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ABSTRACT
EVAN A. COUZO: High Ozone Events and Attainment Demonstrations in

Houston, Texas.
(Under the direction of William Vizuete.)

The Houston-Galveston-Brazoria area has had multiple decades of persistent high

ozone (O3) values. We have analyzed ten years of ground-level measurements at 25

monitors in Houston and found that peak 1-h O3 concentrations were often associated

with large hourly O3 increases. A non-typical O3 change (NTOC) – defined here as an

increase of at least 40 ppb/hr or 60 ppb/2hrs – was measured 25% of the time when

concentrations recorded at a monitor exceeded the 8-h O3 standard. CAMx model

simulations were found to be limited in their ability to simulate NTOCs, under predicted

maximum observed rates of O3 increases by more than 50 ppb/hr, and had difficulty

simulating spatially isolated, high O3 events measured at monitors that routinely violate

the 8-h O3 standard. Our results suggest that this modeling system will be unable to

guide the selection of effective control strategies required to meet a more stringent

federal 8-h O3 standard.
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Chapter 1

Introduction

Southeast Texas has had a persistent and intractable ozone (O3) pollution problem

spanning the past several decades. Considerable resources in air quality modeling and

measurements have been expended to better understand how high O3 concentrations

are formed in Houston. In 2004, a breakthrough was made in describing O3 formation

that led regulators to enact targeted emissions reductions. This conceptual model

and subsequent emissions controls are detailed in the 2004 State Implementation Plan

(SIP) mid-course review prepared by the Texas Commission on Environmental Quality

(TCEQ) [1].

The TCEQ submitted to the EPA a mid-course review of their SIP for the now

defunct 1-h O3 National Ambient Air Quality Standard (NAAQS) in 2004. The 1-h

O3 SIP encompassed an eight county region around Houston and incorporated data

from the Texas 2000 Air Quality Study (TexAQS-2000) field-monitoring program, an

extensive ground-monitoring network, and air quality models. An analysis of the pho-

tochemical modeling data, in preparation of the SIP revision, showed that simulations

consistently under predicted peak 1-h O3 concentrations [2]. Very high 1-h values were

measured on August 30, 2000, and, as a result, modelers focused much of their at-

tention on this day. The analysis that ensued features prominently in the revised 1-h

O3 SIP. Under predictions averaged almost 60 ppb on August 30 at ground monitors



where observed 1-h O3 peaks were above 150 ppb. Air samples from aircraft flying

over Houston’s industrial sector on that day revealed high concentrations of reactive

hydrocarbons, which modeled emissions did not match [3]. It was discovered that poor

model performance on August 30 could be explained by emissions adjustments alone.

When emissions of highly reactive volatile organic compounds (HRVOCs) were imputed

into the model, peak predicted 1-h O3 concentrations were is in excess of 200 ppb, which

closely matched the August 30 measurements. HRVOCs are defined as ethene, propene,

1,3-butadiene, and all butene isomers in the TCEQ’s 1-h O3 SIP.

Modeling results confirmed by aircraft data from the TexAQS-2000 campaign show

that the highest 1-h O3 peaks in Houston were often a consequence of high ozone

production rates, P(O3) [4]. Calculated P(O3) for parts of Houston was two to five

times greater than other major urban centers. Constrained photochemical box model

calculations of P(O3) over Houston’s Ship Channel were up to 80 ppb/hr [5]. These

faster rates of O3 production have been attributed to higher hydrocarbon reactivity,

the majority of which is contributed by HRVOCs and other short-chain alkenes [3, 6, 7].

Houston’s Ship Channel region contributes greatly to overall emissions of HRVOCs

because it contains an unusually large density of VOC industrial point sources and one

of the world’s largest petrochemical manufacturing complexes. Previous studies have

established that industrial VOC emissions events occur often and with notable temporal

variability in Houston [8, 9, 10, 11]. At any given facility, these events are rare, but

because Houston has a massive industrial network more than 1,000 events are reported

each year [12]. A detailed analysis of plumes containing high O3 concentrations found

abnormally high concentrations of light alkenes and their oxidation products [13]. Back

trajectories showed that each plume passed directly over VOC point sources surrounding

the Houston Ship Channel region suggesting that these sources contributed to the

observed O3 production rates. Additionally, automated gas chromatograph data from
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ground monitoring stations identified the Ship Channel as the most likely source of low

molecular weight alkenes such as ethene and propene [14].

The research mentioned above has led to a conceptual model that explains the

formation of severe O3 pollution in Houston through two separable pathways. One

pathway is the set of typical causes and effects that are well represented in the current

8-h NAAQS attainment methodology. The 8-h attainment methodology, however, is

noticeably silent on the second pathway, which attributes localized, high rates of O3

productivity to high concentrations of HRVOCs in industrial plumes. Emissions events

at HRVOC point sources can lead to rapid formation of spatially isolated O3 plumes,

and this formation paradigm is what ultimately led the TCEQ to incorporate an EPA-

approved limit on HRVOCs in their 2004 1-h O3 SIP mid-course review. The HRVOC rule

restricted short-term industrial emissions events to 1,200 lbs/hr and routine emissions

to an annual cap. Since implementation, measured concentrations of the restricted

species, as well as O3 values, have declined [15, 16].

By requiring the use of a “typical” emissions inventory in photochemical models,

the current attainment methodology recommended by the EPA implicitly assumes that

high O3 is not influenced by variable precursor emissions [17]. This assumption runs

contrary to the accepted conceptual model of O3 formation developed in Houston, Texas.

That model, detailed in the 2004 O3 SIP revision, links high O3 to variable emissions of

HRVOCs. Houston’s unique combination and density of industrial emissions precludes

the notion of an average emissions inventory. Therefore, the O3 formation paradigm

used to develop the 8-h NAAQS attainment methodology may not apply as readily

to Houston as other non-attainment areas because Houston’s airshed is impacted by

stochastic HRVOC emissions.

