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ABSTRACT 

Meher Juttukonda: MRI-based Correction for PET Photon Attenuation in Simultaneous 

PET/MRI Using Ultrashort Echo Time Methods  

 (Under the direction of Hongyu An and David Lalush) 

 

Positron emission tomography (PET) is a functional imaging modality that allows 

clinicians to visualize complex physiological processes such as metabolism, proliferation, 

perfusion, and receptor binding. Magnetic resonance imaging (MRI) is a versatile imaging 

modality that provides detailed anatomical images as well as functional information. Hybrid 

PET/MRI systems have been recently proposed as a means to combine the high-sensitivity 

functional information provided by PET with the high-resolution anatomical information 

provided by MRI. Furthermore, PET/MRI systems have the capability to provide 

complementary functional information acquired from both modalities. These systems have 

garnered significant clinical interest particularly in neurological imaging due to these 

capabilities. 

A major drawback of PET/MRI systems is the lack of an accurate, clinically feasible 

MRI-based method for performing PET photon attenuation correction. The current vendor-

provided methods lack accuracy, and more accurate methods proposed in literature are not 

clinically feasible due to long computation times. The inaccuracies of the vendor-provided 

methods result from misidentification of tissues, particularly bone, or the assumption of 

homogenous attenuation coefficients inside each tissue. Therefore, the goal of this work was 
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to develop an MR-based attenuation correction method that addresses both of these challenges 

in a clinically feasible framework.  

To achieve this goal, we propose an ultrashort echo-time method that acquires all 

necessary data using one sequence and produces the necessary attenuation maps quickly. The 

proposed sequence utilizes a dual flip-angle, dual echo-time ultrashort echo time (UTE) 

acquisition to segment all tissues of interest to attenuation correction in the head and neck. 

Next, continuous-valued attenuation coefficients are assigned to all imaging voxels through a 

conversion from MR relaxation rate R1. The capability of the method to generate accurate PET 

images was assessed by comparison to the gold standard CT-based method in a large number 

of subjects. The results show that the proposed method is significantly more accurate in the 

whole brain as well as in several smaller regions of interest when compared to the 

corresponding vendor-provided method. The proposed method has been fully automated and 

can be easily incorporated into the PET/MRI clinical work-flow.
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CHAPTER 1: INTRODUCTION 

1.1 Multimodality Imaging 

The fundamental goal of medical imaging is to provide physicians with diagnostically 

relevant images of the inside of a human body without the need for exploratory surgery. 

Medical imaging systems are often classified either as anatomical modalities, which provide 

structural information, or as functional modalities, which are used to study physiological 

functions. Since they serve different purposes, anatomical modalities, such as magnetic 

resonance imaging (MRI) and x-ray computed tomography (CT), have historically been 

separated from functional modalities, such as positron emission tomography (PET). This 

separation is evident in their placement in different clinical divisions (radiology and nuclear 

medicine), but the advantages of integrating anatomical and functional imaging have been 

recognized by clinicians for many decades. The primary benefit of combining these two types 

of modalities is the ability to use anatomical images to localize any regions of functional 

abnormalities. To this end, there are two general approaches which one can use to assimilate 

information from functional and anatomical images: software and hardware (1). 

1.2 Software-based Image Fusion 

The first attempts at combining anatomical and functional images were made in the late 

1980s and produced sophisticated image fusion software with the capability of aligning 

functional images with separately-acquired anatomical images. These algorithms go beyond 

simple image overlays or the use of external stereotactic frames either by identifying common 

landmarks that can be used to align the images or by optimizing a parameter based on the



2 
 

intensities in the images. For either approach, the complexity of the transformation needed 

depends on the possible degrees of freedom between the two images. For anatomical regions 

such as the brain where a change in size or shape between scans is not anticipated, simple rigid 

body transformations are sufficient. More complicated nonlinear registration techniques are 

needed when there are no constraints on the possible deformations. One example of this is in 

the abdomen during non-rigid respiratory motion. Assessments of these methods have shown 

that a local registration accuracy of approximately 2 mm can be achieved for the brain while 

the performance is markedly worse for other regions of the body such as the lung and the 

pelvis, where the local registration accuracy can be as poor as 5-8 mm. Therefore, software-

based solutions are limited to cases where image registration is trivial (1). 

1.3 Hybrid PET/CT 

In contrast, hardware approaches provide a simple and convenient approach to 

combining images by integrating instrumentation from functional and anatomical modalities 

and acquiring both sets of images in a common reference frame. The first of these hardware 

approaches to be developed was the hybrid PET/CT scanner which acquires co-registered PET 

and CT images in a single study (1). Hybrid PET/CT systems were commercially introduced 

in 2001 and gained widespread acceptance among clinicians shortly thereafter, particularly in 

oncology. PET is a functional imaging modality that allows clinicians to visualize complex 

physiological processes such as metabolism, proliferation, perfusion, and receptor binding (2). 

CT is an anatomical imaging modality that derives its contrast from the absorption or scattering 

of the transmitted x-ray photons by tissues in the body, also known as photon attenuation. 

Therefore, in addition to providing anatomical images to serve as a context for the functional 

images (Figure 1.1) provided by PET, CT images also provide a straightforward means for 
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correcting for the phenomenon of gamma photon attenuation in PET. Details about the 

phenomenon of photon attenuation as well as about CT-based attenuation correction will be 

presented in Chapter 2. 

Hybrid PET/CT systems are not without considerable drawbacks. First, CT imaging 

employs the transmission of ionizing radiation in the form of x-rays through a patient’s body. 

Although the doses associated with CT scans are low enough not to have any deterministic 

effects, stochastic effects that result in elevated risk for developing cancer have been 

demonstrated (3). Second, CT is limited in the imaging capabilities it can offer. For example, 

simultaneous PET and CT acquisitions are not a realistic possibility nor are they desirable 

because simultaneous acquisition would not provide much additional information compared to 

sequential acquisition. Third, the contrast in CT imaging proves sufficient for some 

applications, but is particularly lacking for most soft tissue applications. Specifically, the CT 

images cannot be used to localize PET signals to gray matter or white matter regions of the 

brain. Therefore, while the anatomical context and the ability to easily perform attenuation 

correction are vast improvements over stand-alone PET systems, PET/CT systems leave much 

to be desired. 

 

A B C 

Figure 1.1: CT images (A) provide anatomical context for the functional images from 

PET (B) as shown in the PET/CT fusion image (C). 
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1.4 Hybrid PET/MRI 

Recently, hybrid PET/MRI systems have been developed to fill the voids left by 

PET/CT scanners. While make-shift systems with MRI-compatible PET inserts are also in 

existence, truly hybrid PET/MRI systems currently exist in two forms: sequential (Ingenuity 

TF, Philips, Best, Netherlands) and simultaneous (SIGNA, General Electric, 

Buckinghamshire, United Kingdom; Biograph mMR, Siemens, Erlangen, Germany). While 

sequential systems address the concerns of ionizing radiation and lack of soft tissue contrast 

expressed with PET/CT, simultaneous PET/MRI systems are generally preferable due to the 

capability of acquiring information from both modalities simultaneously. References made to 

PET/MRI systems hereafter in this dissertation refer to the Biograph mMR simultaneous 

PET/MRI system manufactured by Siemens Healthcare (Erlangen, Germany) (4). PET/MRI 

images presented in this work were acquired using a Biograph mMR system either at the 

Biomedical Research Imaging Center at the University of North Carolina at Chapel Hill or the 

Mallinckrodt Institute of Radiology at Washington University in St. Louis. 

Developing a truly integrated system around the constraints imposed by the MRI 

component’s strong magnetic field proved to be a difficult task. MRI instrumentation by 

necessity contains no ferromagnetic metal components that could interfere with imaging 

capabilities. However, existing PET detector technology is highly sensitive to the presence of 

magnetic fields. Therefore, novel PET detector technology which could operate well under the 

rigorous conditions imposed by the strong magnetic field utilized in MRI was developed. The 

PET detectors were designed to be able to function in between two MRI components of the 

system, as shown in Figure 1.2. These innovations were highly expensive, raising doubts about 

whether the benefits provided by PET/MRI systems justify the costs. Furthermore, 
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simultaneous PET/MRI systems have been referred to as “a solution looking for a problem” 

because they are a product of a technological advance rather than a solution for a pressing 

clinical need (5). 

The current consensus to the question of whether PET/MRI systems are worth the 

markedly increased cost over PET/CT systems seems to be “perhaps”. However, simultaneous 

PET/MRI systems are gaining support from researchers and clinicians in various fields, 

especially for applications where anatomical images with excellent soft tissue contrast are 

needed (Figure 1.3); MRI can also be used to gather physiological information about oxygen 

metabolism, the structure of nerve and muscle fibers, and a plethora of other physiological 

parameters (6), serving as an excellent complement to PET imaging. 

In addition to potential clinical applications for PET/MRI systems that have already 

been identified in neurology (7), cardiology (8), and oncology (9), there are also many technical 

advantages to utilizing PET/MRI systems in lieu of existing hybrid PET/computed tomography 

(CT) systems. As previously mentioned, there is no additional ionizing radiation incurred on 

PET Detectors 

MRI Components 

Bore 

Figure 1.2: Schematic of the Siemens Biograph mMR simultaneous PET/MRI system. 
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patients in order to obtain the anatomical information used to localize PET signals. In addition, 

the anatomical information provided by MRI is far superior to that of CT, especially in the 

realm of soft tissue contrast. Finally, MRI can be used to address existing technical issues in 

PET including motion correction (10) and partial volume correction (11) that could not be 

addressed using PET/CT systems. 

Despite the many advantages, there is a major technical drawback with PET/MRI 

systems: PET photon attenuation correction. Attenuation correction (Chapter 2) is straight-

forward in PET/CT due to the ease of utilizing the CT component of the system to derive the 

necessary information; there is no analogous way to gather this information in PET/MRI 

systems due to differences in the source of signal (Chapter 3). The focus of this dissertation is 

on the development of potential approaches to perform MRI-based correction for PET photon 

attenuation. Chapter 2 introduces the fundamentals of PET imaging and the physics of photon 

attenuation, while Chapter 3 addresses the basics of MRI as well as its limitations in providing 

the information necessary for PET attenuation correction. Chapter 4 explores existing methods 

along with their strengths and pitfalls with particular emphasis on the current methods utilized 

by the manufacturer. Chapter 5 presents an initial solution to the problem of MR-based 

attenuation correction, while Chapter 6 outlines a more refined solution. Chapter 7 discusses 

Figure 1.3: MR images (A) provide excellent soft tissue contrast for improved 

localization of PET images (B) as shown in the PET/MR fusion image (C). 

A B C 
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certain clinical applications of PET/MRI systems and the relevance of the final attenuation 

correction method to those applications. Chapter 8 serves as a conclusion for this dissertation 

by outlining the contributions made by this dissertation to the field and by identifying areas 

where further work is needed. 



8 
 

REFERENCES 

1. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. 

2008;53:R1-R39. 

 

2. Bailey D, Townsend D, Valk P, Maisey M, eds. Positron Emission Tomography:  Basic 

Sciences. London: Springer-Verlag London; 2005.  

 

3. U.S. Food and Drug Administration. What are the risks of radiation from CT? 2015. 

Available from: http://www.fda.gov/RadiationEmittingProducts/RadiationEmittingProducts 

andProcedures/MedicalImaging/MedicalX-Rays/ucm115329.htm. Accessed June 10, 2015.  

 

4. Delso G, Furst S, Jakoby B, et al. Performance measurements of the siemens mMR 

integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914-1922.  

 

5. Yankeelov TE, Peterson TE, Abramson RG, et al. Simultaneous PET-MRI in oncology: A 

solution looking for a problem? Magn Reson Imaging. 2012;30:1342-1356.  

 

6. Haacke E, Brown R, Thompson M, Venkatesan R. Magnetic Resonance Imaging: Physical 

Principles and Sequence Design. 1st ed. New York: Wiley-Liss; 1999.  

 

7. Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other 

neurodegenerative diseases. Semin Nucl Med. 2015;45:224-233.  

 

8. Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Semin Nucl Med. 

2015;45:234-247.  

 

9. Bagade S, Fowler KJ, Schwarz JK, Grigsby PW, Dehdashti F. PET/MRI evaluation of 

gynecologic malignancies and prostate cancer. Semin Nucl Med. 2015;45:293-303. 

  

10. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45:212-223.  

 

11. Yan J, Lim JC, Townsend DW. MRI-guided brain PET image filtering and partial volume 

correction. Phys Med Biol. 2015;60:961-976. 
 



9 
 

CHAPTER 2: PHOTON ATTENUATION 

 

2.1 Positron Emission Tomography 

Positron emission tomography (PET) is a molecular imaging modality that allows 

clinicians to visualize complex physiological processes such as metabolism, proliferation, 

perfusion, and receptor binding. Due to this capability, PET has had a tremendous impact in a 

number of fields including cardiology, neurology, psychiatry, and, most significantly, in 

oncology where PET is routinely used for everything from the diagnosis of malignancies to 

assessing treatment response of anti-cancer therapies (1). 

The contrast in PET imaging is typically introduced through intravenous (IV) injection 

of a molecular probe known as a radiotracer into the patient. These radiotracers are formed by 

Figure 2.1: PET radiotracers consist of a bioactive molecule tagged with a 

radioisotope which decays by emitting a positron. The interaction of the positron 

with a surrounding electron produces two gamma photons that are detected in PET. 



10 
 

chemically combining the bioactive molecule of interest with a positron-emitting radioisotope. 

As the radiotracer travels through the patient’s body and reaches the tissue or location of 

interest, secondary detection of radioisotope decay (Figure 2.1) allows for the visualization of 

the radiotracer distribution throughout the body. 

Radioisotopes undergo spontaneous radioactive decay and is characterized by the half-

life, which represents the time it takes for half of the radioactive material present to decay, of 

that isotope. Half-lives for radioisotopes of interest in PET range from 1.25 minutes (82Rb – 

cardiac perfusion) to 100 hours (124I – thyroid imaging). The particular decay pathway that a 

radioisotope follows is determined by the cause for instability in the underlying atomic 

nucleus. The nuclei of PET radioisotopes are proton-rich, i.e. the number of protons is too high 

for the nuclei to be stable. These isotopes undergo decay by eliminating a proton from the 

nucleus in order to rectify this imbalance. As shown in Equation 1, this correction most often 

occurs through the transformation of a proton (p) to a neutron (n), releasing a positron (β) and 

neutrino (ν) in the process (1). 

1
1

p+ →
1
0

n +
0
1

β + ν  (2.1) 

While neutrinos pass through body tissue without any interactions, each positron 

travels a short distance from its origin through the surrounding tissue, gradually dissipating its 

kinetic energy as a result of collisions and scattering with tissue electrons and nuclei. This 

distance, known as the positron range, depends on the initial energy of the positron at release 

and is approximately 1-2 mm for positrons resulting from the decay of 18F atoms. When its 

kinetic energy is nearly depleted, a positron undergoes an annihilation event with the next 

electron it encounters. This annihilation event results in the production of radiation in the form 

of two characteristic gamma photons of 511 keV energy. Conservation of momentum dictates 
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that these photons are emitted in anti-parallel directions, but the slightly non-zero momentum 

possessed by the positron just prior to the annihilation event results in angles that are slightly 

less than 180° (1). 

2.2 Image Acquisition 

Each pair of photons from an annihilation event travels through the patient’s body and 

reaches the surrounding PET detector ring at approximately the same time, forming what is 

known as a line-of-response (LOR). An LOR indicates a linear path along which the 

annihilation event that produced the associated photons occurred (Figure 2.2). Due to 

differences in the distances traveled by each photon in a pair, it is expected that the lag time 

between the first photons reaching a detector and the second photon could be as long as 3 – 4 

ns. Therefore, the window of time allotted for an LOR to form must be at least as wide as a 

few nanoseconds. The collection of LORs produced over the course of the PET study is 

organized in the form of a sinogram which is then reconstructed into an image corresponding 

to the distribution of the radiotracer in the patient (1). 

Figure 2.2: The detection of each pair of annihilation photons produces a line 

of response (red arrows). A particular line of response indicates that the 

underlying annihilation event (red circles) occured somewhere along that line. 

PET Detector Ring 
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2.3 Image Formation 

Once the raw PET data is acquired, it can be reconstructed into a PET image using an 

analytical approach (filtered back-projection) or an iterative approach (iterative 

reconstruction). Iterative methods are preferable to analytical methods due to the improved 

handling of noise and to the more realistic model of the system utilized. There are five basic 

components to iterative reconstruction methods. The first component is a model for the image 

to be reconstructed. This is simply the discretization of the image into a certain number of 

voxels, or volume elements. The second component is a model of the imaging system that 

contains probabilities that emissions of photons originating at a given voxel are detected in a 

particular projection through that voxel. The third component is a model of the imaging data. 

Since the formation of each LOR is a discrete process, a Poisson model is the most appropriate 

choice. The fourth component is the governing principle of the method. This is the component 

that defines what a “best” image is for a given set of PET data and is often expressed as a 

mathematical cost function. In PET, the most common principle is the maximum likelihood 

(ML) approach. The fifth component is the algorithm utilized to optimize the cost function. 

The reconstruction algorithm employed by the manufacturer in the PET/MRI system is a 

variant of expectation maximization (EM) algorithms called the ordered subset expectation 

maximization (OSEM) algorithm (2). 

2.4 Photon Attenuation 

In an ideal world, all gamma photons resulting from the annihilation events would be 

correctly accounted for by the PET detector system, allowing the reconstruction algorithm to 

form a PET image that perfectly reflects the distribution of the radiotracer. In reality, there are 

certain physical processes that prevent a percentage of the annihilation photons from reaching 
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the detectors, causing a loss of signal that degrades the accuracy of the PET reconstructions 

(Figure 2.3). These processes are collectively known as photon attenuation. Analytical 

simulations (Figure 2.4) have shown that, if left uncorrected, photon attenuation can result in 

errors of approximately 80% or higher in certain regions in the PET field-of-view. At PET 

photon energy levels, there are two mechanisms through which photons are attenuated: 

photoelectric effect (low probability) and Compton scattering (high probability) (1). 

