300 211 7908 NA Ref 

≥300 26 851 NA NA 
Detected in all <300 0 56 NA Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 141 6194 2.2 Ref 

≥300 9 358 2.4 0.3% (-2.3%, 2.8%) 
Detected in all <300 70 1770 4.9 Ref 

≥300 17 493 3.5 -1.4% (-3.8%, 1.0%) -1.7% (-5.4%, 2.1%) 

Tributyl phosphate           
Not detected <300 183 7256 2.7 Ref 

≥300 15 568 1.9 -0.7% (-2.0%, 0.5%) 
Detected in all <300 28 708 3.7 Ref 

≥300 11 283 2.7 -1.1% (-3.5%, 1.4%) -0.3% (-3.0%, 2.3%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.3(f). Earache 

Earache 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc -0.9% (-1.8%, 0.1%) 

  Acetaminophen              

Not detected <300 139 7736 1.8 Ref 
≥300 7 705 1.1 -0.7% (-1.8%, 0.4%) 

Detected in all <300 13 388 3.9 Ref 
≥300 3 151 2.0 -1.8% (-5.0%, 1.4%) -1.1% (-4.5%, 2.3%) 

Beta-sitosterol             
Not detected <300 142 7730 1.8 Ref 

≥300 6 640 0.9 -0.9% (-2.0%, 0.1%) 
Detected in all <300 9 301 3.7 Ref 

≥300 4 216 2.0 -1.7% (-5.1%, 1.7%) -0.8% (-4.4%, 2.8%) 

Bisphenol A             
Not detected <300 130 6783 2.0 Ref 

≥300 8 666 1.1 -0.9% (-1.9%, 0.1%) 
Detected in all <300 21 1248 1.8 Ref 

≥300 1 107 1.0 -0.8% (-3.1%, 1.5%) 0.1% (-2.1%, 2.4%) 

Caffeine             
Not detected <300 121 6600 1.8 Ref 

≥300 2 375 0.5 -1.3% (-2.2%, -0.4%) 
Detected in all <300 31 1524 2.5 Ref 

≥300 8 481 1.8 -0.7% (-2.5%, 1.0%) 0.6% (-1.3%, 2.5%) 

Cholesterol             

Not detected <300 112 5831 2.0 Ref 
≥300 5 469 1.0 -1.0% (-2.3%, 0.3%) 

Detected in all <300 39 2200 1.8 Ref 
≥300 5 387 1.0 -0.7% (-1.9%, 0.4%) 0.3% (-1.3%, 1.8%) 

DEET             
Not detected <300 109 6165 1.8 Ref 

≥300 1 107 1.1 -0.7% (-3.0%, 1.6%) 
Detected in all <300 42 1866 2.3 Ref 

≥300 9 749 1.2 -1.1% (-2.3%, 0.1%) -0.4% (-2.8%, 2.0%) 

Diethoxyoctylphenol           
Not detected <300 149 7974 1.9 Ref 

≥300 10 856 1.0 -0.9% (-1.9%, 0.1%) 
Detected in all <300 2 57 5.1 Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 118 6255 2.0 Ref 

≥300 4 366 1.0 -1.1% (-2.5%, 0.4%) 
Detected in all <300 33 1776 1.7 Ref 

≥300 6 490 0.9 -0.8% (-1.9%, 0.3%) 0.3% (-1.5%, 2.1%) 

Tributyl phosphate           
Not detected <300 135 7321 1.9 Ref 

≥300 9 564 1.4 -0.5% (-1.8%, 0.7%) 
Detected in all <300 16 710 2.2 Ref 

≥300 1 292 0.3 -1.9% (-3.2%, -0.6%) -1.4% (-3.2%, 0.5%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.3(g). Urinary tract infection 

Urinary tract infection 

Chemical (samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adj Risk 

(%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- Main assoc 0.2% (-0.6%, 1.1%) 

  Acetaminophen              

Not detected <300 45 7807 0.6 Ref 
≥300 6 720 0.8 0.2% (-0.6%, 1.0%) 

Detected in all <300 4 392 1.0 Ref 
≥300 2 152 2.6 1.6% (-2.6%, 5.8%) 1.4% (-2.7%, 5.5%) 

Beta-sitosterol             
Not detected <300 48 7804 0.6 Ref 

≥300 5 649 0.7 0.1% (-0.8%, 0.9%) 
Detected in all <300 1 303 0.7 Ref 

≥300 3 223 1.1 0.4% (-1.5%, 2.4%) 0.4% (-1.7%, 2.4%) 

Bisphenol A             
Not detected <300 41 6844 0.6 Ref 

≥300 7 677 0.9 0.3% (-0.6%, 1.1%) 
Detected in all <300 8 1263 0.9 Ref 

≥300 1 110 0.6 -0.3% (-1.8%, 1.2%) -0.6% (-2.1%, 0.9%) 

Caffeine             
Not detected <300 37 6654 0.5 Ref 

≥300 1 380 0.4 -0.2% (-0.9%, 0.6%) 
Detected in all <300 12 1545 1.1 Ref 

≥300 7 492 1.8 0.7% (-1.2%, 2.5%) 0.9% (-1.0%, 2.7%) 

Cholesterol             

Not detected <300 36 5886 0.6 Ref 
≥300 5 476 1.0 0.4% (-1.0%, 1.7%) 

Detected in all <300 13 2221 0.7 Ref 
≥300 3 396 0.7 0.0% (-1.0%, 1.0%) -0.4% (-1.8%, 1.0%) 

DEET             
Not detected <300 40 6219 0.8 Ref 

≥300 1 111 0.5 -0.3% (-1.3%, 0.7%) 
Detected in all <300 9 1888 0.4 Ref 

≥300 7 761 0.6 0.2% (-0.5%, 1.0%) 0.6% (-0.6%, 1.7%) 

Diethoxyoctylphenol           
Not detected <300 49 8050 NA Ref 

≥300 8 872 NA NA 
Detected in all <300 0 57 NA Ref 

≥300 0 0 NA NA NA 

Phenol             
Not detected <300 40 6310 0.8 Ref 

≥300 5 371 1.0 0.2% (-1.0%, 1.4%) 
Detected in all <300 9 1797 0.4 Ref 

≥300 3 501 0.4 0.0% (-0.6%, 0.7%) -0.2% (-1.5%, 1.1%) 

Tributyl phosphate           
Not detected <300 44 7386 0.6 Ref 

≥300 4 578 0.7 0.1% (-0.8%, 0.9%) 
Detected in all <300 5 721 0.6 Ref 

≥300 4 294 1.1 0.5% (-1.3%, 2.2%) 0.4% (-1.3%, 2.1%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.4(a-g). Risk difference modification of the association between Enterococcus general 
indicator measured continuously (CCE/100ml) and illness with human-associated chemical 
markers (detected in all daily samples vs. <all) in all beaches – Table B.4(a) GI illness 

 GI Illness 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 1.3% (0.2%, 2.4%) 

  Acetaminophen        

Not detected 5.3 Ref 
6.8 1.6% (0.7%, 2.5%) 

Detected in all 25.1 Ref 
17.1 -8.1% (-30.5%, 14.4%) -9.6% (-32.1%, 12.9%) 

Beta-sitosterol       
Not detected 5.8 Ref 

7.2 1.3% (0.3%, 2.4%) 
Detected in all 9.7 Ref 

9.5 -0.2% (-13.9%, 13.5%) -1.6% (-15.3%, 12.2%) 

Bisphenol A       
Not detected 5.8 Ref 

7.0 1.2% (0.2%, 2.3%) 
Detected in all 5.1 Ref 

7.3 2.2% (-0.2%, 4.6%) 1.0% (-1.5%, 3.4%) 

Caffeine       
Not detected 4.9 Ref 

6.7 1.7% (0.8%, 2.7%) 
Detected in all 8.0 Ref 

8.3 0.3% (-2.5%, 3.1%) -1.4% (-4.2%, 1.3%) 

Cholesterol       

Not detected 5.0 Ref 
6.5 1.5% (0.4%, 2.5%) 

Detected in all 6.4 Ref 
7.9 1.5% (0.0%, 3.0%) 0.0% (-1.6%, 1.6%) 

DEET       
Not detected 6.0 Ref 

7.3 1.2% (-0.3%, 2.8%) 
Detected in all 5.8 Ref 

7.1 1.3% (0.0%, 2.6%) 0.1% (-1.9%, 2.0%) 

Diethoxyoctylphenol       
Not detected 5.9 Ref 

7.2 1.3% (0.2%, 2.4%) 
Detected in all NA Ref 

NA NA NA 

Phenol       
Not detected 7.2 Ref 

8.0 0.8% (-1.1%, 2.7%) 
Detected in all 4.8 Ref 

6.3 1.5% (0.4%, 2.5%) 0.7% (-1.2%, 2.6%) 

Tributyl phosphate       
Not detected 6.3 Ref 

7.5 1.2% (0.0%, 2.4%) 
Detected in all 3.1 Ref 

4.9 1.8% (0.9%, 2.6%) 0.6% (-0.7%, 1.9%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.4(b). Diarrhea 

 Diarrhea 

Chemical 

 (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 1.1% (0.4%, 1.7%) 

  Acetaminophen        

Not detected 3.0 Ref 
4.2 1.3% (0.7%, 1.8%) 

Detected in all 15.5 Ref 
10.9 -4.6% (-21.3%, 12.2%) -5.8% (-22.5%, 10.9%) 

Beta-sitosterol       
Not detected 3.3 Ref 

4.4 1.1% (0.5%, 1.8%) 
Detected in all 9.3 Ref 

8.3 -0.9% (-17.7%, 15.8%) -2.0% (-18.9%, 14.8%) 

Bisphenol A       
Not detected 3.3 Ref 

4.3 1.0% (0.4%, 1.7%) 
Detected in all 2.5 Ref 

4.4 1.9% (1.0%, 2.8%) 0.9% (-0.1%, 2.0%) 

Caffeine       
Not detected 2.8 Ref 

NA NA 
Detected in all 3.8 Ref 

4.4 0.7% (-0.7%, 2.0%) NA 

Cholesterol       

Not detected 2.5 Ref 
3.7 1.2% (0.7%, 1.7%) 

Detected in all 3.8 Ref 
5.1 1.4% (0.4%, 2.3%) 0.2% (-0.8%, 1.1%) 

DEET       
Not detected 3.2 Ref 

4.3 1.1% (0.1%, 2.0%) 
Detected in all 3.6 Ref 

4.8 1.2% (0.3%, 2.0%) 0.1% (-1.1%, 1.3%) 

Diethoxyoctylphenol       
Not detected 3.4 Ref 

4.5 1.1% (0.4%, 1.7%) 
Detected in all NA Ref 

NA NA NA 

Phenol       
Not detected 3.8 Ref 

4.6 0.8% (-0.3%, 1.9%) 
Detected in all 2.9 Ref 

4.2 1.3% (0.7%, 2.0%) 0.5% (-0.5%, 1.5%) 

Tributyl phosphate       
Not detected 3.6 Ref 

4.6 1.0% (0.3%, 1.7%) 
Detected in all 1.5 Ref 

2.8 1.3% (0.9%, 1.8%) 0.3% (-0.5%, 1.1%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.4(c). Respiratory illness 

Respiratory illness 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.1% (-1.9%, 1.7%) 

  Acetaminophen        

Not detected 6.2 Ref 
6.1 -0.1% (-1.9%, 1.7%) 

Detected in all 18.0 Ref 
12.5 -5.5% (-40.4%, 29.3%) -5.4% (-40.3%, 29.5%) 

Beta-sitosterol       
Not detected 6.1 Ref 

6.1 0.0% (-1.8%, 1.8%) 
Detected in all 24.0 Ref 

14.8 -9.2% (-67.3%, 48.9%) -9.2% (-67.4%, 49.0%) 

