An Investigation of Using a Polynomial Loglinear Model to Evaluate Differences in Test Score Distributions

Diane Talley

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Masters of Arts, Educational Psychology, Measurement, and Evaluation; School of Education

Chapel Hill
2009

Approved by:
Dr. Gregory Cizek
Dr. Rita O’Sullivan
Dr. William Ware
Abstract

Diane Talley: An Investigation of Using a Polynomial Loglinear Model to Evaluate Differences in Test Score Distributions
(Under the direction of Gregory Cizek)

The purpose of this study was to examine the power of the Hanson method for determining differences in score distributions across multiple forms of an examination when sample sizes are small. The study used simulated data generated in SAS. The Hanson method was applied to three pairs of score distributions that varied by standard mean differences (SMD) for sample sizes of 3500, 3000, 2500, 2000, 1500, 1000, 500, 250, 200, 150, 100, 50, and 25, 1000 times each. The results indicated that the Hanson method was not sensitive to distributional differences as sample size decreased and the sensitivity of the method depended on the size of the SMD. For score distributions with very small SMDs (.008), the power of the Hanson method decreased beginning with n=2000. Score distributions with larger SMDs (.33 and .79) required smaller sample sizes (around n=100) to detect these larger differences.
Acknowledgements

I am grateful to many people for helping me through this difficult and lengthy journey. A special thanks to Dr. Gregory Cizek for letting me continue this research under his guidance and for pushing me to do my best. We could have taken an easier road, but where is the satisfaction in that?

I also offer thanks to Dr. Rita O’Sullivan and Dr. William Ware for their willingness to remain on my committee, despite the extended time this has taken me to complete.

I am immeasurably grateful to Chris Weisen of the Odem Institute without whom I could not have taken on this particular study. His skills, which provided the program for conducting this study, and patience with what seemed like an endless process, are greatly appreciated.

To my husband, thank you for giving up a wintry home in Colorado near friends and family for the heat of North Carolina and the stress of life with a graduate student. Words cannot express how much the love and support have meant to me.

I am deeply grateful to my loving and nurturing mom for taking care of my family and me through two babies and this academic process. I recognize and sincerely appreciate the sacrifices she has made to care for us and help me to achieve my goals throughout my life and in this academic process.
Thank you to my brilliant father, who has been an inspiration to me my entire life. I was not always a dedicated student, but I have worked to become more like him in his tireless discipline and passion for knowledge.
Table of Contents

List of Tables ... vii
List of Figures ... viii

Chapters

I. Introduction...1
II. Review of Literature
 Constructing Multiple Forms of a Test6
 Equating...9
 Definitions and Properties......................................9
 Data Collection for Equating.................................12
 Equating Methods...17
 Mean equating..17
 Linear equating...18
 Equipercentile equating..................................21
 Equating with IRT..24
 Identity equating...25
 Determining Whether to Equate Forms.......................26
 Dorans and Lawrence Method..............................27
 Assessing Equating Error..................................28
 The Hanson Method...31
III. Methodology ...37
IV. Results ..41
V. Conclusions and Discussion ...44

Appendix ...70

References ..76
List of Tables

Table

1. Data Collection Designs ...54

2. Mean-Squared Equating Error ...55

3. Polynomial Loglinear Model ..56

4. Descriptive Statistics from Original Hanson Studies for all Score Distribution Pairs (SDP1, SDP2, SDP3) ..57

5. Summary of Results for the Polynomial Loglinear Model in Determining Differences Between Score Distributions on Two Forms ..58

6. Summary of Standard Mean Differences (SMD)59

7. Descriptive Statistics from Simulation Study for all Score Distribution Pairs after Converting Distributions to the Same Scale60

8. Summary of Results for All Three Score Distribution Pairs (SDPs)61
List of Figures

Figure

1. Example of Graphic Method of Equipercentile Equating.................62
2. Score Distribution Pair 1 ...63
3. Form A-Score Distribution Pair 2..64
4. Form B-Score Distribution Pair..65
5. Score Distribution Pair 3 ...66
6. Process Methodology Flowchart..67
7. Score Distribution Pair 1 (SDP1) from Simulated Data................68
8. Score Distribution Pair 2 (SDP2) from Simulated Data................69
9. Score Distribution Pair 3 (SDP3) from Simulated Data...............70
I. INTRODUCTION

Tests scores are used to inform important decisions that affect the public. Their impact may be on people in the school systems, people dependent on the quality of healthcare, or any number of other professional and educational fields where licensure or certification decisions are made. Industries such as health, education, legal, and government, and the people they service, depend on properly developed tests to ensure quality and safety.

The process of developing examinations can be complex and subject to a wide range of challenges, from creating clear testing objectives to ensuring adequate resources (financial and human) for the test development, administration, scoring, reporting and evaluation. At every step, validity evidence—that is, support for the inferences made from the results of the tests (Messick, 1989a), must be gathered and evaluated. If a test score is intended to reflect a certain level of proficiency in a given domain, there must be evidence to support that assertion.

One common problem in test development is the issue of basing decisions on data from small samples of examinees. If the data used to construct test forms come from a small sample of the intended population--especially if the sample is not truly representative of the target population- there may be weak or inadequate evidence to support the inferences made from the resulting scores. As Kane (2006) has noted: “The challenge is to make the connection between limited samples of observations and the proposed interpretations and uses” of test results (p. 17). The fewer the observations, the more challenging it is to make valid inferences. This challenge is often present for small-scale testing programs, which
Jones, Smith, and Talley (2006) define as 0-200 examinees, but it can also be a consideration for large-scale programs when there are a limited number of examinees available for field-testing or other data analytic purposes. The data collected for test development purposes are used to make important decisions regarding congruency of items to the content domain, item accuracy and statistical performance, item selection, construction of test forms, scoring, and equating forms.

For a variety of reasons, testing programs may require multiple forms of a test that measure the same constructs. They may be necessary, for example, when tests are given at multiple times of the year, when a new form is used for each test administration, or when programs administer multiple forms concurrently. A testing program may need multiple forms to reduce item exposure for security purposes, or because failing examinees may be permitted to take a test multiple times. Clearly, a test is no longer a measure of the intended construct if a failing examinee is administered the same form on two occasions and will likely benefit from repeated exposure to the same items. With small-scale testing programs, item exposure may be less problematic than with larger programs. Fewer test takers see the items, but multiple forms may still be needed for repeat test takers and the issue of test security remains a concern.

If multiple forms are deemed necessary for a testing program, a method of equating scores on those forms is desirable. Equating is the process by which scores on different forms of an examination that measure the same constructs are made interchangeable (Kolen & Brennan, 2004). Constructing multiple forms of a test and applying an equating function inevitably introduces error. This is due to differences in the difficulty and performance of
test forms as well as sampling error. Specific ways of estimating the amount of error (e.g., standard error of equating) are addressed in more detail later in this section.

A primary goal in equating is to select data collection designs, sample sizes, and procedures that introduce the least amount of error. In some cases, the least error-prone equating procedure may be to do no equating at all, also referred to as identity equating (Kolen & Brennan, 2004). Sample size affects the amount of error introduced by equating. Other things being equal, the larger the sample size, the smaller the error of equating will be. When only small samples of data are available, it is important for test developers to consider the consequences of using a small sample size on the precision of the equating results. Peterson, Kolen, and Hoover (1989) stated “an approximate equating of scores on two forms of a test will generally be more equitable to the examinee than no equating at all, especially if the test forms differ in difficulty” (p. 243). However, it may be the case that even when test forms are developed to be parallel, the amount of error introduced in the equating process is greater than if no equating were done. According to Kolen and Brennan: “Only if equating is expected to add in less error than identity equating, should an equating other than identity equating be considered” (p. 296). Thus, when building tests that will be administered to small samples of examinees, sizes it is important to ask the question: Is the error introduced by equating greater than that associated with not equating at all?

There are a number of ways to answer this question. One method is to apply multiple equating functions to determine which is the best fit to the data, and then compare the results to identity equating (Hanson et al, 1994; Kolen & Brennan, 2004). Another possibility is to create a confidence interval that defines acceptable error limits around equated scores (Dorans & Lawrence, 1990). A third option is a method for comparing score distributions
introduced by Hanson (1992, 1996). Kolen and Brennan and Harris and Crouse (1993) recommended the approach introduced by Hanson when small samples are used to equate forms.

The method proposed by Hanson (1992, 1996) compares the score distributions on different forms of a given test to determine whether the samples likely come from the same population. If the distributions are evaluated to be equivalent, then the samples are considered to be from the same population. In this case, no equating is recommended. If the distributions are found to be significantly different, then distributions are considered to be from different populations; thus, equating is necessary.

Although the Hanson method is recommended in the literature for small samples, Hanson (1996) indicated that this method might not, in fact, work well for small samples. When the sample sizes are very large, even a very small difference in distributions can be detected. Alternatively, the test may not be able to detect differences with a small sample size, even though there may be a significant enough difference between the distributions to warrant equating. As Hanson has recommended, “it is important that sample sizes be chosen so that meaningful differences in the distributions can be detected” (p. 319).

The purpose of the present study was to determine what sample size is needed for Hanson’s (1996) method to be able to detect meaningful differences between distributions. The study includes three pairs of distributions with varying mean differences to evaluate the power of Hanson’s method across varying sample sizes. A brief review of literature regarding the construction and equating of parallel forms for small sample testing will provide a clearer understanding of the purpose and benefits of Hanson’s method, as “equating requires judgments about issues in test development, designing the data, and
evaluating the results” (Kolen & Brennan, 2004, p. 268). Hanson’s method is presented in more detail following the literature review section of this thesis.
II. REVIEW OF LITERATURE

The following review of literature is an examination of test construction and equating methodology, including relevant research as it pertains to developing multiple forms of a test using small samples of data. The review is followed by a discussion of the three methods for determining whether to equate forms: Dorans and Lawrence (1990), Assessing Equating Error, and the Hanson Method. An example of the Hanson method is provided for clarification.

Constructing Multiple Forms of a Test

The importance of proper test development procedures is critical to successful equating. Good test development begins with careful planning. This principle has been articulated by Mislevy who noted that:

Test construction and equating are inseparable. When they are applied in concert, equated scores from parallel test forms provide virtually exchangeable evidence about students’ behavior on the same general domain of tasks, under the same specified standardized conditions. When equating works, it is because of the way the tests are constructed (1992, p. 37).

Articulation of the purpose of the test, delineation of the tested domain, and determination of test specifications occur during the planning phase (Kolen & Brennan, 2004). Articulating the purpose of the test includes defining what is intended to be measured
and the interpretation of that measurement (Schmeiser & Welch, 2006). The content domain is the broadly defined area of the knowledge and skills to be tested. The test specifications define how that knowledge will be tested in a way that will support the interpretations of the resulting test scores. Test specifications provide specific information such as the number of forms to be developed, the number of items on each form, the intended testing audience, and test administration guidelines (Millman & Greene, 1989). In addition, test specifications may include a test blueprint, which dictates the number of items for each content area (Downing, 2006). A clear specification of what is being tested and why is critical to supporting the interpretations of the results; that is, validity (Kane, 2006).

When defining the parameters of the testing program, there should be an overall vision of what the program will look like, including its size. A very small program might consider creating only one form of a test, requiring simpler processes, fewer items, and statistical procedures that are more robust in the context of small sample sizes. Jones, Smith, and Talley (2006) recommend using a single form of a test for small testing programs, especially when there are little or no data available for test construction and equating. Where multiple forms are deemed necessary, special care should be taken in applying the steps of test development. Jones et al. suggest extra time and attention in the early phases of the test development process in an effort to minimize error in item and form construction, and to make forms as similar as possible before applying equating methods to the data.

