
 

 

IMMUNOTHERAPY AND T CELL RECEPTOR ANALYSIS IN RECURRENT 

TYPE 1 DIABETES  

 

 

 
 

ALAINA LEIGH GARLAND 

 

 

 

 

 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Microbiology and Immunology. 

 

 

 

 

 

Chapel Hill 

2012 

 

                                                

 

Approved by: 

 

Roland M. Tisch, Ph.D. 

 

Steven H. Clarke, Ph.D. 

 

Jonathan Serody, M.D. 

 

Robert Maile, Ph.D. 

 

Maureen Su, M.D. Ph.D.



ii 
 

 

 

ABSTRACT 

 
ALAINA LEIGH GARLAND: Immunotherapy and T Cell Receptor Analysis in Recurrent Type 1 

Diabetes  

(Under the direction of Dr. Roland M. Tisch) 

 

 

Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by the T cell-

mediated destruction of insulin-producing β cells in the islets of Langerhans. For T1D 

patients, life-long insulin injections are necessary to help maintain normoglycemia, although 

constant blood glucose fluctuations lead to a variety of complications.  Currently, the only 

way to “cure” T1D is with islet or pancreas transplantation. The aims of the studies 

described herein are to: i) test the hypothesis that immunomodulating therapies targeting T 

cells will be able to prevent recurrent autoimmunity, and ii) to understand the kinetics and 

specificities of the pathogenic T cells involved in recurrent autoimmunity.   

 

Results from our first study in the non-obese diabetic (NOD) mouse model show that non-

depleting αCD4 and αCD8 coreceptor antibodies extend survival of syngeneic islet grafts in 

diabetic recipients.  We also determined that via adeno-associated virus (AAV) vector gene 

delivery, ectopic expression of IL-2 by β cells also extended protection of syngeneic islet 

grafts. Surprisingly, the combination of αCD4 and αCD8 coreceptor antibodies with AAV 

vector mediated gene transfer of IL-2 did not extend islet graft protection over αCD4 and 

αCD8 treatment alone.  Taken together, our results show that these two treatments do not 

act synergistically, although individually these immunotherapies extend islet graft survival.   
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Our second study examined the T cell receptor (TCR) variable (V)β repertoire in islet grafts.  

In islet grafts of diabetic NOD recipients the effector/memory (eff/mem) CD8
+
 T cell 

repertoire in the islet graft showed decreased entropy, and is dominated by one to four TCR 

Vβ chains which varied markedly by mouse.  The eff/mem CD4
+
 T cell repertoire in the islet 

graft was more diverse, though all NOD recipients showed an increase in frequency of TCR 

Vβ12-bearing T cells.  Additionally, the eff/mem TCR repertoire of T cells infiltrating the islet 

graft was more similar to the pancreas repertoire than the TCR repertoires found in the 

draining renal lymph node, pancreatic lymph node, or spleen.  This suggests that, in 

individual NOD recipients, the same specificies of effector/memory T cells may be involved 

in both initial and recurrent autoimmunity.   
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1.1 The Immune System 

The immune system is responsible for defending the body from foreign pathogens. This 

system must be able to respond effectively to both intracellular (e.g. viruses) and 

extracellular pathogens (e.g. bacteria) that invade the body.  To do this, cells of the immune 

system must also be able to differentiate between self and non-self proteins.   This involves 

a complex interplay between innate and adaptive immune effector cells. Innate immunity 

functions largely through recognition of pathogen-associated molecular patterns (PAMPs) 

present on foreign invaders, as well as complement activation
1,2

. The adaptive immune 

response includes T lymphocytes (T cells) and B lymphocytes (B cells), and is responsible for 

specific recognition of antigens.  Simplistically, B cells that bind cognate antigen via the B 

cell receptor (BCR) and that receive appropriate “co-stimulatory” signals become activated, 

differentiate into plasma cells, and produce large amounts of antibody
3
.  T cells are a varied 

population, which function together to help orchestrate the antigen-specific immune 

response. This system involves a series of checks and balances wherein effector T cells can 

become activated and fight infection, and regulatory T cells (Treg) limit the course of these 

ongoing responses
4,5

.  When the system works properly, this balance allows the immune 

system to protect the body from infectious disease while limiting excess damage to the 

tissues involved.  Additionally, the body is protected from autoimmunity by central and 

peripheral self tolerance-inducing mechanisms
6-8

.    
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1.2 Central and peripheral T cell tolerance 

In a healthy individual, negative selection in the thymus deletes the majority of autoreactive 

T cells via clonal deletion
8
.   T cells originate in the liver of neonatal mice, and then from the 

bone marrow throughout adult life.  T cell progenitors migrate to the thymus, where 

development occurs through interactions that are both antigen-independent and –

dependent
8
. Double negative (DN) thymocytes (CD4

-
 and CD8

-
) undergo gene 

rearrangement within the T cell receptor (TCR) locus. To create a diverse repertoire of TCR 

capable of recognizing wide varieties of antigens, different variable (V), diversity (D) and 

joining (J) gene segments undergo rearrangement and combine to generate TCRs with 

distinct specificities
9
. The TCR is a heterodimer composed of either alpha (α) and beta (β) 

chains (95% of T cells) or gamma (γ) and delta (δ) chains (5% of T cells). Upon functional 

gene rearrangement, a TCR is expressed on the surface, followed by upregulaton of both co-

receptor molecules CD4 and CD8
10

. These double positive (DP) thymocytes first undergo 

positive selection in the cortex of the thymus by interacting with cortical thymic epithelial 

cells (cTECs)
10

.   cTECs present peptides bound by surface major histocompatibility complex 

(MHC) class I and II molecules. DP thymocytes that express TCRs able to bind peptide-MHC 

complexes receive survival signals from cTECs and further differentiate into single positive 

(SP) CD4
+
 and CD8

+
 thymocytes

11
.  DP thymocytes that express TCRs unable to bind peptide-

MHC complexes fail to receive survival signals, and die from “neglect
11

.”  Positively selected 

thymocytes then migrate to the medulla of the thymus to undergo negative selection
12

.  SP 

thymocytes interact with medullary TECs (mTECs) or dendritic cells (DC) displaying self-

peptide-MHC complexes
12

.  Elimination of potential autoreactive T precursors occurs when 
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SP thymocytes bind self-peptide-MHC with high affinity/avidity, thereby inducing apoptosis.  

A small population of CD4
+
 thymocytes with moderate to high affinity/avidity develop into 

forkhead-box protein 3 (FoxP3)-expressing Treg (FoxP3
+
Treg), which contribute to 

peripheral tolerance
13

 (see below).  Following positive and negative selection, surviving SP 

CD4
+
 and CD8

+
 thymocytes migrate from the thymus into the periphery.    

 

In the periphery, T cell tolerance is maintained by a variety of mechanisms. Presentation of 

self-peptides on immature APCs contributes to the maintenance of tolerance. Activation of 

naive T cells simplistically requires two signals; signal 1 is delivered by the TCR recognizing 

its cognate antigen in the context of MHC molecules, and signal 2 is provided by “co-

stimulatory” molecules expressed by APCs
14

.  Co-stimulatory signals are delivered by B7-1 

(CD80)/B7-2 (CD86) and CD40 expressed by APCs, which interact with CD28 and CD40 ligand 

(CD40L) on the surface of T cells, respectively
14

.  In the absence of an inflammatory 

environment, immature APCs lack expression of the co-stimulatory molecules required to 

activate T cells.  Additionally, the co-receptor molecules CD4 and CD8 expressed by T cells 

contribute to efficient T cell activation by interacting with conserved regions of MHC class II 

and class I molecules, respectively, expressed by APC
15

. Resultant signaling by CD4 or CD8 

within the T cell in part involves phosphorylation of the src kinase Lck
15

. MHC molecules 

present peptide antigens to T cells and thus play a major role in T cell selection in the 

thymus, so these molecules are instrumental in determining the T cell repertoire.  

Additionally, peptide-MHC complexes on APCs control regulation and activation of T cells in 

the periphery.  
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While it was previously thought that the immune system was simply a balance between 

pathogenic CD4
+
 and CD8

+
 type 1 effectors and more “suppressive” CD4

+
 T helper 2 (Th2) 

cells, it is now recognized that other Treg populations play a large role in maintaining 

peripheral T cell tolerance.  These include IL-4 secreting CD4
+
 Th2 cells and IL-10 secreting 

CD4
+
 Tr1 cells, as well as “natural” FoxP3

+
Treg

16
.  FoxP3 is a transcription factor that 

regulates the expression of genes required for the phenotype and function of 

FoxP3
+
Treg

17,18
. FoxP3

+
Treg exhibit a potent suppressive capacity, and play a critical role in 

maintaining peripheral tolerance
19-21

.  FoxP3
+
Treg regulate effector responses in a variety of 

ways including: 1) secretion of suppressive cytokines (IL-10, TGFβ), 2) IL-2 consumption, 3) 

cytolysis via granzyme b, and 4) cell-cell contact mechanisms (galectin-1, CTLA-4, TGFβ) 
22

.  

Dysregulation within the overall pool of Treg can contribute to the development of 

autoimmunity.   

 

1.3 Type 1 diabetes (T1D) 

Type 1 Diabetes (T1D) is characterized by the autoimmune attack of β cells present in the 

islets of Langerhans
23

. β cells are responsible for the production of insulin, which regulates 

glucose transport and metabolism
24

. Early β cell autoimmunity involves a response 

characterized by autoantibodies to islet antigens and autoreactive T cells. This chronic 

immune response causes the gradual destruction of β cells, ultimately resulting in an 

inability to manage blood glucose levels. Though T1D can be managed with daily insulin 

injections, lack of complete blood glucose control results in a variety of debilitating 
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complications including heart disease, blindness, nerve damage, and kidney damage, as well 

as a reduced life expectancy of 10-15 years
25

.   Like many other autoimmune diseases, T1D 

is rapidly growing in incidence.  This increase in incidence is especially pronounced in 

industrialized nations
26

, and affects at least 1-2 million people in the United States alone. 

Currently, the only “cure” for T1D is through islet cell or pancreas transplantation.  

However, lifelong immunosuppression is needed to prevent rejection of islet grafts due by 

both autoimmune- and allogeneic-reactive T cells present in the recipient.   This severely 

limits the utility of this approach, and will be discussed later in further detail.  

 

 1.4 Genetic and environmental factors of T1D 

Susceptibility to T1D is influenced by both genetic and environmental factors, which 

combine to cause the breakdown of self-tolerance to β cells
27-32

.  Though the inheritance 

pattern of T1D is complex, a strong genetic link has been observed.  The risk of T1D 

development in siblings of T1D patients is 5-10% by age 20, a 15-fold higher rate than that 

for the general population
31

.  Offspring of T1D fathers have a 12% disease rate, and those of 

diabetic mothers have a 6% disease rate. The incidence of diabetes in monozygotic twins is 

~65%, indicating both a strong genetic linkage as well as a likely role for environmental 

factors. Twenty-six insulin-dependent diabetes (Idd) loci have been identified in humans, 

including 19 loci associated with immune regulation
29

.  The strongest genetic association 

with T1D susceptibility and resistance maps to genes found in the MHC (mice) and human 

leukocyte antigen (HLA; humans) regions.  Non-obese diabetic (NOD) mice, which 

spontaneously develop T1D, express specific class I and class II MHC molecules (H2K
d
/D

b
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and I-A
g7

, respectively), which are instrumental in contributing to diabetes progression. 

Notably, the NOD MHC class II molecule I-A
g7 

is similar in structure to human HLA class II 

DQ8, and both confer a susceptibility to T1D.  The P9 peptide-binding pocket in both lacks a 

negatively charged aspartate residue at position B57, which results in binding of peptides 

distinct from those bound by other class II molecules 
33

, thus influencing the T cell 

repertoire. A variety of other genes present in idd loci contribute to disease risk including:  

the insulin gene, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), protein tyrosine 

phosphatase non-receptor type 22 (PTPN22 gene), IL-2 receptor alpha (IL2RA/CD25), and 

interferon induced with helicase C domain 1 (IFIH1) genes
30,31,34

.   

 

Additionally, polymorphisms and mutations in key genes can cause dysregulation of thymic 

clonal deletion and contribute to the escape of autoreactive T cells into the periphery
8
. For 

example, autoimmune regulator protein (AIRE) is a transcription factor important for driving 

expression of various tissue-specific antigens (TSA) by mTECs and allowing efficient negative 

selection
35,36

.  TSA restricted to various tissues including pancreas, salivary gland, and eye, 

are included in this process. Importantly, insulin is an AIRE-regulated islet protein expressed 

by mTECs.  AIRE mutations are thought to cause a peripheral increase in autoreactive T cells 

specific for these tissues
35,36

. Indeed, AIRE-knockout mice develop multi-organ 

autoimmunity and mutations in AIRE cause multi-organ human disease, with 20% 

developing T1D
28

.  
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Peripheral regulation can also be influenced by gene variants affecting the immune system 

as a whole. For example, both IL-2 and CD25 (the high-affinity member of the IL-2 receptor) 

are located within idd loci.  FoxP3
+
Treg constitutively express CD25, and require IL-2 for 

maintenance/homeostasis in the periphery.  Additionally, IL-2 is involved in expression of 

Bcl-2, a mitochondrial protein that protects from apoptosis.  Thus, mutations involving the 

IL-2/IL-2 receptor axis have the potential to adversely affect the preservation of peripheral 

tolerance.  Indeed, a reduction of both CD25 and Bcl-2 expression has been correlated with 

reduced survival and function of intra-islet FoxP3
+
Treg in NOD mice

37
. An imbalance 

between functional FoxP3
+
Treg and pathogenic effector T cells in the islets is believed to 

contribute to diabetes progression
28

.  Accordingly, enhancing the numbers and/or function 

of FoxP3
+
Treg has been the focus of several strategies to prevent or suppress β cell 

autoimmunity
38

. 

 

Poorly-defined environmental factors also contribute to T1D.  Factors such as microbes, 

milk products, sun exposure, and vitamin D have been suggested to play a role
27,28

. NOD 

mice monocolonized with aerobic spore-forming gram positive bacteria show a lower 

diabetes incidence than germ-free NOD mice
39

.  Additionally, diabetes onset is inhibited by 

infection with a gastrointenstinal helminth
40

.  There is also evidence in mouse models that 

viral infections trigger an autoimmune reaction through molecular mimicry of viral proteins 

and β cell proteins, bystander activation of autoreactive T cells, and altering of the 

pathogenic T effector-Treg balance
41

. So, T1D is a mulitifactoral disease resulting from a 



9 
 

combination of various genetic mutations in addition to various environmental factors that 

lead to the development of β cell autoimmunity.   

 

1.5 T1D is a chronic inflammatory disease  

T1D is a viewed as a chronic inflammatory disease.  Typically, β cell autoimmunity 

progresses over a number of years before a sufficient amount of β cells are destroyed and 

clinical diabetes diagnosed. The spontaneous and chronic autoimmune disease observed in 

NOD mice mimics the human form of the disease, making this mouse model a highly useful 

tool to investigate T1D.   Studies in this well-established model have shown that islet 

inflammation or insulitis occurs in “stages”
28

.  Peri-insulitis is first observed at 3-4 weeks of 

age in NOD mice, and involves the infiltration of T cells, B cells, macrophages, and DC 

around the edge of an islet
42

. This is followed by a progressive infiltration of the immune 

cells into the islets (intra-insulitis).  The last stage entails efficient β cell destruction and the 

onset of overt diabetes, which typically occurs between 12 and 35 weeks of age in 70-80% 

of female NOD mice
42

.   Diabetes occurs when 80 to 90% of β cell mass has been destroyed 

and insulin levels are no longer sufficient to regulate glucose metabolism.  The loss of β cell-

specific tolerance is mediated by a variety of defects in the NOD mouse. As mentioned 

above, defects in negative selection in the thymus are thought to contribute to the 

increased frequency of β cell specific T cells present in the periphery. Additionally, 

dysregulation of the pool of Treg plays a key role in the apparent preferential differentiation 

of β cell-specific, pathogenic CD4
+
 and CD8

+
 type 1 T effectors. As alluded to earlier, 

dysregulation of FoxP3
+
Treg in frequency, number, and/or function has been reported as β 
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cell autoimmunity progresses in NOD mice
43,44

.  It is thought that the progression of 

diabetes is promoted by a gradual decrease in numbers and/or function of FoxP3
+
Treg 

within the islets, resulting in a concomitant expansion of pathogenic type 1 effector T cells.  

Additionally, FoxP3
+
Treg have been shown to be phenotypically different in the blood of 

diabetic patients than that of healthy controls, indicating a role for FoxP3
+
Treg dysfunction 

in the human form of the disease
45

. 