Bisphenol A       
Not detected 7.0 Ref 

6.8 -0.3% (-2.2%, 1.7%) 
Detected in all 4.2 Ref 

4.2 0.1% (-4.1%, 4.2%) 0.3% (-4.1%, 4.7%) 

Caffeine       
Not detected 4.6 Ref 

5.3 NA 
Detected in all 16.6 Ref 

11.0 -5.5% (-16.9%, 5.8%) NA 

Cholesterol       

Not detected 6.4 Ref 
6.6 0.2% (-1.9%, 2.3%) 

Detected in all 8.2 Ref 
6.1 -2.1% (-6.1%, 1.9%) -2.3% (-6.6%, 2.0%) 

DEET       
Not detected 4.7 Ref 

5.6 0.9% (-0.5%, 2.2%) 
Detected in all 9.1 Ref 

7.2 -1.9% (-6.4%, 2.6%) -2.8% (-7.4%, 1.9%) 

Diethoxyoctylphenol       
Not detected 6.2 Ref 

6.2 -0.1% (-1.9%, 1.7%) 
Detected in all 0.0 Ref 

0.0 NA NA 

Phenol       
Not detected 5.8 Ref 

6.2 0.5% (-1.4%, 2.3%) 
Detected in all 8.0 Ref 

6.1 -1.8% (-6.1%, 2.4%) -2.3% (-6.9%, 2.3%) 

Tributyl phosphate       
Not detected 5.8 Ref 

5.8 0.1% (-1.6%, 1.7%) 
Detected in all 10.6 Ref 

9.3 -1.4% (-10.8%, 8.1%) -1.5% (-10.7%, 7.8%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.4(d). Eye ailment 

Eye Ailment 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -1.4% (-3.8%, 0.9%) 

  Acetaminophen        

Not detected 4.5 Ref 
3.5 -1.0% (-3.1%, 1.1%) 

Detected in all 45.2 Ref 
15.5 -29.7% (-104.1%, 44.7%) -28.7% (-103.2%, 45.8%) 

Beta-sitosterol       
Not detected 5.3 Ref 

3.8 -1.6% (-4.2%, 1.0%) 
Detected in all 15.8 Ref 

8.1 -7.7% (-58.9%, 43.5%) -6.1% (-57.6%, 45.4%) 

Bisphenol A       
Not detected 5.7 Ref 

3.9 -1.8% (-4.5%, 0.9%) 
Detected in all 1.6 Ref 

2.1 0.5% (-0.9%, 2.0%) 2.3% (-0.5%, 5.2%) 

Caffeine       
Not detected 4.1 Ref 

3.3 -0.7% (-2.9%, 1.4%) 
Detected in all 10.8 Ref 

5.6 -5.2% (-16.2%, 5.8%) -4.5% (-15.4%, 6.4%) 

Cholesterol       

Not detected 7.4 Ref 
4.5 -2.9% (-8.0%, 2.2%) 

Detected in all 3.9 Ref 
3.2 -0.7% (-2.9%, 1.5%) 2.2% (-2.9%, 7.3%) 

DEET       
Not detected 7.9 Ref 

4.6 -3.2% (-8.8%, 2.3%) 
Detected in all 3.2 Ref 

2.7 -0.5% (-2.2%, 1.2%) 2.8% (-2.9%, 8.4%) 

Diethoxyoctylphenol       
Not detected 5.2 Ref 

3.7 -1.5% (-3.9%, 1.0%) 
Detected in all 0.0 Ref 

0.0 NA NA 

Phenol       
Not detected 10.7 Ref 

5.5 -5.2% (-13.6%, 3.3%) 
Detected in all 2.3 Ref 

2.2 -0.1% (-1.3%, 1.2%) 5.1% (-3.4%, 13.5%) 

Tributyl phosphate       
Not detected 5.7 Ref 

3.9 -1.8% (-4.6%, 0.9%) 
Detected in all 1.6 Ref 

1.9 0.3% (-1.0%, 1.6%) 2.1% (-0.6%, 4.9%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.4(e). Rash 

Rash 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 0.0% (-1.0%, 1.0%) 

  Acetaminophen        

Not detected 2.6 Ref 
2.6 0.0% (-1.0%, 1.1%) 

Detected in all 3.8 Ref 
3.3 -0.5% (-6.6%, 5.6%) -0.5% (-6.8%, 5.7%) 

Beta-sitosterol       
Not detected 2.8 Ref 

2.7 -0.1% (-1.2%, 1.0%) 
Detected in all 0.4 Ref 

0.8 0.4% (-0.2%, 1.1%) 0.5% (-0.7%, 1.7%) 

Bisphenol A       
Not detected 2.5 Ref 

2.6 0.0% (-0.9%, 1.0%) 
Detected in all 4.2 Ref 

3.4 -0.8% (-6.9%, 5.2%) -0.9% (-6.8%, 5.0%) 

Caffeine       
Not detected 2.6 Ref 

2.6 0.0% (-1.1%, 1.1%) 
Detected in all 3.6 Ref 

3.3 -0.3% (-2.8%, 2.1%) -0.3% (-2.8%, 2.2%) 

Cholesterol       

Not detected 1.7 Ref 
2.1 0.4% (-0.2%, 1.0%) 

Detected in all 3.8 Ref 
3.3 -0.5% (-2.6%, 1.6%) -0.8% (-2.9%, 1.2%) 

DEET       
Not detected 1.0 Ref 

1.7 0.7% (0.4%, 0.9%) 
Detected in all 6.4 Ref 

4.4 -2.0% (-5.7%, 1.8%) -2.6% (-6.4%, 1.1%) 

Diethoxyoctylphenol       
Not detected NA Ref 

NA NA 
Detected in all NA Ref 

NA NA NA 

Phenol       
Not detected 0.9 Ref 

1.4 0.5% (0.2%, 0.8%) 
Detected in all 8.0 Ref 

6.5 -1.5% (-6.0%, 3.0%) -2.0% (-6.5%, 2.5%) 

Tributyl phosphate       
Not detected 2.6 Ref 

2.6 -0.1% (-1.2%, 1.0%) 
Detected in all 2.7 Ref 

3.1 0.4% (-1.7%, 2.5%) 0.5% (-1.6%, 2.6%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain 
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Table B.4(f). Earache 

Earache 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.2% (-1.4%, 0.9%) 

  Acetaminophen        

Not detected 2.4 Ref 
2.0 -0.4% (-1.9%, 1.1%) 

Detected in all 22.4 Ref 
11.3 -11.1% (-57.0%, 34.7%) -10.7% (-56.4%, 34.9%) 

Beta-sitosterol       
Not detected 2.0 Ref 

1.9 -0.2% (-1.2%, 0.9%) 
Detected in all 78.4 Ref 

36.0 -42.4% (-68.0%, -16.7%) -42.2% (-67.8%, -16.6%) 

Bisphenol A       
Not detected 2.2 Ref 

2.0 -0.2% (-1.3%, 1.0%) 
Detected in all 2.8 Ref 

2.1 -0.7% (-7.0%, 5.7%) -0.5% (-6.7%, 5.7%) 

Caffeine       
Not detected 3.0 Ref 

2.2 -0.8% (-2.9%, 1.2%) 
Detected in all 2.3 Ref 

2.3 0.1% (-1.7%, 1.8%) 0.9% (-1.5%, 3.3%) 

Cholesterol       

Not detected 2.4 Ref 
2.1 -0.3% (-2.0%, 1.4%) 

Detected in all 2.0 Ref 
1.8 -0.2% (-1.5%, 1.1%) 0.1% (-1.7%, 1.9%) 

DEET       
Not detected 2.3 Ref 

1.9 -0.4% (-2.3%, 1.5%) 
Detected in all 2.3 Ref 

2.2 -0.1% (-1.5%, 1.4%) 0.3% (-2.0%, 2.6%) 

Diethoxyoctylphenol       
Not detected 2.1 Ref 

1.9 -0.2% (-1.3%, 0.9%) 
Detected in all 0.0 Ref 

0.0 NA NA 

Phenol       
Not detected 2.3 Ref 

2.0 -0.3% (-2.0%, 1.4%) 
Detected in all 2.0 Ref 

1.9 -0.1% (-1.3%, 1.1%) 0.1% (-1.8%, 2.1%) 

Tributyl phosphate       
Not detected 2.1 Ref 

1.9 -0.1% (-1.2%, 0.9%) 
Detected in all 3.9 Ref 

2.8 -1.2% (-6.8%, 4.4%) -1.0% (-6.4%, 4.3%) 

NA, not able to estimated;* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.4(g). Urinary tract infection 

Urinary tract infection 

Chemical (samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.4% (-1.6%, 0.9%) 

  Acetaminophen        

Not detected 1.6 Ref 
1.0 -0.6% (-2.4%, 1.2%) 

Detected in all 0.4 Ref 
0.6 0.2% (-0.2%, 0.6%) 0.8% (-1.0%, 2.6%) 

Beta-sitosterol       
Not detected 1.6 Ref 

1.0 -0.6% (-2.3%, 1.1%) 
Detected in all 0.4 Ref 

0.5 0.1% (-0.3%, 0.6%) 0.7% (-0.9%, 2.4%) 

Bisphenol A       
Not detected 1.3 Ref 

0.9 -0.4% (-1.8%, 1.0%) 
Detected in all 6.8 Ref 

2.4 -4.4% (-25.1%, 16.3%) -4.0% (-24.4%, 16.4%) 

Caffeine       
Not detected 4.6 Ref 

1.4 -3.3% (-9.7%, 3.1%) 
Detected in all 0.5 Ref 

0.7 0.2% (-0.2%, 0.6%) 3.5% (-2.9%, 9.8%) 

Cholesterol       

Not detected 2.4 Ref 
1.2 -1.2% (-5.1%, 2.8%) 

Detected in all 0.9 Ref 
0.8 -0.1% (-1.0%, 0.8%) 1.1% (-2.7%, 4.9%) 

DEET       
Not detected 5.6 Ref 

1.9 -3.7% (-12.5%, 5.1%) 
Detected in all 0.2 Ref 

0.3 0.1% (-0.1%, 0.2%) 3.8% (-5.0%, 12.6%) 

Diethoxyoctylphenol       
Not detected NA Ref 

NA NA 
Detected in all NA Ref 

NA NA NA 

Phenol       
Not detected 4.4 Ref 

2.0 -2.4% (-9.6%, 4.7%) 
Detected in all 0.4 Ref 

0.3 0.0% (-0.5%, 0.4%) 2.4% (-4.6%, 9.4%) 

Tributyl phosphate       
Not detected 1.7 Ref 

1.0 -0.7% (-2.7%, 1.3%) 
Detected in all 0.2 Ref 

0.3 0.1% (0.0%, 0.2%) 0.8% (-1.2%, 2.9%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(a-g). Frequencies and risk differences (95% CI) for the association between illness 
and categories of human-associated chemical markers among body immersion swimmers in all 
beaches  
 
Table B.5(a). GI illness 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

GI illness 

  Pharmaceuticals 

0 309 4155 7.4% 9.1% Ref 

1 19 309 6.1% 8.8% -0.3% (-2.6%, 2.0%) 

2 73 701 10.4% 7.1% -1.9% (-4.7%, 0.9%) 

3 26 211 12.3% 9.1% 0.0% (-5.0%, 5.1%) 

4 14 105 13.3% 9.2% 0.1% (-5.9%, 6.2%) 

  Fecal Sterols/Stanols 

0 314 4141 7.6% 8.3% Ref 

1 114 1220 9.3% 9.5% 1.1% (-0.7%, 2.9%) 

