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ABSTRACT 
Dendy Diane Lofton: Factors Regulating Methane Production and Oxidation in Two  

Shallow Arctic Alaskan Lakes 
(Under the direction of Dr. Stephen C. Whalen)  

  

 Methane (CH4) is second only to CO2 as a greenhouse gas and is produced in the 

terminal step of organic matter decomposition in anaerobic environments, including lake 

sediments.  Given the widespread distribution of lakes in Arctic Alaska, CH4 emission from these 

lakes may significantly contribute to the atmospheric CH4 budget.  Aerobic methane oxidizing 

bacteria consume CH4 diffusing from anaerobic zones of production, thereby modulating the 

flux of CH4 to the atmosphere.  Multiple research efforts indicate a significant source strength 

for arctic environments in the atmospheric CH4 budget.  Predicted climate induced alterations 

to the arctic landscape include increased organic matter loading from the terrestrial 

environment and increased temperature. These environmental changes can influence both 

rates of CH4 production and oxidation, possibly altering rates of CH4 exchange between shallow 

arctic lakes and the atmosphere.  

 I assessed rates and controls on CH4 production and oxidation in two shallow arctic lakes 

to provide insight into the response of these two microbial groups to projected future climates.  

Rates of total methanogenesis and the fractional contribution of the acetoclastic pathway 

decreased with increasing depth below the sediment surface to 5 cm in both lakes. Substrate 

additions indicated substrate limitation to both methanogenic pathways (acetoclastic and 

hydrogenotrophic).  Rates of total methanogenesis varied spatially in the horizontal dimension
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 in one lake only.  However, there was no consistent relationship between rates of 

methanogenesis and depth of the overlying water as labile organic matter in the shallow 

sediments are likely resuspended and deposited unevenly by wind action.  Under extant 

conditions, rates of methanogenesis responded positively to increases in temperature, while 

rates of CH4 oxidation remained unchanged.  The former were controlled by substrate x 

temperature interactions, while the latter were regulated strictly by substrate supply.  Analysis 

of CH4 oxidation kinetics for water samples points to a community of CH4 oxidizing bacteria that 

is capable of oxidizing CH4 at concentrations far in excess of observed levels.  Increases in 

organic matter supply and temperature under future climates will likely increase rates of 

methanogenesis, but the impact may be fully mitigated by the excessive capacity of the CH4-

oxidizing community to process the added substrate.    
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CHAPTER 1: INTRODUCTION 
 

1.1 Methane  

 Methane (CH4) is a radiatively and chemically important trace atmospheric constituent 

that is over twenty times more influential in terms of radiative forcing than CO2 on a per 

molecule basis (Whalen 2005). Production of methane results from multiple natural and 

anthropogenic sources with wetlands comprising roughly 20% of total atmospheric emissions 

(Whalen and Reeburgh 2000).  Global atmosphere concentrations of CH4 have been increasing 

in recent decades (Whalen 2005) with the highest observed concentrations appearing over the 

arctic and subarctic regions due to the high concentration of wetlands (Semiletov 1999). Tundra 

environments encompass approximately 7% of earth’s surface (Whalen and Reeburgh 1992) 

with up to 50% of that areal coverage comprised of shallow ponds in some regions. On a global 

basis, shallow arctic lakes may occupy approximately 2% of total land surface (Sheath 1986). 

Although arctic lakes have been studied less frequently than terrestrial tundra environments in 

terms of CH4 efflux to the atmosphere, their contribution to the global CH4 cycle is likely 

significant due to shallow depth and broad areal coverage (Bastviken et al. 2004; Semiletov 

1999).  

1.2 Methanogenesis  

 Methane is produced by methanogenesis (MG) as a terminal step of organic matter 

(OM) degradation in anaerobic sediments.  A consortium of microorganisms is responsible for 
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the decomposition of OM through a series of reduction-oxidation reactions with each step 

providing substrate(s) for the next phase.  Physiologically, microbes carrying out these 

processes utilize the energy obtained from redox reactions for cellular growth and maintenance 

(Zehnder and Stumm 1988). Energy yield for microbial oxidation of OM is greatest when O2 is 

an oxidant, while the least amount of energy is available through fermentative CH4 producing 

pathways.  Consequently, methanogens are outcompeted for substrates by other microbial 

groups (Capone and Kiene 1988; Schink 1997).  Direct competition with methanogens for 

substrates is most likely with groups capable of synthesizing acetate (acetogens) and/or 

reducing sulfate (SO4
2-) and iron (Fe3+) (Zinder 1993).  Sulfate concentrations are typically low (< 

200 µM) in freshwater sediments (Capone and Kiene 1988), so direct substrate competition 

with SO4
2- reducers should be minimal compared to acetogens and Fe3+ reducers.  

 Methanogens are Archaeobacteria that exhibit a relatively large substrate range, 

although most species can only utilize one or two substrates (Zinder 1993).  The three catabolic 

pathways are acetoclastic, hydrogenotrophic and methylotrophic, which enable production of 

CH4 from acetate, formate, H2/CO2, methanol, carbon monoxide and methylated amines (Zinder 

1993). Energy yields for each substrate vary with the highest availability from utilization of 

acetate followed by H2/CO2 (Oremland 1988).  Consequently, these two pathways are dominant 

in freshwater sediments with most studies reporting a 2:1 ratio of acetoclastic to 

hydrogenotrophic pathways (Nusslein and Conrad 2000). 

 Many factors can influence both rates of MG and the ratio of the dominant processes.  

The most notable factors influencing methanogenic activity are availability of direct substrates, 

quantity and quality of methanogenic precursors as well as temperature (Conrad 2005; Schulz 
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and Conrad 1996).  Substrate availability depends largely on the presence and activity of the 

microbial consortium leading to the terminal stages of OM degradation.  The variation in the 

relative proportion of the two dominant pathways has rarely been examined in lake sediments.  

However, Conrad (2005) found that sediments characterized by younger OM often show higher 

activity of the acetoclastic pathway whereas sediments characterized by older, more 

recalcitrant OM are typically dominated by the hydrogenotrophic pathway.  In addition, the 

hydrogenotrophic pathway may be enhanced in higher temperatures due to the increased 

activity of the bacterial consortium responsible for H2/CO2 generation required by 

hydrogenotrophic methanogens (Schulz et al. 1997).  Temperature will control rates of both 

processes, but may differentially influence the relative contribution of each pathway to total 

MG by increasing availability of direct substrates at different rates.  

 Terrestrial inputs of dissolved organic carbon (DOC) to a lake system may also influence 

rates of MG. Houser et al. (2003) found a positive correlation between epilimnetic DOC 

concentrations (allochthonous origin) and hypolimnetic CH4 accumulation. In their study, 

hypolimnetic concentration of DOC decreased proportionally with increases in dissolved 

inorganic carbon (DIC) + CH4 in 19 of 21 lakes, suggesting hypolimnetic metabolism was 

supported by incoming DOC (Houser et al. 2003).  Autochthonous DOC resulting from 

decomposition of algal biomass also strongly influence rates of MG, particularly the acetoclastic 

pathway (Schulz and Conrad 1996; Schwarz et al. 2008).  DOC within a lake system may be 

derived from allochthonous or autochonous sources; however, a large portion of the 

terrestrially derived DOC in oligotrophic lakes (> 90%) is decomposed in the sediments (Hershey 

et al. 2006; Wetzel 2001). Arctic Alaskan lakes currently receive large inputs of allochthonous 
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OM, particularly during snowmelt and precipitation events (Michaelson et al. 1998).  Several 

studies suggest that melting permafrost and elevated terrestrial plant productivity will increase 

OM loading to arctic lakes as a result of ongoing climate change (Neff and Hooper 2002; Rouse 

et al. 1997; Shaver et al. 1992).  Consequently, increased inputs of terrestrially derived OM may 

lead to higher rates of CH4 production in shallow Arctic Alaskan lakes.  

1.3 Spatial Variation in Sediment Methane Production 

 Sediment methane flux varies spatially and temporally within a lake ecosystem.  Most 

studies of MG have historically focused on the profundal regions of the lake.  However, the 

proportion of OM (quantity and quality), disturbance frequency (e.g., sediment resuspension), 

sediment temperature and composition can vary significantly among habitats within a lake 

(Bastviken et al. 2008; Bussman 2005; Casper 1996) and all are known to influence 

methanogenic activity.  Higher sediment temperatures along lake margins can also contribute 

to higher rates of MG in comparison to profundal zones (Murase et al. 2005).  Therefore, any 

extant variation of these characteristics within a lake ecosystem can result in variations in CH4 

production rates among lake zones.  Consequently, targeted research centered on one region 

of a lake may not capture the range of methanogenic activity in that water body.   

 Flux of CH4 from the sediments (and subsequent efflux to the atmosphere) may vary 

seasonally as well.  Seasonal differences in terrestrial OM loading (e.g., snowmelt) to lakes can 

influence rates of MG as well as intermittent pulses of OM from runoff following periodic 

precipitation events (Michaelson et al. 1998).  In addition, variations in autochthonous 

production of OM during the growing season will directly influence rates of MG (Schulz and 

Conrad 1995).  Therefore, understanding the spatiotemporal variation in methanogenic activity 
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within a lake ecosystem is imperative for adequate estimation of a lake’s potential CH4 

productivity although incorporation of all these factors into a single study is challenging and 

costly. 

1.4 Effect of Temperature on Methanogenesis 

 Several studies have reported the positive influence of temperature on rates of MG 

(Zeikus and Winfrey 1976; Thebrath et al. 1993; Schulz and Conrad 1996; Schulz et al. 1997; 

Segers 1998; Duc et al. 2010).  The individual pathways leading to MG may be differentially 

altered by fluctuations in temperature. Schulz et al. (1997) reported an increase in the 

hydrogenotrophc pathway relative to the acetoclastic pathway with increased sediment 

temperature. In general, however, it is not clear if increased temperature specifically impacts 

the activity of the methanogens and/or the bacterial consortium responsible for MG substrate 

generation (Schulz et al. 1997).  Methanogenic response to temperature varies considerably 

across ecosystems with higher values occurring in regions with higher quantities and qualities 

of OM (Segers 1998; Duc et al. 2010). Thus, predicted increases in surface air temperatures and 

OM delivery to the lakes as a consequence of a changing climate may significantly stimulate 

rates of MG in shallow arctic lakes. Consequently, measurement of the effect of temperature 

on MG rates in shallow arctic lakes under the present climactic conditions may provide insight 

into the future response of MG in lake sediment. 

1.5 Methane Oxidation 

 Methane diffusing upwards from the sediments is often oxidized by methanotrophic 

bacteria (MOB) both in oxic surficial sediment and overlying water.  These bacteria belong to a 
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larger group, the methylotrophs, which utilize one-carbon compounds as their carbon and 

energy source for cellular growth and maintenance (Hanson and Hanson 1996).  Oxidation of 

CH4 (Mox) is most common in aerobic habitats with highest rates generally proceeding at the 

oxic-anoxic interface (Kankaala et al. 2006).  Methane oxidizing bacteria also represent an 

important ecological linkage between benthic and pelagic food webs (Bastiviken et al. 2003; 

Kankaala et al. 2006; Sundh et al. 2005).  Consumption of methanotrophs by pelagic 

invertebrates (e.g., zooplankton) functions to transfer CH4 derived carbon to higher trophic 

levels (Bastiviken et al. 2003).  Similarly, methanotrophy may also fuel benthic invertebrate 

metabolism.  Hershey et al. (2006) found that off-shore macroinvertebrates, particularly, 

chironomids, were depleted in δ13C, indicating utilization of MOB as a food resource.  

Consequently, MOB play a major role in the food web of some arctic lake ecosystems. The 

importance of methane derived carbon in foodwebs is likely to be most important in smaller 

oligotrophic lakes with well oxygenated bottom waters where MOB are abundant at the 

sediment water interface (Hershey et al. 2006). Consequently, increased CH4 consumption 

induced by greater rates of MG may significantly alter lake food web ecology. Furthermore, 

increased rates of MG without a proportional increase in Mox in lacustrine arctic environments 

may increase their relative contribution to the global atmospheric CH4 budget. 

1.6 Effect of Temperature on Mox Rates 

 As Mox regulates CH4 efflux from the lake and land surface to the atmosphere, it plays a 

significant role in the global atmospheric CH4 budget.  Changes to the arctic environment, such 

as increasing water temperature and terrestrial OM inputs, may directly and indirectly influence 

Mox rates.  Methane oxidizing bacteria appear to be mesophyllic although community 
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adaptation to different temperatures may occur (Hanson and Hanson 1996). Considerable 

activity below 7˚C suggesting the presence of psychrophilic methanotrophs (Sundh et al. (2005). 

Methanotrophic response to temperature can be explained by a Q10 value which reflects the 

change in Mox rates associated with a 10°C increase in temperature (Duc et al. 2010). The 

literature values of Q10 for CH4 oxidation in northern peatlands range from 1.4 to 2.1 (Dunfield 

et al. 1993) although temperature is likely to be a more important driver of Mox rates at higher 

CH4 concentrations as activity shifts from substrate limitation to enzyme-activity limitation, 

particularly if populations prove to be pychrophillic (Sundh et al. 2005; Whalen and Reeburgh 

1996). The role of temperature as a regulator of Mox rates is poorly understood in freshwater 

lakes and determinations of the temperature-dependence of Mox rates in arctic lakes is non-

existent. Therefore, evaluation of the influence of temperature on rates of Mox is essential to 

understanding how this regulatory process may be impacted by rising mean air temperatures in 

the arctic region as increasing lake water temperatures will likely follow (Overpeck et al. 1997; 

Christoffersen et al. 2008; Post et al. 2009; Flury et al. 2010).   

1.7 Methane Oxidation Kinetics 

 Oxidation of CH4 in lakes is controlled largely by substrate concentration, O2 availability 

and temperature to a lesser degree in most cases (Liikanen et al. 2002).  The maximum CH4 

uptake rate (Vmax) is dependent upon substrate concentration and is indicative of the 

population size of MOB (Buchholz et al. 1995; Whalen and Reeburgh 1996). Similarly, the half-

saturation constant for Mox (Km) reflects community structure and physiology as it provides 

information regarding the presence of high or low affinity MOB (Bender and Conrad 1992; De 

Visscher et al. 2001). The apparent Km for low affinity MOB typically exceeds 1 µM (Roslev et al. 
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1997; Knief and Dunfield 2005) while the Km for atmospheric CH4 oxidizers is much lower (10 to 

280 nM CH4) (Knief and Dunfield 2005). This lower Km is generally accompanied by low Vmax as 

well (Bender and Conrad (1992). Comparison of these constants will indicate differences in 

community structure and physiology which may lend insight into the ability for Mox 

communities in arctic lakes to accommodate higher CH4 concentrations that may be associated 

with ongoing climate change. 

1.8 Arctic Lakes and Future Climate Change 

 Methane is derived from a number of natural and anthropogenic sources (Whalen 2005) 

with large uncertainties regarding quantification of the magnitude of the global sources and 

sinks (Dlugokencky et al. 2009; Isaksen et al. 2011). The relative contribution of the Arctic to the 

global CH4 budget is predicated upon wetland sources (Whalen and Reeburgh 1992). However, 

many arctic lakes are currently considered to be net sources of CH4 to the atmosphere (Bartlett 

et al. 1992; Zimov et al. 1997; Bastviken et al. 2004; Semiltov 1999; Walter et al. 2007; Mazeas 

et al. 2009). It is hypothesized that OM loading to high latitude lakes will increase through 

interactions between changing terrestrial vegetation composition, increased terrestrial plant 

productivity and alterations to hydrological regimes (Wrona et al. 2006).  Arctic lakes currently 

receive considerable inputs of dissolved organic carbon (DOC) from the surrounding landscape 

(Whalen and Cornwell 1985; Kling et al. 1991; Michaelson et al. 1998). Amplified carbon inputs 

to lakes due to warming-induced changes to the terrestrial landscape (Rouse et al. 1997) have 

the potential to increase lacustrine CH4 emissions (Chapin et al. 2000; Zimov et al. 1997; Walter 

et al. 2006) if not accompanied by increased CH4 consumption.  Since MG is the terminal step 

involved in decomposition of OM in anaerobic sediments (Nusslein and Conrad 2000), it plays a 
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key role in the carbon cycling of lakes (den Heyer and Kalff 1998). Further, the extensive areal 

coverage of lakes across the arctic landscape dramatically increases their relative contribution 

to the global atmospheric budget in a disproportionate manner. Consequently, continued 

climate change may augment the magnitude of CH4 emitting from arctic lakes if microbial 

consumption of CH4 does not mediate increased CH4 flux from the sediments. Therefore, 

increased OM loading from the terrestrial landscape has the potential to significantly impact 

CH4 cycling in these shallow lakes with ramifications for positive feedback to lake CH4 emissions 

in the arctic. 

1.9 Research Objectives 

 The overall goal of this research was to evaluate the landscape and within-lake scale 

factors regulating microbial production and consumption of methane in two representative 

Arctic Alaskan lakes under current climatic conditions in an effort to better understand the 

response of these communities to predicted changes in environmental variables that control 

their activities. Specific research objectives are as follows: 

1.  Determine the relative importance of dominant methanogenic pathways in arctic  

 lakes, the factors regulating vertical distribution of methanogenic activity and the  

 community response to added substrates;  

2.  Quantify within lake spatial variability of CH4 production in three major lake zones  

 (maximum water depth, ½ maximum water depth and littoral zone); 

   3. Quantify the relationship between temperature and rates of MG in lake sediments 

    and Mox in lake waters. I further explored substrate dependence of Mox rates and  

   substrate-temperature interactions in rates of Mox. Analogous experiments were not  
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   conducted for MG due to community involvement in production of methanogenic  

  precursors and the presence of multiple pathways of microbial CH4 production.  

1.10 Dissertation Structure 

 My dissertation is structured with five major chapters such that the internal data 

chapters (Chapters 2 - 4) address each of the research objectives described above and are 

designed to serve as standalone manuscripts for publication. Therefore, the first chapter serves 

as an introduction, while the fifth chapter summarizes the conclusions of all major research 

objectives. As a consequence of this structure, some repetitive overlap with background 

information and discussion of findings may prevail throughout the document.  
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CHAPTER 2:  VERTICAL DISTRIBUTION OF METHANOGENIC PATHWAYS IN THE  
          SEDIMENTS OF TWO SHALLOW ARCTIC LAKES 

 
2.1 Introduction 

 Methane (CH4) is produced in the terminal step of organic matter (OM) degradation in 

anaerobic sediments. A consortium of microorganisms is responsible for decomposition of OM 

through a series of reduction-oxidation reactions with each step providing substrate(s) for the 

next phase. Physiologically, microbes carrying out these processes utilize the energy obtained 

from redox reactions for cellular growth and maintenance (Zehnder and Stumm 1988). Energy 

yield for microbial oxidation of OM is greatest when O2 is an oxidant, while the least amount of 

energy is available through fermentative CH4 producing pathways. Consequently, methanogens 

are outcompeted for substrates by other microbial groups (Capone and Kiene 1988; Schink 

1997). Direct competition with methanogens for substrates is most likely with groups capable 

of synthesizing acetate (acetogens) or reducing sulfate (SO4
2-) or iron (Fe3+) (Zinder 1993).  

Sulfate concentrations are typically low (< 200 µM) in freshwater sediments (Capone and Kiene 

1988), so direct substrate competition with SO4
2- reducers should be minimal compared to 

competition with acetogens and Fe3+ reducers.  

 Methanogens belong to the anaerobic group Archaea (Schimel and Gulledge 1998) 

which exhibits a relatively large substrate range, although most species can only utilize one or 

two substrates (Zinder 1993).  The three catabolic pathways are acetoclastic, hydrogenotrophic 
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and methylotrophic, which enable production of CH4 from acetate, formate, H2/CO2, methanol, 

carbon monoxide and methylated amines (Zinder 1993). Energy yields for each substrate vary 

with the highest availability from utilization of acetate followed by H2/CO2 (Oremland 1988). 

 Consequently, these two pathways are dominant in freshwater sediments with most studies 

reporting a 2:1 ratio of acetoclastic to hydrogenotrophic pathways (Nusslein and Conrad 2000). 