The goal of this study is to evaluate the suitability of the 8-h NAAQS attainment

process for Houston by directly comparing measurements to model simulations used for
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the TCEQ’s 2010 8-h O3 SIP. We have developed a methodology for indentifying rapid

ozone increases and determined their frequency over a ten-year period. Our earlier work

showed that sudden O3 concentration increases are influencing current observational at-

tainment metrics at select monitors [18]. There, we isolated measured high O3 days and

found that large d[O3]
dt

values led to the highest annual 8-h O3 concentrations at several

monitors. In this study, we expand our analysis and investigate whether the regula-

tory air quality simulations, with and without day-specific emissions, can reproduce the

observed rapid O3 increases. We have also compared peak 1-h and 8-h O3 values sim-

ulated using the “typical” emissions inventory to peak concentrations predicted with

an inventory containing day-specific emissions. The results of our analysis show that

separating this phenomenon from slower ozone changes can ultimately influence the

future attainment outcome for Houston. Our results suggest that the regulatory air

quality models used by the TCEQ cannot accurately reproduce rapidly increasing O3

concentration measurements.
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Chapter 2

Methodology

Our study combines observational data measured at ground station monitors and

photochemical air quality model predictions used by the TCEQ in the 8-h O3 SIP. The

TCEQ is following the EPA guidance document on attainment demonstration [17]. Our

analysis used the TCEQ dataset and investigated how the 8-h attainment methodology

represents extreme O3 events. The relevant aspects of that process are described below

followed by a description of the observed data set and model simulations.

2.1 Attainment Process and EPA Modeling Guid-

ance

In 1997, the EPA set the 8-h O3 NAAQS at 0.08 ppm. Compliance with the O3

NAAQS is determined by comparing an observational metric to the 8-h ozone stan-

dard. This metric is called the design value (DVi for a monitor, i) and is a running

three-year average of the annual fourth highest 8-h daily maximum O3 concentrations

measured at a ground monitoring station [19]. Equation 2.1 shows an example DVi

calculation for a given monitor, i, in 2008.



DVi,2008 =
Mi,2006 + Mi,2007 + Mi,2008

3
(2.1)

where Mi is the fourth highest daily peak 8-h O3 value observed at monitor i from 2006-

2008. A design value is calculated each year for all regulatory monitors in a region.

If one or more DVi are greater than the federal 8-h O3 limit, that region has failed to

attain the 8-h NAAQS.

Any region that fails to meet the federal ozone standard must perform an arduous

future attainment demonstration. This process, often requiring several years to com-

plete, combines observed ground-monitoring data with baseline year and future year

regulatory air quality model simulations to show that design values in the future are

likely not to exceed the federal 8-h O3 limit. Demonstrating future attainment be-

gins by selecting a baseline year, which provides a starting point for observations and

computer model simulations, and a future attainment year by which a non-attainment

region must demonstrate compliance with the NAAQS. The TCEQ selected 2006 as

the baseline year and 2018 as the future year.

The future attainment demonstration is summarized in Equation 2.2 for a given

monitor, i, using 2006 as the baseline year and 2018 as the future year.

DVfi,2018 = RRFi · DVbi,2006 (2.2)

The left-hand side of Equation 2.2 is called the future design value (DVfi). The DVfi,2018

is the product of an averaged observational metric (DVbi, baseline design value) and a

quantitative measure of the simulated environmental response to proposed pollutant

control strategies coupled with predicted economic growth (RRFi, relative response fac-

tor). A DVfi,2018 is calculated for each regulatory monitor, i, in a given region and must
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be equal to or less than 0.08 ppm for all monitors if that region is to demonstrate future

attainment of the 1997 8-h O3 NAAQS.

DVbi and RRFi are also calculated for each regulatory monitor, i. The DVbi is an

average of three consecutive DVi as shown in Equation 2.3.

DVbi,2006 =
DVi,2006 + DVi,2007 + DVi,2008

3
(2.3)

In this example calculation, five years of measured data are weighted most heavily to-

wards 2006. This is a desired effect as 2006 is the baseline year for the future attainment

demonstration and serves as the anchor point for model predictions.

The RRFi is the ratio of model-predicted O3 concentrations in the future to model-

predicted baseline O3 concentrations at a monitor, i. A small RRFi indicates a large

percent reduction of O3 concentrations and, hence, a lower DVfi . Equation 2.4 shows

how RRFi is calculated for a monitor, i.

RRFi =
Si,F

Si,B

(2.4)

where Si,F and Si,B are mean future year and baseline predicted maximum 8-h O3, re-

spectively. The mean predictions are defined in Equations 2.5 and 2.6 for a monitor, i.

Si,F =

D∑
d=1

Si,F,d

D
(2.5)

Si,B =

D∑
d=1

Si,B,d

D
(2.6)

where Si is the simulated daily peak 8-h concentration at monitor i, D is the number

of days used in the calculation, F is the future year, and B is the baseline. Not all
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simulated days are used to calculate the RRFi. Only after meeting EPA recommended

qualifications are simulated days used in Equation 2.6; the exact same days are always

used in Equation 2.5. Details on day selection can be found in the EPA guidance

document.

2.2 Observational Data Set

Observed data were obtained from the TCEQ website, which provides hourly aver-

aged measurement data [20]. Twenty-five monitoring stations were used in this study,

and they are listed in Table 2.1 with their official names, 4-letter abbreviation, TCEQ

identification number, and Aerometric Information Retrieval System (AIRS) number;

these are the same monitors used in the TCEQ’s 8-h SIP. Monitor locations are shown

in Figure 2.1. The four highest 8-h O3 days for each year at each monitor were identified

for 2000 through 2009, and a subset of those days (2004-2008) was used to calculate a

DVbi for each location. The results of the DVbi calculations are listed in Table 4.1.

2.3 Air Quality Model Data Set

The TCEQ used the Community Air Quality Model with extensions (CAMx) ver-

sion 4.53 model [21] to create 2005 and 2006 baseline conditions and projected 2018

conditions for six modeling episodes. Table 2.2 provides a summary of each episode

with the naming conventions used by the TCEQ. Detailed documentation concerning

the development of the inputs for these episodes can be found on the TCEQ website

[22]. In total, there are 120 modeling days in the 2005 and 2006 episodes. To support

a multi-species model performance assessment, the TCEQ generated a base case inven-

tory for the six episodes. This included the development of an hourly special inventory

(SI) that was based on reports from 125 facilities in the region for the period of August

8



Table 2.1: List of ground monitoring stations and their identifying information. The
TCEQ uses CAMS (continuous ambient monitoring stations) numbers; the EPA uses
AIRS (aerometric information retrieval system) numbers.

