DEVELOPMENT OF NOVEL 3D NMR-COMPATIBLE BIOREACTORS AND DYNAMIC NUCLEAR POLARIZATION (DNP) TECHNIQUES FOR THE STUDY OF REAL-TIME METABOLISM

Kayvan Rahimi-Keshari

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biomedical Engineering.

Chapel Hill
2009

Approved by,
Jeffrey M. Macdonald, PhD
Michael P. Gamcsik, PhD
Oleg Favorov, PhD
John Kurhanewicz, PhD
Daniel B. Vigneron, PhD
ABSTRACT

KAYVAN RAHIMI-KESHARI: Development of novel 3D NMR-compatible bioreactors and dynamic nuclear polarization (DNP) techniques for the study of real-time metabolism
(Under the direction of Jeffrey M. Macdonald, PhD)

It is well known that 13C NMR spectroscopy (as well as other nuclei) has been limited in its ability to characterize metabolic states due to its low sensitivity. This low sensitivity is a result of the low natural abundance of 13C (1.1%) in addition to the low gyromagnetic ratio of carbon. Traditionally, this is compensated by high sample concentrations as well as the introduction of 13C-enriched substrates. Dynamic nuclear polarization (DNP) results from the coupling of nuclear spins in an amorphous solid, at ~1°K, to unpaired electrons of a stable organic free radical and their subsequent irradiation. Recent advances in the field of low temperature physics, electronic paramagnetic resonance (EPR) and NMR have provided for the adaptation of the DNP technique, to metabolically appreciable systems.

NMR-compatible engineered bioreactor and 3D perfusion systems have been used to study cellular metabolism on the order of hours primarily by 31P and 13C metabolic tracers. Due to the inherent ability to translate in vitro derived biomarkers to clinical in vivo MRI/MRSI, these model systems have been of great interest, though they have been limited by low sensitivity.

In this dissertation, methods are described to combine hyperpolarized techniques with an NMR-compatible bioreactor and observe real time metabolism in
a fluidized packed bed design of rat hepatoma cells (JM1). This was extended to a novel hollow fiber bioreactor design, which provided the advantage of immobilization of cells and tissues for imaging. Prostate adenocarcinoma cells (PC3) and primary prostate tissue slices were shown to be viable for greater than 2 days demonstrating the long-term viability of these culture systems. Real time metabolism via hyperpolarized MR was also observed in the hollow fiber cartridge with the potential for future primary culture experiments. Additionally, new hyperpolarized probes and techniques (secondary and multi-probe polarization) that allow the study of metabolism, physiology (pH, apoptosis/necrosis, bioenergetics), and ligand-host binding were developed and tested. In summary, the findings of this dissertation research demonstrate the feasibility of fusing hyperpolarized MR with new NMR-compatible bioreactors to provide a robust platform for studying biological systems as well as chemical reactions useful in drug design and development.
ACKNOWLEDGEMENTS

Though the completion of a doctoral dissertation requires years of coursework and research, its most vital requirement is the support of family and friends. I am especially indebted to my parents, brother and sister for their support and advice through this process. Additionally I’d like to thank my thesis advisors, Jeff and John, for being willing to look past my shortcomings and guide me through this endeavor.

In the 10th century epic Shahnameh, the Persian poet Ferdowsi states the following immortal words:

\[
\begin{align*}
\text{بناهای آباد گردد خراب} & \\
\text{ز باران و از تابش افتتاب} & \\
\text{پی افکندم از نظام کاخی بلند} & \\
\text{که از باد و باران نیاید گرند} & \\
\text{از آن پس نمیرم که من زندهام} & \\
\text{که تخم سخن را پراکندهام} & \\
\text{هر انسک که دارد هش و رای و دین} & \\
\text{پس از مرگ بر من کند آفرین} &
\end{align*}
\]

With that in mind, this dissertation is my word.
TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

Chapter

1. **Introduction and Background** ... 1
 1.1 Specific Aims of Project .. 1
 1.2 Steady State and Non-Steady State Enzyme Kinetics .. 3
 1.3 NMR studies of Biochemical Kinetics .. 10
 1.4 DNP Physics: the Solid State Effect and Hyperpolarization ... 12
 1.5 Current developments in NMR-compatible Bioreactor Culture Systems 20

2. **Fluidized Bioreactor and Hyperpolarized NMR** .. 27
 2.1 Design of Fluidized Bioreactor System and Methods .. 27
 2.2 Steady State Metabolism of JM1 cells (31P and 13C) ... 35
 2.3 Real-time DNP Measurements of JM1 Cell Metabolism .. 39

3. **Cartridge Bioreactor Design and Hyperpolarized NMR** ... 46
 3.1 Design of Cartridge Bioreactor System .. 46
 3.2 Oxygen Diffusion as it Applies to Bioreactor Development ... 48
 3.3 Characterization of Cartridge System by Steady State (31P), Dynamic measurements (13C), and Imaging in Human Prostate Cells and Tissues ... 55
 3.4 Prostate Cancer Metabolism in Human Biopsies and Comparison to Bioreactor Studies 66

4. **Hyperpolarized Metabolic Tracer and Probe Development** ... 78
 4.1 Secondary Labeling by Acetic Anhydride and Extension to Short Peptides 78
 4.2 Polarization of Hexoses: Fructose .. 99
 4.3 Binding by DNP .. 112
4.4 Other Novel Compounds ... 117
4.5 Multipolarization .. 125

5. Conclusions and Future Directions .. 143
 5.1 Next Generation NMR-compatible Bioreactors 144
 5.2 Future Developments in Hyperpolarized Probes 145
 5.3 The "Proof is in the Pudding" .. 146

APPENDIX A: Fluidized Bioreactor ... 148
APPENDIX B: Cartridge Bioreactor ... 151
APPENDIX C: Culture Media ... 153

REFERENCES .. 157
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Metabolite Concentrations for JM1 cell 2D cultures</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Secondarily Acetylated Amino Acids</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Secondarily Acetylated Glycine, Diglycine and Triglycine</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>T_1 relaxation times at 11.7T and 3T and percent polarization for each Fructose Isomer</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Spin-lattice Relaxation Values and Percent Polarization Achieved for Multi-compound Polarization at 11.7T</td>
<td>138</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure

1.1 LDH Enzymatic Conversion of Pyruvate to Lactate ... 8

1.2 Formation of Enol-Pyruvate-Adduct ... 9

1.3 Titration of Steady State Lactate Synthesis with External Pyruvate ... 10

1.4 Percent Polarization as a function of Temperature ... 15

1.5 Graphical Representation of Spin Polarization ... 15

1.6 Graphical Representation of DNP Polarizer and High Field NMR system 17

2.1 Schematic of Bioreactor Setup .. 31

2.2 Representative 1H Spectrum and TOCSY Spectra of JM1 cell extracts .. 36

2.3 JM1 Cell Metabolism – Distribution of 13C Label .. 38

2.4 Representative 31P Spectra and Histology of Encapsulated JM1 cells ... 39

2.5 31P monitoring and dynamic 13C Spectra of JM1 cells ... 40

2.6 Dynamic 13C Spectra of JM1 cells with LDH and ALT Flux .. 42

3.1 Schematic of Bioreactor Cartridge .. 47

3.2 Schematic of Simplified Culture Dish ... 48

3.3 Gas Diffusion with Time and Depth ... 51

3.4 Estimated Steady State Concentrations of Oxygen in a Slice through a HF 54

3.5 31P Spectrum of PC3 cells at 44 hours of Perfusion .. 58

3.6 Hyperpolarized 13C Spectra in a PC3 cell Bioreactor ... 58

3.7 Copolarization in a PC3 cell Bioreactor ... 59

3.8 Hyperpolarized [2-13C] Fructose in a PC3 cell Bioreactor .. 60
3.9 Hyperpolarized [1-13C] Glycine in a PC3 cell Bioreactor ... 61
3.10 31P Time Course in a Prostate Tissue Slice Bioreactor... 63
3.11 31P spectrum at 63 hours in the Bioreactor... 64
3.12 Diffusion-weighted Images of Tissue Slices.. 65
3.13 13C Summed Spectrum in Tissue Slices... 65
3.14 Hyperpolarized EPI images of Pyrvate Distribution ... 66
3.15 13C Spectra of Lactate in a Tissue Slice Bioreactor ... 66
3.16 Visualization of Mutual Information with Respect to Entropy 71
3.17 Power of Spectral Clustering.. 72
3.18 Representative 1H HR-MAS Spectra of Human Prostate Biopsies....................... 73
3.19 Metabolite Concentrations for Predominantly Glandular, Stromal and Cancer Groups .. 74
3.20 Spectral Clustering of 126 Human Biopsies... 75
4.1 General Strategy for Secondary Hyperpolarization... 85
4.2 Hyperpolarized Spectrum of Amino Acids... 86
4.3 Thermal Spectrum corresponding to Hyperpolarized Amino Acids........................ 89
4.4 Sample Dynamic Data Set of Hyperpolarized [1,1-13C] Acetic Anhydride and Glycine .. 90
4.5 Chemical Structure of N-acetyl MSH ... 92
4.6 Generation of Hyperpolarized Acetylcysteine ... 93
4.7 Hyperpolarized RGD ... 94
4.8 Hyperpolaried RGD in a TRAMP Mouse... 95
4.9 Mechanism of GLUT5 Transport and Metabolism of Fructose.......................... 101
4.10 Natural Abundance and Hyperpolarized Spectra of Fructose............................ 102
4.11 Enzymatic conversion of Fructose to Fructose-6-Phosphate.............................. 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Hyperpolarized Fructose in a TRAMP Mouse</td>
<td>108</td>
</tr>
<tr>
<td>4.13</td>
<td>Hyperpolarized Fructose in a Diffuse Tumor</td>
<td>110</td>
</tr>
<tr>
<td>4.14</td>
<td>Hyperpolarized Benzoic Acid</td>
<td>113</td>
</tr>
<tr>
<td>4.15</td>
<td>Change in T₁ of Benzoic Acid with Binding</td>
<td>114</td>
</tr>
<tr>
<td>4.16</td>
<td>Binding Curve of Benzoic Acid and β-Cyclodextrin</td>
<td>115</td>
</tr>
<tr>
<td>4.17</td>
<td>Hyperpolarized Naproxen</td>
<td>116</td>
</tr>
<tr>
<td>4.18</td>
<td>Compartmentation of Serine Synthesis</td>
<td>117</td>
</tr>
<tr>
<td>4.19</td>
<td>Reaction Scheme for Glycine Conversion by SHMT and Glycine Cleavage System</td>
<td>119</td>
</tr>
<tr>
<td>4.20</td>
<td>Hyperpolarized [1-¹³C] Glycine</td>
<td>119</td>
</tr>
<tr>
<td>4.21</td>
<td>Reversible Mechanism of Creatine Kinase</td>
<td>120</td>
</tr>
<tr>
<td>4.22</td>
<td>Hyperpolarized [guanidino-¹³C] Creatine</td>
<td>121</td>
</tr>
<tr>
<td>4.23</td>
<td>Enzymatic Scheme of Nicotinamide Metabolism</td>
<td>122</td>
</tr>
<tr>
<td>4.24</td>
<td>Reaction Scheme for Synthesis of [7-¹³C] Nicotinamide</td>
<td>123</td>
</tr>
<tr>
<td>4.25</td>
<td>Hyperpolarized ³¹P Spectra of Phosphoric Acid</td>
<td>125</td>
</tr>
<tr>
<td>4.26</td>
<td>Dynamic Copolarization of Pyruvate and Bicarbonate</td>
<td>132</td>
</tr>
<tr>
<td>4.27</td>
<td>In vivo Copolarization in a Normal Mouse</td>
<td>135</td>
</tr>
<tr>
<td>4.28</td>
<td>In vivo Copolarization in a TRAMP Mouse</td>
<td>136</td>
</tr>
<tr>
<td>4.29</td>
<td>Multi-compound polarization</td>
<td>137</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction and Background

1.1 Motivation and Specific Aims of Project

Recent developments in low temperature physics and nuclear magnetic resonance (NMR) have allowed for the increase in signal intensity of conventional low gamma nuclei (i.e. ^{13}C) to be observed on the order of water (^{1}H). This technique, and adaptation of dynamic nuclear polarization (DNP), shows great promise for its clinical translation as well as its application to all facets of biological research. Changes observed as a result of hyperpolarized NMR can be applied not only to biological systems, but also chemical reactions, allowing drug design and development to be greatly accelerated. These designs need a testing bed that is reproducible and robust. For the last 3 decades, a great deal of research has been conducted in the field of bioreactor design, most of which has been geared toward application to biological systems. It is thus a logical progression to try to fuse hyperpolarized NMR with new NMR compatible bioreactors in order to study $[1^{-13}\text{C}]$-pyruvate metabolism and to develop new hyperpolarized probes and techniques.

With this proposition in mind, the specific aims of this dissertation are:
A. Development and application of hyperpolarized carbon to a fluidized bioreactor
 i. Development of a fluidized bioreactor design which is applicable to the injection of hyperpolarized agents
 ii. Apply this bioreactor design to an immortalized hepatoma cell line (JM1 – rat hepatoma cells) and assess real time metabolism of [1-\(^{13}\)C]-pyruvate
 iii. Compare these results to steady state measurements of glycolytic metabolism by standard cellular extraction methods
B. Development of a new immobilized cartridge bioreactor and application of DNP NMR
 i. Design and Development of an immobilized NMR-compatible cartridge with potential for imaging
 ii. Application of this cartridge design to an immortalized prostate cancer cell line (PC3 – prostate adenocarcinoma cells)
 iii. Comparison of the observed metabolism to perfused prostate tissue slices and human biopsies from patients
C. New techniques and agents for DNP
 i. Design of new targeting methods including secondary labeling via acetic anhydride
 ii. Demonstration of hyperpolarization of non-conventional carbons, specifically hemiketals
 iii. Investigation of the effects of binding on hyperpolarized spins, specifically host ligand interactions
 iv. Development of new agents to probe other processes such as pH, bioenergetics, redox, apoptosis, perfusion and their combination in a multipolarization approach

The results of these specific aims will be a step toward the greater understanding of \textit{in vivo} metabolism. Dynamic measurements made in a robust system can impact
the development of clinically translatable agents as well as be surrogate biomarkers for the effects of future therapies and drugs.

1.2 Steady State and Non-Steady State Enzyme Kinetics

Generally the simplest rate equation in the context of biochemical enzyme kinetics, where one substrate is converted to one product, can be defined as:

\[
E + S \xleftrightarrow{k_1} \left(E \xrightarrow{k_3} ES \xleftarrow{k_4} EP \xrightarrow{k_5} E + P \right) \xleftrightarrow{k_2} E
\]

[1.1]

Where E, S, and P represent the enzyme, substrate and product respectively. ES and EP are defined as the transition state enzyme-substrate and enzyme-product complexes. The rates \(k_n\) describe the velocity for each enzymatic process in a given direction. Disassociation constants \(K_S\) and \(K_P\) can be defined to produce a simplified enzymatic scheme:

\[
E + S \xleftrightarrow{k_{1s}} E \xrightarrow{k_3} ES \xleftarrow{k_4} EP \xrightarrow{k_{1p}} E + P
\]

[1.2]

Assuming the substrate and product are in fast equilibrium with the enzyme, the forward reaction \(v_f\) and reverse reaction \(v_r\) can be defined as:

\[
v_f = \frac{dP}{dt} = \frac{k_3 E_0 S_0}{K_S + S_0} \]

[1.3]

\[
v_r = \frac{dS}{dt} = \frac{k_4 E_0 P_0}{K_P + P_0} \]

[1.4]
Where S_0 and P_0 are the initial concentrations of substrate and product respectively.\

E_0 is the total enzyme concentration with reaction velocities k_n defined in [1.3,1.4].\

It is important to define the difference between rate and flux. The rate (constant) k_n is a unidirectional rate of change in time, for example k_3 in the above reaction. The net flux J can be defined as the difference between the overall forward and backward reactions.

$$J = v_f - v_r = E_0 \left(k_3 S - \frac{k_4 K_S P}{P} \right)$$ \hspace{1cm} [1.5]

Note that k_3, k_4, K_S and K_P are related via the equilibrium constant of the reaction (K_{eq}) in terms of the Haldane relationship:

$$K_{eq} = \frac{k_3 K_P}{k_4 K_S}$$ \hspace{1cm} [1.6]

Incorporating the equilibrium constant into [1.5] for J:

$$J = k_3 E_0 S \left(1 - \frac{P}{SK_{eq}} \right)$$ \hspace{1cm} [1.7]

It follows that flux is a function of enzyme properties (K_m and V_{max}), but also E_0, S and the deviation of their ratio from equilibrium. The effect of thermodynamic disequilibrium is expressed as the term $1 - \frac{P}{SK_{eq}}$, with the sign determining reaction direction. These standard equations define the flux through a pathway, which can be extended to multiple pathways. This approach is the most basic set of assumptions applied to biochemical pathways.
Steady State and Non-Steady State Assumptions in Enzyme Kinetics

In an enzyme catalyzed reaction, steady state kinetics can be defined as the state when the concentrations of free enzyme (E_0), enzyme substrate complex (ES) and enzyme product complex (EP) change more slowly than the reactant concentration. For application to biochemically relevant systems, it is also assumed that equilibrium is established rapidly before the rate is measured as a result of instant mixing, generally referred to as the well-mixed assumption. Steady state is thus achieved when the reactant is also in excess of the enzyme concentration (Cook 2007). These conditions imply the following for steady state:

$$\frac{d[E_0]}{dt} = \frac{d[ES]}{dt} = \frac{d[EP]}{dt} = 0$$ \[1.8\]

$$S_r > E_r \Rightarrow \frac{dS}{dt} >> \frac{dE}{dt}$$ \[1.9\]

$$S_{total} = S_{free} + ES \Rightarrow S_{total} \approx S_{free}$$ \[1.10\]

Typically, steady state measurements are made as close to time zero as possible to limit the effect of substrate conversion to product and the final and initial concentrations of substrate are similar. This is important, because increases in product formation can lead to product inhibition and changes in substrate concentration can lead to substrate inhibition. Both effects can dramatically change the observed reaction velocity. In practice, rates measured where the substrate concentration has changed by less than 10% are usually considered initial rates. This is not the case in reversible reactions, which favor the substrate. In those cases
rates are measured at 90% completion, or analogously when 10% of the reaction is left, because the catalysis is dominated by the backward component.

In the case of flux, at steady state, the rate of production of P is constant. However, if substrate is introduced at a high concentration, flux can be decreased as a result of substrate inhibition. This will change, as a function of the magnitude of disequilibrium, meaning this effect on flux will decrease as the ratio comes closer to the equilibrium ratio. Flux can also decrease if the substrate concentration is allowed to deplete or product is allowed to buildup (product inhibition). In the case of biochemical pathways in vivo, molecular mechanisms such as transport and enzymatic cascades maintain an intracellular concentration of both substrate and product such that the flux at each pathway (in steady state) does not change. Furthermore, at steady state, the only changes would be in the final end product of a given system, which is typically transported out of the cell.

Non-steady or unsteady state kinetics are generally defined as a state where both flux and concentrations are changing while the reaction is taking place. In the context of further explanation this can be applied to perfused systems where substrates are controlled and their utilization is specific. In this case, a two-state model is used where fluxes are measured when the overall state has changed. Since both flux and total concentration are varying in time, flux changes must be assessed in response to changing substrate/product concentrations. Due to the complexity associated with non-steady state kinetics, measurements of metabolic reactions in this metabolic non-steady state are generally reduced to steady state approximations.
Lactate dehydrogenase (LDH) kinetics

Lactate dehydrogenase (LDH) has been the focus of a great deal of recent scrutiny as a result of the interest in metabolism of hyperpolarized pyruvate (§1.3). In the late 1920s, Otto Warburg and coworkers (Warburg 1927) explored the metabolism of tumors and later described a metabolic state (Warburg 1956) where tumor cells generate extensive amounts of lactic acid even in the presence of oxygen concentrations, which would warrant oxidative metabolism. This is counterintuitive given the generally accepted competitive advantage of a cell using primarily oxidative metabolism to produce energy (ATP). The Warburg Hypothesis has been the driving force for extensive research into the reasons why this occurs in cancer cells (Gatenby 2004; Costello 2005; DeBerardinis 2008), what the competitive advantage is (Gatenby 2004; Gillies 2007; Denko 2008; Ganapathy 2008) and how it can be used to target cancer as it develops and progresses (Gatenby 2007; Kroemer 2008).

At steady state, the kinetics of LDH can be viewed as an ordered bireactant kinetic scheme [1.11].

\[
\begin{align*}
E & \overset{k_1}{\underset{k_2}{\rightleftharpoons}} EA & \overset{k_3}{\underset{k_4}{\rightleftharpoons}} EAB & \rightleftharpoons EPQ & \overset{k_5}{\underset{k_6}{\rightleftharpoons}} EQ & \overset{k_7}{\underset{k_8}{\rightleftharpoons}} E \\
\end{align*}
\]

[1.11]

The enzyme (LDH, E) first binds the reduced dinucleotide cofactor nicotinamide adenine dinucleotide (NADH, A). It then binds the substrate (pyruvate, B) catalyzes the conversion from the enzyme-substrate-cofactor (EAB) to the enzyme-product-oxidized cofactor complex (EPQ). It then releases the product (lactate, P). The rate
equation can be written in terms of a varying substrate concentration (here pyruvate) in [1.12].

\[
\frac{1}{v} = \left(\frac{K_b}{V_B} \right) \left[1 + \left(\frac{K_{ia}}{A} \left(1 + \frac{Q}{K_{iq}} \right) \right) \right] + \left(\frac{1}{V} \right) \left[1 + \left(\frac{K_a}{A} \left(1 + \frac{Q}{K_{iq}} \right) \right) \right]
\]

[1.12]

With \(K_a \) and \(K_b \) defined as the disassociation constants for the first two reaction steps and \(K_{ia} \) and \(K_{iq} \) defined as the disassociation constants for the EA \(\left(\frac{k_2}{k_1} \right) \) and EQ \(\left(\frac{k_2}{k_1} \right) \) complexes respectively. The enzymatic conversion of pyruvate to lactate can be diagramed as in Figure 1.1, with the relevant amino acids of the enzymatic pocket shown. As in the kinetic scheme [1.11], after recruiting NADH, pyruvate is shown stabilized by the enzyme complex and held to facilitate conversion to lactate.

The restriction of the hyperpolarized probe that occurs in the enzyme complex can have a significant effect on the magnetic moment of a spin. This effect will be explained in later chapters, but this concept is of great importance to hyperpolarized carbon NMR and its ability to assess the enzymatic reactions.

Figure 1.1: LDH enzymatic conversion of pyruvate to lactate. Amino acids are shown abbreviated with –X to simplify the scheme.
It has been reported that at high concentrations of pyruvate, enolization can occur and enol-pyruvate (Figure 1.2) can interact with LDH creating an adduct (Burgner 1974; Burgner 1978; Wilton 1979). The adduct forms as a result of the oxidized cofactor being bound to LDH subsequently hindering the reaction rate at high concentrations of substrate. This phenomenon, as well as transport rates, availability of cofactor and substrate inhibition can all modulate the apparent flux through a pathway. Substrate inhibition of LDH by pyruvate has been shown in vitro (Wang 1977) and this has also been demonstrated in effluent collected from a perfused organ system (Strong 1979) where extracellular concentrations of pyruvate were varied. Strong and coworkers titrated pyruvate concentrations between 0 and 15mM and measured the lactate synthesis rate as shown in Figure 1.3 (reprinted from Strong 1979). They postulated that the decrease in lactate production at high concentrations of pyruvate reflects either substrate inhibition of LDH or competition between lactate and pyruvate for the transport system. As a result of these kinetic properties it is necessary to take into account the substrate concentration and enzyme binding when interpreting velocity and flux data.
1.3 NMR Studies of Kinetics

NMR spectroscopy has been used to study both dynamic and static enzyme kinetics. Typically these studies have focused on detection of the ½ spin nuclei 1H, 13C and 31P, because they are the most abundant nuclei found in metabolites. Each nucleus has its limitations and thus a combination of these is the standard approach to metabolic investigation.

1H NMR spectroscopy is the most sensitive and traditionally most utilized technique for probing metabolism. Due to extensive overlap of metabolites in standard 1H NMR, most approaches involve either observing dynamic changes with the addition of substrate or indirect detection of another probe via directly attached protons. Iorio and coworkers (Iorio 2005) have demonstrated a method for quantifying choline kinase activity using a dynamic 1H spectroscopy method. Specifically, choline was added to cell extracts, in the presence of excess ATP and MgCl$_2$, and the resonance corresponding to the head group of phosphocholine (3.23 ppm) was observed over time. By comparing the signal area of the phosphocholine to choline peak as a function of time a rate constant was estimated. Similarly, steady state methods using 13C labeled substrates can be used to investigate multiple pathways. Fan and coworkers (Lane 2007; Fan 2008; Fan 2008; Fan 2009) have demonstrated 1H NMR spectroscopic methods that indirectly observe changes in 13C.
labeling of glucose, lactate, alanine, and glutamate. These 1D and 2D methods provide a steady state distribution of label and give relative isotopomer distributions and take advantage of the sensitivity of protons.

31P NMR spectroscopy, though less sensitive than 1H, has also been used to measure metabolic kinetics. A recent example of this technique is that of Gabellieri et al (Gabellieri 2009), in which choline conversion to phosphocholine was observed dynamically via production of the phosphocholine resonance, which was used to calculate choline kinase activity. This approach was extended to study competitive inhibitors of choline kinase and demonstrated the power of 31P as a technique for observing metabolic kinetics with very little spectral overlap, in comparison to 1H.

Possibly the most interesting nuclei for studying metabolically related mechanisms has been 13C. Though sensitivity and natural abundance have been limitations to the application of 13C NMR spectroscopy, many studies have been conducted using perfused 13C-labeled substrates. Direct observation of steady state 13C NMR has been applied to perfused organs, specifically heart and liver (Jucker 1998; Lu 2002; Burgess 2003) to determine distribution of fluxes, specifically TCA and glycolytic flux. Dynamic 13C NMR spectroscopy has has been used to study enzymatic processes both in vivo (Shulman 1985; Sibson 1997; Macdonald 2002; De Graaf 2003; Gruetter 2003; Thelwall 2005; Lei 2007; Mason 2007) and in engineered bioreactor systems (Gamcsik 1999; Gamcsik 2004; DeBerardinis 2007). Typically the enzymatic processes that have been studied by Dynamic 13C NMR spectroscopy have long turn over rates (on the order of 12 hours). The low sensitivity of 13C NMR, and resulting low temporal resolution, prohibits the direct
assessment of fast enzymatic reactions. This major limitation can be addressed by in
the dramatic increase in signal provided by hyperpolarized NMR (§1.4).