 Many factors can influence both rates of methanogenesis (MG) and the ratio of these 

processes.  The most notable factors influencing methanogenic activity are availability of direct 

substrates, quantity and quality of methanogenic precursors as well as temperature (Schulz and 

Conrad 1996; Conrad 2005).  Substrate availability depends largely on the presence and activity 

of the microbial consortium leading to the terminal stages of OM degradation.  The variation in 

the relative proportion of the primary methanogenic pathways has rarely been examined in 

lake sediments.  However, Conrad (2005) found that sediments characterized by younger OM 

often show higher activity of the acetoclastic pathway whereas sediments characterized by 

older, more recalcitrant OM are typically dominated by the hydrogenotrophic pathway.  

Temperature will control rates of both pathways, but may differentially influence the relative 

contribution of each pathway to total MG.  Activity of the bacterial consortium responsible for 

H2/CO2 generation increases with sediment temperature (Schulz et al. 1997), and may play a 

larger role in controlling MG activity in the future due to climate induced warming (McGuire et 

al. 2009; Meuller et al. 2009). Further, increased air temperature in the Arctic is expected to 

release large amounts of stored organic carbon through permafrost degradation (Weller et al. 

1995; Pastor et al. 2003; Finlay et al. 2006; Guo et al. 2007).  Consequently, both major 

methanogenic pathways in lake sediments will likely respond positively to increased inputs of 
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terrestrial OM as well as increased temperature as a function of climate change (Michaelson et 

al. 1996; Roehm et al. 2009; Mazeas et al. 2009). Characterization of these pathways and the 

factors controlling their distribution has not been examined in Arctic Alaskan lakes. Therefore, 

experiments were conducted to determine:  (a) the relative proportion of these pathways in 

shallow arctic lakes and its distribution with depth below the sediment surface, and (b) the 

response of the methanogenic community to substrate additions.   

 

2.2 Materials and Methods 

2.2.1 Field Sites 
 
 My study site is located in the Arctic Foothills province of Alaska which is a region of the 

Arctic that is characterized by a tundra landscape underlain with 18ontinuous permafrost 

(Whalen et al. 2006). Mean annual temperatures range from – 7 to – 11°C with annual 

precipitation ranging from 140 to 267 mm (Bowden et al. 2008). The trophic state of most of 

the lakes in this region ranges from ultraoligotrophic to oligotrophic with heavy reliance on 

spring snowmelt for terrestrial subsidies of dissolved organic matter (Kling 1995; Whalen and 

Cornwell 1985). A full description of the region including vegetation characteristics and glacial 

geology can be found in Ping et al. (1998) and Hamilton (2002).   

The two lakes chosen for this study, E4 and GTH 114, possess similar geomorphological 

characteristics, with GTH 114 having a larger total volume and catchment area (Table 2.1). The 

selected study lakes are regionally representative with respect to surface and catchment area, 

and lack fish, permanent inlets and rooted macrophytes. Additionally, these lakes exhibit 
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polymictic mixing patterns, thermally stratifying on an intermittent basis during the summer 

growing season (Figures 2.1 and 2.2). 

2.2.2 Field Sampling 
 

 Sediments for CH4 production studies were collected from GTH 114 on 4 July 08 and 

from E4 on 18 July 08. Sediment cores were extracted from the lakes using a KB gravity corer 

(Wildlife Supply Company) deployed from an inflatable raft. Polycarbonate sleeves (4.8 cm 

inside diameter x 50 cm length) were inserted into the KB corer which was then lowered 

carefully into the sediments.  Once removed from the sediments, sleeves were capped on each 

end with rubber stoppers.  Additional sediments were similarly collected for dissolved organic 

carbon (DOC) and %OM analysis. Intact sediment cores were transported undisturbed via foot, 

vehicle, or helicopter to TFS for processing.  

 Samples for DOC analysis were also taken from temporary water tracks entering E4 (n = 

1) on 3 July 2009 and GTH 114 (n = 2) on 17 June 2009. Additional water samples were collected 

in 2010 for fluorescence index (FI) determination, which is an index of whether the precursor 

material was autochthonous or allochthonous (McKnight et al. 2001; Cory et al. 2007; Cory et 

al. 2010). Single samples were collected from the epilimnion and hypolimnion of E4 on 4 July 

2010 and similarly from GTH 114 on 25 June 2010 using a Van Dorn water sampler (Wildlife 

Supply Company) deployed from an inflatable raft. 

2.2.3 Laboratory Studies 
 

 Triplicated sediment slurries were prepared from discrete core sections using a total of 

6 cores per slurry. Cores were sectioned in 1 cm increments to a depth of 5 cm and sediments 

from each depth interval were homogenized into three polycarbonate 1-L beakers.  Anoxic 
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deionized water (Dh2O) was prepared in separate polycarbonate beakers by purging with ultra 

pure helium (He) and an air stone affixed to the end of tygon tubing.  The uppermost sediment 

interval (0 – 1 cm) contained a visibly higher proportion of water relative to deeper sediment 

intervals. Therefore, 50 ml of anoxic Dh2O were added to the surface layer (0 – 1 cm interval) 

while 100 ml of anoxic Dh2O were added to subsequent depth intervals in an effort to 

approximate similar water: sediment ratios among samples.  To account for any variation in the 

water: sediment ratios among depths intervals, rates of MG were based on sediment dry mass. 

Following addition of Dh2O, all homogenized sediment slurries were continually purged with 

He.  A polycarbonate syringe with a bored tip was used to measure 20 ml of anoxic sediment 

slurry that was then placed into 160 ml serum bottles.  Serum bottles were sealed with butyl 

rubber stoppers and capped with aluminum crimp seals.  Each serum bottle was evacuated and 

purged with He a minimum of 5 times to ensure anoxia, filled to 1 atm with He then placed in a 

10˚C water bath to acclimate for approximately 12 h prior to treatment additions (i.e., 

methanogenic substrates or a pathway inhibitor).  Substrate additions included acetate and H2 

while methyl fluoride (CH3F) was used as a specific inhibitor of the acetoclastic pathway.  One 

of the following amendments were added to triplicate sediment slurries to obtain a final 

concentration for each treatment: acetate (1 Mm), H2 (4% v/v), CH3F (1% v/v). The selected 

concentrations for each amendment have been previously found to be effective for this type of 

study (Nusslein and Conrad 2000; Nozhevnikova et al. 2007) and thus, were similarly 

implemented in my study.  Headspace samples were collected in 3 ml plastic syringes that had 

been previously tested to confirm no loss of CH4 over 4 h.  
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 Analysis of CH4 was conducted by a gas chromatograph equipped with a flame ionization 

detector (FID-GC; Shimadu GC-8A) and was completed within 2 h of headspace sampling.  

Operating conditions for the FID-GC were as follows: Column = ⅛” diameter x 1 m length mol 

sieve 5A (60/80); column temperature = 90°C; injector and detector temperatures = 140°C; 

carrier gas = ultra-high purity N2 at 33 ml min-1 flow rate. Vial headspaces were sampled 4 times 

over 10 d, resulting in the linear production of CH4.  Rates were calculated using linear 

regression of CH4 production versus time and were normalized to 1 g dry sediment matter. 

Methods were adapted from Nusslein and Conrad (2000).   

 Triplicate cores for porewater analysis of DOC were carefully sliced in 1 cm increments, 

which were then added to 15 ml glass centrifuge tubes and sealed with rubber septa without a 

headspace.  Tubes were centrifuged at < 2000 rpm for 30 min. The supernatant for each core 

section was filtered (ashed Whatman GF/F filter) and acidified (0.1 ml of 0.1N HCl).  Water track 

samples were similarly filtered and acidified for DOC analysis.  All DOC samples were stored at 

4˚C, and transported to UNC-CH for analysis.  DOC was measured on a Shimadzu TOC-VCPH 

Combustion-Infrared instrument (Shimadzu Corp., Kyoto, Japan) using Standard Method 5310B 

(Standard Methods for the Examination of Water and Wastewater 1998). Solid phase sediments 

(in 1 cm increments) were weighed, dried for 2-3 d at 45°C and reweighed. Dry sediments were 

ashed at 550°C for 4 h.   

 The non-acidified water samples for FI determination were filtered (ashed Whatman 

GF/F) and analyzed twice on a Fluoromax-4 fluorometer (analytical error ± 0.005) equipped 

with a xenon lamp. The FI is determined by the ratio of emission intensity at 470/520 nm 

produced to excitation at 370 nm (Cory et al. 2010).   
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2.2.4 Calculations and Statistics 
 

 Headspace CH4 in serum vials as a mixing ratio was converted to a moles per liter basis. 

Methane concentration in the aqueous phase at each sampling point was calculated from 

temperature corrected solubility coefficients (Yamamoto et al. 1976) and Henry’s law (Stumm 

and Morgan 1996). The total amount of CH4 produced in each bottle at each time point was 

computed as the sum of the aqueous phase and headspace masses.  

 The rates of MG from the unamended slurries (control) provided an estimate of total 

MG. Since CH3F inhibits the acetoclastic pathways, any CH4 produced in the presence of CH3F 

was assumed to be produced via the hydrogenotrophic pathway. Thus, the relative proportion 

of MG attributed to the acetoclastic pathway was calculated as the difference between the 

mean rate of MG in the control treatments and the mean rate of MG in the CH3F treatments for 

each lake at each depth.  

  The effect of sediment depth increment on unamended rates (controls) of MG was 

evaluated using separate One-way ANOVAs. Post-hoc comparison of means was conducted 

using Tukey’s Honestly Significant Difference (HSD) for within-lake comparisons and Student’s t-

test for between-lake comparisons. The effect of substrate addition (acetate or hydrogen) on 

MG rates was also evaluated using One-way ANOVA followed by Dunnett’s test for direct 

comparison with the control. The effect of sediment depth increment on amended rates of MG 

was assessed using One-way ANOVA following by Tukey’s HSD for comparison of multiple 

means (Sokal and Rohlf 1995; Zar 1996; McDonald 2009). 

 Initially, the dependence of DOC or % OM on sediment depth was evaluated with simple 

linear regression.  In the case of each environmental variable, either significant linear 



23 
 

relationships in all profiles among sediment zones were not found (see Results), or some 

regression assumptions were violated preventing use of linear regression. Therefore, One-way 

ANOVAs were used to compare within-lake and between-lake differences in DOC and % OM 

with respect to sediment depth increment. Post-hoc comparisons of means were conducted 

with Tukey’s HSD for within lake evaluations or Student’s t-test for between lake evaluations.  

The % OM was arcsine transformed for all statistical analyses (Sokal and Rohlf 1995; Zar 1996; 

McDonald 2009).  

 Due to the non-normal distribution of environmental variables, the relationship 

between rates of MG and DOC, or MG rates and % OM were evaluated using Spearman’s rank 

correlation (rs) (Sokal and Rohlf 1995; Zar 1996; McDonald 2009). 

 Organic content (%) was calculated from the difference in mass between oven dried 

sediments (40-60°C) and sediments combusted at 550°C for 4 h (den Heyer and Kalff 1998; 

Wetzel and Likens 2000). 

 

2.3 Results 

 Within lake comparison of unamended sediment slurries in E4 and GTH 114 exhibited a 

general trend of decreasing rates of total MG with increasing depth below the sediment surface 

(Figure 2.3). A comprehensive list of statistical comparisons between unamended rates of MG 

and vertical sediment depth can be found in Table 2.2.  Mean rates of total MG in E4 varied 

from 118 to 1696 nmol CH4 gdw -1 d-1 (dw = dry weight). Rates in the 4-5 cm interval were 

significantly lower than all other intervals while the rates in the 1-2 cm interval were 

significantly greater than rates in deeper sediment intervals. Mean rates of MG in GTH 114 



24 
 

ranged from 118 to 3291 nmol CH4 gdw -1 d-1 with the rate in the 0-1 cm depth interval 

significantly higher than rates in deeper sediments. Between lake comparisons showed some 

significant differences in rates of MG at comparable depth intervals. Rates of MG in the 1-2 cm 

and 2-3 cm depth intervals were higher in E4 than in GTH 114.  No other pairs of sediment 

depth intervals differed significantly with respect to rates of MG.  

 Substrate additions generally enhanced MG rates relative to controls at all depths in 

both lakes, but not all rate increases were significant. A complete list of statistical tests 

evaluating the effect of substrate additions on rates of MG can be found in Table 2.3. Briefly, in 

E4, H2 significantly stimulated MG relative to the control in the 0-1 cm interval, but showed no 

significant difference relative to the control in the 1-2 cm interval (Figure 2.4). Hydrogen and 

acetate both significantly increased rates of MG compared to controls at depths below 2 cm. 

Rates of MG increased significantly in the 0-1 cm interval in response to the addition of H2 

when compared to acetate. No other significant differences between acetate or H2 treatments 

were found at subsequent depth intervals in E4. In GTH 114, H2 significantly stimulated rates of 

MG at all depths relative to unamended controls whereas acetate significantly increased CH4 

production only at depths below the 0-1 cm depth interval (Figure 2.5). No significant 

differences were found at any depth interval in GTH 114 when comparing MG rates for samples 

supplemented with acetate versus hydrogen. In comparison to unamended treatments, 

substrate additions generally resulted in a greater percent increase in MG rates in the 0-1, 1-2 

and 2-3 cm depth intervals in GTH 114 than E4 (Figure 2.6). Furthermore, the stimulatory 

effects of H2 was comparable between lakes in the 3-4 and 4-5cm intervals while acetate was 

more influential in E4 than in GTH 114 at these depths. 
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 The acetoclastic and hydrogenotrophic pathways were inversely distributed with depth 

in E4, with the importance of the acetoclastic pathway generally decreasing with increasing 

depth below the sediment surface (Figure 2.7). A similar but less clear trend was observed in 

GTH 114 (Figure 2.8).  The ratio of the acetoclastic: hydrogenotrophic pathway transitioned in 

E4 from 17:1 in the 0-1 cm depth interval to 2:1 in the 4-5 cm interval. In contrast, the 0-1 cm 

depth interval in GTH 114 displayed a 6:1 ratio for the acetoclastic: hydrogenotrophic pathway, 

but showed a slightly greater than even contribution by the hydrogenotrophs in the 2-3 and 4-5 

cm sediment depth intervals. Interestingly, only the 1-2 cm interval showed a 2:1 ratio of 

acetoclastic: hydrogenotrophic MG in GTH 114.  

  In E4, the mean DOC concentration at the 4-5 cm depth interval was significantly 

greater than the mean for the 0-1 cm depth interval, while no significant differences were 

found among sediment depth intervals in GTH 114 (Table 2.4; Figure 2.9). There was a 

significant linear relationship between DOC and sediment depth increment in E4, but not in 

GTH 114 (Table 2.5). Therefore, the difference for overall means in DOC between lakes was 

assessed using One-way ANOVA (Table 2.4). The mean DOC of 24.5 mg L-1 in GTH 114 was 

significantly greater than the mean of 14.9 mg L-1 for E4. Samples from temporary water tracks 

in 2009 had DOC concentrations that were more than two-fold higher near GTH 114 (18 mg L-1; 

n = 2) than near E4 (8 mg L-1; n = 1). Values of FI for samples taken (n=1 per stratum per lake) in 

2010 from the epi- and hypolimnetic waters of E4 were 1.37 and 1.39 and with respective 

values of 1.36 and 1.40 in GTH 114. The measured FI values are indicative of a high terrestrial 

influence for both lakes (Cory et al. 2010).   
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Neither lake exhibited a significant change in % OM with increasing sediment depth 

(Table 2.4; Figure 2.10).  In E4, the surficial sediment layer (0-1 cm) was comprised of 

approximately 42 ± 1.08 % OM ( ̅ ± SE) with the 4-5 cm interval comprising 43 ± 8.9 % OM ( ̅ ± 

SE). No clear pattern was observed between unamended rates of MG and % OM in each 

sediment depth interval in E4, but the highest unamended rate of MG in GTH 114 occurred in 

the surficial sediment interval (0-1 cm) which also coincided with the depth interval containing 

the greatest % OM (Figure 2.11). Despite the lack of a significant difference in % OM among 

depth intervals, GTH 114 had a higher organic content in the 1-2  and the 3-4 cm depth 

intervals than E4 (Table 3.4). There was a significant linear relationship between % OM and 

sediment depth increment in GTH 114, but not in E4 (Table 2.5). Therefore, the overall mean % 

OM content between lakes was compared by One-way ANOVA (Table 2.4). The mean % OM 

content of 45% in the solid phase (0-5 cm) of E4 sediment was significantly higher than the 

value of 32% in GTH 114 (paired t-test), although considerably more variability was evident in 

E4 sediments relative to GTH 114 sediments. 

 In E4, no clear pattern was observed between rates of MG attributed to the acetoclastic 

or hydrogenotrophic pathways versus % OM at the corresponding sediment depth intervals 

(Figure 2.12).  Rates of MG via the acetoclastic pathway in GTH 114 occurred in the depth 

interval (0-1 cm) that contained the highest observed % OM (Figure 2.13). However, no other 

clear pattern between MG rates and % OM in the discrete depth intervals was observed. 

 Spearman’s rank correlation revealed a significant correlation between sediment depth 

increment and rates of MG in E4 and GTH 114 (Table 2.6). There was a moderately significant 

correlation between rates of MG and sediment DOC in GTH 114, but no significant relationship 
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in E4. Sediment DOC, however, was not significantly correlated to pooled rates of MG for E4 

and GTH 114. No significant relationship was found between pooled % OM and rates of MG, 

but rates of MG were strongly correlated to % OM in GTH 114.  

 

2.4 Discussion 

2.4.1 Total Methanogenesis 
 

 Rates of methanogenesis in freshwater lake sediments are somewhat scarce and vary 

globally (Tranvik et al. 2009). Rates of total MG observed in lakes E4 and GTH 114 generally fall 

within the range of other reported studies worldwide. Duc et al. (2010) measured MG rates in 

lakes of the temperate and boreal areas of Sweden and found a wide range (2 – 3990 nmol CH4 

gdw
-1 d-1). In contrast, rates in soil slurries from unflooded rice fields in Italy depended on 

temperature regimes (4 – 30°C) and agricultural impacts, with values varying from 264 – 552 

nmol CH4 gdw
-1 d-1 (Dannenberg et al. 1997). Rates in slurries from Lake Biwa in Japan were 

considerably lower than rates found in my lakes at < 2 nmol CH4 gdw
-1 d-1 (Dan et al. 2004). 

Conrad et al. (2010) reported rates between 1092 – 1519 nmol CH4 gdw
-1 d-1 in sediments from 

two clear-water Amazonian lakes. 

2.4.2 Unamended Treatments 
 

 Rates of total MG in unamended slurries declined with increasing depth below the 

sediment surface in both lakes.  I expected overall rates of MG in GTH 114 to be higher than in 

E4 as a consequence of higher DOC concentrations in GTH 114 compared to E4. With the 

exception of the uppermost sediment layer, unamended rates of MG in E4 were generally 

higher at each depth interval than in GTH 114 although only the 1-2 and 2-3 cm depth intervals 
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showed rates of MG that were significantly different between lakes.  High variability and few 

replications limit statistical power making trends difficult to identify. 

 Although the difference was not significant, the higher rates of MG observed in the 

uppermost sediment layer of GTH 114 compared to E4 could be attributed to several factors. As 

oxygen inhibits growth of methanogens (Zinder 1993), intermittent oxic conditions in the 

uppermost surficial sediments in E4 likely suppress growth of methanogenic communities in 

contrast to the favorable environment provided by consistently anoxic surficial sediment layer 

in GTH 114 (Figures 2.1 and 2.2). Yuan et al. (2009) found methanogens in rice field soils 

repeatedly exposed to oxygen for 72 h did not resume production of CH4 until 23 days after 

cessation of oxygen exposure. In contrast, the deepest zone in GTH 114 is approximately 2 m 

deeper than that of E4 and covers approximately 3 times less surface area (668 vs. 2309 m2, 

respectively).  It is likely that this small surface area of sediments at maximum water depth 

(Zmax) in GTH 114 is somewhat buffered from wind driven sediment resuspension events 

thereby promoting consistently anoxic conditions in the surficial sediment layer. Furthermore, 

the surficial sediments of Zmax in GTH 114 are much more flocculent than those found in E4. 

Highly flocculent material, derived from autochthonous and allochthonous sources, overlying 

sandy sediments can increase sediment oxygen demand, thereby depleting oxygen 

concentrations at the sediment surface (Sweerts et al. 1986). 

