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ABSTRACT 

Kathryn Bradford: Land Use Regression and Other Geo-Statistical Analysis Methods to Predict 

At-Risk Private Well Consumers in North Carolina 

(Under the direction of Marc Serre) 

 

 

North Carolina has the largest scaled number of private well groundwater dependents in 

the United States.  Despite this, there is no water quality legislation in existing private wells in 

North Carolina resulting in low frequency sampling and increased contamination exposure.  

Tetrachloroethylene (PCE), trichloroethylene (TCE), and dichloroethylene (DCE) are chemicals 

that have been found in private wells in North Carolina. According to the Center for Disease 

Control (CDC), TCE is a known carcinogen and PCE is a likely carcinogen, elevating the 

importance of determining high risk areas in North Carolina.    

Land Use Regression (LUR) and Bayesian Maximum Entropy (BME) analyses were used 

to predict the concentration and sources of PCE, TCE, and DCE in North Carolina over a thirty-

year period.  The LUR model shows influence of dry-cleaners at short distances for PCE and 

both Resource Conservation and Recovery Act (RCRA) sites and dry-cleaners at short distances 

for TCE and DCE.   
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CHAPTER 1: INTRODUCTION 

 

TCE production in the United States has increased from 260,000 pounds in 1981 to 

321,000,000 pounds in 19911.  According to the EPA and CDC, “TCE in drinking water is a 

result of its rapid leaching from landfills and it’s discharge from industrial wastewaters…the 

biodegradation of TCE under anaerobic conditions is slow, making TCE relatively persistent in 

subsurface waters.”1 The EPA has also estimated that in 1985, TCE was detected in 

approximately 10% of the wells tested across the United States14.  

TCE is a hydrophilic chemical that is used in manufacturing, textile production, heavy 

machinery, oil processors, and dry cleaners.  Vapor degreasing of fabricated metal parts and 

textiles account for 80% of its use today where only 5% is used for solvents in dry cleaning.1 Up 

to this point, no studies have investigated the source of TCE contamination in North Carolina, 

but other studies have shown that with higher population densities, there have been elevated 

levels of TCE.2 This study is examining other sources of TCE contamination to better predict the 

source of elevated levels of TCE without relying on population density as an explanation for 

increased exposure. As a result, public health professionals will be able to better inform at-risk 

communities of their exposure, based on the surrounding industrial facilities.  Additionally, this 

research can be used as a model for the future investigation for the exploration of other harmful 

contaminants that have not been fully investigated such as GenX, which has become a public 

health concern in the eastern part of North Carolina. 
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PCE is a hydrophilic chemical with four chlorine atoms, one less than TCE. Based on 

past studies, it is believed that a major source of PCE contamination is from dry cleaner 

facilities, but other sources cannot be discounted.3 There has been research performed on the 

potential industrial sources for PCE contamination3 in North Carolina, and according to this 

study, dry cleaners have been considered a likely source for PCE contamination in North 

Carolina. 

DCE is a hydrophilic chemical that is produced from the degradation of TCE and is also 

used to produce solvents in chemical mixtures in the manufacturing processes of disinfectants, 

dyes, perfumes, pharmaceuticals, soaps, insecticides, and flame retardants.1,4 Additional 

information on the chemicals studied can be found in the supplementary information. 

TCE exposure has potentially fatal health impacts as it is classified as a known 

carcinogen according to the EPA list of dangerous chemicals and historically has been detected 

in both sampling wells and private wells across the state of North Carolina.  PCE is considered a 

potential carcinogen3. DCE is not considered a carcinogenic risk to human health but is 

chemically similar to TCE4.  For this reason, it is important to study the current exposure levels 

that exist in private wells in North Carolina as well as to look at the exposure to PCE and DCE, 

which are chemically similar to TCE.  Most importantly, TCE and PCE have both been linked to 

being the potential cause of renal cancer and other chronic illnesses and an elevated short 

exposure to any of the three chemicals could cause permanent damage or even death in some 

instances.1,2,3,4 Additionally, according to the CDC and other epidemiology studies, there is 

strong evidence that TCE causes kidney cancer, liver cancer, and malignant lymphoma (a blood 

cancer).1,16 
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North Carolina has the highest combined number of people on private wells based on 

population density and the highest number of houses on private groundwater wells based on 

population density. Therefore, TCE contamination, in addition to PCE and DCE contamination, 

is potentially a significant concern for North Carolina residents.  However, there are no existing 

regulations on private well water quality.  The EPA “does not regulate private wells nor does it 

provide recommended criteria or standards for individual wells”1,4. Additionally, North Carolina 

does not have any state specific regulations on private well water quality and only requires water 

quality testing of wells when first constructed.  Even so, North Carolina’s requirements to test a 

well upon construction was only initiated in 200815 and no further testing is required after the 

initial construction, making it nearly impossible to ensure proper water quality standards in 

private wells.  With the recent discovery of GenX and other contaminants in a large number of 

private wells, it has become even more of an important policy change that needs to be addressed.   

Table 1 shows the breakdown of the number of people using private wells and the 

percentage of people serviced by private wells. Each state's ranking for these two metrics are 

combined via summation to generate an overall ranking for all states.  Figure 1 shows the 

percentage of community members on private wells. 

 

 

Table 1: Top Ten States Impacted by Private Well Usage (USGS, 2010) 

 
 

State
# of Private 

Wells

% of People Served 

by Private Wells

Ranking for Well 

Usage

Ranking for 

Well Service %
Overall Ranking

North Carolina 913,733        32% 3 5 1

Michigan 1,121,066    29% 1 7 2

Wisconsin 674,510        33% 7 4 3

Indiana 564,286        25% 9 10 4

Minnesota 484,018        26% 11 9 5

Pennsylvania 978,220        20% 2 18 6

Maine 245,831        42% 21 1 7

Virginia 539,237        22% 10 16 8

New Hampshire 188,825        38% 28 2 9

South Carolina 318,708        22% 16 14 10



4 
 

The overall ranking was calculated by summing the ranking for well usage and the 

ranking for percentage of Well Service together and then ordering the states in order from 

smallest summation to largest.  Michigan has the highest number of private wells and Maine has 

the highest percentage of citizens on private wells. After the summation, North Carolina has the 

highest overall ranking.  North Carolina has the highest overall ranking and therefore was chosen 

for this analysis, as the findings could have the greatest impact on the private well users.  

Existing studies have determined that North Carolina has the second highest population (3.3 

million people) relying on private wells.17After aggregating by the percentage of people served 

by private wells and the total estimated number of private wells however, North Carolina 

becomes number one for the overall ranking.    

