
 
 

 
 

THE INFLUENCE OF AUTONOMIC IMBALANCE ON DIESEL 
EXHAUST-INDUCED CARDIAC DYSFUNCTION IN HEART 

FAILURE-PRONE RATS 
 
 
 
 
 

Alex P. Carll 
 
 
 
 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Environmental Sciences & Engineering, in the Gillings School of Global Public Health. 
 
 
 
 
 

Chapel Hill 
2012 

 
 
 
 
 
 
 

Approved by: 
Dr. Aimen K. Farraj 
Dr. Daniel L. Costa 
Dr. Avram Gold 
Dr. Robert M. Lust 
Dr. Monte S. Willis 
Dr. Louise M. Ball 
Dr. Kenneth Sexton 
Dr. William Vizuete 
Dr. Wanda Bodnar 



 

ii 
 

 
 
 
 
 

ABSTRACT 
 

ALEX P. CARLL: The Influence of Autonomic Imbalance on Diesel Exhaust-Induced Cardiac 
Dysfunction in Heart Failure-Prone Rats 

(Under the direction of Drs. Aimen K. Farraj & Daniel L. Costa) 
 

 
 

Short-term exposure to vehicular emissions is strongly associated with adverse cardiac 

events.  Diesel exhaust (DE) is a ubiquitous air pollutant hypothesized to provoke adverse 

cardiac events partly through defective co-ordination of the sympathetic and parasympathetic 

branches of the autonomic nervous system.  To investigate this putative mechanism, 

cardiophysiologic responses to a single DE inhalation exposure (500 µg/m3, 4 h, whole-body) 

were examined in heart failure-prone rats and age-related susceptibility or autonomic challenges 

were incorporated to reveal latent effects.  Challenges included sympathetic stimulation 

(dobutamine) with and without parasympathetic ablation (vagotomy) and, separately, treadmill 

exercise and pretreatment with a sympathetic or parasympathetic inhibitor.  Measures of cardiac 

function by left ventricular (LV) pressure and echocardiography, autonomic balance by heart rate 

(HR) and HR variability (HRV), electrocardiogram, and aortic pressure were performed.  DE 

increased cardiac output, bradyarrhythmias, and parasympathetic tone while altering ventricular 

repolarization in aged heart failure-prone rats during or shortly after exposure.  Exercise also 

revealed a DE-induced increase in parasympathetic tone in young adult rats shortly after 

exposure.  At 1 day post-exposure, dobutamine and treadmill challenges indicated that DE 

increased sympathetic influence, but pre-treatment with autonomic inhibitors prevented this.  

Only sympathetic inhibition prevented a DE-induced decline in contractility and systolic blood 



 

iii 
 

pressure at exercise 1 day after exposure. Vagotomy revealed that DE caused systolic and 

diastolic dysfunction and altered diastolic and chronotropic responses to dobutamine through 

impaired parasympathetic regulation. Thus, altered autonomic regulation of the heart, 

characterized by an early parasympathetic dominance and a delayed sympathetic dominance, 

mediates adverse cardiac effects of air pollution exposure.  This research elucidates a major 

physiologic mechanism driving the adverse health effects of air pollutant exposure. 

Consequently, these findings will inform health risk assessments, medical therapies, and 

environmental controls for air pollution. 
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PREFACE 

The first and second manuscripts of this dissertation (Chapters 2 & 3, respectively) are 

pre-copy-editing, author-produced versions of articles accepted for publication in Toxicological 

Sciences following peer review.  The definitive publisher-authenticated version of the manuscript 

in Chapter 2 is available online at http://toxsci.oxfordjournals.org/content/128/2/490.long and is 

cited as follows: 

Carll AP, Hazari MS, Perez CM, Krantz QT, King C, Winsett DW, Costa DL, Farraj AK (2012).  
Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac  
Electrophysiology, Blood pressure, and Autonomic Balance in Heart Failure-Prone Rats.  
Toxicol. Sci. 128(2):490-9. 

 
The definitive publisher-authenticated version of the manuscript in Chapter 3 is available online 

at http://toxsci.oxfordjournals.org/content/early/2012/10/09/toxsci.kfs295.long and is cited as 

follows: 

Carll AP, Lust RM, Hazari MS, Perez CM, Krantz QT, King C, Winsett DW, Cascio WE, Costa  
DL, Farraj AK (in press). Diesel Exhaust Inhalation Increases Cardiac Output, 
Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats. Toxicol. 
Sci. 2012 Oct 9. [Epub ahead of print] doi: 10.1093/toxsci/kfs295 
 

The third manuscript (Chapter 4) will be submitted to Environmental Health Perspectives in 

November 2012 following revisions.  
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CHAPTER 1 
 

INTRODUCTION 

 

Background 

The U.S. Congress passed the Clean Air Act (CAA) in 1963, amended it in 1970, and re-

amended it most recently in 1990.  The CAA requires that the U.S. Environmental Protection 

Agency (EPA) set and enforce air quality and emissions regulations in order to protect the health 

and welfare of the public, including sensitive populations such as asthmatics, children, and the 

elderly.  Based on evidence from epidemiological, clinical, and toxicological studies, the EPA 

sets the National Ambient Air Quality Standards (NAAQS) to limit six criteria air pollutants—

nitrogen dioxide, sulfur oxides, carbon monoxide, lead, ozone, and particulate matter (PM).  

These standards are adjusted by the EPA Administrator according to an “adequate margin of 

safety” (Section 109) based on input from scientific advisory committees and the agency’s 

internal assessments of the current body of scientific research on health effects of air pollutants.  

As well, the Administrator is responsible for maintaining a national research and development 

program for prevention and control of air pollution that, per the CAA, “conduct[s], and 

promote[s], the coordination and acceleration of, research, investigations, experiments, 

demonstrations, surveys, and studies relating to the causes, effects (including health and welfare 

effects), extent, prevention, and control of air pollution” (United States, 1970). The report from 

the Senate regarding the 1970 amendment noted that the purpose of air quality standards is to 

guarantee “an absence of adverse effects on the health of a statistically related sample of persons 
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in sensitive groups”, including “bronchial asthmatics and emphysematics who in the normal 

course of daily activity are exposed to the ambient environment” (Coglianese & Marchant, 

2004). Thus, the federal courts have interpreted Section 109 as a mandate that the NAAQS “be 

set at a level at which there is ‘an absence of adverse effect’ on . . . sensitive individuals” 

(Coglianese & Marchant, 2004).  The determination of this threshold is contingent upon 

scientific understanding of the adverse health effects of air pollutant exposure in humans.  While 

epidemiologic and observational laboratory studies assist in this understanding, the elucidation of 

toxic mechanisms enhances scientific knowledge about the biological cause of adverse effects.  

Such an enhancement may inform observation and epidemiologic studies that guide regulatory 

decisions, including emissions standards and control technologies, while it also may inform 

efforts to mitigate the adverse effects of exposure. 