 The contrasting rates between lakes in unamended slurries below the 0-1 cm depth 

interval could be caused by differences in methanogenic community composition. In eutrophic 

Lake Dagow (Germany), Chan et al. (2005) found denser populations of the acetoclasts in the 

upper sediment layers (0-3 cm) while the hydrogenotrophs were more prevalent in deeper 
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sediments (i.e., down to 20 cm).  Concomitant reductions in total numbers of Bacteria with 

increasing sediment depth were also observed. Consequently, the authors suggested that the 

decline in total Bacteria likely drive the lower overall rates of MG in those sediments as Bacteria 

can regulate the availability of MG substrates. Given that a host of symbiotic bacterial 

processes regulate the availability of methanogenic substrates (Glissman et al. 2004) a similar 

mechanism may explain the depth distribution of MG pathways in E4 and GTH 114.   

 Pelagic primary production in shallow lakes characteristic of the Alaskan Arctic is limited 

significantly by nutrient availability (Levine and Whalen 2001).  Benthic primary production can 

be an important component of whole-lake primary productivity in shallow lakes due to high 

light availability to the epipelic algae in close proximity to nutrient rich sediments 

(Vadeboncoeur et al. 2001; Whalen et al. 2008; Rautio et al 2011). To supplement these 

autochthonous limitations, whole-lake metabolism currently depends heavily on terrestrial 

inputs of nutrients and OM occurring in snowmelt and periodic flushing from storm events 

(Whalen and Cornwell 1985; Kling 1995; Michaelson et al. 1998; Cory et al. 2007).  Increases in 

the magnitude and frequency of nutrient and OM delivery to aquatic systems from the 

terrestrial landscape may significantly alter lacustrine ecosystem processes in response to 

climate change (Rouse et al. 1997). Whalen and Levine (2001) showed that nutrient additions 

increased phytoplankton uptake rates in bioassays from 45 lakes in the same region as my 

study lakes. In a separate study, direct deposition of algal biomass to sediment cores from Lake 

Kinneret (Israel) significantly increased CH4 production (Schwarz et al. 2008).  In my study, 

acetate amendments significantly stimulated MG relative to the controls in nearly all depth 

intervals in both lakes. The magnitude of the projected increases in nutrient and OM delivery to 
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lentic systems will depend on vegetation composition, precipitation, hydrological flow paths 

and localized permafrost thaw depths (Prowse et al. 1996; Rouse et al. 1997; Michaelson et al. 

1998; Post et al. 2009; Kittel et al. 2011). Collectively, my results and these previous reports 

suggest that increased nutrient delivery from the terrestrial landscape in response to climate 

change may indirectly fuel MG through stimulation of autochthonous production in shallow 

arctic lakes.  

 Terrestrial OM inputs to shallow arctic lakes under current climatic conditions may also 

influence MG activity through photodegradation of recalcitrant DOM into labile substrates 

(Moran and Zepp 1997; Judd et al. 2007; Zhang et al. 2009; Rautio et al. 2011). In the present 

study, FI values of DOC samples collected from the epilimnion and hypolimnion of E4 and GTH 

114 indicated a high degree of terrestrial source material (Cory et al. 2010) and were consistent 

with measurements from Toolik Lake, a large, deep lake in the region of my study (Cory et al. 

2007). Terrestrially derived OM typically shows FI indices of < 1.4 while FI values > 1.4 are 

indicative of autochthonous OM (Cory et al. 2010).  In GTH 114, the FI values did not differ 

significantly between the epilimnion and hypolimnion. However, in E4, epilimnetic FI values 

were significantly lower than FI values for the hypolimnion.  Bacterial processing of terrestrial 

OM can increase the FI value relative to the source material (Cory et al. 2007).  Similarly, 

photobleaching can lower the FI value (Cory et al. 2007) which is likely why the epilimnetic 

samples in E4 and GTH 114 exhibited lower FI values than the respective hypolimnetic samples, 

a result that is consistent with observations in nearby surface waters (Dr. Rose M. Cory, 

personal communication).  Acetate is a byproduct of photodegradation of DOM (Moran and 

Zepp 1997; Bertillson and Tranvik) which as previously discussed, is a primary substrate for MG. 
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Consequently, photodegradation of DOM may represent an important linkage between MG 

substrate supply and terrestrial OM inputs to shallow arctic lakes.  

  Increased frequency and magnitude of terrestrial DOC inputs to arctic lakes may lead to 

alterations in lake-ecosystem function. Under current conditions, E4 and GTH 114 periodically 

exhibit intermittent and weak thermal stratification throughout the open water season (Figures 

2.1 and 2.2).  Allochthonous OM differs substantially from autochthonous DOM in its capacity 

to absorb light (Rautio et al 2011).  Terrestrially derived OM absorbs more light than 

autochthonous OM (Reche et al. 2001; Pace and Cole 2002; Sobek et al. 2007).  Thus, high 

inputs of allochthonous OM can affect the thermocline structure and depth of the mixed layer 

in response to light absorption and heat retention (Houser et al. 2003; Sobek et al. 2007; 

Fortino 2010). In a 2008 survey of 15 lakes near Toolik Field Station, Fortino (2010) found a 

significant correlation between light attenuation and DOC, and between light attenuation and 

thermocline depth. The results of that study indicated that shallower thermoclines develop in 

response to greater light attenuation as a function of higher DOC concentrations.  Increased 

light attenuation by terrestrial DOC also results in reduced light availability to the benthos 

which can be particularly important in shallow lakes where benthic primary production is a 

major contributor to whole-lake primary production (see above).  Additionally, deeper 

hypolimnetic waters and extended stratification periods may lead to hypoxic or anoxic bottoms 

water (Rouse et al. 1997). Accordingly, production of CH4 under these conditions can result in a 

hypolimnetic buildup of CH4 that would be directly released to the atmosphere at turnover 

(Kankaala et al 2006).     



32 
 

2.4.3 Substrate Additions 
 

 The stimulatory effect of acetate or hydrogen relative to the unamended treatments 

generally increased with increasing sediment depth (Figure 2.4). However, in the deeper 

sediment intervals (i.e., 3-4 and 4-5 cm), H2 exerted a much stronger influence on MG rates 

than acetate supplementation compared to the controls in GTH 114 than in E4. Two possible 

mechanisms could be driving this observation. Methanogens are capable of dormancy for 

extended periods (Rothfuss et al. 1997; Watanabe et al. 2007), but could be readily stimulated 

by substrate additions. Alternatively, compositional differences in methanogenic communities 

could be driving the observed patterns if hydrogenotrophic methanogens are more densely 

populated at these depth intervals than acetoclastic methanogens. 

2.4.4 Pathway Delineation 
 

 Although the acetoclastic pathway appeared to dominate the upper sediment layers in 

each lake, the down core shift in pathway importance in each lake was not parallel. The data 

suggest that the acetoclastic pathway was the dominant mechanism for CH4 production in all 

depth intervals measured in E4, but two sediment depth intervals (i.e., 2-3 and 4-5 cm) in GTH 

114 indicated a slightly higher importance of the hydrogenotrophic pathway than the 

acetoclastic pathway. Depth integrated rates of MG in each lake shows that the approximate 

ratio of the acetoclastic: hydrogenotrophic pathway was 8:1 in E4, whereas the ratio in GTH 114 

was 3:1 indicating that the acetoclastic pathway is a more important mechanism in E4 than in 

GTH 114 in the upper 5 cm of sediment.  Some studies have found that complete dominance of 

CH4 production from acetate is indicative of acetate production via homoacetogenesis (Schulz 

and Conrad 1996; Conrad 1999; Nusslein and Conrad 2000).  Homoacetogenetic bacteria 
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synthesize acetate directly from fermentation products, effectively bypassing the degradation 

step by syntrophic bacteria that typically produces alcohols and fatty acids which are then 

degraded into methanogenic substrates (i.e., acetate, H2/CO2) (Conrad 1999). Because the 

acetoclastic pathway shows nearly complete dominance in the upper sediment layers of E4, 

high rates of homoacetogenesis could be causing the observed ratios in the MG pathway with 

increasing sediment depth in E4, but the factors controlling the overall higher contribution of 

the hydrogenotrophic pathway in GTH 114 and at comparable depths is not clear.  

 The predominance of the hydrogenotrophic pathway over acetoclastic fermentation is 

typically only found in marine systems (Crill and Martens 1986) or in peat bogs (Horn et al. 

2003; Prater et al. 2007; Rooney-Varga et al. 2007). Occurrence of a higher contribution from 

the hydrogenotrophic pathway than the acetoclastic pathway in lake sediments is uncommon 

and not very well understood. Potential reasons for the importance of the hydrogenotrophic 

pathway to exceed acetate fermentation in freshwater lake sediments could be attributed to 

excessively high concentrations of acetate, which inhibit acetoclastic MG (Nozhevnikova et al. 

1997), or additional sources of H2 (Conrad 1999). Substantial differences in acidity and 

vegetational composition can exist on surfaces of different glacial age on the North Slope of 

Alaska (Hobbie et al. 2002), which could contribute to the variation in landscape-scale control 

on MG pathways between these two catchments. Both of these lakes are on surfaces that were 

glaciated during the middle Pleistocene (i.e., approximately 125,000 to 780,000 years ago), but 

they differ considerably with age since deglaciation. GTH 114 exists in a region that is much 

older than E4 in terms of glacial histories (Hamilton 2002). Therefore, it is possible that OM age, 
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vegetation composition, and consequently the quality of DOC entering the lakes influences the 

relative proportion of MG pathways in these shallow lakes. 

 The functional linkage between arctic lakes and their surrounding landscapes will likely 

be altered in the future as a consequence of global and regional climate change. Some of the 

most notable predictions contend that terrestrial OM delivery to the lakes will be amplified due 

to widespread thawing of permafrost (Weller et al. 1995; Mazeas et al. 2009; Karlsson et al. 

2010). Mobilization of the previously sequestered OM into arctic lake sediments will likely 

enhance production of CH4 in these environments (Zimov et al. 1997; Walter et al. 2007; 

Mazeas et al. 2009; Karlson et al. 2010).  The degree of influence on individual MG pathways is 

not yet clear. Given the widespread distribution of these lakes across the arctic landscape, 

increased CH4 production without complementary offsets by CH4 oxidation will considerably 

impact the atmospheric CH4 budget, serving as positive feedback to climate warming. This 

study suggests that methanogenic communities in these two shallow arctic lakes are currently 

substrate limited. Consequently, increased OM loading to arctic lakes will in all probability 

positively impact rates of MG in these lake sediments. While the relative ratio of the 

acetoclastic: hydrogenotrophic pathways did change with increasing sediment depth, individual 

response of each pathway to increased terrestrial OM inputs is not clear. The variation in the 

relative proportion of these pathways between E4 and GTH 114 suggests that landscape scale 

factors (i.e., glacial histories and DOC loading) may play a role in governing the functional 

distribution of methanogenic pathways. 
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2.5 Conclusion 

 Rates of MG in unamended treatments differed drastically between these two 

geomorphologically similar lakes. Within each lake, rates of MG decreased with increasing 

sediment depth, and responded positively to substrate additions of acetate or hydrogen. Mean 

DOC concentrations were significantly higher in the upper 5 cm of GTH 114 than in lake E4. In 

contrast, %OM was significantly greater in E4 than in GTH 114 in the upper 5 cm sediment 

layer. The acetoclastic pathway dominates the surficial sediments in these two shallow arctic 

lakes, but transitions to increased importance of the hydrogenotrophic pathway in the deeper 

sediments, which is consistent with previous reports (Falz et al. 1999; Chan et al. 2005).  

However, considerable within and between lake variations in the relative proportion of these 

pathways with vertical sediment depth were also present. Proliferation of oxic or anoxic 

conditions in the surficial sediment layer as dictated by mixing regimes represents internal 

controls on MG rates within a lake. Factors explaining the between lake variation may be DOC 

quality and quantity as well as characteristics inherent to each catchment (e.g., hydrology and 

plant cover type). To what degree the relative proportion of the MG pathways will be altered 

may ultimately depend on the quantity and quality of the OM reaching lake sediments. The 

results from this study suggest that currently rates of MG are likely controlled by internal 

mixing regimes, substrate availability as well as landscape scale factors (e.g., allochthonous OM 

inputs). Consequently, methanogenic bacteria will likely respond positively to increases in OM 

delivery to lake sediments associated with future climate change. Given the variability in rates 

of MG within and between these two lakes, future studies should focus on multiple lakes within 
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catchments, as well as between catchments, in order to gain a comprehensive assessment of 

CH4 cycling in arctic lakes. 
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TABLES AND FIGURES 

 
 Table 2.1. Morphological characteristics of study lakes. 

Lake 
Catchment 
area (m2) 

Lake 
surface 

area (m2) 

Catchment: 
lake area ratio 

Lake 
volume 

(m3) 

Maximum 
depth (m) 

Mean 
depth 

(m) 

E4 476,856 38,955 12 55,234 4.4 2.0 

GTH 114 593,935 39,583 15 87,111 6.7 2.2 

 

  



 
 

Table 2.2. Results of individual One-way ANOVA’s evaluating the effect of sediment depth increment or substrate additions on 
unamended (control) rates of methanogenesis (MG) in E4 and GTH 114. 

* In descending order of least square mean value. 
** Levels connected by the same letter are not significant (α = 0.05). 
 

Dependent 
variable Independent variable  Lake Post-hoc analysis F-ratio p-value 

Means comparisons 

Sediment depth 
interval (cm)* 

Significant depth 
differences** 

MG rates    
(controls) 

Sediment depth E4 Tukey’s HSD F4,10 = 7.89 0.004 1-2                                          A 
0-1                                          A, B 
2-3                                               B, C 
3-4                                               B, C 
4-5                                                    C 

MG rates 
(controls) 

Sediment depth GTH 114 Tukey’s HSD F4,10 = 7.17 0.005 0-1                                          A 
1-2                                               B 
2-3                                               B 
3-4                                               B 
4-5                                               B 

MG rates 
(controls) 

Lake E4 & GTH 114 Student’s t F1,4 = 1.94 
F1,4 = 8.81 
F1,4 = 14.47 
F1,4 = 0.17 
F1,4 = 0.0002 

0.23 
0.04 
0.02 
0.70 
0. 98 

0-1                                         No difference 
1-2                                         E4 > GTH 114 
2-3                                         E4 > GTH 114 
3-4                                         No difference 
4-5                                         No difference 
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Table 2.3. Results of individual One-way ANOVA’s evaluating the effect of acetate (Ac) or 
hydrogen (H2) substrate additions on rates of methanogenesis (MG). 

Dependent 
variable 

Independent 
variable Lake 

Post-hoc 
analysis F ratio p-value 

Means comparisons 

Sediment 
depth 
interval 
(cm)* 

Significant depth 
differences** 

MG rates  Treatment 
(Control, Ac, 
H2 only) 

E4 Dunnett’s 
test  

F2,6 = 15.43 
F2,6 = 3.55 
F2,6 = 21.42 
F2,6 = 23.27 
F2,6 = 149.2 

0.004 
0.10 
0.002 
0.002 
< 0.0001 

0-1                  Ac > control; H2 > control 
1-2                  No difference  
2-3                  Ac > control; H2 > control 
3-4                  Ac > control; H2 > control 
4-5                  Ac > control; H2 > control 

MG rates  Treatment 
(Control, Ac, 
H2 only) 

GTH 
114 

Dunnett’s 
test  

F2,6 = 6.96 
F2,6 = 21.59 
F2,6 = 88.94 
F2,6 = 15.82 
F2,6 = 23.23 

0.03 
0.002 
<0.0001 
0.004 
0.002 

0-1                  Ac > control; H2 > control 
1-2                  Ac > control; H2 > control 
2-3                  Ac > control; H2 > control 
3-4                  Ac > control; H2 > control 
4-5                  Ac > control; H2 > control 

MG Rates Treatment 
(Ac, H2 only) 

E4 Student’s t F1,4 = 8.86 
F1,4 = 0.18 
F1,4 = 0.16 
F1,4 = 3.66 
F1,4 = 0.08 

0.04 
0.69 
0.71 
0.13 
0.79 

0-1                  H2 > Ac 
1-2                  No difference 
2-3                  No difference 
3-4                  No difference 
4-5                  No difference 

MG Rates Treatment 
(Ac, H2 only) 

GTH 
114 

Student’s t F1,4 = 0.24 
F1,4 = 0.95 
F1,4 = 6.87 
F1,4 = 5.06 
F1,4 = 5.69 

0.65 
0.39 
0.06 
0.09 
0.08 

0-1                  No difference 
1-2                  No difference 
2-3                  No difference 
3-4                  No difference 
4-5                  No difference 

MG Rates 
(Ac only) 

Depth E4 Tukey’s F4,10 = 11.00 0.0011 1-2                  A 
2-3                  A 
0-1                  A 
3-4                  A 
4-5                         B 

MG Rates 
(Ac only) 

Depth GTH 
114 

Tukey’s F4,10 = 102.46 < 0.0001 0-1                  A 
1-2                         B   
4-5                         B 
2-3                         B 
3-4                         B 

MG Rates 
(H2 only) 

Depth E4 Tukey’s F4, 10 = 3.05 0.07 1-2                  No difference 
0-1                  No difference 
2-3                  No difference 
3-4                  No difference 
4-5                  No difference 

MG Rates 
(H2 only) 

Depth GTH 
114 

Tukey’s F4, 10 = 17.50 0.0002 0-1                  A 
4-5                         B 
1-2                         B 
3-4                         B 
2-3                         B 

* In descending order of least square mean value. 
** Levels connected by the same letter are not significant (α = 0.05) 
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Table 2.4. Results of individual One-way ANOVA’s evaluating the effect of sediment depth 
increment or lake on dissolved organic concentrations (DOC) or percent organic content (OM) 
of sediment in E4 and GTH 114.  

Dependent 
variable 

Independent 
variable Lake 

Post-hoc 
analysis F-statistic p-value 

Means comparisons 

Sediment 
depth interval 
(cm) * 

Significant depth 
differences** 

DOC Depth E4 Tukey’s 
HSD 

F 4,8 = 3.83 0.05 4-5                               A 
1-2                               A     B 
2-3                               A     B 
4-5                               A     B 
0-1                                       B 
 

DOC Depth GTH 
114 

Tukey’s 
HSD 

F 4,9 = 0.33 0.85 1-2                              No difference 
0-1                              No difference 
2-3                              No difference 
4-5                              No difference 
3-4                              No difference  
 

DOC Lake by depth E4 and 
GTH 
114 

Student’s t F 1,4 = 7.96 
F 1,3 = 3.35 
F 1,3 = 0.99 
F 1,3 = 2.29 
F 1,4 = 0.14 

0.047 
0.16 
0.39 
0.22 
0.73 

0-1                              GTH 114 > E4 
1-2                              No difference 
2-3                              No difference 
3-4                              No difference 
4-5                              No difference 
 

DOC Lake  E4 and 
GTH 
114 

Student’s t F1,25 = 7.67 0.01 GTH 114 > E4 

arcsine OM Depth E4 Tukey’s 
HSD 

F 4,9 = 0.41 0.80 2-3                              No difference 
4-5                              No difference 
1-2                              No difference 
0-1                              No difference 
3-4                              No difference  
 

arcsine OM Depth GTH 
114 

Tukey’s 
HSD 

F 4,9 = 1.57 0.26 0-1                              No difference 
1-2                              No difference 
2-3                              No difference 
4-5                              No difference 
3-4                              No difference  
 

arcsine OM Lake by depth E4 and 
GTH 
114 

Student’s t F 1,4 = 6.34 
F 1,3 = 48.33 
F 1,3 = 9.32 
F 1,4 = 13.08 
F 1,4 = 1.88 

0.07 
0.006 
0.06 
0.02 
0.4 

0-1                              No difference 
1-2                              E4 > GTH 114 
2-3                              No difference 
3-4                              E4 > GTH 114 
4-5                              No difference 
 

arcsine OM Lake  E4 and 
GTH 
114 

Student’s t F1,26 = 27.00 <0.0001 E4 > GTH 114 

* In descending order of least square mean value. 
** Levels connected by the same letter are not significant (α = 0.05) 
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Table 2.5. Results of simple linear regressions of porewater dissolved organic carbon (DOC) or 
sediment percent organic matter content (% OM) on sediment depth. 
Lake Model Equation n R2 p value 

E4 arcsine %OM = depth arcsine %OM = 0.45 + 0.0011*depth 14 0.0003 0.95 
GTH 114 arcsine %OM = depth arcsine %OM = 0.36 – 0.013*depth 14 0.30 0.04 
E4 DOC = depth DOC = 4.34 + 3.62*depth 13 0.44 0.01 
GTH 114 DOC =depth DOC = 29.91 – 1.74*depth 14 0.07 0.97 
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Table 2.6. Spearman’s rank correlation coefficients (rs) describing the association between rates 
of methanogenesis and environmental variables in E4 and GTH 114.  