Monitor Name Abbreviation CAMS No. AIRS No.

Bayland Park BAYP 53 48-201-0055

Clinton CLIN 403 48-201-1035

Conroe Relocated CNR2 78 48-339-0078

Danciger DNCG 618 48-039-0618

Deer Park DRPK 35 48-201-1039

Galveston GALC 34 48-167-0014

HRM-3 Haden Road H03H 603 48-201-0803

Aldine HALC 8 48-201-0024

Channelview HCHV 15 48-201-0026

Croquet HCQA 409 48-201-0051

Lang HLAA 408 48-201-0047

Northwest Harris County HNWA 26 48-201-0029

Houston East HOEA 1 48-201-1034

Houston Regional Office HROC 81 48-201-0070

Monroe HSMA 406 48-201-0062

Texas Avenue HTCA 411 48-201-0075

North Wayside HWAA 405 48-201-0046

Lake Jackson LKJK 1016 48-039-1016

Lynchburg Ferry LYNF 1015 48-201-1015

Manvel Croix Park MACP 84 48-039-1004

Mustang Bayou MSTG 619 48-039-0619

Seabrook Friendship Park SBFP 45 48-201-1050

Westhollow SHWH 410 48-201-0066

Texas City TXCT 620 48-167-0056

Wallisville WALV 617 48-201-0617

15, 2006 to September 15, 2006. These dates coincide with a second field campaign,

during which hourly emissions rates were collected from over 1,200 VOC emissions point

sources. A goal of integrating the SI into photochemical modeling is to reproduce the

stochastic emissions inventory in Houston.

For the attainment demonstration, the 2006 baseline and 2018 future year invento-

ries were constructed consistent with EPA inventory guidance. That is, the emissions

files used for the model evaluation were changed to comport with EPA’s “typical” emis-

sions criteria. This was accomplished by dropping day-specific emissions data – such

as the hourly SI – and reverting to ozone season averaged daily emissions at electric
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Figure 2.1: Location of the surface monitors used in this study.

generating units and VOC point sources. In addition to being used in the attainment

demonstration, the baseline emissions inventory was the basis for the 2018 emissions

inventory. The emissions inventory for 2018 includes all existing emissions controls,

projected growth of emissions, and proposed emissions controls. Specific differences
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between the emissions inventories are described in the 2010 8-h SIP, but a summary

can be found in Table 2.3. It is important to note that the 2005 and 2006 model

simulations used in the RRFi calculations retained their date-specific meteorology.

The TCEQ used a regional 36-km domain and 12-km Eastern Texas subdomain

to provide boundary conditions for a 4-km Houston Galveston Brazoria/Beaumont

Port Arthur subdomain. A finely resolved 2-km Houston Galveston subdomain was

also developed, and all model files used in this study are from this 2-km subdomain.

Figure 2.2 shows the nested domain structure. Detailed horizontal and vertical domain

documentation can be found on the TCEQ website [23]. Meteorological inputs were

resolved at the 4-km level. The TCEQ utilized the flexi-nesting option of CAMx to

interpolate 2-km meteorological fields.

One-hour O3 concentrations were extracted from each ground layer grid cell, and RRFi

were calculated for each monitor. Table 4.1 contains the results of these calculations.

When calculating the maximum daily 8-h average O3 concentration for a monitor, the

EPA allows the use of any grid cell “near” the monitor in anticipation of the uncertainty

involved in simulating exactly high O3 locations [17]. The TCEQ used 7x7 grid cell

arrays centered on each monitor location from which Si,B and Si,F were chosen. The grid

cell selected in the baseline simulation does not have to be the same grid cell used in

Table 2.2: Regulatory air quality modeling episodes created by the TCEQ to support
their 2010 8-h O3 SIP. Included are the simulation periods and the naming conventions
used by the TCEQ for their emissions inventories and meteorological data files.

Base Case Future

Name Name Year Name

2005-05-19 to 2005-06-03

2005-06-17 to 2005-06-30 

2005-07-26 to 2005-08-08

2006-05-31 to 2006-06-15 

2006-08-13 to 2006-09-15 reg10si

2006-09-16 to 2006-10-11 reg10

TCEQ=Texas Commission on Environmental Quality

CB05=Carbon Bond Mechanism version 5

cs04

Base Line

TCEQ CAMx v4.53

eta_dbemis_fddats

_newuhsst_newut

csrlulc_grell.v45

CB05

Developer Model Software Simulation Period Emission Inventory Met. File Name Chemical 

Mechanism

reg10

reg2 2006
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Figure 2.2: Nested CAMx domain structure. East US is 36-km; East Texas is 12-
km; HGB/BPA is 4-km; and HG is 2-km. All modeling data used in this study was
extracted from the HG 2-km domain.

the future year simulation, and, in fact, it often changes location [24]. We followed

this approach of selecting from the monitor-centered 7x7 array each grid cell with the

maximum predicted 8-h O3 concentration. Unless otherwise specified, simulated daily

maxima “at a monitor” refers to the grid cell with the greatest calculated 8-h average

value and not necessarily the exact grid cell in which the monitor is located.
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Table 2.3: Emissions inventories for the eight county non-attainment area. Shows the
2006 base case inventory in tons per day. Values for the baseline and future year
inventories are given relative to the base case. Blue values denote increases relative to
the base case; red values denote decreases relative to the base case.

