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Abstract 

Choosing Between Multinomial Logit and Multinomial Probit Models for 
Analysis of Unordered Choice Data 

Jonathan Kropko 
(Under the direction of George Rabinowitz.) 

Political researchers are often confronted with unordered categorical variables, such as 

the vote-choice of a particular voter in a multiparty election. In such situations, re-

searchers must choose an appropriate empirical model to analyze this data. The two 

most commonly used models are the multinomial logit (MNL) model and the multinomial 

probit (MNP) model. MNL is simpler, but also makes the often erroneous independence 

of irrelevant alternatives (IIA) assumption. MNP is computationally intensive, but does 

not assume IIA, and for this reason many researchers have assumed that MNP is a 

better model. Little evidence exists, however, which shows that MNP will provide more 

accurate results than MNL. In this paper, I conduct computer simulations and show 

that MNL nearly always provides more accurate results than MNP, even when the IIA 

assumption is severely violated. The results suggest that researchers in the field should 

reconsider use of MNP as the most reliable empirical model. 
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Introduction 

Sometimes, researchers in political science have to deal with an unordered, categorical 

dependent variable. For example, in the study of elections, a dependent variable may 

be the vote-choice of a particular voter. This dependent variable is categorical rather 

than continuous: each choice or political party is another category. Furthermore, these 

categories have no numerical label or natural ordering. Unordered, categorical dependent 

variables appear in many other streams of political research, and more examples are not 

hard to imagine. 

Empirically, such variables can be modeled by using a probabilistic choice model, an 

extension of a standard linear model, in which each choice is modeled with a separate 

equation including the predictors and an error. There are many specific probabilistic 

choice models, and two of the most widely used models are the multinomial logit (MNL) 

and multinomial probit (MNP) models. Technically, these models are very similar: they 

differ only in the distribution of the error terms. MNL has errors which are independent 

and identically distributed according to the type-1 extreme value distribution, which 

is also sometimes called the log Weibull distribution (see Greene (2000), p.858 for a 

more detailed discussion of this distribution). MNP has errors which are not necessarily 

independent, and are distributed by a multivariate normal distribution (Greene 2000, 

p.856). 

This difference between MNL and MNP may seem rather minor, but in practice 

it has a big effect. The independent errors of MNL force an assumption called the 

independence of irrelevant alternatives (IIA) assumption. Essentially, IIA requires that 



an individual’s evaluation of an alternative relative to another alternative should not 

change if a third (irrelevant) alternative is added or dropped to the analysis. So if I 

am twice as likely to vote for the Democratic Party than for the Republican Party, I 

should remain twice as likely to vote Democrat over Republican if a third party becomes 

a viable option. This assumption is not always a very good one in many situations. It 

is easy to imagine that the Green Party becomes a more attractive choice to voters over 

the Democrats if the Republicans drop out of the election, thus violating IIA. When IIA 

is violated, MNL is an incorrectly specified model, and MNL coefficient estimates are 

biased and inconsistent. 

MNP does not assume IIA. In fact, an MNP model should estimate the error cor-

relations along with the coefficients. To that end, it may appear that MNP is a better 

statistical model than MNL. Unfortunately, the situation is more complex. 

A choice, or an alternative, is one category of the unordered, categorical dependent 

variable. In the context of maximum likelihood estimation, a choice probability is a 

formula to predict the probability that an individual chooses a certain alternative and 

the likelihood function for such models is the product of the choice probabilities for each 

individual. Choice probabilities in an MNL model are relatively simple, and computers 

can maximize the resulting likelihood function almost instantaneously, even for a large 

number of choices. For MNP, choice probabilities involve multiple integrals: as many 

integrals as one fewer than the number of choices. Computers can typically maximize 

likelihood functions with double or triple integrals, and may take a while to do so. But 

when computers must deal with quadruple integrals, quintuple integrals, or even more 

complicated integrals, MNP will often fail to converge or provide any useful estimation 

at all. MNL, therefore, is a much more stable model. Instability in a statistical model 

is a cause of concern. 

Since MNP does not assume IIA it is often assumed to be more accurate than MNL. 

R. Michael Alvarez and Jonathan Nagler (1998) seem to make this assumption. They 
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strongly advocate the use of MNP as a less restrictive model, and focus their analysis 

on a review of computational advances that might make MNP a more feasible model 

for researchers. In the spirit of this argument, many researchers have used MNP to 

analyze their choice data without considering MNL (Alvarez et al 2000 and Schofield 

et al 1998, for example). Alvarez, Nagler, and Shaun Bowler (2000) justify MNP as 

a model that “enabled us to study voter choices for the three major parties . . . 

simultaneously and without restrictive and erroneous assumptions about the parties and 

the electorate” (p.146). But I am concerned that although MNP does not assume IIA, it 

loses accuracy at other points in its involved computation. The debate over whether to 

use MNL or MNP has been framed as a debate of accuracy versus computational ease: 

MNP provides more accurate results, but MNL converges much more quickly. There 

is very little evidence, however, that proves that MNP really is more accurate than 

MNL. Specifically, MNP may be an inefficient estimator, and there are situations in 

which a biased and inconsistent estimator will be more accurate than a highly inefficient 

estimator. Therefore, a direct comparison of MNL and MNP is in order. 

Other researchers have already compared MNL and MNP models directly. Jay K. 

Dow and James W. Endersby (2004) run a multinomial logit and a multinomial probit 

model on data from U.S. and French presidential elections, and show that there is really 

very little difference between the predictions of each model. All things being equal, they 

conclude that MNL should be used over MNP. But Dow and Endersby only showed the 

near equivalency of the two models for two very specific cases, and their results should 

not be generalized. Kevin M. Quinn, Andrew D. Martin and Andrew B. Whitford (1999) 

present two competing formal theories of vote choice in the Netherlands and Britain and 

draw direct parallels to the competing MNL and MNP empirical models. They present 

theory which suggests that IIA is a better assumption for the British data, and they 

find that MNL is a better model for the British data while MNP should be a better 

model for the Dutch data. They conclude that the choice of empirical model should 
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“depend crucially on the data at hand” (p.1231). This article suggests that empirical 

models should be adjusted to correspond to the specifications of theoretical models. 

But again, these conclusions are based on results from two datasets, so generalization is 

problematic. 

In order to be able to generalize results, MNP and MNL should be compared under 

laboratory conditions. Specifically, I conduct a simulation study in which I generate 

data while controlling the extent to which IIA holds or is violated. Such research was 

conducted, but not published, by Alvarez and Nagler (1994). The research presented here 

differs from their analysis in a few important ways: first, Alvarez and Nagler compare 

MNP to an independent probit model in which all the covariances are constrained to 

be zero. In this paper, I directly run MNL and MNP and compare the quality of the 

estimations. Second, I use the British Election Study from 1987 as one model for the 

data generating process (DGP). I also compare MNP and MNL in many more ways 

which are of direct interest to political scientists, and I benefit from 13 years of advances 

in computer processing power to perform simulations in many more cases. 

I also consider the effect of strategic and sophisticated voting. In the simplest models 

of voting, voters are sincere. That is, each voter will vote for the option she prefers most. 

But these models are seldom effective at explaining or predicting what really happens 

in elections. A voter casts a vote strategically when she votes for an option other than 

her most preferred option in order to achieve a better outcome. Voters that may choose 

to vote strategically are called sophisticated voters. Such voting behavior can cause the 

IIA assumption to be violated. To demonstrate this fact, consider the simple example of 

the 2000 presidential election. Very liberal voters sincerely would have preferred to vote 

for Ralph Nader over Al Gore, and for Gore over George W. Bush. However, strategic 

considerations moved many of these voters to vote for Gore in hopes of preventing the 

election of Bush. For these voters, for strategic reasons, the probability of voting for Gore 

was much higher than the probability of voting for Nader. But if Bush, an “irrelevant” 
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alternative, is removed then they are much more likely to vote for Nader over Gore, thus 

violating the IIA assumption. When strategic voting is present, MNL should perform 

less accurately, but the effect on MNP is unclear. Many researchers have been interested 

simultaneously in multinomial choices and strategic voting (Kedar 2005, Lawrence 2005, 

Quinn and Martin 2002, Alvarez and Nagler 2000, Reed 1996, Abramson et al 1992), 

so it is worthwhile to examine the effect of strategic voting on the performance of MNL 

and MNP. Some of the simulations used for this project, described in section 3.3, are 

designed to model and account for strategic voting. 

My goal is to provide guidance to political researchers who must choose between these 

two models. In this article, I report a surprising result: MNL gives more accurate point 

estimates of coefficients than MNP, and also reports the correct sign and significance level 

more frequently than MNP, even when the IIA assumption is severely violated. In all, 

MNL outperforms MNP in all but the most severe violations of IIA. In the simulations 

that model strategic voting, MNL always outperforms MNP. In the next section I will 

discuss some of the statistical theory behind these two models. In section 3, I describe 

the simulations in detail. In section 4, I provide the results and discuss the significance 

of these results. In section 5 I conclude, and offer some thoughts about the benefits and 

continuing disadvantages of MNL and other probabilistic choice models. 

Statistical Theory 

Multinomial Logit 

The multinomial logit model has been the most commonly used model for analysis of 

discrete choice data1 . MNL computes a different continuous latent variable for each 

choice, and these variables are like evaluation scores of each individual for each choice: 

1 See Cameron and Trivedi (2005) or Greene (2000) for a more detailed discussion of the formulations 
of the multinomial logit and probit models. 
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the higher the score, the more likely that the individual chooses that alternative. So for 

each choice j and individual i 

Uij = βj xi + εij , (1) 

where βj xi is the inner-product of the predictors and their coefficients for choice j, and 

all of the εij are independent and identically distributed by the type 1 extreme value 

distribution. In MNL, the predictors are fixed across choices, but the coefficients vary. 