Figure 1 visually depicts the percentage of residents on private wells, where North 

Carolina, New Hampshire, Vermont, Maine, and Wisconsin all have percentages over 32%.5 

Figure 1a shows the estimated population of North Carolina residents on private wells, or 

domestic self-service groundwater supply. 
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Figure 1: Percentage of Residents on Individual (less than 10 homes) Private Wells, USGS 

2010 

 

 

 
Figure 1a: Population on Domestic Self-Service Well Water, USGS 2010 

 



6 
 

North Carolina has one of the highest impacted populations for private well water 

consumption, but this problem is not simply a rural problem or an urban problem.  Two of the 

counties with the highest population on private water wells are Raleigh County and Charlotte 

County.  This supports the fact that state-wide legislation improvements are needed to address 

this issue.   Additionally, this shows that the current infrastructure even in counties that are 

considered urban by the NC Rural Economic Development Center are still unable to provide 

public water to all of its members. 

North Carolina will benefit from this study because of Land Use Regression and 

Bayesian Maximum Entropy analyses, which help predict the concentration of different toxins 

through space and time.  Research of groundwater wells has the potential to support significant 

changes in North Carolina because it has the greatest impact score and has one of the highest 

percentage of residents on private or individual wells. 

Analysis performed in this study focused on the state of North Carolina during 1985 to 

2015.  The three chemicals studied were PCE, TCE, and DCE for their potential hazard to human 

health and their concentrations historically in groundwater in North Carolina. Additional 

information on the datasets used can be found in the supplementary information.    

The main purpose of this study is to use both BME analysis and LUR analysis to predict 

where potential toxic contaminants exist in North Carolina’s groundwater.  The objective is to 

better prepare citizens on private wells and water quality sampling technicians of North Carolina 

with knowledge to sample their private wells for harmful contaminants.  If effective in 

supporting policy changes explained in the discussion section, the model will be able to help 

minimize the additional cost needed to reduce the greatest risk to human health by identifying 
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which chemicals should be tested for on an annual basis based on where existing contamination 

is likely to exist.   

This study also predicts which industrial locations are the major sources for these 

contaminants - testing the hypothesis that in addition to dry cleaners as a theorized source of 

PCE3, there are other industrial sources of PCE, TCE, and DCE that should be regulated and 

monitored. If a community knows that a specific industry or source location is causing 

contamination, then they can evaluate which chemicals would likely come from the industries 

surrounding their communities and test for those specific ones instead of sampling every private 

groundwater well for every chemical on a water sampling panel.  Furthermore, the study strives 

to support improved policy and education on private well water quality, testing standards, and 

regulations for specific chemical uses in selected industries. 
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CHAPTER 2. METHODOLOGY  

 

2.1  Observed Contaminant Database Development 

TCE and DCE hard data points were gathered from USGS and EPA STORET online 

resources and data downloads.  Private well data had been geocoded using Geographic 

Information Systems processing and then added to the PCE hard database that combined the hard 

data from USGS and EPA STORET databases.  The normal curves for each of the datasets can 

be seen in the supplementary information as well as information on the datasets used.  Additional 

information on the compiled datasets can be found in the supplementary information.  

 

2.2  Bayesian Maximum Entropy Computation 

Bayesian Maximum Entropy (BME) is a space/time geostatistical estimation framework 

that includes simple, ordinary, and universal kriging methods that enable modifications to the 

analysis to include hard data, soft data, and non-Gaussian distributions that achieve more 

detailed results than traditional kriging methods or linear geostatistics.3,6,7,8 BME is a MATLAB 

tool that analyzes spatiotemporal statistics to estimate groundwater toxins across space and time.  

This study examines the groundwater toxins of PCE, TCE, and DCE.  BMElib, a MATLAB 

library of spatiotemporal geostatistics was used to create the space/time maps of the three toxins 

of interest across North Carolina for the chosen time period.   

Theory of Space/Time random field (S/TRF) is used to model variability and uncertainty 

associated with the distribution of groundwater toxin concentrations across space and time. The 

reasoning for uncertainty focuses on the inability to predict the movement of groundwater in 
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aquifers over time, and an estimation is used to determine the rate of flow.  For simplification 

purposes we use a flow rate of zero, assuming that movement from year to year is insignificant 

enough to not contribute to the movement of toxins.  The variables used for the entirety of the 

paper will be consistent over both BME and LUR analyses.  After analyzing the Gaussian 

distribution of both the raw hard data and the log transformed hard data, we decided to work with 

the log transformed data for the rest of the analysis because of the more normal distribution of 

the data under the Gaussian PDF.  For the BME analysis, the global geographic mean trend has 

to be removed from the log transformed data and generate residual data.  Computationally, let 

Y(j) be the log concentration of toxin Z at space-time location p, where p = (𝒔, 𝑡), 𝒔 is the space 

coordinates and 𝑡 is time, i.e. 𝑌(𝒑)  =  𝑙𝑜𝑔(𝑍(𝒑)). The log-transformed residual (𝑋(𝒑)) for the 

S/TRF can be written as 

 

 𝑋(𝒑) =  𝑌(𝒑)– 𝑚𝑌(𝒔), (1) 

 

where 𝑠 represents the spatial coordinates at each estimation point and 𝑚𝑌(𝒔) is a global 

geographic mean trend.  For the preliminary analysis, we used a constant global geographic 

mean trend.  If future work was to be performed, the Land Use Regression result could be used 

as the mean trend for the BME analysis., according to previous research studies performed1, the 

combination of both LUR and BME does not improve the estimation model of either results 

significantly so both were performed to compare the results of each on a more qualitative basis. 

The BME computation takes the input of the concentration of hard data points in space 

and time and determines the sum of moments at each estimation point on a grid to determine the 

estimated concentration of a chemical of interest in space and time.  The global offset is then 

added back into the chemical concentrations at each estimation point to create a prediction model 

in space and time. The general knowledge gained from the BME estimation includes the 
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space/time mean trend function 𝑚𝑋(𝒑)  =  𝐸[𝑋(𝒑)] and the covariance function 𝑐𝑋(𝒑, 𝒑′)  =

 𝐸[[𝑋(𝒑) − 𝑚𝑋(𝒑)][𝑋(𝒑′) − 𝑚𝑋(𝒑′)]] of the S/TRF X(p).9    

To handle values below the detection threshold in the hard data dataset for each chemical, 

each below detect was assigned a hard value of one-half the below detect value.  This way, only 

hard data points, 𝑋ℎ𝑎𝑟𝑑, were used in our analysis to again improve the computational time and 

efficiency of the model while also not eliminating the locations where testing was performed.   