Equating is most appropriate when items on all forms are written to the same content domain, congruency is verified, and forms are carefully constructed according to well-defined test specifications (Jones et al., 2006; Schmeiser & Welch, 2006). According to Wendel and Walker (2006), “different versions of a test must include items that measure the
same concepts in different ways” (p. 461). Item writing is a critical part of constructing similar forms. Item writers should be highly knowledgeable in the content area and trained on item writing techniques including how to write various item types (e.g., multiple choice, matching, constructed response), item writing rules (e.g., items should be clear and concise and avoid racial, gender, or other sources of potential bias), and writing items that are congruent with the content domain. Alignment of individual items on the test to the content domain is a primary source of validity evidence, showing the “relevance and representativeness of the test content in relation to the content of the domain about which inferences are to be drawn and predictions made” (Messick, 1989b, p. 6). In addition to psychometric review, editorial review is conducted, and reviews by subject matter experts ensure the technical accuracy of the items.

Field testing is the next recommended step in the test development process (Millman & Greene, 1989; Schmeiser & Welch, 2006). Field testing is employed to assess the performance of items prior to their operational administration. Performance issues examined include the level of difficulty and how well the items discriminate between high- and low-performing examinees. In a field test, a representative group of examinees takes the examination under conditions that approximate those under which the test will be administered operationally to determine the quality and statistical characteristics of the items. The information from a field test is used in constructing equivalent forms, giving test developers the information needed to select the best items available, select similar items for each form, and put forms together in a way that will produce results which support the intended inferences based on the test’s purpose and specifications. The more successful test developers are in these efforts, the easier it is to make scores on those forms comparable.
Data from a field test can also be used to determine a score scale, which will then be used for equating scores. All subsequent forms are generally equated back to the original score scale (Kolen & Brennan, 2004). A score scale may simply be the raw score scale of an examination (e.g. 0-25 on a 25-item form), or it can be something more complex such as scaling using Item Response Theory (IRT) or some other transformation. For simplicity, the following discussion of equating will assume the use of a raw score scale.

The type of score scale and methods for scoring items should be defined in the test specifications (Millman & Greene, 1989; Schmeiser & Welch, 2006). The literature does not address at what point in the development process an equating plan should be made, but consideration for equating needs should be given at the beginning of the development process, especially if the data from the field test are going to be used for equating purposes. Equating requires the use of specific data collection designs, which will be addressed later in the discussion of equating.

Equating

Kolen and Brennan (2004) defined equating as “a statistical process that is used to adjust scores on two forms so that scores on the forms can be used interchangeably” (p. 2). The following section on equating discusses this definition further and presents certain conditions that must be met to achieve accurate equating results. Additionally this section will present the data collection options appropriate for equating with small sample sizes, available equating methods and the limitations of sample size for these methods.
Definition and Properties of Equating

As previously discussed, validity is the quality of the inferences drawn from the scores yielded by an examination. This means that if two forms of a test are developed to be equivalent, then the scores on those tests should mean the same thing. For example, if Examinee A scores 70 on Form X and Examinee B scores 70 on Form Y, then the interpretation is that both examinees have the same level of knowledge, skill, or ability in the defined area. Is it accurate to say that the true scores for examinees A and B are the same on two different forms? It is accurate only if the two forms of the examination are identical or, if the scores on the two forms have been adjusted such that they are interchangeable.

There are four general assumptions or properties regarding equating: symmetry, same specifications, group invariance, and equity (Kolen & Brennan, 2004). The symmetry property states that conversion of scores from one form of the examination (X) to scores on a second form of the examination (Y) should be the same as the conversion of scores in the inverse (i.e., Y scores converted to X). This means that regression does not constitute an equating method (Kolen & Brennan, 2004; Lord, 1980).

The same specifications property requires that all forms to be equated should be constructed to the same statistical and content specifications (Kolen & Brennan, 2004). Forms that cover even slightly different content can be linked or scaled for comparability, but not equated. Linking or scaling allows two forms to be associated with one another for comparison without making the scores on forms interchangeable.

As test results should be interpreted in the same way for all relevant groups of examinees (e.g., males, females, Caucasians, Asians, etc.) the same equating function should apply for all groups on any given form or between forms. The group invariance property
requires that equating should not be affected by group membership. This is largely affected by the data collection design selected. These data collection designs for equating are discussed in detail in the following section.

The final property is the equity property. Lord (1980) stated that it should not matter to the examinees which form of the test is administered. For this property to be strictly true, forms would have to be parallel, which is impractical in practice. Thus, a more lenient version is accepted such that “examinees are expected to earn the same equated score on Form X as they would on Form Y” (Kolen & Brennan, 2004, p. 11). In addition to equated scores being the same, forms should be equally reliable (Holland & Dorans, 2006; Peterson et al., 1989; Wendel & Walker, 2006).

Reliability, like validity, pertains to the outcomes of the measurement rather than the instrument itself (Haertel, 2006). The desired result of a perfectly reliable measurement procedure is that if an examinee were to take the test repeatedly, under the same conditions and without any learning occurring between administrations, the outcome would always be the same. This is obviously not a realistic expectation and cannot be directly measured, but there are a number of ways to estimate the reliability of the results of a measurement.

Equal reliability is important to the equity property, because examinees may not be indifferent to which form is administered if the forms are not equally reliable. A more qualified examinee might want a more precise, reliable measure of abilities, and a less qualified examinee might prefer a less reliable measure that will have a higher error variance, increasing chances of passing (Petersen et al., 1989).

The application of an equating method is dependent on the chosen data collection design. For example, in a situation with two forms, both forms may be administered to a
single group of examinees or they may be administered to two separate groups. The groups may be randomly selected and considered equivalent, or may be naturally occurring making it difficult to assume equivalency of groups. The following section describes these possible data collection designs when only small samples of examinees are available.

Data Collection for Equating

To equate two or more forms of an examination, test scores from a representative sample must be available. Before collecting these data, the structure of the testing program, the intended examinee population, and the available sample population should be considered. The administration of the test affects data collection in that tests administered in testing windows may require different equating procedures than examinations that are administered on an ongoing basis. Examinees taking a test that is administered in a testing window must select from a limited number of days the test may be offered (e.g. April 1 or October 1). An examinee taking a test that is administered on an ongoing basis may be able to call up a testing center and take the test on any day he or she chooses.

Both the size of the available sample and the equivalency of examinees strongly impact which design to use. In accordance with the group invariance property of equating, samples used for equating forms should be unbiased and representative of the population of examinees defined for a particular test (Kolen & Brennan, 2004). Methods that use two groups for data collection must take into account group differences in ability. A description of the population sampled for data collection should always be documented, as it is the population to which the equating results will apply and will affect the interpretation of test scores and, ultimately, the validity of test score interpretations.

There are three primary data collection designs used for equating, with variations of
each that can assist in dealing with the restrictions of a particular testing program and reduce
differences between sample(s) and the intended population. According to Kolen and
Brennan (2004), the three data collection designs are the random groups design, the single
group design, and the common-item nonequivalent groups design. These designs and their
variations are described and illustrated in Table 1.

The *random groups* design shown in Table 1 requires two samples to be drawn
randomly from the population, creating two equivalent groups (or more if there are more
than two forms). A check mark in the table indicates which sample from the population
takes which form of the examination. For example, in Table 1, sample 1 from the population
takes Form X, and sample 2 from the population takes Form Y. Two primary assumptions
related to this design are that 1) the samples taken are sufficiently large, and 2) the forms are
administered simultaneously. These assumptions make this design impractical for equating
with small samples, or for programs that administer examinations in testing windows.

---Insert Table 1 about here.---

The *single group* and *common-items nonequivalent groups* (CINEG) designs are
more suitable for small samples. Holland and Dorans (2006) have shown that the random
groups design requires the largest sample sizes and the single group design requires the
smallest. The single group design is recommended for small samples (Jones et al, 2006;
Kolen & Brennan, 2004) because both forms are administered to the same group, decreasing
the number of examinees needed for collecting data. The group of examinees should, as
always, be representative of the intended examinee population. In the single group design, a
single sample of examinees is administered Form X and Form Y, as shown in Table 1.
An issue that may affect the equating results when administering both examinations to a single group is an order effect (Kolen & Brennan, 2004; Wendel & Walker, 2006). Depending on the number of items in each form, examinees may become fatigued when taking the second form, lowering their scores on the second form. Also, it is possible that examinees might experience a learning effect from the first form, which might increase their scores on the second form. Either phenomenon can affect the reliability of scores resulting from the data collection. The single group design with counterbalancing, as shown in Table 1, may alleviate this problem.

The single group design with counterbalancing, also referred to as the counterbalanced random-groups design in Petersen, Kolen, and Hoover (1989), and the counterbalanced design in Holland and Dorans (2006), requires that a single group be divided in two, with examinees randomly assigned to each group. The second group \(P_2 \) takes the tests in reverse order from the first group \(P_1 \), thus alleviating order effects.

One possible disadvantage of this design is the need for the group to take both forms of the examination. Depending on test form length, it may take too long to administer both forms of the examination. Another possible disadvantage is the possibility of what Kolen and Brennan (2004, pp. 16-17) referred to as “differential order effects.” Ideally, the order effect should be the same for both groups. According to Kolen and Brennan, “If the effect of taking Form X after taking Form Y is the same as the effect of taking Form Y after taking Form X, then the equating relationship will be the same between the forms taken first as it is between the forms taken second” (p 16). When this is not the case, there is a differential order effect and the data may not be suitable for equating.
If the forms of an examination are to be administered in testing windows or a field test conducted operationally, then the CINEG design shown in Table 1--also referred to as the nonequivalent groups with anchor test design (Holland & Dorans, 2006)--may be a more appropriate design. This design allows for equating using naturally occurring groups, as opposed to randomly selected groups, although naturally occurring groups may not be equivalent in ability. For example, in the case of an examination administered to one group of students in the spring and another group in the fall, these groups are not randomly selected or randomly assigned to a form of the examination and they may differ in average level of knowledge, skill, ability, experience, or some other relevant characteristic. Instead of using randomly selected groups to ensure similar abilities among examinees, a set of common items (also called an anchor test) is administered to both groups of examinees. Recall that equating deals with the differences in difficulty between forms and assumes that the examination will perform the same for all groups of examinees. The data from the common items provide a way to distinguish between differences in scores due to examinee ability and differences due to form difficulty, thus allowing the equating function to more precisely link scores between the two forms (Kolen & Brennan, 2004). Jones, Smith, and Talley (2006) stated that “when concurrent forms are to be constructed using classical test theory, the use of common items can ameliorate some of the effects of sampling error with small sample sizes by accounting for some of the random differences between groups of test takers” (p. 518).

The characteristics of the anchor test are very important. It must be a shortened, proportionally content-representative version of the overall test (Holland & Dorans, 2006; Kolen & Brennan, 2004). The anchor test should cover the same content area, with items
distributed across all content domains. The common items should also perform in the same way. Ideally, items would be chosen that have similar statistical characteristics, such as average p-values and item-total correlations, indicating they are similar in difficulty and discrimination to the non-common items.

An anchor test can be internal or external to a test form. When anchor test items are internal, they should be placed in approximately the same locations on both forms (Kolen & Brennan, 2004). Internal anchor test items are typically scored, although there is no requirement to do so. In an external anchor test, items are not usually scored and may be administered as a separate form. One of the disadvantages to using an external form is the effect of examinee motivation. If the examinees know the items in the anchor test are not scored they may not expend the same level of effort as well as they would on the operational examination, which could result in inaccurate equating.

The number of common items is also critical. Kolen and Brennan (2004) recommended a number of items equal to or exceeding 20% of the total test length. A study conducted by Parshall, Du Bose-Houghton, and Kromrey (1995) indicated that greater overlap (as much as 69%) resulted in less equating error and bias than forms with less overlap (47%). Jones, Smith, and Talley (2006) recommended using the maximum number of common items without increasing security risks by overexposing items. The purpose of the anchor test is to provide as much information as possible about group ability without compromising the integrity of the examination.