By fixed across choices, I mean that the value of a variable is the same no matter which 

choice is being considered. Independent variables like age, gender, and income of a 

respondent fit this description well. 

Sometimes researchers find that interesting predictors vary across choices. For ex-

ample, the number of friends a voter has who are members of each party is not fixed 

across choices. The conditional logit model was developed to account for such variables. 

This model is similar to MNL, but the linear structure for the latent variable of choice 

j takes the form 

Uij = γzij + εij . (2) 

Here, zij is an independent variable that varies across choices, and γ is the coefficient 

for this predictor. Note that γ is itself fixed across choices. The logic here is that 

variables that are different for each choice have the same effect across choices. So if 

the ideological distance between an individual and each party is an important predictor 

of that individual’s vote-choice, then distance is an equally important consideration 

whether the Democrats, Republicans, or Greens are being considered. In an MNL 

model, a predictor like religion is fixed across the choices, but the effect of the predictor is 

different for each choice. So religion may be an important consideration of an individual 

when they evaluate the Republican party, but may be less important when they evaluate 

the Democrats or Greens. 

In order to consider both types of independent variables at once, statisticians have 
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developed a hybrid logit model. Under a hybrid model the latent variables take the form 

Uij = βj xi + γzij + εij . (3) 

In other words, a hybrid model simply combines MNL and conditional logit by adding 

the two together in the deterministic part of the model. 

For all of these models, the dependent variable takes the form: 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪

1 if max (Ui1, Ui2, . . . , Uim) = Ui1, 

2 if max (Ui1, Ui2, . . . , Uim) = Ui2,
⎪ 

yi = 
⎨ 

. . . 

m if max (Ui1, Ui2, . . . , Uim) = Uim.⎪⎩ 

(4) 

So a voter chooses the alternative that they evaluate most highly. 

Remember that in binary logit models all the coefficients describe the relative proba-

bility of the positive outcome (choice 1) to the negative outcome (choice 0). Here, choice 

0 acts as a base for the coefficients. In MNL, MNP, and in multinomial models with 

choice-fixed predictors in general, the coefficients do the same thing: they describe the 

relative probability of a choice to a base-choice. Therefore, if there are M choices, MNL 

and MNP will provide M − 1 sets of coefficients, setting the coefficients for the base-

choice all equal to zero. This base is chosen arbitrarily, and can easily be changed in a 

statistical package such as Stata. For conditional logit, this normalization of coefficients 

is unnecessary because conditional logit only estimates one set of coefficients. For the 

hybrid model, only the coefficients which vary across choices (the MNL part) need to be 

set to zero for the base-case. 

Odds ratios in MNL are calculated in the exact same way as in binary logit: treating 
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choice 1 as the base, the odds ratio for any other choice j is 

P (yi = j) βj xi= e . 
P (yi = 1) 

(5)

The choice probability for the base is: 

1 
P (yi = 1) = , 

βj xi1 + 
PN

j=2 e 
(6)

and the choice probability for any other choice k is: 

βkxie 
P (yi = k) = . 

βj xi1 + 
PN

j=2 e 
(7)

Technically, IIA assumes independence of the errors in the evaluation functions, but an 

important effect of this assumption is that the odds ratios are fixed when other choices 

are added or dropped. Notice one important thing about the odds ratio for MNL: 

equation 5 only depends on the coefficients for choice j. No change to any other choice’s 

coefficients will change this ratio. This feature of MNL is the independence of irrelevant 

alternatives assumption (IIA) in action. Although the odds ratios for the conditional 

logit and hybrid models take slightly different forms, these models assume IIA as well. 

So the relative probability that I choose choice a over choice b should not be affected if 

choice c is no longer an option. There are many cases in which IIA is simply not true. 

When IIA is a false assumption, the estimations of these logit models are biased and 

inconsistent: serious problems. 

It can be shown that the choice probabilities for MNL described in equation 7 are 

closed-form precisely because the errors are independent. Therefore the definition of IIA 

as error independence is exactly equivalent to the definition as odds ratios being fixed 

to additions and deletions of other choices. 

In my comparison of MNL and MNP, I choose the most general formulations of each 
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model. So I compare the hybrid model to the probit equivalent of the hybrid model. I 

generate data with both choice-fixed and choice-specific predictors. So from this point 

onward, when I refer to the MNL model, I am referring to the hybrid logit model and 

when I refer to the MNP model I am referring to the probit equivalent to the hybrid 

logit model. 

Multinomial Probit 

The advantage of MNP over MNL is that MNP does not assume IIA. The obvious 

disadvantage is that MNP is far more computationally intensive. For each choice j the 

evaluation functions are 

Uij = βj xi + γzij + εij , (8) 

which are analogous to the evaluation functions for the hybrid logit model. But here, 

the errors εi1, . . . , εiM are distributed by a multivariate normal distribution in which 

each error has a mean of zero and the errors are allowed to be correlated. The choice 

probabilities using MNP are very, very complex. Let Vij represent the deterministic part 

of Uij for each choice j, so that Uij = Vij + εij . Consider the simple case of three choices. 

For notational ease, let ηi2 = εi2 − εi1 and ηi3 = εi3 − εi1. The probability of choosing 

alternative 1 is the probability that Ui1 is the highest evaluation2 : 

P (yi = 1) = P (Ui1 > Ui2 and Ui1 > Ui3) 

= P (Vi1 + εi1 > Vi2 + εi2 and Vi1 + εi1 > Vi3 + εi3) 

= P (ηi2 < Vi1 − Vi2 and ηi3 < Vi1 − Vi3) 

(9) 

(10) 

(11) 

Z Vi1−Vi2 
Z Vi1−Vi3 

= f(ηi2, ηi3)dηi3dηi2, 
−∞ −∞ 

(12) 

2 I owe a debt to Marco Steenbergen for this formulation of the MNP model, which I first saw in his 
class notes for a graduate seminar on maximum likelihood estimation in the Spring of 2006. 
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where f(ηi2, ηi3) is the joint probability density function (PDF) of ηi2 and ηi3. In this 

case, the PDF is a multivariate normal distribution, a notoriously difficult function to 

integrate. In general, computers have a difficult time computing or estimating multiple 

integrals. But choice probability formulas in MNP with N alternatives involve (N − 

1)tuple integrals. 

Binary probit models are under-specified in that we cannot simultaneously estimate 

the coefficients and the variance of the errors. Therefore, we assume that the error 

variance is 1 and estimate the coefficients using this normalization. In effect, we are 

dividing all the coefficients by the standard deviation of the errors. But then we are 

  β really estimating
σ rather than β, so we cannot trust the direct point estimates from 

a binary probit model. Multinomial probit models make a similar normalization: they 

constrain one of the variances in the differenced variance-covariance matrix3 . So, in the 

choice probability described above, the variance-covariance matrix of η2 = ε2 − ε1 and 

η3 = ε3 − ε1 is ⎤
⎥ ⎦ , 

⎡ 

⎢⎣ 
ση 

2 
2 

. 

σ2ση2,η3 η3 

(13) 

where 

σ2 = V (ε2 − ε1) = V (ε2) + V (ε1) − Cov(ε2, ε1)η2 

= σ2 
ε1 

+ σ2 
ε2 
− ρε1,ε2 σε1 σε2 . (14) 

Similarly, 

σ2 
η3 

= σ2 
ε1 

+ σ2 
ε3 
− ρε1,ε3 σε1 σε3 . (15) 

3 See Bolduc (1999) for a more detailed description of variance normalization and simulated maximum 
likelihood for the MNP model. 
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And the covariance is 

ση2,η3 = E 

·¡
η2 − E(η2)

¢¡
η3 − E(η3)

¢¸ 

= E(η2η3) 

= E[(ε2 − ε1)(ε3 − ε1)] 

= E(ε2ε3) − E(ε2ε1) − E(ε3ε1) + E(ε2
1) 

= ρε2,ε3 σε2 σε3 − ρε1,ε2 σε1 σε2 − ρε1,ε3 σε1 σε3 + σε 
2 
1 
. 

(16) 

(17) 

(18) 

(19) 

MNP only requires that one variance in the differenced variance-covariance matrix in 

equation 13 be constrained to some constant value. The “asmprobit” routine in Stata 

makes normalizations which are more restrictive4 . In order to ensure that ση 
2 
2 

is con-

strained to be constant, “asmprobit” constrains the variance of both the first and second 

choice to be 1, and every correlation involving the first choice to be zero (Statacorp 2007): 

σε 
2 
1 

= 1, σε 
2 
2 

= 1, 

ρε1,ε2 = 0, ρε1,ε3 = 0, 

(20) 

(21) 

which implies that 

σε1,ε2 = ρε1,ε2 σε1 σε2 = 0, 

σε1,ε3 = ρε1,ε3 σε1 σε3 = 0, 

σε2,ε3 = ρε2,ε3 σε2 σε3 = ρε2,ε3 σε3 . 

