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ABSTRACT 

 

AARON RICHARDSON: Monitored Steady State Excitation and Recovery 

(MSSER) Radiation Force Imaging of Engineered Tissue Constructs 

(Under the direction of Caterina Gallippi) 

 

 

 
 

        Production of engineered bone tissue requires integration of synthetic and natural 

materials and ideal chemical and mechanical stimulation.  More understanding of changes in 

mechanical properties of these tissues during differentiation is needed.  Current tensile 

testing methods result in destruction of tissue constructs.  A non-destructive testing method is 

desired.  Monitor Steady State Excitation and Recovery, MSSER, an ultrasound imaging 

based elastography method, uses prolonged acoustic force to displace tissue while monitoring 

changes in strain during force application.  MSSER, along with the underdamped harmonic 

oscillation model, was used to determine the elastic modulus of tissue constructs.   Localized 

elastic modulus values were calculated using MSSER for tissue constructs grown in 

osteogenic and complete (non-osteogenic) growth media.  Images showing elastic modulus 

values were produced. Validation of elastic modulus images were done performing calcium 

digestion on tissue constructs.  MSSER hopes to provide a non-invasive testing method, 

allow for localized measurements, and aid in calcium detection. 
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1Chapter 1: Introduction and Thesis Overview 

 

      The research in this thesis investigates the usefulness of novel ultrasonic imaging 

methods to calculate the elastic modulus values of cell seeded collagen gel tissue constructs 

grown for osteogenic differentiation.  Current methods for testing these tissue constructs are 

highly invasive and result in destruction of these construct.  Therefore, it is desirable to 

develop a method which is non-invasive and allows for mechanical testing of these tissue 

constructs while they are growing in culture media.   

      In this study, novel ultrasonic imaging methods, developed for the use in elastography 

were explored as a method to provide a better solution for testing mechanical properties of 

these tissue constructs.  The ultrasonic elastography imaging method used, Monitor Steady 

State Excitation and Recovery (MSSER), is a modified form of Acoustic Radiation Force 

Impulse (ARFI) imaging.  MSSER applies a constant force while observing material creep to 

steady state displacement.  Material response after force cessation may also be monitored.  

MSSER methods, which mimic a mechanical creep test, are used for testing viscoelastic 

materials due to changes in strain over time under constant force application.  MSSER is 

capable of recording these changes in strain under constant force.  Previous work with 

MSSER by Mauldin et. al. successfully used this imaging technique in conjunction with the 

Voigt and Standard Linear models of viscoelasticity to calculate the elastic modulus of 

viscoelastic materials.
1
  It was found, however, that these models were not a good fit for  

                                                 
1. Mauldin, F. W. Jr., Haider, M. A., Loboa, E. G.,  Behler, R. H.,  Euliss, L. E.,  

Pfeiler, T. W.,  Gallippi, C. M.,  “Monitored Steady-State Excitation and Recovery (MSSER) Radiation Force 

Imaging Using Viscoelastic Models” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency 

Control,Vol. 55, No. 7, 2008, pp. 1597-1610.  
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characterizing these tissue constructs, since actual displacement curves did not match those 

produced by the models.  This bad model fit was attributed to the size and shape of the tissue 

constructs being tested in addition to damped oscillation which occurs in these constructs at 

force cessation.  The materials being tested were much different in size and shape than 

materials earlier tested.  The thin string-like tissue constructs under tension attached to 

anchors on each side provided a unique challenge in imaging and required use of another 

model to better describe the behavior of these constructs.  It was found the underdamped 

harmonic oscillation model better characterized the tissue construct responses during MSSER 

imaging, specifically the underdamped oscillation which occurred in the constructs after 

force cessation. 

       The elastic modulus was calculated using the spring or stiffness constant, a parameter 

extracted from the underdamped harmonic oscillation model.  The oscillation frequency of 

the tissue construct along with the mass constant were two pieces of information calculated 

from MSSER data.  This information, along with the acoustic force magnitude, was used to 

calculate the elastic modulus.  The acceleration of the tissue during excitation, an important 

value used in the mass constant calculation, was calculated two different ways.  (More 

information about tissue acceleration calculations may be found in Chapter 4.)  Parametric 

images of elastic modulus values were successfully produced along with elastic modulus 

values reported.  The values were compared to elastic modulus values calculated by Pfeiler et. 

al. in earlier work.
2
  Although our preliminary data suggests that MSSER can be used for  

mechanical property testing of these tissue constructs, more work is needed to perfect these 

 
_____________________________ 

 

2.  Pfeiler, T. W., Sumanasinghe, R. D., Loboa, E. G., “Finite element modeling of 3D human mesenchymal stem cell-seeded collagen 
matrices exposed to tensile strain.” Journal of Biomechanics Vol. 41, 2008, pp. 2289-2296.  
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methods.   

      This thesis contains information about the background, along with procedures and 

calculations.  In addition, results are presented along with analysis of these results and 
2
 

future directions for this study.  Chapter 2 contains informaottion about ultrasonic imaging, 

along with novel ultrasonic technologies and information about the field of elastography.  

This chapter also discusses MSSER and its application to studying mechanical properties of 

the tissue constructs.  Chapter 3 contains information on current tissue engineering 

techniques, along with information on the biomechanical properties of biological tissues.  

Methods for testing mechanical properties along with the harmonic oscillation model are 

discussed within this chapter.  Chapter 4 consists of the methods and materials, including 

information on calculations and production of stiffness images. The results are compared to 

previous work along with comments on the results.  Chapter 5 provides a summary  

along with future directions of this study.   

 

 

 

                                                 
2.  Pfeiler, T. W., Sumanasinghe, R. D., Loboa, E. G., “Finite element modeling of 3D human mesenchymal stem cell-seeded collagen 

matrices exposed to tensile strain.” Journal of Biomechanics Vol. 41, 2008, pp. 2289-2296.  
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2296. 



 

 

 

 

 

 

Chapter 2: Ultrasonic Imaging 

 
Background on ultrasonic imaging 
 

      Ultrasound is a noninvasive, relatively inexpensive diagnostic medical imaging modality.  

Minimum stress and inconvenience to patients along with no use of any potentially harmful 

ionizing energy are other benefits of this technology.
1
 Ultrasound is generally used to analyze 

internal organs, muscles, tendons, and detect pathological lesions.  Since images are captured 

in real time, movement of organs can be seen along with blood flow though vessels. 

      Ultrasonic waves, generated by piezoelectric elements, used in the imaging process are 

on the frequency range of 2 to 15MHz and propagate through soft tissue at speeds of around 

1540 m/s
2
.  The piezoelectric elements, located in the ultrasound transducer, convert 

electrical pulses into mechanical pulses and vise versa.
2
 The pulses are a result of the 

piezoelectric effect which occurs when these crystals are exposed to a voltage potential.  This 

electric potential results in a disruption of the crystal lattice causing a deformation to form in 

the crystal.  This deformation results in the production of a pressure wave.   These 

longitudinal pressure waves then travel into the tissue being examined.  Once inside the 

tissue, these waves interact with the tissue.  The waves are partially absorbed, reflected or 

scattered as they travel through the tissue.   These interferences result in echoes that are 

reflected back to the transducer giving information about the tissue. The echo pulses are 

detected by piezoelectric crystals which transform the acoustic echoes into electrical pulses.  

____________________________________ 

1. Lutz, H.T., Gharbi, H. A., Basics of Ultrasound. New York, NY. Spinger Berlin Heidelberg, 2006, pp1-19.  

2  Jensen, Jorgen. “Medical ultrasound imaging” Progress in Biophysics and Molecular Biology. Vol. 93 (2007) 153-165.  
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Computer equipment processes the acquired data first by analyzing the echoes with respect to 

their site of origin.  This is determined by the time-distance principle.  The intensity of the 

received echoes is next determined.  From this information, a black and white speckle image 

can be produced.   The ultrasound waves are created and received by the same transducer.  

Transducers with different geometries along with different frequencies are available to meet 

various imaging needs.  Most clinical ultrasound transducers are linear array transducers 

which have many elements capable of transmitting and receiving acoustic pulses.  Using 

multiple elements along with delaying inner elements with respect to the outer elements 

allows for focusing of the ultrasound beam.  A more focused ultrasound beam does not only 

provide clearer data, but penetrates deeper into tissue.    

      The focused ultrasound beam results in an ultrasonic field (Figure 1).  This field 

encompasses the region below the ultrasound transducer in which the ultrasound beam 

travels.  Three parts of the field exist and include the near field, the focus points, and the far 

field.
3
  The resolution of this field can be characterized by the lateral, axial, and elevational 

resolutions.   The lateral resolution is dependent upon the diameter of the ultrasound beam, 

axial resolution depends on the length of the emitted ultrasound pulse and pulse wavelength, 

and elevational resolution the thickness of the transducer element.
4
   

___________________________________ 
 

3 Wells, P. N., “Ultrasound imaging” Phys. Med. Biol. Vol. 51 (2006) pp. R83-R98 

4. Woo, J., “A short history of the development of Ultrasound in Obstetrics and Gynecology”. 2002. Available (Online) http://www.ob-
ultrasound.net/history1.html. Accessed March 12, 2010 
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(Image by Lutz et. al
1
) 

 

      Multiple ultrasound imaging modes exists.  A-mode imaging, which appears in a one-

dimensional waveform, is used to detect information about small or rapid movements.  B-

mode imaging is used to produce a cross-section anatomical image.  This B-mode imaging is 

most commonly used in clinical applications.  M-mode imaging, created from a succession of 

A-mode images, can show time-varying displacements.  Another form of ultrasound imaging 

is Doppler imaging.  This method uses the frequency or phase shift of sound which occurs 

for moving objects and determines the speed of the moving object.  Doppler images are color 

coded showing not only the speed of moving objects within the body, such as blood, but also 

the direction of those objects.
5
   

Background on elastography including acoustic radiation 

force methods 
 

      Palpation has long been used as a diagnostic tool for detecting disease based on the fact 

that pathologic changes alter the stiffness of tissue.  

__________________________________ 

5. Prince, J. L., Links, J. M., Medical Imaging Signals and Systems. Pearson Prentice Hall: Upper Saddle River, NJ, 2006, Pp 11-12, 315-
316.  

Figure 1 shows an approximation of an ultrasound field.  

Lateral direction of this field is left and right, axial direction is 

up and down, while elevational direction is in and out of the 

page. 
3
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These stiffness changes are a result of changes in the mechanical properties of tissue.
4,5,6

  

However, small lesion size or deep location within the body make it difficult to detect and 

characterize some lesions by palpation.  Even though the elastic modulus of normal soft 

tissue ranges over as much as four orders of magnitude, this range dramatically increases in 

diseased tissue.
7
   

      The need for better methods of detection for these property changes accompanying 

disease has led to the creation of the field of elastography.  The prevailing imaging modality 

used in this field of study has been ultrasound.  However, conventional ultrasound is not 

capable of detecting such differences in mechanical properties, therefore novel ultrasound 

methods have been created.
6,8

   

      Many different elastography methods have been explored and developed.  One such 

method is compression elastography in which tissue is imaged before and after a 

compression force is applied.  Using correlation techniques, pre and post compression images 

are compared to render a strain map of the tissue.
9,10

  Another form, transient elastography, 

uses low frequency vibration to create motion within the tissue.  While tissue is in motion, 

pulse-echo ultrasound is used to detect tissue displacements.
8
   

 
 

 

 
 

 

____________________________________ 
4. Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 2003; 

5:57–78. 