 

1.6 CD4
+
 and CD8

+
 T cells mediate β cell destruction in T1D 

Both CD4
+
 and CD8

+
 T cells are necessary for diabetes development in NOD mice. For 

example, co-transfer of CD4
+
 and CD8

+
 T cells from diabetic NOD mice is needed to induce 

diabetes in appropriate recipient mice
46

, and antibody depletion of CD4
+
 T cells prevents 

the onset of diabetes in NOD mice
47

. Furthermore, β-2 microglobulin knockout NOD mice, 

which express almost no MHC class I molecules, and thus no CD8
+
 T cells, remain diabetes-

free
48,49

.  Additionally, treatment of young NOD mice with a non-depleting CD8 antibody 

delayed or prevented the progression of insulitis in NOD mice
50

.  Although the roles of both 

T cell subsets in diabetes have been extensively studied, how TCR specificities for β cell 

autoantigens and changes in the TCR repertoire influence disease progression are not well 

understood.  During the early stages of the diabetogenic response, it is thought that 

relatively few β cell autoantigens are targeted by CD4
+ 

and CD8
+
 T cells.  Therefore, the 

initial infiltrating TCR repertoire is believed to be limited as well.  Over time, additional 

epitopes are exposed through progressive β cell death. This “epitope spread” and 

concomitant expansion of the TCR repertoire enhances β cell destruction.  Part of what 
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initiates activation of autoreactive T cells may be a wave of β cell death that happens 

naturally in NOD mice at about 2 weeks of age
51,52

.   β cell antigens would be available to 

APCs, which could then migrate to the PLN and activate T cells
52,53

. 

 

1.7 Specificity of diabetogenic T cells 

Since knowledge of the β cell autoantigens recognized by pathogenic T cells may aid in 

better defining the disease process and the development of immunotherapies, the interest 

in defining these targets has been understandably high.  Identified CD4
+
 T cell epitopes 

including insulin B chain, proinsulin, glutamic acid decarboxylase 65 (GAD65; the 65kd β-cell 

specific isoform of GAD), the protein tyrosine phosphatase IA-2, and heat shock protein 60 

(hsp60) have been found in NOD mice (reviewed in 
33,54,55

).  Important β cell autoantigens 

recognized by CD8
+
 T cells include the insulin B chain and islet-specific glucose-6-

phosphatase catalytic subunit-related protein (IGRP), and CD8
+
 T cells specific for these 

proteins have been observed early in disease progression in NOD mice
33,54,55

.  Both NOD 

mice and human type 1 diabetics have autoantibodies to many of these antigens, indicating 

a potential role for many of these autoantigens in human disease
33

. Using MHC class II 

tetramers, GAD65 and proinsulin-specific CD4
+
 T cells were detected in 61% of diabetic 

patients assayed and only 9.5% of controls, also indicating a potential role in human 

diabetes
56

. Interestingly, when children with high-risk HLA genotypes were evaluated, the 

appearance of insulin antibodies prior to antibodies specific for GAD65 or IA-2 was 

associated with a more aggressive form of disease
57

.  
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Despite knowledge that certain autoantigens are involved in T1D, it remains unclear which if 

any of these antigens play an important role in initiating the autoimmune process, and how 

each may contribute to disease progression. Several studies have implicated the 

involvement of GAD early in the immune response within the islets
58,59

, however, NOD mice 

deficient in GAD65
60,61

 and NOD mice tolerized to GAD65
62

 both develop diabetes with the 

same frequency as unmanipulated NOD mice.  Additionally, a study where mutating the 

main insulin epitope (InsB9-23) eliminated diabetes development indicates a prime role for 

insulin in disease onset
63

.  Additionally, insulin-reactive, clonally expanded T cells have been 

isolated from the PLNs of diabetic patients
64

.  Yet another study found that the earliest 

clones present in the islets of NOD mice were reactive to whole islet lysate, but not GAD65 

or insulin, suggesting that other, perhaps as yet unknown epitopes play a role in disease 

initiation
65

.  Additionally, T cells clones reactive to various islet epitopes (GAD65, IA2) were 

not all able to mediate insulitis or diabetes
66

. Notably, administration of whole insulin, 

insulin B chain peptide 9-23, GAD65, and hsp60 peptide p277, has been shown to prevent 

and/or suppress the diabetogenic response in pre-diabetic NOD mice
33,55

.  Thus, while 

several of these antigens likely play a role in disease initiation and/or propagation, the 

mechanisms controlling these processes are as yet undefined. 

 

1.8 TCR Vβ chain usage in T1D 

Islet-infiltrating T cells have also been studied by examining the Vα and Vβ chains of the 

TCR.  The TCR is a heterodimer consisting of disulfide-linked α and β chains, which have 

constant (C) and variable (V) regions. The V region is further composed of variable (Vβ), 
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diversity (Dβ), and joining (Jβ) segments. At least 31 Vβ genes have been identified
67

.  Early 

studies determined that in two autoimmune diseases, experimental allergic 

encephalomyelitis (EAE) and collagen-induced arthritis, TCR Vβ repertoires were 

restricted
68-70

.  Both models showed preferential use of TCR Vβ8.2 by pathogenic T cells, 

and disease was ameliorated when mice were treated with αTCR Vβ8 or 8.2 antibodies
68-70

.  

This provided rationale to explore the TCR Vβ specificity of islet-infiltrating T cells in T1D, 

specifically early islet-infiltrating (and perhaps disease-initiating) T cells.  Several studies 

found skewed TCR Vβ repertoires in young NOD mice, but with little consensus on the 

dominant TCR Vβ chains.  At 2-5 weeks of age, various studies showed that T cells found in 

NOD islets demonstrated preferential usage of Vβ1
71

, Vβ1 and Vβ12
65

,Vβ2
72

, Vβ3 and Vβ7
73

, 

Vβ11
74

, and Vβ8.2
75

.  

 

Due to the limited TCR usage observed in their studies, several authors postulated that T1D 

is initiated by recognition of a single autoantigen.  While this may indeed be the case, the 

great variety of TCR Vβ chain preferences observed by different groups in distinct NOD 

mouse colonies suggests that the initiating TCR specificities may vary considerably.  There is 

more consensus on the repertoire as mice age, as several studies have shown a more 

diversified TCR Vβ repertoire as islet infiltration progresses in older, prediabetic 

animals
72,76,77

, and in islet-reactive T cell clones
76,78,79

.   

 

Though most studies show heterogeneity in the autoreactive T cell response, a few studies 

have shown some degree of TCR Vβ skewing.  One study found preferential use of Vβ1 and 
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Vβ12 in 2-4 week old NOD islets, and that both exhibited conserved motifs.  Interestingly, 

though the Vβ1 motifs found in the islets were diluted by age 11-12 weeks, at that age the 

Vβ12 transcripts still showed similar junctions and CDR3 lengths
65

. Interestingly, another 

study noted that Vβ12 RNA levels were significantly increased in the islets of the two pre-

diabetic mice examined in comparison to spleen RNA levels
80

.   

 

To determine if several prevalent TCR Vβ chains were necessary for disease onset, NOD 

mice were bred with a deletion of TCR Vβ5, 8, 9, 11, 12, and 12
81

.  Disease developed at 

lower incidence; overt diabetes was observed in 12.5% of mice as compared to 33% in 

control mice, 
81

 but diabetes could still develop in some mice in the absence of these TCR 

Vβ chains.  This indicates plasticity in the TCR repertoire, and that while certain TCR Vβ 

chains may accelerate diabetes, it is unlikely that any one TCR Vβ chain is essential for 

disease initiation. Indeed, T cells may express different TCR Vβ chains yet be specific for the 

same epitope.  Indeed, T cell clones all specific for the same epitope, Ins9-23, were shown 

to express a wide variety of TCR Vβ chains
82,83

.  Two different but overlapping GAD65 

epitopes were shown to express different Vβ chains
84

.  The p530 clones spontaneously 

developed, were diabetogenic, and expressed TCR Vβ4.  The p524 clones were found after 

GAD65 peptide immunization, were protective against disease, and expressed TCR Vβ12
84

.  

However, T cells specific for certain β cell autoantigens appear to preferentially use 

particular TCR Vβ chains.  For example, tetramer-binding IGRP-specific CD8
+
 T cells sorted 

via flow cytometry from the islets of NOD mice predominantly express TCR Vβ 8.1/8.2, 

indicating a distinct preference for this TCR Vβ chain
85,86

.   So, while it is not likely that one 
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TCR Vβ chain is essential for disease development, certain diabetogenic T cells, like those 

specific for IGRP, show a preference for a certain TCR Vβ chain. Thus, the immune response 

can be explored to a certain extent by studying the TCR Vβ repertoire.  It is important to 

note that despite uniform MHC class I and II alleles in the NOD mouse, there is high mouse 

to mouse variability within the TCR repertoire.  One study showed skewed TCR Vβ usage in 

peripheral blood of several multiple sclerosis patients, but disease progression was not 

affected by this skewing
87

.  It is likely that the variability of human islet-infiltrating T cells is 

even greater from patient to patient due to the much wider range of HLA class I and II 

alleles possible. 

 

1.9 Islet transplantation for the treatment of T1D 

Though T1D can be managed with daily insulin injections, islet or pancreas transplantation 

is currently the only way to “cure” T1D. Even with insulin therapy, complications can ensue 

from continual blood glucose fluctuations in diabetic patients, including heart disease, 

kidney disease, liver disease, and blindness.   Additionally, while intensive insulin therapy 

can delay the onset of these events, patients remain at risk for severe or fatal hypoglycemic 

events. In humans, islets have been isolated and transplanted via the “Edmonton protocol” 

88
.  Currently, islet or pancreas transplants are only performed if the patient is already 

receiving a kidney or liver transplant, or if insulin alone is insufficient to maintain 

appropriate blood glucose control. Excitingly, with the advent of the Edmonton protocol the 

success rate of islet transplants increased dramatically to a rate of 58%
88

. Here, success has 

been defined as attaining insulin independence at some point following transplantation.  In 
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this procedure, islets are harvested from donor cadavers, purified, and injected via the 

portal vein into the recipient’s liver.  This minimally invasive technique is associated with a 

low morbidity rate, and allows for repeated administration of islets if necessary to achieve 

full insulin independence. Though this shows the promise of islet transplantation as a 

treatment for T1D, several factors nevertheless limit general application of the approach. 

These include the lack of donor cadaver pancreases (2 or more are needed for necessary 

islet yield), the recovery and viability of islets, toxicity of the immunosuppressive drug 

regime to the β cells, immune-mediated rejection of islets, and eventual failure of most 

grafts within 2 years. Additionally, the benefits of increased blood glucose control are likely 

outweighed by the cost of the lifelong systemic immunosuppression needed to prevent 

autoreactive and alloreactive rejection of the islet graft. Currently, an immunosuppressive 

regime involving sirolimus and tacrolimus is used to prevent islet graft rejection by both 

autoreactive
89,90

 and alloreactive T cells
91

. This immunosuppression decreases the efficiency 

of the entire immune system, leaving patients more vulnerable to opportunistic infections.  

However, if “targeted” immune suppression is achieved in which the auto- or alloreactive T 

cells are selectively suppressed while preserving the function of the remainder of the 

immune system, islet grafts may become a viable option for a larger population of T1D 

patients.  By decreasing the probability and incidence of complications resulting from 

severe blood glucose fluctuations, this treatment could have the potential to increase both 

length and quality of life.   
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Efforts to enhance islet transplantation such as improving islet cell processing and culturing 

have been ongoing.  For instance, the function of islets may be augmented by 

cytoprotective regimes involving pre-culture with factors such as 17-β-estradiol, 

nicotinamide, and metal protoporphyrins
92

.  Various molecules have been implicated in 

enhancing β cell viability and/or regeneration, including glucagon-like peptide 1 (GLP-1) and 

a longer-lived analog, exendin-4 (Ex-4), and used to augment therapeutic regimes
93-95

.  

Studies have shown that these molecules can increase the number and size of β cells, and 

promote β cell neogenesis from pancreatic ductal cells
96

.  Further, the combination of Ex-4 

and complete Freund’s adjuvant, was seen to reverse new-onset diabetes in 86% of NOD 

mice
96

.  Use of potential therapeutics may prevent effects of oxidative stress and minimize 

proinflammatory cytokines following transplantation, thereby improving function and 

survival of islet cells and possibly decreasing the number of β cells necessary for 

transplantation. However, the need for immunosuppression would still exist. Therefore, to 

make islet grafts a viable option to treat diabetes, these issues must first be addressed.  

 

1.10 Islet grafts and recurrent autoimmune diabetes 

As discussed above, autoreactive CD4
+ 

and CD8
+
 T cells mediate β cell destruction.  In islet 

transplantation, both autoreactive and alloreactive CD4
+
 and CD8

+
 T cells play important 

roles in the development of recurrent diabetes.  However, the specificities of graft-

infiltrating autoreactive T cells are relatively unknown. Though many studies have examined 

the TCR repertoire during the initial autoimmune phase, the specificity of T cells involved in 

autoimmune-mediated islet graft destruction may not mimic that seen in the endogenous 
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islets. Indeed, the frequency of IGRP-specific CD8
+
 T cells is 6 times higher in the islet graft 

compared to the endogenous pancreas at day 7 post-transplantation, averaging 25% of the 

CD8
+
 T cell infiltrate by tetramer staining

86
.  At day 13, only 5% of islet-infiltrating CD8

+
 T 

cells are IGRP-specific, suggesting that a more polyclonal response develops with time.  

However, since the specificity of the remaining 95% of T cells was not determined in this 

study, it is not known whether the response becomes more diverse through epitope spread 

and recruitment of a variety of different β cell-specific T cells, or T cells specific for other 

antigens dominate the immune response.  Unlike the relatively slow pace of islet infiltration 

and destruction in the primary autoimmune response of NOD mice (13-35 weeks), 

syngeneic islet graft rejection takes place quickly - typically within 7-13 days of 

implantation, presumably through the activation of a β cell specific memory T cell 

population.  It is possible that certain T cell clones are recruited from the pancreas to the 

islet graft to mediate β cell destruction; however, it is also possible that T cells of 

specificities not observed in the pancreas will be activated by this new source of antigen. As 

yet, it is not known which T cells are migrating to the graft and causing graft rejection.  In 

order to develop rational strategies for improving the survival of “new” β cells, whether 

through allogeneic islet transplantation or through regeneration/expansion of HLA-matched 

β cells, it will be important to define the T cell specificity during this immune reaction.   

 

Interestingly, by expressing diabetogenic (BDC2.5 or NY4.1) and non-diabetogenic (two HEL-

specific clones) transgenic TCRs by CD4
+
 T cells within the same NOD mouse, it was shown 

that T cell accumulation within the islets was restricted to the diabetogenic population
97

.  
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This suggests that the majority of T cells within diabetic islets should be β cell-specific and 

not merely accumulating due to a bystander effect, and provides further reason to examine 

this population in islet grafts more thoroughly.  Importantly, identification of β cell epitopes 

or certain TCR Vβ (and Vα) patterns may help lead to the development or refinement of β 

cell-specific therapies. Indeed, the use of toxin-coupled IGRP-containing MHC class I 

tetramers specifically deleted IGRP-specific CD8
+
 T cells in vivo and delayed the onset of 

diabetes
85

.   

 

1.11 Antibody-based Immunotherapy in T1D 

One approach to block autoimmune-mediated destruction of islet grafts is to re-establish 

the “balance” between pathogenic and immunoregulatory T cells. The use of monoclonal 

antibodies provides an approach to target specific cell populations.  Antibody-based 

therapies to target T cells have been used with success in both mice and humans, though 

current methods still leave much room for improvement. Many of these therapies have 

focused on the TCR and co-stimulatory molecules as targets.  As mentioned above, 

activation of T cells requires both TCR-peptide-MHC interactions, as well as co-stimulatory 

signals.  Importantly, co-receptor molecules CD4 and CD8 interact with MHC class I and II 

molecules, allowing for efficient T cell activation via phosphorylation of Lck.  The rationale 

for using antibodies to target molecules involved in T cell activation is to block complete T 

cell activation, which in turn has been shown to promote T cell anergy, clonal deletion, or 

under certain conditions Treg differentiation.  For instance, Ethylene carbodiimide (ECDI)-
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“fixed” peptide-pulsed APCs, which lack co-stimulatory molecule expression, efficiently 

induce T cell anergy
98

. 

 

One noted success story in the induction of tolerance has been the use of monoclonal 

antibodies specific for CD3. αCD3 antibody treatment induces remission in 64-80% of new-

onset diabetic NOD mice
99

.  This approach causes rapid systemic depletion of the majority 

of T cells by 24 hours post-administration, followed by a gradual re-appearance of T cells 

over a period of several weeks
100

. TGFβ1 levels are increased at 24 hours post-treatment, 

which in this system are required for the induction/expansion of FoxP3
+
Treg.   Interestingly, 

the primary sources of the elevated TGFβ1 are macrophages and immature DC
101

.  Here, 

TGFβ1 is induced in APC following phagocytosis of T cells that have undergone apoptosis 

following αCD3 antibody binding. Additionally, in a myelin/oligodendrocyte glycoprotein 

(MOG)-induced model of experimental autoimmune encephalitis (EAE), αCD3 antibody 

treatment increases the frequency of FoxP3
+
Treg in the spinal cord, decreases the disease 

score, and reestablishes tolerance
102

.  Finally, αCD3 antibody has also been administered to 

recent onset T1D patients with some early clinical success
103,104

.   