(22) 

(23) 

(24) 

Then the variance-covariance matrix of (ε1, ε2, ε3)
0 used by the “asmprobit” command 

4 The “asmprobit” command estimates an MNP model while estimating some of the variance-
covariance elements. The “mprobit” command in Stata assumes all error correlations to be zero (Stat-
acorp 2007). Therefore the “mprobit” model in Stata assumes IIA, and adds nothing over MNL. For 
all intents and purposes, “asmprobit” is the only useful MNP model offered by Stata. 
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is 

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
σ2 . . 1 . .ε1 

σε1,ε2 σε 
2 
2 

. = 0 1 . , ⎢ ⎥ ⎢ ⎥⎣ 
σ2 

⎦ ⎣ 
σ2 

⎦
σε1,ε3 σε2,ε3 ε3 

0 ρε2,ε3 σε3 ε3 

(25)

so the variance-covariance matrix of (η2, η3)
0 becomes 

⎡ ⎤ 

2 .⎢ ⎥ ⎦ .⎣ 
ρε2,ε3 σε3 + 1 1 + σε 

2 
3 

(26)

Therefore, in the three choice case, the only elements of the error covariance structure 

estimated by the “asmprobit” command are the variance of the third choice (σε 
2 
3 
) and 

the correlation between the second and third choices (ρε2,ε3 ). These two parameters are 

estimated along with the coefficients. Unfortunately, as is shown later in this paper, 

these estimates are rarely very accurate or useful. 

The likelihood functions for multinomial logit and multinomial probit differ only in 

the formulation of the choice probabilities. Let 

⎪

⎪

⎧ 

1 if yi = j,⎪ 

λij = 
⎨ 

0 if yi = j.⎪⎩ 
(27) 

6

Then the likelihood function is 

N M 

L = 
YY 

P (yi = j)λij , 
i=1 j=1 

(28) 

which is maximized with respect to the coefficients, and in the case of MNP, the uncon-

strained variances and covariances. For the logit models, the choice probability inside 

the double-product is straight forward, so these models are computed quickly. But for 

MNP this function is extremely complex. There are simulation methods to approximate 

the maximum likelihood values for MNP, but even these take time. Whatever variation 
12 



of MNP is used, a powerful computer and patience are both necessary. 

For MNP, standard maximum likelihood estimation of the likelihood function will 

fail to converge. Stata and other statistical packages use instead simulated maximum 

likelihood techniques. In essence, the choice probabilities on the MNP model are esti-

mated using a technique involving random draws and monte carlo estimation. The most 

common simulated maximum likelihood technique is the Geweke-Hajivassiliou-Keane 

(GHK) algorithm (Geweke 1991, Keane 1990, Keane 1994, Hajivassiliou and McFadden 

1998, Hajivassiliou, McFadden and Ruud 1996), which is the algorithm used by the Stata 

“asmprobit” command (Statacorp 2007). I suspect that MNP loses some efficiency in 

the simulated maximum likelihood estimation. In this paper, I test whether this compu-

tational disadvantage of MNP causes MNP to be less accurate than biased MNL, even 

when IIA is a highly erroneous assumption. I do not delve into the exact specifications of 

the GHK algorithm to find its deficiencies; instead I compare the final results of the two 

models since few researchers in political science are concerned with the details of GHK 

estimation, but many are concerned with the performance of MNP generally. Identifying 

the precise areas in which GHK may lose accuracy and fixing those deficiencies is an 

agenda for future research. 

As the number of alternatives increases, the complexity of the choice probabilities in 

MNP increases drastically. Therefore, we can expect that MNP is more efficient when 

there are fewer choices. But I find that MNL outperforms MNP even in the simple three-

alternative case, which should raise serious concerns about the utility of MNP models 

for political science research in general. 

Methodology 

Suppose we knew the true values of the parameters to be estimated by MNL and MNP. 

Then, it would be quite simple to compare the two models based on how accurately 
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they return point estimates of the coefficients5 . But such a methodology is working 

backwards: typically we use a model to estimate the truth; here, we use the truth to 

evaluate the model. 

The Data Generating Process 

If we start with the true values of the parameters, then it may not matter what values 

these parameters take. The important point is how well each model returns these values. 

The means through which the “true” data is obtained is called a data generating process 

(DGP). Often, some stochastic algorithm is used. Alvarez and Nagler (1994), for ex-

ample, generate independent variables using a uniform number generator, and multiply 

each predictor by an arbitrarily chosen coefficient. Here, I choose to model the DGP in 

two ways: one after data from the 1987 British Election Study and one in the style of 

Alvarez and Nagler. I call the models that use the British data to model the DGP the 

“British” models, and I call the models that generate the data uniformly the “basic” 

models. The basic models are simpler, but the data do not resemble any real political 

data that researchers in the field may encounter. In contrast, the 1987 British election 

survey dataset has been used in a number of important papers on multinomial choice 

methodology (Whitten and Palmer 1996, Alvarez and Nagler 1998, Quinn, Martin and 

Whitford 1999, for example). Using real data to model the DGP places the comparison 

within the realm of very real current research, so the results should be more immediately 

useful for researchers in the field. 

Theoretically, the latent variables in a probabilistic choice model represent the utility 

an individual has for each alternative. I model these latent equations in each DGP. 

The latent variables are the sum of two parts: the deterministic part derived from the 

variables and their coefficients, and a stochastic error. Data is arranged in the form of a 

person-choice matrix, in which one observation is identified by the voter and the choice 

5 After accounting for the normalization of the variance in the probit model. 
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(Conservative, Labour, or Alliance) being considered. In each multinomial model, one 

choice must be designated as the base choice. Both MNL and MNP make the same 

standardization; they essentially set the coefficients on the choice-fixed predictors all 

equal to zero for the base choice. For the choice-fixed variables, the coefficients describe 

the effect of the variable on a voter’s evaluation of choices 2 and 3 (Labour and the 

Alliance) relative to their evaluation of choice 1 (Conservative). 

Basic Models 

In the basic models, the coefficients and the data are randomly drawn from a uniform 

distribution. One randomly generated independent variable is allowed to vary across 

choices, and another independent variable and a constant are fixed across choices. Since 

the data generated here are completely artificial, I refer to the alternatives simply as 

choice 1, choice 2, and choice 3. I set choice 1 as the base choice. 

The choice-variant data, z, are independently drawn from a uniform distribution from 

0 to 1. x is also drawn from a uniform distribution from 0 to 1, but x is held constant 

for different alternatives within the observations for each individual. The errors, ε1, ε2, 

and ε3 are randomly drawn from a trivariate normal distribution with means 0: 

⎢⎢⎢
⎥⎥⎥

⎡ 
εi,1 

⎤ 

0µ · ¸ ¶
εi,2 ∼ N 0 0 0 , Σ . ⎢ ⎥⎣ ⎦
εi,3 

(29)

The different structures of the variance-covariance matrix of these errors, denoted by 

Σ, are crucial to the theoretical goals of the simulations. I discuss the error structures 

more thoroughly in section 3.2. In these basic models, the variances of the choice errors 

are all set at one, but the covariances vary as an experimental control. The errors must 

be drawn independently for each individual, but jointly across the alternatives for each 

individual. 
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Five coefficients (λ, β2,0, β2,1, β3,0, and β3,1) are independently drawn from a uniform 

distribution from −1 to 1 before each iteration of MNL and MNP estimation. MNL and 

MNP will provide estimates of these five randomly generated coefficients. The variable 

U contains the latent utilities of each individual for each choice. The simulated vote 

choice of each individual is the alternative with the highest value of U . For the basic 

DGP, the evaluation of individual i of choice 1 is 

Ui,1 = λzi,1 + εi,1. (30) 

The evaluation of choice 2 is 

Ui,2 = λzi,2 + β2,1xi + β2,0 + εi,2, (31) 

and the evaluation of choice 3 is 

Ui,3 = λzi,3 + β3,1xi + β3,0 + εi,3. (32) 

As an example, the generated dataset may look like the data in the table 1. We can 

Table 1: Example Data from the Basic DGP. 

Individual Alternative Vote U z x ε1 ε2 ε3 

1 1 0 0.34 0.12 0.14 0.27 . . 
1 2 0 0.59 0.41 0.14 . 0.30 . 
1 3 1 1.54 0.72 0.14 . . 1.13 
2 1 1 1.00 0.87 0.64 0.48 . . 
2 2 0 -1.08 0.46 0.64 . -1.55 . 
2 3 0 -0.53 0.42 0.64 . . -0.66 
3 1 0 -0.70 0.89 0.56 -1.23 . . 
3 2 1 0.34 0.06 0.56 . 0.14 . 
3 3 0 -1.41 0.68 0.56 . . -1.70 

run a hybrid multinomial logit model on the data by entering the following command 
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into Stata: 

xi: clogit vote z i.alternative i.alternative|x, group(individual) 

The “clogit” command runs a conditional logit model which considers independent vari-

ables like z that vary across alternatives. The “xi” and “i.” commands instruct Stata 

to break the categorical variable “alternative” into dummy variables for each category. 

Choice 1 is omitted as the base alternative. This model provides a coefficient estimate on 

z which will be compared to the known, true coefficient λ. The model also provides co-

efficient estimates on dummy variables for choice 2 and choice 3, comparable to the true 

coefficients β2,0 and β3,0, and on these dummy variables interacted with x, comparable 

to the true coefficients β2,1 and β3,1. 

To run a multinomial probit model, we enter the following command: 

asmprobit vote z, case(individual) alternatives(alternative) 

casevars(x) 

In order to run a multinomial probit model, we must specify the cases, individuals in this 

case, and the alternatives, contained in the variable named “alternative.” Variables like 

x that are fixed across alternatives must be specified within the “casevars” option. The 

multinomial probit model provides estimates of the same coefficients that the hybrid 

multinomial logit model does. 