1.4 DNP Physics: Solid State Effect and Hyperpolarization

It is well known that 13C NMR spectroscopy (as well as other insensitive
nuclei) has been limited in its ability to characterize metabolic states due to its low
sensitivity. This low sensitivity is a result of the low natural abundance of 13C
(1.1%) in addition to the low gyromagnetic ratio of carbon (6.728284 x 10^7 rad/T
s). These characteristics reduce the overall sensitivity of 13C nearly 4 orders of
magnitude in comparison to 1H NMR (6400 fold without NOE or INEPT, 1600 fold
if INEPT is included) and even more impressively for 15N (up to 270,000 fold).
Traditionally, the low nuclear polarization and low natural abundance of carbon
was addressed by using high concentrations of 13C-enriched substrates for
metabolic studies. Depending on the nucleus, direct detection methods require
hours to days to record spectra with sufficient signal to noise for analysis.

With this difficulty in mind, a number of techniques have been proposed to
increase the polarization of nuclear spins to overcome their low gyromagnetic
ratios. In addition to enrichment, indirect detection methods have been widely
practiced, but these require a convenient scalar coupled proton. Newer methods
that provide a much greater sensitivity enhancement have recently been
developed. These methods of hyperpolarization include: para-hydrogen-induced
polarization (PHIP) (Golman 2001), optical pumping (Goodson 2002) and dynamic
nuclear polarization (DNP) (Ardenkjaer-Larsen 2003; Golman 2003). Each of
these methods has the potential to generate a 100% nonthermal polarization of the chosen $\frac{1}{2}$ spin nucleus. PHIP, also known as PASADENA (Bowers 1987; Canet 2006) and ALTADENA (Pravica 1998), relies on the introduction of a para-hydrogen substrate through catalytic hydrogenation. Though this method has been shown to be successful (Goldman 2005) it is only applicable to reactions involving substrates with double and triple bonds. Optical pumping utilizes circularly polarized laser light and has been successfully applied to the hyperpolarization of 3He and 129Xe gases (Goodson 2002). This method is restricted to a subset of the noble gases and has limited application to the study of metabolism. The final method, DNP, is based on the polarization of nuclear spins in an amorphous solid state at ~1°K through coupling of the nuclear spins and unpaired electrons via an organic free radical. Recent advances in the field of low temperature physics, electronic paramagnetic resonance (EPR) and NMR have provided for the adaptation of the DNP technique, described as early as the 1950s (Abragam 1958), to the study of metabolism both ex vivo and in vivo (Chen 2007; Kohler 2007; Merritt 2007). Due to its applicability, the purpose of this section is to describe this emerging technique of hyperpolarization and its application to the investigation of metabolic systems.

Solid State Effect and Hyperpolarization

Conceptually, what we consider dynamic nuclear polarization (DNP) is an extension of what has been previously described as the “solid state effect” (Abragam 1958). In the early 1950s, Overhauser postulated that an NMR
signal could be increased as a result of the interaction between a nucleus and the electrons of a metal (Overhauser 1953). This principle was later applied to non-metals by Abragam et al. (Abragam 1955) and in 1974 (de Boer 1974) demonstrated that through thermal contact between nuclear and electronic spins, dynamic nuclear polarization can be produced (de Boer 1974).

To investigate the underlying physics of the solid state effect, first consider a set of nuclear spins I embedded in a solid containing a small percentage of paramagnetic impurities with spins S. These spins are of $\frac{1}{2}$ and have Larmor frequencies ω_I and ω_S. For a given spin, the spin density where all magnetization is along the z-axis corresponds to the equilibrium among states governed by the Boltzmann distribution. A spin $I = \frac{1}{2}$ can be characterized by two states $|\alpha\rangle$ and $|\beta\rangle$. The probability of finding a spin in each of the states is then proportional to:

$$P_\alpha \propto e^{-\frac{E_\alpha}{kT}} = 1 - \frac{E_\alpha}{kT}, \quad E_\alpha = \frac{-\hbar \gamma_I B_0}{2}$$

$$P_\beta \propto e^{-\frac{E_\beta}{kT}} = 1 - \frac{E_\beta}{kT}, \quad E_\beta = \frac{\hbar \gamma_I B_0}{2}$$

The overall spin polarization of this system is the population difference between the $|\alpha\rangle$ and $|\beta\rangle$ states. This population difference or percent polarization is demonstrated in Figure 1.4 for electron, proton and carbon spins with respect to temperature.
At low temperatures (on the order of 1°K) in a strong magnetic field, the electron polarization is near unity while other nuclei are not, yielding a distribution of uniformly oriented spins S and disoriented spins I (Figure 1.5).

These spins I and S are coupled through dipolar interactions and this permits the simultaneous reversal of these spins in the same direction (producing two “up” spins) or opposite directions (producing one spin “up” and one spin “down”) if the spins were originally anti-parallel. These spin “flips”, which require energy $h(\omega_S \pm \omega_I)$ to occur, are analogous to the spin-lattice relaxation mechanism (T_1 spin relaxation). At low temperatures, the time of this “flip” process for the target nucleus I is on the order of 10^3 s, while it is 10^{-3} s for a lone electron spin S, as a result of its coupling to the lattice. By providing energy via a laser with frequency $\Omega = \omega_S \pm \omega_I$, these flips can be induced and because the order of electron relaxation is much faster than that of the target nucleus, the spins S will bring all of the spins I to their “up” position. It has been
shown (Abragam 1978) that the case of anti-parallel flips is impossible leading to the association of spin change with $\Omega = \omega_S + \omega_I$. When all of the I spins are in their “up” position, the target material can be deemed hyperpolarized.

It follows that for a low electronic concentration; each spin S must “flip” many nuclear spins. For this to occur, it has been shown that the following condition is required (Abragam 1978):

$$f = \left(\frac{N_I}{T_n}\right)\left(\frac{N_S}{T_e}\right)^{-1} << 1$$

[1.15]

Where N_I and N_S are the number of respective spins and T_n and T_e are the respective longitudinal relaxation times. With this dipolar coupling as the only means of relaxation, it is assumed that the polarization P_n of the nuclei would reach unity (i.e. that of the electron spins). Due to other mechanisms, such as leakage relaxation as a result of coupling with another species or saturation by microwaves of frequency ω_S, this nuclear polarization can be much less than P_e (Abragam 1978). In practice, de Boer et al. were able to increase the polarization of natural abundance 13C to ~46% in a complex of 1,1,2,2-ethanediol-(CD$_2$OH)$_2$ and CrV (de Boer 1974). Recently, Ardenkjaer-Larsen et al. have shown a method of DNP polarization utilizing a labeled compound at liquid helium temperatures with the introduction of an organic free radical. These studies have shown polarizations of 37% for 13C and 7.8% for 15N, corresponding to a 44,400 and 23,500 fold enhancement over the equilibrium room temperature polarizations, respectively, when the hyperpolarized sample is brought to a liquid at room temperature (Ardenkjaer-Larsen 2003). It should be pointed out, and as shown in Figure 1.4 that at liquid helium
temperatures (i.e., 1°K) there is a significant increase in the equilibrium polarization of approximately 300-fold over room temperature (310°K).

Hardware and Pulse Sequences

Aside from the traditional NMR spectrometer, DNP-NMR requires the addition of a unit composed of multiple components collectively termed a “polarizer”. The key components of this DNP system are as follows: polarizing magnet, microwave source, variable temperature insert (VTI), sample holder, dissolution system, control electronics and solid-state NMR monitor (polarimeter). These elements work in concert to take a sample from its native spin polarization state at room temperature to a highly polarized state at room temperature by way of polarization at liquid helium temperatures.

![Figure 1.6](image)

Figure 1.6 demonstrates a graphical representation of the polarizer and an adjoining high field magnet. The method described here is analogous to the method described by Ardenkjaer-Larsen et al (Ardenkjaer-Larsen 2003) though there are other methods of generating DNP (Bowers 1987; Golman 2001). A concentrated mixture of 13C labeled substrate is mixed with an organic free radical and placed inside of the sample holder. This sample
holder is then lowered into the VTI to the center of the magnet. The sample chamber is filled with liquid helium from the magnet dewar and vacuum pumped to a vapor pressure of ~0.8 mbar, resulting in a temperature of ~1.2°K. The sample is then irradiated for typically 60 minutes at the microwave frequency associated with the free radical (on the order of 94 GHz). As the electron spins polarize the nuclear spins, the polarimeter monitors the percent polarization. Once the solid-state sample has reached maximum polarization, it is mixed with a super heated buffer (450°K, 10 bar) through the dissolution system. This process takes less than 2-3 seconds and brings the sample to room temperature while still preserving the low-temperature nuclear polarization (Ardenkjaer-Larsen 2003). The sample is then injected into the medium of interest and observed in a conventional MRI or NMR spectrometer. Control electronics allow for this process of dissolution and injection to be on the order of seconds. At physiological temperatures, the T₁ of pyruvate carboxyl carbon is on the order 40 to 60 secs, depending on the magnetic field strength used, which implies that the initial polarization in the animal is very close to that at the end of the polarization in the microwave polarizer. The effective experimental time available is around 5 T₁ or ca. 200 secs, when the sensitivity has decreased to <1% of its initial value (and see below). Observed magnetization changes can be corrected for the exponential magnetization loss due to relaxation.

Due to the limited lifetime of the polarized substrate, which is proportional to the T₁ relaxation, fast pulse sequences must be implemented in vivo and ex vivo to capture substrate uptake and metabolism in real time. For both ex vivo
spectroscopy and *in vivo* single voxel spectroscopic imaging, the task is fairly simple. Generally, a standard direct detect one-dimensional carbon sequence is used with a very small flip angle (on the order of 5-15°) and a single acquisition. The use of a low flip angle allows the bulk polarization to be preserved in the I_z vector. A 10° flip angle preserves 98% of the magnetization along z, and the x component is 17% of the equilibrium value. This allows for multiple scans to be taken as the substrate is metabolized. Recent studies have shown the effectiveness of small flip angles in hyperpolarized tissue culture experiments, with 13C signals lasting for minutes of continuous pulsing (Day 2007; Merritt 2007; Keshari 2008). This procedure has also been adapted for *in vivo* single voxel spectroscopy in rat (Kohler 2007) and mouse models (Goldman 2005; Chen 2007; Albers 2008) to explore changes in metabolic kinetics. Pulse sequences have been developed for the probing of polarization transfer experiments as a result of the hyperpolarized substrate (Frydman 2007) as well as the measurement of polarization through dipolar coupling (Merritt 2007). DNP-NMR has also been applied to spectroscopic imaging of pre-clinical animal models (Day 2007; Albers 2008). Magnetic Resonance spectroscopic imaging of hyperpolarized probes required the development of fast pulse sequences and sampling techniques to acquire spectrally and spatially resolved data within the time-frame of the DNP experiment (≈ 5 T1’s of the labeled probe). Different k-space sampling techniques have been utilized to reduce scan time, including centric (Chen 2007), ellipsoid (Reeder 2007), and spiral (Levin 2007). This in addition to adiabatic refocused double spin echo sequences (Cunningham 2008) and echo planar fly back encoding allow for the acquisition of a $8 \times 8 \times 16$ MRSI matrix with 0.135 cc spatial
resolution in under 14 secs (Chen 2007; Chen 2007). Least squares chemical shift imaging has also been applied, using a priori knowledge of the resonances of interest, to further reduce the number of necessary data points acquired (Reeder 2007).

1.5 Current developments in NMR compatible bioreactor culture systems

The purpose of this section is to give a brief overview of the state of the art as it pertains to bioreactor designs. These have been implemented to study immobilized cells in side of an NMR magnet and monitor their changes. Each design has its benefits and disadvantages, which were considered in the designs that are discussed in future chapters (§2 and 3).

Hydrogel threads, Sponges and Beads

The most common technique for cell immobilization in NMR-compatible bioreactors has been stabilization of cells via a hydrogel. These hydrogel constructs have been used to create an environment similar to an in vivo 3D structure so as to allow cells to be perfused by recirculating medium. Hydrogel designs can be broken up into 3 major constructs: Gel Threads, Sponges and Encapsulates.

Gel threads or filaments, are constructed of Agarose, a temperature sensitive polysaccharide isolated from seaweed. It has been used to study many cell types including Sertoli cells (Farghali 1996), lymphocytes (Lyon 1986), hepatocytes (Farghali 1992), and erythrocytes (Lundberg 1994). Threads are made by suspending cells in a liquid agarose solution. The mixture is then extruded
through tubing into long filaments, the diameter of which determines the filament diameter. As the filaments form, the agarose cools forming a semi-rigid gel. Filaments are then perfused in side of an NMR tube, generally a 10mm, and observed in time. Agarose filaments can support a total number of cells in the spectrometer sensitive volume on the order of 10^8 cells (Kaplan 1994), which can potentially produce ^{31}P spectra with 10min temporal resolution, depending on cell type. At this high cell density, experiments can be carried out for short periods (1-2 days).

Agarose has also been extended to production of agarose beads (Ronen 1989; Bental 1990; Ronen 1990). These tend to be made similar to the filaments, except that the agarose-cell mixtures are dropped into vortexed mineral oil. Due to lack of fine control, bead diameters tend to be varied (0.3-3mm) as a function of vortex and infusion rate. Another inherent limitation of agarose is its inapplicability to anchorage dependent cell types. Agarose is a good immobilization medium for suspension cells and those with minimal surface-attachment requirements, such as erythrocytes (Lundberg 1994), but for other cell types agarose beads can result in the cells being in a non-proliferating state (Daly 1988). To work around this issue, Matrigel® has been used as replacement construct. Isolated from cancer cells, Matrigel® has been used to grow cells for periods of longer than a week (Daly 1988). Unfortunately, Matrigel® is not completely defined and complications arise from the influence of the mixture itself on the metabolism of cells of interest. It is also expensive and can lead to hindered diffusion of large macromolecules.
Collagen sponges have also been used as a gel construct for the support of cells. Typically cells are grown in the collagen sponge for a period of weeks (Gamcsik 2004) and these are monitored prior to perfusion in a bioreactor system. Collagen, typically type-1, is utilized because it is a natural occurring extracellular matrix constituent. In comparison to Matrigel®, type-1 collagen is assumed to have no cancer related signaling and induces differentiation (Macdonald 2001) and is thus a less confounding mode of immobilization for both benign and malignant cells. Difficulties arise from collagen sponges, in that they are hard to perfuse. Typically sponges are 1cm cubes, which limits the diffusion distance necessary for supporting high-density cell cultures. This leads to less dense cell cultures (~10^7 cells), which can make NMR acquisition times long and limit temporal resolution.

The third major hydrogel type is alginate encapsulation. In this scheme, typically mammalian cells are entrapped in calcium alginate beads and perfused similar to the previously mentioned filaments and sponges. This method has been used to study lymphocytes (Kaplan 1991), hepatocytes (Murtas 2005; Chandrasekaran 2006), prostate cancer cells (Narayan 1990; Macdonald 1993), pancreatic cells (Constantinidis 2006) and many other cell types. These encapsulates can also be coated with immunosuppressant compounds to facilitate implantation in the case of beta islets (King 2000) and hepatocytes (Weber 2009). Encapsulates are made by suspending cells in an alginate mixture, similar to the agarose derived constructs. This solution is then pushed through a small tube (diameter of catheter) at a constant rate to create uniform droplets. Analogous to
an inkjet printer, droplet sizes are controlled by a voltage gap created inside the catheter via a strong voltage source. The droplets then fall into a high calcium bath (110-150mM) to allow the beads to calcify (Mørch 2006). These solid beads are then quickly removed from the calcium bath and resuspended in media. If coating is required, layers of poly-lysine or chitosan (Serp 2000) can be applied to further stabilize the beads.

Alignate encapsulates are superior to gel threads and sponges for maintenance of high-density cultures as a result of the high surface area to volume ratio of the spheres. Assuming a maximum oxygen diffusion distance of 0.25mm, a 0.5mm sphere can provide for a construct that far surpasses a 1cm cube or a 0.5mm diameter thread in creating an environment for cellular growth. Due to the high density, perfusion media must be re-oxygenated at a high rate to provide the adequate oxygen tension to support the cells. This requirement can be facilitated by an artificial lung gas exchanger (Gillies 1993; Gamcsik 1996), which can oxygenate media based on fundamental gas properties.

Hollow Fibers

Hollow fiber (HF) bioreactors have been developed over the last 20 years as a platform for study as MR compatible systems, but also for high throughput manufacturing of proteins and artificial organ systems such as the liver. HF designs have also been implemented in high volume filtration systems for industrial water purification (Busch 2007) due to their high efficiency. Conventional HF bioreactor designs consist of hollow fiber bundles (Mancuso 1990; Gillies 1993), which
separate the region of interest into two compartments: cell mass and media (effluent). Typically cell mixtures are loaded into the inner portion of a fiber and media is perfused in the space surrounding the fibers. The HF diffusion distance is then a function of the fiber diameter, which is usually limited to less than 1mm for this reason. More recently, coaxial HF bioreactors have been designed which increase the viability of cells by creating a third compartment inside of the cell mixture compartment (Macdonald 1998; Wolfe 2002). This fiber within a fiber design dramatically increases mass transfer of nutrients (potentially 4 fold) and can be compared in design to the structure of the liver acinus. Oxygen diffusion models have shown appropriate levels of oxygen concentration through various distances in the HF bioreactor (McClelland 2003) and these will limit the regions of anoxia that can greatly inhibit the efficiency of a bioreactor (Gasbarrini 1992). The HF bioreactor designs though are limited in their application to high-resolution NMR systems due to the size requirements of the construct. HF s take up a lot of space inside the RF coil, thus limiting the global cell density in sensitive volume of the NMR probe, and perfusion designs have also required many ports which can not be placed inside of a standard NMR probe. High flow rates are also required to induce Starling Flow and limit radial gradients (Heath 1990). Future designs that are controlled in a 1-way fashion may overcome these limitations.

Microcarriers

The last group of immobilization constructs is Microcarriers. These are typically spheres both porous and non-porous. Non-porous carriers act as support
structures that cells can grown on, which are typically collagen-coated to allow for anchorage dependent cells to grow. These have been applied to many cell types including prostate cancer cells (Pilatus 1997), fibroblasts (Galons 1995), breast cancer cells (Mancuso 2004) and glioma cells (Mancuso 2005). Similar to alginate beads, non-porous microcarriers can be perfused in a packed-bed design. The advantage of these non-porous microcarriers is that they have a very limited diffusion distance since there is between 1-3 layers of cells on the outside of a carrier. These microcarriers are limited in that: the effects of high flow rates can cause shear forces to act on these cells, the growing cells can decrease the inter-sphere space thus causing channeling over time, and most importantly the bead center is wasted as a result of no cells and this limits the global cell density within the sensitive volume of the NMR probe, resulting in decreased signal intensity. Cell densities can be on the order of previously described experiments \((10^7 \text{ cells})\), though they are continuously subject to shear force. Porous microcarriers are applied in a similar fashion to the non-porous version, though they suffer from compressibility problems as a result of the loss in rigidity. Typically they require slow flow rates, which in turn limits the ability to maintain high cell densities inside of an NMR. It has been successfully applied in a packed-bed design (Mancuso 2005) with a total of \(10^8\) glioma cells, though not for extended periods of time. Also, collagen microcarriers are used in hollow fiber bioreactors (Gillies 1993) (Gillies 1991). The cells are first attached to the microcarrier and then the mass is inoculated into the bioreactor. The use of degradable collagen microcarriers helps
anchorage-dependent transformed cell lines to expand while reducing attachment to the hollow fiber, which cause fiber fouling and clogging of fiber pores.
Chapter 2: Fluidized Bioreactor and Hyperpolarized NMR

2.1 Design of Fluidized Bioreactor system and Methods

There is growing interest in the changes in fluxes through a variety of metabolic pathways associated with the evolution and progression of cancer (Gatenby 2007; Christofk 2008; DeBerardinis 2008; Fan 2008; Hsu 2008; Munger 2008; Tessem 2008) and its response to therapy. More recently dynamic nuclear polarization, (DNP) spectroscopic techniques have been used to study these metabolic fluxes in real-time (Day 2007; Albers 2008). Focus has been placed on changes in pathways associated with lipid synthesis and degradation (Ackerstaff 2003; Iorio 2005), bioenergetics (Kurhanewicz 1992; Bonarius 2001), and redox potential (Gillies 1994; Thelwall 2005). Increases in lactate dehydrogenase (LDH) activity (Day 2007; Albers 2008), changes in glutaminolysis (DeBerardinis 2007), and decreases in pyruvate kinase activity (Christofk 2008) have been associated with cancer. These studies have been conducted primarily in extracts of cell cultures (Fan 2008) or by way of in vivo animal studies (Jucker 1998; Macdonald 2002; van Zijl 2007). Cell culture studies provide a controlled platform for long-term metabolic studies, but they are tedious since each measurement requires new
cells. In contrast, in in vivo studies the same animal can be used for multiple metabolic measurements but they are more costly, biologically heterogeneous, require many animals to be sacrificed and inefficient for the initial screening of novel metabolic tracers.

For the last three decades, cell perfusion or “bioreactor” systems have been developed in an attempt to address these fundamental issues (Mancuso 1990; Gillies 1994; Wolfe 2002). These 3D culture perfusion systems have allowed the monitoring of steady state metabolites and their changes with time (Farghali 1996; Mancuso 2005), typically through the analysis of output parameters such as concentrations of lactate, glucose and alanine in media (Bailey 1998). Studies have also been performed in order to assess slow metabolic processes, such as phospholipid (Beloueche-Babari 2006), glutathione (Gamcsik 2004), and glutamine metabolism (DeBerardinis 2007), but these systems do not have the temporal resolution to study fast kinetic reactions.

Due to the dynamic nature of cellular metabolism and its instantaneous response to changing stimuli (environmental, genetic, etc...) the study of flux through pathways, now dubbed “fluxomics”, has become a rapidly expanding area of research in metabolomics (Massou 2007; Droste 2008). An inherent problem associated with determining real time fluxes is the speed of some metabolic reactions. Enzymes of clinical interest, such as LDH (lactate dehydrdogenase), have been measured to have relatively high velocities (Chowdhury 2005) and thus measurement of flux through LDH in a living system is difficult. While glucose conversion to lactate by 13C NMR has been achieved, it has involved, long glucose
infusion periods relative to the rates of the reactions in tissues of interest (van der Zijden 2008). A great deal of work has been done determining steady state metabolite concentrations and inferring metabolic flux by mass spectrometry (Miccheli 2006), NMR (Burgess 2003) and spectrophotometry (Stephanopoulos 2001). However, these traditional methods require the system to be quenched and extracted for each time point necessary to calculate flux. NMR spectroscopy is a research tool that can be readily translated to the clinic. 13C NMR spectroscopy provides high spectral resolution and has been used to study metabolic fluxes in a variety of systems (Lane 2007). The major shortcoming of 13C NMR spectroscopy is its lack of sensitivity, due to a low gyromagnetic ratio (γ), resulting in the inability to measure flux with high spatial and temporal resolution. This major hindrance has been recently overcome through the development of dynamic nuclear polarization (DNP) NMR spectroscopy (Ardenkjaer-Larsen 2003). 13C labeled substrates have been recently polarized using DNP techniques to obtain tens of thousands fold enhancement of 13C NMR signals of the substrate and it’s metabolic products, enabling measurement of rapid metabolic fluxes such as those catalyzed by LDH and ALT (alanine aminotransaminase).

Recent studies of hyperpolarized 13C labeled compounds, by way of the DNP method (Chen 2007; Day 2007; Albers 2008), have been used to investigate metabolic processes associated with increases in aerobic glycolysis, deemed the Warburg effect (Warburg 1927; Warburg 1956). The Warburg intermediates (elevated lactate, alanine and pyruvate) have been used as a way to characterize
cancer aggressiveness (Albers 2008) and response to therapy (Day 2007). In this series of studies, JM1 (immortalized rat hepatoma) cells were cultured in a 3D NMR-compatible bioreactor, and injections of hyperpolarized [1-\(^{13}\)C] pyruvate were used to serially measure LDH and ALT fluxes in real-time.

Cell Culture and Bioreactor

JM1 rat hepatoma cells (Michalopoulos Lab, University of Pittsburg) were cultured in DMEM medium (Invitrogen, 3g/L glucose) supplemented with 10% fetal calf serum, 100 units/mL penicillin and 100 μg/mL streptomycin (Invitrogen). Cells were grown in T150-flasks (Fisher) to incubated at 37°C in a 95% air/5% CO\(_2\) incubator. For 2D culture extract experiments, cells were plated on 150cm\(^2\) collagen coated plates (Fisher Scientific) and grown to less than 90% confluency (12.6 x 10\(^6\) cells). Media was changed for each plate and replaced with analogous media supplemented with uniformly labeled \(^{13}\)C-glucose (u-\(^{13}\)C glucose). Plates were allowed to progress for 23 hr (n = 4). At each time point an aliquot of media was collected, plates were washed twice with ice-cold PBS and extracted in ice-cold methanol as previously described (Maharjan 2003). Residual pellets were also extracted in deuterated chloroform to assess the labeling of lipids (Tyagi 1996). Fractional enrichment (FE) was defined as the percent of \(^{13}\)C labeled compound relative to the total pool.
For bioreactor experiments, cells were trypsinized, washed in PBS and electrostatically encapsulated at a concentrations of 25 (n=1), 50 (n=2) and 127 x 10^6 (n=1) cells/mL in 500μm beads as previously described (Chandrasekaran 2006). Approximately 1.5mL of encapsulates were perfused using the same media formulation as above, re-circulated at a rate of 4mL/min. The bioreactor loop contains 40 mL in circulation. Media was kept at a constant 37°C by way of water-jacketed lines and gas pressures were maintained by a Gas Exchange Module (GEM) using 95% air/5% CO₂ gas as previously described (Gamcsik 1996). A schematic of the bioreactor system is shown in **Figure 2.1** (for further descriptions of the bioreactor see Appendix A). Encapsulates were removed at the end of the experiment, embedded in optimal cutting temperature (OCT) and stained with hematoxylin and eosin (H&E) as previously described (Tessem 2008) to confirm cells were greater than 90% viable.
Hyperpolarization Methods

[1-13C]-pyruvate was hyperpolarized by the DNP method (Ardenkjaer-Larsen 2003) using the Hypersense® (Oxford Instruments) to an average polarization of \(~15\%\). The compound polarized was a mixture of [1-13C]-pyruvic acid (14.2M) and the trityl radical (15mM, Tris[8-carboxyl-2,2,6,6-tetra[2-(1-hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yl]methyl sodium salt) (General Electric Medical). Samples were dissolved in a dissolution solution containing NaPO\textsubscript{4} (50mM)/EDTA (0.3mM) to bring the sample to the desired concentration and average pH of 7.5. A solution of 1mL of the hyperpolarized pyruvate was injected into the bioreactor system with continuous flow, resulting in a final concentration of between 2-14mM pyruvate. Higher concentrations were used in bioreactors, which contained a higher cell concentration. This was done to keep the same relative substrate concentration throughout the group of bioreactors. The bioreactor is water jacked and there were no observed temperature changes in the cell mass during the studies. These concentrations were kept constant relative to the encapsulated cell concentration, allowing the cell suspension to see an analogous influx of mass of pyruvate at each injection.