This improves the overall knowledge to include  

 𝐺 =  {𝑚𝑋(𝒑), 𝑐𝑋(𝒑, 𝒑′)}, and 𝑥𝑚𝑎𝑝  =  {𝑥𝑘, 𝒙ℎ𝑎𝑟𝑑}. In this analysis, the BME fundamental set 

of equations reduces to9 

 

 𝑓𝐾  (𝑥𝑘) =  𝑓𝐺(𝑥𝑘, 𝒙ℎ𝑎𝑟𝑑)/ 𝑓𝐺(𝒙ℎ𝑎𝑟𝑑)   (2) 

 

where 𝑓𝐺(𝑥𝑘, 𝒙ℎ𝑎𝑟𝑑) = 𝑓𝐺(𝑥𝑚𝑎𝑝) is the Gaussian PDF for X obtained from the general 

knowledge G, 𝑓𝐺(𝒙ℎ𝑎𝑟𝑑) =  ∫ 𝑑𝑥𝑘 𝑓𝐺(𝑥𝑘, 𝒙ℎ𝑎𝑟𝑑) is its marginal PDF, and 𝑥 is a realization of 𝑋.  

In this study, we transformed the daily data values to an annual average concentration 

that occurs on the first of the year (January 1) that each point was sampled to reduce the amount 

of noise and variability in each of the datasets due to the inconsistency of well sampling on a 

finer temporal aggregate. The BME estimate for a given year in the thirty-year time period is a 

function of not only the data collected in that year but includes the contributions from years prior 

to and following that year.  This advantage of the BME model improves the knowledge of 

ambient contaminant concentrations that may have occurred in previous years that hasn’t yet 

degraded.  The result of this analysis is the expected value, or concentration, at each estimation 

point as well as the error variance for each estimation point.  The final result is a series of maps 

for the space/ time distribution of expected concentrations as well as the error variance for each 
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point on the grid for the chemicals of interest, PCE, TCE, or DCE, across North Carolina for the 

period between 1985 and 2015. 

  

2.3 Land Use Regression Model 

Land use regression (LUR) helps to predict a concentration of a toxin of interest by 

determining whether a source location is likely to contribute to the concentrations of hard data 

points across a specified estimation grid.  “Modeling a contaminant source global mean trend 

(using Land Use Regression) serves three main purposes: (1) To identify point sources that 

significantly affect groundwater toxins, (2) to investigate the range of influence of point sources 

on the dependent variable, and (3) to provide the geostatistical model with a well-informed mean 

trend, as opposed to common techniques such as a constant mean trend.”3 

 

2.3.1 Land Use Application Framework for PCE, TCE, and DCE 

For the analysis done in this study and based on the respective chemical usage for each of 

the three chemicals, the potential source locations evaluated are Toxic Release Inventory (TRI) 

sites, gas stations, Toxic Release Inventory Resource Conservation and Recovery Act sites (TRI 

RCRA), TCE non-compliance sites (1990), Alternative fuel stations, Resource Conservation and 

Recovery Act sites (RCRA), tetrachloroethane sites, and finally dry cleaners.  These datasets 

have been created through the resources of NC Onemap10, NC Department of Environmental 

Quality11, and from NC Division of Waste Management GIS personnel. Dry cleaners were the 

original point of analysis to compare the model’s effectiveness to the model used in.3 

Furthermore, PCE has been linked to Dry Cleaners contamination in previous studies3, but there 

have been no Land Use Regression studies performed on TCE or DCE in North Carolina. 
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Landfills were considered for analysis but did not produce significant results and were 

intentionally left out.   

For LUR modeling, we model the global mean trend of groundwater contaminants (PCE, 

TCE, and DCE) using a dependent variable of the log transformed contaminant concentrations 

and the independent variable of source contaminant locations, i.e. Dry Cleaners, TRI sites, etc.  

PCE, TCE, and DCE have been concluded to come from anthropogenic causes, and therefore we 

decided that the independent variable should be the location of source contamination.1,4,12,13 We 

decided to use the log transformed data of contaminants based on the reduction in skewness in 

the data and resemblance of a more normal distribution after log transformation.  To address the 

below detect values for concentrations of toxins, we took half of the minimum detected 

concentration allowed in the dataset and made all below detect values equivalent to this value. 

There are several ways to address the below-detect values, but for this study, we decided that this 

was the most efficient method based on a similar analysis that used this method.6 

The dependent value of the log-chemical concentration for the three respective chemicals 

PCE, TCE, and DCE with different type of independent variables, or potential sources, can be 

expressed for sample 𝑖 as 

 

 𝑌𝑖 =  𝛽0 + 𝛽1𝑋𝑖
(𝑙)

+∈𝑖 , (3) 

 

where 𝑌𝑖 is the log-chemical concentration for sample 𝑖, 𝑋𝑖
(𝑙)

 is the explanatory variable 

representing the contamination from source 𝑙 (e.g. contamination from dry cleaners) at location 𝑖, 

𝛽0 and 𝛽1 are linear regression coefficients for all 𝑙 contamination sources, and ∈𝑖 is an error 

term.  This model allows us to determine the effects of several different types of contamination 

sources for the range of interest.  Based on previous research and for computational efficiency, 

we used one source, 𝑚,   at a time for the LUR modeling.  We computed eight different 
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univariate models using each pollution type and determined which range distance resulted in the 

maximum 𝑟2 value and statistically significant regression coefficients between the chemical of 

interest and the potential pollution source.  

For each type of potential source, 𝑙, (e.g., 𝑙 = RCRA sites) we compute the sum of 

exponentially decaying contributions from each potential source facility for source 𝑙, which can 

be expressed as 

 

𝑋𝑖
(𝑙)

= ∑ 𝐶𝑜𝑗 exp (−3
𝐷𝑖𝑗

𝑎
)𝑛

𝑗=1 , (4) 

 

where 𝑋𝑖
(𝑙)

 is the summation of contamination contribution at sampling well 𝑖 from each polluted 

source site 𝑗 for source 𝑙, 𝐶𝑜𝑗 is the initial concentration at each polluted source site 𝑗, (which for 

the purposes of this study was a constant value of 0.1 𝑙𝑜𝑔 (𝑢𝑔/𝐿) ), 𝐷𝑖𝑗 is the distance between 

well 𝑖 and pollution source site 𝑗, 𝑛 is the total number of pollution source sites of type 𝑙, and 𝑎 is 

the exponential decay range defining the range of influence for each type of pollution source 𝑙. 

Exponential decay is used to best exemplify the decay of each of the three contaminants over 

time so the further the range away from the pollution source site, the smaller the contribution.  