We must account for the normalization that is made for the probit estimates that is 

not made for the logit estimates. The way I account for the standardized coefficients is 

described in section 3.5. After fixing the coefficients, they are comparable to the true 

parameters in exactly the same way, and we can directly see which model returned the 

coefficients more accurately. 
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British Models 

To obtain realistic coefficients for the British DGP, I run a regression on affect, or the 

affinity a person has for each party, using the 1987 election data. For this regression, 

the data is set up in the same way as in the basic model. Here, however, we estimate 

a greater number of parameters. In this setup, the dependent variable is the affect of 

an individual for each party. Choice-specific variables such as ideological distance are 

treated as regular regressors. Choice-fixed variables such as the respondent’s age and 

gender are multiplied by dummy variables for each (non-base) choice so that the effect 

of that variable on the affect for each choice can be derived. Below I present the results 

from this regression6 . For the British models I use the data from a sample of real 

British voters consisting of 2440 respondents after dropping observations with missing 

values, and the corresponding coefficients from the regression in table 27 . Conservative 

is the base choice. For the choice-fixed variables, the coefficients describe the effect of 

the variable on a voter’s evaluation of Labour or the Alliance relative to their evaluation 

of the Conservative party. 

For individual i, the evaluation of the Conservative party is 

7 

Ui,C = 
X 

λkzi,k,C + εi,C , 
k=1 

(33) 

6 The coding of these variables is as follows: affect is v13a when the choice is Conservative, v13b 
when the choice is Labour, and the average of v13c and v13d when the choice is Alliance. Labour and 
Alliance are dummy variables that equal 1 when v8a=2 and 3 respectively. Defense distance through 
welfare distance are squared differences between the individual’s self placement on the issue (v23a, 
v28a, v29a, v34a, v35a, v39a, v40a) and the means over all respondents for the party position on each 
issue (parts b, c, and d of the same question). Union is a dummy that equals 1 if v49c=1 or 2, and 
0 if v49c=0. Gender is v58b, age is v58c, and income is v64. The regional variables south through 
scotland are dummy variables derived from v48. Homeowner is a dummy that equals 1 if v60ab=02, 
and 0 otherwise. 

7 Please refer to table 2 to see the labels for the coefficients and covariates. For the ideological 
distances, the observations referring to the Conservative party are labeled with the subscript C, the 
observations referring to Labour are labeled with the subscript L, and the observations referring to the 
alliance are labeled with the subscript A. 
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Table 2: Regression on Party Affect, Britian 1987. 

Affect Coeff. S.E. Var. Label Coeff. Label 
Defense 
Unemployment/Inflation 
Taxation 
Nationalization 
Redistribution 
Crime 
Welfare 

-.012*** 
-.004*** 
-.004*** 
-.014*** 
-.009*** 
.006*** 
-.010*** 

.001 

.001 

.001 

.001 

.001 

.001 

.000 

z1,C , z1,L, z1,A 

z2,C , z2,L, z2,A 

z3,C , z3,L, z3,A 

z4,C , z4,L, z4,A 

z5,C , z5,L, z5,A 

z6,C , z6,L, z6,A 

z7,C , z7,L, z7,A 

λ1 

λ2 

λ3 

λ4 

λ5 

λ6 

λ7 

Constant 3.407*** .159 x1 

Labour 1.603*** .222 β1,L 

Alliance -.567** .220 β1,A 

Union -.266*** .046 x2 

Union x Labour .451*** .066 β2,L 

Union x Alliance .294*** .065 β2,A 

Gender .075* .041 x2 

Gender x Labour -.194*** .058 β3,L 

Gender x Alliance .083 .058 β3,A 

Age .008*** .001 x4 

Age x Labour -.016*** .002 β4,L 

Age x Alliance -.005** .002 β4,A 

Income .042*** .008 x5 

Income x Labour -.122*** .011 β5,L 

Income x Alliance -.041*** .011 β5,A 

South -.113 .112 x6 

South x Labour -.442*** .158 β6,L 

South x Alliance .411*** .158 β6,A 

Midlands -.039 .110 x7 

Midlands x Labour -.461*** .155 β7,L 

Midlands x Alliance .251 .155 β7,A 

North -.227** .109 x8 

North x Labour .127 .154 β8,L 

North x Alliance .369** .154 β8,A 

Wales .-.473*** .133 x9 

Wales x Labour .666*** .188 β9,L 

Wales x Alliance .702*** .188 β9,A 

Scotland -.285** .122 x10 

Scotland x Labour .091 .172 β10,L 

Scotland x Alliance .419** .172 β10,A 

Homeowner .179*** .048 x11 

Homeowner x Labour -.553*** .068 β11,L 

Homeowner x Alliance -.120* .068 β11,A 

*p < 0.1, **p < 0.05, ***p < 0.01, R-squared=.3600, Adj.  
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for the Labour party 

7 11 

Ui,L = 
X 

λkzi,k,L + 
X 

βj,Lxi,j + εi,L, 
k=1 j=1 

(34) 

and for the Alliance 

7 11 

Ui,A = 
X 

λkzi,k,A + 
X 

βj,Axi,j + εi,A. 
k=1 j=1 

(35) 

Once again, εi,C , εi,L, and εi,A are randomly generated from a trivariate normal 

distribution with means equal to zero and a predefined variance-covariance structure. 

The variances of the errors are not equal to zero in the British models. Instead, the value 

of each variance is derived from the data. Again, that process is described in detail in 

section 3.2. The correlations, however, vary in the same way as in the basic models. 

Unless strategic voting is being considered (section 3.3), the simulated vote-choice of 

individual i is simply the alternative with the highest associated utility. For the British 

models: 
⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎧ 

Conservative if max (Ui,C , Ui,L, Ui,A) = Ui,C , ⎪ 

ỹi = 
⎨ 

Labour if max (Ui,C , Ui,L, Ui,A) = Ui,L, 

Alliance if max (Ui,C , Ui,L, Ui,A) = Ui,A.⎪⎩ 

(36)

In other words, if individual i is voting sincerely, then she chooses to vote for the party 

she evaluates most highly. With a known error variance structure, I have now generated 

a dependent variable which can be analyzed using MNL and MNP. The results from 

MNL and MNP can now be directly compared to the true values of the parameters 

listed in table 2. 
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Error Correlation Structures and the IIA Assumption 

IIA holds precisely when there is no covariance between the errors in Σ. Here I choose 

formulations of Σ to consider in the simulations. I consider cases that span the spectrum 

of the validity of IIA: in one case IIA holds perfectly, but in others IIA becomes an 

increasingly bad assumption. 

In the regression presented in table 2, the “natural” variance-covariance and corre-

lation matrices for εi,C , εi,L, and εi,A can be derived. Recall that the data is in the 

form of a person-choice matrix, in which each observation is uniquely defined by the 

individual and the choice being considered by that individual. So individual i receives 

three observations in the data: one where individual i considers the Conservative party, 

one where Labour is considered, and one where the Alliance is considered. Predicted 

residuals are calculated and are separated into three new variables: one for each of the 

three choices. The natural variance-covariance matrix is the variance-covariance matrix 

of these three parts of the predicted residuals. Specifically: 

⎢⎢⎢
⎥⎥⎥

⎡ ⎤
1.133 . . 

Σnatural = −0.406 1.127 . , ⎢ ⎥⎣ ⎦
−0.083 −0.039 0.604 

(37)

where 1.133 is the variance of the residuals of observations in which voters consider the 

Conservative party, 1.127 is the variance of the residuals of observations in which voters 

consider the Labour party, and 0.604 is the variance of the residuals of observations in 

which voters consider the Alliance. Σnatural yields the correlation matrix 

⎢⎢⎢
⎥⎥⎥

⎡ ⎤
1 . . 

χnatural = −0.359 1 . . ⎢ ⎥⎣ ⎦
−0.100 −0.047 1 

(38)
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So the unobserved predictors of affect on the Conservative and Labour parties are 

strongly and negatively correlated. The unobserved predictors of affect on the Conser-

vative party and the Liberal-Social Democrat Alliance are negatively but more modestly 

correlated, and Labour and the Alliance are nearly independent. 

In order to model the simulated data as closely as possible after the 1987 British 

election, I use these natural variances in each experimental variance-covariance matrix 

in the models described below. So for each experimental case in the British models 

⎢⎢⎢
⎥⎥⎥

⎡ ⎤
1.133 . . 

Σ = 1.127 . . σC,L⎢ ⎥⎣ ⎦
σC,A σL,A 0.604 

(39)

For the basic models, we use 

⎢⎢⎢
⎥⎥⎥

⎡ ⎤
1 . . 

Σ = σ1,2 1 . , ⎢ ⎥⎣ 
σ1,3 σ2,3 1 

⎦ 
(40)

where for each model, for choices a and b, 

σa,b = ρa,b

p
σa 

2

q
σb 

2 . (41) 

Here, the variances σa 
2 and σb 

2 are the known constants listed above which are specific 

to each DGP, and ρa,b is the correlation between errors for choices a and b. So, for the 

British models 

√ √ 
σC,L = ρC,L × 1.133 × 1.127 = 1.13ρC,L, 

√ √ 
σC,A = ρC,A × 1.133 × 0.604 = 0.83ρC,A, 

√ √ 
σL,A = ρL,A × 1.127 × 0.604 = 0.83ρL,A, 

(42) 

(43) 

(44) 
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and for the basic models 

√ √ 
σ1,2 = ρ1,2 × 1 × 1 = ρ1,2, 

√ √ 
σ1,3 = ρ1,3 × 1 × 1 = ρ1,3, 

√ √ 
σ2,3 = ρ2,3 × 1 × 1 = ρ2,3. 