2 13 120 10.8% 8.4% 0.0% (-3.7%, 3.7%) 

  Household wastewater  

0 293 3874 7.6% 8.8% Ref 

1 64 654 9.8% 8.8% -0.1% (-2.6%, 2.5%) 

2 24 285 8.4% 6.6% -2.3% (-5.2%, 0.7%) 

3 28 406 6.9% 8.1% -0.7% (-3.9%, 2.4%) 

4 16 106 15.1% 12.2% 3.4% (-3.6%, 10.4%) 

5 9 93 9.7% 9.1% 0.3% (-6.5%, 7.0%) 

6 7 63 11.1% 10.5% 1.7% (-9.1%, 12.5%) 

  Industrial wastewater  

0 265 3583 7.4% 8.3% Ref 

1 167 1792 9.3% 9.2% 0.8% (-1.0%, 2.7%) 

2 9 106 8.5% 7.5% -0.9% (-5.0%, 3.2%) 

  Runoff 

0 286 3825 7.5% 8.6% Ref 

1 95 1150 8.3% 8.3% -0.3% (-2.2%, 1.7%) 

2 32 272 11.8% 9.9% 1.3% (-3.0%, 5.7%) 

3 28 234 12.0% 9.5% 0.9% (-2.8%, 4.5%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(b). Diarrhea 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Diarrhea 

  Pharmaceuticals 

0 188 4155 4.5% 6.2% Ref 

1 15 309 4.9% 6.0% -0.3% (-2.2%, 1.7%) 

2 55 701 7.8% 4.6% -1.7% (-3.9%, 0.6%) 

3 22 211 10.4% 6.7% 0.5% (-3.9%, 4.9%) 

4 8 105 7.6% 4.7% -1.6% (-5.6%, 2.5%) 

  Fecal Sterols/Stanols 

0 195 4141 4.7% 5.4% Ref 

1 81 1220 6.6% 6.5% 1.1% (-0.4%, 2.6%) 

2 12 120 10.0% 6.6% 1.2% (-2.1%, 4.4%) 

  Household wastewater  

0 179 3874 4.6% 5.8% Ref 

1 52 654 8.0% 6.3% 0.5% (-1.7%, 2.7%) 

2 15 285 5.3% 4.4% -1.4% (-3.9%, 1.1%) 

3 20 406 4.9% 6.1% 0.3% (-2.7%, 3.2%) 

4 13 106 12.3% 9.2% 3.4% (-2.7%, 9.4%) 

5 5 93 5.4% 5.3% -0.5% (-5.7%, 4.8%) 

6 4 63 6.3% 6.1% 0.3% (-9.3%, 9.8%) 

  Industrial wastewater  

0 157 3583 4.4% 5.3% Ref 

1 123 1792 6.9% 6.5% 1.2% (-0.3%, 2.8%) 

2 8 106 7.5% 6.0% 0.7% (-2.9%, 4.4%) 

  Runoff 

0 175 3825 4.6% 5.7% Ref 

1 69 1150 6.0% 6.0% 0.3% (-1.4%, 2.1%) 

2 23 272 8.5% 6.4% 0.7% (-2.9%, 4.3%) 

3 21 234 9.0% 6.2% 0.5% (-2.4%, 3.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(c). Respiratory illness 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Respiratory illness 

  Pharmaceuticals 

0 256 3986 6.4% 5.8% Ref 

1 21 305 6.9% 7.2% 1.4% (-0.8%, 3.5%) 

2 43 686 6.3% 5.5% -0.4% (-3.4%, 2.7%) 

3 17 209 8.1% 7.2% 1.4% (-3.8%, 6.5%) 

4 9 101 8.9% 7.0% 1.1% (-5.4%, 7.7%) 

  Fecal Sterols/Stanols 

0 272 3984 6.8% 6.4% Ref 

1 66 1180 5.6% 4.6% -1.8% (-3.1%, -0.6%) 

2 8 123 6.5% 6.2% -0.3% (-3.1%, 2.6%) 

  Household wastewater  

0 247 3717 6.6% 6.1% Ref 

1 32 641 5.0% 4.4% -1.7% (-3.4%, 0.0%) 

2 17 276 6.2% 6.4% 0.4% (-3.1%, 3.8%) 

3 29 398 7.3% 7.7% 1.6% (-1.9%, 5.1%) 

4 9 100 9.0% 9.4% 3.3% (-4.1%, 10.7%) 

5 10 94 10.6% 15.2% 9.1% (-2.1%, 20.4%) 

6 2 61 3.3% 5.4% -0.7% (-11.4%, 10.1%) 

  Industrial wastewater  

0 241 3440 7.0% 6.7% Ref 

1 91 1739 5.2% 4.7% -2.0% (-3.5%, -0.5%) 

2 14 108 13.0% 6.8% 0.0% (-4.8%, 4.9%) 

  Runoff 

0 242 3660 6.6% 6.3% Ref 

1 75 1127 6.7% 5.7% -0.6% (-2.3%, 1.0%) 

2 17 270 6.3% 5.4% -0.9% (-4.1%, 2.3%) 

3 12 230 5.2% 2.9% -3.4% (-5.2%, -1.5%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(d). Eye ailment 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Eye ailment 

  Pharmaceuticals 

0 115 4256 2.7% 2.9% Ref 

1 5 318 1.6% 2.6% -0.3% (-1.4%, 0.9%) 

2 17 713 2.4% 2.1% -0.8% (-2.5%, 0.9%) 

3 6 216 2.8% 2.4% -0.5% (-3.3%, 2.3%) 

4 3 106 2.8% 2.4% -0.5% (-3.9%, 2.8%) 

  Fecal Sterols/Stanols 

0 108 4236 2.5% 2.7% Ref 

1 35 1247 2.8% 2.8% 0.1% (-0.9%, 1.0%) 

2 3 126 2.4% 2.9% 0.2% (-1.7%, 2.0%) 

  Household wastewater  

0 108 3961 2.7% 2.9% Ref 

1 13 676 1.9% 2.1% -0.7% (-1.9%, 0.5%) 

2 5 284 1.8% 2.4% -0.4% (-2.2%, 1.3%) 

3 9 417 2.2% 2.4% -0.4% (-2.1%, 1.3%) 

4 7 107 6.5% 7.7% 4.8% (-2.2%, 11.8%) 

5 2 98 2.0% 2.9% 0.0% (-4.5%, 4.5%) 

6 2 66 3.0% 4.0% 1.2% (-5.0%, 7.4%) 

  Industrial wastewater  

0 94 3672 2.6% 2.7% Ref 

1 50 1831 2.7% 2.8% 0.1% (-0.8%, 1.0%) 

2 2 106 1.9% 1.9% -0.8% (-2.7%, 1.2%) 

  Runoff 

0 104 3913 2.7% 2.9% Ref 

1 29 1178 2.5% 2.1% -0.7% (-1.7%, 0.2%) 

2 7 279 2.5% 2.8% -0.1% (-2.4%, 2.3%) 

3 6 239 2.5% 2.3% -0.6% (-2.6%, 1.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(e). Rash 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Rash 

  Pharmaceuticals 

0 97 4176 2.3% 2.4% Ref 

1 11 313 3.5% 3.4% 1.0% (-0.3%, 2.2%) 

2 25 695 3.6% 3.6% 1.2% (-0.7%, 3.1%) 

3 1 212 0.5% 0.5% -1.9% (-3.0%, -0.8%) 

4 3 104 2.9% 3.6% 1.1% (-3.2%, 5.4%) 

  Fecal Sterols/Stanols 

0 114 4147 2.7% 2.7% Ref 

1 19 1227 1.5% 2.6% -0.1% (-0.9%, 0.7%) 

2 4 126 3.2% 3.2% 0.6% (-1.1%, 2.2%) 

  Household wastewater  

0 93 3884 2.4% 2.6% Ref 

1 11 666 1.7% 2.5% -0.1% (-1.1%, 0.9%) 

2 12 278 4.3% 3.8% 1.2% (-0.8%, 3.2%) 

3 15 407 3.7% 3.3% 0.7% (-1.5%, 3.0%) 

4 1 106 0.9% 0.9% -1.7% (-3.6%, 0.1%) 

5 5 97 5.2% 3.3% 0.7% (-3.0%, 4.3%) 

6 0 62 0.0% NA NA 

  Industrial wastewater  

0 87 3597 2.4% 2.5% Ref 

1 46 1796 2.6% 2.9% 0.4% (-0.5%, 1.2%) 

2 4 107 3.7% 4.8% 2.3% (-0.9%, 5.6%) 

  Runoff 

0 99 3823 2.6% 2.8% Ref 

1 25 1166 2.1% 2.4% -0.5% (-1.4%, 0.5%) 

2 11 273 4.0% 3.4% 0.6% (-2.0%, 3.2%) 

3 2 238 0.8% 1.5% -1.4% (-2.7%, 0.0%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(f). Earache 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Earache 

  Pharmaceuticals 

0 71 4215 1.7% 1.6% Ref 

1 5 311 1.6% 2.2% 0.6% (-0.5%, 1.8%) 

2 7 703 1.0% 2.7% 1.1% (-1.0%, 3.2%) 

3 5 211 2.4% 6.0% 4.5% (-2.4%, 11.3%) 

4 5 105 4.8% 11.4% 9.8% (-3.6%, 23.2%) 

  Fecal Sterols/Stanols 

0 72 4191 1.7% 1.8% Ref 

1 17 1232 1.4% 1.5% -0.4% (-1.0%, 0.3%) 

2 4 122 3.3% 2.9% 1.1% (-0.9%, 3.0%) 

  Household wastewater  

0 67 3922 1.7% 1.7% Ref 

1 9 666 1.4% 1.9% 0.2% (-0.8%, 1.2%) 

2 7 279 2.5% 3.8% 2.1% (-0.2%, 4.4%) 

3 6 408 1.5% 1.7% 0.0% (-1.6%, 1.7%) 

4 2 108 1.9% 3.2% 1.5% (-3.3%, 6.3%) 

5 2 98 2.0% 3.6% 1.9% (-3.8%, 7.6%) 

6 0 64 0.0% NA NA 

  Industrial wastewater  

0 61 3634 1.7% 1.8% Ref 

1 31 1804 1.7% 1.8% 0.0% (-0.8%, 0.7%) 

2 1 107 0.9% 1.1% -0.7% (-2.3%, 0.8%) 

  Runoff 

0 67 3871 1.7% 1.9% Ref 

1 17 1163 1.5% 1.5% -0.4% (-1.2%, 0.4%) 

2 3 279 1.1% 1.3% -0.6% (-2.2%, 1.1%) 

3 6 232 2.6% 1.7% -0.2% (-1.6%, 1.1%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.5(g). Urinary tract infection 

  All beaches 

Count of chemicals in 

each category Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Urinary tract infection 

  Pharmaceuticals 

0 24 4255 0.6% 0.5% Ref 

1 2 317 0.6% 0.8% 0.3% (-0.2%, 0.9%) 

2 7 718 1.0% 1.3% 0.8% (-0.5%, 2.1%) 

3 2 217 0.9% 1.2% 0.7% (-1.9%, 3.4%) 

4 2 106 1.9% 2.6% 2.1% (-2.9%, 7.2%) 

  Fecal Sterols/Stanols 

0 26 4236 0.6% 0.6% Ref 

1 9 1250 0.7% 0.7% 0.0% (-0.5%, 0.5%) 

2 2 127 1.6% 0.6% 0.0% (-0.9%, 0.8%) 

  Household wastewater  

0 23 3963 0.6% 0.8% Ref 

1 5 673 0.7% 0.4% -0.4% (-1.0%, 0.2%) 