 

Particulate Matter Health Effects – Past and Present 

Descriptions of the detrimental health effects of urban air pollutants originate from the 

11th century with accounts of Maimonides—Jewish philosopher, theologian, and physician 

(Bloch, 2001).  Nevertheless, detailed historic information on air pollution is limited mostly to 

the 20th century.  The most notable air pollution events occurred as “killer fogs” in the Meuse 

Valley, Belgium (1930); Donora, Pennsylvania (1948); and London (1952 & 1956).  While the 

Meuse Valley and Donora experienced 60 and 20 smog-induced fatalities respectively, 

researchers have attributed 12,000 deaths in 1952 and 1,000 in 1956 to unusually high levels of 

London smog (Hunt et al., 2003).  Over 5 days in 1952, London’s daily concentrations of total 

suspended particulate (TSP) peaked at about 7.0 mg per cubic meter of air,  with maximum 

concentrations of smoke at 4.46 mg/m3 and sulfur dioxide at 1.34ppm (Whittaker et al., 2004).  
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Meanwhile, 98% of the total PM collected during a similar episode in London (1955) were 

respirable fine particles (< 2.5µm in diameter; PM2.5), and 89% were less than 1µm (Whittaker, 

et al., 2004).   

Today, PM occurs at substantially lower ambient concentrations but continues to 

adversely affect public health. Numerous epidemiological studies have linked coarse and fine 

PM with increased mortality and morbidity (Biggeri et al., 2004;  Schwartz, 1996;  Schwartz & 

Marcus, 1990;  United States, 2004;  Zanobetti et al., 2002;  Zanobetti et al., 2003).  Although 

sulfur dioxide (SO2) exposure was originally believed to be the cause of the adverse health 

responses seen in London, more recent analyses have determined PM was the dominant culprit 

(Schwartz, 1996;  Schwartz & Marcus, 1990).  Fittingly, a positive correlation between mortality 

and PM10 concentration was observed in the Utah Valley in winter 1985-86 (WHO, 2000).  

Increased mortality and morbidity occur with both acute and chronic exposures to particulate 

matter.  The excess deaths observed in London in 1952 occurred almost entirely from 

cardiopulmonary complications—especially among those with preexisting cardiopulmonary 

diseases (Whittaker, et al., 2004).  While some skeptics initially argued that increased deaths 

during high smog events resulted from displaced short-term deaths, several studies have since 

disproved these arguments (Biggeri, et al., 2004;  Zanobetti, et al., 2002;  Zanobetti, et al., 2003).   

Among cardiopulmonary diseases, respiratory illnesses such as bronchitis, chronic 

obstructive pulmonary disease (COPD), and asthma, as well as cardiovascular diseases such as 

atherosclerosis, heart failure, ischemic heart disease, coronary artery disease, hypertension, and 

diabetes are particularly relevant to PM-induced disease exacerbation and death.  A plethora of 

recent epidemiological studies report PM-associated increases in cardiopulmonary symptoms, 

diseases and lung cancer.  EPA’s 2004 Criteria Document for Particulate Matter cites over 100 
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journal articles published between 1995 and 2004 that revealed positive associations between 

short-term PM exposure and cardiopulmonary and lung cancer mortality (United States, 2004).  

Peters et al. (2001) observed a 69% increase in Boston-area heart attacks per 20 µg/m3-increase 

in 24-hour PM2.5 on the preceding day.  In 2006, 23 U.S. cities (accounting for 46 million 

people) had peak 24-hour PM2.5 levels of at least 40 µg/m3 (United States, 2006).  Thus, acute 

fluctuations in fine particulate matter likely contribute to major surges in the national incidence 

of heart attacks. 

The adverse cardiovascular effects of particulate matter have recently become a topic of 

mounting interest in the scientific community.  The epidemiological field has reached relative 

consensus that PM exposure damages the cardiovascular system and exacerbates pre-existing 

cardiovascular diseases (Brook et al., 2010;  United States, 2004).  Many investigators have 

demonstrated evidence of cardiac dysfunction in humans following elevated ambient PM.  As 

previously noted, Peters et al. (2001) reported that a 20 µg/m3 increase in the 24-hour 

concentration of PM2.5 corresponded with a 69% increase in risk of myocardial infarction (MI).  

Others have observed stronger effects of PM on mortality and morbidity in humans with pre-

existing cardiovascular disease.  Zanobetti and Schwartz recently (2007) observed among heart 

attack survivors that a 10 µg/m3 increase in annual PM10 levels was linked with a 43% increased 

occurrence of subsequent heart attacks and a 34% increased mortality over three years.  By 

comparing pollution records with data from implanted defibrillators, Dockery and colleagues 

(2005) found positive correlations between PM levels and potentially fatal ventricular 

tachyarrhythmias. Henneberger et al. (2005) revealed an association between elevated PM and 

impairments in ventricular repolarization by examining electrocardiograms (ECGs) of patients 

with coronary artery disease.  
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Particulate Matter Concentrations – Evidence That the Threat Persists 

In light of the aforementioned studies, a review of present-day PM concentrations reveals 

that the United States and elsewhere still frequently reach PM concentrations that threaten public 

health.  One of the worst modern PM episodes within the U.S. occurred in Utah Valley, Utah, 

where 24-hour PM10 concentrations peaked at 365 µg/m3 from 1985-1989 (WHO, 2000).  Over 

two months from December 1985 to January 1986, PM10 levels in Utah Valley averaged 120 

µg/m3 and, for 13 days, exceeded 300 µg/m3 (United States, 2004).  The highest annual PM10 

levels of 2005 within U.S. cities were recorded in Phoenix (74 µg/m3) and St. Louis (57 µg/m3) 

(United States, 2005).  In 2006, Bakersfield, CA; Birmingham, AL; and Riverside-San 

Bernadino, CA, had the highest peak 24-hour PM10 levels, reaching 192, 169, and 155 µg/m3, 

respectively (United States, 2006).  Meanwhile, in developing nations, peak PM concentrations 

may approach levels comparable to those of London in 1952.  For instance, maximum 24-hour 

TSP and PM10 for Gujranwala, Pakistan was recently recorded at  5.19 mg/m3 and 1.1 mg/m3 , 

respectively (Pak-EPA and JICA, 2003).  Among major cities surveyed by the World Health 

Organization (WHO), those most burdened by PM10 included Cairo, Beijing, Delhi, Calcutta, 

and Taiyuan, China, with annual levels at 169, 161, 150, 128, and 125 µg/m3 respectively 

(WHO, 2007).   Data on ambient PM2.5 is more limited than that of PM10, but is also of major 

concern.  In Beijing, in defiance of the Chinese government and in contradiction of publicly 

available government data, the U.S. embassy ‘tweets’ hourly PM2.5 concentrations on-line, which 

recently peaked at 248 µg/m3 (twitter.com/#!/beijingair, 3 June 2012). The U.S. cities with the 

three highest peak 24-hour PM2.5 levels include Bakersfield, CA (64 µg/m3); Chico-Paradise, CA 

(59 µg/m3); and Pittsburgh, PA (58 µg/m3) (United States, 2006).  Meanwhile, UFPs reach peak 
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environmental concentrations usually in settings of traffic settings, including on a busy Los 

Angeles highway (# concentration: 1.2 x 105 / m3), behind a cement truck in France (1.47 x 106 / 

m3) or in a traffic tunnel (1.1 x 106 / m3) (Gouriou et al., 2004;  Zhu et al., 2007). 