Relative Reduction Factor Baseline and Base Case Emission Inventories

Table 5.3: Eight county emission gains and losses of CO, NOx, and VOC from the 2006 base case, to
the baseline, and 2018 baseline emission inventories.
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Chapter 3

Results

Upon examining the observational records of ground monitors, it became clear that

two types of ozone evolution are present in Houston. Frequently, 1-h O3 time series

exhibit “typical” increases of 10-30 ppb/hr. This is consistent with most calculated

P(O3) rates in Houston and other urban centers [4]. Occasionally, however, ground

monitoring stations observe what we call non-typical ozone changes (NTOCs) that are

characterized by rapid concentration increases. It has been observed that some of

the NTOCs are accompanied by HRVOCs originating from industrial sources. Figure 3.1

shows 1-h O3 time series plots for the HALC monitor on two different days in 2003. The

time series shows the hourly averaged O3 concentration in red and hourly resultant

wind vectors in blue. The green line represents the peak 8-h O3 concentration, the 8-h

window that was used, and a black arrow shows the 8-h resultant wind vector. The

left-hand plot is characteristic of typical ozone pollution. Though the peak 8-h value is

well above the federal standard, maximum concentration increases are little more than

20 ppb/hr. The right-hand plot, dominated by a 1-h O3 increase of 102 ppb, illustrates

a NTOC . As a result of the rapid increase, the peak 1-h value in the right-hand plot

is over 100 ppb greater than in the other plot. Peak 8-h O3 concentrations between

the two plots are comparable, though, indicating that there are multiple O3 formation

pathways that can lead to violations of the 8-h O3 NAAQS. The non-typical O3 change



Figure 3.1: O3 time series plots from measurements. Hourly averaged O3 concentrations
are shown in red and hourly resultant wind vectors in blue. The green line represents
the peak 8-h O3 concentration, the 8-h window that was used, and a black arrow shows
the 8-h resultant wind vector. The plot on the left is exhibits only typical O3 changes,
and the plot on the right is characteristic of NTOC behavior.

measured on October 23, 2003, is thought to be related to emissions variability because

high concentrations of HRVOCs were observed at nearby automated gas chromatograph

stations at the start of the high O3 event.

3.1 Observed Non-Typical Ozone Changes

Two criteria were used to identify and classify NTOC days at a monitor in the ob-

servational data: (1) any change in O3 from hour-to-hour (∆O3,1h) equal to or greater

than 40 ppb, and (2) any change in O3 over two hours (∆O3,2h) equal to or greater than

60 ppb. The TCEQ and others have used criterion 1 to identify high O3 plumes likely

caused by an emissions event [1, 25]. Criterion 2 recognizes the fact that the HRVOC

rule implemented by the TCEQ has successfully decreased the magnitudes of HRVOC
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emissions, so 1-h O3 increases may be less than 40 ppb per hour.

The NTOC criteria were applied to all measurement data. Results of this analysis

revealed that there were 1,095 monitor-days that met either NTOC criterion. Figure

3.2 shows the distribution of measured ∆O3,1h and subsequent 1-h concentrations for

2000-2009 (top left) and 2004-2008 (top right). The red horizontal lines mark hourly

Figure 3.2: Scatter plots comparing hourly O3 changes to the resulting 1-h O3 concentra-
tion after each change. The plot on the top left shows all measurements from 2000-2009.
The plot on the top right shows measurements from the 2004-2008 attainment period.
The bottom left and bottom right plots show base case and baseline predictions for
all episode days, respectively. Only the base case simulation (bottom left) uses the SI;
the baseline simulation has day-specific emissions removed. The horizontal red lines
mark one-hour O3 changes of 40 ppb/hr. Any hourly increase above the top red line is
considered a NTOC.
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concentration changes of ± 40 ppb/hr, thus all data points above the top red line

meet the first NTOC criterion. The five-year data subset was used determine if NTOCs

occurred during the attainment period used in the TCEQ’s 2010 O3 SIP. While it is

apparent that the most extreme ∆O3,1h and 1-h concentrations occurred before 2004,

NTOCs were measured during the attainment window. From 2004-2008, a wide range of

∆O3,1h was measured with two data points reaching 100 ppb/hr. Figure 3.2 illustrates

that both typical and non-typical ∆O3 can lead to high 1-h values, but it is noteworthy

that the greatest measured 1-h concentration was the result of a large hourly increase.

NTOC days are generally subject to higher 1-h and 8-h peak concentrations than

Figure 3.3: Distributions of 1-h and 8-h daily peak O3 concentrations for typical and
NTOC days for all measurements from 2000-2009. The plot on the left gives 1-h maxima,
and the plot on the right shows 8-h maxima.
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typical days. In Figure 3.3, we have separated NTOC days from typical days for all

measurements during 2000-2009 and plotted the distributions of measured 1-hr and 8-

h daily maxima. NTOC days have higher peak values. The greatest 1-h peak measured

on a NTOC day was 229 ppb; 1-h peaks on typical days never reached 170 ppb. Figure

3.3 also shows that NTOC days are more likely to coincide with an exceedance of the 0.08

ppm federal standard. Forty percent of NTOC days exceeded the 8-h NAAQS compared

to less than 5% of all typical ozone change days.

Figure 3.4: Distributions of daily maximum one-hour and two-hour O3 concentration
increases for non-exceedance and exceedance days for all measurements from 2004-2008.
Exceedance days have a peak 8-h O3 concentration of 85 ppb or above. The plot on
the left gives maximum hourly increases, and the plot on the right shows maximum
two-hour increases. The gray shaded regions mark the NTOC criteria, i.e. at least 40
ppb/hr and 60 ppb/2hrs.
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Figure 3.5: Spatial distribution of NTOCs measured and simulated at each monitor.
Bar heights indicate the number of NTOCs measured and simulated at a particular
monitoring site. Monitors are ordered according to increasing radial distance from the
DRPK monitor, which is near the Ship Channel. The 12 monitors within the shaded
region are within 20 km of the DRPK monitor.

Daily peak 8-h concentrations were calculated and paired with maximum ∆O3,1h

and ∆O3,2h for each day of measurements during the 2004-2008 attainment period. If

the 8-h peak was greater than 0.08 ppm, it was classified as an exceedance day for

that monitor; exceedance days at all monitors were aggregated. All 8-h maxima less

than or equal to the NAAQS were similarly gathered. Figure 3.4 plots the distribution

of ∆O3,1h and ∆O3,2h for the two aggregate groups, exceedance and non-exceedance.

Ozone exceedances were more likely on days with greater hourly concentration increases.