Since these chemicals decay over a short range, exponential decay reflects that in its rapid 

decrease over increased range values.  Summation of contamination contribution is important to 

improve the model and to acknowledge that pollutant concentrations from one source may 

interact with contamination from a different source if the two locations are at a distance less than 

the range of decay.   

Since the model used for Land Use Regression does not take into consideration 

hydrogeological flow due to the assumption that the movement of groundwater does not 

contribute significantly to the concentration of PCE, TCE, and DCE, and because we are 
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focusing on using only one source per analysis, the LUR model 𝐿𝑍(𝒔) of log-chemical 

concentration at any spatial location 𝒔 = (𝒔𝟏, 𝒔𝟐) becomes 

 

 𝐿𝑍(𝑠) =  𝛽
0̂

+ �̂�
1

𝑋(1)(𝒔) + ⋯ + �̂�
𝑚

𝑋(𝑚)(𝒔),  (5) 

 

where 𝑋(1)(𝒔) through 𝑋(𝑚)(𝒔)are the cumulative exponentially decaying contributions from 

each type of pollution source site calculated for the spatial location 𝑠.  
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CHAPTER 3: RESULTS 

 

3.1  Space/ Time Bayesian Maximum Entropy and Covariance Model  

The covariance models found using the BME framework and computational ability helps 

to determine the optimal range in both space and time to maximize the R-squared value.  It also 

helps provide a visual of the most useful covariance equation to use in the BME estimation of the 

expected values at each estimation point as well as the error variance at these points. The non-

separable space/time covariance equation to determine the optimal spatial and temporal lag or 

range for analysis can be expressed as 

 𝐶𝑋(𝑟, 𝜏) =  𝑐1 exp (−
3𝑟

𝑎𝑟1
) 𝑒𝑥𝑝 (−

3𝜏

𝑎𝜏1
) + 𝑐2 exp (−

3𝑟

𝑎𝑟2
) 𝑒𝑥𝑝 (−

3𝜏

𝑎𝜏2
) ,  (6) 

 

where for PCE 𝑐1 = 4.3051, 𝑎𝑟1 = 0.035 degrees, 𝑎𝜏1 = 9 years, 𝑐2 = 1.0763, 𝑎𝑟2 = 0.5 degrees, 

and 𝑎𝜏2 = 12 years.  For TCE, these values are 𝑐1 = 7.5900, 𝑎𝑟1 = 0.04 degrees, 𝑎𝜏1 = 10 years, 

𝑐2 = 1.8975, 𝑎𝑟2 = 1 degrees, and 𝑎𝜏2 = 60 years. For DCE, these values are 𝑐1 = 2.0828, 𝑎𝑟1 = 

0.05 degrees, 𝑎𝜏1 = 13 years, 𝑐2 = 0.5207, 𝑎𝑟2 = 2 degrees, and 𝑎𝜏2 = 70 years. 

 

The first term of the covariance model explains 80% of the variance at short ranges, 

which makes sense for PCE, TCE, and DCE where the dispersion of these chemicals will happen 

at a short distance from the source origin in the groundwater.  The second term of the covariance 

model explains 20% of the variance at long spatial and temporal ranges which would consider 

the long-term dispersion that may occur due to continuing contamination and pollution.  Figure 2 

shows the space-time covariance plots for PCE, TCE, and DCE respectively. The Offset 
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Scenario 3 that was used for this analysis was a way to smooth the data to reduce noise and 

variability in the dataset.   

 
Figure 2: Covariance for PCE, TCE, and DCE in Space and Time 

 

This covariance plots use an offset of 10 years and 10 degrees (Offset 3).  Several offsets 

were tried to determine which would minimize the variability in the dataset without losing too 

much information and offset scenario 3 was the best fit and was used for the rest of the analysis.  

Each of the covariance calculated curves fit the hard data points and provide the BME model a 

good estimation for the covariance for the hard data points collected and across the estimation 
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grid.  Figure 2a shows a zoomed in representation of the covariance plot for DCE, which shows 

how the model accurately fits the hard data points.   

 

 
Figure 2a: Zoomed Covariance for DCE in Space and Time 

 

Notice how over the degradation for PCE to TCE to DCE, we see that the range values in 

space and time increase through the degradation.  This shows that there may be a correlation in 

the length of time each chemical can provide exposure and also helps confirm the degradation 

and spatial spreading process of each of the chemicals- with PCE having the smallest spatial and 

temporal lags and DCE having the highest.   

Figure 3 shows an example of the final BME estimation product of the expected value 

estimation grid of DCE during year 26 of the 30-year time period (a) as well as the estimated 

error variance for DCE at year 26 (b).   
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Figure 3: BME Expected Value (a) and Error Variance (b) Map for DCE, 2011 

 

The model aims to have higher expected values around the hard data points with elevated 

recorded concentrations and then uses the covariance model and simple kriging, where the mean 

is a constant value of the mean of the hard data points, to estimate the concentration for the entire 

estimation grid.  The reason that there are points with no concentration “islands” around the 

points is because this model considers data in space and in time that enables the model to be 

better informed of the concentrations over time instead of looking at each year as its own entity.   
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3.2  Land Use Regression Model  

The Land Use Regression results provide some important information in identifying 

potential sources for contamination of TCE and DCE while confirming the primary source of 

PCE from previous published studies.  We performed an R-squared analysis and comparison for 

each chemical (PCE, TCE, and DCE) with eight different potential point sources and then 

identified the range that produced the highest r-squared value to better analyze which sources are 

most likely causing the most significant levels of contamination.  This has great implications for 

North Carolina as there is the largest percentage of communities living on private well ground 

water. Without any previous research studies done on the chemicals TCE and DCE with respect 

to Land Use in North Carolina, these results can provide informative and substantial information 

to those who want to test their wells for specific types of chemicals.  Having an understanding of 

the industries surrounding a community will allow future water quality testing to focus on 

contaminants that are most likely to be released into the water supply. 

 

3.2.1 R-squared Analysis and Optimal Range  

 

The R-squared values and the range at the highest r-squared value are shown in Table 2. 