NMR Acquisition and Analysis

Cell extract samples were placed in a Speed-Vac® for 8 hours to evaporate the methanol. Cell pellets were then reconstituted in 100% D\textsubscript{2}O (with 2.5mM TSP for quantification). Media aliquots were supplemented with 10% D\textsubscript{2}O (and a final concentration of 2.5mM TSP). 1H and 2D 1H-1H TOCSY (total correlation
spectroscopy) spectra were acquired at 16.4T Varian INOVA (700MHz 1H, Varian Instruments) equipped with 5mm 1H/13C indirect probe at 25°C. 1H spectra of extracts were acquired using a total repetition time (TR) of 12.65s, number of transients (nt) of 64 and a 90° flip angle. Data were analyzed using ACD Labs 9.0 1D NMR Processor (ACD Labs). 1H spectra were zero-filled to 32,000 points, line broadened 0.5Hz using an exponential Gaussian function. Peaks and 13C satellites corresponding to glucose, lactate, alanine, glutamate, and the nucleotide spin systems of the purines and pyrimidines (AXP+GXP, UXP+CXP) were peak fit and quantified relative to TSP in ACD as previously described (Lane 2007; Swanson 2008).

2D TOCSY data were acquired with TR=2.48s, nt=16, and number of indirect dimension increments (ni) of 64. Data was linear predicted in 3 x N in the indirect dimension and zero-filled to 2,000 points. The data was 2D Fourier Transformed and cross-peaks corresponding to unlabeled and 13C labeled lactate, alanine, glutamate, and the ribose of nucleotides were volume integrated as previously described (Lane 2007). These points were then used to calculate fractional enrichment as the sum of the of center cross-peaks to the total volume. The peak areas from the 1D 1H and volumes from the 2D 1H-1H TOCSY were used to calculate the absolute number of mmols of each compound that were generated as a result of u-13C-glucose metabolism.

For bioreactor studies, 13C and 31P spectra were acquired on an 11.7T Varian INOVA (125MHz 13C and 202MHz 31P, Varian Instruments) equipped with a 10mm triple-tune direct detect broadband probe at 37°C. 31P time courses were acquired
before and after hyperpolarized injections using a TR=3s, nt=1024 and a 90° flip angle. 31P spectra were zero filled to 40,000 points and line broadened 15Hz.

Assessment of changes in the βNTP resonances as a function of time was used to monitor cell health through the progression of the bioreactor experiments in vivo. Hyperpolarized 13C experiments were acquired using a 5° flip angle, TR=3s and acquired for 300s. Data were zero-filled to 16,000 points and line-broadened 5Hz.

The resonances of pyruvate (171 ppm), lactate (182 ppm) and alanine (175 ppm) were integrated and compared as a function of time to determine the characteristics of enzymatic interconversion as a result of pyruvate injections. Fluxes were determined using a model of LDH and ALT labeling flux implemented in Interactive Data Language (IDL, ITT Visual Information Solutions, Boulder, CO) normalized for injected hyperpolarized pyruvate concentration and cell concentration estimated from relative changes in βNTP peak area. Briefly, the pyruvate peak area over time (M_p) was modeled to determine the arrival time (t_a), rate of injection (k_i) and signal decay of pyruvate (k_p).

$$M_p(t) = \begin{cases} \frac{k_i}{k_p} \left(1-e^{-k_p(t-t_a)}\right) & \forall t_a \leq t < t_e \\ M_p(t_e) e^{-k_p(t-t_e)} & \forall t \geq t_e \end{cases} \quad [2.1]$$

The t_e represents the end of the pyruvate injection time. These fitted parameters were then used to fit the 13C lactate and alanine data to estimate LDH and ALT labeling fluxes (k_{px}) where x represents either lactate or alanine [2.2].
One pool of pyruvate, lactate and alanine was assumed in this model. In contrast to the model described by Day and coworkers (Day 2007) this model includes the rate of injection, which is a result of the flow of material into the bioreactor. This was not necessary in a model of cells in a non-perfused system, but is important when small tip angles are used to assess magnetization as the substrate is flowing into the system. The exchange of lactate and alanine back to pyruvate was also not included in this model. While this will have an impact on measurement of 13C label fluxes, it has been shown in an in vivo study of rats after injection of hyperpolarized [1-13C] lactate that minimal hyperpolarized [1-13C] pyruvate and [1-13C] alanine signal is generated. This suggests that the impact of ignoring the exchange of 13C label back to pyruvate in this model is relatively small, but more importantly for the goals of this study, reflects the physiological system during 13C DNP MRSI experiments (Chen 2008).

2.2 Steady State Studies of JM1 cell cultures

Extracts of 2D Cultures and Determination of the Mass Balance of u-13C-Glucose
Figure 2.2a is a representative 1H spectrum of the aliphatic region obtained from a methanol extraction of JM1 cells after metabolism of 13C-substrate for 23 hours. 13C satellites of lactate, alanine, glutamate (both as glutamyl group of the tripeptide glutathione) and the nucleotide riboses (not pictured) are visible. The concentrations of these five compounds plus pyruvate and glucose in the initial media formulation and at 23 hours from the cell methanol extract and 2D culture media are given in Table 2.1. In comparison to normal rat liver (Nicholas 2008), the JM1 rat hepatoma cell-line produces significantly more lactate and alanine, and ribose (Table 2.1), demonstrating the Warburg effect and pentose phosphate pathway products for nucleotide synthesis, respectively. They also demonstrate a high concentration of glutathione, which has been observed in other cell lines such as MCF-7 human breast cancer (Gamcsik 2002) and DU145 prostate cancer cells (Balendiran 2004). In fact, one of the largest resonances in the 1H spectrum is from glutathione (Figure 2.2a).
Representative regions of a typical 2D 1H-1H TOCSY spectrum are shown in Figure 2.2b, demonstrating cross-peaks used to determine the 13C fractional enrichment (FE) of the previously mentioned compounds. At 23 hours, lactate and alanine FE’s are 88.9 ± 2.9 % and 57.8 ± 3.1% respectively. The glutamate and glutamyl of GSH have FE’s of 7.1 ± 2.2% and 10.1 ± 2.4% respectively. The FE’s of the ribose in nucleotides were similar for both purines and pyrimidines, enriching to 91.6 ± 2.7 and 91.5 ± 3.8%. It is important to note that after 5 minutes, the lactate pool inside the cell had a FE of 55.1 ± 7.9%, while that of alanine was 14.0 ± 5.9%. Glutamate labeling was not detectable at 5min. Not surprising, lipids were not labeled to a detectable level, likely because lipids form from anaplerotic products of the Krebs cycle. These intermediates were at most labeled to 10% as can be inferred from the glutamate FE and could have in turn labeled the lipids to a level below detection in this study.
By quantifying the absolute number of μmols of 13C for each compound at 23 hours in the cell, a distribution of label can be generated, which is shown in Figure 2.3. Nearly 85% of the label is present as either lactate or alanine in JM1 cells after 23 hours. Activity of the pentose phosphate pathway in converting glucose to the ribose backbone of nucleotides accounts for approximately 4.7% of the 13C label distribution while another 9.2% are resident in glutamate (half of which is GSH). At the 23hr time point, each 150cm2 plate of JM1 cells had produced 242.57 ± 15.79 μmols of lactate and 17.7 ± 1.53 μmols of alanine and exported it to the media.
2.3 Real-time DNP measurements of JM1 cell metabolism

Bioreactor cultures of JM1 cells and 31P NMR studies

31P spectra were used to monitor changes in cell energetics with growth over time. Figure 2.4a shows a representative 500μm bead of encapsulated JM1 cells, cryosectioned and stained by hematoxylin and eosin (H&E) at 20X magnification. JM1 cells were evenly distributed throughout the alginate beads and were predominantly spherical. Figure 2.4b shows a representative 31P spectrum of JM1 cells encapsulated to a concentration of 1.2 x 10^8 cells/mL at 4 hours of perfusion in the bioreactor. NMR signals for the phosphates of the NTPs (γNTP, αNTP, and βNTP), phosphocholine (PC), inorganic phosphate (Pi), glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE), nicotinamide (NADH, reduced and oxidized), diphosphodiesters (DPDE - most commonly UDP-glucose) (Kurhanewicz 1992; Gillies 1994; Macdonald 1998) and the sugar phosphate groups (Sugar PO$_4^{3-}$) are readily visible.

![Figure 2.4](image-url)
Figure 2.5a shows a representative 31P time course of βNTP changes of JM-1 cells growing in the bioreactor over the time course of the bioreactor studies. The dotted red lines indicate the time of injection of hyperpolarized [1-13C] pyruvate. Increases in βNTP correlate to the cell concentration and is indicative of the cell growth with time (Kurhanewicz 1992; Macdonald 1993; Gillies 1994; Mancuso 2005). About 80% of βNTP is adenine nucleotide and about 90% is NMR visible in rat liver (Masson 1992). As cells grew inside of the bioreactor, hyperpolarized [1-13C] pyruvate was injected to assess conversion of pyruvate to its metabolic products. **Figure 2.5b** demonstrates 31P spectra before and immediately after two injections of hyperpolarized [1-13C] pyruvate at 4 and 18.5 hours. Increases in the
31P resonances at the later time point demonstrate that the cells not only survive the injection, but continue to grow over time.

Previous 31P NMR studies of NMR-compatible bioreactors containing alginate encapsulated transformed cells (Narayan 1990) showed that cells are viable for several days. Here we demonstrate that the cells double in a comparable period of time as in 2D cultures of JM1 (Macdonald 1993). This is likely due to the uniform diameter of 500 µm, which was permitted by use of electrostatic encapsulation. In normal aerobic cells such as hepatocytes, the diffusion distance for oxygen is typically 200 µm, cells become hypoxic at greater diffusion distances (Macdonald 1998; Gross 2007). Transformed cells consume less oxygen than primary hepatocytes at 250 µm, the maximal diffusion distance in the 500 µm diameter encapsulates. Although an oxygen gradient is created in the 500 µm diameter encapsulates, dictated by the diffusion coefficient and oxygen consumption rate, there would be little or no hypoxic zone within the encapsulate compared to previous studies that used >1 mm diameter (Narayan 1990). In short, the relatively small and uniform diameter of the encapsulates permitted sufficient diffusion of hyperpolarized [1-13C] pyruvate to the cells.

Bioreactor cultures of JM1 cells and 13C NMR DNP studies

Figure 2.5c demonstrates injections of 1ml of 7.1mM hyperpolarized [1-13C] pyruvate at 4 hours and 18.5 hours in the same bioreactor system. Each 13C spectrum is at 90s post-injection and shows the high signal-to-noise ratio of labeled lactate and alanine as a result of interconversion from the injected pyruvate. The
spectrum on the right exhibits higher SNR, due to the characteristic cell growth over time of the JM1 cells in the bioreactor. Lactate and alanine production as a result of flux through LDH and ALT, respectively was seen to scale with cell concentration as expected.

Hyperpolarized 13C spectra were integrated and time courses of lactate and alanine were generated. Figure 2.6 shows the 13C spectrum of a bioreactor at 84s post-injection (a) and its representative signal over time (b). The influx of pyruvate as a result of the injection is shown and peaks corresponding to it’s metabolic products, lactate and alanine, are observed within 2 scans (i.e. 6 secs) of the
pyruvate signal. A representative time course of ^{13}C lactate, alanine and pyruvate is shown in Figure 2.6c. This data was fit to a 2 state model of the interconversion of pyruvate to lactate and alanine, and the fit is shown as the solid line through the raw data. The flux rates of $[1^{-13}\text{C}]$ pyruvate to $[1^{-13}\text{C}]$ lactate and $[1^{-13}\text{C}]$ alanine, facilitated by LDH and ALT, were determined to be $12.18 \pm 0.49 \text{ nmols/s/10}^8 \text{ cells}$ and $2.39 \pm 0.30 \text{ nmols/s/10}^8 \text{ cells}$ respectively. The low standard error in the bioreactor supports the reproducibility of the system as a real-time measurement of the flux through LDH. The measurement for ALT flux exhibited a higher standard error, most likely due to the lower signal to noise of $[1^{-13}\text{C}]$ alanine in hyperpolarized studies, in comparison to lactate. Figure 2.6d demonstrates the differences between flux measurements that were made on the first and second day in the bioreactor system. LDH flux and ALT flux were not found to be significantly different between the two days ($p=0.4$ and 0.6 respectively). Multiple injections of hyperpolarized $[1^{-13}\text{C}]$ pyruvate were done on all bioreactors yielding similar results, thus reinforcing the robustness of not only the bioreactor system, but also the flux measurement by hyperpolarized $[1^{-13}\text{C}]$ pyruvate injection. This data suggests that differences in metabolic fluxes with cellular perturbations (i.e. changing oxygen tension, metabolic substrates, and/or therapy) as small as 5% can be measured in the bioreactor. Also having accurate control over the bead size ($500 \mu\text{m}$) of the encapsulated cells provided an environment in which all cells are equally perfused (i.e., the $250 \mu\text{m}$ diffusion limit was maintained), a situation that is closer to physiological than provided by other NMR-compatible bioreactors (Mancuso 1990; Narayan 1990; Macdonald 1993; Macdonald 1998).
The pyruvate metabolism in the bioreactor system, assessed by the DNP method, demonstrated analogous fluxes through LDH and ALT as those of glucose in the standard 2D culture system. Unlike the first cell study showing flux through LDH by DNP (Day 2007), concentrations in this study (Table 2.1) were closer to the physiologic conditions, as a result of continuous perfusion. The bolus of pyruvate creates a spike in pyruvate concentration that is similar for both perfused bioreactor and in vivo MRSI studies. Typically, the serum concentrations for these compounds are in the half to several millimolar range, and media is near this range except for glucose which several fold higher (25 mM (4.5g/L) versus 3.9 to 6.1 mM (0.7-1.1 g/L) as well as pyruvate, which is very low in serum (500 μM versus 100 μM). The goal of this study was to generate a model similar to an animal model. Although both in bioreactor and in vivo DNP studies a non-physiologic bolus of pyruvate is given, a similar dose can be given in both cases for comparison of the ex vivo and in vivo fluxes. This information can be used in order to rapidly test novel molecules and save time, money, and animal lives for development of DNP imaging.

Metabolic fluxes, even for kinetically fast enzymes such as LDH, can be measured while maintaining cells in a physiologically viable state. This also allows for the monitoring of enzyme concentration as well as real time metabolism by way of modulation of substrate concentration. Combining 13C labeling inter-leaved between hyperpolarized 13C studies would allow for the assessment of both kinetically fast and slow metabolic processes. It must be noted that hyperpolarized 13C studies may not be appropriate for measuring slower metabolic fluxes or sequential steps in an enzymatic pathway (i.e. flux to glutamate or fatty acids).
However, the dramatic increase in sensitivity provided by DNP will potentially allow for the measurement of fast metabolic fluxes in people.

Summary of JM1 DNP experiments

This study demonstrates that hyperpolarized 13C NMR can be combined with an NMR-compatible bioreactor to measure metabolic fluxes in 3D cell cultures. JM1 hepatoma cells were found to have high rate of aerobic glycolysis in both conventional 2D culture and in the bioreactor. The high sensitivity of hyperpolarized 13C NMR allowed the measurement of metabolic fluxes in real time. Although this preliminary study involved immortalized cells, this combination of technologies could be extended to the real-time metabolic exploration of primary benign and cancerous cells and tissues.
Chapter 3: Cartridge Bioreactor Design and
Hyperpolarized NMR

3.1 Design of cartridge bioreactor system

As was discussed in Chapter 2, the most efficient diffusion of metabolic
nutrients and gases can be achieved in a perfused bioreactor composed of beads
(spheres). Since the diffusion coefficient of oxygen, resulting in the local oxygen
concentration, tends to be the limiting factor in most bioreactor designs, a sphere
with radius of ≤0.25mm (McClelland 2003; Gross 2007) is ideal. The major
limitation resulting from the perfused bead or fluidized bioreactor design is the
difficulty in imaging the system. Imaging can provide a means of looking at the
heterogeneity in perfusion and metabolism of hyperpolarized probes, and becomes
particularly important for bioreactors involving more complex cell co-cultures and
in tissues. Because the “cells/tissue” is constantly moving in packed-bead
bioreactors, resulting in blurring artifacts, it is not conducive to high-resolution
imaging or spectroscopic imaging. This implies the need for transition to bioreactor
designs that will be stationary and thus take advantage of the high spatial resolution
imaging, which can be achieved by hyperpolarized techniques.
Other bioreactor designs (cf. 1.4) have attempted to overcome the diffusion limitation in more stationary fixtures, including gel threads. These are difficult to perfuse and tend to aggregate and further exclude regions from perfusion at physiologic temperatures (37°C). In contrast, hollow fiber (HF) bioreactors maximize diffusion rates, though they are difficult to adapt to high-resolution systems. With the diffusion distance limitation as a prerequisite, a composite HF bioreactor was designed to fit inside of a standard 10mm NMR probe. This cartridge system is perfused from the top through a center HF (Figure 3.1). When the perfusate exits the fiber it refluxes back up through 8 radially distributed 1mm HF's and exits the top of the cartridge. A cell ECM mass is inoculated in the extra-hollow fiber space and is perfused via radial diffusion (or Starling Flow leakage), similar to an inversion of the traditional bioreactor system where the perfusate is outside of the fiber and the cell mixture is inside the fiber core. The effect these diffusion distances have on oxygen gradients will be discussed in the following section (§3.2).
The cell mixture can be any combination of cell suspension and ECM, which provides a rigidity and potential signaling necessary for cell survival and growth. In the series of studies associated with this chapter, the ECM will be Matrigel®, a basement matrix which contains an array of constituents (predominantly collagen type 1) and has been previously used in cell culture studies of cancer cell lines (Gillies 1993; Benelli 1999; Ackerstaff 2001). One property of this ECM is that it is a liquid at low temperatures and solidifies at higher temperatures (~37°C), which makes it conducive to pouring into a mold on ice and allowing to solidify as a cell culture is brought to physiologic temperatures. In comparison to agarose, Matrigel® can be kept at cold temperatures during the inoculation process, potentially preserving cell viability. This allows for a potentially higher cell viability and uniform bioreactor inoculation.

3.2 Oxygen diffusion as it applies to bioreactor development

Oxygen diffusion into a cell culture system has been the subject of investigation and modeling as early as the mainstream adoption of long-term cell
cultures (McLimans 1968). Some of the first estimations were geared toward the modeling of a tissue culture dish (or flask) to understand the fluid depth necessary to balance between compensation of cell respiration and anoxia. If we define a tissue culture flask (Figure 3.2) with a monolayer of cells of some height \(s \), and some layer of air above the fluid, the concentration of a gas (here oxygen) can be modeled as a function of time:

\[
c(x,t) \quad \forall x \in [0,a-s] \quad \forall t \geq 0
\] [3.1]

We assume that the partial pressure in the air layer maintains a constant source \(b \).

\[
c(a-s,t) = b \quad \forall t
\] [3.2]

Since the initial \([O_2] \) in the media layer was \(b \) then we assume at \(t=0 \):

\[
c(x,0) = b \quad \forall x \in [0,a-s]
\] [3.3]

Because there is an inherent gradient, the diffusion and resulting concentration of gas (here oxygen) into media at the bottom of a cell culture flask can be modeled starting from Fick’s Law (Fick 1855):

\[
J = -D \nabla c
\] [3.4]

It is assumed that the area in two dimensions is constant (the gradient is in the \(z \) or height direction) thus Fick’s Law becomes one dimensional including the cross sectional area \(A \):

\[
J(x) = -D \frac{\partial c(x,t)}{\partial x} Adt
\] [3.5]

\[
J(x + dx) = -D \frac{\partial c(x + dx,t)}{\partial x} Adt
\] [3.6]

The net \(J \) or \(\Delta J \) can be defined as:
\[\Delta J = J(x) - J(x + dx) = -D \left[\frac{\partial c(x,t)}{\partial x} - \frac{\partial c(x + dx,t)}{\partial x} \right] Adt = D \frac{\partial^2 c(x,t)}{\partial x^2} Atdx \] [3.7]

With the total change in \([O_2]\):

\[[c.(x,t + dt) - c(x,t)] Adx = \frac{\partial c(x,t)}{\partial t} Atdx \] [3.8]

Equating equation 24 with 25 yields the standard diffusion equation.

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \] [3.9]

The sink \(Q \), is defined as the rate of loss of the gas (in this case the utilization).

Because net flow is maintained at \(x=0 \):

\[D \left[\frac{\partial c(0,t)}{\partial x} \right] = Q \] [3.10]

With boundary conditions [3.1, 3.2, 3.10] the concentration in time can be approximated by solving the partial differential equation (PDE) [3.9]. This PDE can be solved in many ways; one method is by using separation of variables and the general solution (shown below in equation 3.11).

\[u_\lambda(x,t) = (A_\lambda \cos \lambda x + B_\lambda \sin \lambda x) \exp \left\{ -\lambda^2 D t \right\} \] [3.11]

Boundary conditions can be applied:

\[\frac{\partial u(0,t)}{\partial x} = 0 \Rightarrow B_\lambda = 0 \] [3.12]

\[\cos \lambda(a - s) = 0 \] [3.13]

\[\lambda = \left(\frac{2n + 1}{2(a - s)} \right) \pi \quad n = 0, 1, 2, \ldots \]

The general solution, after application of the boundary conditions then becomes:
\[u(x,t) = \sum_{n=0}^{\infty} A_n \cos(H_n x) \exp\left(-H_n^2 D t\right), \quad H_n = \frac{2n + 1}{2(a-s)} \pi \]

[3.14]

After solving for \(A_n \) using the boundary conditions and transformation back to \(c(x,t) \), with substitution of \((a-s-x)(Q/D)\) the equation becomes:

\[c(x,t) = b - \frac{2Q}{(a-s)D} \sum_{n=0}^{\infty} H_n^2 \cos(H_n x) \left[1 - \exp\left(-H_n^2 t\right) \right] \]

[3.15]

With steady state solution:

\[c(x,\infty) = b - (a - s - x) \frac{Q}{D} \]

[3.16]

As defined in [3.16] the steady state concentration is a function of the sink, source, height of media and diffusion coefficient. The sink can be further delineated to represent the actual components of respiration at the level of the monolayer [3.17].

\[c(0) = b - (a - s) \frac{Q}{D} = b - (a - s) \frac{RC}{D} \]

[3.17]

Where \(R \) = cellular respiration rate and \(C \) = cell number/cm\(^2\).

McLimans et al. (1968) have applied this model to both immortalized cell lines and primary hepatocytes in monolayer culture to estimate the relationship

\[\text{Figure 3.3. Reproduced from McLimans et al. 1968. Gas diffusion with time and fluid depth are shown for both immortalized cells (left) and primary hepatocytes (right).} \]
between fluid depth and oxygen concentration for respiring cells. Figure 3.3 demonstrates the difference in oxygen concentration with respect to time for both immortalized mammalian cells and primary hepatocytes with respiration rates of 1.42×10^{-12} mL O$_2$/cell/sec and 7.36×10^{-12} mL O$_2$/cell/sec (both at cell densities of 2.63×10^5 cells/cm2). For immortalized cells, with 2mm solution depth 93% of the original oxygen concentration will be present after 128 secs. In contrast, at 1.6mm of media, the initial equilibrated oxygen in a primary culture of hepatocytes will be completely exhausted in 1280 secs, implying that in cell culture plates, primary hepatocytes at this cell density will not survive greater than 2mm solution depths. Thus media levels can directly influence the extent of cell growth, the ultimate density of cells, and the maintenance of this density. Furthermore, the real time presence of an oxygen gradient in an engineered system has great implications for the sustainability of high-density cultures.

This has been further extended to more sophisticated experimental procedures to measure the mass transfer at the bottom of a T-flask (Randers-Eichhorn 1996). Randers-Eichorn et al. (1996) demonstrate the growth of murine hybridoma cells in a T-225 flask is a function of dissolved oxygen (DO) at the level of the monolayer. Cells grow in log phase until they approach the limitations of the DO in culture. This has dramatic impact on the performance of a 3D bioreactor design, because oxygen diffusion can limit the survival of a high density of perfused cells.