 

Particulate Matter Toxicity and Classifications 

 In addition to concentration, the toxicity of an exposure to particulate matter depends 

upon the size and chemical composition of the particles. As size is among the most 

distinguishable determinants of PM toxicity in an air-shed, the EPA classifies, monitors, and 

regulates two different size classes of PM: particles 10 micrometers in diameter or less (PM10) 

and those less than 2.5 µm (PM2.5) (United States, 2007).  PM less than 10 µm but greater than 

2.5 µm (PM10-2.5) are called “inhalable coarse particles” because they can enter the airways and 

lungs.  In contrast, PM2.5 are “respirable fine particles” because they can enter deeper into the 

lungs where gas exchange occurs. Although sources of particulate matter vary depending on time 

and location, the majority of fine particles originate from fossil fuel combustion while most 

coarse particles come from dust, sea salt, pollen, mold, fungal spores, and mechanical 

fragmentation of solids from grinding, crushing and abrasion (United States, 2004, 2007).  Fine 

particles in the eastern and central U.S. consist mostly of organic compounds and sulfate, while 

in the western U.S. they consist of nitrate in addition to organics and sulfates.  In addition to 

PM10 and PM2.5, there are also ultrafine particles (UFPs; diameter < 0.1 µm), which are neither 

regulated nor consistently monitored by the U.S. EPA. Relative to PM2.5, UFPs have a 

substantially greater surface area per given mass concentration; for example, 16,000 UFPs with 

diameters of 0.1 µm are required to achieve the same mass as a single 2.5-µm particle—leading 
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to a total surface area among these UFPs that is roughly 25-times greater than the fine particle 

when controlling for mass.   

Myriad studies have revealed increased PM toxicity with decreasing particle size and 

increasing transition metal content.  Exceptions to the metal-toxicity association in PM include 

diesel exhaust particles (DEPs), which have relatively low metal content but remain harmful 

possibly due to organic material.  Meanwhile, size determines the depth to which particles can 

penetrate the respiratory tract.  Inhaled coarse particles usually enter the conducting airways 

where they may deposit by impaction.  In contrast, inhaled fine particles can deposit in the lung 

parenchyma—which include the respiratory bronchioles, alveolar ducts, and alveolar sacs—

where they may exert greater toxicity due to weaker defenses (i.e., clearance mechanisms and 

blood barriers) and greater biochemical responsiveness.  Given their smaller size, UFPs have an 

even greater capacity to be respired within the lower airways and alveoli, to penetrate the lung 

lining tissue and cell barriers, and to translocate to extra-pulmonary organs including the heart 

and brain (Oberdorster et al., 2002;  Peters et al., 2006). Other physical and chemical factors 

may determine particle toxicity including the solubility of metals and acidity, which is often 

affected by sulfate content and surface charge (United States, 2004).   

 

Other Criteria Pollutants: Concentrations and Cardiovascular Effects 

Because PM levels frequently correspond with those of many other co-pollutants, it is 

often not possible for epidemiologists to assert a causal role for any single pollutant in an adverse 

health outcome. Other common air pollutants of public health concern that are immediately 

derived from vehicular emissions include CO, NO2, and SO2.  A recent study (Bhaskaran et al., 

2011) found the highest ambient concentrations of pollutants among 15 metropolitan areas in the 
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United Kingdom reached an hourly upper quartile (75th percentile) of 0.65 ppm for CO, 32 ppb 

for NO2, and 6 ppb for SO2.  These values compared closely to those of ten Italian cities 

(Chiusolo et al., 2011) as well as Erfurt, Germany, the latter of which had comparable daily 

ambient concentrations and reported a peak CO level at 1.56 ppm (Berger et al., 2006).  An 

additional study conducted over 126 U.S. counties observed similar 24-hour levels, with only a 

notable difference in CO concentrations (peak hourly observation = 9.7 ppm; peak daily = 2.5 

ppm) (Bell et al., 2009).  Yet, levels of these pollutants may reach much higher levels indoors, 

within traffic tunnels, or in occupational settings.  For instance, while hourly NO2 concentrations 

are unlikely to surpass 0.2 ppm outdoors, they can range from 0.4 to 1.5 ppm indoors during gas 

cooking (Hesterberg et al., 2009).  In traffic tunnels, NO levels (which are generally at higher 

levels than NO2 in vehicular emissions) can reach 1.5-2.2 ppm , while CO has been shown to 

reach levels as high as 19-22 ppm (Gertler et al., 2002). 

 Significant associations have been demonstrated between these pollutants and adverse 

health outcomes.  Fluctuations in NO2 and CO have both been shown to correspond with 

increased hospitalizations for cardiovascular disease across the U.S. (Bell, et al., 2009;  Mann et 

al., 2002), while cardiac mortality has been shown to increase with increasing NO2 throughout 

Italy (Chiusolo, et al., 2011).  In a study spanning 15 cities within the United Kingdom, 

Bhaskaran et al. (2011) demonstrated an association between exposure to NO2 and onset of 

myocardial infarction 1-6 hours later.   It is plausible that several of these pollutants exert 

toxicity in concert.  Conversely, one pollutant may be the primary culprit, but it cannot be 

isolated from its co-pollutants in an epidemiologic setting.  For example, Berger and colleagues 

(2006) found that three different size classes of PM (UFP, PM2.5, and accumulation mode [1.0 - 
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0.1 µm]) as well as NO2 concentrations correlated with episodes of ventricular tachycardia in 

men with coronary artery disease in Erfurt, Germany. 

 

Diesel Exhaust Cardiovascular Effects 

Diesel exhaust (DE) is a ubiquitous source of urban PM, NO2, and CO, among other 

pollutants.  Consequently, DE is strongly believed to contribute to adverse cardiovascular 

effects.  Ischemic heart disease hospitalizations in eight European cities have been attributed to 

DE exposure (Le Tertre et al., 2002). In addition, Mills et al. (2007) found that DE exposure 

exacerbated exercise-induced electrocardiographic ST depression in human subjects with known 

coronary artery disease. Several mechanisms underlying the acute cardiovascular toxicity of DE 

exposure have been implicated, including electrophysiological dysfunction, autonomic 

imbalance, vascular dysfunction, coagulation, and low-level systemic inflammation (Anselme et 

al., 2007;  Brook, 2008;  Campen et al., 2005;  Lucking et al., 2011;  Mills, et al., 2007;  Peretz 

et al., 2008b).  

Although many components of DE are suspected to play a role in DE-induced 

cardiovascular (CV) dysfunction, recent investigations using relatively healthy individuals have 

implicated particles as the predominant mediators (Lucking, et al., 2011;  Mills et al., 2011b). 

Studies have demonstrated pathophysiologic effects on the CV system following acute exposure 

to either particle-containing whole diesel exhaust (wDE) (Anselme, et al., 2007;  Miller et al., 

2009;  Mills, et al., 2007) or DE particles alone (Huang et al., 2010). Likewise, removal of 

particles by modern DE filters can prevent DE-induced thrombosis and vasoconstriction in 

healthy humans (Lucking, et al., 2011;  Mills, et al., 2011b). Other studies suggest that the 

gaseous components of DE contribute to the pathophysiologic effects documented in 
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epidemiologic studies. Several reports have shown that particle-free DE exposure promotes acute 

physiologic alterations that can trigger cardiac dysfunction and injury—including increased 

blood pressure, vascular plaque formation, cardiac arrhythmia, and enhanced responsiveness to a 

vasoconstrictor (Campen, et al., 2005;  Mills, et al., 2011b). However, neither the dominant 

constituents nor the primary mechanisms behind DE-induced cardiac toxicity are resolved. 