2 5 290 1.7% 0.6% -0.2% (-1.0%, 0.6%) 

3 3 416 0.7% 0.4% -0.4% (-1.1%, 0.3%) 

4 0 107 0.0% NA NA 

5 0 98 0.0% NA NA 

6 1 66 1.5% 0.5% -0.3% (-1.6%, 1.0%) 

  Industrial wastewater  

0 22 3670 0.6% 0.7% Ref 

1 15 1834 0.8% 0.6% 0.0% (-0.5%, 0.5%) 

2 0 109 0.0% NA NA 

  Runoff 

0 27 3912 0.7% 0.7% Ref 

1 5 1177 0.4% 0.4% -0.3% (-0.7%, 0.1%) 

2 2 281 0.7% 0.4% -0.3% (-1.0%, 0.4%) 

3 3 243 1.2% 0.5% -0.2% (-0.9%, 0.6%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.6(a-g). Modification of the adjusted standardized RD (95% CI) for the association 
between illness and Enterococcus qPCR Method 1611 above and below EPA guidelines 
(geometric mean of 470 CCE/100ml for an illness rate of 36/1000) with categories of chemical 
markers among body immersion swimmers in all beaches  

 

Table B.6(a). GI illness 

  GI Illness 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association 0.7% (-2.3%, 3.6%) 

Pharmaceuticals             

Not detected <470 448 5923 8.5 Ref 

≥470 40 270 12.1 3.5% (-1.7%, 8.7%) 

Detected in all <470 236 2344 8.7 Ref 

≥470 30 337 7.4 -1.3% (-4.5%, 1.9%) -4.8% (-10.6%, 0.9%) 

Fecal sterols             

Not detected <470 459 5957 8.3 Ref 

≥470 31 292 8.9 0.7% (-3.3%, 4.6%) 

Detected in all <470 225 2310 9.3 Ref 

≥470 39 315 10.1 0.8% (-3.2%, 4.9%) 0.2% (-5.1%, 5.4%) 

Household waste             

Not detected <470 477 6071 8.7 Ref 

≥470 8 53 11.3 2.6% (-6.7%, 11.9%) 

Detected in all <470 207 2196 8.5 Ref 

≥470 62 554 8.9 0.4% (-2.6%, 3.4%) -2.2% (-12.0%, 7.6%) 

Industrial waste             

Not detected <470 391 5183 8.4 Ref 

≥470 21 225 7.5 -0.9% (-5.1%, 3.3%) 

Detected in all <470 293 3084 8.8 Ref 

≥470 49 382 10.8 2.0% (-1.9%, 5.8%) 2.9% (-2.3%, 8.0%) 

Runoff             

Not detected <470 536 6630 8.7 Ref 

≥470 14 150 8.1 -0.6% (-5.6%, 4.4%) 

Detected in all <470 148 1637 8.4 Ref 

≥470 56 457 9.8 1.4% (-2.6%, 5.4%) 2.0% (-4.3%, 8.3%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.6(b). Diarrhea 

  Diarrhea 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association 1.1% (-1.5%, 3.7%) 

Pharmaceuticals             

Not detected <470 277 5923 5.6 Ref 

≥470 33 270 9.1 3.5% (-1.1%, 8.1%) 

Detected in all <470 170 2344 5.8 Ref 

≥470 23 337 5.3 -0.5% (-3.3%, 2.3%) -4.0% (-9.0%, 1.0%) 

Fecal sterols             

Not detected <470 281 5957 5.3 Ref 

≥470 26 292 6.9 1.6% (-1.9%, 5.1%) 

Detected in all <470 166 2310 6.5 Ref 

≥470 30 315 7.5 0.9% (-2.7%, 4.6%) -0.7% (-5.3%, 4.0%) 

Household waste             

Not detected <470 295 6071 5.6 Ref 

≥470 7 53 10.0 4.4% (-4.8%, 13.7%) 

Detected in all <470 152 2196 6.0 Ref 

≥470 49 554 6.7 0.7% (-2.0%, 3.3%) -3.8% (-13.4%, 5.9%) 

Industrial waste             

Not detected <470 231 5183 5.2 Ref 

≥470 17 225 5.7 0.6% (-3.1%, 4.3%) 

Detected in all <470 216 3084 6.3 Ref 

≥470 39 382 8.7 2.4% (-1.3%, 6.1%) 1.8% (-2.8%, 6.4%) 

Runoff             

Not detected <470 341 6630 5.7 Ref 

≥470 12 150 7.2 1.5% (-3.5%, 6.5%) 

Detected in all <470 106 1637 5.9 Ref 

≥470 44 457 6.7 0.8% (-2.7%, 4.3%) -0.7% (-6.8%, 5.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.6(c). Respiratory illness 

  Respiratory illness 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association -1.8% (-4.2%, 0.6%) 

Pharmaceuticals             

Not detected <470 341 5732 5.8 Ref 

≥470 11 265 5.0 -0.8% (-4.7%, 3.1%) 

Detected in all <470 158 2273 6.9 Ref 

≥470 12 324 4.4 -2.4% (-6.1%, 1.2%) -1.6% (-7.0%, 3.8%) 

Fecal sterols             

Not detected <470 388 5755 6.6 Ref 

≥470 14 280 5.3 -1.4% (-5.4%, 2.7%) 

Detected in all <470 111 2250 4.9 Ref 

≥470 9 309 3.0 -1.9% (-4.1%, 0.4%) -0.5% (-5.1%, 4.1%) 

Household waste             

Not detected <470 377 5862 6.4 Ref 

≥470 2 51 3.1 -3.3% (-7.2%, 0.7%) 

Detected in all <470 122 2143 5.5 Ref 

≥470 21 538 4.2 -1.3% (-3.9%, 1.3%) 1.9% (-2.7%, 6.6%) 

Industrial waste             

Not detected <470 350 5009 7.2 Ref 

≥470 8 217 3.4 -3.8% (-7.6%, 0.0%) 

Detected in all <470 149 2996 4.7 Ref 

≥470 15 372 3.7 -0.9% (-3.3%, 1.4%) 2.9% (-1.5%, 7.2%) 

Runoff             

Not detected <470 399 6400 6.4 Ref 

≥470 5 140 3.3 -3.1% (-5.9%, -0.3%) 

Detected in all <470 100 1605 5.2 Ref 

≥470 18 449 4.8 -0.4% (-3.9%, 3.1%) 2.7% (-1.8%, 7.2%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
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Table B.6(d). Eye ailment 

  Eye Ailment 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association -0.7% (-2.1%, 0.8%) 

Pharmaceuticals             

Not detected <470 164 6070 2.8 Ref 

≥470 10 273 3.5 0.7% (-2.1%, 3.6%) 

Detected in all <470 70 2385 2.8 Ref 

≥470 4 340 1.1 -1.7% (-3.1%, -0.3%) -2.4% (-5.6%, 0.7%) 

Fecal sterols             

Not detected <470 166 6094 2.8 Ref 

≥470 5 294 1.6 -1.2% (-2.8%, 0.4%) 

Detected in all <470 68 2361 2.7 Ref 

≥470 9 319 2.5 -0.2% (-2.4%, 1.9%) 1.0% (-1.6%, 3.5%) 

Household waste             

Not detected <470 175 6215 3.0 Ref 

≥470 1 54 1.4 -1.6% (-4.4%, 1.3%) 

Detected in all <470 59 2240 2.4 Ref 

≥470 13 559 2.0 -0.4% (-1.8%, 1.0%) 1.2% (-2.0%, 4.3%) 

Industrial waste             

Not detected <470 147 5315 3.0 Ref 

≥470 2 228 0.7 -2.3% (-3.6%, -0.9%) 

Detected in all <470 87 3140 2.5 Ref 

≥470 12 385 2.7 0.2% (-1.8%, 2.2%) 2.5% (0.3%, 4.7%) 

Runoff             

Not detected <470 197 6783 3.0 Ref 

≥470 2 153 1.3 -1.6% (-3.5%, 0.2%) 

Detected in all <470 37 1672 2.1 Ref 

≥470 12 460 2.4 0.3% (-1.7%, 2.3%) 1.9% (-0.9%, 4.7%) 

NA, not able to estimated. * Adjusted for beach, mean bathers, sand, rain 
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Table B.6(e). Rash 

  Rash 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association 0.0% (-1.4%, 1.3%) 

Pharmaceuticals             

Not detected <470 140 5953 2.4 Ref 

≥470 9 270 2.5 0.1% (-2.0%, 2.2%) 

Detected in all <470 75 2349 3.3 Ref 

≥470 14 334 3.5 0.2% (-2.0%, 2.3%) 0.1% (-2.8%, 3.0%) 

Fecal sterols             

Not detected <470 150 5972 2.7 Ref 

≥470 10 287 2.5 -0.1% (-2.1%, 1.8%) 

Detected in all <470 65 2330 2.7 Ref 

≥470 13 317 2.8 0.1% (-1.8%, 1.9%) 0.2% (-2.4%, 2.8%) 

Household waste             

Not detected <470 143 6093 2.6 Ref 

≥470 2 54 4.0 1.4% (-4.2%, 7.0%) 

Detected in all <470 72 2209 2.9 Ref 

≥470 21 550 2.7 -0.2% (-1.7%, 1.3%) -1.6% (-7.5%, 4.3%) 

Industrial waste             

Not detected <470 118 5210 2.5 Ref 

≥470 6 220 2.2 -0.3% (-2.5%, 1.9%) 

Detected in all <470 97 3092 3.0 Ref 

≥470 17 384 3.2 0.2% (-1.6%, 2.1%) 0.5% (-2.3%, 3.3%) 

Runoff             

Not detected <470 182 6650 2.8 Ref 

≥470 6 149 3.1 0.3% (-2.8%, 3.4%) 

Detected in all <470 33 1652 2.2 Ref 

≥470 17 455 2.6 0.3% (-1.5%, 2.1%) 0.0% (-3.7%, 3.7%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
 

  



   

 
189

Table B.6(f). Earache 

  Earache 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association -0.9% (-1.8%, 0.1%) 

Pharmaceuticals             

Not detected <470 108 6013 1.7 Ref 

≥470 2 272 0.7 -1.0% (-2.2%, 0.2%) 

Detected in all <470 47 2361 2.5 Ref 

≥470 5 334 1.6 -0.9% (-2.6%, 0.8%) 0.1% (-1.9%, 2.1%) 

Fecal sterols             

Not detected <470 114 6037 2.0 Ref 

≥470 4 292 1.3 -0.6% (-2.1%, 0.9%) 

Detected in all <470 41 2337 1.8 Ref 

≥470 3 314 0.7 -1.0% (-2.1%, 0.0%) -0.4% (-2.1%, 1.3%) 

Household waste             

Not detected <470 110 6159 1.8 Ref 

≥470 1 50 2.2 0.4% (-4.1%, 4.8%) 

Detected in all <470 45 2215 2.2 Ref 

≥470 6 556 1.0 -1.2% (-2.3%, 0.0%) -1.6% (-6.2%, 3.1%) 

Industrial waste             

Not detected <470 99 5268 2.0 Ref 

≥470 4 224 1.6 -0.3% (-2.2%, 1.6%) 

Detected in all <470 56 3106 1.8 Ref 

≥470 3 382 0.6 -1.2% (-2.1%, -0.3%) -0.9% (-2.9%, 1.1%) 

Runoff             

Not detected <470 130 6724 2.0 Ref 

≥470 1 147 0.7 -1.2% (-2.8%, 0.4%) 

Detected in all <470 25 1650 1.6 Ref 

≥470 6 459 1.1 -0.5% (-1.9%, 0.9%) 0.7% (-1.3%, 2.8%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.6(g). Urinary tract infection 