 

It is well established that both CD4
+
 and CD8

+
 T cells play essential roles in the development 

of T1D, and since the 1990s various studies have shown the therapeutic effects of anti-

lymphocyte serum and depleting antibodies specific for CD4 and CD8.  In transplantation 

studies, MHC-mismatched skin grafts are protected using non-depleting αCD4 and αCD8 

antibodies in combination; either alone, however, is ineffective
105

.  One study showed that 
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using donor antigen under the “cover” of a non-depleting αCD4 antibody treatment induces 

tolerance to cardiac allografts
106

.   Further, non-depleting αCD4 and αCD8 antibodies have 

been used to induce tolerance to human immunoglobulin (HGG) as well as bone marrow 

and skin grafts mismatched at multiple transplant antigens
107

. Tolerance to HGG is induced 

using αCD4 alone, but skin and bone marrow graft tolerance is only achieved with the 

combination of αCD4 and αCD8 antibodies.  Interestingly, HGG tolerance is only maintained 

through repeated injection of the protein, whereas bone marrow and skin grafts provide a 

constant source of donor antigen, indicating that antigen persistence likely plays a role in 

long-term tolerance induced by this strategy
107

. Further studies demonstrated that a short 

course of αCD4 antibody alone induces tolerance to MHC-mismatched heart allografts, and 

that this tolerance is allograft-specific. For example, second grafts of donor-matched MHC 

hearts or skin are accepted, while third-party MHC skin grafts are rejected
108

.  Additionally, 

long term survival of both skin and cardiac grafts has been reported when recipient animals 

are pretreated with a donor-specific transfusion “under the cover” of αCD4 

antibody
106,109,110

. Furthermore studies showed that antibody-mediated co-receptor 

blockade-induced transplant tolerance is dominant and “infectious,” and mediated by CD4
+
 

T cells
111-113

. It was further determined that non-depleting αCD4 antibodies promote 

conversion of naïve CD4
+
 T cells to Foxp3

+
 Treg.  For instance, when female TCR transgenic 

mice specific for the male peptide dead box RNAhelicaseY (DBY) are tolerized to male skin 

grafts using anti-CD4 antibodies, the previously Treg-deficient recipient mice are found to 

have CD4
+
CD25

+
FoxP3

+
 cells within spleens and skin grafts

114
.   Interestingly, tolerance 

induction to a model antigen, equine immune globulin, was demonstrated in non-human 
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primates using a non-depleting αCD4 antibody, raising hopes for potential use in the 

clinic
115

.  However, the success of this treatment regime in preventing allograft rejection 

may involve different mechanisms than those involved in autoimmune rejection of 

syngeneic islet grafts.   

 

Allogeneic responses are typically directed at MHC molecules, and involve the activation of 

a naïve population of allogeneic T cells.  However, diabetic recipients of islet grafts have 

established pathogenic β cell-specific effector and memory T cells.  Thus, considering that 

the result of αCD4 and αCD8 non-depleting antibody binding to naïve, memory, effector, or 

regulatory T cells may be very different, it is difficult to predict the exact nature of the effect 

on the immune response in autoimmune diabetes.  Nevertheless, due to the success of 

these antibodies in establishing transplantation tolerance in various allograft models, non-

depleting αCD4 and αCD8 antibodies may be effective in tolerizing autoreactive T cells in 

the context of islet transplantation.  

 

1.12 Systemic Adeno-associated Virus (AAV) Immunotherapy in T1D 

AAV received its name because it is often found in cells also infected with adenovirus.  

Unlike adenovirus, however, AAV is nonimmunogenic in mice, can enter non-dividing cells, 

and either integrates into one specific area on the genome or remains as an episomal 

plasmid.  Recombinant AAV vectors provide a clinically amenable approach for in vivo gene 

delivery
116,117

. Importantly, AAV vectors: i) cannot replicate without a helper virus, ii) stably 

express transgenes for long periods of time in vivo, and iii) infect a wide variety of tissues 
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depending on the serotype of capsid protein used to package the recombinant
117,118

.  

Various AAV vector-based therapies have been used in both streptozotocin (STZ)-induced 

and spontaneous diabetes models.  Earlier studies showed the potential of this approach by 

demonstrating that various AAV serotypes successfully transduce both human and mouse 

islets. Notably, long-term expression of a green fluorescent protein (GFP) transgene was 

observed in AAV-GFP vector transduced islets implanted into non-autoimmune STZ-induced 

diabetic Balb/c mice
119

.  AAV vectors have been widely used in diabetes prevention and 

treatment studies, and transgenes expressing β cell autoantigens, immunoregulatory 

cytokines and soluble factors have been employed.  In NOD mice, an AAV1 vector 

expressing a GAD500-585 transgene prevents diabetes, possibly due to the induction of 

GAD65-specific FoxP3
+
Treg and Th2 cells

120,121
.  An AAV2 vector expressing α-1 antitrypsin, a 

glycoprotein that inhibits neutrophil elastase and proteinase 3, reduces diabetes incidence 

at 32 weeks from 70% to 30% when injected into NOD mice at 4 weeks of age
122

. Systemic 

expression of AAV vector encoded heme oxygenase-1, a stress-response enzyme with 

immunoregulatory capacity, results in a delay in diabetes onset as well as suppression of DC 

activation and Th1 effector cell reactivity
123

.  Additionally, an AAV2 vector expressing IL-10, 

but not IL-4, prevents diabetes, reduces insulitis, and preserves insulin production in NOD 

mice
124

.  A later paper further demonstrated that diabetes prevention by AAV-IL10 vector 

treatment is accompanied by an increase in the percentage of CD4
+
CD25

+
 Treg

125
.  

Additionally, this effect is dose-dependent, with the highest vector dose (1x10
9
 infectious 

units (IU)) preventing diabetes in 12 week-old “prediabetic” NOD mice.  An additional study 

showed that systemic expression of AAV-IL10 vector administration prolongs the survival of 
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syngeneic islet grafts in NOD mice
126

. Though initial success with AAV vectors is exciting, 

there are drawbacks to this method of gene therapy.  AAV vector gene therapy initially 

employed single-stranded (ss) DNA vectors. The kinetics of transgene expression by ssAAV 

vectors, however, is limited by the conversion of ssAAV to double stranded (ds) AAV forms. 

The engineering of dsAAV vectors has markedly enhanced the application of the 

approach
127,128

.   By mutating the inverted terminal repeat, AAV vectors package the self-

complementary dsAAV genome, resulting in rapid and more robust transgene expression
127

.  

Consequently, the dose of dsAAV vector relative to ssAAV recombinants can be reduced to 

minimize the likelihood of a vector-specific immune response. One drawback to dsAAV 

vectors, however, is that the size of transgene is limited to ~2.3 kb to ensure efficient 

packaging of the vector.  

 

 

1.13 In vivo-targeted AAV Immunotherapy in T1D 

Systemic and long-term expression of an immunomodulatory molecule may affect the 

“normal” function of the immune system. AAV vector transgene expression localized in a 

cell- or tissue-specific manner circumvents this problem. In the case of T1D, one way to 

target transgene expression to the β cells has been the use of the mouse insulin promoter 

(MIP). AAV vectors have been engineered in which transgene expression is driven by the 

MIP, and in turn targeted to β cells
129

. Glucose-dependent transgene expression has been 

demonstrated in both β cell lines in vitro and islets in vivo following transduction with AAV 

vectors containing MIP. Notably, 4 week-old NOD mice given a dsAAV8 vector encoding a 
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MIP driven IL-4 transgene show a delay in diabetes onset relative to dsAAV8 MIP-GFP 

control-treated mice and untreated mice
130

. The protective effect is believed to be due to 

an increased frequency of FoxP3
+
Treg.  Our group has also shown that a dsAAV8 vector 

encoding a MIP-driven IL-2 transgene prevents diabetes in NOD mice at a late preclinical 

stage (Johnson, M. and Tisch, R. unpublished data).   Though using MIP to target transgene 

expression to β cells should localize transgene effects to the islets, AAV can still integrate 

into a variety of cell types, raising the possibility of a virus-specific response.  Additionally, 

high amounts of virus may be needed in order to achieve high transduction rates of β cells, 

which could be cause for concern in clinical trials 

 

1.14 Ex vivo-targeted AAV Immunotherapy in T1D  

Ex vivo islet transduction by AAV vectors has several benefits over direct injection into a 

patient. For one, exposure of non-islet cells to the AAV vector is limited, and transgene 

expression is directly targeted to the islets. This organ-specific expression should be 

beneficial in that off-target effects of transgene expression should be minimal. 

Furthermore, ex vivo manipulation of islets requires reduced doses of AAV vector. Early 

work has shown the potential for ex vivo islet transduction prior to islet transplantation.  

Both AAV2 and AAV5 vectors efficiently transduce both β cells and other islet-resident cell 

types in vitro, and do not interfere with insulin production upon transplantation into 

mice
131

. Also, dsAAV vectors have been shown to efficiently transduce both mouse and 

human islets using recombinants packaged with serotype 2, 6, and 8 capsid proteins
119

.  

EGFP expression in AAV vector transduced islet grafts is long-term, being detected at least 6 
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months post-implantation
119

.  Though still in early stages, these results show the potential 

for using AAV vectors to express various immunotherapeutic transgenes in islets.   

 

1.15 The role of IL-2 in T1D 

IL-2 is a cytokine with pleotropic effects on T cells, including: stimulation of proliferation, 

induction of activation-induced cell death, and the generation, expansion, and maintenance 

of FoxP3
+
Treg. The IL-2 gene is associated with diabetes susceptibility in NOD mice, being 

mapped to idd3 
132,133

. FoxP3
+
Treg constitutively express CD25, the high-affinity α chain of 

the IL-2 receptor, and IL-2 has been shown to be important for FoxP3
+
Treg survival. As 

discussed earlier the lack of proper FoxP3
+
Treg function and survival in older NOD mice has 

been linked to the progression of β cell autoimmunity
43,44

. Also, NOD mice exhibit a defect 

in IL-2 production, and introgression of the idd3 locus from C57BL/6 (B6) mice into the NOD 

genome markedly reduces the frequency of diabetes
32

.  Performing transplants into NOD 

mice congenic for the B6 idd3 allele or injection of IL-2 in combination with costimulation 

blockade (e.g. αCD40L) improves islet allograft survival
134

, further highlighting the 

importance of IL-2 in the NOD mouse.  A combination of IL-2 and the immunosuppressant 

sirolimus, which inhibits IL-2-induced T cell proliferation but not apoptosis, prevents 

diabetes as well as protects syngeneic islet grafts from autoimmune destruction.  This 

occurs through induction of a shift from pathogenic Th1 to Th2 (IL4
+
IL10

+
) and Th3 (TGFβ1

+
)-

type cells within the graft
135

.  Intramuscular injection of an AAV1 vector encoding IL-2 driven 

by an inducible tetracycline promoter prevents diabetes in NOD mice at a late preclinical 
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stage
136

.  Protection correlates with an increase in the frequency of FoxP3
+
Treg residing in 

the pancreas.  

 

1.16 Our hypothesis and goals 

Islet grafts have the potential to greatly improve both the quality and duration of life for 

T1D patients. Since the success achieved via the Edmonton protocol, though substantial, 

still entails long-term administration of immunosuppressive drugs, we chose to assess an 

antibody-based method of tolerance induction for syngeneic islet grafts. αCD4 and αCD8 

non-depleting antibodies have shown efficacy in preventing allograft rejection, and may be 

useful in the protection of islet grafts from autoimmune rejection as well.  Additionally, 

these antibodies may provide a method to selectively tolerize autoreactive T cells while 

preserving the function of the remainder of nonautoreactive T cells. Accordingly, we tested 

the ability of αCD4 and αCD8 antibodies alone and in combination to prevent rejection of 

syngeneic islet grafts in NOD mice. Because it is a possibility that the lack/dysregulation of 

IL-2 in our model may inhibit the development or expansion of a highly functional 

population of FoxP3
+
Treg observed in other models using the non-depleting αCD4 and αCD8 

antibodies, we chose to augment our approach with the expression of IL-2 by β cells.  Using 

an AAV8 vector encoding a MIP-driven IL-2 transgene, we examined whether IL-2 

expression by β cells could delay or prevent graft rejection both alone and in combination 

with αCD4 and αCD8 antibody therapy.   Lastly, recurrent autoimmunity is less well-

characterized than the primary immune response in T1D, so further understanding of the 

autoimmune response to “neo-β cells” may provide valuable information and insight into 
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developing methods to protect islet grafts.  If the TCR repertoire in the islets is altered in 

recurrent autoimmunity, knowledge of the TCR specificities may aid in developing more 

effective immunotherapies.   Therefore, we investigated the TCR specificity of various 

subsets of CD4
+ 

and CD8
+
 T cells in rejecting syngeneic grafts. We hypothesize that a subset 

of T cells found in the pancreas, possibly memory cells, migrate to the islet graft, and cause 

destruction of the β cells.  By examining the TCR Vβ specificities of a variety of populations, 

including CD4
+
 and CD8

+
 naïve and effector/memory T cells, insight into the dynamics and 

specificities of recurrent autoimmunity have been gained.    
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2.1 Introduction 

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-

producing β cells within the pancreas.  Islet or pancreas transplantation is currently the only 

way to “cure” T1D. Though transplantation has the potential to achieve long-term, stable 

blood glucose control and avoid diabetes-associated health complications, it also requires 

lifelong systemic immunosuppression. Thus, we assessed the ability of non-depleting anti- 

(α)CD4 and αCD8 antibodies to prevent recurrent autoimmunity and enhance islet graft 

survival.  Whereas isotype control antibodies provided no protection to syngeneic islet 

grafts, the use of αCD4 or αCD8 antibody alone, or in combination extended graft survival 

significantly.  Additionally, we assessed the ability of an adeno-associated virus (AAV) vector 

expressing IL-2 via the mouse insulin promoter (MIP) to prolong islet graft survival.  Double-

stranded AAV-MIP-IL2 serotype 8 (dsAAV8-MIP-IL2) transduced islet grafts exhibited 

enhanced survival whereas dsAAV-MIP-IL2 serotype 1 transduced islet grafts did not.  We 

also combined dsAAV8-MIP-IL2 administration with non-depleting αCD4/CD8 treatment, 

and found that this combination provided islet protection similar to that of αCD4/CD8 

treatment alone.  These findings demonstrate that: 1) αCD4/CD8 combination treatment 

extends graft survival to create a window for additional interventions, and 2) recombinant 

AAV vectors can be readily used to genetically modify β cells in vitro, and enhance islet graft 

survival. 

 

Type 1 Diabetes (T1D) is an autoimmune disease characterized by the T-cell mediated 

destruction of the insulin-producing β cells present in the islets
1,2

.   T1D can be managed 

with daily insulin injections, but effects of continual blood glucose fluctuations can result in 
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long-term complications affecting eyes, kidney, limbs and other organs, and resulting in 

early death
3
. The only way to provide “normal” blood glucose control in T1D patients is with 

whole pancreas or islet transplantation, which can reduce or eliminate the need for insulin 

injections
4-6

.  However, islet graft protection against both autoreactive and alloreactive T 

cells is dependent on continuous administration of immunosuppressive drugs. The drugs 

used systemically affect the immune system, opening the patient up to a host of 

opportunistic infections.  Thus, the benefit of increased blood glucose control is typically 

outweighed by the detriment of lifelong systemic immunosuppression required to prevent 

graft rejection.  Consequently there is a need for immunotherapies that selectively block 

autoimmune and allogeneic recognition of islet grafts while permitting normal immune 

function. Optimally, an immunotherapy would target pathogenic effector T cells and/or 

increase β cell-specific regulatory T cells (Treg) while maintaining normal immune function.  

CD4
+
 and CD8

+
 T cells play important roles in the development of T1D.  For instance, 

nonobese diabetic (NOD) mice, a spontaneous model of T1D, remain diabetes-free when 

CD8
+
 T cells are depleted

7
.  Additionally, major histocompatibility complex (MHC) class I is 

required for β cell destruction.  In β2 microglobulin-deficient NOD mice, CD4
+
 T cells fail to 

infiltrate the islet and diabetes onset does not occur
8-11

.  Furthermore, NOD mice lacking 

expression of MHC class II and therefore devoid of CD4
+
 T cells also remain protected from 

diabetes
12

. Only in certain transgenic NOD mouse models involving β cell-specific T cell 

receptors (TCRs) are CD4
+
 or CD8

+
 T cells alone capable of causing, transferring, or 

accelerating T1D, often in young or immunocompromised NOD mice
13-15

.  As is the case 

with spontaneous diabetes in NOD mice, both CD4
+
 and CD8

+
 T cells play key roles in 
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autoimmune-mediated destruction of islet grafts.  Wang et al. found that islet destruction 

was dependent on CD4
+
 but not CD8

+
 effector T cells

16
. However, others found that in the 

absence of MHC class I expression, syngeneic islet grafts were protected from rejection
17,18

. 

This would indicate that CD8
+
 T cells are also involved in mediating islet destruction. In 

addition, β cell destruction is associated with an accumulation of both CD4
+ 

and CD8
+
 T cells 

capable of secreting IFNγ within the newly-engrafted islets
19

. Taken together, these results 

demonstrate that both CD4
+
 and CD8

+
 T cells likely play important, though not fully 

delineated, roles in syngeneic islet graft rejection. 

A number of approaches have been studied to target pathogenic T cells in 

autoimmune and/or allograft settings. The most straightforward has been the 

administration of antibodies specific for various proteins expressed by T cells, such as the 

CD3 molecule. While there has been some success in achieving long-term remission in NOD 

mice
20,21

, clinical trial results in humans have been less striking.  While initial studies 

administering αCD3 antibody showed some improvement in β cell function for up to two 

years
22,23

, more recent studies have shown that the protective effect is limited in the 

majority of patients, and that a second dose of αCD3 antibody and/or higher dosage 

treatments can be detrimental rather than extend protection
24-26

. Additionally, the majority 

of these antibodies deplete T cells resulting in immunosuppression, and often result in no 

long-term tissue-specific tolerance.  