The diffusion properties of an HF bioreactor have been estimated to an equation similar to [3.9] allowing for a term, q, which represents the respiration rate of cells in culture (McClelland 2003).
\[
\frac{\partial C}{\partial t} = D_{\text{normal}} \left[\frac{\partial^2 C}{\partial x^2} \right] - q
\]

[3.18]

This model of the concentration through a HF is applicable along the entire length of the fiber assuming the flow rate is high enough to induce Starling Flow (Starling 1896) or leakage flow, because diffusion alone is often insufficient to provide adequate mass transfer of substrates. Changes in radial flow velocities have been modeled in a concentric HF bioreactor (Heath 1990) and these create added complexity for cell systems design at high media flow velocities (e.g. 250mL/min). High flow velocities in hollow fiber bioreactors have been used to yield axial velocities, which can compensate for mass transport across large distances (> 2mm). Assuming a flow rate necessary to generate Starling flow radially, the plots in Figure 3.4 were generated to estimate the steady state concentration of oxygen in a given slice through a fiber. Assuming the concentration of oxygen at the center is the concentration delivered by a HF, radial diffusion with consumption by hepatocytes (0.42nmols/s/10^6 cells) (Macdonald 1999), steady state concentrations of oxygen can be significantly depleted at distances greater than 500μm from an HF. Using this distance as a limit, a HF design was constructed with 8 polysulphone HFs (AG/Technology, Needham, MA) in a ring, no more than 0.5mm from center to center (Figure 3.4). As can be seen this greatly enhances the oxygen concentration in the region of interest and limits the axial flow velocity necessary to maintain the nutrient concentration at steady state.
This model design was used to construct an HF based NMR-compatible cartridge for perfusion of cell cultures and tissues (§Appendix B). The central body is constructed of a susceptibility matched (to water) material, Ultem 1000®, with top and bottom caps milled from Delrin®. The caps are designed to hold eight 1.2 mm outer diameter HFs, equidistantly spaced in a ring around a central 3mm outer diameter HF (AG/Technology, Needham, MA). The 1.2 mm polysulphone HFs have a high porosity of 0.65 µm pore size with a hydraulic permeability of 3.6×10^{-4} mL/min/mm Hg/mm², while the 3 mm polysulphone HF is far less porous with 0.1 µm pore size with a hydraulic permeability of 5.3×10^{-6} mL/min/mm Hg/mm² (Wolfe 2002). Together, these HFs allow for the radial diffusion of nutrients throughout the cartridge. The structure is designed so that the fibers are held in place by the cartridge caps and the extracellular matrix used to imbed the cells. If the cartridge is applied to tissues or tissue slices, they are suspended inside of the cartridge and the fibers can allow for structure and increased axial diffusion.
3.3 Characterization of cartridge system by steady state (31P), dynamic measurements 13C and imaging in Human Prostate Cells and Tissues

As previously introduced (§2.1 and 3.1), the dynamic assessment of metabolic systems is of great interest both for the characterization of cellular systems in vitro and for the extension to probing changes. Perfusion systems or bioreactors, have been used to investigate a wide range of disorders through manipulations of cell lines (Ronen 1989; Narayan 1990; Gillies 1994; Mancuso 2004) observing changes in metabolism (§1.3). The extension of these systems to cell masses and tissues has been very difficult due to the limitations in diffusion distances. This same problem arises in subcutaneous injections of oncogenic cells in nude mice. Typically tumors that arise from these cell lines are poorly vascularized making them atypical in metabolism as well as difficult to probe using real time methods such as hyperpolarized MR. The purpose of this section is to introduce the application of the cartridge bioreactor to both human prostate tissue slices and an extracellular embedded mass of human prostate cancer (PC3) cells.

Prostate Cancer (PC3) cell Study Methods

Approximately 90 million PC3 cells were re-suspended in 1mL of cultured in DMEM medium (Invitrogen, 3g/L glucose) supplemented with 10% fetal calf serum, 100 units/mL penicillin and 100 μg/mL streptomycin (Invitrogen). Cells were grown in T150-flasks (Fisher) and incubated at 37°C in a 95% air/5% CO$_2$ prior to bioreactor studies (§Chapter 2). 1mL of the suspension was mixed with 1mL of Matrigel™ (BD Biosciences). 1.5mL of the cell suspension in ECM was then loaded
into the previously described cartridge (§3.1 and Appendix B) with 8 vertical 1.2mm HF\(s\) and one central 3mm HF in a cooled Erlenmeyer flask. The base of the Erlenmeyer flask was filled with dry ice to create a below room temperature environment for the Matrigel\(^\text{TM}\) to not solidify. After the cartridge was loaded, it was interfaced with rest of the bioreactor unit (§2.3 and Appendix A) and perfused at a rate of 5mL/min.

Tissue Slice Study Methods

In this preliminary series of studies, human tissue slices were acquired from prostatectomy patients through collaboration with the Peehl Lab at Stanford University. Briefly, 3mm biopsy cores were taken from the removed prostate and sectioned to approximately 250μm using a tissue slicer. Slices were then suspended in media (§Appendix C) and kept on ice until inoculation in the bioreactor. The first tissue slice bioreactor studies were constructed using a single 3mm hollow fiber in the center of the bioreactor. Slices were delicately wrapped around the fiber and media was pumped through the cartridge at 7mL/min in conjunction with a previously described flow bioreactor system (§2.1).

NMR Methods for PC3 cells and Prostate Tissue Slice Studies

\(^{13}\text{C}\) and \(^{31}\text{P}\) data were acquired on either an 11.7T or 14.1T Varian INOVA (125 or 150MHz \(^{13}\text{C}\) and 220 or 242MHz \(^{31}\text{P}\), Varian Instruments) equipped with a 10mm triple-tune direct detect broadband probe at 37°C and 100G/cm three-dimensional gradient insert (for imaging). Non-localized \(^{31}\text{P}\) time courses were
acquired before and after hyperpolarized injections using a TR=2s, nt=2048 or 3000 and a 90° flip angle. 31P spectra were zero filled to 40,000 points and line broadened 20Hz. Assessment of changes in the β-NTP resonances as a function of time was used to monitor tissue health through the progression of the bioreactor experiments in vitro. Diffusion-weighted images were acquired using a standard spin-echo based pulse sequence with a 35G/cm diffusion gradient ($B_0=1200$) with 4 averages, slice thickness of 0.5mm, matrix size of 256 x 256 and field of view (FOV) of 1.6 cm x 2.0 cm. Hyperpolarized 13C dynamic spectra were acquired using a 5° flip angle, TR=3s and acquired for 300s. Axial hyperpolarized 13C images were acquired using a frequency specific 2D EPI sequence. Images were acquired with a TR=0.2secs, 32 x 16 (RO x PE), slice thickness of 5mm, FOV 2 cm x 2cm and an increasing flip angle scheme every 5 seconds (10°, 20°, 30°, and 90°).

PC3 cells in the Cartridge

Similar to studies of encapsulated JM1 cells (§2.3), 31P spectra of PC3 cells embedded in Matrigel® show viable cells after multiple hours of perfusion. Figure 3.5 demonstrates a 31P spectrum after 44 hours in the bioreactor. Analogous to the JM1 cells, βNTP is readily visible and demonstrates the presence of steady state NTPs. A doubling time of \sim32 hours was estimated from the 31P time courses and this is similar to previously reported doubling times for PC3 cells in 2D culture(Hanigan 1999). In comparison to JM1 cells, PC3 cells exhibit high levels of phosphocholine (PC) relative to glycerophosphocholine (GPC), which has been reported for other PC3 cells cultures(Narayan 1990; Macdonald 1993) as well as
xenographs of PC3 cells (Kurhanewicz 1992). Resonances corresponding to phosphoethanolamine (PE), glycerophosphoethanolamine (GPE), the diphosphodiesters (DPDE) and specifically NAD(H) are also present.

Figure 3.5. 31P spectrum at 44 hours post-inoculation of 6.75×10^6 PC3 cells embedded in 1.5mL of Matrigel® mixed with medium. Resonances corresponding to the phosphomonoesters - PC and PE, phosphodiester - GPC and GPE, DPDEs, NTPs, NAD(H), and media and intracellular Pi are readily visible, similar to previous cell line studies.

Figure 3.6 demonstrates the generation of hyperpolarized [1-13C] lactate after injection of 2.25mL of 30mM pyruvate, approximately 4 times the dose used in the JM1 cells (§2.4), at 4 hours post-inoculation in the bioreactor. This concentration is most likely well above that needed for V_{max}, but was used only to
maximize the potential lactate signal generated. Lactate label is generated in real
time evident from the peak area as a function of time, as compared to the pyruvate
hydrate resonance, which decreases as a function of time and flow. Future studies of
cells embedded in ECM will utilize much lower concentrations of pyruvate to
explore the reaction kinetics of hyperpolarized pyruvate in PC3 cells.

A multipolarization of pyruvate and bicarbonate (§4.5) was also injected in
the bioreactor at 25 hours post-inoculation, with concentrations of 10mM and
34mM respectively. At 21 secs post-injection (Figure 3.7a) the bicarbonate
resonance can be observed along with CO₂, pyruvate and pyruvate hydrate.
The calculated pH based on the
Hendersen-Hasselbach equation is 7.4
(§4.5), which was similar to the pH
calculated using the Pᵢ resonance
chemical shift (pH=7.45) as previously
described(Seo 1983). There is a
resonance on the shoulder of the Pᵢ
peak that corresponds to the
intracellular Pi and is more acidic than
the media (pH~7.05). After 30 scans
lactate is visible on the order of
pyruvate hydrate, 90 secs post-injection of the copolarization (Figure 3.7b), which

Figure 3.7. ¹³C spectra demonstrating the copolarization
of pyruvate and bicarbonate in the embedded cell
bioreactor at 27 hours post-inoculation. (a) spectrum at
21 secs post-injection showing resonances corresponding
to bicarbonate, pyruvate, pyruvate hydrate and CO₂
resulting in a pH of approximately 7.4. (b) a
representative spectrum at 90 secs post-injection showing
the generation of lactate similar to an injection 23 hours
prior.
is similar to the pyruvate injection from the previous day. In comparison to JM1 cells in alginate encapsulates (§2.4), hyperpolarized alanine was not observed after injections of pyruvate, even at similar lactate levels. This is not surprising given the significantly higher activity of ALT in the liver, the origin of JM1 cells, as opposed to the prostate. Additionally similar amounts of lactate label were produced in the pyruvate only injection as compared to the copolarization, suggesting that simultaneous injection of bicarbonate has little or no effect on the flux of pyruvate to lactate via LDH.

A 1.5mL injection of 8mM hyperpolarized [2-13C] fructose was also attempted (Figure 3.8) at 27 hours post-inoculation. The methods for polarization will be discussed in a future section (§4.2). The ratio of the 105.5ppm to the 102ppm resonances (predominantly β-fructopyranose) of 0.4 did not significantly change during the experiment. This is the ratio observed in polarized experiments of fructose alone and suggests that either metabolism is low or the excess of fructose in the media surrounding the tissue is swamping out any possible

![Figure 3.8. 13C spectra demonstrating the injection of hyperpolarized [2-13C] fructose at 27 hours post-inoculation. Resonances corresponding to the isomers of fructose are observed; the peak at 105.5ppm has been labeled as a composite of the fructose and phosphorylated fructose this is further described in §4.2.](image)
observation of metabolism. Future studies of fructose in the bioreactor will require lower fructose doses and higher cell concentrations to observe these metabolic changes.

A recent mass spectrometry metabolomic study of samples from prostate cancer patients has implicated sarcosine (or n-methylglycine) as a potential biomarker of prostate cancer (Sreekumar 2009). In a later section [1-13C] glycine was polarized to investigate mitochondrial activity (§4.4), but it could potentially be used to investigate the production of sarcosine via methylation of hyperpolarized [1-13C] glycine. For this reason, 2mL of 13.3mM [1-13C] glycine was injected into the bioreactor at 31 hours post-inoculation. Figure 3.9 demonstrates the resulting hyperpolarized signal. No resonances corresponding to sarcosine were observed, most likely due to the relatively low PC3 cellularity and cellular concentration of sarcosine (Sreekumar 2009). Typical in vivo steady state concentrations were reported to be in the pico to nanomolar range and therefore below detection under current bioreactor conditions (Sreekumar 2009). Future bioreactor studies of
hyperpolarized $[1^{-13}\text{C}]$ glycine will require higher cell densities to investigate the potential of observing hyperpolarized sarcosine.

In short, metabolism of PC3 cells was similar in the embedded gel cartridge bioreactor as previously reported for 2D cultures (Hanigan 1999; Chowdhury 2005) and perfused cell studies (Narayan 1990; Macdonald 1993). High levels of PC relative to GPC are indicative of fast rates of proliferation, which were observed in the bioreactor setting. Injection of hyperpolarized substrates into the bioreactor demonstrated adequate perfusion as well as enzymatic conversion, suggesting that the diffusion characteristics may be adequate for long-term cell culture. Further studies using this platform with different cell suspension to ECM ratios as well as hyperpolarized substrate concentrations will allow for a better characterization of in vitro real time metabolism.

Prostate Tissue Slice Studies in the Cartridge

Tissue slices were placed inside of a cartridge with a lone hollow fiber present at the center. The 250um slices were delicately wrapped around the fiber and surrounded by media and perfused at 7mL/min. In a first series of experiments, 36 slices (15 Gleason 3+4 cancer and 21 benign) were placed in the bioreactor in order to determine the duration of time that tissue slices could be maintained in a metabolically viable state. Figure 3.10 demonstrates the ^{31}P time course of β-NTP over approximately 3 days. The β-NTP resonance stays constant for greater than 60 hours with a slight downward trend, which is expected for non-proliferating tissue.
A representative spectrum of 31P at 63 hours from another tissue slice bioreactor is shown in Figure 3.11, demonstrating similar resonances to what was observed for both PC3 and JM1 cells (§2.2). Resonances corresponding to the phosphodiesters GPC and GPC were not observed and it appears that the ratio of the phosphomonomesters PE and PC is dramatically different than for PC3 cells but more consistent with ex vivo human prostate tissue studies. In PC3 cell studies, PC is typically much higher than PE, but from studies of human tissue by HR-MAS(Swanson 2008), PE concentration has been shown to be significantly higher than PC concentrations. It is possible that the low levels of PC are representative of the percent of actively dividing cells in prostate cancer tissue. In most rapidly dividing cancers, such as brain and breast tumors, there are high proportions of cells in the S phase of growth and high concentrations of PC. In contrast, prostate cancer is typically considered a slow growing indolent disease and as such samples of prostate cancer tissue rarely stain greater than 10-15% for the Ki-67 protein (an antigen which stains for the cell nucleus in division)(Bruni 2004; Bullwinkel 2006).

Figure 3.10. 31P time course of a tissue slice bioreactor containing 36 slices (15 Gleason 3+4 cancer and 21 benign).
Though this bioreactor contained 33 slices of Gleason 3+4 cancer, the PC was still relatively low in comparison to PE, indicative of slow or non-dividing cells and similar to prior published human data.

In order to assess the distribution of slices in the bioreactor, diffusion weighted images were acquired through the center of the bioreactor. **Figure 3.12** shows 3 coronal slices through the bioreactor (separated by 0.5mm). The flowing media is clearly suppressed by the diffusion gradient and the 250μm tissue slices are readily visible. It is apparent that that the tissue slices are not moving enough to cause substantial blurring of the resulting images during the acquisition time (2 secs) of the imaging sequence used. 2mL of 20mM hyperpolarized [1-13C] pyruvate was injected into the tissue slice bioreactor and generated a very small portion of labeled lactate. Five contiguous spectra of the dynamic stack taken every 3 secs were summed to generate the spectrum in **Figure 3.13**. Lactate is present, lower than expected, which is a function of the low tissue density, tissue metabolism as well as the real time non-optimized flow characteristics of this bioreactor.
It appears that in the case of a solo central fiber, the media flows in pseudo “cork screw” pattern thus instantaneous diffusion into the tissue may be limited relative to steady state diffusion. This can be seen (Figure 3.14) in axial chemical shift images of the pyruvate resonance taken every 5 secs as it flows through the bioreactor. This data suggests that the low levels of lactate signal produced is due to the pyruvate flowing past the tissue. In order to demonstrate that the tissue was viable and capable of producing lactate, 3mM u-13C glucose was supplemented to the infusion media and 13C spectra were acquired with 15 min temporal resolution. The production of lactate in time is demonstrated in Figure 3.15. The C3 lactate resonance appears as a doublet, because of carbon coupling to the adjacent 13C2.
The corresponding increase in lactate with time implies a production rate of 2 nmols/min, suggesting the tissue was viable and producing lactate on a level observable in hyperpolarized [1-13C] pyruvate studies, though well below what was seen for JM1 cell experiments (§2.4). Future studies will focus on higher densities of tissue slices to increase overall signal-to-noise and imaging sequences to distinguish the spatial distribution of lactate production in tissue slices.

3.4 Prostate Cancer metabolism in Human Biopsies and comparison to Bioreactor Studies

The underlying metabolic state of prostate tissues has been correlated to not only prostate cancer, but also disease progression(Ackerstaff 2001; Albers 2008;
Prostate tissues, and specifically biopsies are very heterogeneous and metabolic assessments of these tissues results in an ensemble average of the tissue metabolism (Swanson 2003; Swanson 2008; Tessem 2008). This has been generalized for *in vivo* spectroscopic imaging as gross changes in choline containing compounds, polyamines and citrate (Kurhanewicz 1995; Kurhanewicz 2002). Recently, methods have been developed to acquire high-resolution NMR spectra from intact tissues using the high-resolution magic angle spinning (HR-MAS) technique (Swanson 2003; Keshari 2005; Keshari 2005; Keshari 2008; Swanson 2008; Tessem 2008; Albers 2009). This non-destructive approach allows for the metabolism to be assessed and compared to histopathology and genomics in the same piece of tissue (Santos in press). Historically, metabolomic studies of tissues have utilized extracted tissues, most often using Mass Spectrometry, which introduce losses and variability due to the extraction methods used. HR-MAS can address the impact of *in vivo* MR visibility and local chemical environment since the data is acquired on intact tissues rather than extracts. By comparing metabolite concentrations derived from HR-MAS to histopathology of the same tissue, the impact of tissue heterogeneity on metabolic profiles can be directly assessed.

Shannon’s Mutual Information (MI) (Shannon 1948) is a measure of dependence that can outperform the classical and widely used linear measures such as Pearson Correlation (PC) in that it is not influenced by outliers and can detect nonlinear dependencies. Mutual Information has been used successfully for feature selection as a filter-method; that is, it is used for testing each variable to quantify its dependency with a target variable such as “cancer score” (Peng 2005). The purpose
of this section is to investigate a non-linear method for clustering metabolites with the pathologic state of the tissue. Using this clustering, a relationship between these different tissue types and the changes in metabolic concentrations can be determined. This will be further compared to the metabolic state of prostate cancer cells (PC3) and tissue slices from patients discussed in the previous section (§3.3).

Human subjects and sample acquisition

This study was approved by our institutional review board (IRB) and informed consent was obtained from all patients. 126 TRUS-guided biopsies were acquired from 99 patients, 27 of which were cancer. Biopsies were acquired as previously described (Tessem 2008). Biopsies were placed in cryovials and snap-frozen on dry ice (<15 secs) immediately after removal from patients. These samples were stored at -80°C and analyzed within 2 weeks of sample acquisition.

HRMAS data acquisition

Prior to NMR studies, 1mm sections of both ends of the sample were removed to eliminate contamination from lipid associated with the longitudinal core through the prostate. Each sample was transferred to a 20μl zirconium rotor, 3.0μL of deuterium oxide and 0.75 wt% sodium-3-trimethylsilylpropionate-2,2,3,3-d₄ (D₂O + TSP) was added as a chemical shift reference, and the rotor was assembled and placed within the magnet. ¹H high-resolution magic angle spinning (HRMAS) spectroscopy was preformed on an 11.7T (500MHz ¹H) Varian INOVA spectrometer equipped with a 4mm gHX nanoprobe (Varian Inc., Palo Alto, CA). Samples were
spun at 2250Hz and temperature controlled to 1°C. Fully relaxed spectra were acquired with a TR=4s, 40,000 points, 20,000 Hz spectral width, and 128 transients (Swanson 2003; Keshari 2005; Tessem 2008).

HR-QUEST Processing

Data were quantified using HR-QUEST, a custom version of QUEST (Ratiney 2005) adapted for analysis of short-echo time HRMAS spectra containing 40,000 points. Basis set spectra of metabolites were collected in solution and incorporated into the HR-QUEST fitting routine. Peaks from known macromolecules and unidentified compounds were also included as part of the basis set. HR-QUEST estimated the background signal using an HLSVD algorithm and iterated between fitting the metabolites and modeling the background K times. The concentrations of 17 metabolites were calculated using the ERETIC (Albers 2009) signal as a reference. The choline containing compounds and polyamines were summed to create the two derived variables, total choline and total polyamines, yielding a total of 19 metabolite concentrations.

Histopathology

Post-HRMAS, samples were embedded in Tissue-Tek® optimal cutting temperature (OCT) tissue embedding medium (Fisher, Pittsburg, PA), frozen on dry ice, and sectioned at 5-7μm thickness at -22°C on a Leica CM1850 Cryostat (Leica Microsystems, Wetzlar, Germany). These were then stained with hemotoxylin and eosin (H&E) and assessed by two pathologists. Sample pathology was denoted as
percentages of benign glandular, benign stromal and cancer tissue. Samples that included greater than 10% of the core area as confounding pathologies (such as prostatic intraepithelial neoplasia (PIN), benign prostatic hyperplasia (BPH), necrosis, and atrophy) were excluded.

Data Analysis using Mutual Information and Spectral Clustering (Theory and application)

In this work, we measure the dependencies among the features using MI and then apply an appropriate clustering method such as Spectral Clustering (Shi 2000) for partitioning the features into related groups of variables. The use of such a clustering is to find groups that minimize the inter-cluster interactions (or dependencies) while maximizing intra-cluster dependencies.

The entropy (Shannon 1948) of a random variable X, denoted $H(X)$, is a functional of the probability distribution function $P(X)$, which does not depend on the actual values of X but only depends on $P(X)$. Shannon’s entropy is a measure of the uncertainty of a random variable X and thus, it quantifies how difficult to predict that variable.

The definition of Shannon’s entropy can be written as an expectation:

$$H(X) = -E[\log P(X)] = - \sum_x [p(x)\log(p(x))], \quad [3.19]$$

where $p(x) = P(X=x)$ is the probability distribution function (more it is the precisely probability mass function for the discrete case but the results are generalizable) of X.

70
Hence the Shannon's entropy is the average amount of information contained in random variable X. In other words, it is the uncertainty removed after the actual outcome of X is revealed. Mutual Information (denoted as I in the formulae) is a measure of mutual dependence of the two variables based on the entropy:

$$I(X;Y) = H(X) + H(Y) - H(X,Y) = \sum_x \sum_y p(x,y) \log \left(\frac{p(x,y)}{p(x) \cdot p(y)} \right)$$

where $p(x,y) = P(X=x, Y=y)$.

In other words, $I(X; Y)$ is the expected number of extra bits that must be transmitted to identify X and Y if they are coded using only their marginal distributions instead of the joint distribution.

One problem with MI is that it is hard to interpret it because, unlike for example squared correlation coefficient, its value is nonzero but not necessarily between 0 and 1. In this work, we report the normalized values for MI as percentage of the entropy of the variables (also known as the coefficient of constraint C_{XY}) calculated simply by dividing the mutual information of variables X and Y by the entropy of X, as in [3.21], which gives the percentage of uncertainty removed about X by knowing the state of Y (Figure 3.16). Or, equivalently, it gives how much of the entropy (disorder or randomness) of X is constrained by fixing Y.

$$C_{XY} = \frac{I(X;Y)}{H(X)}.$$ \[3.21\]
Spectral clustering is a very powerful technique that can be used to group data samples, which cluster in a complex nonlinear way in 2 dimensions (Shi 2000; Rahimi 2004; Filippone 2008). As demonstrated in Figure 3.17, data clusters which spiral around each other (left) or that have a circle around a core (right) can be clustered correctly (red and blue) as belonging to different classes. Linear methods such as principal component analysis (PCA) and partial least-squares (PLS) would be incapable of defining these clusters.

Metabolite concentrations from HR-MAS quantification by HR-QUEST

Figure 3.18 demonstrates representative HR-MAS spectra for each of the studied prostate groups (predominantly glandular, stromal and cancer tissue). Typical metabolic signatures such as high levels of citrate (doublet of doublets at 2.62ppm) and polyamines (multiplets at 1.78, 2.10 and 3.11ppm) in the predominantly glandular and high levels of choline containing compounds (singlets choline 3.21ppm, phosphocholine – PC 3.23ppm and glycerophosphocholine – GPC 3.24ppm) in the cancer are readily observed (Ackerstaff 2003; Swanson 2003; Swanson 2008; Tessem 2008). Lactate (doublet, 1.33ppm) and alanine (doublet,
1.49ppm) are also elevated in the cancer sample (Figure 3.18c) similar to previously reported HR-MAS spectra of malignant prostate tissues (Tessem 2008).

For preliminary study, samples were grouped into predominantly glandular (>25% benign glandular), predominantly stromal (≥75% stromal) and cancer (≥5%). Of 126 samples, 99 were histopathologically benign and 27 contained prostate cancer. Benign glandular and stromal samples were on the average 33 ± 5% glandular (n=32) and 82 ± 7% stromal (n=71), respectively. For the 27 cancer
samples, 29 ± 20% of the sample contained prostate cancer. For samples in each group, 19 metabolites were quantified as previously described and the distribution of average concentrations is shown in **Figure 3.19**. A Student T-Test was used to compare the cancer samples to the both benign glandular (with p-value P_G) and stromal (with p-value P_S) groups. Concentrations of choline ($P_G = 0.037$, $P_S = 0.042$), phosphocholine (PC, P_G and $P_S < 0.005$), glycerophosphocholine (GPC, P_G and $P_S < 0.005$), total choline (the sum of the choline containing compounds, P_G and $P_S < 0.005$), phosphoethanolamine (PE, $P_G < 0.005$, $P_S = 0.023$), lactate ($P_G = 0.025$), alanine ($P_G = 0.019$), creatine ($P_G = 0.038$), glutamate ($P_G = 0.05$), putrescine ($P_G = 0.05$), spermidine ($P_G = 0.037$) were found to be significantly different when compared to cancer. Interestingly, many metabolites were not significantly different in predominantly benign stromal tissue when compared to those containing cancer. This is potentially due to the heterogeneity of prostate samples; typically a high percentage of the sample contains benign stromal tissue. This
heterogeneity makes it difficult to determine which metabolic components are specifically from the cancer tissue.

To address the difficulty in separating tissue types and overlapping histopathology, concentrations of each metabolite were treated as individual variables along with the percent of tissue for each pathology. More simply, each biopsy had 19 metabolite variables and 3 pathologic variables (% glandular, stromal and cancer), yielding a 22 variable vector. These vectors were then used as the inputs for the mutual information and spectral clustering algorithm. **Figure 3.20** demonstrates the output of the algorithm, with spatial arrangement as a function of correlation. The metabolites spermine, spermidine, total polyamines (a sum of all of the polyamines) and citrate are highly correlated with benign glandular tissue. This relationship between polyamines and citrate is a classic MR biomarker of benign

![Figure 3.20. Spectral clustering of 126 biopsies. 22 variables (19 metabolites and 3 pathology scores) were used based on statistically significant pairwise mutual information (P ≤ 0.01). 3 clusters are indicated by the red circles.](image-url)
prostate metabolism (Kurhanewicz 1995; Kurhanewicz 2002; Costello 2005). Ethanolamine, glutamate, glutamine, myo-inositol, glycine and alanine cluster with stromal tissue. Both glutamate and glutamine cluster with stroma, which is in good agreement with the biochemistry. Typically glutamine is derived from glutamate and surrounding ammonia. Glutamate is also in equilibrium with α-ketoglutarate in the TCA cycle, and high concentrations are representative of high levels of aerobic metabolism in the mitochondria. In comparison to glandular tissue, which shunts TCA at citrate for the purposes of secreting high concentrations of citrate into the prostatic secretions, TCA metabolism is conserved and thus glutamate is resident at high steady state concentrations. It is possible that the correlation between myo-inositol and stromal tissue may be an indicator of stromal signaling. This has been a topic of investigation in prostate cell line studies, because benign epithelial cells tend to dedifferentiate back into a basal cell without the signaling of surrounding stromal tissue (Goo 2005). Correlation between stromal tissue and glycine and alanine are not as straightforward and require further investigation.