 Lake  

 E4 GTH 114 Both lakes 

Sediment depth - 0.83*** - 0.61* - 0.71*** 
DOC - 0.37   0.62* - 0.09 
arcsine OM   0.08   0.68** - 0.24 

Values of rs significant at α = 0.05 are denoted by “*”, α = 0.01 are denoted by “**”, and α = 
0.0001 are denoted by “***”. 
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Figure 2.1. Dissolved oxygen and temperature profiles in the water column of E4 taken during 
the summer of 2008. Dotted lines represent water column temperature profiles and solid lines 
represent dissolved oxygen profiles. 
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Figure 2.2. Dissolved oxygen and temperature profiles in the water column of GTH 114 taken 
during the summer of 2008. Dotted lines represent water column temperature profiles and    
solid lines represent dissolved oxygen profiles. 

 

 

 

 

 

 



51 
 

nmol CH4 
gdw

-1
d

-1
 

0 200 400 600 2000 3000 4000

S
e
d
im

e
n
t 
D

e
p
th

 I
n
te

rv
a
l 
(c

m
)

0-1

1-2

2-3

3-4

4-5

E4

GTH 114

 
 

Figure 2.3. Depth distribution of unamended rates of methanogenesis in E4 and GTH 114.  
Homogenized slurries from each depth interval were incubated in triplicate at 10°C in 2008. 
Error bars are ±1 SEM (n = 3). 
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Figure 2.4. Depth distribution of rates of methanogenesis in E4 in response to amendments 
with methanogenenic substrates for samples incubated at 10°C in 2008. Error bars are ± 1 SEM 
(n = 3). 
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Figure 2.5. Depth distribution of rates of methanogenesis (MG) in GTH 114 in response to 
amendments with methanogenenic substrates for samples incubated at 10°C in 2008.  Error 
bars are ± 1 SEM (n = 3). 
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Figure 2.6. Percent increase in rates of methanogenesis (MG) in response to methanogenic 
substrate additions relative to unamended treatments in E4 and GTH 114 in 2008. 
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Figure 2.7. Depth distribution of the relative proportion of acetoclastic and hydrogenotrophic 
pathways in in E4 in 2008. 
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Figure 2.8. Depth distribution of the relative proportion of acetoclastic and hydrogenotrophic 
pathways in GTH 114 in 2008. 
 

 

 



55 
 

DOC (mg L
-1

)

5 10 15 20 25 30 35

S
e

d
im

e
n

t 
D

e
p

th
 (

cm
)

0

1

2

3

4

5
E4

GTH 114

 
Figure 2.9. Dissolved organic carbon (DOC) concentrations plotted at the midpoint of each 
sampling interval for sediment samples in E4 and GTH 114 porewater taken from the deepest 
point in each lake in July 2008. Error bars are ± 1 SEM (n = 3).    
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Figure 2.10. Organic matter profiles plotted at the midpoint of each sampling interval for 
sediment samples taken from the deepest point of lakes E4 and GTH 114 in 2008. In most cases, 
n = 3. Error bars are ± 1 SEM.
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Figure 2.11. Scatterplot of unamended rates of methanogenesis (MG) versus organic matter   
(OM) content at a corresponding depth interval in E4 and GTH 114 in 2008. 
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Figure 2.12. Scatterplot of the rates of methanogenesis (MG) from the acetoclastic or 
hydrogenotrophic pathways versus organic matter (OM) at the corresponding depth interval in 
E4 from 2008. 
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Figure 2.13. Scatterplot of the rates of methanogenesis (MG) from the acetoclastic or 
hydrogenotrophic pathways versus organic matter (OM) at the corresponding depth interval in 
GTH 114 from 2008. 
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CHAPTER 3:  SPATIAL VARIATION OF METHANOGENESIS AMONG LAKE ZONES 
 

3.1 Introduction 

 Arctic Alaskan lakes currently receive large inputs of allochthonous organic matter (OM), 

particularly during snowmelt and precipitation events (Michaelson et al. 1998).  Several studies 

suggest that thawing permafrost and elevated terrestrial plant productivity will increase OM 

loading to arctic lakes as a result of ongoing climate change (Neff and Hooper 2002; Rouse et al. 

1997; Shaver et al. 1992).  Consequently, increased inputs of terrestrially derived OM may lead 

to higher rates of methanogenesis (MG) in arctic lakes, and OM inputs may influence this 

activity in shallow sediments to a larger degree than in profundal sediments due to proximity to 

the terrestrial-aquatic interface.  Measurements of MG have been conducted traditionally in 

the deepest region of lakes (e.g., Kuivila et al. 1989; Schulz and Conrad 1996; Nozhevnikova et 

al. 1997; Nusslein and Conrad 2000; Huttenen et al. 2006; Conrad et al. 2007; Schwarz et al. 

2008). However, research targeted on one sediment zone of a lake may not capture the range 

of methanogenic activity in that ecosystem.  Bastviken et al. (2008) found that shallow 

epilimnetic sediments are important regions of methane (CH4) production and there is 

considerable evidence that littoral zones may produce more CH4 than profundal areas (Thebath 

et al. 1993; Casper 1996; Rolletschek 1997; den Heyer and Kalff 1998).  The proportion of OM 

(quantity and quality), disturbance frequency (e.g., sediment resuspension), sediment 

temperature and sediment composition can vary significantly among zones within a lake 

(Casper 1996; Bussman 2005; Bastviken et al. 2008) and all are known to influence
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methanogenic activity. In particular, microbial metabolic activity in the littoral region is highly 

influenced by inputs of terrestrial OM (Michmerhuizen et al. 1996; Juutinen et al. 2003).  

Therefore, terrestrial inputs of OM may fuel MG activity in nearshore sediment to a larger 

degree than in deeper sediment zones in shallow arctic lakes. 

  The ratio of the littoral zone to the entire lake area is often higher in smaller lakes 

(Michmerhuizen et al. 1996) like those that dominate the arctic (Wetzel 2001; Juutinen et al. 

2003).  Consequently, the relative importance of CH4 efflux from the littoral zone (or shallow 

sediments) may be more important than CH4 release from deeper zones in terms of the total 

areal CH4 emissions from the sediment surface. By focusing primarily on the deepest point 

within a lake, previous studies may have underestimated the total CH4 production from a given 

lake, particularly in arctic lakes that generally display an extensive shallow littoral region. 

Therefore, this research objective focused on determination of MG rates in sediments of three 

lake zones in two shallow arctic lakes; profundal (maximum water depth), epilimnetic (one half 

the maximum water depth) and littoral (along lake margins).  I hypothesized that the rates of 

MG and CH4 release to overlying water in the shallow sediments (epilimnetic and littoral zones) 

would be greater than rates of MG and CH4 efflux in the profundal region in these arctic lakes 

due to proximity to important terrestrial OM inputs.  

 

3.2 Materials and Methods 

3.2.1 Field Sites  
 

 This study was conducted on the North Slope of Alaska within a few kilometers of Toolik 

Field Station (TFS), which is located at 68°N, 149°W.  This region of the Arctic is characterized by 



61 
 

a tundra landscape underlain with continous permafrost (Whalen et al. 2006). Mean annual 

temperatures range from – 7 to – 11°C with annual precipitation ranging from 140 to 267 mm 

(Bowden et al. 2008). The trophic state of most lakes in this region ranges from 

ultraoligotrophic to oligotrophic and rely heavily on spring snowmelt for terrestrial subsidies of 

dissolved organic matter (Whalen and Cornwell 1985; Kling 1995). A full description of the 

region including vegetation characteristics and glacial geology can be found in (Ping et al. 1998) 

and Hamilton (2002).  The two lakes chosen for this study, E4 and GTH 114, possess similar 

geomorphological characteristics, with GTH 114 having larger total volume and catchment area 

(Table 2.1; Chapter 2). Typical in size and catchment area of lakes in the Arctic Foothills region 

of northern Alaska, these lakes are also fishless, lack permanent inlets and rooted macrophytes 

are absent.  

3.2.2 Field Sampling 
 

 I sampled littoral, epilimnetic and profundal sediments of E4 on 29 June 2010 and GTH 

114 on 30 June 2010.  The term profundal typically refers to deeper lakes than those included in 

my study, while the littoral zone can be further divided into distinct sub-regions (Wetzel 1999). 

For simplicity and consistency with related studies (Casper 1996; Rolletschek 1997; Den Heyer 

and Kalff 1998; Bastviken et al. 2008), these broad definitions were extended to my lakes. In my 

study, the profundal zone refers to the sediments at the maximum water depth (Table 3.1), the 

epilimnetic zone refers to sediments at ½ of the maximum water depth and the littoral zone is 

defined by sediments with approximately 0.25 m of overlying water. Epilimnetic and profundal 

sediments for CH4 production studies were collected using a KB gravity corer (Wildlife Supply 

Company) deployed from an inflatable raft while littoral sediments were collected from the 
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shore exercising care to minimize sediment disturbance. Polycarbonate sleeves (4.8 cm inside 

diameter x 50 cm length) were inserted into the KB corer, which was then lowered carefully 

into the epilimnetic and profundal sediments. Cores sleeves were inserted by hand into littoral 

sediments.  All sleeves were capped on each end with rubber stoppers once sediment was 

collected.  Additional sediments from the profundal and epilimnetic zones were similarly 

collected on 26 July 2008 (E4) and 30 July 2008 (GTH 114) for porewater dissolved organic 

carbon (DOC) determination, while sediments from all three sediment zones were obtained for 

determination of % OM content and porewater CH4 concentration between 18 – 20 July 2009. 

Intact sediment cores were transported undisturbed via foot, vehicle, or helicopter to TFS for 

processing. Duplicate cores for sediment temperature profiles were collected from E4 on 24 

July 2009 and GTH 114 on 25 July 2009. Cores were taken one at a time from each zone and 

immediately returned to shore for temperature measurements. After the overlying water was 

removed from the core, a thermometer was incrementally advanced vertically at 1 cm intervals 

midcore to a final depth of 20 cm. Additionally sediment cores were collected from each zone 

(n=2) and lake on 22 July 2009 (E4) and 24 July 2009 (GTH 114) for porewater CH4 analysis. 

Water column samples for DOC analysis were collected with a Van Dorn water sampler at 1 m 

below the water surface (epilimnion) and approximately 1 m above the sediment (hypolimnion) 

in each lake on multiple sampling dates in 2009. 

3.2.3 Laboratory Studies 
 

 Replicated (5) sediment slurries were prepared using a total of 10 cores per zone.  The 

upper 2 cm of two sediment cores were homogenized into a polycarbonate 1- L beaker.  Anoxic 

deionized water (dH2O) was prepared in separate polycarbonate beakers by purging with high 



63 
 

purity N2 and an air stone affixed to the end of tygon tubing.  Following addition of dH2O, all 

homogenized sediment slurries were continually purged with N2 during the following 

experimental setup.  A polycarbonate syringe with a bored tip was used to measure 20 ml of 

anoxic sediment slurry that was then transferred to 160 ml serum bottles.  Serum bottles were 

sealed with butyl rubber stoppers and capped with aluminum crimp seals.  Each serum bottle 

was evacuated and purged with N2 a minimum of 10 times to ensure anoxia, filled to 1 atm with 

N2 then placed in a 10˚C water bath to acclimate for approximately 12 h before headspace 

sampling was initiated. 

 Headspace samples were collected from serum bottles in 3 ml plastic syringes that had 

been previously tested to confirm no loss of CH4 over a 4 h test period. Analysis of CH4 was 

conducted by a gas chromatograph equipped with a flame ionization detector (FID-GC; 

Shimadzu GC-8A) and was completed within 2 h of headspace sampling.  Operating conditions 

for the FID-GC were as follows: Column = ⅛” diameter x 1 m length mol sieve 5A (60/80); 

column temperature = 90°C; injector and detector temperatures = 140°C; carrier gas = ultra-

high purity N2 at 33 ml min-1 flow rate. Vial headspaces were sampled 4 times over 10 d, 

resulting in the linear production of CH4.  Rates of CH4 production were calculated using linear 

regression of CH4 accumulation versus time and were normalized to 1 g dry sediment matter. 

 Triplicate cores for porewater analysis of DOC were sliced in 1 cm increments, which 

were then added to 15 ml glass centrifuge tubes and sealed with rubber septa without a 

headspace.  Tubes were centrifuged at < 2000 rpm for 30 min. The supernatant for each core 

section was filtered (ashed Whatman GF/F filter) and acidified (0.1 ml of 0.1N HCl). Dissolved 

organic carbon samples were stored at 4˚C, transported to UNC-CH for analysis, and 
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subsequently analyzed on a Shimadzu TOC-VCPH Combustion-Infrared instrument using 

Standard Method 5310B (Standard Methods for the Examination of Water and Wastewater 

1998). Solid phase sediments (in 1 cm increments) were weighed, dried for 2-3 d at 45°C and 

reweighed. Dry sediments were ashed at 550°C for 4 h.  In addition, 20 mL of lake water was 

filtered through pre-combusted Whatman GFF filters into amber scintillation vials with Teflon 

caps.  Samples were acidified with 0.1 mL 1 N HCl, stored at 4˚C, and transported back to UNC-

CH for analysis.   

 Sediment CH4 profiles (n=2) at each lake zone were determined using a modified 

polycarbonate sediment core squeezer adapted from Jahnke (1988).  The original design 

described in Jahnke (1988) would not accommodate the ultra-soft sediments in these lakes so a 

more stationary design for core porewater sampling was implemented. The squeezer apparatus 

contained pre-drilled sampling holes at 1 cm intervals in the first 10 cm, then at 2 cm intervals 

from 10-20 cm. Black electrical tape was placed over the holes for the duration of sampling. 

Intact sediment cores were vertically extruded into the core squeezer such that the position of 

the sediment-water interface corresponded with the first vertical sampling port.  Beginning at 

the top of the core, a syringe with a 20 gauge needle was inserted horizontally through the 

taped holes to the center of the core within each sediment interval and 1 ml of porewater and 

associated sediment was extracted. The sample was then placed into an N2- filled 30 ml serum 

vial containing 200 µL 1 N HCl. Vials were inverted and CH4 was allowed to equilibrate between 

the aqueous and gas phases for 24 h prior to headspace analysis for CH4 by FID-GC.  
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3.2.4 Calculations and Statistics 
 

 Headspace mixing ratios for CH4 in serum vials were converted to a moles per liter basis. 

Methane concentrations in the aqueous phase at each sampling point were calculated from 

temperature corrected solubility coefficients (Yamamoto et al. 1976) and Henry’s law (Stumm 

and Morgan 1996). The total amount of CH4 produced in each bottle at each time point was 

computed as the sum of the aqueous phase and headspace masses.  

 Rates of CH4 production were log transformed to correct departures from normality and 

homoscedasticity. Two-way ANOVA was used to test the effect of lake, sediment zone and lake 

x sediment zone interactions on log-transformed rates of MG. Comparisons of means were 

conducted using either Tukey’s Least Significant Difference test or Student’s t-test, where 

appropriate (Sokal and Rohlf 1995; Zar 1996; McDonald 2009).  The effect of zone on log-

transformed rates MG within each lake was analyzed individually using One-Way ANOVA. Pair-

wise differences among log-transformed mean rates of MG in each sediment zone were 

determined using Tukey’s HSD test (Sokal and Rohlf 1995; Zar 1996; McDonald 2009).  

 Within-lake and among-lake variations in environmental variables (i.e., DOC, % OM 

content, sediment temperature, and porewater CH4 were evaluated using the entire downcore 

sediment profile for each variable. Initially, the linear dependence of each environmental 

variable with sediment depth was evaluated with simple linear regression. In the case of each 

environmental variable, either significantly linear relationships in all profiles among sediment 

zones were not found, or some regression assumptions were violated preventing use of these 

procedures. Therefore, One-way ANOVA’s were used to compare within-lake and between-lake 

differences in DOC, %OM, sediment temperature and porewater CH4 profiles.  Post-hoc 
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comparisons of means were conducted with Tukey’s HSD or Student’s t test where appropriate. 

Values for % OM content were arc-sin transformed for all statistical analyses (Sokal and Rohlf 

1995; Zar 1996; McDonald 2009). 

 To determine the correlation between environmental variables (DOC, % OM and 

temperature) and log-transformed rates of MG, the mean values for the upper 2 cm of 

sediment were used as this coincided directly with the sediment layer homogenized in MG rate 

determinations. Log-transformation of environmental variables (i.e., mean DOC, % OM, and 

temperature in the upper 2 cm sediment interval) did not correct violations of normality, so the 

degree of association between each environmental variable and log-transformed rates of MG 

was assessed using Spearman’s rank correlation (rs). The effect of sediment zone on porewater 

CH4 profiles was assessed using One-way ANOVA per lake followed by multiple comparion of 

means using Tukey’s HSD test (Sokal and Rohlf 1995; Zar 1996; McDonald 2009). All analyses 

were performed using JMP 9.0 or SAS 9.2 (SAS Institute, Inc.) statistical software.  

 Organic content (%) was calculated from the difference in mass between oven dried (40 

-60°C) and combusted (550°C for 4 h) sediments (den Heyer and Kalff 1998; Wetzel and Likens 

2000). 

 Methane flux from the sediment surface into the overlying water column was estimated 

using Fick’s first law of diffusion (Sweerts 1991): 

Js = -Ds(c/x) 

where: Js is the flux of CH4 (µmol CH4 m-2 s-1);  is the sediment porosity (unitless); c/x is the 

change in CH4 concentration with depth (µmol CH4 cm-3 cm-1); and Ds is the effective diffusivity 
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cm2 s-1). Ds was estimated using the following equation (Sweerts 1980; Boudreau 1996; 

Huttenen et al. 2006): 

Ds = D0/2 

where D0 is the diffusivity of CH4 at 10°C (1.25 x 10-5 cm2 s-1; Jahne et al. 1987),  is the  

tortuosity (unitless) which can be estimated by the easily measured sediment porosity () 

through the following equation (Boudreau 1996): 

 = 1 – ln(2) 

 Porosity was calculated using the following equation (Percival and Lindsay 1997): 

 = 100/ρw * (Mws – Mds)/Vws 

where ρw is the density of water (1 g cm-3), Mws is the empirically determined wet sediment 

mass (g), Mds is the empirically determined dry sediment mass (g) and Vws is the volume of wet 

sediment (cm3). 

 Methane flux from each zone into the overlying water column was estimated by 

multiplying the sediment surface area of each zone within each lake by the CH4 diffusive flux. 

The cumulative sediment surface area of each zone was estimated from bathymetric maps that 

were constructed by concomitant measurements of lake perimeter (Tremble Geo Explorer GPS) 

and sonar transects (Garmin GPSMAP 180 sonar). One meter contour lines along the lake 

bottom were constructed from triangulated sonar measurements in ARC-GIS (ESRI, 2006) by 

the GIS specialists at the Toolik Field Station. A whole lake estimate of CH4 efflux from the 

sediment in each lake was obtained by multiplying the area-based (m2) estimate of CH4 release 

from each zone times the total area of that zone and summing the values. The littoral, 

epilimnetic and profundal zones in E4 were considered to be the area of sediment surface in 
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the 0-1, 1-3 and 3-4.5 m depth intervals. In GTH 114, the 0-1, 1-4 and 4-6.5 m depth intervals 

were assigned to the respective zones. 

 

3.3 Results 

 Non-transformed rates of MG were highly variable in the littoral zone of E4 (Figure 3.1) 

and the profundal zone of GTH 114 (Figure 3.2).  Two-way ANOVA showed significant 

relationships between log-transformed rates of MG and lake, log-transformed rates of MG and 

zone as well as significant interactions between lake and zone (Table 3.2). The significant 

interaction between lake and zone indicated that the effect of sediment zone on log-

transformed rates of MG was dependent upon lake. Therefore, One-way ANOVAs were 

conducted to evaluate within lake differences in log-transformed rates of MG among zones and 

the between lake differences in sediment zone with respect to log-transformed rates of MG. 

Tukey’s HSD showed that log-transformed rates of MG in the littoral zone and in the profundal 

zone were significantly greater than the log-transformed rates of MG measured in slurries from 

epilimnetic sediments in E4 (Table 3.3). No significant differences were found among zones in 

the GTH 114 (Table 3.4). Between lakes, no significant difference was found between log-

transformed rates of MG in the profundal zone (Table 3.5) or epilimnetic sediments (Table 3.6).  