On the other hand, non-depleting antibodies specific for the CD4 and CD8 co-

receptor molecules have proven to be highly effective at inducing tissue/antigen-specific 

tolerance without systemic depletion of T cells
27

. The best characterized of these 
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nondepleting αCD4 and αCD8 antibodies are YTS177 and YTS105, respectively. YTS177 and 

YTS105 are rat IgG2a antibodies which are much less efficient at binding murine Fc 

receptors and fixing murine complement than other isotypes (i.e. rat IgG2b) 
28

.   

Importantly, these two monoclonal antibodies have not been observed to deplete murine T 

cells in vivo upon binding in transplant models
29-31

.   YTS177 and YTS105 have been 

successfully used to induce long-term tolerance in murine skin and cardiac allograft 

models
29-33

. Protection established by YTS177.9 and YTS105.18 is in part due to induction of 

alloantigen-specific FoxP3-expressing Treg (FoxP3
+
Treg) 

33-35
.  Our group has also recently 

found that YTS177 and YTS105 induce long-term remission in recent-onset diabetic NOD 

mice (
36

 and Yi and Tisch, unpublished).    

 It is well established that IL-2 is a critical growth factor for T cells, and is necessary to 

drive T cell-mediated proinflammatory responses. Because of its essential role in regulating 

multiple aspects of immune responses, IL-2 is tightly regulated
37

.  Notably, IL-2 has also 

been shown to play a key role in peripheral maintenance of FoxP3-expressing Treg 

(FoxP3
+
Treg)

38,39
. FoxP3

+
Treg constitutively express the high affinity alpha chain (CD25) of 

the IL-2 receptor, and can act as a “sink” for IL-2 to downregulate pathogenic effector 

responses.  In combination with TGFβ, IL-2 is necessary to up-regulate FoxP3-expression and 

convert naïve “conventional” CD4
+
 T cells into “adaptive” FoxP3

+
Treg. Notably, 

dysregulation of IL-2 expression has been shown to contribute to T1D in NOD mice, leading 

to a decrease in the function and frequency of FoxP3
+
Treg

40,41
. The IL-2/CD25 pathway has 

also been linked to T1D in humans
41

.  Interestingly, several recent studies have shown that 

IL-2 can be therapeutic in treating T1D in NOD mice.  Low-dose IL-2 promotes survival of 
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FoxP3
+
Treg in the islets, and prevents diabetes onset

40
.  Additionally, a brief pulse of 

systemic IL-2 delivered by intra-muscular injection of an adeno-associated virus (AAV) 

vector prevents diabetes in NOD mice via an increase in islet-resident FoxP3
+
Treg 

42
. Short-

term IL-2 administration at diabetes onset can also induce remission in diabetic NOD mice 

and result in long-lasting protection through modification of pancreatic FoxP3
+
Treg

43
.  The 

above approaches use systemic IL-2 as a therapeutic, which, though effective in these cases, 

might become problematic when applied to humans.  Indeed, high dose IL-2 therapy is also 

used for treatment of various cancers, and treatment of mice and human patients with 

high-dose IL-2 can expand effector cells and result in an anti-tumor response
44-46

.  Thus, a 

targeted approach for administration of IL-2 may make clinical application of this 

therapeutic more amenable.  Since T1D is associated specifically with pancreatic Treg 

dysfunction
40

, targeting IL-2 transgene expression to the pancreas should not only promote 

Treg induction/expansion, but also decrease the possibility of adverse effects associated 

with systemic IL-2 production.  

Since non-depleting YTS177 and YTS105 antibodies have been shown to prevent 

rejection of allogeneic grafts in a variety of model systems, we investigated whether this 

approach also induced tolerance to syngeneic islet grafts in diabetic NOD female mice.   We 

hypothesized that the combination of αCD4 and αCD8 antibody treatment would result in 

syngeneic islet graft protection through a combination of FoxP3
+
Treg induction/expansion, 

as well as blocking the function of pathogenic CD4
+
 and CD8

+
 T cells.  Additionally, we 

assessed the ability of an AAV vector encoding an IL-2 transgene driven by the mouse 

insulin promoter (MIP) (dsAAV8-MIP-IL2) to protect islet grafts.  Since IL-2 can promote 
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FoxP3
+
Treg survival and protect mice from diabetes onset, we hypothesized that production 

of IL-2 in the microenvironment of the islet graft would promote local (and potentially β 

cell-specific) FoxP3
+
Treg survival and thus extend graft survival.  Finally, we assessed 

whether the combination of dsAAV8-MIP-IL2 and YTS177 and YTS105 antibody treatment 

enhances protection of islet grafts.   
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2.2 Results 

Non-depleting αCD4 (YTS177) and αCD8 (YTS105) antibodies enhance syngeneic islet graft 

survival. 

We assessed the capacity of YTS177 and YTS105 to block autoimmune-mediated 

destruction of syngeneic islet grafts. Diabetic NOD female mice (e.g. blood glucose levels 

>250 mg/ml) were used as islet graft recipients. These animals received 500 NOD.scid islets 

under the kidney capsule. Transplantation was carried out after 2-3 weeks of diabetes onset 

to ensure that only minimal endogenous β cell mass was present. For instance, we have 

found that administration of YTS177 and YTS105 within 10 days of diabetes onset reverses 

diabetes. To make certain that the isolated islets lacked infiltrating lymphocytes, NOD.scid 

mice were used as syngeneic donors. Graft recipient mice received intraperitoneal (i.p.) 

injections of 600 ug of YTS177 and YTS105 either alone or in combination, or 2A3, an 

isotype control antibody, on days 0, 2, and 4 post-graft implantation. Administration of 2A3 

resulted in a minor delay in the onset of recurrent diabetes relative to untreated NOD 

recipients; islet graft median survival time was extended from 10.5 days to 14.5 days 

(p<0.01)  (Figure 2.1). In contrast, YTS105 or YTS177 alone significantly delayed the onset of 

recurrent diabetes to a similar extent (Figure 2.1).  Furthermore, as expected the 

combination of YTS105 and YTS177 delayed the onset of recurrent diabetes; however 

efficacy was not significantly different compared to that seen with either antibody alone 

(Figure 2.1). These results demonstrate that administration of YTS105 and YTS177 alone 

enhances syngeneic islet graft survival in diabetic NOD recipients, and that co-injection of 

the αCD4 and αCD8 antibodies does not markedly enhance efficacy.   
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Rejected islet grafts from YTS177 and YTS105-treated NOD recipients have an increased 

frequency of graft infiltrating FoxP3
+
Treg.  

The development of recurrent diabetes in YTS177 and YTS105-treated NOD recipients could 

be attributed to autoimmune-mediated destruction of the islet graft or a failure of islet 

grafts to secrete adequate levels of insulin. To distinguish between these two possibilities, 

islet grafts were harvested from YTS177 and YTS105-treated NOD recipients at the time of 

recurrent diabetes onset, and immunofluorescence analysis carried out.   Islet grafts 

exhibited minimal insulin staining consistent with graft failure (Figure 2.2A). In addition, 

islet grafts were heavily infiltrated with Thy1.2
+
CD4

+
 and Thy1.2

+
CD4

-
 (e.g. CD8

+
) T cells 

(Figure 2.2A). This result demonstrates that recurrent diabetes detected in YTS177 and 

YTS105-treated NOD recipients is likely due to autoimmune-mediated islet graft 

destruction.  

Flow cytometric analyses were carried out to characterize the nature of the T cell 

infiltrates found in the rejected islet grafts from YTS177 and YTS105- and 2A3-treated NOD 

recipients. A moderate but significant increase in the percentage of FoxP3
+
CD4

+
 T cells was 

detected in islet grafts from NOD recipients treated with YTS177 and YTS105 (18.5+ 1.9) 

versus 2A3 (12+1.7) (Figure 2.2B). On the other hand, the average frequency of CD4
+
 and 

CD8
+
 T cells infiltrating the islet grafts of YTS177 and YTS105-treated recipients was similar 

to that of the control group. Furthermore, an equivalent frequency of islet graft infiltrating, 

IFNγ-secreting CD8
+
 and CD4

+
 T cells was observed for the respective groups (Figure 2.2C), 

and no marked difference was detected in the effector T cell to FoxP3
+
Treg ratio in the 



51 
 

grafts from NOD recipients treated with YTS177 and YTS105, and 2A3 (Figure 2.2D). Finally, 

no differences in FoxP3
+
Treg and CD4

+
 and CD8

+
 T effectors were detected in the renal 

lymph nodes (RLN) draining the islet graft or the nondraining RLN of the respective two 

groups of NOD recipients (Figure 2.2). These results indicate that the delayed onset of 

recurrent diabetes observed in YTS177 and YTS105-treated NOD recipients correlates with 

an increase in FoxP3
+
Treg infiltrating the islet grafts relative to the control group, even after 

graft failure.   

 

Characterization of T cells infiltrating the islet grafts shortly after YTS177 and YTS105 

treatment.  

Since the above islet grafts were examined after failure, protection mediated by YTS177 and 

YTS105 treatment may have been obscured by effector T cell responses.  Therefore islet 

grafts were examined at 14 days post-implantation, a time point when all YTS177 and 

YTS105-treated NOD recipients remained free of recurrent diabetes, and islet grafts were in 

the process of being rejected in the 2A3-treated control group. No significant difference in 

the frequency of IFNγ-secreting CD4
+
 and CD8

+
 T effectors (Figure 2.3B) was seen in the 

infiltrating grafts or draining RLN of the two respective groups. In contrast to observations 

made in the rejected grafts, a trend towards a reduced frequency of FoxP3
+
CD4

+
 T cells was 

seen in the islet grafts of NOD recipients treated with YTS177 and YTS105 versus 2A3 (Figure 

2.3A). Furthermore, the ratio between effector T cells and FoxP3
+
Treg was increased in 

YTS177 and YTS105-treated NOD recipients, with the difference between effector CD4
+
 T 

cells and FoxP3
+
Treg reaching statistical significance (Figure 2.3C). No significant differences 
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were detected in the RLN of YTS177 and YTS105- and 2A3-treated recipients for the 

different T cell subsets (Figure 2.3).  These results suggest that early islet graft infiltration by 

CD4
+
 and CD8

+
 T cells able to secrete IFNγ following stimulation is not significantly affected 

by YTS177 and YTS105 treatment, although trafficking of FoxP3
+
Treg is delayed.  

 

Ectopic expression of IL-2 by β cells prolongs syngeneic islet graft survival.  

Our laboratory has reported that β cell autoimmunity is effectively suppressed in NOD mice 

at a late preclinical stage of T1D by an intramuscular injection of AAV vector encoding IL-2
42

.  

With this in mind, we assessed the therapeutic efficacy of targeting IL-2 expression to β cells 

in islet grafts using dsAAV-MIP-IL2. Notably, IL-2 expression is driven by MIP to selectively 

direct expression to β cells. Islet specificity of the AAV-MIP vector was confirmed in the 

laboratory.  Since untreated syngeneic islet grafts are typically rejected within 10-14 days 

(Figure 2.1), rapid transgene expression is critical for prolonging islet graft survival. With this 

in mind, we employed dsAAV vectors which exhibit earlier and more robust transgene 

expression than conventional single stranded (ss) AAV vectors. 

Initially, efforts focused on establishing the optimal conditions to transduce islets in 

vitro with dsAAV vectors. Here a dsAAV-MIP vector encoding enhanced green fluorescent 

protein (GFP) and packaged with serotype 8 capsid was utilized. Islets isolated from 

NOD.scid donor mice were incubated with 1x10
11

 viral particles (v.p.) of dsAAV8-MIP-GFP, 

and GFP expression examined via immunofluorescence microscopy over time. Robust GFP 

expression in islets was readily detected within 3 days of transduction (Figure 2.4A, B). To 

determine the time of incubation needed for efficient transduction, islets were cultured 
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with various viral doses.  dsAAV8-MIP-GFP was added to islets, washed off with PBS after 1, 

12, or 96 hours, and islets were returned to culture. GFP expression was assessed after 4 

days.  Strikingly, GFP expression was detected in islet cultures transduced with dsAAV8-MIP-

GFP for only 1 hour (Figure 2.4C). This is not unexpected, as a report by Bartlett et al. 

showed that AAV particles enter the cells through receptor-mediated endocytosis within 30 

minutes postinfection
47

.  As expected, increased GFP expression was detected with longer 

transduction times although the effect was only moderate (Figure 2.4C, D). For instance, an 

approximate 3-fold increase in fluorescence was seen in islets incubated with dsAAV8-MIP-

GFP for 96 versus 1 hour(s) (Figure 2.4D).  

After optimizing in vitro transduction conditions using dsAAV8-MIP-GFP, the 

function of dsAAV8-MIP-IL2 was tested. Vector dose-dependent IL-2 secretion was detected 

for islets transduced in vitro with dsAAV8-MIP-IL2 (Figure 2.4E). Next, NOD.scid islets were 

transduced with two different doses of dsAAV8-MIP-IL2 v.p. for 2 hours, and then implanted 

under the kidney capsule of diabetic NOD.scid recipients, which had been previously treated 

with streptozotocin (STZ) to destroy endogenous β cells.  Euglycemia was achieved in all of 

the NOD.scid recipients after islet transplantation, indicating that transduction with 

dsAAV8-MIP-IL2 had no adverse effects on β cell function. Islet grafts were harvested at day 

10 post-implantation, cultured for 2 days, and IL-2 secretion measured via ELISA. As 

demonstrated in Figure 2.4F, IL-2 secretion by transduced islets was readily detected. 

Furthermore, levels of IL-2 expression correlated with the dose of dsAAV8-MIP-IL2 used to 

transduce the islets (Figure 2.4F). These results demonstrate that β cells transduced with 

dsAAV8-MIP-IL2 are functional in vivo and express IL-2.  
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In vitro transduction of islets with dsAAV8-MIP-IL2 extends graft survival. 

We then tested whether dsAAV8-MIP-IL2 enhanced islet graft survival in diabetic NOD 

female mice. Included in the study was dsAAV-MIP-IL2 packaged with serotype 1 capsid. 

AAV1 vector has been reported to transduce islets in vitro with increased efficiency 

compared to AAV8 vector
48

. Indeed, we detected a 5-fold increase in the level of IL-2 

secretion by β cells transduced in vitro with an equivalent number of v.p. of dsAAV1-MIP-IL2 

versus dsAAV8-MIP-IL2 on day 7 in culture (data not shown). NOD.scid islets were 

transduced in vitro with 1.5x10
10

 v.p. of dsAAV1-MIP-IL2 or dsAAV8-MIP-IL2, implanted into 

diabetic NOD mice, and blood glucose levels monitored. Unmanipulated islets were 

transplanted into NOD diabetic mice as a control.  Recipients of the dsAAV8-MIP-IL2 

transduced islets exhibited a significant delay in the onset of recurrent diabetes (median 

survival of 23 days) relative to the control group (median survival of 10.5 days; Figure 2.5). 

In contrast, there was no significant difference in the time of onset or frequency of 

recurrent diabetes in NOD mice receiving islets transduced with dsAAV1-MIP-IL2 (Figure 

2.5). These findings indicate that ectopic expression of IL-2 by β cells following dsAAV8-MIP-

IL2 transduction enhances islet graft survival.  

 

Co-administration of dsAAV8-MIP-IL2 does not increase islet graft survival above αCD4 

and αCD8 antibody treatment alone. 

Although YTS177 and YTS105 treatment of NOD recipients, and dsAAV8-MIP-IL2 

transduction of β cells in vitro increased islet graft survival, long-term protection (e.g. >100 

days) was not achieved by either approach. Therefore, whether the combination of the two 
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approaches would have an additive or synergistic effect on islet graft survival was tested. 

Diabetic NOD female mice received 500 NOD.scid islets that were transduced in vitro with 

1.5x10
10

 v.p. dsAAV8-MIP-IL2 or mock transduced.  Islet graft recipients were then treated 

with 600 ug of YTS177 and YTS105 or 2A3 on days 0, 2, and 4 post-graft implantation.  As 

expected, the onset of recurrent diabetes was markedly delayed in NOD recipients treated 

with YTS177 and YTS105 and receiving dsAAV8-MIP-IL2 transduced islets relative to the 

control group (e.g. NOD mice treated with 2A3 and receiving unmanipulated islets) (Figure 

2.6).  However, no significant difference in the time of recurrent diabetes onset was 

observed between the YTS177 and YTS105 treatment group versus the group of NOD mice 

receiving the combinatorial YTS177 and YTS105 and dsAAV8-MIP-IL2 therapy (Figure 2.6). 

Consistent with results from earlier islet graft experiments (Figure 2.2), the frequency of 

FoxP3
+
Treg was increased in rejected grafts from NOD recipients treated with YTS177 and 

YTS105 alone or receiving YTS177 and YTS105 plus AAV8-MIP-IL2 transduced islets relative 

to the control group (Figure 2.7A). However, the frequency of islet graft infiltrating 

FoxP3
+
Treg between the two respective treatment groups was not significantly different 

(Figure 2.7A). No significant difference in the frequency of IFNγ-secreting CD4
+
 and CD8

+
 T 

effectors (Figure 2.7B) was seen in the infiltrating grafts or draining RLN of the two 

respective groups. Furthermore, the ratio between effector T cells and FoxP3
+
Treg showed 

a trend towards an increase in 2A3 (isotype)-treated NOD recipients in comparison to the 

two treated groups, likely because isotype animals had a lower percentage of FoxP3
+
Treg in 

the grafts. (Figure 2.7C). These results demonstrate that despite the capacity of YTS177 and 
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YTS105 and ectopic expression of IL-2 by β cells to increase islet graft survival individually, 

the combination of the two approaches does not further enhance protection.  
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2.3 Discussion  

 

Lifelong immunosuppression is necessary to prevent islet graft rejection in T1D patients.  