 

Mechanisms of Air Pollutant Cardiovascular Toxicity 

Observations of increased detrimental cardiovascular events such as cardiac arrhythmia, 

endothelial lipid peroxidation, ischemic myocardial lesions, MI, decompensation of heart failure, 

and changes in heart rate variability have guided many hypotheses about mechanistic pathways 

of air pollutant-induced cardiovascular insult—all of which concern neuroregulatory, vascular, 

cardiac, and/or pulmonary effects.  Among the hypothesized mechanisms, the most substantiated 

include: (i) dysfunction of the autonomic nervous system (ANS) resulting from  lung receptor 

reflexes and/or pulmonary inflammation; (ii) cardiac dysfunction following heart tissue 

responses to inadequate blood supply (ischemia) and alterations of ion channels in heart cells 

(cardiomyocytes); and (iii) inflammatory responses (systemic and pulmonary) that lead to 

vascular changes including pro-coagulant alterations of blood, endothelial malfunction, and 

structural deterioration of the endothelium. (Schulz et al., 2005;  Zareba, 2001). Although the 

scientific community lacks precise evidence for mechanisms involving the exceptional 

vulnerability of heart failure patients to PM, the pathological features of heart failure may confer 

a hypersensitivity that predisposes the myocardium to exaggerated responses to PM inhalation. 
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Pathophysiologic Relevance of the Autonomic Nervous System 

 As the primary mediator of cardiovascular function, the autonomic nervous system is 

divided into the parasympathetic and sympathetic branches.  These branches have generally 

opposing influences and are coordinated by the cardiovascular control center within the medulla 

according to external and internal stimuli.  The parasympathetic branch governs basal control of 

cardiovascular physiology (“rest and digest” homeostatic mechanisms), whereas the sympathetic 

branch enables increased cardiac output to support muscle movement, alertness, and quick 

physical action (“fight or flight” responses). 

Autonomic control of heart function is frequently assessed by measuring heart rate 

variability (HRV)—the variation in time between successive heart beats.  Significant declines or 

increases in HRV parameters may indicate autonomic dysfunction.  Decreased HRV has been 

associated with a risk of cardiovascular events such as myocardial infarct (MI), cardiac 

arrhythmias, and sudden cardiac death, as well as progression of heart failure and atherosclerosis 

(Ponikowski et al., 1996;  Singh et al., 2003).  PM exposure has been associated with significant 

decreases in HRV parameters among the elderly that intensify with preexisting arrhythmia, 

coronary heart disease, and hypertension (Devlin et al., 2003;  Liao et al., 1999); however, air 

pollution’s effects on autonomic function can vary with specific cardiopulmonary diseases.  

Wheeler et al. (2006) observed that increases in ambient PM2.5 significantly increased HRV 

parameters in subjects with COPD but decreased HRV parameters in individuals with prior MI. 

 

Cardiovascular Susceptibility to Air Pollutant Exposure 

Among those with cardiovascular disease, heart failure patients are particularly 

susceptible to the effects of PM.  Elevated fine ambient PM levels have been associated more 
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strongly with heart failure hospitalizations than hospitalizations for other cardiopulmonary 

diseases—including cerebrovascular disease, peripheral vascular disease, ischemic heart disease, 

COPD, heart rhythm problems, and respiratory tract infection (Dominici et al., 2006).  Limited 

yet compelling evidence suggests that chronic particulate exposure promotes the development of 

heart failure.  Among heart attack survivors, a 10 µg/m3 increase in annual PM10 levels 

corresponded with a 40% increased incidence of development of heart failure over three years 

(Zanobetti & Schwartz, 2007). Lastly, epidemiological studies have linked acute particulate 

exposure with acute exacerbation of heart failure.  Schwartz and Morris (1995) observed that a 

32 µg/m3 increase in daily PM10 was followed by a 3.2% increase in daily heart failure hospital 

admissions among people over 64 years old.   

 

Potential Biochemical Links between Heart Failure and Air Pollutant Toxicity   

The striking similarity in biochemical effects between heart failure and air pollutant 

exposure add further plausibility to heart failure conferring particular susceptibility to air 

pollutants. Heart failure has been associated with elevations in circulating inflammatory markers 

(such as fibrinogen and C-reactive protein), endothelin 1 (ET-1), and the pro-inflammatory 

cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) (Seta et al., 1996). 

Similarly, short- and long-term air pollutant exposures have been shown to increase these 

markers (Brook et al., 2003;  Calderon-Garciduenas et al., 2007;  Lund et al., 2009;  Peretz, et 

al., 2008b;  Ruckerl et al., 2007;  van Eeden et al., 2001).  Researchers demonstrated a strong 

association between exposure to PM2.5 and ET-1, as well as pulmonary arterial pressure, in 

children in Mexico City (Calderon-Garciduenas, et al., 2007).  Likewise, others detected an 

association between PM exposure and circulating IL-6 and fibrinogen in survivors of MI 
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(Ruckerl, et al., 2007). Heart failure and air pollutant exposure also both appear to increase 

natriuretic peptides, which are released upon myocardial stretch.  Atrial and B-type natriuretic 

peptides (ANP and BNP) correlate closely with severity of cardiac dysfunction and heart failure 

(Clerico et al., 2006;  de Denus et al., 2004), and have been demonstrated to increase upon short-

term PM inhalation exposure (Tankersley et al., 2008). 

ET-1, TNF-α, IL-6, ANP, and BNP bear several effects on cardiovascular physiology.  

ET-1 is a powerful vasoconstrictor that temporarily increases the contractile force of 

cardiomyocytes and expedites myocyte protein synthesis (Seta, et al., 1996). TNF-α is a 

vasodepressor (decreases blood pressure) that promotes pulmonary edema and left ventricular 

dysfunction at high levels, is closely associated with myocyte hypertrophy, and is believed to 

trigger cardiomyocyte apoptosis in conjunction with ANP  (Francis, 2001;  Kang, 2006).  TNF-α 

may also induce IL-6, which is another vasodepressor that promotes myocardial dysfunction as 

well as myocyte atrophy (Seta, et al., 1996).  Meanwhile, ANP and BNP compensate for 

myocardial stretch by decreasing blood volume and blood pressure through induction of 

natriuresis (the excretion of sodium in the urine by the kidneys) and peripheral vasodilation, 

thereby reducing the symptoms and progression of heart failure (Stoupakis & Klapholz, 2003). 