In the littoral zone, however, Student’s t test showed that E4 had significantly higher log-

transformed rates of MG than in the littoral zone of GTH 114 (Table 3.7).  

The mean pelagic DOC concentration in GTH 114 was significantly greater than the 

respective value in E4 (F1, 18 = 133.62; p < 0.0001; Figure 3.3). No significant difference was 

found between mean downcore porewater DOC (± 10 cm sediment depth) concentrations in 
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the profundal (32 mg L-1) and epilimnetic (21 mg L-1) sediments of E4 (F1,51 = 1.80, p = 0.19; 

Figure 3.4) or GTH 114 (26 and 35 mg L-1, respectively) (F1,54 = 2.12, p = 0.15; Figure 3.5). The 

mean porewater DOC concentration was significantly higher in the E4 epilimnetic sediments 

compared to GTH 114 epilimnetic sediments (F 1,52 = 6.33, p = 0.015). The mean porewater DOC 

concentration in the profundal sediments did not differ significantly between lakes (One-way 

ANOVA, F 1, 53 = 0.38, p = 0.54).  

 Significant differences in mean % OM were found among zones in E4 and GTH 114 

(Figure 3.6). In E4, the mean OM content of 47% in the littoral zone was significantly greater 

than the values of 36% and 29% for profundal and epilimnetic sediments (F2, 57 = 32.66, p < 

0.0001). The mean % OM in profundal sediments of E4 was also significantly greater than that 

of epilimnetic sediments. In GTH 114, the mean % OM in profundal (25%) and epilimnetic 

sediments (25%) were not statistically different, but both were significantly higher than the 

mean % OM in the littoral zone (12%) (F2,57 = 22.68, p < 0.0001). Between lakes, One-way 

ANOVA using Tukey’s HSD showed that the mean % OM in E4 was significantly greater in the 

epilimnetic sediments (F1, 38 = 11.27, p = 0.0018), the littoral sediments (F1, 38 = 165.63, p < 

0.0001) and the profundal sediments (F1 , 38 = 18.74, p = 0.0001) compared to the respective 

zones in GTH 114.   

 The mean sediment temperature in E4 epilimnetic sediments (13.7 °C) was significantly 

greater than mean sediment temperature in the littoral (12.8°C) and profundal (10.9°C) 

sediments (Table 3.8; Figure 3.7). The mean sediment temperature in the littoral zone of E4 was 

also significantly greater than mean sediment temperature in the profundal zone. Significant 

differences in sediment temperature among zones were also found in GTH 114 (Table 3.9; 
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Figure 3.8). Here, the lowest mean sediment temperature was found in profundal sediments 

(7.0°C), and this value was significantly lower than the mean sediment temperature in the 

littoral (13.2°C) and epilimnetic (11.2°C) zones. The mean sediment temperature in the littoral 

zone was significantly greater than that of the other two zones. Between lakes, mean sediment 

temperature in the epilimnetic sediments of E4 was significantly greater than the 

corresponding mean sediment temperature in GTH 114 (F1, 78 = 209.53; p < 0.0001). The mean 

sediment temperature in the profundal zone of E4 was also significantly greater than the 

corresponding mean sediment temperature in GTH 114 (F1,38 = 1080.92; p < 0.0001). No 

significant difference was found the mean sediment temperatures in littoral zones of the two 

lakes (F1,51 = 1.55; p = 0.23).  

 Spearman’s rank correlations (rs) were used to evaluate the association between log-

transformed rates of MG and the mean %OM or mean sediment temperature of the 0 to 2 cm 

sediment interval, which corresponded with the depth interval used in the sediment slurries to 

measure MG.  A strong significant correlation between log-transformed rates of MG and %OM 

was found in E4 (Table 3.10). The strength of that association is evident by the proportional 

changes between rates of MG and %OM content for each sediment zone (Figure 3.9).  All pairs 

of values for mean %OM in the 0 to 2 cm sediment interval among sediment zones were 

significantly different in E4 (F2,9 = 123.13; p < 0.0001) and GTH 114 (F2, 9 = 80.13; p < 0.0001). 

However, no clear pattern between log-transformed rates of MG and % OM was found among 

sediment zones in GTH 114 (Figure 3.10), which is consistent with the lack of significant 

correlation between those variables (Table 3.10).  When both lakes were combined, a  



71 
 

significant association between log-transformed rates of MG and %OM was detected (Table 

3.10).  

 No correlation was found between log-transformed rates of MG and sediment 

temperature in E4 (Table 3.10). Mean sediment temperature in the profundal sediments was 

only slightly lower than the mean sediment temperature in the epilimnetic or littoral zones in 

the upper 0-2 cm sediment depth interval (F2, 9 = 112.82; p < 0.0001). No clear pattern emerged 

between sediment temperature and log-transformed rates of MG (Figure 3.11). A significant 

negative correlation was found between log-transformed rates of MG and temperature in GTH 

114 (Table 3.10). In GTH 114, the mean sediment temperature in the 0 to 2 cm interval of the 

profundal sediments was significantly lower than the mean sediment temperature in the other 

two zones (F2,9 = 314.80; p < 0.0001).  Although significant differences in log-transformed rates 

of MG among zones were not detected in GTH 114, the highest mean rate of MG observed in 

that lake corresponds to the sediment zone with the lowest mean sediment temperature 

(Figure 3.12). No correlation was observed between log-transformed rates of MG and sediment 

temperature when both lakes were combined.  

 Sediment CH4 profiles generally showed increasing CH4 concentrations with increasing 

depth below the sediment surface in all zones in each lake (Figure 3.13). Mean sediment 

porewater CH4 concentrations were significantly different among sediment zones in E4 (Table 

3.11) and in GTH 114 (Table 3.12). The mean (± SEM) sediment CH4 concentration in E4 littoral 

sediment (621 ± 78 µM CH4) was significantly greater than the mean concentration in the 

profundal sediment (196 ± 53 µM CH4). The mean CH4 concentration in E4 epilimnetic sediment 

(432 ± 55 µM CH4) was also significantly greater than the value for profundal sediment. In GTH 
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114, the mean sediment CH4 concentration in the littoral zone (573 ± 128 µM CH4) did not differ 

significantly from those in any other zone. However, the mean sediment CH4 concentration in 

profundal sediment (933 ± 91 µM CH4) was significantly greater than the mean sediment CH4 

concentration in epilimnetic sediment (588 ± 94 µM CH4).  

Area based (m2) fluxes of CH4 into the overlying water column from each zone were 

inversely proportional with overlying water depth in E4 but were directly proportional to 

overlying water depth in GTH 114 (Table 3.13). However, when areal fluxes were weighted to 

include total surface area for each zone, shallow zones assumed greater importance with 

respect to total sediment CH4 efflux in each lake. Consequently, the importance of the littoral 

zone in E4 and the epilimnetic zone in GTH 114 increased dramatically due to their 

disproportionately high areal coverage relative to the profundal zones.

 

3.4 DISCUSSION 

3.4.1 Rates of Methanogenesis Among Zones 
 

 Rates of MG among lake zones in E4 and GTH 114 varied from 28 – 565 nmol CH4 gdw
-1 d-

1 and were generally in the range of similarly expressed rates reported in studies from around 

the world. Duc et al. (2010) found rates ranging from 2-3990 nmol CH4 gdw
-1 d-1 in eight 

temperate and boreal lakes in Sweden. In their study, boreal lake sediments exhibited lower 

rates of MG than the temperate lake sediments incubated at a temperature similar to that of 

my study, 10°C. Dannenberg et al. (1997) reported an average rate of 552 nmol CH4 gdw
-1 d-1 in 

Italian rice fields while much higher rates of MG (1092-1519 nmol CH4 gdw
-1 d-1) were reported 

in sediments from clear water Amazonian lakes (Conrad et al. 2010).   
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 The hypothesis for this component of my study, rates of MG would differ among lake 

zones, was only partially supported. The only significant differences in mass-based rates of MG 

among lake zones were found in E4. Interestingly, the mass-based MG rates in the epilimnetic 

sediment of E4 were significantly lower than the rates of MG measured in the profundal and 

littoral regions. Although the differences were not significant, mass-based rates of MG in the 

profundal zone of GTH 114 were generally higher than rates of MG in the epilimnetic or littoral 

sediments. Logistical difficulty with sediment collection and processing prevented 

experimentation with higher sample numbers, thereby limiting statistical power. The only 

statistically significant difference between lakes occurred in the littoral zone. The mean rate of 

MG in the E4 littoral zone was higher than the mean rate of MG in the littoral zone of GTH 114 

and the difference between means was likely a function of OM availability, as % OM in the 

upper 2 cm of sediment was four times greater in E4 than in GTH 114 (discussed further below). 

Within the studies that have directly compared rates of MG among lake zones (Thebrath et al. 

1993; Casper 1996; Rolletschek 1997; den Heyer and Kalff 1998; Murase et al. 2005; Bastviken 

et al. 2008), most have found that MG activity is higher in littoral zones than profundal zones in 

oligotrophic lakes while the opposite is true in eutrophic lakes (Thebrath et al. 1993; Casper 

1996). In a study of 9 lakes in Quebec, OM mineralization rates in littoral regions were 

approximately 3 times greater than in profundal regions (den Heyer and Kalff 1998), 

demonstrating the importance of littoral regions as intense sites of OM mineralization, and by 

extension MG.  
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3.4.2 Environmental Controls on Rates of MG 
 

 Rates of MG are mostly controlled by OM availability and temperature (Conrad 2005; 

Schulz and Conrad 1996). In E4, the Spearman’s rank correlation coefficients suggest that rates 

of MG in E4 are more strongly controlled by %OM availability than by in situ temperature.  

Conversely, in situ sediment temperature was the only environmental variable significantly 

correlated to MG rates in GTH 114. The mean in situ sediment temperature in the upper 2 cm 

of the profundal zone of GTH 114 was only 7.5°C in late July (Figure 3.12). Despite no effect of 

sediment zone on log-transformed rates of MG in GTH 114, the highest MG rates in laboratory 

experiments corresponded to the sediment zone with the lowest in situ temperature 

(profundal) while the lowest rates in that lake corresponded to the highest in situ sediment 

temperature (littoral). Such a negative correlation is not expected, nor easily interpreted. Thus, 

this particular metric is limited in its ability to predict rates of MG among zones in these two 

lakes.  Future studies examining the effect of in situ temperature on MG rates should 

incorporate more intense monitoring of sediment temperature to capture seasonal or diurnal 

fluctuations that may influence bacterial metabolism.  

 Dissolved organic carbon was expected to exert a stronger influence on rates of MG in 

my study than the data revealed.  Sediment profiles of DOC collected in 2008 were highly 

variable within each zone illustrating the heterogeneity of DOC cycling within lake sediments.  

The only significant difference in mean porewater DOC was found between epilimnetic lake 

pairs where the mean DOC was higher in E4 than in GTH 114. Surprisingly, no significant 

correlation was found between sediment DOC and rates of MG among zones in either lake. 

Consequently, solid phase organic content appears to be a better predictor of the observed 
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spatial variation in MG rates than in E4 than pelagic or porewater DOC. The lack of significant 

variation in rates of MG among sediment zones in GTH 114 limits evaluation of cause and effect 

relationships between rates of MG and environmental variables.  

3.4.3 Estimation of Methane Flux from Zones    
 

 Sediment CH4 profiles showed considerable variability among zones and lakes (Figure 

3.7). The diffusive flux of CH4 calculated from the sediment cores provided an areal flux in each 

zone.  On a per unit area basis (m2), the flux of CH4 into the overlying water column of E4 was 

greatest from the littoral zone, while the largest contributor to area-based flux in GTH 114 was 

from the profundal zone. However, the overall contribution of each sediment zone to total lake 

sediment CH4 emission changed considerably when the normalized data were extrapolated to 

include the entire sediment surface area of each zone (Table 3.4). In E4, the littoral zone 

contributed roughly 77% of the total CH4 sediment flux while the epilimnetic sediments of GTH 

114 contributed approximately 73% of the total sediment CH4 flux. The flux of CH4 from the 

littoral zone in E4 was larger than the combined emissions from profundal and epilimnetic 

sediments. Given that the littoral zone is approximately 42% of the total lake sediment surface 

area in E4, this result points to the importance of the littoral zone to whole lake sediment CH4 

flux. Conversely, the greatest contribution to whole-lake sediment CH4 flux in GTH 114 was 

from the epilimnetic sediments. In that lake, the epilimnetic sediment zone comprises 

approximately 71% of the total lake sediment surface area. Combined, the data from both lakes 

emphasize the relative importance of shallow sediments with regard to total lake sediment CH4 

flux. Therefore, the areal extent of each dominant sediment zone within a lake ecosystem 

should be taken into consideration when evaluating of whole-lake sediment CH4 flux.  
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 Landscape-scale factors may greatly impact the disproportionate role shallow sediments 

play in whole-lake sediment CH4 efflux. Wind-events create wave currents and shear stress on 

the lake bottom that can redistribute shallow sediments (Hamilton and Mitchell 1997) thereby 

releasing sediment CH4 (Hofman et al. 2003; Bastviken et al. 2008) in association with both 

complete and incomplete water column mixing events (Hilton 1986). The degree of sediment 

redistribution from wind or storm events will vary among lake systems as it is a function of wind 

speed, storm event duration, fetch and position in the landscape (Hilton 1985; Hilton 1986; 

Hamilton and Mitchell 1997). Wind-driven sediment resuspension was found to be a 

particularly important process in these two lakes during the open water season (Fortino et al. 

2009) pointing to the potential influence on CH4 efflux from the shallow sediments. However, 

sediment resusupension can displace MOB thereby reducing their capacity to consume diffusive 

CH4 (Bussman 2005).  Alternatively, turbulence-induced rapid sediment CH4 flux may bypass 

MOB altogether (Bastviken et al. 2008). Given the polymictic nature of E4 and GTH 114, 

sediment resuspension and redistribution may influence CH4 cycling in the shallow sediments.  

 

 3.5 Conclusion 

 Methanogenic rates on a dry mass basis among zones within a lake measured in the 

sediment slurries were not as variable as I had expected. In E4, the littoral zone was an intense 

region of MG activity, likely due to a large percentage of OM in sediment in that zone. In GTH 

114, %OM content was lowest in the littoral zone which coincided with the lowest rates of MG 

in that lake.  Although dry mass-based MG rates in GTH 114 did not reveal significant 

differences between zones, mean porewater CH4 was significantly greater in the profundal zone 
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of GTH 114 than in the epilimnetic zone. The sediment CH4 profiles allowed calculation of area-

based CH4 fluxes from the sediment into the overlying water column, which pointed to a higher 

rate of CH4 flux in the profundal zone of GTH 114 than the other zones. The area-based flux 

calculations in E4 were slightly more consistent with the results from the dry mass based MG 

rates determined in the slurries. However, when area-based CH4 flux was weighted to account 

for the fractional coverage of each zone, the littoral region proved to be the most important 

sediment zone with regard to sediment-water CH4 exchange in E4, while the epilimnetic 

sediments were the most important sediment zone with regard to sediment CH4 flux into the 

overlying water in GTH 114.  Sediment in situ temperature did not appear to exert a strong 

influence on mass-based rates of MG in either lake. However, variations between timing of 

sediment collection for MG experiments and sediment temperature measurements may limit 

my ability to draw direct conclusions on the relationship between in situ temperature and rates 

of MG. Solid phase OM appeared to strongly correlate with mass-based rates of MG in E4 with 

no direct correlation of porewater DOC to MG in either lake. The lack of a significant difference 

in mass-based rates of MG among sediment zones in GTH 114 prevents determination of the 

influence of the measured environmental variables.  Sediment CH4 profiles indicated a potential 

for substantial CH4 efflux into the overlying-water column with large contributions from shallow 

sediment zones. Based on the large areal composition of shallow sediments relative to whole-

lake area, these zones may play a disproportionate role in whole lake sediment CH4 efflux. 

However, the magnitude of this contribution will greatly depend on the Mox capabilities in the 

overlying oxic environment.  Although significant spatial variation was found in E4 only, my 

research shows that evaluation of MG activity within a lake ecosystem should incorporate the 
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relative contribution of individual zones and multiple methodologies to assess whole-lake 

estimates of methanogenesis.  Furthermore, future studies may benefit from more discrete 

monitoring of in situ sediment temperature, OM, or DOC across the summer growing season to 

assess any temporal influences these variables may have on MG activity. 

 

 

 

 



79 
 

REFERENCES 

Bastviken D., J.J. Cole, M.L. Pace, and M.C. Van de Bogert. 2008. Fates of methane from 
 different lake habitats:  Connecting whole-lake budgets and CH4 emissions. Journal 
 of Geophysical Research 113 doi: 10.1029/2007JG000608. 
 
Boudreau B.P. 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochimica 
 et Cosmochimica Acta  60(16): 3139-3142. 
 
Bowden W.B., M.N Gooseff, A. Balser, A. Green, B.J. Peterson, and J. Bradford. 2008. 
 Sediment and nutrient delivery from thermokarst features in the foothills of the North 
 Slope, Alaska: potential impacts on headwater stream systems. Journal of Geophysical 
 Research  113, G02026, doi: 10.1029/2007JG000470. 
 
Bussman I. 2005. Methane release through resuspension of littoral sediment. Biogeochemistry  

74:  283-302. 
 
Conrad R. 2005. Quantification of methanogenic pathways using stable carbon isotopic 
 signatures: a review and a proposal. Organic Geochemistry 26: 739-752. 
 
Casper P. 1996. Methane production in littoral and profundal sediments of an oligotrophic 
 and eutrophic lake. Archiv für Hydrobiologie Advances in Limnology 48: 253-259. 
 
den Heyer C. and J. Kalff. 1998. Organic matter mineralization rates in sediments: A within- 
 and among-lake study. Limnology and Oceanography 43(4): 695-705. 
 
Duc N.T., P. Crill and D. Bastviken. 2010. Implications of temperature and sediment 
 characteristics on methane formation and oxidation in lake sediments.  
 Biogeochemistry  100: 185-196. 
 
Hamilton, T.D. 2003. Glacial geology of the Toolik Lake and Upper Kuparuk River drainages. 
 Institute of Arctic Biology Paper 26. University of Alaska, Fairbanks, AK.  
 
Hamilton D.P. and S.F. Mitchell. 1997. Wave-induced shear stresses, plant nutrients and 
 chlorophyll in seven shallow lakes. Freshwater Biology 38: 159-168. 
 
Hilton J. 1985. A conceptual framework for predicting the occurrence of sediment focusing and 

sediment redistribution in small lakes. Limnology and Oceanography 30: 1131-1143. 
 
Hilton J. 1986. The dominant process of sediment distribution and focusing in a small, 

eutrophic, monomictic lake. Limnology and Oceanography  31(1): 125-133. 
 
 
 



80 
 

Huttunen J.T., T.S. Vaisanen, S.K. Hellsten and P.J. Martikainen. 2006. Methane fluxes at the  
 sediment-water interface in some boreal lakes and reservoirs. Boreal Environment 
 Research 11: 27-34. 
 
Jahne B., G. Heinz and W. Dietrich. 1987. Measurement of the diffusion coefficients of 
 sparingly soluble gases in water. Journal of Geophysical Research 92(C10): 10,767-
 10,776. 
 
Jahnke R.A. 1988. A simple, reliable, and inexpensive pore-water sampler. Limnology and 
 Oceanography 33(3): 483-487. 
 
Juutinen S., J Alm, T. Larmola, J.T. Huttunen, M. Morero, P.J. Martikainen and J. Silvola. 2003 
 Major implication of the littoral zone for methane release from boreal lakes. Global 
 Biogeochemical Cycles 17(4):  1117. doi:10.1029/2003GB002105. 
 
King J.Y., W.S. Reeburgh, K.K. Thieler, G.W. Kling, W.M. Loya, L.C. Johnson and K.L. 
 Nadelhoffer. 2002. Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: 
 The contribution of photosynthates to methane emission. Global Biogeochemical Cycles 
 16(4): 1062, doi: 10.1029/2001GB001456. 
 
Kling, G.W. 1995. Land-water interactions: The influence of terrestrial diversity on aquatic 
 ecosystems, in Arctic and Alpine Diversity: Patterns, causes, and ecosystem 
 consequences, eds. F. S. Chapin III and C. Korner, pp. 297-310, Spring-Verlag, Berlin.  
 