As mentioned earlier, the data collection design should be considered in the initial planning of the testing program. Sample size should be identified so that an appropriate design can be selected. Constructing forms with common items adds a level of complexity
to the process and may require that additional items be developed to accommodate this design. In addition, both the common groups design and the CINEG design may change the way field testing would be conducted if equating were not a consideration. Once data are collected, an appropriate equating method can be chosen. The data collection design will not affect which method to choose, but how that method is applied. The following section describes five equating methods and their viability for small sample situations.

Equating Methods

Equating can be performed using a number of different statistical techniques including mean, linear, equipercentile, and IRT methods. The choice of method depends on the characteristics of the score distributions (shape of the distribution-linear or nonlinear-and dispersion of scores), the size of the available sample, and other considerations.

Mean Equating

Mean equating is the most basic equating method. It assumes that the score distributions resulting from the administration of two test forms are the same except for the means (Kolen & Brennan, 2004). Thus, it is assumed that scores on the two forms will differ by the same amount at all score points. If there is a difference, for example, of one point for high scoring examinees, then there must also be a difference of one point between scores for middle scoring and low scoring examinees. This is an extremely limiting assumption, as it is rare that two test forms will result in distributions that differ systematically in this way across all score points. However, mean equating can be useful when scores only need to be equated at the cut score (the chosen passing score), and that cut score is at or near the mean.

To equate scores using mean equating where there are two forms, X and Y, the following formula may be used:
\[x - M(X) = y - M(Y) \] \hspace{1cm} (1)

Solving for \(y \):

\[y = x - M(X) + M(Y) \] \hspace{1cm} (2)

where \(x \) is a score on Form X, \(M(X) \) is the mean of scores on Form X, \(M(Y) \) is the mean of scores on form Y, and \(y \) is a score on Form X transformed to a score on Form Y. For example, if the mean of Form X is 50 and the mean of Form Y is 54, using equation 2:

\[y = x - 50 + 54 \]
\[= x + 4 \]

then a score of 52 on Form X would be equivalent to a score of 51 on Form Y.

Accordingly, it is assumed that Form Y is four points easier than Form X at every point along the score scale. If this assumption holds, or when it is possible to equate only at or near the mean, mean equating is a good option for small sample testing situations (Jones et al, 2006).

Linear Equating

Linear equating is also useful for small sample testing situations. However, like mean equating, it has strong assumptions about the characteristics of the parent distribution(s). The scores between two forms can vary in the first two moments (i.e., mean and standard deviation), but it is assumed that the shape of the distributions is still the same, allowing for a linear transformation of scores. If skewness and kurtosis vary in the two distributions, equating along the score scale using a linear transformation will introduce error. The advantage of linear over mean equating is that, because both the mean and standard deviation are used, the equating transformation allows equated scores to vary in different ways along the score scale. For example, Form X may be harder for low achieving
students but easier for high achieving examinees, while Form Y may be easier for low achieving examinees and harder for high achieving examinees (Kolen & Brennan, 2004).

In a random groups data collection design, where a large sample is used and groups taking Form X and Form Y are assumed to be equivalent, a basic linear transformation that allows scores with the same deviation from the mean to be equal (Kolen & Brennan, 2004) can be used for equating:

\[
\frac{x - M(X)}{\sigma(X)} = \frac{y - M(Y)}{\sigma(Y)}
\]

(3)

Solving for \(y \):

\[
l_y(x) = y = \frac{\sigma(Y)}{\sigma(X)} (x) + [M(Y) - \frac{\sigma(Y)}{\sigma(X)} M(X)]
\]

(4)

where \(l_y(x) \) is the linear conversion of a Form X score to a Form Y score, \(\frac{\sigma(Y)}{\sigma(X)} \) is the slope of the line, and \([M(Y) - \frac{\sigma(Y)}{\sigma(X)} M(X)]\) is the intercept. For example, if Form X has a mean of 72 and a standard deviation of 10, and Form Y has a mean of 77 and standard deviation of 9, a Form X score of 75 would be equivalent to a Form Y score of 79.7 (Kolen & Brennan, 2004):

\[
l_y(75) = \frac{9}{10} (75) + 77 - \frac{9}{10} (72) = 79.7
\]

In this example, Form Y is 4.7 points easier than Form X at a Form X score of 75. On the same two forms, a score of 85 on Form X would transform to a score of 88.7 on Form Y, indicating Form Y is only 3.7 points easier than Form X for these higher-achieving examinees.

This explanation and example of linear equating assumes a random groups data
collection design, which, as discussed earlier, may not be suitable for small sample testing situations. The same formula would be used for a single groups design assuming there are no order affects.

Applying linear equating to a CINEG design requires the use of an anchor test to determine group differences. Correlations are used to compare group performance on the anchor test, which allows differences in group ability to be separated out from variations in form difficulty.

Regardless of the design used, sample size has a direct impact on the accuracy of linear equating, although there is no definitive sample size necessary for linear equating to be considered a sufficiently precise equating method. Tsai (1997) conducted a study that examined methods for determining sample sizes needed for mean, linear, and equipercentile equating. A minimum sample size was calculated where the error introduced by equating would not exceed the error expected when using no equating. The study used a linear equating method to equate scores to a base Form Y. When equating scores on Form X to Form Y, a minimum sample size of 32 was needed, and when equating a third form (Z) to the base Form Y the minimum sample size was 99 (Z). Kolen and Whitney (1982) recommended linear equating in their study for a sample size of 200 compared to three-parameter IRT and Rasch models, and equipercentile equating.

Rather than requiring a specific sample size for linear equating, it may make more sense in some contexts to adjust the equating strategy. Findings among various studies suggest that scores differ more in the extremes (high and low scores) and are more similar near the mean (DuBose & Kromrey, 1995; Livingston, 1993; Parshall et al., 1995; Tsai, 1997). The recommendation, then, is that testing programs with small sample sizes are
better served by setting a cut score near the mean--assuming that a cut score in that location accomplishes the intent of the standard setting--and equating only near that cut score when possible (Jones et al., 2006; Kolen & Brennan, 2004). If equating is really necessary all along the score scale and distributions between forms are not linearly related, equipercentile equating would be the next logical choice to consider.

Equipercentile Equating

As distributions of scores are rarely perfectly linearly related, equipercentile equating can provide a more versatile equating method than mean or linear equating. It allows the score distributions on two forms to vary in the first four moments of the distribution (i.e., mean, standard deviation, skewness, and kurtosis). Mean and linear equating functions assume that scores differ by a constant (mean in mean equating, and mean and standard deviation in linear equating). In reality, scores may vary differently at different points on the score scale. Thus, equipercentile equating is more practical if scores need to be equated all along the score scale, rather than only at or near the mean.

For the equipercentile equating function, two scores are equated if they correspond to the same percentile. If a score of 30 on Form X is at the 60th percentile of Form X and a score of 33 on Form Y is at the 60th percentile on Form Y, then 30 and 33 are considered to be equivalent scores. This correspondence can be determined graphically or analytically.

Figure 1 illustrates the graphical method of equipercentile equating (from Kolen & Brennan, 2004, p. 42). To use this method, equivalent scores are found by plotting the cumulative frequency distributions from the two test forms on one graph and finding the scores that have the same percentile rank. In the example shown in Figure 1, the x-axis is the raw score and the y-axis is the percentile rank. To find a Form Y equivalent of a Form X score of 2.00
In the example, a vertical line is drawn from the raw score 2.00 on the x-axis to the cumulative frequency distribution for Form X. A horizontal line is then drawn from that point to the cumulative frequency distribution for Form Y (this line corresponds to a particular common percentile rank, in this case about 60th). Finally, a vertical line is drawn from that point back to the x-axis to find the raw score equivalent on Form Y for the given score on Form X which, in this case, is approximately 2.8.

---Insert Figure 1 about here.---

In the example shown in Figure 1, there is a limited score range (-0.5-4.5). In reality, score ranges may be much larger, and the graphical method lacks some precision in deriving strictly equivalent scores. An analytical method is probably more practical and results in a more precise solution. The analytical method uses the function:

\[
P(x) = 100\{F(x^* - 1) + [x - (x^* - .5)]\left[F(x^*) - F(x^* - 1)\right]\}
\]

where \(P(x) \) is the percentile rank function, \(F \) is the cumulative distribution function, and \(x^* \) is the discrete score closest to the actual score.

While equipercentile equating has less stringent assumptions about the shapes of the score distributions on forms, it is problematic for small-scale testing, as it requires larger sample sizes. The equipercentile equating function “compresses and stretches the score units on one test so that its raw score distribution coincides with that on the other test” making it very “data dependent” (Cook & Petersen, 1987, p 226). Sampling error is large when scores not achieved in a small sample cause irregularities in the distribution. This problem can be addressed by applying smoothing methods.

Smoothing is a technique used to even out rough score distributions for the purpose of reducing random sampling error in equipercentile equating (Kolen & Brennan, 2004). It
does so by estimating a smooth population distribution and replacing the observed scores with the estimated smoothed distribution. Smoothing may be done prior to equating (presmoothing) or after equating (postsmoothing). The importance of this method in the current discussion is that smoothing may make equipercentile equating more feasible for small sample sizes since it can reduce sampling error.

Livingston (1993) conducted a study to determine whether using loglinear smoothing could reduce sample sizes needed for equipercentile equating. Loglinear smoothing is a presmoothing technique that tries to fit the best model to the data by estimating moments in the distribution. Sample sizes of 25, 50, 100, and 200 were tested in the context of a CINEG design. The smaller the sample size, the larger the reduction in error was. In all sample sizes tested, it was determined that equating with loglinear smoothing was preferred to not equating at all. Hanson, Zeng, and Colton (1994) also found that smoothing methods applied to sample sizes as small as 100 could provide more accurate equating results than equipercentile without smoothing and, in some cases, mean and linear equating.

Livingston suggested that the use of presmoothing may reduce the sample size needed for equipercentile equating by half, making it a more realistic choice for small-scale testing situations where scores need to be equated all along the score scale. However, even with the improved precision achieved with the use of smoothing, some of the more recent literature still does not recommend equipercentile equating for small sample sizes, indicating it may not provide the best fit to the data (Jones et al, 2006; Kolen & Brennan, 2004; Tsai, 1997).
What constitutes an adequate sample size for equipercentile equating, with or without smoothing, is not definitive. Hanson, Zeng, and Colton (1994) suggested a sample size of 1000 for using equipercentile equating with presmoothing. Jarjoura and Kolen (1985) indicated the need for a large sample size (800) when using equipercentile equating. Jones, Smith and Talley (2006) recommended a minimum sample size of 628 with a standard error of equating of 1.0 and equating at the cut score when the cut score is near the mean; when the cut score is at least two standard deviations from the mean, the recommended sample size increased to 3056. In all of these studies, a random groups design was used with the exception of the Jarjoura and Kolen study, which used a CINEG design.

In general, the literature indicates that larger sample sizes are necessary for equipercentile equating compared to other methods, with some exceptions when using smoothing techniques. Smoothing may make this method of equating feasible for some small sample situations. When considering which equating function to use, it is wise to weigh the importance of equating all along a score scale for a non-linear distribution versus introducing the smallest amount of error in the process.

There are other options when scores need to be equated all along the scale, and/or distributions vary in a non-linear fashion. IRT (e.g., Rasch) models do not assume linearly related distributions, although IRT approaches—particularly 2- or 3-parameter logistic models—do require larger sample sizes.

EQUATING WITH IRT

IRT equating uses item and ability parameter estimates to put scores from different forms on the same scale (Hambleton et al, 1991). The three-parameter IRT method requires
comparatively large sample sizes of at least 1000 (Barnes & Wise, 1991; Jones et al, 2006) and is, thus, not practical for many small-scale equating contexts.