The photoelectric effect describes the interaction between an annihilation photon and 

orbital electrons of atoms in the surrounding tissue. Through this interaction, the photon 

transfers all of its energy to the electron, ejecting the electron from orbit. In this case, the 

annihilation photon is eliminated and the underlying annihilation event is completely 

undetected. The photoelectric effect dominates at photon energies of approximately 100 keV 

and thus composes a very small percentage of the attenuation events at PET energy (511 keV). 

The primary mode of photon attenuation in PET is through Compton scattering in which an 

annihilation photon interacts with a loosely bound electron in a surrounding atom. The result 

Figure 2.3: Photon attenuation (yellow) occurs as a result of interactions between 

annihilation photons and electrons in the surrounding tissue. This results in a 

loss of signal that degrades the accuracy of the reconstructed PET image. 

PET Detector Ring 
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of this interaction is a deflection of the photon’s path, along with a corresponding drop in the 

photon's kinetic energy (1). 

 The deflected trajectory of some scattered photons still leads them towards the PET 

detector ring where they are collected in a different detector than originally intended. If this 

occurs within the coincidence time window, the resulting LOR does not accurately represent a 

line along which the annihilation event occurred. This phenomenon is known as scatter. Some 

scattered photons are deflected completely out of the range of the PET detector rings. This 

phenomenon where the photons are not detected is known as attenuation (Section 2.3). This 

distinction is important because the presence of scattered photons in the PET raw data 

adversely affects image reconstruction. The attenuation correction component of PET 

reconstruction assumes that scattered photons are removed from the data, a principle known as 

the narrow-beam condition. Therefore, scattered photons must be identified and discarded prior 

to performing attenuation correction. If scatter correction is not performed, the PET images 

after attenuation correction will broadly overestimate the true PET signal (1).  

There are various approaches that can be used to perform scatter correction. One 

approach is to use energy windows to isolate scattered photons from photons unaffected by 

scatter. Since scattered photons arrive at the detectors with less energy than unscattered 

400 

0 

Corrected Uncorrected 

PET Signal 

Figure 2.4: Simulated PET images displaying the 

detrimental effect of photon attenuation. 
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photons, the energy of the detected photons can be used to identify the photons that have been 

scattered (1). Another approach, which is utilized by the vendor to perform scatter correction 

in PET/MRI, is known as single-scatter simulation (3). In this method, simulations are 

conducted using seeds placed in the attenuation map (Section 2.5) generated for the patient in 

order to estimate the amount of scatter along all possible LORs. These scatter estimates are 

then subtracted from the acquired PET data to yield the scatter-corrected data. While scatter 

correction itself is outside the scope of this dissertation, it is important to note that scatter must 

be addressed prior to performing attenuation correction in order to satisfy the narrow-beam 

condition. In addition, the scatter correction method utilized by the vendor employs the same 

attenuation map as the routine for performing attenuation correction, which could result in a 

compounding of errors if the attenuation map used is not sufficiently accurate. 

2.5 Attenuation Correction 

The basic principle behind attenuation correction is to estimate the percentage of 

photons that are expected to be attenuated along any given LOR and to compensate for this by 

modifying the PET raw data accordingly. In order to perform such a correction, knowledge of 

the likelihood of attenuation along all possible LORs in the PET field-of-view is required. This 

likelihood depends on both the linear attenuation coefficient (LAC), which is a function of 

electron density, and the thickness of all tissues along a particular LOR. This attenuation 

information is organized in the form of an attenuation map whose image intensities represent 

the LAC values at all locations in the field-of-view. The equation for determining the fraction 

of photons that are expected to be attenuated is shown in Equation 2.2, where μ represents the 

LAC value, L represents thickness, and P/P0 represents the fraction of photons that are not 

attenuated. When forming the attenuation map, the thickness of tissues is ignored since the 
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field-of-view is divided into equally sized voxels. This attenuation map is then integrated into 

the OSEM reconstruction method to perform the correction for photon attenuation. The 

primary challenge in attenuation correction lies in the measurement of tissue LAC values for 

all regions in the PET field-of-view. 

P

P0
= e-μL  (2.2) 

In stand-alone PET systems, this map of linear attenuation coefficients, referred to as a 

μ-map, is acquired using a rotating radiation source that emits gamma photons which travel 

through the patient’s body, similar to CT imaging. Since the number of photons emitted is 

known and the number of photons detected can be measured, Equation 2.2 can be used to 

compute the corresponding LAC values. However, the number of photons emitted by the 

gamma source is relatively low, and a fairly long acquisition time is needed in order to achieve 

an adequate signal-to-noise ratio (SNR) in the attenuation map. This difficulty in acquiring 

attenuation maps was a major reason for the development of hybrid PET/CT systems and their 

eventual replacement of stand-alone PET systems. 

2.6 CT-based Attenuation Correction 

In PET/CT systems, a quick CT scan provides an image that can be transformed and 

used for PET attenuation correction (AC). CT systems utilize the attenuation of x-rays 

transmitted through a patient’s body as the source of contrast and are also governed by 

Equation 2.2. Therefore, CT inherently measures the physical parameter of interest in PET 

attenuation correction, rendering it a logical choice to integrate with PET in order to provide 

the necessary information. Prior to incorporation, a transformation of CT data is necessary due 

to the energy dependence of linear attenuation coefficients. High energy photons such as the 

511 keV gamma photons in PET are attenuated in greater numbers than low energy photons 
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such as the approximately 100 keV x-ray photons in CT. More details about the CT-based 

attenuation correction (CTAC) method, which is regarded as the current gold standard for 

performing AC in PET, are provided in Chapter 5. 

2.7 MRI-based Attenuation Correction 

While attenuation correction is fairly straightforward in PET/CT due to the relevant 

information provided by the CT component of the system, this is not the case in PET/MRI 

systems. MRI signals are primarily dependent on proton density and tissue magnetization 

relaxation characteristics (Chapter 3); as a consequence, MRI does not directly provide the 

measure of electron density necessary to correct for photon attenuation. Furthermore, 

conventional MRI does not provide much information about the primary biological attenuator 

of photons per unit volume in the human body: bone. In conventional MR images, bone and 

air are virtually indistinguishable, but they possess LAC values that are on opposite ends of 

the spectrum. Several studies have commented on the errors introduced into PET 

reconstructions if bone is ignored in the attenuation map (4).  

PET is very effective as a quantitative imaging modality, providing insight about 

physiological functions by measuring the uptake of injected radiotracers. If this quantitative 

advantage is to be maintained, errors in PET images, such as the ones produced through 

inadequate attenuation correction, cannot be tolerated. Thus, development of an accurate MRI-

based correction for photon attenuation is paramount. There are existing methods (Chapter 4) 

that seek to address this issue, but none of them has emerged as the standard for MRI-based 

attenuation correction (MRAC). To understand both the limitations of MRI to this application 

and, ironically, how the versatility of MRI can be used to produce an elegant solution to this 

problem, a thorough background of MRI is required. (Chapter 3) 
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CHAPTER 3: MAGNETIC RESONANCE IMAGING 

3.1 Equilibrium Magnetization 

Magnetic resonance imaging (MRI) was initially dubbed nuclear magnetic resonance 

imaging, but the name was subsequently shortened due to the negative connotations attached 

to the term “nuclear” during the Cold War era. This change is unfortunate since “nuclear” 

precisely describes the particle being imaged in MRI: the atomic nucleus. In most cases, it is 

the nuclei of hydrogen atoms (1H) in water molecules, which consist of a single proton, that 

are of interest in MRI. Although other nuclei may also be used in MR, the 1H nuclei (hereby 

known simply as “proton”) are chosen due to the abundance of water in the human body and 

because these nuclei exhibit non-zero nuclear magnetic moments arising from the spin of the 

proton. Using classical physics, spin can be visualized as a rotation of the object about an axis, 

but this explanation alone does not suffice to explain the origins of signal in MRI. Therefore, 

some discussion in terms of quantum mechanics is required. 

In quantum mechanical terms, spin provides particles with angular momentum and a 

magnetic moment, both of which are expressed as vectors with discrete magnitudes and 

orientations. While the orientation of a particle’s spin may change, the quantum number, i.e. 

the magnitude, associated with it does not change. These spin quantum numbers start at ½ and 

can exist in increments of 1 thereafter (ex: ½, 3/2, 5/2 ...). The direction can be indicated as either 

a positive or a negative spin number (ex: + ½ , - ½ ). The Pauli Exclusion Principle states that 

two particles with the same spin number and orientation cannot exist in the same location. This 

forces the particles to be paired with spins of opposite orientations, resulting in the cancellation 
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of spins for nuclei with even numbered protons and even numbered neutrons. Other nuclei, 

such as the 1H nucleus, exhibit a non-zero spin because they contain an odd number of protons, 

an odd number of neutrons, or both. This leads to a net nuclear spin for atoms with nuclei of 

these compositions. Since the nucleus of a 1H atom contains a single unpaired proton, 1H 

exhibits a net spin of ½ and contains an angular momentum and a magnetic moment associated 

with that spin. Equation 3.1 displays the relationship between the angular momentum (J) and 

the magnetic moment (μ). The term ϒ in Equation 3.1 is known as the gyromagnetic ratio. For 

protons, 
ϒ

2π
 = 42.58 MHz/T; for electrons, 

ϒ

2π
 = 28,025 MHz/T (1). 

μ = γ · J (3.1) 

From this point on, a classical view of magnetism will used in lieu of a quantum 

mechanical view for the sake of simplicity. In their natural state, the magnetic moments 

associated with 1H nuclei in the human body are randomly oriented, resulting in a near-zero 

vector sum of net magnetization. When a human is placed inside of a strong magnetic field, 

such as the B0 field introduced by an MRI scanner, these individual magnetic moments align 

with the external field in either the low energy state (in the same direction as the external field) 

or the high energy state (in the opposite direction). At room temperature, there is a slight 

preference towards the low energy state, resulting in a non-zero bulk magnetic moment that 

aligns with the external magnetic field. Since there is an abundance of water in the human 

body, this bulk magnetic moment, known as the equilibrium magnetization, is large enough to 

be manipulated and detected.  

3.2 Precession 

The vector sum of the magnetization at any given time is represented by a 

magnetization vector (M). At equilibrium, the initial vector (M0) is aligned with the direction 
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of the B0 field, which is assumed to be the +z-axis without loss of generality. While M0 is 

aligned with the external magnetic field, the individual magnetic moments of the spins that 

compose M0 precess about the B0 field (Figure 3.1A). This precession phenomenon arises due 

to the intrinsic angular momentum of the protons and is analogous to the precession of a 

spinning top about the gravitational field of the earth. For instance, if a top is placed on a table 

on its sharp end, it will topple over immediately. If the same top is spun about its axis prior to 

release, the top will precess about the earth’s gravitational field until it loses a significant 

portion of its angular momentum (Figure 3.1B). 

The rate of spin precession about a static magnetic field is characterized by the Larmor 

frequency (ω0). As shown in Equation 3.2, this frequency is a function of both the magnitude 

of the static B0 field and the gyromagnetic ratio (1). 

ω0 = γ · B0 (3.2) 

3.3 Radiofrequency Excitation 

The net magnetization M0 is constant and cannot be measured by the receiver coils 

because only time-varying magnetic flux that cut these coils can be detected. Therefore, radio-
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Figure 3.1: The precession of a proton's magnetic moment around the magnetic field (A) is analogous to the 

precession of a spinning top around the gravitational axis. 
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frequency (RF) pulses that are tuned to the Larmor frequency are used to tip, or rotate, the 

magnetic moments of individual spins away from the direction of the main magnetic field. 

More specifically, this RF pulse effectively rotates the M0 vector by an arbitrary flip angle 

(FA) away from the B0 field, producing a transverse component in the xy-plane, or transverse 

plane, (Mxy), and leaving part of the longitudinal component along the z-axis (Mz). 

As a side note, electrons could theoretically be imaged using MR the way protons are 

imaged, but the relationship in Equation 3.2 provides a biological limitation on imaging 

electrons in the human body. Since the value of ϒ for electrons (Section 3.1) is much larger 

than for protons, the Larmor frequency would also increase by that factor. This increase in 

frequency requires RF pulses that deposit greater amounts of energy to achieve resonance, too 

high in fact to safely use on humans. 

After the RF pulse is applied and the rotation into the transverse plane is accomplished, 

the magnetic moments of individual spins tend to realign themselves with the external 

magnetic field in a process termed magnetization relaxation. To describe using the vector 

notation introduced earlier, Mxy will tend to return to its initial value of zero while Mz will tend 

to return to its initial value of M0. 

To summarize the process of acquiring signal in MRI, the net magnetization of all spins 

is initially aligned with the external magnetic field before an RF pulse is used to rotate part or 

all of the magnetization into the transverse plane. RF coils are then used to detect the electrical 

signals induced as the transverse magnetization precesses about the z-axis. 

The electrical signals produced in the RF coils are recorded in MR imaging space 

known as k-space (more details in Section 3.6). The MR image is then most commonly 

reconstructed from the imaging space data by utilizing an inverse Fourier transform of the k-
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space data. The intensity at any given location in an MR image is a function of the 

concentration of 1H nuclei (i.e. proton density) and the underlying chemical properties that 

affect magnetization relaxation. There are two mechanisms through which magnetization 

relaxation of MR signals occurs: transverse (Section 3.4) and longitudinal (Section 3.5).  

3.4 Transverse Decay 

As mentioned above, the transverse magnetization will tend to relax back to its initial 

value of zero. This relaxation is also known as transverse decay because it describes the loss 

of magnetization in the transverse plane that occurs as a result of the return to the equilibrium. 

The first-order differential equation that governs the transverse relaxation process is shown in 

Equation 3.3, where Mxy represents the component of the magnetization vector M in the 

transverse plane, while T2
* and R2

* respectively represent the time constant and the rate 

constant for this exponential decay. Since they are reciprocals, T2
* and R2

* can be used 

interchangeably to describe the transverse decay phenomenon. 

dMxy

dt
   = -

Mxy

T2
*

= -(Mxy) · R2
*  (3.3) 

Transverse decay occurs as a result of the dephasing (Figure 3.2) of the spins giving rise to 

Mxy. This dephasing can result due to the inhomogeneity in the static field B0 and due to the 

interactions of spins with each other (1). 

One mechanism for transverse magnetization decay is through B0 inhomogeneity. 

Slight variations in the static B0 magnetic field are caused by the presence of the patient inside 

the MRI scanner. As suggested by Equation 3.2, this inhomogeneity causes the precession 

frequency to vary based on position. The differences in the precession frequencies, in turn, 

cause the spins of interest to be out-of-phase with respect to each other, lowering the magnitude 

of the magnetization vector Mxy. The time constant associated with this relaxation is denoted 
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by T2’ whereas the corresponding relaxation rate is denoted by R2’. This type of transverse 

decay is known as reversible decay because certain RF pulses can be used to bring spins back 

in-phase at a future time-point prior to signal acquisition. 

Differences in precession frequencies can also occur due to spin-spin interactions. 

Since individual spins impose their own individual magnetic moments, there exists a minute 

magnetic field around each spin. The effect of the magnetic field of one spin on the surrounding 

spins changes the magnetic field experienced by those spins, resulting in dephasing. This type 

of transverse decay is known as irreversible decay because it cannot be reversed using MR 

sequence techniques. The time constant associated with this relaxation is denoted by the spin-

spin relaxation time T2 while the corresponding relaxation rate is denoted by R2. T2 relaxation 

is influenced by the underlying chemical structure. Values of T2 are much shorter for solids 

(on the order of μs) and much longer for liquids (on the order of s). 

The resulting transverse decay time (T2
*) and the corresponding transverse relaxation 

rate rate (R2
*) can be computed as shown in Equations 3.4 and 3.5. 
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Figure 3.2: After RF excitation, the magnetic moments of the spins (blue) produce a net magnetization vector 

(gold) in the xy-plane (A). Differences in the precession frequencies cause a dephasing effect that lowers the 

net magnetization (red) (B). 
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1

T2
*

   =
1

T2
+

1

T2
'
 (3.4) 

 

R2
*    = R2 + R2

'  (3.5) 

 

The evolution of Mxy as a result of the transverse decay is illustrated in Figure 3.3. The changes 

in the transverse magnetization observed are as seen in the curve associated with T2* decay 

unless an aforementioned technique is used to reverse the dephasing effects of B0 

inhomogeneity (1). 

3.5 Longitudinal Recovery 

Longitudinal magnetization relaxation is also known as longitudinal recovery because 

it describes the recovery of the magnetization along the longitudinal axis (parallel to the static 

magnetic field). Equation 3.6 shows the first-order differential equation that governs the 

longitudinal relaxation process, where Mz represents the component of the magnetization 
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Figure 3.3: The decay of transverse magnetization associated with T2* 

(blue) is faster than the decay associated with T2 (gold). 
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vector along the longitudinal axis, T1 represents the time constant for this relaxation, and R1 

represents the corresponding relaxation rate, illustrated in Figure 3.4. 

dMz

dt
   =

M0-Mz

T1
= (M0-Mz) · R1 (3.6) 

T1 and R1 are known as the spin-lattice relaxation time and the spin-lattice relaxation rate, 

respectively, because the energy deposited by the RF excitation is dissipated into the 

surrounding molecules, or the lattice (1). Since they are reciprocals, T1 and R1 can be used 

interchangeably to describe the longitudinal recovery phenomenon. 

3.6 Pulse Sequences and Image Acquisition 

An MRI pulse sequence is the collective execution of system components in order to 

achieve excitation and signal acquisition. One of the most basic sequences in MRI is the 

gradient recalled echo (GRE) sequence. In a typical GRE-based sequence, RF excitation is 

used to tip the magnetization of spins located in a particular volume of interest by a certain flip 

angle from the longitudinal axis. After a short time passes and a certain amount of relaxation 
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Figure 3.4: The recovery of longitudinal magnetization associated with 

T1 (blue) is exponential and approaches the equilibrium magnetization. 
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occurs, signal is acquired from these spins and reconstructed into an MR image of that volume. 