Interestingly, the cancer variable correlates to concentrations of choline, PC, GPC, total choline (the sum of all the choline containing compounds), PE, creatine, scyllo-inositol, taurine and lactate. The choline containing compounds are a hallmark of rapidly dividing cells and thus cancer (Ackerstaff 2003; Iorio 2005). Lactate has also been correlated to malignant prostate tissues in previous HR-MAS studies of human biopsy tissues (Tessem 2008), but this is the first objective classification. Moreover, lactate is very interesting because of its relationship to
previously mentioned hyperpolarized carbon studies (§2.3 and 3.3) and those conducted in vivo (Chen 2007; Albers 2008; Chen 2008).

Hyperpolarized 13C measurements made in prostate tissue slices as well as prostate cancer cell lines demonstrate high levels of real time LDH activity. The observed conversion of pyruvate label to lactate is a function of enzyme activity, isoenzyme pattern, concentration of substrate, availability as well as transport. It is possible that a combination of these changes leads to both differences in steady state concentration and real time measurements. Further investigation into the mechanism of these changes by proteomic methods would be needed to determine which variable is most responsible for the steady state and dynamic changes.
Chapter 4: Hyperpolarized Metabolic Tracer and Probe Development

4.1 Secondary labeling by Acetic Anhydride and extension to short peptides

Recent development of techniques to retain highly polarized spins in solution via dynamic nuclear polarization (DNP) has enabled 13C NMR spectroscopy and MR spectroscopic imaging studies with very high signal to noise in short acquisition times (Ardenkjaer-Larsen 2003; Golman 2006). Generally, the technique requires polarization of a low molecular-weight 13C labeled chemical probe in a highly concentrated sample, for example [1-13C] pyruvic acid or 13C-urea (Mayer 2006; Kohler 2007; Merritt 2007). For molecules having limited solubility, crystalline properties at low temperature, or high molecular weights, the hyperpolarization technique may not provide sufficient polarization for in vitro or in vivo applications. For molecules with limited solubility, the polarization rate can also be prohibitively long. To address this limitation, this study was designed to develop a method of “secondary hyperpolarization”, whereby a reactive molecule that hyperpolarizes well could be used to chemically ‘tag’ biomolecules of interest. Recently, chemical derivatization of amines in biofluids with [1,1-13C] acetic anhydride, and their 500 MHz 13C NMR spectra was reported (Shanaiah 2007). In this project, the secondary
hyperpolarization approach was applied using pre-polarized [1,1-13C] acetic anhydride and rapid chemical reactions to provide high SNR NMR spectra of amino acid derivatives and other biomolecules.

This secondary hyperpolarization technique could be of great value to the emerging field of metabolomics or metabolic profiling, where molecular processes in the living cell are assessed, and the chemical content of biofluids resolved (Lindon 2004; Wang 2004; Bollard 2005). Currently, only a limited number of biomarkers are used in clinical practice. These biomarkers include the levels of an expressed protein in health or disease, for example CA-121 expressed in ovarian cancer, or of a given metabolite concentration in biofluids, for example catecholamines found in the urine of patients with pheochromocytoma (Bast 2005; Young 2007). Increasingly, medical diagnostics will incorporate fast methods of obtaining a patient’s disease profile, through genomic, proteomic and metabolic evaluations. Effective screening methods could allow earlier disease identification and treatment and improve outcomes. The most established technologies in this field are NMR and mass spectroscopy, both of which have been used to identify errors in metabolism and the accumulation of specific metabolites in disease (Pauling 1971; Gartland 1991). Very recently, DNP NMR has been used to obtain metabolic data with very short acquisition times, in animal and cell culture models of human disease (Chen 2007; Day 2007; Albers 2008; Keshari 2008). Most importantly, this data can be acquired in seconds at high spatial resolution. This improved speed of acquisition is clearly of benefit in the development of medical diagnostics, with information often needed quickly in acutely ill patients.
The goal of this project was to combine the remarkable NMR signal enhancement provided by DNP with the reactivity and good polarization characteristics of [1,1-13C] acetic anhydride to resolve a mixture of secondarily hyperpolarized N-acetylated amino acid adducts in aqueous solution in a matter of seconds. Additionally, the utility of this secondary hyperpolarization technique was explored in the context of other important biomolecules that may not be well polarized using direct DNP methods. These molecules can then be used \textit{in vivo} to explore mechanisms that were previously inaccessible by conventional MR imaging modalities.

\textit{Polarization of [1,1-13C]-Acetic anhydride}

Neat samples containing 10\muL of [1,1-13C] acetic anhydride (1.06 x 10-4 mol) (Isotec, Miamisburg, OH) containing 15mM Finland trityl radical OX076 (Oxford Instruments, Abingdon, UK) were polarized at 94.106 MHz and 1.2-1.4\textdegree K), for 30 minutes and subsequently dissolved in 2.5mL of anhydrous 1,4 dioxane (Sigma-Aldrich) using a Hypersense DNP polarizer (Oxford Instrument, Abingdon, UK). The hyperpolarized [1,1-13C] acetic anhydride/dioxane solution was subsequently injected from the DNP polarizer directly into the amino acid solutions (described in the following sections), manually mixed in a 500cc teardrop flask, and injected using a 5cc syringe into a previously shimmed 10mm NMR tube into at 37\degree C. This process required approximately 10 seconds. Percentage polarizations were quantified in solution by measuring the signal enhancement obtained by DNP polarization compared to the signal at thermal equilibrium(van de Ven 1995).
Secondary Hyperpolarization of amino-acid mixtures with hyperpolarized [1,1-13C]-Acetic anhydride

Initial studies (N=3) involved mixing the dissolution solution containing dioxane and hyperpolarized [1,1-13C]-acetic anhydride with 3 mL of a buffered (100mM phosphate, 0.3 mM EDTA pH = 7.8) solution of amino acids Glycine (Gly), Serine (1), Valine (Val), Leucine (Leu), and Alanine (Ala) at 3.5 mM each, or 17.5mM total amino acid concentration. A two-fold excess of acetic anhydride with respect to the total amino acid concentration was used in all labeling studies. The final pH of the resulting solutions was ≈ 5.5 (5.55, 5.54, and 5.61 respectively). To confirm the chemical shifts of each of the acetylated amino acids, the same hyperpolarized experiment was performed for each amino acid individually at a concentration of 17.5mM. To determine whether or not this technique could produce reasonable SNR for a solution containing amino acids at physiologic concentrations, a buffered, aqueous solution containing 70\textmu M amino acids (Gly, Ser, Val, Leu, Ala) was acetylated under the same conditions used for the higher amino acid concentration studies. The peak area to noise for the acetyl carbon of the acetylated amino acids was measured in triplicate studies. The final pH of the reaction mixtures was higher (pH ≈ 7.33) than that observed for the higher concentration studies due to the lower concentration of hyperpolarized [1,1-13C]-acetic anhydride used and subsequent lower production of acetic acid.

Secondary Polarizarion of glycine, diglycine, triglycine
A second set of labeling experiments (N=3) using hyperpolarized [1,1-\(^{13}\)C]-acetic anhydride was conducted with a chemically similar set of substrates, namely glycine (MW=75.07), diglycine (MW=132.12) and triglycine (MW=191.14). The reaction conditions in these studies were identical to those described for the labelling of the mixture of amino acids (17.5mM). The pH’s of the resulting solutions were \(\approx 5.5\).

Secondary hyperpolarization of N-acetyl lysine, and C-terminus of \(\alpha\)-melanocyte stimulating hormone (\(\alpha\)-MSH)

The reaction conditions in these studies were identical to those described for the labeling of the mixture of amino acids, except for mixing a six-fold excess of the hyperpolarized [1,1-\(^{13}\)C] acetic anhydride/dioxane solution with 5 mM N-acetyl lysine, and 5 mM \(\alpha\)-melanocyte stimulating hormone (\(\alpha\)-MSH), resulting in a final reaction solution pH of 6.0.

Secondary hyperpolarization of N-acetyl cysteine

20\(\mu\)L of [1,1-\(^{13}\)C] acetic anhydride (2.12 \(\times\) 10\(^{-4}\) mol) were polarized using the HyperSense DNP polarizer at 94.106 MHz for 30 minutes. Five mL of the following dissolution media were used: 200 mM cysteine, 150 mM NaOH, 0.3 mM EDTA. The final concentration of cysteine using this volume corresponds to roughly 5-fold excess of cysteine with respect to acetic anhydride with a resulting pH of 6.8.

Secondary hyperpolarization of Arg-Gly-Asp (RGD)
6.2µL of [1,1-13C] acetic anhydride preparation (2.12 x 10⁻⁴ mol) were polarized using the HyperSense DNP polarizer at 94.106 MHz for 1 hour. Five mL of the following dissolution media were used: 6.1µL of 10N NaOH, 21mg of RGD peptide (12mM), 0.3mM EDTA in H₂O. This resulted in equimolar concentrations of labeled acetic anhydride and RGD. In a second experiment with analogous parameters, 6.2µL of [d₆-1,1-13C] acetic anhydride (2.12 x 10⁻⁴ mol) was polarized.

This preparation was then applied in a larger volume to murine model of prostate cancer (TRAMP) to assess the distribution of signal in vivo. In the murine case, 30µL of [d₆-1,1-13C] acetic anhydride were polarized and reacted with 100mg of RGD peptide in a 4mL dissolution similar to ex vivo studies. 350µL of the dissolution was injected into a TRAMP mouse (72mM RGD) and 3D spectra was acquired using methods previously described (Albers 2008) on a 3T GE Signa™ scanner (GE Healthcare, Waukesha, WI) equipped with the MNS (multinuclear spectroscopy) hardware package.

Methods for ex vivo Hyperpolarized 13C Spectroscopic Studies

All NMR studies were performed on a 11.7T Varian INOVA spectrometer (125MHz 13C, Varian Instruments) using a 10mm ¹⁵N/³¹P/¹³C triple-tuned direct detect probe. For the acquisition of hyperpolarized ¹³C spectra of the hyperpolarized acetylated amino acids eighty proton-decoupled (WALTZ-16, 9000 Hz bandwidth, decoupling during acquisition only) pulse and acquire hyperpolarized ¹³C NMR spectra (1 average, spectral window = 4000 Hz, number of points= 16000, TR=3.5s, acq time= 2s, total acq time = 2 min 55s) were acquired.
every 3 sec using a 5° pulse. For the low concentration amino acid secondary hyperpolarization study, a single 90° pulse was used to acquired the hyperpolarized 13C Spectrum. Spin-lattice (T_1) relaxation times were determined by performing a mono-exponential fit to the signal decay curve of the hyperpolarized compounds. In all cases the r^2 value for the fit was >0.997 where $r =$ the Pearson product moment correlation coefficient. All spectral measurements were collected at $\approx 37^\circ$C.

Following each hyperpolarized experiment; a small quantity of Magnevist Gd-chelate (Bayer Healthcare Pharmaceuticals, Inc.) was added to the reaction solution, resulting a final Magnevist concentration of 5mM. A proton decoupled 13C thermal spectrum was acquired using the same acquisition parameters used for the hyperpolarized studies except for a 90° pulse and obtaining 256 averages in order to calculate signal enhancements and reaction yields. A repetition time of 3 seconds was $>3 T_1$'s since the T_1 of acetic acid and the acetyl-amino acids were determined to be less than 1s after addition of 5mM Magnevist. Signal enhancements due to hyperpolarization were calculated by integrating acetyl-amino acid peaks in the first spectrum of the hyperpolarized dynamic experiment, and comparing these to the corresponding peaks in the thermal spectrum, accounting for differences in gain, tip angle, and the number of transients obtained. Since the reaction goes to completion (all of the acetic anhydride was converted to either acetic acid or the acetylated amino acids), yields were calculated using the acetic acid peak in fully relaxed thermal spectra as an internal standard.
Secondary hyperpolarization of amino-acid mixtures with hyperpolarized [1,1-13C]-Acetic anhydride

[1,1-13C] acetic anhydride is a good substrate for DNP hyperpolarization since it is a liquid at room temperature that dissolves the trityl radical, forms a glass at 1.4°K, and reaches a maximum solution state polarization in 30 minutes yielding 5.9% polarization. To avoid premature reaction of the hyperpolarized acetic anhydride during dissolution, initial studies used 1,4 dioxane as the dissolution media. Acetic anhydride was stable to dissolution conditions in this solvent, with only the hyperpolarized acetyl carbonyls observed in the 13C spectrum. At 11.7T and 37°C, the calculated T₁ for hyperpolarized carbonyl of [1,1-13C] acetic anhydride in dioxane was 33.9 sec.

Figure 4.1. General strategy for secondary hyperpolarization of amino acids using pre-polarized [1,1-13C] acetic anhydride.
In a mixed dioxane/aqueous solvent, derivatization of amines with hyperpolarized [1,1-13C] acetic anhydride takes place rapidly, prior to acquisition of the first hyperpolarized spectrum, to form the corresponding acetylated products as shown in Figure 4.1. This method takes advantage of the preferential reaction of acetic anhydride with amine nucleophiles, which occurs much more rapidly than hydrolysis. In triplicate studies, it was also determined that a mixture of hyperpolarized [1-13C] N-acetylated Gly, Ser, Val, Leu, and Ala could be well resolved with excellent signal-to-noise, in a single acquisition (Figure 4.2). The ability to obtain sufficient spectral resolution to resolve the amino acid mixture required stabilizing the reaction solution temperature and pre-shimming the 10mm NMR probe using the same mixture of amino acids prior to acquiring the hyperpolarized

Figure 4.2. Hyperpolarized spectrum obtained when a buffered solution (100mM phosphate, pH=7.8) containing the amino acids gly, ser, val, leu, ala (3.5 mM/ amino acid) is reacted with a two-fold excess of hyperpolarized acetic anhydride. (a) Full spectrum (t=0) including large peaks corresponding to unreacted acetic anhydride and hydrolysis product acetic acid, as well as acetylated amino acid products (outlined). (b) Dynamic hyperpolarized spectrum with resolved acetylated amino acid products.
13C data. By the time of the first hyperpolarized spectrum (~11 sec after mixing), the acetylation reaction had already gone to completion, since the hyperpolarized [1-13C] N-acetylated amino acid peak areas were at a maximum at t_0 and decayed due to T_1 relaxation (Figure 4.2b). The calculated T_1’s for the acetylated amino acids correlated with their corresponding molecular weights with glycine and alanine having the longest T_1 (14.7 ± 0.4s) and leucine having the shortest T_1 (8.9± 0.6 s, Table 4.1).

Since there was a two-fold excess of acetic anhydride relative to the amino acids, there was a large residual acetic anhydride peak in the hyperpolarized 13C spectra as well as a large acetic acid peak due to hydrolysis. There was an additional doublet upfield from acetyl-alanine, at 176.0ppm, that was present in control experiments using only an aqueous buffered solution, without any amine nucleophiles present. Therefore this additional doublet most likely represents a breakdown product of the hyperpolarized [1,1-13C] acetic anhydride in aqueous solution.

A representative fully relaxed thermal spectrum used to calculate the hyperpolarized signal enhancement factors is shown in Figure 4.3. Unlike the

<table>
<thead>
<tr>
<th>Product</th>
<th>Chemical Shift (ppm)</th>
<th>T_1 (s)</th>
<th>Yield (%)</th>
<th>Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-acetyl-glycine</td>
<td>177.13</td>
<td>14.7 ± 0.4</td>
<td>91.7 ± 4.5</td>
<td>1391 ± 220</td>
</tr>
<tr>
<td>n-acetyl-serine</td>
<td>177.00</td>
<td>10.9 ± 0.2</td>
<td>97.0 ± 3.0</td>
<td>775 ± 86</td>
</tr>
<tr>
<td>n-acetyl-valine</td>
<td>176.79</td>
<td>10.0 ± 0.2</td>
<td>93.3 ± 2.3</td>
<td>551 ± 43</td>
</tr>
<tr>
<td>n-acetyl-leucine</td>
<td>176.62</td>
<td>8.9 ± 0.6</td>
<td>85.0 ± 4.6</td>
<td>412 ± 70</td>
</tr>
<tr>
<td>n-acetyl-alanine</td>
<td>176.41</td>
<td>14.7 ± 0.4</td>
<td>82.0 ± 3.6</td>
<td>654 ± 96</td>
</tr>
</tbody>
</table>

Table 4.1. Secondarily Acetylated Amino Acids

Table X. Chemical shifts, spin-lattice relaxation constants (T_1), %yield, and hyperpolarized signal enhancement for amino acid mixture data (3.5mM/ amino acid). Data was obtained in triplicate, with averages reported and the corresponding standard deviations indicated. Chemical shifts were referenced to acetic anhydride (172.60 ppm).
hyperpolarized acetylated amino acid spectra, in which different amino acids had significantly different peak areas (Figure 4.2b), all the amino acids had approximately equal peak areas in the fully-relaxed thermal spectra. Signal enhancement in the first hyperpolarized spectrum reflected differences in T_1 signal decay during the approximately 11 seconds required for mixing, temperature equilibration and insertion into the NMR tube. N-acetyl glycine, with the longest T_1 demonstrated the largest signal enhancement (1.4×10^3) and leucine, with the shortest T_1, demonstrated the smallest enhancement (4.1×10^2). Acetyl-alanine was slightly anomalous in this respect demonstrating a lower peak area in the dynamic hyperpolarized spectrum despite its longer measured T_1.
As anticipated, the yields for the acetylation reaction were high, ranging from 82 to 97 percent with excellent reproducibility between the replicate studies (Table 4.1), and were similar to those published previously for the reaction of amino acids and acetic anhydride in aqueous media (Shanaiah 2007).

Even at physiologic concentrations of amino acids (70μM) excellent signal to noise hyperpolarized 13C spectra can be acquire in a single acquisition. Specifically, the acetyl carbonyl of acetylated- glycine, serine, valine, leucine, and alanine had a peak area to noise of 43.1 ± 8.5, 27.8 ± 5.9, 16.0 ± 4.6, 9.1 ± 3.8, and 13.5 ± 3.1, respectively. The relative peak areas in the hyperpolarized spectrum were the same as in the higher amino acid concentration study (Figure 4.2b), i.e. scaled by their T$_1$ relaxation rates, however the chemical shifts were slightly different due to the higher pH of the reaction solution due less acetic acid being produced.
Secondary Hyperpolarization of glycine, diglycine, triglycine

A second set of experiments focused on a chemically similar set of substrates of increasing molecular weight, namely glycine, diglycine and triglycine in order to assess the effect of molecular size on \(T_1 \). A representative data set is depicted in Figure 4.4, which demonstrates peaks corresponding to \([1^{-13}C]\)-acetic acid, \(^{13}C\)-acetylglycine, and \([1,1^{-13}C]\) acetic anhydride. The data for glycine confirmed that the calculated \(T_1 \) value correlated well with that seen in the previous, mixed amino-acid experiment. The \(T_1 \) relaxation time for diglycine was 35% less than glycine and the \(T_1 \) triglycine was 9% less than the diglycine. Results of this are summarized in Table 4.2.
Secondary hyperpolarization of N-acetyl lysine and C-terminus of α-melanocyte stimulating hormone (α-MSH)

Peptides bearing lysine side-chains represent an excellent opportunity to label larger macromolecular structures. To investigate this application, we used hyperpolarized [1,1-13C] acetic anhydride to label an N-acetylated version of lysine, with its nucleophilic side-chain amine, as well as a short peptide corresponding to the C-terminus of α-melanocyte stimulating hormone (α-MSH). N-acetyl lysine and N-acetyl(Wang 2004; Bast 2005) α-MSH have molecular weights of 188.23 g/mol and 383.5 g/mol respectively. The structure of this tripeptide is shown in Figure 4.5. Following secondary labeling via the hyperpolarized anhydride, the acetyl carbonyl of both compounds were found to have the same chemical shift (177.11 ppm), and the T_1's of the acetyl carbonyls scaled with molecular weight, with N-acetyl lysine having and N-acetyl(Wang 2004; Bast 2005) α-MSH having T_1's of 12.2 and 9.5 seconds.

Table 4.2. Secondarily Acetylated Glycine, Diglycine and Triglycine

<table>
<thead>
<tr>
<th>Product</th>
<th>Chemical Shift (ppm)</th>
<th>T_1 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-acetyl-glycine</td>
<td>177.13</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>n-acetyl-diglycine</td>
<td>178.05</td>
<td>9.8 ± 1.2</td>
</tr>
<tr>
<td>n-acetyl-triglycine</td>
<td>178.25</td>
<td>8.5 ± 0.2</td>
</tr>
</tbody>
</table>

Table 4.2. Chemical shifts and spin-lattice relaxation constants for glycine peptides. In each case the average T_1 is reported with the standard deviation. For all experiments, a twofold excess of hyperpolarized [1,1-13C] acetic anhydride was applied to a buffered solution (100mM phosphate, pH=7.8) of the corresponding glycine peptide at 17.5 mM.
Secondary hyperpolarization of N-acetylcysteine

For in vivo applications it will be necessary to demonstrate that a hyperpolarized, anhydride-depleted, aqueous solution of a molecule of interest could be generated using this technique. Instead of using toxic dioxane as a dissolution media, a basic solution of cysteine was used in order to generate N-acetyl cysteine during the dissolution process. Figure 4.6 demonstrates successful secondary labeling of this small molecular weight drug. This experiment also demonstrated the ability to perform the secondary hyperpolarization in aqueous solution during dissolution in the Hypersense® DNP polarizer. Moreover, the reaction went to completion as evidenced by the presence of N-acetylcysteine (172.6ppm) and acetic acid, and absence of acetic anhydride in the hyperpolarized 13C spectrum. In the process of acetylation of the amine, the reaction also yielded acetylation of the cysteine thiol at 202ppm (Figure 4.6). This was minor in comparison to the amine and likely a result of the changing pH with generation of acetic acid. As acetic acid is generated and the pH changes, the thiol becomes a better nucleophile and thus is acetylated.

Figure 4.5. Chemical structure of N-acetyl MSH, a short peptide corresponding to the C-terminus of α-MSH. Only the lysine side-chain is available for acetylation.
Secondary polarization of Arg-Gly-Asp (RGD) ex vivo and in vivo

As was shown in studies of n-acteyl lysine, cysteine and α-MSH small molecules and peptides can be labeled via [1,1-13C] acetic anhydride. These molecules can also be labeled close to chemical completion, making them applicable as \textit{in vivo} probes. The tripeptide Arginine-Glycine-Aspartate (RGD, MW 346.34) is another such peptide with a important \textit{in vivo} application, binding cell surface integrins (Ruoslahti 1996) which has been shown to upregulated in cancer (Edick 2007; Goel 2008). The structure, shown in \textbf{Figure 4.7a}, demonstrates the primary amine of Arginine as the site for acetylation. Acetylation of RGD was accomplished in a basic solution containing the peptide during dissolution of the hyperpolarized acetic anhydride. The first pulse of the experiment (\textbf{Figure 4.7c}) demonstrates the
signal of the acetylated RGD at 11.7T, with T₁ of ~7s. In an attempt to increase the T₁ of acetylated RGD, the acetylation was carried out using per-deuterated [d₆-1,1-\(^{13}\)C] acetic anhydride (Figure 4.7b). This yielded a T₁ of ~8s, only slightly longer than the protonated version. However, at 3T, deuteration significantly lengthens the acetylated RGD as compared to the protonated compound (to 30 secs). In the presence of 1.1 equivalents of base, only the primary amine was acetylated. When the base concentration was increased (2 equivalents) the side-chain amine of arginine was also acetylated, therefore 1.1 equivalents of base is necessary for single acetylation. [d₆-1,1-\(^{13}\)C] acetic anhydride was then used to acetylate RGD and 350μL of dissolution was injected into a transgenic murine model of prostate cancer (TRAMP) mouse (Figure 4.8). Spectra from a representative axial slices (Figure 4.8b) and corresponding axial T₂-weighted image (Figure 4.8a) through the TRAMP tumor and surrounding benign tissues demonstrated the bio-distribution of signal for the RGD peptide. There was some overlap of [1-\(^{13}\)C] lactate (183ppm) and
13C-urea (normally 163ppm, but here wrapped to the position 178ppm) from the syringe phantoms with the large [1-13C] acetate resonance generated in the acetylation reaction. However, a dramatic loss of signal from the acetylated RGD peptide in tumor voxels as compared to voxels containing benign tissue was clearly observed.

These studies demonstrated the feasibility of a “secondary hyperpolarization” approach combining the remarkable NMR signal enhancement provided by DNP with the high reactivity of [1,1-13C] acetic anhydride with amino acids to perform rapid metabolic analyses of amino acid mixtures and to
hyperpolarize biomolecules of interest. [1,1-13C] acetic anhydride is an excellent substrate for DNP hyperpolarization since it is well polarized (5.9%) in 30 minutes and has a relatively long T\textsubscript{1} relaxation time (33.9 sec at 11.7T and 37°C). This approach also takes advantage of the preferential reaction of acetic anhydride with amine nucleophiles, which occurs much more rapidly than hydrolysis, as was evidenced by the reaction being complete by the first hyperpolarized 13C spectra acquired 11 seconds after mixing the reactants.

This study demonstrated that this secondary hyperpolarization approach could be used to reproducibly and near-quantitatively resolve a mixture of amino acids at physiologic concentrations in a single acquisition. The amino acid acetyl carbonyl resonances demonstrated excellent signal-to-noise ratios (SNR) ranging 43 to 9. This difference in SNR was due to T\textsubscript{1} relaxation during the 11 second delay between the mixing of the reactants and the NMR experiment. This delay was required to mix the reactants outside of the spectrometer in order to minimize air bubbles and allow for temperature equilibration, as well as obtain sufficient magnetic field homogeneity to resolve the N-acetyl carbonyls of the amino acids that had very similar chemical shifts. The secondary hyperpolarization approach also allows the calculation of the T\textsubscript{1} relaxation of the products providing a means to correct for T\textsubscript{1} necessary for quantification of the spectral results.