The Rasch (i.e., 1-parameter) model generally requires smaller sample sizes (Kolen & Brennan, 2004). It may be possible to use this model with sample sizes as small as 100-200 (Jones et al, 2006; Lord, 1983). The Rasch model estimates only one item parameter, b, which is the difficulty parameter. It does not estimate discrimination or guessing parameters as is done in a three-parameter IRT model. Barnes and Wise (1991) indicated that the Rasch model may be robust to violations of the assumption of equality of item discrimination (i.e., that all items discriminate equally well), but not to violations of the assumption of equality in the guessing parameters for items (i.e., that the probability of guessing an item correctly is equal for all items and equal to zero). A modified one-parameter model that fixes the guessing parameter to a certain nonzero value may be an option for sample sizes of at least 200 (Barnes & Wise; Jones et al, 2006). The Barnes and Wise study also suggested a minimum test length of 50 items for the modified one-parameter model.

Possibly the greatest challenge in equating is determining which of these methods to use or whether to choose any of them. In some cases, the best method of equating may be no equating at all, which is the subject of the following section.

Identity Equating

One last option for equating scores on forms is identity equating. Identity equating, simply put, is not applying any equating function to determine comparability of scores. In identity equating, a score of x (e.g. 25) on Form X is considered equivalent to a score of x (e.g. 25) on Form Y without doing any statistical adjustments to the scores (Kolen &
Brennan, 2004). Scores are considered equivalent all along the scale. The identity function is the bias introduced by not equating, and is defined as:

\[x_i - e_y(x_i), \]

(6)

where \(x_i \) is a raw score on Form X (e.g. 25) and \(e_y(x_i) \) is the transformed score of \(x_i \) to a Form Y equivalent (e.g. 24.25). In this example, the bias associated with using identity equating would be .75, the difference between the unequated raw score and the equated raw score.

Identity equating is most defensible when the two test forms, X and Y, have been built to be as parallel as possible during test construction. Identity equating may be advisable in cases where using an equating function would introduce more error than the bias introduced by using no equating function. Kolen and Brennan (2004) stated: “Only if equating is expected to add in less error than identity equating should an equating other than identity equating be used” (p. 272). This is especially important to the discussion of equating in small sample testing situations.

Determining Whether to Equate Forms

The studies cited within the discussion of sample sizes for the various equating methods give a variety of answers to the question of how large a sample needs to be for a particular equating method. The answer always depends on the characteristics of the individual forms and of the available sample populations. Because there is no universally appropriate answer, a decision must be made each time new forms are constructed about whether the sample size is large enough to equate forms, or whether identity equating should be applied.
Determining whether to use identity equating as opposed to another equating function (e.g. linear or equipercentile equating) can be accomplished using various methods. Three methods are presented in this discussion: the application and comparison of equating results (Hanson et al., 1994; Kolen & Brennan, 2004); the Dorans and Lawrence (1990) method of creating confidence intervals; and the Hanson (1996) method of comparing score distributions, which is the focus of this research study.

Dorans and Lawrence Method

One way to determine which equating method to use was proposed by Dorans and Lawrence (1990). This method uses linear equating and the standard error of equating (SEE) to determine whether the identity function falls within a certain confidence interval around the equated score function.

The SEE is an index of random error introduced in the equating process. It is the square root of the error variance at a particular score (x) over replications. The random error variance is the variance of an equating function over replications that is due to using a sample to estimate the equivalent scores in the population. According to Kolen and Brennan (2004, p. 68), the error variance is:

\[
\text{var}[e\hat{q}_y(x_i)] = E[e\hat{q}_y(x_i) - eq_y(x_i)]^2
\]

(7)

where \(e\hat{q}_y(x_i) \) is the transformed score of x to a Form Y equivalent, and \(E[e\hat{q}_y(x_i)] \), is the estimated transformation over replications.

The SEE is the square root of the error variance:

\[
\text{SEE}[e\hat{q}_y(x_i)] = \sqrt{\text{var}[e\hat{q}_y(x_i)]} = \sqrt{E[e\hat{q}_y(x_i) - eq_y(x_i)]^2}
\]

(8)

The SEE can be estimated in a variety of ways. The bootstrap method requires random samples of a given size be drawn from the Form X and Form Y distributions, then equated
using the desired equating function and repeated R times. In each sample, the mean of equated scores is subtracted from the population equated score. SEE using the bootstrap method is the standard deviation over multiple replications divided by R-1 (Kolen & Brennan, 2004). An analytic method such as the delta method can also be used, but is much more mathematically complex (Kolen & Brennan, 2004).

Dorans and Lawrence (1990) provided a different formula to calculate the SEE and to create a confidence interval around the equating function that is plus or minus two standard deviations:

$$SEE = [(s_x^2 / n_h)(2 + Z^2(y))]^{1/5}$$ \hspace{1cm} (9)

“where $n_h = [.5(n_x^{-1} - 1 + n_y^{-1})]^{-1}$ is the harmonic mean of n_x and n_y, and $Z(y)=(y-Y)/s_y$” (p. 247). This formula basically performs linear equating while creating a confidence interval. The confidence interval is defined as ± 2 SEEs from the raw score. If the identity function (the difference between a raw score and an equated score) falls within this interval, then no equating is necessary. For example, Equation 9 is used to find the equivalent (Form X raw score of a Form Y raw score (75). The Form X raw score equivalent is 74.720. The difference between the two scores (the identity function) is .280 and the SEE is .22165. The confidence interval would be 75 \pm .44330. The identity function falls within this interval; thus, equating is preferred over using the identity function.

A possible limitation of this procedure is that it assumes that the same items are used on both forms of the test, but presented in different orders. Dorans and Lawrence (1990) did not discuss this method in the context of forms that contain different items. In addition, this method is limited to the use linear equating with a random groups design for small sample sizes.
Assessing Equating Error

Another option for determining whether to equate forms (including identity equating) is to use an index of equating to select the best option. Kolen and Brennan (2004) discussed methods for choosing among smoothing methods and refer to identity, linear, and mean equating as drastic methods of presmoothing. They used the example from Hanson, Zeng, and Colton (1994) where scores from five pairs of forms were compared using identity, linear, unsmoothed equipercentile, and seven methods of pre- and post-smoothed equating methods. Table 2 is a summary of results from two of the five pairs of forms equated, using sample sizes of 100, 250, 500, 1000, and 3000. This study compared results of the different equating methods using mean squared error (MSE).

MSE is a method for determining differences between an estimated function (in this case an equating transformation between two forms) and the true value of what is being estimated (van der Linden, 2006). In general terms, the MSE is “the sum of random equating error variance and squared bias” (Kolen & Brennan, 2004, p. 289). Random equating error variance was defined above as the variance of an equating function over replications that is due to using a sample to estimate the equivalent scores in the population. The bias was defined above in terms of identity equating and is discussed in Kolen and Brennan as accounting for systematic error by subtracting the raw score estimate using a particular equating method (e.g. log-linear smoothing) from a different equating method (e.g. equipercentile or identity). In MSE this estimate is calculated (Equation 10) by subtracting equated scores for a particular point on the score scale from the mean of those estimates over replications (Equation 11) and then squared. Hanson, Zeng, and Colton (1994) calculated an average MSE (AMSE) using the following formula:
\[\sum_{i=0}^{k} \{ e(i) - \hat{\mu}_{e(i)} \}^2 + \sum_{i=0}^{k} \{ e(i) - \hat{\mu}_{e(i)} \}^2 \]

(10)

where \(k \) is the number of items on a given form, \(i \) is a raw score, \(E \) is the expected value over replications, and \(\hat{e}(i) \) is the equated raw score from an old form to raw score \((i) \) on a new form. \(\hat{\mu}_{e(i)} \) is the mean of the estimated old form score equivalents to the new form for a particular score \((i) \), over replications (500). This mean was estimated using the formula:

\[\frac{1}{500} \sum_{s=1}^{500} \hat{e}_s (i) \]

(11)

and then applied to Equation 10. The estimate is made over 500 replications; \(s \) is a particular score on the old form of an examination, and \(i \) a score on the new form. In Equation 10, the first half of the equation calculates the random equating error variance and the second half calculates the bias.

The summary of MSE from the study by Hanson et al (1994) using data from the ACT Science Reasoning Test is provided in Table 2. The values in the table show that, when \(n=100 \), identity equating is preferred over other methods based on the criterion of a lower error index. The MSE for identity equating is .51 compared to MSE over 1.0 for all other methods of equating. For the same test, when \(n=250 \), the only method that had a lower MSE than identity equating was linear equating. In contrast, the results for the ACT English test indicated that any of the pre- or post-smoothing methods (the methods listed in Table 2 from Beta 4 and following are smoothing methods) produce smaller MSE than identity, linear, or unsmoothed equipercentile equating, for all sample sizes studied.

---Insert Table 2 about here.---
The MSE method of comparing equating models is recommended for a random groups design, but using this for a CINEG design may be problematic. It is not possible to test the assumptions (e.g. the regression of Form X scores on the common items is the same in population 1 and 2) associated with methods of equating that use common items to distinguish form difficulty from group differences (Kolen & Brennan, 2004). However, the MSE method may be an option when using a common groups design with counterbalancing.

The Hanson Method

Hanson (1992, 1996) provided an alternative for determining whether to equate forms, that does not require the application of multiple equating methods to scores on forms, and allows for items on the forms to differ. Kolen and Brennan (2004) recommended this approach for small sample situations. Harris and Crouse (1993) also recommended this procedure, because it uses a chi square significance test as opposed to a measure of error.

This method is described in a study (Hanson, 1996) where the goal was to find the best method, using loglinear modeling, for comparing distributions of scores on two or more forms of a test to determine whether to equate scores on those forms. Hanson examined three different loglinear methods in his study: column effects, saturated, and polynomial loglinear. For all three methods, the null hypothesis tested was that the distributions among forms were the same. In each case, two models were compared: one that constrained the distributions to be the same (reduced model) and another that allowed the distributions to differ (full model). In the reduced model, expected frequencies of each score on Form A and Form B were constrained to be the same, and in the full model they were allowed to vary. If the null hypothesis held and the constrained distributions were the best fit to the data, then
the forms were considered equivalent and no equating was needed. If the model that allowed the distributions to differ was the best fit to the data, then the null hypothesis was rejected.

The intent in comparing the models in this way was to determine which model represents the best fit to the data. Hanson (1996) used a likelihood-ratio chi-square statistic, G^2, to determine model fit, applying the formula:

$$G^2 = 2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log \left(\frac{n_{ij}}{m_{ij}} \right)$$

for each method i represents the scores, and j the forms. The term n_{ij} is the observed number of scores for a particular score i on a particular form j, and m_{ij} is the expected number of scores for a particular model for score i on form j. The terms i and j correspond to the rows and columns of the contingency table that is used to calculate the chi-square statistic. The model fit is determined using the observed and expected values of all cells in the table.

If the resulting chi-square statistic is statistically significant, the distributions on the forms are considered to be different and the null hypothesis is rejected. If the resulting chi-square statistic is not statistically significant, the distributions are considered to be from the same population and identity equating is recommended.

An assumption of the chi-square test (Howell, 2002) that will be important in discussing the results of this study is the issue of cell frequencies. Small expected frequencies within cells cause problems in the estimation of the statistic. Howell (2002) made a conservative suggestion that cell frequencies be at least 5. A more liberal requirement is that each cell contain a frequency of at least 1 and eighty percent of cells have at least 5. Lower frequencies are associated with an increased Type I error rate and lower power.
The three models Hanson (1996) examined (saturated, column effects, and polynomial) differ in the way that they fit to the data. The saturated model provides a perfect fit to the data and uses a two-way test of independence, which treats the data as nominal. The column effects model treats the data as ordinal and allows the form distributions to vary. Finally, the polynomial loglinear model is similar to that used in the loglinear smoothing techniques described previously. Hanson determined that this model was a more powerful test than the previous two for finding differences between score distributions. As such, it is the only model described here in full and used for this study. Table 3 shows the formulas for the full and reduced models, the number of parameters estimated, and the degrees of freedom.