This MR signal, and consequently the resulting image, is a function of the number of spins 

present in the volume, or proton density (ρ), and the relaxation phenomenon discussed in 

Sections 3.4 and 3.5. 

GRE pulse sequences can be used to acquire images in 2D, where the volume of interest 

consists of a slice, or in 3D, where the volume of interest consists of a slab. In 2D imaging, the 

slice to be acquired is isolated using magnetic gradient fields, known as the slice-select 

gradient (GSS). These gradients slightly alter the static B0 magnetic field along a given axis. 

While this axis can be chosen to lie in any direction, the longitudinal axis (z) parallel to the B0 

field is used most commonly. According to Equation 3.2, changing the B0 value along an axis 

in a predictable manner causes the frequency of the spinning protons to exhibit a certain pattern 

according to their position along that axis. The magnitude and the sign of this slice-select 

gradient can be used to alter the Larmor frequency across the patient. The RF pulse, which is 

tuned to the frequency corresponding to the slice of interest, is applied concurrently and, 

depending on the desired flip angle, tips a certain percentage of the magnetization in that slice 

to the transverse plane. Similarly, gradients applied in the transverse place, known as the read-

out gradient (GRO) and the phase-encoding gradient (GPE), are used to encode the frequency 

based on location within each slice. A frequency domain table, termed k-space, is then built up 

by changing GPE and GRO. Later, the k-space for each slice is transformed into an image using 

the inverse 2D Fourier transform. Conventionally, the time from the center of the RF pulse to 

the center of the acquisition window is known as the echo time (TE) because the spins will be 

fully refocused at that time by the judicious use of the gradient waveform. The time between 

one RF excitation and the next is known as the repetition time (TR). 



28 
 

In 3D MR imaging, the excited region consists of all of the spins in the field-of-view 

of the RF transmitting coil. In the case of head and neck imaging, an RF coil would be used to 

excite the region of the body superior to the shoulders. The three gradients, named after each 

principal direction (Gx, Gy, and Gz), are then used to manipulate which part of the 3D k-space 

is filled out with MR signal data. Once the acquisition is complete, the 3D k-space data is 

transformed into a 3D image using the inverse 3D Fourier transform. Figure 3.5 illustrates an 

example of a 3D GRE pulse sequence (1). 

3.7 Shortcomings of MR in Attenuation Correction 

In this chapter, the origin of MRI signals and their dependence on water proton density 

and tissue magnetization relaxation characteristics has been described. As discussed in Chapter 

2, the linear attenuation coefficients that reflect the probability of attenuation of PET photons 

are a function of tissue electron density. A shortcoming of MR is that it cannot be used to safely 

image electrons in vivo due to the tremendous amount of RF energy required (Section 3.3). 
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Figure 3.5: Pulse sequence diagram for a conventional 3D GRE sequence. 
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This fundamental mismatch between the source of MR signal and the cause of attenuation 

results in the difficulties encountered in MR-based attenuation correction (MRAC). 

Furthermore, bone is the primary biological attenuator of PET photons per unit volume in the 

body and exhibits higher LAC values than any other tissue. Bone also exhibits some of the 

highest R2* and R1 values observed in biological tissues. In conventional MR sequences, such 

as the GRE sequence discussed in Section 3.5, where the echo times are on the order of tens 

of ms, signal from bone decays almost completely before signal acquisition. This renders 

conventional MRI relatively useless for imaging bone tissue. Recent advances in hardware 

have allowed for the shortening of TE values to a few μs. This allows acquisition of signal to 

begin much faster and signal from bone tissue to be captured before it decays completely. 

These extremely short TEs are the biggest advantage offered by ultrashort echo time (UTE) 

MR imaging. 

3.8 Ultrashort Echo Time Imaging 

The shortest TEs offered by UTE-MRI pulse sequences can be achieved using a 3D 

GRE sequence with a radial acquisition of k-space data. 3D radial acquisition allows for the 

acquisition of signal to begin as soon as possible after the RF excitation without the need to 

wait for further encoding by gradients. Figure 3.6 illustrates a pulse sequence for a standard 

3D UTE sequence. In UTE imaging, the TE is defined as the time between the center of the 

RF pulse and the time at which the center of k-space is sampled. Since there are no pre-phasing 

gradients used, the center of k-space is sampled right at the beginning of the gradient ramp-up. 

UTE sequences can be utilized to image any region of the body and can be manipulated to 

collect the information necessary to compute R1 and R2
*. Since bone tissue exhibits the fastest 

relaxation rates of any tissue, these parameters could aid in identification of bone for PET 
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attenuation correction. This approach, particularly the use of relaxation rate R2
*, forms the 

foundation upon which many of the existing MR-based attenuation correction methods in 

existence today are based (Chapters 4-6). 

 

Figure 3.6: Pulse sequence diagram for 3D UTE GRE sequence. 
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CHAPTER 4: EXISTING METHODS 

4.1 Overview 

Initial studies investigating MRI-based or MRI-compatible (MRAC) methods for PET 

photon attenuation correction were conducted long before the first hybrid PET/MRI system 

was introduced to the market (1). The level of attention given to this problem is a testament to 

both the potential benefits of PET/MRI systems and to the anticipated challenge of using MRI 

to perform attenuation correction. To that end, there are several classes of methods that have 

been proposed to derive the attenuation maps necessary for attenuation correction in hybrid 

PET/MRI systems: PET-based methods (2, 3), template-based methods (4), atlas-based 

methods (5, 6), segmentation-based methods (7, 8, 9), and mapping-based methods (10). Once 

these attenuation maps are generated for each patient, they can be used to make the correction 

for attenuation during the reconstruction step of PET data processing pipeline. 

4.1 PET-based Methods 

The first class of methods aims to produce attenuation maps using PET data alone, 

either by adding a rotating radiation source into the PET/MRI system for transmission imaging 

(as is done in stand-alone PET systems) (2) or by utilizing emission PET data and statistical 

algorithms to derive the attenuation map necessary for correction (3). One of these algorithms 

is the maximum likelihood reconstruction of activity and attenuation (MLAA) method. In this 

method, the activity distribution along with the corresponding attenuation map are 

simultaneously estimated using an iterative process. Both methods are collectively referred to 

as PET-based attenuation correction methods and will not be discussed further in this 
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dissertation since they possess certain limitations crippling their chances of being adopted into 

standard practice. For example, transmission PET methods require either major modifications 

to existing systems or the insertion of an external component that would reduce the bore size 

available to place the patient. While the vendor currently employs the MLAA method to derive 

portions of patient attenuation maps that are outside of the MR field-of-view, emission based 

methods are also typically not utilized for the entire attenuation map due to poor accuracy. 

4.2 Template-based Methods 

Template-based approaches also employ PET-derived information in order to derive 

the attenuation map, but this information is not acquired directly from the patient being imaged. 

Instead, the attenuation map is derived from a template image which is acquired using a 

transmission scan on a single test subject or is an average over attenuation maps acquired from 

multiple subjects. An MR image of the template subject (or average MR image over all 

template subjects) is co-registered with the corresponding PET attenuation map. This template 

MR image, as illustrated in Figure 4.1, is then registered to the patient’s MR image and the 

corresponding transformation is applied to the template attenuation map to derive an estimate 

Figure 4.1: Representative flow chart for template-based MRAC methods (11). 
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of the patient’s attenuation map. These approaches are fairly simple but their accuracy depends 

on the underlying assumption that the template image can be deformed into the patient’s MR 

image with sufficient accuracy. Any major differences in anatomy would have a detrimental 

effect on the accuracy of these methods. 

4.3 Atlas-based Methods 

Atlas-based methods (5, 6) typically rely on a precompiled atlas of paired MR and CT 

images and a complex algorithm to generate an artificial CT image (pseudo-CT) from patient 

MR images. These pseudo-CTs are subsequently converted to PET attenuation maps through 

the same piecewise linear scaling operation used in CT-based attenuation correction (CTAC). 

An example of an atlas-based method is one developed by Yasheng Chen et al. (2014) 

which is outlined in Figure 4.2 and briefly described here. This method employs an atlas of 

Figure 4.2: A flow chart of the derivation of pseudo CTs using the PASSR method (6). 
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paired T1-weighted MR and CT images and a T1-weighted MR image of the patient in question. 

Since bone and air appear alike in conventional MR images, such as T1-weighted images, air 

classification was addressed first. Air segmentation is achieved using a Markov random field 

(MRF) approach on regions classified as potentially belonging to air by atlas-derived 

probabilistic air maps. The candidate air space is defined as all voxels with a probability of air 

greater than 20%. Then, a two class MRF segmentation is utilized within the candidate air 

space to perform the final classification for air voxels. Finally, CT-HU values are assigned to 

these values by averaging the CT-HU values of all atlas CT images that classified a particular 

voxel as air. 

For soft tissue and bone regions, a patch-based sparse regression approach is used to 

estimate the CT-HU values. A template patch (Pt) is defined as a 3D volume around a given 

voxel in the patient’s MR image and a search was conducted to select the most relevant patch 

among all patches (PMR) available in corresponding regions of the atlas MR images. This is 

accomplished using an elastic net method and the minimization of Equation 4.1 to derive the 

weighting (α) of each atlas patch on the template patch. 

min
1

2
‖Pt- αPMR ‖2 + λ1‖α‖ + λ2‖α‖2  (2.1) 

The values of λ1 and λ2 represent the weighting terms for the sparse and ridge regression terms, 

respectively. This approach produces a pseudo CT for the patient based on the MR and CT 

images from the atlas. The pseudo CT is then scaled to a PET attenuation map using a 

conversion equation from PET/CT. This method was named PASSR (for Probabilistic Air 

Segmentation and Sparse Regression) and was validated using a leave-one-out approach in 20 

subjects. In this study, the PASSR method yielded a sample mean absolute percent error 
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(MAPE) value of 2.42% with a standard deviation of approximately 1% in whole-brain when 

PET reconstructions using this method were compared to PET reconstructions performed using 

the gold standard CT-based method. 

 The advantages of this method are that it emphasizes local information and provides 

highly accurate PET reconstructions. A significant drawback is that the attenuation maps 

require a lengthy amount of time (mean computation time = 10.5 hours) to be generated (6). 

Furthermore, variations in the patient’s anatomy cannot be accurately captured unless this 

variation is represented in the atlas. These drawbacks are common among atlas-based methods 

in general and exhibit a need for simpler, more patient-specific MRAC methods (11). 

4.4 Segmentation based Methods 

Segmentation-based approaches utilize MR images and segmentation algorithms to 

classify the voxels present in the FOV into a number of tissues. Each tissue is then assigned an 

LAC value that most closely represents all voxels of that tissue. These approaches differ from 

their atlas-based counterparts in that they are generally quick and generate attenuation maps 

from patient MR images alone (patient-specific) (12). Initial approaches utilized conventional 

MR images, such as T1-weighted images, and existing algorithms, such as k-means clustering, 

to perform the segmentation. Next, methods using Dixon-based fat/water separation were 

presented (13, 14), but the lack of bone delineation adversely affects the accuracy of these 

methods in the head and neck region. 

Recently, UTE-MRI sequences have been proposed as a means of identifying bone 

tissue, which is difficult to distinguish using conventional MRI (Chapter 3). These  approaches 

utilized dual-echo UTE (DUTE) methods to identify regions of bone by examining differences 

in images acquired with and without bone signal present (first and second echo, respectively). 
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Keereman et al. (7) used an approach based on R2* signal decay between the first and second 

echoes to identify regions of bone and a region-growing approach to identify regions of air. 

Catana et al. (8) used arithmetic operations on DUTE images after normalization to identify 

regions of bone and air. Berker et al.  (9) presented a method that distinguishes bone/air regions 

using arithmetic operations on UTE images and differentiates fat/water regions using a Dixon-

based separation. Two advantages of segmentation-based methods, relative to atlas methods, 

are shorter computation time and better representation of inter-patient anatomical variation. 

However, segmentation-based methods tend to produce less accurate PET reconstructions 

compared to atlas-based methods (12). This reduced accuracy may result from incorrect 

segmentation of tissues and/or the homogeneous representation of bone LACs. Therefore, a 

method that provides better segmentation of tissues as well as a continuous-valued LAC 

representation of bone tissue without significantly improving computation time would be 

advantageous. 

4.5 Mapping-based methods 

 Mapping-based approaches are relatively novel and utilize the segmentation of UTE-

MRI images as a pre-cursor before assigning continuous-valued LACs to one or more tissues 

in the field-of-view using primarily patient MR information. Although the possibility of using 

R2* information to estimate CT values was postulated by Delso et al. (15), the first method 

utilizing this approach was presented by Cabello et al. (10). In this method, R2* values in bone 

were normalized and empirically mapped to PET LAC values based on the mode and standard 

deviation of the R2* value. Additionally, an intensity equalization step was used to match the 

intensity histogram of the R2* method to that of the CT-based method. 
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Recently, a method based on water- and fat-suppressed proton projection imaging 

(WASPI) utilizing a zero echo time (ZTE) sequence was proposed to measure bone density for 

the purposes of PET attenuation correction (16). WASPI suppresses most fat and water signals, 

leaving only signal from the short-T2 components present in the bone matrix. ZTE imaging 

provides acquisition at an echo time of essentially zero, allowing for acquisition of signal short-

T2 tissues that are missed by UTE imaging. Image intensities from this technique were 

correlated with LAC values and were used to provide continuous-valued attenuation 

coefficients for bone. PET reconstructions from this method better agreed with CT-based 

reconstructions than the vendor-provided method. 

Another recent method from Wiesinger et al. (17) also utilizes a ZTE sequence along 

with sequence parameters that enabled proton density weighting. The negative log of the image 

intensities from this sequence were correlated to CT-Hounsfield units and were proposed as a 

means to derive continuous-valued LACs for all tissues of the head. While this method is 

presented as a potential MR-based attenuation correction approach, no PET results were 

reported in this study. 

4.6 Vendor-provided Methods 

 Two commonly used vendor-provided MRAC methods are the Dixon-based method 

(vDixon) and the UTE-based method (vUTE). Both of these correction methods fall under the 

umbrella of segmentation-based approaches with similarities to the methods presented by 

Martinez-Moller et al. (vDixon) (13) and Catana et al. (vUTE) (8), respectively. The vDixon 

method employs in- and opposed-phase MR images to derive classifications for air, adipose 

tissue, and soft tissue before assigning a single LAC value to represent all voxels of each class. 

While these methods are not as accurate as some of the other methods described here, they are 



39 
 

utilized by the vendor in PET/MRI systems in part due to the rapid computation time of the 

attenuation maps.  

4.7 Summary 

 There are many classes of MRAC methods that have been proposed in literature, 

including atlas-based, segmentation-based, and mapping-based methods. Atlas-based 

approaches suffer from lengthy computation times while segmentation-based approaches 

suffer from lack of accuracy, in part due to the assumption of LAC homogeneity in tissues. 

While the three mapping-based methods discussed in Section 4.5 have made some progress in 

addressing this limitation, they have yet to be rigorously tested on PET data from large numbers 

of patients. The methods proposed in this dissertation are among the first in the mapping-based 

class of methods and employ a segmentation of UTE-MRI images to provide attenuation maps 

with continuous-valued LACs initially for bone (Chapter 5) and eventually for brain and 

adipose tissue as well (Chapter 6). Furthermore, these methods have been extensively tested, 

using PET data from large numbers of subjects that span two academic centers. 
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CHAPTER 5: CAR-RiDR 

5.1 Overview 

There are two major components of mapping-based MRAC methods: the acquisition 

of MR images using specialized sequences and the processing of those images to form the PET 

attenuation maps. The goal of this initial study was to utilize images acquired from standard 

vendor-provided sequences to develop an improved attenuation map processing scheme for 

use in PET/MRI neurological studies. Specific aims include accurately identifying regions of 

bone and air and providing continuous-valued attenuation coefficients for bone via the MR 

relaxation parameter R2
*. A manuscript summarizing this study was recently published in 

Neuroimage (1), and a version of that manuscript has been adapted for inclusion in this 

dissertation as follows. 

5.2 Materials and Methods  

5.2.1 Image Acquisition and Pre-processing 

PET/MRI and CT datasets were obtained from 98 subjects (mean age [± standard 

deviation]: 66 years [±9.8], 57 females, 3 with very mild dementia) at Washington University 

in St. Louis, MO using an IRB-approved protocol and with informed consent. No participants 

had comorbidities that could interfere with testing, and participants did not receive additional 

radiotracer administrations within 24 hours. The enrollment exclusion criteria included 

contraindications to PET, PET/CT, or PET/MRI (e.g. electronic medical devices, inability to 

lie still for long periods), known claustrophobia, pregnancy, and breast-feeding. 
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18F-Florbetapir (Amyvid [Avid], Eli Lilly, Indianapolis, IN) PET images were acquired for 

each subject on a hybrid PET/MRI system (Biograph mMR, Siemens AG, Erlangen, 

Germany). Subjects were injected with 352±29 MBq of 18F-Florbetapir tracer, and PET 

acquisitions were begun either immediately or 50 minutes after injection. CT images of the 

head were acquired separately using a PET/CT system (Biograph 40 PET/CT, Siemens AG, 

Erlangen, Germany). Images were acquired at 120 kVp with a voxel size of 0.59×0.59×3.0 

mm3 and a matrix size of 512×512×74. The CT and PET/MRI images were acquired within 

8.3±6 days of each other with no surgical procedures in between. All images were de-identified 

before being transferred off-line for image analysis.  