  Urinary tract infection 

Chemical 

(samples) 

Enterococcus 

(CCE/100ml) Cases N 

Modeled 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 

Main 
association 0.1% (-0.7%, 1.0%) 

Pharmaceuticals             

Not detected <470 35 6062 0.6 Ref 

≥470 0 273 NA NA  

Detected in all <470 17 2394 0.8 Ref 

≥470 5 342 1.5 0.6% (-0.9%, 2.1%) NA 

Fecal sterols             

Not detected <470 37 6093 0.6 Ref 

≥470 3 295 1.1 0.5% (-0.9%, 1.9%) 

Detected in all <470 15 2363 0.8 Ref 

≥470 2 320 0.6 -0.2% (-1.2%, 0.9%) -0.7% (-2.3%, 1.0%) 

Household waste             

Not detected <470 40 6212 0.0 Ref 

≥470 0 54 NA NA 

Detected in all <470 12 2244 0.0 Ref 

≥470 5 561 0.0 0.3% (-0.6%, 1.3%) NA 

Industrial waste             

Not detected <470 33 5307 0.6 Ref 

≥470 2 228 1.0 0.5% (-1.1%, 2.0%) 

Detected in all <470 19 3149 0.7 Ref 

≥470 3 387 0.7 0.0% (-1.0%, 1.0%) -0.4% (-2.2%, 1.4%) 

Runoff             

Not detected <470 44 6781 0.7 Ref 

≥470 2 153 0.7 0.0% (-1.1%, 1.1%) 

Detected in all <470 8 1675 0.4 Ref 

≥470 3 462 0.8 0.4% (-0.8%, 1.6%) 0.4% (-1.2%, 2.0%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.7(a-g). Risk difference modification of the association between Enterococcus general 
indicator measured continuously (CCE/100ml) and illness with categories of human-associated 
chemicals in all beaches  

 

Table B.7(a). GI illness 

 GI illness 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 1.3% (0.2%, 2.4%) 

Pharmaceuticals       

Not detected 4.7% Ref 

6.6% 1.9% (1.0%, 2.7%) 

Detected in all 8.1% Ref 

8.3% 0.2% (-2.2%, 2.7%) -1.6% (-4.1%, 0.8%) 

Fecal sterols       

Not detected 5.0% Ref 

6.5% 1.5% (0.4%, 2.5%) 

Detected in all 6.3% Ref 

7.9% 1.5% (0.1%, 3.0%) 0.1% (-1.5%, 1.6%) 

Household waste      

Not detected 5.5% Ref 

7.0% 1.5% (0.2%, 2.9%) 

Detected in all 6.2% Ref 

7.3% 1.1% (-0.4%, 2.6%) -0.4% (-2.5%, 1.6%) 

Industrial waste       

Not detected 5.9% Ref 

7.0% 1.1% (-0.3%, 2.5%) 

Detected in all 5.5% Ref 

7.1% 1.6% (0.4%, 2.8%) 0.5% (-1.0%, 2.1%) 

Runoff       

Not detected 6.2% Ref 

7.4% 1.2% (-0.3%, 2.7%) 

Detected in all 5.5% Ref 

6.9% 1.4% (0.2%, 2.6%) 0.2% (-1.5%, 1.9%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
 

  



   

 
192

Table B.7(b). Diarrhea 

 Diarrhea 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 1.1% (0.4%, 1.7%) 

Pharmaceuticals       

Not detected 2.5% Ref 

3.9% 1.5% (1.1%, 1.9%) 

Detected in all 5.1% Ref 

5.4% 0.3% (-1.5%, 2.2%) -1.2% (-3.0%, 0.7%) 

Fecal sterols       

Not detected 2.5% Ref 

3.7% 1.2% (0.7%, 1.7%) 

Detected in all 3.8% Ref 

5.1% 1.3% (0.4%, 2.3%) 0.2% (-0.8%, 1.1%) 

Household waste     

Not detected 2.9% Ref 

4.1% 1.2% (0.4%, 2.0%) 

Detected in all 3.9% Ref 

4.9% 1.0% (0.0%, 2.0%) -0.2% (-1.5%, 1.0%) 

Industrial waste       

Not detected 3.3% Ref 

NA 0.9% (0.0%, 1.8%) 

Detected in all 3.0% Ref 

4.5% 1.5% (0.9%, 2.1%) 0.6% (-0.3%, 1.5%) 

Runoff       

Not detected 3.1% Ref 

4.2% 1.2% (0.4%, 1.9%) 

Detected in all 3.8% Ref 

4.8% 1.0% (0.0%, 2.0%) -0.2% (-1.3%, 0.9%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.7(c). Respiratory illness 

Respiratory illness 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.1% (-1.9%, 1.7%) 

Pharmaceuticals       

Not detected 4.2% Ref 

5.0% 0.8% (-0.3%, 1.9%) 

Detected in all 16.4% Ref 

11.1% -5.3% (-14.8%, 4.1%) -6.1% (-15.5%, 3.2%) 

Fecal sterols       

Not detected 6.5% Ref 

6.6% 0.1% (-2.0%, 2.3%) 

Detected in all 8.4% Ref 

6.2% -2.2% (-6.3%, 1.9%) -2.4% (-6.7%, 2.0%) 

Household waste       

Not detected 4.3% Ref 

5.4% 1.1% (0.0%, 2.3%) 

Detected in all 10.2% Ref 

7.5% -2.6% (-7.8%, 2.6%) -3.8% (-9.1%, 1.6%) 

Industrial waste       

Not detected 6.3% Ref 

6.7% 0.4% (-1.4%, 2.3%) 

Detected in all 8.4% Ref 

6.3% -2.1% (-6.2%, 1.9%) -2.5% (-6.7%, 1.6%) 

Runoff       

Not detected 5.8% Ref 

6.2% 0.3% (-1.5%, 2.2%) 

Detected in all 6.2% Ref 

5.7% -0.5% (-3.4%, 2.3%) -0.9% (-4.1%, 2.3%) 

 * Adjusted for beach, mean bathers, sand, rain 
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Table B.7(d). Eye ailment 

Eye Ailment 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -1.4% (-3.8%, 0.9%) 

Pharmaceuticals       

Not detected 3.9% Ref 

3.3% -0.6% (-2.7%, 1.5%) 

Detected in all 9.0% Ref 

5.0% -4.0% (-11.0%, 3.0%) -3.4% (-10.4%, 3.6%) 

Fecal sterols       

Not detected 7.2% Ref 

4.4% -2.8% (-7.8%, 2.1%) 

Detected in all 3.6% Ref 

3.1% -0.6% (-2.5%, 1.4%) 2.3% (-2.7%, 7.2%) 

Household waste       

Not detected 7.4% Ref 

4.5% -2.9% (-8.2%, 2.4%) 

Detected in all 3.2% Ref 

2.7% -0.5% (-2.2%, 1.2%) 2.4% (-3.1%, 7.8%) 

Industrial waste       

Not detected 8.9% Ref 

4.8% -4.1% (-9.9%, 1.8%) 

Detected in all 2.9% Ref 

2.7% -0.2% (-1.7%, 1.3%) 3.9% (-1.8%, 9.5%) 

Runoff       

Not detected 6.9% Ref 

4.4% -2.5% (-6.9%, 1.9%) 

Detected in all 2.6% Ref 

2.4% -0.2% (-1.8%, 1.3%) 2.3% (-2.4%, 6.9%) 

* Adjusted for beach, mean bathers, sand, rain 
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Table B.7(e). Rash 

Rash 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- 0.0% (-1.0%, 1.0%) 

Pharmaceuticals       

Not detected 2.5% Ref 

2.4% 0.0% (-1.3%, 1.2%) 

Detected in all 4.0% Ref 

3.6% -0.4% (-2.5%, 1.8%) -0.3% (-2.6%, 2.0%) 

Fecal sterols       

Not detected 1.6% Ref 

2.0% 0.4% (-0.1%, 0.9%) 

Detected in all 4.1% Ref 

3.4% -0.7% (-3.2%, 1.7%) -1.1% (-3.5%, 1.2%) 

Household waste       

Not detected 1.0% Ref 

1.7% 0.7% (0.4%, 0.9%) 

Detected in all 6.0% Ref 

4.3% -1.7% (-5.1%, 1.7%) -2.4% (-5.8%, 1.1%) 

Industrial waste       

Not detected 1.8% Ref 

2.1% 0.2% (-0.6%, 1.0%) 

Detected in all 3.2% Ref 

3.2% -0.1% (-1.6%, 1.5%) -0.3% (-1.8%, 1.2%) 

Runoff       

Not detected 2.1% Ref 

2.4% 0.3% (-0.6%, 1.2%) 

Detected in all 3.1% Ref 

2.8% -0.4% (-2.1%, 1.4%) -0.7% (-2.5%, 1.2%) 

* Adjusted for beach, mean bathers, sand, rain 
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Table B.7(f). Earache 

Earache 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.2% (-1.4%, 0.9%) 

Pharmaceuticals       

Not detected 3.5% Ref 

2.3% -1.2% (-4.0%, 1.5%) 

Detected in all 1.7% Ref 

2.0% 0.3% (-0.6%, 1.2%) 1.5% (-1.1%, 4.2%) 

Fecal sterols       

Not detected 2.4% Ref 

2.1% -0.3% (-1.9%, 1.4%) 

Detected in all 2.2% Ref 

1.9% -0.3% (-1.8%, 1.2%) 0.0% (-1.9%, 1.8%) 

Household waste       

Not detected 2.2% Ref 

1.9% -0.2% (-2.0%, 1.5%) 

Detected in all 2.6% Ref 

2.3% -0.3% (-2.0%, 1.5%) 0.0% (-2.4%, 2.4%) 

Industrial waste       

Not detected 2.2% Ref 

2.1% -0.2% (-1.7%, 1.3%) 

Detected in all 2.3% Ref 

2.0% -0.3% (-1.8%, 1.1%) -0.2% (-1.9%, 1.6%) 

Runoff       

Not detected 2.0% Ref 

2.0% 0.0% (-1.2%, 1.1%) 

Detected in all 2.0% Ref 

1.7% -0.3% (-1.8%, 1.3%) -0.2% (-2.0%, 1.5%) 

 * Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.7(g). Urinary tract infection 

Urinary Tract Infection 

Chemical 

(samples) 

Adjusted 

Risk (%) 

Adjusted  

RD (95% CI)* 

Interaction Contrast 

(95% CI) 

-- -0.4% (-1.6%, 0.9%) 

Pharmaceuticals       

Not detected 3.9% Ref 

1.3% -2.7% (-8.2%, 2.8%) 

Detected in all 0.6% Ref 

0.7% 0.1% (-0.5%, 0.7%) 2.8% (-2.7%, 8.2%) 

Fecal sterols       

Not detected 2.3% Ref 

1.2% -1.1% (-4.9%, 2.7%) 

Detected in all 0.8% Ref 

0.7% 0.0% (-0.8%, 0.7%) 1.1% (-2.6%, 4.7%) 

Household waste      

Not detected 8.8% Ref 

2.2% -6.6% (-19.9%, 6.8%) 

Detected in all 0.1% Ref 

0.2% 0.1% (0.0%, 0.2%) 6.7% (-6.7%, 20.0%) 

Industrial waste       

Not detected 1.8% Ref 

1.0% -0.8% (-3.8%, 2.2%) 

Detected in all 0.9% Ref 

0.8% -0.2% (-1.1%, 0.8%) 0.6% (-2.3%, 3.6%) 

Runoff       

Not detected 3.4% Ref 

1.5% -1.9% (-6.3%, 2.6%) 