Kuivila K.M., J.W. Murray, and A.H. Devol. 1989. Methane production, sulfate reduction 
 and competition for substrates in the sediments of Lake Washington. Geochimica et 
 Cosmochimaca Acta 53: 409-416. 
 
Mazeas O., J.C. von Fisher, and R. Crew. 2009. Impact of terrestrial carbon input on methane 
 emissions from an Alaskan Arctic lake. Geophysical Research Letters 36, L18501, 
 doi: 10.1029/2009GL039861 
 
Michmerhuizen C.M., Striegl R.G. and M.E. McDonald.  1996. Potential methane  

emission from north-temperate lakes following ice-melt.  Limnology and  
Oceanography 41(5):  985-991. 

 
Murase J., Y. Sakai, A. Kametani, and A. Sugimoto. 2005. Dynamics of methane in mesotrophic 
 Lake Biwa, Japan. Ecological Research 20: 377-385.  
 
Neff J.C. and D.U. Hooper. 2002. Vegetation and climate controls on potential CO2,  
 DOC and DON production in northern latitude soils. Global Change Biology 
 8: 872-884. 
 
 



81 
 

Nozhevnikova A.N., C. Holliger, A. Ammann, and A.J.B. Zehnder. 1997. Methanogenesis in  
 sediments from deep lakes at different temperatures (2-70°C). Water Science and 
 Technology 36: 57-64. 
 
Nusslein B. and R. Conrad. 2000. Methane production in eutrophic Lake Plubsee:  seasonal 
 change, temperature effect and metabolic processes in the profundal sediment.  
 Archiv fur Hydrobiologie 149(4): 597-623. 
 
Percival J.B. and P.J. Lindsay. 1997. Measurement of physical properties of sediments, in  
 Manual of Physico-Chemical Analysis of Aquatic Sediments. eds. A. Mudroch, J. Azcue, 
 and P. Mudroch, pp. 7 – 46, CRC Press, Inc. Boca Raton, Florida. 
 
Ping C.L., J.G. Bockheim, J.M. Kimble, G.J. Michaelson and D.A. Walker. 1998. Characteristics 
 of cryogenic soils along a latitudinal transect in Arctic Alaska. Journal of Geophysical 
 Research 103: 28917-28928. 
 
Prowse T.D, F.J. Wrona F.J.,J.D. Reist, J.E. Hobbie, L.M.J. Levesque, and W.F. Vincent. 2006. 
 Climate change effects on aquatic biota, ecosystems structure and function.  

Ambio35(7): 359-369. 
 
Rolletschek H. 1997. Temporal and spatial variations in methane cycling in Lake Muggelsee. 
 Archiv fur Hydrobiologie 140(2): 195-206. 
 
Rouse, W.R., M.S.V. Douglas, R.E Hecky, A.E. Hershey, G.W. Kling, L. Lesack, P.Marsh, M.  

McDonald, B.J. Nicholson, N.T. Roulet and J.P. Smol. 1997. Effects of climate change on  
the freshwaters of arctic and subarctic North America. Hydrological Processes  
11: 873-902. 

 
Schulz, S. and R. Conrad. 1996. Influence of temperature on pathways to methane  
 production in the permanently cold profundal sediment of Lake Constance. 
 FEMS Microbiology Ecology 20: 1-14.  
 
Schwarz J.I.K., W. Eckert, and R. Conrad. 2008. Response of the methanogenic microbial 
 community of a profundal lake sediment (Lake Kinneret, Israel) to algal deposition. 
 Limnology and Oceanography  53(1): 113-121.  
 
Shaver G.R, W.D. Billings, F.S. Chapin III, A.E. Giblin, K.J. Nadelhoffer, W.C. Oechel, and E.B.  
 Rastetter. 1992. Global change and the carbon balance of arctic ecosystems.  
 Bioscience 42(6): 433-441. 
 
Sweerts J.P. 1991. Similarity of whole-sediment molecular diffusion coefficients in freshwater 
 sediments of low and high porosity. Limnology and Oceanography 36(2): 335-342. 
 
 



82 
 

Thebrath B., F. Rothfuss, M.J. Whiticar, and R. Conrad. 1993. Methane production in littoral 
 sediment of Lake Constance. FEMS Microbiology Ecology  102: 279-289. 
 
Whalen S.C. and J.C. Cornwell. 1985.  Nitrogen, phosphorous, and organic carbon cycling in  
 an arctic lake. Canadian Journal of Fisheries and Aquatic Sciences 42: 797-808. 
 
Whalen S.C., B.A. Chalfant, E.N. Fischer, K.A. Fortino, and A.E. Hershey. 2006. Comparative 
 influence of resuspended glacial sediment on physicochemical characteristics and 
 primary production in two arctic lakes. Aquatic Sciences 68: 65-77. 
 
Wetzel, R.G. 2001. Limnology:  Lake and river ecosystems, 3rd edition.  Academic Press. 
 
Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses. Springer-Verlag. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



83 
 

TABLES AND FIGURES 

 
 

Table 3.1. Sampling depth of sediment zones in E4 and GTH 114. 

Lake 

 
Sampling 

Zone 

Sampling 
Depth 

(m) 

Maximum 
depth 
 (m) 

Mean 
depth 

(m) 

E4 Profundal 
Epilimnetic 

Littoral 

4.4 
2.0 

< 0.5 

4.4 2.0 

GTH 114 Profundal 
Epilimnetic 

Littoral 

6.0 
3.0 

<0.5 

6.7 2.2 
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Table 3.2. Results of a Two-Way ANOVAs analyzing the lake, zone and the interaction of lake 
versus zone on log transformed rates of methanogenesis. 

Source df SS MS F ratio P 

Lake 1 1.69 1.69 10.66 0.003 
Zone 2 1.95 0.98 6.16 0.006 

Lake x zone 2 2.34 1.17 7.39 0.003 
Error 24 3.81 0.16   
Total 29 9.80    

 
 
 
Table 3.3. Results of One-Way ANOVA analyzing the effect of zone on log-transformed rates of 
methanogenesis in E4. 

Source df SS MS F ratio p 

Zone 2 2.98 1.49 19.77 0.0002 
Error 12 0.91 0.08   
Total 14 3.89    

 
 
Table 3.4. Results of One-Way ANOVA analyzing the effect of zone on log-transformed rates of 
methanogenesis in GTH 114. 

Source df SS MS F ratio p 

Zone 2 1.32 0.66 2.73 0.1055 
Error 12 2.91 0.24   
Total 14 4.23    
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Table 3.5. Results of One-Way ANOVA analyzing between lake differences in log-transformed 
rates of methanogenesis in the profundal zone. 

Source df SS MS F ratio p 

Lake 1 0.08 0.08 0.42 0.53 
Error 8 1.55 0.19   
Total 9 1.64    

 
 
Table 3.6. Results of One-Way ANOVA analyzing between lake differences in log-transformed 
rates of methanogenesis in the epilimnetic zone. 

Source df SS MS F ratio p 

Lake 1 0.0005 0.0005 0.0029 0.96 
Error 8 1.38 0.17   
Total 9 1.38    

 
 
Table 3.7. Results of One-Way ANOVA analyzing between lake differences in log-transformed 
rates of methanogenesis in the littoral zone. 

Source df SS MS F ratio p 

Lake 1 3.96 3.96 36.12 0.0003 
Error 8 0.88 0.11   
Total 9 4.84    
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Table 3.8. Results of One-Way ANOVA analyzing the main effect of sediment zone on sediment 
temperature in E4. 

Source df SS MS F ratio p 

Lake 2 162.33 81.17 95.59 < 0.0001 
Error 98 80.67 0.82   
Total 100 24.01    

 
 

 

 

 

Table 3.9. Results  of One-Way ANOVA analyzing the main effect of sediment zone on sediment 
temperature in GTH 114.  

Source df SS MS F ratio p 

Lake 1 728.13 364.07 1137.91 < 0.0001 
Error 109 34.87 0.32   
Total 111 763.01    
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         Table 3.10. Spearman’s rank correlation coefficients (rs) for the association 
         between log-transformed rates of methanogenesis and environmental 
                 variables in E4 and GTH 114. 

 
Lake 

   

 

E4 GTH 114 Both lakes 
  

 

(n = 15) (n = 15) (n = 30) 
  

DOC a,b -0.15 0.07 -0.02 
  

% OMb      0.81** 0.19    0.50* 
  

Temperatureb 0.15           -0.66 -0.14 
  Values of rs significant at α = 0.05 are denoted by “*” and α = 0.01 are denoted by “**”. 

a
Includes profiles from profundal and epilimnetic sediments only taken in 2008. 

 b
Represent values measured in surficial 2 cm of sediment. 
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Table 3.11. Results of One-Way ANOVA analyzing the effect of zone on sediment porewater CH4 
profiles in E4. 

Source df Type I SS MS F ratio p 

Zone 2 1893175 946588 11.17 < 0.0001 
Error 69 5848826 84766   
Total 71 7742001    

 
 
 
 

Table 3.12. Results of One-Way ANOVA analyzing the effect of zone on sediment porewater CH4 
profiles in GTH 114. 

Source df Type I SS MS F ratio p 

Zone 2 2312892 1156446 4.39 0.015 
Error 75 19746377 263285   
Total 77 22059269    
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Table 3.13. Potential methane flux from surficial sediments into the overlying water column in 
the lake zones in E4 and GTH 114.  

 
Lake 

 
Zone 

 
Areal Flux  

(µmol CH4 m
-2 d-1) 

 
Surface area 

(m2) 

 
% of total lake 
surface area 

 
Weighted CH4 flux 

(mmol CH4 d
-1) 

E4 
 
 

Profundal 
Epilimnetic 

Littoral 

5 
254 
947 

4835 
17743 
16377 

12 
46 
42 

26 
4515 

15511 
GTH 114 Profundal 

Epilimnetic 
Littoral 

1174 
795 
296 

5338 
28129 
6116 

14 
71 
15 

6271 
22384 
1813 
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Figure 3.1. Distribution of rates of methanogenesis (MG) among sediment zones in E4 in 2010. 
Mean rates of MG in each zone are indicated by a single dot and median values are indicated by 
horizontal line within each box. Upper and lower whiskers show the maximum and minimum 
values within the range of rates while the box edges represent the 10% and 90% quantiles. 
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Figure 3.2. Distribution of rates of methanogenesis (MG) among sediment zones in GTH 114 in 
2010. Mean rates of MG in each zone are indicated by a single dot and median values are 
indicated by horizontal line within each box. Upper and lower whiskers show the maximum and 
minimum values within the range of rates while the box edges represent the 10% and 90% 
quantiles.  
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Figure 3.3.  Water column dissolved organic carbon (DOC) concentrations in the epilimnion (Epi) 
and hypolimnion (Hypo) of E4 and GTH 114 across multiple days in 2009.  
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Figure 3.4. Dissolved organic carbon (DOC) concentrations in E4 porewater taken from 
profundal and epilimnetic sediments in E4 in July 2008. Data are plotted at the midpoint for 
each sampling interval. Error bars are ± 1 SEM (n = 3). 
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Figure 3.5. Dissolved organic carbon (DOC) concentrations in GTH 114 porewater taken from 
profundal and epilimnetic sediments in July 2008. Data are plotted at the midpoint for each 
sampling interval.  Error bars are ± 1 SEM (n = 3). 
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Figure 3.6. Percent organic matter content (% OM) plotted at the midpoint of each sampling 
interval for sediment samples collected from defined lake zones in E4 and GTH 114 in July 2009. 
Error bars are ± 1 SEM (n=2). 
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Figure 3.7. Sediment temperature profiles taken in July 2009 from profundal, epilimnetic and 
littoral sediments in E4. Error bars are ± 1 SEM (n = 2). 
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Figure 3.8. Sediment temperature profiles taken in July 2009 from profundal, epilimnetic and 
littoral sediments in GTH 114. Error bars are ± 1 SEM (n = 2). 
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Figure 3.9. The relationship between mean rates of methanogenesis (MG) and mean percent 
organic content (% OM) among sediment zones in E4. Data are for the 0 to 2 cm depth interval 
in each zone. Error bars are ± 1 SD. 
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Figure 3.10. The relationship between mean rates of methanogenesis (MG) and mean percent 
organic content (% OM) among sediment zones in GTH 114. Data are for the 0 to 2 cm depth 
interval in each zone. Error bars are ± 1 SD. 
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Figure 3.11. The relationship between mean rates of methanogenesis (MG) and mean sediment 
temperature among sediment zones in E4. Data represent are for the 0 to 2 cm depth interval 
in each zone. Error bars are ± 1 SD. 
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Figure 3.12. The relationship between mean rates of methanogenesis (MG) and mean sediment 
temperature among sediment zones in GTH 114. Data are for the 0 to 2 cm depth interval in 
each zone. Error bars are ± 1 SD.
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Figure 3.13. Sediment CH4 profiles taken in July 2009 from profundal, epilimnetic and littoral 
sediments in E4 and GTH 114 (n = 2). Data are plotted at the midpoint of each sampling 
interval.   



 
 

CHAPTER 4: THE INFLUENCE OF TEMPERATURE ON METHANE PRODUCTION  
         AND OXIDATION AND EVALUATION OF KINETIC CONSTANTS FOR METHANE  
         OXIDATION

 
4.1 Introduction 

 Methane (CH4) is a radiatively and chemically important trace atmospheric constituent 

that is over twenty times more influential in terms of radiative forcing than CO2 on a per 

molecule basis (Dalton 2005; Whalen 2005). Methane production results from multiple natural 

and anthropogenic activities while reduction of CH4 from terrestrial and aquatic environments 

occurs via microbial CH4 oxidation (Whalen 2005). However, considerable uncertainties exist 

regarding the magnitude of the global sources and sinks of CH4 (Dlugokencky et al. 2009; 

Isaksen et al. 2011).  Atmospheric concentrations of CH4 had remained somewhat stable (~1.7 

ppm) in the decade preceding 2008, whereupon an increase to 1.8 ppm has been observed 

(Dlugokencky et al. 2009). This current level is roughly 2.5 times greater than the pre-industrial 

concentration of about 0.7 ppm (Dlugokencky et al. 2009; Isaksen et al. 2011).  One of the 

suspected drivers for the 2008 increase in the atmospheric CH4 concentration is the abnormally 

high temperatures in the Arctic in 2007 (Dlugokencky et al. 2009). The highest observed 

atmospheric CH4 concentrations have appeared over the Arctic and subarctic regions due to the 

high areal extent of wetlands (Semiletov 1999).  Tundra environments encompass 

approximately 7% of earth’s surface (Whalen and Reeburgh 1992) with up to 50% of that areal 

coverage comprised of shallow ponds in some regions.  On a global basis, shallow arctic lakes
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may occupy approximately 2% of total land surface (Sheath 1986). Therefore, their contribution 

to the atmospheric CH4 budget is likely significant due to their shallow depth and broad areal 

coverage (Semiletov 1999; Bastviken et al. 2004). Decomposition of organic matter (OM) by a 

consortium of syntrophic bacteria produces the primary substrates for methanogenesis (MG), 

acetate and H2. The terminal step to OM degradation is MG, where acetate or H2/CO2 is 

converted to CH4 (Glissman et al. 2004). The regulatory process modulating the amount of CH4 

reaching the atmosphere is CH4 oxidation (Mox) which occurs in the presence of O2 in soils, 

sediment and water overlying zones of CH4 production (King 1992; Whalen and Reeburgh 

1996). Methane oxidizing bacteria (MOB) incorporate some of the CH4 into cellular biomass and 

oxidize the remainder to CO2 (Hanson and Hanson 1996; Kankalla et al. 2006). Bacterial 

oxidation of CH4 is a highly efficient biogeochemical process (Frenzel et al. 1990; Casper 2000) 

as up to 90% of the CH4 diffusing from the anaerobic sediments may be oxidized in the 

overlying oxic zones within a lake (Wetzel 2001; Bastiken et al. 2003; Kankaala et al. 2007). 

Consequently, Mox plays a significant role in the global atmospheric CH4 budget. 

 Both MG and Mox rates exhibit limitations by temperature, substrate availability, and 

O2, although MG may be more sensitive to temperature fluctuations than Mox (Segers 1998; 

Duc et al. 2010). Temperature influences all biogeochemical processes to some degree (Duc et 

al. 2010), but there is evidence that Mox is controlled more strongly by substrate availability 

(i.e, CH4 concentration) than by temperature (Liikanen et al. 2002). Kelly and Chynoweth (1981) 

found that MG rapidly responded to increased temperature until substrates were depleted.  

Temperature is likely to be a more important driver of Mox rates at higher CH4 concentrations 
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as activity shifts from substrate limitation to enzyme-activity limitation, particularly if 

populations prove to be pychrophillic (Whalen and Reeburgh 1996; Sundh et al. 2005). 

 Methanotrophic bacteria differ primarily in their affinities for CH4 at varying 

concentrations (King 1992; Segers 1998). The apparent half-saturation constant, Km, is a 

measure of CH4 affinity which points to the types of MOB present (Bender and Conrad 1992; De 

Visscher et al. 1999), while from a kinetic perspective the maximum CH4 oxidation rate, Vmax, is 

roughly indicative of the MOB population size (Whalen and Reeburgh 1996). The apparent Km 

for low affinity MOB usually exceeds 1 µM (Roslev et al. 1997; Knief and Dunfield 2005) while 

the Km for atmospheric CH4 oxidizers typically exposed to low CH4 mixing ratios is much lower 

(10 to 280 nM CH4) and is accompanied by a low Vmax as well (Bender and Conrad 1992; Knief 

and Dunfield 2005). Since MOB use CH4 as their sole source of carbon and energy (Buchholz et 

al. 1994; Dalton 2005), increased concentrations of CH4 may lead to population growth. 

Consequently, in situ CH4 concentrations are likely determinants, from a physiological 

perspective, of the dominant MOB group residing within or between lake ecosystems (Rahalkar 

and Schink (2007). It follows that evaluation of CH4 oxidation kinetics is vital to holistically 

approaching the net effect that may occur with increased CH4 production associated with 

regional and global climate change.  

 To my knowledge, no single study has evaluated the effects of temperature on both MG 

and Mox in shallow lakes that are a prominent feature of arctic landscapes. The coupled 

response of these two processes with regard to increased temperature associated with ongoing 

climate change is poorly understood. Therefore, one objective of this component of my study 

was to determine the effect of temperature on CH4 production and oxidation. A second goal 
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was to quantify Mox kinetic constants in order to evaluate the influence of substrate limitation 

of the extant MOB populations in hypolimnetic waters in two representative shallow Arctic 

Alaskan lakes. This information regarding important environmental influences on CH4 oxidation 

and production will aid in the development of process-based models aimed at evaluating the 

impact of projected future climates on microbial communities that directly affect atmospheric 

CH4 concentrations in a region that figures prominently in the atmospheric CH4 budget.  

 

4.2 Materials and Methods 

4.2.1 Field Sites  
 

 My study site is located in the Arctic Foothills province of Alaska which is a region of the 

Arctic that is characterized by a tundra landscape underlain with continuous permafrost 

(Whalen et al. 2006).  Mean annual temperatures range from – 7 to – 11°C with annual 

precipitation ranging from 140 to 267 mm (Bowden et al. 2008). The trophic state of most of 

the lakes in this region ranges from ultraoligotrophic to oligotrophic with heavy reliance on 

spring snowmelt for terrestrial subsidies of dissolved organic matter (Kling 1995; Whalen and 

Cornwell 1985). A full description of the region including vegetation characteristics and glacial 

geology can be found in Ping et al. (1998) and Hamilton (2002).   

The two lakes chosen for this study, E4 and GTH 114, possess similar geomorphological 

characteristics, with GTH 114 having a larger total volume and catchment area (Table 2.1). The 

selected study lakes are regionally representative with respect to surface and catchment area, 

and lack fish, permanent inlets and rooted macrophytes. Additionally, these lakes exhibit 
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polymictic mixing patterns, thermally stratifying on an intermittent basis during the summer 

growing season (Figures 2.1 and 2.2). 

4.2.2 Field Sampling 
 

 Sediments for CH4 production studies were collected using a KB gravity corer (Wildlife 

Supply Company) deployed from an inflatable raft.  For MG experiments, sediments were 

collected on 27 July 2010 and 31 July 2010 from E4 and GTH 114, respectively. Polycarbonate 

sleeves (4.8 cm inside diameter x 50 cm length) were inserted into the KB corer which was then 

lowered carefully into the sediments. Once removed from the sediments, sleeves were capped 

on each end with rubber stoppers.  Ten sediment cores were collected from the maximum 

water depth in each lake for CH4 production studies. Intact sediment cores were transported 

undisturbed via foot, vehicle, or helicopter to TFS for processing. 