5. Xydeas T, Siegmann K, Sinkus R, Krainick-Strobel U, Miller S, Claussen CD. Magnetic resonance elastography of the breast: correlation 
of signal intensity data with viscoelastic properties. Invest Radiol 2005; 40:412–420. 

6. Glozman, T., Azhari, H., “A Method for Characterization of Tissue Elastic Properties Combining Ultrasound Computed Tomography 

With Elastography.” J Ultrasound Med. Vol. 29 pp 387-398.  
7. Sarvazyan A. 1993. Shear acoustic properties of soft biological tissues in medical diagnostics. Proc. Acoust. Soc. Am., 125th, Ottawa, 

Canada, p. 2329 

 
8. Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging the elastic properties of tissue: a review. Ultrasound Med Biol 1996; 22:959–977. 

9. Bercoff J, Chaffai S, Tanter M, et al. In vivo breast tumor detection using transient elastography. Ultrasound Med Biol 2003; 29:1387–

1396. 
10. Catheline S, Gennison JL, Delon O, et al. Measurements of viscoelastic properties of homogeneous soft solid using transient 

elastography: an inverse problem approach. J Acoust Soc Am 2004; 116:3734–3741 
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 Most elastography methods rely on the principle that stiffer tissue will displace less than soft 

tissue when a stress is applied.  Applied stress and displacement differences can provide 

important information regarding tissue properties and even be used in calculating parameters 

such as the elastic modulus.
6
 All of the earlier mentioned external methods of applying 

compression forces lack the ability to apply the compression or excitation force directly to 

internal areas of interest.  Therefore internal methods which are capable of applying a force 

directly to a region of interest and probing the tissue point by point have been investigated.  

Internal sources such as cardiac pulsation or breathing have been considered.  A more 

reliable method of internal excitation being used and developed for elastography includes 

using the radiation force of ultrasound in which a beam of ultrasound is used to apply a stress 

to the tissue and measure resulting strains.  Acoustic radiation force can penetrate boundaries 

giving information about regions of interest which are deep in tissue.
4,12

    

      Acoustic Radiation Force Impulse (ARFI) imaging is an ultrasound imaging system 

based on radiation force which provides information about the local mechanical properties of 

tissue.  Differences in mechanical properties are detected via differences in tissue 

displacement when acoustic radiation force is applied.  Recovery time of the displaced tissue 

provides additional information about mechanical properties. The displacements are 

monitored and tracked using ultrasound tracking correlation based methods.  Such methods 

allow for both temporal and spatial tracking of displacements when acoustic force is applied.   

_________________________ 

4. Woo, J., “A short history of the development of Ultrasound in Obstetrics and Gynecology”. 2002. Available (Online) http://www.ob-
ultrasound.net/history1.html. Accessed March 12, 2010 

6. Glozman, T., Azhari, H., “A Method for Characterization of Tissue Elastic Properties Combining Ultrasound Computed Tomography 

With Elastography.” J Ultrasound Med. Vol. 29 pp 387-398.  
12. Sarvazyan A, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov Y. 1998. Shear wave elasticity imaging: a new ultrasonic technology 

of medical diagnostics. Ultrasound Med. Biol. 24(9):1419–35 
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This acoustic radiation force occurs due to the propagation of acoustic waves through 

dissipative media.  As sound waves are dissipated through media, momentum is transferred 

to the tissue.  Ultimately, the transfer of momentum applied to the focal region of the 

ultrasonic beam results in the application of a body force.  This force is applied in the same 

direction as the wave traveling through media
13

.  In media absorbing an ultrasound wave, the 

magnitude of the force can be calculated by the following equation  

 

c

I

c

Wabsorbed
F

α2
==  

 

where F is defined as the acoustic force measured in N/m
3
, α is defined as the attenuation 

coefficient measure in units of Np/m, I is the temporal average intensity in units of W/m
2
. 

13,14,15,16
  The shape of this intensity field can be described by a dimensionless quantity 

referred to as the f-number (F/#).  This (F/#) is calculated by the following relation: 

 

d

z
F =/#  

 

 

 

________________________ 

13. Nightingale, K., Soo, M. S., Nightingale, R., Trahey, G., “Acoustic Radiation Force Impulse Imaging: In Vivo Demonstration of 

Clinical Feasiblity.” Ultrasound in Medicine and Biology. Oct 24, 2001   

14. Torr, G. The acoustic radiation force. Am. J. Phys. 52:402 408, 1984. 
15. Nyborg, W. Acoustic streaming. In: Mason, W., ed., Physical Acoustics, New York: Academic Press Inc, vol. IIB, chap. 11, 265{331. 

1965. 

16. Nightingale, K., McAleavey, S., Trahey, G., “Shear-Wave Generation Using Acoustic Radiation Force: In Vivo and Ex Vivo Results” 
Ultrasound in Med and Biol. Vol 29 No. 12, 2003, pp. 1715-1723.  
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Where d is the aperture width and z is the acoustic focal length.  This configuration results in 

a body force applied throughout the tissue within the geometric shadow of the transducer.  

The transducer produces a variable-magnitiude body force.
17,18, 19

 The dynamic response of 

tissue to this acoustic force is indicative of the mechanical properties of the tissue.
17

 

Magnitude displacement is inversely related to the stiffness of  

the tissue.  Stiffer tissue produces less displacement than softer tissue under acoustic 

radiation force.  These differences in displacement indicate variations in the elastic modulus 

within tissue being imaged.  Differences in tissue stiffness properties from normal tissue are 

often associated with pathological tissue.   

     ARFI imaging may be performed using a diagnostic ultrasound scanner and clinical 

ultrasound transducer, which produce both the acoustic radiation force and measures the 

resulting displacements.  The same transducer is used to apply the acoustic force and 

measure the resulting displacement using B-mode tracking pulses.
17

 Use of the same 

transducer eliminates any issues with alignment and makes clinical use easier and more 

realistic when performing ARFI.  The force application can be customized by changing the 

transmitter pulse shape along with the temporal profile and period.  The duration of the force, 

usually less then 1 millisecond, can also be adjusted.
13

 

      Ultrasonic methods for measuring mechanical properties or stiffness of tissue are 

clinically relevant due to stiffness changes which occur during disease.
20

    

___________________________________ 
13. Nightingale, K., Soo, M. S., Nightingale, R., Trahey, G., “Acoustic Radiation Force Impulse Imaging: In Vivo Demonstration of 

Clinical Feasiblity.” Ultrasound in Medicine and Biology. Oct 24, 2001   

17. Palmeri, M.L., Sharma, A. C., Bouchard, R. R., Nightingale, R. W., Nightingale, K. R., “A Finite-Element Method Model of Soft Tissue 
Response to Impulsive Acoustic Radiation Force.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 

Vol 52. No. 10, 2005, Pp 1699-1711.  

18. A. Sarvazyan, O. Rudenko, S. Swanson, J. Fowlkes, and S. Emelianov, “Shear wave elasticity imaging: A new ultrasonictechnology of 
medical diagnostics,” Ultrasound Med. Biol., vol. 24, no. 9, pp. 1419–1435, 1998. 

19. O. Rudenko, A. Sarvazyan, and S. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a 

dissipative medium,” J. Acoust. Soc. Amer., vol. 99, no. 5, pp. 2791–2798, 1996. 
20. Nightingale, K.R., Palmeri, M.L., Nightingale, R. W., Trahey, G. E., “On the feasibility of remote palpation using acoustic radiation 

force.” J. Acoust. Soc Am Vol. 110, 2001. 



 

 

12 

Differences in tissue displacement can give critical information about pathologies that may 

exist.
13

 ARFI imaging has been successfully used in elastography studies.  The advantage 

ARFI provides in elastography is the application of the force and subsequent measurement of 

stiffness can be applied to areas superficial to boundary layers.
17,20

   

 

Prolonged acoustic radiation force application: Monitored 

Steady State Excitation and Recovery (MSSER) Ultrasound 
 

      ARFI uses short (~ 70 microseconds) excitation pulses, which give information regarding 

tissue response to impulsive excitation only.  In materials which strain is time dependent, 

impulsive excitation does not give an accurate displacement value.  Therefore, prolonged 

acoustic force applications have been studied.  Such techniques are useful in studying steady 

state displacement of tissue.  One prolonged force application that has been developed is 

called Kinetic Acoustic Vitreoretinal Examination (KAVE).  KAVE is an application of 

ARFI imaging which was developed for imaging of the vitreous membrane of the eye.  This 

technique uses multiple acoustic pulses generated by a single element piston transducer.  As 

a result small, localized displacements are generated.
21 

 At cessation of force, transient tissue 

response is measured.  This technique allows for monitoring the steady state tissue response 

when a constant force is applied.   KAVE imaging allows for determination of maximum 

displacement, relative viscosity, and relative elasticity.  

___________________________________ 

13. Nightingale, K., Soo, M. S., Nightingale, R., Trahey, G., “Acoustic Radiation Force Impulse Imaging: In Vivo Demonstration of 
Clinical Feasiblity.” Ultrasound in Medicine and Biology. Oct 24, 2001   

17. Palmeri, M.L., Sharma, A. C., Bouchard, R. R., Nightingale, R. W., Nightingale, K. R., “A Finite-Element Method Model of Soft Tissue 

Response to Impulsive Acoustic Radiation Force.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 
Vol 52. No. 10, 2005, Pp 1699-1711.  

20. Nightingale, K.R., Palmeri, M.L., Nightingale, R. W., Trahey, G. E., “On the feasibility of remote palpation using acoustic radiation 

force.” J. Acoust. Soc Am Vol. 110, 2001. 
21. Mauldin, F. W. Jr., Haider, M. A., Loboa, E. G.,  Behler, R. H.,  Euliss, L. E., Pfeiler, T. W.,  Gallippi, C. M.,  “Monitored Steady-State 

Excitation and Recovery (MSSER) Radiation Force Imaging Using Viscoelastic Models” IEEE Transaction on Ultrasonics, 

Ferroelectrics, and Frequency Control,Vol. 55, No. 7, 2008, pp. 1597-1610.  
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These mechanical property values are useful in characterizing the vitreous membrane. This 

technology promises to be useful in detecting mechanical property changes as a result of 

diseases which occur in this membrane.
22,23

 

      Another form of ARFI imaging called Monitored Steady State Excitation and Recovery 

(MSSER) also shows promising uses in elastography.  This method uses an extended force 

application to monitor the steady state displacement of tissue.  It can also be used to monitor 

the responses at cessation of the force application.  MSSER techniques mimic a creep test by 

applying a constant force and observing the change in strain of the material over time.
 