Hence, there is an urgent need for immunotherapies that selectively block autoimmune 

(and allogeneic) recognition of islet grafts while allowing normal immune function. The ideal 

immunotherapy would selectively tolerize pathogenic effector T cells, and concomitantly 

enhance the β cell specific Treg pool. Since non-depleting YTS177 and YTS105 treatment 

prevents rejection of allogeneic grafts in an alloantigen-specific manner, we investigated 

whether this approach also induced T cell tolerance to syngeneic islet grafts in diabetic NOD 

female mice. YTS177 and YTS105 treatment resulted in a significant delay in autoimmune-

mediated rejection of islet grafts, which in turn correlated with an increased frequency of 

FoxP3
+
Treg found in the grafts relative to 2A3 treated recipients.   Additionally, transduction 

of islets with dsAAV8-MIP-IL2 alone delayed islet graft rejection. Surprisingly, the 

combination of dsAAV8-MIP-IL2 and YTS177 and YTS105 treatment failed to improve islet 

graft survival beyond what was observed for YTS177 and YTS105 alone.   

 Autoimmune-mediated destruction of the islet grafts was delayed by administration 

of either YTS177 or YTS105, and efficacy was not significantly improved by co-administering 

the αCD4 and αCD8 antibodies under the conditions employed (Figure 2.1). These results 

further implicate that similar to the autoimmune attack on endogenous β cells, both β cell-

specific CD4
+
 and CD8

+
 T cells are required for efficient destruction of islet grafts. 

Suppressing the diabetogenicity of one T cell subset alone is sufficient to effectively delay 

islet graft rejection with a similar efficacy seen when targeting both CD4
+
 and CD8

+
 subsets.  
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An increased frequency of FoxP3
+
Treg was detected in graft infiltrates at the time of 

rejection, but not at day 14 post-islet implantation in YTS177 and YTS105-treated NOD 

recipients (Figures 2.2, 2.3).  This observation suggests that while FoxP3
+
Treg may 

contribute to protection at later stages of graft infiltration, protection seen 14 days post-

islet graft implantation is likely independent of FoxP3
+
Treg.  Accordingly, early events in islet 

graft protection may be attributed to direct suppression of established effector and/or 

memory T cells by YTS177 and YTS105 binding. Numerous reports have shown that 

antibody-mediated CD4 and CD8 blockade induces a hypo-responsive phenotype in naïve T 

cells by interfering: i) with TCR-MHC interactions and/or ii) co-receptor molecule-mediated 

activation of the src kinase lck that is required for efficient T cell activation
49

. Notably, 

Phillips et al. demonstrated that effector CD4
+
 T cells are also suppressed upon YTS177 

treatment in vivo
49

. YTS177 binding was found to reduce proliferation and IFNγ production 

by the effector CD4
+
 T cells. In contrast to this study, we found that upon stimulation, the 

frequency of graft infiltrating IFNγ-secreting CD4
+
 and CD8

+
 T cells was similar between 

recipients treated with YTS177 and YTS105, and 2A3 by 14 days post-implantation (Figure 

2.3).  This data would suggest that the activity of effector T cells within the graft was 

minimally influenced by YTS177 and YTS105 binding. An important caveat with this 

interpretation, however, is that graft-infiltrating T cells were given a strong in vitro stimulus, 

namely PMA/ionomycin, to detect intracellular IFNγ. PMA/ionomycin stimulation may 

“over-ride” the tolerogenic effect of YTS177 and YTS105 binding. Consequently these results 

may not accurately reflect the in vivo status of graft-infiltrating T cells. In addition, CD8
+
 T 

cells may express IFNγ but still lack cytolytic activity, as other molecules and pathways 
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including Fas/FasL, perforin, and granzymes are involved in CD8
+
 T cell-mediated 

destruction of beta cells
50

.  This, in turn would be expected to delay β cell destruction in the 

islet grafts.  Early islet graft protection by YTS177 and YTS105 may also be due to a reduced 

efficiency in trafficking of β cell-specific effector and memory T cells into the graft. Studies 

have shown that the trafficking properties of T cells are altered after crosslinking of CD4 by 

antibody or natural ligands such as HIV gp120, in the absence of TCR crosslinking
51,52

. The 

latter is attributed to membrane reorganization of adhesion molecules and chemokine 

receptors, in addition to desensitization of chemokine receptor signaling. Although similar 

frequencies were observed, a reduced number of effector and memory T cells due to 

inefficient trafficking would be expected to delay islet graft destruction in YTS177 and 

YTS105 treated recipients. Unfortunately, an assessment of the number of islet graft-

infiltrating T cells has proven to be problematic. The number of T cells obtained from islet 

grafts has been highly variable among individual mice, in part due to the amount of grafted 

tissue that can be harvested. So why is the inhibitory effect of YTS177 and YTS105 

transient? Under the conditions used in our study, YTS177 and YTS105 binding of T cells 

persists in vivo for approximately 30 days. We propose that once YTS177 and YTS105 are 

cleared in vivo, the inhibitory effect of the antibodies is alleviated thereby permitting 

effector and memory CD4
+
 and CD8

+
 T cells to mediate islet graft destruction.  

Waldmann and others have shown that in various allograft models YTS177 

treatment results in an increase in alloantigen-specific FoxP3
+
Treg

33-35
.  In addition, in vitro 

experiments have shown that YTS177 binding to naïve conventional T cells in the presence 

of antigen and TGFβ1 significantly enhances up-regulation of FoxP3 expression
34

. Albeit 
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modest, an increased frequency of FoxP3
+
Treg was in fact observed in failed grafts of NOD 

recipients treated with YTS177 and YTS105 versus 2A3 (Figures 2.2B, 2.7A).  The increase in 

FoxP3
+
Treg was insufficient to mediate long-term protection, but may still contribute to the 

delay in islet graft rejection by regulating the expansion and/or activity of pathogenic T 

effectors in the graft. Accordingly, additional injections of YTS177 and YTS105 over time 

may “hold in check” the pool of pathogenic effector and memory T cells and permit 

induction and/or expansion of sufficient numbers of FoxP3
+
Treg needed to mediate long-

term islet graft survival. It is worthwhile to note that in the few NOD recipients remaining 

free of recurrent diabetes (Figure 2.1), increased FoxP3
+
Treg were detected in the grafts in 

these recipients, further suggesting a protective role for FoxP3
+
Treg. Our data also indicates 

that the graft itself is the critical site for the protective events induced by YTS177 and 

YTS105. Increased FoxP3
+
Treg were found in the islet graft but not the draining RLN in 

YTS177 and YTS105 treated NOD recipients (Figures 2.2B, 2.7A). Similarly, no difference in 

the frequency of IFNγ
+
 effector T cells was seen between the RLN draining the islet graft and 

the nondraining RLN, which reflects the T cell milieu under steady conditions (Figures 2.2, 

2.7).  The draining RLN would be expected to be a key site for activation, expansion and/or 

differentiation of effector T cells and FoxP3
+
Treg. Our results, however, suggest that the 

majority of islet infiltrating effector T cells and FoxP3
+
Treg are “recruited” from pools 

previously established during the autoimmune attack on endogenous β cells.    

Ectopic expression of IL-2 by β cells has the potential to create a microenvironment 

within the graft to promote FoxP3
+
Treg survival and expansion, and enhance graft survival. 

Expression of IL-2 limited to the islet graft would also minimize nonspecific activation of T 
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and natural killer cells for instance, typically associated with elevated systemic levels of IL-2. 

Islet graft survival was significantly increased following in vitro transduction of islets with 

dsAAV8-MIP-IL2 (Figure 2.5). Notably, serum levels of IL-2 were not increased in the NOD 

recipients (data not shown) indicating that ectopic IL-2 production was indeed limited to the 

islet graft site. Currently, it is not clear whether the level of IL-2 expressed by transduced β 

cells is optimal for effective graft protection in vivo. For instance, an increased dose of 

dsAAV8-MIP-IL2 and in turn elevated levels of ectopic IL-2 expression may be needed to 

expand the appropriate number of graft infiltrating FoxP3
+
Treg for efficient protection.  

Increased levels of IL-2 in the graft may also elicit efficient activated induced cell death 

(AICD) in islet graft infiltrating effector T cells. It is well established that IL-2 is a potent 

inducer of apoptosis in replicating T cells. A reduced effector T cell pool due to AICD would 

allow for fewer FoxP3
+
Treg to mediate efficient suppression and long-term islet graft 

survival. An alternative possibility is that the level of IL-2 produced by transduced β cells is 

too high and permits expansion of effector T cells that over time leads to islet graft 

destruction. This scenario is suggested by results obtained with islets transduced with 

dsAAV1-MIP-IL2. Islet graft survival was markedly reduced following transduction with the 

same dose of dsAAV1-MIP-IL2 versus dsAAV8-MIP-IL2 (Figure 2.5), despite a 5-fold increase 

in IL-2 secretion in vitro by dsAAV1-MIP-IL2-transduced islets. The rejected islet grafts 

transduced with dsAAV1-MIP-IL2 were infiltrated, ruling out the possibility that the level of 

ectopic IL-2 expression was cytotoxic to the β cells. For instance, β cells are highly sensitive 

to stress resulting from high levels of protein expression and/or inappropriate protein 

folding. Additionally, in dsAAV1-MIP-IL-2-treated mice, significantly higher percentages of 
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CD4
+
 and CD8

+
 T cells secreted IFNγ when stimulated in vitro as compared to both isotype 

controls and dsAAV8-MIP-IL-2 (data not shown). This could be explained by higher levels of 

IL-2 causing the preferential expansion of effector T cells.  Alternatively, AAV serotype 1 is 

more immunogenic than AAV serotype 8 due to its ability to transduce dendritic cells, which 

may play a role in mounting an immune response to the virus
53

.  Constitutive expression of 

the high affinity IL-2 receptor provides FoxP3
+
Treg an advantage over naïve and effector T 

cells when IL-2 levels are limiting. Therefore reduced IL-2 expression by β cells may in fact 

favor FoxP3
+
Treg expansion and survival in the islet grafts. Further work is required to 

determine the optimal dose of dsAAV-MIP-IL2 for transduction in order to achieve the 

appropriate expansion of FoxP3
+
Treg and reduction of effector T cells in the graft site.  

Surprisingly, YTS177 and YTS105 treatment coupled with islet grafts transduced with 

dsAAV8-MIP-IL2 failed to significantly enhance islet graft survival relative to that seen with 

YTS177 and YTS105 injection alone. This result may be due to the effects of YTS177 binding 

on FoxP3
+
Treg. Preliminary data suggests that YTS177 binding inhibits in vivo proliferation 

of FoxP3
+
Treg elicited by ectopic IL-2 expression by endogenous β cells (Johnson and Tisch, 

unpublished data).  Therefore, similar to naïve T cells, antibody binding of CD4 may induce a 

hypo-responsive phenotype in FoxP3
+
Treg, and therefore “neutralize” the effect of ectopic 

IL-2 expression on FoxP3
+
Treg in the graft site. This scenario may also explain why the 

frequency of FoxP3
+
Treg was reduced in islet grafts of YTS177 and YTS105-treated NOD 

recipients 14 days post-implantation (Figure 2.3). This finding also suggests that molecules 

targeting cell types other than T cells (e.g. APC) may prove to be more effective in 

synergizing with YTS177 and YTS105.  
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In conclusion, we have shown that YTS177 and YTS105 treatment and AAV8-MIP-IL-2 

transduction of β cells in vitro extend protection of syngeneic islet grafts in diabetic NOD 

mice.  However, neither approach provided long-term protection, either alone or in 

combination. Nevertheless, further examination of mechanisms associated with protection 

induced by the respective approaches and better definition of treatment parameters may 

lead to improved efficacy required to effectively block autoimmune- and possibly 

allogeneic-mediated destruction of islet grafts.   
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2.4 Materials and Methods 

Mice 

NOD/LtJ and NOD.CB17.Prkdcscid/J (NOD.scid) mice were bred and housed under 

pathogen-free conditions in an American Association for Laboratory-accredited animal 

facility. NOD mice were considered to be diabetic after two successive days of >250mg/dl 

blood glucose as measured by a Freestyle Lite blood glucose monitor and strips (Abbott 

Diabetes Care Inc.). All procedures were reviewed and approved by the University of North 

Carolina Institutional Animal Care and Use Committee.   

 

Flow cytometry and Abs 

Single cell suspensions were prepared from the RLN and islet grafts, and filtered with a 70-

mM strainer (Fisher Scientific).  PBL to examine peripheral FoxP3 T cell levels after IL-2 

grafts were acquired via submandibular puncture with lancets (Golden Rod).  PBL were RBC-

lysed with TAC buffer.  Total cells were stained with a panel of fluorochrome-conjugated 

monoclonal antibodies including: αCD3 (2C11), αCD4 (L3T4), αCD8 (Ly-2), αCD25 (PC61.5), 

αCD44 (IM7), αCD62L (MEL14), and αFoxP3 (FJK.16 kit) (eBioscience).   Data were acquired 

on a Cyan flow cytometer (DakoCytomation), and analyzed using Summit software 

(DakoCytomation).  

 

Intracellular cytokine staining was performed on single cell suspensions of RLN and islet 

grafts.  Briefly, lymphocytes were stimulated with 10 ng/mL PMA (Sigma-Aldrich) and 150 

ng/mL ionomycin (Sigma-Aldrich) in complete RPMI 1640 medium for 5 h at 37
0
C.  10 
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mg/mL of Brefeldin A (Sigma-Aldrich) was also added for the 5 hour incubation. Cells were 

stained for surface molecules, fixed and permeabilized with cytokfix/cytoperm reagents (BD 

Biosciences), and stained for intracellular IFNγ (XMG1.2) (eBioscience). 

 

Pancreatic islet isolation and islet culture 

Pancreases were perfused with 0.2mg/ml Collagenase P (Roche) and digested for 20 

minutes at 37
0
C.  Islets were purified via Ficoll (Sigma-Aldrich) gradient and handpicked.  For 

transplantation, islets were washed twice with PBS, and collected in Silastic laboratory 

tubing (Dow Corning) for implantation.  For culture, islets were washed twice with PBS in an 

eppendorf tube.  Excess liquid was removed, and 1.5x10
10 

v.p. in PBS were added directly to 

the islets.  After 5 minutes, 175ul RPMI  (RPMI 1640 medium (Gibco) containing 10% heat-

inactivated FBS, 100 U/mL penicillin/streptomycin (Gibco), and 50 mM 2-ME (Sigma-

Aldrich)) was added to the islets.  Islets were cultured at 37
0
C, and RPMI was added in a 

stepwise fashion – 250ul added after 30 min, and 500 ul added at 1 hour.  Islets were 

cultured for a total of 2 hours.  Islets were then transferred to an eppendorf tube using a 

P1000 pipette tip, and washed gently twice with PBS.  For further culture, islets were added 

to low-cluster culture plates.  For transplantation, islets were then gently pulled into 

laboratory tubing as above.    

 

Islet transplantation 

Diabetic NOD female mice received 5 units of insulin daily prior to transplantation.  Five 

hundred syngeneic (NOD.scid) islets were transplanted under the renal capsule of the left 
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kidney.  Blood glucose values were monitored daily, biweekly, or weekly post-

transplantation.   

 

YTS 105.18 (αCD8) and YTS 177.9 (αCD4) purification 

YTS105.18 and YTS177.9 were produced as ascites in nude mice.  The antibody was then 

purified by negative selection using Melon Gel IgG purification kit (ThermoScientific).  

Antibody yield was quantified using an αrat IgG ELISA. A rat IgG2a antibody (2A3, BioXCell) 

was used as an isotype control. 

 

Immunotherapy in NOD islet graft recipients 

Mice were given intraperitonael injections of 600 ug purified YTS105 and 600 ug purified 

YTS177 on day 0, 2, and 4 following transplantation. Transplants were performed only after 

two successive blood glucose readings of over 500 ug/dl were observed in the diabetic 

mice.  This typically occurred over two weeks after the onset of diabetes. Mice were 

maintained on 5 units of insulin daily prior to transplantation.   

 

AAV vector packaging 

To package dsAAV vector, HEK 293 cells were transfected via calcium phosphate with 

adeno-helper-encoding plasmid DNA (pXX6-80), AAV8 or 1-encoding plasmid DNA (pXR-1), 

and the transgene encoding plasmid DNA. Nuclear fractions were harvested and virus 
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purified with an iodixonal (Sigma-Aldrich) gradient. The virus-containing fractions and titer 

were determined by Southern dot blot.  

 

ELISA 

Serum was collected, diluted 1:2 in RPMI with 10% FBS, and levels of IL-2 at varying times 

post-transplantation were measured. The anti–IL-2 Ab set (JES6-1 and JES6-5; eBioscience) 

was used at 2 μg/ml on a high-binding ELISA plate (Costar). 