Almost one in five exceedances coincided with a ∆O3,1h greater than 40 ppb, and one

in four occurred when the ∆O3,2h was measured to be at least 60 ppb.

A majority of NTOCs were measured at monitors surrounding the Ship Channel

region. Figure 3.5 (left) compares the number of NTOCs recorded at each monitor from

2004-2008. Monitors are listed from left to right in order of increasing radial distance

from the DRPK site. DRPK is co-located with numerous HRVOC point sources near the

Ship Channel and observed the greatest number of NTOCs, 43, during the attainment
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period. The shaded region of Figure 3.5 spans the 12 monitors that are within 20 km

of DRPK. Though NTOCs were measured at every monitor, 70% were measured at the

12-monitor cluster indicating that NTOCs were not uniformly distributed.

3.2 Simulated Non-Typical Ozone Changes

The 8-h regulatory models developed by the TCEQ provide an opportunity to eval-

uate model performance with respect to high O3 concentration gradients seen in mea-

surements. Further, since HRVOC events were removed from the baseline emissions

inventory, this provides an ideal scenario to test the model’s sensitivity to day-specific

emissions in the regulatory inventory.

The base case and baseline model runs both simulated NTOCs. Out of 120 episode

days, there were a total of 664 simulated NTOCs in the base case; the baseline simu-

lation predicted 431 NTOCs. Figure 3.2 shows the distribution of simulated ∆O3,1h and

subsequent 1-h concentrations for the base case (bottom left) and baseline (bottom

right). Again, all data points above the top red line meet NTOC criterion 1. When

compared to the 2004-2008 measurements (top right), two features stand out. First,

the simulations were capable of reproducing the highest 1-h O3 concentrations. Data

points from the measurements, base case, and baseline all show maximum values above

180 ppb. The second feature is that neither simulation was able to reproduce the wide

range of ∆O3,1h present in the measurements. For example, the greatest predicted ∆O3,1h

was only 55 ppb/hr, which is only about half of the peak measurement, 106 ppb/hr.

Figure 3.2 shows that the simulations are able to predict high concentrations via typical

O3 changes, but cannot replicate the highest O3 resulting from NTOCs. It should also

be mentioned that the base case and baseline distributions, while not identical, are

similar.
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Figure 3.6: Temporal distribution of measured and simulated NTOCs. The plot on top
shows all measured NTOCs from 2000-2009. The middle plot gives base case predicted
NTOCs, and the bottom plot shows baseline predicted NTOCs. All episode days are
included in the simulations shown in this figure.

Figure 3.5 (right) provides the spatial distribution of NTOCs simulated at the moni-

toring stations. Monitors are ordered by increasing distance from DRPK, and the shaded

region encompasses those monitors within 20 km of DRPK. The data plotted represent

only simulated NTOCs predicted within the 7x7 grid cell array centered on each monitor

location; both the base case and baseline simulated NTOCs at grid cells elsewhere in

the 2-km domain, but these are not represented in the figure. When only monitor-

predicted NTOCs are considered, 74% of NTOCs were predicted within 20 km of DRPK,

and this percentage increases to 79% for the baseline. These percentages are close to
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the measured spatial distribution. Recall that 70% of NTOCs were measured within 20

km of the DRPK monitor.

Comparisons between the measured and simulated data shown in Figure 3.5 are

limited and should be made carefully. The left hand plot spans a five-year period and

provides only point measurements. The simulations, however, cover only 120 days,

but are not limited to point measurements. They provide predictions for all locations

within the modeled domain. Still, there are notable differences between the two plots.

Base case and baseline simulations over predict the relative number of NTOCs at DRPK,

HSMA, and HLAA. Simulated NTOCs at DRPK and HSMA are many times greater than

at most other monitors within the shaded region, but measurements show less of a

discrepancy between the Ship Channel monitors. Similarly, HLAA towers over most of

the other monitors, but measurements show there were fewer NTOCs recorded there

than almost anywhere else in Houston. SBFP and WALV show major under predictions

in the relative number of simulated NTOCs. Measured NTOCs at SBFP and WALV were

greater in number than nearly all other monitors, but almost none were predicted at

those locations.

An examination of the simulated NTOC distribution in Figure 3.5 reveals differences

between the base case and baseline. The base case almost always predicted more NTOCs

at the monitors, and there were never more in the baseline. For example, there were

26 NTOCs predicted in the base case at HCQA, but none in the baseline. Only three

NTOCs were simulated in the baseline at BAYP, down from 19 in the base case. DRPK,

however, had the same number of NTOCs in the base case and baseline simulations.

Overall, the monitors within the shaded region, i.e. near the Ship Channel region, had

a 29% decrease in the number NTOCs when moving from the base case to the baseline.

For the 13 monitors outside the shaded region, the percent decrease was much greater.

Nearly half (48%) of simulated NTOCs that were present in the base case disappeared
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in the baseline.

Temporal distributions of simulated (all episode days) and measured (2000-2009)

NTOCs are shown in Figure 3.6. The base case predicted a maximum number of NTOCs at

1200 LST with about two-thirds happening between 1000 and 1300 LST. The baseline

distribution has the same shape as the base case, but with attenuated totals for each

hour. This matched relatively well with the observations, though there is a large dis-

crepancy at hours 0800 and 0900 LST. Measurements show a large number of NTOCs oc-

curred before 1000 LST, but neither the base case nor the baseline simulations matched

those observations.

Figure 3.7: Distributions of 1-h and 8-h daily peak O3 concentrations for all base case
and baseline simulated episode days. The plot on the left gives 1-h maxima, and the
plot on the right shows 8-h maxima.
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Figure 3.8: Distributions of daily maximum one-hour and two-hour O3 concentration
increases for all base case and baseline simulated episode days. The plot on the left
gives maximum hourly increases, and the plot on the right shows maximum two-hour
increases.