---Insert Table 3 about here.---

In the polynomial loglinear model shown in Table 3, λ_j^T is the forms effect, k is the number of items, and d represents the number of polynomial degrees (where d ranges from 1 to 10). In the full model, the first d moments of the estimated distribution are the same as the first d moments of the observed distributions. In other words, if $d=2$, then the mean and standard deviation of the expected frequencies will be the same as those for the observed frequencies on Form A. The same will be true on Form B. This is not true for the estimated distributions in the reduced model because the distributions for Form X and Form Y are constrained to be the same. All estimated frequencies will be estimated so that the distributions are the same on both forms of the examination. The purpose of this is to compare these two models and determine which is a better fit to the data.

Hanson (1996) set d at 10, which means that the method will estimate the density in each cell using 1-10 polynomial degrees for both the reduced and full models. Ten chi-
square values are estimated. Interpretation of the statistics is described next in the context of an example from Hanson’s study.

Application of the Hanson Method

Hanson (1996) applied the methodology just described using two data sets. Figure 2 and Tables 4 and 5 summarize the data and results from one of those examples. The data for this example came from two-forms of a 24-item, ACT elementary algebra examination. Figure 2 presents the cumulative frequency distribution, and the first two lines of Table 4 present the descriptive statistics (labeled SDP1, Score Distribution Pair 1).

Table 5 gives the results of Hanson’s (1996) method for detecting differences in score distributions using the polynomial loglinear model. The table provides the chi-square statistic associated with each polynomial degree (Degree), the degrees of freedom (df), a difference calculation (Difference) for both the full and reduced models, and a summary column (Test of Distribution Difference). The Difference column calculates the difference in the chi-square value between a particular polynomial degree and the previous one.

The first step to determine whether the distributions differ is to select a polynomial degree with which to compare the full and reduced models. The goal is to select the model that uses the fewest polynomial degrees and, thus, estimates the fewest parameters. The difference between the chi-square statistics is compared at each level until a significant difference is detected (Hanson, 1996). The null hypothesis for this step of the process is \(d=d^* \), where \(d^* = 1-9 \), and the alternative hypothesis is \(d=d^*+1 \). The polynomial degree
associated with the alternative hypothesis is the model that will be selected. The null hypothesis is rejected when a significant chi-square value is reached. The alternative hypothesis \(d = d^* + 1 \) is then chosen.

In the example, the chi-square values were compared using an alpha level of .001 (to adjust for nine comparisons) with two degrees of freedom (equal to number of chi-square values being compared to determine the fit of a single polynomial degree), which is a chi-square value of 13.82 or larger. For the Full Model in Table 5, starting with 10 polynomial degrees and moving down, and looking at the Difference column, the first degree where the difference exceeds 13.82 is \(d = 3 \) (Difference=131.78). The null hypothesis that \(d = 3 \) \((d^* = 3) \) is rejected, and the alternative hypothesis \(d = 4 \) \((d = d^* + 1) \) is accepted. The same process can be used to determine the desired Degree by looking at the Reduced Model. Only one model needs to be analyzed to select the degree.

If review of the difference column for the full model and reduced models had not revealed a value greater than 13.82 for any of the 10 polynomial degrees, then the method would have selected a polynomial degree of 1. This situation might occur when sample sizes are too small to estimate the distributions using the available data. When a polynomial degree of 1 is selected, an evaluation of the null hypothesis cannot be accurately determined; however, the Hanson method continues the process using a polynomial degree of 1 and comparing the chi-square value for the difference between the full and reduced models. In some cases there may be a result indicating a significant difference, but the results are not meaningful because the distributions for polynomial degree of 1 are not accurate. This will be described in the context of the current study in the Results section.
Once the polynomial degree is selected, the last three columns (Test for Distribution Differences) are the actual comparison of the distributions. The polynomial degree selected in this example was 4 (d=3+1). At d=4 (under column df), the χ^2 value is 27.51, which is statistically significant ($p < .0001$). The null hypothesis that the distributions between the two forms are the same is rejected and the alternative hypothesis that distributions are different is tenable. In this case, the implication would be that an appropriate equating method should be used.

As mentioned earlier, the Hanson (1996) method has been recommended in the literature for determining whether to equate scores on two or more forms a test, in general, and specifically when there are only small samples of data available for equating. The Hanson method makes assumptions about the similarity of the sampled populations by comparing the score distributions between forms. When the results indicate that distributions are the same, the samples from the two forms are considered to be drawn from the same population, and no equating is necessary. Alternatively, when the results indicate that the distributions are different, the samples are assumed to come from different populations, and equating is necessary.

The purpose of the study reported here is to determine how powerful the Hanson (1996) method is for determining differences in score distributions for small samples of data. The research question posed here is: at what sample size(s) is the Hanson method most appropriate for detecting differences in score distributions?
III. METHODOLOGY

This study was conducted using a Monte Carlo design. Data were simulated and Hanson’s (1996) method for determining differences in distributions applied using a SAS 9.1 program designed for this study. (The SAS code used is provided in the Appendix.) The two steps--simulating the data and applying the Hanson method--were combined into one program for the purpose of simulating and running each test multiple (n=1000) times.

Three pairs of distributions with varying standardized mean differences (SMDs) were compared. Figure 2 and 4 show plots and descriptive statistics for the original pair of distributions that were taken from Hanson’s (1996) study for testing differences in distributions. The second and third pairs were adapted from Hanson, Zang, and Colton (1994; Figures 3, 4, 5, Table 4). These distributions are loglinear-smoothed estimates of population scores based on six forms of four different ACT tests.

---Insert Figures 2-5 about here.---

Figure 2 shows two distributions from two forms (Form A and Form B) of an ACT elementary algebra assessment (Hanson, 1996). This pair of distributions will be referred to as Score Distribution Pair 1 (SDP1). Descriptive statistics for the original SDP1 are shown in 4. This is the same pair of distributions used in the example of Hanson’s method discussed above. Recall that in this example, with n=3293, the null hypothesis that distributions are the same was rejected indicating that a significant difference was detected and equating should be used.
The purpose of using this example for the current study was to be able to determine whether the null hypothesis could still be rejected when sample size (n) is reduced. However, the means of the Form A and Form B distributions are extremely close (13.93 and 13.99, respectively). The SMDs between the two forms using an averaged standard deviation (4.92) is only .01, indicating the degree to which these two forms differ in difficulty is very small (Howell, 2002). In reality, it would be unlikely that two forms of a test could be constructed with this much precision. For this reason, two additional pairs of distributions were examined to determine how the Hanson (1996) method might perform for small sample sizes when there is a greater SMD. A summary of SMDs for all three pairs of distributions is provided in Table 6.

---Insert Table 6 about here.---

The distributions from the second pair of distributions (SDP2, shown in Figures 3 and 4), are a simulated pair of distributions resulting from a combination of one form from each of two 40-item tests covering different subject matter. The purpose of creating SDP2 was to test a pair of distributions that had a larger but moderate SMD compared to SDP1. The approximate SMD for this example is .31, using an averaged standard deviation of 6.71.

The last pair of distributions (SDP3) is from an ACT English test (Hanson et al., 1994). The SMD for this example is .59, using the averaged standard deviation (12.55). Score distributions may vary by such a large amount when the samples used come from separate testing administrations at different times during the year. For example, given an examination administered two times per year, the first group may be made up primarily of first time test-takers, while the second administration may have more examinees that are
retesting. In this example, the scores on the first administration would be expected to be higher than those on the second administration.

The process for extracting data from these original distributions and applying it to the SAS program, which generates a data simulation and applies the Hanson (1996) method, is presented in graphical form in Figure 6. The figure shows that the graphical representation of the original distributions (SDP1) was used to find the probabilities for each raw score (SDP2) using Datathief (Tummus, 2006). Datathief is a program designed to generate data from graphical representations. The distributions derived from this process were first applied to a SAS program (see Appendix) that converted the probabilities seen in Step 2 to the file shown in Step 3. The data in Step 3 are (going from left to right): the item count, raw score, cumulative density functions of y_1 and y_2 (Forms A and B), and the cumulative distribution functions of y_1 and y_2.

---Insert Figure 6 about here.---

In Step 4, the SAS program used the information described in Step 3 to first simulate distributions, and then apply the Hanson (1996) method as described in the previous section and example. This process was completed for sample sizes of 3500, 3000, 2500, 2000, 1500, 1000, 500, 250, 200, 150, 100, 50, and 25. The procedure was applied to each sample size 1000 times for all three distributions. The results, as indicated in Figure 6, were provided as two outputs: power and test summary. These are described in the Results and Discussion sections that follow.

Table 7 provides the descriptive statistics for one iteration of the simulation for each of the three score distribution pairs. The statistics for SDP1 are nearly identical to the original data provided in the Table 4. There is a slight difference between means (Tables 4
and 7) and SMD as indicated in Table 6 (.008 for the simulated distributions). However, the statistics for the second and third pairs vary from the original data, although the graphical presentations are similar in shape for SDP2 and SDP3 and identical for SDP1 (Figures 7, 8, and 9). The reason for this difference is that it was desirable to transform SDP2 and SDP3 to the same scale as SDP1. In the end, all three pairs of distributions are presented on a scale of 0-24. This transformation was done while converting the data in Step 2 of Figure 6 to Step 3. The converted values in the distributions were then used for the simulation and method application.

---Insert Table 7 about here.---

---Insert Figure 7-9 about here.---

This conversion caused an increase in the differences between the two individual distributions within each pair of distributions (SDP2 and SDP3) that was adjusted to the scale of SDP1. The new SMDs for those two pairs are .38 and .82, respectively. A summary of the SMD information in this study is provided in Table 6.
IV. RESULTS

A primary result of this study was an estimation of power for each sample size within each pair of distributions. The box labeled “Output 1” in Figure 6 presents an example. The power estimation in these results indicates the frequency with which the method rejected the null hypothesis that the two score distributions being compared were different. For example, if power is .995, then the Hanson method rejected the null hypothesis that distributions were the same 99.5 percent of the time indicating a high level of power.

A second output, shown in the “Output 2: Analysis of Model Selection” portion of Figure 6), was generated for the purpose of identifying the polynomial degree selected for each iteration of the program. The data are (from left to right), the iteration count (1-5 in the example), the chi-square statistic (Stat) used to test the null hypothesis that the distributions on forms are the same. The column labeled Prob is the p-value associated with the particular chi-square value followed by the degrees of freedom (df) for the statistic, which is the same as the polynomial degree selected for the model. The final column labeled Power is an indication of whether the null hypothesis was rejected for a particular iteration of the process. In the power column, 0 indicates the null hypothesis was retained, and 1 indicates that the null hypothesis was rejected. The overall power for a particular sample size is the percentage of time that a 1 appeared in this column, indicating the power of the test to reject the null hypothesis.
Full results of the simulation are provided in Table 8. A comparison of all three score distribution pairs for each sample size is presented. The SDP is designated across the top of the table along with the SMD for each pair of distributions. The first column (n) indicates the sample size. Within each of the sections for a particular SDP there are three columns. The first column lists the polynomial degree or range of degrees selected for the particular sample size. This is the range across the 1000 iterations. For example, for SDP1 and n=3500, the polynomial degree range is 6-10 indicating that the method did not always select the same polynomial degree, but selected a value between 6 and 10.

---Insert Table 8 about here.---

The second column for each SDP is the Power over 1000 Iterations. This value indicates the percentage of times that the method rejected the null hypothesis that the distributions were the same. In the example just described (SDP1 and n=3500) the power is .995, indicating that the method rejected the null hypothesis nearly 100% of the time.