 

Statistical analyses 

Data were analyzed using Prism 4.0 (GraphPad, San Diego, CA). Where appropriate, data 

were evaluated via Student’s paired t test, one way ANOVA, or two way ANOVA. The Log-

rank (Mantel-Cox) Test was used to determine the significance in difference in diabetes 

incidence between treated mice groups. In all analyses, the significance level was 0.05. 
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Figure 2.1. Nondepleting YTS177 and YTS105 protect syngeneic islet grafts  

Diabetic NOD mice were transplanted with 500 NOD.scid islets on day 0. Mice were treated 

with 600ug of YTS177, YTS105, and isotype antibody (2A3) alone  or 600ug of both YTS177 

and YTS105 on days 0, 2, and 4 post-implantation. *p<0.0005, **p<0.0001, statistical 

significance was determined by Log-rank (Mantel-Cox) Test versus isotype control for all 

groups.  
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Figure 2.2. Analysis of T cells from YTS177 and YTS105- and 2A3-treated NOD recipients 

following graft failure (long-term).  

Tissues were analyzed from islet grafted NOD recipients treated with YTS177 and YTS105 

(black circles) and 2A3 (open squares). A.) A representative immunofluorescence image of a 

rejected YTS177 and YTS105-treated graft at 30 days post-implantation. (Blue – insulin, 

green – Thy1.2, and red – CD4). B.) FoxP3
+
Treg frequency was determined by gating on live 

Thy1.2
+
, CD4

+
, and FoxP3

+
 cells via flow cytometry. C.)  The frequency of CD4

+
 and CD8

+
 T 

cells staining for IFNγ was determined in the the respective tissues following PMA and 

ionomycin stimulation.  D.)  The ratio of effector T cells to FoxP3
+
Treg was determined by 

dividing the percent of IFNγ
+
CD8

+
Thy1.2

+
 or  IFNγ

+
CD4

+
Thy1.2

+
 by the percent of 

FoxP3
+
CD4

+
Thy1.2

+
; *p<0.05, statistical significance was determine using unpaired two-way 

ANOVA.  
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Figure 2.3. Analysis of T cells in YTS177 and YTS105- and 2A3-treated NOD recipients at 

day 14 (short-term) post-islet graft implantation.  

Tissues were harvested on day 14-post islet graft implantation from NOD recipients treated 

with YTS177 and YTS105 (black circles) and 2A3 (open squares), and analyzed via flow 

cytometry.  A.) FoxP3
+
Treg frequency was determined by gating on live Thy1.2

+
, CD4

+
, and 

FoxP3
+
 cells. B.) The frequency of CD4

+
 and CD8

+
 T cells staining for IFNγ was determined in 

the the respective tissues following PMA and ionomycin stimulation. C.) The ratio of 

effector T cells to FoxP3
+
Treg was determined by dividing the percent of IFNγ

+
CD8

+
Thy1.2

+
 

or  IFNγ
+
CD4

+
Thy1.2

+
 by the percent of FoxP3

+
CD4

+
Thy1.2

+
; *p<0.01, statistical significance 

was determine using two way ANOVA.  
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Figure 2.4. AAV vector islet transduction in vitro. 

For in vitro transduction, isolated islets were cultured and transduced with dsAAV. A.) Islets 

were transduced in vitro with dsAAV8-MIP-GFP at 1x10
11

 v.p. per 100 islets, and GFP 

expression demonstrated by confocal microscopy; scale bar 200um. B.) Islets transduced 

with dsAAV-MIP-GFP day 4 post-transduction; scale bar 100um (top) and 50um (bottom). C. 

Islets were cultured with dsAAV-MIP-GFP for varying times, washed with PBS, and cultured 

for 4 days total. GFP expression is shown by confocal microscopy  with scale bar 200um. D. 

GFP expression of islets shown in (C) was quantified by image J; *p<0.005, **p<0.0001,  

statistical significance was determined with unpaired Student’s t test relative to the 1hr 

time-point.  E.) Islets were transduced in vitro with dsAAV8-MIP-IL2,  and supernatant IL-2 

levels on day 7 post-transduction measured by ELISA; *p<0.05, **p<0.01 ***p<0.001,  

statistical significance was determined using unpaired Student’s t test. F.) NOD.scid islets 

were transduced with dsAAV8-MIP-IL2 or dsAAV8-MIP-GFP for 2 hours, and then implanted 

under the kidney capsule of STZ-diabetic NOD.scid recipients. Grafts were harvested at day 

10, cultured, and supernatants measured for IL-2 production. 
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Figure 2.5. Transduction of islets with dsAAV8-MIP-IL2 extends graft survival.  NOD.scid 

islets were isolated and cultured with 1.5x10
10

 v.p. of either dsAAV1- or dsAAV8-MIP-IL2 for 

2 hours before transplantation, or left untreated. Diabetic NOD female mice were then 

engrafted with 500 islets at day 0. **p<0.005, AAV8-MIP-IL2 versus untreated and AAV1-

MIP-IL2-transduced islets; statistical significance was determined by Log-rank (Mantel-Cox) 

Test.  
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Figure 2.6. dsAAV8-MIP-IL2 plus YTS177 and YTS105 treatment does not significantly 

extend islet graft protection compared to YTS177 and YTS105 treatment alone.  

Diabetic NOD female mice were transplanted with either 500 non-transduced or dsAAV8-

MIP-IL2 transduced (1.5x10
10

 v.p.) NOD.scid islets on day 0. Some mice received 600ug of 

either 2A3 or 600ug both YTS177 and YTS105 on days 0, 2, and 4 post-graft. *p<0.005, 

**p<0.001 versus isotype antibody control; statistical significance was determined by Log-

rank (Mantel-Cox) Test.  
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Figure 2.7. Analysis of T cells in YTS177 and YTS105 plus dsAAV8-MIP-IL2 treated NOD 

recipients following graft rejection.  

Tissues were analyzed via flow cytometry following graft rejection in NOD recipients treated 

with YTS177 and YTS105 (black circles), 2A3 (open squares), and YTS177 and YTS105 + 

dsAAV8-MIP-IL2 mice (black triangles).  A.) FoxP3
+
Treg frequency was determined by gating 

on live Thy1.2
+
, CD4

+
, and FoxP3

+
. B.) The frequency of CD4

+
 and CD8

+
 T cells staining for 

IFNγ was determined in the the respective tissues following PMA and ionomycin 

stimulation. C.) The ratio of effector T cells to FoxP3
+
Treg was determined by dividing the 

percent of IFNγ
+
CD8

+
Thy1.2

+
 or  IFNγ

+
CD4

+
Thy1.2

+
 by the percent of FoxP3

+
CD4

+
Thy1.2

+
. 

*p<0.01, statistical significance was determine using two way ANOVA.  
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T CELL RECEPTOR VARIABLE β CHAIN DIVERSITY IN RECURRENT 

 AUTOIMMUNE DIABETES
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3.1 Introduction 

Type 1 diabetes (T1D) is an autoimmune disease characterized by the T cell-mediated 

destruction of insulin-producing β cells within the pancreatic islets.  Currently, islet or 

pancreas transplantation provides the only “cure” for T1D. However, the use of this 

procedure is limited due to both allo- and auto-reactivity against the graft.  The T cell 

receptor (TCR) repertoire involved in recurrent autoimmunity is at present poorly defined. 

Understanding the repertoire and specificities of the T cells involved in the recurrent 

autoimmune response may aid in the development of therapies to prevent islet graft 

rejection.  Thus, the TCR variable β (Vβ) chain repertoires in rejecting syngeneic islet grafts 

in diabetic NOD mice were assessed.  In most NOD recipients, the effector/memory CD8
+
 T 

cell repertoire in the islet graft showed decreased entropy, and was dominated by one to 

four TCR Vβ chains.  However, specific TCR Vβ chain usage varied markedly from recipient to 

recipient. In contrast, the effector/memory CD4
+
 T cell repertoire in the islet graft was more 

diverse, though strikingly, all NOD recipients showed an increase in the percentage of TCR 

Vβ12-bearing T cells in the islet graft and pancreas.  Importantly, these T cells were shown 

to be proliferating preferentially in the islet graft and pancreas.  Interestingly, the naïve T 

cell repertoire in all organs was similar, even in the pancreas and islet grafts.  Additionally, 

the TCR repertoire of effector/memory T cells infiltrating the islet graft exhibited greater 

similarity to the repertoire found in the pancreas than that found in the draining renal 

lymph node, pancreatic lymph node, or spleen.  This suggests that the same specificities of 

effector/memory T cells drive both initial and recurrent autoimmune responses in individual 

recipient basis.  
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Type 1 Diabetes (T1D) is an autoimmune disease mediated by T cells specific for the insulin-

producing β cells present in the islets of Langerhan’s of the pancreas
1
. In humans and the 

NOD mouse, a model for T1D, autoimmunity is typically viewed as a chronic inflammatory 

response leading to gradual β cell destruction. Once 80-90% of β cell mass has been 

destroyed, hyperglycemic blood levels are achieved and overt diabetes is established.  In 

order to replace β cells and restore euglycemia, islet transplants can be performed. In the 

clinic, this procedure is limited by several factors, including both allo- and auto-reactivity 

against the transplanted tissue
2-5

.  

 

It is well established that both autoreactive CD4
+
 and CD8

+
 T cells play essential roles in 

driving β cell destruction in T1D
6-11

.  Concerted efforts have been made to identify the β cell 

autoantigens and corresponding epitopes targeted by T cells.  CD4
+
 T cells responsive to 

antigens including insulin B chain, proinsulin, glutamic acid decarboxylase 65 (GAD65), the 

protein tyrosine phosphatase IA-2, and heat shock protein 60 (hsp60) have been found in 

NOD mice (reviewed in 
12-14

).  Important β cell autoantigens recognized by CD8
+
 T cells 

include the insulin B chain and islet-specific glucose-6-phosphatase catalytic subunit-related 

protein (IGRP206-214).  CD8
+
 T cells specific for IGRP206-214 have been observed in islets of 

young, prediabetic, and diabetic NOD mice
12-16

.   

 

IGRP206-214-specific CD8
+
 T cells play a role in recurrent autoimmunity as well.  Wong et al. 

determined that at day 7 post-implantation of a syngeneic islet graft, ~25% of graft-

infiltrating CD8
+
 T cells were IGRP206-214-specific, though this number decreased to ~5% by 
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day 13
15

.  Graft rejection was delayed by depleting IGRP206-214-specific CD8
+
 T cells, further 

highlighting the importance of this antigen in recurrent autoimmunity in NOD mice
15

. 

Notably, the rapid kinetics of syngeneic islet graft rejection, generally seen within 10-14 

days post-implantation, suggests that pre-existing IGRP206-214-specific memory T cells are 

activated, and contribute to destruction of the implanted β cells.  While this study indicated 

a key role for IGRP206-214-specific CD8
+
 T cells in graft destruction, the identity of other β cell 

autoantigens mediating the rejection process remains ill-defined.  

 

Since relatively few β cell autoantigens have been identified, T cell receptor (TCR) variable 

(V)α and Vβ chain usage has been used to gain insight into the overall repertoire of islet-

infiltrating T cells. The TCR is a heterodimer consisting of α and β chains, which have 

constant (C) and variable (V) regions. The V region is further composed of variable (Vβ), 

diversity (Dβ), and joining (Jβ) segments. At least 31 Vβ genes have been identified
17

.  

Restricted TCR repertoires have been observed in several autoimmune diseases, including 

experimental allergic encephalomyelitis (EAE) and collagen-induced arthritis
18-20

.  In these 

models, pathogenic T cells preferentially expressed TCR Vβ8.2, and disease was ameliorated 

following treatment with an αTCR Vβ8.2 antibody
18-20

. Though most studies of pre-diabetic 

NOD mice showed no significant TCR repertoire skewing
21-23

, one study found that TCR 

Vβ12 expression was increased 2-fold in the pancreas compared to spleen
24

, indicating a 

possible role for this TCR Vβ chain. However, many of these studies used bulk populations 

of T cells and did not distinguish between CD4
+
 and CD8

+
 T cells or naïve and 
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effector/memory (eff/mem) T cells.  Therefore, possible selective TCR usage by these 

respective T cell subsets would be obscured.   

 

Understanding the basis for recurrent autoimmunity, in particularly the TCR repertoire of 

pathogenic T effectors, may provide important insight for the development of rational 

strategies to establish islet graft tolerance. With this in mind, TCR Vβ usage by naïve and 

eff/mem CD4
+ 

and CD8
+
 T cells in day 10 syngeneic islet grafts was studied in order to better 

understand the dynamics and specificities of recurrent autoimmunity.  
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3.2 Results   

TCR Vβ repertoires of islet graft-infiltrating T cells can be evaluated by a novel flow 

cytometry technique. 

Typically, the TCR Vβ repertoire of islet-infiltrating T cells has been studied by RT-PCR from 

RNA isolated from bulk T cell preparations
21-23

 or flow cytometric-sorted MHC tetramer-

binding T cells
15,16

.  The former approach fails to address potential TCR repertoire 

differences among distinct T cell subsets, whereas the latter strategy provides information 

only for a given set of clonotypes. Accordingly, we developed a flow cytometry technique 

allowing characterization of the TCR Vβ repertoire by multiple T cell subsets. Flow 

cytometry has the advantage of identifying TCR Vβ usage by several T cell subsets so that 

broader insight can be gained into how the TCR repertoire evolves during the autoimmune 

process. In addition the strategy permits analyses of relatively few T cells, which is a key 

issue when examining the small numbers of islet graft-infiltrating T cells (typically between 

20,000 and 100,000 T cells).  

 

Cells were stained with αCD90.2 (Thy1.2) to identify T cells, and αCD8 and αCD4 to identify 

cytotoxic and helper T cells, respectively.  Further, cells were stained with antibodies 

specific for CD44, a marker for eff/mem T cells, and CD62L, a marker for naïve T cells; CD44
hi

 

T cells were defined as eff/mem, whereas CD62L
hi

 T cells were defined as naïve T cells.  

Although CD44 did not permit distinction between effector versus memory T cells, activated 

versus naïve T cells, however, could be readily distinguished. Three different Vβ staining 

panels were used to determine the T cell TCR Vβ repertoire. Using this approach up to 6 



87 
 

different TCR Vβ chains could be detected per well in addition to the markers required to 

define T cell subsets (Figure 3.1A, B). This minimized sample division, and provided enough 

cells for the analysis to have statistical power.  A schematic representation of the TCR Vβ 

flow cytometric data is provided in Figure 3.1B. Here, TCR Vβ2-expressing T cells would stain 

positive for FITC-only, TCR Vβ4-expressing T cells would stain positive for both FITC and PE, 

and TCR Vβ13-expressing T cells would stain positive for PE alone (Figure 3.1A,B). Adding a 

biotinylated antibody to incorporate a third color (e.g. streptavidin PECy7 (SAV-PECy7)) 

permits identification of three additional TCR Vβ chains.   For instance, TCR Vβ5.1/2 -

expressing T cells would stain positive for SAV-PECy7 only, TCR Vβ11-expressing T cells 

would stain positive for both SAV-PECy7 and PE, and TCR Vβ8.1/2-expressing T cells would 

stain positive for SAV-PECy7 and FITC (Figure 3.1A,B).  In this way, 6 TCR Vβ chains can be 

examined using only three colors.  A representative flow cytometric plot is shown in Figure 

3.1C. A similar approach has been used to characterize T cells in human peripheral blood
25

, 

but application of this technique to characterize TCR Vβ repertoires within islet grafts is 

novel.  

  

Eff/mem CD8
+
 and CD4

+
 T cells infiltrating an islet graft exhibit restricted TCR Vβ chain 

usage.  

TCR Vβ usage by T cell subsets in the islet graft, pancreas, renal lymph node (RLN), 

pancreatic lymph node (PLN), and spleen was studied in individual NOD recipients. Diabetic 

female NOD mice (blood glucose levels >250 mg/ml) were implanted with 500 syngeneic 

NOD.scid islets under the kidney capsule. Function of an implanted islet graft was confirmed 
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upon return of the NOD recipient to normoglycemia. Ten days post-implantation, naïve and 

eff/mem CD4
+
 and CD8

+
 T cells were examined via flow cytometry.  The composition of the 

TCR Vβ repertoire of naïve CD4
+
 and CD8

+
 T cells was essentially identical between the 

respective organs. Interestingly, naïve T cells present in the islet graft, which accounted for 

between 10%-50% of T cells, exhibited similar TCR Vβ usage to naïve T cells seen in the 

periphery e.g. spleen (Figure 3.2A, B).  