  

MSSER has already shown potential in being useful for testing the mechanical properties of 

tissues with viscoelastic properties.  It has already been successfully used in conjunction with 

the Voigt and Standard Linear models of viscoelastic materials to determine mechanical 

properties such as the Elastic modulus and viscosity.
21

  An advantage MSSER provides over 

KAVE is that it allows for monitoring the transient response of the tissue constructs at force 

cessation.  This response, such as tissue oscillation frequency, at force cessation is an 

important parameter used in the elastic modulus calculation.   

MSSER: Nondestructive testing of the mechanical 

properties of engineered tissue 
 

 

      The main advantage MSSER gives over current techniques for measuring the elastic 

modulus is that it can be done non-invasively.  Current methods require removal of  

_________________________ 

21. Mauldin, F. W. Jr., Haider, M. A., Loboa, E. G.,  Behler, R. H.,  Euliss, L. E., Pfeiler, T. W.,  Gallippi, C. M.,  “Monitored Steady-State 
Excitation and Recovery (MSSER) Radiation Force Imaging Using Viscoelastic Models” IEEE Transaction on Ultrasonics, 

Ferroelectrics, and Frequency Control,Vol. 55, No. 7, 2008, pp. 1597-1610.  

22. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation 
force,” Phys. Med. Biol., vol. 45, no. 6, pp. 1437–1447, 2000. 

23. F. Viola and W. F. Walker, “Radiation force imaging of viscoelasticproperties with reduced artifacts,” IEEE Trans.  

Ultrason.,Ferroelect., Freq. Contr., vol. 50, no. 6, pp. 736–742, 2003. 
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constructs from growth media and subsequent death of the cells.    

These current methods use a tensile test which results in the destruction of tissue construct 

being tested.  The use of a tensile test is a loss of resources and time.
26

 Current testing 

methods are discussed more in Chapter 3.  MSSER would allow testing of mechanical 

properties to occur while the tissue constructs are still alive growing in culture media.   

      MSSER also shows potential for being more accurate than the current method.  Finite 

Element Analysis (FEA) is used to try and predict elastic modulus differences within the 

tissue constructs.  This analysis assumes the tissue construct has linear elastic properties.
26

   

MSSER, designed for testing of viscoelastic materials, allows for a point by point analysis of 

the tissue constructs.  For example, with this technology, it would be possible to detect focal 

areas of calcium deposition or hardening along these constructs.  Although FEA is also 

capable of predicting local strains using a globally obtained elastic modulus value and 

geometric parameters of the construct, MSSER is capable of performing localized 

measurements along the tissue constructs.  This also includes measurements at multiple 

depths within the tissue construct.  

 

Conclusion 
 

      Ultrasound imaging, a dynamic imaging modality, is highly utilized within the clinical 

setting to study anatomy and detect disease.
27

  Being relatively inexpensive, portable, and 

able to provide real time information has lead to much research in finding additional methods 

of use for this imaging modality.   
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Ultrasound technology has been utilized in the growing field of elastography.  Being able to 

examine the mechanical properties of biological tissue will be advantageous in the detection 

of diseases, such as cancer or cardiovascular disease, in which these are accompanied by 

changes in tissue stiffness.  Ultrasound is a desirable tool to use in elastography due to 

radiation force’s ability to penetrate boundaries allowing for examination of tissue that is not 

close to the surface.
28,29,30

 ARFI has been developed to administer an acoustic radiation force 

to produce tissue displacements which can be measured along with the time it takes for the 

tissue to recover back to its steady state location.
31

 Another benefit of MSSER is it allows  

for focal measurements localized to regions that span hundreds of microns.  This is in 

contrast to the current method in which an average elastic modulus value is taken over a large 

range of tissue. MSSER, a modification of ARFI, allows for a prolonged force application 

rather than an instantaneous force.  MSSER also allows for tracking of changes in tissue 

displacement over time while force is being applied along with monitoring recovery time or 

any oscillations that occur after tissue excitation.  ARFI is only capable of measuring 

impulsive force response of tissue and not steady state displacement.    MSSER, which 

mimics a creep test, can be used to measure mechanical properties of viscoelastic materials, 

which experience changes in strain over time with the application of a constant force.  
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Chapter 3: Engineered Tissues and Their Biomechanical 

Properties 

 

Background on Tissue Engineering 
 
      Integration of natural and synthetic materials to mimic native tissue structure and 

function is required for successful tissue engineering and replacement. Collagen has been 

extensively studied for its potential as a tissue engineering scaffold.  It is the principle 

structural element of the extracellular matrix in most biological tissues with 90% of bone’s 

organic matrix being comprised of collagen.
1
  

      Cells that supply specific function within the native tissue are crucial. Adult stem cells 

such as bone marrow derived mesenchymal stem cells (MSCs) have been extensively 

investigated for tissue engineering applications as they are easily accessible for autografting 

and exhibit multilineage differentiation capabilities.
2
  Osteogenic differentiation in 3D 

culture is an essential step in creating bioengineered bone tissue.  For differentiation to occur 

in vitro optimal mechanical and chemical stimuli are required.
3
 MSCs cultured in the 

presence of ascorbic acid, β-glycerolphosphate, and  
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dexamethasone have been shown to undergo osteogenic differentiation and deposit calcium 
4, 

5, 6
.  Although cells grown within these conditions undergo differentiation in vitro, they lack 

the mechanical strength to withstand the in vivo environment. Therefore, it is important to 

produce cell constructs capable of withstanding the dynamic physiological stresses and 

strains within the in vivo environment
7
.   

It has also been shown MSCs are capable of osteogenic differentiation through 

mechanical stimulation of 10% and 12% strain.
8, 9, 10, 11

.   During differentiation via 

mechanical stimulation, an increase in type 1 collagen and alkaline phosphatase was 

observed.  In addition, upregulation of mRNA expression of bone morphogenic protein – 2 

(BMP-2) was also detected.
12

 A greater increase in BMP-2 has been noted in 10% strain over 

12% strain.        

      Methods have been developed for applying a cyclic tensile strain to MSCs being grown 

for osteogenic differentiation.  Special media constructs are designed to provide the optimum 

environment for cell growth and differentiation.  The first step in creating the constructs 

involves seeding the cells within a linear 3D type 1 collagen matrix.  Using TissueTrain 

(Flexcell® Hillsborough, NC) culture plates, the linear cell seeded collagen matrix is 

suspended between two anchors.  By drawing a vacuum upon a plastic  
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membrane in which the cell matrix rests, a tensile strain is applied.
13

 

        A limiting factor to successful production of tissue constructs is excessive contraction of 

collagen scaffolds which are observed during cell growth and differentiation.  This 

contraction of the constructs presents an obstacle in that it limits the size of the final 

construct.  Additional significant contraction by the cells causes rupture of the MSC-seeded 

collagen constructs when cyclic tensile strain is applied for more than two weeks. 

Understanding mechanical properties of MSC-seeded collagen gels and how those properties 

change during MSC proliferation and osteogenic differentiation will increase our 

understanding and use of these scaffolds for bone tissue engineering applications.
9, 14

       

 

Biomechanical background of Biological Tissues and 

Mechanical Property Testing Methods. 
 

      Characterization of engineered tissues, other biological tissues, and even materials used 

in engineering applications require a calculation of “hardness” or the tendency of an object to 

deform under force application.  A value used to describe this hardness is the elastic modulus.  

The elastic modulus is the tendency of an object to be deformed to be deformed elastically 

when a force is applied.   Phenomenologially, this value is given as the slope of the stress-

strain curve of an isotropic, elastic material.  Therefore, the elastic modulus is defined as the 

stress (N/m
2
) applied divided by strain (m/m). The equation for elastic modulus is 
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strain

stress
E =  

 

 

in which E(N/m
2
) is equal to the elastic modulus.  Stress is defined as the force applied per 

unit area and strain is calculated as the change in length (in direction force is applied) divided 

by the original length of the material.
15 

 The elastic modulus is useful in classifying the 

mechanical properties of materials, such as hardness, commonly used in engineering 

applications such as steel, iron, or copper.
16 

 One method for testing of the elastic modulus is 

use of a tensile test, which is the method used in testing tissue constructs.  These machines 

work by using a hydraulic or electromagnetic machine that applies a force to the sample 

being tested.  The tensile testing machine monitors the magnitude of the applied force along 

with the resulting strain due to the applied force.  Ultimate tensile strength, peak stress, onset 

of permanent deformation and rupture can all be calculated by the machine.  A stress strain 

curve is produced in which the slope of the linear portion of the curve is taken to be the 

Elastic modulus of the material tested.  Both tensile (pulling) and compression (pushing) can 

be performed on samples tested for elastic modulus.
17

  The elastic modulus is a very common 

value used in describing the hardness of materials since it is a value which is independent of 

shape or material dimensions.                   

      Another value used to quantify stiffness of materials is the spring or stiffness constant, 

often referred to as “k”.  This value is mostly calculated using Hooke’s Law of elasticity.   

Hooke’s law is defined as: 
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      kxF −=  

in which F(N) is the force applied, k (N/m) is the spring constant, and x(m) is the 

displacement of the material from the point where no force is applied.  Hooke’s law was 

originally derived for characterizing elastic springs in which a linear relation existed between 

the compression or tension force applied to the spring and deformation from the equilibrium 

point.  The calculation of the spring constant, k, can be calculated for any linearly elastic 

material, assuming the material behaves as an elastic spring.  By Hooke’s law, the value of 

the spring constant depends on both the elastic modulus and shear modulus of the material 

being tested.
18,19 

 The shear modulus of a material is the defined as the ratio of shear stress to 

shear strain.
20 

      When characterizing the mechanical properties of biological materials, they are described 

as behaving as a viscoelastic material.  Materials that exhibit viscoelastic properties are those 

which posses both viscous and elastic properties when being acted upon by a deforming force.  

Materials which exhibit elastic properties instantly strain when a force is applied and return 

to their initial state once the force is removed.  Viscous materials show a resistance to shear 

flow and will result in a strain linearly with time when a force is applied.  Materials which 

are viscoelastic have both of these properties and exhibit time dependent strain.
21 

      In materials which are viscoelastic, the stress-strain relationship when plotted exhibits a 

curved shape (Figure 2).  This is in contrast to materials which are linearly elastic and present 

a linear relationship between stress and strain (Figure 3).  
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To better measure mechanical properties of viscoelastic materials, a step or constant force 

through time is used since strain is dependent upon time.  This phenomenon in which stress 

is held constant while strain increases over time is referred to as creep  In fact, mechanical 

property tests which use a constant force and then measure strain over time are referred to as 

creep tests.  Another phenomena characteristic of viscoelastic materials, called relaxation, 

results in a decrease in stress as strain is held constant over time.  In cases when a cyclic load 

is applied to a viscoelastic material, a phase lag can be observed.  This lag in phase is due to 

the viscous nature which causes a dissipation of mechanical energy.
22
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Figure 3. Shows response of a linearly elastic 

material when a deformation force is applied Figure 2a. Represents a constant stress applied 

over time to a viscoelastic material.  Figure 2b. 

shows the change in strain over time even 

though constant force is applied to the 

viscoelastic material 

2a. 

2b. 
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      Mathematical models have been derived to characterize materials with viscoelastic 

properties.  Some models include the Maxwell model, Kelvin-Voigt model and the Standard 

Linear Model.  These are useful in predicting responses under loading conditions.  