DUTE images were acquired using the VB18 version of the UTE AC sequence 

provided by the vendor. This sequence is considered a “work-in-progress” (WIP). The 

following imaging parameters were used: repetition time (TR)/echo time 1 (TE1)/echo time 2 

(TE2) = 2300/0.07/2.46 ms, acquisition time = 1 min 40 sec, flip angle = 10, FOV = 300 mm2, 

and voxel size = 1.56×1.56×1.56 mm3. Two-point Dixon images were acquired using the 

vendor-provided Dixon-VIBE AC sequence with the following imaging parameters: 

TR/TE1/TE2 = 2300/1.23/2.46 ms, acquisition time = 18 sec, flip angle = 10, and voxel size 

= 2.6×2.6×3.12 mm3. T1-weighted MR (T1-MR) images were acquired using a 3-dimensional 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence with the following imaging 

parameters: TR/TE = 2300/2.95 ms, inversion time = 900 ms, acquisition time = 5 min 11 sec, 

flip angle = 9, number of partitions = 176, FOV = 256 mm2, and voxel size = 1×1×1.2 mm3.

 Prior to processing, the CT and MR images of each subject were first transformed into 

μ-map space (i.e. Dixon image space) as required by the vendor-provided PET reconstruction 

program (e7tools, Siemens Medical Solutions, Knoxville, TN). To achieve this transformation, 
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the CT, T1-MR, and DUTE images of each subject were registered to the corresponding in-

phase Dixon image (already in μ-map space) using a 6-parameter rigid model and mutual 

information as implemented by the FSL Toolbox (FMRIB, Oxford, United Kingdom). 

Registration was performed instead of resampling because, in addition to performing 

resampling, registration also accounts for any shift in subject position between scans. The 

results of these registrations were manually inspected to ensure good alignment. Images were 

also inspected for artifacts, and it was found that 89 of 98 subjects exhibited some level of 

dental artifacts. These artifacts were left uncorrected in order to derive attenuation maps as 

they are often produced in a clinical setting. All intermediate images derived from the MR data 

were first computed in their native space and subsequently transformed to μ-map space.  

5.2.2 Tissue Segmentation 

Accurate identification of bone is of paramount importance for two key reasons: 1) it 

is prominently present in the head, and 2) it has higher LACs than other tissues. In addition, 

there are three other regions of interest in the head that must be properly identified: air, fat, and 

soft tissue.  R2
*, Dixon-Fat, Dixon-Water, and iUTE images were used as intermediate images 

to segment bone, fat, soft tissue, and air, respectively, using simple thresholding. Figure 5.1 

A 

D 

B 

E 

C 

F 

Figure 5.1: Sample slices from T1 (A) and CT (B) are 

shown here along with corresponding slices from R2
* (C), 

Dixon-Fat (D), Dixon-Water (E), and iUTE (F), 

respectively. 
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shows the T1 (Figure 5.1A), CT (Figure 5.1B), and the four intermediate images (Figure 5.1 

C-F). 

Air. Since regions of air exhibit the lowest signal intensities in the UTE echo 1 (UTE1) 

image, the intermediate image for air (Figure 5.1F) was acquired by computing the voxel-wise 

multiplicative inverse of the UTE1 image (iUTE). The iUTE images were then normalized to 

their 99th percentile value before a simple threshold (cutoff = 0.06) was applied to segment air. 

The cutoff threshold for air in iUTE images was determined using histogram analysis 

to preferentially select air voxels over bone and CSF voxels and was identical for all subjects. 

The UTE sequence parameters produce sufficiently high contrast between air and the rest of 

the head in the iUTE images, as shown in Figure 5.1F, to provide consistently good air 

segmentation across subjects. 

Bone. Regions of bone exhibit faster transverse decay characteristics compared to soft 

tissue. Therefore, the R2
* map for each subject was computed in a similar manner as in (2) via 

Equation 5.1. These R2
* maps were used as the intermediate images for bone segmentation 

(Figure 5.1C). UTE1/TE1 and UTE2/TE2 represent the images/echo times from the first and 

second echoes of the DUTE sequence, respectively. 

𝑅2
∗ =

ln(3 ∙ 𝑈𝑇𝐸1) − ln (𝑈𝑇𝐸2)

𝑇𝐸2 − 𝑇𝐸1
  (5.1) 

 

Unusually low voxel intensities in the UTE1 image, presumably due to eddy current effects, 

resulted in negative R2
* values in some brain regions. To perform a correction for this 

phenomenon in post-processing, the UTE1 image of each subject was scaled by an empirically-

determined factor of three during R2
* computation (Equation 5.1). This was the smallest factor 

that ensured most brain voxels displayed a higher signal intensity in the UTE1 image than in 
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the UTE2 image, resulting in positive R2
* values. This scaling was performed only for the 

computation of the R2
* maps, and the mention of UTE1 elsewhere in this work refers to the 

original acquired images. Due to the noisy nature of the R2
* images, voxels classified as air 

were removed from the R2
* image prior to thresholding for bone. A simple threshold (cutoff = 

550 s-1) was then applied to the R2
* maps to identify regions of bone. This threshold value, 

which is slightly higher than the threshold used by Keereman et al.(2), was chosen to select as 

many bone voxels as possible while minimizing the number of fat and CSF voxels included. 

As with the threshold for air, the cutoff threshold for bone segmentation was identical for all 

subjects in the study. 

Adipose and Soft Tissue. The fat and water images computed by the vendor-provided 

Dixon sequence were used as the intermediate images for adipose (Figure 5.1D) and soft tissue 

(Figure 5.1E) segmentation, respectively. Simple thresholds were used to segment both 

adipose (cutoff = 250) and soft tissue (cutoff = 150). A head mask was derived through binary 

and morphological operations on the UTE1 image, and any voxel in the mask not already 

classified as air, bone, adipose tissue, or soft tissue was given a classification of soft tissue. If 

a voxel was segmented as both adipose and soft tissue, the adipose tissue class was given higher 

priority. This classification of adipose and soft tissue also serves to reduce erroneous 

classifications in noisy regions of R2
* images. Thus, the proposed segmentation method is 

hereby referred to as R2
* and iUTE-based segmentation with Dixon-based Refinement (RiDR). 

5.2.3 Mapping CT-Hounsfield units using MR parameter R2
*  

As previously noted, MR signal intensities have no direct correlation with LAC values. 

However, certain MR decay parameters may be associated with attenuation coefficients. The 

parameter R2
* represents the rate constant of MR signal decay following RF excitation. R2

* 
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incorporates both the transverse irreversible relaxation rate R2 as well as the reversible 

relaxation rate R2’. Recent studies investigating the microstructure of bone have shed light on 

the R2 characteristics of the different water domains present in bone. According to Horch et al. 

(3), water present in porous domains (lower density) of cortical bone exhibits a lower R2 value 

than water present in collagen-bound domains (higher density). Since R2 is a component of 

R2
*, we postulate that R2

* values should provide a reasonable measure of bone density, and 

thus, LAC values. 

Regression analysis was performed between R2
* and CT-Hounsfield unit (CT-HU) 

values for each subject using data from voxels classified as bone by both modalities. For CT, 

any voxel with a value greater than 100 HU was classified as bone (4). This relatively low CT 

threshold was chosen to provide a complete characterization of the relationship between R2
* 

and CT in bone. For R2
*, any voxel with a value greater than 500 s-1 was classified as bone (2), 

which is slightly lower than the R2
* threshold used for the segmentation. This lower value was 

chosen to include as many bone voxels as possible when deriving a relationship between MR 

Figure 5.2: A mean R2* vs CT-HU scatter plot derived from 97 subjects using a leave-

one-out approach suggests a sigmoid relationship. 
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R2
* and CT-HU with the knowledge that misclassifications will be minimized after intersection 

with the CT classification, a luxury not available during segmentation. 

CT = D +
A − D

[1 + (
R2

∗

C )
B

]

G  
(5.2) 

 

Due to high levels of noise present in the R2
* maps, a voxel-by-voxel comparison 

between R2
* and CT-HU was avoided. Instead, the following spatially-mapped binning 

approach was followed. For each subject, the R2
* values of bone voxels were sorted 

numerically and divided into 100 bins, each containing an equal number of voxels. For all 

voxels within an R2
* bin, the CT-HU values were matched through spatial correspondence 

from the aligned CT image. The mean R2
* and CT-HU values of each bin were then computed 

and plotted for the first 98 bins. The last two bins were excluded due to high levels of noise. A 

five-parameter sigmoid model (Equation 5.2) was fit to the mean data using the following 

parameters and conventions: A = lower horizontal asymptote, B = steepness (positive), C = 

inflection point, D = higher horizontal asymptote, and G = asymmetry of steepness (5). 

In order to validate the regression model, a “leave-one-out” procedure was employed. 

For each subject, an R2
* vs. CT-HU curve was generated from the remaining 97 subjects using 

the procedure described in the preceding paragraph. The sigmoid model was derived for a 

given subject by fitting data (MATLAB and “Five Parameter Logistic Regression”, MATLAB 

Central File Exchange, The Mathworks, Inc., Natick, MA) from the remaining 97 subjects, 

which produced a conversion equation to estimate CT values from R2
*. A sigmoid relationship 

derived for an example subject (Figure 5.2) indicates a strong (r2=0.95) correlation between 

mean R2
* and CT-HU values. This conversion, dubbed the continuous-valued attenuation 



49 
 

coefficients from R2
* (CAR) method, was then employed to generate the bone portion of the 

PET attenuation maps. 

5.2.4 Formation of Attenuation Maps 

 Two attenuation maps were generated for each subject: the gold standard CT-based 

map and the map derived from the proposed CAR-RiDR method. The vendor-provided Dixon-

based attenuation map was not included due to known poor performance resulting from 

ignoring bone (6, 7).  

 As presented by Carney et al.(8), the gold standard CT-based map (µCT) was derived 

for each subject through piecewise linear scaling of the subject CT image. As shown in 

Equation 5.3, voxels with values < 50 HU (air-tissue mix) were scaled differently than voxels 

with values ≥50 HU (tissue-bone mix). 

Below 50 𝐻𝑈:  𝜇 =  9.6 × 10−5 ∙ (𝐻𝑈 +  1000)𝑐𝑚−1 

𝐴𝑏𝑜𝑣𝑒 50 𝐻𝑈:  𝜇 = 5.1 × 10−5 ∙ (𝐻𝑈 + 1000) + 4.71 × 10−2 𝑐𝑚−1 

 

(5.3) 

 The RiDR segmentation for bone, air, fat, and soft tissue was used as the basis for the 

proposed attenuation map (µCAR-RiDR). First, each tissue class (excluding bone) was assigned a 

constant PET LAC value:  air = 0 cm-1 (9), fat = 0.092 cm-1
 (10), and soft tissue = 0.1 cm-1 (11). 

Next, R2
* values in voxels classified as bone were converted to CT-HU values using the CAR 

relationship. These estimated CT values were translated to PET attenuation coefficients using 

the same piecewise linear scaling (8) employed by the gold standard method. 

The vendor-provided UTE (vUTE) attenuation map is derived from a previously 

published segmentation-based method (9). This map (μvUTE) provides classifications for bone, 

air, and soft tissue and uses constant LAC values (0.151 cm-1, 0 cm-1, and 0.1 cm-1, 

respectively) for each class. 
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5.2.5 PET Data Reconstruction 

PET data for all subjects were acquired from both the head and neck regions. However, 

acquired CT images had inadequate coverage of the neck region, resulting in gold standard 

attenuation maps that did not capture the entire PET FOV. This discrepancy in imaging 

coverage was addressed by replacing affected slices in the gold standard map with slices from 

the vendor-provided MR Dixon-based attenuation map, which provided full coverage of the 

head and neck. To ensure fair comparison, this replacement was also performed in the µCAR-

RiDR and μvUTE maps. 

The e7Tools program was used to reconstruct raw list-mode PET data. For each subject, 

two reconstructions were performed, one using each attenuation map. PET images were 

reconstructed using an ordered subset expectations maximization (OSEM) algorithm with 3 

iterations and 21 subsets to a standard clinical voxel size of 2.09 x 2.09 x 2.03 mm3 and image 

size of 344 x 344 x 127. Data from six subjects were excluded from PET reconstruction either 

due to problems with the PET acquisition (n=3) or due to failure of the Dixon fat/water 

classification (n=3). Analysis of segmentation and PET results was performed on the remaining 

92 subjects. 

5.2.6 Data Analysis 

The analysis in this study was designed according to previously presented guidelines 

(12) for evaluating MR-based attenuation correction methods and was conducted using 

MATLAB software. 

RiDR segmentations of bone and air were derived for each subject using the procedure 

described in Section 5.2.2. CT segmentations were derived from CT images by classifying 

voxels greater than 300 HU as bone and voxels less than -500 HU as air (9). The segmentation 
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accuracy of the MR methods (RiDR and vUTE) was analyzed by computing Dice coefficients 

(Equation 5.4) for bone and air segmentations with respect to the CT-based method. The 

numerator of Equation 5.4 isolates the intersection, or overlap, between MR and CT 

classifications, while the denominator corresponds to the total number of voxels identified by 

both modalities. The sample mean and standard deviation (SD) of the Dice coefficients were 

then computed for the RiDR method. 

Dice 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 ∙ (𝑀𝑅 ∩ 𝐶𝑇)

𝑀𝑅 + 𝐶𝑇
 (5.4) 

 

The strength of the regressions in Section 5.2.3 was measured by the coefficient-of-

determination (r2), and the accuracy of the model to estimate bone CT-HU values was 

evaluated via a percent-error comparison with acquired CT images. In order to study the 

improvement provided by the R2
* to CT-HU conversion, the accuracy of assigning a single CT 

value to all bone voxels was also evaluated. First, the CT-HU value corresponding to the 

routinely assigned LAC value of 0.151 cm-1 (9) was found through Equation 3 to be 1037 HU. 

Next, a percent-error computation was performed between the CT-HU values of bone voxels 

and this constant value. The mean percent-error across subjects was computed for the CAR 

method and the constant method to gauge the improvement provided by the CAR method. 

Percent-error maps were computed for PET images reconstructed with the MR-based 

attenuation map (PETCAR-RiDR and PETvUTE) against PET images reconstructed with the gold 

standard (PETCT). From these error maps, the mean absolute percent-error (MAPE) in whole-

brain (Equation 5.5) was computed for each subject, similar to (13), followed by the sample 

mean and SD. In order to measure the range of errors, the difference between the 95th and 5th 

percentiles was computed for each subject, followed by the sample mean and SD. 
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MAPE (%) =

∑ 100 ∙
|𝑃𝐸𝑇𝐶𝐴𝑅−𝑅𝑖𝐷𝑅 − 𝑃𝐸𝑇𝐶𝑇|𝑖

(𝑃𝐸𝑇𝐶𝑇)𝑖

𝑛
𝑖=1

∑ 𝑖𝑛
𝑖=1

  
(5.5) 

 

In addition to error maps, voxel-wise correlations between CT-based reconstructions 

and MR-based reconstructions were also computed. The PETCT signal intensities of brain 

voxels were plotted against the corresponding PETCAR-RiDR voxel intensities for each subject. 

Linear regressions were performed, and the slopes of the resulting “lines-of-best-fit” were used 

to further characterize the accuracy of the proposed method.  

 The ICBM 2009c nonlinear symmetric brain atlas (McConnell Brain Imaging Centre, 

Montreal, Canada), which contains detailed anatomical labeling, was chosen to define several 

regions-of-interest (ROIs) for regional PET error analysis. This atlas was aligned to subject 

PET images through a series of nonlinear (ANTS, PICSL, Philadelphia, PA) and linear (FSL 

Toolbox, FMRIB, Oxford, United Kingdom) registrations using patient T1-MR images. Once 

aligned, 24 brain regions (Figure 5.7) were selected and the MAPE calculations were repeated 

for these ROIs. 

 In order to visualize the directionality of the errors (under vs. overestimation) in these 

ROIs, the mean percent-error (MPE) was computed for all ROIs (Equation 5.6) in each subject, 

followed by the sample mean across subjects. Box-and-whisker plots were generated for these 

sample mean data for each ROI, and outliers were defined as subjects with errors larger in 

magnitude than 1.5 times the interquartile (75th – 25th percentile) range (IQR).  

MPE (%) =

∑ 100 ∙
(𝑃𝐸𝑇𝐶𝐴𝑅−𝑅𝑖𝐷𝑅 − 𝑃𝐸𝑇𝐶𝑇)𝑖

(𝑃𝐸𝑇𝐶𝑇)𝑖

𝑛
𝑖=1

∑ 𝑖𝑛
𝑖=1

  
(5.6) 
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2.6.5 Statistical Analysis 

 The statistical comparisons between results were analyzed using two-tailed paired 

Student’s t-tests. A result was considered to be statistically significant when the p-value of the 

t-test was less than 0.05. 

5.3 Results 

5.3.1 Segmentation of Bone and Air 

Mean Dice coefficients (±SD) across subjects for the RiDR method were 0.75 (±0.05) 

for bone and 0.60 (±0.08) for air. The corresponding values for the vUTE method were 0.36 

(±0.09) for bone and 0.52 (±0.07) for air. The Dice coefficients for both bone (p<10-6) and air 

(p<10-6) were significantly higher for the RiDR method compared to the vUTE method. 

Representative results for one subject (Figure 5.3) show good agreement between the proposed 

method and CT-based segmentation for both bone and air, wheras the vUTE method exhibits 

severe underestimation of bone and overestimation of air. 

Figure 5.3: Representative segmentation results from one subject for the 

RiDR method (A) and vUTE method (B) overlaid on CT for bone (left) 

and air (right). True positives (yellow), false positives (green, 

overestimation), and false negatives (red, underestimation) are shown. 

B 

A 
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5.3.2 Regression 

  The mean and SD values across all subjects of the five parameters in the sigmoid model 

derived for each subject are shown in Table 5.1. As can be seen from the low SDs exhibited 

by each of the five parameters, the parameters are highly consistent across subjects. The sample 

mean percent-error (±SD) in the estimation of CT-HU was 28.2% (±3.0) for the CAR method  

and 46.9% (±5.8) for the method employing constant CT-HU values (p<10-6). 

Table 5.1: Sigmoid Parameters 

Parameter Mean SD 

A 333.2 0.89 
B 16.9 0.15 
C 593.5 0.62 
D 1851.8 18.18 
G 0.083 0.002 

5.3.3 Attenuation Maps 

Representative slices from the attenuation maps from one subject (Figure 5.4) provide 

qualitative confirmation of accurate segmentation of bone and air voxels in the μCAR-RiDR map 

compared to μCT. By comparison, these regions are not as well-identified in the μvUTE map. 