(45) 

(46) 

(47) 

The correlations are directly indicative of the validity of the IIA assumption, so I only 

need to alter these correlations ρa,b. I consider 11 models, which I call models A through 

K: 

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

χA = 0 1 . , χB = .10 1 . , ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
0 0 1 .10 .10 1 

(48)

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

χC = .25 1 . , χD = .50 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.25 .25 1 .50 .50 1 

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

χE = .75 1 . , χF = 0 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.75 .75 1 .80 0 1 

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

χG = 0 1 . , χH = 0 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
−.80 0 1 .50 .80 1 
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⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

χI = 0 1 . , χJ = −.20 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
−.50 .80 1 −.50 .80 1 

⎢⎢⎢
⎥⎥⎥

⎡ ⎤
1 . . 

χK = −0.359 1 . .⎢ ⎥⎣ ⎦
−0.100 −0.047 1 

Models A, F , G, H, I, and J were considered by Alvarez and Nagler (1994). Models E 

through J probably set the correlations at levels higher than anything researchers are 

likely to see in reality, but it is important to observe the behavior of the multinomial 

choice models in the case of extreme violation of IIA. Notice that the correlation matrix 

for model K is precisely the same as the natural correlation matrix presented above. 

Since these variances come directly from real data, the results for model K are probably 

the most directly applicable to applied research. 

In order to generate the simulated data, I first use a random number generator to 

draw εi,1, εi,2, and εi,3 ( or εi,C , εi,L, and εi,A) for each observation. The random number 

generator draws from a trivariate normal distribution as defined above, with means 0 and 

variance-covariance matrix Σ specified by one of the models A through K. Therefore, 

the correlations are defined first, and the correlated errors are then passed to the DGP. 

Strategic Voting 

As discussed earlier, one reason why IIA may be an inappropriate assumption for many 

elections is the presence of strategic voting. MNL and MNP work the same way in 

considering strategic voting. For MNL and MNP the evaluation equations Ui,C , Ui,L, 

and Ui,A have two parts: a deterministic part composed of the predictors and their 

coefficients, and the stochastic errors which represent the unexplained variance. Neither 

MNL or MNP necessarily accounts for deterministic components which may depend on 
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the other choices8 . A voter’s evaluation of the Ralph Nader and the Green Party in 

the 2000 U.S. Presidential Election, for example, probably depended on the strength of 

the two major parties and their candidates in the voter’s state. In close elections, very 

liberal voters were often compelled to vote for the Democratic Party over the Green 

Party, against their sincere preferences, in order to help defeat the Republican Party. 

But predictors in these MNL and MNP models depend only on the voter and the choice 

and not on other choices. Therefore, violations of IIA and strategic voting cannot be 

accounted for by the deterministic parts of these models. MNL assumes independence 

of the errors, so there is no way whatsoever to model strategy in an MNL model. MNP 

may reflect strategy in the unexplained variance of the model. Therefore, theoretically, 

the presence of strategic voting should improve the performance of MNP relative to 

MNL. 

In the data from the 1987 British election, voters were asked why they voted the 

way they did. Many of the voters gave answers which reflected strategic considerations9 

. These respondents were then asked which party they really preferred10 . I generate a 

binary indicator variable which equals one when a respondent votes for a party other than 

her most preferred one. This indicator is not a particularly exact measure of strategic 

voting in and of itself, but it does provide a useful way to gage the performance of MNL 

and MNP when voters do not vote for their first choice. I run a binary logistic model 

on the indicator for a strategic vote. I use a number of predictors which seem to make 

8 Theoretically, the model can account for strategic voting by controlling for it as a predictive variable. 
Whether or not a person votes strategically, however, is not typically observable. Survey respondents 
will not always admit to voting strategically, and proxies for strategic voting are not likely to be exact. 
In fact, most multinomial models of vote choice make no attempt to account for strategic voting in 
the deterministic part of the model. For example, none of the articles listed above which use the 1987 
British election data consider strategy. Failing to include strategic voting in the model specification 
leaves only the stochastic components to account for the variance generated by strategic voting. 

9 Variable v9a gives voter responses to the question “which comes closest to the main reason you 
voted the way you did?” 211 respondents answered “preferred party had no chance of winning,” 18 
answered “voted against party(ies) or candidate,” and 6 responded “tactical voting.” 

10 Variables v9b and v9c. 
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some sense11 . My intention is to create a measure for each respondent of the probability 

of a strategic vote in the British models. Since these probabilities will be used to alter 

artificial data, I am not overly concerned with the correct theoretical specification of 

this model. I report the results of this binary logistic regression in table 3 below. 

Table 3: Logistic Regression on Strategic Voting, Britian 1987. 

Strategic Coefficient Standard Error 
Labour -.061 .159 
Alliance 1.014*** .130 
Conservative79 -.052 .147 
Labour79 .107 .141 
Liberal79 -.522*** .197 
Conservative83 -.863*** .154 
Labour83 -.362** .156 
Alliance83 -.608*** .161 
Gender .075 .087 
Age .003 .003 
Income -.024 .017 
Affect .021 .036 
Education age .007 .019 
Children .102** .043 
Mother agree -.230 .164 
Father agree .111 .168 
Constant -2.461*** .426 

*p < 0.1, **p < 0.05, ***p < 0.01, 
Pseudo R-squared=.0526. 

Again, this model is not a particularly good one by most standards. Many of the 

predictors fail to be significant. But the model will provide a rudimentary measure of the 

probability of a strategic vote for the purposes of the simulation. This variable, which I 

denote π, is summarized in table 4 below. On average, a voter will vote strategically 8.6 

percent of the time. Of 2440 voters then, we expect about 210 strategic votes. Certainly 

11 I use Labour, Alliance, gender, age, affect and income as predictors which I also used in the 
regression on affect in table 1. I also use dummy variables for agreement with the political preferences 
of the respondent’s parents (v46a and v46b), whether the respondent has any children (v54a1), the 
respondent’s age when they completed their education (v55), and dummy variables for a vote in the 
1983 and 1979 general elections for each of the three main parties (v65a and v65b). 
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this change is enough to affect the estimations of MNL and MNP. 

Table 4: Descriptive Statistics of Predicted Probability of Strategic Voting. 

Observations Mean Std. Dev. Min Max 

π 7230 .086 .053 .018 .371 

In the British model simulations, I generate a variable δ that contains random num-

bers generated from a uniform distribution between 0 and 1. For an individual, if δ < π, 

the voter chooses their second highest evaluation instead. Mathematically, 

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎧ 

max(L,A) (Ui,L, Ui,A) if max (Ui,C , Ui,L, Ui,A) = Ui,C , ⎪⎨
(ỹi|δ < π) = max(C,A) (Ui,C , Ui,A) if max (Ui,C , Ui,L, Ui,A) = Ui,L, 

max(C,L) (Ui,C , Ui,L) if max (Ui,C , Ui,L, Ui,A) = Ui,A.⎪⎩ 

(49) 

In the case where an individual evaluates two parties equally higher than the other party, 

one of the parties is randomly selected as the first choice and the other is the second 

choice. For the British DGP models, each simulation for error models A through K is 

run twice, once without strategic considerations where the dependent variable is defined 

as in equation 36, and once with strategic considerations where the dependent variable 

is defined as in equation 49. I also run simulations for models A through K with a basic 

DGP model. I run 33 simulations in all. 

Monte Carlo Simulations 

Each simulation consists of 100 iterations of the same procedure. I run each of these 

simulations on Stata Version 10.0, Special Edition12 . Below I summarize the simulation 

process, step by step: 

12 The Stata code for these simulations is available upon request. 
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• The data are generated: 

– For the British DGP models, the coefficients and covariates are saved from 

the regression on party affect in table 2 and are therefore the same from 

iteration to iteration throughout the simulation. For the basic models, the 

coefficients and covariates are all drawn from uniform distributions before 

each iteration13 . 

– New errors are generated during each iteration. The errors are random num-

bers drawn from a multivariate normal distribution with means zero and a 

variance-covariance structure defined by one of the models A through K14 . 

– The latent evaluation variables for each choice are generated from the formulas 

described in equations 30, 31, and 32 for the basic models and 33, 34, and 

35 for the British models. Because the errors are stochastic, the simulated 

vote-choice should be slightly different from iteration to iteration. 

– The British models are each run once with strategic considerations and once 

without them. If strategic voting is not being considered, then the simulated 

vote-choice is the highest evaluation of the three latent variables defined in 

equations 33, 34, and 35. If strategic voting is being considered, a voter still 

votes for their highest evaluated party unless they are selected as strategic, 

in which case they vote for their second-highest evaluated party. Because the 

13 The random number generator in Stata is really a quasi random number generator. Given a number 
as a seed, Stata will use an algorithm to produce a string of numbers from that seed that resemble 
random numbers. But Stata uses a default seed which produces the same “random” numbers whenever 
Stata is launched. At first I was generating the same exact numbers from simulation to simulation, 
which was severely biasing my results. It is important to change the random seed from simulation to 
simulation when doing Monte Carlo work in Stata. I suggest generating a string of random numbers 
and setting the new random seed to the next number in that list for each simulation. The Stata manual 
(Statacorp. 2007) provides a detailed discussion of this quasi-random number generator. 

