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ABSTRACT 

William Ross Proctor III: A Novel Mechanism for Intestinal Absorption of the  
Type II Diabetes Drug Metformin: Role of Cation-selective Apical  

Transporters in Paracellular Absorption 
(Under the direction of Dhiren R. Thakker, Ph.D.) 

 
 

Metformin, a widely prescribed anti-hyperglycemic agent, is very hydrophilic with 

net positive charge at physiological pH, and thus should be poorly absorbed.  Instead, the 

drug is well absorbed (oral bioavailability of 40-60%), although the absorption is dose-

dependent and variable; the drug accumulates in enterocytes during oral absorption.  To date, 

the transport processes associated with the intestinal absorption of metformin are poorly 

understood.  This dissertation work describes an unusual and novel intestinal absorption 

mechanism for metformin.  The absorption mechanism involves two-way transport of 

metformin across the apical membrane of enterocytes that is mediated by cation-selective 

transporters, and facilitated diffusion across the paracellular route, working in concert to 

yield high and sustained absorption 

 Metformin absorption was evaluated in the well established model for intestinal 

epithelium, Caco-2 cell monolayers.  Metformin was efficiently transported across the apical 

membrane by bidirectional cation-selective transporters; however, the drug accumulated in 

the cells due to inefficient egress across the basolateral membrane.  Consequently, the 

absorptive transport was almost exclusively through the paracellular route; however, the 

paracellular transport contained a distinct saturable component.   
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 Evidence is presented to show that the mechanism responsible for the observed 

saturable paracellular transport involves electrostatic interactions between positively charged 

metformin and negatively charged amino acid residues on the pore-forming tight-junction 

protein, claudin-2.  Treating Caco-2 cells with the active metabolite of vitamin D3, 1,25-

dihydroxyvitamin D3, selectively induced claudin-2 in preference to other tight junction 

proteins, and concurrently increased paracellular transport of metformin.  Overexpression of 

claudin-2 in renal epithelial cells, LLC-PK1, caused size-dependent increase in paracellular 

transport of small organic cations, further supporting the role of claudin-2 in facilitating 

paracellular transport of hydrophilic cationic compounds.  By employing a novel chemical 

inhibition scheme, it was revealed that both the organic cation transporter 1 (hOCT1) and the 

plasma membrane monoamine transporter (PMAT) were involved in the apical uptake/efflux 

of metformin in Caco-2 cell monolayers.   

Taken together, these results suggest a novel mechanism to explain how a hydrophilic 

cation like metformin is absorbed efficiently, though it uses the inefficient paracellular route 

for absorption.  It is hypothesized that metformin is taken up into enterocytes via apical 

cation-selective transporters, hOCT1 and PMAT, and accumulates in the cells because of 

inefficient basolateral egress due to the lack of cation-selective efflux transporters.  At each 

segment of the intestine, a small fraction of the metformin dose is absorbed via the 

paracellular route, facilitated by claudin-2, while a significant portion of the dose is taken up 

into the cells.  Drug is then effluxed back into the lumen as the dose of the drug travels 

forward, taken up into distal enterocytes, or absorbed through the paracellular space.  The 

apical transporters function to sequester the drug and allow for multiple opportunities to be 

absorbed by the paracellular route; thus, increasing the residence time in the intestine 
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enabling efficient absorption.  This dissertation work provides novel insights into the 

mechanisms associated with intestinal absorption and accumulation of metformin. The 

absorption mechanism proposed can account for the sustained high exposure of metformin 

achieved in the primary pharmacological organ, the liver, via the portal circulation.  

Additionally, the mechanisms proposed here can account for the possible role of the intestine 

in the pharmacology, gastrointestinal side effects, and adverse events of metformin.   
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1.A. INTRODUCTION 

 Metformin, known by the brand name Glucophage™, is the front line therapy to treat 

adult onset non-insulin dependent diabetes mellitus (Type II).  Metformin belongs to a class 

of anti-diabetic agents known as biguanides that also include buformin and phenformin (refer 

to Figure 1.1 for protonated structures of biguanide compounds).  Buformin and phenformin 

were discontinued from use in the 1970s due to their increased incidences of toxicity, mainly 

surrounding occurrences of drug induced lactic acidosis (refer to Section 1.E.6) (Nattrass and 

Alberti, 1978).  Interest in biguanide compounds as potential anti-diabetic agents emerged 

after identification of the plant extract, galegine.  Galegine, or isoamylene guanidine, was 

isolated from extracts of the European herbal medicine Goat’s rue (Galega officinalis) 

(Bailey and Day, 1989).  This plant, otherwise known as French lilac or Spanish sanfoin, 

contained high levels of guanidine and galegine, which was first proposed in the 17th century 

Europe to possess anti-diabetic properties (Bailey and Day, 2004).   

Metformin, or 1,1,-dimethylbiguanide, was first synthesized by Werner and Bell in 

1921 (Werner and Bell, 1921) and introduced into humans as an oral treatment for Type II 

diabetes by Dr. Jean Sterne in 1957 at the Hôpital de la Pitie in Paris, France (Bailey and 

Day, 1989).  Commercial use of metformin first occurred in the United Kingdom (UK) in 

which the small French pharmaceutical company Aron and UK subsidiary Rona marketed 

metformin as an oral antihyperglycemic agent for treatment  of mature onset diabetes in 1958 

(Hadden, 2005).  In Europe, metformin did not achieve widespread use until the late 1970s 

due to the market focus on the other more potent biguanides and insulin therapy (Bailey and 

Day, 2004).  The drug was approved for use in Canada in 1972 (Lucis, 1983) and was 

introduced in the United States in December of 1994.  In 2007, metformin therapy for 
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management of type II diabetes accounted for approximately 54% of the 34 million treatment 

visits that took place in the United States (Alexander et al., 2008).   

The proposed mechanisms by which metformin exerts its pharmacological effect 

involve activation of AMP-activated protein kinase (AMPK) (Zhou et al., 2001).  AMPK is a 

key regulator of energy balance in the body and activation of AMPK produces 

pharmacologic effects that are system dependent (e.g. dependent upon the cell, tissue, or 

organ) (Hardie, 2008).  As a result, the distribution and disposition of metformin throughout 

the body drive its local and overall pharmacologic effects.  However, metformin is a polar 

hydrophilic molecule (logD at pH7.4 of -6.13) that contains a net positively charge (pKa 

12.4) at physiological pH (Saitoh et al., 2004).  Consequently, metformin is unable to 

efficiently diffuse across biological membranes; thus, requiring carrier-mediated transport 

processes for efficient entry and exit from cells, tissues, or organs.  Therefore, transport 

processes drive both the pharmacokinetics and pharmacodynamics of this drug.  

 

1.B. PATHOLOGY AND PATHOGENESIS OF TYPE II DIABETES 

Non-insulin dependent diabetes mellitus (type II) can exist in patients for years in a 

pre-diabetic state and typically is not diagnosed in patients until complications appear 

(Codario, 2005). Common symptoms of hyperglycemia are polyurea, polydipsia, and 

unexplained weight loss (ADA, 2009).  The hyperglycemia observed in the type II diabetic 

patient is often associated with other metabolic abnormalities such as obesity, 

hyperinsulinenmia, hypertension, dyslipidemia, and impaired fibrinolysis (Henry, 1996).  

These factors potentiate progression of type II diabetes.  In particular, obesity is the greatest 

risk factor for developing type II diabetes, where increased abdominal or visceral adipose 
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tissue alters free-fatty acid (FFA) metabolism, changes adipokine release, and increases fat 

accumulation in muscle, epicardial, and liver tissue (Despres and Lemieux, 2006).  Even 

though there are significant non-obese populations that develop type II diabetes, 54% of the 

reported cases of type II diabetes over a three year prospective study (1999-2002) occurred in 

patients that were obese (e.g. body mass index greater than 30 kg/m2) (MMWR, 2004).   

The prevailing phenotype associated with type II diabetes involves three major 

metabolic disturbances: increased hepatic gluconeogenesis, impaired insulin secretion, and 

peripheral insulin resistance (Henry, 1996).  Of these three factors, insulin resistance plays a 

significant role in pre-diabetic state and progression to type II diabetes (Codario, 2005).  

Insulin resistance typically occurs 10-20 years prior to clinical diagnosis of type II diabetes 

(Warram et al., 1990).  During this asymptomatic phase of the disease, insulin secretion by 

the pancreatic beta cells is increased to regulate glucose homeostasis.  Progression to type II 

diabetes occurs when the beta cells exhaust their ability to increase insulin release, resulting 

in elevated plasma glucose levels.  Insulin resistance is manifested by a myriad of causes 

including: genetics factors, elevated FFA concentrations, hyperglycemia, pregnancy, obesity, 

sedentary lifestyle, and aging (Codario, 2005).  In particular, elevated serum FFA 

concentrations appear to be a main source for conferring insulin resistance (Dresner et al., 

1999; Roden et al., 2000; Abdul-Ghani et al., 2008; Liu et al., 2009). 

 

1.C. METFORMIN PHARMACOLOGY 

1.C.1. Clinical Effects 

 The pharmacological effects of metformin are tissue and organ specific.  Small 

intestine, liver, skeletal muscle, and adipose tissue each have distinct metformin 
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pharmacological effects that combine to reduce systemic glucose burden and increase insulin 

sensitivity (refer to Figure 1.2).  Metformin reduces both basal (e.g. preprandial) and 

postprandial plasma glucose levels in type II diabetic patients (Lord et al., 1983; Jackson et 

al., 1987; Hermann et al., 1994; Sambol et al., 1996b).  The greatest reduction in plasma 

glucose occurs postprandial (Bailey, 1992; Sambol et al., 1996b).  Metformin glucose 

lowering effect on healthy patients was not significant (Sambol et al., 1996b) and treatment 

did not cause clinical hypoglycemia (Bailey et al., 1989).  Even in cases where accidental or 

intentional metformin overdose occurred, patients were not clinically hypoglycemic 

(McLelland, 1985).  Oral and intravenous glucose tolerance were improved with metformin 

treatment in type II diabetes patients (Lord et al., 1983; Jackson et al., 1987).  This data taken 

together supports metformin to be an anti-hyperglycemic agent and potentially an insulin 

sensitizer rather than a hypoglycemic drug.   

   Long term treatment of metformin has been also been associated with weight loss in 

obese and non-obese type II diabetic patients (Clarke and Campbell, 1977; Hermann et al., 

1994; Tuthill et al., 2008).  Metformin-induced weight loss has been associated with reduced 

caloric intake and appetite suppression (Lee and Morley, 1998).  However, there was no 

treatment effect on body weight in a 29 week study with metformin and placebo control in 

type II diabetic patients, although metformin treatment did not induce weight gain (DeFronzo 

and Goodman, 1995). The effect of metformin on reducing or maintaining body weight in 

type II diabetics directly contrasts the effects of sulphonyureas, which are known to 

significant increase body weight following long term treatment (Clarke and Campbell, 1977; 

Hermann et al., 1994). 
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 Metformin significantly reduced total plasma cholesterol and  plasma low density 

lipoprotein (LDL) cholesterol, while no significant changes were observed for plasma 

triglyceride levels (DeFronzo and Goodman, 1995).  Obese type II diabetic patients treated 

with 2.5 g/day of metformin for 3 months had reduced plasma free fatty acid (FAA) 

concentrations, a significant reduction in plasma triglycerides, and a reduction in total plasma 

cholesterol and LDL cholesterol (DeFronzo et al., 1991).  Another study in pre-diabetic 

obese patients, metformin induced significant weight loss and reduced total and LDL 

cholesterol, while not affecting blood pressure, triglycerides, and HDL cholesterol 

(Fontbonne et al., 1996).  Of these effects, only a reduction in LDL cholesterol was attributed 

to the intrinsic effect of metformin and not due to its antihyperglycemic effects (Wulffele et 

al., 2004).   

1.C.2. Insulin Sensitivity and Insulin Resistance 

The effect metformin treatment on blood glucose levels is not related to a an increase 

in insulin levels (Lord et al., 1983; Jackson et al., 1987; Sambol et al., 1996b; Hundal et al., 

2000), and in some cases a small (e.g. 15%) but significant reduction in plasma insulin levels 

were observed with 4 month metformin treatment (Stumvoll et al., 1995).   In obese pre-

diabetic patients, metformin treatment significantly reduced plasma glucose levels and 

fasting insulinemia (Fontbonne et al., 1996); supporting the role of metformin in increasing 

insulin sensitivity.  Metformin did not significantly affect the basal release of insulin from 

pancreas or isolated islets of non-diabetic rats (Schatz et al., 1972) or plasma insulin levels in 

rats (Song et al., 2001).  In isolated human pancreatic islets, metformin did not affect insulin 

release but conferred protection against glucose induced desensitization (Lupi et al., 1999).  

Additionally, a study by Fantus et al. (1986) showed that that the glucose-lowering effect of 
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metformin was independent of basal (e.g. untreated) insulin binding status in type II diabetic 

patients (Fantus and Brosseau, 1986).  However, short term treatment of metformin (e.g. 10 

days) increased insulin sensitivity towards glucose following an oral glucose tolerance test 

(OGTT) (Iannello et al., 2004).  In summary, metformin induced insulin sensitivity is 

independent of insulin receptors and is most likely dependent upon downstream post-receptor 

effects. 

1.C.3.  Inhibition of Hepatic Gluconeogenesis  

The liver is the major site of metformin action, where it inhibits hepatic 

gluconeogenesis.  Metformin reduced hepatic glucose output and reduced lactate 

gluconeogenesis in patients with type II diabetes (Jackson et al., 1987; Stumvoll et al., 1995).  

Using 13C NMR spectroscopy and 2H2O glucose labeling approaches, patients that had poorly 

controlled type II diabetes had increased glycogen cycling and reduced overall 

gluconeogenesis (Hundal et al., 2000).  Metformin-treatment reduces key gluconeogenic 

enzyme expression levels and activities for hepatic fructose-1,5-biphophatase (FBPase), 

phosphoenolpruvate carboxykinase (PEPCK), and glucose-6-phosphate (Song et al., 2001; 

Heishi et al., 2008; Caton et al., 2010).  The molecular mechanism behind the inhibition of 

gluconeogenesis by metformin involves activation of AMPK pathway in the liver and will be 

discussed in detail in Section 1.D. 

1.C.4.  Intestinal Glucose Utilization  

 The role of the intestine in metformin pharmacology is not well known or widely 

established.  However, there are several reports over the past 20 years implicating the 

intestine in mediating a significant portion of the overall glucose lowering effects of 

metformin.  Metformin has been shown to increase mucosal and serosal glucose transport in 
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the intestine (Wilcock and Bailey, 1991; Bailey et al., 1994), which has been attributed in 

part to activation of AMPK to recruit GLUT2 to the apical membrane of the intestinal 

enterocytes (Walker et al., 2005).  Metformin-treatment increased the uptake of the 

intravenously administered positron emission tomography imaging agent, 18F-

flourodeoxyglucose, in the small intestine and colon of healthy volunteers (Gontier et al., 

2008).  These observations support the role of metformin in increasing systemic glucose 

uptake in the intestine.  Another intestinal related effect of metformin is its ability to increase 

intestinal anaerobic glucose metabolism by enhancing lactate production and secretion 

(Wilcock and Bailey, 1990; Bailey et al., 1992; Bailey et al., 2008).  Taken together, 

metformin appears to increase glucose utilization in the intestine, decreasing overall systemic 

glucose burden (Figure 1.2).  A study using different administration routes in streptozotocin-

induced diabetic rats clearly demonstrated the importance of intestine in metformin 

pharmacology, where portal administration of metformin caused a significant reduction in 

overall blood glucose-lowering effects in relation to intraduodenal administration of the drug 

(Stepensky et al., 2002).  In conclusion, the intestine appears to play a role in the 

pharmacology of metformin; yet these effects are often overlooked or underplayed. 

1.C.5.  Peripheral Glucose Uptake in Skeletal Muscle 

 Skeletal muscle is another major organ responsible for metformin-mediated glucose 

lowering effects.  A mechanism of insulin resistance in type II diabetes involves a decrease in 

insulin stimulated recruitment of glucose transporters (in particular GLUT4) to the plasma 

membrane of skeletal muscle (Garvey et al., 1988; Garvey et al., 1998).  Metformin 

treatment significantly increases glucose disposal, muscle glycogen concentrations, and 

lactate levels (Johnson et al., 1993; Musi et al., 2002).  Activation of AMPK results in up-
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regulation of GLUT4 expression (Zheng et al., 2001) and membrane trafficking (Kurth-

Kraczek et al., 1999) in skeletal muscle.  In addition, in vitro studies using L6 skeletal muscle 

cells revealed that metformin treatment activated AMPK which induced lipoprotein lipase 

expression and activity (Ohira et al., 2009), a protein involved in LDL catabolism.  This 

observation presents a possible mechanism for the in vivo effect of metformin to reduce 

serum LDL levels (Wulffele et al., 2004).   

1.C.6. Adipose Tissue and Insulin Resistance 

The pharmacologic effects of metformin in adipocytes are not fully understood and 

are currently under active investigation (Palanivel and Sweeney, 2005; Ren et al., 2006; 

Bourron et al., 2010).  Metformin treatment does not affect glucose transport and GLUT4 

expression (Ciaraldi et al., 2002) nor does it affect the insulin binding and associated insulin 

effects (Pedersen et al., 1989) in adipocytes.  The major action of metformin in adipocytes 

involves inhibition of lipolysis caused by activation of AMPK (Bourron et al., 2010) (Figure 

1.2).  Lipolysis of triglycerides in adipocytes provides the main source of FFA and glycerol 

release into systemic circulation (Despres and Lemieux, 2006), which have been associated 

with conferring insulin resistance (Boden and Shulman, 2002).  Another mechanism of 

responsible for increasing insulin sensitivity in adipocytes by metformin involves adipocyte-

specific hormone regulation, in particular the effect on resistin.  Resistin is an adipocyte-

specific hormone secreted exclusively by white adipocytes and causes systemic insulin 

resistance and reduces glucose uptake in adipocytes (Steppan et al., 2001).  Resistin protein 

expression and activity was down-regulated by approximately 85% following 16 hour 

treatment with 0.1 mM metformin in 3T3-L1 adipocytes (Rea and Donnelly, 2006).  This 

effect likely mediates insulin sensitivity in adipocytes and systemically, although further 
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studies are required to determine the exact mechanism and effects associated with metformin 

regulation of resistin. 

1.C.7. Off-Label Indications and Emerging Therapeutic Areas 

 Therapeutic benefits of metformin have been identified for the endocrine disorder, 

polycystic ovary syndrome (PCOS), cardiovascular disease, and cancer chemotherapy.  

PCOS is the most common endocrine disorder in women of reproductive age with a 

prevalence of approximately 7% (Diamanti-Kandarakis et al.).  The disease is characterized 

by infrequent menstruation and infertility due to annovulation.  Metformin has proved to be 

effective in achieving ovulation, increasing pregnancy rates, reducing fasting insulin 

concentrations, reducing blood pressure, and reducing LDL cholesterol in women with PCOS 

(Lord et al., 2003). 

 There appear to be significant cardioprotective and cardiovascular benefits of 

metformin.  Meta-analysis of 342 overweight diabetic patients treated with metformin had 

39% reduced risk for myocardial infarction (p<0.01) (UKPDS, 1998).  Furthermore, 

metformin has been shown in pre-clinical animal models to prevent the progression of heart 

failure by attenuating oxidative stress induced cardiomyocyte apoptosis (Sasaki et al., 2009).  

The mechanism behind this action appears to stem from metformin mediated activation of 

AMPK that regulates expression of the Bcl-2 family of proteins, Bad, which are responsible 

for initiating apoptosis-induced signaling (Kewalramani et al., 2009).  Further clinical studies 

are required to determine the role of metformin treatment in preventing cardiomyocyte 

apoptosis in humans.   

 Population studies and meta-analysis have indicated that metformin treatment in type 

II diabetic patients have reduced incidences of cancer and improved rates of remission than 
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other type II diabetes therapies.  Jijalerspong et al. (2009) surveyed 2,529 patients who 

underwent chemotherapy for early stage breast cancer between 1990 and 2007.  It was found 

that diabetic patients receiving metformin had a 24% rate of complete remission, in relation 

to 8% for the diabetic patients not receiving metformin (p<0.01) (Jiralerspong et al., 2009).  

The increase in prolonged remission in breast cancer was postulated to involve the ability of 

metformin to starve or kill the drug-resistant progenitor cancer stem cells.  Metformin 

inhibited cellular transformation and killed cancer stem cells from four genetically different 

types of breast cancer in vitro in a concentration dependent manner (Hirsch et al., 2009).  

Additionally, metformin significantly inhibited proliferation of chemo-resistant ovarian 

cancer cell lines through activation of AMPK and its downstream effector, acetyl-CoA 

carboxylase (ACC) (Rattan et al., 2009).  In order for metformin to activate AMPK it 

requires entry into the cytosol, therefore characterizing the transport mechanisms in cancer 

cell lines may provide valuable insight into which cancer types are more susceptible to 

metformin treatment.  Clearly, metformin treatment in cancer is promising.   

 

1.D. ACTIVATION OF THE AMP-ACTIVATED PROTEIN KINASE (AMPK) 

1.D.1. Overview of AMPK  

 The main cellular target of metformin is AMP-activated protein kinase (AMPK) 

(Zhou et al., 2001).  AMPK regulates both cellular and whole body energy balance and is 

conserved across the majority of eukaryotes (McBride and Hardie, 2009).  It has been 

implicated in the regulation of glucose and lipid homeostasis (Hardie, 2003) and remains an 

important target for treatment of type II diabetes (Towler and Hardie, 2007; Gugliucci, 

2009).  AMPK is activated in response to metabolic stresses that induce hypoxia such as 



 12

muscle contractions or exercise.  Additionally, activation can occur due to several 

physiological stimuli such as hormones, cytokines, or exogenous stimuli such as metformin 

(Hardie, 2008).  Activation of AMPK under normal cellular responses occurs in states of low 

energy and it function to trigger a metabolic switch from anaerobic state of energy [e.g. 

adenosine triphosphate (ATP)] depletion to a catabolic state of energy generation.  Anaerobic 

metabolic states utilize ATP hydrolysis to synthesize and store glucose, glycogen, fatty acids, 

cholesterol, and triglycerides.  AMPK activation switches this state to catabolic pathways 

that result in oxidation of glucose, fatty acids, and triglycerides to produce ATP.  In other 

words, activation of AMPK reduces the levels of cellular glucose and lipid production and 

storage and increases consumption of glucose and oxidation of lipids (Hardie, 2008).    

 AMPK function as a heterotrimeric complex composed of α subunit and regulatory β 

and γ subunits (Davies et al., 1994).  As its namesake implies, it is a kinase that is activated 

by 5’-adenosine monophosphate (AMP).  AMPK activation triggers several downstream 

effects, one of which is to phosphorylate and inactivate ACC and 3-hydroxy-3-

methylgutaryl-CoA reductase (Carling et al., 1987), two enzymes responsible for lipid 

biosynthesis.  AMP functions as a direct allosteric modulator of AMPK by binding to the γ 

subunit and also promotes phosphorylation at a critical threonine residue (Thr-172) of the α 

subunit (Suter et al., 2006).  The combined effects synergistically activate AMPK by 1000-

fold in relation to the native kinase.  Binding of AMP to AMPK does not affect the rate of 

phosphorylation by upstream kinases, rather it inhibits dephosphorylation by protein 

phosphatases (Suter et al., 2006).  Therefore, a small increase in AMP causes a significant 

increase in overall kinase activity.  High levels of ATP antagonize AMP binding and overall 
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AMPK activity (Corton et al., 1995); therefore regulating AMPK activity to states of low 

energy.  This function is the driving force behind AMPK primary role as an energy sensor.   

 Activation of AMPK is dependent upon phosphorylation of α subunit Thr-172 residue 

by upstream kinases, in particular the tumor suppressor serine-threonine kinase 11 (LKB1) 

(Woods et al., 2003).  LKB1 requires complexation with two other accessory subunits, 

Ste20-related adaptor protein and mouse protein 25, to mediate phosphorylation of AMPK at 

Thr-172 (Hawley et al., 2003).  The AMPK activator and 5’-AMP analogue, 5-

aminoimidazole-4-carboxamide riboside (AICAR), did not affect LKB1 activity (Woods et 

al., 2003), supporting LKB1 activity on AMPK is independent of AMP binding.  In 

conclusion, AMPK activation involves phosphorylation of the Thr-172 residue by LKB1, 

which is further potentiated by an increase in AMP/ATP ratio.   

1.D.2. AMPK Activation and Downstream Events 

  Activation of AMPK by metformin was first proposed by Zhou et al. (2001), in 

which metformin treatment caused a significant increase in phosphorylated AMPK and a 

decrease in sterol regulatory element binding protein-1 (SREBP-1), a key lipogenic 

transcription factor (Zhou et al., 2001).  Since then, AMPK activation by metformin has been 

implicated in most of metformin perceived therapeutic benefits.  For example, AMPK 

activation by metformin in mouse jejunal tissue increased expression and activity of the 

lumen GLUT2 transporter (Walker et al., 2005).  Metformin activation of AMPK caused a 

significant increase in phosphorylation of ACC (Cleasby et al., 2004; Zou et al., 2004), an 

increase in fatty acid oxidation (Zhou et al., 2001), a decrease in gluconeogenesis enzymes 

PEPCK and glucose-6-phosphatase (Kim et al., 2008; Ota et al., 2009), inhibition of 

cardiomyocyte apoptosis (Sasaki et al., 2009), inhibition of lipolysis in human adipocytes 
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(Bourron et al., 2010), and an increase in expression and activity of lipoprotein lipase 

responsible for LDL catabolism (Ohira et al., 2009).  AMPK activation also results in up-

regulation of GLUT4 expression (Zheng et al., 2001) and membrane trafficking (Kurth-

Kraczek et al., 1999) in skeletal muscle.  The diversity of functions of AMPK in different 

cell types and organs makes it an ideal target for treatment of type II diabetes and is 

responsible for the complex pattern of pharmacologic effects metformin exerts in the body.   

The most studied AMPK activation event for metformin is the triggered reduction of 

expression and activity of gluconeogenic enzymes in the liver (refer to Figure 1.3).  AMPK 

activation by metformin decreased expression of PEPCK and glucose-6-phosphatase (Kim et 

al., 2008), similarly to the effects exerted by AICAR activation (Lochhead et al., 2000).  

AMPK activation results in phosphorylation of the transcriptional co-activator, CREB 

regulated transcription coactivator 2 (TORC2), which is then translocated with the CREB 

binding protein (CBP) from the nucleus to the cytoplasm (Koo et al., 2005).  Recent evidence 

demonstrated that AMPK does not directly phosphorylate TORC2, but activates the 

downstream atypical protein kinase C isoform ι/λ (aPKCι/λ).  PKCι/λ phosphorylates 

TORC2 at its Ser436 residue to disassociate the CREB-CBP-TORC2 complex and halt 

transcription of gluconeogenic genes (He et al., 2009).   

There exist another redundant pathway by which metformin down-regulates PEPCK 

and glucose-6-phosphatase.  This pathway involves the induced expression by metformin of 

both signaling proteins sirtuin-1 (SIRT1) and general control of amino-acid synthesis 5 

(GCN5).  SIRT1 is an NAD+ dependent protein deacetylase, which inhibits gluconeogenesis 

through disrupting the TORC2 signaling pathway and the peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1α) pathway (Rodgers et al., 2005).  SIRT1 
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deacetylates two targets with opposite effects.  SIRT1 can deacetylate TORC2 causing it to 

be targeted for ubiquitin mediated degradation.  SIRT1 can also deacetylate PGC1α, allowing 

it to associate with its partner transcription factors in the nucleus to induce gluconeogenic 

gene expression.  Furthermore, SIRT1 is independent of insulin and is activated based on 

changes in levels of pyruvate and NAD+ (Rodgers et al., 2005).  GNC5 is an acetyl 

transferase that acetylates PGC1α, causing inhibition of its complexation with the 

transcription factor forkhead box-containing protein O subfamily 1 (FOXO1) and CPB, in 

turn inhibiting transcription of gluconeogenic genes (Lerin et al., 2006).  Metformin 

treatment in db/db mice caused an increase in both SIRT1 and GNC5 protein expression, a 

decrease in both TORC2 and PGC1α expression, a reduction in PEPCK expression, and a 

reduction of blood glucose (Caton et al., 2010).  Up-regulation of GNC5 by metformin 

activation of AMPK is proposed to trump the effects of increased SIRT1 on deacetylating 

PGC1α; thus providing overall inhibition of gluconeogenesis.  Surprisingly, inhibition by 6-

[4-(2-piperidin-1-ylethoxy)-phenyl]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine (Compound 

C), a potent select inhibitor of AMPK pathway, did not affect the metformin induced increase 

in GCN5 and SIRT1 expression.  Compound C did result in decreased the effect metformin 

treatment had on reducing PEPCK activity and overall glucose lowering (Caton et al., 2010).  

This suggests that up-regulation of SIRT1 and GCN5 is partially independent of AMPK 

pathway, although further studies are warranted to elucidate the mechanisms by which 

metformin affect SIRT1 and GCN5 expression.   

Additionally, AMPK activated down-regulation of PEPCK and glucose-6-

phosphatase appear to be related to the metformin-AMPK associated increase in the orphan 

nuclear receptor small heterodimer partner (SHP).  Metformin caused a concentration-
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dependent increase in SHP expression in rat hepatocytes which coincided with proportional 

decreases in PEPCK and glucose-6-phosphatase protein levels (Kim et al., 2008).  SHP is an 

atypical orphan nuclear receptor capable of binding to several transcription factors and can 

regulate various genes responsible for bile acid, lipid, and glucose homeostasis (Boulias et 

al., 2005).  SHP expression inhibits expression of gluconeogenic enzymes by displacing CPB 

from the transcription factors hepatocyte nuclear factor (HNF)-4α and FOXO1, which are 

responsible for initiating transcription of PEPCK and glucose-6-phosphatase, respectively 

(Kim et al., 2004; Yamagata et al., 2004).  This pathway appears to be independent of 

CREB-CBP-TORC2 complex, supporting redundant pathways in metabolic regulation in the 

liver by metformin-AMPK pathway.  A schematic diagram depicting the metformin 

associated AMPK activation and downstream effects is depicted in Figure 1.3.  In 

conclusion, metformin activation of AMPK results in various redundant cellular responses to 

halt gluconeogenesis.   

1.4.3. Inhibition of Complex I of the Mitochondrial Respiratory Chain 

Metformin can not directly activate AMPK in a manner similar to AMP or the AMP 

analogue, AICAR (Zhou et al., 2001; Hawley et al., 2002).  Furthermore, metformin does not 

increase the activity of the AMPK upstream kinase, LKB1 (Woods et al., 2003).  The 

prevailing mechanism for metformin associated AMPK activation involves inhibition 

complex I of the mitochondrial respiratory chain (El-Mir et al., 2000; Owen et al., 2000).  

Metformin inhibited mitochondrial oxygen consumption with complex I substrates glutamate 

and malate, but not with complex II or complex IV substrates in rat hepatocytes (El-Mir et 

al., 2000; Owen et al., 2000).  Inhibition of complex I by metformin caused a time- and 

concentration-dependent decrease in gluconeogenesis in isolated rat hepatocytes and 
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decreased the ATP to ADP ratio in rat liver in vivo (Owen et al., 2000).  In skeletal muscle, 

inhibition of complex I by metformin resulted in a concentration-dependent increase in 

lactate release and glucose transport and a decrease in glucose oxidation, glycogen synthesis, 

overall glycogen content, and carbon dioxide production (Brunmair et al., 2004).  In 

adipocytes, metformin caused concentration dependent increase in mitochondrial fatty acid 

β-oxidation and ROS production and an overall reduction in adipocyte mass (Lenhard et al., 

1997; Anedda et al., 2008).  This data together supports the involvement of inhibition of 

mitochondrial respiration on metformin associated pharmacologic effects: decreased hepatic 

gluconeogenesis, increased peripheral glucose utilization, and increased lipid metabolism 

(refer to Figure 1.2 and 1.3).  Interestingly, metformin inhibition of complex I of the 

respiratory chain occurred at physiological concentrations in intact cells and not in purified 

mitochondria (El-Mir et al., 2000; Owen et al., 2000), suggesting that carrier-mediated 

processes are required to accumulate metformin in the cytosol in order for it to exert its effect 

on the mitochondria. 

Inhibition of complex I of the mitochondrial respiratory chain decreases ATP 

synthesis as well as increases production of ROS and RNS (Nishikawa et al., 2000), with the 

latter process directly involved in activating AMPK.  Zou and colleagues in 2004 published a 

detailed and thorough report on the role mitochondrial ROS and RNS had on metformin 

activation of AMPK and subsequent downstream effects.  By using combinations of 

chemical inhibitors, over-expressed cell lines, and transgenic mouse models, this group 

elegantly demonstrated that metformin activated AMPK through inhibition of complex I, 

resulting in mitochondrial superoxide formation, a subsequent increase in RNS, which 

activated a cellular sarcoma (c-Src) and phosphoinositide 3-kinase (PI3K) signaling event to 
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phosphorylate a 3-phosphoinositide-dependent protein kinase 1 (PDPK-1), and ultimately 

activated AMPK (Zou et al., 2004) (Figure 1.3).  Metformin AMPK activation was 

dependent upon nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) 

and mitochondrial superoxide to form a peroxynitrite (ONOO-) species, where AICAR 

activation of AMPK was independent of eNOS expression (Zou et al., 2004).  Peroxynitrite 

is a potent oxidant formed by NO and superoxide at a diffusion-controlled rate that is known 

to activate AMPK via a c-Src-PI3K-dependent pathway that is not dependent upon the AMP 

to ATP ratio (Zou et al., 2003).  This pathway is supported by previous data that metformin 

activation of AMPK was independent of AMP to ATP ratio in the cells (Hawley et al., 2002).   

In conclusion, metformin mediates its pharmacologic action through indirect 

activation of AMPK.  Metformin is transported across the cell membrane into the cytosol and 

binds to the mitochondria to inhibit complex I, producing ROS and ultimately peroxynitrite 

that causes a signal cascade to associate LKB1 with AMPK, resulting in phosphorylation and 

activation of downstream effectors (refer to Figure 1.3).  It is possible that other cellular and 

mitochondrial effects, independent of AMPK activation, are responsible for metformin 

associated anti-hyperglycemic properties and increased insulin sensitivity.   

 

1.E. METFORMIN PHARMACOKINETICS  

1.E.1. Clinical Pharmacokinetics 

 Metformin is an orally administered anti-hyperglycemic agent that is dosed as 

immediate release formulations of 500, 850, and 1000 mg or extended release formulations 

of 500, 750, and 1000 mg tablets.  Maximal daily doses for immediate and extended 

formulations are 2550 mg and 2000 mg, respectively.  The pharmacokinetic properties of 
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metformin have been examined in both healthy and type II diabetic patients.  The overall 

pharmacokinetics of metformin is not dependent upon disease state (Tucker et al., 1981; 

Sambol et al., 1996b); therefore description of the pharmacokinetic parameters here will 

involve data from both populations.  The drug does not bind to plasma proteins in vivo or in 

vitro (Pentikainen et al., 1979; Tucker et al., 1981).  Furthermore, metformin undergoes 

negligible metabolism (e.g. < 20%) and is excreted primarily unchanged.  Small 

contributions of hepatic metabolism has been postulated to explain the less then 20% of the 

drug not accounted for following intravenous administration (Tucker et al., 1981).  More 

detailed description of non-renal clearance mechanisms of metformin will be described 

below in Section 1.E.4b, although the contribution of this pathway to overall metformin 

clearance is negligible.   

1.E.1.a.  Intravenous Administration 

 Metformin administered as a bolus intravenous dose is rapidly cleared from the body 

with a intravenous plasma half-life (t1/2,P) of approximately 2 hours (Pentikainen et al., 1979).  

Intravenous plasma concentration data were fit to a two-compartment open model with one 

central compartment that is rapidly equilibrated and a second “deep” peripheral compartment  

that accumulates metformin (Noel, 1979; Pentikainen et al., 1979; Tucker et al., 1981).  The 

rate of elimination from the peripheral deep compartment is significantly slower than 

elimination from the central compartment with a peripheral compartment half-life ranging 

between 12-20 hours (Pentikainen et al., 1979; Tucker et al., 1981).  The proposed organs, 

tissues, or cells that make up this peripheral compartment will be discussed in later in the 

Section 1.E.3.  Following intravenous administration, the majority of metformin was 

excreted in the urine unchanged with the percent of dose recovered ranging from 80-100% 
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(Pentikainen et al., 1979; Tucker et al., 1981).  Renal clearance represented total clearance of 

metformin following intravenous administration and was approximately 5-fold higher than 

creatinine clearance (Pentikainen et al., 1979; Tucker et al., 1981); indicating active tubular 

secretion in its elimination.   

1.E.1.b.  Peroral Administration  

 Oral administration of single doses ranging from 0.25 to 1.5 g yielded non-

compartmental and compartmental parameters outlined in Table 1.1.  The maximal plasma 

concentration (Cmax) of metformin was generally described by the dose input and for the most 

part was dose proportional with reported Cmax values for 0.25 g tablet and the 1.5 g tablet of 

0.59 ± 0.24 and 3.10 ± 0.93 µg ml-1 (Table 1.1) (Tucker et al., 1981; Somogyi et al., 1987).  

The oral plasma half life (t1/2,P) of metformin ranges between 2 and 6 hours (Table 1.1), with 

a mean half life of approximately 4 hours.  Similar to the intravenous data, the plasma 

metformin pharmacokinetic profile was well described by a three-compartment open model 

with the gastrointestinal compartment providing input into the central compartment which 

can eliminate the drug into the urine or distribute the drug into the deep peripheral 

compartment (Pentikainen et al., 1979).  Plasma metformin concentrations measured 

throughout two weeks of continuous oral dosing were accurately predicted from single dose 

data, although the trough levels of metformin were under predicted by the model (Tucker et 

al., 1981).  This observation supports slow accumulation and elimination from a deep 

peripheral compartment.  The absorptive half life (t1/2,abs) determined by deconvolution 

analysis for 0.5 g oral dose was significantly greater for the dose equivalent intravenous 

elimination half-life (t1/2,β) (Pentikainen et al., 1979); indicating that the elimination rate 

during oral administration likely represented the rate of absorption.  In other words, 
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metformin undergoes “flip-flop” kinetics, where absorption is the rate-limiting step to its 

elimination following oral administration.  Absolute oral bioavailability (F) of metformin 

ranges between 40-60% and appears to be dose-dependent (Noel, 1979; Pentikainen et al., 

1979; Tucker et al., 1981; Karttunen et al., 1983; Pentikainen, 1986) (Table 1.1).  The 

volume of distribution (VD) of metformin is relatively large considering the hydrophilicity of 

the drug, with reported values that are highly variable ranging between 60 and 280 L (Noel, 

1979; Pentikainen et al., 1979; Tucker et al., 1981) (Table 1.1).   

1.E.2. Intestinal Disposition and Absorption 

 The gastrointestinal absorption of metformin is high considering its net positive 

charge and significant hydrophilicity at physiological pH values (refer to Figure 1.1 structure 

of metformin).  The fraction of dose absorbed of metformin ranged between 80% and 65%, 

with 20 to 35% of the drug recovered in the feces (Tucker et al., 1981).  No drug was 

detected in the feces following intravenous administration; therefore it was assumed that 

metformin present in the feces was unabsorbed drug (Tucker et al., 1981).  Furthermore, 

metformin absorption was dose-dependent, with greater percent of the drug being absorbed at 

low dose in relation to high dose (Noel, 1979; Tucker et al., 1981; Sambol et al., 1996a; 

Sambol et al., 1996b).  For example, the absolute bioavailability for 0.85 g dose was 14% 

lower than the bioavailability for 0.5 g dose in healthy volunteers (Sambol et al., 1996a).  

Intestinal perfusion experiments supported this observation in which metformin permeability 

across the rat duodenum decreased with increasing dose (Song et al., 2006).  Another report 

in rats indicated that metformin gastrointestinal absorption was dose-independent and linear 

for the three doses selected: 50-, 100-, and 200-mg/kg (Choi et al., 2006).  It should be noted 

that during this study the doses selected were relative high (e.g. 50 mg/kg is equivalent to 1 g 
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tablet) and therefore, the dose-independence observed likely represents post-saturable linear 

absorption.   

 A study in healthy volunteers using direct administration of metformin into the 

stomach, jejunum, and ileum revealed that metformin is poorly absorbed across the gastric 

mucosa (≤ 10% over 4 hours) and that metformin treatment did not affect gastric emptying 

(Vidon et al., 1988).  Approximately 20% of the dose was absorbed in the duodenum and the 

remaining 60% of the dose absorbed across the jejunum and ileum, with 20% of the 1-g dose 

ending up in the colon where it was not absorbed (Vidon et al., 1988); indicating that 

metformin requires the entire length of the intestine for absorption.   

 Metformin accumulates in the intestine following oral administration and likely 

mediates its slow rate of absorption.  Human jejunum tissue biopsies taken from type II 

diabetic patients treated in the presence of metformin had between 30- and 300-fold higher 

metformin concentrations than observed plasma concentrations (Bailey et al., 2008).  In a 

diabetic mouse model, the greatest accumulation of metformin following oral administration 

was in the small intestine with levels 50- to 100-fold higher than plasma concentrations 30 

minutes post dose (Wilcock and Bailey, 1994).  The drug remained accumulated in mouse 

small intestine 20-fold greater than plasma concentrations 8 hours following oral 

administration (Wilcock and Bailey, 1994).  In conclusion, metformin intestinal absorption is 

slow and requires the entire length of the small intestine to be absorbed; yet it is relatively 

efficient and dose-dependent, supporting saturable transport processes are involved.   

1.E.3. Distribution 

 Metformin distribution in the body is rapid, but a slow transfer to a deep peripheral 

compartment was observed (Pentikainen et al., 1979; Tucker et al., 1981).  In humans, 
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metformin accumulates in the small intestine (Bailey et al., 2008) and in the liver (Shu et al., 

2008).  In mice, metformin is known to accumulate mostly in the stomach, liver, small 

intestine, and kidneys and to a lesser extent the heart, skeletal muscle, and white adipose 

tissue (Wilcock et al., 1991; Wilcock and Bailey, 1994; Wang et al., 2002).  Metformin was 

actively taken up into rat liver at levels greater than the vascular space, supporting hepatic 

intracellular accumulation of metformin (Chou, 2000).  Cellular localization of metformin 

has been estimated in tissue and cells isolated from mice treated with [14C]metformin, in 

which the majority (approximately 75%) of metformin exists in the cytosolic compartment 

with the remaining found in the nuclear, mitochondrial, lysosomal, and membrane fractions 

(Wilcock et al., 1991). 

 As stated earlier, metformin does not bind to plasma proteins, although there appears 

to be a clinically relevant slow association/disassociation with erythrocytes (Tucker et al., 

1981; Robert et al., 2003).  A study in healthy subjects that received 0.85 g of orally 

administered metformin revealed that the drug accumulated in both plasma and erythrocytes 

in vivo.  Maximal concentration of metformin was attained significantly later in erythrocytes 

than plasma, with Tmax values of 5.7 ± 0.5 and 3.0 ± 0.3 h, respectively (Robert et al., 2003).  

Plasma Cmax was 6-fold greater than the erythrocyte Cmax, yet the overall metformin AUC for 

plasma and erythrocyte levels were not significantly different.  This was due to the very slow 

dissociation rate from erythrocytes in relation to plasma, in which the elimination half-life 

was 23.5 ± 1.9 and 2.7 ± 1.2 h, respectively (Robert et al., 2003).  The slow association and 

subsequent disassociation of metformin in erythrocytes provides insight into the potential 

“deep” peripheral compartment.   
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1.E.4. Elimination 

1.E.4.a.  Renal Clearance 

Metformin is primarily excreted unchanged in the urine by active tubular secretion 

(Noel, 1979; Pentikainen et al., 1979; Tucker et al., 1981; Sambol et al., 1996b).  