Detected in all 0.2% Ref 

0.3% 0.1% (-0.1%, 0.3%) 2.0% (-2.5%, 6.4%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
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Table B.8(a-g). Frequencies and standardized risk differences (95% CI) for the association 
between illness and human-associated chemical markers head immersion swimmers in all 
beaches 

 
Table B.8(a). Gastrointestinal illness 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

GI illness* 

  Acetaminophen  
Not detected 475 5786 8.2 8.6 Ref 

Detected§ 41 375 10.9 8.0 -0.5% (-3.7%, 2.6%) 
  Beta-sitosterol      

Not detected 485 5817 8.3 8.5 Ref 
Detected§ 31 344 9.0 9.1 0.6% (-3.7%, 4.9%) 

  Bisphenol A      
Not detected 431 5185 8.3 8.2 Ref 

Detected§ 85 976 8.7 10.6 2.4% (-0.5%, 5.2%) 
  Caffeine      

Not detected 371 4872 7.6 8.4 Ref 
Detected§ 145 1289 11.2 8.8 0.3% (-2.6%, 3.2%) 

  Cholesterol      
Not detected 332 4299 7.7 8.2 Ref 

Detected§ 184 1862 9.9 9.3 1.1% (-1.0%, 3.1%) 
  DEET      

Not detected 334 4335 7.7 8.7 Ref 
Detected§ 182 1826 10.0 8.4 -0.3% (-2.7%, 2.1%) 

  Diethoxyoctylphenol      
Not detected 513 6127 8.4 8.6 Ref 

Detected§ 3 34 8.8 5.8 -2.8% (-9.5%, 4.0%) 
  Phenol      

Not detected 345 4554 7.6 8.8 Ref 
Detected§ 171 1607 10.6 8.1 -0.7% (-3.7%, 2.3%) 

  Tributyl phosphate      
Not detected 455 5504 8.3 8.6 Ref 

Detected§ 61 657 9.3 8.3 -0.2% (-2.9%, 2.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.8(b). Diarrhea 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Diarrhea* 

  Acetaminophen  
Not detected 300 5786 5.2 5.6 Ref 

Detected§ 30 375 8.0 5.2 -0.4% (-2.8%, 2.0%) 
  Beta-sitosterol      

Not detected 306 5817 5.3 5.5 Ref 
Detected§ 24 344 7.0 6.6 1.1% (-2.6%, 4.8%) 

  Bisphenol A      
Not detected 268 5185 5.2 5.1 Ref 

Detected§ 62 976 6.4 8.5 3.4% (0.6%, 6.1%) 
  Caffeine      

Not detected 231 4872 4.7 5.7 Ref 
Detected§ 99 1289 7.7 5.1 3.4% (0.6%, 6.1%) 

  Cholesterol      
Not detected 194 4299 4.5 5.0 Ref 

Detected§ 136 1862 7.3 6.5 -0.6% (-2.7%, 1.5%) 
  DEET      

Not detected 196 4335 4.5 5.3 Ref 
Detected§ 134 1826 7.3 5.9 1.5% (-0.2%, 3.3%) 

  Diethoxyoctylphenol      
Not detected 329 6127 5.4 5.6 Ref 

Detected§ 1 34 2.9 1.7 0.6% (-1.5%, 2.7%) 
  Phenol      

Not detected 197 4554 4.3 5.0 Ref 
Detected§ 133 1607 8.3 6.6 -3.9% (-7.3%, -0.5%) 

  Tributyl phosphate      
Not detected 288 5504 5.2 5.5 Ref 

Detected§ 42 657 6.4 5.8 1.6% (-1.2%, 4.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.8(c). Respiratory illness 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Respiratory illness* 

  Acetaminophen       
Not detected 357 5589 6.4 6.3 Ref 

Detected§ 23 373 6.2 8.0 1.8% (-2.9%, 6.4%) 
  Beta-sitosterol      

Not detected 360 5620 6.4 6.3 Ref 
Detected§ 20 342 5.8 7.4 1.1% (-2.5%, 4.7%) 

  Bisphenol A      
Not detected 336 5007 6.7 6.8 Ref 

Detected§ 44 955 4.6 4.3 -2.5% (-4.1%, -0.9%) 
  Caffeine      

Not detected 300 4717 6.4 6.5 Ref 
Detected§ 80 1245 6.4 5.9 -0.5% (-3.5%, 2.4%) 

  Cholesterol      
Not detected 291 4139 7.0 7.0 Ref 

Detected§ 89 1823 4.9 4.9 -2.1% (-3.6%, -0.6%) 
  DEET      

Not detected 276 4176 6.6 6.5 Ref 
Detected§ 104 1786 5.8 5.9 -0.7% (-2.6%, 1.3%) 

  Diethoxyoctylphenol      
Not detected 377 5929 6.4 6.3 Ref 

Detected§ 3 33 9.1 7.4 1.1% (-7.9%, 10.0%) 
  Phenol      

Not detected 300 4394 6.8 7.1 Ref 
Detected§ 80 1568 5.1 4.5 -2.6% (-5.2%, 0.1%) 

  Tributyl phosphate      
Not detected 328 5320 6.2 6.1 Ref 

Detected§ 52 642 8.1 8.6 2.5% (-0.5%, 5.5%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.8(d). Eye illness 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Eye ailment 

  Acetaminophen  
Not detected 160 5898 2.7 2.7 Ref 

Detected§ 9 381 2.4 2.1 -0.6% (-2.8%, 1.6%) 
  Beta-sitosterol      

Not detected 160 5926 2.7 2.7 Ref 
Detected§ 9 353 2.5 2.2 -0.5% (-2.3%, 1.3%) 

  Bisphenol A      
Not detected 142 5278 2.7 2.7 Ref 

Detected§ 27 1001 2.7 2.7 0.0% (-1.2%, 1.3%) 
  Caffeine      

Not detected 138 4973 2.8 2.8 Ref 
Detected§ 31 1306 2.4 2.2 -0.6% (-2.1%, 0.8%) 

  Cholesterol      
Not detected 116 4381 2.6 2.7 Ref 

Detected§ 53 1898 2.8 2.7 0.0% (-1.1%, 1.1%) 
  DEET      

Not detected 121 4423 2.7 2.8 Ref 
Detected§ 48 1856 2.6 2.3 -0.5% (-1.8%, 0.7%) 

  Diethoxyoctylphenol      
Not detected 167 6244 2.7 2.7 Ref 

Detected§ 2 35 5.7 7.0 4.3% (-5.9%, 14.5%) 
  Phenol      

Not detected 123 4651 2.6 2.7 Ref 
Detected§ 46 1628 2.8 2.7 0.0% (-1.8%, 1.7%) 

  Tributyl phosphate      
Not detected 153 5608 2.7 2.7 Ref 

Detected§ 16 671 2.4 2.4 -0.3% (-1.8%, 1.2%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.8(e). Rash 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Rash 

  Acetaminophen  
Not detected 153 5794 2.6 2.7 Ref 

Detected§ 15 376 4.0 3.2 0.5% (-1.3%, 2.3%) 
  Beta-sitosterol      

Not detected 156 5819 2.7 2.7 Ref 
Detected§ 12 351 3.4 2.6 -0.1% (-1.8%, 1.6%) 

  Bisphenol A      
Not detected 143 5191 2.8 2.7 Ref 

Detected§ 25 979 2.6 2.8 0.1% (-1.2%, 1.3%) 
  Caffeine      

Not detected 129 4887 2.6 2.7 Ref 
Detected§ 39 1283 3.0 2.9 0.2% (-1.2%, 1.6%) 

  Cholesterol      
Not detected 114 4295 2.7 2.7 Ref 

Detected§ 54 1875 2.9 2.7 -0.1% (-1.0%, 0.9%) 
  DEET      

Not detected 104 4333 2.4 2.5 Ref 
Detected§ 64 1837 3.5 3.1 0.5% (-0.7%, 1.8%) 

  Diethoxyoctylphenol      
Not detected 168 6135 2.7 NA Ref 

Detected§ 0 35 0.0 NA NA 
  Phenol      

Not detected 111 4557 2.4 2.5 Ref 
Detected§ 57 1613 3.5 3.4 0.9% (-1.3%, 3.0%) 

  Tributyl phosphate      
Not detected 139 5512 2.5 2.5 Ref 

Detected§ 29 658 4.4 4.3 1.8% (-0.1%, 3.7%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.8(f). Earache 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Earache 

  Acetaminophen  
Not detected 104 5836 1.8 1.8 Ref 

Detected§ 11 380 2.9 2.6 5.2% (-1.1%, 2.6%) 
  Beta-sitosterol      

Not detected 107 5868 1.8 1.8 Ref 
Detected§ 8 348 2.3 2.6 0.7% (-1.3%, 2.7%) 

  Bisphenol A      
Not detected 98 5226 1.9 1.9 Ref 

Detected§ 17 990 1.7 1.8 -0.1% (-1.1%, 0.8%) 
  Caffeine      

Not detected 89 4930 1.8 1.8 Ref 
Detected§ 26 1286 2.0 2.3 0.5% (-0.8%, 1.8%) 

  Cholesterol      
Not detected 81 4337 1.9 1.9 Ref 

Detected§ 34 1879 1.8 1.9 -0.2% (-1.0%, 0.7%) 
  DEET      

Not detected 75 4379 1.7 1.8 Ref 
Detected§ 40 1837 2.2 2.1 0.3% (-0.7%, 1.4%) 

  Diethoxyoctylphenol      
Not detected 114 6181 1.8 1.9 Ref 

Detected§ 1 35 2.9 4.6 2.8% (-6.6%, 12.1%) 
  Phenol      

Not detected 83 4603 1.8 1.9 Ref 
Detected§ 32 1613 2.0 1.9 0.1% (-1.4%, 1.6%) 

  Tributyl phosphate      
Not detected 101 5551 1.8 1.9 Ref 

Detected§ 14 665 2.1 2.1 0.2% (-1.0%, 1.5%) 

* NA, not able to estimated. Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.8(g). Urinary tract infection 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Urinary tract infection 

  Acetaminophen  
Not detected 30 5897 0.5 0.5 Ref 

Detected§ 4 384 1.0 1.5 1.0% (-1.0%, 3.0%) 
  Beta-sitosterol      

Not detected 32 5927 0.5 0.5 Ref 
Detected§ 2 354 0.6 0.7 0.1% (-1.0%, 1.2%) 

  Bisphenol A      
Not detected 28 5282 0.5 0.5 Ref 

Detected§ 6 999 0.6 0.7 0.1% (-0.5%, 0.7%) 
  Caffeine      

Not detected 23 4969 0.5 0.4 Ref 
Detected§ 11 1312 0.8 1.5 1.0% (-0.3%, 2.4%) 

  Cholesterol      
Not detected 23 4380 0.5 0.5 Ref 

Detected§ 11 1901 0.6 0.6 0.1% (-0.4%, 0.6%) 
  DEET      

Not detected 24 4421 0.5 0.6 Ref 
Detected§ 10 1860 0.5 0.5 -0.1% (-0.6%, 0.4%) 

  Diethoxyoctylphenol      
Not detected 34 6246 0.5 NA Ref 

Detected§ 0 35 0.0 NA NA 
  Phenol      

Not detected 25 4647 0.5 0.5 Ref 
Detected§ 9 1634 0.6 0.6 0.0% (-0.9%, 0.9%) 

  Tributyl phosphate      
Not detected 29 5608 0.5 0.5 Ref 

Detected§ 5 673 0.7 0.7 0.2% (-0.5%, 0.8%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
 
 
 
 

 

 
 
  



   

 
205

Table B.9(a-g). Frequencies and standardized risk differences (95% CI) for the association 
between illness and human-associated chemical markers among swimmers who swallowed water 
in all beaches 