 Hypolimnetic water samples for substrate-saturated CH4 oxidation studies were 

collected by deploying a Van Dorn water sampler (Wildlife Supply Company) from an inflatable 

raft. Samples were collected in E4 from 3.3 m water depth on 23 July 2010. In GTH 114, water 

was collected from 5.5 m on 9 July 2010.  Hypolimnetic water samples for Mox studies at near 

in situ concentration were collected on 1 August 2009 and 31 July 2009 in E4 and GTH 114, 

respectively. 

  Lake water samples for water column CH4 concentration profiles were collected on 24 

June 2008 (E4) and 2 July 2008 (GTH114) as similarly described above except water was 

collected at 1 m intervals.  A 5 mL plastic syringe with a 20 gauge needle was inserted into the 

Van Dorn outlet tube to extract a sample.  The syringe was flushed three times with water from 

the sample depth and the fourth fill (3 ml) was expelled into He- filled 30 ml serum vials 
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containing 100 µL of 1N HCl to prevent biological activity.  The vials were then inverted to 

prevent gas loss through the rubber stopper and returned to the lab for CH4 analysis. 

4.2.3 Laboratory Studies 
 

 Five replicated sediment slurries were prepared using a total of 10 cores. The upper 2 

cm of two sediment cores were homogenized in a polycarbonate 1-L beaker to form each 

slurry. Oxygen-free deionized water (dH2O) was prepared in separate polycarbonate beakers by 

purging with high purity N2 and an air stone affixed to the end of tygon tubing.  Following 

addition of O2-free dH2O, all homogenized sediment slurries were continually purged with N2.  A 

polycarbonate syringe with a bored tip was used to measure 15 ml of anoxic sediment slurry 

that was then ejected into a 60 ml serum bottle and sealed with a rubber stopper and crimp.  

Each serum bottle was evacuated and purged with N2 at least 10 times to ensure anoxia, filled 

to 1 atm with N2 then one vial from each slurry was randomly placed in a water bath (0, 4, 8, 

12, and 16°C) for a total of 5 vials at each temperature. Vials were allowed to acclimate for 

approximately 12 h before headspace sampling was initiated.  

  Headspace samples were collected from serum bottles in 3 ml plastic syringes that had 

been previously tested to confirm no loss of CH4 over a 4 h test period. Analysis of CH4 was 

conducted by a gas chromatograph equipped with a flame ionization detector (FID-GC; Shimadu 

GC-8A) and was completed within 2 h of headspace sampling.  Operating conditions for the FID-

GC were as follows: Column = ⅛” diameter x 1 m length mol sieve 5A (60/80); column 

temperature = 90°C; injector and detector temperatures = 140°C; carrier gas = ultra-high purity 

N2 at 33 ml min-1 flow rate.  Vial headspaces were sampled 4 times over 10 d, resulting in the 

linear production of CH4.  Headspace mixing ratios for CH4 in serum vials were converted to a 
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moles per liter basis.  Methane concentrations in the aqueous phase at each sampling point 

were calculated from temperature corrected solubility coefficients (Yamamoto et al. 1976) and 

Henry’s law (Stumm and Morgan 1996). The total amount of CH4 produced in each bottle at 

each time point was computed as the sum of the aqueous phase and headspace masses. Rates 

were calculated using linear regression of CH4 accumulation versus time. 

 Methane oxidation experiments were conducted in 2010 using microbially produced 

14CH4 (Daniels and Zeikus 1983) with a specific activity of 517 MBq mmol-1.  Water samples for 

the 14CH4 oxidation experiments were collected at approximately 1 m above the sediment 

surface at the maximum water depth in each lake.  An aliquot (50 or 100 µl) of stock 14CH4 was 

diluted with ultra-high purity N2 in a calibrated vial of 24.3 ml volume to yield a working 

standard.  

 To assess the effect of temperature on rates of CH4 oxidation under substrate-saturated 

conditions, hypolimnetic water from each lake was initially placed in a 1 L beaker on a magnetic 

stirrer for approximately 1 h to equilibrate with atmospheric gases. Then, seventeen 40 ml 

amber EPA vials (Fisherbrand Enviroware) were filled with the atmosphere-equilibrated 

hypolimnetic water from each lake and sealed with a teflon lined cap without a headspace. 

Triplicate vials from each lake were placed in each of 5 water baths (0, 4, 8, 12, or 16°C) for 1 h 

to acclimate prior to the addition of 14CH4.  I conducted preliminary experiments earlier in the 

season to determine the appropriate concentration of 14CH4 required to achieve a substrate-

saturated response of CH4 oxidation.  Accordingly, 0.5 ml of a 14CH4 working standard (9.83 

MBq) was added to each vial of E4 water while 0.5 ml of a second 14CH4 working standard (4.92 

MBq) was added to each vial containing GTH 114 water. Samples were also amended with 0.5 
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mL of N2-diluted 12CH4 to result in a target concentration of 33 µM CH4 in the aqueous phase. 

With each addition of radiocarbon labeled and unlabeled CH4, a 22 gauge needle was inserted 

into the sealing septum to allow expulsion of a similar volume of water to maintain 1 atm 

pressure in the vials.  Two samples were immediately injected with 4N NaOH to serve as killed 

controls.  All samples were vigorously shaken to equilibrate CH4 between the gaseous and 

aqueous phases to initiate the experiment. Samples from E4 were incubated at specified 

temperatures for 48 h while samples from GTH 114 were incubated for 24 h. Samples from 

both lakes were periodically shaken by hand 2-3 times daily during the course of the 

incubations to eliminate phase transfer limitation. The experiments were terminated by the 

addition of 0.5 ml of 4N NaOH to the vials which were then shaken vigorously. Five milliliters of 

sample was removed and discarded to reduce sample volume for the following step. Unsealed 

vials were then placed on a rotary shaker (100 rpm) under the hood for 24 h to remove 

unreacted 14CH4 from solution. Eight milliliters from each vial was then added to 20 ml glass 

scintillation vials, followed by the addition of 10 ml of liquid scintillation cocktail (Aquasol-2). 

Radioactivity was assessed on a Packard Tri-Carb 2100 TR Scintillation Counter. Rates of Mox 

were calculated from the fractional utilization of 14CH4 and the aqueous phase CH4 

concentration.  

Rates of Mox at 5°C and 15°C were estimated from the linear regression of Mox rate on 

temperature, and were used to calculate Q10 values using the following formula (Duc et al. 

2010): 

Q10 = (R2/R1)(10/T2-T1) 
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where R1 and R2 equals the mean rate of Mox 5°C (T1) and 15°C (T2), respectively. High 

variability among replicates necessitating data transformation in the MG versus temperature 

experiments precluded calculation of a Q10 value in this manner.  

 To assess the influence of temperature on Mox rates at near in situ CH4 concentrations, 

bulk hypolimnetic water from each lake was first equilibrated with the atmosphere as described 

above. Following FID-GC confirmation that the equilibrated bulk water was depleted of any 

measurable dissolved CH4, 20 ml of equilibrated lake water was added to 160 ml serum vials in 

triplicate. Methane was added to the headspace of each vial to target near in situ concentration 

of 0.5 µM CH4 in the aqueous phase. Then vials were randomly placed in water baths (0, 4, 8, 

12, and 16°C) for a total of 3 vials per lake at each temperature. Vial headspaces were sampled 

4 times over approximately 9 h.  The rate of CH4 loss from the headspace was calculated from 

the linear regression of the CH4 mixing ratios versus time.  

 The substrate dependence of CH4 oxidation was determined through a series of 

incubations at room temperature (20°C).  Hypolimnetic water from each lake was equilibrated 

with the atmosphere as described above and placed into 40 ml amber EPA vials without a 

headspace. A 0.5 ml aliquot of a 14CH4 working standard (4.92 or 9.83 MBq) was added to each 

of 17 vials. In addition, a 0.5 ml volume of N2-diluted 12CH4 prepared at different mixing ratios 

was added to each vial to give aqueous phase CH4 concentrations varying from 0.15 to 33.5 µM. 

Sealing septa were pierced with a 22 gauge needle to expel water with gas addition as 

described above. Vials were then vigorously shaken by hand to equilibrate gases between the 

aqueous and gas phases and incubated on a rotary shaker (100 rpm) for 12 (GTH 114) or 24 h 

(E4). The experiments were terminated by the addition of 0.5 ml 4N NaOH and the samples 
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were further processed as described above for other 14C addition experiments. Rates of Mox 

were calculated from the fractional utilization of 14CH4 and the aqueous phase CH4 

concentration. Data for Mox rates as a function of aqueous phase CH4 concentrations were 

directly fitted to the Michaelis-Menten relationship through nonlinear regression using the 

Gauss-Newton method (Systat 7.0) (Liikanen et al. 2002; Lehninger 1982): 

 
  

 

where V is the rate of CH4 oxidation (µmol CH4 L-1 d-1); Vmax is the maximum rate of CH4 

oxidation (µmol CH4 L-1 d-1); Km is the half-saturation constant (µM CH4).  

4.2.4. Statistics 
 

 Nonlinear regression (i.e, exponential model) of MG rate versus temperature in E4 did 

not correct severe violations of homoscedasticity. Therefore, rates of MG were log-transformed 

in both lakes (Sokal and Rohlf 1995; Zar 1996) and analyzed with simple linear regression. 

Simple linear regression was used to analyze the effect of temperature on Mox rates in E4 and 

GTH 114. Analysis of covariance (ANCOVA) was used to evaluate the effects of lake and 

temperature on log-transformed rates of MG or rates of Mox. Comparisons of log-transformed 

mean rates of MG or rates of Mox between lakes were conducted using Tukey’s Honestly 

Significant Difference (HSD). The presence of significant outliers was evaluated statistically 

using Grubb’s test (Grubb’s 1969). No significant outliers were detected and thus, were 

preserved in the analyses.  Log-transformed rates of MG were compared to log-transformed 

rates of Mox using ANCOVA with temperature as a covariate for E4 and GTH 114 separately. All 

V = Vmax * S 
 

         Km + S 



109 
 

analyses were performed at the α = 0.05 significance level using SAS, JMP 9.0 (SAS Institute, 

Inc.) or Systat 7.0 (SPSS, Inc.) statistical software.  

 

4.3 Results  

4.3.1 Rates of CH4 Production as a Function Temperature 
 

 Non-transformed rates of MG across the 0-16°C temperature range varied from 0.15 to 

20.9 µmol CH4 L-1 d-1 and 0.7 to 67.9 µmol CH4 L-1 d-1 in E4 and GTH 114, respectively (Table 

4.1). Within-group variation in MG rates was higher at higher temperatures as compared to 

lower incubation temperatures. Log-transformed MG rates in E4 positively responded to 

increasing incubation temperature (Figure 4.1) while in GTH 114, the linear response of log-

transformed MG rates to temperature was much stronger (Figure 4.2). Analysis of covariance 

(ANCOVA) resulted in an overall significant effect of lake and temperature on log-transformed 

MG rates (Table 4.2). After adjusting for the effect of the covariate temperature, Tukey’s HSD 

showed that the least square mean log-transformed MG rates was significantly higher in GTH 

114 than in E4 (p < 0.0001). The overall geometric mean rate of MG in E4 across the entire 

temperature range with 95% confidence limits was 0.979 (0.51 to 1.91) µmol CH4 L-1 d-1. In GTH 

114, the overall geometric mean rate of MG across the entire range of incubation temperatures 

was 9.75 (4.9 to 19.03) µmol CH4 L-1 d-1. 

Typical water column CH4 concentrations in both lakes (Figure 4.3) were low, showing 

maximum concentrations of 1.52 and 0.78 µM CH4 in E4 and GTH 114. In contrast, surficial 

sediments (Figure 3.13; Chapter 3) showed CH4 concentrations of around 5.76 and 149.27 µM 
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in the respective lakes, representing levels that exceeded water column concentrations by 

factors of 3 and 190, respectively. 

 4.3.2 Rates of CH4 Oxidation as a Function of Temperature 
 

 Across all temperature conditions, rates of Mox under substrate-saturated conditions 

varied from 0.053 to 0.231 µmol CH4 L-1 d-1 in E4 while substrate-saturated Mox rates in GTH 

114 ranged from 1.17 to 8.16 µmol CH4 L-1 d-1 (Table 4.3). Rates of Mox exhibited a strong a 

linear response to incubation temperature in E4 (Figure 4.4) and GTH 114 (Figure 4.5). Overall, 

the ANCOVA model showed a strong significant relationship between lake and temperature on 

rates of Mox (Table 4.4). There was a significant interaction between lake and temperature 

indicating that the rate of change in CH4 oxidation in response per unit increase in temperature 

was significantly different between lakes. After controlling for the effect of temperature, 

Tukey’s HSD showed that the least squares mean rate of Mox was significantly greater in GTH 

114 than the least squares mean rate of Mox in E4 (p < 0.0001). The mean rate of Mox in E4 (± 

95% CI) across the entire temperature range was 0.14 (± 0.08) µmol CH4 L-1 d-1. In GTH 114, the 

least squares mean rate of Mox (± 95% CI) across the entire range of incubation temperatures 

was 4.60 (± 0.08) µmol CH4 L-1 d-1. In contrast to the Mox rates measured under substrate-

saturating conditions, experiments conducted in 2009 at near in situ CH4 concentrations 

showed no significant response to temperature in either lake (Figure 4.6).  

4.3.3 Methane Production versus Methane Oxidation 
 

 For direct comparison to log-transformed rates of MG, rates of Mox were also log-

transformed.  Mean log-transformed rates of Mox were positively related to mean log-

transformed rates of MG in E4 and GTH 114 (Figure 4.7). ANCOVA was used to evaluate the 
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differences between slopes of the linear regression of log-transformed rates of MG on 

temperature and the linear regression of log-transformed rates of Mox on temperature in E4 

(Table 4.5) and GTH 114 (Table 4.6). After controlling for the effect of temperature, Tukey’s HSD 

showed that the least squares mean log-transformed rates of MG were significantly greater 

than the least squares mean log-transformed rates of Mox in E4 (p = 0.0006) and in GTH 114 (p 

= 0.0002).    

 
4.3.4 Kinetics of CH4 Oxidation 
 

 Although the aqueous phase CH4 concentration at which Mox were assessed were 

similar between experiments, the range of Mox rates determined in kinetics experiments was 

considerably lower in E4 than in GTH 114 (Figures 4.8 and 4.9). Methane oxidation rates in E4 

ranged from 0.01 to 0.30 µmol CH4 L-1 d-1 while the Mox rates in GTH 114 ranged from 0.10 to 

6.25 µmol CH4 L-1 d-1.  The estimate for Vmax was approximately 25 times greater in GTH 114 

than in E4, while the values for Km were roughly two-fold higher in GTH 114 than in E4. The 

calculated Vmax with 95% confidence in E4 was 0.32 ± 0.06 µmol CH4 L-1 d-1 compared with a 

value of 8.39 ± 0.67 µmol CH4 L-1 d-1 in GTH 114. With 95% confidence, the half-saturation 

constants for CH4 oxidation (Km) were 4.45 ± 2.36 µM in E4 and 10.61 ± 2.03 µM in GTH 114. 

The lack of overlap in the 95% confidence intervals for both Vmax and Km values between E4 and 

GTH 114 suggest that these differences are statistically significant.  
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4.4 Discussion 

4.4.1 Influence of Temperature on Methanogenesis  
 

 Consistent with other freshwater studies (Schulz et al. 1997; Nozhevnikova et al. 2007; 

Duc et al. 2010), temperature appears to play a major role in the determination of MG rates in 

these two shallow arctic lakes as evidenced by the significant increase in log-transformed MG 

rates with increasing temperature in both lakes. Non-transformed rates of MG exhibited a 

sharper response to higher temperatures than lower incubation temperatures in both lakes. 

High variability among replicates was observed in both lakes, particularly at higher 

temperatures. After adjusting for the influence of temperature, least square mean log-

transformed rates of MG was significantly greater in GTH 114 than in E4. The variation in 

methanogenic response to temperature is likely related to differences in substrate availability 

among studies (Segers 1998; Duc et al. 2010). In my previous experiments, addition of 

methanogenic substrates to sediments from E4 and GTH 114 significantly enhanced rates of 

MG, suggesting that substrate supply was suboptimal in the sediments of these two lakes 

(Figures 2.4 and 2.5; Chapter 2). Methanogenic experiments conducted in the present 

component of my study did not receive additional methanogenic substrates and are therefore 

assumed to be representative of MG in these lakes under suboptimal conditions of substrate 

supply.  While methanogenic substrate availability may be suboptimal currently, the data 

suggest that sufficient substrate were present to allow some degree of temperature 

dependence on MG rates, but MG rates are not strictly governed by enzyme activity.  

 It is widely recognized that MG occurs across a broad temperature range, but only a few 

studies have determined optimum temperatures for MG bacteria in freshwater sediments 
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(Zeikus and Winfrey 1976; Schulz and Conrad 1996; Schulz et al. 1997).  Zeikus and Winfrey 

(1976) found that MG activity was optimal in the 35-42°C temperature range in sediments from 

Lake Mendota. In Lake Constance, 30°C was found to be the optimal temperature for MG in the 

littoral zone (Thebrath et al. 1993) while 40°C was determined to be the optimum temperature 

for MG activity in the profundal zone, despite the fact that in situ temperatures are typically 

below 25°C in the littoral zone and remain near 4°C in the profundal zone in that lake (Schulz 

and Conrad 1996). Though it is not clear whether the driving force for these temperature 

optima relate to the methanogens and/or the symbiotic bacterial groups providing 

methanogenic substrates (Schulz et al. 1997).  The optimum temperatures for MG activity were 

not determined in my study. However, given the significant response of log-transformed rates 

of MG to temperature in my study, it is probable that the temperature optimum for MG and/or 

the microbial community providing methanogenic substrates in E4 and GTH 114 is higher than 

the maximum temperature incubation in my study. Although it is unlikely that these arctic lake 

sediments will approach the optimum temperatures for methanogens, my data suggest that 

the MG response to temperatures will exhibit a positive response to any realistic increase in 

temperature without additional changes in substrate quantity or quality.   

4.4.2 Influence of Temperature on Methane Oxidation 
 

 The influence of temperature on Mox rates appears to be more pronounced at higher 

CH4 concentration than at low CH4 concentration (De Visscher et al. 2001; Duc et al. 2010). The 

Q10 estimates for Mox under non-substrate limiting conditions in landfill soil covers ranged 

from 2.8 to 8.4 (De Visscher et al. 2001; Einola et al. 2007), while Q10 values for Mox rates are 

relatively low (1.1 - 1.9) in forest soils exposed to atmospheric CH4 concentrations (King and 
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Adamsen 1992; Roslev et al. 1997).  My calculated Q10 values of 2.3 (E4) and  2.4 (GTH 114) 

under substrate saturated conditions (~ 33 µM CH4) were slightly higher than the reported Q10 

values of 1.4 to 2.1 for northern peatlands (Dunfield et al. 1993), but lie between the range of 

Q10 values reported for non-substrate limited and substrate limited Mox environments.  

Methane availability at 15°C in the latter study corresponded to approximately 1.72 µM CH4. As 

previous studies have reported that Mox is saturated at CH4 concentrations of 5-10 µM (Rudd 

and Hamilton 1975; Harrits and Hanson 1980; Liikanen et al. 2002), it is likely that MOB in the 

Dunfield et al. (1993) study were in an environment of suboptimal CH4 concentration. 

Furthermore, Duc et al. (2010) found no dependence of temperature at a headspace 

concentration approximating 0.57 µM aqueous phase CH4, which are also indicative of 

suboptimal substrate conditions. My data indicate that the influence of temperature on rates of 

Mox at substrate saturation (33 µM) will be modest compared with other studies and that rates 

of CH4 oxidation at 0.5 µM CH4 were uninfluenced by temperature. However, it is unclear at 

what CH4 concentration a temperature x concentration effect will govern rates of CH4 oxidation 

here. 

 Low concentrations of dissolved CH4 in the water column are typical of these shallow 

arctic lakes (Figure 4.3).  Further, the kinetic curves (discussed in more detail below) for E4 

(Figure 4.8) and GTH 114 (Figure 4.9) show that Mox rates will be linear with substrate 

concentration well in excess of current in situ water column CH4 concentrations (Figure 4.3). 