Approximately 60% of the oral dose is recovered in the urine following oral administration 

(refer to Table 1.1).  Renal function strongly correlated with the renal clearance rates 

observed with metformin treatment (r=0.88, p<0.001) (Tucker et al., 1981); therefore, 

adequate renal function is necessary to eliminate the drug.  Additionally, metformin therapy 

must be temporarily discontinued in patients receiving intravenous radiographic contrast 

agents, which are known to inhibit renal filtration and secretion (Bailey and Turner, 1996).  

The mechanisms by which metformin is actively excreted in the urine is mediated by specific 

organic cation transporters and will be discussed in detail in Section 1.F.3.  

1.E.4.b. Non-Renal Clearance 

There is no direct evidence to support metformin is excreted in the bile, although 

recent studies in animal models suggest the drug may be excreted into the bile.  No 

metformin was recovered in the feces following intravenously administered (Pentikainen et 

al., 1979; Tucker et al., 1981), which suggested biliary excretion was negligible.  It should be 

noted that biliary excretion of metformin can not be rule out.  Metformin accumulates in the 

liver (Wilcock and Bailey, 1994; Chou, 2000; Wang et al., 2002); yet how this drug exits the 

hepatocytes back into systemic circulation has yet to be determined.  Recent study in healthy 

volunteers revealed that individuals who carried a variant allele for the organic cation 

transporter 1 (OCT1), an uptake transporter in the liver, had a decrease in total clearance that 

was not attributed to alterations in renal clearance (Shu et al., 2008).  It was hypothesized 
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that the decrease in total clearance was due to the inability of individuals carrying the variant 

alleles to accumulate metformin in the liver and excrete it into the bile; therefore reducing the 

total clearance without affecting the renal clearance (Shu et al., 2008).  It is possible that 

excreted metformin in the bile would be readily absorbed in the small intestine and would not 

result in a clinically observed “double-peak” due to the prolonged absorption and intestinal 

accumulation of metformin.     

 Metformin in humans is excreted primarily in the kidney unchanged, although there is 

approximately 20% of the dose that cannot be accounted for during mass balance studies 

(Tucker et al., 1981).  Whether this percent of the dose was metabolized or if it remained 

bound is unknown.  From a clinical standpoint, metformin is not considered to be 

metabolized, nor is there any evidence to support metformin induced drug-drug interactions 

related to metabolism (Scheen, 1996).  However, there have been recent reports suggesting 

that metformin is cleared via hepatic metabolism.  All of the data has been proposed by the 

same research group and performed in rats.  The non-renal clearance in rats was 

approximately 30% of the total metformin clearance following intravenous administration of 

100 mg/kg metformin, which was attributed to involve hepatic cytochrome P450 (CYP450) 

isoforms 2C11, 2D1, and 3A1/2 (Choi and Lee, 2006).  The conclusion regarding 

involvement of CYP450s in non-renal clearance of metformin was based solely on the effects 

of chemical inhibitors and inducers of CYP450 enzymes treated prior to metformin 

intravenous administration.  These chemicals affected both the estimated non-renal clearance 

and renal clearance (Choi and Lee, 2006).  The effects on other physiological parameters and 

on cation-selective transporters were not addressed.  No direct measurement of metabolites 

or structural information of the metabolites have been presented; yet there have been reports 
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on the effects of bacterial lipopolysaccharide (Cho et al., 2009), water-deprivation (Choi et 

al., 2007), acute renal failure (Choi et al., 2010), and a new erectrogenic drug (Choi et al., 

2008) on metformin metabolic clearance.  Furthermore, no work has been done with human 

hepatocytes or microsomes to demonstrate that the effects observed in rats are applicable to 

humans.  Without conclusive evidence of metabolite formation in both rats and humans, 

these reports at best provide no benefit and at worst confuse our understanding of metformin 

pharmacokinetics.  In summary, there is no evidence to support metformin hepatic 

metabolism in humans and little conclusive evidence to support metabolic clearance in rats.   

1.E.6.  Clinically Observed Drug-Drug Interactions (DDIs) 

Metformin is metabolically stable and not protein bound.  These two factors limit the 

likelihood of pharmacokinetic drug-drug interactions.  As a result, there are not many 

clinically documented pharmacokinetic related drug-drug interactions (DDIs) with metformin 

therapy (Scheen, 2005).  The most characterized DDI involves inhibition of metformin renal 

clearance by cimetidine.  A 0.4 g dose of cimetidine, a H2-receptor antagonist, caused a 50% 

increase in the AUC and a 27% reduction in the renal clearance of metformin (0.25 g dose) 

(Somogyi et al., 1987).  Metformin was not capable of altering cimetidine pharmacokinetics.  

The effect of cimetidine has been attributed to inhibiting cation transporters responsible for 

metformin active tubular secretion in the kidney (Tsuda et al., 2009b).  Another clinical 

example of a metformin drug-drug interaction involves co-administered cephalexin, a first 

generation cephalosporin antibiotic.  Co-administering 0.5 g of metformin and cephalexin 

caused an increase in metformin plasma Cmax and AUC by an average of 34% and 24%, 

respectively, and reduced renal clearance by 14% (Jayasagar et al., 2002).  Similar to 

cimetidine, metformin did not alter the pharmacokinetics of cephalexin.  Renal organic cation 
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transporters share similar substrate specificity towards cephalexin and metformin (Tanihara 

et al., 2007); supporting the hypothesis that the DDI was due to inhibition of metformin 

active renal secretion.   

There are two reports of non-renal drug-drug interactions with metformin and other 

co-administered drugs.  The α-glucosidase inhibitor acarbose has been shown to significantly 

reduce the bioavailability of metformin in normal subjects that was not related to alterations 

in metformin renal clearance (Scheen et al., 1994).  Acarbose (0.1 g) and metformin (1.0 g) 

co-administration resulted in a significant reduction in early serum levels (e.g. first 3 hours) 

and reduced both the Cmax and AUC0-9h of metformin by 35% (p<0.05), while not affecting 

24 hour urinary excretion (Scheen et al., 1994).  The exact mechanism of this drug-drug 

interaction remains unknown.  Metformin also has been shown to decrease the 

pharmacologic action of the anticoagulant phenprocoumon by increasing its hepatic 

metabolic clearance (Ohnhaus et al., 1983).  Phenprocoumon t1/2,P and AUC were reduced by 

31% (p<0.01) and 37% (p<0.05), respectively following 6-week treatment with metformin.  

Interestingly, microsomal metabolic activity on phenprocoumon was not affected by 

metformin treatment in both animal models or in humans (Ohnhaus et al., 1983).  Metformin 

has been shown in rats to increase liver blood flow that was inhibited by co-treatment of the 

β-adrenergic antagonist propranolol (Ohnhaus et al., 1978); suggesting metformin increased 

liver blood flow via a selective β-adrenergic effect.  The mechanism of this DDI is likely due 

to an increase in liver blood flow, thus increasing the metabolic clearance of the highly lipid 

soluble phenprocoumon.  No other examples are present on the effects of metformin 

increased portal blood flow and metabolic clearance.   
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1.E.7. Adverse Events and Toxicity 

1.E.7.a.  Gastrointestinal Side Effects 

Oral administered metformin is generally well tolerated and safe, although there are 

side effects and adverse reactions that occur.  Major side effects surround gastrointestinal 

symptoms of diarrhea, nausea, abdominal discomfort, and anorexia (Bailey and Nattrass, 

1988).  These symptoms are typically transient and subside after the patients have adjusted to 

metformin.  Approximately 3% of patients treated with metformin discontinue due to 

intolerance surrounding the gastrointestinal side effects (Hermann and Melander, 1992).  

Administration of food with metformin has been shown to ameliorate the gastrointestinal side 

effects (Bailey and Turner, 1996).  Other side effects have been reported to be metallic taste 

and altered absorption of vitamin B12 and folic acid (Bailey and Nattrass, 1988).  

1.E.6.b.  Metformin Associated Lactic Acidosis (MALA) 

The major adverse event associated with metformin treatment is lactic acidosis. 

Metformin associated lactic acidosis (MALA) is rare (approximately 2-10 incidents per 

100,000 patient years), although the mortality rate is approximately 50% (Brown et al., 1998; 

Misbin et al., 1998).   MALA occurs in patients that intentionally or accidentally overdose on 

metformin or patients with significant renal impairment or acute renal failure (Assan et al., 

1977).  Even though other contraindications exist regarding lactic acidosis, elevated 

metformin accumulation in plasma highly correlates with incidences of MALA (Runge et al., 

2008; Seidowsky et al., 2009).  Metabolic pattern associated with MALA is characterized by 

severe metabolic acidosis (serum pH < 7.35), hyperlactataemia (serum lactate >5mM), and 

high serum lactate/pyruvate ratio (Assan et al., 1977; Seidowsky et al., 2009).   MALA 

patients require immediate blood purification by hemodialysis with a bicarbonate-buffered 
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and high-sodium dialyzate to remove both metformin and circulating lactate and to increase 

blood volume and renal blood flow (Seidowsky et al., 2009). 

Even though the exact mechanisms of leading to MALA are not fully understood, 

stimulated intestinal and liver lactate production by metformin accumulation likely plays the 

major role.  Metformin accumulates significantly in intestinal mucosa, increased glucose 

uptake, and increased lactate production (Bailey et al., 2008).  Accumulation in the liver of 

mice significantly increased the blood lactate concentration and reduced the oxygen 

consumption (Wang et al., 2003).  In mice deficient in the murine organic cation transport 1 

(Oct1) (Oct1(-/-)), the increase in blood lactate due to metformin treatment was abolished 

(Wang et al., 2003).  Oct1 is present on the basolateral membrane of mouse liver and 

intestine (Wang et al., 2002).  The conclusion from this work was that the liver is likely the 

major organ for metformin induced lactate production.  However, knocking out Oct1 in the 

mouse may have decreased intestinal and liver metformin accumulation, in turn reducing 

stimulated lactate production in both organs.  In summary, overdose or acute renal failure can 

cause severe metformin systemic accumulation leading to increases in anaerobic lactate 

production and ultimately metabolic acidosis.  

 

1.F. CATION-SELECTIVE TRANSPORTERS  

Metformin requires carrier-mediated transporters to shuttle it across biological 

membranes due its net charge and hydrophilicity.  There are three families of transporters 

that have been implicated in various transport processes of metformin.  They include the 

members from the human organic cation transporters (hOCTs) (SLC22), material and toxin 

extrusion transporters (MATEs) (SLC47), and the equilibrative nucleoside transporters 
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(ENTs) (SLC29).  Detailed description of the function and role of cation-selective 

transporters on metformin in each tissue or organ is presented below. 

1.F.1. Substrate Specificity 

 Metformin is a known substrate for several organic cation transporters and is 

generally considered a promiscuous substrate with modest affinity.  It is a substrate for three 

hOCTs from the SLC22 gene family: hOCT1 (SLC22A1) (Kimura et al., 2005a), hOCT2 

(SLC22A2) (Kimura et al., 2005b), and hOCT3 (SLC22A3) (Nies et al., 2009).  The reported 

affinities (e.g. Michaelis-Menten apparent Km values) of hOCT1 to transport metformin 

range from 0.9 to 2.5 mM (Kimura et al., 2005a; Shu et al., 2007; Nies et al., 2009; Sogame 

et al., 2009).  Apparent Km values of hOCT2 to transport metformin range between 0.3 to 1.0 

mM (Kimura et al., 2005b; Song et al., 2008; Chen et al., 2009a).  Recently, metformin was 

shown to be a substrate for hOCT3 with an apparent Km of 2.3 mM (Nies et al., 2009).  

hOCT1-3 function as facilitative transporters that translocate organic cations in an 

electrogenic manner (e.g. dependent on membrane potential) and are capable of bidirectional 

functionality (Gorboulev et al., 1997; Zhang et al., 1997; Kekuda et al., 1998; Koepsell et al., 

2007).  The driving force for hOCT1, hOCT2, and hOCT3 function is not sodium dependent 

(Gorboulev et al., 1997).  hOCT3 function is dependent upon extracellular pH and can 

function as proton-antiporter, in which increasing pH results in increased activity (Kekuda et 

al., 1998).  Additionally, metformin was shown not to be transported by the active ATP-

binding transporter, P-glycoprotein, in rats (Song et al., 2006) and likely is not a substrate for 

this efflux pump in humans. 

 Other SLC22 transporters, in particular the novel carnitine transporters hOCTN1 

(SLC22A4) and hOCTN2 (SLC22A5), affinities towards metformin are not known.  
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hOCTN1 is a bidirectional cation and carnitine transporter that is pH dependent (e.g. acts as a 

proton antiporter) and the function appears to be independent of sodium (Tamai et al., 1997; 

Yabuuchi et al., 1999).  hOCTN1 has greatest efficiency to transport the zwitterionic 

antioxidant ergothioneine (Grundemann et al., 2005).  hOCTN1 is known to transport 

organic cations such as tetraethylammonium (TEA) (Tamai et al., 1997), verapamil, 

quinidine, and pyrilamine (Yabuuchi et al., 1999).  hOCTN2 also functions in as a 

bidirectional carnitine and cation transporter dependent upon sodium to translocate carnitine 

(Tamai et al., 1998) and independent of sodium to transport organic cations (Wu et al., 1999).  

hOCTN2 is capable of transporting TEA, cephaloridine, choline, mildronate, and sulpiride 

(Wu et al., 1999; Ganapathy et al., 2000; Watanabe et al., 2002; Grigat et al., 2009).  In 

summary, hOCTN1 and hOCTN2 are capable of transporting organic cations, although they 

lack the degree of polyspecificity observed with hOCT1-3.   

 Metformin is a known substrate of the newly cloned material and toxin extrusion 

transporters, MATE1 (SLC47A1) and MATE2K (SLC47A2) (Tanihara et al., 2007).   Both 

isoforms function as bidirectional cation-selective transporters independent of sodium and 

membrane potential (Otsuka et al., 2005; Masuda et al., 2006).  MATE transporter driving 

force is an oppositely directed proton gradient, indicating that these transporters function as 

proton antiporters.  Human MATE1 and MATE2K have reported affinities (apparent Km 

values) for transporting metformin of 0.78 ± 0.1 and 1.98 ± 0.48 mM, respectively (Tanihara 

et al., 2007). 

 Metformin has also been identified as a substrate for the newly cloned plasma 

membrane monoamine transporter, PMAT, which belongs to the equilibrative nucleoside 

transporter family (SLC29A4) (Zhou et al., 2007).  PMAT functions as a bidirectional 
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transporter that functions independent of sodium and chloride, although it is dependent upon 

membrane potential and enhanced by an inward proton gradient (Engel et al., 2004).  PMAT 

functions as a proton-symporter in which its uptake of metformin was increased 5-fold when 

the extracellular pH was changed from 7.4 to 6.6 (Zhou et al., 2007).  PMAT has a reported 

affinity for metformin similar to the reported affinities for OCTs and MATEs, with an 

apparent Km of 1.32 mM (Zhou et al., 2007). 

1.F.2. Hepatic Transporters Involved in Liver Accumulation  

 Accumulation of metformin in the liver, in particular the hepatocytes, is required for 

metformin to inhibit gluconeogenesis and increase fatty acid oxidation.  Human liver has 

detectable mRNA of hOCT1-3, hOCTN1-2, and MATE1 (Zhang et al., 1997; Verhaagh et 

al., 1999; Otsuka et al., 2005; Lamhonwah and Tein, 2006; Hilgendorf et al., 2007).  

MATE2K is a kidney specific MATE isoform and in not present in the liver (Otsuka et al., 

2005).  Very weak mRNA expression of PMAT was detected in homogenate of human liver 

(Engel et al., 2004).  Direct protein expression and localization of PMAT in human liver is 

unknown.  hOCT1 and hOCT3 protein expression are localized exclusively to the basolateral 

membrane of hepatocytes (Nies et al., 2009), while hOCT2 protein was not detected in 

human liver (Nies et al., 2008).  hOCT1 expression in the liver was significantly greater than 

hOCT3 expression (Hilgendorf et al., 2007; Nies et al., 2009), indicating that hOCT1 likely 

plays a major role in metformin liver accumulation in relation to hOCT3.  hOCTN1 protein 

staining in human liver is not known, although there is evidence to support that it is localized 

to mitochondria in the human liver derived HepG2 cell line (Lamhonwah and Tein, 2006).  

hOCTN2 direct protein expression and localization in human liver has yet to be determined; 

however rat Octn2 protein was detected and localized to the basolateral membrane in rat 
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hepatocytes (Fujita et al., 2009).  MATE1 protein expression in human liver was detected at 

the apical bile canalicular membrane (Otsuka et al., 2005).     

 Metformin uptake in human liver is believed to involve both hOCT1 and hOCT3 at 

the basolateral membrane (Nies et al., 2009).  In Oct1(-/-) mice, metformin liver 

accumulation was significantly reduced following intravenous administration (Wang et al., 

2002) and overall plasma metformin concentrations were elevated following oral 

administration (Shu et al., 2008) in relation to wild-type mice.  Similar uptake kinetics of 

metformin were observed in primary human hepatocytes and hOCT1 expressing Xenopus 

laevis oocytes, with apparent Km values of 0.91 and 0.93 mM, respectively (Sogame et al., 

2009).     

The role of MATE1 in excreting metformin into the bile remains unknown.  Recent 

reports using transgenic mice deficient in Mate1 or mice treated with a select Mate1 

inhibitor, pyrimethamine, indicated that metformin accumulated in the liver to a greater 

extent when Mate1 was not functionally active (Tsuda et al., 2009a; Ito et al., 2010).  These 

reports suggest that MATE1 may play a role in biliary excretion of metformin, although 

more conclusive studies are needed.  There is currently no evidence to support the 

involvement of hOCTN1, hOCTN2, and PMAT in transporting metformin in the liver.  In 

summary, metformin appears to be taken up into hepatocytes by hOCT1 and to a lesser 

extent hOCT3 and then potentially is excreted in the bile by MATE1 or effluxed back into 

the blood by hOCT1 and/or hOCT3 (refer to Figure 1.4).   

1.F.3. Transporters Involved in Active Renal Secretion 

 The transport mechanisms of metformin in the kidney have been the most extensively 

studied due to its reliance on active secretion for elimination.  Human kidneys have 
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detectable mRNA expression of hOCT1-3, hOCTN1-2, MATE1, MATE2K, and PMAT 

(Engel et al., 2004; Otsuka et al., 2005; Hilgendorf et al., 2007; Xia et al., 2007).  In contrast 

to the liver, hOCT2 is highly expressed in human kidney in relation to hOCT1 and hOCT3 

(Aoki et al., 2008).   hOCT2 protein is expressed on the basolateral membrane of proximal 

tubule epithelial cells in humans (Nies et al., 2008).  hOCT1 expression in the kidney is 

controversial.  Contrary to the report by Nies et al. (2008) that failed to detect hOCT1 in the 

kidney, hOCT1 protein was detected and localized on the apical and subapical domains of 

both proximal and distal tubules in humans (Tzvetkov et al., 2009).  hOCT1 protein was not 

detected in crude plasma membrane fractions from human kidney cortex (Motohashi et al., 

2002).  If hOCT1 is functionally active in the kidney, it may facilitate reabsorption and not 

excretion.  These findings provide insight into organ/tissue specific localization of hOCT1 in 

humans; however whether hOCT1 is functionally active in the kidney remains to be 

determined.   

hOCT3 protein expression in the kidney is less studied than hOCT1 and hOCT2.  It 

has significantly higher (approximately 10-fold) expression than hOCT1 in human kidney, 

although 50-100-fold lower than OCT2 expression (Motohashi et al., 2002).  One report 

indicated that hOCT3 protein was localized to the basolateral membrane of proximal tubule 

epithelial cells (Koepsell et al., 2007), although actual immunofluorescent staining images 

were not presented.  Mouse Oct3 protein was detected in the proximal and distal convoluted 

tubules and within the Bowman’s capsule, though membrane localization was not determined 

(Wu et al., 2000b).  In the human derived proximal tubule cell model, Caki-1, hOCT3 is 

constituently expressed and localized to the basolateral membrane (Glube and Langguth, 

2008).   
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MATE1 and MATE2K protein is localized on the brush-border apical membrane of 

proximal tubule cells (Otsuka et al., 2005; Masuda et al., 2006).  Identification of MATE1 

and MATE2K provided evidence linking hOCT2 with an apical cation transporter to 

complete vectoral transport of metformin from the blood to the urine.  Transport studies in 

double transfected MDCK cells with human OCT2 and MATE1 revealed efficient vectoral 

transport of metformin from the basolateral to apical compartment (Tsuda et al., 2009b).  

Using this in vitro model of proximal tubule cells, metformin secretory transport was highly 

sensitive to co-administered cimetidine.  The results supported the hypothesis that the 

clinically observed DDI between cimetidine and metformin was due to cimetidine inhibition 

of MATE1 and not through inhibition of hOCT2 (Tsuda et al., 2009b).  Renal secretion of 

metformin was markedly reduced in the transgenic mice deficient in Mate1 (Tsuda et al., 

2009a) or mice treated with the Mate1 inhibitor pyrimethamine (Ito et al., 2010), further 

supporting the role of MATE1 in facilitating renal secretion of metformin.   

Surprisingly, PMAT protein expression in human kidney was found to be exclusively 

in the glomerulus and more specifically on the membranes of podocytes (Xia et al., 2009).  

There was no expression in the nephron tubules suggesting that PMAT plays a different role 

in the kidney than other hOCT and MATE isoforms and is unlikely to be involved in tubular 

secretion of metformin.  Whether PMAT functions to accumulate metformin in podocytes or 

to enhance/impede glomerular filtration remains unknown.  hOCTN1 and hOCTN2 have 

been detected in human kidney and are expressed on the apical lumen membrane of proximal 

tubule cells (Tamai et al., 2004; Glube et al., 2007).  There is no evidence to support that 

metformin is transported by either hOCTN1 or hOCTN2; consequently no functional 

evidence exists to implicate these transporters in the renal secretion or reabsorption of 
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metformin.  In summary, renal secretion of metformin in humans is likely mediated by 

uptake across the basolateral membrane of proximal tubule cells by hOCT2 and is 

transported into the lumen by MATE1 and to a lesser extent MATE2K (Figure 1.4).   

1.F.4. Transporters Involved in Absorption and Intestinal Accumulation 

 In humans, metformin has been shown to accumulate in intestinal enterocytes 

following oral administration (Bailey et al., 2008) and overall intestinal absorption was dose-

dependent (Tucker et al., 1981; Sambol et al., 1996b).  The role of transporters in metformin 

intestinal absorption remains largely unknown.  Human small intestine contains detectable 

mRNA expression of hOCT1-3, hOCTN1-2, and PMAT (Muller et al., 2005; Englund et al., 

2006; Kim et al., 2007; Meier et al., 2007; Zhou et al., 2007).  MATE1 and MATE2K mRNA 

was not detected in human intestine (Masuda et al., 2006), although mMate1 expression was 

detected in mouse intestine (Hiasa et al., 2006).  Direct protein expression of hOCT1-3 in 

human intestine is lacking.  Muller et al. (2005) used immunofluorescent staining with 

rOCT1, hOCT2, and hOCT3 antibodies to detect protein and subcellular localization in fixed 

human jejunum sections.  No protein staining was observed for hOCT2, faint and diffuse 

cytosolic and lateral staining was observed with hOCT1, and hOCT3 was localized to the 

brush-border apical membrane of enterocytes (Muller et al., 2005).  Transgenic mice 

deficient in Oct1 (Oct1(-/-)) had significantly lower intestinal accumulation of metformin 

following intravenous administration (Wang et al., 2002); suggesting that Oct1 is localized to 

the basolateral membrane in rodents.  However, the rate of absorption in Oct1(-/-) was not 

different than wild-type mice following oral administration of metformin (Shu et al., 2008).  

Further studies are required to determine the localization and function of hOCT1-3 in human 
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intestine and the role they play in facilitating absorption of metformin and other hydrophilic 

cations.   

hOCTN1 expression is approximately 7-fold lower than hOCTN2 (Kim et al., 2007).  

hOCTN1 may be localized to the mitochondria in intestine as it appears to be localized in 

liver (Lamhonwah and Tein, 2006) and in human derived intestinal cell model, Caco-2 

(Lamhonwah et al., 2005).  Rodent Octn2 was localized to the brush-border apical membrane 

in mouse intestine and is believed to function in mammals to facilitate sodium-dependent 

carnitine absorption (Kato et al., 2006).  In summary, hOCTN2 appears to be the 

predominant novel cation and carnitine transporter in the intestine and likely is expressed on 

the apical membrane; however its role in facilitating absorption and intestinal accumulation 

of metformin remains unknown.   

PMAT protein expression was detected in human intestine and localized to the brush-

border apical membrane on enterocytes of the villus tips (Zhou et al., 2007).  PMAT 

functions as a proton-symporter in which it translocates organic cations efficiently in the 

direction of an inward proton gradient (Xia et al., 2007).  The apical localization of PMAT 

and its pH dependent uptake properties make it a more likely candidate than hOCT3 to 

facilitate uptake of metformin from the lumen into the enterocytes.  This is due to lower 

lumen pH and hOCT3 proton-antiporter functionality (Kekuda et al., 1998).  It is conceivable 

that PMAT facilitates metformin intestinal absorption; though no functional evidence in vivo 

or in vitro has implicated PMAT in intestinal absorption of metformin.  Unlike in the liver 

and kidney, there is currently no definitive evidence implicating specific transport processes 

that mediate metformin dose-dependent absorption and intestinal accumulation.  Based solely 

on intestinal localization and substrate specificity towards metformin, it is likely that PMAT 
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and hOCT3 function to take up metformin across the lumen membrane; however there is no 

evidence implicating basolateral transporters in intestinal absorption of metformin (Figure 

1.4). 

1.F.5. Transporters Involved in Peripheral Tissues 

 Metformin was shown to distribute throughout the body and accumulate in the liver, 

kidney, and intestine and to lesser extent in the heart, skeletal muscle, erythrocytes, and white 

adipose tissue (Wilcock et al., 1991; Wilcock and Bailey, 1994; Wang et al., 2002; Shu et al., 

2008).  hOCT1 mRNA has been detected in skeletal muscle, kidney, intestine, liver, placenta, 

granulocytes, lymphocytes, and spleen (Gorboulev et al., 1997; Koepsell et al., 2007).  In 

contrast, hOCT2 was mRNA expression was less broad was only detected in the kidney, 

placenta, and brain.  hOCT3 strongest expression was found in skeletal muscle, kidney, 

placenta, brain, and heart (Grundemann et al., 1998; Wu et al., 2000a).   

Unlike the kidney specific MATE2K, MATE1 has relatively broad tissue expression 

with the significant expression in the kidney, adrenal gland, testis, skeletal muscle, liver, 

uterus, and heart (Masuda et al., 2006).  PMAT expression is highest in the brain, kidney, and 

intestine followed by skeletal muscle and heart (Engel et al., 2004; Barnes et al., 2006).  

Currently there are no data identifying and characterizing cation-selective transporters 

present in white adipocytes.  In summary, metformin transporters hOCT1, hOCT3, MATE1, 

and PMAT have relatively broad tissue distribution and may facilitate uptake of metformin 

into peripheral tissues and organs.  There still remains a significant body of work in the 

transporter field to elucidate the mechanisms by which metformin and similar hydrophilic 

drugs enter and exit the cellular compartments in the heart, skeletal muscle, and other 

peripheral tissues.   
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1.F.6. Pharmacogenomics of Metformin Transporters 

Genetic polymorphisms in cation-selective transporters have recently been identified 

and have implications in metformin pharmacokinetics and dynamics.  For example, genetic 

factors have been attributed to over 90% of the variability observed in metformin renal 

clearance (Leabman and Giacomini, 2003; Yin et al., 2006).  The most widely studied 

polymorphisms involve single-nucleotide polymophisms (SNPs) for hOCT1 and hOCT2 that 

alter transport function of metformin and other cationic compounds (Shu et al., 2003; Shu et 

al., 2007; Shu et al., 2008; Wang et al., 2008; Chen et al., 2009a; Tzvetkov et al., 2009).  

Polymorphisms in MATE1 and MATE2K have also been studied in relation to alterations in 

metformin transport and disposition (Chen et al., 2009b; Kajiwara et al., 2009; Toyama et al., 

2010).  Currently there is no information regarding polymorphisms of PMAT. 

1.F.6.a.  hOCT1 Polymorphisms 

 Polymorphisms of hOCT1 have been widely studied due to the significant role this 

transporter plays in the liver disposition of metformin.  From 247 genetically diverse 

samples, 14 SNPs and one 3-base pair polymorphisms, which resulted in a deletion of 

methionine residue at position 420 (420del), were identified for hOCT1 (Shu et al., 2003).  

Of the 15 polymorphisms, 6 SNPs resulted in altered hOCT1 expression.  The frequency of 

these variant alleles in each ethnicity ranged from 0.1% upwards to 20%.  hOCT1 activity 

was increased in one SNP at position 14 (serine to phenylalanine mutation) (hOCT1-S14F), 

where two other SNPs, hOCT1-R16C and hOCT1-P341L, caused a decrease in hOCT1 

activity (Shu et al., 2003).  hOCT1-R16C mutation was associated with decreased hOCT1 

protein expression in individuals of European ancestry carrying this variant allele (Nies et al., 

2009).  Three SNPs were identified that completely abolished hOCT1 function.  They were 
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hOCT1-G220V, -G401S, and -G465R, all of which were mutations of evolutionary 

conserved glycine residues that are likely integral for hOCT1 function (Shu et al., 2003).   

 Metformin pharmacokinetics and dynamics were examined for hOCT1 variant alleles 

that reduced or abolished hOCT1 function.  Individuals containing variants hOCT1-R61C, -

G401S, -G465R, or -420del had significantly higher AUC and Cmax values with decreases in 

their apparent volume of distribution (VD) and total oral clearance (Shu et al., 2008).  

However, the reduction in total oral clearance could not be attributed to renal clearance; 

therefore, supporting the potential involvement of biliary excretion in metformin elimination.  

Decreased hOCT1 function likely reduced liver exposure, fraction of drug excreted into the 

bile, and overall volume of distribution while increasing the fraction of drug excreted in the 

urine.  The hOCT1-variant population had significantly higher glucose exposure and 

increased plasma insulin levels following an OGTT (Shu et al., 2007).  In conclusion, hOCT1 

polymorphisms affected the liver disposition of metformin, resulting in a decrease in 

efficacy.   

 A recent report examined metformin renal clearance in 103 healthy volunteers in the 

context of hOCT1-3 polymorphisms.  Ten, fourteen, and six polymorphisms were identified 

in the 103 patients for hOCT1, hOCT2, and hOCT3, respectively (Tzvetkov et al., 2009).  In 

addition one SNP for hOCTN1 and MATE1 were identified and examined in this study.  

Surprisingly, only the population containing hOCT1-variant alleles had significantly altered 

renal clearances, in which heterozygous and homozygous variant populations had increased 

metformin renal clearance (Tzvetkov et al., 2009).  Similarly, Oct1(-/-) mice renal clearance 

of tetraethylammonium (TEA) was increased in relation to wild-type mice (Jonker et al., 

2001).  The increase in renal clearance was concluded to be due to the inability of the apical 
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hOCT1 to reabsorb metformin in the proximal tubules, although further studies are required 

to fully understand the effect of hOCT1 polymorphism on renal clearance of metformin and 

to understand the discrepancies between the two reports described here. 

1.F.6.b.  hOCT2 Polymorphisms 

Over 20 polymorphisms of hOCT2 have been identified, of which four SNPs: 

hOCT2-M165I, -A270S, -R400C, and -K432Q had reduced transporter activity (Leabman et 

al., 2002).  hOCT2-A270S was the most frequent variant allele (approximately 10-15% 

across different ethnicities) in which alanine at position 270 was replaced with serine.  When 

expressed in HEK293 cells, hOCT2-A270S variant had similar affinity for metformin, but 

had an increase in transporter capacity and ultimately greater intrinsic transport clearance 

than hOCT2 reference control (Chen et al., 2009a).  It was postulated that the mutation of 

alanine to serine provided an additional hydrogen binding site, which may increase the 

stability or post-translational processing of the transporter.   

The effect of carrying hOCT2-A270S variant alleles is dependent on the haplotype 

associated with this SNP in each ethnicity.  Heterozygous populations containing the 

hOCT2-A270S variant allele of European and African ancestries had significantly greater 

total renal clearance and active renal secretion of metformin than homozygous individuals 

with the reference allele (Chen et al., 2009a).  Another report in 103 individuals of 

exclusively European ancestry found no effect of heterozygous hOCT2-A270S variant alleles 

on metformin renal clearance (Tzvetkov et al., 2009).  Alternatively, heterozygous hOCT2-

A270S populations of Han Chinese ancestry had significantly reduced total renal clearance 

and renal clearance by active secretion (Song et al., 2008; Wang et al., 2008).  There were 

three haplotypes associated with the hOCT2-A270S found in Caucasians from Northern and 
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Western Europe, where only one haplotype was identified in Han Chinese populations which 

was not found in Caucasian or African populations (Chen et al., 2009a).  The haplotype in 

the Han Chinese population contains four intronic SNPs specific to this population and likely 

accounts for the differences between the functional consequences of hOCT2-A270S variant 

allele.  These studies have provided insight into sources of variability in metformin renal 

clearance and the role of hOCT2 in vivo; yet the limited numbers of studies are not 

conclusive enough to describe the liabilities associated with carrying hOCT2 variant alleles 

in relation to metformin elimination.   

1.F.6.c.  MATE1 and MATE2K Polymorphisms 

MATE1 and MATE2K genetic polymorphisms have recently been identified (Chen et 

al., 2009b; Kajiwara et al., 2009).  There are 15 identified SNPs for MATE1, of which there 

are 10 non-synonymous coding SNPs.  The allele frequency in each ethnicity for these 

polymorphisms ranged between 0.5% and 9% (Chen et al., 2009b; Kajiwara et al., 2009).  

MATE1-G64D and MATE1-V480M have lost transport function completely, while MATE1-

L125F, -A310V, -D328A, -V338I had significantly reduced transport function.  MATE1-

G64D loss of function was associated with decreased trafficking of the protein to the plasma 

membrane (Chen et al., 2009b; Kajiwara et al., 2009).  Alternatively, a SNP to the MATE1 

promoter region (position-66, T>C) significantly reduces association of two essential 

transcription factors, activating protein-1 and activating protein-2, reducing MATE1 

transcription and protein expression (Ha Choi et al., 2009).  MATE2K had 6 SNPs identified, 

with two non-synonymous SNPs of MATE2K-K64N and MATE2K-G211V that decreased 

MATE2K function.  MATE2K-G211V, similar to MATE1-G64D, had a complete loss of 

metformin transport function due to the inability to be trafficked to the plasma membrane of 
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HEK293 cells (Kajiwara et al., 2009).  The clinical significance of both MATE1 and 

MATE2K polymorphisms are currently being investigated.  However, no difference in total 

oral clearance of metformin was observed between type II diabetic patients heterozygous for 

MATE1 and MATE2K variant alleles in relation to diabetics homozygous for the reference 

alleles (Toyama et al., 2010).  In summary, MATE1 and MATE2K are polymorphic with 

relatively low population frequency.  Variants of these transporters may account for some 

variability associated with metformin renal clearance, although larger and more detailed 

pharmacogenomic studies are needed.   

 

1.G.  THE CACO-2 CELL MODEL OF INTESTINAL EPITHELIUM 

1.G.1. Overview of Intestinal Absorption Processes 

Metformin can be absorbed across intestinal epithelium via two major routes: 

transcellular transport into and out of the enterocytes and paracellular transport in between 

adjacent enterocytes.  Hydrophilic drugs like metformin require carrier-mediated pathways to 

undergo efficient transcellular transport due to its poor membrane permeability.  This process 

requires vectoral transport in which apical and basolateral transporters work in conjunction to 

facilitate transcellular transport of the drug from the intestinal lumen into the blood.  These 

possesses are inherently saturable due to the nature of transporter-ligand interactions.   

Alternatively, small hydrophilic drugs can be absorbed through the paracellular space 

between adjacent enterocytes.  This pathway requires diffusing across the tight-junctions 

(TJs) into the lateral space and ultimately into the blood.  TJs are intricate complexes formed 

in the apical portion of the lateral space and provide a barrier to water and small molecule 

paracellular transport (Kovbasnjuk et al., 1998; Van Itallie and Anderson, 2004).  TJ are 
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made up of multiple transmembrane junctional proteins in detergent insoluble sphingolipid 

rich membrane rafts anchored in place by numerous cytosolic scaffolding proteins 

(Tsukamoto and Nigam, 1997).  A major function of TJs are to maintain membrane polarity 

by restricting lipid movement between the apical and basolateral membranes (van Meer and 

Simons, 1986).  In addition, TJ serve as a barrier or gate to prohibit solute flux.  Hydrophilic 

solutes that have molecular radii less than 4 to 5 Å can diffuse through the pore of the TJ, 

where limited flux is observed with larger hydrophilic solutes (Knipp et al., 1997; Watson et 

al., 2001; Van Itallie et al., 2008).  Paracellular transport of solutes traditionally has been 

considered a passive process governed by molecular diffusion properties.  This perception 

has begun to shift as more evidence emerges revealing the dynamic and complex nature of 

TJs and understanding of their role in maintaining ion homeostasis (Van Itallie and 

Anderson, 2004).  The size and hydrophilicity of metformin likely enable it to traverse 

through the paracellular space; thus, both transcellular and paracellular transport processes 

likely are involved in its intestinal absorption.   

1.G.2. Overview of Caco-2 Cell Transwell™ Model  

In vitro intestinal cell models provide simplified systems to unravel the contributions 

of multiple processes involved in absorption.  Caco-2 is an established cell-based model to 

study transport and absorption across human intestinal epithelium.  This model originates 

from human colon adenocarcinoma cells and forms a monolayer of differentiated columnar 

“small-intestine like” epithelial cells (Hidalgo et al., 1989; Artursson, 1990).  Similar to 

intestinal enterocytes, Caco-2 cells differentiate to form distinct apical and basolateral 

membranes separated by the presence of TJs.  This model poses several key advantages over 

tissue models in that they form a structural monolayer free of mucus, submucosal connective 
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tissue, or muscle tissue.  Additionally, Caco-2 cell monolayers are grown on porous 

membrane supports or Transwells™ that provide ready access to the basolateral (e.g. serosal) 

compartment as well as the apical (e.g. lumen) compartment (Figure 1.5A).  This model 

allows for transport process across each membrane or across the monolayer to be monitored 

at varying times, concentrations, and in the presence of chemical modulators.  Consequently, 

systematic experiments can be carried out to determine the relative contribution of 

transcellular and paracellular transport processes in overall absorption (Bourdet et al., 2006).   

1.G.3. Cation-Selective Transporters Expressed in Caco-2 Cells  

Caco-2 cells originate from humans; therefore they express many relevant human 

intestinal transporters.  Even though mRNA has been detected for many cation-selective 

intestinal transporters in Caco-2 cells (Englund et al., 2006; Seithel et al., 2006; Hilgendorf et 

al., 2007; Maubon et al., 2007; Hayeshi et al., 2008), protein expression, localization, and 

function have yet to be determined for the majority of the transporters capable of transporting 

metformin.  hOCT1 mRNA is expressed in Caco-2 cells (Muller et al., 2005), although direct 

protein expression and localization is not clear.  However, immunofluorescent staining with 

rat OCT1 antibody indicated apical localization in Caco-2 (Ng, 2002).  AP uptake of 

ranitidine, an hOCT1 substrate, was efficient (apparent Km 0.45 mM), where its basolateral 

uptake was very inefficient (apparent Km 66.9 mM) (Lee et al., 2002; Bourdet and Thakker, 

2006).  This data supports that if hOCT1 is functionally active in Caco-2 cells it would be 

localized to the apical membrane.   

hOCT2 mRNA was detected in Caco-2 cells and immunofluorescent staining with 

hOCT2 antibodies produced lateral and cytosolic staining (Muller et al., 2005).  There is no 

evidence to support functionally active hOCT2 or other hOCTs on the basolateral membrane 
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in Caco-2 cells.  TEA, an hOCT2 substrate, was inefficiently transported across the BL 

membrane of Caco-2 cells (Lee et al., 2002).  hOCT3 mRNA and protein expression were 

detected in Caco-2 cells and hOCT3 was localized to the apical membrane (Muller et al., 

2005).  Uptake of 1-methyl-4-phenypryimidium (MPP+) across the AP membrane in Caco-2 

cells was attributed to hOCT3 (Martel et al., 2001), although due to the polyspecificity of 

hOCTs to transport MPP+, conclusive evidence for hOCT3 function in Caco-2 cells is 

lacking.  hOCTN1 was detected in Caco-2 cells (Hayeshi et al., 2008), although it is 

localized to intracellular membranes of the mitochondria (Lamhonwah et al., 2005).  Caco-2 

cells express hOCTN2 on the apical membrane (Elimrani et al., 2003).  

 MATE1, MATE2K, and PMAT expression in Caco-2 cells are not known.  PMAT is 

expressed on the apical membrane of intestinal enterocytes (Zhou et al., 2007); yet there is no 

evidence for its expression, function, and localization in Caco-2 cells.  Future studies are 

warranted to determine the role of these transporters in facilitating cation absorption across 

Caco-2 cells and ultimately across the intestine.   A schematic diagram of the known cation-

selective transporters present in Caco-2 cells is depicted in Figure 1.5B. 

1.G.4. Transport of Metformin and Ranitidine across Caco-2 Cell Monolayers 

 Metformin absorptive transport, e.g. transport from the apical to basolateral 

compartment, across Caco-2 cell monolayers has been examined in limited cases.  The first 

report of metformin absorptive transport across Caco-2 cells was performed by Nicklin et al. 

in 1996.  Metformin transport was linear up to 90 min, non-saturable, and not dependent 

upon transport direction (Nicklin et al., 1996).  Apparent permeability (Papp) of metformin 

was reported to be 5.5 x 10-6 cm s-1, which was 10-fold greater than the Papp for the 

paracellular probe compound mannitol (Nicklin et al., 1996).  Interestingly, Papp of 
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metformin in the absorptive direction was significantly affected by decreasing extracellular 

pH, where Papp decreased by 50% when the pH was changed from 7.4 to 5.5, whereas 

mannitol transport was independent of pH (Nicklin et al., 1996).  The significant difference 

between the Papp values of metformin and mannitol and the pH dependence of metformin Papp 

suggests that transcellular carrier-mediated processes facilitated metformin absorptive 

transport; yet overall transport was not saturable.  The main deficiency in this report is that 

the concentrations examined were relatively high (e.g. 0.5 to 25 mM), where saturable 

transport processes would most likely be linear. 

 Additionally, metformin transport across Caco-2 cells and the parallel artificial 

membrane permeation assay (PAMPA) was determined to estimate the relative contributions 

of paracellular transport to its overall intestinal transport.  Metformin Papp was 1.09 ± 0.62 x 

10-6 cm s-1 and less than 0.27 x 10-6 cm s-1 across Caco-2 monolayers and PAMPA, 

respectively (Saitoh et al., 2004).  The contribution of paracellular transport was assumed be 

the difference between the Caco-2 Papp and the PAMPA Papp value.  In this approach, 88% of 

metformin absorptive transport was predicted to be via paracellular transport (Saitoh et al., 

2004).  This grossly simplified model failed to account for transcellular transport processes 

that potentially act on metformin in Caco-2 cells.  In summary, there exists very little data on 

metformin transport across Caco-2 cells.   