 
Table B.9(a). Gastrointestinal illness 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

GI* 

  Acetaminophen  
Not detected 140 1350 10.4 10.3 Ref 

Detected§ 11 90 12.2 13.4 3.1% (-6.7%, 12.9%) 
  Beta-sitosterol      

Not detected 145 1372 10.6 10.5 Ref 
Detected§ 6 68 8.8 10.2 -0.3% (-9.2%, 8.5%) 

  Bisphenol A      
Not detected 122 1214 10.0 10.0 Ref 

Detected§ 29 226 12.8 13.5 3.5% (-2.2%, 9.2%) 
  Caffeine      

Not detected 112 1138 9.8 10.5 Ref 
Detected§ 39 302 12.9 10.4 0.0% (-7.2%, 7.1%) 

  Cholesterol      
Not detected 108 1055 10.2 10.4 Ref 

Detected§ 43 385 11.2 10.9 0.5% (-4.2%, 5.2%) 
  DEET      

Not detected 105 1020 10.3 10.2 Ref 
Detected§ 46 420 11.0 11.4 1.2% (-4.7%, 7.0%) 

  Diethoxyoctylphenol      
Not detected 150 1432 10.5 10.5 Ref 

Detected§ 1 8 12.5 7.5 -3.0% (-18.8%, 12.8%) 
  Phenol      

Not detected 118 1112 10.6 11.4 Ref 
Detected§ 33 328 10.1 8.2 -3.3% (-8.5%, 2.0%) 

  Tributyl phosphate      
Not detected 134 1273 10.5 10.6 Ref 

Detected§ 17 167 10.2 9.7 -1.0% (-6.4%, 4.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.9(b). Diarrhea 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Diarrhea* 

  Acetaminophen  
Not detected 90 1350 6.7 6.5 Ref 

Detected§ 7 90 7.8 8.8 2.3% (-5.4%, 10.0%) 
  Beta-sitosterol      

Not detected 95 1372 6.9 6.8 Ref 
Detected§ 2 68 2.9 3.3 -3.5% (-8.5%, 1.6%) 

  Bisphenol A      
Not detected 77 1214 6.3 6.2 Ref 

Detected§ 20 226 8.8 10.0 3.8% (-1.4%, 8.9%) 
  Caffeine      

Not detected 75 1138 6.6 7.3 Ref 
Detected§ 22 302 7.3 5.0 -2.3% (-7.0%, 2.5%) 

  Cholesterol      
Not detected 65 1055 6.2 6.1 Ref 

Detected§ 32 385 8.3 8.1 2.0% (-2.3%, 6.3%) 
  DEET      

Not detected 65 1020 6.4 5.9 Ref 
Detected§ 32 420 7.6 8.8 2.9% (-2.7%, 8.6%) 

  Diethoxyoctylphenol      
Not detected 97 1432 6.8 NA Ref 

Detected§ 0 8 0.0 NA NA 
  Phenol      

Not detected 70 1112 6.3 6.1 Ref 
Detected§ 27 328 8.2 8.4 2.3% (-3.7%, 8.2%) 

  Tributyl phosphate      
Not detected 88 1273 6.9 6.7 Ref 

Detected§ 9 167 5.4 6.1 -0.7% (-5.3%, 4.0%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.9(c). Respiratory illness 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Respiratory illness 

  Acetaminophen  
Not detected 117 1291 9.1 8.9 Ref 

Detected§ 5 89 5.6 6.9 -2.0% (-9.2%, 5.3%) 
  Beta-sitosterol      

Not detected 117 1311 8.9 8.7 Ref 
Detected§ 5 69 7.2 9.1 0.4% (-8.8%, 9.6%) 

  Bisphenol A      
Not detected 107 1158 9.2 9.3 Ref 

Detected§ 15 222 6.8 6.6 -2.7% (-7.1%, 1.7%) 
  Caffeine      

Not detected 98 1094 9.0 9.8 Ref 
Detected§ 24 286 8.4 6.1 -3.7% (-9.6%, 2.3%) 

  Cholesterol      
Not detected 101 1002 10.1 9.9 Ref 

Detected§ 21 378 5.6 5.6 -4.4% (-7.7%, -1.1%) 
  DEET      

Not detected 89 966 9.2 9.3 Ref 
Detected§ 33 414 8.0 7.6 -1.6% (-6.7%, 3.5%) 

  Diethoxyoctylphenol      
Not detected 122 1373 8.9 NA Ref 

Detected§ 0 7 0.0 NA NA 
  Phenol      

Not detected 99 1062 9.3 9.3 Ref 
Detected§ 23 318 7.2 6.9 -2.4% (-7.7%, 2.9%) 

  Tributyl phosphate      
Not detected 100 1213 8.2 8.0 Ref 

Detected§ 22 167 13.2 15.3 7.3% (-1.3%, 15.8%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.9(d). Eye ailment 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Eye ailment 

  Acetaminophen  
Not detected 53 1389 3.8 3.8 Ref 

Detected§ 3 89 3.4 2.4 -1.4% (-4.8%, 2.0%) 
  Beta-sitosterol      

Not detected 52 1408 3.7 3.7 Ref 
Detected§ 4 70 5.7 5.7 2.0% (-4.3%, 8.4%) 

  Bisphenol A      
Not detected 48 1243 3.9 3.8 Ref 

Detected§ 8 235 3.4 3.5 -0.3% (-3.1%, 2.4%) 
  Caffeine      

Not detected 46 1172 3.9 4.1 Ref 
Detected§ 10 306 3.3 2.7 -1.4% (-4.6%, 1.7%) 

  Cholesterol      
Not detected 38 1083 3.5 3.5 Ref 

Detected§ 18 395 4.6 4.5 1.0% (-1.6%, 3.5%) 
  DEET      

Not detected 40 1047 3.8 4.2 Ref 
Detected§ 16 431 3.7 2.9 -1.3% (-3.8%, 1.3%) 

  Diethoxyoctylphenol      
Not detected 55 1470 3.7 3.7 Ref 

Detected§ 1 8 12.5 16.0 12.3% (-19.3%, 43.9%) 
  Phenol      

Not detected 39 1148 3.4 3.1 Ref 
Detected§ 17 330 5.2 7.2 4.1% (-1.9%, 10.1%) 

  Tributyl phosphate      
Not detected 49 1304 3.8 3.7 Ref 

Detected§ 7 174 4.0 4.5 0.8% (-2.9%, 4.5%) 

NA, not able to estimated. Note estimates influenced by sample sizes<5. * Adjusted for beach, 
mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.9(e). Rash 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Rash 

  Acetaminophen  
Not detected 54 1362 4.0 4.0 Ref 

Detected§ 5 88 5.7 4.9 0.9% (-4.3%, 6.1%) 
  Beta-sitosterol      

Not detected 56 1380 4.1 4.1 Ref 
Detected§ 3 70 4.3 3.4 -0.7% (-4.9%, 3.5%) 

  Bisphenol A      
Not detected 52 1218 4.3 4.2 Ref 

Detected§ 7 232 3.0 3.2 -1.1% (-3.8%, 1.6%) 
  Caffeine      

Not detected 47 1150 4.1 4.2 Ref 
Detected§ 12 300 4.0 3.3 -0.9% (-4.1%, 2.4%) 

  Cholesterol      
Not detected 43 1057 4.1 4.1 Ref 

Detected§ 16 393 4.1 3.9 -0.2% (-2.5%, 2.0%) 
  DEET      

Not detected 40 1024 3.9 4.3 Ref 
Detected§ 19 426 4.5 3.6 -0.7% (-3.4%, 2.0%) 

  Diethoxyoctylphenol      
Not detected 59 1442 4.1 NA Ref 

Detected§ 0 8 0.0 NA NA 
  Phenol      

Not detected 43 1123 3.8 3.9 Ref 
Detected§ 16 327 4.9 4.3 0.4% (-3.8%, 4.5%) 

  Tributyl phosphate      
Not detected 48 1282 3.7 3.7 Ref 

Detected§ 11 168 6.5 6.6 2.9% (-1.3%, 7.2%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all samples per day 
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Table B.9(f). Earache 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Earache 

  Acetaminophen  
Not detected 32 1377 2.3 2.6 Ref 

Detected§ 2 89 2.2 2.6 0.0% (-5.1%, 5.2%) 
  Beta-sitosterol      

Not detected 30 1397 2.1 2.3 Ref 
Detected§ 4 69 5.8 33.9 31.6% (-14.0%, 77.2%) 

  Bisphenol A      
Not detected 30 1232 2.4 2.6 Ref 

Detected§ 4 234 1.7 2.1 -0.6% (-2.8%, 1.7%) 
  Caffeine      

Not detected 26 1165 2.2 2.4 Ref 
Detected§ 8 301 2.7 3.4 1.0% (-2.5%, 4.5%) 

  Cholesterol      
Not detected 25 1072 2.3 2.6 Ref 

Detected§ 9 394 2.3 2.4 1.0% (-2.5%, 4.5%) 
  DEET      

Not detected 24 1036 2.3 2.3 Ref 
Detected§ 10 430 2.3 3.4 1.1% (-1.8%, 4.0%) 

  Diethoxyoctylphenol      
Not detected 34 1458 2.3 NA Ref 

Detected§ 0 8 0.0 NA NA 
  Phenol      

Not detected 25 1137 2.2 2.4 Ref 
Detected§ 9 329 2.7 3.0 0.6% (-3.3%, 4.5%) 

  Tributyl phosphate      
Not detected 32 1292 2.5 2.6 Ref 

Detected§ 2 174 1.1 2.4 -0.2% (-3.8%, 3.4%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.9(g). Urinary tract infection 

  Cases N (%) 

Adjusted 

Risk(%) 

Adjusted 

RD (95% CI) 

Urinary tract infection 

  Acetaminophen  
Not detected 13 1382 0.9 1.0 Ref 

Detected§ 2 91 2.2 2.8 1.9% (-2.7%, 6.4%) 
  Beta-sitosterol      

Not detected 15 1403 1.1 NA Ref 
Detected§ 0 70 0.0 NA NA 

  Bisphenol A      
Not detected 11 1239 0.9 0.9 Ref 

Detected§ 4 234 1.7 2.5 1.6% (-0.9%, 4.1%) 
  Caffeine      

Not detected 9 1164 0.8 0.7 Ref 
Detected§ 6 309 1.9 3.7 3.0% (-1.1%, 7.0%) 

  Cholesterol      
Not detected 9 1076 0.8 0.8 Ref 

Detected§ 6 397 1.5 1.8 1.0% (-0.8%, 2.8%) 
  DEET      

Not detected 11 1040 1.1 1.2 Ref 
Detected§ 4 433 0.9 0.8 -0.3% (-1.3%, 0.7%) 

  Diethoxyoctylphenol      
Not detected 15 1465 1.0 NA Ref 

Detected§ 0 8 0.0 NA NA 
  Phenol      

Not detected 11 1139 1.0 1.0 Ref 
Detected§ 4 334 1.2 1.1 0.1% (-2.4%, 2.7%) 

  Tributyl phosphate      
Not detected 13 1299 1.0 1.0 Ref 

Detected§ 2 174 1.1 1.2 0.2% (-1.3%, 1.7%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in all samples per day 
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Table B.10(a-g). Frequencies and standardized risk differences (95% CI) for the association 
between illness and human-associated chemical markers (detected in ≥1 daily sample vs. none) 
among body immersion swimmers in all beaches – Table B.10(a). GI Illness 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Gastrointestinal illness 

  Acetaminophen  
Not detected 467 5291 8.8 9.0 Ref 

Detected§ 273 3404 8.0 8.1 -0.9% (-2.4%, 0.6%) 
  Beta-sitosterol      

Not detected 548 6818 8.0 8.5 Ref 
Detected§ 192 1877 10.2 9.1 0.6% (-1.6%, 2.8%) 