The third column for each SDP, Power When Polynomial Degree of Model>1 (number of iterations), indicates the power when using only iterations (out of the original 1000) that selected a polynomial degree greater than 1. This is relevant because the method must select a polynomial degree of two or more to provide meaningful results, because a polynomial degree of one is defined as a line. The Hanson (1996) method attempts to estimate the density function of scores on two forms, y1 and y2 (alternatively, Form X and Form Y), for the purpose of comparing the two distributions. Those density functions are curves. Thus, when the program does not have enough information to fit the available data for a particular sample size (e.g., 50) to the density functions of y1 and y2, it uses a
polynomial degree of one. Even when the test finds a significant difference between distributions in this case it is comparing two straight lines and, thus, the results are not valid.

For most of the sample sizes, for all three SDPs where power was 1 (or close to 1) in the second column, the polynomial degree was two or more; thus, the power estimates are the same in both the second and third columns. For example, for SDP1 and n=3500 the Power over 1000 Iterations is .995 and the Power When Polynomial Degree of Model > 1 is .995. When the sample size decreases to 50, the power estimates increase when considering only the iterations that selected a degree over 1. In the same example with sample size of 50, only 19 of the 1000 iterations used a polynomial degree over 1, and 47% of those 19 iterations found a significant difference between the distributions of scores on the two forms, rejecting the null hypothesis. The method never selected polynomial degrees over 1 for sample sizes of 25 for any of the three SDPs, meaning that a sample size of 25 is not adequate for fitting a density function to the scores on the two forms. The point at which the method completely breaks down, in the sense that it cannot estimate the density function, appears to be somewhere between 50 and 100.

As was anticipated for the overall outcome of the study, for all sample sizes and SMD levels, the smaller the size of the sample, the less powerful the Hanson (1996) method is for detecting differences between score distributions. The results for SDP1 range in power from .995 when n= 3500 to a power of .009 when n=25. Estimations of power for SDP2 range from 1.0 for sample sizes 200 or greater (.999 for n=150) and .992-.013 when sample sizes are 100 or below. The results for SDP3 are similar. Power is 1.0 for sample sizes 100 and above, and .579-.139 for sample sizes below 100. These results are discussed further in the following section.
V. CONCLUSIONS AND DISCUSSION

This study was designed to consider situations where multiple forms of an examination are used for a testing program with small sample sizes (i.e., small numbers of examinees) and the determination must be made regarding whether or not to equate the forms. In these situations, decisions must be made about how similar forms are in difficulty and whether statistical methods should be applied to make scores on two different forms equivalent. Such decisions may be informed by using statistical methods such as the Hanson (1996) method for determining whether significant differences exist between score distributions on two forms. The present study investigated the sensitivity of Hanson’s (1996) method to detect distributional differences when sample sizes are small.

The research question posed for this study was: “At what point does Hanson’s (1996) method fail to detect differences in score distributions?” Hanson noted that the method might not be powerful enough to detect significant differences when sample sizes are small. The question was how to define small sample sizes for this method. It was already known from Hanson’s research that the method detected a significant difference for SDP1 when sample sizes were large (over 3000) and distributional differences were very small. The results of this study confirm and extend Hanson’s findings. When the SMD between two distributions is small (as in the case of SDP1), power is close to 100% for samples over 3000, meaning that the method identified a significant difference between the distributions in 995 of the 1000 iterations of this test. Power is still high for sample sizes of 2000 (.971), 2500 (.917), and 1500 (.806). The most extreme drop occurs at n=500, where
power drops from .624 to .322, meaning that for a sample size of 1000, the method detects a
difference between score distributions approximately 62% of the time and then drops to
32% when sample size is 500. For sample sizes under 100, the method detected differences
only about 1% of the time.

It is important to note that the results do support use of the Hanson (1996) method
for moderate sample sizes. The Hanson method may not work well for very small sample
sizes (n=100), but there is evidence to support the use of the method for moderate sample
sizes, depending on how large the difference is between the distributions. This study
indicates that when a somewhat moderate or very large difference (.33 or .82) is present, the
method is able to detect differences between distributions for sample sizes over 100. Even
when differences are very small, the method works most of the time for sample sizes
between 1500 and 3000. The real issue with the method is for very small testing programs
with similar score distributions.

Overall, the results suggest that the answer to the research question for SDP1 is not a
simple one. The Hanson (1996) method is clearly less powerful as sample size decreases
but, in the case of SDP1, it does so more gradually than the decrease in power for SDP2 and
SDP3 because the differences between the forms are small.

Assessing whether a given sample size is adequate to determine important
differences between forms is clearer when test forms yield distributions of scores that have
larger SMDs. For SDP2, the method detected differences 100% of the time for samples sizes
of 150 or more, and most of the time for sample sizes of 100-200. There was a sharp,
distinct decrease in power when sample size was less than 100. Similar results occurred for
SDP3. For SDP3, power markedly decreased for sample sizes smaller than 100. It appears
that when there are significant differences between the forms, the point at which the method begins to break down is clearer than with forms that are more similar.

In addition to the SMD, the number of possible scores on the forms is a factor in how powerful the Hanson (1996) method is for determining differences between distributions. Recall the earlier discussion of assumptions for the chi-square goodness of fit test and the impact that small sample sizes have on the estimation of expected values in the frequency table and resulting estimated score distributions. In the example from Hanson’s study and in the present study a particular score distribution is estimated using a 2-way contingency table for scores 0-24 (2x25 table). There are two columns corresponding to the two forms and 25 rows corresponding to the number of possible scores. For each form, there are 25 cells, meaning that if the sample size is small (e.g., 25), it is likely that there will be multiple cells with frequencies of zero and many with very small frequencies, violating the minimum cell frequency requirements for using this statistical test. This has an impact on the power of the statistical test. This issue is exacerbated when number of possible scores increase. For example, an examination with 75 items (76 possible scores) will require a larger sample size for estimation of the chi-square statistic.

Overall, the results of this study indicate that, as would be expected, the Hanson (1996) method for detecting differences between score distributions has reduced power when sample size are small. What constitutes a small sample size has been discussed throughout this study within the context of test development in general, equating forms, and specifically for the Hanson method. The research question presented is basically asking what constitutes a sample size too small to detect important differences between score distributions and how does this affect the decision-making process for whether to equate
multiple forms of an examination. The results of the study indicate that the definition of a small sample size depends on the SMD between forms. Forms that differ only slightly (as in SDP1) require larger sample sizes to detect differences than forms that have larger SMDs (as in SDP2 and SDP3).

The answer also depends on the stakes of the particular testing program. A high stakes testing program where important consequences are tied to the results of the examination may require more certainty in the results of the method than a low stakes testing that has limited consequences. For example, for a high stakes exam using two forms that have very small differences as in the example of SDP1, may require that the method detect important differences as close to 100% of the time as possible, meaning a large sample size (over 3000) would be required. On the other hand, in a low stakes program with the same SMD, a smaller sample may be acceptable because the outcome is not as critical.

The results suggest that the Hanson (1996) method is less sensitive to distributional differences for small sample sizes because of two factors. First, regardless of SMD, the chi-square test is not a powerful statistical test for small samples (Howell, 2002). This problem is compounded when the SMD between forms is small. It was noted that for SDP1 that the Hanson test could detect differences most of the time when sample sizes were around 2000 or more. The test became significantly less powerful when sample sizes were less than 1000. When forms differ to a greater degree, the test is more powerful for samples under 1000; the test identified differences between forms for sample sizes of 100 or more when the SMD was .33 (SDP2) and .82 (SDP3). Additional research might be helpful in reviewing the power to detect differences when the SMD is between .008 (SDP1) and .33 (SDP2).
Second, the polynomial loglinear model needs a certain amount of data to estimate the density function of scores on two forms. The Hanson (1996) method selects a polynomial degree for the model that is greater than one to adequately fit the distributions. For all three distributions, the model fit the data to a first-degree polynomial most of the time when sample sizes were under 100.

When using the Hanson (1996) method with samples of data under 1000, it is important to carefully review the cumulative frequency distributions and descriptive statistics to assess how much the forms differ and whether they differ in some areas more than in others. In this study, the SMD was used to determine such differences. This index, however, does not indicate that equating may be more necessary in areas where the scores differ more drastically than in others. The Hanson method compares score distributions overall as opposed to individual score levels. In the example of SDP1, the scores were more similar in the tails, around values of 8 and 15, and varied more in between. In these areas, scores may not need to be equated, while in other areas of the score scale equating may be necessary depending on the purpose of the testing program.

In the discussion of equating presented in Section II of this thesis, much of the literature recommended equating only near the mean when using small samples of data. The results of this study give an example of why this may be the best advice for a testing program with small sample sizes. There is no certainty about whether the Hanson (1996) methods or any other procedure will give a definitive answer about whether to equate when sample sizes are small. According to the outcomes for SDP3, a program with two forms of a test and 200 examinees may be able to use Hanson’s method for determining differences in score distributions and accurately reject the null hypothesis of distributional equality, or the
null hypothesis would be retained as would be the case if distributional differences, such as those in SDP1, were present. Thus, the decision about form equating appears to depend to a great extent on how the scores are distributed for each form and, ultimately, how well the forms were constructed and data are collected. It is very unlikely that the Hanson method will detect differences in score distributions for small testing programs if a test developer has been attentive to all aspects of the testing process; that is, the test developer has defined the content domain well, constructed a detailed test specifications document, selected qualified SMEs, thoroughly trained those SMEs for item writing, technical review and standard-setting, provided adequate psychometric, grammatical, and technical edits, administered a well-conducted field test with examinees representative of the appropriate population, applied an appropriate testing model and carefully selected items, carefully assembled test forms based on the test specifications and statistics, and ensured equal reliability of forms.

An important implication of the present study involves the actual classifications (e.g., pass/fail, certify/do not certify, award/deny licensure, etc.) that result from testing. Failing to reject the null hypothesis that the score distributions on two forms are the same (a Type II error) may result in a decision not to equate forms when, in fact, equating would have been necessary. For example, suppose that a testing program had 1000 examinees (per form) with which to determine the necessity of equating two forms. If the Hanson method were used to evaluate the two score distributions, the present research indicates that the method would falsely retain the null hypothesis that the score distributions are the same approximately 38% of the time with an SMD of the magnitude evaluated for SDP1. Thus, it would likely be decided that equating was unnecessary when, in fact, it would be desirable.
That decision would affect the validity of the resulting scores because, in this example, scores from the two forms would be interpreted as being equivalent when, in fact, they are not.

The problem of potentially non-equivalent scores being interpreted as equivalent naturally extends to classification decisions based on those scores. This would be especially problematic in high stakes testing situations where the certification or licensure of an individual in a critical role, such as a physician or pilot, is involved and the relative costs of false positive and false negative decisions must be considered (Cizek, 2006). For example, a certification examination exists for high-level medical technicians using specialized diagnostic equipment that may have small testing populations, but that are high-risk due to the potential harm to patients of certifying those not truly competent in the area (i.e., a false positive classification). It is critical for scores on forms of this examination to be equivalent. The equivalency of forms will affect whether a qualified candidate receives a passing score and an unqualified candidate does not. In the case where a qualified candidate fails the exam (a false-negative classification), this individual is unfairly barred from practicing in the chosen profession. Thus, careful consideration is needed in determining what constitutes similar forms through the comparison of score distributions.

Although the desire to develop a quality exam in a low-stakes testing situation would still be high, the concern for statistical and pass/fail decision errors is lessened. In a low-stakes testing situation, decisions may be made based on smaller samples of data. For example, a certification may be available that demonstrates skills using a particular programming language. This test may be important to someone applying for a job in the information technology industry wanting to be distinguished from other job candidates, but
the consequences of these incorrect certification decisions are less serious than those described in the high-stakes example involving medical licensure.