 Detailed studies have been performed on other hydrophilic cationic drugs across 

Caco-2 cell monolayers.  Ranitidine, an H2-receptor antagonist, transport processes across 

Caco-2 cells have been studied extensively.  Ranitidine absorptive transport was saturable 

across Caco-2 cell monolayers (Lee and Thakker, 1999).  The drug was taken up efficiently 

across the apical membrane of Caco-2 cells by “OCT-like” transporters and effluxed across 
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the apical membrane by P-gp (Bourdet and Thakker, 2006).  Ranitidine basolateral uptake 

and efflux was inefficient in relation to the apical uptake and efflux (Lee et al., 2002; Bourdet 

and Thakker, 2006); suggesting that the basolateral membrane was rate limiting to 

transcellular transport of ranitidine.  A comprehensive kinetic modeling approach was 

implemented to estimate the relative contribution of transcellular and paracellular transport to 

overall absorptive transport of ranitidine.  The results indicated that the absorptive transport 

was comprised of approximately 60% paracellular transport (Bourdet et al., 2006).   

Surprisingly, the paracellular transport of ranitidine contained a saturable component.  

Ranitidine had been shown previously to increase the transepithelial electrical resistance 

(TEER) across Caco-2 monolayers in a concentration-dependent manner that was attributed 

to the cationic amine moiety (Gan et al., 1998).  It was hypothesized that the saturable 

paracellular transport and subsequent increase in TEER was due to electrostatic interactions 

with the cationic drug and anionic residues of the tight-junction or lateral surface of the cell 

(Lee et al., 2002; Bourdet et al., 2006).  It is conceivable that metformin would exhibit 

similar transcellular and paracellular transport processes in Caco-2 cells as ranitidine due to 

its relative size and net positive charge. 

1.G.5. Paracellular Transport and Claudins 

The molecular mechanisms for the saturable paracellular transport of ranitidine are 

not fully understood.  However, recent evidence points to a family of TJ proteins, known as 

claudins.  These proteins are believed to form pores in the TJ, where the relative pattern of 

claudin expression in the monolayer likely regulates the barrier properties of the monolayer 

to ions and solutes (Van Itallie and Anderson, 2006).  Additionally, claudin isoforms have 

been identified that are known to increase barrier integrity (e.g. claudin-1 or -8) (Yu et al., 
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2003; Banan et al., 2005) or to preferentially facilitate ion permeability across the TJ (e.g. 

claudin-2, -4, -7, -12, or -16) (Van Itallie et al., 2001; Colegio et al., 2003; Alexandre et al., 

2005; Hou et al., 2005; Fujita et al., 2008).  Claudins exert charge-selectivity by electrostatic 

interactions between the metal ions and specific charged amino acid residues in their first 

extracellular loop believed to form the pores (Colegio et al., 2002).  In particular, claudin-2 

preferentially facilitates metal cations such as Na+ and Ca+2 (Fujita et al., 2008; Yu et al., 

2009) in addition to permitting flux of small neutral organic polyethylene glycol oligomers 

(Van Itallie et al., 2008).  Therefore, it is possible that these proteins could facilitate 

paracellular transport of ranitidine, metformin, and other small organic cations.  However, it 

remains unknown whether claudins can facilitate the paracellular transport of these 

compounds.   

 

1.H. RATIONALE AND OVERVIEW OF PROPOSED RESEARCH 

Metformin exhibits higher than expected oral bioavailability considering its 

physiochemical properties; yet little work has been performed to understand this 

phenomenon.  Metformin is well absorbed across the small intestine; however, the entire 

length of the small intestine is required for complete absorption (Vidon et al., 1988).  The 

intestinal absorption of this drug in humans is dose-dependent (Tucker et al., 1981; Sambol et 

al., 1996b), indicating the presence of saturable transport processes.  Furthermore, metformin 

accumulates in intestinal enterocytes (Bailey et al., 2008), which may result in a significant 

intestine related pharmacological response (Stepensky et al., 2002).  Metformin has very 

limited passive membrane permeability (Kovo et al., 2008); therefore, carrier-mediated 

processes are most likely required for the efficient and dose-dependent absorption and 
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intestinal accumulation.  There is substantial evidence to implicate cation-selective 

transporters in metformin disposition in the liver and its elimination in the kidney; however 

little to no evidence exists surrounding transporters involved in metformin absorption.   

Recent advances in genotyping has revealed that polymorphisms of hepatic and renal 

metformin transporters can account for significant portions of the clinical variability in both 

disposition and response (Shu et al., 2007; Shu et al., 2008; Chen et al., 2009a; Chen et al., 

2009b; Kajiwara et al., 2009).  Thus, elucidating the transport processes responsible for 

intestinal absorption and accumulation of metformin will provide insight into metformin 

pharmacology and overall disposition.  In addition, identifying the transport processes 

involved in absorption will aid in understanding the mechanisms of metformin induced 

toxicity, patient variability, and overall clinical outcomes.  The central hypotheses and 

specific aims of the dissertation project were designed to determine the mechanisms involved 

in carrier-mediated uptake and overall absorptive transport of metformin in the intestine that 

result in both the intestinal accumulation and the higher than expected oral bioavailability.   

The following major hypotheses have been tested by the studies described in this 

dissertation: 

1. The intestinal absorption of metformin is influenced by carrier-mediated 

transport processes as well as a novel paracellular facilitative diffusion 

mechanism. 

2. Saturable paracellular transport of organic cations in intestinal epithelium is 

mediated by electrostatic interactions with charge-selective tight junction 

proteins (e.g. claudin-2 or claudin-12). 
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3. Intestinal accumulation of metformin is due to uptake across the apical 

membrane by specific cation-selective transporters and inefficient basolateral 

egress.   

The Specific Aims designed to test these hypotheses are as follows: 

Specific Aim 1: Determine the relative contribution of transcellular and paracellular 

transport to overall absorption transport of metformin across the 

intestinal epithelial Caco-2 cell model. 

a Determine metformin transport kinetics for overall absorptive transport and the 

transport kinetics associated with uptake and efflux processes at each membrane. 

b Estimate the rate of transcellular transport from overall paracellular transport by 

rate comparisons between basolateral efflux and the overall rate of absorptive 

transport.   

c Confirm transcellular transport estimates by fitting absorptive transport and 

cellular accumulation data to a kinetic model with fixed experimentally derived 

rate constants to estimate the relative contribution of transcellular and paracellular 

transport.    

Specific Aim 2:   Determine role of cation-selective tight junction proteins in the 

facilitative (paracellular) diffusion of metformin and similar hydrophilic 

cations across the TJ complex.   

a Evaluate organic cation paracellular transport across Caco-2 cell monolayers 

treated in the presence or absence of vitamin D3, which is known to induce 

expression of cation-selective claudin isoforms; also evaluate the transcellular 

transport processes potentially affected by vitamin D3 treatment. 



 52

b Determine the direct effects claudin-2 on organic cation paracellular transport by 

employing a claudin-2 expressing epithelial cell model under the control of an 

inducible promoter.   

Specific Aim 3: Identify the predominant apical intestinal transporter(s) responsible for 

metformin apical uptake and accumulation in Caco-2 cells. 

a Confirm substrate specificity of organic cation transporters for metformin using 

cell models that are singly expressing candidate transporters.  

b Identify chemical inhibitors capable of selectively inhibiting individual or 

combinations of candidate cation-selective transporters identified in Aim (3a). 

Confirm potency and selectivity of metformin uptake inhibition in singly 

expressed transporter cell lines.   

c Employ a systematic chemical inhibition scheme to elucidate the relative 

contribution of each candidate transporter in facilitating metformin apical uptake 

in Caco-2 cells.   
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Figure 1.1. Structures of Guanidine and Biguanide Compounds at Physiological pH 
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Figure 1.2. Organ Specific and Systemic Pharmacologic Effects of Metformin.  Increases 
in the pharmacologic response are designated by black arrows, where decreases in the effects 
are designated by red arrows.  
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Figure 1.3. Schematic Diagram of Metformin Cellular Pathways to Elicit Pharmacologic 
Responses.  Metformin enters the cell via organic cation transporters (OCTs), inhibits complex I 
of the mitochondrial respiratory chain, inducing superoxide formation, leading to peroxynitrite 
(ONOO-) formation, activating c-Src-PI3K-PDPK-1 pathway to activate LKB1-AMPK.  AMPK 
activation decreases SREBP-1 translocation to the nucleus activity and phosphorlylates ACC to 
increase fatty acid oxidation.  AMPK activation increases GLUT4 translocation to the plasma 
membrane.  AMPK activation decreases gluconeogenesis through PKCι/λ phosphorylation of 
TORC2 targeting it for degradation.  Additionally, metformin, through AMPK dependent and 
independent pathway, up regulates SIRT1 and GCN5 which inhibit TORC2 translocation to the 
nucleus by deacytlation and PGC-1α associated in the nucleus to FOXO1 by acetylation, 
respectively.  Furthermore, metformin AMPK activation increases SHP expression which blocks 
CBP binding to FOXO1 and HNF4α.  Green arrows represent increased activity or expression, 
red arrows represent decreased activity, solid black arrows indict agonist effects, bold bars 
indicate antagonist effects, and dashed arrows represent the mechanism perturbed by the 
preceding action. 
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Figure 1.5. Diagram of Caco-2 Transwell™ Model and Cation-Selective Transporter 
Expression and Localization in Caco-2 Cells.  A. Transwell™ experimental system with Caco-
2 cells grown on porous membrane supports, providing access to both the apical (AP) and 
basolateral (BL) compartments for dosing and/or sampling.  B. Proposed and known cation-
selective transporters in Caco-2 cells.  hOCT3 and hOCTN2 (green color) function, localization, 
and expression has been confirmed in Caco-2 cells.  hOCT1 and PMAT (grey color) localization 
function, or expression has yet to be fully determined in Caco-2 cells.  Currently there is no 
evidence for BL cation-selective transporters in Caco-2 cells.   
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2.A. ABSTRACT 

 The purpose of the study was to elucidate mechanisms of metformin absorptive 

transport to explain the dose-dependent absorption observed in humans.  Apical (AP) and 

basolateral (BL) uptake and efflux as well as AP to BL (absorptive) transport across 

Caco-2 cell monolayers were evaluated over a range of concentrations.  Transport was 

concentration-dependent and consisted of saturable and nonsaturable components 

(Km~0.05 mM, Jmax ~1.0 pmol min-1 cm-2, and Kd, transport ~10 nL min-1 cm-2).   AP uptake 

data also supported the presence of saturable and nonsaturable components (Km ~0.9 mM, 

Vmax ~330 pmol min-1 mg protein-1, and Kd, uptake ~0.04 µL min-1 mg protein-1).  BL efflux 

was rate-limiting to transcellular transport of metformin; AP efflux was 7-fold greater 

than BL efflux and was not inhibited by [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-

isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide], a 

P-glycoprotein inhibitor.  AP efflux was trans-stimulated by metformin and prototypical 

substrates of organic cation transporters, suggesting that a cation-specific bidirectional 

transport mechanism mediated the AP efflux of metformin.  BL efflux of intracellular 

metformin was much less efficient in comparison with the overall transport, with BL 

efflux clearance accounting for ~7% and ~13% of the overall transport clearance at 0.05 

mM and 10 mM metformin concentrations, respectively.  Kinetic modeling of cellular 

accumulation and transport processes fits the data and supports the finding that transport 

occurs almost exclusively via the paracellular route (~90%) and that the paracellular 

transport is saturable.  This report provides strong evidence of a saturable mechanism in 

the paracellular space and provides insight into possible mechanisms for the dose-

dependence of metformin absorption in vivo. 
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2.B. INTRODUCTION   

 Metformin is an oral antihyperglycemic agent that has been widely used in the 

management of non-insulin-dependent diabetes mellitus.  The oral bioavailability of 

metformin ranges between 40% and 60%; it is primarily excreted unchanged in the urine, 

with negligible metabolism (Tucker et al., 1981; Scheen, 1996);  approximately 20-30% 

of the dose is recovered in the feces unchanged (Tucker et al., 1981; Vidon et al., 1988).  

The oral absorption of metformin is high considering its hydrophilic nature (e.g. 

calculated log D -6.13 at pH 7) (Saitoh et al., 2004) and net positive charge at intestinal 

pH values (pKa 12.4) (Figure 2.1).  It is believed to be predominantly absorbed in the 

upper part of the intestine, and estimated time for its complete absorption is 

approximately 6 h (Tucker et al., 1981; Scheen, 1996).  The elimination half-life after 

oral administration of metformin is more likely a reflection of the rate of absorption than 

true elimination of the drug (Tucker et al., 1981).  In other words, metformin exhibits 

flip-flop kinetics where the slow absorption of metformin is the rate-limiting factor in its 

disposition. 

Clinical trials with metformin have demonstrated decreased bioavailability at 

higher doses, suggesting saturable intestinal absorption (Noel, 1979; Tucker et al., 1981; 

Sambol et al., 1996; Scheen, 1996).  When metformin was co-administered orally with 

the histamine H2-receptor antagonist cimetidine, metformin plasma concentrations were 

increased and renal tubular secretion was decreased, implying a role of the organic cation 

transporters in metformin elimination (Somogyi et al., 1987).  However, in the same 

study, a significant change in metformin absorption due to cimetidine co-administration 

was not observed, as determined by total urinary recovery of metformin, suggesting no 
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interactions associated with their intestinal absorption.  Recent work with single-pass 

intestinal perfusion in rats with metformin showed that permeability in the duodenum 

was concentration-dependent, suggesting the involvement of a carrier-mediated saturable 

mechanism (Song et al., 2006).  Conversely, another study concluded that there was a 

dose-independent linear absorption of metformin in rats (Choi et al., 2006), although the 

doses used in this study were high (50-200 mg/kg), thus potentially saturating any carrier-

mediated absorption over the dose range examined.  It is clear that the mechanisms 

responsible for the dose-dependent absorption of metformin in humans need to be better 

understood.  

Metformin is a substrate for organic cation transporters (OCTs) in both the kidney 

(OCT2) (Kimura et al., 2005a; Kimura et al., 2005b; Terada et al., 2006) and the liver 

(OCT1) (Wang et al., 2002; Kimura et al., 2005a).  Oct1 also was implicated in the 

intestinal secretion of metformin following IV administration in mice (Wang et al., 

2002).  Detectable message levels for hOCT1, hOCT2, hOCT3, hOCTN1, and hOCTN2 

have been found in human intestinal tissue (Ming et al., 2005; Muller et al., 2005; 

Englund et al., 2006; Seithel et al., 2006).  In addition, metformin has been identified as a 

substrate for the multidrug and toxin extrusion (MATE) antiporters, MATE1 and 

MATE2-K (Masuda et al., 2006; Terada et al., 2006; Tsuda et al., 2007).  Although 

MATE2-K, a kidney specific isoform, is believed to be involved in metformin 

elimination (Masuda et al., 2006), the role of MATE antiporters on metformin absorption 

is unknown.  Metformin is also a substrate for the newly identified proton-coupled 

transporter, the plasma-membrane monoamine transporter (PMAT), that has been 
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localized on the apical membrane of human epithelial cells and may facilitate metformin 

absorption (Zhou et al., 2007).   

The present study was undertaken to elucidate the transport mechanisms involved 

in the intestinal absorption of metformin.  The approach used was similar to the one used 

to recently elucidate the absorptive mechanism of another hydrophilic cation, ranitidine 

(Bourdet et al., 2006).    The current studies reveal a complex transport mechanism that 

involves the interaction of metformin with AP uptake and efflux transporters and also a 

paracellular transport mechanism.  The postulated mechanism(s) of metformin transport 

helps to explain the saturable, dose-dependent absorption of metformin observed in 

humans.   
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2.C. METHODS 

Materials 

The Caco-2 cell line was obtained from ATCC (Manassas, VA, USA).  Eagle’s 

minimum essential medium (EMEM) with Earle’s salts and L-glutamate, nonessential 

amino acids (NEAA, 100x), and penicillin-streptomycin-amphotericin B solution (100x), 

fetal bovine serum (FBS), and HEPES (1M) were obtained from Invitrogen Corporation 

(Carlsbad, CA, USA).  Hank’s balanced salt solution (HBSS) with calcium and 

magnesium was purchased from Mediatech Inc. (Hendon, VA, USA).  Metformin, 

quinidine, 1-methyl-4-phenyl pryidinium (MPP), tetraethylammonium bromide (TEA), 

Triton-X100, and D-(+) glucose were purchased from Sigma Chemical Co. (St. Louis, 

MO, USA).  [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-

9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] (GW918) was a gift from 

GlaxoSmithKline (Research Triangle Park, NC, USA).  [14C]Metformin (54 µCi/µmol) 

and [14C]Mannitol (53 µCi/µmol) were purchased from Moravek Biochemicals and 

Radiochemicals (Brea, CA, USA) and were determined to be ≥ 96% pure by the 

manufacturer.   

Cell Culture 

 Caco-2 cells were cultured at 37ºC in EMEM with 10% FBS, 1% NEAA, and 100 

U/ml penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B in an 

atmosphere of 5% CO2 and 90% relative humidity.  The cells were passaged following 

90% confluency using trypsin-EDTA, and plated at a 1:5 ratio in 75-cm2 T flasks.  The 

cells (passage numbers 25 to 40) were seeded at a density of 60,000 cells/cm2 on 

polycarbonate membranes of Transwells™ (12 mm i.d., 0.4 µm pore size, 1 cm2, Costar, 
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Cambridge, MA, USA).  Medium was changed the day following seeding and every other 

day thereafter (AP volume 0.4 mL, BL volume 1.5 mL).  The Caco-2 cell monolayers 

were used 21-28 days post seeding.  Transepithelial electrical resistance (TEER) was 

measured to ensure monolayer integrity.  Measurements were obtained using an EVOM 

Epithelial Tissue Voltohmmeter and an Endohm-12 electrode (World Precision 

Instruments, Sarasota, FL, USA).  Cell monolayers with TEER values greater than 300 

Ω·cm2 were used in transport experiments.   

Transport Studies 

 Transport studies involved only AP to BL (absorptive) direction, and were 

conducted as described previously with minor deviations (Bourdet and Thakker, 2006).  

Cell monolayers were preincubated with transport buffer solution (HBSS with 25 mM D-

glucose and 10 mM HEPES), pH 7.2) for 30 min at 37ºC.  The buffer in the donor (AP) 

compartment was replaced with 0.4 mL of transport buffer containing various 

concentrations of [14C]metformin with or without 0.2 mM quinidine for absorptive 

transport.  The pH in both AP and BL compartments was maintained at 7.2 for all 

transport studies.  Appearance of metformin in the receiver (BL) compartment was 

monitored as a function of time in the linear region of transport and under sink 

conditions.  For experiments examining the role of cation selective transport, cell 

monolayers were preincubated in the absence or presence of quinidine (0.2 mM) in the 

AP compartment for 30 min prior to initiating the transport study.  For experiments 

examining the role of cation selective uptake, cell monolayers were preincubated in the 

absence or presence of quinidine (0.2 mM) in the AP compartment for 30 min.   At the 

conclusion of the experiment, cellular accumulation was determined following washing 
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with 4ºC transport buffer three times in each compartment.  After this, the cell 

monolayers were allowed to dry, excised from the insert, and placed in 300 µL of 1% 

Triton-X100 for 3 hours, while shaking.  The solution was then centrifuged at 10,000 rpm 

for 10 min and the supernatant was analyzed.  [14C]Metformin in the receiver 

compartment and in the cellular compartment was measured using liquid scintillation 

counting (1600 TR Liquid Scintillation Analyzer, Packard Instrument Company, 

Downers Grove, IL, USA).  Protein content was determined by the BCA protein assay 

(Pierce, Rockford, IL, USA) with bovine serum albumin as a standard.  TEER was 

measured prior to and following transport experiments to ensure monolayer integrity 

throughout the experiment and to monitor the effects of metformin and other compounds 

on the monolayer integrity.  Cell monolayers with TEER ≤ 300 Ω·cm2 were discarded.  

Effect of metformin on the cell monolayers was also assessed by measuring 

[14C]mannitol transport in the presence and absence of varying concentrations of 

unlabeled metformin in the AP donor compartment.   

Uptake Kinetics 

 All uptake studies were conducted using methods previously reported with minor 

deviations (Bourdet and Thakker, 2006).  Caco-2 cell monolayers were preincubated for 

30 min in transport buffer.  Experiments were initiated by replacing the donor 

compartment buffer (0.4 ml for AP and 1.5 ml for BL) with transport buffer containing 

various concentrations of [14C]metformin. AP and BL uptake was determined over 5 and 

30 min (the linear uptake region), respectively.  The pH in both AP and BL 

compartments was 7.2 for all uptake experiments.  Cell monolayers were washed three 
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times with 4ºC transport buffer and metformin cellular accumulation and protein content 

was measured as described under “Transport Studies”.   

Efflux Studies: 

 Cell monolayers were preincubated in transport buffer at 37ºC for 30 min, after 

which they were preloaded from the AP side for 60 min with 0.5 mM [14C]metformin.  

The cells were then washed three times with 4ºC transport buffer, placed in contact with 

the 37ºC transport buffer in the AP and BL compartments, and the amount of metformin 

appearing in each compartment was determined at the indicated time points.  To assess 

the effects of P-gp, transport buffer with GW918 (1 µM), a potent P-gp and BCRP 

inhibitor, was added to each compartment during the preloading and efflux experiments.  

To evaluate trans-stimulation/inhibition by other cationic compounds, transport buffer 

containing metformin (5 mM), MPP (0.05 mM), TEA (10 mM), or quinidine (0.2 mM) 

was added to the AP or BL compartment prior to the measurement of efflux.  All efflux 

experiments were conducted in buffer at pH 7.2.  The appearance of [14C]metformin in 

the AP and BL compartments was monitored as a function of time, and efflux clearance 

was determined in the linear range of efflux.  For all efflux studies, cellular accumulation 

following pre-loading for 60 min was determined at the commencement of each 

experiment to serve as the starting intracellular concentrations (Co) of metformin for 

efflux rate constant and clearance calculations.    

Data Analysis 

 Transport of metformin is expressed in terms of apparent permeability (Papp) and 

is described by the following equation: 

)C*A(P oapp
dtdX=      (1) 
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where dX/dt is the mass of metformin (X) transported over time (t), A is the surface area 

of the Transwell™ porous membrane insert, and Co is the initial concentration in the 

donor compartment.  Similarly, transport can be expressed as flux and is described by the 

following equation:   

A
dt

dX
J =        (2) 

Kinetic constants (Jmax, Km, Kd, transport) were obtained for transport data by fitting a model 

incorporating one saturable and one nonsaturable component to metformin transport 

using the following equation (Eq. (3A)):  
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J transportd
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where C is the metformin concentration, Jmax is the maximal flux, Km is the Michaelis-

Menten constant, and Kd, transport is the nonsaturable component of transport.  

 Uptake data were fit to a model describing one saturable and one nonsaturable 

component (Eq. (3B)) 
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where C is the metformin concentration, Vmax is the maximal velocity, Km is the 

Michaelis-Menten constant,  and Kd, uptake is the nonsaturable component of uptake.   

Clearance (CL) values for efflux across both membrane barriers (e.g. AP and BL) 

and transport of metformin form the AP to BL compartment were calculated using Eq. 

(4): 

oC
dt

dX
=CL        (4) 
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where dX/dt represents the mass of metformin (X) effluxed or transported over time (t) in 

the linear region of efflux and transport and Co is the estimated initial intracellular 

concentration or donor concentration of metformin during efflux and transport 

experiments, respectively.  In all instances, clearance values were calculated from 

experiments with 1 cm2 Transwell™ surface area.  Initial intracellular concentrations 

were calculated using the amount loaded following initial preloading into the Caco-2 

cells and cellular volume of 3.66 µL mg protein-1 (Blais et al., 1987; Dantzig and Bergin, 

1990) or 0.732 µL for 1 cm2 Transwell™ insert with average protein content 0.2 mg.  

Trans-stimulation/inhibition values were reported as % control values of their efflux 

clearance in the linear range of efflux at 15 min.   

Mathematical Model 

 A compartmental modeling approach was implemented to examine the 

accumulation and transport of metformin in Caco-2 cells as described previously 

(Bourdet et al., 2006).  The three-compartment model structure can be seen in Figure 2.2.  

Differential equations describing the transfer of mass between compartments of the 

model in Figure 2.2 are: 

22111312
1 **)( XkXkkdt

dX ++−=     (5)  

33222321112
2 **)(* XkXkkXkdt

dX ++−=   (6) 

332113223
3 *** XkXkXkdt

dX −+=    (7) 

where X1, X2, and X3 represent the mass of drug in the AP, cellular, and BL 

compartments, respectively.  First-order rate constants (min-1) signify parameters 

associated with AP uptake (k12), AP efflux (k21), BL uptake (k32), BL efflux (k23), and 



 89

paracellular transport (k13).  Reverse paracellular flux (k31) was omitted from the model 

due to the large AP to BL concentration gradient and the assumptions of sink conditions.  

Parameter estimates were obtained by simultaneously modeling cellular accumulation 

and transport of metformin using nonlinear least-squares regression (WinNonlin, 

Pharsight, Mountain View, CA, USA).  A weighting scheme of 1/Y and the Gauss-

Newton minimization method were used for each modeling exercise.  Parameter 

estimates for BL efflux (k23) and BL uptake (k32) were fixed during modeling using 

experimentally derived values to allow for more accurate estimation of the remaining 

parameters.  BL efflux (k23) was calculated from the following equation: 

)(23 oX
dtdXk =       (8) 

where X is the mass of metformin effluxed into the BL compartment as a function of time 

(t) and Xo is the initial mass following preloading of the cells.  AP and BL uptake rate 

constants were calculated using the equation for uptake rate in terms of the 

experimentally derived kinetic parameters reported previously (Bourdet et al., 2006).  

The rate constants (k12 and k32) were calculated by using the kinetic parameters (Vmax, Km, 

and Kd, uptake) associated with AP and BL uptake.  The initial rate of uptake into the 

cellular compartment (e.g. X2) is described by the following equation:   

3)(or  1 32)(or  12
2  * Xk

dt
dX

initial

=      (9) 

where dX2/dtinitial is the initial rate of uptake of metformin mass (X) into the cell.  The 

initial rate of metformin uptake rate also can be described by a model containing one 

saturable and one nonsaturable component, Eq. (3B).  By expressing metformin 



 90

concentration in terms of mass (X) divided by the donor compartment volume (VAP (or 

BL)), the initial uptake rate is represented in the following equation as: 

BL)(or  AP

3)(or  1,

3)(or  1BL)(or  AP

3)(or  1max2
V
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V*

* XK
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dt
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where Vmax is the maximal velocity, Km is the Michaelis-Menten constant, Kd, uptake is the 

nonsaturable component of uptake, and VAP (or BL) is the volume of the donor 

compartment.  Substitution of Eq. (10) into Eq. (9) enables calculation of the rate 

constant from the experimentally determined kinetic parameters as follows: 
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where Vmax values and Kd values were multiplied by the average protein content of the 

monolayers (0.20 mg protein on a 1 cm2 Transwell™ insert) to remove the dependency of 

protein content from the uptake rate constants.   All data are expressed as mean ± SD 

from three measurements.  Statistical significance was evaluated using unpaired t tests.  

Validation of the model and goodness of fit were assessed by the %CV values for each 

parameter estimate, parameter sensitivity, and correlation matrices.   

Simulation of Transcellular and Paracellular Transport 

 The transcellular and paracellular contributions to transport of metformin were 

determined by implementing parameter estimates from the modeling exercises and 

simulating the appearance of metformin in the receiver (BL) compartment using subsets 

of the differential equations, Eq. (5-7), containing rate constants that describe solely 

transcellular and paracellular transport.  The equations for the simulations were: 
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Paracellular: 

113
1 * Xkdt

dX −=       (12) 

113
3 * Xkdt

dX =       (13) 

 Transcellular: 

2211121 ** XkXkdt
dX +−=     (14) 

332223211122 **)(* XkXkkXkdt
dX ++−=   (15) 

332223
3 ** XkXkdt

dX −=      (16) 
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2.D. RESULTS 

Absorptive Transport and Apical Cellular Uptake of Metformin as a Function of 

Concentration in Caco-2 Cell Monolayers 

 The absorptive transport across Caco-2 monolayers of metformin and its AP 

uptake as a function of concentration are shown in Figure 2.3. For clarity, absorptive 

transport (subsequently referred to as “transport”) refers to movement of drug from the 

AP compartment across the cell monolayer and into the BL compartment.  Uptake and 

efflux will refer to movement of drug across only one membrane barrier (AP or BL).  

Metformin transport was linear up to 90 min with less than 1% of metformin transported 

at all concentrations.  The apparent permeability (Papp) decreased from 4.7 ± 0.2 nm sec-1 

at 10 µM to 2.1 ± 0.3 nm sec-1 at 5 mM, providing evidence for saturable transport of 

metformin across Caco-2 monolayers (Figure 2.3A, left axis).  The transport, in terms of 

flux (J), was modeled as a function of metformin donor concentration (Figure 2.3A, right 

axis).  The transport vs. concentration data were best fit to a model containing one 

saturable and one nonsaturable component (refer to Eq. (3A) in Methods).  This model 

was previously fit to describe the transport of hydrophilic cations, ranitidine and 

famotidine (Lee and Thakker, 1999).  The Jmax and apparent Km estimated for the 

transport were 1.02 ± 0.46 pmol min-1 cm-2 and 0.06 ± 0.03 mM, respectively.  The 

nonsaturable transport coefficient, Kd, transport, was 13.4 ± 0.77  nL min-1 cm-2.  

Comparison of the Kd, transport value to the saturable component of transport (Jmax / Km: 

18.5 nL min-1 cm-2) suggests that ~60% of the overall metformin absorptive transport at 

low concentrations (<< Km) occurs via a saturable process.   
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Metformin (0.5 mM) AP uptake was rapid, but failed to reach steady state by 45 

minutes (inset of Figure 2.3B).  The initial AP uptake rate (determined over 5 min, the 

linear region of AP uptake) of metformin as a function of concentration was described by 

a model with one saturable and one nonsaturable component (Figure 2.3B).  The Vmax and 

apparent Km estimated for AP metformin uptake were 331 ± 68 pmol min-1 mg protein-1 

and 0.9 ± 0.2 mM, respectively (Table 2.1).  The nonsaturable component of AP uptake, 

Kd, uptake, was estimated to be 0.036 ± 0.011 µL min-1 mg protein-1.  Comparison of the Kd, 

uptake value to the saturable component of uptake (Vmax / Km: 0.40 µL min-1 mg protein-1) 

suggests that ~90% of the overall metformin uptake at low concentrations (<< Km) is via 

a saturable process (Table 2.1).  The data are consistent with a saturable, carrier-mediated 

AP uptake process for metformin in Caco-2 cells.   

Metformin BL uptake into Caco-2 cells was significantly lower than AP uptake, 

and was linear up to 30 min (data not shown).  BL uptake kinetic parameters (Vmax and 

Km) were obtained from concentration dependence of BL uptake in the linear range of BL 

uptake (30 min) from 0.01 to 5 mM dosing concentrations (Table 2.1).  BL uptake data 

did not support the incorporation of a term for nonsaturable uptake (Kd, uptake), as was 

observed previously for ranitidine BL uptake (Bourdet and Thakker, 2006).  It should be 

noted however, that the BL uptake studies never fully reach Vmax, therefore model 

predictions of Km may underestimate the true apparent Km for BL uptake.  We 

acknowledge this potential deficiency, but due to the significantly high Km estimate (~12 

mM) this parameter will play little role in the disposition of metformin at concentrations 

achieved in the BL compartment in the Caco-2 cell system or at physiological 



 94

concentrations achieved in the blood.  Therefore the kinetic estimates were adequate for 

calculation of BL uptake rate constant (k32) (refer to Eq. (11) in Methods section).   

AP and BL Efflux of Metformin from Preloaded Cell Monolayers 

 A comparison of the AP uptake to transport suggests that the saturable AP uptake 

clearance is far more efficient than the saturable transport clearance of metformin (Table 

2.1), suggesting that BL efflux out of the cell may limit transcellular transport.  To 

investigate the rate of efflux from the cell, appearance of metformin in the AP and BL 

compartments from cells preloaded with 0.5 mM [14C]metformin was monitored as a 

function of time over the linear region (up to 90 min) of efflux (Figure 2.4A).  Metformin 

exhibited 7-fold higher AP efflux clearance than the BL efflux clearance, suggesting that 

the efflux across the AP membrane is assisted by an efflux transporter and that BL efflux 

is inefficient.  The polarity between AP and BL efflux clearance values indicates that the 

BL membrane is rate limiting to transcellular transport.  The AP efflux was not inhibited 

by 1 µM GW918, a P-glycoprotein (P-gp) inhibitor (Hyafil et al., 1993) (Figure 2.4B), 

thus ruling out the role of P-gp in the AP efflux of metformin; however, AP efflux was 

significantly inhibited by quinidine (p<0.001).  This result supports previous reports that 

metformin is not a substrate for P-gp (Song et al., 2006).   

 Trans-stimulation experiments have been conducted previously to determine 

whether there is a bidirectional carrier-mediated efflux mechanism for other small 

molecules (Villalobos and Braun, 1998; Mizuuchi et al., 1999; Zhang et al., 1999; 

Bourdet and Thakker, 2006). Therefore, trans-stimulation of metformin efflux by 

unlabelled metformin and prototypical OCT substrates/inhibitors was examined by 

measuring the efflux following preloading (0.5 mM [14C]metformin) the Caco-2 cell 
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monolayers (Figure 2.4B).  AP efflux was trans-stimulated by unlabeled metformin (5 

mM), MPP (0.05 mM), and TEA (10 mM).  The presence of quinidine in the AP 

compartment significantly reduced the AP efflux clearance of [14C]metformin from 10.2 

± 0.4 nL min-1 (control) to 1.7 ± 0.3 nL min-1 (+ 0.2 mM quinidine), abolishing the 

polarity between AP and BL efflux of metformin (data not shown).  In addition, the 

presence of quinidine trapped 72.3 ± 0.8% of the initial intracellular metformin in the cell 

following the 90 min efflux experiment, in comparison to control (no quinidine) where 

19.9 ± 2.1% remained (data not shown).  The stimulation of [14C]metformin AP efflux by 

unlabeled metformin and prototypical OCT substrates, TEA and MPP, supports the 

presence of a cation-selective bidirectional transporter in the AP membrane that 

facilitates metformin uptake and secretion from the cell.  BL efflux was not capable of 

trans-stimulation/inhibition by unlabeled metformin, MPP, TEA, or quinidine (Figure 

2.4C).   

Inefficient Basolateral Efflux Limits Transcellular Transport of Metformin across 

Caco-2 Cell Monolayers.  

 Transcellular transport of hydrophilic cations like metformin requires vectoral 

transport, comprised of both AP uptake and BL efflux from the cell.  In Caco-2 cells, AP 

uptake of metformin is highly efficient (Table 2.1), while BL efflux appears to be rate 

limiting to transcellular transport.   Therefore, the rate of BL efflux can serve as a 

surrogate rate of transcellular transport and as an estimate of the relative contribution of 

this pathway to the overall transport of metformin.  Transport (flux) increased from 1.2 ± 

0.03 to 126 ± 19 pmol min-1 cm-2 (~100 fold) as donor concentration increased from 0.05 

mM to 10 mM (200 fold) (Figure 2.5A).  The BL efflux rate increased from 0.3 ± 0.03 to 
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7.85 ± 0.2 pmol min-1 cm-2 (~26 fold) as the donor concentration increased from 0.05 

mM to 10 mM (Figure 2.5A).  The ~26 fold increase in BL efflux rate correlated with the 

increase in estimated intracellular metformin concentration (Co), which increased from 

0.19 ± 0.02 mM to 4.93 ± 0.19 mM (~26 fold increase) as the loading concentration 

increased from 0.05 to 10 mM (inset of Figure 2.5B).  The BL efflux rates for 0.05 and 

10 mM loading concentrations could only account for ~25% and ~6% of the overall 

transport, respectively (Figure 2.5A).  This result leads to the conclusion that metformin 

transport must occur predominantly via the paracellular route.   

Transport (flux) and BL efflux rates are dependent upon the donor concentration 

or the initial intracellular concentrations, respectively.  Clearance values correct for the 

driving force concentrations and represent the efficiency of metformin transported from 

AP to BL compartment during transport or across the BL membrane during BL efflux.  

Transport and BL efflux clearance values (1 cm2 Transwell™ insert) were determined 

following 0.05 or 10 mM AP dose or loading dose, respectively (Figure 2.5B).  Transport 

clearance significantly decreased from 24 ± 1 nL min-1 to 13 ± 2 nL min-1 from 0.05 mM 

to 10 mM donor concentrations, respectively.  This ~50% reduction in transport clearance 

from low to high concentration was indicative of saturable transport processes.  The BL 

efflux clearance values for 0.05 and 10 mM were not significantly different (Figure 

2.5B), although the initial loading concentration (Co) increased ~26 fold (inset of Figure 

2.5B).  The BL efflux clearance could only account for ~7% and ~13% of the overall 

transport clearance at 0.05 mM and 10 mM metformin concentrations, respectively.  

These data suggest that transcellular transport can account for ~10% of the overall 

transport of metformin across Caco-2 cell monolayers.   
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The Relationship between Absorptive Transport and Cellular Accumulation of 

Metformin  

  The transport and cellular accumulation of metformin from the AP compartment 

(0.05 mM) as a function of time were evaluated simultaneously in Caco-2 cells in the 

absence or presence of the cation-selective inhibitor, quinidine (0.2 mM) (Figure 2.6A, D 

respectively).  Cellular accumulation describes the mass of drug accumulated in the cell 

at a fixed period of time.  This value takes into account multiple processes, e.g. uptake 

and efflux, at both the AP and BL membranes.  The cellular accumulation of metformin 

exceeded the transport throughout the experiment (Figure 2.6A), confirming that the 

uptake into the cell was not the rate limiting step to transport of metformin.  In the 

presence of quinidine, the cellular accumulation and transport decreased significantly 

compared to control, and the cellular accumulation failed to exceed the amount of 

metformin transported (Figure 2.6D). 

 Kinetic modeling of the transport and cellular accumulation data was performed 

using the model outlined in Figure 2 with fixed experimentally derived parameters (k23) 

and (k32), representing BL efflux rate constant and BL uptake rate constant, respectively.   

BL efflux rate constant (k23) was fixed because BL efflux was linear over the 90 min 

(Figure 2.4A) and the clearance remained unchanged irrespective of cellular 

concentrations (Figure 2.5B).  BL uptake rate constant (k32) was calculated from Vmax and 

Km parameters experimentally derived (Table 2.1), although this rate constant should play 

a negligible role in metformin disposition due to low concentrations of metformin in the 

BL compartment, e.g. <1% dose transported after 90 min.  When assessing model 

goodness of fit, the estimate for AP uptake rate constant (k12) was highly correlated with 
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the AP efflux rate constant (k21).  The correlation of these parameter estimates was not 

unexpected, for these processes work in opposite directions on the same membrane and 

affect the disposition of the same adjacent compartments.  In addition, the estimated AP 

uptake rate constant (k12 = 0.000156 min-1) was in good agreement with the 

experimentally derived and calculated rate constant (k12 = 0.000199 min-1) obtained from 

Vmax, Km, and Kd, uptake values for AP uptake in Eq. (11) (Methods section).  The model 

was highly sensitive to the three iterated parameters: (k12), (k21), and (k13).   The 

paracellular rate constant (k13) did not have any correlation with the other two iterated 

parameters, (k12) or (k21).   

Parameter estimates were generated from simultaneously modeling the cellular 

accumulation and transport of metformin (0.05 mM) in the presence or absence of the 

cation transporter inhibitor, quinidine (0.2 mM) (Table 2.2).  In the presence of quinidine, 

the rate constant associated with AP uptake (k12) decreased by approximately 90%, which 

was consistent with the inhibition of carrier-mediated uptake process and subsequent 

decrease in cellular accumulation of metformin (Table 2.2, Figure 2.6D).  Inhibition by 

quinidine caused a 3 fold decrease in apparent permeability (Papp, total) and a 7 fold 

decrease in cellular accumulation of metformin (Figure 2.6D).  The paracellular rate 

constant (k13) decreased by approximately 50% in the presence of quinidine (Table 2.2).  

The ability of quinidine to decrease both transcellular and paracellular transport of a 

hydrophilic cation, ranitidine, has been observed previously (Bourdet et al., 2006).   
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Relative Contribution of Transcellular and Paracellular Transport Pathways to 

Absorptive Transport of Metformin 

 The relative contribution of paracellular and transcellular transport to the overall 

transport of metformin (0.05 mM) were estimated to be 9% and 91%, respectively (Table 

2.3); these values were derived based on the parameter estimates obtained from modeling 

with subsets of the differential equations expressing solely paracellular or transcellular 

rate constants (Eq. (12-16)) and were consistent with the estimates based on experimental 

values for transport and BL efflux.  Quinidine (0.2 mM) caused a substantial decrease in 

the permeability (Papp, total), and there was a good correspondence between the 

experimental and predicted Papp, total values (Table 2.3).  Model predictions showed that 

the decrease in the permeability was likely due to a decrease in both transcellular 

permeability (Papp, trans) and paracellular permeability (Papp, para).  In the presence of 

quinidine, the predicted relative contributions of transcellular and paracellular transport 

were estimated to be 3% and 97%, respectively (Table 2.3).   

The relative contribution of transcellular and paracellular transport was estimated 

at three widely separated metformin concentrations: 0.05 mM (near the apparent Km for 

absorptive transport and below apparent Km for AP uptake), 0.5 mM (above apparent Km 

for absorptive transport and near the apparent Km for AP uptake), and 10 mM (above 

apparent Km for both transport and AP uptake).  The Papp, total values for metformin at 

0.05, 0.5, and 10 mM were 5.0 ± 0.57, 3.9 ± 0.56, and 1.4 ± 0.24 nm sec-1, respectively 

(Table 2.3), showing a decrease with concentration.  Cellular accumulation of metformin 

did not reach steady state by 90 min at both the 0.05 and 0.5 mM concentrations, while at 
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the 10 mM metformin concentration steady state concentration in the cell appeared to be 

achieved at ~90 min (Figure 2.6C). 

 Kinetic modeling yielded parameter estimates that described the transport and 

accumulation data (Table 2.2).  The model fit to the experimental data is presented in 

Figure 2.6A-C.  The experimental Papp, total was in good agreement with the model 

predicted Papp, total (Table 2.3).  The estimated AP uptake rate constant (k12) significantly 

decreased with increase in metformin donor concentration, which is consistent with a 

saturable AP uptake mechanism (Table 2.2).  The rate constant estimates for paracellular 

transport (k13) decreased with increasing metformin donor concentrations (Table 2.2).  