  Bisphenol A      
Not detected 341 3408 10.0 8.9 Ref 

Detected§ 399 5287 7.5 8.5 -0.4% (-2.4%, 1.7%) 
  Caffeine      

Not detected 261 3319 7.9 8.7 Ref 
Detected§ 479 5376 8.9 8.7 0.0% (-1.6%, 1.6%) 

  Cholesterol      
Not detected 331 4282 7.7 8.4 Ref 

Detected§ 409 4413 9.3 8.9 0.5% (-1.1%, 2.1%) 
  DEET      

Not detected 297 3713 8.0 8.7 Ref 
Detected§ 443 4982 8.9 8.6 -0.1% (-1.8%, 1.5%) 

  Diethoxyoctylphenol      
Not detected 663 7920 8.4 8.7 Ref 

Detected§ 77 775 9.9 8.7 0.1% (-2.5%, 2.6%) 
  Phenol      

Not detected 310 4178 7.4 8.4 Ref 
Detected§ 430 4517 9.5 8.9 0.5% (-1.3%, 2.4%) 

  Tributyl phosphate      
Not detected 459 5696 8.1 8.6 Ref 

Detected§ 281 2999 9.4 8.8 0.2% (-1.4%, 1.9%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in 1 or more samples per day 
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Table B.10(b). Diarrhea 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Diarrhea 

  Acetaminophen       
Not detected 320 5291 6.0 6.3 Ref 

Detected§ 175 3404 5.1 5.2 -1.1% (-2.3%, 0.1%) 
  Beta-sitosterol      

Not detected 348 6818 5.1 5.6 Ref 
Detected§ 147 1877 7.8 6.6 1.0% (-0.8%, 2.9%) 

  Bisphenol A      
Not detected 248 3408 7.3 6.1 Ref 

Detected§ 247 5287 4.7 5.6 -0.5% (-2.3%, 1.2%) 
  Caffeine      

Not detected 183 3319 5.5 6.5 Ref 
Detected§ 312 5376 5.8 5.5 -1.0% (-2.4%, 0.4%) 

  Cholesterol      
Not detected 200 4282 4.7 5.4 Ref 

Detected§ 295 4413 6.7 6.2 0.8% (-0.5%, 2.2%) 
  DEET      

Not detected 188 3713 5.1 6.0 Ref 
Detected§ 307 4982 6.2 5.7 -0.3% (-1.7%, 1.1%) 

  Diethoxyoctylphenol      
Not detected 439 7920 5.5 5.8 Ref 

Detected§ 56 775 7.2 5.9 0.0% (-2.1%, 2.1%) 
  Phenol      

Not detected 186 4178 4.5 5.3 Ref 
Detected§ 309 4517 6.8 6.2 0.9% (-0.5%, 2.4%) 

  Tributyl phosphate      
Not detected 302 5696 5.3 5.8 Ref 

Detected§ 193 2999 6.4 5.8 0.0% (-1.3%, 1.3%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in 1 or more samples per day 
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Table B.10(c). Respiratory illness 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Respiratory illness 

  Acetaminophen  
Not detected 322 5135 6.3 6.2 Ref 

Detected§ 187 3290 5.7 5.6 -0.6% (-1.8%, 0.6%) 
  Beta-sitosterol      

Not detected 427 6590 6.5 6.1 Ref 
Detected§ 82 1835 4.5 5.3 -0.8% (-2.7%, 1.1%) 

  Bisphenol A      
Not detected 195 3313 5.9 6.1 Ref 

Detected§ 314 5112 6.1 6.0 -0.1% (-1.8%, 1.5%) 
  Caffeine      

Not detected 197 3221 6.1 6.4 Ref 
Detected§ 312 5204 6.0 5.8 -0.7% (-2.0%, 0.6%) 

  Cholesterol      
Not detected 313 4130 7.6 7.5 Ref 

Detected§ 196 4295 4.6 4.5 -0.6% (-1.9%, 0.7%) 
  DEET      

Not detected 254 3597 7.1 6.8 Ref 
Detected§ 255 4828 5.3 5.4 -1.4% (-2.7%, -0.2%) 

  Diethoxyoctylphenol      
Not detected 458 7662 6.0 5.9 Ref 

Detected§ 51 763 6.7 7.2 1.3% (-1.1%, 3.7%) 
  Phenol      

Not detected 308 4036 7.6 8.0 Ref 
Detected§ 201 4389 4.6 4.3 -3.7% (-5.2%, -2.2%) 

  Tributyl phosphate      
Not detected 348 5504 6.3 6.3 Ref 

Detected§ 161 2921 5.5 5.4 -0.9% (-2.2%, 0.4%) 

* Adjusted for beach, mean bathers, sand, rain 
§ Detected in all daily samples 
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Table B.10(d). Eye ailment 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Eye ailment 

  Acetaminophen  
Not detected 148 5416 2.7 2.7 Ref 

Detected§ 98 3472 2.8 2.8 0.0% (-0.8%, 0.9%) 
  Beta-sitosterol      

Not detected 184 6975 2.6 2.7 Ref 
Detected§ 62 1913 3.2 3.0 0.3% (-1.0%, 1.6%) 

  Bisphenol A      
Not detected 107 3469 3.1 3.0 Ref 

Detected§ 139 5419 2.6 2.6 -0.4% (-1.6%, 0.8%) 
  Caffeine      

Not detected 105 3387 3.1 3.1 Ref 
Detected§ 141 5501 2.6 2.5 -0.5% (-1.4%, 0.3%) 

  Cholesterol      
Not detected 122 4374 2.8 2.9 Ref 

Detected§ 124 4514 2.7 2.6 -0.3% (-1.2%, 0.6%) 
  DEET      

Not detected 119 3803 3.1 3.3 Ref 
Detected§ 127 5085 2.5 2.4 -0.9% (-1.8%, 0.0%) 

  Diethoxyoctylphenol      
Not detected 221 8092 2.7 2.7 Ref 

Detected§ 25 796 3.1 2.9 0.2% (-1.3%, 1.7%) 
  Phenol      

Not detected 116 4280 2.7 2.9 Ref 
Detected§ 130 4608 2.8 2.7 -0.2% (-1.2%, 0.8%) 

  Tributyl phosphate      
Not detected 172 5819 3.0 3.0 Ref 

Detected§ 74 3069 2.4 2.3 -0.7% (-1.6%, 0.1%) 

* Adjusted for beach, mean bathers, sand, rain 
§ Detected in 1 or more samples per day 
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Table B.10(e). Rash 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Rash 

  Acetaminophen  
Not detected 141 5326 2.6 2.8 Ref 

Detected§ 93 3407 2.7 2.6 -0.2% (-1.0%, 0.6%) 
  Beta-sitosterol      

Not detected 166 6845 2.4 2.6 Ref 
Detected§ 68 1888 3.6 2.9 0.3% (-0.7%, 1.4%) 

  Bisphenol A      
Not detected 107 3418 3.1 2.7 Ref 

Detected§ 127 5315 2.4 2.7 -0.1% (-1.0%, 0.9%) 
  Caffeine      

Not detected 104 3338 3.1 3.2 Ref 
Detected§ 130 5395 2.4 2.4 -0.8% (-1.5%, 0.0%) 

  Cholesterol      
Not detected 110 4302 2.6 2.7 Ref 

Detected§ 124 4431 2.8 2.7 0.0% (-0.8%, 0.7%) 
  DEET      

Not detected 90 3740 2.4 2.6 Ref 
Detected§ 144 4993 2.9 2.8 0.2% (-0.6%, 1.0%) 

  Diethoxyoctylphenol      
Not detected 209 7949 2.6 NA Ref 

Detected§ 0 784 0.0 NA NA 
  Phenol      

Not detected 104 4206 2.5 2.7 Ref 
Detected§ 130 4527 2.9 2.6 -0.1% (-1.0%, 0.8%) 

  Tributyl phosphate      
Not detected 141 5715 2.5 2.6 Ref 

Detected§ 93 3018 3.1 2.8 0.2% (-0.6%, 1.0%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain 
§ Detected in 1 or more samples per day 
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Table B.10(f). Earache 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Earache 

  Acetaminophen  
Not detected 92 5358 1.7 1.7 Ref 

Detected§ 68 3445 2.0 2.1 0.4% (-0.2%, 1.0%) 
  Beta-sitosterol      

Not detected 121 6905 1.8 1.7 Ref 
Detected§ 39 1898 2.1 2.1 0.4% (-0.7%, 1.4%) 

  Bisphenol A      
Not detected 61 3453 1.8 1.7 Ref 

Detected§ 99 5350 1.9 1.9 0.1% (-0.8%, 1.1%) 
  Caffeine      

Not detected 69 3366 2.0 2.1 Ref 
Detected§ 91 5437 1.7 1.7 -0.4% (-1.1%, 0.3%) 

  Cholesterol      
Not detected 83 4342 1.9 1.9 Ref 

Detected§ 77 4461 1.7 1.7 -0.2% (-0.9%, 0.5%) 
  DEET      

Not detected 67 3773 1.8 1.7 Ref 
Detected§ 93 5030 1.8 1.9 0.2% (-0.5%, 0.8%) 

  Diethoxyoctylphenol      
Not detected 143 8014 1.8 1.8 Ref 

Detected§ 17 789 2.2 2.5 0.7% (-0.6%, 2.1%) 
  Phenol      

Not detected 83 4247 2.0 2.1 Ref 
Detected§ 77 4556 1.7 1.6 -0.6% (-1.3%, 0.2%) 

  Tributyl phosphate      
Not detected 112 5772 1.9 2.0 Ref 

Detected§ 48 3031 1.6 1.6 -0.4% (-1.0%, 0.2%) 

* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in 1 or more samples per day 
 

  



   

 
218

Table B.10(g). Urinary tract infection 

  Cases N (%) 

Adjusted 

Risk (%) 

Adjusted 

RD (95% CI) 

Urinary Tract infection 

  Acetaminophen  
Not detected 36 5411 0.7 0.6 Ref 

Detected§ 21 3474 0.6 0.7 0.0% (-0.4%, 0.4%) 
  Beta-sitosterol      

Not detected 41 6968 0.6 0.6 Ref 
Detected§ 16 1917 0.8 0.9 0.3% (-0.5%, 1.2%) 

  Bisphenol A      
Not detected 25 3472 0.7 0.6 Ref 

Detected§ 32 5413 0.6 0.7 0.1% (-0.3%, 0.6%) 
  Caffeine      

Not detected 22 3384 0.7 0.7 Ref 
Detected§ 35 5501 0.6 0.6 0.0% (-0.4%, 0.4%) 

  Cholesterol      
Not detected 26 4369 0.6 0.6 Ref 

Detected§ 31 4516 0.7 0.7 0.2% (-0.3%, 0.6%) 
  DEET      

Not detected 23 3800 0.6 0.6 Ref 
Detected§ 34 5085 0.7 0.7 0.1% (-0.4%, 0.5%) 

  Diethoxyoctylphenol      
Not detected 52 8088 0.6 NA Ref 

Detected§ 0 797 0.0 NA NA 
  Phenol      

Not detected 25 4271 0.6 0.6 Ref 
Detected§ 32 4614 0.7 0.7 0.0% (-0.5%, 0.6%) 

  Tributyl phosphate      
Not detected 36 5816 0.6 0.7 Ref 

Detected§ 21 3069 0.7 0.6 -0.1% (-0.6%, 0.3%) 

NA, not able to estimated.* Adjusted for beach, mean bathers, sand, rain, water temperature 
§ Detected in 1 or more samples per day 
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