14 I use the “drawnorm” command in Stata to generate these errors. Since the data is in the form 
of a person-choice matrix, be sure that all of the choice errors for each individual are drawn together, 
otherwise the errors will be independent since each draw is independent from other draws. In other 
words, make sure that the errors are fixed across choices as in table 1. 
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strategic draws are stochastic, the voters who are selected as strategic should 

vary from iteration to iteration. 

• An MNL and MNP model is run on the simulated data. The simulated vote-choice 

is the dependent variable. 

• The coefficient point estimates and p-values from these models are saved as well as 

the estimates from MNP of the unconstrained elements of the variance-covariance 

matrix. 

Evaluative Measures 

The estimates from MNL and MNP are then evaluated for their accuracy compared to 

the true model. One problem, described in section 2.2, is that probit models standardize 

the base variances, so coefficients are all scaled by a normalized variance parameter. If 

the true parameter to be estimated is β, then MNL provides a direct estimate of β, but 

MNP provides a scaled coefficient estimate that takes the form 
σ
β . In order to directly 

compare MNL and MNP point estimates I divide each coefficient estimate from MNL, 

MNP, and the true model by the mean of the absolute values of the coefficient estimates 

from that model. I use the absolute values in order to preserve signs. Suppose there are 

M coefficients returned by the models, then for MNP 

βjÁPM (| |)β1 j=1 σ 

σ M 
Á 1 PM (|βj |)β1 σ j=1 

= 
σ M 

ÁPM (|βj |)β1 j=1 1 
= 

σ M σ 
ÁPM

j=1(|βj |) 
= β1 , 

M 

(50)

(51)

(52)

(53)
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which can be directly compared to corresponding measures from MNL and the true 

model since the variances from probit have been canceled out. 

I use three measures to compare MNL and MNP. 

• Measure 1. The scaled coefficients for MNL and MNP are compared against 

the scaled, true coefficient values. Accuracy is assessed for each model using a 

mean squared error measurement. The lower this measurement, the closer a model 

returns the true coefficient estimates. 

• Measure 2. Coefficients in multinomial choice models are usually interpreted for 

their signs and not their magnitudes. Estimates that switch the sign are therefore 

very poor estimates. MNL and MNP are compared using the percent of successful 

returns of coefficient signs. In the British models, the percent itself is reported. 

There are only five coefficients to estimate in the basic models, so the average 

number correct out of five is reported. 

• Measure 3. For the British models, the regression coefficients in table 2 are either 

significant at the .1 level or are insignificant at that level. Likewise, MNL and MNP 

coefficient estimates are either significant or insignificant at the .1 level. I say that 

the MNL or MNP coefficient estimate returns the correct significance level if it 

is significant when the corresponding true coefficient is significant, or insignificant 

when the corresponding true coefficient is insignificant. For the British models only, 

MNL and MNP are compared using the percent of correct statistical inferences. 

In the basic models, the randomly generated coefficients have no standard errors. 

Therefore, there is no baseline of significance against which to compare MNL and 

MNP, so this third measure is omitted for the basic models. 

For each of these three measures, I report the means for each of the 33 simulations over 

the 100 iterations. I perform t-tests on the equality of the means of these measures for 
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MNL and MNP for each simulation. The results are reported below. I also saved the 

unconstrained MNP estimates for the parameters in the variance-covariance matrix. 

Results and Discussion 

The simulations, which each performed 100 iterations of data generation and MNL and 

MNP estimation, varied widely in their running times15 . These simulation times are 

listed in table 5. The basic models ran more quickly because they involved the estimation 

of fewer parameters than the British models. 

Table 5: Simulation times. 

Time to Complete (Days, Hours, Minutes) 

Model Basic Britain Strategy 

A 2hr, 22m 14hr, 19m 13hr, 19m 
B 7hr, 56m 13hr, 39m 15hr, 24m 
C 2hr, 22m 16hr, 30m 15hr, 18m 
D 2hr, 20m 1d, 8hr, 40m 15hr, 24m 
E 2hr, 43m 2d, 5hr, 32m 1d, 9hr, 47m 
F 2hr, 56m 14hr, 35m 13hr, 54m 
G 3hr, 32m 1d, 2hr, 37m 14hr, 35m 
H 3hr, 19m 3d, 23hr, 20m 2d, 3hr, 31m 
I 2hr, 34m 3d, 9hr, 31m 3d, 18hr, 17m 
J 2hr, 54m 3d, 3hr, 03m 1d, 18hr, 30m 
K 2hr, 17m 14hr, 56m 14hr, 19m 

15 The simulations were run on Stata 10, Special Edition, on a remote research computing server. 
According to the UNC help and support webpage, the server is a “cluster of dual-CPU hosts running 
Red Hat Enterprise Linux 3.0 for use by the research community at UNC-Chapel Hill. The compute 
nodes include both AMD Athlon nodes (1.6 GHz) and Intel Xeon IBM BladeCenter nodes (2.4, 2.8, 
and 3.2 GHz). Communication is through a Gigabit Ethernet network. Job management is handled 
by . . . LSF (Load Sharing Facility). The /netscr (Net Scratch) NFS-mounted file system provides 
scratch disk space for temporary work files” (Research Computing 2007). 
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Comparing MNL and MNP 

The results of the simulations are presented in table 6 for the British models, in table 

7 for the British models with strategy, and in table 8 for the basic models. In table 

8, sign is the average number coefficient signs correctly estimated out of 5. For each 

error correlation model A through K, the reported evaluative measures are the means 

over 100 iterations. The columns labeled Δ are the values for MNP subtracted from the 

values for MNL. For point accuracy, lower values are better, so negative values of the 

difference indicated that MNL performs better than MNP, and positive values indicate 

that MNP performs better than MNL. For sign and significance accuracy higher values 

are better, so positive differences are good for MNL and negative differences are good 

for MNP. Each difference is tested for equality to zero. Differences that are significantly 

different from zero indicate that either MNP performs significantly better than MNP, 

or vice versa. The winning model should be clear from the sign of the difference. 

Table 6: Mean Evaluative Measures for MNL and MNP, Britain 1987 Model. 

Model Point Accuracy Sign Significance 
MNL MNP Δ MNL MNP Δ MNL MNP Δ 

A 1.77 2.24 -0.47*** 90.1 88.55 1.55*** 67.55 64.45 3.1*** 
B 1.65 2.09 -0.44*** 90.9 90.17 0.73** 67.52 64.55 2.97*** 
C 1.81 2.24 -0.43*** 90.93 90.21 0.72** 69.24 65.48 3.76*** 
D 3.28 3.23 0.05 92.79 91.17 1.62*** 70.17 64.55 5.62*** 
E 5.39 4.6 0.79*** 92.48 91.14 1.34*** 70.1 48.21 21.89*** 
F 1.67 1.9 -0.23*** 92.69 92.31 0.38 73.55 74.07 -0.52 
G 2.24 2.51 -0.27*** 87.76 86.72 1.04** 62.38 57.83 4.55*** 
H 6.68 5.8 0.88*** 89.66 89.34 0.32 65.62 50.38 15.24*** 
I 7.44 6.35 1.09*** 86.31 84.52 1.79*** 54.55 38.14 16.41*** 
J 7.28 6.17 1.11*** 85.76 84.69 1.07 54.93 34.66 20.27*** 
K 1.82 2.28 -0.46*** 90.21 88.38 1.83*** 64.48 61.1 3.38*** 

*p < 0.1, **p < 0.05, ***p < 0.01, two tailed t-tests. 

The simplest way to interpret the results is to determine when one multinomial model 

performs significantly better than the other, and to count the “wins” for each model this 
32 



I I 

Table 7: Mean Evaluative Measures for MNL and MNP, Britain 1987 Model with Strategic 
Voting. 

Model Point Accuracy Sign Significance 
MNL MNP Δ MNL MNP Δ MNL MNP Δ 

A 1.89 2.33 -0.44*** 89.76 89 0.76** 63.83 60.9 2.93*** 
B 2.06 2.61 -0.55*** 88.24 87.83 0.41 63.31 60.66 2.65*** 
C 1.95 2.45 -0.50*** 88.93 88 0.93** 65.76 62.38 3.38*** 
D 2.04 2.42 -0.38*** 89.76 88.97 0.79** 68.03 65.17 2.86*** 
E 2.38 2.69 -0.31*** 90.52 89.69 0.83** 69.07 65.76 3.31*** 
F 1.74 2.02 -0.28*** 91.48 90.17 1.31*** 71.41 70.66 0.75* 
G 2.12 2.72 -0.60*** 86.83 85.03 1.80*** 58.21 54.03 4.18*** 
H 3.41 4.41 -1.00*** 86.83 86.14 0.69** 64.97 61.93 3.04*** 
I 4.04 5.65 -1.61*** 83.55 81.93 1.62*** 54.97 48.55 6.42*** 
J 4.05 5.64 -1.59*** 82.66 81.52 1.14 55.14 50.55 4.59*** 
K 2.04 2.61 -0.57*** 87.93 86.83 1.10*** 60.97 58.21 2.76*** 

*p < 0.1, **p < 0.05, ***p < 0.01, two tailed t-tests. 

way. The wins for each model are summarized in table 9. It is immediately clear that 

MNL has a whole lot more wins than MNP. 