Viscoelastic materials can be modeled using linear and parallel combinations of springs and 

dashpots each representing elastic and viscous properties respectively.  Each model is 

different in the placement and number of these elements.
23

  Depending on the stress versus 

strain relation, viscoelastic materials can be classified as having a linear or non-linear 

response.  Materials which at low stresses behave as a rigid body, but act as a viscous fluid at 

high stresses are said to exhibit plastic deformation.
24

 

     Biomechanical properties of biological tissues are difficult to characterize due to a variety 

of reasons.  Biological tissues are dependent upon time, moisture, and metabolically active 

with changes in properties after death.
25

 Characterization and mathematical analysis requires 

the generalization of the behavior of biological materials.  Mathematical models must be 

general enough to describe a wide variety of biological materials.  Variations in temperature, 

boundary conditions, and sample size can affect the mechanical properties of biological 

materials.   There is a limited amount of information that is available on the properties of soft 

tissues.   

     Biological materials which are mostly nonlinear and viscous often experience deformation 

and indention when acted upon by a stress.  Such responses make biological materials very 

difficult to characterize due to this departure from following Hooke’s law of elasticity for 

linear elastic materials.   Models used to describe non-linear elastic materials use multiple  
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parameters to characterize the elastic modulus.  This results in multiple elastic modulus 

values. For biological materials which are not linearly elastic, indentation methods have been 

developed to better quantify the mechanical properties of such materials.  These indentation 

methods, commonly used for calculation of the elastic moduli in biological materials, take 

into account the applied force, Poisson’s Ratio, indentation depth, and indenter properties.  

Such methods have shown to be successful in calculating the Elastic moduli of some 

biological materials.
26,27

  The biomechanical properties of biological tissue are being 

extensively studied due to changes that can occur during disease.  A change in the stiffness of 

tissue is significant in that it occurs during many pathological processess.
28

 

Haromonic Oscillator Model  

      Mathematical models have been derived for describing material response to an applied 

force.  One such model that has been derived for such characterization is the harmonic 

oscillator model.  The harmonic oscillator is a common mathematical model used in physics 

due to its wide range of application.  The harmonic oscillation model consists of a spring 

with spring constant k (N/m) and a mass (kg) attached to one end while the other end of the 

spring is attached to a fixed point (Figure 4).  When a displacing force is applied to the mass, 

the spring is either stretched or compressed from the equilibrium position.  When this force is 

removed, the system experiences a restoring force equal and opposite to the applied force.  

This restorative force results in oscillation within the system.  The restorative force depends  
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on the spring constant and the displacement of the mass from the equilibrium position.  This 

restorative force is calculated through Hooke’s law.   A system in which the restorative force 

is the only force acting on the harmonic oscillator is referred to as a simple harmonic 

oscillator.  In such systems, the mass follows a periodic oscillation motion with constant 

amplitude due to the restorative force.  However, in a more realistic system damping, a 

decrease in amplitude, occurs which is caused by forces such as friction.  This damping 

occurs as result in the loss of energy in the system.  The loss of energy results in a decrease 

in amplitude through time.
29,30

  Damped harmonic oscillators can be described by the 

following differential equation: 

0''' =++ kxbxmx  

 In which m is mass constant, b the damping coefficient, and k the stiffness coefficient.   
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Figure 4 shows the arrangement of the harmonic oscillator model.  A spring with stiffness 

constant k(N/m) is attached to a mass (kg) and attached to a fixed point.  When a force is 

applied moving the mass out of the equilibrium position, a restorative force dependent upon x, 

the distance (m) of displacement from equilibrium and k moves the mass back to the 

equilibrium position.   
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The damping coefficient will not be included in the calculation of elastic modulus.  More 

details regarding this may be located in Chapter 4.  When solving this differential equation of 

the harmonic oscillator, three different solutions for this model can be found dependent upon 

the determinant of the quadratic formula.  These differences result in overdamped, critically 

damped, and underdamped solutions for the harmonic oscillator.  (Figure 5)  An overdamped 

solution gives an exponential decay back to the equilibrium position without any oscillation.  

This solution is a result of the determinant 042 >− kmb .  Such a solution results in two real 

roots from the characteristic equation giving decreasing exponential solutions for the 

differential equation.  In fact, the Voigt model of viscoelasticity is derived from solutions of 

the overdamped oscillation model.  The Voigt model extracts both the damping constant and 

spring constant from this model to use in the description of viscoelastic behavior.   In a 

critically damped system, an exponential decay also occurs.  Solving the differential equation 

for a critically damped system, using the characteristic equation, results in two equal real 

roots for the solution.  Solving the differential equation for an underdamped system gives a 

much different solution as compared to the earlier two solutions.   This is due to the 

determinant of 042 <− kmb .  The solution to such a differential equation gives two 

imaginary roots.  This results in a solution which has terms of sines and cosines.  Rather than 

having a solution which is a decreasing exponential, the solution is a damped, oscillating sine 

wave.  The frequency of these oscillations may be calculated using parameters located within 

the differential equation for this model.
31,32

  This equation for oscillation frequency is as  

_________________________ 

31.Choi, J. R., “Approach to the Quantum Evolution for Underdamped, Critically Damped, and Overdamped Driven Harmonic Oscillators 

Using Unitary Transformation.” Reports on Mathematical Physics Vol. 52, 2003, pp. 321-329 

32. Stephen T. Thornton and Jerry B. Marion, Classical Dynamics of Particles and Systems, 5th Edition, California: Thomson Books/Cole 
2004 
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follows 

m

k
f

π2

1
=  

in which f  equals the frequency of oscillation (Hz), k the stiffness constant (N/m) and m 

equals the mass constant (kg).
29 

   

 

 

 

 

 

Methods of Testing Mechanical Properties of Biological 

Materials 
        Although mechanical testing of biological materials is done using tensile tests, other 

methods have been developed in an attempt for a more accurate model.  A method commonly 

used to measure the elastic modulus in biological materials is Atomic force microscopy 

(AFM).  AFM was first invented in 1986 and is the most commonly used form of scanning 

probe microscope.    It is a high-resolution scanning probe microscope that offers a resolution 

of fractions of a nanometer.  

 _________________________________ 

5. Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K. Stem cell characteristics of human trabecular bone-derived cells. Bone  Vol. 30, 

1999, pp 699-704 
29.O’Neil P. V., Advanced Engineering Mathematics 6th edition. Thompson: Toronto, Ontario. 2007. pp. 93-106.  

Figure 5 shows the three possible solutions for a damped harmonic oscillator.  

Overdamped and critically damped systems result in a decreasing exponential.  

Underdamped solutions give a solution which is a damped sine wave.
5
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AFM is utilized extensively for imaging, measuring, and manipulation at the nanoscale level.  

The AFM consists of a cantilever made typically from silicon or silicon nitride with a sharp 

tip or probe fixed to the very end of the cantilever.   AFM was originally invented for use in 

imaging nanometer sized organic and biological materials.  AFM instruments come available 

with a force curve mode that will record up and down deflections of the cantilever beam.  It 

is this mode this has been used in indentation studies for determining of mechanical 

properties such as Elastic modulus.
37  

AFM has been used to measure mechanical properties 

of cells and adhesive forces between them.  These properties are measured with the 

micrometer-scale cantilever by applying a stress to the surface.  Once the cantilever makes 

contact, continued force results in a deflection.  The resulting deflection or strain can be 

measured in a couple different ways.
38

 Most AFMs use a laser beam system for detecting the 

deflection of the cantilever arm.  In such systems, a laser is used to monitor the deflection of 

the beam.  Another method used is fitting a strain gauge to the cantilever.  Using a 

Wheatstone bridge, the deflection of the cantilever may be measured.   Proper functioning of 

the AFM relies on the forces between the tip and sample.   The deflection of the cantilever is 

dependent upon and obeys Hooke’s law of elasticity.  Hooke’s law is used to properly 

calculate the forces and deflection used in this system.  The force applied to the surface from 

the cantilever is kept constant while k, the stiffness, is a constant specific to the cantilever 

material.  The value of x changes as the cantilever is moved over the sample.  This change in 

x is a result in elevation and stiffness differences along the sample.
39

   

______________________________________ 
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Mechanical Studies of Cells.” /ature Methods Vol 6. No. 5, May 2009.   

39. “Atomic Force Microscopy” nanoScience Instruments. Available (Online) http://www.nanoscience.com/education/AFM.html. Accessed 
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Since biological materials are not linearly elastic and often experience deformation and 

indention, other mathematic models must be applied to indention studies in determining the 

Elastic modulus.   One such model is the Sneddon model which uses force and a measure of 

the indentation by the tip into the material to calculate the Elastic modulus of the material. 

      The Sneddon model of indentation is commonly used to predict the Elastic modulus in 

biological materials.  This model takes into account the relationship between indenter shape 

(indenter connected to cantilever) and the resulting indentation depth due to the force applied.   

The vertical force, indentation depth and Elastic modulus can be related through a series of 

equations.  Three such equations, for a cylindrical indenter, conical indenter, and a parabolic 

indenter are as follows: 
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Where F (N/m
2
) is equal to the vertical force, E(N/m

2
)   is the Elastic modulus, a(m) is the 

radius of the cylindrical indenter, I(m) is depth of indentation, v is Poisson’s Ratio, θ is the 

angle opening of the cone, and R(m) is he effective tip radius.  If AFM tip is pyramidal, then 

an approximation by using either cylindrical or cone may be used
40

.  This model, designed 

for macroscopic applications, has also been used in microscopic ones as well.  The Sneddon 

model assumes the sample has an infinitely wide surface that is flat in the x and y coordinate 

and the sample is infinitely thick.  For thin samples in which the effect of the substrate 

beneath the sample may not be neglected, the effect of the substrate must be accounted for.
41

   

 

Strengths and Shortcomings of Current Mechanical 

Property Testing Methods in Engineered Tissues 

 
       Methods have already been development to measure and quantify the elastic properties 

of cell-seeded collagen gel matrices cultured under cyclic tensile strain. Previous work used 

Finite Element Analysis (FEA) to predict local stresses and strains within these constructs.  

The FEA models were assembled using construct geometry (i.e. construct dimensions) and 

material property data experimentally obtained.  Material data property was obtained using a 

tensile testing machine under ramp displacement control.    The Elastic modulus was 

calculated by averaging stiffness values.  These values were  

__________________________ 

40.  Ikai, A., Afrin, R., (2003) Toward Mechanical Manipulations of Cell Membranes and Membrane Proteins Using an Atomic Force 
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taken from the linear portion of the stress-strain relation.  Performing a tensile test  

requires the removal of constructs from tissue media, stretching of constructs (up to 150% 

strain), and ultimate destruction of the tissue constructs.
42

  

       Current methods are highly invasive resulting in death of the cells and ultimate 

destruction of the tissue constructs.  This is not only a waste of money and resources, but also 

time invested in creating these tissue constructs.  In addition to being highly invasive, the 

tensile test the properties of the tissue construct as a whole and does not provide specific 

information about local differences which may exist within the construct.  The FEA is 

performed using geometric parameters of the tissue constructs and the results of the tensile 

tests.  However, there are issues with the accuracy of the FEA model.  For the purpose of 

modeling, the tissue constructs are assumed be linearly elastic, which is not true of 

viscoelestic materials.  These materials experience strain that is dependent upon time and not 

solely upon magnitude of force application.  However, FEA allows for reporting of three 

dimensional data.  Strain information is given for the tissue constructs in the axial, 

elevational, and lateral directions whereas MSSER provides only two dimensional 

information.   