For all three concentrations, the majority (~90-95%) of the metformin transport was 

estimated to be via the paracellular route, with only ~5-10% of the transport through the 

transcellular mechanism (Table 2.3).  Both the predicted Papp, trans and predicted Papp, para 

decreased significantly with increasing metformin concentration (Table 2.3).  The 

predicted Papp, para decreased from 4.5 to 1.3 nm sec-1 as concentration increased from 0.05 

and 10 mM, an approximately 70% decrease.  The permeability of the paracellular 

marker [14C]mannitol did not change significantly from control (Papp 5.8 ± 0.7 nm sec-1) 

in the presence of 0.05, 0.5, and 10 mM metformin or in the presence of quinidine (Table 

2.3).     
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2.E. DISCUSSION 

The transport and AP uptake of metformin in Caco-2 cell monolayers contain 

saturable components (Figure 2.3A,B).  To our knowledge, this is the first report of dose-

dependent transport of metformin in a cell-based in vitro system.  The saturable 

component did not appear to play a dominant role in the transport of metformin, 

particularly at high concentrations (Figure 2.3A, right axis), yet there is clear evidence for 

saturable transport of metformin in the plot of apparent permeability (Papp) as a function 

of concentration (Figure 2.3A, left axis).  When compared with the low affinity/high 

capacity AP uptake (apparent Km ~0.8 mM,  Vmax ~330 pmol min-1 mg protein-1), the 

saturable component of transport exhibited distinctly different kinetic behavior (apparent 

Km ~0.05 mM, derived Vmax ~5 pmol min-1mg protein-1, see footnote to Table 2.1), and 

was only 25% as efficient as the apical uptake ((Vmax / Km )AP to BL Transport ~0.1 µL min-1 

mg protein-1 vs. (Vmax / Km )AP ~0.4 µL min-1 mg protein-1, Table 2.1).  This discrepancy 

between the kinetic parameters for the transport and AP uptake suggests that the dose-

dependent transport of metformin was not mediated solely by the AP uptake mechanism 

and associated transcellular processes.   

The AP uptake and cellular accumulation of metformin appeared to reach steady 

state at 90 min for 10mM donor concentration (Figure 2.6C), but not for 0.05 and 0.5mM 

donor concentrations (Figure 2.6A,B).  The inability to achieve steady-state over 90 min 

at 0.05 and 0.5 mM was surprising considering that the hydrophilic cation ranitidine (0.5 

mM) achieved steady-state cellular concentrations at ~15 min (Bourdet and Thakker, 

2006).   This was likely due to both restricted BL efflux and the presence of an efficient 

and high capacity bidirectional transport mechanism on the AP membrane.   
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Both AP uptake and cellular accumulation of metformin were strongly inhibited 

by quinidine (Figure 2.6D), a potent inhibitor of OCTs (Bourdet et al., 2005; Kimura et 

al., 2005b), MATE1 (Ohta et al., 2006), and P-gp (Adachi et al., 2001).  Further, trans-

inhibition by quinidine caused over a 5 fold reduction in AP efflux, suggesting that the 

AP uptake and efflux may be OCT mediated.  The AP efflux was subject to trans-

stimulation by metformin and prototypical cation transporter substrates, TEA and MPP 

(Figure 2.4B), further supporting the involvement of one or more OCT transporters in AP 

uptake and efflux.  Organic cation transporters on the AP membrane of intestinal 

epithelium, in particular OCT3, are facilitative transporters that have been shown to 

transport cations bidirectionally in conjunction with electrochemical gradient or 

membrane potential (Schneider et al., 2005).  Although the exact transporter(s) 

implicated are not known, these studies provide strong evidence supporting an “OCT-

like” bidirectional uptake/efflux transport mechanism on the AP membrane in Caco-2 

cells for metformin.  To our knowledge, this the first report of metformin AP efflux from 

an intestinal cell model system. 

In comparison to the AP efflux, the BL efflux of metformin was quite inefficient 

(Figure 2.4A), and appeared to occur via passive diffusion as evidenced by little change 

in the BL efflux clearance over a wide concentration range (Figure 2.5B).  The inefficient 

BL efflux appeared to be the rate-limiting step for the transcellular transport of 

metformin, resulting in its accumulation in the cells over the 90 min transport 

experiments (Fig 6A-C).   These results provided an explanation for why transport would 

be predominantly paracellular although metformin was efficiently taken up into Caco-2 

cells.   
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The results for the transport, uptake, and efflux kinetic experiments revealed that 

metformin traverses Caco-2 cell monolayers predominantly via a saturable paracellular 

mechanism.  A kinetic modeling approach was employed to estimate the relative 

contributions of trans- and paracellular transport.  The modeling provides a more 

complete evaluation of the processes associated with transport and is able to estimate the 

relative contributions of paracellular and transcellular transport for drugs under a variety 

of experimental conditions (e.g. different concentrations, presence of inhibitors).  At 0.05 

mM donor concentration, approximately 90% of the metformin transport is estimated to 

occur via the paracellular route, whereas only approximately 10% would occur via the 

transcellular pathway (Table 2.3).  This was in excellent agreement with experimental 

transport and efflux data, where ~7% of the transport could be accounted for by BL 

efflux for 0.05 mM metformin donor concentration (Figure 2.5B).   

The kinetic modeling supports the results that suggest that metformin is 

transported predominantly via the paracellular route.  However, it is difficult to reconcile 

this with the experimental observation that the permeability is concentration-dependent 

(i.e. transport is saturable) in Caco-2 cells (Figure 2.3A).  The apparent permeability 

values (Papp, total) of metformin decreased from 5.0 ± 0.57 nm sec-1 to 1.4 ± 0.24 nm sec-1 

from a dose of 0.05 mM to 10 mM, most of which is attributed to a decrease in the 

paracellular permeability, Papp, para (Table 2.3).  The permeability of mannitol, a 

prototypical paracellular transport marker, remained unchanged in the presence of 

varying metformin concentrations (Table 2.3).  Therefore, the decrease in paracellular 

permeability is likely due to saturable interactions between metformin and a 

macromolecule, presumably a protein, in the paracellular space of Caco-2 cell 
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monolayers, and not due to gross changes in the paracellular space or in the tight 

junctions.  It has been postulated that a saturable paracellular mechanism may be due to a 

cation-selective saturable mechanism in the paracellular space involving charge-charge 

interactions (Lee and Thakker, 1999; Bourdet et al., 2006).  Further studies are required 

to elucidate the mechanisms of this saturable paracellular transport mechanism.  Anionic 

amino acid residues of tight junction protein family, claudins, have been shown to confer 

cationic charge selectivity, i.e. Na+ permeability, to the paracellular pathway (Colegio et 

al., 2002; Van Itallie et al., 2003).  It can be postulated that metformin may saturate these 

anionic sites in the tight junction, restricting its own transport at high concentrations.   

The data presented in this study on metformin provide the most convincing 

evidence for a saturable process in the paracellular space acting on a small molecule.  The 

results further show that metformin is taken up into the cells across the AP membrane via 

a cation-selective transporter.  Once inside the cell, it is effluxed poorly across the BL 

membrane but much more efficiently across the AP membrane, perhaps via an AP 

transporter that serves as a cation-exchanger.  It has been shown that metformin 

bioavailability in humans was dose-dependent (Noel, 1979; Tucker et al., 1981; Sambol 

et al., 1996; Scheen, 1996).  In order for transcellular processes to account for the dose-

dependent absorption, vectoral transport of metformin must exist, in which both AP and 

BL transporters are needed to transport the drug from the lumen into the blood.  Provided 

Caco-2 cell monolayers are an appropriate cellular model for intestinal absorption of 

hydrophilic cationic compounds such as metformin, saturable absorption could not occur 

via transcellular transport because of inefficient efflux across the BL membrane.  Rather, 

the saturable absorption in vivo could occur via the paracellular route which accounted 
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for ~90% of the transport of metformin across the Caco-2 cell monolayers.  Based on 

these results, a hypothesis is formulated that attempts to relate the transport behavior of 

metformin in the Caco-2 cell culture model of intestinal epithelium to its likely behavior 

in human subjects (depicted as the “sponge effect” in Figure 2.7) upon oral 

administration.  It can be speculated that a portion of the metformin dose is sequestered in 

the enterocytes due to the lack of an efficient BL efflux transporter mechanism.  In 

addition, metformin is prevented from AP efflux due to a higher lumenal concentration of 

the drug that maintains the net flow of drug in the inward direction.  Some of the 

metformin dose is absorbed across the intestinal epithelium via the cation-selective 

facilitative diffusion in the paracellular space (Figure 2.7A).  As the dose passes through 

the intestine, the luminal concentration decreases below the achievable intracellular 

concentrations of metformin, and AP efflux occurs via the bidirectional “OCT-like” 

transport mechanism.  The effluxed dose of metformin can be absorbed across the 

paracellular space via the cation-selective saturable mechanism or taken up back into the 

enterocytes (Figure 2.7B).  At high doses, (≥ 850 mg or ≥ 20 mM luminal concentration) 

the transport mechanisms are saturated and thus a smaller fraction of administered doses 

would be absorbed via the saturable mechanism. The data presented in this report provide 

an explanation for why the fraction absorbed for metformin, one of the most widely 

prescribed drugs on the market, could fall from ~0.9 to ~0.4 as the dose is raised to 2.0 g 

in humans (Tucker et al., 1981).  Further studies to identify the exact mechanism(s) of the 

saturable paracellular process will lead to better understanding of how metformin and 

other small hydrophilic cations traverse and navigate through tight junctions and the 

effects this process has on their disposition.  Conceivably, a saturable paracellular 
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transport mechanism could be contributing to the elimination of metformin and other 

hydrophilic cations in the kidney and other tight junction containing organs/tissues.     
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LEGENDS FOR FIGURES 

 
Figure 2.1. Structure of metformin. 

 

Figure 2.2. Schematic representation of the three-compartment model describing 

the transport of metformin across Caco-2 cell monolayers.  Compartments represent 

the AP (X1), cellular (X2), and BL (X3) chambers.  Rate constants associated with 

transmembrane movement of drug are denoted as follows: AP uptake (k12), AP efflux 

(k21), BL uptake (k32), and BL efflux (k23).  The rate constant (k13) is associated with 

metformin transport in the paracellular space.  Reverse paracellular flux (k31) was omitted 

from the model and assumed to be negligible under sink conditions. 

 

Figure 2.3. Concentration-dependent transport, apparent permeability, and AP 

uptake of metformin in Caco-2 cells.  The apparent permeability (Papp) of metformin 

(●) as a function of donor concentration is shown in Panel A (left axis).  The 

concentration dependence of the transport (AP to BL) (Panel A) and the AP uptake 

(Panel B) of metformin in Caco-2 cells are shown with the fitted lines for the 

transport/uptake data (solid), the saturable (dashed), and nonsaturable (dotted) 

components, respectively.  Appearance of metformin (▲) in the BL compartment (A) 

and uptake into the cell (B) were monitored in the linear time range for transport and AP 

uptake at 60 min and 5 min, respectively.  The time course for AP uptake (0.5 mM donor 

concentration) can be seen in Figure 2.3B (inset).  Data represent mean ± SD; n=3. 
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Figure 2.4. Efflux of preloaded metformin across the AP and BL membranes of 

Caco-2 cells.  (A) Time course of metformin efflux into AP (●) and BL (○) 

compartments.  Trans-stimulation/inhibition by organic cations of metformin AP efflux 

(Panel B) and BL efflux (Panel C).  The trans-stimulation/inhibition experiment was 

performed after preloading 0.5 mM [14C]metformin (refer to Methods) by replacing the 

transport buffer in the AP or BL compartment with a buffer containing GW918 (1 µM) 

(918), metformin (5 mM) (MET), MPP (0.05 mM), TEA (10 mM), or quinidine (0.2 

mM) (QND) and monitoring [14C]metformin appearance in the AP or BL compartments 

for 15 min.  Trans-stimulation/inhibition experiments are reported as relative % of the 

control (CON) value.  Data represent mean ± SD; n=3.  *p<0.05 compared to control; 

**p<0.01 compared to control; ***p<0.001 compared to control. 

 

Figure 2.5. Relative rates and clearance values of transport (AP-BL) and BL efflux 

of metformin across Caco-2 cell monolayers.  A.  Transport (AP-BL) and BL efflux 

(BL) rates over 90 min for initial AP donor concentration (Co) of 0.05 mM (black bars, 

left y-axis) and 10 mM (open bars, right y-axis) metformin.  B.  Transport clearance and 

BL efflux clearance values (1 cm2 Transwell™ inserts) for initial AP donor concentration 

(Co) of 0.05 mM (black bars) and 10 mM (open bars).  Inset depicts the estimated initial 

cellular concentrations (Co), following 60 min incubation of cells with 0.05 (black bars) 

and 10 mM (open bars) [14C]metformin in the AP compartment (refer to Methods 

section).  Data represent mean ± SD; n=3.  ***p<0.001 for 0.05 mM compared to 10 

mM, “ns” not significantly different between 0.05 mM and 10 mM values. 
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Figure 2.6. Concentration dependence of metformin transport and cellular 

accumulation in Caco-2 cells.  Metformin appearance in the BL compartment (○) and 

cellular accumulation (●) were monitored as a function of time at dosing concentrations 

of 0.05 mM (A), 0.5 mM (B), 10 mM (C), and 0.05 mM in the presence of quinidine (0.2 

mM) (D).  Lines indicate the best fit of the kinetic model (Fig. 2.2) to the metformin BL 

appearance (dotted) and cellular accumulation (solid) data.  Data represent mean ± SD; 

n=3.   

 

Figure 2.7. Schematic of the proposed “sponge” hypothesis for dose-dependent 

absorption of metformin.  (A) Metformin dose travels from the proximal to distal 

regions of the intestine and undergoes predominantly saturable paracellular transport and 

also saturable AP uptake into the cells.  The BL membrane barrier restricts transcellular 

transport of metformin, sequestering the drug in the cell.  (B) As luminal concentration 

decreases and becomes less than the intracellular concentrations of metformin, AP 

“OCT” like bidirectional transporter(s) effluxes metformin into the lumen and allows for 

transport through the paracellular space or re-uptake into the cells.   
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TABLES 

 

Table 2.1. Estimated kinetic parameter for AP uptake, BL uptake, and absorptive 

(AP to BL) transport of metformin in Caco-2 cells.  

Transport 

Site/Direction 

Vmax 

[pmol min-1    

(mg protein-1)] 

Km 

[mM] 

Kd 

[µL min-1     

(mg protein-1)] 

Vmax / Km 

[µL min-1 

(mg protein-1)] 

AP a 331 ± 68 0.9 ± 0.2 0.036 ± 0.011 0.37 

BL b 619 ± 15 12.3 ± 0.4  n/ac 0.05 

AP to BL Transport d 5.1 ± 0.2 0.06 ± 0.03 0.067 ± 0.004 0.09 
a Initial AP uptake data (5 min) are presented in Figure 2.2B with model fits used to 

generate kinetic parameter estimates using nonlinear-least squares regression analysis. 
b BL uptake kinetic parameters were obtained from concentration dependence of BL 

uptake in the linear uptake range (30 min) from 0.01 to 5 mM dosing concentrations.   

c BL uptake data did not support the incorporation of a term for nonsaturable uptake.  n/a: 

not applicable.   
d AP to BL transport kinetic parameters, Jmax and Kd, transport, were divided by the average 

protein content in a Caco-2 monolayer (0.2 mg for 1 cm2
 Transwell™ insert) and Jmax 

was expressed as the maximal velocity, Vmax, for comparison.  
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FIGURES: 

Figure 2.1. 
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Figure 2.2. 
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3.A. ABSTRACT 

 Metformin undergoes predominantly paracellular transport across the intestinal 

cell model, Caco-2; yet this process had a significant saturable component (Proctor, et al. 

Drug Metab Dispos. 2008; 35(8),1650-58).  It was hypothesized that saturable 

paracellular transport was mediated by pores formed by members of tight-junction (TJ) 

protein family, claudins.  These proteins, in particular claudin-2, confer paracellular ion 

selectivity by electrostatic interactions between charged amino acid residues in their first 

extracellular loops believed to form the pores in the TJs.  The active form of vitamin D3, 

1α,25-dihyroxyvitamin D3 (1,25-(OH)2D3), is known to induce claudin-2 and -12 

expression in Caco-2 cells (Fujita et. al. Mol Biol Cell 2008; 19(5), 1912-21).  The goal 

of this study was to evaluate how 1,25-(OH)2D3-treatment affects the paracellular 

transport of organic cations, such as metformin, across Caco-2 cell monolayers (clone 

P27.7).  1,25(OH)2D3-treatment caused an increase in the paracellular transport of 

organic cations, guanidine and metformin, in a size-dependent manner.  Surprisingly, the 

transport of non-charged paracellular probes decreased significantly across 1,25(OH)2D3 

treated Caco-2 cell monolayers.  Of over 30 genes associated with TJ formation or 

regulation, only claudin-2 was selectively induced (3-4 fold) by 1,25(OH)2D3-treatment.  

The results presented provide novel insight into the role of claudin-2 in facilitating 

organic cation transport and the nature of claudin-2 pores in TJs.  Additionally, the 

present study characterizes the modulation of the pore populations in the TJs of intestinal 

epithelium by vitamin D3, providing molecular mechanisms to explain its dual 

physiological role to enhance cation-selectivity and increase intestinal barrier-integrity in 

the intestine.   
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3.B. INTRODUCTION 

Metformin is the most widely prescribed oral anti-hyperglycemic agent for the 

treatment of non-insulin dependent diabetes mellitus.   Despite its widespread use, the 

disposition and pharmacodynamic properties of metformin remain under active 

investigation (1-3).  Metformin is generally well tolerated, though gastrointestinal side 

effects of diarrhea, nausea, abdominal discomfort, and anorexia are common (4).  These 

symptoms are typically transient and subside over time.  However, approximately 3% of 

patients become refractory to metformin therapy due to intolerance surrounding these 

side effects (5).  The mechanism(s) responsible for the gastrointestinal effects are not 

known.  The intestine is a major site for metformin overall glucose-lowering effect (6).   

This has been attributed to its ability to increase peripheral glucose uptake and stimulate 

anaerobic glucose metabolism in the intestine (7, 8), resulting in increased lactate 

production and secretion.  In instances of acute systemic accumulation of the drug, this 

process can potentially lead to elevated lactate plasma concentrations and ultimately to 

lactic acidosis, a rare but potential fatal adverse event.  Metformin is very hydrophilic 

with a net positive charge at physiological pH (pKa 12.4), and thus should have poor 

membrane permeability and overall absorption (refer to Figure 3.2A).  Instead, the drug 

accumulates significantly in intestinal enterocytes (8) and is well absorbed with an oral 

bioavailability (500 mg dose) of 50-60%, although it is dose-dependent and highly 

variable (9-11), suggesting the involvement of intestinal transporters in its oral 

absorption.  

Recent work in a well established intestinal epithelial model, Caco-2 cell 

monolayers, has shown that metformin undergoes saturable absorptive transport (Chapter 
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2, (12)).  When dosed on the apical side, metformin was efficiently taken up across the 

AP membrane of Caco-2 cells by one or more organic cation transporter(s); however, 

egress across the BL membrane was so inefficient that very little metformin was 

transported across the cell monolayers via the transcellular route.  Cellular kinetic studies 

showed that the overall metformin transport in the absorptive direction was 

predominately (>90%) paracellular.  Surprisingly, the absorptive transport of metformin 

had a distinct saturable component to its paracellular transport (12).  This phenomenon of 

saturable paracellular transport, although most clearly demonstrated with metformin, has 

been observed with other hydrophilic cationic drugs, ranitidine and famotidine (13, 14).   

Small hydrophilic compounds, particularly those that have net charge at 

physiological pH, cross the intestinal epithelium via the paracellular route.  Transport 

across this route is generally quite inefficient because the paracellular space represents 

approximately 1/10000 of the overall surface area on the apical cell membrane that is 

available to compounds for absorptive transcellular transport due to the presence of 

microvilli on the apical membrane (15).  The narrow and tortuous paracellular space 

further contributes to the inefficient transport of compounds via this route.  The third and 

perhaps the most important reason for inefficient paracellular transport is the presence of 

tight junctions, which severely restrict the passage of compounds through the paracellular 

space.  The passage of compounds through the paracellular space is believed to occur via 

convective diffusion, a passive transport process.  Therefore it was surprising that 

metformin exhibited saturable transport behavior even when over 90% of the compound 

traversed the cell monolayers via the paracellular route.  We hypothesize that the 

saturable paracellular transport of metformin is due to electrostatic interactions within the 
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tight junctions (TJ) that facilitates paracellular transport of cationic metformin, analogous 

to the known electrostatic interactions that facilitate paracellular transport of the 

inorganic metal ions, calcium and sodium (16, 17).   

The TJ form pores in the paracellular space by specific interactions between the 

extracellular domains of a family of proteins called claudins that are projected into the 

intercellular space from two adjoining cells (18).  Claudins have been implicated in 

increasing barrier integrity (e.g. claudin-1 or -8) (19, 20) or preferentially facilitating ion 

permeability across the TJ by forming charge-selective pores (e.g. claudin-2, -4, -7, -12, 

or -16) (17, 21-24).  The latter group of claudins confers charge-selectivity by 

electrostatic interactions between metal ions and specific charged amino acid residues in 

first extracellular loop believed to form the pores in the TJ (16).  Claudin-2, in particular, 

exhibits its charge-selectivity through electrostatic interactions in the side chain carboxyl 

group of aspartate-65 of the first extracellular loop; altering this key residue reduced 

cation permeability (25).  Claudin-2 pores are not only charge-selective but also size 

restricted to permeation of both charged and non-charged species, alike.  Transport 

studies with noncharged polyethylene glycol oligomers (PEGs) revealed that over 

expressing claudin-2 in Madin-Darby Canine Kidney (MDCK) cell monolayers 

significantly increased the pore density of the monolayer; however, the radius of the 

pores remained relatively constant at approximately 4 Å (26).       

Provided metformin molecular radius is smaller than 4 Å, it is conceivable that 

the saturable paracellular transport of the cationic metformin observed across Caco-2 cell 

monolayers can be facilitated by claudin-2 or other cation-selective claudins.  We have 

employed a Caco-2 cell model, in which claudins-2 and -12 can be induced by treatment 
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of the cells with 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (17), to examine the 

potential role claudin-2 and/or claudin-12 have on metformin absorptive transport.  The 

results in this study provide the first evidence that claudin-2 facilitates paracellular 

transport of metformin and other small hydrophilic cations through electrostatic 

interactions.  Interestingly, treatment of Caco-2 cells with 1,25-(OH)2D3 stimulated the 

transport of hydrophilic cations like metformin on one hand, but also attenuated 

paracellular transport of neutral molecules, such as mannitol, presumably via modulation 

of pores that regulate the paracellular transport of neutral molecules.  This is the first 

report of an agent that selectively stimulates the paracellular transport of organic cations, 

and at the same time attenuates the transport of hydrophilic neutral molecules.       
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3.C. RESUTLS 

Vitamin D3-treatment Causes an Increase in Cation Permeability across Caco-2 Cell 

Monolayers 

 The magnitude of the effect of 1,25-(OH)2D3-treatment on calcium transport 

across Caco-2 cell monolayers has been shown to be dependent upon the specific clone 

utilized (27).  Therefore, the Caco-2 P27.7 clone was used in this report to maximize the 

1,25-(OH)2D3 effect on metformin absorptive transport.  This clone was first isolated by 

limited dilution from Caco-2 parental cells (HTB-37) passage 27 by Schmiedlin-Ren et 

al. in 1997 and has been used extensively for vitamin D3 induction of cytochrome P450 

isoform 3A4 (CYP3A4) intestinal metabolism (28, 29).  The P27.7 Caco-2 cells forms 

high resistance monolayers (TEER ~1000 Ω*cm2) in relation to the parental Caco-2 cell 

monolayers (TEER ~500 Ω*cm2); therefore small perturbations to metformin paracellular 

transport can be detected in P27.7 Caco-2 cells.  As reported previously (16, 34), 

treatment of Caco-2 cells with 1,25-(OH)2D3 [100 nM] for 3 days caused a 50% drop in 

TEER (Figure 3.1A).  Concurrently, the rate of absorptive (AP to BL) and secretory (BL 

to AP) transport of [45Ca+2] [1 mM], expressed as apparent permeability (Papp), increased 

by 3.63 ± 0.14 and 2.87 ± 0.10 fold, respectively (Figure 3.1D) under linear transport 

conditions (Figure 3.1B).  Interestingly, the control Papp for [45Ca+2] [1 mM] did not 

change between the absorptive and secretory transport directions.  Transcellular calcium 

transport functions in the absorptive direction in an energy dependent process (30, 31); 

therefore the increased secretory transport of [45Ca+2] (1 mM) observed across 1,25-

(OH)2D3-treated Caco-2 cell monolayers represents only paracellular transport.  The 

secretory Papp was reduced by approximately 25% (p<0.01) in relation to the absorptive 
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Papp for [45Ca+2] [1 mM], with values of 12.1 ± 0.4 and 16.7 ± 0.7 nm/s, respectively 

(Figure 3.1C).  These data support the hypothesis that 1,25-(OH)2D3-treatment increased 

transcellular [45Ca+2] transport by approximately 25%, and increased paracellular [45Ca+2] 

transport by approximately 75%.  The absorptive Papp values for [45Ca+2] decreased by 

~50% (p<0.05) at a higher concentration [5 mM] for both the control group and 1,25-

(OH)2D3-treated group (Figure 3.1C), suggesting that [Ca+2] across the monolayer was 

saturable.  Vitamin D3 caused a 75% increase in the paracellular transport of [45Ca+2] 

[1mM] in the absorptive direction; therefore, the 50% reduction in the absorptive Papp of 

[45Ca+2] [5mM] in the 1,25-(OH)2D3-treated group clearly demonstrated saturable 

paracellular transport of [Ca+2] in the absorptive direction.  Although the raw Papp values 

decreased approximately 50%, the fold increase in Papp for the absorptive Papp of [45Ca+2] 

did not change between the [1mM] and [5mM] donor concentrations (Figure 3.1D).   

 Interestingly, 1,25-(OH)2D3–treatment [100nM] caused a modest but significant 

increase in the absorptive Papp of the hydrophilic organic cation, metformin, where the 

Papp values increased from  2.3 ± 0.3 to 2.9 ± 0.2 nm s-1 (p<0.05) (Figure 3.2B).  Since 

metformin was shown to be transported across Caco-2 cell monolayers predominantly via 

the paracellular route (12), it is reasonable to postulated that 1,25-(OH)2D3 caused the 

increase in metformin permeability by up-regulating claudin-2 and claudin-12 in the TJ 

of these cells (17).  A much smaller increase in metformin permeability compared to that 

of [Ca+2] ions caused by 1,25-(OH)2D3 may reflect a much larger volume (radius) of the 

organic cation compared to [Ca+2].  To determine if the effect of 1,25-(OH)2D3 on the 

Papp of metformin across Caco-2 cell monolayers could apply to other small hydrophilic 

organic cations and to evaluate if it also was dependent on the size of the cation, transport 
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of a small panel of hydrophilic organic cations across Caco-2 cell monolayers was 

examined using cells treated with 1,25-(OH)2D3 [100nM] or vehicle control.  Figure 3.2A 

depicts space-filling chemical structures of the organic cations guanidine, metformin, and 

TEA, in addition to the uncharged mannitol, which provide an estimate of the relative 

size of these molecules.  Molecular radius estimates were determined for these 

compounds and other reported hydrophilic cations using molecular modeling approaches 

(Table 3.1).  The radius estimates for the organic cations guanidine, metformin, and TEA 

were estimated to be 2.56, 3.28, and 3.74 Å, respectively.  Mannitol was estimated to 

have a slightly larger molecular radius of 3.92 Å (Table 3.1).  Cation-selective claudins, 

in particular claudin-2, are known to facilitate ion and small solute flux in a size-

dependent manner (25, 26); therefore, if these pores were involved, the effects on 

absorptive transport would affect the smaller guanidine to a larger extent than metformin 

or TEA.  Indeed, Papp values of guanidine increased by almost 2-fold from 13.5 ± 0.8 to 

23.9 ± 1.7 nm s-1 (p<0.001) (Figure 3.2B-C).  The Papp values for a larger cation than 

metformin, TEA, did not changed significantly by 1,25-(OH)2D3-treatment, although the 

mean Papp value for 1,25-(OH)2D3 treatment group for TEA appeared to decrease 

somewhat.   

Effect of 1,25-(OH)2D3-treatment on the Absorptive Transport of Neutral 

Hydrophilic Compounds Across Caco-2 Cell Monolayers 

Surprisingly, the absorptive Papp across monolayers treated with 1,25-(OH)2D3 

decreased by ~25% from 0.92 ± 0.08 to 0.69 ± 0.09 nm s-1 (p<0.01) for the neutral 

paracellular probe, mannitol (Figure 3.2B-C).  To further examine the effect of 1,25-

(OH)2D3-treatment on neutral hydrophilic paracellular molecules, the permeability of a 
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series of PEG oligomers with varying molecular weight and size was examined across 

control and 1,25-(OH)2D3-treated Caco-2 cell monolayers.  The Papp values of the PEG 

oligomers across 1,25-(OH)2D3-treated and vehicle-treated Caco-2 cell monolayers, 

plotted as a function of the hydrodynamic radii (r), are depicted in Figure 3.2D.  The 

relationship between Papp values and hydrodynamic radii in the control cell monolayers 

was similar to the previously reported relationship (26, 32, 33), suggesting two 

populations of TJ pores, those that allow transport of compounds smaller than 4 Å in a 

size-dependent manner, and those that allow transport of larger molecules in a size-

independent manner.  Interestingly, 1,25-(OH)2D3-treatment caused a significant decrease 

in the mean Papp (p<0.001) for PEG3.2Å; while not significant, the mean Papp value for 

PEG3.5Å also decreased in relation to control values.  Thus, the reduction in mannitol Papp 

upon 1,25-(OH)2D3-treatment of Caco-2 cell monolayers was observed for other 

hydrophilic neutral molecules of similar size.  The size-restricted pore radius calculated 

by the ratio of PEG3.2Å and PEG3.5Å permeability values using Eq. 3.6 for control and 

1,25-(OH)2D3-treated Caco-2 (P27.7) cell monolayers was 3.9 and 4.0 Å, respectively.  

This size-restricted pore radius of ~4 Å was identical to the value obtained in the Caco-2 

BBe clone (26).  These data suggest that 1,25-(OH)2D3 treatment caused a reduction in 

the size-restricted pore number, without affecting the pore size.   

Vitamin D3-treatment Does Not Affect Transcellular Transport Processes of 

Metformin in Caco-2 Cell Monolayers 

The transcellular transport processes of metformin were examined in both 

treatment groups to determine if the ~25% increase in absorptive transport of metformin 

could be attributed to 1,25-(OH)2D3 related increase in AP uptake, cellular accumulation, 
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and/or BL efflux.  Initial AP uptake (5 min) of metformin remained unchanged in the 

Caco-2 cell monolayers treated in the presence or absence of 1,25-(OH)2D3, with uptake 

values of 1.39 ± 0.10 and 1.30 ± 0.11 (pmol*min-1*mg protein-1) for control and 1,25-

(OH)2D3-treated Caco-2 cells, respectively (Figure 3.3A).  AP and BL efflux clearance, 

as determined in the linear range of efflux and corrected for initial cellular concentration 

following 60min loading of metformin [10µM], did not change significantly by 1,25-

(OH)2D3-treatment (Figure 3.3B).  In both treatment groups, BL efflux was ~5 fold lower 

than AP efflux, as was observed previously for metformin transport across Caco-2 cell 

monolayers (12).  Cellular accumulation (Co) following a 60min absorptive transport 

experiment at 0.01 and 10 mM AP metformin donor concentrations was not affected by 

treatment with 1,25-(OH)2D3 (Figure 3.3C).  Thus, the transcellular transport processes of 

metformin remain unchanged in Caco-2 cell monolayers treated with 1,25-(OH)2D3, and 

can not account for the increase in the absorptive permeability across Caco-2 cell 

monolayers caused by 1,25-(OH)2D3-treatment. 

Expression of Claudin-2 among Claudins is Selectively Induced by Vitamin D3 in 

Caco-2 (P27.7) Cells.   

 Metformin and guanidine absorptive transport increased when Caco-2 cells were 

treated with 1,25-(OH)2D3 (Figure 3.2C), while the transcellular transport processes 

remained unchanged (Figure 3.3).  These results suggested that 1,25-(OH)2D3 increased 

absorptive transport of metformin and guanidine via the paracellular route, while 

decreasing the absorptive transport of neutral paracellular probes.  It is known that 1,25-

(OH)2D3-treatment induces mRNA and protein expression of claudin-2 and claudin-12 in 

Caco-2 BBe cells (17), and E-cadherin protein expression in parental Caco-2 cells (34).   
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In both studies, the effect of 1,25-(OH)2D3-treatment on the expression of only a subset 

of tight-junction proteins was evaluated.  Furthermore, it is not known whether the effects 

1,25-(OH)2D3-treatment on TJ protein expression that were previously observed would 

be observed in Caco-2 P27.7 cells.  Hence, the effect of 1,25-(OH)2D3-treatment on 

mRNA expression was determined corresponding to 30 genes that encode proteins 

responsible for TJ structure and for regulation of TJ function using RT-PCR analysis 

(refer to Table 3.S1 in Supplemental Material).  Of the 30 genes examined, 21 targets 

passed the specified criteria to be detected in the assay and produced single products at 

the predicted size (Figure 3.S1 in Supplemental Material).  Expression of each gene was 

reported relative to the housekeeping gene product, GAPDH, and comparison was 

performed using the ∆∆Ct method (35).  The relative expression of each gene in Caco-2 

cells treated with 1,25-(OH)2D3 and vehicle control are depicted in Figure 3.4A.  The 

relative expression of Claudin-2 mRNA was 4-fold higher in 1,25-(OH)2D3-treated Caco-

2 cells in comparison to control (Figure 3.4A (Inset)).  Claudin-12 mRNA remained 

unchanged with 1,25-(OH)2D3 treatment, which was inconsistent with previous reports 

that 1,25-(OH)2D3 increased claudin-12 expression 3 to 4-fold in Caco-2 cells, albeit in a 

different clone, Caco-2 BBe (17).  The relative expression of mRNA for adipocyte-

specific adhesion molecule (ASAM) and claudin-16 decreased by approximately 65% in 

the 1,25-(OH)2D3-treated Caco-2 cells in comparison to control cells, while expression of 

mRNA for claudin-1, -3, and -4, and -15 decreased by approximately 40% (Figure 3.4B).   

Relative expression of mRNA for occludin, epithelial membrane protein 2 (EMP2), and 

the junction adhesion molecule A (F11R) increased by approximately 40% in the 1,25-

(OH)2D3-treated Caco-2 cells in comparison to control cells.  Claudin-7 mRNA 
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expression in control Caco-2 cells was detected with Ct values at approximately 34 

cycles, although the mRNA levels in the 1,25-(OH)2D3-treated Caco-2 cells fell below 

the detection limit (e.g. >35 cycles) and was deemed undetected (data not shown).   

The effect of 1,25-(OH)2D3-treatment on claudin-2 protein expression in Caco-2 

P27.7 cells was evaluated in addition to the expression of claudin-4, -7, and occludin 

proteins (Figure 3.4C).  Claudin-4 mRNA decreased approximately 40% in the 1,25-

(OH)2D3-treated cells and is known to significantly increase monolayer resistance and 

reduce metal cation paracellular transport (22, 23); therefore claudin-4 protein was 

examined to determine if 1,25-(OH)2D3 acted to increase cation-selectivity of the 

monolayer by simultaneously up-regulating claudin-2 and down-regulating claudin-4.   

As stated above, claudin-7 mRNA was detected in the control Caco-2 cells, but fell out of 

range in the 1,25-(OH)2D3 treated Caco-2 cells.  In addition claudin-7 has been implicated 

in increasing metal cation paracellular transport and decreasing anion transport (21, 36); 

thus, the protein of this claudin isoform was evaluated.  Occludin mRNA increased 

significantly following 1,25-(OH)2D3-treatment; therefore, the effects of 1,25-(OH)2D3-

treatment on occludin protein expression were examined.   

Similar to the mRNA data, only claudin-2 protein significantly increased (~300% 

N=4, p<0.05) with 1,25-(OH)2D3-treatment in relation to control Caco-2 cell protein 

expression (Figure 3.4C).  Claudin-4, claudin-7, and occludin remained unchanged 

between treatment groups.  The protein expression data did not support the mRNA 

expression increase of occludin or the decrease in relative expression decrease of claudin-

4.  In summary, 1,25-(OH)2D3 selectively induced claudin-2 expression in Caco-2 P27.7 
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cells, while the expression of other TJ proteins or the corresponding mRNA was altered 

to a lesser extent.    

 The relative expression of organic cation transporters was examined in Caco-2 

cells treated with 1,25-(OH)2D3 or vehicle control to further confirm the transport data, 

which suggested that metformin transcellular transport processes remained unchanged by 

1,25-(OH)2D3-treatment.  Caco-2 cells express many organic cation transporters (OCTs), 

such as OCT1 (SLC22A1), OCT3 (SLC22A3), and OCTN2 (SLC22A5) (37, 38).  

Metformin is known to be a substrate for human OCT1  (39) and OCT3  (40), and  

OCTN2 is the most abundant cation transporter in Caco-2 cells (38), although metformin 

substrate specificity towards this transporter has yet to be determined.  Metformin 

recently has been identified as a substrate for a newly cloned transporter, the plasma 

membrane monoamine transporter (PMAT, SLC29A4), which has been shown to be 

expressed on the AP membrane of human intestine enterocytes (3).  The expression of 

this transporter in Caco-2 cells is unknown.  The relative expression of OCT1,-3, -N2, 

and PMAT was measured using quantitative PCR.  The relative expression of OCT1,-3, 

and -N2 remained unchanged in Caco-2 cells treated with 1,25-(OH)2D3 (Figure 3.4A-B).  

PMAT mRNA was detected in both control and 1,25-(OH)2D3-treated Caco-2 cells.  This 

is the first report of PMAT expression in Caco-2 cells.  The relative expression of this 

cation transporter was at the same level as OCTN2, and significantly greater than OCT1 

and OCT3 expression (Figure 3.4A).  The relative expression of PMAT decreased ~30% 

(p<0.05) in the 1,25-(OH)2D3-treated Caco-2 cells.  In summary, known cation 

transporter expression in Caco-2 cells did not increase following treatment with 1,25-
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(OH)2D3, supporting metformin functional data that transcellular transport processes were 

not affected.   
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3.D. DISCUSSION 

 We have shown previously in parental Caco-2 HTB-37 cells (12) and again in this 

study using Caco-2 P7.7 cells that metformin was transported efficiently across the AP 

membrane by a bidirectional organic cation transporter(s); yet the drug cannot escape the 

cellular compartment due to inefficient BL efflux resulting in accumulation.  

Consequently, metformin absorptive transport was predominantly (>90%) paracellular 

with a clearly saturable component (Chapter 2) (12).  The aim of this work was to 

elucidate the mechanism of this novel saturable paracellular transport observed with 

metformin and potentially other small hydrophilic organic cations.  It was hypothesized 

that saturable paracellular transport of metformin was due to a facilitative diffusion 

process driven by electrostatic interactions within the TJ, analogous to similar 

interactions known to mediate paracellular transport of metal ions.   

To test this hypothesis we studied the effect of vitamin D3, in particular the active 

vitamin D3 metabolite, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), on metformin 

paracellular transport across Caco-2 cell monolayers.  The results presented here confirm 

previous reports (17, 41) that 1,25-(OH)2D3-treatment reduced overall monolayer 

resistance and increased the calcium paracellular transport in Caco-2 cell monolayers.  In 

the Caco-2 BBe cells, this effect was shown to be due to 1,25-(OH)2D3 specifically up-

regulating both claudin-2 and -12 protein expression (17).  However, our results in the 

Caco-2 P27.7 cells revealed that only claudin-2 mRNA and protein expression were 

significantly increased (~3-4 fold) with 1,25-(OH)2D3-treatment.  Expression of claudin-

12, -15, and -16 in monolayers have been shown to increase cation paracellular transport 

(17, 24, 42), yet the relative mRNA expression for each of these proteins was either 
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unchanged (claudin-12) or decreased (claudin-15, and -16) as a result of 1,25-(OH)2D3-

treatment (Figure 3.4A-B).  The difference between the Caco-2 P27.7 and Caco-2 BBe 

clone in relation to claudin-12 vitamin D3 regulation deserves future study.   

Nevertheless, 1,25-(OH)2D3 increased the overall cation-selectivity of the Caco-2 

P27.7 monolayer through select induction of claudin-2.  Claudin-2 has been studied 

extensively in relation to facilitating paracellular transport of metal cations, such as 

sodium and calcium (17, 23, 25, 42-44).  It is believed that claudin-2 forms pores in the 

TJ and facilitates transport of cations by electrostatic interactions between key anionic 

amino-acid residues in the first extracellular loop, in particular the carboxyl group of 

aspartate-65 (25).  The role this protein on transport of small organic cations is less 

understood.  Recently, Yu et al. (2009) evaluated methylamine, ethylamine, 

trimethylamine (TMA), and TEA permeability across MDCK cells expressing claudin-2 

under an inducible promoter.  Although the results revealed a size-dependent increase in 

the permeability of organic cations with claudin-2 expression, the permeability of the 

organic cations was measured indirectly by electrophysiological measurements (e.g. 

dilution potentials) and at concentrations that are supra-physiological (75mM donor 

solutions).  The study also employed inducible promoters to account for the endogenous 

claudins that may alter paracellular transport of the ions studied, but they failed to 

account for the effect of additional claudin-2 expression on the monolayer integrity by 

monitoring the flux of neutral paracellular probes (e.g. mannitol or PEG).  Over 

expression of claudin protein in MDCK cells are known to increase overall permeability 

across the monolayer presumably by overloading the TJs with protein, while still 

producing a desired effect on monolayer resistance and dilution potential (data not 
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shown).  Therefore, alterations to the monolayer may have confounded the data and 

produced effects not directly attributed to claudin-2 electrostatics.   

In this report, physiologic levels of the active metabolite of vitamin D3 selectively 

increased claudin-2 protein expression resulting in a size-dependent increase in guanidine 

and metformin absorptive transport (Figure 3.2C).  However, 1,25-(OH)2D3 had no effect 

on the transcellular transport processes of metformin.  Therefore, the increase observed in 

metformin absorptive transport across Caco-2 cells treated with 1,25-(OH)2D3 can only 

be attributed to an increase in paracellular transport.  1,25-(OH)2D3-treatment did not 

increase the transport of neutral hydrophilic solutes, indicating that the enhanced 

paracellular transport caused by 1,25-(OH)2D3-treatment was dependent on both size and 

charge.  These observations taken together provide overwhelming evidence implicating 

claudin-2 in facilitating paracellular transport of metformin and similar organic cations.   

1,25-(OH)2D3-treatment caused a significant reduction in the absorptive 

permeability of the neutral paracellular probe mannitol (Figure 3.2C).  Mannitol 

molecular radius was estimated using molecular modeling approaches to be 3.92 Å 

(Table 3.1), which was approximately equal to the calculated values of the size-restricted 

pore radius for control and 1,25-(OH)2D3-treated Caco-2 cell monolayers of 3.9 and 4.0 

Å, respectively.  In addition, this molecular radius estimate may underestimate the true 

hydrodynamic radius of mannitol, which has been shown experimentally to be 

approximately 4.2 Å (45).  Moreover, mannitol paracellular transport was not affected by 

claudin-2 expression in MDCK C7 cell monolayers (26, 43) indicating that it was unable 

to permeate the claudin-2 associated size- and charge-restricted pore system.  In other 

words, mannitol absorptive transport represents permeation through pores in the TJ that 
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are relatively size-independent.  Therefore, 1,25-(OH)2D3-treatment appeared to increase 

the monolayer barrier-integrity by reducing the number of size-independent pores or 

restricted these pores to reduce the flux of mannitol.   

Under basic molecular sieving assumptions, attenuation of transport through the 

size-independent pathway likely contributed to an equal or greater reduction of transport 

through these pores for the smaller solutes such as metformin and guanidine in relation to 

the effect on mannitol transport. Thus, 1,25-(OH)2D3-treatment presumably reduced 

metformin and guanidine passive transport through one pathway; yet their overall 

transport was significantly increased (Figure 3.3C).  This observation supports the 

hypothesis that the true effect of 1,25-(OH)2D3 on increasing the cation-selective pores 

may be underestimated by only measuring transport of the organic cations.  However, the 

structure and proteins involved in forming the size-independent pores remains unknown.  