For the British models, MNL provides more accurate point estimates for models A, 

B, C, F , G, and most importantly K. MNP is more accurate for models E, H, I, 

and J . Model D is indeterminate. For the basic models, MNP returns more accurate 

point estimates for models H (marginally so), I, and J . Models D and E side with 

MNL here. In regards to the sign predictions, MNL predicts the correct sign of the 

coefficients for the British models more often than MNP for every correlation structure, 

and significantly so for every model except F , H, and J . The basic results for correct 

signs are nearly identical, except MNP wins model I, insignificantly. Finally, for the 

British models, MNL returns the correct significance levels more often than MNP for 

every model except F . For the strategic British models, MNL always outperforms MNP 

for all three measures. 

Model K contains the “natural” variance-covariance structure from the residuals 

produced by the regression in table 2. Model K is also the closest model to a real world 
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Table 8: Mean Evaluative Measures for MNL and MNP, Basic Model. 

Model Point Accuracy Sign 
MNL MNP Δ MNL MNP Δ I 

A 0.112 0.514 -0.40*** 4.53 4.4 0.13** 
B 0.14 0.463 -0.32*** 4.71 4.45 0.26*** 
C 0.123 0.45 -0.33*** 4.69 4.45 0.24*** 
D 0.109 0.391 -0.28*** 4.75 4.57 0.18*** 
E 0.086 0.267 -0.18*** 4.77 4.64 0.13** 
F 0.358 0.544 -0.19** 4.46 4.44 0.02
G 0.251 0.721 -0.47*** 4.47 4.24 0.23*** 
H 0.691 0.536 0.15* 4.57 4.51 0.06
I 0.839 0.558 0.28*** 4.38 4.43 -0.05 
J 0.656 0.578 0.08 4.47 4.36 0.11 
K 0.175 0.603 -0.43*** 4.63 4.36 0.27*** 

*p < 0.1, **p < 0.05, ***p < 0.01, two tailed t-tests. 

situation. MNL outperforms MNP at a highly significant level for all three measures of 

model K in the British, basic, and strategic models. This fact suggests that MNL is 

far and away a better option than MNP for researchers of the British election. But in 

this regard I am only confirming the results of Quinn, Martin, and Whitford (1999) who 

suggest that MNL is theoretically more appropriate for Britain and show it empirically. 

The results not only confirm what has already been shown for the case of Britain 

in 1987, but they demonstrate something about the performance of MNL and MNP in 

general. Consider models E, H, I, and J , the models in which MNP provided more 
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Table 9: Summary of the Results. 

MNL significantly bettter MNP significantly better 
DGP Point Sign Significance Point Sign Significance 

A, B, A, B, C, A, B, C, D, 
British C, F, D, E, G E, G, H, E, H, I, J none none 

G, K I, K I, J, K 
A, B, C, D, 

Strategy all models E, F, G, all models none none none 
H, I, K 

A, B, C, A, B, C, 
Basic D, E, F, D, E, N/A H, I none N/A 

G, K G, K 

accurate point estimates in the British case, and model D which was indeterminate: 

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎢⎢⎢
⎥⎥⎥

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

E = .75 1 . , χH = 0 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.75 .75 1 .50 .80 1 

⎡ ⎤ ⎡ ⎤
1 . . 1 . . 

 = 0 1 . , χJ = −.20 1 . ,⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
−.50 .80 1 −.50 .80 1 

⎡ ⎤
1 . . 

χD = .50 1 . . ⎢ ⎥⎣ ⎦
.50 .50 1 

χ

χI

(54)

In each of these models, more than one pair of choices are correlated at a level of 

magnitude greater than or equal to .5. One pair of choices correlated this highly is not 

good enough, as demonstrated by models F and G, in which one pair of choices are 

correlated with magnitude .8 but all other pairs are independent. Furthermore, more 

than one pair of choices correlated at a magnitude less than .5 is not good enough for 

MNP to be a better model, as demonstrated by models B and C, in which all the 
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choices were correlated at .1 and 25 respectively, and by model K. So perhaps we can 

say that MNP should be used over MNL only when more than one pair of choices is 

correlated at .5 or higher. But this condition seems much too restrictive to be of much 

use in political science research. I do not have the empirical data for three-party systems 

worldwide, but it seems unlikely that two parties can be associated that closely by voters 

while retaining their political independence from one another. Adding the condition that 

more than one pair of parties must be highly correlated and it does not appear as though 

any real world situation will ever meet the conditions that would make MNP a better 

model than MNL. From a practical standpoint therefore, the results suggest that MNL 

should nearly always be used over MNP. 

The claim that MNP should be used over MNL when more than one pair of choices 

are correlated at .5 or higher is restrictive, but it is also tenuous for a number of reasons: 

• First, notice MNL, not MNP, returned more accurate point estimates for models 

D and E in the basic simulations. MNP still wins model I at a highly significant 

level, but MNP wins model H with marginal significance and model J with no 

significance. 

• Second, in the British models, even as MNP returns more accurate point estimates 

for models E and I, MNL significantly does better with signs and significance lev-

els. In fact, for every model in which MNP returns more accurate point estimates, 

MNL returns more accurate significance levels. In defense of MNP, although MNL 

wins model F in point estimates, the sign and significance measures are indeter-

minate. Only for model I in the basic case does MNP win both point estimation 

and sign, although sign is not significant. 

• Finally, and most importantly, when the dependent variable is permuted in a 

modest way as in the case of the strategic models, MNL always outperforms MNP. 

It is probably always the case that for any model of an election, there exists some 
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influence, strategic or otherwise, on the evaluation of each choice which depends 

on the other choices and is not modeled. Therefore, of the three kinds of models 

considered, the strategic ones are the most realistic. Since MNL is clearly a better 

model in these strategic cases, the results suggest that researches should never use 

MNP over MNL. 

One puzzle is brought to light by these results. Theoretically, I expected MNP to 

perform better where strategic voting is present because of the relationship between 

strategic voting and violations of the IIA assumption. If voters are strategic, they con-

sider the other choices in evaluating each choice. Therefore, correlation between the 

unobserved variances of the choice evaluations should increase, IIA becomes a worse 

assumption, and MNL becomes a less appropriate model. MNP should have been un-

affected as MNL got worse. But instead, in some situations, the performance of both 

models was actually improved when strategic voting was considered. MNL becomes 

dominant over MNP not because MNP performs drastically worse in the strategic mod-

els, but because MNL becomes much more accurate for point estimation precisely for 

the models in which MNP had previously been more accurate. Specifically, the mean 

squared error score for MNL is reduced from 3.28 to 2.04 for model D, from 5.39 to 2.38 

for model E, from 6.68 to 3.41 for model H, from 7.44 to 4.04 for model I and from 

7.28 to 4.15 for model J . There is little effect of strategy on MNL point accuracy for 

all the other models. It is almost as if the strategy models aim to “fix” MNL, although 

that was certainly not my aim. Strategy also causes MNP to become more accurate for 

precisely the same models, although the magnitude of these improvements are not as 

large as those for MNL. The result is that MNL becomes a significantly better model for 

point estimation across all error correlation structures. As expected, strategy weakens 

both models in regards to sign. Strategy also reduces the significance accuracy of MNL, 

but MNP significance improves in several models with strategy. I have no explanation 

currently for why this manipulation of the dependent variable affects the results in these 
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ways, and further analysis of these models is something I intend to undertake in the 

future. 

MNP Variance Estimation 

MNP also provides estimates of the variance of the latent utility error for choice 3 (the 

Alliance in the British models) and the correlation between the latent utility errors for 

choices 2 and 3 (Labour and the Alliance). All other elements of the variance-covariance 

matrix of the choice errors are constrained by the “asmprobit” routine in Stata. These 

results are reported in the appendix in tables 12, 13, and 14. Avg. σ̂2 is the mean over 

100 iterations of MNP estimation of the variance of the choice error for the Alliance. 

The true value of this variance is .6 in the DGP for the British models, and 1 for the 

basic models. A “blowup” is defined as a prediction of variance greater than 100. True 

values of the correlation, ρ, are compared to values of ρ̂, which are means over 100 

iterations of MNP estimation of the correlation between the choice errors for Labour 

and the Alliance. These estimates were highly inefficient, typically producing bounds on 

the 95 percent confidence interval close to −1 and 1. Since correlations take on values 

between −1 and 1 by definition, such estimates are worthless. It is quite clear that these 

estimates of the variance-covariance elements are very poor. Here, I confirm a finding 

by Alvarez and Nagler, who report a similar result regarding these estimates in their 

1994 research. The weakness of MNP in recovering the error correlations is perhaps one 

reason why MNP may be a less accurate model than MNL, as the results suggest. 

For the most part, variance estimates from each model were reasonable. But, now 

and then, convergence would break down and the variance of choice 3 would become 

inflated to ridiculous levels. For example, for basic model A, the variance of choice 3 is 

once estimated to be 4,820,122. Once again, the true variance is 1 for the basic models. 