      Issues also exist with using AFM in testing the mechanical properties. In order for 

measurements to occur, the cantilever arm must come in contact with the tissue constructs 

rendering it an invasive technique.  Another issue inherit with AFM is the presence of 

intermolecular forces between the tissue construct and the cantilever arm.  These 

intermolecular forces could result in inaccuracies in measurements.
43

  Ultrasound methods  

 
_____________________________________ 
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provide an additional benefit in that it is an internal method of force application, applying the 

compression force to all depths within the tissue construct and measuring change in 

displacement at all depths.  However, AFM is an external method of force application in 

which the force is applied externally to the top surface and only one measurement of 

displacement, at the surface, is obtained.   An advantage AFM does provide over MSSER the 

much higher resolution capability.  AFM resolution is on the order of nanometers while 

MSSER resolution is on the order or several hundred microns.  AFM also has much higher 

sensitivity; it is capable of measuring displacements of less than a nanometer, much smaller 

than what of which MSSER is capable.      

 

 

MSSER vs. Current Methods and the Need for Better 

Methods 
 

 

       MSSER imaging of tissue constructs holds the possibility of being able to determine the 

mechanical properties of tissue constructs while they are alive and growing in culture media.  

MSSER is also non-invasive and allows for internal force application and internal 

measurements of displacements. This technology could allow for monitoring of changes in 

mechanical properties of tissue constructs throughout the differentiation process.  MSSER 

along with viscoelastic models provide for a more accurate model to characterize the 

mechanical properties of the cells.  FEA models assume a linear elastic relationship between 

stress and strain, but MSSER, produced to mimic a creep test, can report changes in strain 

over time during constant force application.  This new MSSER technique, in contrast to 

earlier methods, allows for measuring of localized stiffness values within the construct.  This 
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is extremely helpful in that it will allow for detection of areas along the construct that are 

stiffer than others.  This can be used to determine areas in which differentiation is occurring 

or points of higher stress within the construct.  It is possible to detect areas in which calcium 

has been deposited within the differentiating constructs.   MSSER does not have as high of a 

resolution as other techniques.  Current MSSER imaging systems only have a resolution of 

several hundred microns.  Therefore, it would be difficult to discern differences in elastic 

modulus on a scale smaller than a few hundred microns.  In the current setup of MSSER, 

only one elevational position is imaged, thus elastic modulus differences in the elevational 

direction are not reported.  In addition, it would be very difficult to obtain information in the 

elevational direction due to the thin size of the tissue construct and poor resolution.   

 

 

Applying MSSER to Test the Mechanical Properties of 

Engineered Tissue Being Grown for Osteogenic 
Differentiation 
 
      MSSER in past work was used in conjunction with the Voigt model of elasticity to 

calculate the Elastic modulus along with other mechanical property parameters.
44

  However, 

these tissue constructs present a unique challenge in that they are very thin and resemble a 

rope suspended between to anchors.  Imaging of these constructs is quite different from 

imaging a large section of tissue.  After unsuccessfully trying to use the Voigt model of 

elasticity to characterize these constructs, others models were explored.  The Voigt model 

gave incorrect tissue recovery values which resulted in model curves that did not fit the 

__________________________ 
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actual displacement models.  It was determined the reason for these errors was data better 

modeled an underdamped harmonic oscillator rather than an overdamped harmonic oscillator 

from which the Voigt model of elasticity was derived.  The underdamped harmonic oscillator 

provided for a more accurate model to describe the behavior of these constructs, specifically 

the oscillation which occurs after cessations of the excitation force.  This underdamped 

harmonic oscillation model was used to calculate a spring constant which describes the 

stiffness.  Using MSSER parameters, underdamped harmonic oscillation model, along with 

some components of the Voigt model, methods were developed to calculate the Elastic 

modulus of these tissue constructs.   

Conclusion 
 

      Tissue engineering for the purpose of bone replacement therapy relies on integration of 

natural and synthetic components.  For osteogenic differentiation to occur, specific chemical 

and mechanical stimulation is required.  For these bone tissue constructs to ever be 

successfully used in bone replacement therapies, much more work is needed to better 

changes in size and increase in hardness, due to calcium deposition, during differentiation.  

Mechanical properties of biological materials are difficult to characterize due to their 

viscoelastic nature.  Methods have been developed in an attempt to better characterize 

biological materials even though most methods assume these materials are linearly elastic.  

Novel ultrasonic imaging methods, MSSER, have also been developed in attempt to provide 

a more accurate and non-invasive method of testing the mechanical properties of viscoelastic 

biological materials.  Hopes are to develop MSSER into a non-invasive mechanical property 

testing method used to determine the elastic modulus of tissue constructs providing localized 

stiffness values for specific areas along the construct.  
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Chapter 4: MSSER Imaging of Tissue Constructions 

Grown in Complete Growth Media versus Osteogenic 

Media 
 

Methods  

 
Cell isolation and culture. 

       Human Mensenchymal Stem Cells (MSCs) were isolated from trabecular bone 

fragments of a 78 year old female donor.
1
 Briefly, dissected bones were digested with 

collagenase XI (3 mg/mL) in phosphate buffered saline (PBS) at 37
o
C for three hours on a 

rotator plate (Labquake, rotisserie mode). After three hours, complete growth medium (α-

MEM supplemented with 10% fetal bovine serum (FBS, lot selected; Atlanta Biologicals, 

Lawrenceville, GA), 2 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL 

streptomycin) was added to the digest to neutralize the collagenase.  Debris was removed by 

filtering the digest through a 100 µm cell strainer followed by centrifugation at 500 g for 5 

minutes. The pellet was resuspended in 160 mM NH4Cl for 10 minutes, centrifuged to 

remove the supernatant, and the cells plated in complete growth medium. Non-adherent cells 

were washed out after 24 hours. Passage 2 hMSCs were used for all experiments and 

analyses.  

________________________ 
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Fabrication of collagen gels.  
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      Linear three-dimensional MSC-seeded constructs were fabricated as previously described 

in Sumanasinghe et al.
2
 Briefly, MSCs were seeded into collagen gels at 60,000 cells/ 200 µl/ 

construct. Gel solution consisted of 70% type I collagen (BD Biosciences, San Jose, CA) (pH 

adjusted to 7.0), 20% 5x MEM and 10% FBS.  The hMSC-seeded collagen gel solutions 

were loaded into Tissue Train
TM

 collagen I-coated six-well culture plates (Flexcell 

International, Hillsborough, NC) and were allowed to polymerize for 2 hours prior to 

application of growth media.  

Osteogenic differentiation  

      Beginning 24 hours after seeding with MSCs, the constructs were cultured for an 

additional two weeks in either growth or osteogenic media. Osteogenic medium consisted of 

growth medium supplemented with 50 µM ascorbic acid, 0.1 µM dexamethasone, and 10 

mM β-glycerolphosphate.  Tissue cell constructs were prepared by Audrey Charoenpanich in 

the Loboa lab at North Carolina State University.   

Creation of sequences 

      In order to perform Monitored Steady State Excitation and Recovery (MSSER), 

ultrasound beam sequences were created for use in imaging of cell constructs.  The designed 

MSSER sequence utilized 2 different types of beams which included a high intensity 10 

cycle pushing beam and a conventional 2 cycle B-mode tracking pulse.  The MSSER 

sequence began with two B-mode pulses which were used to determine an initial reference 

point.  After firing of the two tracking pulses, 40 high intensity, 10 cycle ARFI pushing 

beams were used to displace the tissue.  After each of the 40 high intensity pushing pulses, a 

B-mode tracking pulse was used to monitor the displacement during force excitation.  This 

alternation between pushing and tracking pulses was desirable in order to mimic a creep test; 
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applying a constant force while monitoring changes in strain over time.   Following this push 

and track sequence, an additional 1999 tracking pulses were used to track the recovery of 

tissue and monitor the oscillation frequency of the tissue constructs.  Imaging was performed 

using an F/#1.5 focal configuration.    Using a linear array clinical ultrasound transducer, 

ultrasound waves were focused to one lateral position.  The imaging sequence was designed 

this way in order to eliminate undesired vibrations within the construct which could interfere 

with measurements.  Shear waves, generated by pushing over multiple areas, were found in 

previous experiments to travel within the construct and interfere with proper data acquisition.   

Although a shear wave was still created from pushing and tracking in one location, it only 

appeared to interfere with oscillation data.  Therefore, phase slope filtering was performed to 

remove shear wave interference.  In addition, a high pass filter was also used to remove low 

frequency data within the tissue    

       A pulse repetition frequency of 7.39 kHz was used for both pushing and tracking beams.  

Pushing beams were administered with a frequency of 4.21MHz and tracking beams with a 

6.15MHz frequency.  The entire duration of the force excitation was 10.8 ms while the 

following tracking sequences were 270.5ms in duration.  The entire imaging sequence was 

281.3 ms in duration. 

Preparation of Cell Imaging Bath 

      In preparation for imaging of cells, a Phosphate Buffer Solution (PBS) was prepared.  

Solution was prepared using 8 grams of sodium chloride, 0.2 grams potassium chloride, 1.44 

grams of sodium phosphate, and 0.24 grams of potassium phosphate per liter of deionized 

water.  Approximate 12 liters of solution were prepared.  A Sterilite® plastic  container was 

used to contain PBS, This container was placed into a Stable-Temp® (Cole-Parmer, Vernon 
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Hills, IL) water bath heater and heated to a temperature of 37 degrees Celsius.  This bath 

temperature was maintained throughout the duration of cell construct imaging.  Cells were 

kept as close to 37 degrees Celsius as possible from the time they were removed from the 

incubator until imaging was completed.   

Imaging of Cells  

    Imaging of tissue constructs were performed using a Siemens SONOLINE Antares 

ultrasound scanner (Siemens Medical Solutions USA, Inc.,) using a VF7-3 linear array 

transducer.  Tissue constructs were imaged at day 14.  In preparation for imaging, these 

tissue constructs were first removed from the incubator and then using a pipette, culture 

media was removed.  Plastic membranes were also removed from all cell culture plates 

ensuring cell constructs were left intact suspended between anchors.  These steps were done 

quickly in order to ensure cells would be alive while imaged.  After removal of membranes, 

tissue construct plates were submerged into PBS bath and suspended in this bath using ring 

stand rods.  Using a motion translation stage, in which the ultrasound transducer was placed, 

along with Labview®, precise movement of the transducer along the length of the construct 

for imaging was ensured.  This incremental imaging was required since the ultrasound beam 

was focused to only one lateral position.  Movement of the transducer along the tissue 

construct was incremented at .5mm per step. The lateral field of view for each imaging point 

was .535 mm.  Approximately 21-22 images were acquired across each construct.  This 

resulted in approximately an 11mm length of each construct being imaged.  Labview® was 

used to acquire the image, move the transducer the desired incremental length, and then wait 

one minute before the next image was acquired to allow for any shear or oscillation waves in 

the tissue constructs to cease.  Collected radio frequency (RF) data was processed into axial 
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ARFI-induced displacements using one-dimensional cross correlation.  The search regions 

were set to a length of 0.66mm with a kernel of length 0.54mm.   