Seeing strong congruence between the base case and baseline model simulations in

Figures 3.2 and 3.6, but marked differences in Figure 3.5, we made further comparisons

between the two sets of predictions to better understand how the use of an averaged

emissions inventory differs from the day-specific base case inventory. Distributions of

peak 1-h and 8-h O3 concentrations from the base case were compared alongside those

same distributions from the baseline. These distributions are shown as box plots in

Figure 3.7. There are remarkable similarities between the base case and baseline peak

predictions. Median values are in perfect agreement, and the spread of data is nearly
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identical. The base case simulation does predict slightly greater 1-h and 8-h maxima

by 8 ppb and 6 ppb, respectively, which can only be explained by differences in the

emissions inventories. Box plot distributions were also created for daily maximum ∆O3

from each grid cell. Given in Figure 3.8, peak rates of one-hour and two-hour increases

show little difference between the base case and baseline. The base case, though, does

predict marginally higher ∆O3 by a few parts per billion per hour.

3.3 Simulations of Observed Non-Typical Ozone Changes

Plumes with high spatial and temporal O3 concentration gradients are measured sev-

eral times each year in the Houston area. We have identified several plumes that met the

NTOC criteria on days that were included in the TCEQ’s regulatory modeling simula-

tions. We then compared the measurements to baseline simulations to understand how

well model predictions used in the attainment demonstration can reproduce extreme

O3 events.

One-hour O3 time series measured at HLAA, BAYP, and HCQA are shown in Figure

3.9 (top) for September 7, 2006. HLAA is 15 km due north of BAYP, and HCQA is 8 km

south of BAYP. Despite their proximity, O3 concentrations and hourly changes are far

greater at the BAYP monitor. Peak 1-h and 8-h values are 56 ppb and 24 ppb greater,

respectively, than at either of the other nearby monitoring stations.

Model simulations were performed for September 7, 2006, and predicted baseline 1-h

O3 time series for HLAA, BAYP, and HCQA are given in Figure 3.9 (bottom). Comparisons

to measurements show that the predictions failed to reproduce both the high 1-h O3

values and the rapid rise in concentrations measured at BAYP. At 1100 LST, when the

monitor encountered the leading edge of the ozone plume, measured 1-h O3 was more

than 20 ppb greater than predicted. That difference expanded to 41 ppb one hour

later. The simulated maximum ∆O3,1h was only 19 ppb/hr compared to a measured
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Figure 3.9: O3 time series plots from measurements (top) and baseline simulations (bot-
tom) for the HLAA, BAYP, and HCQA monitors on September 7, 2006. Hourly averaged
O3 concentrations are shown in red and hourly resultant wind vectors in blue. The
green line represents the peak 8-h O3 concentration, the 8-h window that was used, and
a black arrow shows the 8-h resultant wind vector. Wind parameters are not measured
at HLAA.

concentration increase of 52 ppb/hr. The maximum simulated 8-h O3 concentration

was 18 ppb lower than measured at the monitoring station as a consequence of the

under predictions present in the model. Despite measured differences at BAYP and

HCQA, simulated O3 time series for the two monitors are almost identical, which led

to under predictions at the former and over predictions at the latter. This indicates

that, in the model, the monitors were likely affected by the same source. Measurements

show that this was not true. Figure 3.10 shows predicted O3 values mapped over the

entire 2-km modeling domain for hours 1100-1400 LST. Diamonds mark the location
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of ground monitoring stations, and the color of each diamond gives the measured O3

concentration for a given hour. When a mismatch exists between grid cell color and

diamond color, the model has either over or under predicted. Circles mark the monitors

with the highest recorded O3 concentrations at that hour, and there is a clear east to

west progression of high O3 measurements. The circled monitors also show severe model

under predictions indicating that the simulations misplaced the highest O3 .

Figure 3.10: Baseline simulated spatial plots of 1-h O3 concentrations for September 7,
2006 at 1100-1400 LST across the 2-km modeling domain. Diamond markers show the
location of ground monitoring stations. The color of each diamond gives the measured
1-h O3 value at that site. Black arrows at each diamond show the measured 1-h resultant
wind vector at that site. Simulated 1-h resultant wind vectors are also shown for select
grid cells. Blue circles mark the east to west progression of the highest O3 measurements.
The BAYP monitor is labeled.
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Figure 3.11: O3 time series plots from measurements for the HCHV (top left), WALV

(top right), and LYNF (bottom left) monitors on June 8, 2006. The bottom right plot
shows simulated O3 time series at WALV for the baseline simulation. Hourly averaged O3

concentrations are shown in red and hourly resultant wind vectors in blue. The green
line represents the peak 8-h O3 concentration, the 8-h window that was used, and a
black arrow shows the 8-h resultant wind vector.

A similarly isolated O3 plume was measured at WALV on June 8, 2006. Figure 3.11

shows 1-h time series plots for WALV (top right) and two nearby monitors, HCHV (top
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left) and LYNF (bottom left). At 1700 LST, WALV recorded a 45 ppb one-hour increase,

which elevated peak O3 to 128 ppb. Two hours later, the measured concentration fell

to 60 ppb. The transient O3 event was not recorded at HCHV or LYNF, both of which

are located only about 10 km west of WALV. The baseline model simulation for WALV,

displayed in Figure 3.11 (bottom right), does not include the observed late-afternoon

O3 spike, and, as a result, under predicted both 1-h and 8-h peak values. It is apparent

from the WALV measurements that the late afternoon O3 plume was transported from the

south; wind direction reverses at 1700 LST, the exact hour that the 45 ppb/hr increase

was measured. The baseline simulation predicts this wind reversal, and simulated

O3 concentrations increase to a maximum when winds shift to the north. But the

magnitude of the increase is almost 30 ppb/hr less than measured.