A recent study demonstrated that using high pressure liquid chromatography techniques, the hyperpolarized solution can be injected directly into the NMR spectrometer with good magnetic field homogeneity allowing for good quality spectra to be obtained seconds after injection (Bowen 2008). This study
suggests that in the near future, the mixing of reactants involved in a secondary hyperpolarization could be performed directly in the NMR spectrometer. This would provide a way to capitalize on the full signal-to-noise enhancement provided by DNP and negate the need for T_1 corrections.

The secondary hyperpolarization approach also benefits the study of biologically interesting compounds that either hyperpolarize poorly or have such short T_1’s that they need to be polarized and immediately studied within the NMR spectrometer. Several findings from this study support the feasibility of accomplishing this. Specifically, it was possible to secondarily polarize polymers of glycine (N-acetyl di-and tri-glycine) as well as three small peptides N-acetyl lysine, N-acetyl α-MSH, and N-acetyl RGD. Although, in general the T_1 of the acetyl carbonyl decreased with increasing molecular weight of the biomolecule, the T_1’s were on the order of ten seconds, and the correlation of T_1 with molecular weight was not exact. This was exemplified by the fact that N-acetyl α-MSH with a molecular weight that was 2 times larger than N-acetyl diglycine, had the same T_1. The ability to acetylate peptides with lysine side-chains also provides an excellent opportunity to label a number of important biomolecules, such as ubiquitin, which was previously done (Macdonald 2000). In fact, the T_1s values of the [1-13C] acetyl adducts were 0.9 to 1.2 s based on saturation factors (SF) of 0.59-0.64 using a recycle time of 0.9 s (Macdonald 1999). Although likely too short, ubiquitin is about 100 µM in cells, the highest concentration of any protein, and free versus bound ubiquitin can be diagnostic of cancer (Ande 2009; Vlachostergios 2009; Vlachostergios 2009). If not useful clinically due to the short T_1 values, it certainly
would be useful in structural NMR studies and investigating mechanism of protein adduct formation.

For *in vivo* applications, excess acetic anhydride and dioxanes cannot be used for reactions involved in secondary hyperpolarization due to their toxic effects. In the current study, it was possible to generate hyperpolarized N-acetyl cysteine in aqueous solution during the dissolution process within the hyperpolarizer. N-acetylcysteine is a drug administered IV to treat Tylenol overdose, so this method could be employed to investigate the biodistribution and metabolism of this drug in *ex vivo* and *in vivo* models of disease. It was also demonstrated for N-acetyl RGD using the perdeuterated acetic anhydride. The biodistribution of this molecule, known to recognize and bind integrins (Ruoslahti 1996) which have been shown to be related to malignant phenotypes (Edick 2007; Goel 2008), shows a decrease in signal relative to surrounding benign tissues. This loss of signal is most likely a result of binding and this will be discussed in the following section (§4.3).

This secondary hyperpolarization approach has not been reported previously in the DNP literature. However, similar strategies have been used in the field of positron emission tomography (PET), which often involve incorporation of a radioactive nucleus into a ligand of interest shortly before administration to a patient. For example, biological peptides of interest bearing artificial amino acid side-chains as chelating groups can be “tagged” with positron-emitting isotopes such as technecium-99 and delivered to a patient (Bakker 1991; Van de Wiele 2001). These labeled tracers can then be assessed in vivo using a gamma camera. Potential advantages of hyperpolarized NMR over this technique include direct spectroscopic
evidence of both uptake and metabolism, lack of ionizing radiation dose, short acquisition times, and direct correlation with MR images with superior soft-tissue contrast. However, evaluation of hyperpolarized 13C substrates \textit{in vivo} will be limited by relatively short 13C T$_1$’s of very large biomolecules, which can be quite short (on the order of seconds) for carbon atoms of interest in large proteins and drugs. The next step involves determining if secondary hyperpolarization approach can be used to analyze amino acid levels in human biofluids and used to characterization the biodistribution and metabolism of a small molecular weight drugs such as N-acetylcysteine and N-acetyl-RGD \textit{in vivo}.

4.2 Polarization of Hexoses: Fructose

The \textit{in vivo} metabolism of [1-13C]-pyruvate and its metabolic products, [1-13C]-lactate, [1-13C]-alanine and 13C bicarbonate, have been shown to correlate with disease progression (Albers 2008) and response to therapy (Day 2007) in animal models by DNP mediated hyperpolarized NMR. DNP substrates require a long T$_1$ relaxation to facilitate efficient spin diffusion during the process of hyperpolarization (Borghini 1968; Abragam 1978). Carbonyl carbons, which lack attached protons and limit the relaxation as a result of dipolar cross relaxation, have been the standard species to label and polarize with T$_1$’s on the order of 40-60 seconds, depending on the field strength (Chen 2007; Merritt 2007; Wilson 2009).

Although a number of molecules of interest have been polarized and observed through their carbonyl carbons (Ardenkjaer-Larsen 2003; Albers 2008; Schroeder 2009; Warren 2009; Wilson 2009), a great number of important
metabolic intermediates do not contain a carbonyl. Specifically, changes in carbohydrate metabolism occur with the evolution and progression of cancer (Denko 2008; Ganapathy 2008; Kroemer 2008) as well as a number of other human diseases such as non-alcoholic fatty liver disease (Farrell 2006; Douard 2008; Huynh 2008). Glucose carbons have very short T_1s (< 1 sec) and therefore uniformly 13C labeled glucose, a mainstay of current metabolic studies (Antoniewicz 2006; Lane 2009), cannot be used as an in vivo hyperpolarized metabolic probe of glycolysis.

Fructose, occurring as an isomeric mixture of five and six membered rings, has as its most stable isomer β-fructopyranose with a hemiketal in the C$_2$ position. Fructose can enter glycolysis via hexokinase or fructokinase (Bais 1985; Skoog 1988; Petersen 1992; Funari 2005). The one-step metabolism via hexokinase to the phosphorylated fructose-6-phosphate is analogous to the first step of glycolysis, in which glucose is phosphorylated to glucose-6-phosphate. The metabolic flux to fructose-6-phosphate in the cell is related to the downstream glycolytic metabolic events as well as activity of the pentose phosphate pathway (PPP) (Voet 2004; Tong 2009; Vizán 2009). The pentose phosphate pathway is responsible for the predominant amount of nucleotide synthesis (which is increased at high turnover rates) and has been postulated to be a source of regeneration of NADPH in cancer cells (Kroemer 2008) making them more resistant to oxidative stress and allowing them to replenish glutathione.

Furthermore, metabolism of fructose is implicated in non-alcoholic steatohepatitis (NASH) (Farrell 2006), and in the pathogenesis of specific types of
cancer. Fructose can also be metabolized to the fructose-1-phosphate via fructokinase, a reaction that takes place primarily in the liver(Bais 1985). Hepatic uptake via the GLUT5 transporter demonstrates relative specificity for fructose. Expression of this transporter may be an important biomarker for disease in extrahepatic tissues. For example, the human fructose transporter, GLUT5 (as shown in Figure 4.9), is highly expressed in breast cancer cell lines but not by normal breast tissue(Zamora-León 1996). A recent study of metabolites in the prostate gland has also shown a relationship between fructose and benign versus cancer tissues(Sreekumar 2009). Thus the goal of this series of studies was to investigate a new non-carbonyl hyperpolarized 13C probe, $[2^{13}$C$]$-fructose for the study of metabolism in vivo.

![Figure 4.9. The mechanism for transport by GLUT5 and the first step of metabolism of fructose to fructofuranose-6-phosphate by hexokinase](image)

Hyperpolarized [2-13C]-Fructose Preparation

A 4.0M solution of $[2^{13}$C$]$-fructose (Isotec, Miamisburg, OH) in water containing 15mM OX063 trityl radical (Oxford Instruments) was hyperpolarized on a Hypersense instrument (Oxford Instruments) as previously described(Ardenkjæer-Larsen 2003). The frozen sample was dissolved in 1X phosphate buffered saline (PBS), with a resultant pH of 7.6, and transferred immediately to a 10mm NMR tube.
11.7T NMR Studies of [2-^{13}C]-Fructose

NMR studies were performed on an 11.7T Varian INOVA spectrometer (125MHz ^{13}C, Varian Instruments) using a 10mm 15N/31P/13C broadband direct detect probe and temperature controlled at 37°C. Initially, a thermal spectrum was acquired for a natural abundance fructose sample in 1X PBS buffer at 37°C (nt=9000, sw=30000, np=30000, TR=3.5s, acq time= 0.5s) using a 45° pulse. Figure 4.10 demonstrates the natural abundance and hyperpolarized of 13C spectra of fructose. The C$_2$ carbon resonances are denoted by the blue brackets and correspond to the isomeric distribution of the two ring forms (pyranose and
furanose forms) of the fructose molecule. For the acquisition of hyperpolarized \(^{13}\text{C}\) spectra eighty pulse and acquire hyperpolarized \(^{13}\text{C}\) NMR spectra (1 scan, spectral window = 20000 Hz, number of points= 40000, TR=3s, total acquisition time = 2 min 55s) were acquired using a 5° pulse and proton decoupled using a waltz-16 decoupling scheme. Hyperpolarized studies were followed by acquisition of thermal data with nearly identical parameters, using a 90° flip angle and a repetition time of greater than four T\(_1\)’s (TR=300s, nt=16). For T\(_1\) measurements hyperpolarized solution was placed into a NMR tube pre-heated to 37°C and this temperature is maintained using the variable temperature unit of the NMR spectrometer. T\(_1\)’s were determined by collecting a series of spectra with 3 sec temporal resolution, starting 12 secs after dissolution. These spectra were then fit to a mono-exponential function to determine the spin-lattice relaxation time as previously described (Golman 2003; Gallagher 2008; Wilson 2009). Percent polarization in solution was calculated by comparing the first hyperpolarized spectrum acquired with its thermal spectrum, correcting for differences in tip angle (5° versus 90°), and the number of transients (1 versus 16) obtained. Solution state polarizations were calculated by correcting the enhancement for the T\(_1\) relaxation during the transfer time (12 secs) from the polarizer to the spectrometer, and the thermal polarization at 11.7T (9.6ppm).

For NMR studies of the enzymatic conversion of Fructose to fructose-6-phosphate, hyperpolarized [2-\(^{13}\text{C}\)]-fructose was reacted with 400U of hexokinase (Sigma Aldrich) in the presence of 15mM ATP, 50mM TRIS and 13mM MgCl\(_2\). The labeling and mechanism for transport and metabolism is shown in Figure 4.9,
though in this enzymatic study the transport element has been removed and the enzyme activity was independently measured. Peaks corresponding to fructose-6-phosphate were identified using a natural abundance carbon spectrum, using a similar set of experimental parameters.

3T Studies of [2-13C]-Fructose

T_1 studies were performed using a 3T GE Signa™ scanner (GE Healthcare, Waukesha, WI) equipped with the MNS (multinuclear spectroscopy) hardware package similar to studies at 11.7T, with temperature maintained using a heating pad calibrated to 37°C. Solution spectra were acquired using a 5° non-localized pulse, TR=3s and fit to a mono-exponential. The RF coil used in these experiments was a dual-tuned 1H-13C coil with a quadrature 13C channel and linear 1H channel construction based on an earlier design and also used in 13C-pyruvate mouse imaging studies. For animal studies, T_2-weighted fast spin echo images were acquired prior to MRSI studies to denote anatomy and place voxels on the region of interest. In vivo MRSI studies were carried out using a compressed sensing double spin 3D MRSI acquisition scheme as previously published (Hu 2008) with a $TE = 140\text{ms}, TR=215\text{ms}, FOV = 8\text{cm x 8cm}, and 16 \times 8$ resolution. 500µl of 80mM [2-13C]-fructose (0.0013mmols/kg) was injected similar to previously described methods for [1-13C]-pyruvate in a transgenic model of prostate cancer (TRAMP) (Albers 2008). High dose infusions of fructose (0.5g/kg) can lead to hyperuricemia (Wang 1981), but this is well above the dose given in these studies (0.24mg/kg). These injections were compared to the standard [1-13C]-pyruvate injection for the same
voxel in a tumor region of interest. Maps of resonance distributions were generated from the peak heights in each voxel and overlaid on the corresponding T2-weighted image.

2-13C-Fructose in vivo and ex vivo

Calculated T1’s for the C2 fructose carbon are tabulated in Table 4.3 for the cyclic isomers of fructose (β-fructofuranose, β-fructopyranose, α-fructofuranose) at both 11.7T and 3T, the field strengths of the ex vivo and in vivo hyperpolarized studies. The open chain (linear) isomer of fructose is present in very small amounts (0.4%)(Goux 1985; Skoog 1988) and not observed in the hyperpolarized NMR spectra. There was no significant difference in the C2 T1 between the cyclic isomers of fructose, most likely due to the fast chemical of the isomeric forms(Goux 1985).

<table>
<thead>
<tr>
<th>Isomer</th>
<th>T1 sec (11.7T)</th>
<th>T1 sec (3T)</th>
<th>%pol (corrected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-fructopyranose</td>
<td>16.3 ± 0.5</td>
<td>14.5 ± 0.3</td>
<td>12.0 ± 2.2</td>
</tr>
<tr>
<td>β-fructofuranose</td>
<td>15.8 ± 0.5</td>
<td>13.4 ± 0.5</td>
<td>11.6 ± 2.5</td>
</tr>
<tr>
<td>α-fructofuranose</td>
<td>15.8 ± 0.5</td>
<td>13.4 ± 0.4</td>
<td>11.8 ± 2.0</td>
</tr>
</tbody>
</table>

T1 relaxation times at 11.7T and 3T (N=3 for both, ± s.d.) are shown for each of the isomers as well as percent polarization (N=3), which have been corrected for the time from dissolution to measurement. All studies were conducted at 37°C.

There was a small decrease in T1 relaxation (≈2 sec) of the C2 carbon with decreasing magnetic field strength from 11.7T to 3T (Table 4.3). To date, hyperpolarized 13C agents have involved labeling at carbonyl positions, such as the C1 position of pyruvate, due to their relatively long T1’s(Ardenkjaer-Larsen 2003; Golman 2003; Gallagher 2008; Gallagher 2008; Wilson 2009). In contrast to the
quaternary hemiketal carbon of the fructose isomers, carbonyl carbons decrease in T_1 with increasing field strengths (van de Ven 1995). This difference is predominantly due to chemical shift anisotropy dominating the T_1 relaxation of carbonyl carbons at higher field strengths (van de Ven 1995). This does not hold for the hemiketal of fructose, leading to the typical lengthening of T_1 with increasing field strength. Percent polarizations (Table 4.3) show similar values for the isomers of fructose with an average solution state polarization at 37°C of 12%. These polarization values are comparable, although somewhat lower, than those reported for other compounds of interest (Ardenkjaer-Larsen 2003; Kohler 2007; Merritt 2007) such as pyruvate, which has been reported to be polarized from 21-30% (Albers 2008; Schroeder 2008). There was no T_1 dependence on pH observed for pH ranges 5.9-7.8 for the fructose isomers.

The polarization levels were calculated relative to thermal signals from the same sample. The DNP polarizer sits in the fringe field of the 11.7T spectrometer in order to eliminate the possibility of passing the hyperpolarized sample through a zero field and loosing all polarization. For carbonyls such as the C$_1$ of pyruvate, we know that the T_1 increases at lower magnetic field strengths, and that the T_1 in the fringe field of the magnet should be longer, on the order of 80 secs as compared to 52 secs at 11.7T. This is due to the relationship between CSA and field strength ($CSA\propto B_o^2$), which dominates the carbonyl T_1 at high field strengths 36. However, as demonstrated in this publication, the T_1 of the quaternary C2 carbon of fructose is only slightly longer at higher field strengths (Table 4.3). Therefore the T_1 in the
fringe field should be slightly shorter than 3T, which would result in a small underestimation of the percent polarization at time zero.

The reaction of hyperpolarized $[2^{-13}\text{C}]$-fructose with hexokinase after addition of fructose to the hexokinase in buffer within the NMR yields the phosphorylated pentose within 5 seconds (Figure 4.11). An expansion of the downfield region of the spectrum (Figure 4.11a) shows the split in the 105.5ppm resonance, which is a combination of both the β-fructofuranose and the β-fructofuranose-6-phosphate (the predominant isomeric form of fructose-6-phosphate). Figure 4.11 also compares the first scan of the hyperpolarized acquisition (Figure 4.11b) versus the thermal spectrum acquired over 85 minutes post DNP (Figure 4.11c). It is apparent that the enzyme has now fully converted the fructose to fructose-6-phosphate and there is no longer a resonance corresponding to β-fructopyranose.
Figure 4.12 demonstrates the metabolism following separate injections of 80mM hyperpolarized fructose (Figure 4.12d) and pyruvate (Figure 4.12e) in the same TRAMP mouse. As previously published (Albers 2008), the primary TRAMP tumor demonstrates high levels of hyperpolarized lactate, as well good signal to noise spectra of hyperpolarized fructose and it's metabolite β-fructofuranose-6-phosphate. Injections of 80mM hyperpolarized fructose yielded an average total signal-to-noise ratio of 21.0 ± 2.1 in tumor slices (an average of 70 voxels in 2 slices was used for N=3 TRAMP mice). Because the isomeric ratio of the fructose pyranose
to furanose in solution is approximately 77/23 (Skoog 1988) the in vivo peak at 105.5ppm (and if visible the downstream 108.25ppm resonance) is not solely due to β-fructofuranose-6-phosphate but also has a small contribution from β-fructofuranose. In this relatively large TRAMP tumor, both high levels of LDH activity and hexokinase activity were observed 15 secs post-injection in the same 0.035cc voxels. Figure 4.12b demonstrates the distribution of the total fructose signal throughout the slice, a measure of combined delivery and uptake of hyperpolarized fructose. Slightly higher levels of total hyperpolarized fructose were observed in the tumor region relative to surrounding muscle in the same slice. In comparison, Figure 4.12c demonstrates the distribution of the resonance at 105.5ppm, which includes the metabolite β-fructofuranose-6-phosphate. Importantly, this resonance has a good signal-to-noise (≈ 5:1) and is co-localized in regions of high lactate within the tumor (Figures 4.12d and 4.12e).

Figure 4.13 demonstrates a case where there was tumor only in the left side of the murine prostate, providing a direct comparison of hyperpolarized fructose uptake/delivery and metabolism between benign and malignant prostate tissues. The MRSI data demonstrated that the resonance corresponding to the composite β-fructofuranose and β-fructofuranose-6-phosphate were higher in the regions of tumor as compared to the benign prostate tissues (Figure 4.13d). Interestingly, there is no difference in total hyperpolarized fructose in regions of malignant versus benign prostate tissue. However, the composite β-fructofuranose and β-fructofuranose-6-phosphate resonance (Figure 4.13c) was dramatically higher in
malignant left lobe of the prostate as compared to the benign right side (Figure 4.13c and 4.13d).

Figure 4.13. (a) T2-weighted image of a TRAMP mouse with tumor only on the right side of the prostate. Metabolic images of total hyperpolarized [2-13C]-fructose resonances (b) and the composite β-fructofuranose-6-phosphate and β-fructofuranose (c) are shown overlaid on the T2-weighted image. Resonances corresponding to the β-fructopyranose and composite β-fructofuranose-6-phosphate and β-fructofuranose are shown in the corresponding spectral array (d). The yellow area demonstrates a region of tumor, compared to a region of benign prostate tissue in red. An unassigned spurious, low signal-to-noise resonance appears at 115 ppm.
In this study, [2-13C]-fructose was hyperpolarized using the DNP method and shown to have sufficiently long T₁’s and polarizations sufficient for hyperpolarized 13C NMR spectroscopic and MRSI studies. The hemiketal C₂ of fructose demonstrates the first non-carbonyl to be hyperpolarized for use as a metabolic probe and suggests the potential of using other hyperpolarized probes involving quaternary carbons even those in ring structure. Enzymatic conversion of hyperpolarized [2-13C]-fructose, to fructose-6-phosphate has been demonstrated in vitro and in vivo. This new hyperpolarized probe is exciting from the standpoint that malignant tissue was discriminated from benign prostate and surrounding tissues based on the detection of hyperpolarized β-fructofuranose-6-phosphate. The enzymatic conversion of hyperpolarized fructose allows the probing of important changes in glycolytic metabolism upstream of pyruvate, including upregulated hexose uptake (Zamora-León 1996), hexokinase activity and changes in flux through the pentose phosphate pathway (Kroemer 2008). Although, this study was focused on prostate cancer models, upstream glycolytic processes have been the basis of a number of cancer studies including the HIF-1 and PI3K related processes (Kroemer 2008). Therefore changes in fructose metabolism may be important in the assessment of therapies that target these pathways. A potential link between fructose metabolism and non-alcoholic fatty liver disease has also been demonstrated (Donnelly 2005) and thus hyperpolarized fructose could become a valuable metabolic imaging agent to study this and other diseases both ex vivo and
in vivo. Moreover, the dose of fructose given in this murine study translates into a very safe patient dose.

4.3 Binding by DNP

It is still unclear what information is present in the changes of hyperpolarized signal as a function of its nuclear environment. The dominant force associated with decay of the hyperpolarized signal is spin-lattice relaxation (or T_1). Long T_1 carbons have hyperpolarized signals that last longer and the life-time of the polarized state can be furthered preserved by generating a spin state where relaxation is quantum mechanically disallowed (Warren 2009). Typically the solution state T_1 relaxation time has been used as a parameter for determining what spins to label and observe in most DNP work. The goal of this study was to use T_1 relaxation to understand the how binding of the hyperpolarized probe impacts life-time of the polarized state, a critical question for in vivo imaging studies of hyperpolarized probes.

It is well known that in fast exchange systems, changes in parameters such as observed magnetization, chemical shift, and spin relaxation rates (T_1, T_2, $T_{1ρ}$, etc...) can be used to estimate equilibrium constants such as the binding constant in a ligand-host system (Fielding 2007). One such well-characterized system is that of benzoic acid (ligand) and $β$-cyclodextrin (host) (Rekharsky 1998; Schneider 1998). In the presence of $β$-cyclodextrin, the aromatic ring of benzoic acid preferentially inserts itself into the inner-core of the cyclodextrin molecule by hydrophobic interactions (Aree 2003).
To explore this system, samples of benzoic acid were dissolved in dimethylacetamide (DMA) to a concentration of 3.6M. 2mg of the Finland radical (Reddy 2002; Dhimitruka 2007) per 100mg of benzoic acid was used as the organic free radical. Prepared samples were polarized for approximately 1 hour (at 94.094 Ghz) in a Hypersense® (Oxford Instruments, Oxford UK) and dissolved in 5mL of 100 mM phosphate buffer (pH=7.8). For assessment of binding, the hyperpolarized benzoic acid solution was mixed with 0.5mM β-cyclodextrin in the same 100mM phosphate buffer. All NMR studies were conducted at 310°K in a 10mm broadband probe on a 500Mhz (125Mhz for 13C) Varian INOVA NMR spectrometer. All data were acquired using a 5° flip angle, 3s repetition time and 1 transient. Apparent T_1 relaxation times were fit to a mono-exponential equation in Matlab (Mathworks) as previously described (Deichmann 1999; Wilson 2009).

As shown in **Figure 4.14**, all carbons of unlabeled benzoic acid were hyperpolarized, observed and resolved in one 5° degree pulse at a concentration of 36.4mM. Hyperpolarized benzoic acid was then mixed in increasing concentrations...
relative to 0.5 mM β-cyclodextrin to assess the changes in T₁. Figure 4.15 demonstrates the change in hyperpolarized signal with time for a solution of benzoic acid (Figure 4.15a) and benzoic acid with the addition of 0.5mM β-cyclodextrin. Overall signal decreased more rapidly in time as a result of the interaction of the benzoic acid carbons and β-cyclodextrin. The apparent T₁ relaxation time in Figure 4.15 decreased from 34.9 secs and 19 secs (Figure 4.15a) to 28.8 secs and 16.4 secs (Figure 4.15b) for the C₁ and C₂ carbons of benzoic acid respectively.

![Figure 4.15](image)

Figure 4.15. (a) Hyperpolarized benzoic acid and (b) benzoic acid with the addition of 0.5mM β-cyclodextrin are shown. Every third spectrum of the array is shown (a temporal resolution of 9 secs).

Increasing concentrations of benzoic acid relative to a constant β-cyclodextrin were used to generate Figure 4.16, where ΔObs is defined as 1/T₁obs-1/T₁free. The y-intercept of the linear fit can be used to determine the log binding constant (log K) as a result of changes in the observed T₁ for the C₁ and C₂ (Fielding 2007). The log K derived from the fits of the C₁ and C₂ changes were 1.74 and 1.68 respectively. These constants were within the range of reported log K measurements of benzoic
acid (1.5-2.2) interacting with β-cyclodextrin (Rekharsky 1998). Hyperpolarized signal for the other benzoic acid carbons was so greatly reduced that T_1 measurements were not reliable, though this reduction in signal relative to the free benzoic acid exemplifies the effect of binding on hyperpolarized signal.

To further demonstrate the influence of binding on changes in observed T_1 and thus hyperpolarized signal decay, naproxen was hyperpolarized in DMA similar to benzoic acid. Naproxen, an over the counter pain reliever, has a structure similar to benzoic acid, which leads to similar inclusion in the cyclodextrin structure. As shown in Figure 4.17, five carbons of naproxen are readily hyperpolarized and observed. To demonstrate the effect of binding on this drug’s hyperpolarized signal decay and the utility of polarizing a native ligand, 6.5mM hyperpolarized naproxen was mixed with 0.5 mM β-cyclodextrin. The T_1 relaxation time of the free naproxen C$_1$ was 14.8 ± 0.3 secs (n=3) and in the presence of the host was reduced ~30% to 10.6 secs (n=3). Similar to the benzoic acid experiments, the other observable carbons were decreased below reliable T_1 quantification.

Typically in drug discovery experiments, the question of binding of the drug to its target of interest is of great importance. NMR studies of these compounds at
low concentrations in solution can require long experiment times and complicated mechanisms. In this experimental setup, with knowledge of the carbon's T1, binding can be assessed in a single experiment within minutes. This information also lends itself to further understanding of the nature of hyperpolarized signals as a result of metabolism in vivo. For example, in studies of hyperpolarized [1-13C] pyruvate in a perfused Langendorff heart model (Merritt 2007; Schroeder 2008) as well as in vivo studies of tissues in murine models (Albers 2008) signals are generated from metabolism of pyruvate through the first step of the Kreb's cycle that leads to the generation of CO\textsubscript{2} (via pyruvate dehydrogenase) and bicarbonate (facilitated by carbonic anhydrase). These signals appear lower than what would be expected in highly oxidative tissues. It is possible that a percentage of the signal that is not observed is a result of a T1 loss associated with the enzyme-substrate interactions and the mechanism of enzymatic conversion, impacting assessment of relative metabolic fluxes.