Furthermore, it is not known whether charged solutes (e.g. metformin) exhibit similar 

diffusion properties as neutral molecules of similar size.  In summary, this is the first 

report of simultaneous modulation of the two paracellular pore systems with opposing 

effects and supports previous reports for two distinctly different pore systems that affect 

hydrophilic solutes: a charge- and size-dependent pathway and a size-independent 

pathway.  Further studies are warranted to examine the molecular mechanism responsible 

for the effects of 1,25-(OH)2D3 on both the size-independent and size- and charge-

dependent paracellular routes. 

Claudin-2 protein expression was increased approximately 3 to 4 fold following 

1,25-(OH)2D3-treatment, most likely resulting in the size-dependent increase in calcium, 

guanidine, and metformin transport (Figures 3.1B and 3.2B-C).  Expression of claudin-2 
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protein in MDCK cell monolayers resulted in both an increase in the cation paracellular 

transport (25) as well as a size-dependent increase in small non-charged PEG oligomers 

with hydrodynamic radii less than 4 Å (e.g. PEG3.2) (26, 33).  The observed increase in 

small non-charged PEG flux was not attributed to an increase in the radius of the size-

restricted pore (26), supporting that claudin-2 enhanced the number of size-restricted 

pores in the monolayer.  Based on the previous reports outlined above, the increase in 

claudin-2 protein should have resulted in an increase in the pore number as measured by 

an increase in the flux of PEG3.2 molecules.  In contrast, the transport of the small non-

charged PEG3.2 was decreased significantly following 1,25-(OH)2D3-treatment (Figure 

3.2D).    Because the size-restricted pore radius for the cell monolayers treated with 1,25-

(OH)2D3 or vehicle control appeared to be nearly identical, the decrease in the 

permeability of PEG3.2 molecule must be due to a decrease in the number of the size-

restricted pores in the monolayer.   

If small PEG oligomers and small cations are both capable of permeating claudin-

2 pores, than the respective decrease and increase in each pathway suggests that 1,25-

(OH)2D3 enhanced the number of claudin-2 pores, while significantly reducing other size-

restricted pores resulting in a net decrease in monolayer porosity.  It would seem 

reasonable to assume that other pore-forming proteins would need to be displaced in 

order to decrease the effective porosity of the monolayer while simultaneously increasing 

the cation-selective size-restricted pores.  It is conceivable that the significant decrease in 

claudin-1, -3, -15, -16, and/or ASAM mRNA expression as a result of 1,25-(OH)2D3-

treatment was a potential compensatory mechanism to allow for increased claudin-2 

cation-selective pores, while reducing the overall porosity of the monolayer.  For 
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example, the junction adhesion molecule A (JAM-A or F11R) was increased by 

approximately 40% in vitamin D3-treated cells (Figure 3.4B).  F11R gene silencing in 

mice was shown to significant increase intestinal expression of claudin-10 and -15 (46); 

therefore, the 1,25-(OH)2D3-associated increase in JAM-A expression may have led to a 

reduction in claudin-15 pores in the monolayer. 

There have been several reports linking vitamin D3 deficiency to the risk of 

inflammatory bowel disease (IBD) and Crohn’s disease (47).   Furthermore, vitamin D3-

treatment decreased disease progression and mortality rates in transgenic mice deficient 

in interleukin-10, the prevalent preclinical model to study IBD and Crohn’s disease (48).  

A recent report also has shown that 1,25-(OH)2D3 can increase barrier integrity and 

wound healing in the Caco-2 cell model (34).  In the latter study, Caco-2 HTB-37 cells 

were less susceptible to dextran sulfate sodium disruption of monolayer integrity 

following pretreatment for 24 h with 10nM of 1,25-(OH)2D3.  They attributed the 

increase in barrier integrity to vitamin D3 induced expression of E-cadherin and ZO-1 and 

maintenance of TEER following injury (34).  Interestingly, we did not observe a 

statistically different increase in E-cadherin or ZO-1 mRNA expression following 1,25-

(OH)2D3-treatment in our Caco-2 P27.7 cell model.  Potential differences between Caco-

2 culture conditions, clone variations, and duration of 1,25-(OH)2D3-treatment (24 vs. 72 

h) may account for this discrepancy.  The results presented here demonstrate for the first 

time the effect of 1,25-(OH)2D3 in vitro on simultaneously increasing barrier integrity 

and cation-selectivity of intestinal epithelium as determined through direct measurement 

of both cation and small noncharged solute flux and provide expression changes to 

several TJ associated proteins that may be responsible for this effect. 
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In conclusion, the work presented in this report provides a molecular mechanism 

to explain the saturable paracellular transport observed with metformin across intestinal 

epithelium.   We have shown selective induction of claudin-2 protein by 1,25-(OH)2D3 in 

Caco-2 P27.7 cells that result in increased cation-selective pores capable of facilitating 

diffusion of these small charged solutes.  This process is distinctly different from the 

paracellular transport of neutral paracellular probes, revealing a complex and dynamic 

system that involves electrostatic interactions, diffusion, and charge accessibility.  This 

novel finding is the first direct evidence that physiologically relevant TJ modulation can 

enhance transport of charged organic solutes, while still maintaining overall barrier 

integrity.  Moreover, 1,25-(OH)2D3-treatment in Caco-2 P27.7 cells simultaneously 

increased both paracellular cation flux and the barrier integrity of the monolayer.  This 

was achieved by 1,25-(OH)2D3-treatment, which altered both the size-restricted and size-

independent pore systems of the monolayer.  A schematic representation of the proposed 

effect 1,25-(OH)2D3-treatment on paracellular transport of metformin and other 

hydrophilic solutes is depicted in Figure 3.5.  This work provides novel mechanistic 

information on how metformin and other similar compounds are absorbed across 

intestinal epithelium.  Additionally, these finding have potential implications in our 

understanding of the distribution and elimination of metformin and other small charged 

solutes in other barrier tissues with well formed tight-junctions.  
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3.E. MATERIALS AND METHODS 

Materials 

Eagle’s minimum essential medium (EMEM) with Earle’s salts and L-glutamate, 

nonessential amino acids (NEAA, 100x), penicillin-streptomycin-amphotericin B 

solution (100x), fetal bovine serum (FBS), and HEPES (1M) were obtained from 

Invitrogen Corporation (Carlsbad, CA, USA).  PEG200, PEG40, and PEG900 were 

obtained from Fluka Chemical (Sigma-Aldrich, St. Louis, MO, USA).  Purified PEG28 

was obtained from Polypure AS (Oslo, Norway).  1-Naphthylisocyanate (1-NIC) was 

obtained from Acros Organics (ThermoFisher Scientific, Pittsburgh PA, USA).  Hank’s 

balanced salt solution (HBSS) with calcium and magnesium was purchased from 

Mediatech, Inc. (Mannassas, VA, USA).  Metformin, guanidine, 1-mehtyl-4-

phenylpryidinium (MPP+), tetraethylammonium bromide (TEA), sodium-dodecyl sulfate 

(SDS), D-(+) glucose, and SYBR Green JumpStartTaq ReadyMix™ were purchased 

from Sigma Chemical Co. (St. Louis, MO, USA).  1,25-(OH)2D3 was obtained from 

BIOMOL (Enzo Life Sciences, Plymouth Meeting, PA, USA).  [14C]Metformin (54 

µCi/µmol), [14C]guanidine (53 µCi/µmol), and [14C]mannitol (55 µCi/µmol) was 

purchased from Moravek Biochemicals and Radiochemicals (Brea, CA, USA).  

[14C]TEA (51 µCi/µmol) and 45CaCl2 (451µCi/µmol) were purchased from New England 

Nuclear (PerkinElmer, Waltham, MA, USA).  RT-PCR primer pairs for TJ gene products 

were purchased from Qiagen, Inc. (Valencia, CA, USA) as QuantiTech Primer Assays™ 

(the names of the genes, accession, and assay numbers are reported in Supplemental 

Material, Table 3.S1).  All other RT-PCR primers were custom designed and synthesized 

by Invitrogen (Carlsbad, CA, USA).  The Caco-2 cell line (P27.7) was obtained 



 146

generously from Dr. Mary F. Paine (Eshelman School of Pharmacy, UNC-Chapel Hill, 

Chapel Hill, NC).   

Caco-2 Cell Culture 

 Caco-2 cells were cultured at 37ºC in EMEM with 10% FBS, 1% NEAA, and 100 

U/ml penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B in an 

atmosphere of 5% CO2 and 90% relative humidity.  The cells were passaged following 

90% confluency using trypsin-EDTA, and plated at a 1:10 ratio in 75-cm2 T flasks.  The 

cells (passage numbers 31 to 36) were seeded at a density of 60,000 cells/cm2 on 

polycarbonate membranes of Transwells™ (12 mm, 0.4 µm pore size, Corning Life 

Science, Lowell, MA, USA).  Medium was changed the day following seeding and every 

other day thereafter (apical (AP) volume 0.5 mL, basolateral (BL) volume 1.5 mL).  The 

Caco-2 cell monolayers were used 21-28 days post seeding.  Cells were treated in both 

the AP and BL compartments with 1,25-(OH)2D3 [100nM] or vehicle (0.01% ethanol) in 

cell culture medium for three days prior to transport experiment.  Transepithelial 

electrical resistance (TEER) was measured to ensure monolayer integrity and the extent 

of claudin induction by 1,25-(OH)2D3.  Measurements were done using an EVOM 

Epithelial Tissue Voltohmmeter and an Endohm-12 electrode (World Precision 

Instruments, Sarasota, FL, USA).  Cell monolayers with TEER values greater than 400 

Ω·cm2 were used in transport experiments.   

Absorptive (AP-BL) Transport Studies:  

Transport studies were conducted as described previously with minor deviations 

(12, 49).  Cell monolayers treated for 3 days with 1,25-(OH)2D3 [100nM] or vehicle 

control were preincubated with transport buffer solution (HBSS with 25 mM D-glucose 
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and 10 mM HEPES, pH 7.4) for 30 min at 37ºC.  The buffer in the donor compartment 

was replaced with 0.4 ml (AP) or 1.5 ml (BL) of transport buffer containing [45Ca+2] (0.2 

µCi/ml), [14C]-guanidine (0.1 µCi/ml), [14C]-metformin (0.15 µCi/ml), [14C]-TEA (0.1 

µCi/ml), or [14C]-mannitol (0.1 µCi/ml).  For measurement of calcium transport, [45Ca+2] 

in transport buffer was spiked into the donor compartment without additional calcium 

[1mM] or at 5mM CaCl [5mM].  All other compounds assessed were dosed at 10µM 

unless otherwise noted.  The pH in both AP and BL compartments was maintained at 7.4 

for all transport studies.  Appearance of compounds into the receiver compartment (BL 

for absorptive transport or AP for secretory transport) was monitored as a function of 

time in the linear region of transport and under sink conditions.  The radioisotope-labeled 

compounds were quantified using liquid scintillation spectrometry (1600 TR Liquid 

Scintillation Analyzer, Packard Instrument Company, Downers Grove, IL, USA).   

Uptake, Efflux, and Cellular Accumulation Studies 

Transcellular transport processes (e.g. uptake, efflux, and cellular accumulation) 

of metformin were evaluated across Caco-2 cell monolayers that were treated for 3 days 

with 1,25-(OH)2D3 [100nM] or vehicle control using methods established previously (12) 

with minor deviations.  During uptake experiments, cell monolayers were preincubated 

for 30 min in transport buffer.  Uptake experiments were initiated by replacing the buffer 

in the donor compartment with transport buffer containing [14C]metformin (0.15µCi/mL) 

at a final concentration of 10µM.  The AP uptake into the Caco-2 cell monolayers was 

determined during the initial linear uptake range at 5 min.  Uptake was stopped by 

washing the cell monolayers with 4ºC transport buffer three times in each compartment at 

the indicated time point.  The cell monolayers were allowed to dry, excised from the 
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insert, and placed in 500 µL of 0.1% SDS in 0.1N NaOH for 3 hours, while shaking.  

Protein content of the cell lysate was determined by the bicinchoninic acid (BCA) protein 

assay (Pierce, Rockford, IL, USA) with bovine serum albumin as a standard.  Metformin 

in the cell lysate was analyzed by liquid scintillation spectrometry, and the rate of initial 

uptake of metformin was determined.     

 Metformin efflux across the AP and BL membranes of Caco-2 cell monolayers 

was determined using cells that were treated for 3 days with 1,25-(OH)2D3 [100nM] or 

vehicle control.  Cell monolayers were preincubated in transport buffer at 37ºC for 30 

min, after which they were preloaded from the AP side by incubating for 60 min with 

10µM [14C]metformin.  The cells were then washed three times with 4ºC transport buffer, 

placed in contact with the 37ºC transport buffer in the AP and BL compartments, and the 

amount of metformin appearing in each compartment was determined at 15, 30, and 60 

min.  All efflux experiments were conducted in pH 7.4 buffer.  The appearance of 

[14C]metformin in the AP and BL compartments was monitored as a function of time.  

Efflux clearance was determined in the linear range of efflux.  Cellular accumulation was 

determined in separate wells following preloading of metformin ([10µM] and [10mM]) 

from the AP compartment for 60 min.  The cellular accumulation studies provided the 

starting intracellular concentrations (Co) of metformin for efflux clearance calculations.    

Polyethylene Glycol (PEG) Permeability Assay 

 To evaluate the effect of 1,25-(OH)2D3 on paracellular pores, independent of 

charge-selectivity, the apparent permeability (Papp) was determined for a series of 

noncharged polyethylene glycols (PEGs) across Caco-2 cell monolayers in the presence 

or absence of 1,25-(OH)2D3 [100nM].  This was achieved by measuring absorptive 
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transport of PEG oligomers across cell monolayers using a method originally proposed 

by Watson and colleagues (32) that involves pre-column fluorescent derivatization with 

1-NIC and HPLC separation with fluorescent detection (26, 50).  Briefly, cell monolayers 

were preincubated with transport buffer for 30 minutes.  The experiment was initiated by 

replacing the buffer in the donor compartment with transport buffer containing a 5mg/ml 

mixture of PEG200, PEG400, and PEG900 at a ratio of 2:0.5:1 by weight.  Receiver 

compartments were sampled 0, 60, 120, and 180 minutes.  Samples were spiked with an 

internal standard (20µg purified PEG28) prior to further handling.  Samples were dried 

down in a water bath at 55°C under a stream of nitrogen gas.  The samples were 

derivatized by addition of 20µL of 1-NIC in 100µL of acetone, followed by vortexing for 

4 hours at 25°C, and finally adding 50µL of methanol and 500µl of H2O to quench excess 

reagent.  The contents of the reaction mixture were extracted twice with diethyl ether.  

The aqueous phase was transferred to an HPLC vial for analysis.  The derivatized PEGs 

in aqueous sample (100µL) were separated on a bare-silica column (Waters Spherisorb 

5.0-µm Silica column, 4.6x150mm, Waters Corporation, Milford, MA, USA).  The PEG 

oligomers were quantified by integration of the HPLC peaks (fluorescence emission 

detection, excitation at 232 nm, emission at 358nm).  Each PEG was quantified using a 

standard curve obtained with analyte/internal standard (PEG28) peak area ratios.      

Quantitative Polymerase Chain Reaction (PCR) to Determine the Expression of 

Tight Junction and Cation-selective Transporter Genes in Caco-2 Cells Treated 

with 1,25-Dihydroxyvitamine D3  

 The expression of genes coding for TJ proteins in Caco-2 cells was determined by 

quantitative PCR using established methods (51) with minor deviations.  Total RNA was 
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isolated from Caco-2 cell monolayers that were treated with 1,25-(OH)2D3 [100nM] or 

vehicle control for three days using RNeasy Mini Prep columns (Qiagen, Valencia CA).  

RNA samples underwent DNA digestion by TURBO DNAse (Ambion/Applied 

Biosystems, Austin, TX, USA) to remove potential genomic DNA contamination.  cDNA 

was synthesized from total Caco-2 RNA (5µg) using Superscript III reverse transcriptase 

(Invitrogen Corporation, Carlsbad, CA).  An equal amount of RNA was included in a No-

RT control for each separate RNA sample.  Real-time PCR was preformed with 1:50 

dilutions (or with 1:10 dilutions for determination of claudin-2 and claudin-16 

expression) of the cDNA (in triplicate).  For each primer set studied, No-RT and No-

Template reaction negative controls were analyzed.  Quantitative PCR reactions (25µL 

total volume) were performed using SYBR Green JumpStartTaq ReadyMix™ (Sigma–

Aldrich Co., St. Louis, MO) containing primer pairs at 0.9 or 0.3 µM final reaction 

concentration and 5 µL of cDNA or negative controls.  RT-PCR amplification was 

performed in a Rotor-Gene 3000 (Corbett Research, Mortlake, Australia) thermal cycler 

at 95°C for 3 min followed by 40 cycles at 94°C for 15 s, 54°C for 20 s, and 72°C for 25 

s.  Melting curve analysis was performed following amplification by heating the reactions 

from 50 to 99°C in 0.2°C intervals while monitoring fluorescence.  All primer pairs, 

except glyceraldehyde 3-phosphate dehydrogenase (GAPDH), organic cation transporter 

1 (OCT1), OCT3, novel cation and carnitine transporter 2 (OCTN2), and the plasma 

membrane monoamine transporter (PMAT), were obtained as QuantiTect™ Primer 

Assays (Qiagen, Valencia, CA, USA).  The gene name, accession number, and assay 

number are listed in Table 3.S1 in Supplemental Data.  QuantiTect™ Primer Assays are 

bioinformatically validated primer sets that are optimized for use in SYBR Green-based 
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detection and are designed to have ~100% PCR efficiency for quantitative comparisons.  

Primer pairs produced single melt temperatures; the amplified products were analyzed 

using gel electrophoresis (2% agarose gel with 0.5 µg/mL ethidium bromide) to ensure 

singular products at the appropriate size (Figure 3.S1 in Supplemental Data).  The lowest 

signal threshold at which all amplified samples were above the background was set 

(approximately 0.2 fluorescence units) and the cycle at which each sample crossed the 

threshold, or cycle threshold (Ct), was determined.  Gene products which failed to 

amplify above the threshold by cycle 35 were assigned as not detected (ND) and were not 

included in further comparisons. Amplification efficiency for each individual reaction 

was monitored, as given by the Rotor-Gene software (v.5) comparative quantification 

function.  Amplification efficiencies for all reactions were approximately 100%; 

therefore no adjustment to the Ct values was needed.   

 Human GAPDH expression was determined in each RT-PCR run and served as 

the normalization control.  cDNA preparation, fluorescence threshold, and PCR 

conditions were identical to those used for target genes in order to calculate the 

expression of TJ and cation transporter genes in relation to GAPDH.  The relative 

expression for each target gene was calculated by 2∆Ct, where ∆Ct = (Ct, GAPDH – Ct, gene); 

therefore setting the expression value of GAPDH to 1.0.  Experimental error was 

estimated for each gene in each treatment group by comparing the CV (%) of the average 

Ct value of that gene, error = [(2%CV)/100] · [relative expression value].  Statistical 

differences between the relative expression of gene products of control and 1,25-

(OH)2D3-treated Caco-2 cells was determined using the ∆∆Ct method (35) with unpaired 

t-test statistical analysis. 
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Gel Electrophoresis and Immunoblotting: 

 Immunoblots were performed using methods described previously (42, 52) with 

minor deviations.  Anti-human claudin-2 mouse monoclonal antibody (mAb) (1:4000), 

anti-human claudin-4 mouse mAb (1:4000), anti-human claudin-7 mouse mAb (1:1500), 

and anti-human occludin mouse mAb (1:1500 dilution) were obtained from Zymed 

(Invitrogen, Carlsbad CA, USA).  Claudin-12 antibody was purchased from Invitrogen 

(Carlsbad, CA, USA), but failed to produce distinct bands at the appropriate molecular 

weight and was not pursued further (data not shown).   Caco-2 cells were grown on 1-cm2 

Transwell™ supports for 21 day culture with or without 3-day treatment with 100nM of 

1,25-(OH)2D3.  SDS-sample buffer (40% glycerol, 0.25 M Tris (pH 6.8), 8% SDS, 0.4% 

2-mercaptoethanol, and ~0.004% bromophenol blue, 100µl) was added to the insert, 

incubated at room temperature for 10min to lyse the cells, and then frozen at -80°C for 

future immunoblot analysis.  Equal volumes of lysates were subjected to sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (13% polyacrylamide gels for 

claudins, 8% gels for occludin) and transferred to nitrocellulose membranes (0.45µm, 

Bio-Rad Laboratories, Hercules, CA, USA).  Antigen-antibody complexes were detected 

using horseradish peroxidase conjugated secondary antibodies by enhanced 

chemiluminescence (ECL) (Amersham Biosciences, GE Healthcare, Piscataway, NJ, 

USA).  Immunoblot protein concentrations were determined by optical densitometry at 

the identical scan and intensity settings (Odyssey™ Infrared Imaging System, LI-COR 

Biosciences, Lincoln, NE, USA).  TJ protein expression in 1,25-(OH)2D3-treated Caco-2 

cells  was reported relative to the expression of these proteins in untreated Caco-2 cells. 
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Conformational Search and Molecular Volume Calculation for Organic Solutes 

The conformational search and molecular volume calculations were performed on 

the protonated (e.g. cationic) structure of each organic cation.  Each compound was first 

subjected to a conformational search using stochastic search algorithm (53).  The 

conformational space was searched exhaustively by perturbing both dihedral angle of all 

rotation bonds and Cartesian coordinates of each atom in the molecule by some small 

amounts, i.e. 30 degrees and [-1Å, 1Å] (the sign was determined randomly), respectively.  

The current chirality of all constrained chiral centers (that are not easily invertible) in the 

molecule had been retained during the search.  The potential energy setup for 

conformational evaluation as well as the partial charge calculation employed MMFF94x 

force field (54, 55) with all explicit hydrogens, and the calculations were conducted in the 

MOE 2007.09 package (Chemical Computing Group, Montreal, Quebec, Canada).  The 

conformers of the lowest potential energy were rendered to energy minimization prior to 

be submitted to Gaussian 03 (Gaussian, Inc., Wallingford, CT, USA) for the quantum 

mechanic calculations.  The molecular volume of each molecule was defined as the 

volume inside a contour of 0.001 electrons/Bohr3 density and computed by the Hartree-

Fock method with 6-311+G basis set (56-59).  This value was the volume enclosed by the 

van der Waals surface (60, 61), which was composed of the union of the spherical atomic 

surfaces defined by the van der Waals radius of each component atom in the molecule.  

The geometry had been further optimized within Gaussian 03 at the same level by the 

Berny algorithm.   
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Data Analysis  

Transport of the compounds examined this report was expressed as the apparent 

permeability (Papp) and is described by the following equation: 

)C*A(P
oapp

dtdX=        (1) 

where dX/dt is the mass of compound (X) transported over time (t), A is the surface area 

of the Transwell™ porous membrane, and Co is the initial concentration in the donor 

compartment.  All data are expressed as mean ± SD from 4 measurements.  Statistical 

significance was evaluated using unpaired t tests or 2-way analysis of variance analysis 

(ANOVA) with Bonferroni’s post-test correction as noted. 

 Metformin uptake data, reported as amount taken up per minute, were corrected 

for total protein content of the monolayer, and expressed as pmol*min-1*mg protein-1.  

Efflux clearance (CLeff) values at both membrane barriers (e.g. AP and BL) were 

calculated using Eq. (3.2): 

oeff CCL dtdX=        (3.2) 

where dX/dt represents the mass of metformin effluxed (X) into the AP or BL 

compartment over time (t), determined in the linear region of efflux, and Co is the 

estimated initial intracellular concentration of metformin.  Initial intracellular 

concentrations, which is another term for cellular accumulation, were calculated from the 

amount loaded into the Caco-2 cells, using the cellular volume of 3.66 µL/mg protein 

(62, 63) or 0.732 µL/cells on 1 cm2 Transwell™ insert with average protein content 0.2 

mg.   

 The hydrodynamic radius for each PEG molecule was calculated by Eq. 3.3 

reported previously (64): 
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0.4540.29(M)r =        (3.3) 

where r is the hydrodynamic radius in Å and M is the molecular mass of each PEG 

oligomer.  Statistical significance was determined using two-way ANOVA with 

Bonferroni post-test analysis.  PEG permeability studies were done with n=4 for each 

treatment group.    Experiments were repeated in triplicate.   

The size-restricted pore radius, or paracellular aqueous pore radius, of the Caco-2 

cell monolayers was calculated from the ratio of the corrected paracellular Papp of pairs of 

two small PEG species with radii 3.2 and 3.5 Å using a Renkin molecular sieving 

function as described previously (25, 65).  Briefly, the pore size in terms of radius (R) of 

the Caco-2 cell monolayer was determined the ratio of apparent permeability values of 

each solute to the following equation:  
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,
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xapp =         (3.4) 

where x and y are a solute pair, r is the radius of each respective solute, R is the radius of 

the pore system, and F(r/R) is the Renkin function that is described by the following 

equation:   
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By substituting Eq. 3.5 into Eq. 3.4, the final equation used to calculate the radius of the 

pore in Caco-2 system was derived and seen below in Eq. 3.6: 
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The calculated pore radius (R) was determined using the mean Papp values obtained for 

each solute.  Radius values were determined for both control and vitamin D3 treated 

Caco-2 cell monolayers for each solute pair. 
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TABLES AND FIGURES 

   

  

 

 

Table 3.1. Calculated molecular radius for hydrophilic organic solutes in relation to 

reported values. 

 

a Molar volume was determined by Gaussian 3.0 software for each compound using 
the most thermodynamically favored confirmation (refer to methods section).  
b Calculated radius values were determined from molar volume values assuming 
volume of a sphere.  NA: not available 
 

 

 

 

 

Molar 
Volume a 

Calculated 
Radius b  

Range of 
Reported Radius References Compound 

cm3/mol Å Å  
Methylamine 33.04 2.36 1.9 - 2.7 (25, 65, 66) 

Guanidine 42.35 2.56 NA  
1-Methylguanidine 63.79 2.94 NA  

Metformin 89.15 3.28 NA  
TEA 131.52 3.74 3.3 - 4.0 (25, 67) 

Mannitol 152.43 3.92 3.6 - 4.3 (45, 65, 66, 68) 
Atenolol 221.51 4.45 4.2 - 4.8 (65, 66) 
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4.A. ABSTRACT 

 Metformin paracellular transport was increased following treatment with the 

active metabolite of vitamin D3.  It was shown that a tight-junction (TJ) protein, claudin-

2, was selectively induced by this treatment.  Claudin-2 is a transmembrane protein that is 

believed to form pores in the TJ that preferentially transports cations through electrostatic 

interactions with anionic residues in its extracellular loops (Yu et al., 2009).  The goal of 

this report was to determine whether claudin-2 protein directly interacts with metformin 

and similar organic cations.  To achieve this, the absorptive transport of a small panel of 

organic cations, including metformin, was examined across a LLC-PK1 epithelial cell 

model that exogenously expressed claudin-2 under the control of an inducible promoter 

(Van Itallie et al., 2003).  Monolayer integrity was monitored by mannitol transport, 

which increased upwards of 40% at high levels of claudin-2 induction.  Increasing 

claudin-2 protein expression to a maximum at which mannitol transport was not 

significantly increased resulted in a 12-, 4-, and 2-fold increase in [Ca+2], guanidine, and 

1-methylguanidine absorptive transport.  This was the first direct evidence that claudin-2 

facilitated diffusion of organic cations at levels that did not affect overall monolayer 

integrity.  Surprisingly, metformin and tetraethylammonium (TEA) transport were not 

affected by claudin-2 expression.  Using molecular radius estimates for guanidine and 1-

methylguanidine and their respective changes to absorptive transport, the claudin-2 pore 

radius was estimated to be approximately 4 Å.  This estimate was not different from the 

basal uninduced size-restricted LLC-PK1 pore radius, supporting a previous report that 

claudin-2 expression did not alter pore size but increases porosity in MDCK C7 cells 

(Van Itallie et al., 2008).   
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4.B. INTRODUCTION 

 Metformin has been shown to be primarily absorbed across Caco-2 cell 

monolayers, the established intestinal cell model, via the paracellular route (Proctor et al., 

2008).  Although metformin was taken up efficiently across the apical (AP) membrane of 

Caco-2 cells, the transcellular route contributed very little to the absorptive transport of 

metformin because metformin could not egress efficiently from the cells across the 

basolateral (BL) membrane, presumably due to the absence of a cation-selective efflux 

transporter at the BL membrane.  Cellular kinetic studies clearly demonstrated that the 

overall absorptive transport of metformin was partially saturable (Proctor et al., 2008) 

despite the preponderance of paracellular transport.  This observation provided the most 

striking evidence for saturable paracellular transport acting on an organic cation, which 

has been proposed previously (Gan et al., 1998; Lee and Thakker, 1999; Bourdet et al., 

2006). 

 The molecular mechanism responsible for the saturable paracellular transport 

acting on metformin and other hydrophilic cations across Caco-2 cell monolayers is 

unknown; however it was postulated to involve interactions between the drugs and the 

family of tight-junction (TJ) proteins known as claudins.  Claudins are transmembrane 

proteins believed to form pores in the TJ that affect both barrier integrity and charge-

selectivity of the monolayers (Van Itallie and Anderson, 2004).  Specific claudin 

isoforms have been shown to confer charge-selectivity through charged amino acid 

residues of the first extracellular loop that facilitate paracellular ion permeability by 

electrostatic interactions (Colegio et al., 2002; Colegio et al., 2003).  For example, cation-

selective claudins preferentially facilitate paracellular transport of Na+ and Ca+2 ions 
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mediated by electrostatic interactions with negatively charged residues that line the pores 

(Colegio et al., 2003; Yu et al., 2009).  There are five known cation-selective claudin 

isoforms: claudin-2, -10b, -12, -15, and -16 (Amasheh et al., 2002; Van Itallie et al., 

2003; Hou et al., 2005; Van Itallie et al., 2006; Fujita et al., 2008).  These claudins are 

regionally expressed throughout the body (Rahner et al., 2001; Fujita et al., 2006) and 

have distinct functions in regulating ion homeostasis and maintaining barrier integrity for 

both ion and solute flux (Van Itallie and Anderson, 2006; Amasheh et al., 2009b).   

Claudin-2 is the most widely studied cation-selective claudin. Claudin-2 

expressed in the Madin-Darby Canine Kidney (MDCK) C7 epithelial cells resulted in a 

6-fold increase in Na+ and K+ ion permeability, while not affecting neutral paracellular 

probe compound mannitol (Amasheh et al., 2002).  It has been shown to facilitate metal 

cation flux through electrostatic interactions with an aspartic acid residue at position 65 

of its first extracellular loop (Colegio et al., 2003; Yu et al., 2009).  Over-expression of 

claudin-2 in Caco-2 cells reduced the monolayer resistance and increased both Na+ and 

Ca+2 paracellular transport (Fujita et al., 2008).  Additionally, claudin-2 pores have been 

shown to be capable of passively diffusing small noncharged hydrophilic solutes, 

provided their hydrodynamic radii were below 4 Å (Van Itallie et al., 2008).  The ability 

to diffuse small hydrophilic solutes appears to be unique to claudin-2, where expression 

of the anionic-selective claudin-4 increased monolayer resistance but did not affect 

transport of noncharged solutes (Van Itallie et al., 2008; Van Itallie et al., 2009b).  The 

ability of claudin-2 to modulate cation-selectivity across the monolayer in addition to 

permitting flux of small hydrophilic neutral solutes made this claudin isoform an ideal 
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candidate to explore potential molecular mechanisms responsible for saturable 

paracellular transport of metformin.   

As stated above, the effect of claudin-2 expression on the transport of metal 

cations is well established; however the role that this protein plays in paracellular 

transport of organic cations remains largely unknown.  Yu et al. (2009) reported that the 

transport of small organic cations such as methylamine (MA), ethylamine (EA), and 

tetramethylammonium (TMA) was affected by electrostatic interactions with claudin-2 

expressed in MDCK monolayers.  This phenomenon was size-dependent and was 

partially ablated when aspartic acid-65 was replaced with asparagine (Yu et al., 2009).  

Although a thorough and comprehensive study, the experimental conditions and the 

compounds selected did not allow for direct determination of claudin-2 mediated 

transport of organic cations.  Further study is necessary to explicitly demonstrate claudin-

2 mediated paracellular transport of organic cations.   

The goal of this work was to test the hypothesis that claudin-2 facilitates 

paracellular transport of small hydrophilic organic cations (e.g. metformin) across 

epithelial monolayers.  A previously developed and characterized cell line that stably 

expresses claudin-2 with the ability to control its expression (Van Itallie et al., 2003) was 

employed to test this hypothesis.  The results presented here demonstrate, for the first 

time, direct evidence for facilitated paracellular transport of small organic cations 

mediated by claudin-2.  Furthermore, the magnitude of the effect of claudin-2 was 

proportional to the relative size of the cation; thus providing a new tool to probe the 

claudin-2 associated pore properties. 
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4.C. MATERIALS AND METHODS 

Materials 

Dulbecco’s minimum essential medium (DMEM) with D-glucose (4.5g/L) L-

glutamate, penicillin-streptomycin-amphotericin B solution (100x), and HEPES (1M) 

were obtained from Invitrogen Corporation (Carlsbad, CA, USA).  Tetracycyline 

screened fetal bovine serum (TS-FBS) was obtained from Hyclone, Inc (ThermoFisher 

Scientific, Pittsburgh PA, USA).  PEG200, PEG40, and PEG900 were obtained from 

Fluka Chemical (Sigma-Aldrich, St. Louis, MO, USA).  Purified PEG28 was obtained 

from Polypure AS (Oslo, Norway).  1-Naphthylisocyanate (1-NIC) was obtained from 

Acros Organics (ThermoFisher Scientific, Pittsburgh PA, USA).  Hank’s balanced salt 

solution (HBSS) with calcium and magnesium was purchased from Mediatech, Inc. 

(Mannassas, VA, USA).  Metformin, guanidine, 1-methylguanidine, 1-ethylguanidine, 

tetraethylammonium bromide (TEA), sodium-dodecyl sulfate (SDS), D-(+) glucose, 

benzoin, tris(hydroxymethyl)aminomethane (TRIS) base, sodium sulfite, β-

mercaptoethanol (β-ME), and doxycycline hyclate were purchased from Sigma-Aldrich 

(St. Louis, MO, USA).  [14C]Metformin (54 mCi/mmol), [14C]guanidine (53 mCi/mmol), 

and [14C]mannitol (55 mCi/mmol) was purchased from Moravek Biochemicals and 

Radiochemicals (Brea, CA, USA).  [14C]TEA (3.5 mCi/mmol) and [45Ca+2] (451 

mCi/mmol) was purchased from New England Nuclear (PerkinElmer, Waltham, MA, 

USA).  The LLC-PK1 Tet-Off parental and LLC-PK1 PT2:13 (clone 13 of claudin-2 

expressing LLC-PK1 cells) cell lines were obtained generously from Drs. Christina Van 

Itallie and James M. Anderson (UNC School of Medicine, UNC-Chapel Hill, Chapel 

Hill, NC, USA).   
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LLC-PK1 Cell Culture 

 LLC-PK1 cells were cultured and handled using established procedures (Van 

Itallie et al., 2003) with minor deviations.  LLC-PK1 cells were cultured at 37ºC in 

DMEM with 10% TS-FBS, and 100 U/ml penicillin, 100 µg/mL streptomycin, 0.25 

µg/mL amphotericin B, and 50 ng/mL of doxycycline in an atmosphere of 5% CO2 and 

90% relative humidity.  The cells were passaged following 90% confluency using 

trypsin-EDTA, and plated at a 1:10 ratio in 75-cm2 T flasks.  The cells within 5 passages 

of each other were seeded at a density of 250,000 cells/cm2 on polycarbonate membranes 

of Transwells™ (12 mm i.d., 0.4 µm pore size, Corning Life Science, Lowell, MA, 

USA).  Doxycycline concentrations in the culture medium were varied between 0 and 50 

ng/ml to modulate claudin-2 expression in PT2:13 LLC-PK1 cells, with a decrease in 

doxycycline concentration resulting in an increase in claudin-2 expression.  LLC-PK1 

parental cells were cultured consistently with 50 ng/ml of doxycycline.  Medium was 

changed the day following seeding and every other day thereafter (AP volume 0.5 mL, 

BL volume 1.5 mL).  LLC-PK1 cell monolayers were used 4-5 days post seeding.  

Transepithelial electrical resistance (TEER) was measured to ensure monolayer integrity 

and the extent of claudin-2 expression.  Measurements were obtained using an EVOM 

Epithelial Tissue Voltohmmeter and an Endohm-12 electrode (World Precision 

Instruments, Sarasota, FL, USA).  Cell monolayers with TEER values greater than 100 

Ω·cm2 were used in transport experiments.   
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Absorptive (Apical to Basolateral) Transport Studies:  

Transport studies were conducted as described previously (Van Itallie et al., 2003) 

with minor deviations.  The LLC-PK1 cells were derived from porcine kidney, 

endogenously express porcine organic cation transporters (OCTs), and preferentially 

transport TEA and metformin in the secretory (BL to AP) direction in relation to the 

absorptive direction (Hull et al., 1976; Saito et al., 1992; Song et al., 2008).  To minimize 

transcellular transport of organic cations across LLC-PK1 cell monolayers, all transport 

experiments were performed in the AP to BL direction.  Cell monolayers were 

preincubated with transport buffer solution (HBSS with 25 mM D-glucose and 10 mM 

HEPES, pH 7.4) for 30 min at 37ºC.  The buffer in the donor compartment was replaced 

with 0.4 ml (AP) of transport buffer containing [45Ca+2] (0.2 µCi/ml), [14C]-guanidine 

(0.1 µCi/ml), [14C]-metformin (0.15 µCi/ml), [14C]-TEA (0.1 µCi/ml), [14C]-mannitol 

(0.1 µCi/ml), or 1-methylguanidine.  For measurement of calcium transport, [45Ca+2] was 

spiked into the buffer of the AP donor compartment in transport buffer without additional 

calcium.  All compounds assessed were dosed at 10µM unless otherwise noted.  The pH 

in both AP and BL compartments was maintained at 7.4 for all transport studies.  

Appearance of compound into the receiver compartment (BL) was monitored as a 

function of time in the linear region of transport and under sink conditions.  The mass of 

the radiolabeled compound in each sample was measured using liquid scintillation 

spectrometry (1600 TR Liquid Scintillation Analyzer, Packard Instrument Company, 

Downers Grove, IL, USA) for [45Ca+2], guanidine, metformin, TEA, and mannitol 

transport.  1-Methylguanidine was analyzed by liquid chromatography coupled to tandem 
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mass-spectrometry following derivatization with benzoin with 1-ethylguandine as an 

internal standard control (refer to derivatization protocol outlined below).   

Guanidine Derivatization with Benzoin 

 The amount of 1-methylguanidine transported across LLC-PK1 cells with varying 

levels of claudin-2 expression was performed by pre-column derivatization with benzoin 

to form a stable product using methods outlined previously (Hung et al., 1984; Kai et al., 

1984; Sparidans et al., 1999) with minor deviations.  Briefly, 200µl of sample (either 

standard or unknown sample in transport buffer) was added at 4°C to 100µL of 4 mM 

benzoin in 2-methoxyethanol contained in a 1.5 mL polypropylene centrifuge tube.  Then 

a 100µL of a chilled mixture containing 0.1 M β-ME, 0.2 M sodium sulfite, and 0.5µM 

1-ethylguanidine (all final concentration) was added to the tube.  Finally, 200µL of 3N 

sodium hydroxide was added.  The solution was vortexed to ensure homogenous mixture 

and then placed in a boiling water bath (98°C) for 2 min.  The faint yellow solution was 

cooled in an ice bath and the solution was neutralized with 200µL of a 1:1 mixture of 4N 

hydrochloric acid and 1 M TRIS buffer (pH 9.2).  The solution was mixed by vortexing 

and the samples were then transferred to 96 well plates for LC-MS/MS analysis.   

Liquid Chromatography Coupled to Tandem Mass-Spectrometry (LC-MS/MS) 

Analysis of Derivatized Guanidine Products 

 The derivatized samples were analyzed using  an LC-MS/MS system fitted with a 

HTC PAL autosampler injector (LEAP Technologies, Carrboro, NC, USA) in line with 

two Shimadzu 10ADvp HPLC pumps (Shimadzu Scientific Instruments, Columbia, MD, 

USA) coupled to ABI Sciex 4000 Triple Quadrupole LC/MS/MS Mass Spectrometer 

(Applied Biosystems, Toronto, Canada).  HPLC mobile phases consisted of water with 
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0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase 

B).  Standards or unknown derivatized samples of 1-methylguanidine and 1-

ethylguandiine products were injected (15 µl) and retained on Aquasil™ C18 columns 

(50x2.1 mm diameter, 3µm particle size) (ThermoFisher Scientific, Pittsburgh PA, USA) 

and eluted using a linear gradient from 5% to 95% mobile phase B from 0.5 to 3.5 min at 

a flow rate of 0.4 mL/min.  The column was re-equilibrated at 5% mobile phase B from 

3.5 to 4.5 min.  Flow was diverted from the mass-spectrometer source for the first 

minute.  Ions were formed using positive electrospray ionization (ESI+) with ionization 

source potential at 3500 V and a source temperature of 500°C.  The 1-methylguanidine 

and 1-ethylguandine products were detected using Multiple-Reaction Monitoring™ 

(MRM) with parent ion  daughter ion transitions of 250.2 194.2 m/z and 264 235.1 

m/z, respectively.  A sample chromatogram for both products at their respective MS/MS 

transitions with predicted fragmentations can be seen in Figure 4.2A.  Peaks for 1-

methylguanidine and 1-ethylguanidine eluted off the column at 2.6 and 2.7 min, 

respectively.  Unknown samples were quantified using analyte peak area / internal 

standard peak area ratios fit to a standard curve.  Standard curves were linear between 

0.001 and 10µM standard concentration (Figure 4.2B), with the first detectable peak at 

1nM.  The lower-limit of quantitation (LLOQ) was determined as 3 times the standard 

deviation of blank samples divided by the slope of the calibration curve.  The 1-

methylguanidine product had a LLOQ of approximately 5nM.  All unknown samples 

were bracketed by standards and above the LLOQ.   
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Polyethylene Glycol (PEG) Permeability Assay 

 The pore characteristics of LLC-PK1 PT2:13 cells in the absence of claudin-2 

expression (e.g. +50ng/mL doxycycline) were examined using the PEG oligomer 

permeability assays outlined in Chapter 3 and using previously reported methods (Van 

Itallie et al., 2008).  This work was performed by Dr. Christina Van Itallie (UNC School 

of Medicine, UNC-Chapel Hill, Chapel Hill, NC).  Briefly, the apparent permeability 

(Papp) of a series of noncharged polyethylene glycols (PEGs) across LLC-PK1 PT2:13 

cells cultured in the presence of 50ng/mL doxycycline were determined.  Following pre-

incubation with transport buffer for 30 min, the experiment was initiated by replacing the 

buffer in the donor compartment with transport buffer containing a 5mg/ml mixture of 

PEG200, PEG400, and PEG900 at a ratio of 2:0.5:1 by weight.  Receiver compartments 

were sampled at 0, 60, 120, and 180 minutes.  The samples were spiked with an internal 

standard (20µg purified PEG28) prior to further handling, dried down under a stream of 

nitrogen gas at 55°C, and derivatized by addition of 20µL of 1-NIC in 100µL of acetone 

and vortexing for 4 hours at 25°C; 50µL of methanol, and 500µl of H2O were added to 

quench excess reagent.  The excess reagents were extracted twice by diethyl ether.  The 

remaining aqueous phase was transferred to an HPLC vial for analysis.  The aqueous 

samples (100µL) were separated on a bare-silica column (Waters Spherisorb 5.0-µm 

Silica column, 4.6x150mm, Waters Corporation, Milford, MA).  PEG oligomers peaks 

were quantified from integrated HPLC peaks using fluorescent emission detection 

(excitation wavelength=232 nm, emission energy=358nm).  Each PEG was quantified by 

correcting for internal standard (PEG28) peak area and the concentration associated with 

the analyte/area ratio was determined from a standard curve.     
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Gel Electrophoresis and Immunoblotting of Claudin-2 Protein Expression 

 Immunoblotting were performed using methods described previously (Van Itallie 

et al., 2003; Van Itallie et al., 2009a) with minor deviations.  Western blot analysis for 

semi-quantitation of claudin-2 protein expression were performed by Jennifer Holmes 

(UNC School of Medicine, UNC-Chapel Hill, Chapel Hill, NC) on cell lysates isolated 

following transport experiments at varying levels of doxycycline.  Anti-human claudin-2 

mouse monoclonal antibody (mAb) (1:1500) and rat anti-ZO-1 mAb (R40.76) (1:100 

dilution) were obtained from Zymed (Invitrogen, Carlsbad CA, USA).  LLC-PK1 wells 

were lysed following transport experiment with 100µl of SDS-sample buffer (40% 

glycerol, 0.25 M Tris (pH 6.8), 8% SDS, 0.4% 2-mercaptoethanol, and ~0.004% 

bromophenol blue) that was added to the insert, incubated at room temperature for 

10min, and then frozen at -80°C for future immunoblot analysis.  Equal volumes (10µL) 

of lysate were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to nitrocellulose membranes (0.45µm, Bio-Rad 

Laboratories, Hercules, CA, USA).  Antigen-antibody complexes were detected using 

horseradish peroxidase conjugated secondary antibodies by enhanced chemiluminescence 

(ECL) (Amersham Biosciences, GE Healthcare, Piscataway, NJ, USA).  Immunoblot 

protein concentrations for the target protein and loading control were determined by 

optical densitometry at the identical scan and intensity settings (Odyssey™ Infrared 

Imaging System, LI-COR Biosciences, Lincoln, NE, USA).  Claudin-2 protein 

expression was determined relative to the loading control of ZO-1.  Four LLC-PK1 wells 

were analyzed for each doxycycline concentration examined. 
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Conformational Search and Molecular Volume Calculation for Organic Solutes 

The conformational search and molecular volume calculations were performed on 

the protonated (e.g. cationic) structure of each organic cation (Figure 4.1).  The 

conformational search and molecular modeling data presented here was performed by Dr. 