Heart failure and air pollutant exposure have both been shown to promote oxidative stress 

through formation of reactive oxygen species (ROS) and sympathetic activation—each of which 

can compromise cardiac health.  In addition to sympathetic excitation involving marked 

increases in circulating catecholamines (epinephrine [EP], norepinephrine [NE], and dopamine) 

heart failure is typically accompanied by increased production of ROS (especially superoxide 

[O2•-] and hydroxyl radical [OH•]) leading to lipid-peroxidation (Dhalla et al., 2000; Diwan & 

Dorn, 2006;  Peng et al., 2003). Catecholamines themselves can promote oxidative stress, as they 
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auto-oxidize to generate highly reactive OH•, O2•-, aminochromes, and o-semiquinones, thereby 

promoting lipid peroxidation and cellular necrosis (Dhalla, et al., 2000;  Remiao et al., 2001;  

Remiao et al., 2002;  Singal, 1983;  Singal et al., 1982). An extensive body of research has 

demonstrated that PM exposure also increases ROS and oxidative stress (Brook, et al., 2010), 

while there is suggestive (yet inconclusive) evidence for autonomic effects of air pollutant 

exposure (Brook, et al., 2010;  Mills et al., 2011a). Only a limited few studies have demonstrated 

air pollutant effects on catecholamines. For instance, Orgacka et al. (1983) observed elevated 

urine NE among Polish children exposed to moderately high levels of “falling dust”; meanwhile, 

the highest exposures corresponded with decreases in NE, EP, and dopamine, potentially 

stemming from an inverted U-shaped PM dose-response or from differences in air pollutant 

components between groups.  Another group noted strong associations between 

sympathoexcitation and oxidative stress after PM exposure in rats (Rhoden et al., 2005), 

revealing by pharmacologic inhibition that PM-induced autonomic stimulation promotes 

oxidative stress.  Others have demonstrated that exposure to concentrated ambient particulates 

(CAPs) increases NE within the paraventricular nucleus (PVN) of the murine hypothalamus 

(Sirivelu et al., 2006). The PVN has subpopulations of neurons that relate directly to 

neuroendocrine and autonomic effector mechanisms, making it important in the regulation of 

visceral responses within both the central and peripheral nervous systems (Swanson & 

Sawchenko, 1980).  Interestingly, the PVN not only has increased NE during heart failure, but 

also activates multiple sympathetic nerves and increases serum NE when it is stimulated (Patel, 

2000).  Sympathetic activation from elevations in NE can lead to arrhythmia, MI, and sudden 

cardiac death, while also exacerbating heart failure (Patel, 2000). Ultimately, the biochemical 
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influences air pollutant exposure may lead to pronounced autonomic and cardiac dysfunction in 

those predisposed to heart failure. 

In part, disruption of vascular homeostasis (involving neurohormonal responses and 

altered NO homeostasis) mediates heart failure progression and underlies air pollutant toxicity. 

Patel and colleagues (2001) observed significant depressions in neuronal nitric oxide synthase 

(nNOS) within the PVN of rats with experimentally induced heart failure.  Others have noted 

decreased NO production or depressed NOS activity in multiple vascular tissues during heart 

failure (Schultz & Sun, 2000). Similarly, multiple studies have demonstrated that air pollutant 

exposure can disrupt NO homeostasis through uncoupling of NOS (Campen, 2009;  Cherng et 

al., 2011;  Knuckles et al., 2008;  Tankersley et al., 2008), and also the conversion of inhaled 

nitrogen oxides into bio-active nitric oxide (Knuckles et al., 2011).  With diesel exhaust 

exposure, such effects have been shown to promote venoconstriction (Knuckles, et al., 2008).  

Since NO is a major mediator of vasodilation, disrupted NO synthesis has major implications for 

vascular function.  Additionally, altered NO homeostasis can effect autonomic function, as NO 

has been demonstrated to inhibit sympathetic influence over the heart by inhibiting cardiac NE 

release (Schwarz et al., 1995) and promoting catecholamine oxidation (Klatt et al., 2000).  

Accordingly, decreases in NO correspond with increased sympathetic stimulation in heart failure 

(Patel, et al., 2001).  This impairment in NO homeostasis, as well as other neurohormonal 

effects,  causes vasoconstriction in heart failure patients (Ferro & Webb, 1996).  Likewise, PM 

exposure elicits vasoconstriction (Brook et al., 2002), a response likely due to NO depletion (via 

superoxide generation)  (O'Neill et al., 2005;  Rajagopalan et al., 2005) and direct nerve 

stimulation by neurotransmitters. Therefore, air pollutant exposure and heart failure may 

concomitantly promote lipid peroxidation, sympathoexcitation, and vasoconstriction by depleting 
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NO, promoting catecholamine release, and generating ROS.  Ultimately, there is substantial 

evidence that air pollutant exposure may bear an additive effect on multiple pathologic traits of 

heart failure.  Heart failure may thus confer heightened sensitivity to the physiologic effects of 

air pollutant exposure. 

 

Incorporation of Animal Models of Cardiac Disease into Air Pollution Studies 

 Very few animal studies support the epidemiological findings that people with 

preexisting heart failure are exceptionally sensitive to the adverse effects of PM.  Research 

incorporating animal models of disease may further elucidate the extent to which inflammation, 

autonomic alterations, and/or cardiomyocyte degradation contribute to PM-induced cardiac 

dysfunction.  Results of previous animal disease model studies have mostly complemented 

epidemiological observations, but have failed to elicit responses at comparable PM 

concentrations.  Kodavanti et al. observed histological evidence of myocardial injury—including 

chronic-active inflammation, necrosis, and fibrosis—in the hearts of Wistar Kyoto (WKY) rats 

following long term inhalation of particles < 2.5µm diameter (10 mg/m3, 6 hours/day, 1 

day/week, for 16 weeks) (Kodavanti et al., 2003), indicating that PM could exacerbate heart 

failure by directly damaging heart tissue.  Wellenius and colleagues induced MI in Sprague-

Dawley rats and observed that inhalation of residual oil fly ash (ROFA; < 2.5µm, 3 mg/m3 for 1 

hour) 15 hours later increased arrhythmia and decreased HRV during exposure (Wellenius et al., 

2002).  Subsequently, the investigators found that a similar regimen using concentrated ambient 

particulates (CAPs; < 2.5µm, 350µg/m3 for 1 hour) instead of ROFA also increased arrhythmia in 

MI rats during exposure (Wellenius et al., 2004).  Very few studies have reported on the effects 

of PM exposure in animals with heart failure.  Gordon and coworkers saw no adverse cardiac or 
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pulmonary effects in a hamster model of genetic cardiomyopathy exposed to CAPs; however, at 

no point in the publication did the authors provide evidence of preexisting cardiac insufficiency 

in the test animals (Gordon et al., 2000).  Muggenburg et al. exposed 7 old dogs with various 

cardiac abnormalities to aerosols of lone transition metal oxides or sulfates by oral inhalation 

(manganese, nickel, iron, vanadium, and copper oxides or vanadyl and nickel sulfates; 0.7-

2.9µm, 0.05-0.1 mg/m3, 3 hours/day for 3 days) (Muggenburg et al., 2003).  Two of these dogs 

had pre-existing heart failure with depressed baseline HRV.  HRV decreased in one of the heart 

failure dogs following VSO4 exposure.  In contrast, the other dog with heart failure responded to 

separate MnO2 and NiSO4 exposures with increased HRV and did not show a response to VSO4. 