 

Fitting MSSER data to Harmonic Oscillation Model and Calculation of 

Elastic Modulus 
 

Processing of data 

      During the imaging process, three tissue constructs grown in osteogenic differentiation 

media and two tissue constructs grown in complete growth media were imaged. Processed 

RF data provided strain information for the tissue construct during force excitation along 

with tissue recovery information and oscillation frequency of the tissue constructs at force 

cessation.   For each point in the imaging field, at a given lateral and axial location in the 

image, an ARFI data curve with displacement information throughout the imaging period 

was produced.  ARFI data curves were filtered based on excitation data.  These curves were 

kept on the basis of how well the excitation data fit an increasing exponential.  Filtering of 

data was performed in two different ways to provide two different data sets.  The first set 

included data filtered using a low R
2
 value of 0.8 and then using a higher R

2
 value of 0.95.  A 

third data set was also produced in which all curves were kept regardless of how well 

excitation data fit an increasing exponential.  Curves were filtered in order to remove noisy 

data points.  An increasing exponential was chosen since this model best describes the 

response of viscoelastic materials under constant force.   
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Harmonic Oscillation Model   

      Since the recovery data from these tissue constructs follows the underdamped solution of 

the harmonic oscillator, this model can be used to predict the spring constant of these tissue 

constructs.  For the purpose of calculating the elastic modulus, the data from each curve was 

divided into two separate regions; the excitation data which fit an increasing exponential 

typical of viscoelastic materials, and the recovery data which followed the underdamped 

harmonic oscillation model.  For purposes of fitting to the model, the recovery and oscillation 

data was assumed to follow the underdamped response of a harmonic oscillation with a mass 

being displaced an initial amount then released and allowed to oscillate.   

      From using excitation and oscillation data, spring constant values were calculated using a 

formula for the oscillation frequency of a harmonic oscillator.  This frequency is calculated 

using the mass constant and spring constant.  This formula solved for the spring constant is 

as follows  

mfk 2)2( π=  

Selected Curves using an 

Increasing Exponential Fit 

and R
2
 Value of 0.95. 

D
is

p
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where f (seconds) is the oscillation frequency of the construct, k (N/m) the spring constant 

and m(kg) is the mass constant. 

 

Calculation of Oscillation Frequency  

      To determine the oscillation frequency of each curve in the data, a Fourier Transform was 

performed on all curves that were selected during filtering.  A high pass filter was applied to 

the frequency data removing noisy low frequency data.  The oscillation frequency, calculated 

from high pass filtered Fourier transform data, was taken as the highest frequency peak. 

These frequency data were saved to be used in the calculation for the elastic modulus  

Calculation of Mass Constant 

      In order to calculate the spring constant, the mass constant of each curve had to be 

calculated.  This mass constant was calculated using Newton’s 2
nd

 law, solving for mass in 

which 

A

F
m =  

where m is equal to the mass(kg), F is equal to Force(N) and A is equal to the acceleration of 

the tissue(N/m
2
).  The force used in this calculation is the acoustic radiation force magnitude.  

This value is obtained by first calculating the ultrasonic body force given by 

→

F
c

I

c

Wabsorbed α2
==  

In which 
→

F (N/m
3
) is the body force, α (Np/m) is the absorption coefficient of the media, I 

(W/m
2
) is the temporal average intensity and c(m/s) is the speed of sound.  In this calculation, 

c was set equal to 1497m/s which is the approximate speed of sound through the PBS  
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medium in which imaging was performed.  Alpha was set equal to 24.23 Np/m,  which is the 

attenuation coefficient of biological materials.  The temporal average intensity, I, was set 

equal to 1114W/cm
2
. To get force magnitude, the body force was multiplied by the lateral, 

elevational, and axial resolutions.  This relation is given by 

axialelevlat lllFF ***
→

=  

where F(N) is the force magnitude, 
→

F  is the body force (N/m
3
) latl (m) is the lateral 

resolution, elevl (m) is the elevational resolution, and axiall (m) is the axial resolution. The 

resolutions were 535 microns, 600 microns, and 600 microns respectively.   

      Two different methods were used in calculating the acceleration of the tissue during force 

excitation.  The first method fit an increasing exponential curve to the excitation data.  This 

model was chosen since it best describes the change in strain of viscoelatic biological 

materials under constant stress. Once this position curve was calculated, the second derivate 

was calculated to give an equation for acceleration of the tissue construct during excitation.  

The position curve was in the form of  

b

x

eaa
−

− *  

while the acceleration curve was in the form 

b

x

e
b

a −

− *
2  
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  An average acceleration was calculated by first calculating the acceleration at each point 

throughout the excitation period using the acceleration equation.  These accelerations were 

then averaged together and used as an average acceleration for the tissue. 

      In an attempt to generate an average acceleration value which was not time dependent, a 

2
nd

 order polynomial fit to excitation data was also performed.   This excitation data was fit 

to a second order polynomial in the form  

 

Ax
2
+Bx+C 

 

The second derivative was calculated from this estimated polynomial giving an acceleration 

value for the tissue construct during excitation.  Use of both of these methods resulted in an 

additional two different data sets.   

  

Calculation of the Elastic Modulus 

      Using the underdamped harmonic oscillation model, it is possible to calculate the spring 

constant of these tissue constructs.  It is from this value the elastic modulus may be 

calculated.  Using formulas taken from previous work (Mauldin et. al.) and formulas for 

calculating the elastic modulus, this modulus value may be calculated.
3
  It is first assumed 

this spring constant k(N/m) is equal to the relaxed elastic modulus Eu (N/m) of the tissue 

constructs. 

uEk =  

______________________________________ 

 

3. Mauldin, F. W. Jr., Haider, M. A., Loboa, E. G.,  Behler, R. H.,  Euliss, L. E., Pfeiler, T. W.,  Gallippi, C. M.,  “Monitored Steady-State 
Excitation and Recovery (MSSER) Radiation Force Imaging Using Viscoelastic Models” IEEE Transaction on Ultrasonics, 

Ferroelectrics, and Frequency Control,Vol. 55, No. 7, 2008, pp. 1597-1610.  
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The following relation has been shown between the force magnitude A (N), the relaxed 

elastic modulus Eu (N/m), and the strain (m).  

 

ss

latelevaxial

ss X

lllF

X

A
Eu

)**(
→

==  

In these formulas, Xss is equal to the steady state displacement, 
→

F  the ultrasonic acoustic 

body force, axiall  the axial resolution, elevl  the elevational resolution, and latl  the lateral 

resolution with all of these in units of meters.  The elastic modulus (N/m
2
) is given by a 

similar relation where  

ss

latelev

X

llF

E

)*(
→

=  

in which E(N/m2) is the elastic modulus, 
→

F (N/m
3
) is the ultrasonic acoustic body force, 

elevl  the elevational resolution and latl  the lateral resolution with these being in units of 

meters.  Since the elastic modulus and the relaxed elastic modulus only differ by the axial 

resolution term, the elastic modulus may be calculated by dividing the relaxed elastic 

modulus by the axial resolution.  In this case,   

axial

u

l

E
E =  
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where E(N/m
2
) equals the elastic modulus, axiall  (m) the axial resolution, and Eu (N/m) the 

relaxed elastic modulus.  To reiterate, the relaxed elastic modulus is equal to the spring 

constant calculated through the underdamped harmonic oscillator model divided by the axial 

resolution.   

 

Calcium Digestion 

      In an attempt to correlate higher elastic modulus values with increased calcium 

concentration within the tissue constructs, a calcium digestion was performed on osteogenic 

tissue construct 2.  The tissue construct was first removed from the culture plate and sealed in 

Tissue-Trek ® O.C.T. resin.  Using a Cryo-Cut machine, the tissue constructs were cut into 

400 micron slices and placed into separate test vials.  Each of these pieces of tissue were 

dissolved in 0.5N HCl overnight in order to dissolve calcium out of the tissue constructs.  

These samples were allowed to sit overnight at 2ºC and approximately 24 hours later, were 

centrifuged at 500 rpm for 2 minutes.  The supernatant was then extracted from each vial 

taking 30 micro liters of supernatant and placing it into a new vial with 570 micro liters of 

calcium reagent from the Calcium (CPC) LiquiColor® Test by Stanbio® (Boerne, Texas).  

Preparation of reagents was done following the directions that were included with the kit.  

Spectrophotometry was performed in triplicate of all tissue construct samples using 200 

micro liters of supernatant/reagent mix per plate well.  Known calcium concentrations were 

also included in the spectrophotometry in order to provide a standard to measure the 

unknown calcium samples against.     
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Results 
 

Elastic Modulus Values 

 

     Elastic modulus values were reported for data in which curves were filtered using an R
2
 

value of 0.95 and filtered using an R
2
 value of 0.8 (Figure 6).  Values were not reported for 

the data set which was not filtered due to noisy data.   This noisy data resulted in production 

of extremely high elastic modulus values.  For the other two data sets, elastic modulus values 

were reported for each position imaged along all five constructs.  Average elastic modulus 

values were calculated by averaging elastic modulus values for all points within each 

respective position.  Elastic modulus values calculated by Pfeiler et. al. are located in Figure 

7 for comparison.
4
  All values in figure 6 have been log compressed due to the high order of 

magnitude differences in data.  Actual elastic modulus values may be found in the appendix 

section.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________ 

 
4.  Pfeiler, T. W., Sumanasinghe, R. D., Loboa, E. G., “Finite element modeling of 3D human mesenchymal stem cell-seeded collagen 

matrices exposed to tensile strain.” Journal of Biomechanics Vol. 41, 2008, pp. 2289-22
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Figure 6a. Elastic Modulus Values for Osteogenic Construct 1. 
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Figure 6b. Elastic Modulus Values for Osteogenic Construct 2. 
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Figure 6c. Elastic Modulus Values for Osteogenic Construct 3. 
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Figure 6d. Elastic Modulus Values for Complete Growth Media 

Construct 1. 
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Figure 6e. Elastic Modulus Values for Complete Growth Media 

Construct 2. 
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Figure 7. Elastic Modulus Values Calculated by Pfeiler et. al.  
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 Image rendering 

       

      Elastic modulus images were produced from processed data.  These images show areas or 

points within the tissue constructs which have higher and lower areas of the elastic modulus.  

For establishment of a reference point, elastic modulus images were superimposed into B-

mode images.  Images were produced for all five tissue constructs.  Images were created 

from filtered data produced earlier during data processing.  These data sets include those in 

which data curves were filtered using an R
2
 value of 0.8 and those selected for using an R

2
 

value of 0.95.  Curves without filtering were not imaged.  Within data sets for each tissue 

construct, acceleration of the tissue constructs during force excitation was calculated 2 

separate ways; fitting an increasing exponential curve and fitting a polynomial curve.    This 

analysis resulted in four different stiffness images produced for each of the five constructs.  