 

 

Table 2: Optimal R-Squared Value and Respective Range 

 
 

DCE TCE PCE DCE Range TCE Range PCE Range

TCE Noncompliance Facilities 0.057 7.64E-04 0.1958 0.429 0.069 0.9+

Alternative Fuel Facilities 0.1917 0.0282 0.2365 0.058 0.9+ 0.900

RCRA 0.2646 0.0645 0.4187 0.010 0.007 0.030

TRI RCRA 0.0564 0.0107 0.2716 0.074 0.002 0.9+

Trichloroethane Facilities 0.0279 9.746E-04 0.2409 0.075 0.9+ 0.9+

Dry Cleaners 0.4279 0.3363 0.4517 0.031 0.007 0.024

Gas Stations 0.2717 0.0842 0.5533 0.044 0.025 0.047

TRI sites 0.0376 0.0107 0.2903 0.085 0.002 0.9+

R-Squared Value Optimal Range (deg; 1 deg = 100km)
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DCE’s highest R-squared value of 0.4279 occurred when LUR was performed against 

dry cleaners at a distance of 3.1km away from each dry cleaner facility.  TCE’s highest R-

squared value of 0.3363 occurred when LUR was performed against dry cleaners at a distance of 

0.7km away from each dry cleaner facility.  PCE’s highest R-squared value of 0.5533 occurred 

when LUR was performed against gas stations at a distance of 4.7km away from each gas 

station. 

The eight different sources of interest that were analyzed in this study consist of: Toxic 

Release Inventory (TRI) sites, gas stations, Toxic Release Inventory Resource Conservation and 

Recovery Act sites (TRI RCRA), TCE non-compliance sites (1990), Alternative fuel stations, 

Resource Conservation and Recovery Act sites (RCRA), tetrachloroethane sites, and finally dry 

cleaners.  TRI sites are locations that have toxic chemical releases.  TRI RCRA sites are 

locations that have had hazardous toxic chemical solid waste releases.  RCRA sites are locations 

that have had either a hazardous or non-hazardous solid waste release.  These programs are 

monitored and regulated by the EPA to protect the surrounding communities from 

contamination.18 Alternative fuel sites are locations that produce or house fuels that include 

ethanol, natural gas, electricity, hydrogen, propane, biodiesel, or methanol.19 Figure 4 shows the 

R^2 comparison between the different potential sources for contamination and PCE. 
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Figure 4: R-squared between Tetrachloroethylene and Potential Source Locations 

 

Following Table 2, gas station regression has the highest R-squared maximum value with 

dry cleaners having second highest, and RCRA sites having the third highest.  It is also important 

to note that the R-squared curve for dry cleaners’ peaks closer to the origin, or at a shorter 

distance than the distance to the optimal R-squared for gas stations.  Figure 5 shows the R^2 

comparison between the potential sources for contamination and TCE. 

 

 

 
Figure 5: R-squared between Trichloroethylene and Potential Source Locations 

 

Following Table 2, dry cleaners’ regression has the highest R-squared maximum value 

with gas stations having second highest, and RCRA sites having the third highest.  Note that the 

R-squared curve for dry cleaners’ peaks at the same range as RCRA sites closer to the origin, or 

at a shorter distance than the distance to the optimal R-squared for gas stations.   
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Figure 6 shows the R2 comparison between the different potential sources for contamination and 

DCE. 

 

 
Figure 6: R-squared between Dichloroethylene and Potential Source Locations 

 

Following Table 2, dry cleaners’ regression has the highest R-squared maximum value 

with gas stations having second highest, and RCRA sites having the third highest. Note that the 

R-squared curve for RCRA sites peaks closet to the origin, or at a shorter distance than the 

distance to the optimal R-squared for Dry Cleaners and Gas Stations.  

 

 

3.3 Land Use Regression Evaluation at Computed Optimal Decay Distance 
 

Land Use Regression plots were created using the optimal r-squared value and 

corresponding decay distance for each potential source facility.  The following figures are the 

Land Use Regression plots of each chemical and a contaminant source facility that had either the 

highest R-squared value, the shortest optimal decay distance, or a combination of both.  Figure 7 

shows the LUR estimate between PCE and Dry Cleaner sites. 
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Figure 7: LUR estimates Tetrachloroethylene and Dry Cleaner Sites 

 

The small “islands” formed around each of the source locations is indicative of a 

functional model. The model is taking the optimal decay distance of 2.4 km for dry cleaners and 

is estimating the sum of exponentially decaying contributions for each dry cleaner across North 

Carolina. Higher values are surrounding dry cleaners and gradually reaching a distance where 

there is a non-concentration or small ambient concentration of PCE. Figure 8 shows the LUR 

estimate between TCE and RCRA sites. 

 

 
Figure 8: LUR estimates Trichloroethylene and RCRA Sites 

 

RCRA sites were chosen for the analysis because of their extremely small distance of 

0.7km to reach the optimal R-squared value.  Again, the “islands” surrounding each of the 

RCRA sites is indicative that the concentrations of TCE are highest at these locations and then 
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tapering off to a zero or ambient value.  RCRA was used instead of TRI or TRI RCRA sites 

because of RCRA’s higher R-squared value and because of the higher R-squared value that was 

calculated between DCE and RCRA sites.  Figure 9 shows the LUR estimate between DCE and 

RCRA sites. 

 

 
Figure 9: LUR estimates Dichloroethylene and RCRA Sites 

 

RCRA sites were again chosen for DCE because of the relatively high R-squared value 

and the shortest distance of 1km to reach the optimal R-squared value. The “islands” have 

formed around the RCRA sites and, like PCE and TCE, have tapered off as the distance from 

each RCRA sites increases.   

 

3.4 Criterions Used to Identify Contaminant Sources 

The ability to determine the suspected sources of TCE and DCE contamination is 

important to fully understand and take advantage of the analysis performed in this study.  The 

criterion to be a conclusive source of contamination involves not only looking at the highest r2 

values during the Land Use Regression analysis, but at several other determinants.  The r2 curve 

must have a local maximum, which is the peak that occurs at a short decay distance from the 

origin or suspected contamination source.  The corresponding optimal decay distance must be 
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smaller than a realistic decay distance for TCE and DCE. TCE’s diffusion coefficient is 8.3E-06 

and DCE’s is 9.5E-06 sq.cm/sec with their half-lives being respectively 321-1653 days and 56-

132 days.20 Therefore, if in the groundwater for three hundred twenty-one days, the diffusion or 

decay distance is approximately 234 cm or 0.2 meters per year.  The increase of the r2 value past 

the original local peak in the data therefore is not due to the true contamination, but due to large 

collocational errors with multiple source types falling in between the original point and the 

longer decay distance.   