Another consideration regarding the risks involved with the lack of power is that Hanson (1996) suggested if sample sizes are too small to detect important differences between the distributions that indicate the necessity of equating, then sample sizes are also too low for adequate equating functions to be applied. This, of course, will depend on the equating method being considered. As summarized in the earlier section on equating, there are methods for equating using small samples of data. A better decision may be reached if a comparison of equating methods is made, including identity equating and corresponding error indexes as indicated in the Hanson 1994 study described earlier.

Overall, equating is an important part of developing quality exams. It is a critical step in obtaining valid scores on forms that have the same intended interpretation. Determining whether to equate forms and then selecting the appropriate equating method is especially difficult when only small samples of examinees are available. There is little research that applies equating methods to small samples of examinees in realistic testing situations or provides viable alternatives to small scale testing situations when not enough data is available. Further research in determining whether to equate forms may also be useful.

This study focused on comparing large sample sizes with very small ones. A follow-up study could further examine use of the Hanson (1996) method in the range of sample sizes where the present study has shown that the method begins to lose statistical power to identify distributional differences. Based on the results found here, such research would examine power beginning at n=200 and use smaller increments under 100 (e.g. 90, 80,
Additionally, a useful follow-up study might consider SMDs in the range between those used for SDP1 (.008) and SDP2 (.33). This study would give insight into how well the Hanson (1996) method detects differences between distributions when form and group differences are larger than with SDP1 but more moderate than SDP2. Additionally, examining the effects of test length or number of raw scores possible would be valuable. A possible study might use tests of 50, 75, and 100 to see how the number of possible raw scores affects the sensitivity of the Hanson method. As indicated, the chi-square statistic may not be appropriate for determining significant differences between score distributions when sample sizes are small. An alternative non-parametric statistical test for comparing two independent samples is a Mann-Whitney U test (Howell, 2000). This statistical test uses rank ordering rather than cell frequencies in a contingency table to estimate and compare score distributions, making it less sensitive to issues of zero frequencies for particular scores. A future study may investigate how powerful this test is for detecting score distributions for small sample sizes under different conditions (e.g., SMD, test length).

Although data collection designs would not be relevant for simulation studies designed to answer the specific research questions that were the focus of this study, follow-up studies should consider the parameters used to define simulated score distributions. A limitation of this study, related to the use of the SAS program, was that simulated score distributions varied in all four parameters, not just the mean. Thus, as addressed previously, the SMD is an overall index that assumes uniform differences all along the score scale. Follow-up studies could include crossing a greater number of simulation conditions so that the standard deviations, skewness, and kurtosis of the two score distributions would be varied.
Additional research in this area will provide important information for programs working within the common limitations that are imposed on many testing programs: primarily financial resources and access to a large enough sample from the intended population for data collection purposes. The issue of basing important decisions on small samples of data is relevant across many industries and types of testing programs (e.g. education, certification, and licensure). The quality of these programs depends on accurate and powerful statistical tests, such as equating methods, and the research that supports their use.
Table 1

Data Collection Designs

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>X₁</th>
<th>Y₁</th>
<th>X₂</th>
<th>Y₂</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Groups Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂</td>
<td>2</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Single Groups Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Single Groups with Counterbalancing Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>P₂</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Items Nonequivalent Groups Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Groups Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q₁</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

P and Q refer to populations, where P₁ and P₂ are samples from the same population and P₁ and Q₁ are samples from different populations.

A checkmark indicates which form of the examination (e.g., X₁, Y₂) was administered to each population.

A=anchor test or common items between the two forms.

Table 2

Summary of Mean-Squared Equating Error from Hanson et al. (1994)

<table>
<thead>
<tr>
<th>Test</th>
<th>Equating Method</th>
<th>n=100</th>
<th>n=250</th>
<th>n=500</th>
<th>n=1000</th>
<th>n=3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Identity</td>
<td>5.76</td>
<td>5.76</td>
<td>5.76</td>
<td>5.76</td>
<td>5.76</td>
</tr>
<tr>
<td>English</td>
<td>Linear</td>
<td>6.15</td>
<td>3.65</td>
<td>2.80</td>
<td>2.33</td>
<td>2.00</td>
</tr>
<tr>
<td>k=75</td>
<td>Unsmoothed</td>
<td>6.60</td>
<td>2.83</td>
<td>1.50</td>
<td>.75</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>Beta4</td>
<td>5.28</td>
<td>2.24</td>
<td>1.22</td>
<td>.63</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=3</td>
<td>5.20</td>
<td>2.30</td>
<td>1.29</td>
<td>.71</td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=4</td>
<td>5.66</td>
<td>2.47</td>
<td>1.39</td>
<td>.77</td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=6</td>
<td>6.09</td>
<td>2.55</td>
<td>1.33</td>
<td>.67</td>
<td>.23</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.10</td>
<td>5.98</td>
<td>2.55</td>
<td>1.33</td>
<td>.67</td>
<td>.22</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.25</td>
<td>5.57</td>
<td>2.34</td>
<td>1.23</td>
<td>.62</td>
<td>.21</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.50</td>
<td>5.17</td>
<td>2.19</td>
<td>1.17</td>
<td>.59</td>
<td>.21</td>
</tr>
<tr>
<td>ACT</td>
<td>Identity</td>
<td>.51</td>
<td>.51</td>
<td>.51</td>
<td>.51</td>
<td>.51</td>
</tr>
<tr>
<td>Science</td>
<td>Linear</td>
<td>1.03</td>
<td>.46</td>
<td>.20</td>
<td>.11</td>
<td>.05</td>
</tr>
<tr>
<td>k=40</td>
<td>Unsmoothed</td>
<td>1.62</td>
<td>.70</td>
<td>.32</td>
<td>.17</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>Beta4</td>
<td>1.28</td>
<td>.55</td>
<td>.24</td>
<td>.12</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=3</td>
<td>1.17</td>
<td>.51</td>
<td>.22</td>
<td>.12</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=4</td>
<td>1.34</td>
<td>.57</td>
<td>.25</td>
<td>.13</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>Log-linear C=6</td>
<td>1.52</td>
<td>.63</td>
<td>.28</td>
<td>.14</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.10</td>
<td>1.42</td>
<td>.63</td>
<td>.28</td>
<td>.14</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.25</td>
<td>1.32</td>
<td>.56</td>
<td>.24</td>
<td>.12</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>Postsmeoothing S=.50</td>
<td>1.26</td>
<td>.51</td>
<td>.22</td>
<td>.11</td>
<td>.04</td>
</tr>
</tbody>
</table>

Table 3

Polynomial Loglinear Model

<table>
<thead>
<tr>
<th>Full Model</th>
<th>Number of Parameters</th>
<th>Reduced Model</th>
<th>Number of Parameters</th>
<th>Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu + \lambda_j^T + \sum_{k=1}^{d} \beta_{jk} S_i^k$</td>
<td>(d+1)J</td>
<td>$\mu + \lambda_j^T + \sum_{k=1}^{d} \beta_k S_i^k$</td>
<td>d+J</td>
<td>d(J-1)</td>
</tr>
</tbody>
</table>

Table 4

Descriptive Statistics from Original Hanson Studies for all Score Distribution Pairs (SDP1, SDP2, SDP3)

<table>
<thead>
<tr>
<th>SDP1</th>
<th>Form</th>
<th># Items per Form</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>24</td>
<td>13.93</td>
<td>4.84</td>
<td>-0.01</td>
<td>2.26</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>24</td>
<td>13.99</td>
<td>5.00</td>
<td>-0.17</td>
<td>2.22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 A</td>
</tr>
<tr>
<td>3 B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 A</td>
</tr>
<tr>
<td>2 B</td>
</tr>
</tbody>
</table>

Table 5

Summary of Results for the Polynomial Loglinear Model in Determining Differences between Score Distributions on Two Forms

<table>
<thead>
<tr>
<th>Degree</th>
<th>Full Model df</th>
<th>χ^2</th>
<th>Difference df</th>
<th>Reduced Model χ^2</th>
<th>Test of Distribution df</th>
<th>Test of Distribution χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28</td>
<td>29.52</td>
<td>38</td>
<td>61.36</td>
<td>10</td>
<td>31.84</td>
<td>.0004</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>31.85</td>
<td>2.34</td>
<td>39</td>
<td>61.36</td>
<td>0.01</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>31.88</td>
<td>0.02</td>
<td>40</td>
<td>61.36</td>
<td>0.00</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>31.90</td>
<td>0.02</td>
<td>41</td>
<td>61.42</td>
<td>0.06</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>32.68</td>
<td>0.78</td>
<td>42</td>
<td>61.47</td>
<td>0.04</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>35.87</td>
<td>3.19</td>
<td>43</td>
<td>63.93</td>
<td>2.46</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>36.42</td>
<td>0.54</td>
<td>44</td>
<td>63.93</td>
<td>0.00</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>168.20</td>
<td>131.78</td>
<td>45</td>
<td>185.84</td>
<td>121.91</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>202.07</td>
<td>33.87</td>
<td>46</td>
<td>207.35</td>
<td>21.51</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>2724.21</td>
<td>2522.14</td>
<td>47</td>
<td>2724.35</td>
<td>2517.00</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6

Summary of Standard Mean Differences (SMD)

<table>
<thead>
<tr>
<th>SDP</th>
<th>SMD for Original Data</th>
<th>SMD for Simulated Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.008</td>
</tr>
<tr>
<td>2</td>
<td>0.31</td>
<td>0.380</td>
</tr>
<tr>
<td>3</td>
<td>0.59</td>
<td>0.820</td>
</tr>
</tbody>
</table>
Table 7

Descriptive Statistics from Simulation Study for all Score Distribution Pairs after Converting Distributions to the Same Scale

<table>
<thead>
<tr>
<th>SDP</th>
<th>Form</th>
<th># of Items per Form</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>24</td>
<td>13.94</td>
<td>4.82</td>
<td>-0.001</td>
<td>2.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>24</td>
<td>13.98</td>
<td>4.99</td>
<td>-0.163</td>
<td>2.21</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>24</td>
<td>14.53</td>
<td>3.68</td>
<td>0.008</td>
<td>2.39</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>24</td>
<td>17.44</td>
<td>3.37</td>
<td>-0.320</td>
<td>2.54</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>24</td>
<td>11.49</td>
<td>4.42</td>
<td>0.280</td>
<td>2.27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>24</td>
<td>12.94</td>
<td>3.15</td>
<td>0.040</td>
<td>2.59</td>
</tr>
</tbody>
</table>
Table 8
Summary of Results for All Three Score Distribution Pairs (SDPs)

<table>
<thead>
<tr>
<th>n</th>
<th>Range of Polynomial Degrees Selected for Models Fit</th>
<th>Power over 1000 Iterations</th>
<th>SDP1 (SMD=.008)</th>
<th>Power When Polynomial Degree of Model > 1 (Number of Iterations)</th>
<th>SDP2 (SMD=.380)</th>
<th>Power When Polynomial Degree of Model > 1 (Number of Iterations)</th>
<th>SDP3 (SMD=.820)</th>
<th>Power When Polynomial Degree of Model > 1 (Number of Iterations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500</td>
<td>6-10</td>
<td>.995</td>
<td>.995 (1000)</td>
<td>4-10</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>6-10</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>3000</td>
<td>4-10</td>
<td>.977</td>
<td>.977 (1000)</td>
<td>4-10</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>6-10</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>2500</td>
<td>4-10</td>
<td>.971</td>
<td>.971 (1000)</td>
<td>4-10</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>6-8</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>2000</td>
<td>4-10</td>
<td>.917</td>
<td>.917 (1000)</td>
<td>4-10</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>4-8</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>1500</td>
<td>4-10</td>
<td>.806</td>
<td>.806 (1000)</td>
<td>4-6</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>4-8</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>1000</td>
<td>4-10</td>
<td>.624</td>
<td>.624 (1000)</td>
<td>4</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>4-8</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>.322</td>
<td>.322 (1000)</td>
<td>4</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>4-8</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>.161</td>
<td>.161 (1000)</td>
<td>2-4</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>2-6</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>200</td>
<td>2-4</td>
<td>.146</td>
<td>.146 (1000)</td>
<td>2-4</td>
<td>1.000</td>
<td>1.000 (1000)</td>
<td>2-6</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>150</td>
<td>2-4</td>
<td>.108</td>
<td>.108 (1000)</td>
<td>2-4</td>
<td>.999</td>
<td>1.000 (1000)</td>
<td>2-4</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>.077</td>
<td>.077 (1000)</td>
<td>2-4</td>
<td>.992</td>
<td>1.000 (1000)</td>
<td>2-4</td>
<td>1.000 (1000)</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>.014</td>
<td>.470 (19)</td>
<td>1</td>
<td>.098</td>
<td>.970 (65)</td>
<td>1</td>
<td>.579 (81)</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>.009</td>
<td>.000 (0)</td>
<td>1</td>
<td>.013</td>
<td>.000 (0)</td>
<td>1</td>
<td>.139 (0)</td>
</tr>
</tbody>
</table>
Figure 1. Example of Graphic Method of Equipercentile Equating.