These images are beneficial in providing a quick, visual way of determining the areas of 

higher Elastic modulus within the tissue constructs. Color bars on stiffness images represent 

Elastic modulus values in units of Pascals.  Due to the high order magnitude differences in 

this data, a log compression was performed.  These elastic modulus images are found in 

Figure 8.   
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Figure 8a. 

         Osteogenic Tissue Construct 1 
 

 

 

 

 

 

       
 

 

 

 

 

 

     
 

 

 

  

 

 

 

 

 

 

 

 

Stiffness Images Filtering Curves Using R
2
 = 0.95 
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Colorbars indicate log compressed elastic modulus values in 

units of Pascals. 
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Figure 8b. 

    Osteogenic Tissue Construct 2 
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Stiffness Images Filtering Curves Using R
2
 = 0.95 

Stiffness Images Filtering Curves Using R
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Colorbars indicate log compressed elastic modulus values in 

units of Pascals. 
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Figure 8c.  

 

                               Osteogenic Tissue Construct 3 
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2
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Colorbars indicate log compressed elastic modulus values in 
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Figure 8d.  
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Figure 8e. 

 

Complete Growth Media Tissue Construct 2 

 

 

 

 

 

   
  

 

 

 

 

  

Stiffness Images Filtering Curves Using R
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Stiffness Images Filtering Curves Using R
2
 = 0.8 
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Colorbars indicate log compressed elastic modulus values in 

units of Pascals. 
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Calcium Digestion 

      Calcium digestion performed on osteogenic tissue construct 2 was successful in showing 

areas in the tissue construct in which there was higher and lower areas of calcium.  Higher 

calcium concentration was linked to higher elastic modulus values along the tissue construct.  

When plotting elastic modulus values against calcium concentration for each lateral position, 

there were some similarities between higher elastic modulus values and higher calcium 

concentrations, although there were some extreme outlying points. Elastic modulus data 

created using increasing exponential fit and polynomial fit for acceleration along with 

filtering data using an R
2
 value of 0.95 and R

2
 value of 0.8 was plotted against calcium 

concentrations.  The relation between higher elastic modulus and higher calcium 

concentration was seen in both acceleration calculation methods and R
2
 filtering methods.  

Figure 9 shows calcium concentrations along the length of osteogenic construct 2 and actual 

values of calcium concentration reported.  In figure 10, calcium concentration was plotted 

against elastic modulus values.   

     Many difficulties still remain in being able to correctly correlate elastic modulus 

calculations to calcium concentrations and their correct position along the tissue construct.  

These issues can be attributed to the degradation of these samples over time along with 

contraction of these samples as they dry out.  Several months had passed from the time these 

constructs had been imaged to the time the calcium digestion was performed.  In future 

analysis, it would be better to perform the calcium digestion much sooner after imaging of 

these tissue constructs.   
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Figure 9. Calcium Digestion Results Osteogenic Construct 2 
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Figure 10 Elastic Modulus vs. Calcium Concentration 
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Elastic Modulus vs. Calcium Concentration Using Increasing 

Exponential Acceleration Fit and R^2 of 0.8
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Mean Elastic Modulus Values: 

 

       After filtering of curves, elastic modulus values were first calculated for constructs 

grown in osteogenic media using an increasing exponential fit to calculate acceleration data.  

A wide range of elastic modulus values were found.  These values ranged from on the low 

end of being in the order of 1-10 kilopascals to even as high as several thousand kilopascals 

on the upper end.  Such a wide variation in the magnitude of elastic modulus values could be 

attributed to areas of calcification within the constructs that would result in higher elastic 

modulus values.  Comparing elastic modulus values calculated from filtered data using a high 

R
2
 value equal to 0.95 and then a lower R

2
 value equal to 0.8, it was found in general a lower 

R
2
 value resulted in a higher calculation of elastic modulus.  This can be attributed to an 

increase of noisy points used in elastic modulus calculation.  When using a polynomial fit for 

acceleration values, a much lower elastic modulus value was calculated.    With only a few 

exceptions, most of these values were calculated to be on the order of hundreds or thousands 

of Pascals.  Values, with the exception of a few outlier points, were fairly consistent.  These 

consistent elastic modulus values calculated were attributed to much more consistent 

acceleration values that were calculated when using a polynomial fit.  Increasing exponential 

fit acceleration values showed much more variation between points.  Elastic modulus values 

which used an increasing exponential fit were close to ones reported in previous work while 

values calculated using a polynomial fit being much lower.   

      Elastic modulus values were also calculated for constructs grown in complete growth 

media using an increasing exponential fit to calculate acceleration.  Using this method, with 
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only a few exceptions, values were calculated to be on the order of several hundred 

kilopascals.  More consistent elastic modulus values were calculated in these tissue 

constructs than those grown in osteogenic media.  Variations along the tissue constructs were 

not as extreme as with tissue constructs grown for osteogenic differentiation.  These 

constructs would be expected to be more homogeneous than those grown in osteogenic 

media due to a lack of osteogenic differentiation and calcium deposition in the complete 

growth media constructs.  It is these calcium deposits that result in higher elastic modulus 

values in osteogenic tissue constructs.   A polynomial fit was next used to calculate 

acceleration values.  Using this method, calculated elastic modulus values were on the order 

of several hundred Pascals.  Elastic modulus values, due to more uniform acceleration values 

calculated using this method, were consistent overall except for outlying points.  In fact, very 

little differences were found between elastic modulus values in tissue constructs grown in 

osteogenic media and complete growth media using the polynomial fit for acceleration.  As 

with the tissue constructs grown in osteogenic media, the elastic modulus values calculated 

using the increasing exponential fit gave values very close to those reported in earlier work, 

where values using the polynomial fit were much lower than those reported in earlier work.   

Elastic Modulus Images: 

      Elastic modulus images were successful in highlighting specific lateral and axial areas 

within tissue constructs which had higher or lower areas of Elastic modulus values.  These 

images will be useful in indicating areas within the tissue constructs where calcium deposits, 

which indicate osteogenic differentiation, are located since calcium has a higher elastic 

modulus value than the other materials in the construct.  It was also noted that although the 

increasing exponential acceleration fit and polynomial acceleration fit gave very different 



 

69 

elastic modulus values, both acceleration methods generally predicted the same differences 

of elastic modulus within the tissue constructs.  This was quite visible when comparing 

images of elastic modulus. 

      Elastic modulus images produced in which filtering was used resulted in a large number 

of data curves removed.  Removed curves do not appear on the Elastic modulus images.  In 

the data set in which all curves were included, there was concern in the accuracy of the 

values which were allowed in these.  Due to extremely high elastic modulus values 

calculated in the data set with no filtering, these images and elastic modulus values were not 

included.  These removed curves still remain an issue in this imaging modality for production 

of images.  These curves, which are removed during filtering, are removed since they do not 

follow an increasing exponential while constant strain is applied.  This model was selected 

for its description of viscoelastic behavior.  These excitation curves are used to calculate the 

tissue acceleration values.  Therefore in curves which do not fit the exponential model, the 

calculation of acceleration may be inaccurate since an increasing exponential curve is forced 

on data which does not exhibit such a response. This leads to a concern regarding the 

accuracy of elastic modulus in some values in images including all curves. Although 

acceleration values were also calculated for curves using a polynomial curve to obtain a 

constant acceleration value, there was still concern for accuracy since a polynomial equation 

does not model the response of viscoelatic materials under constant stress.  Even in cases 

where the polynomial fit was used for acceleration data, filtering was still done using an 

increasing exponential.   

      Even though acceleration data of the tissue is a locally determined parameter, the 

oscillation frequency used is a parameter that is global to each construct.  This is attributed to 
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the fact that the oscillation frequency is dependent upon the properties of the entire construct.  

Thus calculation of elastic modulus values via the underdamped harmonic oscillation model 

requires the input of both global and local parameters.  It can not therefore be said the 

underdamped harmonic oscillation model completely uses only local parameters in 

calculation of local elastic modulus values.   

      The differential equation describing the underdamped harmonic oscillation model has 

three coefficients within the differential equation to describe the behavior of the oscillating 

system.  These include the mass, damping, and spring constant coefficients.  Calculation of 

this elastic modulus value in this study only required use of the mass and spring constants 

and did not use the damping coefficient in the calculation for elastic modulus.   This 

coefficient which was neglected in these calculations does provide additional information 

about the properties of the tissue.  Use of this damping coefficient in calculation for elastic 

modulus may offer additional information about the mechanical properties of the constructs. 

 

F. Conclusions 

 

      When comparing values from this study to previous work performed by Pfeiler et. al., 

similarities in elastic modulus values were found in calculations which used an increasing 

exponential fit.  Elastic modulus values calculated using the polynomial curve fit for 

acceleration gave much lower values than those calculated in earlier work.  However, it must 

be pointed out that the tensile test performed in earlier work was completely different from 

the test performed in this experiment.  Pfeiler et. al. utilized a tensile test, measuring the 

tensile strength of the tissue constructs.  In the tensile test the construct was stretched on both 

ends and the accompanying stress and strain were measured.  In the MSSER experiments, an 



 

71 

acoustic compression force was applied axially to the construct with deformation and 

oscillation frequency of the tissue constructs used for elastic modulus calculation.  This 

compression force may also be linked to a tension force experienced on the ends of the tissue 

construct when compression is occurring along the length of the tissue constructs.  These two 

methods are testing two completely different mechanical responses of the tissue constructs. 

Another difference that existed between constructs used by Pfeiler et. al. and those used in 

this study was there was a 10% and 12% strain applied to those used by Pfeiler et. al.  

However, no strain was applied to the constructs used in this study.  These differences in 

strain can also result in differences in elastic modulus calculations.  Therefore, it can not be 

concluded which method for acceleration value is best by just comparing data from Pfeiler et. 

al. to data from this study due to the many differences in experimental setup between the two 

studies..   

      Although MSSER shows potential for being useful in determining the mechanical 

properties of tissue constructs, much work is still needed to perfect the methods.  One issue 

that remains is noise within the system, specifically during tissue construct excitation.  Noise 

can be attributed to motion within the construct and even noise generated within the fluid 

which the cells are contained including reverberations from within the container.   This 

presents a problem when trying to calculate the acceleration value of the tissue during 

excitation.  This acceleration value is an important parameter in calculating the mass constant.  

The problem associated with noisy data is difficulty in calculating a correct acceleration 

value.  Noisy data can result in an incorrect acceleration calculation.   

      Another issue at the forefront is developing a better method for calculation of the 

acceleration of the tissue.  For purpose of comparing, two different methods were used for 
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the acceleration calculation.  Two different arguments regarding which is best to use may be 

made; although the polynomial curve fits the excitation data better, an increasing exponential 

is a better mathematical model of how viscoelastic materials are to respond under a constant 

force.  The first method, fitting an increasing exponential curve to excitation data, was 

selected since this equation is used to describe the change in strain of a viscoelastic material 

while under constant stress.  Upon taking the second derivative, an equation for acceleration 

is produced.  Plugging time positions into the equation gives the acceleration for each point 

throughout the excitation period.  These values, although mostly on the same order of 

magnitude, must be averaged together to give an acceleration to use in calculations.  In an 

effort to calculate a constant acceleration value, a polynomial fit was used on excitation data.  