Consequently, the in situ concentration of dissolved CH4 in the water column of these two lakes 

will need to increase dramatically to induce a strong temperature effect on Mox rates. 

Therefore, the effect of temperature on water column Mox is closely tied to CH4 availability and 



115 
 

is minimal under extant temperature regimes. As noted earlier, it is unlikely that CH4 

concentrations will approach the substrate-saturated conditions necessary for Mox to be 

governed strictly by temperature. 

 The optimal temperature range for CH4 oxidizing bacteria varies considerably across 

ecosystems. In the absence of O2 or substrate limitation, the optimal temperature range for 

Mox in freshwater lakes ranges from 25-35°C (Rudd and Hamilton 1975; Harrits and Hanson 

1980; Liikanen et al. 2002). In a boreal peat bog, Whalen and Reeburgh (1996) determined that 

the optimal temperature for Mox was 23°C. As Mox is a key factor in the regulation of CH4 

emissions from the lake surface, the response of MOB to changing temperature regimes could 

have important implications for the global CH4 cycle as temperatures increase towards the 

optimum at high latitudes. However, in the case of these lakes, temperature will provide a 

strong environmental control on Mox only if CH4 increases significantly above current levels.

4.4.3 Kinetics of Methane Oxidation 
 

 Only one study evaluating Mox kinetics in the water column has been reported (Liikanen 

et al 2002) whereas a few studies give values for kinetics parameters in lake sediments 

(Lidstrom and Somers 1984; Kuivila et al. 1988; Remsen et al. 1989; Buchholz et al. 1995; Duc et 

al. 2010). Both E4 and GTH 114 exhibited values of Vmax that were considerably lower than the 

reported estimates in hypolimnetic waters in a eutrophic lake in Finland (Liikanen et al. 2002). 

In that study, the Vmax estimates were 36 µmol CH4 L-1 d-1 in the shallow water (4 m) and 140 

µmol CH4 L-1 d-1 in the deep water (9 m). In contrast, the apparent Km value in the hypolimnetic 

water of E4 approximated the Km value in the shallow hypolimnetic water of the Finnish lake 

(5.5 µM), but the Km value of 44 µM in the deeper zone of that study (Liikanen et al. 2002) was 
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over 4 times greater than the estimated Km values in E4 or GTH 114. Values of kinetic constants 

for Mox were generally in the range of another study that examined Mox kinetics in Lake 

Superior sediments. In that study, the apparent Km value was 4.6 µM while Vmax was 

determined to be 0.7 µmol CH4 L-1 d-1 (Remsen et al. 1989). Kuivila at al. (1988) found 

comparable Km values in the flocculent layer above the sediment surface (5.1 µM) and in the 

upper 1 cm sediment interval (10 µM) in Lake Washington, but Vmax values in their study (29 

µmol L-1 d-1 and 26 µmol L-1 d-1, for the respective depth intervals) were considerably higher 

than my estimates. Kinetics parameters in terrestrial ecosystems also show high variability. 

Higher affinity MOB are typically found in forested soils with low CH4 mixing ratios and show 

comparatively low values of Km (10-280 nM) whereas environments with higher CH4 

concentrations typically have much higher Km values (> 1 µM) (Knief and Dunfield 2005). Higher 

estimates of Vmax are indicative of higher MOB population density (Buchholz et al. 1995) and 

sediments support denser bacterial populations than the water column (den Heyer and Kalff 

1998). Consequently, estimates of Vmax in the sediments are likely higher than those in my 

study, which was conducted with hypolimnetic water.  

 Although Vmax varies as a function of MOB population density, it may be influenced by 

the different types of MOB (Pester et al. 2004; Rahalkar and Schink 2007).  Different MOB types 

occupy different niches and may exhibit shifts in population dominance in response to changes 

in environmental conditions (Borjesson et al. 2004). Further, differing populations of MOB have 

been found to occupy separate niches within a lake ecosystem (Rahalkar and Schink 2007).  

Different communities of MOB will exhibit different affinities for CH4 (Hanson and Hanson 1996; 

King 1992; Segers 1998). Given the significantly greater values of Vmax and Km in GTH 114 
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relative to E4, it is plausible that different populations of MOB exist in the water column 

between the two lakes, although Vmax is also influenced by population size as noted earlier. 

Consequently, the estimated Vmax and Km values could be lower in E4 relative to GTH 114 in 

response to lower sediment efflux of CH4 and/or differing populations of MOB.  

 Comparison of the dissolved CH4 profile in the sediments (Figure 3.13; Chapter 3) and in 

the water column of E4 and GTH 114 (Figure 4.3) indicates considerable oxidation of the CH4 

diffusing up from the sediments. Based on the highest measured dissolved CH4 concentration in 

the water column of E4 and GTH 114 from the 2008 profiles, the Michaelis-Menten equation 

provided estimates of Mox rates equal to 0.08 µmol CH4 L-1 d-1 in E4 and 0.57 µmol CH4 L-1 d-1 in 

GTH 114 at the corresponding water depths.  Compared to the calculated Vmax for each lake, 

these estimates suggest that MOB are operating at 25 and 7% of their capacity at in situ water 

column CH4 concentrations in E4 and GTH 114, respectively, assuming no diffusion limitation of 

substrate. These calculations also ignore the fact that the kinetic experiments were conducted 

at a temperature greater than in situ values, and therefore provide an upper estimate of Vmax. 

Profiles of porewater CH4 in the 0-1 cm depth interval suggest high rates of CH4 oxidation in 

surficial sediments. Indeed, Liikenanen et al. (2002) found higher rates of Mox in the sediments 

than in the water column of Lake Kevaton (Finland). While studies cited earlier show high Vmax 

for sediments, low water column CH4 concentrations (Figure 4.3) and an unrealized capacity to 

oxidize diffusive CH4 in the water of both lakes suggest that these lakes efficiently minimize CH4 

emissions to the atmosphere during the thaw season. Overall, my research indicates that MOB 

in the water column of E4 and GTH 114 are substrate limited currently and will likely respond 
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positively to increased CH4 availability but will be little influenced by temperature increases 

unless dramatic increases in MG are observed. 

4.4.4. Methane Production versus Methane Oxidation 
 

Methane production and oxidation are integral components of within-lake carbon 

cycling. Methane oxidizing bacteria are an important food resource for secondary consumers 

and therefore, represent a substantial source of carbon and energy transfer for lake food webs 

(Hanson and Hanson 1996; Bastviken et al. 2003; Hershey et al. 2006). In the same study region 

as my lakes, Hershey et al. (2006) found that benthic macroinvertebrates were depleted in δ13C 

indicating utilization of MOB as a food resource. Similarly, numerous studies have indicated 

that zooplankton exhibit stable isotope ratios also consistent with consumption of MOB (del 

Giorgio and France 1996; Jones et al. 1999; Bastviken et al. 2003). The linkage between 

methane production and subsequent carbon transfer to zooplankton through consumption of 

MOB may be stronger in lakes with higher allochthonous inputs (Jones et al. 1999), which may 

be an important process in these shallow arctic lakes that rely heavily upon terrestrial inputs. As 

discussed earlier, increased CH4 concentrations may result in MOB population growth which 

may positively impact their overall capacity to mitigate increased CH4 in association with future 

climate change. Conversely, intense grazing on MOB by bacterivorous zooplankton has been 

found to significantly reduce MOB cell numbers (Kankaala et al. 2006).  Consequently, trophic 

suppression of methanotrophic activity could lead to increased CH4 flux to the atmosphere. 

Given the simple structure of arctic lake food webs (Sierszen et al. 2003) increased CH4 

availability as a function of higher allochthonous OM inputs could alter food web dynamics and 

subsequent ecosystem function in the face of a changing arctic climate.  However, the direction 
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or magnitude of these particular changes as a consequence of future climate change is beyond 

the scope of my study. 

 My data indicate that under extant substrate conditions, MG will exert a stronger 

response to temperature increases than water column Mox in both E4 and GTH 114.  The Mox 

kinetics constants estimated for water column MOB point to a high capacity for MOB to 

assimilate CH4 at concentrations greater than present in situ conditions regardless of any 

temperature increase. Further, the Mox kinetics experiments were conducted in hypolimnetic 

water, so estimates of Mox rates may differ considerably in the oxic surficial sediment layer 

(upper 1 cm) in E4 and GTH 114. Bacterial density is often 2-3 orders of magnitude higher in the 

sediments than in the water column (den Heyer and Kalff 1998) and Vmax is at least partly 

dependent upon MOB population density (Buchholz et al. 1995; Hanson and Hanson 1996).  

Published values of Vmax for sediments greatly exceed my water column Vmax values as noted 

earlier. Measurements of sediment Mox potential were not conducted in this study due to 

logistical constraints. Therefore, future studies should examine the kinetics potential of 

sediment MOB in these oligotrophic shallow lakes in order to fully understand the capacity for 

Mox to offset concomitant increases in MG associated with future climate change.  

 

4.5 Conclusion 

 Log-transformed rates of MG in the sediments of E4 and GTH 114 at presumed 

suboptimal substrate levels increased positively with incubation temperature to 16°C.  Thus, 

the measured rate increase represented a temperature x substrate supply response and the 

response to temperature under substrate-saturated conditions is likely greater than in my 
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experiments. Rates of Mox under strictly substrate-saturated conditions displayed a strong 

linear response to temperature. Consequently, the coupled response of sediment MG and 

water column Mox to increased temperatures in arctic lakes as a function of ongoing climate 

change is likely disproportionate.  Under current climatic conditions, MOB appear to be more 

strongly controlled by substrate availability than by temperature in these two shallow arctic 

lakes. My research shows that without a population increase, MOB will efficiently adjust to 

increases of > 1 order of magnitude in CH4 availability without reaching their maximum uptake 

potential. My data further indicate that CH4 must greatly exceed its current concentrations in 

order to induce strict dependence of water column Mox on temperature, although it is unclear 

at what point temperature x substrate interactions commence.   

 Kinetic constants for Mox differed considerably between lakes. The maximum CH4 

uptake rate (Vmax) was much greater in GTH 114 than in E4, which is likely driven by differences 

in MOB population density due to characteristically greater CH4 availability due to diffusion 

from underlying sediments (Figure 3.7; Chapter 3), although differences could be influenced by 

population structure. In addition, the half-saturation constant (Km) was considerably higher in 

GTH 114 than in E4 further suggesting the possibility of physiologically different MOB groups 

existing between lakes. Future research should incorporate comparisons between sediment 

and water column Mox to compare CH4 oxidation potential between environments. These 

factors would likely provide valuable information regarding the extent to which Mox rates in 

these shallow arctic lakes will offset any increases in CH4 production and elevated sediment and 

water temperature associated with projected future climates.  
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TABLES AND FIGURES 

 
 
 
Table 4.1. Mean CH4 production ± 1 SEM (µmol CH4 L-1 d-1)  in sediment slurries  

from E4 and GTH 114 at various water temperatures (°C).   

Lake 0°C 4°C 8°C 12°C 16°C 

E4 0.15 ± 0.05 1.38 ± 0.80 3.13 ± 0.88 8.93 ± 5.07 20.90 ± 5.71 
GTH 114  0.73 ± 0.18 9.04 ± 4.94 16.10 ± 3.21 38.18 ± 5.99 67.95 ± 8.69 
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Table 4.2. Results of the Analysis of Covariance (ANCOVA) evaluating the effects of lake 
and temperature (°C) on log-transformed rates of methanogenesis (nmol CH4 L-1 d-1).  

Source df Type I SS MS F-statistic p-value 
 Lake 1 12.47 12.47 23.94 < 0.0001 
 Temperature 1 22.02 22.02 42.26 < 0.0001 
 Lake  * Temperature 1 0.08 0.08 0.15 0.6975 
 Model 3 34.57 11.52 22.12 < 0.0001 
 Residual Error 46 23.97 0.52 

   Corrected Total 49 58.54       
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Table 4.3. Mean CH4 consumption ± 1 SEM (µmol CH4 L-1 d-1) in sediment slurries  

from E4 and GTH 114 at various water temperatures (°C).   

Lake 0°C 4°C 8°C 12°C 16°C 

E4 0.053 ± 0.008 0.073 ± 0.006 0.107  ± 0.007 0.215 ± 0.04 0.231 ± 0.034 

GTH 114  1.17 ± 0.04 2.59 ± 0.19 4.57 ± 0.05 6.52 ± 0.10 8.16 ± 0.11 
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Table 4.4. Results of the Analysis of Covariance (ANCOVA) evaluating the effects 

of lake and temperature on rates of methane oxidation (µmol CH4 L-1 d-1).  
 Source df Type I SS MS F-statistic p-value 

Lake 1 149.66 149.66 6009.38 < 0.0001 

Temperature 1 50.84 2.20 2041.26 < 0.0001 

Lake  * Temperature 1 45.49 45.49 1826.47 < 0.0001 

Regression 3 245.98 81.99 3292.37 < 0.0001 

Residual 26 0.65 0.02 
  Corrected Total 29 246.63       
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Table 4.5. Results of the Analysis of Covariance (ANCOVA) comparing log-transformed 
methane production to log-transformed methane oxidation after controlling for the 
influence of the covariate temperature in E4 from 2010. The reaction term categorizes 
methane production or oxidation. 

Source df Type I SS MS F-statistic p-value 
 Reaction 1 8.22 8.22 14.16 0.0006 
 Temperature 1 9.29 9.29 16.01 0.0003 
 Reaction * Temperature 1 1.34 1.34 2.31 0.14 
 Regression 3 18.85 6.28 10.82  <0.0001 
 Residual 36 20.90 0.58 

   Corrected Total 39 39.75       
 

       

       

       Table 4.6. Results of the Analysis of Covariance (ANCOVA) comparing log-transformed 
methane production to log-transformed methane oxidation after controlling for the 
influence of the covariate temperature in GTH 114 from 2010. The reaction term 
categorizes methane production or oxidation. 

Source df Type I SS MS F-statistic p-value 
 Reaction 1 1.62 1.62 17.78 0.0002 
 Temperature 1 12.13 12.13 132.84 < 0.0001 
 Reaction * Temperature 1 1.56 1.56 17.07 0.0002 
 Regression 3 15.31 5.10 55.9 < 0.0001 
 Residual 36 3.29 0.09 

   Corrected Total 39 18.60       
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Figure 4.1. Simple linear regression of log-transformed rates of methanogenesis (MG) on 
incubation temperature in E4 in 2010. 

 

y = 2.99 + 0.12x

R
2
 = 0.79

p < 0.0001

Temperature (°C)

0 4 8 12 16

L
o

g
 M

G
 R

a
te

 (
n

m
o

l 
C

H
4
 L

-1
 d

-1
)

2.5

3.0

3.5

4.0

4.5

5.0

 
 

Figure 4.2. Simple linear regression of log-transformed rates of methanogenesis (MG) on 
incubation temperature in GTH 114 in 2010. 
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Figure 4.3. Water column methane profiles taken from zone of maximum  
water depth in 2008. 
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Figure 4.4. Simple linear regression of methane oxidation rate (Mox) on 
temperature in E4 in 2010. 
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Figure 4.5. Simple linear regression of methane oxidation rate (Mox) on 
temperature in GTH 114 in 2010.  
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Figure 4.6. Mean rates of CH4 loss from the headspace in serum vials containing 
hypolimnetic water from E4 and GTH 114 and incubated at varying temperatures under 
substrate-limiting conditions in 2009. Error bars are ±1 SEM (n = 3 in most cases).  
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Figure 4.7. Mean log-transformed rates of methanogenesis (MG) vs. log-
transformed rates of methane oxidation (Mox) in 2010. 
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Figure 4.8. The effect of methane concentration (µM) on water column methane 
oxidation rates (V) in E4 in 2010. 
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Figure 4.9. The effect of methane concentration (µM) on water column methane 
oxidation rates (V) in GTH 114 in 2010.



 
 

CHAPTER 5: CONCLUSION 
 

 The Arctic landscape is currently undergoing multi-scale ecosystem transformations as  

a result of ongoing climate change (Overpeck et al. 1997; Rysgaard et al. 2003; Post et al. 2009). 

Despite widespread areal coverage of shallow lakes in the Arctic, research efforts have primarily 

focused on CH4 dynamics and emission estimates from terrestrial environments. Projected 

alterations to the arctic environment under future climates may influence methanogenesis and 

methane oxidation, leading to possible changes in rates of CH4 exchange between shallow 

arctic lakes and the atmosphere. Therefore, I conducted this research on two shallow arctic 

lakes to understand the factors controlling MG and Mox under present conditions in an effort 

to evaluate their response to predicted increases in temperature and OM availability that may 

result from ongoing climate change.  

 Rates of MG increased significantly in response to substrate (acetate or H2) additions in 

in most 1 cm intervals to 5 cm sediment depth of these two shallow lakes, indicating that both 

methanogenic pathways experience suboptimal substrate levels.  Thus, any climate-induced 

influences on the syntrophic bacteria or acetogens providing methanogenic substrates will 

positively influence MG rates.  The relative contribution of the acetoclastic pathway to total 

methanogenesis in both lakes decreased with increasing depth below the sediment surface to 5 

cm, reflecting a down-core decrease in OM quality.  The relative importance of the acetoclastic 

and hydrogenotrophic pathways differed between lakes, suggesting control by within-lake



138 
 

 processes related to internal mixing regimes as well as landscape scale factors such as quality 

and quantity of OM delivery from the terrestrial landscape.   

 Analysis of the spatial variability of CH4 production in the horizontal dimension in these 

two shallow arctic lakes showed significant differences among lake zones in E4, but no zone-

wise differences in rates of MG in GTH 114.  Thus, studies using rate measurements at a central, 

deep station to characterize lakes with respect to MG may give misleading results and broader 

spatial coverage is warranted for a firmly based analysis.  Similarly, porewater CH4 profiles 

showed spatial variability within each lake and whole lake estimates of sediment CH4 efflux will 

benefit from properly weighting fluxes from defined lake zones.  Most sediment CH4 exchange 

occurred in either the littoral or epilimnetic regions of these lakes, regions close to shore that 

can intercept diffuse terrestrial inputs. 

 Temperature may directly influence MG pathways by enhancing enzyme activity or 

indirectly via stimulation to symbiotic bacteria that provide MG substrates. Therefore, in situ 

sediment temperature was included into statistical models to assess the level of influence of in 

situ sediment temperature on rates of MG in sediment slurries incubation without additional 

substrates. My data showed that %OM was a better predictor of MG rates than in situ 

temperature. Consequently, under present conditions, MG appears to be more tightly 

regulated by availability of OM than by in situ temperature in these two shallow arctic lakes.   

 Although in situ sediment temperature did not appear to be a good predictor of MG 

rates under present conditions, separate laboratory incubations with unamended sediment 

slurries from E4 and GTH 114 exhibited a strong linear response to increasing temperature to 

16°C.  While my substrate addition experiments indicated that substrate supply to MG is 
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suboptimal, the supply of substrates must be sufficient to elicit a positive influence to 

temperature on MG rates in unamended sediments slurries. Therefore, MG activity in these 

two shallow arctic lakes will likely respond positively to any realistic increases in sediment 

temperature without any concomitant increases in substrate supply. 

 Methane oxidation rates at CH4 concentrations typical in these lakes showed no 

response to temperature increases, indicating that MOB in the water column of E4 and GTH 

114 are currently substrate limited. In contrast, addition of high concentrations of CH4 induced 

dependence of Mox on temperature. Comparison of the Mox kinetic constants and in situ CH4 

concentrations in the water column of E4 and GTH 114 revealed that MOB are operating at 25 

and 7%, respectively, of their maximum CH4 uptake capacity. Thus, my research shows that 

while MG will be influenced positively by increasing temperatures associated with ongoing 

climate change, Mox will be minimally impacted by changing temperature unless a drastic 

increase in CH4 concentration is observed.  

 While rates of MG will likely be stimulated with increased temperature and substrate 

availability in association with future climate change, my data suggests that the overall impact 

of changes in temperature and OM supply may be minimal with regard to CH4 efflux to the 

atmosphere due to the underutilized capacity for MOB to process CH4.  

 Several future research directions have been identified through my study. Future 

experiments should more firmly establish the interactive effects of temperature and substrate 

availability on MG and Mox. Further, the coupled interaction between substrate availability and 

sediment temperature as it influences the spatial variability of MG should also be considered. 
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Finally, future research should incorporate comparisons between sediment and water column 

Mox to evaluate overall CH4 uptake potential.  
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