A score of 2.00 on Form X is equivalent to a score of 2.83 on Form Y.

Figure 2. Score Distribution Pair 1.

Figure 3. Form A - Score Distribution Pair 2.

Figure 4. Form B - Score Distribution Pair 2.

Figure 5. Score Distribution Pair 3.

1. **Original Score Distribution Pair 1**

```
%macro setdata(indata,outdata,group);
/* obtain model proportions for 1 to 25 */
data &outdata;
set _beta_;
retain totalpct 0;
output;
do score=1 to 25;
p=exp(col1+col2*score+col3*score**2+col4*score**3)/1000;
drop col1-col5;
totalpct=totalpct+p;
keep totalpct;
output;
end;
run;
```

2. **Points for the Cumulative Frequency Distribution**

```
Power  Sample Size  Iteration
0.995  3500          1000
```

3. **Cumulative Frequency Distribution and Density Function**

```
x    y1        y2        cdf1        cdf2
1    0.000904014  3.2108017E-8  0.000904014  3.2108017E-8
2    0.000869731  0.000793944  0.000869731  0.000793944
3    0.000828017  0.000746859  0.000828017  0.000746859
4    0.000776457  0.000704074  0.000776457  0.000704074
5    0.000724986  0.000662794  0.000724986  0.000662794
6    0.000673569  0.000610636  0.000673569  0.000610636
7    0.000622142  0.000558611  0.000622142  0.000558611
8    0.000570825  0.000507190  0.000570825  0.000507190
9    0.000519513  0.000455787  0.000519513  0.000455787
10   0.000468206  0.000403484  0.000468206  0.000403484
11   0.000416827  0.000351705  0.000416827  0.000351705
12   0.000365559  0.000300584  0.000365559  0.000300584
13   0.000314300  0.000249559  0.000314300  0.000249559
14   0.000263041  0.000198591  0.000263041  0.000198591
15   0.000211783  0.000144543  0.000211783  0.000144543
16   0.000160525  0.000097337  0.000160525  0.000097337
17   0.000109267  0.000044137  0.000109267  0.000044137
18   0.000058009  0.000008850  0.000058009  0.000008850
19   0.000007679  0.000000000  0.000007679  0.000000000
20   0.000000000  0.000000000  0.000000000  0.000000000
21   0.000000000  0.000000000  0.000000000  0.000000000
22   0.000000000  0.000000000  0.000000000  0.000000000
23   0.000000000  0.000000000  0.000000000  0.000000000
24   0.000000000  0.000000000  0.000000000  0.000000000
25   0.000000000  0.000000000  0.000000000  0.000000000
```

4. **SAS program**

```
%macro setdata(indata,outdata,group);
/* obtain model proportions for 1 to 25 */
data &outdata;
set _beta_;
retain totalpct 0;
output;
do score=1 to 25;
p=exp(col1+col2*score+col3*score**2+col4*score**3)/1000;
drop col1-col5;
totalpct=totalpct+p;
keep totalpct;
output;
end;
run;
```

Figure 6. Process Methodology Flowchart.
Figure 7. Score Distribution Pair 1 (SDP1) from Simulated Data.
Figure 8. Score Distribution Pair 2 (SDP2) from Simulated Data.
Figure 9. Score Distribution Pair 3 (SDP3) from Simulated Data.
Appendix

SAS code

%macro generate(nsims,nscores,indata,outdata);
/* generate data set */
data _genfoo_
set &indata;
keep score;
array pct {*} col1-col%eval(&nscores+1);
do i=1 to &nsims;
random=ranuni(0);
do j=2 to dim(pct);
if pct(j-1)<random<pct(j) then do;
score=(j-1);
output;
end;
end;
end;
run;
proc freq data=_genfoo_ noprint;
tables score/out=&outdata(drop=percent);
run;
%mend;

%macro simulate(n,data,cdf1,cdf2);
/* get the number of scores */
data _null_
set &data end=end;
if end then do;
nn=put(_n_,8.);
call symput("scores",nn);
end;
run;
/* transpose to get the cdf values in one observation */
proc transpose data=&data out=_cdf1_;
var &cdf1;
run;
proc transpose data=&data out=_cdf2_;
var &cdf2;
run;
/* set up polynomial terms and interactions data set a */
data testit;
do a=0 to &scores;
output;
end;
run;
proc iml;
 use testit;
 read all var {a} into foo;
 c=orpol(foo, 10);
 create contrast from c[colname='score'];
 append from c;
 quit;
 data contrast;
 set contrast;
 array foo{10} col2-col11;
 array foo1{10} score1-score10;
 do i=1 to 10;
 foo1(i)=foo(i);
 end;
 keep score1-score10;
 run;
 data _polya_;
 set contrast;
 score=_n_;
 int2=1;
 scorea1=score1;
 scorea2=score2;
 scorea3=score3;
 scorea4=score4;
 scorea5=score5;
 scorea6=score6;
 scorea7=score7;
 scorea8=score8;
 scorea9=score9;
 scorea10=score10;
 run;
 /* set up polynomial terms and interactions data set b*/
 data _polyb_;
 set contrast;
 score=_n_;
 int2=0;
 scorea1=0;
 scorea2=0;
 scorea3=0;
 scorea4=0;
 scorea5=0;
 scorea6=0;
 scorea7=0;
 scorea8=0;
 scorea9=0;
 scorea10=0;
run;
/*/ generate the two simulated data sets with n observations */
/*/ based on the information in data1 and data2 */
%generate(n,&scores,_cdf1_,_a_);
%generate(n,&scores,_cdf2_,_b_);
/*/ merge the first data set with the polynomials of score */
data _a_;
 merge _polya_ a_;
 by score;
 if count= . then count= 0;
run;
/*/ merge the second data set with the polynomials of score */
data _b_;
 merge _polyb_ b_;
 by score;
 if count= . then count= 0;
run;
/*/ create stacked data set */
data _ab_;
 set _a_ _b_;
run;
/*/ select the polynomial order of the merged data set */
%let flag=0;
%let _order_=11;
%do %until(&flag=1 or &_order_=_1);
 %let _order_=%eval(&_order_-1);
/*/ poisson regression */
%if &_order_=_10 %then %do;
 ods listing close;
 proc genmod data=_ab_;
 ods output modelfit=_modfit1_;
 model count=score1-score&_order_ int2 scorea1-scorea&_order_/dist=poisson;
 run;
%end;
%else %do;
 data _modfit1_;
 set _modfit2_;
 run;
%end;
proc genmod data=_ab_;
 ods output modelfit=_modfit2_;
 model count=score1-score%eval(&_order_-1) int2 score1-scorea%eval(&_order_-1)/dist=poisson;
run;
data _fit1_;
 set _modfit1_;
if _n_=5;
 keep value;
 rename value=value1;
run;
data _fit2_;
 set _modfit2_;
 if _n_=5;
 keep value;
 rename value=value2;
run;
data _loglikelihood_;
 merge _fit1_ _fit2_;
 stat=2*(value1-value2);
 prob=1-probchi(stat,2);
 if (prob<.001 and min(value1,value2)>0) then do;
 call symput('flag',1);
 end;
run;
%end;
/* fit the stacked data set with a polynomial of order _order_ */
/* no interactions */
proc genmod data=_ab_;
 ods output modelfit=_modfit2_;
 model count=int2 score1-score&_order_/dist=poisson;
run;
ods listing;
data _fit1_;
 set _modfit1_;
 if _n_=5;
 keep value;
 rename value=value1;
run;
data _fit2_;
 set _modfit2_;
 if _n_=5;
 keep value;
 rename value=value2;
run;
data _loglikelihood_;
 merge _fit1_ _fit2_;
 stat=2*(value1-value2);
 prob=1-probchi(stat,&_order_);
 df=&_order_;
run;
%mend
%macro iterate(iters,n,data,cdf1,cdf2,outdata,pout);
%do kk=1 %to &iters;
 %if &kk=1 %then %do;
 %simulate(&n,&data,&cdf1,&cdf2);
 data &outdata;
 set _loglikelihood_; run;
 %end;
 %else %do;
 %simulate(&n,&data,&cdf1,&cdf2);
 data &outdata;
 set _loglikelihood_ &outdata; run;
 %end;
proc datasets;
 delete _ab_ _a_ _b_ _fit1_ _fit2_ _freqtable_ _genfoo_ _loglikelihood_ _modfit1_ _modfit2_ _cdf1_ _cdf2_; run;
quit;
%end;
data &outdata;
 set &outdata;
 power=(prob<.05);
run;
proc means noprint data=&outdata;
 var power;
 output out=&pout(drop=_type_ _freq_) mean=;
run;
data &pout;
 set &pout;
 SampleSize=&n;
 Iterations=&iters;
run;
%mend;
libname foo "C:\Users\talley\Desktop\polynomial"; /*c:\data";
filename dummy 'foo';
proc printto log=foo;
run;
options mprint;
%iterate(1000,3500,foo.sd3,cdf1,cdf2,foo.testSD3_3500,foo.powerSD3_3500);
%iterate(1000,3000,foo.sd3,cdf1,cdf2,foo.testSD3_3000,foo.powerSD3_3000);
%iterate(1000,2500,foo.sd3,cdf1,cdf2,foo.testSD3_2500,foo.powerSD3_2500);
%iterate(1000,2000,foo.sd3,cdf1,cdf2,foo.testSD3_2000,foo.powerSD3_2000);
%iterate(1000,1500,foo.sd3,cdf1,cdf2,foo.testSD3_1500,foo.powerSD3_1500);
%iterate(1000,1000,foo.sd3,cdf1,cdf2,foo.testSD3_1000,foo.powerSD3_1000);
%iterate(1000,500,foo.sd3,cdf1,cdf2,foo.testSD3_500,foo.powerSD3_500);
%iterate(1000,250,foo.sd3,cdf1,cdf2,foo.testSD3_250,foo.powerSD3_250);
%iterate(1000,200,foo.sd3,cdf1,cdf2,foo.testSD3_200,foo.powerSD3_200);
%iterate(1000,150,foo.sd3,cdf1,cdf2,foo.testSD3_150,foo.powerSD3_150);
%iterate(1000,100,foo.sd3,cdf1,cdf2,foo.testSD3_100,foo.powerSD3_100);
%iterate(1000,50,foo.sd3,cdf1,cdf2,foo.testSD3_50,foo.powerSD3_50);
%iterate(1000,25,foo.sd3,cdf1,cdf2,foo.testSD3_25,foo.powerSD3_25);

proc printto;
run;
References