Taking the second derivative of this fitted polynomial curve gave a constant acceleration 

value.  The polynomial curve incidentally fit the excitation data better, but produced much 

lower values of elastic modulus when compared with those produced by the increasing 

exponential fit.  These elastic modulus values were also less consistent with those that were 

reported by Pfeiler et. al.  However, the tests performed in earlier work were completely 

different from the MSSER experiments; therefore, it is possible for much different elastic 

modulus values to be found between earlier methods and those investigated in this study.  

      Elastic modulus values were very sensitive to the acceleration calculation values using an 

increasing exponential fit for acceleration of the tissue.  This did raise some concern in 

accuracy of this model since an average acceleration was used in the elastic modulus 

calculation due to this model yielding multiple acceleration values throughout the tissue 

excitation period.  However, these elastic modulus values averaged to yield a mean 

acceleration value to use in the calculation for mass were all on the same order of magnitude 
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having little effect on the elastic modulus calculation.  In Figure 11, the elastic modulus 

value was calculated in osteogenic construct 1 using an increasing exponential fit for 

acceleration calculation for the lateral position at 4 mm and axial depth of 19.1 mm.   The 

elastic modulus value at this point was calculated using the mean acceleration, mean 

acceleration plus one standard deviation and acceleration minus one standard deviation.  This 

standard deviation was derived from all tissue acceleration values throughout the excitation 

period of the tissue.  Differences in elastic modulus values varied by 2 kilopascals.   

 

 

Figure 11 elastic modulus values and acceleration 

 Acceleration  Elastic Modulus 

 m/s^2 kPa 

Mean Accel. + 1 Std. Dev. 7.8674347x10^-4 2197 

Mean Acceleration 7.8632x10^-4 2198 

Mean Accel - 1 Std. Dev. 7.8589653x10^-4 2199 

   

Standard Deviation 4.2347x10^-7  
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Chapter 5: Summary and Future Work 

      In the future, more study of the damping coefficient in the damped harmonic oscillation 

model needs to be done.  This parameter, excluded from calculations in this study could 

provide more information about the mechanical properties of these tissue constructs.  This 

additional information may lead to a better calculation of the elastic modulus.  Another 

important addition to this study would be confirming the mass approximations calculated 

using both the increasing exponential and polynomial acceleration models.  This would be 

completed by slicing the tissue constructs into approximately 500 micron slices, the later 

resolution size of the imaging system, allowing the slices to dry, and finally measuring the 

mass.  The mass of the tissue would be compared to estimated masses in order to determine 

which acceleration model calculation best predicts the mass of these tissue construct slices.  

Performing calcium digestion on all tissue constructs would also need to be performed in the 

future.  In addition, performing micro CT on all samples will also be useful in validating the 

methods in this study.  Micro CT is capable of detecting calcium deposits along the length of 

the tissue construct.   

      Continuing work with this study will also need to address the problem with using the 

oscillation frequency in elastic modulus calculations.  The underdamped harmonic oscillation 

model investigated in this study relies on, for elastic modulus calculation, locally derived 

focal displacements and the oscillation frequency of the tissue construct. Oscillation 

frequency depends on the mechanical properties over a range of the construct.  Therefore, it 

cannot be said that elastic modulus values calculated in this study are completely local
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 measurements.  One idea for eliminating this dependence on adjacent tissue properties 

would be to remove the oscillation from the tissue construct.  This could be accomplished by 

placing a substrate below this tissue construct.  Leaving the plastic membranes in tact below 

the tissue construct may, in fact, be enough to eliminate the oscillation which currently 

occurs at force cessation.  Tissue constructs could first be imaged with membranes still in 

tact and them imaged with a substrate placed below the membrane to compare how well 

oscillation is removed.  Elimination of the damped harmonic oscillation occurring after force 

cessation will require modification of the current model.  It is possible the overdamped 

harmonic oscillation models may be more of an appropriate model to use once oscillation is 

removed.  Removal of the damped harmonic oscillation occurring after force cessation may 

allow for the use of the Voigt model of viscoelasticity.   

      Future work will also require better calculation of tissue acceleration data.  Currently, a 

large number of data points are removed leaving holes in the data.  These data points are 

removed due to the noisiness of these points.  Production of a noise filter and better fitting of 

excitation data will help in increasing the number of curves which are not filtered.  A filter 

capable of not only removing noise but making an estimation of what the correct excitation 

curve should look like may also be necessary.  Other methods may also need to be developed 

to calculate the acceleration data.  



 

 

Appendix 

Average Elastic Modulus Values Created Filtering Data with an R
2
 value of 0.95. 

 
Osteogenic Construct 1 Elastic Modulus Values 

   

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 7.386 2.409 

0.5 4.052 0.518 

1 11.353 1.209 

1.5 5.926 0.744 

2   

2.5 3.851 0.451 

3 7.328 0.560 

3.5 4.478 0.570 

4 6.598 0.685 

4.5 7.232 0.606 

5 4.870 0.562 

5.5 5.666 0.708 

6 8.579 0.986 

6.5 7.233 1.085 

7 22.315 1.972 

7.5 14.234 1.926 

8 32.310 4.000 

8.5 30.811 13.848 

9 65.763 32.532 

9.5 3888.000 6.037 

10 4180.000 5.030 
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Osteogenic Construct 2 Elastic Modulus Values 

   

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 4.564 1.007 

0.5 11.056 1.248 

1 12.902 1.063 

1.5 958.980 2.213 

2   

2.5 2476.500 5.412 

3 431.120 0.784 

3.5 462.630 3.866 

4 2428.600 0.889 

4.5 337.500 1.915 

5   

5.5 649.350 0.711 

6 9677.800 1.610 

6.5   

7 14.941 2.617 

7.5 5.075 1.042 

8 5.584 0.852 

8.5 3637.100 23.950 

9 16735.000 5.275 

9.5 2541.500 42.947 

10 31.045 8.492 

Osteogenic Construct 3 Elastic Modulus Values 

   

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 2.749 0.268 

0.5 5.624 0.923 

1 55.093 0.571 

1.5 1039.000 0.869 

2 3.525 0.592 

2.5   

3 56.146 1.091 

3.5 1925.400 2.933 

4   

4.5 1456.000 513.932 

5 1311.200 1.166 

5.5   

6 686.610 2.459 

6.5 6.145 0.606 

7 3.630 0.423 

7.5 3713.100 8.418 

8 2.060 0.345 

8.5 7.145 1.040 

9 2.749 0.318 

9.5 5.714 0.686 

10   
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Complete Growth Media Construct 1 

Elastic Modulus Values  

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 267.3 1.304 

0.5 9.678 0.690 

1   

1.5 378 0.545 

2 493.85 0.921 

2.5 370.8 0.498 

3 305.26 5.012 

3.5 307.42 0.897 

4 440.69 1.443 

4.5   

5 352.5 0.467 

5.5 209.9 0.721 

6 204.2 0.567 

6.5   

7 179.9 0.492 

7.5 340.6 0.355 

8 210.9 0.603 

8.5 5.03 0.380 

9 255 1.522 

9.5   

10 3.9454 0.590 

Complete Growth Media Construct 2 

Elastic Modulus Values  

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 8.890 0.945 

0.5 865.940 0.445 

1 321.050 86.054 

1.5 298.760 0.759 

2 265.300 2.951 

2.5 272.360 0.300 

3 361.110 0.392 

3.5   

4   

4.5   

5 5.387 0.220 

5.5 226.920 0.350 

6   

6.5 267.740 0.677 

7 395.710 0.836 

7.5 1806.400 0.688 

8 787.560 3.669 

8.5 250.430 4.226 

9   

9.5   

10   
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Mean Elastic Modulus Values Created Filtering Data with an R
2
 

value of 0.8. 

 
Osteogenic Construct 1 Elastic Modulus 
Values 

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 638.760 19.278 

0.5 229.950 12.916 

1 745.790 7.585 

1.5 22.126 3.681 

2   

2.5 206.260 10.182 

3 361.370 2.560 

3.5 4.910 3.151 

4 146.000 9.279 

4.5 466.940 24.171 

5 4.401 2.897 

5.5 18.116 5.674 

6 11.174 4.467 

6.5 130.770 10.145 

7   

7.5 123.370 6.187 

8 718.900 23.314 

8.5 3700.200 233.200 

9 858.190 100.740 

9.5 3145.200 431.980 

10 3194.600 37.898 
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Osteogenic Construct 2 Elastic Modulus 
Values 

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 5.759 7.468 

0.5 51.658 4.646 

1 3741 4.794 

1.5 50.245 0.70038 

2 20.039 1.354 

2.5 616.5 2.908 

3 327.96 3.6814 

3.5 28.005 0.1987 

4 2198.2 4.709 

4.5 245.35 2.3467 

5   

5.5 540.95 3.613 

6 7441.3 8.485 

6.5   

7 55.017 13.121 

7.5 4.868 5.48 

8 116.16 3.857 

8.5 2142.8 39.575 

9 12473 8.856 

9.5 97303 60.277 

10 3895.2 77.119 
Osteogenic Construct 3 Elastic Modulus 
Values 

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 13770 4.544 

0.5 2.6692 2.089 

1 10.104 5.805 

1.5 67.021 6.387 

2 953.42 4.544 

2.5 114.47 32.858 

3   

3.5 54.506 6.7241 

4 2022.8 16.414 

4.5 300.37 6.395 

5 1274.7 88.873 

5.5 1287.5 6.976 

6 1.268 5.54 

6.5 546.17 15.443 

7 6.145 3.424 

7.5 19.49 2.388 

8 3584 85.346 

8.5 2.242 5.299 

9 11.341 5.929 

9.5 2.669 2.089 

10 3.9995 14.547 
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Basal Construct 1 Elastic Modulus Values 

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 41.601 68.525 

0.5 36.983 1.777 

1 166.7 69.437 

1.5 131.52 1.51 

2 23.898 0.542 

2.5 169.3 1.2214 

3 9.7815 1.3529 

3.5 81.881 1.702 

4 9.6214 0.2367 

4.5   

5 45.304 0.4265 

5.5 162.69 3.567 

6 10.614 0.3647 

6.5   

7 8.561 2.242 

7.5 10.803 0.00736 

8 10.607 0.9312 

8.5 0.686 0.1673 

9 13.304 0.9218 

9.5 4.464 2.849 

10 2.5012 1.416 

Basal Construct 2 Elastic Modulus Values 

Position  Exponential Fit Polynomial Fit 

mm kPa kPa 

0 7.489 4.994 

0.5 677.18 2.169 

1 258.66 149.92 

1.5 136.19 4.191 

2 230.87 24.52 

2.5 197.37 1.4062 

3 315.14 2.1502 

3.5 431.86 1.414 

4 246.82 1.183 

4.5 334.34 2.183 

5 769.49 0.679 

5.5 215.64 2.0296 

6 370.17 1.997 

6.5 228.31 4.0225 

7 272.98 4.868 

7.5 1622.6 3.162 

8 552.34 26.01 

8.5 218.28 21.049 

9   

9.5   

10 1.269 1.328 
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