A 

B 

C 

Figure 5.4: Sample slices from the μCT (A), μCAR-RiDR (B), 

and μvUTE (C) attenuation maps from one subject in three 

orientations. 
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Visual inspection of the μCAR-RiDR map (Figure 5.4B) provides confirmation of the accurate 

representation of continuous bone LACs using the CAR conversion method while the μvUTE 

map does not account for these differences. 

5.3.4 Whole-brain PET Errors 

The whole-brain MAPEs (±SD) value across subjects relative to the PETCT 

reconstructions were 2.55% (±0.86) for the PETCAR-RiDR reconstructions and 12.25% (±2.09) 

for the PETvUTE reconstructions (p<10-6). The differences between the 95th and 5th percentile 

(±SD) error values across subjects in whole-brain were 9.89% (±4.22) for the PETCAR-RiDR 

reconstructions and 20.93% (±9.77) for the PETvUTE reconstructions (p<10-6). The proposed 

method produced favorable error characteristics across the brain as illustrated in Figure 5.5. 

Figure 5.6 shows a scatter plot of PETCT vs. PETCAR-RiDR for a representative subject. 

As shown in Figure 5.6A, PETCAR-RiDR displays an almost one-to-one relationship with PETCT, 

indicating a good correlation between the two methods. The mean slope (±SD) across subjects 

20% 

-20% 

1% 

-1% 

A 

B 

Figure 5.5: Representative slices from percent-error maps from one patient show 

drastically reduced errors across the brain in PETCAR-RiDR (A) compared to 

PETvUTE (B). Errors between ±1% are suppressed for visual clarity. 
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of PETCT vs. PETCAR-RiDR was 0.98 (±0.03). As shown in Figure 5.6B, PETvUTE underestimates 

the true distribution, represented by by PETCT. 

5.3.5 Regional PET Errors 

 The results from ROI analysis of the mean MAPE values across subjects (Figure 5.6) 

are in good agreement with the results from the whole-brain analysis in Section 5.3.3. The 

regional MAPEs in the PETCAR-RiDR reconstructions ranged from 0.88 to 3.79% in the 24 ROIs 

studied. In contrast, the regional mean errors using the PETvUTE method ranged from 6.36 to 

22.36% in the same ROIs. The PETCAR-RiDR reconstructions were overall more accurate than 

the PETvUTE reconstructions in all ROIs studied. The variation in errors across patients is also 

drastically reduced in the proposed method compared to the vUTE method. 

5.4 Discussion  

Two of the major challenges in MR-based attenuation correction in the head are proper 

identification of bone and air and accurate estimation of bone LACs. The proposed method 

CAR-RiDR, developed to address these challenges, consists of two components. The first 

component RiDR is a method for accurate bone/air segmentation based on intermediate images 

Slope
 
= 0.99 Slope

 
= 0.89 

A B 

Figure 5.6: The lines-of-best-fit (red) displayed for a representative subject show that PETCAR-RiDR (A) 

approaches unity slope (green) when regressed with PETCT whereas PETvUTE (B) displays consistent 

underestimation. 
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derived from UTE and Dixon data. The second component CAR is a mechanism for the 

conversion of bone UTE data in the form of R2
* values to CT-HU values, which are 

subsequently translated to continuous PET LAC values. 

Segmentation-based methods for AC rely on accurate segmentation of MR images, the 

performance of which can be quantitatively measured using Dice coefficients. Based on the 

mean Dice coefficients reported in Section 5.3.1, the proposed RiDR segmentation method 

performs well in identifying both bone and air voxels. Qualitatively, visual overlap between 

CT-based segmentation and MR-based segmentations of bone and air (Figure 5.3) can be used 

to identify degree of misclassification. The RiDR method exhibits a high degree of similarity 

(yellow) with CT in regions of bone but overestimates the amount of bone (green) in sinus soft 

tissue. These errors may be due to susceptibility artifacts occurring near air-tissue interfaces, 

which result in abnormally high R2
* values and lead to classification errors. The RiDR method 

also exhibits a high degree of similarity (yellow) with CT in regions of air. 

Figure 5.7: Mean percent-errors computed in a variety of brain region ROIs show that the proposed method 

results in lower local errors than the vUTE method in all ROIs tested. The standard deviations at each ROI 

(indicated by the error bars) are also much lower for the proposed method. 
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The RiDR segmentation method employs static thresholding of four intermediate 

images in order to arrive at classifications for bone, air, fat, and soft tissue. These thresholds 

were empirically selected to minimize misclassifications, and led to low Dice coefficient 

standard deviations (Section 5.3.1) for the RiDR method. Thresholding of MR images is not 

commonly used due to the sensitivity of voxel intensities to acquisition conditions, thereby 

making inter-subject comparison of intensities difficult. The RiDR method overcomes this 

limitation by basing its segmentation in part on normalized intermediate images. For air 

segmentation, iUTE images were normalized to the 99th percentile value. For bone 

segmentation, normalization is achieved by virtue of R2
* being a physical parameter. While the 

intermediate images for fat and soft tissue were not normalized, good segmentations were still 

achieved with static thresholds. The advantage of static thresholds is they remove the need for 

operator involvement in the segmentation process and automate the RiDR segmentation 

component of the proposed method. 

The CAR method employs a five-parameter sigmoid equation to convert measured 

patient R2
* values into estimated CT-HU values in bone. The parameters for this equation were 

computed from regression analysis of CT-HU and R2
* values from a population of subjects. 

Validation of this model, which was performed using a leave-one-out strategy, revealed little 

variation (Section 5.3.2) across subjects for each of the five parameters. Thus, the conversion 

equation governing the relationship between R2
* and CT values can remain static across 

patients. These conversion parameters can be computed offline from an existing population of 

subjects, thereby automating the conversion component of the proposed method. When used 

in combination with the static thresholds from the RiDR segmentation method, static 

conversion parameters result in complete automation of the CAR-RiDR method. 
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The proposed CAR-RiDR method is a hybrid MRAC method that combines the 

quickness and robustness of segmentation-based methods with the increased accuracy 

exhibited by atlas-based methods. It differs from existing segmentation-based methods by 

providing continuous-valued LACs for bone and differs from existing atlas-based methods by 

avoiding time-consuming variants of pattern recognition methods to estimate these LACs. The 

R2
* to CT-HU conversion can be pre-defined using population data. For a given subject, this 

conversion can be directly applied to the R2
* maps without the need for image registration. As 

a result, the total computation time is extremely short (< 15 sec). This reduction in computation 

time allows for better integration of attenuation correction into the PET/MRI clinical 

workflow. 

The proposed CAR-RiDR method results in accurate PET reconstructions when 

evaluated against the gold standard CT-scaled method. Whole-brain (Figures 5 and 6) and 

regional analysis (Figure 5.7) of PET reconstruction errors demonstrates that the proposed 

method performs well across different brain regions and greatly outperforms the vUTE method 

in attenuation correction of the head. . A previous study by Burgos et al. demonstrated errors 

seen in the vUTE method, which uses a very similar VB18 WIP-UTE acquisition protocol, that 

are comparable to those seen in this study – a whole-brain error of 11.86% (14).  Burgos et al. 

employed a slightly different approach to computing whole-brain error than the method 

presented in this manuscript (MAPE). Recomputing error using their approach yields a whole-

brain error of 2.44% for the CAR-RiDR method. Based on the whole-brain error results of 

Burgos et al. and those reported in this study, it is clear the proposed CAR-RiDR method 

produces much more accurate PET reconstructions than the vendor-provided VB18 UTE-AC 

method. 
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Direct comparisons between the accuracy of the proposed method and other methods 

in literature were not performed due to differences in data and in the reference method used 

for error computations. Errors for segmentation-based methods are typically computed against 

the “silver standard” (9) CT-segmented method, while atlas-based methods are generally 

compared to the gold standard. To generate the silver standard attenuation map, a CT image is 

segmented (as opposed to scaled), and the resulting segmentation is assigned a constant LAC 

value by tissue class, including bone. The true error (i.e. error when compared to the gold 

standard) for these methods is therefore unknown. 

Recently, a few methods (13, 15) combining both atlas- and segmentation-based 

approaches have been presented. Poynton et al. (16) integrated an atlas-based tissue probability 

map into a previously presented segmentation-based method (9), improving the accuracy 

compared to the segmentation-based method alone. However, the analysis in this study was 

performed against the aforementioned silver standard. Combining T1-MPRAGE and SPM 

atlas information, Izquierdo-Garcia et al. (13) have reported a MR based attenuation correction 

method that can achieve a good accuracy in PET AC (MAPE =3.9% in the whole brain) with 

a computation time of 30 minutes per attenuation map.  Our proposed CAR-RiDR method 

produces comparable PET errors (MAPE = 2.6% in the whole brain) with a computation time 

of less than 15 seconds. 

 There are a few limitations to our study. First, UTE images (the basis for the R2
* maps 

used both for segmentation and for conversion to CT) suffer from susceptibility artifacts as 

well as noise issues. These artifacts and noise result in misclassifications of the soft tissue in 

the sinus regions (Figure 5.3A).  Additionally, images used in this study were acquired mostly 

from normal subjects at one center using the same PET/MRI and PET/CT scanners. Further 
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evaluation will be needed to determine if differences in the acquisition system or presence of 

disease states with focal lesions affect the results achieved with the proposed method. The data 

used in this study were primarily from older subjects (mean age: 66 years ± 9.8). Thus, further 

validation of the proposed method in more diverse populations is needed. Incorporation of 

additional population demographics will allow multivariable regression analysis of R2
* and 

CT-HU values, which may reveal demographic-dependent variation of the conversion 

parameters. Finally, cerebellar regions display the highest ROI errors (median MPEs of -2 to -

3%) across patients. Because of their spatial proximity to petrous bone, the cerebellar regions 

are more subject to bone/air misclassification.  This is potentially problematic in clinical 

applications where PET signal in the cerebellum is used for normalization, resulting in 

propagation of error to the rest of the brain. Therefore, caution needs to be taken in such 

normalization. 

To our knowledge, the proposed method is the first MR-based attenuation correction 

method to directly associate the MR relaxation rate R2
* with CT-HU in bone, providing 

continuous-valued attenuation coefficients for bone using only patient information. A previous 

study (4) examined a joint histogram of R2
* maps and co-registered CT images and noted a 

potential relationship for voxels with a CT value of greater than 100 Hounsfield units (HU), 

i.e. bone. However, until now, there have been no MR-based attenuation correction methods 

presented that estimate LAC values for bone based on R2
* values. The proposed method has 

been shown to be highly accurate, producing < 3% error in whole-brain. Moreover, our method 

greatly decreases the spatial variations of PET errors as evidenced by the reduction in the 

difference between the 95th and 5th percentiles of the PET errors (Section 5.3.4). In contrast to 

other studies of experimental MRAC methods reported in literature, the accuracy of the CAR-
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RiDR method has been validated using data from a large number of subjects (n = 92). Based 

on the large dataset used, we can be confident that the results presented in this study are a good 

measure of the performance of the method.  

5.5 Conclusions 

In summary, we propose an MR-based attenuation correction method (CAR-RiDR) 

for use in quantitative PET neurological imaging. The CAR-RiDR method employs UTE and 

Dixon images and consists of two novel components: 1) accurate segmentation of air and 

bone using the inverse of the UTE1 image and the R2
* image, respectively and 2) estimation 

of continuous LAC values for bone using a regression between R2
* and CT-HU. From our 

analysis, we conclude the proposed method closely approaches (< 3% whole-brain error) the 

gold standard CT-scaled method in PET reconstruction accuracy. Additionally, the required 

UTE images can be acquired quickly (~ 1.5 min), and the attenuation maps can be computed 

rapidly (< 15 sec), allowing for ease of incorporation into the PET/MRI clinical work flow. 
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CHAPTER 6:  TESLA 

6.1 Overview 

The CAR-RiDR attenuation correction method presented in Chapter 5 possesses many 

favorable characteristics such as low errors in the whole-brain (< 3 %), rapid computation time 

(< 15 sec), and full automation (1). However, there are certain limitations to this method 

(Section 5.4) that should be addressed. 

First, segmentation of R2
* images results in major misclassifications in the sinus regions 

due to susceptibility effects near air-tissue interfaces. These artifacts occur near tissue 

boundaries where the magnetic susceptibility of the tissues varies greatly. Magnetic 

susceptibility represents the degree to which a particular tissue/material is magnetized in 

response to the B0 magnetic field imposed by the MRI scanner. In the sinus regions of the head, 

there are many locations where air and soft tissue, which possess vastly different magnetic 

susceptibilities, are adjacent. The result is lower-than-expected signal intensities in the soft 

tissue regions of the sinuses due to more rapid dephasing. The image acquired at the second 

echo time of the UTE sequence is more severely affected by this phenomenon than the image 

acquired at the first echo. Thus, the R2* values in these soft tissue regions are artificially 

elevated, resulting in a misclassification as bone. 

The next limitation of the CAR-RiDR method is that images acquired at the first echo 

time in the DUTE sequence experience greater detrimental effects from eddy currents 

compared to images acquired at the second echo time. This is due to the acquisition of data 

during the ramp-up portion of the gradient waveforms (Chapter 3) and results in regions where 
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the signal is lower at the first echo time compared to the second. Therefore, the R2
* values 

computed by measuring the signal decay from the first to the second echo will be negative in 

these regions. This effect is especially detrimental in soft tissue regions. The CAR-RiDR 

method overcomes this by empirically scaling the first UTE image, but such a correction is 

approximate and the resulting R2
* values may not represent the true values. Furthermore, any 

change made to the UTE sequence by the vendor that alters the distribution of image intensities 

could require further manipulation of this scaling factor. 

Third, R2
* images are very noisy and result in over-classification of many soft and 

adipose tissue regions as bone. A Dixon-based separation technique can be used to separately 

identify soft and adipose tissues for the purpose of refining the R2*-based segmentation (as is 

done in the CAR-RiDR method), but this requires an image acquisition with an additional 

sequence. 

Finally, the heterogeneity of soft and adipose tissue LAC values has not been 

thoroughly addressed by any current method. In the brain, LAC differences between gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) have been assumed to be 

negligible and, therefore, not likely to affect the accuracy of attenuation correction if 

represented by a single LAC value. In the CAR-RiDR method, it was not possible to address 

the heterogeneity of soft tissue LACs because no relationship was observed between R2
* and 

CT-HU values in soft tissue. However, since photon attenuation is a function of both LAC 

values and the thickness of tissue (Chapter 2), the sheer amount of brain tissue present could 

introduce errors into the PET reconstruction if a homogeneous LAC distribution is assumed 

for all soft tissue types. 
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The goal of this study was to address these limitations of the CAR-RiDR method. The 

first aim was to streamline the image acquisition in order to acquire all necessary images using 

one sequence. This would simplify the image acquisition and reconstruction process, reducing 

the likelihood of operator error. The second aim was to improve the CAR-RiDR attenuation 

map processing method by better utilizing the new information provided by the sequence 

modifications. Specifically, priority was given to providing continuous-valued attenuation 

coefficients not just to bone but to adipose and soft tissues as well. 

6.2 Materials and Methods 

6.2.1 Modifications to UTE Sequence 

Many approaches were examined when determining which sequence structure would 

be the optimal one for use in this application. First, an inversion recovery UTE (IR-UTE) 

sequence along with phase-sensitive reconstruction was considered. This sequence would 

allow for the separation of bone and adipose tissue by selectively nulling the adipose tissue 

using inversion recovery prior to RF excitation. However, the RF pulses needed to perform the 

magnetization inversion deposit large quantities of energy into the patient, requiring repetition 

times that are too long to be clinically feasible. Next, the structure of the UTE sequence was 

modified, to what is known as balanced steady-state free precession (bSSFP) due to the 

A B 

Figure 6.1: Images from spoiled GRE sequences (A) are not as affected 

by susceptibility artifacts (arrow) as images from bSSFP sequences (B). 
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reported insensitivity of this sequence to eddy current effects (2). However, images from this 

sequence introduce additional problems such as severe susceptibility artifacts in regions of the 

brain that are not adjacent regions of air (Figure 6.1). Thus, the vendor-provided UTE 

sequence, which utilizes a spoiled GRE approach, was used as the basis for the proposed 

sequence. 

The vendor-provided UTE sequence consists of a 3D radial GRE acquisition scheme 

with the following parameters:  echo times (TEs) = 0.07 ms/2.46 ms, repetition time (TR) = 12 

ms, flip angle (FA) = 10°, radial spokes (Kr) = 25,000. While these sequence parameters are 

the ones used to acquire images in the CAR-RiDR method, they may not be optimal for 

obtaining the information needed for every MRAC method. In this study, we determine the 

optimal values for these parameters in order to acquire the most appropriate images for 

developing accurate attenuation maps. This analysis was conducted using simulations of the 

signal equation (Equation 6.1) associated with the GRE sequence, where C is a scalar and M0 

is the magnitude of the equilibrium magnetization. 

S(FA) =
C*M0* sin(FA) * (1-e-

TR
T1) *e

-
TE

T2*

1-e-
TR
T1* cos(FA)

 (6.1) 

The first parameter examined was the repetition time. The vendor-provided UTE 

sequence employs a TR of 12 ms which is much longer than the second echo time (2.46 ms) at 

which data is acquired. Reducing the TR allows for a shorter total acquisition time but also 

results in a decrease in MR signal. Through signal calculations using Equation 1, it was found 

that lowering the TR from 12 ms to 9 ms results in a reduction in signal of approximately 
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12.5% but allows for a 25% reduction in acquisition time. Therefore, the value for TR for the 

new sequence was reduced to 9 ms. 