Model simulations appear to have performed much better on August 17, 2006. Fig-

ure 3.12 shows measurements and predictions at DRPK on a day when rapidly increasing

O3 was observed. The model predicts the sudden concentration rise at 1100 LST to

within 4 ppb/hr, and 1-h and 8-h maximum values more closely match measurements

than the simulations shown in Figures 3.9 and 3.11. Time series plots (Figure 3.12,

top left and bottom left) for monitors surrounding DRPK show that the high O3 was not

widespread in the measurements. Baseline simulation spatial plots are given in Figure

3.13 for hours 1100-1400 LST. High O3 predictions blanket much of the region, and

concentrations at nearly every monitor in south Houston were over predicted.
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Figure 3.12: O3 time series plots from measurements for the HROC (top left), DRPK (top
right), and SBFP (bottom left) monitors on August 17, 2006. The bottom right plot
shows simulated O3 time series at DRPK for the baseline simulation. Hourly averaged O3

concentrations are shown in red and hourly resultant wind vectors in blue. The green
line represents the peak 8-h O3 concentration, the 8-h window that was used, and a
black arrow shows the 8-h resultant wind vector.
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Figure 3.13: Baseline simulated spatial plots of 1-h O3 concentrations for August 17,
2006 at 1100-1400 LST across the 2-km modeling domain. Diamond markers show the
location of ground monitoring stations. The color of each diamond gives the measured
1-h O3 value at that site. Black arrows at each diamond show the measured 1-h resultant
wind vector at that site. Simulated 1-h resultant wind vectors are also shown for select
grid cells.
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Chapter 4

Discussion

This study investigated how non-typical ozone changes are represented in the 8-

h NAAQS attainment methodology. High O3 events and rapid ∆O3 are measured in

Houston with considerable frequency, and the likelihood of an 8-h exceedance increases

substantially on NTOC days. Twenty-five percent of all measured exceedances met one

or both of the NTOC criteria from 2004-2008.

The current attainment methodology does not recognize the dual-O3 formation

paradigm that was used to develop the TCEQ’s 2004 1-h O3 SIP for Houston. Us-

ing a “typical” emissions inventory in regulatory modeling and averaging five years

of observational data does not take into consideration the effects of stochastic HRVOC

emissions events and high ∆O3 that disproportionately affect the most polluted days in

Houston. We have quantified the effect measured NTOCs have on attainment demon-

stration outcomes.

The form of the 8-h O3 NAAQS dictates that only annual 4th highest daily maximum

8-h averages are used for assessing compliance with the federal standard. We considered

all of the four highest 8-h O3 days at each monitor, however, because the top three days

necessarily influence which day has the 4th highest concentration. Having identified the

high-ozone days that influence the DVbi for a monitor (i.e. the four days with the highest

daily maximum 8-h O3 each year), the next step is to filter the data set to remove the



Table 4.1: List of monitoring stations and abbreviations with future attainment test
results. RRFi, DVbi,2006, and DVfi,2018 were calculated using the EPA attainment method-
ology. DVbi,2006,filtered is the 2006 baseline design value with all NTOC days removed from
the data set, and DVbi,2006 difference is the amount by which the DVbi,2006 decreases af-
ter removing NTOC days. DVfi(DVbi,2006,filtered) is the recalculated final design value using
DVbi,2006,filtered and RRFi. DVfi difference is the amount by which the DVfi decreases when
using DVbi,2006,filtered instead of DVbi,2006.

Monitor Name Abbreviation RRFi

DVbi, 2006 

(ppb) Dvfi (ppb)

DVbi,2006,filtered 

(ppb)

DVbi, 2006 

difference 

(ppb)

Dvfi 

(DVbi,2006,filtered) 

(ppb)

Dvfi 

difference  

(ppb)

Wallisville WALV 0.960 92.0 88.3 85.0 -7.0 81.6 -6.7

Deer Park DRPK 0.958 92.0 88.1 82.0 -10.0 78.6 -9.6

Bayland Park BAYP 0.899 96.7 86.9 93.7 -3.0 84.2 -2.7

Monroe HSMA 0.934 90.3 84.3 82.0 -8.3 76.6 -7.8

Manvel Croix Park MACP 0.900 90.7 81.6 87.7 -3.0 78.9 -2.7

HRM-3 Haden Road H03H 0.959 84.0 80.6 82.3 -1.7 78.9 -1.6

Texas City TXCT 0.947 84.3 79.8 82.3 -2.0 77.9 -1.9

Seabrook Friendship Park SBFP 0.945 84.3 79.7 81.0 -3.3 76.5 -3.1

Channelview HCHV 0.958 82.7 79.2 80.7 -2.0 77.3 -1.9

Westhollow SHWH 0.858 92.3 79.2 92.0 -0.3 78.9 -0.3

Aldine HALC 0.924 85.0 78.5 84.0 -1.0 77.6 -0.9

Lynchburg Ferry LYNF 0.961 81.7 78.5 77.7 -4.0 74.7 -3.8

Croquet HCQA 0.899 87.0 78.2 85.3 -1.7 76.7 -1.5

Galveston GALC 0.955 81.7 78.0 81.7 0.0 78.0 0.0

Northwest Harris County HNWA 0.873 89.0 77.7 89.0 0.0 77.7 0.0

Mustang Bayou MSTG 0.917 84.7 77.7 84.7 0.0 77.7 0.0

Houston East HOEA 0.958 80.3 76.9 79.3 -1.0 76.0 -1.0

Houston Regional Office HROC 0.960 79.7 76.5 77.3 -2.4 74.2 -2.3

Clinton CLIN 0.959 79.0 75.8 76.0 -3.0 72.9 -2.9

Texas Avenue HTCA 0.941 79.3 74.6 78.0 -1.3 73.4 -1.2

Conroe Relocated CNR2 0.882 83.0 73.2 83.0 0.0 73.2 0.0

Danciger DNCG 0.894 80.3 71.8 80.3 0.0 71.8 0.0

North Wayside HWAA 0.938 76.3 71.6 75.7 -0.6 71.0 -0.6

Lake Jackson LKJK 0.902 77.0 69.5 76.7 -0.3 69.2 -0.3

Lang HLAA 0.891 77.7 69.2 77.3 -0.4 68.9 -0.4

NTOC days. The filtered data set is identical to the original data set except that all

NTOC days have been removed. The 4th highest day of this filtered set at each monitor

becomes a part of a new filtered DVi calculation and is entered into the calculation of

a filtered baseline design value, DVbi,filtered. Filtered baseline design values for 2006 were

calculated for all 25 monitors and are given in Table 4.1. DVbi,2006 and DVbi,2006,filtered were

then compared to quantify the effect of NTOCs on baseline design values.