Additionally, the locational error that occurs with data collection will increase the error 

margin in this analysis as a geocoded location of a point source may contribute all contamination 

from a site to the address on the closest street and not in the middle of a land parcel.  Because of 

this, there is an inherent variability of the decay distances which push them to be larger than the 

expected decay distance of 0.2 meters per year to something closer to 200 meters that we are 

seeing over longer periods.  Dry cleaner sites and RCRA sites are the only two suspected source 

sites that follow these criteria and therefore are the two sites that will be analyzed in the 

discussion section.   
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CHAPTER 4: DISCUSSION 

 

 4.1 Comparison of Covariance Ranges and Decay Distances 

The chemical TCE degrades into DCE, and it is likely that DCE will have a larger spatial 

and temporal time lag than TCE because of this degradation. DCE contamination would spread 

further than TCE because after degrading, DCE will continue to spread out from the source past 

the TCE contamination. This dispersion acts like a bullseye and the movement from the center 

rings to the outward rings. Both chemicals have similar time lags in the BME covariance model, 

TCE with time lags of 10 and 50 years and DCE with time lags of 12 and 60 years. This is very 

informative when looking at the R-squared analysis and Land Use Regression analysis for both 

TCE and DCE.  Both TCE and DCE have optimal R-squared values at RCRA sites that are very 

close to the origin, or rather the correlation is highest at a small distance away from the source of 

pollution.   

The significant finding here is that the distance from the source point at the optimal R-

squared between RCRA sites and TCE is 0.7km and the distance for DCE is 1km.  Not only does 

this make logical sense without using any other analysis, but when combined with the BME 

covariance analysis, specifically the spatial range, more conclusions can be inferred.  The spatial 

lag informing 80% of the data for TCE based on the BME covariance is 4km and the lag for 

DCE is 5km.  If looking at the ratio between the spatial lags from the BME covariance, it is 

equivalent to 4/5 = 0.8. If looking at the ratio between the optimal distance from the pollutant 

source and the maximum R-squared value, it is equivalent to 0.7/1 = 0.7.  This signifies that the 
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source contamination that the LUR model predicted follows the distribution patterns of TCE and 

DCE that were documented from the BME analysis.   

The similarities between both of these models and prediction strategies lead me to believe 

that RCRA sites are a source of TCE and DCE contamination, and DCE contamination is in part 

due to the degradation of TCE.  This would explain its slightly larger optimal distance as it 

spreads over time as well as it’s higher R-squared value as the TCE concentrations may be less 

over time as the toxins degrades at these sites.   

 

 4.2 Identification of Potential Contamination Sources 

The LUR model developed for this analysis successfully reproduces previous studies 

performed in North Carolina that predicts that dry cleaners are the most accurate predictor source 

for PCE because of its high R-squared value and the smallest distance between the optimal R-

squared and the source of pollutant.3 The distance predicted for the optimal R-squared is likely 

greater than that of previous studies because of a more conservative estimation of below detect 

concentration values in this study and the addition of several years of data.  Gas stations' 

prevalence throughout North Carolina make it difficult to identify themselves as a direct source 

of PCE, TCE, or DCE.  The optimal decay distance at the highest R-squared value between all 

three of the chemicals and gas stations are at unrealistic distances for groundwater to travel with 

decay distances of 4.4, 2.5, and 4.7km respectively.  Similarly, to a Land Use Regression study 

focused in Long Island,3 the gas stations seem to coincide with regions of larger population 

densities and aren’t showing the true source of contamination. 
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TCE's highest R-squared value is dry cleaners. The optimal decay distance for dry 

cleaners is equivalent to the optimal distance TCE had when performing the Land Use 

Regression against RCRA sites.  This is an indicator that TCE is likely to have several different 

sources in North Carolina, with two of them being Dry Cleaners and RCRA sites. TRI and TRI 

RCRA sites have the shortest optimal decay distance for TCE, but the R-squared value is so low 

that more research would need to be conducted to find a higher correlation. This agrees with the 

industries that use TCE in their facilities and would support a more well-defined model if both of 

these sources were considered as source contaminant locations.  One production source of TCE 

is the degradation of PCE and would reach a further decay distance value than that of PCE for 

dry cleaners due to the same reasoning as with TCE and DCE.   

  

4.3 Water Quality Current Concerns  

With respect to existing policy and room for future growth, there are gaps in the 

knowledge base for private wells across the country, and especially in North Carolina. There 

exists a dataset created of 4,314 private wells that had been tested for PCE, TCE, and DCE or a 

combination of the three.3 This dataset is useful to determine which counties have the highest 

level of risk for groundwater to contain each of these chemical contaminants.  However, of the 

over 900,000 private groundwater wells that USGS anticipates North Carolina has, only 4,313 

private wells were tested for any of the three chemicals studied and only 200,000 wells have ever 

been tested for any sort of water quality standards.  This means that only 22% of wells in North 

Carolina have ever been tested and only 0.46% of wells have been tested for the non-organics 

PCE, TCE, or DCE.   
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Based on other studies, it seems as though the low numbers of sampling for any 

contaminants and the even lower numbers for other non-organics testing is common, meaning 

that more testing needs to focus on non-organics and metals in water quality panel testing15,16.  

This lack of inventory on private well locations is incredibly important and concerning that 

private wells exist and are currently not and may have never been tested for contaminants that 

surround these communities.  In addition to creating an inventory of all private wells in North 

Carolina, this study also recommends that water quality sampling schedules should be 

encouraged for the protection of public health and reduction of potentially harmful exposure 

levels to known carcinogens. The concentration levels that cause chronic cancerous effects from 

the Integrated Risk Information System (IRIS) database as well as allowable limits from the 

North Carolina Department of Environmental Quality (NCDEQ), work approved 8-hour 

exposure limits from the Occupational Safety and Health Administration (OSHA), and the 

regulatory maximum allowed concentration in drinking water from the Agency for Toxic 

Substances and Disease Registry (ATSDR) can be found in Table 3. 

 

Table 3: Concentration Limits based on Regulation, Health Risks, and Work Safety, 2013 

 
  

These levels are determined to help protect the public from elevated levels on 

contamination.  If exposed to higher concentration, adverse health effects including chronic 

PCE TCE DCE

 IRIS Chronic Oral RfD (ug/L) 0.006 0.0005 0.02

EPA Chronic Oral (ug/L) 5 5 7

OSHA PEL 8-hour TWA (ug/L) 1000 1000 2000

NCDEQ Allowable limit (ug/L) 0.7 3 350
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diseases such as cancer and acute illness such as dizziness or even death can occur.  After 

performing analysis on the data, the percentage of sampled points above these values can be 

found in Table 4. 

 

Table 4: Percentage of Samples Greater than Allowable Limit, 2013 

  
Having percentages of levels higher than the recommended limits for TCE thirty-eight 

percent of the time is concerning and needs to be addressed immediately.  People of North 

Carolina are being exposed to elevated levels of contamination where they work and at home.  