The second parameter considered was the flip angle of the sequence. Since the image 

from the first echo time suffers greatly from eddy current effects, the R2
* values that are 

computed from the first to second echo are not quantitatively reliable. Therefore, utilizing the 

longitudinal relaxation rate R1 may be more beneficial. Since R1 represents the recovery of 

longitudinal magnetization through thermal exchange with the lattice (Chapter 3), it could be 

an indicator of tissue density since protons present in high density environments can more 

easily encounter atoms in the surrounding lattice. There are many methods that can be used to 

compute R1 including inversion recovery and saturation recovery approaches. The approach 

utilized in this study was a variable flip angle (VFA) approach where images are acquired at 
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Figure 6.2: A plot of relative signal vs. flip angle is shown here for a TR = 9 ms. 



70 
 

two different flip angles keeping all other parameters constant. Since the gradient structure of 

the two acquisitions should be identical, the differences in eddy current effects across the two 

images should be minimal. Therefore, the computation of R1 should be more quantitatively 

reliable than the computation of R2*. 

Theoretically, any two (or more) flip angles may be chosen for the computation of R1. 

This flexibility was strategically utilized to optimize another component from the CAR-RiDR 

processing method. Previously, the reciprocal of the UTE1 image was used to identify regions 

of air. However, the threshold was carefully chosen in order to avoid selecting CSF and bone 

voxels, which also display low signal intensities in the UTE1 image due to the flip angle of the 

sequence used (FA = 10°). GRE signal simulations were used once again to determine whether 

a better separation of air from CSF and bone would be possible if the flip angles are 

strategically chosen. Using the results of the simulation (Figure 6.2), it was determined that 

flip angles of 3° and 25° would be optimal for this purpose. At a flip angle of 3°, CSF exhibits 

high signal, whereas bone exhibits low signal; the opposite is true at a flip angle of 25°. 

Meanwhile, regions of air should exhibit low signal in images acquired using both flip angles. 

Therefore, the flip angles chosen for the sequence were 3° and 25°. 

The third parameter examined was the second echo time (TE2). Currently, the value 

chosen for TE2 causes signals from fat and water protons, which have slightly different Larmor 

frequencies, to be in-phase during signal acquisition. Therefore, adipose tissue and soft tissue 

cannot be readily separated by examining signal differences between the images at TE1 and 

TE2. Increasing the value of TE2 to 3.69 ms allows for the acquisition of signal at a time when 

fat and water signals are 180° out-of-phase. A two-point Dixon technique could then be used 
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on these images, eliminating the need for images from a separate Dixon acquisition. For this 

reason, the value of TE2 was raised to 3.69 ms. 

The last parameter that was examined was the number of radial lines acquired. 

Currently, 25,000 k-space lines are acquired in a multi-shot (multiple lines per RF excitation) 

approach that requires an acquisition time of 1 min and 40 sec. Thus far, the proposed sequence 

requires two acquisitions of the UTE sequence (one at each flip angle) and does not utilize a 

multi-shot approach. Therefore, it would be advantageous to reduce the number of radial lines 

acquired in order to minimize the total acquisition time. The number of radial lines chosen (Kr 

= 13,000) is approximately half of the original number and provides comparable image quality 

with minimal blurring effects (Figure 6.3). 

The proposed sequence (dubbed DUFA for Dual-echo UTE with variable Flip Angles) 

acquires data according to the following parameters:  echo times (TEs) = 0.07 ms/3.69 ms, 

repetition time (TR) = 9 ms, flip angles (FA) = 5°/25°, radial lines (Kr) = 13,000. The total 

acquisition time is 3 min 54 sec. 

6.2.2 Data Acquisition 

Imaging data were acquired from subjects enrolled in an Alzheimer’s dementia study 

at Washington University Hospitals (St. Louis, MO). PET, MRI, and CT datasets were 

A B 

Figure 6.3: The image on the left was acquired with 25,000 radial 

lines (A) while the image on the right was acquired with 13,000 

k-space lines. 
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prospectively obtained from 36 patients (mean age [range]: 75 yrs [59 89]; 14 females) using 

an IRB-approved protocol and with informed consent. 18F-Florbetapir (Amyvid [Avid], Eli 

Lilly, Indianapolis, IN) PET images and MR images were acquired on a hybrid PET/MR 

system (Biograph mMR, Siemens, Erlangen, Germany). Patients were injected with 

approximately 370 MBq of the 18F-Florbetapir tracer, and PET acquisitions were begun either 

immediately after injection or 50 minutes after injection. Patients did not have any 

comorbidities that could interfere with testing, and did not receive any other PET injections 

within 24 hours. The enrollment exclusion criteria included contraindications to PET, PET/CT 

or PET/MR (e.g. electronic medical devices, inability to lie still for long periods), known 

claustrophobia, pregnant or breast-feeding. 

T1-weighted MR (MPRAGE) images were acquired using an MPRAGE sequence with 

the following imaging parameters: Repetition Time (TR)/Echo Time (TE) = 2300/2.95 ms, 

Inversion Time (TI) = 900 ms, flip angle = 9, number of partitions=176, field-of-view (FOV) 

= 256 mm2 and a voxel size of 1×1×1.2 mm3. The vendor-provided UTE (vUTE) MRAC 

images were acquired with the following imaging parameters: TR/TE1/TE2 = 12/0.07/2.46 ms, 

flip angle = 10, field-of-view (FOV) = 300 mm2 and a voxel size of 1.56×1.56×1.56 mm3. 

The attenuation maps generated from these images were also utilized in the study. The 

proposed DUFA sequence was used to acquire UTE images (DUFA-UTE) with the following 

parameters: TR/TE1/TE2 = 9/0.07/3.69 ms, flip angles = 3/25, FOV = 300 mm2 and a voxel 

size of 1.56x1.561.56 mm3. These images will be referred to hereby with the following naming 

convention: FAFlip AngleUTEEcho Number. 

CT images of the head were acquired separately using a PET/CT system (Biograph 40 

PET/CT, Siemens, Erlangen, Germany) with 120 keV, 25 effective mAs, a voxel size of 
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0.59×0.59×3.0, and a matrix size of 512×512×74. Images acquired using the DUFA-UTE 

sequence suffered from poor signal in some regions in the anterior portion of the head such as 

the mouth and neck. This was due to the RF receiver coil in this area not being switched on 

prior to acquisition. Furthermore, a pre-scan calibration that is typically done to correct for 

different RF coil sensitivities was not performed. As a result, the acquired images (Figure 6.4) 

displayed signal degradation in the affected regions that hindered the accurate computation of 

R1 as well as the Dixon decomposition. In order to correct for this degradation, two sets of 

images were acquired on a template subject using the DUFA-UTE sequence. The first set was 

acquired using the same RF coil set-up as the clinical data with no pre-scan normalization. The 

second set was acquired using an identical RF coil set-up with pre-scan normalization. For 

each of the four images acquired using the DUFA-UTE sequence, a ratio image was computed 

between the second set of images to the first set. The DUFA-UTE images of each patient from 

the clinical data were then multiplied by the corresponding ratio image derived from the 

template subject. This correction was performed prior to any processing of patient images. 

 

Figure 6.4: Regions in images acquired using the 

DUFA-UTE sequence displayed signal loss in 

anterior portions of the head. 
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All images were de-identified before being transferred offline for image analysis. For 

each subject, the MPRAGE and CT images were rigidly registered to the corresponding 

FA3UTE1 image via a rigid body transformation with mutual information using the ‘FLIRT’ 

command in the FSL toolbox (FMRIB, Oxford, United Kingdom). 

6.2.3 Identification of Tissues 

 A mask of the head and neck region was formed using a threshold of the FA25UTE1 

image, followed by connected component analysis and morphological operations to isolate the 

subject from background. The four images produced (FA3UTE1, FA3UTE2, FA25UTE1, 

FA25UTE2) from the DUFA sequence were then used strategically to produce intermediate 

images for the segmentation of bone, air, brain tissue, soft tissue and adipose tissue. 

Air. In the FA3UTE1 images, bone and air appear alike, and in the FA25UTE1 images, 

CSF and air appear alike. The multiplicative inverse of these images, iUTE3 and iUTE25 

respectively, were computed and normalized to their respective 99th percentile values. Initially, 

a simple threshold (iUTE3 cutoff = 0.2; iUTE25 cutoff = 0.4) was applied to each iUTE image 

to separately segment air. Next, the intersection of the classifications for air from each flip 

A B 

Figure 6.5: The iUTE3 image (A) displays large intensities in areas 

of bone (blue) and air (red), while the iUTE25 image (B) displays 

large intensities in regions of csf (purple) and air (red). 
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angle was taken to produce the final classification for air. The iUTE images from each flip 

angle are displayed in Figure 6.5. 

Bone. An estimate of the longitudinal relaxation rate R1 was computed using a linear 

fit of the signal acquired in the UTE1 images at two different flip angles (Equation 6.2). 

Y = e-
TR
T1*X + M0* (1-e-

TR
T1) ;         X =

S

tan(FA)
, Y =

S

sin(FA)
 (6.2) 

An estimate of the transverse relaxation rate R2
* was also computed using the FA25UTE1 and 

FA25UTE2 images acquired using a flip angle of 25° as previously described (1) but without 

the need for empirical scaling of the UTE1 image. Bone tissue exhibits faster longitudinal 

magnetization recovery and faster transverse magnetization decay compared to other 

biological tissues, as seen in Figure 6.6. This allows for the R1 (cutoff = 7 s-1) and R2
* (cutoff 

= 200 s-1) images to be thresholded independently for the identification of bone. The 

intersection of these thresholds was then used to produce the final classification for bone. 

Brain tissue. Brain tissues are difficult to distinguish using R2
* since there are minimal 

differences in transverse decay rates between the tissues. However, R1 can be readily used to 

separate GM, WM, and CSF. Empirically determined thresholds of R1 were used to separate 

CSF (0 s-1 < R1 < 1.25 s-1), GM (1.25 s-1 < R1 < 2.25 s-1), and WM (2.25 s-1 < R1 < 4.5 s-1). 

A B 

Figure 6.6: The R1 image (A) and the R2* image (B) display large 

intensities in areas of bone (red). 
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Voxels between R1 = 4.5 s-1 and R1 = 7 s-1 were classified as general soft tissue. Sample results 

from this segmentation are shown in Figure 6.7A. 

 Adipose tissue. Adipose tissue segmentation was performed in two stages. First, 

potential regions were identified using a simple threshold (cutoff = 7 s-1) of the R1 image. Next, 

a Dixon decomposition was used to refine the initial segmentation. Intermediate images were 

computed from the UTE1 (in-phase) and UTE2 (opposed-phase) images acquired using both 

flip angles (Equation 6.3). Sample adipose tissue intermediate images are displayed in Figure 

6.8 for a representative subject. 

Dixon1 =
FA3UTE1-FA3UTE2

2
;  Dixon2 =

FA25UTE1-FA25UTE2

2
; 

Dixon3 =
FA25UTE1 + FA25UTE2

2
 

(6.3) 

The segmentation of adipose tissue from R1 was then refined by combining the thresholds of 

each intermediate Dixon image (Equation 6.4). 

Adipose = [(Dixon1 > 150) ∩ (Dixon2 > 500)] ∪ (Dixon3 > 1000) (6.4) 

A B 

Figure 6.7: The R1 image (A) enables good separation of GM (red), 

WM (blue), and CSF (purple) while the R2* image (B) shows 

minimal contrast between these tissues. 
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Any voxels in the head mask that were not classified as bone, air, brain, or adipose 

tissue, were assigned a general soft tissue classification. When segmentations overlapped, air 

classifications were given first priority over all other tissues. In addition, in cases of overlap 

between adipose tissue and bone, adipose tissue classification was prioritized. 

6.2.4 Assignment of LAC values 

Figure 6.8: The Dixon1 (A), Dixon2 (B), and Dixon3 (C) images allow for the refinement 

of adipose tissue (red) segmentation. 

A B C 
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Figure 6.9: The scatter plot of mean R1 values vs. CT-HU values in bone tissue shows a 

logarithmic relationship. 
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It has long been assumed that MR signals have no direct correlation with PET LAC 

values, but certain MR relaxation parameters may be used to estimate the corresponding 

attenuation coefficients. Previously, R2* has been used to estimate the LAC values of bone (1, 

3). However, no attempts have been made thus far to produce continuous-valued attenuation 

coefficients for soft tissue and adipose tissue. Since R1 is a measure of interaction of hydrogen 

protons with the surrounding lattice, we employ R1 as a means to estimate density (as measured 

by CT- Hounsfield units) of bone as well as soft tissue and adipose tissue. 

Regression analysis was performed between R1 and CT-HU values for each subject 

using tissue masks formed by combined segmentations from each modality and is similar to 

the procedure described in Chapter 5. A brief description is provided here for convenience. A 
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Figure 6.10: The scatter plot of mean R1 values vs. CT-HU values in brain tissue shows a piecewise 

linear relationship with separate conversions for CSF (red), GM (blue), and WM (green). 
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spatially-mapped binning approach was followed for the regression. For each subject, the R1 

values of each tissue were sorted numerically and divided into 100 bins, each containing an 

equal number of voxels. For all voxels within an R1 bin, the CT-HU values were matched 

through spatial correspondence from the aligned CT image. The mean R1 and CT-HU values 

of each bin were plotted for all 100 bins for all patients using a leave-one-out approach. This 

procedure was repeated for the data a second time while sorting by the CT-HU values. The 

mean R1 and CT-HU values derived from both methods were averaged and plotted for bins 10-

90. Relationships between R1 and CT-HU were discerned from these plots and statistical 

models were chosen empirically based on the plots. A linear model (Equation 6.4) was fit to 

the mean data for CSF, GM, WM, (Figure 6.10) and adipose tissue (Figure 6.11), while a 

logarithmic model (Equation 6.4) was fit to the mean data for bone (Figure 6.9). The fit 

parameters for each tissue are displayed in Table 6.1. 

Linear Fit:  CT = a*R1 + b;   Log Fit:  CT = a* log(R1) + b 
(6.4) 

 

Tissue a b 

Cerebrospinal Fluid 40.35 -8.78 

Gray Matter 29.60 -21.9 

White Matter 12.36 -5.48 

Adipose Tissue 3.48 -99.89 

Bone 1045.4 -1888 

 

Voxels belonging to the general soft tissue class were simply assigned a constant value of 42 

HU. After the estimation of the CT values for each tissue using Eq. 4, both the actual CT 

Table 6.1: Representative fit parameters for one subject.  
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images and the pseudo-CTs produced from the R1 regression were scaled to PET LAC values 

according to a previously established procedure used in PET/CT systems (Equation 6.5).  

Below 50 HU:  μ =  9.6 × 10-5 ∙ (HU +  1000)cm-1 

Above 50 HU:  μ = 5.1 × 10-5 ∙ (HU + 1000) + 4.71 × 10-2 cm-1 

(6.5) 

This MRAC method was dubbed the T1-Enhanced Segmentation and assignment of Linear 

Attenuation coefficients (TESLA). 

6.2.5 PET Image Formation 

The vendor-provided e7Tools program was used to reconstruct PET data present either 

in raw list-mode or raw sinogram formats. For 28 out of 36 subjects, reconstructions were 
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Figure 6.11: The scatter plot of mean R1 values vs. CT-HU values in adipose tissue shows a 

weak linear relationship. 
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performed using the CT-based map (μCT), the map from the TESLA method (μTESLA), the map 

from the CAR-RiDR method (μCAR-RiDR), and the vendor-provided attenuation map (μvUTE). 

The vendor-provided map was acquired from the scanner and utilized the VB20 version of the 

UTE sequence and attenuation map processing protocol. PET images were reconstructed using 

an ordered subset expectations maximization (OSEM) algorithm with 3 iterations and 21 

subsets to a standard clinical voxel size of 2.09 x 2.09 x 2.03 mm3 and image size of 344 x 344 

x 127. PET data from 8 of the remaining subjects was not reconstructed either due to issues 

with the compatibility of the attenuation map header information or due to image registration 

problems. 

PET and UTE-MR data for all subjects were acquired from a full head and neck FOV. 

The CT images, however, had inadequate coverage of the neck region. This discrepancy was 

addressed by replacing affected slices in the CT-based map with slices from the vendor-

provided UTE-based attenuation map, which provides full coverage of the head and neck. This 

step was also performed in the map derived from the TESLA and CAR-RiDR methods for the 

sake of fair comparison, but is not required as the DUFA sequence also provides full coverage 

of the head and neck region. 

6.2.6 Data Analysis 

PET Image Formation. Percent error maps were computed for the PET images 

reconstructed using the TESLA method (PETTESLA), the CAR-RiDR method (PETCAR-RiDR), 

and the vendor-provided method (PETvUTE) against the PET images reconstructed using the 

CT-based method (PETCT). The mean absolute percent-error (MAPE) was computed (Equation 

6.4) in the whole-brain as well as in 24 ROIs identified using the ICBM 2009c nonlinear 

symmetric brain atlas (McConnell Brain Imaging Centre, Montreal, Canada). This atlas was 
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first aligned to subject MPRAGE images using the ANTS software package (PICSL, 

Philadelphia, PA). The atlas in MR-space was then aligned to PET images using the FSL 

Toolbox (FMRIB, Oxford, United Kingdom) using MPRAGE images that were transformed 

to PET space as the target. 

MAPE (%) =

∑ 100 ∙
|PETCAR-RiDR-PETCT|i

(PETCT)i

n
i=1

∑ in
i=1

   , n = # of voxels   (6.4) 

Statistics. Statistical analysis of the proposed method’s accuracy in LAC estimation 

and PET image reconstruction was conducted using two-tailed paired Student’s t-tests with 

statistical significance indicated by p-values of less than 0.05. 

6.3 Results 

 6.3.1 Tissue Segmentation 

Figure 6.12: Segmentation results from one subject using a CT-based method (A), the 

TESLA method (B), and the vUTE method (C). 

A B C 
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Representative results for one subject show good agreement between the TESLA 

method (Figure 6.12B) and CT-based segmentation (Figure 6.12 A) for regions of bone, 

whereas the vUTE method (Figure 6.12C) displays underestimation of bone near the sinuses 

and misclassification of some brain regions as bone. 