Table 4.1 shows all the information relevant to the attainment demonstration for

each monitor. RRFi, DVbi,2006, and DVfi were all calculated by following the EPA’s recom-

mended methodology. These results show that Houston has not demonstrated future

attainment because WALV, DRPK, and BAYP all have DVfi above the federal standard. If
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DVbi,2006,filtered are used in place of DVbi,2006, however, every monitor passes the attainment

test. At DRPK, the monitor that measured the greatest number of NTOCs, the baseline

design value decreases by 10 ppb when NTOC days are removed from the calculation.

This translated into a 9.6 ppb decrease in the DVfi when multiplied by the RRFi. Simi-

lar decreases were seen at HSMA and WALV, two other monitors that are influenced by

NTOCs.

Though NTOC behavior often leads to high O3, Figure 3.2 shows that high peak

O3 can occur via typical concentration changes. The EPA attainment methodology

discounts variable emissions as the leading determinant of peak O3 leaving differences

in day-to-day meteorology as the most important factor. Meteorology could be an

explanation of NTOCs because high ∆O3 is sometimes observed without evidence of an

HRVOC emissions event. Furthermore, meteorology is a known cause of high O3 [26].

Uneven daytime heating of the land and sea (Galveston Bay) can create rotational

winds that transport O3 precursors offshore in the morning. Later in the day, the winds

change direction and move the photochemically aged pollutants back across Houston.

High O3 concentrations and ∆O3 can result. The temporal distribution shown in Figure

3.6 indicates that, in fact, NTOCs often occur in the afternoon. There are also numerous

NTOCs that are measured before 1000 LST. It is unlikely that Houston’s rotational winds

are the cause of these early morning NTOCs because there is not sufficient time for the

rotational pattern to form. Whatever factors are causing the early NTOCs appear to be

missing from the model simulations. Base case and baseline simulations under predict

the number of NTOCs at 0800 and 0900 LST relative to other hours. Emissions events

provide a permissible explanation for the early morning NTOCs in measurements. If

fresh NOx from morning rush hour were to encounter a highly concentrated HRVOC

plume, high P(O3) can be expected. The emissions event hypothesis can also explain

the absence of NTOCs in the baseline simulations at 0800 and 0900 LST because the
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baseline emissions inventory is void of such events.

Explaining the missing NTOCs in the base case is more problematic, however. The

base case inventory is supposed to have day-specific emissions, but the simulations failed

to create NTOCs in the early morning to the extent that was measured. This could mean

that the emissions inventory missed, underestimated, or misplaced HRVOC sources. The

hourly SI used in the base case was built from a combination of measurements and

estimates of highly stochastic emissions point sources. Considering the large number

of emissions upsets that occur in Houston each year, it is plausible that emissions

rates reported in the SI are inaccurate. This would also help explain the similarities

between the base case and baseline simulations. If HRVOC emissions in the base case

inventory are not sufficient to simulate the maximum hourly O3 concentrations and

rates of change, removing them from the baseline emissions inventory might not make

a noticeable difference.

Grid cell resolution is another possible explanation, and it has been shown to affect

peak O3 concentrations [27]. Point source emissions are instantaneously diluted into the

entire grid cell volume. The TCEQ used 2-km grid cells in their regulatory modeling,

which is a relatively fine resolution. If the dilution effect were great enough, however,

it would explain the differences between base case predictions and measurements as

well as the similarities between the base case and baseline simulations. A modeled

emissions event would become too diluted to reach HRVOC concentrations necessary for

high P(O3). Base case simulations running with diluted emissions would fail to match

measurements and look similar to baseline predictions.

The reason for the under prediction at WALV (i.e. missing late afternoon peak) may

signal missing HRVOC sources in the simulated environment or it could have been due

to grid cell dilution. From Figure 3.11, it is apparent that the late afternoon O3 plume

was transported from the south; wind direction reverses at the exact hour when the
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NTOC was measured. Base case and baseline simulations predict the wind reversal, but

neither model run predicts the measured NTOC . Considering that the wind fields were

correctly predicted, it is possible that the NTOC measured at WALV was induced by an

emissions event that is missing from the emissions inventories. Alternatively, the event

may have been included but was sufficiently diluted so as to remove the effects of the

added emissions.
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Chapter 5

Conclusions

Understanding how NTOCs are formed in the model has direct implications for the

8-h attainment demonstration. NTOCs are more likely to occur on high O3 days in

measurements and the model. Thus, discovering precursor reduction strategies that

control NTOCs in the model will help reduce the highest simulated O3 values. The effect

on DVbi,2006 alone can determine whether a particular monitor has passed the future

attainment test. Our analysis here has brought the TCEQ’s 1-h O3 SIP conceptual

model in line with the new 8-h attainment methodology.

Regulatory air quality models are able to simulate NTOC behavior, though not to

the extent that it is observed. Higher ∆O3 values, which often lead to higher 1-h and

8-h O3 concentrations, were found in the measurements than in either base case or

baseline simulations. In general, base case and baseline simulations were very similar.

They had identical median peak 1-h and 8-h O3 values and comparable distributions

of ∆O3,1h and ∆O3,2h. Base case predictions usually predicted slightly greater maximum

1-h concentrations, possibly as a result of a more variable emissions inventory. Model

simulations were unable to reproduce measured ∆O3 on many observed NTOC days.

It is imperative for model simulations to accurately replicate this behavior because

pollution control strategies are developed partly based on model response. If baseline

simulations cannot match the high ∆O3 measured in the environment, it cannot be



reasonably assumed that future controls will limit their occurrence.

Two major questions remain that should be addressed in future work. First, it

is not understood how the baseline simulation – without day-specific emissions – is

able to simulate NTOCs. Process analysis can be utilized to understand the physical

and chemical components of O3 formation, and the processes at work in the baseline

simulation can be compared to those in the base case. A more thorough analysis of

the differences between the two emissions inventories may also assist in explaining how

the baseline simulation is able to create NTOCs. The days with measured NTOCs that

were analyzed in this study are good candidates for process analysis. Second, it has not

been demonstrated that any NTOCs since 2003 have been caused by an HRVOC emissions

event. Automated gas chromatograph data should be utilized to help identify possible

HRVOC emissions events. When a likely event is discovered, a trajectory analysis can

be conducted to ensure the suitability of meteorological parameters.
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