Simon Wang (UNC-Eshelman School of Pharmacy, UNC-Chapel Hill, Chapel Hill, NC).  

Each compound was first subjected to a conformational search using stochastic search 

algorithm (Ferguson and Raber, 1989).  The conformational space was searched 

exhaustively by perturbing both dihedral angle of all rotation bonds and Cartesian 

coordinates of each atom in the molecule by some small amounts, i.e. 30 degrees and [-

1Å, 1Å] (the sign was determined randomly), respectively.  The current chirality of all 

constrained chiral centers (that are not easily invertible) in the molecule had been 

retained during the search.  The potential energy setup for conformational evaluation as 

well as the partial charge calculation employed MMFF94x force field (Halgren, 1999b; 

Halgren, 1999a) with all explicit hydrogens, and the calculations were conducted in the 

MOE 2007.09 package (Chemical Computing Group, Montreal, Quebec, Canada).  The 

conformers of the lowest potential energy were rendered to energy minimization prior to 

be submitted to Gaussian 03 (Gaussian, Inc., Wallingford, CT, USA) for the quantum 

mechanic calculations.  The molecular volume of each molecule was defined as the 

volume inside a contour of 0.001 electrons/Bohr3 density and computed by the Hartree-

Fock method with 6-311+G basis set (McLean and Chandler, 1980; Raghavachari et al., 

1980; Curtiss et al., 1995; Blaudeau et al., 1997).  This value was the volume enclosed by 

the van der Waals surface (Petitjean, 1994; Whitley, 1998), which was composed of the 

union of the spherical atomic surfaces defined by the van der Waals radius of each 
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component atom in the molecule.  The geometry had been further optimized within 

Gaussian 03 at the same level by the Berny algorithm.   

Data Analysis  

Transport of the compounds is expressed in terms of apparent permeability (Papp) 

and is described by the following equation: 

)C*A(P
oapp

dtdX=        (4.1) 

where dX/dt is the mass of compound (X) transported over time (t), A is the surface area 

of the Transwell™ porous membrane, and Co is the initial concentration in the donor 

compartment.  Papp data also are reported relative to their Papp values obtained across 

parental LLC-PK1 cells (e.g. without claudin-2).  All data are expressed as mean ± SD 

from 3 measurements unless otherwise noted.  Statistical significance was evaluated 

using unpaired t tests or one-way analysis of variance (ANOVA) with Bonferroni’s post-

test correction.  

 The hydrodynamic radius for each PEG was calculated by the following equation 

reported previously (Ruddy and Hadzija, 1992): 

0.4540.29(M)r =        (4.2) 

where r is the hydrodynamic radius in Å and M is the molecular mass of each PEG 

oligomer.   

The size-restricted pore radius, or paracellular aqueous pore radius, of the LLC-

PK1 cell monolayers, was calculated from the ratio of the corrected paracellular 

permeability of pairs of two small solutes.  Briefly, the pore radius (R) was calculated 

using a modified Renkin molecular sieving equation as described previously (Knipp et 
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al., 1997; Van Itallie et al., 2008; Yu et al., 2009) and outlined in detail in Chapter 3.  The 

final equation implemented can be seen below: 
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where r is the radius of solute (x or y) with corresponding Papp values.  The claudin-2 

pore radius was determined using the ratio of permeability values for pairs of organic 

cations that significantly increased in the presence of claudin-2 expression.  The ratio of 

these corrected permeability values from two organic cations was fit to Eq. (4.3) to 

estimate the claudin-2 associated pore radius (R).    
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4.D. RESULTS 

Claudin-2 Expression in LLC-PK1 PT2:13 Monolayers Increased Cation-selectivity 

and Calcium Transport  

Modulation of claudin-2 protein expression by varying doxycycline 

concentrations and measurements of the associated effects on monolayer resistance were 

performed to establish that the reported results (Van Itallie et al., 2003) could be 

reproduced in our laboratory and do not represent new findings.  Claudin-2 protein 

expression was examined in LLC-PK1 parental (P) and LLC-PK1 PT2:13 monolayers 

cultured with 0, 0.01, 0.10, 1.0, and 10 ng/ml of doxycycline in relation to the loading 

control, ZO-1 (Figure 4.3A).  As expected, the expression of claudin-2 protein was 

tightly regulated by the presence or absence of doxycycline in the culture media in LLC-

PK1 PT2:13 cell monolayers, with decreasing doxycycline concentrations resulting in 

increased claudin-2 expression.  Claudin-2 protein expression relative to ZO-1 increased 

from 0.07 ± 0.01 to 0.52 ± 0.12 as doxycycline concentrations decreased from 10 ng/ml 

to 0 (Figure 4.3B-C).  Overall claudin-2 expression in PT2:13 LLC-PK1 monolayers 

cultured in the absence of doxycycline increased approximately 700-fold relative to the 

claudin-2 protein levels in parental LLC-PK1 monolayers, or approximately 90-fold 

relative to the cells cultured with 10 ng/ml doxycycline (Figure 4.4C).  Furthermore, 

over-expression of claudin-2 was controlled by titrating doxycycline concentrations that 

resulted in 14-fold changes in protein expression (Figure 4.4B-C).  

 The monolayer resistance, as measured by TEER, was reduced markedly as 

claudin-2 expression increased (Figure 4.4A).  Parental LLC-PK1 cell monolayers had 

TEER values of 379 ± 7 Ω cm2 (n=12), indicating low sodium conductance.  The increase 
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of claudin-2 expression caused a decrease in TEER that was related to the expression 

level of claudin-2 until a minimum resistance of approximately 160 Ω cm2 was reached 

in cells with maximal claudin-2 expression.  The 60% reduction in TEER due to claudin-

2 expression in LLC-PK1 was similar to previous reports with this cell line (Van Itallie et 

al., 2003).   

 Claudin-2 expression in LLC-PK1 monolayers has been shown to reverse the 

charge-selectivity of the monolayer from anionic to cationic by creating pores that are 

capable of facilitating diffusion of metal ions such as sodium (Van Itallie et al., 2003).  

To accurately assess the flux of small metal cations, we examined the effect of claudin-2 

expression on [45Ca+2] permeability.  [45Ca+2] absorptive transport was evaluated across 

parental and LLC-PK1 PT2:13 monolayers cultured in the presence of varying 

doxycycline concentrations (Figure 4.4B). [45Ca+2] Papp increased with increasing 

claudin-2 expression, with approximately a 12-fold increase at maximal claudin-2 

expression.  There was a small but significant (p<0.05) increase in [45Ca+2] Papp (from 10 

± 0.2 to 13.0 ± 1.0 nm s-1) in PT2:13 monolayers with maximal suppression of claudin-2 

expression over that of the parental cells. 

The calcium Papp and TEER data clearly support the role of claudin-2 in forming 

cation-selective pores that facilitate the paracellular diffusion of calcium and sodium.  

The effect of claudin-2 expression on the permeability of neutral small molecular probe 

for paracellular transport, mannitol, was examined to determine how claudin-2 affected 

overall monolayer integrity.  Mannitol Papp did not increase significantly across LLC-PK1 

PT2:13 cell monolayers that were cultured with ≥ 0.10 ng/ml doxycycline in relation to 

parental LLC-PK1 mannitol Papp (Figure 4.4C).  Small but significant increases in 
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mannitol Papp were observed in LLC-PK1 PT2:13 cell monolayers treated with 0.01 ng/ml 

doxycycline (~20%, p<0.05) and untreated cells (~40%, p<0.01) in relation to parental 

LLC-PK1 cell monolayers.   

Claudin-2 Facilitates Paracellular Permeability of Organic Cations in a Size-

Dependent Manner without Affecting the Size-Restricted Pore Radius   

The absorptive transport of guanidine, 1-methylguanidine, metformin, and TEA 

were measured across parental and PT2:13 LLC-PK1 monolayers treated with varying 

concentrations of doxycycline.  The Papp for the four organic cations and mannitol, 

reported relative to their permeability in the parental LLC-PK1 cell monolayers are 

depicted in Figure 4.5A.  Guanidine and 1-methylguanidine Papp increased significantly 

with increasing claudin-2 expression (e.g. decreasing doxycycline concentrations), while 

metformin and TEA Papp did not increase significantly (Figure 4.5).  The increase in Papp 

for guanidine and 1-methylguanidine appeared to plateau across PT2:13 LLC-PK1 

monolayers cultured with ≤ 0.01 ng/ml doxycycline, as was the case for claudin-2 protein 

expression, TEER, and [45Ca+2] transport.  Papp for guanidine increased approximately 4-

fold from 32.2 ± 1.1 to 121.4 ± 2.6 nm s-1 in claudin-2 over-expressing cells over parental 

cells (Figure 4.5).  The Papp value for 1-methylguanidine increased by approximately 2-

fold (32 ± 2.0 to 66.8 ± 11.1 nm s-1 (p<0.01)) in claudin-2 over-expressing cells 

compared to control cells.  Metformin and TEA Papp remained unchanged in the absence 

(Control) or presence (+Cldn2) of claudin-2 expression in LLC-PK1 cell monolayers 

(Figure 4.5).   

 Epithelial cell monolayers have been shown to contain two or more pore systems 

that allow solutes to pass through the paracellular space (Knipp et al., 1997; Watson et 



 190

al., 2001; Seki et al., 2008; Van Itallie et al., 2008).  Claudin-2 is believed to create pores 

that are size- and charge-dependent, with literature reported pore radius values ranging 

between 3.25 and 4.0 Å (Van Itallie et al., 2008; Yu et al., 2009).  Therefore, the size-

restricted claudin-2 pore radius was determined in PT2:13 LLC-PK1 monolayers 

expressing claudin-2.   

In order to estimate this value, the molecular radius for each organic solute had to 

be consistently and thoroughly estimated.  Molecular radius values were calculated from 

the molar volumes assuming spherical volumes.  Values of molecular radius for each 

cation paneled in addition to other hydrophilic cations for which there were literature 

values are outlined in Table 4.1.  The empirical calculations were rigorous estimates of 

molar volume using similar assumptions and parameters which allowed for each value to 

be compared directly.  As shown in Table 4.1, the molecular volume calculations 

potentially underestimate the true hydrodynamic radii of the organic solutes; therefore, 

calculations of the predicted pore radius using these values should be considered to be an 

estimate. 

The claudin-2 pore radius was estimated by fitting the ratios of guanidine and 1-

methylguanidine claudin-2 associated Papp values and fitting these values to the Renkin 

molecular sieving equation (Eq. (4.3)) with their respective molecular radius (Table 4.1).  

Claudin-2 associated Papp values for each organic cation were determined by subtracting 

the mean Papp values across the parental cell line (e.g. without claudin-2) from the mean 

Papp values obtained in the claudin-2 induced LLC-PK1 cells at the maximal doxycycline 

concentration that did not significantly increase mannitol Papp values relative to parental 

mannitol Papp values (e.g. 0.1 ng/ml doxycycline).  This correction removed any 
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difference in transcellular transport processes between the compounds and accounted for 

only the transport associated with claudin-2 pores.  The claudin-2 pore radius (R) was 

calculated to be 4.2 Å, which was consistent with 4.0 Å radius previously reported using 

noncharged PEG oligomers (Van Itallie et al., 2008). 

   To determine whether the size-restricted claudin-2 pore radius was significantly 

different from the un-induced cell line, the pore radius of the PT2:13 cell line in the 

presence of 50ng/ml doxycycline was determined using the ratios of PEG3.2Å, PEG3.5Å, 

and PEG3.8Å permeability values as described previously (Van Itallie et al., 2008; Van 

Itallie et al., 2009a).  The paracellular transport of these three small PEG oligomers are 

known to represent the flux through the size-restricted permeability pore system and can 

be used to determine this pore radius in PT2:13 LLC-PK1 cell monolayers in the absence 

of claudin-2 expression.  The permeability of the size dependent first phase was corrected 

by subtracting the second linear phase by linear regression.  The pore radius was then 

calculated form the ratio of the corrected paracellular permeabilities of pairs of two small 

PEG oligomers.   Each PEG pair Papp ratio fit to Eq. (4.3) provided an estimate for R and 

all three values were averaged to give an average size-restricted pore radius for the 

uninduced monolayer.  The PEG oligomer permeability profile across un-induced LLC-

PK1 PT2:13 cell monolayers as a function of hydrodynamic radius is depicted in Figure 

4.6.  This profile clearly demonstrates a two or more pore system, where the first high 

capacity phase permits diffusion of PEG oligomers ≤ 4Å and a second linear phase where 

PEG oligomers with >4 Å radius are not as efficiently transported (Figure 4.6).  The 

calculated pore radius (R) for this monolayer using (PEG3.2Å / PEG3.5Å), (PEG3.2Å / 

PEG3.8Å), and (PEG3.5Å / PEG3.8Å) permeability ratios were 3.99, 4.05, and 4.07 Å.  The 
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average pore radius of the size-restricted pore in LLC-PK1 cells in the absence of claudin-

2 was 4.0 Å, which was not significantly different from the calculated claudin-2 

associated pore radius using 1-methylguanidine and guanidine Papp ratio outlined above. 
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4.E. DISCUSSION 

Claudin-2 has been shown to confer cation-selectivity across the monolayer, 

where expression was linked to an increase in metal cation flux and a decrease in 

monolayer resistance (Amasheh et al., 2002; Colegio et al., 2003; Van Itallie et al., 2003; 

Fujita et al., 2008; Yu et al., 2009).  It was shown that claudin-2 mediated cation flux 

through electrostatics between an anionic residue (aspartic acid at position 65) in its first 

extracellular loop and the metal ions (Yu et al., 2009); suggesting that claudin-2 forms 

pores in the TJ that preferentially transport cations.  The majority of the aforementioned 

studies employed indirect electrophysiological measurements to determine the effects of 

claudin-2 expression on ion flux.  Direct measurement of cation flux modulated by 

claudin-2 expression is generally lacking in the literature.   

The results presented in Chapter 3 of this dissertation demonstrated that vitamin 

D3-treatment in Caco-2 cells (clone P27.7) caused a significant increase in metformin 

paracellular transport as well as another hydrophilic cation, guanidine.  In this cell model, 

only claudin-2 mRNA and protein expression were significantly increased (e.g. 3-4-fold) 

by vitamin D3-treatment.  Although the data clearly supported involvement of claudin-2 

in the facilitating paracellular transport of metformin, direct evidence implicating 

claudin-2 was missing due to the numerous genes vitamin D3-treatment could affect 

(Fleet et al., 2002; Kong et al., 2008; Fan et al., 2009).  In this study, the effects of 

claudin-2 protein expression on paracellular transport of a small panel of organic cations 

was evaluated to assess if claudin-2 indeed increased paracellular permeability of small 

organic cations by forming cation-selective pores.   
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To this end, transport of small organic cations, including metformin, was 

evaluated across LLC-PK1 monolayers that overexpress claudin-2 protein under the 

control of an inducible promoter.  LLC-PK1 parental cells confer anionic-selectivity that 

can be switched to a cation-selectivity when claudin-2 protein is introduced (Van Itallie 

et al., 2003).  This model was selected because the parental LLC-PK1 cells have very low 

levels of endogenously expressed claudin-2 protein, and hence if claudin-2 caused an 

increase in the permeability of small organic cations; large signal to noise could be 

achieved using this model.  The ability to control claudin-2 expression in LLC-PK1 cell 

monolayers was a particularly useful feature of this model because of two inherent 

advantages: 1) the ability to directly measure the effect of claudin-2 expression in the 

same cells with consistent endogenous transcellular and paracellular transport processes 

and 2) the ability to systematically increase claudin-2 protein expression without 

affecting the overall monolayer integrity.      

LLC-PK1 cell monolayers at the very least endogenously express claudin-1 and 

claudin-4, with low levels of endogenous claudin-2 expression (Van Itallie et al., 2003); 

therefore, background claudin related paracellular transport needed to be accounted for.  

In addition, LLC-PK1 cells endogenously express porcine organic cation transporters 

(OCTs) (Saito et al., 1992; Li et al., 2004) that potentially can affect Papp of organic 

cations.  Metformin and TEA transport in the BL to AP direction was greater than AP to 

BL direction across LLC-PK1 cell monolayers (Saito et al., 1992; Song et al., 2008), 

indicative of active cation-selective transcellular transport processes.  Guanidine, 

guanidine analogues (e.g. 1-methylguanidne and metformin), and quaternary ammonium 

analogues (e.g. TMA, TEA) have been shown to interact with OCTs (Gorboulev et al., 
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1997; Kimura et al., 2005; Kimura et al., 2009).  Consequently, Papp for organic cations 

selected in Figure 4.1 across LLC-PK1 cell monolayers likely represented both 

paracellular and transcellular processes.  By subtracting the Papp across the parental cells 

from the Papp across the PT2:13 cells, the contribution of transcellular and paracellular 

transport processes were eliminated, leaving only the claudin-2-associated permeability.  

The role of claudin-2 in facilitating paracellular transport of metformin and other 

hydrophilic cations with similar charge environments was examined by employing this 

approach.   

Introduction of claudin-2 protein in the monolayer has the potential to not only 

increase the cation-selective pores in the monolayer, but also affect the monolayer 

integrity.  However, few reports have accurately assessed the effects on monolayer 

integrity in their claudin-2 over-expressed system.  In this report, high levels of claudin-2 

expression in the monolayer caused increases upwards of 40% in the transport of 

mannitol (Figure 4.4C).  This finding contradicts previous reports in MDCK C7 cell 

monolayers in which induced claudin-2 expression did not alter mannitol transport 

(Amasheh et al., 2002; Van Itallie et al., 2008).  Mannitol paracellular transport is 

believed to occur via the size- and charge-independent pore system not related to claudin-

2 expression (Van Itallie et al., 2008).  A possible explanation for the increase in 

mannitol permeability was that claudin-2 expression exceeded the capacity of the 

monolayer to insert claudin-2 properly into the TJ; therefore remaining claudin-2 either 

residing in vesicles or anchored to the TJ disrupted the overall integrity of the monolayer.  

This observation further justifies the need to adequately assess effects to the monolayer 

integrity when employing over-expressed models with claudin-2 or other TJ proteins.   
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The data presented in this report provide for the first time direct evidence that 

claudin-2 increased the permeability of organic cations at expression levels which did not 

affect the permeability of the neutral paracellular probe, mannitol.  Guanidine and 1-

methylguanide transport significantly increased with increasing claudin-2 expression 

(Figures 4.6).  The magnitude of effect was proportional to molecular radius (Table 4.1), 

supporting that claudin-2-facilitated transport of organic cations was size-dependent.  

Interestingly, metformin transport remained unchanged across LLC-PK1 cells expressing 

claudin-2.  This was in contrast to the observation that induction of claudin-2 in Caco-2 

cells caused an increase in metformin permeability (Chapter 3).  Claudin-2 did not seem 

to affect the permeability of TEA in both the systems.  

The guanidine and 1-methylguandine transport data presented here support the 

hypothesis that small hydrophilic cation paracellular transport was affected by claudin-2 

expression, most likely through electrostatic interactions.  Contrary to what was expected, 

metformin transport was not affected by claudin-2 protein expression.  The estimated 

molecular radius of TEA was close to the claudin-2 size-restricted pore radius; therefore, 

it was not surprising that claudin-2 overexpression had no effect on TEA permeability.  

In addition, the charge on TEA may not be accessible to electrostatic interactions due to 

shielding by the four ethyl groups (refer to Figure 4.1 space-filling model).  In contrast 

metformin has resonance that distributes the positive charge across the biguanide moiety 

providing ample surface area for electrostatic interactions between the extracellular loops 

of claudin-2.  Therefore, it was surprising that the permeability of metformin, with its 

estimated radius of 3.25 Å, was not affected by overexpression of claudin-2.  It is 

conceivable that metformin molecular radius calculated here was significantly 
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underestimated, and that its true hydrodynamic radius was closer to the size limit of 

claudin-2 pores.   For example, mannitol radius was underestimated by 0.3 Å in the 

molecular modeling approach relative to its experimentally derived hydrated radius of 4.2 

Å (Table 4.1 and (Schultz and Solomon, 1961)).  Refining estimates for metformin 

hydrated radius is warranted to better understand how this ion in solution fits into the 

size-restricted claudin-2 pores.   

Additionally, the apparent inability of metformin to transport through claudin-2 

pores raised the question whether the claudin-2 pore radius was smaller in the LLC-PK1 

cells in relation to the vitamin D3-induced Caco-2 cell model (Chapter 3).  The claudin-2 

pore radius was estimated by fitting the ratio of the claudin-2-associated Papp values of 

guanidine and 1-methylguanidine and their respective hydrodynamic radii to a molecular 

sieving equation as described previously (Knipp et al., 1997; Watson et al., 2001; Van 

Itallie et al., 2008).  To our surprise, the claudin-2 pore radius was estimated to be 4.2 Å, 

which was not significantly different from the size-restricted pores in the uninduced 

LLC-PK1 monolayers or from the ~4 Å claudin-2-associated pore radius reported in the 

literature (Van Itallie et al., 2008; Van Itallie et al., 2009b).  The estimate was also 

consistent with the calculated radius of the size-restricted pore for Caco-2 cells in the 

presence or absence of induced claudin-2 expression (Chapter 3).   

Provided the estimates for the claudin-2 pore radius were accurate, the increase in 

Ca2+, guanidine, and 1-methylguanidine transport supports the work by Van Itallie and 

colleagues (2008) that over-expressing claudin-2 protein increases porosity and not the 

pore radius of the size-restricted pathway.  However, prior to this report it was unclear 

whether pore estimates using non-charged solutes accurately represent the claudin-2 
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associated pore capable of transporting cations.  The novel finding in this report was that 

claudin-2 associated pore radius was shown to be approximately 4 Å, regardless of 

whether the estimates were determined from organic cation permeabilities or by 

noncharged solutes permeability.  Nevertheless, claudin-2 expression confers cation-

selectivity to the monolayer by increasing the flux of cations to a greater extent than the 

neutral molecules.  In this study, Ca2+, guanidine, and 1-methylguanidine Papp increased 

12-, 4-, and 2-fold, respectively (Figure 4.4B and Figure 4.5).  Over-expressing claudin-2 

in MDCK C7 cells, which have low endogenous claudin-2 (Amasheh et al., 2002), only 

resulted in a maximal increase in PEG3.2 and PEG3.5 Papp of 1.5-fold (Van Itallie et al., 

2008; Van Itallie et al., 2009b).  In other words, claudin-2 appears to create a pore 

complex that has an approximate radius 4 Å that significantly enhances the cation-

selectivity of the monolayer, while to a lesser extent increases the “leaky” nature of the 

monolayer to allow flux of small non-charged solutes. 

The observation that the size-restricted pore radius of LLC-PK1 remains constant 

while paracellular transport of guanidine and 1-methylguanidine increased supports that 

claudin-2 increases the overall porosity of the monolayer.  There are conflicting reports 

as to whether claudin-2 expression increased the number of parallel strands or fibrils in 

the TJs, which may represent the pore forming structures.  Exogenous expression of 

claudin-2 in MDCKII, which already express significant levels of endogenous claudin-2, 

resulted in the number of TJ fibrils or strands to increase (Colegio et al., 2003).  These 

data support that claudin-2 expression increases TJ fibrils and consequently the porosity 

of the monolayer.  In another report, exogenously expressed claudin in MDCK cells did  

not increase the number of fibrils or strands in relation to the control cells (Yu et al., 
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2009).  Claudin-8 that was exogenously expressed in MDCKII cells caused a decrease in 

endogenous canine claudin-2 expression, while not affecting the fibril or strand number 

in the TJs (Angelow et al., 2007).  It was concluded that claudin-8 was able to replace 

endogenous claudin-2 strands in the TJ, altering the cation-selectivity of the monolayer.  

It is possible that the opposite could occur in which claudin-2 replaces other claudin 

strands that are not responsible for forming pores (e.g. claudin-4); thereby increasing the 

porosity while not altering the number of TJ strands.  How claudin-2 expression regulates 

porosity of the monolayer and the structure of these pores remains unknown; however 

functional data in this report and other literature reports support that claudin-2 expression 

significantly alters the number of pores capable of facilitating transport of cations and to 

a lesser extent noncharged species.   

The effect of claudin-2 expression on paracellular transport of organic cations was 

evaluated at the maximal expression at which mannitol transport was not significantly 

increased (e.g. cells cultured with doxycycline ≥ 0.1 ng/ml).  This allowed for meaningful 

conclusions to be obtained regarding the effect of only the claudin-2 associated transport 

without general disruption of the monolayer.  Yu et al. (2009) recently reported the effect 

of claudin-2 expression on paracellular permeability of organic cations using indirect 

measurement (e.g. dilution potential).  The contribution of endogenous claudin-2 to the 

transport of each solute was subtracted to obtain only claudin-2 associated permeability 

(Yu et al., 2009).  However, potential alterations to overall monolayer integrity due to 

claudin-2 expression were not determined; therefore, the increase in organic cation 

transport observed may not truly estimate the claudin-2 pore electrostatics.  In addition, 

the cations paneled in the aforementioned study had significantly different charge 
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environments (e.g. primary amines vs. quaternary amines).  Differences in organic cation 

Papp observed may not be due solely to changes in molecular radius, but to differences in 

charge accessibility.  Lastly, the previous report indirectly measured the solute flux using 

electrophysiological measurements at concentrations that were supra-physiologic (e.g. 75 

mM) (Yu et al., 2009).  These factors taken together raise concern over the conclusions 

drawn regarding organic cation transport and the true radius of the claudin-2 associated 

pore. 

In conclusion, the work presented here provides the first direct evidence for 

claudin-2 mediated paracellular transport of small organic cations.  It remains unknown 

why metformin transport was unaffected by claudin-2 expression in this system, while it 

appeared to be facilitated by claudin-2 in Caco-2 cells treated with the active metabolite 

of vitamin D3.  Further studies are warranted with larger guanidine analogues, such as 

biguanide or 1-ethylguanidine, which are closer to the size of metformin.  This approach 

will allow for more accurate assessment of the true claudin-2 pore radius.  Furthermore, 

potential differences between the claudin-2 environments in Caco-2 cells in relation to 

LLC-PK1 cells may account for functional differences observed here; thus, the studies 

outlined in this report should be performed in other claudin-2 expressed cell systems, 

such as MDCK C7.  Although unlikely, one cannot rule out that there were other proteins 

than claudin-2 involved in the vitamin D3-associated increase in the paracellular 

permeability across Caco-2 cell monolayers.  Employing siRNA knock-down approaches 

in the vitamin D3-treated Caco-2 cell model may provide more conclusive evidence for 

the role of claudin-2 in facilitating paracellular transport of metformin.   



 201

  Claudin-2 is ubiquitously expressed throughout the small intestine, although 

protein localization was shown to be restricted primarily to the undifferentiated crypts 

and crypt-villus axis (Rahner et al., 2001; Escaffit et al., 2005).  For that reason, the effect 

claudin-2 has on the absorption of small organic cations is not apparent.  Claudin-2 pores 

may facilitate the absorption of small organic cations along the crypt-villus axis, where 

transcellular transport processes are not functional.  The size cutoff associated with 

claudin-2 pores likely does not make this a viable pathway to enhance absorption for the 

majority of hydrophilic drugs on the market or in development; yet this work provides 

important insight into the role this protein may play in gastrointestinal disorders.  For 

example, claudin-2 expression in fully differentiated enterocytes has been shown to be 

increased in disease states such as inflammatory bowel disease (IBD) (Amasheh et al., 

2009a), Crohn’s disease (Zeissig et al., 2007), and gastrointestinal carcinomas (Aung et 

al., 2006).  The elevated claudin-2 levels may be responsible for these gastrointestinal 

maladies, where increased absorption or excretion of small cationic and non-charged 

solutes result in an osmotic imbalance.  Further studies in the appropriate preclinical 

models are necessary to assess the implications of enhanced intestinal expression of 

claudin-2 on intestinal excretion or absorption of hydrophilic solutes.    
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TABLES AND FIGURES 

 

Table 4.1. Calculated Molecular Radius for Hydrophilic Organic Solutes in Relation 

to Reported Values 

Molar Volume A Calculated 
Radius B 

Range of 
Reported Radius ReferencesCompound 

cm3/mol Å Å  
Methylamine 33.04 2.36 1.9 - 2.7 [1,2,3] 

Guanidine 42.35 2.56 NA  
1-Methylguanidine 63.79 2.94 NA  

Metformin 89.15 3.28 NA  
TEA 131.52 3.74 3.3 - 4.0 [3,4] 

Mannitol 152.43 3.92 3.6 - 4.3 [1,2,5,6] 
Atenolol 221.51 4.45 4.2 - 4.8 [1,2] 

A Molar volume was determined by Gaussian 3.0 software for each compound using the 
most thermodynamically favored confirmation (refer to methods section). B Calculated 
radius was determined from molar volume values assuming volume of a sphere.  NA: not 
available 
 
References: [1] (Knipp et al., 1997) [2] (Avdeef, 2010) [3] (Yu et al., 2009) [4] (Wang 
and Veenstra, 1997)  [5] (Steward, 1982) [6] (Schultz and Solomon, 1961).  
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Figure 4.1. Space-filling Structures for Hydrophilic Organic Solutes Guanidine, 1-

Methylguanidine, Metformin, TEA, and D-Mannitol.   

Guanidine 1-Methylguanidine Metformin 

TEA D-Mannitol 

Carbon Hydrogen Nitrogen Oxygen
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Figure 4.3. Western Blot Analysis of Claudin-2 Expression in LLC-PK1 Parental 

and PT2:13 LLC-PK1 Cells with Decreasing Doxycycline Concentration.  A. 

Claudin-2 [CLDN2] protein expression was determined by Western Blot analysis of cell 

lysate from parental LLC-PK1 cells (P) and PT2:13 LLC-PK1 cells cultured with varying 

concentrations of doxycycline: 10 ng/ml (10.0), 1 ng/ml (1.0), 0.1 ng/ml (0.10), 0.01 

ng/ml (0.01), and 0 ng/ml (0) with zonal occludin-1 [ZO-1] expression employed as a 

loading control.  B. Claudin-2 relative to ZO-1 protein expression in parental LLC-PK1 

cells and PT2:13 cells cultured with varying doxycycline concentrations.  C. The ratio of 

claudin-2 protein in the PT2:13 LLC-PK1 cells ([CLDN2]PT2:13) and parental LLC-PK1 

cells ([Cldn2]P) at various doxycycline concentrations.  Data represent mean ± S.D with 4 

measurements.   
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Figure 4.6. Polyethylene Glycol (PEG) Oligomer Permeability as a Function of 

Hydrodynamic Radius in Un-Induced PT2:13 LLC-PK1 Monolayers.  Polyethylene 

glycol (PEG) oligomer permeability was evaluated across PT2:13 LLC-PK1 monolayers 

that were cultured in the presence of 50 ng/ml doxycycline and plotted as a function of 

their calculated hydrodynamic radius.  Similar data have been reported previously for 

PEG permeability across MDCKII, MDCK C7, and Caco-2 cell monolayers (Van Itallie 

et al., 2008).  Data represent mean ± S.D. with 4 measurements.   
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5.A. ABSTRACT 

 In the intestinal cell model, Caco-2, metformin is transported across the apical (AP) 

membrane by bidirectional transporter(s) that were inhibited by prototypical inhibitors of 

human organic cation transporters (hOCTs).  The goal of this study was to determine the 

specific transporter(s) involved in AP uptake/efflux in Caco-2 cells and consequently the 

intestine.  This was determined through a novel chemical inhibition approach to 

systematically rule in or out candidate cation-selective transporters.  Metformin substrate 

specificity towards candidate transporters hOCT1-3, and N2 was assessed in Chinese hamster 

ovary (CHO) cells expressing these transporters (Ming et al., 2009).   Metformin was 

confirmed to be a substrate for hOCT1-3 and not a substrate for hOCTN2.  Potency (e.g. IC50 

values) of identified inhibitors on metformin transport was assessed in the hOCT-CHO cells.  

Inhibition of metformin [10µM] AP uptake in Caco-2 cells by mitoxantrone [80µM], a select 

inhibitor of hOCT1 in relation to hOCT2 and hOCT3, reduced the saturable carrier-mediated 

transport by 40%.  Inhibitors for the material and toxin extrusion 1 (MATE1) and hOCT2 did 

not affect AP uptake.  Corticosterone [150µM] and desipramine [200µM] were used to 

inhibit (hOCT1-3) and (hOCT1-3, PMAT), respectively.  Corticosterone inhibition was no 

different than mitoxantrone inhibition, indicating hOCT3 was not involved in AP uptake.  

Desipramine decreased the saturable AP uptake by 70%, indicating involvement of PMAT.  

hOCT1 and PMAT were determined to be the major cation-selective transporters involved in 

AP uptake of metformin in Caco-2 cells.  These results provide new insight into the function 

of cation-selective transporters in Caco-2 cells and pinpoint the transporters most likely 

responsible for intestinal accumulation and absorption of metformin.   
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5.B. INTRODUCTION 
 
 Metformin, an oral anti-hyperglycemic agent, is a hydrophilic drug (calculated logD 

at pH 7.4 of -6.13) (Saitoh et al., 2004) which exists as a cation at all physiological pH values 

(pKa 12.4).  Consequently, the physiochemical properties of metformin prohibit efficient 

membrane permeability by passive diffusion and should result in poor intestinal absorption 

and reduced oral bioavailability.  However, the drug is well absorbed across the intestine 

with approximately 60-80% of the dose absorbed across the intestine (Pentikainen et al., 

1979; Tucker et al., 1981).  This results in an higher than expected oral bioavailability 

ranging between 40-60% (Pentikainen, 1986; Sambol et al., 1996).  In addition, intestinal 

absorption of metformin is known to be dose-dependent and variable (Tucker et al., 1981; 

Sambol et al., 1996).  Metformin accumulates significantly in the intestine following oral 

administration to levels 30-300-fold higher than the plasma concentration (Bailey et al., 

2008).  The intestine also plays a significant role in the overall glucose-lowering effects of 

metformin (Stepensky et al., 2002), likely due to its activation of intracellular targets to 

increase intestinal uptake and metabolism of glucose (Bailey et al., 1994; Walker et al., 

2005).  The dichotomy between the predicted absorption based on the physiochemical 

properties and the clinical observations support the involvement of carrier-mediated transport 

processes in metformin intestinal accumulation, absorption, and pharmacology. 

 The absorption processes of metformin have been studied extensively in the Caco-2 

cell monolayers, an established model of intestinal epithelium derived from human colon 

carcinoma (Hidalgo et al., 1989).  Metformin was shown to be taken up across the apical 

(AP) membrane of the Caco-2 cells efficiently by bidirectional cation-selective transporter(s) 

(Chapter 2).  Metformin efflux across the basolateral (BL) membrane of Caco-2 cell 
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monolayers was inefficient and rate limiting to transcellular transport, resulting in 

accumulation of metformin in the cells.  Consequently, the absorptive transport of metformin 

was predominantly (≥ 90%) via paracellular transport.   In order to rectify this observation 

with the reported high fraction of dose absorbed and dose-dependent absorption, it was 

hypothesized that the bidirectional cation-selective transport mechanism(s) on the AP 

membrane mediates efficient absorption by providing a cycling mechanism to increase 

intestinal transit time and allow for repeated opportunities to be absorbed through the 

paracellular space.  However, the transporter(s) involved in this process in Caco-2 cells and 

in the intestine remain unknown.   

The transport processes that drive metformin distribution in the liver, the major target 

organ for metformin pharmacology, and elimination in the kidney, which is the major organ 

for metformin elimination, have been studied extensively (Wang et al., 2002; Kimura et al., 

2005a; Kimura et al., 2005b; Shu et al., 2008; Song et al., 2008; Nies et al., 2009; Tsuda et 

al., 2009b).  Human organic cation transporters (hOCTs) and other cation-selective 

transporters have been implicated in the transport of metformin in the kidney and the liver.  

In the liver, hOCT1, and to a lesser extent hOCT3, are likely responsible for uptake of 

metformin into hepatocytes of the liver (Wang et al., 2002; Shu et al., 2008; Nies et al., 

2009).  In the kidney, metformin is considered to be actively excreted by vectoral transport 

involving cation-selective transporters.  The current hypothesis is that hOCT2 is responsible 

for taking metformin across the plasma membrane into the proximal tubular cells (Kimura et 

al., 2005a; Song et al., 2008; Tsuda et al., 2009b), while the material and toxin extrusion 

transporter 1 (MATE1) and to a lesser extent the kidney specific MATE2-K are responsible 

for metformin egress across the basolateral membrane into the urine (Tsuda et al., 2009a; 
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Tsuda et al., 2009b).  The role that these proteins and other cation-selective transporters have 

in facilitating intestinal accumulation and absorption of metformin and other hydrophilic 

cations remain largely unknown. 

The intestine and Caco-2 cell model expresses several cation-selective transporters 

potentially capable of transporting metformin.  The human intestine has detectable 

expression of the organic cation/carnitine transporter hOCTN2, hOCT1, hOCT2, and hOCT3 

(Englund et al., 2006; Seithel et al., 2006; Hilgendorf et al., 2007; Koepsell et al., 2007; 

Meier et al., 2007).  A recent study has shown that the plasma membrane monoamine 

transporter (PMAT) is expressed in human intestine and capable of transporting metformin 

(Zhou et al., 2007).  The expression of cation transporters in Caco-2 cells is less known and 

reports in literature are often contradictory.  Caco-2 cells have low but detectable levels of 

hOCT1, hOCT2, hOCT3, and hOCTN2 (Hayer-Zillgen et al., 2002; Hilgendorf et al., 2007; 

Hayeshi et al., 2008).  There are no reports regarding the expression of MATE isoforms in 

human intestine or in Caco-2 cells, nor are there any published reports on the presence of 

PMAT expression in Caco-2 cells.  

The goal of this work was to determine which of the known cation-selective intestinal 

transporters play significant role in intestinal accumulation and oral absorption of metformin 

and to estimate their relative importance in metformin absorption.  To achieve this goal, 

known inhibitors of these transporters were utilized in a novel chemical inhibition scheme to 

rule in or out candidate transporters and to determine their relative contribution to metformin 

overall apical uptake in Caco-2 cell monolayers.  Identifying the transporter(s) involved in 

metformin AP uptake will provide insight into the role these proteins have in absorption and 

the overall disposition of metformin.  
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5.C. MATERIALS AND METHODS 

Materials 

Eagle’s minimum essential medium (EMEM) with Earle’s salts and L-glutamate, F-

12 Nutrient Mixture, penicillin-streptomycin-amphotericin B solution (100x), non-essential 

amino acids (100x), geneticin, Superscript III reverse transcriptase, and HEPES (1M) were 

obtained from Invitrogen Corporation (Carlsbad, CA, USA).  Hank’s balanced salt solution 

(HBSS) with calcium and magnesium was purchased from Mediatech, Inc. (Mannassas, VA, 

USA).  Hygromycin B solution was obtained from Roche Applied Science (Indianapolis, IN, 

USA).  Fetal bovine serum (FBS), trypsin-EDTA (1X), metformin hydrochloride, sodium-

dodecyl sulfate (SDS), D-(+) glucose, mitoxantrone dihydrochloride, famotidine, cimetidine, 

corticosterone, desipramine hydrochloride, 1-methyl-4-phenylpyrimidium (MPP+) iodide, D-

amphetamine hemisulfate salt, 2-[N-Morpholino]ethanesulfonic acid (MES), SYBR Green 

JumpStartTaq ReadyMix™, and sodium hydroxide (NaOH) were purchased from Sigma-

Aldrich (St. Louis, MO, USA).  [14C]Metformin (54 µCi/µmol) was purchased from 

Moravek Biochemicals and Radiochemicals (Brea, CA, USA).  [3H]MPP+ acetate (83 

Ci/mmol) and [14C]TEA (51 µCi/µmol) were purchased from New England Nuclear 

(PerkinElmer, Waltham, MA, USA).  [3H]-L-carnitine hydrochloride (85 Ci/mmol) was 

purchased from Amersham (Buckinghamshire, UK).  hOCT1-3, N2, and mock transfected 

Chinese hamster ovary (CHO) cells were previously generated and characterized active 

clones were obtained for these studies (Ming et al., 2009).  The Caco-2 (HTB-37) cell line 

was obtained from the American Type Culture Collection (Manassas, VA, USA). 
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Organic Cation Transporter-Overexpressing Chinese Hamster Ovarian (CHO) Cells 

 CHO cells were handled and cultured using established methods (Ming et al., 2009), 

with minor deviations.  CHO cells stably expressing hOCT1, hOCT2, hOCT3, hOCTN2, and 

vector-control cells (Mock) were cultured in F12 Nutrient Mix supplemented with 10% fetal 

bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin 

B with additional 500 µg/ml geneticin for hOCT1-3 and Mock-CHO cells or 200 µg/ml 

hygromycin B for hOCTN2 CHO cells.  All cell lines were maintained at 37°C with 5% CO2 

and 90% relative humidity.  The cells were passaged following 90% confluency using 

trypsin-EDTA, and plated at a 1:20 ratio in 75-cm2 T flasks.  All experiments were 

performed with CHO cells within the 5 passages of each other.   