Representative results for one subject show good agreement between the TESLA 

method (Figure 6.13B) and CT-based segmentation (Figure 6.13 A) for regions of air as well, 

whereas the vUTE method (Figure 6.13C) displays significant overestimation of air in the 

maxillary sinus regions. 

A B 

Figure 6.14: Segmentation results from one subject using the TESLA 

method (A) and the corresponding slice from the T1-MPRAGE 

image (B). 

A B C 

Figure 6.13: Segmentation results from one subject using a CT-based method (A), the TESLA 

method (B), and the vUTE method (C). 
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A visual comparison of the segmentation results from the TESLA method (Figure 

6.14A) and the corresponding slice from the T1-MPRAGE image (Figure 6.14B), which 

provides good soft tissue contrast, shows that the TESLA method is capable of accurately 

identifying regions of GM, WM, and CSF.  

6.3.2 Regression 

Table 6.2: Mean (± SD) of fit parameters across subjects.  

Tissue a b 

Cerebrospinal Fluid 40.55 (± 0.22) -8.89 (± 0.23) 

Gray Matter 29.58 (± 0.11) -21.8 (± 0.19) 

White Matter 12.39 (± 0.09) -5.56 (± 0.28) 

Adipose Tissue 3.46 (± 0.11) -100 (± 1.44) 

Bone 1049 (± 6.01) -1897 (± 15.4) 

   

The mean (±SD) across subjects of the fit parameters in the regression model derived 

using a “leave-one-out” approach for each tissue are shown in Table 6.2. As can be seen from 

the low SDs, the parameters are highly consistent across subjects.  

6.3.3 Attenuation Maps 

Representative slices from the attenuation maps from one subject (Figure 6.14) provide 

further confirmation of accurate segmentation of bone and air in the μTESLA map compared to 

μCT. By comparison, these regions are not as well-identified in the μvUTE map.  
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Visual inspection of the μTESLA map (Figure 6.15) provides confirmation of the accurate 

representation of continuous LACs for brain tissue using the TESLA method while the μvUTE 

map does not account for these differences. 

6.3.4 Whole-brain PET Errors 

A B C 

Figure 6.15: Sample attenuation maps shown from μCT (A), μTESLA (B), and μvUTE.(C). 
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Figure 6.16: Sample percent-error maps for one subject for PETTESLA (A) and 

PETCAR-RiDR (B) and PETvUTE (C). Errors within +/- 1% are suppressed. Errors 

larger than +/- 20% were floored to +/- 20%. 
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The whole-brain MAPEs (±SD) value across subjects relative to the PETCT 

reconstructions were 2.53% (± 0.70) for the PETTESLA reconstructions, 2.59% (± 0.70) for the 

PETCAR-RiDR reconstructions, and 7.63% (± 1.71) for the PETvUTE reconstructions. The whole-

brain MAPEs for the PETTESLA reconstructions were significantly different from the PETvUTE 

(p<0.01). The differences between the 95th and 5th percentile (±SD) error values across subjects 

in whole-brain were 8.51% (± 1.15) for the PETTESLA reconstructions, 10.19% (± 1.80) for the 

PETCAR-RiDR reconstructions, and 13.70% (± 2.48) for the PETvUTE reconstructions. The 

proposed TESLA method produces difference values that are significantly lower compared to 

both the CAR-RiDR and vUTE methods. Sample percent-error distributions for one subject 

are shown in Figure 6.16. 

Figure 6.17 shows a scatter plots of PETCT vs. PETTESLA and PETCT vs. PETvUTE for a 

representative subject. As shown in Figure 6.16A, PETTESLA displays an almost one-to-one 

relationship with PETCT, indicating a good correlation between the two methods. This behavior 

was also observed for the CAR-RiDR method. The mean slope (±SD) across subjects was 0.99 

(±0.01) for PETCT vs. PETTESLA and 0.99 (±0.01) for PETCT vs. PETCAR-RiDR. In contrast 

A B 

Figure 6.17: Voxel-wise scatter plots of PETCT vs. PETTESLA (A) and PETCT vs. PETvUTE (B) brain voxel 

intensities from a representative subject are shown here. The unity slope (green line) indicates a case with ideal 

correlation. The line of best bit for each plot is indicated by the red line. 
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(Figure 6.17B), PETvUTE underestimates the true PET distribution, as represented by PETCT. 

The mean slope (±SD) across subjects of PETCT vs. PETTESLA was 0.91 (±0.02). 

6.3.5 Regional PET Errors 

 The results from ROI analysis of the mean MAPE values across subjects (Figure 6.18) 

are in good agreement with the results from the whole-brain analysis in Section 6.3.4. The 

regional MAPEs ranged from 0.89% to 2.63% in the PETTESLA reconstructions and 0.92% to 

3.14% in the PETCAR-RiDR reconstructions in the 24 ROIs studied. In contrast, the regional mean 

errors using the PETvUTE method ranged from 2.39% to 9.87% in the same ROIs. The PETTESLA 

reconstructions were overall more accurate than the PETvUTE reconstructions in all ROIs 

studied. The variation in errors across patients is also drastically reduced in the TESLA method 

compared to the vUTE method. Comparing the TESLA method with the CAR-RiDR method, 

the differences in mean MAPEs were statistically significant (p<0.05) in 9 out of the 24 ROIs 
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Figure 6.18: Mean absolute percent-errors for PETvUTE (blue), PETCAR-RiDR (red), and PETTESLA (orange) 

computed inside 24 ROIs. The error bars represent one standard deviation of the mean. 
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studied. The TESLA method outperformed the CAR-RiDR method in 8 of these regions which 

included several deep gray matter structures. 

6.4 Discussion 

The proposed method TESLA method improves on its predecessor, the CAR-RiDR 

method, by optimizing the UTE acquisition scheme and by modifying the processing protocol 

to better utilize the acquired images. The structure of the UTE sequence was modified by 

increasing the number of flip angles to 2, increasing the second echo time, reducing the TR, 

and reducing the number of k-space lines acquired. The processing protocol was modified by 

segmenting soft tissue CSF, GM, and WM in addition to bone, adipose tissue and soft tissue. 

Furthermore, a mechanism is provided for the conversion of R1 values of bone, CSF, GM, 

WM, and adipose tissue to CT-HU values, which are subsequently translated to continuous 

PET LAC values. 

The goal of this study was to address certain limitations of the R2
*-based CAR-RiDR 

attenuation correction method presented in Chapter 5. First, the R2
* computed using the dual-

echo UTE images, particularly UTE2, suffer from susceptibility artifacts near air-tissue 

interfaces, resulting in major overestimations of bone in these regions due to artificially high 

values of R2
* in these regions (Figure 6.19A). Since both images used in the computation of 

A B 

Figure 6.19: Over-classifications of bone in the soft tissue regions of the 

sinuses is reduced in the TESLA method (B) compared to the CAR-RiDR 

method (A). 
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R1 are acquired during the first echo of the UTE sequence, the differences in the effects of 

susceptibility artifacts are minimal. Thus, the segmentations derived using the TESLA method 

do not exhibit the misclassification of tissue near the air-tissue boundary as bone (Figure 

6.19B). 

Next, the R2
* computation was modified in order to roughly account for eddy current 

effects, which resulted in lower-than-expected image intensities. These eddy current effects 

are more prevalent in the UTE1 image than in the UTE2 image because image the acquisition 

of data at the first echo time is begun while the gradient is still being ramped up. This is not 

the case for the second echo time. The computation of R1 is not as severely affected by this 

phenomenon because both images used are acquired during the first echo time with the same 

gradient waveforms. Thus, the effects of eddy currents are expected to be approximately the 

same across the UTE1 images of both flip angles. 

Third, the CAR-RiDR method employs a Dixon-MRI acquisition in addition to a UTE 

acquisition in order to perform a refinement for the the R2
*-based bone segmentation. While 

this extra acquisition is fairly quick (18 sec), it requires an alignment of the Dixon images to 

the UTE images before the fat/water information can be utilized in the segmentation process. 

This alignment step requires time and introduces a source of error into the segmentation results. 

Furthermore, it has been reported that the fat/water separation from Dixon-VIBE sequence 

fails to properly segment fat and water tissues in about 8% of patients (4). In these cases, the 

CAR-RiDR method cannot produce an accurate attenuation map since it relies on the Dixon-

based refinement to correct overestimations of bone. The TESLA method overcomes these 

problems by computing the necessary fat/water information directly from the UTE images. 

Since the UTE1 image is acquired at an echo time where fat and water signals are essentially 
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in-phase and the UTE2 image is acquired at an echo time where fat and water signals are 180 

degrees out-of-phase, these images can be used to refine the bone segmentation. 

Finally, the CAR-RiDR method provides continuous-valued LACs for bone tissue but 

does not address the heterogeneity of soft tissue and adipose tissue LAC values. This is due to 

the fact that no relationship was found between the R2
* values of soft tissue and their 

corresponding CT-HU values. In the TESLA method, a relationship was derived for soft and 

adipose tissues using the longitudinal relaxation rate R1. First, R1 values were used to segment 

brain tissue into CSF, GM, and WM. Next, a spatially-matched binning approach was used to 

derive a relationship between R1 and CT-HU inside each of these tissues as well as bone and 

adipose tissue. The results (Figures 6.9 - 6.11) showed that a linear relationship exists between 

R1 and CT-HU values of CSF, GM, WM, and adipose tissue, while a logarithmic relationship 

exists between the R1 and CT-HU values of bone tissue.  

The TESLA segmentation method employs static thresholding of six intermediate 

images in order to arrive at classifications for bone, air, CSF, GM, WM, adipose tissue and 

general soft tissue. These thresholds were empirically selected to minimize misclassifications. 

Thresholding of MR images is not commonly used due to the sensitivity of voxel intensities to 

acquisition conditions, thereby making inter-subject comparison of intensities difficult. The 

TESLA method overcomes this limitation by basing its segmentation in part on normalized 

intermediate images. For air segmentation, iUTE3 and iUTE25 images were normalized to the 

99th percentile value. For bone segmentation, normalization is achieved by virtue of R1 being 

a physical parameter. While the intermediate images for fat and soft tissue were not 

normalized, good segmentations were still achieved with static thresholds. The advantage of 
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static thresholds is they remove the need for operator involvement in the segmentation process 

and automate the segmentation component of the TESLA method. 

The parameters for the equations for the conversion from R1 to CT-HU were computed 

from regression analysis on data from a population of subjects. Validation of this model, which 

was performed using a leave-one-out strategy, revealed little variation across subjects for the 

fit parameters of each tissue type. Thus, the conversion equation governing the relationship 

between R1 and CT values can remain static across patients for each tissue type. These 

conversion parameters can be computed offline from an existing population of subjects, 

thereby automating the LAC assignment component of the TESLA method. When used in 

combination with the static thresholds from the segmentation component, static conversion 

parameters result in complete automation of the TESLA method. 

The proposed TESLA method is a mapping-based MRAC method that combines the 

quickness and robustness of segmentation-based methods with the high accuracy exhibited by 

atlas-based methods. It differs from existing mapping-based methods by providing continuous-

valued LACs for bone, CSF, GM, WM, and adipose tissue. The use of continuous-valued 

LACs for brain soft tissues made little difference in whole-brain error compared to using a 

single LAC value, but showed some differences in individual ROIs studied.  Future work 

should examine these effects in detail. 

The proposed TESLA method results in accurate PET reconstructions when evaluated 

against the gold standard CT-scaled method. Whole-brain (Figures 6.16 and 6.17) and regional 

analysis (Figure 6.18) of PET reconstruction errors demonstrates that the proposed method 

performs well across different brain regions and greatly outperforms the vUTE method in 

attenuation correction of the head. While differences in errors between PET reconstructions 
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using the TESLA method and the CAR-RiDR differences were not significant in the whole-

brain (n = 28), the TESLA method significantly outperformed the CAR-RiDR method in 8 of 

9 ROIs where a difference was observed. Furthermore, the TESLA method produces 

significantly lower differences between the 95th and 5th percentile error values in the whole-

brain when compared to both the CAR-RiDR and vUTE methods. 

There are a few limitations to our study that are worth elaborating on. First, the variable 

flip angle approach to compute R1 is susceptible to B1 inhomogeneity. As a reminder, the B1 

field refers to the RF pulse that is utilized in order to tip the magnetization into the transverse 

plane, While B0 inhomogeneity refers to differences in the static magnetic field across the 

field-of-view, B1 inhomogeneity refers to differences in the flip angle achieved at different 

locations. If the flip angle at any given location varies from what is expected, the computation 

of R1 will be inaccurate in these regions. Recently, it has been demonstrated that this effect has 

a more severe impact short T2 tissues, such as bone, than on tissues with longer T2 times (5). 

The solution proposed by that study involves estimating correction factors for the flip angle 

assumed at every voxel by utilizing a dual-TR UTE image acquisition. The T1 can then be re-

computed using the corrected flip angles (5). Such a correction method can be incorporated 

into the TESLA method for more accurate quantitation of R1, if necessary. 

Second, the acquisition time required to acquire the necessary images increased from 

1:40 min to 3:54 min due to the second flip angle acquisition. While this an increase in time 

by a factor of two, there are many strategies that can be explored to potentially reduce this 

acquisition time to under 2 min. These strategies include further lowering the TR and Kr 

parameters used in the sequence and utilizing a multi-shot acquisition similar to the vendor’s 

approach. 
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Finally, some of the same limitations presented for the CAR-RiDR study in Chapter 5 

apply to this study as well. Images used in this study were acquired mostly from normal 

subjects at one center using the same PET/MRI and PET/CT scanners. Further evaluation will 

be needed to determine if differences in the acquisition system or presence of disease states 

with focal lesions affect the results achieved with the proposed method. The data used in this 

study were primarily from older subjects (mean age: 75 years). Thus, further validation of the 

proposed method in more diverse populations is needed. 

To our knowledge, the TESLA method is the first MR-based attenuation correction 

method to directly associate the MR relaxation rate R1 with CT-HU, providing continuous-

valued attenuation coefficients not just for bone tissue but for adipose and brain tissues as well. 

The proposed method has been shown to be highly accurate, producing < 3% error in whole-

brain. Moreover, our method greatly decreases the spatial variations of PET errors compared 

to the vendor-provided UTE method as evidenced by the reduction in the difference between 

the 95th and 5th percentiles of the PET errors (Section 6.3.4). 

6.5 Conclusions 

In summary, this study presents an accurate MR-based attenuation correction method 

(TESLA) for use in quantitative PET/MRI neurological imaging. The TESLA method employs 

UTE images acquired at two flip angles to estimate LAC values for bone, CSF, GM, WM, and 

adipose tissue using a regression between R1 and CT-HU. From our analysis, we conclude the 

proposed method closely approaches (< 3% whole-brain error) the gold standard CT-scaled 

method in PET reconstruction accuracy. 
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CHAPTER 7: CLINICAL APPLICATIONS 

 There are many clinical applications in neurology (1) and oncology (2) where 

simultaneous PET/MRI systems have garnered significant interest due to the possibility of 

using MRI to complement the information from PET. This complementary information comes 

in the form of anatomical MR images with excellent soft tissue and in the form of MR images 

where the source of contrast (diffusion, flow, etc.) is different from that in PET images. In this 

chapter, two such applications in epilepsy and prostate cancer will be discussed along with the 

relevance of the work presented in this dissertation to those applications. 

7.1 Epilepsy 

7.1.1 Overview 

Epilepsy, a term which is derived from the ancient Greek for “to seize”, is the name 

given to the collection of neurological disorders characterized by chronic epileptic seizures and 

has been documented since as far back as 2000 B.C. (3). An epileptic seizure is defined as an 

episode of abnormally excessive neuronal activity in the gray matter of the brain (4). The 

symptoms of a seizure episode can range from a temporary loss of awareness to the 

characteristic uncontrollable jerking motions seen in many patients. Epilepsy is the third most 

frequent neurological disorder in the United States with over two million Americans already 

affected and approximately 150,000 new cases each year (5).  

7.1.2 Multi-drug Resistant Epilepsy 

The most unsettling statistic related to epilepsy is that one-third of patients present with 

a form of the disease that does not respond well to any currently available medication (5), a 
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condition known as multi-drug resistant epilepsy. A lobectomy can performed if focal 

epileptogenic zone, the origin of the malevolent electrical activity, is known. Since the more 

brain tissue the patient retains the better, it is extremely beneficial for neurosurgeons to have a 

precise location of the epileptic focus so no more tissue is removed than absolutely necessary. 

To complicate matters, the surgery is not performed at all in cases where the seizure focus 

cannot be localized, leaving the patient to live with recurring seizures. Currently, a battery of 

tests including PET, SPECT, MRI, surface EEG, intra-cranial EEG and neuropsychology 

evaluations are conducted to try to pinpoint the seizure focus. Recently, the possibility of 

acquiring simultaneous functional information from PET and MRI as well as structural 

information from MRI has been suggested as a tool that neuro-radiologists could utilize when 

making the diagnosis. Thus, the identification of epileptic seizure foci is potentially an 

excellent application for simultaneous PET/MRI systems (6). 

7.1.3 PET Localization of Seizure Foci 

 During the inter-ictal phase, or the period between seizures, the affected region exhibits 

decreased glucose metabolism, or hypo-metabolism, compared to the unaffected contralateral 

hemisphere. Thus, [18-F] fluorodeoxyglucose (FDG) is an ideal PET radiotracer for use in 

epilepsy. [18-F] FDG is a glucose analog where a hydroxyl group is replaced with the fluorine-

18 radioisotope. This tracer reflects all of the physiological characteristics of glucose when 

injected into the body, including uptake into cells, but cannot be metabolized by the cells, 

rendering [18-F] FDG an excellent tracer for examining which brain regions are demanding 

glucose. Since seizure foci exhibit decreased metabolism, neuro-radiologists look for regions 

of lower than expected signal intensities in PET images compared to the contralateral side. If 

the PET study is conducted during an ictal phase, i.e. during a seizure, the affected region is 
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expected to display an increase in glucose metabolism, or hyper-metabolism, due to the 

increased electrical activity of the neurons. 