They are consuming contaminated water and all three chemicals have been proven through this 

sample analysis to be present in groundwater.  PCE and TCE according to the EPA and IRIS 

have goal concentrations of zero parts per billion. With as high as thirty-eight percent of the 

close to ten-thousand TCE data points being greater than the chronic oral exposure dosage, there 

is a lot of work to be done to improve the safety of drinking water.   

Although zero parts per billion for PCE and TCE contamination are a long-term goal, to 

better understand what regions in North Carolina should test their wells for the three different 

contaminants, several maps were created that show in red the locations where testing should be 

performed, using the EPA’s chronic oral levels of contamination as a cut-off to where this testing 

should be required.  For each of the three chemicals- DCE, TCE, and PCE- a map was created 

for each exposure from RCRA sites and from Dry Cleaner sites.  The different contamination 

PCE TCE DCE

% above chronic IRIS level 18.22% 38.24% 17.48%

% above chronic EPA level 7.56% 23.04% 4.48%

% above chronic OSHA level 1.23% 5.06% 0.10%

% above allowable NCDEQ level 10.42% 25.52% 0.10%
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sites were intentionally mapped separately and not combined as to preserve the variation in 

contamination sources from each of the two.  This is especially important due to the discrepancy 

between the levels of contamination of TCE from dry cleaner sites and the assumption that a 

majority of the TCE contamination from Dry Cleaner sites is due to the degradation of PCE into 

TCE.  These maps in figure 10 a-f (DCE, TCE, PCE) show locations where testing should be 

required to prevent further consumption of these contaminants through private well water.   

 

 

a. 

 
b. 
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c. 

d.

 
 

 

e. 
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f.

 
Figure 10 (a-f): Contamination levels about the EPA Allowable Drinking Limit (log ug/L), 

2013 

 

The same range of values was used for each chemical to easily compare the exposures 

from RCRA sites and Dry Cleaners.  Levels of all chemicals are seen around major metropolitan 

areas- such as Charlotte and the Research Triangle.  However, there are variations in the 

exposures if the RCRA and Dry Cleaner maps are compared, which supports the hypothesis that 

exposure comes from both of these sources and should have their own policies and regulations.   

Furthermore, it is important to consider the population density of private well consumers 

when looking at these maps.  These areas should all be tested as they have levels of 

contamination above the safe drinking limit according to the EPA, but areas with high population 

density using private wells as their primary drinking water should be especially concerned with 

making private well chemical testing a priority.  Figure 11 shows the Number of Residents Using 

Private Wells in North Carolina after having been normalized by population density.   
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Figure 11: Residents Using Private Wells Normalized by Population Density/County, 2010 

The data was normalized by population density to reduce the influence that city 

populations would have on the numbers aggregated by the percentages of consumers on private 

well water.  This enables the estimate to be a more accurate representation of the actual values of 

people on private wells per county in North Carolina.  

Combining the information in both figures 10 and 11 will allow policy makers and 

residents of these counties to better understand if they are at risk and need to get their wells 

tested for PCE, TCE, and DCE.  The population of people on private wells can also help provide 

a defense as to why elected officials should care about these water quality standards and help 

enable an adoption of private well testing programs and regulation standards.    
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CHAPTER 5: CONCLUSION 

In summary, using BME, as well as LUR is useful in determining the primary source of 

contamination for a specific chemical.  Being able to compare covariance plots and LUR 

analyses allowed us to conclude that RCRA sites are possible sources of TCE and DCE pollution 

at short distances.   

PCE contamination in North Carolina appears to have sources primarily in Dry Cleaner 

sites.  TCE contamination in North Carolina has the potential to come from TRI and TRI RCRA 

facilities, but more than likely has pollution streams from dry cleaners and the degradation of 

PCE to TCE as well as RCRA sites and the degradation from TCE to DCE.  DCE contamination 

appears to have sources primarily from dry cleaners and RCRA sites.  Gas stations were 

eliminated as an option of contamination based on the fact that the optimal r-Squared between 

contaminant and source location and the distance to reach the optimal decay distance was too 

high to feasibly be a direct source of groundwater contamination for PCE, TCE, and DCE.   

From this research, it can be concluded that policy decision makers need to reevaluate the 

lack of policy provided to protect private well owners from contamination in their wells.  

Currently there is no policy in place for regular sampling of wells. There is a likely chance that a 

large percentage of North Carolina’s residents are being exposed to, and suffering from health 

problems, due to the contaminated water they consume daily. This study has shown the existence 

of PCE, TCE, and DCE water contamination at levels that are being detected and are exceeding 

the allowable limit of 3ppb (ug/L) or 0.477 log(ug/L).  This alone should be enough to gather 

concern from community members as well as policy makers to enact change in the existing 
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regulations.  Additionally, with TCE and PCE’s association with renal cancer and other chronic 

diseases and TCE’s designation as a known carcinogen, these policy changes should be put on 

the priority list as a major public health concern for the people of North Carolina.   

 5.1 Future Steps and Policy Recommendations 

These results will help communities narrow down which contaminants of interest they 

should test for in their private wells as they can focus on industrial facilities surrounding their 

communities to see whether they may be at-risk for high concentrations of PCE, TCE, or DCE.  

Additionally, the model developed to create the analysis in this study is easily amendable to 

include any other source dataset with latitude and longitude locations and can provide 

communities without resources the ability to quickly predict spatially where contaminant plumes 

will impact the community.  Additional inventories should be taken to determine the spatial 

locations of private wells in North Carolina, as the current available data is lacking and hinders 

the investigation of the effects of contaminants and protection of private well users.   

Future analytical steps should include either the NCDEQ or the EPA requiring and 

funding an increase in the number of data points for the contamination.  A way to increase the 

number of data points from private well users is to develop a cost-effective water sampling kit 

that can be purchased for under fifty dollars. The test will focus on the chemicals of interest, in 

this case PCE, TCE, and DCE due to their harmful side effects. The testing will probably be less 

accurate due to the cost-effective development, the samples can then depict a result that shows a 

range of a particular concentration.  The benefit of the BME model is that these range values, or 

soft data, can be successfully added to the hard data points and are taken into consideration for 

the analysis to increase the number of data points and to improve the understanding of what 

contamination sites are impacting human health.  Additionally, there is a severe lack of sampling 
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around suspected contamination sites, which hinders the analysis on determining what is being 

polluted at these sources.  A recommendation would be to improve the inventory of these 

contamination sites as they are already designated by the EPA as locations of concern.  For 

example, RCRA sites are designated by the EPA as sources of either hazardous or non-hazardous 

contamination.  Therefore, it would be a simple policy recommendation to require sampling 

surrounding these sites and not just understanding the geographic location of these sites would be 

a positive step forward in addressing these areas of concern.  Dry Cleaner remediation has been 

so successful due to the Dry Cleaner Solvent Clean Up Act (DSCA) which stipulates a focused 

effort of testing at and around dry-cleaning sites for known volatile organic compounds, and the 

focused effort in sampling at and around dry cleaners to determine the contamination coming 

from dry cleaners.  This same model should be implemented for RCRA sites as well as other 

known regulated sites to determine what type of contamination is coming from which sources.   