CHO Cell Transport Experiments 

All CHO cell lines were treated identically in regards to transport experiments as 

described previously (Ming et al., 2009).  Briefly, CHO cells were seeded at 100,000 

cells/cm2 into sterile 24-well polycarbonate plates (Corning Life Science, Lowell, MA, 

USA).  Cell culture media was changed the first day post seeding and every other day 

thereafter.  Transport experiments were performed between days 5-7 post seeding.  CHO cell 

monolayers were preincubated with transport buffer solution (HBSS with 25 mM D-glucose 

and 10 mM HEPES, pH 7.2) for 30 min at 37ºC.  Uptake experiment was initiated by 

replacing the buffer solution with 300µL of dosing solution.  Uptake was terminated at the 

indicated time points by aspirating the donor solution and washing the monolayer 3x with 1-

mL of ice cold (e.g. 4°C) transport buffer.  The cell monolayers were allowed to dry and 500 

µL of 0.1%SDS in 0.1N NaOH was added to each well.  Plates were shaken for 3 hours to 

ensure total lysis of the cell monolayer.  Protein content of the cell lysate was determined by 
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the bicinchoninic acid (BCA) protein assay (Pierce, Rockford, IL, USA) with bovine serum 

albumin as a standard.  Radiolabeled compound in the cell lysate was analyzed by liquid 

scintillation spectrometry and the rate of initial uptake of each compound was determined.  

Function of each hOCT expressing cell line was assessed prior to metformin experiments by 

measuring uptake of [14C]TEA (0.15µCi/ml, 10µM) at 5 min for hOCT1-3 and [3H]L-

carnitine (0.2µCi/ml, 10µM) at 5 min for hOCTN2 in relation to the uptake of each substrate 

in mock transfected CHO cells.  Cell lines with at least 5-fold greater uptake than mock 

transfected cells were used for metformin related uptake.  A time-course of [14C]Metformin 

(0.15 µCi/mL, 10µM) uptake was performed for each hOCT CHO cell line in addition to 

mock CHO cells to assess uptake linearity in relation to time.  A time-point was selected in 

the initial linear-range of uptake with respect to time for each cell line and concentration 

dependent uptake of metformin was examined.  The uptake rate (e.g. the mass of metformin 

transported per minute and milligram of total protein) for the uptake into the mock CHO cells 

was subtracted from the uptake rates obtained in each hOCT expressing cell line to give a 

corrected uptake rate accounting for only the carrier-mediated transport of metformin.   

Inhibition of metformin by various cation-selective inhibitors outlined in Table 5.1 

were performed as described previously (Ming et al., 2009), with minor deviations.  CHO 

cell monolayers were preincubated with transport buffer in the presence of inhibitor or 

vehicle control for 30 min at 37°C prior to experimentation.  Uptake of metformin was 

initiated by replacing the buffer with 0.3 mL of donor solution of [14C]metformin [10µM, 

0.15µCi/ml] in the presence of inhibitor or vehicle control.  Eight different inhibitor 

concentrations were evaluated for each inhibitor selected.  Uptake was terminated at a time-

point at which uptake was in the initial linear phase for each cell line (typically 5 min) by 
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aspirating dose solution and washing the monolayer 3x with 1mL of ice cold (e.g. 4°C) 

transport buffer. Protein content and metformin accumulation in the cell lysate was 

performed as described above.  Inhibition of metformin uptake [10µM] by cation-selective 

inhibitors was reported relative to the vehicle control data.  Non-specific cell associated 

radioactivity was removed from each data point by subtracting the uptake data from the mock 

CHO experiments from the hOCT expressing uptake data.   

Caco-2 Cell Culture 

 Caco-2 cells were cultured at 37ºC in EMEM with 10% FBS, 1% NEAA, and 100 

U/ml penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B in an atmosphere 

of 5% CO2 and 90% relative humidity.  The cells were passaged following 90% confluency 

using trypsin-EDTA, and plated at a 1:10 ratio in 75-cm2 T flasks.  The cells (passage 

numbers 30 to 38) were seeded at a density of 60,000 cells/cm2 on polycarbonate membranes 

of Transwells™ (12 mm i.d., 0.4 µm pore size, Corning Life Science, Lowell, MA, USA).  

Medium was changed the day following seeding and every other day thereafter (AP volume 

0.5 mL, BL volume 1.5 mL).  The Caco-2 cell monolayers were used 21-28 days post 

seeding.  Transepithelial electrical resistance (TEER) was measured to ensure monolayer 

integrity.  Measurements were obtained using an EVOM Epithelial Tissue Voltohmmeter and 

an Endohm-12 electrode (World Precision Instruments, Sarasota, FL, USA).  Cell 

monolayers with TEER values greater than 300 Ω·cm2 were used in transport experiments.   

Inhibition of Metformin Apical Uptake in Caco-2 Cell Monolayers 

Initial AP uptake of metformin was performed using methods outlined previously 

(Proctor et al., 2008) with minor deviations.  Inhibition of initial AP uptake in Caco-2 cells of 

[14C]metformin [0.15µCi/mL, 10µM], [14C]TEA [0.15µCi/mL, 10µM], or [3H]MPP+ 
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[0.15µCi/mL, 1µM] was performed in the absence (control) or presence of D-amphetamine 

[50µM], cimetidine [25µM], mitoxantrone [80µM], corticosterone [150µM], desipramine 

[200µM], and MPP+ [5mM].  During uptake experiments, cell monolayers were preincubated 

for 30 min in transport buffer in the presence of inhibitors outlined above or vehicle control 

(0.5% DMSO) bathing both the AP and BL compartments.  Apical uptake experiments were 

initiated by replacing the buffer solution in the AP donor compartment with transport buffer 

containing the substrate in the presence of an inhibitor or vehicle control.  The experiment 

was terminated during the initial linear uptake range in Caco-2 cell monolayers at 5 min for 

metformin and TEA and 3 min for MPP+.  Uptake was stopped by washing the cell 

monolayers with 0.75mL of 4ºC transport buffer three times in each compartment.  The cell 

monolayers were allowed to dry, excised from the insert, and placed in 500 µL of 0.1%SDS 

in 0.1N NaOH for 3 hours, while shaking.  Protein content of the cell lysate was determined 

by the BCA protein assay with bovine serum albumin as a standard.  Metformin in the cell 

lysate was analyzed by liquid scintillation spectrometry and the rate of initial uptake of 

metformin was determined.     

Metformin AP Uptake in Caco-2 Cell Monolayers as a Function of Extracellular pH 

 The effect of varying extracellular pH on metformin AP uptake was examined in 

Caco-2 cell monolayers using methods previously established with minor deviations 

(Bourdet and Thakker, 2006).  Transport solution was buffered with 10 mM MES (pH 5.5, 

6.0, 6.5) or 10 mM HEPES (pH 7.0, 7.4, 8.0).  All wells were preincubated with transport 

buffer (pH 7.4) in both AP and BL compartments for 30 min prior to the start of the 

experiment.  The AP buffer was then replaced with 0.4 mL of the appropriate pH transport 

buffer containing metformin (0.15µCi/mL, 10µM).  Uptake was determined over 5 min after 
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which the AP solution was aspirated and monolayers washed three times with 4°C transport 

buffer.  Cell monolayers were assayed for metformin and protein content as described above.  

Four determinations were made for each extracellular pH and statistical differences from that 

of the control (pH 7.4) were determined using one-way analysis of variance analysis 

(ANOVA) followed by Bonferroni post-test analysis.  Statistical analysis was performed 

using GraphPad Prism (GraphPad Software, La Jolla, CA, USA).   

Quantitative Polymerase Chain Reaction (PCR) to Determine the Expression of Cation-

selective Transporter Genes in Caco-2 Cells  

 The mRNA expression of human hOCT1, hOCT3, hOCTN2, and PMAT, relative to 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), in Caco-2 cells and human intestine 

was determined using quantitative real time-polymerase chain reaction (RT-PCR) analysis.  

RT-PCR experiments were conducted using established methods (Holmes et al., 2006) with 

minor deviations.  Total RNA was isolated from Caco-2 cell monolayers using RNeasy Mini 

Prep columns (Qiagen, Valencia CA, USA).  RNA samples were subjected to DNA digestion 

by TURBO DNAse (Ambion/Applied Biosystems, Austin, TX, USA) to remove potential 

genomic DNA contamination.  cDNA was synthesized from total Caco-2 RNA (5 µg) using 

Superscript III reverse transcriptase (Invitrogen Corporation, Carlsbad, CA, USA).  An equal 

amount of RNA was included in a No-RT control for each separate RNA sample.  Real-time 

PCR was preformed with 1:20 dilutions of the cDNA (in triplicate).  Quantitative PCR 

reactions (25µL total volume) were performed using SYBR Green JumpStartTaq 

ReadyMix™ for quantitative PCR (Sigma–Aldrich Co., St. Louis, MO, USA), with primer 

pairs at 0.75 µM final reaction concentration, and 5 µL of cDNA or No-Template negative 

control.  RT-PCR amplification was performed in a Applied Biosystems 7300 Real-Time 
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PCR System (Applied Biosystems, Inc. Foster City, CA, USA) thermal cycler at 95°C for 10 

min followed by 40 cycles of 95°C for 15 s, 55°C for 60 s, and 72°C for 25 s.  Human 

GAPDH, hOCT1, hOCT3, hOCTN2, and PMAT primer pairs were obtained from Invitrogen 

(Carlsbad CA, USA).  GAPDH forward and reverse primer sequences were 3’-

GACCCCTTCATTGACCTCAACTAC-5’ and 3’-TTGACGGTGCCATGGAATTT-5’, 

respectively with an amplified product length of 80 base pairs (bp).  hOCT1 forward and 

reverse primer sequences were 3’-GACGCCGAGAACCTTGGG-5’ and 3’-

GGGTAGGCAAGTATGAGG-5’, respectively with an amplified product length of 198 bp.  

hOCT3 forward and reverse primer sequences were 3’-GGAGTTTCGCTCTGTTCAGG-5’ 

and 3’-GGAATGTGGACTGCCAAGTT-5’, respectively with an amplified product of 216 

bp.  hOCTN2 forward and reverse primer sequences were 3’-

AGTGGGCTATTTTGGGCTTT-5’ and 3’-GGTCGTAGGCACCAAGGTAA-5’, 

respectively with an amplified product of 398 bp.  PMAT forward and reverse primer 

sequences were 3’-TTCATCACGGACGTGGACTA-5’ and 3’-

CGTCGCAGATGCTGATAAAA-5’, respectively with an amplified product of 202 bp.  

Amplified products were separated and detected using gel electrophoresis (2% agarose gel 

with 0.5 µg/mL ethidium bromide) to ensure singular products at the appropriate size (Figure 

5.7A).  The lowest signal threshold at which all sample amplified were above the background 

was set and the cycle at which the each sample crossed the threshold, or cycle threshold (Ct), 

was determined for each sample.  All gene products were amplified above the fluorescent 

threshold by cycle 35 in the cDNA sample.   

 The housekeeping gene GAPDH expression was determined in each RT-PCR run and 

served as the normalization control.  cDNA preparation, fluorescent threshold, and PCR 
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conditions remained constant in order to calculate the expression of transporter genes in 

relation to GAPDH.   Relative expression values were calculated by 2∆Ct, where ∆Ct = (Ct, 

GAPDH – Ct, gene); therefore, the expression value of GAPDH was set to 1.0.   Experimental 

error was estimated for each gene in each Caco-2 treatment group by comparing the CV (%) 

of the average Ct value of that gene, error = [(2%CV)/100] · [relative expression value].  

Relative expression values for each target gene were reported if their CV values were less 

than or equal to 15% for the triplicate values.   

Data Analysis 

A Michaelis-Menten equation with one saturable component was fit to the corrected 

uptake rate data obtained in CHO cell experiments, which represented only the carrier-

mediated transport, described by the following expression:  
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where C is the metformin concentration, Vmax is the maximal velocity, and Km is the 

Michaelis-Menten constant.   

Inhibitory potency (e.g. IC50 value) was determined for each inhibitor across the 

hOCT expressing cell line.  The following equation was fit to the corrected uptake data: 
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where V is the uptake rate in the presence of inhibitor [I], Vo is the uptake rate in the absence 

of inhibitor, IC50 is the inhibitor concentration to achieve 50% inhibition, and n is the Hill 

coefficient.   Uptake kinetic model and IC50 curve model estimates were obtained by non-

linear least squares regression analysis by WinNonlin (Pharsight, Mountain View, CA, 
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USA).   IC50 data for hOCT expressing CHO cells and Caco-2 uptake data were reported 

relative to control.  All data presented are expressed as mean ± SD from 3 measurements 

unless otherwise noted.  Statistical significance was evaluated by one-way analysis of 

variance analysis (ANOVA) followed by Bonferroni post-test analysis unless otherwise 

noted. 
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5.D. RESULTS  

Metformin is a Substrate for hOCT1-3 and Not a Substrate for hOCTN2 

 Functional activity of each CHO cell line expressing individual hOCT1-3 or hOCTN2 

(Ming et al., 2009) were determined by measuring uptake of probe substrates TEA and L-

carnitine for hOCT1-3 and hOCTN2, respectively, in relation to uptake of the probe 

substrates in the mock transfected cells.  TEA uptake was 7.6 ± 0.07-, 7.8 ± 0.06-, and 9.9 ± 

0.4-fold greater in hOCT1, hOCT2, and hOCT3 expressing CHO cells, respectively, than 

mock cells (data not shown).  L-Carnitine uptake was (57 ± 3)-fold greater in hOCTN2-CHO 

cells than mock CHO cells (data not shown).  Metformin [10µM] uptake was evaluated in 

hOCT1, hOCT2, hOCT3, and hOCTN2 expressing CHO cells (Ming et al., 2009);  uptake 

into the hOCT1-3 expressing cells was linear with time for up to 5 min and several fold 

greater than that into the mock transfected cells (Figure 5.1A-C).  In contrast, metformin 

uptake into hOCTN2 expressing CHO cells was inefficient and not significantly different 

from uptake into the mock CHO cells (Figure 5.1D); therefore metformin was determined not 

to be a substrate for hOCTN2 and further studies with this cell line were omitted.   

Uptake (5 min) of metformin into the hOCT1-3 expressing CHO cells as a function of 

concentration exhibited a hyperbolic relationship (Figure 5.2A-C).  In contrast, metformin 

uptake into mock transfected cells was linear to 10mM donor concentration (data not shown).  

A Michaelis-Menten equation (Eq. (5.1)) was fit to the concentration dependent uptake of 

metformin in hOCT1-3 CHO cells to obtain estimates of apparent Km and Vmax values.  The 

transport kinetic parameters estimated for metformin uptake in hOCT1-3 CHO cells are 

presented in Figure 5.2 for each hOCT expressing CHO cell line.   
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Inhibition of hOCT1-, hOCT2-, and hOCT3-mediated Metformin Uptake in CHO Cells 

by a Panel of Cation-Selective Inhibitors 

Inhibition of metformin [10µM] uptake into hOCT expressing CHO cells by a panel 

of cation-selective inhibitors (see Table 5.1 for chemical structures) was examined for the 

purpose of identifying inhibitors that would selectively inhibit hOCT1-, hOCT2-, or hOCT3-

mediated metformin uptake into cells without inhibiting the other two hOCT transporters.  

IC50 curves were generated for inhibition of metformin uptake by D-Amphetamine, 

mitoxantrone, corticosterone, desipramine, and famotidine into hOCT1, hOCT2, and hOCT3 

expressing CHO cells (Figure 5.3A-C).  Uptake of metformin into the three hOCT expressing 

cells was inhibited by the five inhibitors in a concentration dependent manner.  

Mitoxantrone, the target hOCT1-specific inhibitor (Koepsell et al., 2007), was a potent 

inhibitor of hOCT1 with an IC50 value of 3.0 ± 0.8 µM, which is 40 to 60-fold lower than its 

estimated IC50 values for hOCT2 and hOCT3 (Table 5.2).  Corticosterone, desipramine, and 

famotidine were also strong inhibitors of hOCT1-mediated metformin transport at the same 

relative inhibitory potency (e.g. IC50 values < 10µM); however, they were not as selective for 

hOCT1 as mitoxantrone (Table 5.2).  D-Amphetamine, as expected by its reported hOCT2 

selectivity (Amphoux et al., 2006), was a potent inhibitor of hOCT2 with an estimated IC50 

value of 5.7 ± 1.0 µM, which is 10 to 20-times lower than its estimated IC50 values for 

hOCT1 and hOCT3.  Corticosterone and desipramine were the most potent hOCT2 inhibitors 

with IC50 values estimated to be less than 3µM, while famotidine IC50 value for hOCT2 

mediated metformin transport was ~20 µM (Table 5.2).  Mitoxantrone was the least potent 

inhibitor of hOCT2 with an IC50 value of ~140 µM which is very similar to the reported IC50 
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value for cimetidine inhibition of hOCT2 mediated metformin uptake of 147 µM (Tsuda et 

al., 2009b).  

The profile of IC50 curves for inhibition of metformin uptake into the hOCT3 

expressing CHO cells was the most diverse with IC50 values spanning 3 orders of magnitude 

(Figure 5.3C).  Corticosterone was the most potent inhibitor of hOCT3-mediated metformin 

uptake with an IC50 value of 0.15 ± 0.05 µM, followed by famotidine, desipramine, D-

amphetamine, and mitoxantrone (Table 5.2).  Famotidine was tested as a selective hOCT3 

inhibitor in relation to hOCT1 and hOCT2 based on a previous report of MPP+ inhibition in 

hOCT1, hOCT2, and hOCT3 expressing Xenopus laevis oocytes (Bourdet et al., 2005).  

Famotidine was a potent inhibitor of hOCT3 mediated metformin uptake with an IC50 value 

of 2.7 ± 0.2 µM, yet this was only 2- and 7-fold lower than the IC50 values for hOCT1 and 

hOCT3 mediated metformin uptake, respectively.  These data suggest that famotidine 

inhibition of hOCT3 mediated metformin transport was not specific enough to be used to 

estimate the contribution of hOCT3 in metformin AP uptake in Caco-2 cells.   

hOCT1 and PMAT Mediate Apical Uptake of Metformin into Caco-2 Cell Monolayers 

The experimentally derived inhibition data for hOCT1-3 and previously reported 

inhibition data for MATE1 and PMAT uptake of metformin, TEA, serotonin, or MPP+ (as 

noted) is presented in Table 5.2.  This data allowed for selection of inhibitors and the 

appropriate concentration to selectively rule in or rule out candidate transporters that may 

mediate AP uptake of metformin in Caco-2 cells.  The concentration selected for each 

inhibitor was at least 4-fold greater than the estimated IC50 value for metformin uptake by the 

target transporter, but at least 2-fold less than the IC50 values for other metformin transporters 

that may play a role in cellular uptake, when possible.  Figure 5.4 depicts the chemical 
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inhibition scheme employed in examining specific transporter involvement in AP uptake of 

metformin in Caco-2 cells with each inhibitor, their respective concentration, and the 

proposed candidate transporters inhibited.     

 Metformin initial AP uptake was evaluated in the presence and absence of each 

inhibitor at the concentration outlined in Figure 5.4.  D-amphetamine and cimetidine 

inhibition had no effect on the AP uptake of metformin in Caco-2 cells (Figure 5.5A).  

Mitoxantrone [80µM] significantly decreased the AP uptake of metformin to 74 ± 8% 

(p<0.01) of the control.  Similarly, corticosterone inhibited AP transport by ~25%, reducing 

the AP uptake to 73 ± 3% (p<0.01) (Figure 5.5A).  The difference between the inhibition by 

mitoxantrone and corticosterone was insignificant.  Inhibition by 200µM desipramine 

reduced the AP uptake of metformin by ~50% with only 49 ± 5% (p<0.001) of metformin 

uptake remaining.  MPP+ reduced metformin uptake by ~75%, indicating that 26 ± 1% of 

metformin AP uptake may be attributed to non-specific binding and/or uptake via passive 

diffusion.    

 In addition to metformin, the ability of corticosterone and desipramine to inhibit the 

carrier-mediated uptake of two additional probe substrates, TEA [10 µM] and MPP+ [1 µM], 

on the AP membrane of Caco-2 cells was examined (Figure 5.5B).  Metformin, TEA, and 

MPP+ uptake across the AP membrane in Caco-2 cells was corrected to account for only the 

saturable carrier-mediated transport by subtracting the remaining uptake in the presence of 

5mM MPP+.  Approximately 40% of the saturable carrier-mediated transport of metformin 

was inhibited by corticosterone, while desipramine inhibited an additional 30% of the carrier-

mediated transport can be attributed to PMAT, leaving approximately 30% of the carrier-

mediated transport remaining (Figure 5.5B).  Similar to metformin, approximately 35% of 
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the saturable carrier-mediated transport of TEA was inhibited by corticosterone, with 

desipramine inhibiting an additional 35% of the carrier-mediated transport.  Approximately 

30% of TEA carrier-mediated uptake was not inhibited by desipramine or corticosterone.  

MPP+ carrier-mediated uptake was only inhibited approximately 25% by corticosterone 

(Figure 5.5B).  However, desipramine almost completely abolished the carrier-mediated 

transport of MPP+, leaving only ~10% of the saturable transport remaining.  Desipramine 

inhibition on MPP+ (~90%) was significantly different (p<0.05) than desipramine inhibition 

on metformin and TEA (~70%).   

Metformin AP Uptake is Not Enhanced with a Decrease in Extracellular pH 

 The pH dependence on AP uptake of metformin was examined to determine if 

particular cation-selective transporters were involved.  For example, PMAT is the only 

cation-selective candidate transporter explored here to have been shown to increase function 

with an inward proton gradient (Xia et al., 2007; Zhou et al., 2007), where hOCT1-3 function 

was not changed (Koepsell et al., 2007) or decreased in the presence of an inward proton 

gradient (Martel et al., 2001).  Therefore, metformin [10µM] AP uptake in Caco-2 cells was 

examined in transport buffer with pH values ranging from 5.5 to 8.0 (Figure 5.6).  Reducing 

the extracellular pH decreased the initial AP uptake of metformin.  There was a significant 

decrease in AP uptake of metformin at pH 6.0 (73% of the pH 7.4 value, p<0.05) in relation 

to the uptake at pH 7.4.  Although not significantly different, the mean metformin uptake rate 

at pH 8.0 increased to ~120% of that at pH 7.4. 
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PMAT mRNA is Highly Expressed in Caco-2 Cells in Relation to hOCT1 and hOCT3 

mRNA 

 The expression of hOCT1, hOCT3, hOCTN2, and PMAT mRNA relative to GAPDH 

mRNA were examined in the parental Caco-2 cells (HTB-37) using quantitative RT-PCR 

(Figure 5.7B).  The PCR primer pairs were produced singular gene products at the 

appropriate amplified lengths from RNA isolated from Caco-2 cells (HTB-37), where no 

gene products were detected in the No-RT negative control samples (Figure 5.7A).  Although 

metformin was shown not to be a substrate for hOCTN2 (Figure 5.1D), the relative 

expression of this cation-selective transporter was determined.  hOCTN2 is reported to be 

one of the most highly expressed cation-selective transporter in Caco-2 cells and in the 

human intestine (Englund et al., 2006; Kim et al., 2007; Maubon et al., 2007; Meier et al., 

2007), thus, providing a basis for comparison for the other cation-selective transporters in 

Caco-2 cells.  hOCT1 relative expression was the lowest in Caco-2 cells of the cation-

selective transporters examined in this study.  The relative expression of hOCT1 mRNA was 

approximately 4-, 11-, and 8-fold lower than hOCT3, hOCTN2, and PMAT relative 

expression, respectively.  PMAT relative expression was approximately 25% lower than 

hOCTN2.  These results support the relative expression data for these cation-selective 

transporters in the Caco-2 P27.7 clone (Chapter 3). 



 235

 5.E. DISCUSSION 

Previous studies showed that one or more AP uptake transporter(s) played a 

significant role in the intestinal absorption of metformin despite the fact that this drug was 

predominantly absorbed via the paracellular route (Proctor et al., 2008; Chapter 2).  Based on 

the chemical structure of metformin with net positive charge at all physiological pH values, 

and based on the previously published reports (Kimura et al., 2005a; Koepsell et al., 2007; 

Tanihara et al., 2007; Zhou et al., 2007; Nies et al., 2009; Tsuda et al., 2009b) it is a 

reasonable assumption that organic cation transporters, hOCT1-3 and hOCTN1-2, as well as 

other cation-selective transporters such as PMAT and MATE1 may play an important role in 

the intestinal absorption of metformin.  The data presented here confirm previous reports that 

metformin was a superior substrate for hOCT2 than for hOCT1 or hOCT3 (Kimura et al., 

2005a; Nies et al., 2009), and for the first time clearly demonstrated that metformin was not a 

substrate for hOCTN2.  The latter finding is highly significant in that it rules out metformin 

transport by one of the most highly expressed cation-selective transporters present in both 

Caco-2 cells and human intestine (Englund et al., 2006; Kim et al., 2007; Maubon et al., 

2007; Meier et al., 2007), as well as the heart, liver, and kidney (Tamai et al., 1998; Wu et 

al., 1999; Hilgendorf et al., 2007).  The substrate affinity of hOCTN1 for metformin and 

further functional studies were omitted from this report due to hOCTN1 substrate specificity 

towards predominantly zwitterionic compounds, in particular ergothioneine (Grundemann et 

al., 2005).  Unlike hOCTN2 which has been localized to the AP membrane of Caco-2 cells 

(Elimrani et al., 2003) and intestine (Kato et al., 2006), localization of hOCTN1 in Caco-2 

cells was found to be exclusively intracellular (Lamhonwah et al., 2005).  A later report 

revealed hOCTN1 was localized to the mitochondria in Caco-2 cells (Lamhonwah and Tein, 
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2006); therefore making this transporter a very unlikely candidate in mediating metformin 

AP uptake in Caco-2 cells and consequently the intestine.   

In this report and in literature reports, metformin was shown to be a substrate for 

hOCT1-3 (Figure 5.2. (Kimura et al., 2005a; Nies et al., 2009)), MATE1 (Tanihara et al., 

2007), and PMAT (Zhou et al., 2007); however protein expression, function, and localization 

for these candidate transporters in Caco-2 cells is unknown.  The wide substrate specificity of 

cation-selective transporters towards metformin and the potential for multiple transporters 

expressed on the AP membrane in Caco-2 cells presented a challenge to elucidate the specific 

transporter(s) responsible for AP uptake of metformin.  To address this problem, a novel 

chemical inhibition approach was implemented to estimate the contribution of each candidate 

transporter on the apical membrane in Caco-2 cells (Figure 5.4).  The chemical inhibitors for 

a particular transporter were selected if their IC50 values were at least 4-fold lower than the 

respective values for other candidate transporters.  The inhibitor concentrations were 

maximized to a point where they were 50% or less of the concentration of the IC50 values for 

the other candidate transporters.  This ensured 100% inhibition of the target transporter with 

only modestly affecting other candidate transporters.  Prior to implementing this inhibition 

scheme, the selectivity and potency of each compound to inhibit metformin transport by 

different transporters was evaluated in cell lines stably expressing single hOCT transporters 

that were available (Figure 5.3 and Table 5.2), so that appropriate inhibitor concentrations 

could be identified. 

 The chemical inhibition scheme (Figure 5.4) employed systematically estimated or 

eliminated the contribution of the five candidate transporters from mediating AP uptake of 

metformin in Caco-2 cells.  For example, mitoxantrone was determined to be a selective 
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inhibitor of hOCT1-mediated metformin transport in relation to hOCT2 and hOCT3 at 

concentrations ≤ 80µM; therefore 80 µM of mitoxantrone was used to determine the role of 

hOCT1 in metformin Caco-2 AP uptake.  The contribution of hOCT2-mediated metformin 

uptake in relation to hOCT1 and hOCT3 was determined by inhibiting uptake with D-

amphetamine at 50 µM.  Cimetidine at 25 µM should completely inhibit any contribution of 

MATE1 transport, while inhibiting ~50% of hOCT3-mediated metformin transport.  

Cimetidine at that concentration likely will not affect hOCT1-, hOCT2-, and PMAT-

mediated metformin transport (Table 5.2).  Therefore, metformin AP uptake was examined in 

the presence of 25 µM cimetidine to evaluate the contribution of MATE1 and to a lesser 

extent hOCT3.  Corticosterone at 150 µM should sufficiently inhibit hOCT1-3, while not 

significantly inhibiting PMAT; hence corticosterone at this concentration was used to 

determine the hOCT1-3 contribution to overall metformin AP uptake.  The difference 

between inhibition by corticosterone [150 µM] and that by D-amphetamine [50 µM] and 

mitoxantrone [80 µM] represents the contribution of hOCT3-mediated metformin transport.  

Desipramine at 200 µM will adequately inhibit hOCT1-3, MATE1, and PMAT; therefore 

this concentration was selected to achieve complete inhibition of metformin AP uptake by all 

cation-selective transporters.  Thus, the difference in the extent of inhibition by desipramine 

and that by corticosterone will represent the contribution of MATE1 and PMAT mediated 

metformin uptake.  High concentrations of pan-cation-selective substrate/inhibitor MPP+ 

(e.g. ≥ 5 mM) have been shown to completely inhibit cation-selective carrier-mediated 

transport (Sato et al., 2008), where any remaining uptake represented the contributions of 

non-specific binding and/or passive diffusion.  Therefore, MPP+ [5mM] was used to 
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completely inhibit carrier-mediated transport and to account for potential contributions of 

carrier-mediated transport not inhibited by the “select” inhibitors.  

By this approach, the contribution of hOCT1 in mediating the overall AP uptake in 

Caco-2 cells was determined to be approximately 25% (Figure 5.5A).  When accounting for 

only the carrier-mediated saturable transport, hOCT1 contributed approximately 40% of 

metformin uptake.  hOCT2 did not contribute to metformin initial AP uptake in Caco-2 cells, 

due to the lack of inhibition by D-amphetamine.  This was further confirmed by inhibition by 

corticosterone, which should have completely inhibited hOCT1-3; yet the percent inhibited 

was no different than the value observed when only hOCT1 was inhibited (Figure 5.5A).  

Furthermore, the lack of a significant additive effect between inhibiting only hOCT1 and 

inhibiting hOCT1-3 indicated that hOCT3 also played an insignificant role in the AP uptake 

of metformin in Caco-2 cells.  Additionally, MATE1 was not involved in the AP uptake in 

Caco-2 cells, for cimetidine did not inhibit metformin uptake.  Finally, inhibition by 

desipramine, which should have inhibited hOCT1-3, MATE1, and PMAT, resulted in an 

approximately 50% reduction in the overall AP uptake of metformin in Caco-2 cells.  This 

reduction accounted for approximately 70% of the saturable carrier-mediated transport of 

metformin (Figure 5.5B).  By subtracting the hOCT1 component from this, it appeared that 

PMAT contributed at least 30% of the saturable carrier-mediated transport.  These 

observations together indicated that hOCT1 and PMAT are the two major cation-selective 

transporters responsible for AP uptake of metformin in Caco-2 cells.   

PMAT is localized on the AP membrane of human intestine enterocytes and is known 

to transport metformin with an apparent Km of 1.32 ± 0.11 mM (Zhou et al., 2007).  Protein 

expression and localization in Caco-2 cells is unknown.  There is limited evidence for the 
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localization of hOCT1 in the intestine and in Caco-2 cells.  Lateral and cytosolic staining of 

hOCT1 was observed in sections of human intestine when staining with a rat Oct1 polyclonal 

antibody, while protein staining was not detected with this antibody in Caco-2 cells (Muller 

et al., 2005).  Another study using a rat Oct1 antibody demonstrated AP localization of 

hOCT1 in Caco-2 cells (Ng, 2002).  Based on these results, it appears that both hOCT1 and 

PMAT are expressed on the AP membrane of Caco-2 cells.  The gene expression of both 

hOCT1 and PMAT were detected in the Caco-2 cells (Figure 5.7).  The relative mRNA 

expression for hOCT1 was approximately 8-fold lower than PMAT mRNA expression 

(Figure 5.7B).  PMAT mRNA expression in Caco-2 cells was a novel finding, although 

protein expression and membrane localization remains unknown.   

The difference in relative mRNA expression between PMAT and hOCT1 suggest that 

PMAT may be the major transporter mediating metformin uptake on the AP membrane in 

Caco-2 cells and ultimately in the human intestine; yet the inhibition data supported that both 

transporters contributed almost equally to the carrier-mediated saturable transport of 

metformin.  There is a possibility that mRNA expression did not correlate with functional 

PMAT protein in Caco-2 cells.  Another possible explanation was that the function of PMAT 

on the AP membrane in Caco-2 cells may be underestimated when using this chemical 

inhibition approach.  For example, it is possible that the mitoxantrone inhibition data in 

Caco-2 cells may actually represent mitoxantrone inhibition of PMAT and not exclusively 

hOCT1.  The inhibitory potency of mitoxantrone on PMAT-mediated metformin transport is 

unknown.  Furthermore, the inhibition of AP uptake by corticosterone at 150 µM, which was 

concluded to be due to inhibition of hOCT1-3, may be, in part, due to inhibition of PMAT.  

The reported IC50 value of 450 ±77 µM for corticosterone was for inhibiting serotonin uptake 
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(Engel et al., 2004), not metformin transport.  It is conceivable that metformin mediated 

transport by PMAT may be more susceptible to corticosterone inhibition and thus confound 

the interpretation of the data.   

Desipramine inhibited ~70% of the carrier-mediated saturable transport of metformin, 

of which at least 30% was attributed to PMAT.  Desipramine was shown here to be a potent 

inhibitor of hOCT1-3-mediated metformin transport with IC50 values < 5 µM and has been 

reported to be a sufficient inhibitor PMAT mediated transport of serotonin (IC50 32.6 ± 2.7 

µM) (Table 5.2) (Engel et al., 2004).  The potency of desipramine to inhibit PMAT-mediated 

metformin transport is unknown.  These uncertainties potentially limit the accuracy of the 

estimates made through this novel chemical inhibition scheme.  Regardless, the approach 

employed here implicated two cation-selective transporters in facilitating the AP uptake of 

metformin in Caco-2 cells, while ruling out an additional three candidate transporters.  

Further studies are underway to confirm these results and to more accurately estimate the 

contributions of both hOCT1 and PMAT in Caco-2 cells by using siRNA knock-down 

approaches to selectively target each transporter.    

Another significant finding of this work involved the similarities between the 

inhibition profile for metformin and TEA (Figure 5.5B).  Both metformin and TEA were 

inhibited to an identical extent by both corticosterone and desipramine, supporting the notion 

that these compounds share similar uptake and inhibition properties in Caco-2 cells.  

Interestingly, desipramine did not abolish the carrier-mediated transport of both compounds, 

leaving ~30% of the transport uninhibited.  During MPP+ uptake experiments, only 10% of 

the AP uptake was not inhibited by desipramine.  An explanation to account for the 

difference between MPP+ and metformin inhibition by desipramine is that there was an 
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unknown or unidentified transporter, not subject to desipramine inhibition, that could 

transport metformin and TEA efficiently and not MPP+.  The possibility of an unidentified 

cation-selective transporter on the AP membrane in Caco-2 cells cannot be ruled out until 

more definitive studies addressing metformin uptake are performed (e.g. siRNA knockdown 

of hOCT1 and PMAT expression).  

PMAT has been shown to function as a proton-symporter, in which transport activity 

was enhanced in the presence of an inward proton gradient (Barnes et al., 2006; Xia et al., 

2007).  For example, metformin uptake was enhanced ~4-fold in PMAT expressing MDCK 

cells when the extracellular pH was reduced from 7.4 to 6.6 (Zhou et al., 2007).  To examine 

if metformin uptake in Caco-2 displayed similar pH dependence, AP uptake of metformin 

was examined at extracellular pH ranging from 5.5 to 8.0 (Figure 5.6).  Surprisingly AP 

uptake was not enhanced with decreasing pH, but actually significantly decreased at pH 6.0 

and appeared to increase at pH 8.0, albeit not significantly, in relation to pH 7.4.  Similar pH 

dependence on AP uptake in Caco-2 cells was observed with MPP+ uptake by Martel et al. in 

2001.  They reported almost identical results in which MPP+ uptake was reduced to 86% at 

pH 6.2 and increased to 116% at pH 8.2 in relation to control (pH 7.4) (Martel et al., 2001).  

They observed similar pH dependency for AP uptake of MPP+ into HEK293 cells expressing 

hOCT3.  Currently the proton-symporter functionality of PMAT has been demonstrated only 

in renal cells (e.g. MDCK) transfected with exogenous PMAT and Xenopus laevis oocytes 

expressing PMAT (Barnes et al., 2006; Xia et al., 2007).  It remains unknown whether 

PMAT expressed in the human intestine or Caco-2 cells possesses the same driving force for 

PMAT mediated transport.  Regardless of the discrepancy between reported PMAT pH 

dependence and the metformin uptake in Caco-2 cells, high relative expression of PMAT 
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mRNA in Caco-2 cells, its AP localization in human intestine, and the metformin inhibition 

data support PMAT function and localization on the AP membrane of Caco-2 cells.  Future 

studies are necessary to more accurately measure PMAT function and protein expression in 

Caco-2 cells.   

Due to the various cation-selective transporter capable of transporting metformin that 

share similar affinities, the inhibition data provides functional data supporting overall 

localization and function of these transporters in Caco-2 cells and possible in the intestine.  

For example, the expression and localization of hOCT2 in Caco-2 cells has been 

controversial.  Although not expressed in human intestine, there are contradictory reports 

regarding expression of hOCT2 in Caco-2 cells (Muller et al., 2005; Hilgendorf et al., 2007; 

Maubon et al., 2007; Hayeshi et al., 2008).  There is only one report of the presence of 

hOCT2 protein in Caco-2 cells, demonstrated using immunofluorescent staining with an 

antibody grown against hOCT2 (Muller et al., 2005).  Faint staining on the lateral membrane 

and cyctosolic compartment was observed, and the staining was partially ablated when the 

antibody was preabsorbed with the hOCT2 antigenic peptides.  Regardless of membrane 

localization, the data presented here indicates that hOCT2 is not active on the AP membrane 

and if present on the BL membrane it does not appear to be active due to the inefficient BL 

uptake of metformin observed previously in Caco-2 cells with an apparent Km of 12.3 ± 0.4 

mM (Chapter 2).   

The results here indicated that MATE1 protein was not active on the AP membrane in 

Caco-2 cells.  MATE1 protein expression has been shown to be predominantly in the liver, 

spleen, kidney, and to a lesser extent the heart (Otsuka et al., 2005); however the expression 

and role of this transporter in the intestine and in Caco-2 cells remains unknown.  It has been 
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shown to be localized in humans on the brush-boarder membranes of the proximal and distal 

convoluted tubules of the kidney and bile canaliculi in the liver (Otsuka et al., 2005), 

therefore it was conceivable that if present it would be localized on AP membrane in Caco-2 

cells.  MATE1 functions as proton antiporter to efflux compounds from the proximal tubular 

cells and hepatocytes into the urine and bile, respectively (Otsuka et al., 2005).  Considering 

the low pH of the intestinal lumen and inward pH gradient, MATE1 if present in the intestine 

will most likely function as a secretory efflux pump.  Nevertheless, the similarity between the 

reported affinity of metformin for MATE1 and the apparent Km for saturable AP uptake in 

Caco-2 cells (apparent Km 0.9 ± 0.2 mM) (Chapter 2) warranted consideration as a candidate 

AP transporter.  In summary, MATE1 expression and localization in Caco-2 cells has yet to 

be fully examined, although functional data supports the absence of MATE1 on the AP 

membrane in Caco-2 cells. 

In conclusion, the data presented in this report support the involvement of hOCT1 and 

PMAT in AP transport of metformin in Caco-2 cells.  Explicit data regarding protein 

expression, function, and localization of these two cation-selective transporters in Caco-2 

cells are still lacking.  Future work is underway to definitively assess the role of these 

transporters in Caco-2 cells and ultimately to extend this knowledge in understanding the 

metformin transport mechanisms in the human intestine.  Potential differences between the 

cation-transporter function in Caco-2 cells and human intestine that may arise from this work 

will have implications in how the Caco-2 cell model is used to assess absorption of similar 

compounds and will refine interpretation of existing data in the literature.  Identification of 

the intestinal transporters that facilitates metformin uptake will provide insight into the 

mechanisms responsible for the dose-dependent and variable absorption of metformin (Noel, 
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1979; Tucker et al., 1981) and intestinal accumulation and associated pharmacology 

(Stepensky et al., 2002; Bailey et al., 2008).    Lastly, the novel chemical inhibition scheme 

outlined here could be used to elucidate the contributions of cation-selective transporters 

involved in metformin or other promiscuous substrates in other cell lines, tissues, or organs.   
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Table 5.1. Chemical Inhibitors of Cation-Selective Candidate Transporters 

References: (1) (Amphoux et al., 2006) (2) (Wagner et al., 2000) (3) (Koepsell et al., 2007) 
(4) (Tanihara et al., 2007) (5) (Tsuda et al., 2009b) (6) (Zhang et al., 1998) (7) (Engel and 
Wang, 2005) (8) (Suhre et al., 2005) (9) (Tahara et al., 2005) (10) (Grundemann et al., 1998) 
(11) (Hayer-Zillgen et al., 2002) (12) (Otsuka et al., 2005) (13) (Gorboulev et al., 1997) (14) 
(Wu et al., 2000) (15) (Bourdet et al., 2005) (16) (Ohashi et al., 1999) 

Inhibitor Structure Target 
Transporter(s) Ref. Not 
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Amphetamine 

NH2
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N
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N

NH

N
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H
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N

 

hOCT1-3 
MATE1 
PMAT 

(6, 7, 
13, 14) hOCTN2 

Famotidine 
NH2

S

S

N

NH2

H2N

N
N

S

O

NH2
O  

hOCT3 
MATE1 (5, 15) hOCTN2 

PMAT 

Mitoxantrone 

O

O

NH

NH OH

OH

H
N

HO

N
H

HO

 

hOCT1  (3) MATE1 
PMAT 

MPP+ N+

 

All Cation-
Selective 

Transporters 

(4, 6, 
7, 10, 

13, 16) 
 



  

247

T
ab

le
 5

.2
. E

xp
er

im
en

ta
l I
C

50
 V

al
ue

s f
or

 C
he

m
ic

al
 In

hi
bi

to
rs

 o
n 

M
et

fo
rm

in
 U

pt
ak

e 
in

to
 C

H
O

 C
el

ls
 E

xp
re

ss
in

g 
hO

C
T

1-
3 

an
d 

L
ite

ra
tu

re
 P

M
A

T
 a

nd
 M

A
T

E
1 
IC

50
 V

al
ue

s 

E
xp

er
im

en
ta

l I
C

50
 V

al
ue

s 
L

ite
ra

tu
re

 IC
50

 V
al

ue
s 

 
µM

 ±
 S

D
 

µM
 ±

 S
D

 

In
hi

bi
to

r 
T

ar
ge

t T
ra

ns
po

rt
er

s 
hO

C
T

1 
hO

C
T

2 
hO

C
T

3 
PM

A
T

 
M

A
T

E
1 

M
ito

xa
nt

ro
ne

 
hO

C
T1

 
3.

0 
± 

0.
8 

13
5 

± 
12

 
17

4 
± 

19
 

N
A

 
N

A
 

D
-A

m
ph

et
am

in
e 

hO
C

T2
 

10
6 

± 
2 

5.
7 

± 
1 

70
 ±

 5
 

N
A

 
N

A
 

Fa
m

ot
id

in
e 

hO
C

T3
 

6.
4 

± 
1.

0 
20

 ±
 2

 
2.

7 
± 

0.
2 

N
A

 
0.

6 
± 

0.
2 

[2
]†

 

C
or

tic
os

te
ro

ne
 

hO
C

T1
-3

 
3.

2 
± 

0.
5 

1.
3 

± 
0.

1 
0.