Though the effect of binding on T1 relaxation is a well understood, the impact of this on the T1s of new hyperpolarized probes is a critical question in assessing the utility of the new probe as a in vivo imaging agent, and for accurately determining metabolic fluxes using these probes.

Figure 4.17. Single 5° pulse spectrum of 18mM hyperpolarized natural abundance naproxen demonstrating the polarization of 5 carbons.
4.4 Other Novel Compounds

Studies of hyperpolarized [1-13C] pyruvate (Chen 2007; Day 2007; Kohler 2007; Merritt 2008; Albers 2008; Keshari 2008; Schroeder 2008) as well as the previously mentioned compounds (§4.1 and 4.2) have provided interesting preliminary results both in vivo and ex vivo. Additionally, hyperpolarized probes have been secondarily labeled (§4.1), used for observing glycolytic metabolism (§4.2), and to determine binding constants (§4.3). Although in theory the method of hyperpolarization is generally applicable, the development of new probes is not a trivial. The purpose of this section is to delve deeper into more novel hyperpolarized probes, which are still in developmental stages.

[1-13C]-glycine: as a marker of mitochondrial activity

Isotopomer studies of [2-13C] glycine have been developed and used to assess mitochondrial activity by exploiting the one carbon cellular metabolism pathway (Cowin 1996) as shown in Figure 4.18. Figure 4.18 is a schematic representation of the synthesis of serine in the cytosol and the

Figure 4.18: Compartmentation of serine synthesis and the use of isotopomeric analysis and 13C MRS to determine biochemistry and to monitor mitochondrial function.
mitochondria of the cell and the different isotopomers that are formed in these two cellular compartments. On the right side of Figure 4.18 is a portion of a representative \(^{13}\text{C}\) NMR spectrum of PCA extract of rat infused for three hours with \([2^{-13}\text{C}]-\text{glycine}\), demonstrating the various peaks corresponding to the three serine isotopomers that are formed. The methyl donor in serine synthesis depends on substrate used (Pasternack 1994), and glycine is the major methyl donor in the mammalian mitochondria (Cowin 1996; Cowin 1996). The cytosolic methylating agent, S-adenosylmethionine, was unlabeled in the study shown in figure 4.18, therefore, the peak pattern at the \(C_2\) and \(C_3\) of serine should be the same, however, the singlet \(C_2\) peak, representing \([2^{-13}\text{C}]-\text{serine}\) isotopomer, is larger than the singlet \(C_3\) peak, representing the \([3^{-13}\text{C}]-\text{serine}\) isotopomer. The additional \(C_2\) singlet signal represents 20\% of the total serine \(C_2\) and \(C_3\) peak area, indicating that 20\% and 80\% of the serine was formed in the cytosol and mitochondria, respectively. In mammals there is both a cytosolic (cSHMT) and mitochondrial (mSHMT) that serine hydroxymethyl transferase that can reversibly convert glycine to serine (Cowin 1996). The isotopomer analysis presented relies on the label scrambling in the mitochondria and the generation of differentially labeled serine to determine mitochondrial activity.

Typically the \(C_1\) carbon is not used in traditional \(^{13}\text{C}\) NMR experiments due to its long \(T_1\) relaxation time, which requires long scan times for data acquisition. In the case of DNP, the long \(T_1\) is an advantage, allowing the hyperpolarized signal to propagate for longer periods of time. When glycine is labeled in the \(C_1\) position, the label will follow a similar progression as the \(C_2\) shown in Figure 4.19. In the cytosol
it will become C_1 labeled serine, but in the mitochondria it will be cleaved by the glycine decarboxylase complex and form $^{13}\text{CO}_2$ (Figure 4.19). When hyperpolarized the conversion of glycine to CO_2 and serine in real time can yield comparable information to the previously mentioned isotope method.

To investigate this potential mechanism, a high concentration glycine preparation was designed with concentrated base. 100mg of $[1-^{13}\text{C}]$-glycine was dissolved in 70μL of 19N NaOH, 30μL of dimethylsulfoxide (DMSO) and 3.8mg of the OX63 radical, yielding a final concentration of approximately 6.7M. Figure 4.20 is a dynamic acquisition of 10uL of the glycine preparation dissolved in 5.3mL of pH=7 40mM TRIS buffer with 0.3mM EDTA, final concentration of 12.6mM. The measured
T₁ of glycine was 38.8 secs, slightly shorter than the T₁’s for the C-1 carbonyl of pyruvic acid (48.3 secs) at 11.7T. Injection of glycine into a bioreactor containing JM1 cell encapsulates did not yield any additional resonances, and in cases, the apparent T₁ of the hyperpolarized glycine resonance appeared to be dramatically shortened. This may be a result of binding effecting the T₁ of the carbon and thus facilitating the loss of hyperpolarized signal.

[guanidino-¹³C]-creatine: as a marker of cellular energetics

Cells, particularly skeletal muscle and the brain cells, use phosphocreatine (PCr) as an energy store (Saks 2007). Creatine is reversibly phosphorylated by creatine kinase, one of the fastest endogenous enzymes known. In the presence of excess ATP, phosphate is stored in the cell as PCr (Schlattner 2006). The activity of creatine kinase can also be used as an indicator of changes in creatine uptake, which is potentially linked to changes in cancer resistance to chemotherapy. To access this fast reaction, creatine can be ¹³C labeled in the guanidino position (Figure 4.21) and hyperpolarized (Figure 4.22). The T₁ of hyperpolarized [guanidino-¹³C] creatine was measured to be 14 secs (Figure 4.22). When creatine is phosphorylated to phosphocreatine, there was a shift of the labeled carbon from 160.9ppm (creatine) to 162.8ppm (PCr), providing sufficient resolution to observe both hyperpolarized Cr and PCr and the PCr/Cr in real time. An acid based preparation for creatine was
designed to explore this enzymatic conversion. 100 mg of [guanidino-13C] creatine was dissolved in 70\textmu L of 12N HCL, 50\textmu L of dimethylacetamide (DMA), and 4.5 mg OX63, yielding a concentration of approximately 3.5M. The T\textsubscript{1} was measured to be 22 secs. When reacted with creatine kinase, the signal disappeared entirely. Similar to glycine, it is possible that the loss in hyperpolarized singal is due to a tight binding of creatine with creatine kinase resulting in a dramatic shortening of the T\textsubscript{1} of the 13C labeled carbon. Further studies would be required to characterize this loss.

Figure 4.22. Dynamic experiment of hyperpolarized 13C creatine, the resonance at 106.9ppm corresponds to the guanidino carbon.
[7-¹³C]-nicotinamide: a biomarker of cellular redox

The balance of reducing and oxidizing molecules governs many important cellular pathways. Cofactors such as NAD(H) and NADP(H) play an important role in the ability to deal with toxins as well as limiting in metabolic schemes related to cancer. Labeling of the pathway associated with nicotinamide metabolism has been shown by ¹³C NMR in both Saccharomyces cerevisiae and Escherichia coli (Unkefer 1984). Due to the large separation in chemical shift of the C₂ (δ=1.5ppm) and C₅ (δ=23ppm) positions of nicotinate, in ¹³C labeling studies, Unkefer et al. were able to separate reduced and oxidized forms of nicotinamide derivatives and measure redox ratios. Due to overlap between the C₇ of nicotinate and NADH, it was not useful in the previous study, but in humans nicotinamide is typically phosphorylated and is not metabolized through nicotinic acid (Figure 4.23).

![Diagram showing the enzymatic scheme of nicotinamide metabolism.](image)

Figure 4.23. The above enzymatic scheme demonstrates the typical metabolism of [7-¹³C]-nicotinamide in humans after transport into the cell by diffusion. NAMPT - nicotinamide phosphoribosyltransferase, NMNAT - nicotinamide nucleotide adenyltransferase, NADK – nicotinamide kinase, NAD(H) – nicotinamide adenine dinucleotide, NADP(H) – nicotinamide adenine dinucleotide phosphate.

The C₇ of nicotinamide (170.8 ppm) provides a good separation between the original DNP molecule and the metabolic reduced (173.6 ppm) and oxidized (166.2 ppm) forms.
The uptake of the nicotinamide has been shown to be mediated by free diffusion (Lan 1968), thus allowing for potentially fast metabolism to the products of interest and the T_1 of the C7 carbon is adequately long for hyperpolarization. As a result of the high cost of the compound, a first step was taken to synthesize the $[7$-13C] nicotinamide using a previously published reaction scheme (Yang 2004). The reaction scheme in Figure 4.24 was used to attempt the labeling of $[7$-13C] nicotinamide. The first step of the reaction was done over 17 hours at 80°C. Thin layer chromatography showed a separation of the labeled compound, though purification became a major hindrance. Future experiments will focus on this synthesized compound and its polarization for in vitro application.

![Reaction scheme for synthesis of $[7$-13C] nicotinamide](image)

Figure 4.24. Reaction scheme for synthesis of $[7$-13C] nicotinamide.

Hyperpolarized 31P-Phosphoric acid

In most bioreactor studies, 31P spectra are acquired to determine the viability of cells or tissues during the time course of the experiment (Daly 1988; Narayan 1990; Masson 1992; Macdonald 1993; Gillies 1994; Farghali 1996). Depending on the cell density, 31P scans can take 1000s of averages. Traditional media such as DMEM and RPMI are supplemented with sodium phosphate, which plays an important role in cellular energy metabolism (i.e. incorporation in the NTP's, etc.). With the potential dramatic increases afforded by hyperpolarization, phosphoric
acid was chosen as a candidate for polarization, in order to assess cellular energy metabolism.

433μL of phosphoric acid was mixed with 10mg of OX63 radical (final concentration of phosphoric acid - 17M) and polarized using a Hypersense® polarizer for 1 hour. In order to observe the resonance as it was building up, a nearby Varian spectrometer was used to pulse on the coil inside the polarizer at the frequency for 31P at 3.35T. Dissolution of hyperpolarized phosphoric acid in water is shown in Figure 4.25 at 11.7T. A fit to the decay yields a T_1 of approximately 8 secs and a back calculated enhancement of approximately 100. This is well below polarizations obtained for hyperpolarized 13C labeled carbonyls and the other 13C-labeled probes discussed above. However, optimization of the polarization protocol could yield improved signal enhancements. It is possible that the acidity effected the polarization on dissolution, causing it to relax faster. Generally compounds retain their polarization under more basic conditions and if the phosphoric acid was neutralized in dissolution, it could have yielded higher polarizations. Future studies of hyperpolarized phosphoric acid will require the optimization of the sample preparation and dissolution process, but could yield appreciable enhancements of 31P spectra in bioreactor studies.
4.5 Multipolarization

A significant advantage of hyperpolarized MR metabolic imaging using dynamic nuclear polarization (DNP) is the ability to probe metabolic fluxes in real time, at high signal to noise (Ardenkjær-Larsen 2003). *In vivo* hyperpolarized MR is unprecedented in its ability to characterize specific enzymatic pathways (Golman 2003; Golman 2006). Most studies to date have focused on the last step of glycolysis in which $[1^{-13}C]$ pyruvate is enzymatically converted to a number of products, including $[1^{-13}C]$ lactate mediated by the activity of lactate dehydrogenase (LDH) (Golman 2003; Golman 2006; Kohler 2007; Merritt 2007; Albers 2008). This pathway is associated with the Warburg effect, which postulates enhanced aerobic glycolysis to lactate in tumour cells relative to normal tissue (Warburg 1956). More recently, a number of additional pathways have been probed, for example the conversion of bicarbonate to CO$_2$ as mediated by carbonic anhydrase (Gallagher 2008), and the conversion of glutamine to glutamate catalyzed by...
glutaminase (Gallagher 2008). Investigation of these processes by hyperpolarized NMR has allowed mapping of pH \textit{in vivo} and assessment of glutaminase activity in hepatic tumour cells. Additional agents showing promise in animals or perfused heart models include $[2^{-13}C]$ pyruvate (Schroeder 2009) and $[1^{-13}C]$ lactate (Chen 2008). As the number of useful DNP agents continues to expand, the ability to probe multiple pathways and mechanisms simultaneously may provide valuable metabolic “signatures” associated with specific types of tumour and other diseased tissue. 1H MRS is well established as a means to establish metabolic profiles in diseased tissue \textit{in vivo} (Dillon 1999; Kurhanewicz 2002), but hyperpolarized MR has the additional capacity to provide kinetic information. A particular conversion pattern observed in diseased tissue may aid in targeting regions of pathology for biopsy or focal therapy, and/or better characterize the extent or aggressiveness of disease present prior to or after treatment.

In addition to providing real-time information about \textit{in vivo} metabolism, the agents used in hyperpolarized 13C MRI have other important advantages over contrast agents currently in clinical use. Since endogenous molecules are utilized, these agents are expected to have little or no toxicity in humans, even at relatively high concentrations. This feature is particularly appealing given recent concerns about contrast nephropathy associated with iodinated CT contrast, as well as nephrogenic systemic fibrosis (NSF) seen in patients receiving gadolinium chelates for MR (From 2008; Thomsen 2008). While many new 13C labeled agents may be appropriate for metabolic imaging in humans, 13C sodium bicarbonate has special promise due to its well-demonstrated lack of toxicity and ability to probe
physiological pH. In addition, a broad number of pathologic processes demonstrate alterations in pH, including neoplastic, ischemic, and inflammatory conditions (Syrota 1985; Hohn-Berlage 1989; Schindler 1996; Ciriolo 1997).

The dynamic nuclear polarization process requires the 13C labeled probe compound to be in an amorphous (glassy) solid state with the appropriate free radical concentration at low temperatures ($\sim 1.2^\circ K$) (Ardekjaer-Larsen 2003). To accomplish an optimal preparation of a new probe, the highest possible concentrations of the desired agent, solvent/glassing agent(s), presence, concentration and type of a gadolinium agent, and the concentration and type of free radical must all be optimized. In addition, appropriate dissolution media must be prepared for each agent in order to ensure physiological pH, osmolarity, and to preserve the longest possible T_1. In this section, a method for direct polarization of 13C sodium bicarbonate is reported, that is suitable for use in humans. This method has been combined with a co-polarization technique that allows simultaneous polarization of 13C-bicarbonate and [1-13C]-pyruvate, to perform both pH and metabolic mapping in vivo using a single intravenous bolus. The technique was subsequently extended to polarize four 13C labeled substrates providing information on pH, metabolism, necrosis and perfusion, namely [1-13C]-pyruvic acid, 13C-sodium bicarbonate, [1,4-13C]-fumaric acid, and 13C-urea, in a single imaging experiment.

Hyperpolarized Sample preparation

In all cases the 13C compounds were purchased from Isotec (Miamisburg, OH) and used without further purification. All natural abundance chemicals and solvents were obtained from Aldrich (Miamisburg, OH). 13C-sodium bicarbonate:
135mg of 13C-sodium bicarbonate were dissolved in 1099mg of glycerol, in a sealed flask while heating with a heat-gun. The hot solution was then passed through a 0.45µm Millipore MCE Membrane filter (Fisher Scientific), and OX63 radical (Oxford Instruments, Abingdon, UK) was then dissolved to a final concentration of 20mM. 13C-pyruvic acid: To a neat sample of [1-13C]-pyruvic acid was added OX63 radical to a final concentration of 15mM. 13C-fumaric acid: 350 mg of [1,4-13C]-fumaric acid were mixed with 500µL of dimethyl sulfoxide (DMSO) and OX63 was added to a final concentration of 15mM. 13C-urea: 390mg of 13C-urea were dissolved in 895mg of glycerol (Aldrich), and OX63 was added to a final concentration of 15mM.

Co-polarization of 13C-Sodium Bicarbonate with [1-13C]-Pyruvic Acid

For studies at 11.7T, 125mg of the 13C-sodium bicarbonate preparation were placed in a sample cup and frozen in liquid nitrogen, followed by addition of 2.2µL of pyruvic acid preparation. The sample was rapidly frozen to avoid mixing of the materials, and polarized at 94.074 GHz and 1.2-1.4°K for 3.5h using a Hypersense® DNP polarizer (Oxford Instruments, Abingdon, UK). This microwave frequency corresponded to the optimum microwave frequency for the 13C sodium bicarbonate sample, which was approximately 10 MHz lower than the optimum frequency observed for [1-13C]-pyruvic acid. The solid state polarization build-up curve was fit to the equation:

$$P(t) = P_{eq} \left(1 - \exp \left(-\frac{t}{T_{buildup}} \right) \right) + baseline$$

[4.1]
Where P_{eq} is the equilibrium polarization achieved for the sample and T_{buildup} is the polarization build-up time constant.

The resulting time constant was on the order of 3500s, similar to that observed for the 13C bicarbonate preparation alone. The sample was subsequently dissolved in 6.3mL of water containing 0.3mM ethylenediaminetetraacetic acid (EDTA). The solution was mixed manually in a teardrop flask, and injected using a 5cc syringe into a previously shimmed 10mm NMR tube at 37°C. This process required approximately 15 seconds. Percentage polarizations were quantified in solution by measuring the signal enhancement obtained by DNP polarization compared to the signal at thermal equilibrium. For studies at 3T, an identical polarization procedure was used except 250mg of the sodium bicarbonate solution were used, combined with 4.5µL of pyruvic acid and dissolved using 6.3 mL of water/ EDTA.

Multi-compound polarization of 13C sodium bicarbonate, pyruvic acid, urea and fumaric acid

For studies at 11.7T, the following sample preparations (described above) were placed in a sample cup and frozen in liquid nitrogen: 30.0 µL sodium bicarbonate, 1.0µL pyruvic acid, 6.0µL urea 3.0µL fumaric acid. The compounds were polarized at 94.080 GHz and 1.2-1.4°K for 2h and subsequently dissolved in 5.0mL of 100mM phosphate buffer (pH=7.8). Following dissolution, the sample was treated as above. In a separate set of experiments, identical quantities of these 13C
compounds were individually polarized by the usual method and dissolved using the same buffer.

Hyperpolarized 13C Spectroscopic Studies

All high magnetic field NMR studies were performed on a 11.7T Varian INOVA spectrometer (125MHz 13C, Varian Instruments) using a 10mm 15N/31P/13C triple-tuned direct detect probe. For the acquisition of hyperpolarized 13C spectra of bicarbonate and pyruvate eighty proton-decoupled (WALTZ-16, 9000 Hz bandwidth, decoupling during acquisition only) pulse and acquire hyperpolarized 13C NMR spectra (1 average, spectral window = 4000 Hz, number of points= 16000, TR=3.0s, acq time= 500ms, total acq time = 300s) were acquired every 3 sec using a 5° pulse. Spin-lattice (T_1) relaxation times were determined by performing a mono-exponential fit to the signal decay curve of the hyperpolarized compounds. In all cases the r^2 value for the fit was > 0.999 where r = the Pearson product moment correlation coefficient. All spectral measurements were collected at \approx 37°C. Signal enhancements due to hyperpolarization were calculated by integrating bicarbonate and pyruvate peaks in the first spectrum of the hyperpolarized dynamic experiment, and comparing these to the corresponding peaks in the thermal spectrum, accounting for differences in tip angle and the number of transients obtained.

3T T_1 measurements

All studies were performed using a 3T GE Signa™ scanner (GE Healthcare, Waukesha, WI) equipped with the MNS (multinuclear spectroscopy) hardware
package. The RF coil used was a dual-tuned \(^1\text{H}-^{13}\text{C}\) coil used in prior hyperpolarized \(^{13}\text{C}\) pyruvate mouse imaging studies (Kohler 2007). For the \(T_1\) measurement experiments, a half-echo FID sequence was used (5\(^\circ\) non-selective RF excitation, spectral window of 5 kHz with 2048 points, TR = 3.0s, 64 acquisitions, total acquisition time = 194s). Magnitude spectra were used for data processing, and magnitude decay curves were obtained for pyruvate, pyruvate-hydrate, bicarbonate and \(\text{CO}_2\), from which the \(T_1\)’s were fit to a mono-exponential decay function.

Murine study design

Five mice were imaged: a B6SJL male wild-type mouse (normal), and 4 Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. The coil setup was the same as described above for the \(T_1\) measurements. \(T_2\)-weighted \(^1\text{H}\) images were acquired in three planes using a fast spin-echo (FSE) sequence for anatomical reference. \(^{13}\text{C}\) spectroscopic imaging was acquired immediately upon completion of a 15s, 350\(\mu\)L injection of the dissolved co-polarized solution. These used a half-echo FID acquisition, 8x8 matrix size, TR = 130ms (wild-type) or 230ms (TRAMP), TE = 5ms, 10mm slice, 10x10mm in-plane resolution for 1.0cc voxels, and a spectral window of 5000Hz with 512 points (wild-type) or 1024 points (TRAMP). The k-space data was acquired concentrically, with a progressive RF flip angle scheme to utilize all available magnetization. This resulted in a total acquisition time of 8s (wild-type) or 15s (TRAMP). A tube with 8M \(^{13}\text{C}\) urea inserted alongside the mouse was used for RF pulse calibration.
Co-polarization of 13C-Sodium Bicarbonate with $[1^{13}$C] Pyruvic Acid and T_1 measurements

A preparation method for 13C sodium bicarbonate in glycerol was developed, allowing for reasonable 13C sodium bicarbonate concentrations in the preparation (1.8M ≈ half that achieved previously for cesium bicarbonate(Gallagher 2008)) and a high solution state polarization (12.7 ± 1.9%). Multi-compound polarization of 13C-sodium bicarbonate (1.8M) in glycerol and neat $[1^{13}$C] pyruvic acid (14.2M) was performed by freezing the 13C preparations separately within the same sample cup, prior to placement in the polarizer. For both 11.7T (N=3) and 3T experiments (N=3), polarization of samples containing both 13C sodium bicarbonate and 13C pyruvate resulted in a build-up time constant of approximately 3500s, with greater than 95% polarization of the sample achieved at 3.5 hours. This polarization build-up time is longer than the polarization build-up time for 13C pyruvate alone (build-up time constant ≈ 900s) but is comparable to the polarization build-up time of 13C sodium bicarbonate alone. Following dissolution using EDTA/H$_2$O, the

![Figure 4.26. Dynamic hyperpolarized spectrum for a co-polarized solution of [1-13C] pyruvate and 13C sodium bicarbonate, with data collected at 11.7T. The final solution pH was 7.8-7.9. The mono-exponential decay for bicarbonate and pyruvate peaks were used to calculate the T1's.](image)
concentrations of 13C bicarbonate and [1-13C] pyruvate were 28.4mM and 5.2mM, respectively, with an average pH of 7.8. The average solution state polarization was $15.7 \pm 1.2\%$ for bicarbonate and $17.6 \pm 0.9\%$ for pyruvate, which was not significantly different from the percent polarization obtained for each compound alone (Table 4.4). Representative data are shown in Figure 4.26, which demonstrate large signal enhancements, and mono-exponential decay for [1-13C] pyruvate (171ppm), [1-13C] pyruvate hydrate (179ppm), 13C bicarbonate (161ppm) and 13C carbon dioxide (125ppm), with no significant impurities noted in the hyperpolarized dynamic spectrum.

The carbon dioxide resonance was ≈ 22 fold smaller than the bicarbonate resonance. Calculated mean T_1's at 11.7T were 46.7 ± 0.6 s for bicarbonate, and 47.7 ± 1.1 s for pyruvate. At 3T the mean T_1 values were significantly longer for pyruvate 67.3 ± 2.5 s than at 11.7T. The bicarbonate T_1 was also longer (49.7 ± 2.9 s) at 3T, but this difference was not significant. The measured T_1 of carbon dioxide at 11.7T (44.7 ± 0.6 s) was not significantly less than that of sodium bicarbonate.

Murine Co-polarization Studies

Co-polarized 13C bicarbonate and [1-13C] pyruvate was injected into 1 normal and 4 tumor-bearing TRAMP mice in order to determine whether images of pyruvate metabolism and pH could be simultaneously obtained and that the presence of the 13C bicarbonate did not affect pyruvate metabolism. For animal studies, a larger sample containing both 13C bicarbonate and [1-13C] pyruvate was used, corresponding to injected concentrations of 55mM and 10mM, respectively.
shown in Figures 4.27 and 4.28, well resolved hyperpolarized 13C resonances for the labelled carbonyls of [1-13C] pyruvate, [1-13C] pyruvate hydrate, [1-13C] lactate, 13C bicarbonate and 13C carbon dioxide could be observed in both normal mice (Figure 4.27) and in tumor containing TRAMP mice (Figure 4.28).