Anselme et al. exposed rats with surgically induced post-myocardial infarction heart failure 

to diesel exhaust (DE) containing a mixture of 500 µg/m3 ultra-fine PM (0.085 µm diameter), 

hydrocarbons, nitrogen dioxide, and carbon monoxide (Anselme et al., 2007).  Exposure 

immediately decreased HRV in normal and heart failure rats, but increased arrhythmias 

(ventricular premature beats) in heart failure rats only.  In this instance, exposure to filtered DE 

(with PM removed by filtration) may have better elucidated PM’s role in the observed adverse 

effects.  In a related study, Morin observed that the removal of PM from DE by filtration did not 

alter the toxic profile of lung cultures exposed to diesel emissions (Morin, 2006).  Likewise, 

Campen and colleagues (2005) observed similar effects of whole- and filtered DE on ECG 

measures of ventricular repolarization and heart rate in a mouse model of atherosclerosis.  

Regardless of filtration, the findings of Anselme (2007) and Campen (2005) indicate that the 

cardiophysiologic effects of air pollutants are more readily observed in rodent models of 

cardiovascular disease.  
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The SHHF rat: A Model of Cardiovascular Susceptibility and Age-dependent Heart Failure

 The SHHF/Mcc-facp strain originates from the seventh back-cross of the normal 

Spontaneously Hypertensive rat (SHR) with “Koletsky obese” rats (inbred from the hypertensive 

offspring of a Sprague Dawley/SHR cross) (Koletsky, 1975;  McCune et al., 1990).  SHHF rats 

possess characteristics similar to the SHR, except 100% eventually acquire dilated 

cardiomyopathy and heart failure preceded by Type II diabetes mellitus and consequent diabetic 

nephropathy accentuated in obese and male rats (McCune et al., 1990;  Muders & Elsner, 2000).  

The SHHF’s additional pathology is attributed to a nonsense mutation, fa, which encodes a 

premature stop codon in the leptin receptor (Muders & Elsner, 2000;  Roncalli et al., 2007).  

“Lean” and “obese” SHHF rats differ in disease severity and progression primarily by their 

responsiveness to leptin—a hormone released upon eating that inhibits appetite, provokes a sense 

of satiation, stimulates the sympathetic nervous system, and increases energy expenditure in a 

receptor-dependent manner (Mark et al., 2003).  The autosomal recessive corpulence trait (cp) 

manifests as obesity in rats homozygous for the fa mutation (facp / facp), while homozygous wild-

type (+ / +) or heterozygous (+ / facp) SHHFs are lean (Jackson et al., 2001;  Radin et al., 2003;  

Roncalli, et al., 2007).  Among lean males, heterozygotes develop congestive heart failure and 

die sooner than the homozygous wild-types (McCune et al., 1995;  Radin, et al., 2003).  

Heterozygosity confers mild hyperleptinemia and insulin resistance, with marked effects in 

homozygous mutant (facp / facp) rats (Emter et al., 2005;  Radin, et al., 2003).  Notably, leptin 

administration has been shown to induce eccentric dilatation of the left ventricle(Abe et al., 

2007), while leptin receptor polymorphisms and circulating leptin associate with human heart 

failure (Bienertova-Vasku et al., 2009).  In contrast to 10-12 month old SHRs with concentric 

hypertrophy, age-matched lean male SHHF rats develop eccentric hypertrophy and lack 
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ventricular wall thickening (Haas et al., 1995).  Although leptin stimulates sympathetic nerve 

activity and may increase arterial pressure, leptin-induced sympathetic excitation is absent in the 

obese phenotype of another rat strain (Zucker) homozygous for the same mutated leptin receptor 

gene (Mark, et al., 2003). Thus, heart failure in the SHHF is not entirely a result of hypertension-

induced increases in afterload and may result partly from preload-driven volume overload.    Un-

anesthetized, unrestrained lean male SHHF rats have hypertension exceeding the SHR (24-hour 

MAP: 161 mmHg at 10 weeks and 145 mmHg at 15 weeks) (Carll, 2010;  Carll et al., 2010), 

while several studies suggest that un-anesthetized, un-restrained obese male SHHFs have less 

severe hypertension (MAP: 119 mmHg at 18-26 weeks, 133 mmHg at 40 weeks, and 127 mmHg 

at 54 weeks) (Poornima et al., 2008;  Schlenker et al., 2004).  Some studies have reported higher 

systolic pressure in the obese relative to the lean; however, pressure measurements in these 

studies use anesthesia or restraint (e.g. tail-cuff), which may differentially affect the two 

phenotypes (McCune, et al., 1995;  Radin, et al., 2003;  Roncalli, et al., 2007). 

  SHHFs express LV hypertrophy at 3 months regardless of gender or obesity.  

Decompensated heart failure with gross symptoms occurs at 10-13 months in obese 

males(McCune, et al., 1995;  Peterson et al., 2001;  Schlenker, et al., 2004), 15 months in obese 

females(Hohl et al., 1993), 18 months in lean males(Anderson et al., 1999;  Heyen et al., 2002;  

Janssen et al., 2003;  Reffelmann & Kloner, 2003;  Tamura et al., 1999), and 24 months in lean 

females.(Gerdes et al., 1996;  McCune, et al., 1995;  Onodera et al., 1998;  Tamura, et al., 1999)  

The overt signs of decompensated heart failure found in the SHHF often include subcutaneous 

edema, tachypnea and shallow rapid breathing, cold tails, cyanosis, lethargy, piloerection, 

pulmonary edema, pleural effusion, ascites, cardiomegaly, left and right atrial dilatation, and 

hepatomegaly.(McCune, et al., 1995) Death typically occurs at 18 months in obese females(Park 
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et al., 1997) and 19 months in lean males(Emter, et al., 2005;  Heyen, et al., 2002) as heart 

failure severity increases with decompensation.  Although heart failure onset is more rapid in 

obese SHHFs, lean males compare well to the hypertrophic qualities of obese SHHF’s and also 

compare closely to human heart failure pathogenesis.(Roncalli, et al., 2007)  In 18-20-month old 

lean male SHHFs, a reduction in αMHC and β-adrenergic receptor (βAR) density as well as 

increases in ventilatory rate (>200 breaths/min), βMHC, circulating TNF-α, IL-6, natriuretic 

peptides, and leptin suggests a profound comparability between heart failure pathogenesis in 

SHHF rats and humans.(Anderson, et al., 1999;  Emter, et al., 2005;  Ferrara et al., 1996;  Heyen, 

et al., 2002)  Furthermore, exceptional homology has been demonstrated between lean and obese 

male SHHFs in increases in neurohormonal, apoptotic, fibrotic, inflammatory, metabolic, 

hypertrophic, and structural gene expression at 10 months relative to 4 months of age.(Roncalli, 

et al., 2007)  Thus, the pathogenesis of heart failure in lean and obese males is strikingly similar 

with exception to rate of progression. 