15
 ±

 0
.0

5 
45

0 
± 

77
 [1

]*
 

N
A

 

D
es

ip
ra

m
in

e 
hO

C
T1

-3
, P

M
A

T,
 M

A
TE

1 
2.

2 
± 

0.
4 

2.
4 

± 
0.

2 
3.

8 
± 

0.
3 

33
 ±

 3
 [1

]*
 

55
.7

 ±
 1

4 
[2

]†
 

C
im

et
id

in
e 

 
M

A
TE

1 
16

6 
[3

]†
 

14
7 

± 
11

 [2
]  

17
 [3

]†
 

>5
00

 [1
]*

 
1.

1 
± 

0.
3 

[2
]  

* 
IC

50
 v

al
ue

s w
er

e 
re

po
rte

d 
fo

r i
nh

ib
iti

ng
 se

ro
to

ni
n 

or
 M

PP
+  u

pt
ak

e,
 n

ot
 m

et
fo

rm
in

. † R
ep

or
te

d 
IC

50
 v

al
ue

s w
er

e 
fo

r i
nh

ib
iti

on
 o

f T
EA

.  
B

ox
es

 h
ig

hl
ig

ht
ed

 (
gr

ey
) 

re
pr

es
en

t 
th

e 
ta

rg
et

 t
ra

ns
po

rte
r(

s)
 f

or
 e

ac
h 

in
hi

bi
to

r 
ba

se
d 

on
 t

he
 c

rit
er

ia
 s

pe
ci

fie
d 

in
 “

M
at

er
ia

ls
 a

nd
 

M
et

ho
ds

” 
se

ct
io

n.
  N

A
: N

ot
 a

va
ila

bl
e 

 
R

ef
er

en
ce

s:
 [1

]  (E
ng

el
 a

nd
 W

an
g,

 2
00

5)
 [2

]  (T
su

da
 e

t a
l.,

 2
00

9b
) [3

]  (K
oe

ps
el

l e
t a

l.,
 2

00
7)

 



  

248

              Fi
gu

re
 5

.1
. T

im
e-

co
ur

se
 f

or
 U

pt
ak

e 
of

 M
et

fo
rm

in
 in

 C
H

O
-h

O
C

T
1,

 C
H

O
-h

O
C

T
2,

 C
H

O
-h

O
C

T
3,

 C
H

O
-h

O
C

T
N

2,
 a

nd
 M

oc
k 

C
H

O
 C

el
ls

.  
U

pt
ak

e 
of

 [14
C

]m
et

fo
rm

in
 [1

0µ
M

] w
as

 d
et

er
m

in
ed

 o
ve

r t
he

 in
di

ca
te

d 
tim

e-
po

in
ts

 u
p 

to
 4

5 
m

in
ut

es
 in

 O
C

T 
ex

pr
es

si
ng

 

C
H

O
 c

el
ls

 (c
lo

se
d 

sy
m

bo
ls

 ■
) a

nd
 m

oc
k 

ce
lls

 (o
pe

n 
sy

m
bo

ls
 □

). 
 M

et
fo

rm
in

 u
pt

ak
e 

in
 h

O
C

T1
 e

xp
re

ss
in

g 
(A

), 
hO

C
T2

 e
xp

re
ss

in
g 

(B
), 

hO
C

T3
 e

xp
re

ss
in

g 
(C

), 
an

d 
hO

C
TN

2 
ex

pr
es

si
ng

 C
H

O
 c

el
ls

 (
D

) 
as

 a
 fu

nc
tio

n 
of

 ti
m

e 
is

 s
ho

w
n 

in
 re

la
tio

n 
to

 m
et

fo
rm

in
 u

pt
ak

e 
in

to
 

m
oc

k 
ce

lls
.  

U
pt

ak
e 

da
ta

 a
re

 r
ep

re
se

nt
ed

 a
s 

to
ta

l 
m

as
s 

of
 m

et
fo

rm
in

 t
ak

en
 u

p 
in

to
 t

he
 c

el
ls

 p
er

 m
ill

ig
ra

m
 o

f 
to

ta
l 

pr
ot

ei
n.

  
D

at
a 

re
pr

es
en

t m
ea

n 
± 

S.
D

, w
ith

 N
=3

 m
ea

su
re

m
en

ts
.  

 

hO
C

T1

0
10

20
30

40
50

0

10
0

20
0

30
0

40
0

Ti
m

e 
[m

in
]

Uptake
 (pmol/mg protein)

hO
C

T2

0
10

20
30

40
50

0

10
0

20
0

30
0

40
0

Ti
m

e 
[m

in
]

hO
C

T3

0
10

20
30

40
50

0

10
0

20
0

30
0

40
0

Ti
m

e 
[m

in
]

hO
C

TN
2

0
10

20
30

40
50

0

10
0

20
0

30
0

40
0

Ti
m

e 
[m

in
]

A
B

C
D



  

249

            Fi
gu

re
 5

.2
. C

on
ce

nt
ra

tio
n 

D
ep

en
de

nt
 U

pt
ak

e 
of

 M
et

fo
rm

in
 in

to
 C

H
O

 C
el

ls
 E

xp
re

ss
in

g 
hO

C
T

1,
 h

O
C

T
2,

 a
nd

 h
O

C
T

3.
  U

pt
ak

e 

of
 [

14
C

] 
m

et
fo

rm
in

 a
t t

he
 in

di
ca

te
d 

co
nc

en
tra

tio
ns

 w
as

 d
et

er
m

in
ed

 in
 th

e 
C

H
O

-h
O

C
T1

 (
A

), 
C

H
O

-h
O

C
T2

 (
B

), 
an

d 
C

H
O

-O
C

T3
 (

C
) 

ce
lls

 fo
r 5

 m
in

ut
es

.  
N

on
sp

ec
ifi

c 
ce

ll-
as

so
ci

at
ed

 ra
di

oa
ct

iv
ity

 w
as

 d
et

er
m

in
ed

 b
y 

m
ea

su
rin

g 
th

e 
co

m
po

un
d 

up
ta

ke
 in

 th
e 

m
oc

k 
ce

lls
 a

t 

ea
ch

 m
et

fo
rm

in
 c

on
ce

nt
ra

tio
n.

  T
he

se
 v

al
ue

s 
w

er
e 

th
en

 s
ub

tra
ct

ed
 fr

om
 th

e 
va

lu
es

 in
 th

e 
ea

ch
 o

f t
he

 h
O

C
T 

ex
pr

es
si

ng
 C

H
O

 c
el

ls
 to

 

ob
ta

in
 th

e 
fin

al
 O

C
T 

re
la

te
d 

ki
ne

tic
 c

ur
ve

s. 
 A

pp
ar

en
t K

m
 a

nd
 V

m
ax

 p
ar

am
et

er
s 

w
er

e 
es

tim
at

ed
 b

y 
fit

tin
g 

a 
M

ic
ha

el
is

-M
en

te
n 

eq
ua

tio
n 

to
 th

e 
da

ta
 u

si
ng

 n
on

-li
ne

ar
 le

as
t s

qu
ar

es
 re

gr
es

si
on

 a
na

ly
si

s. 
 T

he
 s

ol
id

 li
ne

 in
 e

ac
h 

gr
ap

h 
re

pr
es

en
ts

 th
e 

m
od

el
 fi

ts
.  

D
at

a 
re

pr
es

en
t 

m
ea

n 
± 

S.
D

. w
ith

 N
=3

 m
ea

su
re

m
en

ts
.  

hO
C

T1

0
2

4
6

8
10

0

50
0

10
00

15
00

K
m

 3
.1

± 
0.

3 
m

M
V m

ax
 1

.7
5

± 
0.

09
 n

m
ol

 m
in

-1
 m

g-1

M
et

fo
rm

in
 [m

M
]

Uptake  (pmol min-1 mg-1)

hO
C

T2

0
2

4
6

8
10

0

50
0

10
00

15
00

K
m

 0
.6

± 
0.

03
 m

M
V m

ax
 1

.5
6 

± 
0.

03
 n

m
ol

 m
in

-1
 m

g-1

M
et

fo
rm

in
 [m

M
]

hO
C

T3

0
2

4
6

8
10

0

10
00

20
00

30
00

40
00

K m
 2

.6
± 

0.
2 

m
M

V m
ax

 4
.5

1
± 

0.
15

 n
m

ol
 m

in
-1

 m
g-1

M
et

fo
rm

in
 [m

M
]

A
B

C



  

250

          Fi
gu

re
 5

.3
. C

on
ce

nt
ra

tio
n-

de
pe

nd
en

t 
In

hi
bi

tio
n 

of
 h

O
C

T
1-

, h
O

C
T

2-
, a

nd
 h

O
C

T
3-

m
ed

ia
te

d 
M

et
fo

rm
in

 U
pt

ak
e 

by
 C

at
io

n-

se
le

ct
iv

e 
In

hi
bi

to
rs

. U
pt

ak
e 

of
 [

14
C

]m
et

fo
rm

in
 [

10
µM

] 
in

 C
H

O
-h

O
C

T1
 (

A
), 

C
H

O
-h

O
C

T2
 (

B
), 

C
H

O
-h

O
C

T3
 (

C
), 

an
d 

m
oc

k 
ce

lls
 

w
as

 d
et

er
m

in
ed

 in
 th

e 
ab

se
nc

e 
or

 p
re

se
nc

e 
of

 in
cr

ea
si

ng
 c

on
ce

nt
ra

tio
ns

 o
f D

-a
m

ph
et

am
in

e 
(●

), 
m

ito
xa

nt
ro

ne
 (□

), 
co

rti
co

st
er

on
e 

( ▼
), 

de
si

pr
am

in
e 

(○
), 

an
d 

fa
m

ot
id

in
e 

(∆
) f

or
 5

 m
in

ut
es

.  
N

on
sp

ec
ifi

c 
ce

ll-
as

so
ci

at
ed

 ra
di

oa
ct

iv
ity

 w
as

 d
et

er
m

in
ed

 b
y 

m
ea

su
rin

g 
su

bs
tra

te
 

up
ta

ke
 in

 th
e 

m
oc

k 
ce

lls
 a

t e
ac

h 
in

hi
bi

to
r c

on
ce

nt
ra

tio
n.

   
Th

es
e 

va
lu

es
 w

er
e 

th
en

 su
bt

ra
ct

ed
 fr

om
 th

e 
va

lu
es

 in
 h

O
C

T-
tra

ns
fe

ct
ed

 c
el

ls
 

to
 g

iv
e 

co
rr

ec
te

d 
da

ta
 th

at
 w

er
e 

us
ed

 fo
r g

en
er

at
io

n 
of

 th
e 

in
hi

bi
tio

n 
cu

rv
es

.  
Th

e 
da

ta
 re

pr
es

en
t i

nh
ib

iti
on

 o
f t

he
 tr

an
sp

or
te

r-
m

ed
ia

te
d 

m
et

fo
rm

in
 u

pt
ak

e 
on

ly
 a

nd
 a

re
 re

po
rte

d 
as

 a
 p

er
ce

nt
 o

f t
he

 u
ni

nh
ib

ite
d 

co
nt

ro
l. 

 S
ol

id
 li

ne
s 

ar
e 

m
od

el
 fi

ts
 o

bt
ai

ne
d 

fo
llo

w
in

g 
fit

tin
g 

th
e 

in
hi

bi
tio

n 
cu

rv
es

 t
o 

a 
H

ill
 e

qu
at

io
n 

us
in

g 
no

n-
lin

ea
r 

le
as

t 
sq

ua
re

 r
eg

re
ss

io
n 

an
al

ys
is

.  
D

at
a 

re
pr

es
en

t 
m

ea
n 

± 
S.

D
. w

ith
 N

=3
 

m
ea

su
re

m
en

ts

hO
C

T1

In
hi

bi
to

r C
on

ce
nt

ra
tio

n 
[M

]
1e

-8
1e

-7
1e

-6
1e

-5
1e

-4
1e

-3
1e

-2

[14C]-Metformin Uptake 
% Control

02040608010
0

12
0

D
-A

m
ph

et
am

in
e

M
ito

xa
nt

ro
ne

C
or

tic
os

te
ro

ne
D

es
ip

ra
m

in
e 

Fa
m

ot
id

in
e 

hO
C

T2

In
hi

bi
to

r C
on

ce
nt

ra
tio

n 
[M

]
1e

-8
1e

-7
1e

-6
1e

-5
1e

-4
1e

-3
1e

-2
02040608010
0

12
0

hO
C

T3

In
hi

bi
to

r C
on

ce
nt

ra
tio

n 
[M

]
1e

-8
1e

-7
1e

-6
1e

-5
1e

-4
1e

-3
1e

-2
02040608010
0

12
0

A
B

C



 

 251

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. A Novel Chemical Inhibition Scheme to Elucidate the Contribution of 

Candidate Cation-Selective Transporters Involved in Metformin Initial AP Uptake in 

Caco-2 Cells.  The chemical inhibition scheme employed to inhibit initial AP metformin 

uptake in Caco-2 cells are depicted with the concentrations selected and the candidate 

transporters targeted for each inhibitor. 
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Figure 5.5. The Contribution of Candidate Cation-Selective Transporters Involved in 

Metformin Initial AP Uptake in Caco-2 Cells.  (A). Inhibition of [14C]metformin [10µM] 

AP uptake in Caco-2 cells in the absence (Control) or presence of D-amphetamine [50µM], 

cimetidine [25µM], mitoxantrone [80µM], corticosterone [150µM], desipramine [200µM], 

and MPP+ [5mM] for 5 min. (B). Saturable transport of [14C]metformin [10µM], [14C]TEA 

[10µM], and [3H]MPP+ [1µM] in the absence (Control) or presence of corticosterone 

[150µM] or desipramine [200µM] for 5-min (metformin, TEA) and 3-min (MPP+).  

Saturable carrier-mediated transport for each substrate was determined by subtracting the 

uptake rate obtained in the presence of MPP+ [5mM] from each value.  Statistical differences 

were determined between uptake rates and control uptake rates by one-way ANOVA analysis 

with Bonferroni post-test comparisons (A) or two-way ANOVA with Bonferroni post-test 

comparisons (B).  Data are reported as percent relative to control values.  Data are expressed 

as mean ± S.D. with N=3.  *p<0.05, **p<0.01, ***p<0.001, and NS: not significant.  
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Figure 5.6. Effect of Extracellular pH on Metformin AP Uptake in Caco-2 Cells.  

[14C]Metformin [10µM] AP uptake in Caco-2 cells was determined at varying pH values for 

5 min.  Cells were pre-incubated for 30min at pH 7.4 prior to uptake experiments.  Uptake 

was initiated by replacing only the buffer in the AP compartment with metformin in transport 

buffer at varying pH.  Data are reported as uptake rate per milligram of total protein in the 

Caco-2 monolayer.  Statistical differences were determined between uptake rates at pH 

values in relation to control (pH 7.4) uptake rates by one-way ANOVA analysis with 

Bonferroni post-test comparisons.  Data represent mean ± S.D, with N=4 measurements.  

*p<0.05.   

5.5 6.0 6.5 7.0 7.4 8.0
0.0

0.5

1.0

1.5

2.0

*

Extracellular pH

U
pt

ak
e 

(p
m

ol
 m

in
-1

 m
g-1

)



 

 254

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.  Relative mRNA Expression of hOCT1, hOCT3, hOCTN2, and PMAT in 

Caco-2 (HTB-37) Cells Relative to GAPDH Expression.  A. Amplified RT-PCR products 

for GAPDH (lanes 1-2), hOCT1 (lanes 3-4), hOCT3 (lanes 5-6), hOCTN2 (lanes 7-8), and 

PMAT (lanes 9-10) for Caco-2 cDNA RT samples (+) or No-RT (-) negative controls were 

separated by electrophoresis in 2% agarose with ethidium bromide (0.5µg/mL).  Band 

intensities are not representative of relative expression levels.  B. The relative expression of 

hOCT1, hOCT3, hOCTN2, and PMAT mRNA relative to GAPDH mRNA determined by 

quantitative RT-PCR analysis.  Data represent mean ± S.D. N=3.   
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The studies undertaken for this dissertation project has focused on elucidating the 

mechanisms by which metformin is absorbed across intestinal epithelium.  Metformin is a 

water soluble hydrophilic drug with a pKa of 12.4 and a calculated log D value of -6.13 at pH 

7.4 (Saitoh et al., 2004).  Despite its very hydrophilic nature, multiple hydrogen 

donor/acceptor sites, and net charge at all physiologic pH values, all of which typically 

contributing to poor oral absorption, metformin is highly absorbed in humans with fraction of 

dose absorbed ranging between 60-80% (Pentikainen et al., 1979; Tucker et al., 1981).   The 

dichotomy between the predicted and observed absorption of metformin suggests the 

involvement of carrier-mediated transport processes.  This is supported by clinical evidence 

for intestinal accumulation (Bailey et al., 2008) and dose-dependent absorption of metformin 

(Sambol et al., 1996).  Therefore, intestinal transport processes may drive the 

pharmacokinetics of metformin; yet the transporter(s) involved in the intestinal absorption 

remain unknown.  This dissertation work describes a novel mechanism by which metformin 

is absorbed across intestinal epithelium.  At the heart of this mechanism lie two 

interconnected processes of carrier-mediated transport and paracellular transport.  These 

processes are traditionally considered to be independent routes of absorption, with 

compounds favoring one or the other route for their absorption, but appear to work in concert 

yielding high and sustained absorption of this very hydrophilic drug.   

To investigate the intestinal absorption processes of metformin, Caco-2 cell 

monolayers, an established model for human intestinal epithelium, were used so that cellular 

mechanisms of metformin transport could be examined.  Initial work on metformin transport 

across Caco-2 cell monolayers revealed that the absorptive transport was saturable and dose-

dependent (Chapter 2).  This was the first report of saturable absorptive transport of 
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metformin across an in vitro cell model that corresponded to the dose-dependent intestinal 

absorption observed in vivo (Tucker et al., 1981; Sambol et al., 1996).  Interestingly, the 

saturable component of absorptive transport across Caco-2 cell monolayers appeared to be a 

high affinity and low capacity system with an apparent Km and Vmax values of 0.06 mM and 5 

pmol min-1 mg protein-1, respectively.  These transport kinetic estimates were striking due to 

the reported affinities of known organic cation transporters (hOCTs) for metformin, with Km 

values in the millimolar range (Kimura et al., 2005; Nies et al., 2009).  Thus, dose-dependent 

absorption of metformin across Caco-2 cell monolayers likely involved an unknown 

transporter with high affinity towards metformin or involved a saturable process distinct from 

classic carrier-mediated transcellular transport.  Additionally, metformin is administered 

orally with doses ranging between 250 mg and 1g tablets, which would produce millimolar 

concentrations of drug in the gut lumen.  Therefore, the saturable component of absorptive 

transport would potentially be saturated across the dose range administered and undergo 

linear absorption pharmacokinetics.  Nonetheless, these results provided first in vitro 

evidence of a saturable intestinal transport of metformin, consistent with the clinically 

observed dose-dependent saturable absorption observed for this drug in the clinic, although 

the exact mechanism responsible for this dose-dependency in Caco-2 cells was unclear.   

The results of this study showed that metformin was taken up across the apical (AP) 

membrane by a carrier-mediated transport process with Km and Vmax values of 0.9 mM and 

330 pmol min-1 mg of protein-1, respectively (Chapter 2).  The discrepancy between the Km 

value for metformin AP uptake and overall absorptive transport indicated that AP uptake 

likely did not contribute significantly to the dose-dependent transport across Caco-2 cell 

monolayers.  This conclusion was in contrast to the transport kinetics of the H2-receptor 
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antagonist, ranitidine.  Ranitidine, like metformin, possesses a net positive charge at gut 

lumen pH with a pKa of 8.2 and is hydrophilic with a calculated log D value of 0.7 at pH 7.4 

(Matsson et al., 2007), and is also highly absorbed with an oral bioavailability in humans 

ranging from 40-70% (Lin, 1991).   Ranitidine has similar Km values for absorptive transport 

and initial AP uptake of approximately 0.5 and 0.3 mM, respectively (Bourdet and Thakker, 

2006), indicating that AP uptake is likely defining absorptive transport of this drug.   

Elucidating the role of transporters in the AP uptake of metformin in Caco-2 cells was 

a focus of initial investigation.  The AP uptake was significantly inhibited by prototypical 

hOCT substrates and/or inhibitors (Chapter 2).  Furthermore, AP efflux was efficient and 

capable of trans-stimulation and trans-inhibition by metformin and hOCT inhibitors, 

respectively.  These results supported the presence of bidirectional uptake / efflux “OCT-

like” mechanism(s) on the AP membrane of Caco-2 cells capable of efficiently transporting 

metformin.  Moreover, the Km for AP uptake was within the range of reported affinities of 

hOCTs for metformin.  Caco-2 cells were reported to have detectable levels of hOCT1, 

hOCT2, hOCT3, and hOCTN2 mRNA (Muller et al., 2005; Englund et al., 2006).  MATE1 

expression in Caco-2 cells and in the human intestine remains unknown.  PMAT mRNA was 

detected in the Caco-2 cells and was shown to be highly expressed relative to hOCT1 or 

hOCT3 (Chapters 4 and 5).  This is the first evidence of PMAT expression in Caco-2 cells, 

which has been shown to be expressed on the AP membrane of epithelial cells of the villus 

tips of the intestine (Zhou et al., 2007).   

Metformin is a substrate for cation-selective transporters hOCT1, hOCT2, hOCT3, 

MATE1, and PMAT with apparent Km values ranging from 0.6 to 3 mM [Chapter 5 and 

(Tanihara et al., 2007; Zhou et al., 2007; Nies et al., 2009)].  Additionally, metformin was 
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determined not to be a substrate for hOCTN2 (Chapter 5), ruling out the contributions of this 

highly expressed cation-selective transporter in AP uptake in Caco-2 cells and in the 

intestine, in addition to metformin transport in the liver, kidney, heart, and skeletal muscle 

where hOCTN2 is expressed (Tamai et al., 1998).  As a result, putative cation-selective 

transporters responsible for AP uptake in Caco-2 cells were limited to hOCT1, hOCT2, 

hOCT3, MATE1, and PMAT.   

A novel chemical inhibition scheme was implemented to elucidate the contributions 

of putative cation-selective transporters in facilitating metformin uptake across the AP 

membrane (Chapter 5).  These results implicated both hOCT1 and PMAT in facilitating AP 

uptake of metformin into Caco-2 cells with almost equal contributions.  Furthermore, the 

contributions of MATE1, hOCT2, and hOCT3 were determined to be insignificant in the AP 

uptake of metformin in Caco-2 cells.  Similar studies employing this chemical inhibition 

scheme in human intestinal tissue should be performed to confirm the role hOCT1 and 

PMAT in mediating metformin AP uptake and to validate the Caco-2 cell model to study the 

intestinal transport processes for cationic compounds.  Additionally, this approach, which 

employed easily obtained chemical inhibitors, can be used to estimate the contribution of 

these transporters in facilitating transport of metformin and other organic cations in other 

tissues or organs.  This approach also could be used to functionally implicate transporters at 

specific membranes, where cellular localization of specific transporters is unknown.   

hOCT1 localization in Caco-2 cells and consequently in the intestine has been 

controversial.  Human monoclonal antibodies for hOCT1 are not readily available; however 

rat Oct1 antibody has been used to examine hOCT1 localization in human cells and tissues.  

hOCT1 was localized to the AP membrane of Caco-2 (Ng, 2002).  Another report failed to 
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observe hOCT1 staining in Caco-2 cells, but did detect punctated and diffused staining on the 

lateral membrane and cytosolic compartment of fixed human intestinal slices (Muller et al., 

2005).  Mouse Oct1 appeared to be localized to the basolateral (BL) membrane of the 

intestine based on in vivo accumulation studies with metformin in Oct1 competent or 

deficient mice (Wang et al., 2002), although direct evidence for localization of Oct1 in the 

mouse intestine is lacking.  The two latter studies and hOCT1 localization to the BL 

membrane in hepatocytes (Nies et al., 2009) have presented a case for BL localization of this 

transporter in the human intestine and consequently in Caco-2 cells.  The data presented in 

this dissertation provide functional evidence supporting AP localization of hOCT1 in Caco-2 

cells, consistent with the previous evidence of AP localization of hOCT1 based on ranitidine 

AP uptake in Caco-2 cells (Bourdet and Thakker, 2006).  In summary, the results presented 

here and previous reports support hOCT1 AP localization in Caco-2 cells.   

Although protein expression and localization was detected in human intestine (Zhou 

et al., 2007), PMAT function in the intestine and its role in facilitating intestinal 

accumulation of metformin was unknown.  The chemical inhibition studies implicated 

PMAT in mediating at least 30% of the carrier-mediated AP uptake of metformin (Chapter 

5).  PMAT functions as a proton symporter, where an inward proton gradient enhanced 

metformin uptake in MDCKII cells that stably expressed PMAT (Zhou et al., 2007).  

Conversely, metformin AP uptake in Caco-2 cells was inhibited in the presence of an inward 

proton gradient (Chapter 5).  It remains unclear whether PMAT functions as a proton 

symporter in all cell lines and tissues.  Regardless, high relative PMAT expression in Caco-2 

cells (Chapter 4), AP localization of PMAT in human intestine (Zhou et al., 2007), and the 

chemical inhibition data (Chapter 5) support PMAT function and localization on the AP 
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membrane of Caco-2 cells and a role of this transporter in AP uptake of metformin.  Of 

course, it is difficult to rule out the possibility that the chemical inhibitors, which identified 

hOCT1- and PMAT-mediated metformin AP uptake, may have inhibited an unidentified 

transporter.  For that reason, further studies are underway using siRNA to specifically knock 

down both hOCT1 and PMAT separately to obtain unequivocal evidence on whether AP 

uptake of metformin is mediated by these two transporters in Caco-2 cells.   

Interestingly, the chemical inhibitors that were used to estimate the contributions of 

hOCT1 and PMAT in AP metformin uptake did not abolish all of the carrier-mediated 

metformin transport across the AP membrane (Chapter 5).  Approximately 35% of the 

carrier-mediated transport of both metformin and the hydrophilic hOCT substrate 

tetraethylammonium (TEA) remained intact after inhibiting hOCT1-3 and PMAT.  However, 

inhibition of hOCT1-3 and PMAT almost completely inhibited the carrier-mediated transport 

of 1-methyl-4-phenylpyrimidinium (MPP+), leaving only 10% remaining.  An explanation 

for this observation is the presence of a yet unknown AP transporter of TEA and metformin 

in Caco-2 cells that was not inhibited by hOCT1-3, MATE1, and PMAT inhibitors. Further 

studies are warranted to account for the remaining uptake of metformin and TEA not subject 

to desipramine inhibition and to identify unknown cation-selective transporter(s) present in 

Caco-2 cells.  Additionally, PMAT was shown to have greater expression relative to hOCT1 

(Chapters 4 and 5) and has similar transport affinity towards metformin as hOCT1; therefore, 

PMAT likely mediates a majority of metformin AP uptake in Caco-2 cells.  These results 

have implications for not only metformin absorption and intestinal accumulation, but other 

hydrophilic cationic drugs and nutrients that share similar substrate specificity towards these 

transporters.   



 268

The basolateral membrane in Caco-2 cells presents a major barrier for metformin 

transcellular transport.  Metformin efflux across the BL membrane was inefficient and 

appeared to be a passive process over the concentration range employed (Chapter 2).  This 

was not surprising for there does not appear to be efficient transport of hydrophilic organic 

cations across the basolateral membrane of Caco-2 cells.  BL efflux of both metformin and 

ranitidine was not subject to trans-stimulation or trans-inhibition by hOCT substrates and/or 

inhibitors, and the BL efflux clearance did not change with increased loaded concentrations 

(Chapter 2 and (Bourdet and Thakker, 2006)).  In addition, metformin and ranitidine BL 

uptake was also inefficient in Caco-2 cells, even though this process was saturable with 

apparent Km values of approximately 13 and 67 mM, respectively (Chapter 2 and (Lee et al., 

2002)).  The mechanisms of the BL transport of metformin and ranitidine remain unknown; 

although this pathway likely plays an insignificant part in overall absorption of metformin.   

The efficient uptake of metformin across the AP membrane and inefficient BL efflux 

resulted in significant accumulation of metformin in Caco-2 cells relative to the amount of 

drug absorbed across the monolayer.  This result is the first cell-based evidence supporting 

metformin accumulation in intestinal epithelial cells that was observed in vivo in both 

humans and animal models (Wilcock and Bailey, 1994; Bailey et al., 2008).  Intestinal 

accumulation likely accounts for the slow rate of metformin absorption that is rate limiting to 

its overall disposition (Tucker et al., 1981).  Additionally, inefficient BL efflux limited 

transcellular transport, forcing the absorptive transport through the paracellular space.  Both 

rate comparison and cellular kinetic analysis approaches indicated that ≥ 90% of the overall 

transport occurred via paracellular transport (Chapter 2).  The apparent permeability (Papp) of 

metformin decreased 3 fold over 0.05 to 10 mM donor concentrations; yet ≤ 10% could be 
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attributed to transcellular transport processes.  In other words, the absorptive transport of 

metformin was predominantly paracellular, which clearly contained a significant saturable 

component.   

The phenomenon of saturable paracellular transport was previously reported for 

ranitidine absorptive transport across Caco-2 cells (Gan et al., 1998; Lee and Thakker, 1999; 

Bourdet et al., 2006).  Ranitidine was shown to increase the trans-epithelial electrical 

resistance (TEER) across Caco-2 monolayers, which was attributed to a saturable 

paracellular transport mechanism mediated by electrostatic interactions between the cationic 

amine group of ranitidine and anionic residues of the lateral space and/or tight-junction (TJ) 

(Gan et al., 1998; Lee and Thakker, 1999).  Similarly, metformin significantly increased the 

TEER at high donor concentrations (e.g. ≥ 5mM) (Chapter 2; data not shown).  Kinetic 

compartmental modeling of transport and cellular accumulation data revealed that absorptive 

transport of ranitidine comprised approximately equal contributions of carrier-mediated 

transcellular transport and paracellular transport, both containing saturable processes 

(Bourdet et al., 2006).  The studies in Caco-2 cells on the mechanism of absorptive transport 

of ranitidine and metformin provided irrefutable evidence supporting the presence of a novel 

saturable paracellular transport mechanism for small hydrophilic organic cations.   

The molecular mechanism responsible for the concentration-dependent paracellular 

transport was unknown prior to the findings of this dissertation research, although potential 

involvement of the TJ proteins claudins was speculated (Bourdet et al., 2006).  Claudins are 

transmembrane proteins believed to form pores in the TJ that regulate flux of ions and small 

neutral molecules across epithelial tissue (Van Itallie and Anderson, 2006).  Specific claudin 

isoforms are known to confer charge selectivity to inorganic ions that traverse across the 
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epithelial monolayer; this charge selectivity is conferred via electrostatic interactions 

between the ions and certain charged amino acid residues in the extracellular loops of 

claudins that make up the pores in the TJ (Colegio et al., 2002).  Claudin-2, in particular, has 

been shown to confer cation-selectivity, and preferentially facilitating metal ion diffusion 

driven by electrostatic interactions between the positive charge on the metal ions and 

negative charge on anionic residues of its extracellular loops (Yu et al., 2009).  In addition, 

claudin-2 pores appear to have an approximate radius of 4 Å that permit flux of small organic 

non-charged molecules of molecular radii ≤ 4 Å in a size-dependent manner (Van Itallie et 

al., 2008), albeit to a lesser extent than its ability to facilitate cation flux.  Accordingly, 

claudin-2 presented an ideal candidate to examine the role of cation-selective claudins in 

facilitating paracellular transport of a small organic cation like metformin across Caco-2 cell 

monolayers.   

Short term treatment with the active metabolite of vitamin D3, 1α,25-dihyroxyvitamin 

D3 (1,25-(OH)2D3), was reported to induce claudin-2 expression in Caco-2 cells (Fujita et al., 

2008); hence this model was selected to evaluate the effects of claudin-2 expression on 

paracellular transport of metformin.  Claudin-2 mRNA and protein were induced by 4 fold 

following 1,25-(OH)2D3-treatment.  Surprisingly of the 30 genes that encode proteins 

responsible for TJ structure and for regulation of TJ function, only claudin-2 expression 

increased greater than 2 fold following 1,25-(OH)2D3-treatment (Chapter 3).  Claudin-12, -

15, and -16 expression has been shown to increase cation paracellular transport (Van Itallie et 

al., 2003; Hou et al., 2005; Fujita et al., 2008), yet the relative gene expression for each of 

these proteins was either unchanged (claudin-12) or decreased (claudin-15, and -16) as a 

result of vitamin D3-treatment (Chapter 3).  Therefore, it appeared that 1,25-(OH)2D3-
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treatment selectively induced claudin-2 expression.  Accompanied with the induction of 

claudin-2, there was a significant increase (e.g. 25%) in metformin transport, without any 

change in the AP uptake, AP efflux, or BL efflux.  Transport of a related but smaller organic 

cation, guanidine, increased even more (2 fold) upon the induction of claudin-2 by 1,25-

(OH)2D3-treatment (Chapter 3).  In addition, 1,25-(OH)2D3-treatment increased the overall 

barrier integrity of the monolayer by reducing the transport of the paracellular probe 

mannitol, perhaps by reducing the number of pores capable of permitting flux of small non-

charged species.  These observations highlighted three significant findings: 1) Claudin-2 

pores were capable of facilitating paracellular transport of metformin and other small organic 

cations in a size-dependent manner. 2) 1,25-(OH)2D3-treatment increased the barrier integrity 

of the monolayer, decreasing the flux of small neutral molecules while increasing the flux of 

small organic cations. 3) 1,25-(OH)2D3-treatment increased the population of cation-selective 

pores while decreasing the overall porosity of the monolayer.   

Paracellular transport of metformin increased across Caco-2 monolayers treated with 

1,25-(OH)2D3.  This novel finding was the first direct evidence that physiologically relevant 

TJ modulation can enhance the transport of charged organic solutes.  Overwhelming 

circumstantial evidence implicated claudin-2 in facilitating metformin paracellular transport; 

thus, providing a molecular mechanism behind the observed saturable paracellular transport.  

Transport kinetics for the saturable component of metformin absorptive transport across 

Caco-2 cells described a high affinity and low capacity system (Chapter 2), which was most 

likely representative of the electrostatic interaction within claudin-2 pores rather than 

transport processes involving hOCT1 or PMAT.  Currently, claudin-2 is the only pore 

forming TJ protein known to confer both cation-selectivity that is also capable of regulating 
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flux of small neutral molecules with radii less than 4 Å in a size-dependent manner (Van 

Itallie et al., 2008; Van Itallie et al., 2009).  Characterization of the pore properties for other 

cation-selective claudin isoforms (e.g. claudin-10a, claudin-12, claudin-15, and claudin-16) 

have yet to be determined; however these isoforms were either not detected in Caco-2 cells 

or 1,25-(OH)2D3-treatment did not increase their expression (Chapter 3).   

1,25-(OH)2D3-treatment in Caco-2 cells affected the expression of numerous TJ 

proteins examined (Chapter 3) and potentially could have affected the expression and 

function of other proteins not evaluated in this study.  Although 1,25-(OH)2D3-treatment 

provided ample evidence implicating claudin-2 in paracellular transport of organic cations, 

direct evidence for claudin-2 mediated metformin paracellular transport was lacking.  LLC-

PK1 cells that stably expressed exogenous claudin-2 under the control of an inducible 

promoter (Van Itallie et al., 2003) were employed to evaluate clauin-2 expression on the 

paracellular transport of metformin and similar guanidine containing cations.  Claudin-2 

expression was modulated in the monolayer to a maximum level at which overall monolayer 

integrity was not significantly altered.  Surprisingly, paracellular transport of metformin was 

not affected by claudin-2 expression in this cell model; although guanidine and 1-

methylguanidine paracellular transport increased with increasing claudin-2 expression 

(Chapter 4).  The inability of claudin-2 to facilitate metformin paracellular transport in LLC-

PK1 monolayers could be due to a slightly smaller claudin-2 pore radius in this cell model in 

relation to the claudin-2 pore radius of the 1,25-(OH)2D3-induced Caco-2 monolayers.  Using 

the ratios of paracellular Papp values for guanidine and 1-methylguanidine, the claudin-2 pore 

radius was estimated to be approximately 4 Å, which was not significantly different from the 

estimated radius of the claudin-2 pores in 1,25-(OH)2D3-induced Caco-2 cell monolayers.  
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Due to the limited number of organic cations assessed in this work, it is possible that the 

estimates were not precise enough to pick up subtle changes in the claudin-2 pore radius 

between the two systems, which could have resulted in the differential ability of induced 

claudin-2 to stimulate metformin transport in Caco-2 cells.  Further studies are required to 

examine potential differences between the claudin-2 pore in these systems to explain the 

discrepancy between the LLC-PK1 and Caco-2 data.   

Regardless of the LLC-PK1 metformin results, this work provided the first direct 

measurement of claudin-2 facilitated transport of organic cations at physiological relevant 

concentrations.  Previous work demonstrated claudin-2 facilitated diffusion of organic 

cations (Yu et al., 2009); yet the permeability of the organic cations was measured indirectly 

by electrophysiological measurements (e.g. dilution potentials) and at concentrations that are 

supra-physiological (75 mM donor solutions).  The study also employed inducible promoters 

to account for the endogenous claudins that may alter paracellular transport of the ions 

studied, but they failed to account for the effect of additional claudin-2 expression on the 

monolayer integrity by monitoring the flux of neutral paracellular probe (e.g. mannitol or 

PEG).  Therefore, alterations to the monolayer may have confounded the data and produced 

effects not directly attributed to claudin-2 electrostatics.  The data presented in this work 

clearly demonstrated the ability of claudin-2 to mediate paracellular transport of organic 

cations.   

Facilitated diffusion of metformin by claudin-2 pores and/or other cation-selective 

claudin pores in the intestine would be expected to enhance the paracellular transport of 

metformin and modestly increase its overall oral absorption.  However, paracellular transport 

alone could not account for the high fraction of dose absorbed of metformin in humans.  
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Metformin and mannitol had equivalent paracellular Papp across Caco-2 cell monolayers 

(Chapter 2); though the fraction of dose absorbed in humans for metformin and mannitol 

were significantly different with values of 80% (Tucker et al., 1981) and 16% (Artursson and 

Karlsson, 1991), respectively.  Therefore, a novel “sponge” hypothesis was formulated to 

explain how metformin could be highly absorbed across human intestine through a 

predominantly paracellular mechanism.  At the heart of this hypothesis are the cation-

selective bidirectional transport mechanisms acting on the apical (AP) membrane of 

intestinal enterocytes (e.g. hOCT1 and PMAT).  These transporters work in an inward 

direction at high metformin lumen concentrations and function to sequester metformin in the 

intestine as the dose transits down the intestine.  The accumulated drug is then effluxed back 

into the lumen by the bidirectional cation-selective transporters, which allows for subsequent 

re-uptake into distal enterocytes or to be absorbed via a combination of passive and 

facilitated paracellular diffusion.  At higher doses, less percent of the dose is capable of being 

accumulated in the intestine and more of the drug passes through the intestine unabsorbed 

and collects in the feces, resulting in saturable dose-dependent absorption.   

Although claudin-2-mediated metformin transport may explain a slight increase in 

metformin bioavailability over mannitol, it is intestinal accumulation and repeating cycling 

by AP bidirectional transporters that truly explains the high bioavailability of metformin.  

This novel absorption mechanism accounts for how efficient absorption of metformin can 

occur through a presumably inefficient pathway (e.g. paracellular transport).  Therefore, 

genetic, hormonal, chemical, and pathological modulations to these transport processes likely 

account for a portion of the intra- and inter-individual variability observed in metformin 

disposition and efficacy.   
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Clinical observations of metformin intestinal accumulation (Bailey et al., 2008), slow 

rate and dose-dependency of absorption (Tucker et al., 1981), and the reliance of the entire 

length of the small intestine for complete absorption (Vidon et al., 1988) support the sponge 

hypothesis absorption mechanism.  Only approximately 20% of the dose is absorbed from the 

duodenum (Vidon et al., 1988), leaving the remaining to be absorbed slowly; thus controlling 

portal exposure and reducing the likelihood of saturating hepatic uptake transporters (e.g. 

hOCT1).   Metformin accumulates in the liver at concentrations over 4 fold higher than the 

plasma concentrations (Wang et al., 2003) and liver accumulation likely accounts for a 

significant portion of the overall volume of distribution (Shu et al., 2008).  Therefore, the 

slow rate of absorption observed clinically and explained by this novel absorption 

mechanism enables efficient accumulation into the organ responsible for the majority of 

metformin glucose-lowering effects.   

This novel absorption mechanism can account for the intestine related pharmacology 

of metformin.  Intestinal administration of metformin was shown to be necessary for 

metformin to elicit a significant portion of its glucose-lowering effect (Stepensky et al., 

2002).   Metformin induces glucose utilization in the intestine by increasing glucose uptake 

(Bailey et al., 1994; Walker et al., 2005) and stimulated anaerobic glucose metabolism to 

produce lactate (Bailey et al., 2008).  Metformin requires entry into the cell to indirectly 

activate its main pharmacological target, the AMP-activated protein kinase (AMPK), via 

inhibition of complex I of the mitochondrial respiratory chain (Zou et al., 2004).  

Furthermore, accumulation of metformin in the cytosol is necessary to achieve adequate 

concentrations at the mitochondrial membrane to efficiently inhibit complex I (El-Mir et al., 

2000).  Prolonged absorption, likely mediated by the repeated cycling from the enterocytes 
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and inefficient BL efflux, would maintain sufficient intracellular concentrations required to 

generate an intestine-related pharmacologic response.  In summary, the data presented here 

provides the first direct evidence linking discrete transport processes at each membrane to 

account for bioaccumulation in intestinal epithelial cells.  Furthermore, the proposed 

absorption mechanism for metformin accounts for its efficient absorption and accumulation 

necessary for the pharmacologic response in the intestine and liver.   

This dissertation project began with the initial goal of examining the role of cation-

selective transporters in the absorptive transport of metformin in relation to the transport 

processes of another hydrophilic cationic drug, ranitidine.  Both metformin and ranitidine AP 

uptake were mediated by hOCTs, most likely by PMAT and hOCT1, while ranitidine also 

was effluxed across the AP membrane by P-glycoprotein (P-gp) (Bourdet and Thakker, 

2006).  Efflux across the BL membrane was rate limiting to the transcellular transport of both 

compounds; yet the contributions of transcellular transport for metformin and ranitidine were 

significantly different with estimates of 10% and 50%, respectively.  Ranitidine and 

metformin have pKa values of 8.2 and 12.4, respectively.  Most biologically relevant cations 

are similar to ranitidine that contain primary or secondary amine functionalities, with pKa 

values ranging between 7 and 9; therefore at lumen pH they exist primarily as cations.  It is 

hypothesized that cation-selective AP transporters facilitate uptake of cationic compounds 

into intestinal enterocytes to create a concentration gradient forcing the neutral unionized 

species in the cytosol to diffuse across the BL membrane into the blood.  Therefore, adequate 

absorption would be achieved without vectoral transport; thus reducing the evolutionary 

pressure for cation-selective BL efflux transporters.  In the case of metformin, drug 

accumulated in the enterocytes due the absence of neutral species capable of diffusing across 
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the BL membrane.  This novel hypothesis accurately describes the transcellular transport 

processes for ranitidine and metformin across Caco-2 cell monolayers.  Furthermore, this 

explanation accounts for the discrepancy between why there are several known cation-

selective transporters on the AP membrane and no apparent mechanisms for cation-selective 

BL efflux in the intestine.  Future work with compounds containing similar hydrophilicity 

with ionizable groups that have varying pKa values could be used to confirm this absorption 

mechanism in vitro and in vivo. 
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