The chemical shifts of these compounds were not different from those observed in solution studies. Despite the significantly higher concentration of 13C bicarbonate injected, and in contrast to what was observed in solution (Figure 4.26), the observed in vivo bicarbonate peak was lower than the pyruvate peak. The 13C carbon dioxide peak observed was on average 22.4 fold lower than the 13C bicarbonate peak.
Figure 4.27. *In vivo* data collected at 3T. A T₂-weighted anatomic image (A), pH image of the same slice demonstrating the distribution of calculated pH (B), spectra for the corresponding voxels shown in the T₂-weighted image (C) and the Lactate/Pyruvate ratio image (D) are shown for a wildtype mouse. Following dissolution, 350 µL of a solution with 55mM pre-polarized ¹³C bicarbonate and 10mM ¹³C pyruvate were injected intravenously. Data was acquired with a resolution of 1 cm³. The pH for individual voxels was calculated using the Henderson-Hasselbalch equation and pKa of 6.17 at 37°C. The peak ratios of observed ¹³C lactate to ¹³C pyruvate are shown beneath the corresponding spectra. Regions of the CO₂ resonance have been scaled up to demonstrate the signal-to-noise achieved in each voxel.
Figure 4.28. In vivo data collected at 3T. A T$_2$-weighted anatomic image (A), pH image of the same slice demonstrating the distribution of pH calculated (B), spectra for the corresponding voxels shown in the T$_2$-weighted image (C) and the Lactate/Pyruvate ratio image (D) are shown for a TRAMP tumor bearing mouse. The tumor is visible in the upper half of the slice. Following dissolution, 350µL of a solution 55mM in prepolarized 13C bicarbonate and 10 mM in 13C pyruvate were injected intravenously. Data was acquired with a resolution of 1 cm3. The pH for individual voxels was calculated using the Henderson-Hasselbalch equation and pKa of 6.17 at 37°C. The peak ratios of observed 13C lactate to 13C pyruvate are also shown beneath the corresponding spectra. Regions of the CO$_2$ resonance have been scaled up to demonstrate the signal-to-noise achieved in each voxel.
Multi-compound polarization

In order to demonstrate that more than two compounds could be polarized in the same sample without significant loss of T_1 or enhancement, four substrates of metabolic and physiologic interest were polarized: [1-13C] pyruvic acid, 13C sodium bicarbonate, [1,4-13C] fumaric acid, and [1-13C] urea. Again, these compounds were frozen separately in a Hypersense® polarizer sample cup and polarized at a microwave frequency of 94.080 GHz. Since not every compound could be polarized at its ideal frequency, a compromise value was chosen to provide the best simultaneous polarization of the mixture. The multi-polarization had a build-up time constant of approximately 3500s, with greater than 95% polarization of the sample achieved at 3.5 hours identical to the co-polarization, indicating the polarization time was dominated by the slower polarization of 13C sodium bicarbonate. On dissolution using EDTA/H2O, the concentrations of 13C

![Figure 4.29. Multi-compound polarization of four 13C biomolecules of interest: fumarate, pyruvate, urea, and bicarbonate. These data were obtained 60s following dissolution. Levels of polarization achieved were similar to that obtained for the individual compounds, performed using an optimized microwave frequency. T_1's in solution were similar to those obtained for the separate species. Standard deviations are reported (N=3).]
bicarbonate, [1-^{13}C] pyruvate, [1,4-^{13}C] fumaric acid, and [1-^{13}C] urea were 10.8mM, 2.8mM, 2.5mM and 7.8mM respectively, with a measured pH of 7.8-7.9. A representative resulting hyperpolarized spectrum (t=60s) is presented in Figure 4.29, with calculated T_1’s, and enhancements presented in Table 4.4.

Figure 4.29 demonstrates well-resolved resonances for all of the ^{13}C labeled carbonyls; [1-^{13}C] pyruvate (171ppm), [1-^{13}C] pyruvate hydrate (179ppm), ^{13}C bicarbonate (161ppm) and ^{13}C carbon dioxide (125ppm), [1-^{13}C] urea (164ppm) and [1,4-^{13}C] fumurate (175ppm) with one unknown small impurity at 160ppm. In a second set of experiments, the compounds were polarized separately under identical conditions, and dissolved in a high buffering-capacity buffer to ensure a similar pH (7.8) to that observed for the multi-metabolite case. In all cases the calculated T_1’s and enhancements were similar, demonstrating that multi-compound polarization can be achieved with minimal if any loss of SNR (Table 4.4).

<table>
<thead>
<tr>
<th>Compound</th>
<th>T_1 (s) Multipol</th>
<th>T_1 (s) Alone</th>
<th>% polarization Multipol</th>
<th>% polarization Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{13}C bicarbonate</td>
<td>43.3 ± 1.2</td>
<td>48.7 ± 0.6</td>
<td>10.3 ± 1.8</td>
<td>12.7 ± 1.9</td>
</tr>
<tr>
<td>[1-^{13}C] pyruvate</td>
<td>48.3 ± 1.5</td>
<td>48.3 ± 0.6</td>
<td>17.5 ± 3.4</td>
<td>17.4 ± 1.5</td>
</tr>
<tr>
<td>[1-^{13}C] fumarate</td>
<td>29.0 ± 1.0</td>
<td>29.3 ± 0.6</td>
<td>15.6 ± 1.9</td>
<td>12.0 ± 0.7</td>
</tr>
<tr>
<td>[1-^{13}C] urea</td>
<td>43.0 ± 1.0</td>
<td>44.0 ± 0.3</td>
<td>11.6 ± 2.5</td>
<td>12.4 ± 0.4</td>
</tr>
</tbody>
</table>

In this series of experiments, a method for direct polarization of ^{13}C sodium bicarbonate suitable for use in patients was developed, and the co-polarization of ^{13}C sodium bicarbonate and [1-^{13}C] pyruvate in a single intravenous bolus was achieved for the first time. The ^{13}C sodium bicarbonate preparation provided
hyperpolarized bicarbonate concentrations that were approximately half (55mM) that previously reported for cesium bicarbonate (100mM), and similar solution state polarizations (≈16%) without the need for chromatography following dissolution to remove the cesium (Gallagher 2008). Consistent with chemical shift anisotropy dominating the T₁ relaxation of carboxyls, the T₁’s of ¹³C bicarbonate and [¹⁻¹³C] pyruvate were even longer at 3T (49.7s and 67.3s, respectively) as compared to 11.7T (Blicharski 1972; Anet 1992). As predicted by the Henderson-Hasselbalch equation (\[\text{pH} = \text{pKa} + \log_{10}\left(\frac{[\text{HCO}_3^-]}{[\text{CO}_2]}\right)\], pKa = 6.17) (Gallagher 2008) and the known pH and temperature of the solution, the carbon dioxide resonance was ≈22 fold less than the bicarbonate resonance. However, the co-polarization resulted in sufficiently high solution state polarizations and spin-lattice relaxation times of bicarbonate, carbon dioxide and pyruvate to acquire simultaneous in vivo images of interstitial pH and pyruvate metabolism in normal and tumor bearing mice.

Despite the significantly higher concentration of ¹³C bicarbonate than [¹⁻¹³C] pyruvate injected in animal in vivo studies, and in contrast to what was observed in solution, the observed in vivo bicarbonate peak was much lower than the pyruvate peak. This reduction in hyperpolarized signal may be the result of ¹³C carbon dioxide loss during the dissolution process, the much shorter in vivo T₁ of ¹³C bicarbonate and carbon dioxide (Gallagher 2008), as well as loss of ¹³C carbon dioxide in the lungs with ventilation. The in vivo T₁ of ¹³C bicarbonate and carbon dioxide has been previously reported to be ≈10 seconds, much shorter than the ≈50 seconds reported in the solution studies described herein. Most important for in vivo measurements of pH is the fact that the T₁ of ¹³C bicarbonate and carbon
dioxide are similar as reported in the solution state in this paper and in vivo previously (Gallagher 2008). The equivalence of the T_1's is most likely due to the rapid inter-conversion of 13C bicarbonate and carbon dioxide, since even in the absence of carbonic anhydrase the exchange is rapid ($\approx 0.1 \text{s}^{-1}$) and this exchange is further increased by the enzyme (Gallagher 2008). Moreover, sufficient S/N data were obtained for magnetic resonance spectroscopic imaging studies with a 1cm^3 spatial resolution. This relatively coarse spatial resolution was mandated by the roughly 20-fold reduction in 13C CO$_2$ peak signal-to-noise relative to the 13C bicarbonate peak for pH's in the physiologic range. However, this limitation in sensitivity can be overcome by increasing the amount of hyperpolarized 13C bicarbonate infused. In the current set of studies, the bicarbonate preparation in glycerol was 1.8M, limiting the concentration of injected bicarbonate to 55mM using existing methods on the Oxford Hypersense® polarizer. In patient studies, the 13C bicarbonate concentration should not be a problem since it is often infused in relatively high concentrations into patients, with standard doses being on the order of 150mM, and clinical DNP polarizers would have the ability to polarize and dissolve larger amounts of 13C bicarbonate.

Similar to what has been previously reported for the injection of hyperpolarized [1-13C] pyruvate alone in the normal and TRAMP mouse, the production of significantly higher levels of hyperpolarized [1-13C] lactate were observed in the TRAMP tumor compared to benign tissues in the abdomen of the mouse after injection of co-polarized 13C bicarbonate and [1-13C] pyruvate (Albers 2008). Importantly, the presence of bicarbonate did not change the observed
pyruvate metabolism with the same tumor hyperpolarized lactate/pyruvate ratios being obtained when pyruvate was administered alone or in combination with bicarbonate. Rapid equilibration of injected hyperpolarized 13C sodium bicarbonate with 13C CO$_2$ after injection in mice also allowed the calculation of pH on a voxel by voxel basis as previously described in a study of hyperpolarized 13C cesium bicarbonate in a murine lymphoma model (Gallagher 2008). The TRAMP prostate tumor demonstrated a low pH ($pH = 6.87$ to 7.00) similar to what has been previously reported for the pH of the EL4 tumor ($pH = 6.71 \pm 0.14$) (Gallagher 2008). Our initial data suggested that the more acidic pH observed in cancerous tissue correlated with increased pyruvate to lactate conversion, supporting the hypothesis that the cellular evolution associated with carcinogenesis selects for lactate-producing glycolytic resulting in microenvironmental acidosis. It has been proposed that this microenvironmental acidosis enables the malignant cells to breakdown and invade neighboring tissue (Gatenby 2004; Gatenby 2006). However, additional studies need to be performed in order to verify the correlation between hyperpolarized lactate production and decreased interstitial pH, and whether decreased tumor pH correlates with increasing pathologic grade as previously shown for hyperpolarized lactate production (Albers 2008).

The co-polarization technique was extended to polarize four 13C labeled substrates providing simultaneous information on pH, metabolism, necrosis and angiogenesis, namely [1-13C] pyruvic acid, 13C sodium bicarbonate, [1,4-13C] fumaric acid, and [1-13C] urea with high levels of solution state polarization (10-20%) and spin-lattice relaxation values (30-50s) similar to those obtained with polarization of
the individual hyperpolarized probes. Hyperpolarized 13C urea has already been employed as an intravascular angiographic agent, and could be used in the described agent combination to assess tissue perfusion (Ardenkjaer-Larsen 2003; Golman 2003). $[1,4^{-13}C]$ fumarate represents a point of entry into the citric acid cycle and has recently been shown to be a marker of treatment response through increased production of hyperpolarized malate due to increased cellular necrosis after therapy (in’t Zandt 2009). Simultaneous evaluation of enzymatic pathways and other physiologic properties is not easily achieved using other imaging methods including PET, optical imaging, or other targeted MR methods. In addition, concerns about toxicity have limited the proliferation of other intravenous imaging agents, while the endogenous 13C agents included in this multi-polarization approach are anticipated to have minimal untoward effects in humans. As additional new hyperpolarized 13C agents are developed, multi-compound polarization will be a powerful method of probing multiple metabolic pathways and other physiologic properties simultaneously, in a single MR scan lasting only seconds.
Chapter 5: Conclusions and Future Directions

Future work in the area of bioreactor and hyperpolarized NMR probe development will be needed to optimize these tools and provide a robust platform for the investigation of cellular metabolism. While both techniques have been refined for use independently, their combination will require further characterization before they are fully applicable to surrogate systems, such as bio-artificial organs, and quantitative assessment of metabolic processes. Most tissue culture perfusion systems used by cell biologists, have been 'home-built' and lack the sophistication necessary to remove system limitations as a confounding factor in data analysis. Analogously, most hyperpolarized NMR probes have been developed by chemists and physicists, who have greatly pushed the field of low temperature spin physics forward, but have not taken into account the biochemical significance of agents and their application. It was the goal of the studies in this dissertation to make a first attempt at addressing some of the design issues associated with NMR-compatible bioreactors as well as the application of novel hyperpolarized NMR probes.
5.1 Next Generation NMR-compatible Bioreactors

A major limitation of traditional NMR-compatible bioreactors is density of viable cells and tissue. This hindrance is a result of perfusion/diffusion distances inside of the unit. Optimal diffusion distances for O_2, the limiting biochemical substrate (§1.5), require high flow rates to establish axial diffusion at the penalty of shear force damage. This can be overcome by creating microspheres, which can allow for short diffusion distances, but are susceptible to compression and shear force when perfused. Moving spheres are also very difficult to image, limiting their utility for study beyond non-localized spectroscopy under flowing conditions. This becomes more complicated when intra- and extra-cellular compartmentation confounds the understanding of uptake, metabolism and the mathematical modeling of a system.

With these limitations in mind, the first generation cartridge bioreactor was designed to create a static perfused environment. In this system the greater amount of shear force is imposed inside of the hollow fibers, with axial diffusion providing sufficient O_2 and metabolic substrates to the cell mixture or tissue. In the case of embedded cells, by utilizing small diffusion distances, cells can be maintained at a high density to allow for adequate NMR signal. Static cultures also allow for imaging of the bioreactor, which can provide important information about not only the dynamics of the cell system versus the surrounding media, but also about the bioreactor itself. As can be seen in the first iteration of the cartridge bioreactor, there are some interesting flow characteristics that were not anticipated. By using
flow imaging, these design issues can be addressed and applied to the study of cellular systems in vitro.

The best approach to future studies of bioreactors may be the use of more rigid constructs to allow for more stability and support for the embedded cells. New developments in 3D cell culture design maybe used to create an environment where cells and tissues preferentially grow in orientation and phenotype. Systems that also utilize oxygen carriers to enhance oxygen transport may overcome the diffusion distance minima, which limit bioreactor design. These methods, combined with hyperpolarized techniques to observe kinetics on the order of nanomoles, will greatly enhance the application of in vitro cell culture systems to the characterization of real time metabolism.

5.2 Future Development of Hyperpolarized Probes

Along with development of systems where cells and tissue can be maintained at physiologic levels, it is necessary to develop hyperpolarized probes which can provide more insight into the cellular and extracellular characteristics. As a result of the high sensitivity afforded by hyperpolarized NMR, spectroscopic imaging data can be acquired with high spatial and temporal resolution. New techniques have been outlined in this dissertation (§4) to probe different stages of metabolism as well as pH, necrosis, redox and perfusion. Also secondary polarization by chemical reactions such as acetic anhydride may provide the means of tagging peptides and small molecular weight drugs to observe interactions, which are indicative of other processes.
In order to develop new, as well as characterize existing probes, the mechanisms that govern hyperpolarization and the loss of signal must be better understood. Some progress has been made in this dissertation (§4.3) to understand the effect of binding on decrease of hyperpolarized signal, but other mechanisms such as interaction with iron in blood plasma may further decrease hyperpolarized signal. Also changes in relaxation at low field and through changing fields may play a role in the differences in hyperpolarized signal that is observed.

5.3 The “Proof is in the Pudding”

The most difficult aspect of this series of studies has not been the application of techniques, the development of biocompatible systems or the spin physics associated with hyperpolarized NMR. Surprisingly, the proof of utility has been the most elusive. Typical responses to publications lend themselves to comments such as “why do this if you can measure flux by traditional 13C NMR” or “…this is a demonstration of something which can be done – but should not!”. These comments arise from a lack of understanding of the potential of such novel techniques. The greater goal of future research must be a demonstration of the power of this combination of techniques, which is generally misunderstood.

“Sometimes you have tell them, tell them again, wait a couple of lines and then hit them over the head with it.” With this in mind, future studies will require better visualization of these combined techniques as well as their comparison to traditional gold standards such as mass spectrometry and NMR for fluxomics as well as contrast enhanced MR and PET in vivo. It is difficult for the traditional researcher
to hear that this technology will allow you to do “what a Biochemist does on an extracted sample in an afternoon, what a Spin physicist can do in an overnight of averaging, and what a Cell Biologist can in weeks of cell experiments” all \textit{in vivo} in less than 1 min. Add in simultaneous measurements and you might as well give up (§4.5). Thus the data needs to be presented as what it is and in the future the power in application to both \textit{in vitro} bioreactor and \textit{in vivo} systems will become increasingly apparent. In conclusion, as one of my thesis committee members has reminded me, sometimes it doesn’t matter how you make it, at the end of the day the “Proof is in the Pudding”.
Appendix A: Fluidized Bioreactor

Drawings of machined bioreactor components are shown for the fluidized bioreactor design.

The Baffle was designed with 300um holes so as to keep 500um beads from moving past with perfusion. This was interfaced with a Delrin arm, which fits into the baffle.
The top cap was designed to fit into the screw top of a standard 10mm wide mouth NMR tube. This part screws into the Delrin arm (as shown below) via a 8/32” plastic screw.
Appendix B: Cartridge Bioreactor

Drawings of machined bioreactor components for the cartridge bioreactor design.

The top cap extrudes into the Ultem 1000 cylinder creating the enclosure for the bioreactor cartridge and support for the hollow fibers, which extrude into the cartridge.
When assembled, fibers are placed inside the cartridge supported by stainless steel pins. These are removed prior to insertion into the NMR tube shown below.
Appendix C: Culture Media

The culture medium used for the JM1 cell culture studies in Chapter 2 is tabulated below which is standard DMEM 3g/L glucose supplemented with 10% fetal calf serum (FCS) and 100 units/mL penicillin and 100 μg/mL streptomycin.

<table>
<thead>
<tr>
<th>Compound</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride</td>
<td>200</td>
</tr>
<tr>
<td>Ferric nitrate</td>
<td>0.1</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>200</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>400</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>3700</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>6400</td>
</tr>
<tr>
<td>Sodium phosphate</td>
<td>125</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>3000</td>
</tr>
<tr>
<td>Phenol Red Na</td>
<td>15</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>110</td>
</tr>
<tr>
<td>L-Arginine hydrochloride</td>
<td>84</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>48</td>
</tr>
<tr>
<td>L-Gluatmine</td>
<td>584</td>
</tr>
<tr>
<td>Glycine</td>
<td>30</td>
</tr>
<tr>
<td>L-Histidine hydrochloride</td>
<td>42</td>
</tr>
<tr>
<td>L-Isoleucine</td>
<td>105</td>
</tr>
<tr>
<td>L-Leucine</td>
<td>105</td>
</tr>
<tr>
<td>L-Lysine HCl</td>
<td>146</td>
</tr>
<tr>
<td>L-Methionine</td>
<td>30</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>66</td>
</tr>
<tr>
<td>L-Serine</td>
<td>42</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>95</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>16</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>72</td>
</tr>
<tr>
<td>L-Valine</td>
<td>94</td>
</tr>
<tr>
<td>D-Calcium panthothenate</td>
<td>4</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>4</td>
</tr>
<tr>
<td>i-Inositol</td>
<td>7.2</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>4</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>4</td>
</tr>
<tr>
<td>hydrochloride</td>
<td></td>
</tr>
</tbody>
</table>
Thiamine hydrochloride 4
Folic acid 4
Riboflavin 0.4

The medium formulation used for human prostate tissue slice experiments is shown below, again a modified DMEM medium.

<table>
<thead>
<tr>
<th>MW</th>
<th>Conc.</th>
<th>Mass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-arginine ∙Hcl</td>
<td>210.7</td>
<td>1 X 10⁻¹ M</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>139.6</td>
<td>5 X 10⁻³ M</td>
</tr>
<tr>
<td>L-histidine ∙HCl ∙H₂O</td>
<td>209.6</td>
<td>1 X 10⁻² M</td>
</tr>
<tr>
<td>L-isoleucine</td>
<td>131.2</td>
<td>3 X 10⁻² M</td>
</tr>
<tr>
<td>L-leucine</td>
<td>131.2</td>
<td>1 X 10⁻¹ M</td>
</tr>
<tr>
<td>L-lysine ∙Hcl ∙H₂O</td>
<td>182.7</td>
<td>2 X 10⁻² M</td>
</tr>
<tr>
<td>L-methionine</td>
<td>149.2</td>
<td>3 X 10⁻² M</td>
</tr>
<tr>
<td>L-phenylalanine</td>
<td>165.2</td>
<td>3 X 10⁻³ M</td>
</tr>
<tr>
<td>L-serine</td>
<td>105.1</td>
<td>1 X 10⁻² M</td>
</tr>
<tr>
<td>L-threonine</td>
<td>119.1</td>
<td>1 X 10⁻¹ M</td>
</tr>
<tr>
<td>L-tryptophan</td>
<td>204.2</td>
<td>1 X 10⁻³ M</td>
</tr>
<tr>
<td>L-valine</td>
<td>117.2</td>
<td>1 X 10⁻² M</td>
</tr>
<tr>
<td>L-tyrosine</td>
<td>181.2</td>
<td>3 X 10⁻³ M</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biotin</td>
<td>244.3</td>
<td>3 X 10⁻⁵ M</td>
</tr>
<tr>
<td>Ca·pantothenate</td>
<td>238.3</td>
<td>1 X 10⁻⁴ M</td>
</tr>
<tr>
<td>niacinamide</td>
<td>122.1</td>
<td>3 X 10⁻⁵ M</td>
</tr>
<tr>
<td>pyridoxine ∙HCl</td>
<td>205.7</td>
<td>3 X 10⁻⁵ M</td>
</tr>
<tr>
<td>thiamine ∙HCl</td>
<td>337.5</td>
<td>1 X 10⁻⁴ M</td>
</tr>
<tr>
<td>Kcl</td>
<td>74.6</td>
<td>3.8 X10⁻¹ M</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂HPO₄ ∙7H₂O</td>
<td>268.1</td>
<td>8.1 X10⁻² M</td>
</tr>
<tr>
<td>folic acid</td>
<td>441.4</td>
<td>3 X 10⁻⁴ M</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeSO₄ ∙7H₂O</td>
<td>278</td>
<td>3 X 10⁻⁴ M</td>
</tr>
<tr>
<td>MgCl₂ ·6H₂O</td>
<td>203.3</td>
<td>5.2 X 10⁻² M</td>
</tr>
<tr>
<td>MgSO₄ ·7H₂O</td>
<td>246.5</td>
<td>1.6 X 10⁻² M</td>
</tr>
<tr>
<td>CaCl₂ ·2H₂O</td>
<td>147</td>
<td>9.2 X 10⁻³ M</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenol red · salt</td>
<td>376.4</td>
<td>5.9 X 10⁻³ M</td>
</tr>
<tr>
<td></td>
<td>Sodium pyruvate</td>
<td>riboflavin</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>376.4</td>
</tr>
<tr>
<td>7</td>
<td>L-cystine</td>
<td>240.3</td>
</tr>
<tr>
<td></td>
<td>1.5 X 10^-2 M</td>
<td>0.72</td>
</tr>
<tr>
<td>7</td>
<td>L-aspargin</td>
<td>150.1</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-2 M</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>L-proline</td>
<td>115.1</td>
</tr>
<tr>
<td></td>
<td>6 X 10^-2 M</td>
<td>6.91</td>
</tr>
<tr>
<td>7</td>
<td>putrescine ·2HCl</td>
<td>161.1</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-4 M</td>
<td>0.032</td>
</tr>
<tr>
<td>7</td>
<td>vitamin B12</td>
<td>1255.4</td>
</tr>
<tr>
<td></td>
<td>1 X 10^-4 M</td>
<td>0.136</td>
</tr>
<tr>
<td>7</td>
<td>L-aspartate</td>
<td>133.1</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-2 M</td>
<td>2.66</td>
</tr>
<tr>
<td>7</td>
<td>L-glutamate</td>
<td>147.1</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-2 M</td>
<td>2.94</td>
</tr>
<tr>
<td>7</td>
<td>L-alanine</td>
<td>89.09</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-2 M</td>
<td>1.78</td>
</tr>
<tr>
<td>7</td>
<td>glycine</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>2 X 10^-2 M</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>hypoxanthine</td>
<td>136.1</td>
</tr>
<tr>
<td></td>
<td>3 X 10^-3 M</td>
<td>0.408</td>
</tr>
<tr>
<td>7</td>
<td>6,8 - thiocytic acid</td>
<td>206.3</td>
</tr>
<tr>
<td></td>
<td>1 X 10^-4 M</td>
<td>0.021</td>
</tr>
<tr>
<td>7</td>
<td>myo ·inositol</td>
<td>180.2</td>
</tr>
<tr>
<td></td>
<td>1 X 10^-1 M</td>
<td>18.02</td>
</tr>
<tr>
<td>7</td>
<td>thymidine</td>
<td>242.2</td>
</tr>
<tr>
<td></td>
<td>3 X 10^-3 M</td>
<td>0.73</td>
</tr>
<tr>
<td>7</td>
<td>CuSO₄ ·5H₂O</td>
<td>249.7</td>
</tr>
<tr>
<td></td>
<td>1 X 10^-6 M</td>
<td>0.00025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stock</th>
<th>Concentration</th>
<th>Amount (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50X</td>
<td>1200</td>
</tr>
<tr>
<td>2</td>
<td>100X</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>100X</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>1,000X</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>100X</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>100X</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Compounds</th>
<th>MW</th>
<th>Conc.</th>
<th>Mass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSO₄ ·7H₂O</td>
<td>287.5</td>
<td>5 X 10^-4 M</td>
<td>0.014</td>
</tr>
<tr>
<td>glucose</td>
<td>180.2</td>
<td>7 X 10^-3 M</td>
<td>25.23</td>
</tr>
<tr>
<td>NaCl</td>
<td>58.45</td>
<td>1 X 10^-1 M</td>
<td>116.9</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>136.1</td>
<td>4.3 X 10^-4 M</td>
<td>1.17</td>
</tr>
<tr>
<td>L</td>
<td>242.2</td>
<td>2 X 10^-2 M</td>
<td>58.44</td>
</tr>
<tr>
<td>CuSO₄ ·5H₂O</td>
<td>238.3</td>
<td>3 X 10^-2 M</td>
<td>142.98</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>84</td>
<td>1.4 X 10^-2 M</td>
<td>23.52</td>
</tr>
<tr>
<td>PFMR-4A</td>
<td>for 500 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>100 mg/ml</td>
<td>50 ml</td>
<td>10 ng/ml</td>
</tr>
<tr>
<td>EGF</td>
<td>100 mg/ml</td>
<td>50 ml</td>
<td>10 ng/ml</td>
</tr>
<tr>
<td>BPE</td>
<td>14 mg/ml</td>
<td>1.4 ml</td>
<td>40 mg/ml</td>
</tr>
<tr>
<td>PEA</td>
<td>0.1 M</td>
<td>500 ml</td>
<td>0.1 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>HC</td>
<td>10 mg/ml</td>
<td>50 ml</td>
<td>1 mg/ml</td>
</tr>
<tr>
<td>SE</td>
<td>3×10^{-4} M</td>
<td>50 ml</td>
<td>3×10^{-8} M</td>
</tr>
<tr>
<td>GENT</td>
<td>40 mg/ml</td>
<td>1.25 ml</td>
<td>100 mg/ml</td>
</tr>
<tr>
<td>RA</td>
<td>0.1 mg/ml</td>
<td>50 ml</td>
<td>0.01 ng/ml</td>
</tr>
<tr>
<td>IN</td>
<td>4 mg/ml</td>
<td>500 ml</td>
<td>4 mg/ml</td>
</tr>
<tr>
<td>VIT E</td>
<td>2.3×10^{-2} M</td>
<td>50 ml</td>
<td>2.3×10^{-6} M</td>
</tr>
</tbody>
</table>
REFERENCES