Clearly this is a ludicrous estimate, which is indicative of convergence problems for the 

“asmprobit” routine. The MNP output for this iteration is: 

Iteration 0: log simulated-likelihood = -1047.9418 
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------------------------------------------------------------------------------

Iteration 1: log simulated-likelihood = -1047.9283 (backed up) 

(output omitted) 

Iteration 88: log simulated-likelihood = -692.83672 

Alternative-specific multinomial probit Number of obs = 3000 

Case variable: individual Number of cases = 1000 

Alternative variable: options Alts per case: min = 3 

avg = 3.0 

max = 3 

Integration sequence: Hammersley 

Integration points: 150 Wald chi2(3) = 0.03 

Log simulated-likelihood = -692.83672 Prob > chi2 = 0.9983 

simchoice | Coef. Std. Err. z P>|z| [95% Conf. Interval] 

-------------+----------------------------------------------------------------

options | 

z | -34.72438 217.3633 -0.16 0.873 -460.7485 391.2998 

-------------+----------------------------------------------------------------

options1 | (base alternative) 

-------------+----------------------------------------------------------------

options2 | 

x | -28.00072 611.3696 -0.05 0.963 -1226.263 1170.262 

_cons | 11.20021 349.468 0.03 0.974 -673.7445 696.1449 

-------------+----------------------------------------------------------------

options3 | 

x | 14.75721 403.1468 0.04 0.971 -775.3959 804.9104 

_cons | -22.59297 251.6882 -0.09 0.928 -515.8929 470.7069 

-------------+----------------------------------------------------------------

/lnl2_2 | -7.675696 6377200 -0.00 1.000 -1.25e+07 1.25e+07 

-------------+----------------------------------------------------------------

/l2_1 | -2195.478 . . . . . 
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------------------------------------------------------------------------------

(options=1 is the alternative normalizing location) 

(options=2 is the alternative normalizing scale) 

Since the true values of the coefficients are between 0 and 1, these estimates are poor 

estimates. But, after normalizing the coefficient estimates they do appear comparable. 

The mean of the absolute values of the estimates is 22.2551. After dividing by this 

mean, the estimates are much closer to the correct range. Here, my methodology does 

not capture useful characteristics of the data: researchers will see these results and 

quickly dismiss them as artifacts of failed convergence. My comparisons, however, do 

not dismiss the results. Note, however, that the standard errors of these estimates are 

astronomical. Therefore, MNP should not be able to return the correct significance levels 

on estimates when the variance of choice 3 blows up. For the basic models we have no 

measure of significance, but for the British models we do in fact see that the average 

percent of correct predictions of significance is much lower for models E, H, I, and J , 

the four models for which blow-ups of the variance were observed. These results paint an 

even bleaker picture for MNP: not only are the situations in which MNP provides more 

accurate results than MNL highly constrained, but researchers must worry about the 

possibility of blown-up variances that take MNP estimates to new levels of inefficiency. 

For the British models, the incidences of blown-up variance estimates coincide pre-

cisely with the models in which MNP returns more accurate point estimates than MNL. 

But MNP’s victories here are not simply artifacts of the inflated variances. To see that 

MNP really does return better point estimates for the models in question, I tested the 

equality of the measures in tables 6 and 8 only for iterations in which the variance does 

not blow up. The results are reported in tables 10 and 11. 

The results from tables 10 and 11 reflect the results from 6 and 8, and MNP does no 

worse in either the British or basic models when the outlying variances are omitted. In 

fact, for the basic models, MNP does better without the blown-up variancs: model F 
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Table 10: Mean Evaluative Measures for MNL and MNP, British Models, Omitting Large 
Variance Estimates. 

Model Point Accuracy Sign Significance 
(Obs.) MNL MNP Δ MNL MNP Δ MNL MNP Δ 
E(85) 5.38 4.84 0.54** 92.41 90.75 1.66*** 70.18 50.79 19.39*** 
H(91) 6.67 6.01 0.65*** 89.47 89.47 0.00 65.82 52.14 13.68*** 
I(88) 7.46 6.75 0.71*** 86.52 84.29 2.23*** 54.90 39.38 15.52*** 
J(96) 7.30 6.34 0.97*** 85.70 84.55 1.15 54.81 34.73 20.08*** 

*p < 0.1, **p < 0.05, ***p < 0.01, two tailed t-tests. 

Table 11: Mean Evaluative Measures for MNL and MNP, Basic Models, Omitting Large Vari-
ance Estimates. 

Model 
(Obs.) 

Point Accuracy 
MNL MNP Δ MNL 

Sign 
MNP Δ 

A(97) 
B(98) 
C(95)
D(96) 
E(97) 
F(84) 
G(90) 
H(92) 
I(92)
J(84)
K(97) 

0.11 0.45 -0.34*** 
0.14 0.43 -0.29*** 
0.12 0.38 -0.27*** 
0.09 0.37 -0.28*** 
0.08 0.19 -0.11*** 
0.35 0.36 -0.01 
0.25 0.58 -0.34***
0.70 0.42 0.28***
0.87 0.49 0.37*** 
0.67 0.39 0.29*** 
0.17 0.56 -0.38*** 

4.56 
4.70 
4.71 
4.77 
4.79 
4.50 
4.50 
4.57 
4.39 
4.45 
4.64 

4.43 
4.45 
4.46 
4.61 
4.67
4.52 
4.31 
4.57
4.49 
4.43 
4.38

0.12** 
0.26*** 
0.24*** 
0.16**
0.12** 
-0.02 
0.19** 
0.00 
-0.10 
0.02 
0.26*** 

*p < 0.1, **p < 0.05, ***p < 0.01, two tailed t-tests. 

changes from a win for MNL to indeterminate, and model J changes from indeterminate 

to a win for MNP. Therefore, MNP’s victories in these simulations are not a result of 

convergence problems. 

Why is the variance sometimes estimated at such high values? The answer probably 

lies in the simulated maximum likelihood convergence algorithm used by the “asmprobit” 

command. The algorithm is probably identifying some bizarre local maximum or an 

asymptote in the likelihood function. But, again, identifying the specific reasons why 

the model behaves the way it does it a project for future research. In the meantime, 
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there are three important conclusions to be drawn from these results: 

• First, MNP estimates of the unconstrained elements of the variance-covariance 

matrix of the choice errors are very poor estimates and should not be trusted. 

• Second, MNP will fail to fully converge from time to time, estimating a blown-up 

variance and highly inflated coefficient point estimates with astronomical standard 

errors. 

• And third, these problems of MNP in estimating the variance-covariance matrix 

does not in and of itself mean that MNP will not provide accurate results in certain 

situations. 

So the failure of MNP to accurately estimate the unconstrained variance and corre-

lation should not scare researchers away from using MNP. Rather, the fact that MNP 

will rarely provide better results than MNL should scare researchers from away using 

MNP. 

Conclusion 

There may be very little reason for researchers in the field to employ MNP to their 

data. However, that is not to say that MNL is a particularly good choice either. MNL 

may outperform MNP, but MNL still suffers from model misspecification whenever IIA 

is violated. MNP is not a reliable alternative in its current manifestation, but there 

may be other discrete choice models that perform better than either MNL or MNP. We 

should not restrict ourselves to a choice between these two models alone. 

The empirical models most commonly used by political scientists have rarely been 

developed by political scientists. Many models come from econometrics, some from 

biostatistics, and others from fields such as civil engineering and operations research 

and other social sciences such as psychology and sociology. Therefore we should not be 
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surprised if these empirical models make assumptions which, like IIA, are inappropriate 

for many situations analyzed by political scientists. Researchers need to place greater 

emphasis on the development of empirical methods that use base assumptions derived 

from our own theories in political science. To that end, the work by Curtis S. Signorino 

(1999, 2003) is very promising. Signorino suggests a method for combining empirical 

modeling with formal theory to create models with appropriate assumptions for political 

science. If we believe that strategic voting is present, we should be able to model that 

behavior formally. We may then be able to embed an empircal model within this game to 

do a better job of accounting for strategic voting than either MNL or MNP can provide. 

In this way, I will focus future work on the development of better multinomial choice 

models for political science. 

Appendix 

Table 12: MNP Predictions for Alliance Variance and Correlation with Labour, Britain 1987 
Models. 

Model Avg. σ̂2 No. of blowups Avg. σ̂2 without outliers ρ Avg. ρ̂ 
A 1.424 0 1.424 0 .56 
B 1.588 0 1.588 .1 .49 
C 1.688 0 1.688 .25 .49 
D 1.968 0 1.968 .5 .49 
E 4496 15 5.499 .75 .32 
F .3452 0 .3452 0 .47 
G 2.694 0 2.694 0 .59 
H 2097 9 2.322 .8 .62 
I 5548 12 5.113 .8 .69 
J 8460 4 4.468 .8 .63 
K 1.179 0 1.179 -.05 .60 

43 



Table 13: MNP Predictions for Alliance Variance and Correlation with Labour, Britain 1987 
Models with Strategy. 

Model Avg. σ̂2 No. of blowups Avg. σ̂2 without outliers ρ Avg. ρ̂ 
A 
B
C 
D
E 
F 
G
H
I 
J 
K 

2.046 0 2.046 0 .43 
2.210 0 2.210 .1 .40 
2.164 0 2.164 .25 .44 
2.579 0 2.579 .5 .43 
3.147 0 3.147 .75 .45 
.6258 0 .6258 0 .74 
3.536 0 3.536 0 .45 
1.214 0 1.214 .8 .40 
2.106 0 2.106 .8 .18 
2.001 0 2.001 .8 .18 
1.788 0 1.788 -.05 .40 

Table 14: MNP Predictions for Alliance Variance and Correlation with Labour, Basic Models. 

Model Avg. σ̂2 No. of blowups Avg. σ̂2 without outliers ρ Avg. ρ̂ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J
K 

48325 3 2.680 0 .46 
4101 2 2.980 .1 .44 
7427 5 3.570 .25 .44 
35044 4 3.679 .5 .47 
14344 3 3.107 .75 .48 
14293 16 1.781 0 .02 
18577 10 3.237 0 .56 
2385 8 1.670 .8 .73 
801 8 3.957 .8 .84 
1986 16 4.331 .8 .84 
1576 3 3.457 -.05 .57 
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