 

In the pool of eff/mem versus naïve CD4
+
 T cells, a trend towards more selective TCR Vβ 

usage was observed, particularly in the pancreas and islet grafts of recipient animals (Figure 

3.2A).  Strikingly, TCR Vβ12 usage by eff/mem CD4
+
 T cells was markedly increased in the 

islet graft and pancreas compared to naïve CD4
+
 T cells in those tissues, in addition to 

eff/mem CD4
+
 T cells found in the spleen, PLN and RLN (Figure 3.2A).  In several NOD 

recipients >15% of eff/mem CD4
+
 T cells expressed TCR Vβ12 (Figure 3.2 A).  This skewing 

towards TCR Vβ12 usage by eff/mem CD4
+
 T cells in the islet graft (and less so in the 

pancreas) was more evident when TCR Vβ usage within the respective tissues was 

normalized to the TCR repertoire used by naïve CD4
+
 T cells residing in the spleen (Figure 

3.3A). Importantly, TCR Vβ usage was statistically higher in the graft and pancreas than 

spleen and PLN (Figure 3.3C).  Strikingly, this trend was also mirrored in the RLN, though to 

a lesser degree (Figure 3.3C).  This suggests T cell proliferation in the RLN prior to migration 

into the graft.   
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TCR Vβ usage among eff/mem CD8
+
 T cells was similar in the spleen, RLN, and PLN (Figure 

3.2B and 3.3B). However, preferential TCR Vβ usage was detected in both the islet graft and 

pancreas of NOD recipients (Figure 3.2B and Figure 3.3B). In most NOD recipient mice, the 

eff/mem CD8
+
 T cells infiltrating the islet graft preferentially used one to four TCR Vβ chains 

(Figure 3.2B) Interestingly, preferential TCR Vβ usage varied markedly between the islet 

grafts of individual recipients (Figure 3.2B,C). For example, the islet graft TCR Vβ repertoire 

of mouse #1 was dominated by TCR Vβ8.1/2 (29%), Vβ10 (29%), and Vβ6 (8%), whereas the 

TCR Vβ repertoire of mouse #2 was largely composed of TCR Vβ4 (21%), Vβ5.1/2 (19%), Vβ2 

(11%), and Vβ8.1/2 (10%) (Figures 3.2C).  Generally, the dominant TCR Vβ chains found in 

the graft-infiltrating repertoire were also prominent in the pancreas (Figure 3.2B, C); the 

TCR Vβ repertoire of mouse #1 was dominated by TCR Vβ8.1/2 (25%), Vβ10 (9%), and Vβ6 

(19%). On the other hand, the TCR Vβ repertoire of mouse #2 exhibited preferential usage 

of TCR Vβ4 (24%), TCR Vβ5.1/2 (14%), and TCR Vβ8.1/8.2(14%), though not TCR Vβ2 (3%) 

(Figure 3.2C).  Relative to eff/mem CD4
+ 

T cells, TCR usage by eff/mem CD8
+
 T cells in the 

islet graft and pancreas was overall more diverse and variable (Figure 3.2 B,C). This data 

suggests that preferential TCR Vβ usage is detected for eff/mem T cells found infiltrating an 

islet graft relative to other tissues and to naïve T cells. 

  

The TCR Vβ repertoire of eff/mem CD8
+
 T cells is less diverse in the islet graft compared to 

the RLN, PLN, and spleen.  

To more accurately assess the level of diversity among TCR Vβ chains used by naïve and 

eff/mem T cells in the respective tissues, Shannon entropy was calculated. The posterior 
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distribution of the Shannon entropy in a given population represents the abundance and 

diversity for a given TCR Vβ chain
16

.  Hence, if a pool of T cells express few (e.g. less diverse) 

TCR Vβ chains, the entropy will correspondingly be lower: more dominance corresponds to 

less diversity. As expected, the entropy of the naïve CD4
+
 and CD8

+
 T cells was nearly 

identical for all tissues (Figure 3.4A, C), indicating a similar level of TCR Vβ diversity. In 

contrast, the entropy for TCR Vβ chains of eff/mem CD8
+ 

T cells was reduced in the 

pancreas, and significantly lower in the islet graft compared to spleen, RLN and PLN (Figure 

3.4D). On the other hand, entropy of TCR Vβ chains used by eff/mem CD4
+ 

T cells was 

similar in all tissues, although a slight trend towards reduced entropy in islet grafts was 

detected (Figure 3.4B). This data demonstrates that the level of TCR Vβ chain diversity is 

significantly reduced in the islet grafts and to a lesser extent the pancreas for eff/mem CD8
+
 

T cells.  

  

The TCR Vβ chain repertoires of the islet graft and pancreas are similar. 

Within individual NOD recipients, TCR Vβ usage by eff/mem CD4
+
 and CD8

+
 T cells appeared 

to be similar between the islet graft and pancreas (Figure 3.2).  The Kullback-Liebler 

divergence test was employed to directly determine the level of similarity of TCR Vβ chain 

usage among naïve and eff/mem CD4
+
 and CD8

+
 T cells in the respective tissues.  This test 

measures the variance between two populations, and allows the comparison of divergence.  

Hence, if two populations are similar, their divergence will be low.  As expected, TCR Vβ 

usage among naïve T cells was similar among the respective tissues, with a divergence index 

of approximately 0.0 (Figure 3.5A). Notably, TCR Vβ usage for eff/mem CD4
+
 and CD8

+
 T 
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cells was also more similar between the islet graft and pancreas. For instance, the average 

level of divergence detected for eff/mem CD8
+
 T cells in the islet graft versus pancreas 

(0.109+.048) was reduced relative to that seen when islet grafts were compared to the 

spleen (0.181+.03), PLN (0.215+.028), and significantly reduced when compared to RLN 

(0.243+.026) (Figure 3.5D).  Similar results were obtained for eff/mem CD4
+
 T cells found in 

the islet graft, where the islet-pancreas repertoire divergence was significantly less than the 

islet-spleen or islet-PLN divergence (Figure 3.5B). Together these findings indicate that a 

strong trend towards islet graft versus pancreas repertoire similarity is apparent in eff/mem 

CD4
+
 and CD8

+
 T cells.  These results suggest that the specificity of T cells that mediate islet 

destruction in the initial response in the endogenous pancreas are the same as those that 

mediate the recurrent response seen in the islet graft.   

  

Islet graft infiltrating eff/mem CD4
+
 and CD8

+
 T cells are proliferating. 

Preferential usage of specific TCR Vβ chains by eff/mem T cells could be explained by 

selective expansion/proliferation within the islet graft. Accordingly, to determine if the 

dominant TCR Vβ chain populations were actively expanding, Ki67, a marker for ongoing 

cellular division, was examined via flow cytometry.  An increased frequency of islet graft 

infiltrating eff/mem CD4
+
 and CD8

+
 T cells expressing prevalent TCR Vβs were Ki67-positive 

(Figure 3.6A-D).  Strikingly, TCR Vβ12-bearing CD4
+
 T cells in the islet graft and pancreas 

were proliferating in all graft recipients examined (Figure3.6 A, B). The TCR Vβ12 population 

in the graft proliferated significantly more than the populations in the spleen (p<0.01) and 

PLN (p<0.001).  Additionally, TCR Vβ12 population in the pancreas proliferated significantly 
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more than the population in the PLN (p<0.05).  Likely due to the variability observed in 

proliferation and to the low number of mice used, no significance was observed between 

the RLN and PLN or spleen, though there was a trend of slightly higher proliferation in the 

RLN. Together these results demonstrate that dominant TCR Vβ usage corresponds with 

eff/mem T cells actively proliferating within the islet grafts. 

  

A similar frequency of IGRP206-214-specific CD8
+
 T cells is detected in the islet graft and 

pancreas of individual NOD recipients.   

Studies by our group and others
15,16

 have shown that up to 85% of IGRP206-214-specific CD8
+
 

T cells use TCR Vβ8.1/2. In view of the relatively high prevalence of TCR Vβ8.1/2 usage by 

eff/mem CD8
+
 T cells infiltrating an islet graft and pancreas (Figure 3.2B), the frequency of 

IGRP-specific eff/mem CD8
+
 T cells within these tissues was measured in 6 NOD graft 

recipients using IGRP206-214-H2K
d
 tetramers. Interestingly, for a given NOD recipient similar 

frequencies of IGRP206-214-specific eff/mem CD8
+
 T cells were detected in the islet graft and 

pancreas (Figure 3.7A). For example, in one NOD recipient, IGRP206-214-specific CD8
+
 T cells 

made up  ~26% and 20% of the eff/mem CD8
+
 T cells infiltrating the islet graft, and 

pancreas, respectively (Figure 3.7A).  Furthermore,  >85% of IGRP206-214-specific eff/mem 

CD8
+
 T cells in the islet graft and pancreas expressed TCR Vβ8.1/2 (Figure 3.7B).   These 

results demonstrate that similar β cell-specific eff/mem CD8
+
 T cells target the islet graft 

and pancreas in a given NOD recipient.  
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3.3 Discussion 

In order to develop effective immunotherapies to block autoimmune-mediated islet graft 

destruction, the nature of the recurrent autoimmune response needs to be better defined.  

With this in mind, a multi-parameter flow cytometry method was established and applied to 

examine the TCR Vβ repertoires found in the islet graft, pancreas and respective draining 

lymph nodes in diabetic NOD recipients.  This approach allows for definition of TCR Vβ chain 

usage by distinct T cell lineages (e.g. CD4
+
, CD8

+
) varying in activation and proliferative 

status from multiple tissues. Resolution of TCR Vβ usage by T cells under these different 

parameters has provided a more accurate account of events driving recurrent 

autoimmunity.  For instance, the surprisingly high frequency of naïve T cells infiltrating an 

islet graft (up to 50%) and other tissues would clearly affect the interpretation of the 

results, if T cells were studied independent of activation status. Selective analysis of 

eff/mem T cells provides insight into TCR Vβ usage by clonotypes directly mediating β cell 

destruction. Three key observations were made in this study. First, eff/mem T cells 

infiltrating an islet graft exhibit skewed TCR Vβ usage. Secondly, TCR Vβ usage by islet graft 

infiltrating eff/mem CD8
+
 versus CD4

+
 T cells is more diverse and variable among NOD 

recipients. Finally, similar TCR Vβ usage is seen by eff/mem T cells found infiltrating the islet 

graft and pancreas of a given NOD recipient.  

 

The majority of eff/mem CD8
+ 

T cells infiltrating an islet graft typically expressed one of 1 to 

4 dominant TCR Vβ chains for given NOD recipient (Figure 3.2B).  Accordingly, the repertoire 

of eff/mem CD8
+
 T cells infiltrating the islet graft exhibited reduced entropy (diversity) 
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compared to eff/mem CD8
+
 T cells residing in the RLN, PLN and spleen, again attributed to 

the dominance of few TCR Vβ chains (Figure 3.4D).  Notably, TCR Vβ usage by islet 

infiltrating eff/mem CD8
+
 T cells varied markedly among the recipients (Figure 3.2B, C, 

3.3B).   TCR Vβ8.1/2 was expressed prominently by islet infiltrating eff/mem CD8
+
 T cells in a 

number of NOD recipients (Figure 3.2B, 3.3B).  However, several other TCR Vβ chains were 

highly expressed by islet graft eff/mem CD8
+
 T cells, including TCR Vβ2 (mouse 12, 19%), 

TCR Vβ4 (mouse 2, 21.4%), TCR Vβ5 ( mouse 2, 19.5%), TCR Vβ6 (mouse 3, 20.7%), TCR 

Vβ10 (mice 1 and 10, 29.3 and 26.9%), TCR Vβ1 (mouse 8, 25.16%), and TCR Vβ13 (mouse 4, 

26.1%). These findings indicate that a broad TCR repertoire is utilized by eff/mem CD8
+
 T 

cells to mediate recurrent autoimmunity, but in a given recipient extensive clonal selection 

occurs within the islet graft.  Usage of particular TCR Vβ chains may reflect increased TCR 

affinity for the corresponding peptide-MHC complex (pMHC), and/or an increased 

frequency of the respective pMHC found within the islet graft. Interestingly, a high 

frequency of eff/mem CD8
+
 T cells infiltrating an islet graft were found to be actively 

proliferating based on Ki67-staining, arguing for clonal expansion of those T cells.  

Preliminary data shows that the TCR Vβ repertoire of eff/mem CD8
+ 

T cells infiltrating an 

islet graft is more diverse and less skewed at day 5 versus 10 post-implantation, further 

indicating clonal selection ongoing in the islet graft.  

 

Interestingly, TCR Vβ usage by eff/mem CD4
+
 versus CD8

+
 T cells found in islet grafts and the 

pancreas was less skewed (Figure 3.2A, C, 3.3A), reflected by a minimal (if any) decrease in 

entropy compared to other tissues (Figure 3.4B).  Strikingly, however, TCR Vβ12 usage was 
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markedly increased by eff/mem CD4
+
 T cells infiltrating the islet graft (Figure 3.3A, C) and 

less so in the pancreas (Figure 3.3A, C), in all NOD recipients examined.  Baker et al. also 

showed preferential usage of TCR Vβ12 (as well as TCR Vβ1) in the islets of 2-3 week-old 

NOD mice
26

.  Interestingly, the length of the TCR complementary determining region 3 

(CDR3) and motif of these T cells was conserved over time, suggesting a key role in 

mediating  cell destruction
26

. A two-fold increase in TCR Vβ12 RNA expression has also 

been reported in the pancreas versus spleen of pre-diabetic NOD female mice
24

.  

Furthermore, >60% of pancreas infiltrating CD4
+
 T cells specific for the BDC mimetic peptide 

(mBDC) expressed TCR Vβ12 in pre-diabetic 16 week-old NOD mice
27

.  On the other hand, 

only 10% of mBDC-specific CD4
+
 T cells in the periphery expressed TCR Vβ12 chain. Since 

mBDC-specific CD4
+
 T cells in general are highly pathogenic

28-30
, and a high percentage of 

these clones express TCR Vβ12, it is tempting to speculate that the eff/mem CD4
+
 T cells 

expressing TCR Vβ12 found infiltrating the islet grafts also play a critical role driving 

recurrent autoimmunity.  

 

Our results indicate that the TCR Vβ repertoire of eff/mem T cells observed in the islet graft 

is more similar to the repertoire of eff/mem T cells residing in the pancreas rather than the 

PLN, RLN, and spleen (Figure 3.4B, D).  This observation supports a scenario in which β cell-

specific T cells mediating recurrent autoimmunity have been recruited from the pancreas, 

rather than being selected from clonotypes found in the periphery. In support of this 

hypothesis, similar frequencies of IGRP206-214-specific CD8
+
 T cells were detected in the islet 

graft and pancreas for a given NOD recipient (Figure 3.7A).  IGRP206-214-specific CD8
+
 T cells 
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are believed to play a major role in mediating spontaneous diabetes in NOD mice
12,16,31

.   

Accordingly, IGRP206-214-specific CD8
+
 T cells may play an equally important role in recurrent 

autoimmunity. Noteworthy is that ~80% of IGRP206-214-specific CD8
+
 T cells sorted from NOD 

islet grafts expressed TCR Vβ8.1
15

, consistent with our results for IGRP206-214-specific 

eff/mem CD8
+
 T cells infiltrating islet grafts (Figure 3.7B). Therefore, one interesting 

possibility is that prevalent usage of TCR Vβ8.1/2 by eff/mem CD8
+
 T cells in the islet graft 

maybe representative of expansion of IGRP206-214-specific CD8
+
 T cells.   

 

Whether the diversity seen in TCR Vβ usage by eff/mem T cells among individual NOD 

recipients is due to targeting of: i) the same autoantigen by distinct clones, and/or ii) 

multiple autoantigens and/or epitopes is unclear. For example, 6 insulin-specific T cell 

clones recognizing the same epitope (9-23) expressed at least 4 different TCR Vβ chains, 

though these clones preferentially expressed TCR Vα13
32

. To further examine this issue an 

extensive panel of β cell antigen-specific MHC class I and II tetramers can be employed to 

determine how antigen/peptide specificity correlates with TCR Vβ usage profiles. For 

instance, the diversity of antigen-specificity of eff/mem CD4
+
 T cells expressing TCR Vβ12 

would be highly amenable for such a study.  

 

A somewhat puzzling observation was the relatively high frequency of naïve CD4
+
 and CD8

+
 

T cells found infiltrating an islet graft.  Preliminary results show that at day 5 post-

implantation over 90% of T cells in the islet graft exhibited an eff/mem phenotype. 

However, at day 10 post-implantation, the frequency of eff/mem decreases to between 50 
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and 90% of islet infiltrating T cells, indicating an influx of naïve T cells into the islet graft.  

The latter may be due to the inflammatory environment established in the islet graft, as 

naïve T cells respond to chemokines and other proinflammatory cues.   

In conclusion, for a given recipient eff/mem CD8
+
 T cells use only few Vβ chains resulting in 

reduced TCR diversity in the islet graft compared to that detected in the RLN, PLN, and 

spleen.  However, CD8
+
 TCR Vβ usage varies considerably between NOD recipients, raising 

the possibility that certain antigens are more important in different recipients.  These 

results are supported by data showing that IGRP206-214-specific CD8
+
 T cells compose a large 

portion of the response in some islet graft recipients, but not others.  The TCR Vβ repertoire 

of eff/mem CD4
+ 

T cells infiltrating the islet graft generally shows more heterogeneity.  

However, every NOD recipient examined showed increased TCR Vβ12 usage by islet graft 

eff/mem CD4
+ 

T cells. Additionally, both eff/mem CD4
+
 and CD8

+
 T cells exhibited TCR Vβ 

repertoires that were similar between the islet graft and pancreas. Since the TCR Vβ 

repertoire of eff/mem CD8
+
 versus CD4

+
 T cells is more broad, it is possible that multiple 

and distinct antigens are targeted by CD8
+
 T cells during islet graft destruction among 

recipient animals. On the other hand, CD4
+
 T cells with specificity for a limited set of 

antigens are necessary to drive recurrent autoimmunity, and thus conserved among NOD 

recipients.  Further examination of T cell specificities involved in recurrent autoimmunity 

may lead to improved therapies for the prevention of islet graft rejection.   
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3.4 Materials and Methods  

Mice 

NOD/LtJ and NOD.CB17.Prkdcscid/J (NOD.scid) mice were bred and housed under 

pathogen-free conditions in an American Association for Laboratory-accredited animal 

facility. NOD mice were considered to be diabetic after two successive days of >250mg/dl 

blood glucose as measured by a Freestyle Lite blood glucose monitor and strips (Abbott 

Diabetes Care Inc.). All procedures were reviewed and approved by the University of North 

Carolina Institutional Animal Care and Use Committee.   