  Among SHHFs, the lean male has been the most thoroughly studied for cardiac 

dysfunction.  Yet, timing of systolic and diastolic dysfunction has been inconsistent between 

several of these studies (Anderson, et al., 1999;  Carll et al., 2011b;  Heyen, et al., 2002;  

McCune, et al., 1995).  The variability in observations may stem from different anesthetics used 

during physiologic measurements; however, similar variability has not been observed in studies 

using other models and different anesthetics. Female SHHFs differ from males in timing to 

progression and gross signs of heart failure. A few studies have noted the absence of several 

common heart failure traits in 24-month old lean female SHHFs (Onodera, et al., 1998;  Tamura, 

et al., 1999) despite marked declines in LV systolic and diastolic performance and significant 
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cardiomegaly (Gerdes, et al., 1996;  Tamura, et al., 1999). 

 

Project Summary 

The brain regulates cardiovascular function through the opposing influences of the 

sympathetic (“fight or flight”) and parasympathetic (“rest and digest”) branches of the autonomic 

nervous system. Epidemiological data indicate that a defective co-ordination of these two 

branches, known as autonomic imbalance, is a mechanism mediating the adverse cardiac effects 

of air pollution.  In the presented research, rats with preexisting cardiovascular disease were used 

to test the hypothesis that DE inhalation causes cardiac dysfunction through imbalance of the 

autonomic nervous system.  To this end, heart failure-prone rats were exposed one time for 4 

hours to DE (500µg/m3) and examined for changes in cardiovascular physiology through 

multiple endpoints: heart rate variability, electrocardiogram, blood pressure, arrhythmia, and left 

ventricular function and dimension. Most of the studies performed herein involved young adult 

SHHF rats (2-2.5 months old).  To initially characterize the effects of DE on rats with even 

greater cardiovascular susceptibility, aged SHHF rats (16 months old, pre- heart failure) were 

also used. Physiologic stress tests (treadmill challenge or infusion of a sympathetic agonist) were 

also applied to unmask latent effects of DE on autonomic balance and cardiovascular function in 

the young adult SHHF.  Additionally, sympathetic and parasympathetic inhibitions were 

performed in young adult SHHF rats either pharmacologically (atenolol or atropine), or 

surgically (vagotomy), to determine the contribution of each autonomic branch to DE-induced 

cardiovascular dysfunction.  

Human studies have repeatedly demonstrated associations between exposure to fossil fuel 

combustion-derived air pollutants and adverse cardiac events—especially in individuals with 
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preexisting heart disease. Although still unclear, multiple mechanisms of toxicity have been 

postulated including direct effects of components on the myocardium, systemic/vascular 

inflammation, and autonomic imbalance.  Preliminary work on rats in our laboratory has 

demonstrated that air pollutant exposure triggers irritant responses that are characterized by 

immediate decreases in heart rate and/or blood pressure suggesting a role for the autonomic 

nervous system. The goal of this research is to determine if autonomic imbalance from acute 

inhalation of diesel engine exhaust (DE—a major source of fine urban particulate matter, PM2.5) 

provokes cardiac dysfunction in rats with underlying cardiovascular pathology. The lean male 

Spontaneously Hypertensive Heart Failure (SHHF) rat progresses from cardiac hypertrophy at 2 

months to overt decompensated heart failure at approximately 18 months.  Young adult (2-3 

months) and aged adult (16 months) SHHFs were used as models of early and late compensated 

hypertrophy (before any sign of overt decompensated heart failure), respectively. In the 

following studies, lean male SHHF rats received a single inhalation exposure to either DE or 

filtered air. Radiotelemetry was used to analyze for effects on the electrocardiogram (ECG), 

heart rate variability (HRV), heart rate, core body temperature, and—in some instances—blood 

pressure.  Left ventricular catheterization and echocardiography were also performed in some 

instances to generate measures of cardiac function and dimensions. 

The studies conducted toward Specific Aim 1 sought to characterize the cardiovascular 

effects of DE in lean SHHFs through the use of telemetry and echocardiography. The 

experiments performed for Specific Aim 2 sought to unveil latent effects of DE exposure on 

autonomic balance through the use of physiologic stress tests, including treadmill exercise and 

administration of a sympathomimetic drug (dobutamine).  For Specific Aim 3, the role of each 
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branch of the autonomic nervous system in DE-induced cardiac dysfunction was investigated 

through pharmacologic or surgical inhibition and subsequent stress test. 

DE is a major source of common air pollutants to which the majority of humans are 

exposed on a daily basis. Such acute exposures increase the short-term likelihood of 

hospitalization and death due to cardiac complications. The link between acute air pollutant 

exposure and adverse cardiac events remains poorly understood, but it may be driven by 

alterations in the autonomic nervous system. Such an elucidation of mechanism may enhance 

biological plausibility of a causal relationship, thereby reducing uncertainty in standard setting 

and in the linkage between exposures and health outcomes. 

 

Specific Aims 

Hypothesis:  Diesel exhaust exposure promotes cardiac dysfunction in heart failure-prone rats 

through autonomic imbalance 

 

Specific Aim 1: Characterize the cardiophysiologic effects of diesel exhaust on a heart failure-

prone rat using ECG & blood pressure telemetry to unmask potential autonomic effects. 

 

Specific Aim 2: Determine if diesel exhaust exposure modifies cardiac responses to physiologic 

stress tests, including treadmill exercise and administration of a sympathomimetic drug 

(dobutamine). 
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Specific Aim 3: Elucidate the role of the autonomic nervous system in DE-induced cardiac effects 

by inhibiting the parasympathetic (atropine or vagotomy) or sympathetic (atenolol) 

branches and incorporating stress tests. 

 

Aim 1: The goal of Aim 1 was to determine the effects of a single acute inhalation of DE 

(4 hours) on cardiac function in lean SHHF rats. Prior to these studies, the electrophysiologic, 

hemodynamic, and pulmonary effects of acute DE inhalation had not been examined in the heart-

failure prone SHHF rat, and very few studies had examined such effects in animals genetically 

predisposed to heart failure. The studies addressing Aim 1 were performed to provide descriptive 

evidence of air pollutant-induced autonomic imbalance both early (2-2.5 months of age) and late 

(16 months of age) in the SHHF’s progression through compensated hypertrophy in order to 

guide subsequent mechanistic studies. 

 

Aim 2: In the studies toward Aim 1, we found that the aged (16 month-old) SHHF rat 

provided a useful model with which to demonstrate autonomic effects of DE exposure, while the 

resting young adult SHHF rat offered little insight into the role of autonomic imbalance on DE-

induced cardiac dysfunction.  Yet, since the aged SHHF rat was difficult to reliably obtain, a 

pilot study was performed in young adult SHHFs intratracheally instilled with diesel exhaust 

particles and challenged by treadmill exercise in order to reveal effects of DE exposure 

unapparent in resting rats.  The indications of autonomic imbalance in DE particle-exposed rats 

(Appendix, Figures 2 & 3) justified the studies performed toward Specific Aim 2, which were 

conducted on the young adult SHHF rat with the goal of providing reproducible methods for 

demonstrating cardiophysiologic and autonomic effects of DE.  As such, physiologic stress 
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tests—including treadmill exercise and administration of a sympathomimetic drug 

(dobutamine)—were conducted to determine if DE exposure modifies cardiac responses 

consistent with autonomic dysfunction.  Additionally, left ventricular pressure was measured in 

the young SHHF rat before and after dobutamine infusion to determine if more direct assays of 

cardiac function could demonstrate effects of DE unapparent in our previous characterization 

studies.  