With respect to policy changes, major modifications need to be made to require all newly 

constructed and existing wells to be tested for TCE, PCE and DCE. With these policy changes 

we can boost the number of tested wells to from twenty-two percent to nearly one hundred 

percent of wells tested for the basic environmental organics panel.  With the results shown in this 

study, inorganic compounds should also be encouraged to be tested and required in regions that 

are in close proximity to dry cleaners and RCRA sites. This model should be used to visually 

show different contaminants of concern to better understand where the contamination is coming 

from and what the approximate concentration of the contaminants in regions that are lacking 

existing samples.  Policy recommendations need to be made to support increased modifications 

to the public water systems. These changes will be paramount in urban designated areas that are 

still on private wells due to municipal delineations that hindered large populations from gaining 
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public water.  Finally, North Carolina should review its allowable levels of contaminants and 

adjust their allowable limits to match with IRIS levels to better protect the residents.  Because as 

it stands, North Carolina’s limits are sometimes one- hundred times higher than that of IRIS 

levels.  Of course, there is a balance that needs to be found between reducing allowable limits 

and feasibility, but it is certain that North Carolina needs to take steps towards protecting its 

private well users more so than they currently are. 
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APPENDIX: SUPPLEMENTARY INFORMATION 

 

Chemical Background Information: 

1. Tetrachloroethylene 

Tetrachloroethylene or PCE is a hydrophilic chemical that has been used historically for 

chemical intermediates - 55%, metal cleaning and vapor degreasing - 25%, dry cleaning 

and textile processing - 15%, and other unspecified uses - 5%. It is a Clear, colorless, 

nonflammable liquid with a sweet, fruity odor like that of chloroform.  According to the 

EPA, PCE is considered likely a carcinogen and will be looked at again through the next 

round of toxicity analyses.  PCE has been linked to renal cancer and has the potential to 

cause further chronic and acute illnesses 

 

2. Trichloroethylene 

Trichloroethylene or TCE is a hydrophilic chemical that has been used historically for 

Vapor degreasing of fabricated metal parts in the automotive and metal industries – 80% 

as well as in consumer products that contain TCE include: Adhesives, Spot removers, 

Cleaning fluids for rugs, Paint removers/strippers, and Typewriter correction fluids. It is a 

common industrial solvent and contaminant of hazardous waste sites, groundwater, and 

drinking water. TCE according to the EPA is considered to be a known carcinogen and 

has been linked to liver cancer, renal cancer, and kidney cancer, as well as some blood 

cancers.   

 

3. Dichloroethylene 

o Dichloroethylene or DCE is a hydrophilic chemical that has been used historically for 

vapor degreasing, specialty cleaning products, spot lifters, Degreasers, Enhancer for 

many formulations that require a fast evaporating, low odor, low residue solvent. It is a 
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volatile organic compound that is highly flammable, colorless liquid with a sharp, harsh 

odor.  DCE according to the EPA is not considered a carcinogen or a likely carcinogen, 

but due to the association between DCE and TCE and PCE, it is likely that this will be 

relooked at in the next round of toxicity analyses. 

 

PCE, TCE, and DCE Data sources: 

Messier et. Al 2012 provides information on the acquisition of data for his PCE analysis: 

“Data on groundwater PCE were compiled from three sources, which are detailed as follows: North 

Carolina monitors PCE through the Dry Cleaning and Solvent Cleanup Act (DSCA) section of the N.C. 

Division of Waste Management, which was established to help fund cleanup of PCE contamination.14 

DSCA maintains contracts with private companies to construct monitoring wells, which in turn provide 

DSCA with an electronic data deliverable (EDD) that contains the locations of PCE concentrations in 

monitoring wells. There are approximately 207 DSCA sites distributed across the state, but EDD’s are not 

available for all the sites yet. For this study, we have data from 96 DSCA monitoring sites, collected from 

1999 to 2010, resulting in 1062 monitoring wells with 2356 space/time samples. It should be noted that 

the DSCA monitoring sites are spatially clustered since all of the monitoring wells are located around 

known polluted sites. The North Carolina Department of Health and Human Services collects volatile 

organic carbon data from North Carolina homeowners. Prior to 2007 the data collected were from 

homeowners who voluntarily had their well tested. Starting in 2007 all new wells built were required by 

law to be tested.15 The data are analyzed at the Department of Public Health State Lab, where a paper 

report for each well is created and stored. There is no standard for providing GPS coordinates in the 

report; however, the well address is provided. Consequently, we digitized the paper reports and then 

applied a geocoding scheme to obtain geographic coordinates. Using the address locator tool of ArcGIS 

9.3 (ESRI, Redlands, CA), data were assigned coordinates in a multistage process using a North Carolina 

point reference file (courtesy of DHHS spatial analyst group), followed by a North Carolina Department 
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of Transportation line reference, then with a U.S. street address line reference file. All geocoded 

addresses with a match score of 70 and above were included in the data set. The address geocoding 

resulted in 2411 geocoded wells with 2874 space/ time samples (out of 4102) from the years 2003−2010 

that were previously unavailable. We downloaded all of the PCE well data available from the USGS 

NWIS Web site. We obtained 71 monitoring wells”3 

TCE and DCE datasets were created replicating his methods for PCE using the same databases he 

had used to improve the existing dataset and include more recent data points- bringing the dates of 

analysis through 2015.  PCE’s DSCA database increased in size mostly due to the increase of samples 

that did not exist when Messier’s paper was published Table S1 shows the hard datasets that were used in 

this analysis 

 

Table S1: Hard datasets Created for Analysis 

 

 

 

 

 

 

 

 

 

 

 DSCA USGS Private Wells Total 

PCE unique 125 215 1160 1500 

PCE space-time 7464 343 1408 9215 

TCE unique 124 226 1162 1512 

TCE space-time 7277 357 1421 9055 

DCE unique 862 20 1009 1888 

DCE space-time 8518 355 1015 9888 
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Figure S1: Normal Curves of the Log-transformed data for each Dataset 
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