 

Islet transplantation 

Diabetic NOD female mice received 5 units of insulin daily prior to transplantation.  Five 

hundred syngeneic (NOD.scid) islets were transplanted under the renal capsule of the left 

kidney.  Blood glucose values were monitored daily, biweekly, or weekly post-

transplantation.   

 

Flow Cytometry 

Spleen, PLN, RLN, and pancreas single-cell suspensions were prepared by grinding tissue 

between frosted slides in RPMI complete containing 100nM Dasatinib. When required, red 

cells were lysed with RBC lysis buffer. Islet grafts were excised from the kidney and gently 

grinded to release infiltrating cell under the capsule and minimize kidney cell 

contamination. Cells were washed with FACS buffer (PBS plus 0.5% BSA), filtered and 

blocked with αCD16/32 (2.4G2). Cells were always kept in media containing 100nM 
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Dasatinib. Samples were then split into three wells and stained. Thy1.1
+
 spleen cells (1X10

6
) 

were added to wells containing cells from grafts and PLN/RLN prior to addition of antibodies 

as a staining internal control. Cells were stained with antibodies specific for CD90.2 (53-2.1), 

CD8 (53-6.7), CD44 (IM7), CD62L (MEL-14) (BD Biosciences), Thy1.1 (OX-7) (BioLegend), 

CD4
+
 (RM4-5) (Invitrogen) and three different anti-TCR Vβ panels. Panel A: αTCR Vβ2-biotin 

(B20.6), αTCR Vβ3-PE (KJ25), αTCR Vβ4-biotin (KT4), αTCR Vβ4-FITC, αTCR Vβ6-biotin (RRA-

7), αTCR Vβ6-PE and αTCR Vβ9-FITC (MR10-2); Panel B: αTCR Vβ5.1/2-biotin (MR9-4), αTCR 

Vβ7-PE (TR310), αTCR Vβ8.1/2-FITC (MR5-2), αTCR Vβ 8.1/2-biotin and αTCR Vβ8.3-FITC 

(1B3.3); Panel C: αTCR Vβ10[b]-FITC (B21.5), αTCR Vβ 10[b]-PE, αTCR Vβ11-PE (RR3-15), 

αTCR Vβ11-biotin, αTCR Vβ12-biotin (MR11-1), αTCR Vβ13-PE (MR12-4) (Biolegend) and 

αTCR Vβ14-FITC (14-2). All αTCR Vβ antibodies were purchased from BD Biosciences unless 

noted. Binding of biotin-labeled antibodies was determined with streptavidin Alexa 594 

(Invitrogen). Cells were washed twice with PBS and stained with LIVE/DEAD® Fixable Blue 

Dead Cell Stain Kit (Invitrogen) to exclude dead cells. To stain for FoxP3 (FJK-16s) or Ki-67 

(B56) samples were washed, fixed and permeabilized with eBiosciences Fix/Perm kit 

following manufacturer’s indications. For tetramer analysis, IGRP-H2K
d
 tetramers were 

prepared as previously described
15

.  Cells were first stained in 100uL containing IGRP-H2K
d
 

for 40 minutes at room temperature, and then placed on ice and incubated for 20 minutes 

with 100uL of a 2x cocktail of antibodies specific for T cell markers and TCR Vβ chains. Data 

was acquired at the University of North Carolina Flow Cytometry Facility using a 6 laser, 18 

parameter LSRII flow cytometer (BD Biosciences). Analysis was performed with FlowJo 

software (Tree Star Inc.).  
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Diversity Analysis 

As described by Vincent et al
16

, “the Shannon entropy of a T cell population is determined 

by two parameters: 1) the number of different T cell clones that are present, and 2) the 

frequency of each individual clone. Entropy is greatest when there are many different T cell 

clones and when there are few clones that are highly represented in the population (i.e. few 

“dominant” clones). If S is the total number of unique clonotypes in the pool, and pi is the 

proportion of the pool represented by clonotype i, the Shannon entropy H is defined as:” 

 

The Kullback-Leibler diversity index was adapted from Muller et al.
33

 and is a measure of 

divergence.  

  

 

 

 

 

 



101 
 

 

Figure 3.1. Multiple TCRs can be examined in a pool of T cells.   
A.) A representative antibody set for examining 6 different TCR Vβ chains within one 
sample using three channels. B.) Schematic representation of  the flow cytometry scatter 
plots of cells stained with the antibody set in Figure A.  Streptavidin(SAV)-PE-Cy7 was used 
to detect biotinylated (bio) antibodies. For example, αTCR Vβ8.1/8.2-FITC and αTCR 
Vβ8.1/8.2-bio are used to stain the cells, so cells positive for TCR Vβ 8.1/8.2 will be detected 
in both the FITC and PE-Cy7 channels and appear double-positive in the FITC-PE-Cy7 
schematic plot.  C.) Actual flow cytometry scatter plot showing CD8+ T cells stained with 
antibody set in A.  As in the schematic presented in (B), there is a TCR Vβ2+ FITC+ 
population, a TCR Vβ5.1/5.1+ PECy7+ population, and TCR Vβ8.1/8.2+ FITC+ and PECy7+ 
population.  
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Figure 3.2. Analyses of TCR Vβ chain diversity in various tissues of islet graft NOD 

recipients. 

Tissues from NOD recipients were harvested on day 10-post islet graft implantation, and the 

percentage of T cells expressing specific TCR Vb chains (A, B) assessed via flow cytometry.  

A.) Percentage of naïve and eff/mem CD4
+
 (A) and CD8

+
 (B) T cells expressing specific TCR 

Vb chains in spleen, PLN, RLN, pancreas, and islet graft.  Individual mice are represented by 

the same bar color in all panels (n>13). (C) Representative data from two individual mice.  
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Figure 3.3. Vb12 usage is increased by eff/mem CD4
+ 

T cells in the islet graft and pancreas.  

TCR Vb usage by eff/mem T cells normalized to the repertoire of naïve splenic T cells in 

individual recipients (% Vb in islet grafts/pancreas minus % Vb in spleen) (A-C)).  CD4
+
 (A) 

and CD8
+
 (B) naïve and eff/mem T cells in the spleen, PLN, RLN, pancreas, and islet grafts of 

NOD recipients (n>13). Data was normalized to naïve T cells in spleen of the respective 

recipients C.) % Vb12 in islet graft, pancreas, RLN, and PLN minus % Vb12 in spleen (n>13).  

*** p<0.001, **p<0.01, *p<0.05, statistical significance was determine using one-way 

ANOVA  (Kruskal-Wallis test with two-sided Dunn's post-test).  
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Figure 3.4. Shannon Entropy is decreased in eff/mem CD8
+
 T cells infiltrating the islet 

graft.  

Diversity of Vb chain usage in different tissues of NOD recipients (n>13) was assessed using 

Shannon entropy. Naïve (A,C) and eff/mem (B,D) T cells expressing CD4
+
 (A,B) or CD8

+
(C,D) . 

*p<0.05, statistical significance was determine using one-way ANOVA (Kruskal-Wallis test 

with two-sided Dunn's post-test).  
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Figure 3.5. The eff/mem TCR Vb repertoire in the islet graft is more similar to the 
repertoire in the pancreas than the PLN, RLN, or spleen.  
Divergence of Vb chain usage in islet grafts of NOD recipients (n>6) was assessed  via the 
Kullback-Leibler divergence test. Naïve (A,C) and eff/mem (B,D) expressing CD4+ (A,B) or 
CD8+ (C,D) T cells. The X axis represents comparisons for among the respective tissues. 
*p<0.05, statistical significance was determine using one-way ANOVA (Kruskal-Wallis test 
with two-sided Dunn's post-test). 
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Figure 3.6 TCR Vβ12 proliferation is preferentially increased in pancreas and graft.  

Data was normalized to naïve T cells in spleen of the NOD recipients. CD4
+
 (A,B) and CD8

+
 

(C,D) eff/mem T cells in the pancreas (A,C) and islet graft (B,D) of NOD recipients (n>13). 

Closed circles represent change in %TCR Vb from naïve spleen population.  Open circles 

represent change in %TCR Vb KI67
+
 population from naïve spleen TCR Vb KI67

+
 population. 

Changes in CD4
+ 

Vb12 proliferation in the islet graft, pancreas, RLN, and PLN were examined 

(E) (n=6).  *** p<0.001, **p<0.01, *p<0.05, statistical significance was determine using one-

way ANOVA  (Kruskal-Wallis test with two-sided Dunn's post-test).  
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Figure 3.7. Corresponding frequencies of IGRP-specific CD8+ T cells are detected in the 
islet graft and pancreas of individual NOD recipients.  
The frequency of IGRP-H2Kd tetramer binding eff/mem CD8+ T cells was measured via flow 
cytometry in the pancreas and islet graft. A.) Similar frequencies of IGRP-specific CD8+ T 
cells are detected in the islet graft and pancreas of individual NOD recipients B.) IGRP-
specific CD8+ T cells in the islet graft predominantly express TCR Vb8.1/8.2, with 
frequencies  of 85.4% (mouse 1), 85.4% (mouse 2), and 95.8% (mouse 3).   
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CHAPTER 4 

 

FUTURE PERSPECTIVES
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4.1. Blocking autoimmune-mediated destruction of islet grafts in diabetic recipients.  

Here, we showed that co-administration of the non-depleting anti- (α)CD4 and αCD8 

antibodies YTS177 and YTS105, respectively,  delayed recurrent autoimmunity in diabetic 

NOD mice receiving syngeneic islet grafts.  In addition, adeno-associated virus (AAV) vector 

expressing IL-2 via the mouse insulin promoter (MIP) (AAV8-MIP-IL2) was also seen to delay 

islet graft rejection. Surprisingly, however, the combination of YTS177, YTS105 and AAV8-

MIP-IL2 failed to significantly enhance islet graft survival relative to YTS177 and YTS105 

treatment alone.   

Our findings with YTS177 and YTS105 treatment are in contrast to studies demonstrating 

induction of long-term allogeneic T cell tolerance in a variety of allograft models by these 

antibodies
1,2

. One important difference between the respective models is the nature of the 

pathogenic T effectors. Allogeneic T cells are primarily found in a naïve state at the time of 

YTS antibody treatment. On the other hand, autoimmune-mediated destruction of 

syngeneic islet grafts in diabetic NOD mice is likely to be mediated primarily by β cell-

specific memory T cells. The latter is supported by our findings made in Chapter 3.  We 

believe that the apparent difference in efficacy of YTS177 and YTS105 treatment to block 

recurrent autoimmune versus allogeneic mediated graft destruction is attributed to the 

antibodies having distinct effects on naïve and memory T cells. Studies have shown for 

instance that YTS177 and YTS105 treatment induces tolerance in skin, cardiac, and bone 

marrow allograft models, in which the alloreactive T cells are presumably exhibit a naïve 

phenotype (reviewed in
1-3

).  Here, it is believed that antibody binding to the co-receptor 

molecules establishes a hypo-responsive phenotype, thereby blocking efficient T cell 
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activation upon antigen recognition
1-3

. Additionally, in vitro experiments have 

demonstrated that YTS177 binding to conventional naïve CD4
+
 T cells in the presence of 

antigen and TGFβ resulted in increased FoxP3 expression and conversion into adaptive 

FoxP3
+
Tregs

4
. On the other hand, YTS177 and YTS105 binding may have distinct effects on 

memory T cells. Noteworthy is that the requirements for efficient activation and 

subsequent proliferation of memory T cells are less stringent than those needed for 

activation of naïve T cells
5-7

. Indeed, recent work carried out by our group has shown that in 

an Lymphocytic Choriomeningitis Virus (LCMV) infection model, YTS177 and YTS105 

treatment dampened, but did not completely abrogate the response of memory CD8
+
 T 

cells, suggesting that memory T cells are more resistant to the effects of the YTS antibodies 

than naïve T cells (Diz and Tisch, unpublished results).  Further definition of the biochemical 

and molecular events induced by antibody binding of the co-receptor molecules in different 

subsets of T cells (e.g. naïve, memory) would provide needed insight into the parameters 

that determine the efficacy of this strategy in different contexts of T cell-mediated 

pathology.  

Although YTS177 and YTS105 treatment failed to induce long-term protection, islet graft 

survival was enhanced relative to control groups. The mechanism by which the YTS 

antibodies mediate this transient protective effect needs to be further explored. YTS177 

and YTS105 binding did not block the migration of T cells into the islet graft.  In addition, 

equivalent IFNγ secretion by islet graft infiltrating T cells was detected in YTS177 and 

YTS105-treated and control NOD recipients suggesting that YTS antibody binding had no 

marked effect on the pathogenic T cells. As discussed earlier, however, IFNγ production was 
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assayed following in vitro PMA/ionomycin stimulation of the T cells, which in turn may 

“over-ride” an inhibitory effect induced by YTS antibody binding. It is also possible that YTS 

antibody binding blocks other T effector mechanisms independent of IFNγ secretion. For 

instance secretion of TNFα and/or IL-1, cytokines known to have cytotoxic effects on β cells, 

may be down-regulated by YTS antibody binding. Similarly, CD8
+
 T cell-mediated lysis of β 

cells may be reduced via inhibition of perforin and/or granzyme b release/production. 

Intracellular staining and/or qRT-PCR analyses for these different effector molecules in islet 

graft-infiltrating CD4
+
 and CD8

+
 T cells would be a first step to address the latter 

possibilities.   

 

Additionally, we showed that an adeno-associated virus (AAV) vector expressing IL-2 via the 

mouse insulin promoter (MIP) was able to significantly prolong islet graft survival, though 

long-term protection was not established.  Importantly, this work provides evidence that 

recombinant AAV vectors can be used to efficiently transduce β cells in vitro as a means to 

enhance islet graft survival. To improve this approach, a combination of AAV vectors 

producing IL-2 and TGFβ, which together induce FoxP3
+
Treg formation, could be employed.  

Additionally, defining the optimal dose of AAV-MIP-IL2 and corresponding ectopic levels of 

IL-2 expressed by the transduced β cells is likely to improve the efficacy of this therapy.  

Further, expression of molecules that enhance β cell viability and/or regeneration, including 

glucagon-like peptide 1 (GLP-1) and exendin-4 (Ex-4)
8-10

, may enhance survival of the islet 

graft.   
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 4.2 Characterization of the TCR Vβ repertoire in rejecting syngeneic islet grafts. 

A significant effort has been made to delineate the specificities and TCR repertoires of 

diabetogenic T cells.  Determining the key autoantigens and corresponding TCR specificities 

involved in recurrent diabetes may aid in developing approaches to block autoimmune 

recognition of an islet graft transplanted in T1D patients. Our results show that the CD8
+ 

T 

cell response in syngeneic islet graft rejection is highly skewed but variable among NOD 

recipients. These results suggest that particular CD8
+
 T cell clones are expanded within the 

graft the site. Currently, whether differences in TCR Vβ usage by islet graft infiltrating CD8
+
 

T cells is reflective of distinct β cell autoantigen/epitope specificities being targeted among 

individual NOD recipients is unclear. To address this issue, a panel of β cell antigen-specific 

MHC class I tetramers can be employed to determine the frequency of particular β cell-

specific CD8
+
 T cells found residing in the islet graft and pancreas. Using tetramer staining in 

conjunction with the TCR Vβ staining protocol developed in Chapter 3, would be an 

approach to determine if tetramer-specific T cells (specific for β cell antigens) preferentially 

use certain TCR Vβ chains.  Additionally, using a panel of class I tetramers could also 

determine whether the similarities in TCR Vβ repertoire hold true for β cell autoantigens as 

well.  If so, we would expect that certain tetramer-specific T cell populations would appear 

more prominently in both the pancreas and the islet graft of some animals but not others, 

as in the case for IGRP-specific CD8
+
 T cells.  Since a small expansion of the most prominent 

CD8
+
 T cell TCR Vβ chains found in the islet graft and pancreas can also be detected in the 

periphery, it would be interesting to examine the TCR Vβ population in the blood to 

determine if changes in TCR Vβ usage correlate with the progression of islet graft rejection.  
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Strikingly, TCR Vβ12 usage was increased in the islet graft-infiltrating CD4
+
 T cells in all NOD 

recipients examined. Determining the β cell autoantigen specificity of this population is of 

obvious interest. As a first step to better define the clonality of these T cells, TCR Vβ12 

expressing CD4
+
 T cells can be sorted and single cells analyzed for TCR CDR3β sequences.  If 

relatively few clones are present based on TCR CDR3β usage, this would suggest that 

antigen recognition by TCR Vβ12 expressing CD4
+
 T cells is limited to a few (single?) 

epitopes. If, however, several clones are detected, it is likely that multiple autoantigenic 

epitopes are targeted and drive the expansion of TCR Vβ12 in the failed islet grafts.   

Additionally, MHC class II multimers can be used to directly identify the antigen specificity 

of the TCR Vβ12 CD4
+
 T cells.  It is notable that CD4

+
 T cells specific for hsp60 p277

11
, 

GADp524
12

, and BDC
13

 (chromogranin A
14

) have been reported to use TCR Vβ12. Finally, to 

determine the relative role of Vβ12 CD4
+
 T cells in recurrent autoimmunity, NOD recipients 

can be treated with αVβ12 antibody and tested for prolonged islet graft survival.    
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