Many seizures occur without any observable symptoms in the patient, and an ictal event 

may go unnoticed by the operator. Without any additional knowledge, it is difficult to 

distinguish between hypo-metabolism in one hemisphere and hyper-metabolism in the 

contralateral hemisphere. Neuro-radiologists address this difficulty by normalizing their 

readings to the region of the brain known as the thalamus. When functioning normally, the 

thalamus is expected to uptake more glucose than the cortex. Thus, if the cortex in either 

hemisphere appears to take up as much as or more [18-F] FDG than the thalami, it can be 

classified as a case of hyper-metabolism in that hemisphere. If not, then the hemisphere with 

lower uptake of [18-F] FDG is said to be exhibiting a case of hypo-metabolism. 

7.1.4 MRI Localization of Seizure Foci 

 Presently, anatomical MR images such as T1- and T2-weighted images are used to look 

for regions of atrophy, or tissue death, which is characteristic of the brain region containing 

the epileptic seizure focus. This approach works for some cases, but functional and 

microstructural changes often occur before changes in the macrostructure. Therefore, various 

functional and microstructural MRI approaches may be more beneficial in identifying seizure 

foci in regions where conventional MRI fails. One example of such an approach is diffusion 

MRI. 

Diffusion-weighted imaging (DWI) measures the ability of protons to freely diffuse in 

tissue. The less structured the environment, such as seen in CSF, the higher the diffusion. The 

more structure present in tissue, such as seen in GM, the lower the diffusion. The tissue atrophy 

that occurs in the epileptic focus may result in a breakdown in the microstructure of GM that 
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restricts the diffusion of water protons. Thus, higher than normal diffusion in certain GM 

regions could be an indication of abnormality. 

7.1.5 PET/MRI Localization of Seizure Foci 

 Since [18-F] FDG PET and diffusion MRI provide complementary information, both 

scans could be used to develop a quantitative approach for identifying seizure foci. Currently, 

studies are being conducted in-house to determine if a ratio of the apparent diffusion coefficient 

(ADC) which is a measure of diffusion to the standardized uptake value (SUV) of glucose 

could provide a good indication of seizure foci. ADC values can be computed using DWI, 

while SUV values of glucose can be computed from PET imaging using [18-F] FDG. Diffusion 

is expected to increase in the problematic regions while the metabolism is expected to decrease, 

making the ratio of ADC to SUV in these regions higher than normal. Preliminary studies have 

shown promise in identifying seizure foci using this approach (Figure 7.1). 

 

Figure 7.1: A sample ADC-PET ratio image 

overlaid on an anatomical image shows regions of 

high ADC-PET ratio (blue) in lobe where the 

seizure focus is present. 
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There are a few limitations to using this approach that must be addressed before it can 

be reliably used. First, the ratio of ADC to SUV would not be indicative of the seizure focus if 

the PET scan was acquired during an ictal event since the SUV value would be considerably 

higher during a seizure. Thus, ictal vs. inter-ictal PET scans need to be accurately determined 

and an adjustment must be made for ictal cases. Next, CSF regions normally display very high 

ADC values since diffusion is not restricted and display low SUV values since glucose uptake 

is normally low in CSF. Therefore, the ratio image of ADC to CSF would be contaminated 

with high intensities in CSF regions, making identifying abnormal regions in GM very 

difficult. This problem could potentially be solved by removing regions of CSF prior to 

computing the ratio image. 

7.1.6 Relevance of MR-based Attenuation Correction 

For the qualitative PET readings that contribute to the initial diagnosis of seizure focus 

location, PET images reconstructed using the vendor-provided Dixon-MRI method are being 

used. As mentioned in earlier in this chapter, this method results in large errors in the PET 

images, particularly in the cortical brain regions adjacent to the skull. Since these regions of 

GM are of utmost importance in epilepsy, these errors cannot be tolerated. Utilizing a method 

that provides more favorable error characteristics in these GM regions may increase the 

confidence of the radiologist reading the image or may help find regions that were completely 

missed in the vendor-reconstructed PET image. 

7.1.7 Pilot Study Examining Clinical Utility of TESLA Method 

To analyze the clinical utility of the MRAC method TESLA proposed in Chapter 6 

versus the presently used vendor-provided Dixon-based method, a reader study was conducted 

using PET and MR data from five patients in an IRB-approved study at UNC Hospitals. [18-
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F] FDG PET data were acquired for these patients on a simultaneous PET/MRI system. The 

proposed DUFA-UTE sequence outlined in Chapter 6 was used to acquire MR data according 

to the following parameters:  echo times (TEs) = 0.07 ms/3.69 ms, repetition time (TR) = 9 

ms, flip angles (FA) = 5°/25°, radial lines (Kr) = 13,000, acquisition time = 3 min 54 sec, and 

voxel size = 1.56×1.56×1.56 mm3. Two-point Dixon images were acquired using the vendor-

provided Dixon-VIBE AC sequence with the following imaging parameters: TR/TE1/TE2 = 

2300/1.23/2.46 ms, acquisition time = 18 sec, flip angle = 10, and voxel size = 2.6×2.6×3.12 

mm3. MR images were reconstructed on the scanner while raw PET data was transferred offline 

for image reconstruction. 

The UTE images from the DUFA-UTE sequence were processed in a manner similar 

to the segmentation and attenuation map generation protocol outlined in Chapter 6. Regions of 

the attenuation maps where the DUFA-UTE images did not provide enough coverage were 

replaced with corresponding regions from the vendor-provided UTE map. The Dixon-based 

attenuation maps were used as provided by the PET/MRI scanner. A transverse slice from the 

attenuation map of a representative subject is shown in Figure 7.2. PET images were 

Figure 7.2: A representative slice from a representative 

attenuation map derived using the TESLA method show that 

regions of bone and air are well identified. 
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reconstructed offline using each of the Dixon-based attenuation map and the TESLA-based 

attenuation map for all 5 patients using the vendor-provided PET image reconstruction 

platform (E7Tools, Siemens Healthcare, Knoxville, TN). 

A board-certified Nuclear Medicine physician at UNC Hospitals performed a blind 

review on the reconstructed PET images using the Dixon and the proposed TESLA method. 

For each set of images of each patient, the physician was asked to identify possible abnormal 

PET regions and provide a diagnostic score on a 1-5 scale: 1: definitely negative; 2: probably 

negative; 3: equivocal; 4: probably positive; 5: definitely positive. In some cases, a PET image 

reconstructed using one method provided a result that was not observed in the PET image 

reconstructed using the other method. For example, if a region of strong hypo-metabolism was 

detected in the left temporal lobe in the PET image from the Dixon-based method, this reading 

would be assigned a diagnostic score of 5. If the corresponding region in the PET image from 

the TESLA method strongly disagrees with this read, the indication of hypo-metabolism in the 

left temporal lobe would be assigned a 1 for this method. If it moderately disagrees, this 

indication would be assigned a 2. If a judgment cannot be made, this indication would be 

assigned a 3. The radiological findings of the reader study for the five patients are summarized 

in Table 7.1 along with the clinical finding for the seizure focus identified using intracranial 

EEG. 

Table 7.1: Results of PET reader study 

Patient PETDixon PETTESLA Seizure Focus 

1 Hypo: Left Hemisphere – 1 Hypo: Left Hemisphere – 5 Left Temporal 
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2 

Hypo: Left Hemisphere – 1 

Left Mesial-Temp – 2 

Left Temp-Parietal – 2  

Hypo: Left Hemisphere – 5 

Hypo: Left Mesial-Temp – 5 

Hypo: Left Temp-Parietal – 5 

Left Temporal 

3 

Hypo: Right Mesial-Temp – 4 

Hypo: Right Hemisphere – 1 

Hyper: Left Temp – 1 

Hypo: Right Mesial-Temp – 5 

Hypo: Right Hemisphere – 5 

Hyper: Left Temp – 3 

Left Temporal 

4 

Hypo: Left Temporal – 5 

Hypo: Left Parietal – 5 

Hypo: Left Hemisphere – 5 

Hypo: Left Temporal – 5 

Hypo: Left Parietal – 5 

Hypo: Left Hemisphere – 3 

Left Temporal-

Central 

5 

Hypo: Left Frontal – 4 

Hypo: Right Parietal – 4 

Hypo: Right Occipital – 4 

Hypo: Left Frontal – 3 

Hypo: Right Parietal – 4 

Hypo: Right Occipital – 4 

Right 

Temporal-

Occipital 

 

As can be seen in Table 7.1, the region identified as containing the clinical seizure 

focus was able to be identified as a potential region of abnormality in all five patients with 

fairly high confidence using the PET images reconstructed using the TESLA method. 

Meanwhile, the PET images reconstructed using the Dixon method resulted in no visual 

abnormalities for two patients (patients 1 and 2). Furthermore, in one case (patient 3), a region 

of focal uptake corresponding to a hyper-metabolic lesion was clearly visible in PETTESLA 

reconstruction and was completely indiscernible in PETDixon (Figure 7.3). These preliminary 

results demonstrate that the TESLA method for performing MRAC generally leads to different 

estimates of confidence when compared to the currently utilized Dixon-based method for 

identifying epileptic seizure foci. 
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Preliminary studies (Section 7.1.5) conducted using the quantitative ADC to SUV ratio 

utilized the vendor-provided PET images reconstructed using the Dixon method which are not 

very beneficial for qualitative applications much less for quantitative ones. Thus, it is expected 

that the confidence level of radiological diagnosis should improve if the PET images are 

reconstructed with a more accurate MRAC method such as the TESLA method. It remains to 

be determined whether this improvement in PET quantification accuracy is beneficial in 

computing the ADC to SUV ratio metric. 

7.3 Prostate Cancer 

7.3.1 Overview 

 Prostate cancer is the third most prevalent type of cancer in the United States trailing 

lung and breast cancers and just ahead of colorectal cancer (7). MRI, specifically T2-weighted 

MR imaging, is currently considered the imaging standard for evaluating prostate cancer. 

Multi-parametric MRI with MR spectroscopy (MRS), DWI, and dynamic contrast-enhanced 

(DCE) MRI has recently gained some ground as a complement to structural T2-weighted 

imaging of the prostate. PET imaging using radiotracer analogs of choline derivatives has been 

used to detect the important biomarker for this disease – prostate specific antigen (PSA). The 

Figure 7.3: Sample slices from PETDixon (A) and PETTESLA (B) reconstructions 

for one patient show the presence of a hyper-metabolic lesion in the PETTESLA 

image that is indiscernible in the PETDixon image (arrow). 
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use of PET in prostate cancer has been limited, however, in part due to difficulty distinguishing 

the peripheral zone from the transition zone of the tumor in CT. The high resolution imaging 

offered by MRI coupled with the excellent soft tissue contrast make hybrid PET/MRI an 

appealing modality for imaging prostate cancer (8). 

7.3.1 Relevance of MR-based Attenuation Correction 

 The anatomy in the region of interest in prostate cancer presents a unique challenge in 

PET due to the prominent presence of bone in the surrounding region. The hip bone and the 

pelvic bone are in position to attenuate a large percentage of photons emitted by annihilation 

events from the PET radiotracer molecules in the prostate. Currently, the Dixon-based 

approach is used for generated attenuation maps for body applications, including the pelvic 

region for prostate imaging. As previously mentioned, this approach is not very accurate 

because it ignores bone completely (Figure 7.4). Atlas-based methods, which are fairly 

accurate in the head, are not as successful in the body due to the increased complexity of the 

inter-subject nonlinear image registrations required. Therefore, a purely patient-specific MR-

based approach, such as the one presented in this dissertation, is very desirable in body 

imaging. 

Figure 7.4: A Dixon-based attenuation map 

derived for the pelvis region. 
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Proof-of-concept studies that have been conducted using the TESLA method in the 

pelvis region (Figure 7.5) show that the method is capable of identifying regions of bone, soft 

tissue, and fat in the pelvic region. Due to the many differences in anatomy between the 

head/neck region and the pelvic region, further studies are necessary in order to refine the 

segmentation method and to evaluate whether the relationship between R1 values and LAC 

values exists outside of the head. Furthermore, nonuniformity artifacts due to the much larger 

field-of-view in the abdomen compared to the head could hinder the utility of UTE imaging in 

the pelvis. 
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Figure 7.5: Slices in three orientations (left to right: coronal, sagittal, axial) from a TESLA-based segmentation 

derived for the pelvis region. The red lines indicate the position of the orthogonal slices. 
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CHAPTER 8: SUMMARY AND CONCLUSION 

8.1 Major Contributions 

Simultaneous PET/MRI systems, while opening the door to novel clinical applications, 

are currently plagued by the lack of an accurate method to perform MRI-based correction for 

PET photon attenuation. Current methods provided by the vendor quickly produce the 

attenuation maps needed to perform the correction but result in PET images that contain 

average errors in whole-brain of much greater than 5% compared to the gold standard in 

neurological PET/MRI applications. There have been many attempts to develop an MRAC 

method that is both accurate and quick, but there seems to exist a trade-off between these two 

characteristics. 

Atlas-based methods employ a population of paired MR and CT images in order to 

derive an attenuation map with continuous-valued LACs that produces reconstructions that are 

accurate (whole-brain error < 5%) compared to the gold standard. Consequently, the 

computation times required by the algorithms utilized by these methods are typically too high 

to be clinically feasible. Segmentation-based methods employ a classification of tissues before 

deriving the attenuation map by assigning one LAC value to each tissue. This class of methods, 

to which the vendor-provided methods belong, are generally quick but produce PET 

reconstructions that are not as accurate as the ones produced by atlas-based methods, partly 

due to their inability to address the heterogeneity of tissue LACs. 

Recently, a new class of methods has emerged with the capacity to combine the 

rapidness of segmentation methods with the accuracy of atlas-based methods. These methods 
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are known as mapping-based methods because they produce patient-specific attenuation maps 

with continuous-valued attenuation maps by utilizing a conversion between MR signal 

intensities or relaxation parameters and PET LAC values. The methods presented in this 

dissertation are among the first of this class. 

The CAR-RiDR method presented in Chapter 5 accurately segments patient images 

into bone, soft tissue, adipose tissue, and air and derives a relationship between MR relaxation 

rate R2
* and CT-Hounsfield units for bone tissue. This relationship is then used to produce 

attenuation maps with continuous-valued LACs for bone that produce accurate PET 

reconstructions when compared to the gold standard. This method was the first to establish a 

quantitative relationship between R2
* and CT-HU for bone tissue in order to produce pseudo-

continuous attenuation maps without the need for an atlas. Furthermore, this method was 

rigorously tested on data from a larger group of subjects than any other method presented to 

date. 

The TESLA method presented in Chapter 6 improves on its predecessor by optimizing 

and acquiring all necessary information using the UTE sequence. The relaxation rates R1 and 

R2
* along with a two-point Dixon decomposition are computed UTE images from two flip 

angles. This MR data is then used to segment bone, air, gray matter, white matter, CSF, and 

adipose tissue. A relationship between R1 and CT-HU is utilized to provide continuous-valued 

LACs for brain and adipose tissue in addition to bone. This method is the first to establish a 

quantitative relationship between R1 and CT-HU for these tissues in order to produce 

attenuation maps for neurological applications that are mostly continuous without the need for 

information from an atlas. 
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8.2 Clinical Implications 

 As mentioned in Chapter 1, the advent of simultaneous PET/MRI systems has garnered 

significant interest in many clinical fields, including neurology (1) and oncology (2). Chapter 

7 elaborates on two pathologies where PET/MRI systems could be of tremendous use to 

clinicians. These applications in epilepsy and prostate cancer require accurate quantitation in 

PET data that the vendor-provided methods currently used cannot provide. The potential of the 

TESLA method developed in this work to improve clinical reads of neurological PET images 

has been demonstrated. Proof-of-concept studies in the pelvic region show that the TESLA 

method may be able to provide attenuation maps of similar quality for PET/MRI studies of 

prostate cancer as well. 

8.3 Future Work 

8.3.1 Sequence and Processing 

 The DUFA-UTE sequence used to acquire the TESLA method requires two back-to-

back acquisitions in order to collect MR data at two flip angles. While the changing of one 

parameter between acquisitions is trivial, it would be more straightforward to design the 

sequence to acquire both measurements in one acquisition. Currently, the computation of the 

attenuation map is performed offline after the acquired images are transferred from the scanner. 

To render the TESLA method useful in the clinic, the processing protocol must be programmed 

into the vendor’s image reconstruction platform. The successful achievement of both of these 

goals would allow for the acquisition of the images and the generation of attenuation maps 

with the click of a button in under 4 min. This acquisition time could be further reduced by 

exploring avenues such as a multi-shot acquisition, where multiple lines of k-space are 
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acquired within a single repetition, or an even greater reduction of the repetition time and the 

number of k-space lines collected. 

8.3.3 Evaluation 

 The evaluation of the methods presented in dissertation focused primarily on normal 

subjects in an Alzheimer’s dementia study and. While a decreased performance in the presence 

of pathology is not expected, it would be beneficial to quantitatively evaluate the TESLA 

method in other neurological conditions, such as brain tumors, where the anatomy in the 

patient’s head is modified. Further work is also warranted in applying the proposed method in 

regions outside of the head and neck. Preliminary studies have shown that the TESLA 

segmentation may work well in the pelvic region, but more studies are required to determine 

if the proposed method will be valuable in PET/MRI studies of this region. 

8.4 Conclusion 

 In conclusion, the work presented in this dissertation has resulted in the production of 

an MRI-based attenuation correction method for use in PET/MRI that is accurate when 

compared to the gold standard, enables the quick acquisition and processing of MR images to 

form attenuation maps, and contains a fully automated processing pipeline. The accuracy of 

the method is due to both the optimized UTE sequence utilized as well as a novel processing 

pipeline that contains an accurate segmentation of tissues of interest and an assignment of 

continuous-valued attenuation coefficients for most tissues in the head and neck. The use of 

this method would enable accurate quantification of PET data for use in any neurological 

application of simultaneous PET/MRI systems. 
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