 

Aim 3: The studies toward Aims 1 and 2 demonstrated effects of DE that implicated 

dysregulation of cardiac function through the autonomic nervous system.  The goal of Aim 3 was 

to determine more conclusively if autonomic imbalance mediates pollutant-induced 

cardiophysiologic effects. Young adult SHHFs were injected with a parasympathetic inhibitor or 

a sympathetic inhibitor shortly before exposure to DE and subjected to treadmill exercise 

challenge after DE exposure.  Additionally, a subgroup of DE- or air-exposed rats received left 

ventricular pressure measurements and dobutamine infusion before and after surgical ablation of 

the vagus nerve—the primary route of parasympathetic regulation of the heart.  

 

  



 

 

 

 
 

CHAPTER 2 
 

WHOLE AND PARTICLE-FREE DIESEL EXHAUSTS DIFFERENTIALLY AFFECT 
CARDIAC ELECTROPHYSIOLOGY, BLOOD PRESSURE, AND AUTONOMIC BALANCE 

IN HEART FAILURE-PRONE RATS 
 
 
 

Overview 
 

Epidemiologic studies strongly link short-term exposures to vehicular traffic and 

particulate matter (PM) air pollution with adverse cardiovascular events, especially in those with 

preexisting cardiovascular disease. Diesel engine exhaust (DE) is a key contributor to urban 

ambient PM and gaseous pollutants. To determine the role of gaseous and particulate 

components in DE cardiotoxicity, we examined the effects of one 4-hour inhalation of whole DE 

(wDE; target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on cardiovascular 

physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure-prone 

rats. Arterial blood pressure (BP), electrocardiography (ECG), and heart rate variability (HRV, 

an index of autonomic balance) were monitored. Both fDE and wDE decreased BP and 

prolonged PR interval during exposure, with more effects from fDE, which additionally 

increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval 

immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly 

thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and 

decreased HRV root mean square of successive differences (RMSSD) immediately post-

exposure. fDE and wDE decreased heart rate during the 4th hour of post-exposure. Thus, DE 

gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and 
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subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; 

conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a 

transient sympathetic excitation. Our findings suggest that whole and particle-free DE 

differentially alter cardiovascular and autonomic physiology and may potentially increase risk 

through divergent pathways. 

 

Introduction 

Exposure to vehicular traffic air pollution poses a significant threat to public health, 

especially in individuals with pre-existing cardiovascular disease (Brook, 2008). Diesel engine 

exhaust (DE) is a major source of urban fine and ultrafine particulate matter, as well as volatile 

organics, carbonyls, and gases such as sulfur dioxide (SO2), nitrogen oxides (NO and NO2), and 

carbon monoxide (Krivoshto, et al., 2008;  Peretz, et al., 2008a). Moreover, DE is an important 

contributor to vehicular emissions attendant to biochemical and physiological responses and 

adverse clinical outcomes near roadways. For instance, in a study spanning15 cities within the 

United Kingdom, Bhaskaran et al. (2011) demonstrated an association between exposure to NO2 

and onset of myocardial infarction 1-6 hours later. Further, ischemic heart disease 

hospitalizations in eight European cities have been attributed to DE exposure (Le Tertre, et al., 

2002). In addition, Mills et al. (2007) found that DE exposure exacerbated exercise-induced 

electrocardiographic ST depression in human subjects with known coronary artery disease. 

Several mechanisms underlying the acute cardiovascular toxicity of DE exposure have been 

implicated, including electrophysiological dysfunction, autonomic imbalance, vascular 

dysfunction, coagulation, and low-level systemic inflammation (Anselme, et al., 2007;  Brook, 

2008;  Campen et al., 2005;  Lucking, et al., 2011;  Mills, et al., 2007;  Peretz, et al., 2008a).  
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Although many components of DE are suspected to play a role in DE-induced 

cardiovascular (CV) dysfunction, recent investigations using relatively healthy individuals have 

implicated particles as the predominant mediators (Lucking, et al., 2011;  Mills, et al., 2011b). 

Studies have demonstrated pathophysiologic effects on the CV system following acute exposure 

to either particle-containing whole diesel exhaust (wDE) (Anselme, et al., 2007;  Miller et al., 

2009;  Mills, et al., 2007) or DE particles alone (Huang, et al., 2010). Likewise, removal of 

particles by modern DE filters can prevent DE-induced thrombosis and vasoconstriction in 

healthy humans (Lucking, et al., 2011;  Mills, et al., 2011b). Other studies suggest that the 

gaseous components of DE contribute to the pathophysiologic effects documented in 

epidemiologic studies. Several reports have shown that particle-free DE exposure promotes acute 

physiologic alterations that can trigger cardiac dysfunction and injury—including increased 

blood pressure, vascular plaque formation, cardiac arrhythmia, and enhanced responsiveness to a 

vasoconstrictor (Campen, et al., 2005;  Mills, et al., 2011b). However, neither the dominant 

constituents nor the primary mechanisms behind DE-induced cardiac toxicity are resolved.  

Because the correlations between air pollution and adverse cardiac events are strongest 

among populations with preexisting CV disease, it is important to model this in animal toxicity 

studies. We have previously demonstrated that exposures to residual oil PM (Carll, et al., 2010;  

Farraj et al., 2009;  Farraj et al., 2011)  the gaseous irritant acrolein, (Hazari et al., 2009), or 

diesel exhaust (Lamb et al., 2012) cause a number of alterations in cardiac physiology including 

increased parasympathetic tone, ST depression, and cardiac arrhythmia (e.g.,  AV block) in rat 

models of hypertension or heart failure. Because of the continued uncertainty regarding the 

precise role of specific diesel exhaust constituents in the elicitation of cardiovascular effects, we 

investigated previously undescribed electrocardiographic and blood pressure effects of acute  
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exposure to particle-free (gases alone; fDE) and whole DE (particles plus gases; wDE) in heart 

failure-prone rats. We hypothesized that wDE exposure would provoke greater changes in CV 

physiology than fDE exposure in Spontaneously Hypertensive Heart Failure (SHHF) rats. 

Electrocardiogram and blood pressure radiotelemetry were used to monitor autonomic balance 

(measured by heart rate variability), cardiac arrhythmia, and indicators of altered myocardial 

conduction, before, during, and after a single whole-body inhalation exposure to either wDE or 

fDE. Cardiopulmonary injury, inflammation, and oxidative stress were also assessed. 

 

Materials and Methods 

Animals and radiotelemetry implantation. Lean male spontaneously hypertensive heart 

failure (SHHF) rats (MccCrl-Leprcp; n = 20, 9 weeks old; Charles River Laboratories, Kingston, 

NY) were implanted with radiotelemeters (model TL11M2-C50-PXT; Data Sciences 

International, St. Paul, MN) capable of transmitting ECG, heart rate (HR), aortic blood pressure 

(BP), and core body temperature wirelessly to a computer receiver. Telemeter implantation was 

performed by surgeons at Charles River Laboratory and adhered to preoperative, anesthetic, and 

surgical procedures described previously (Carll, et al., 2010). Lean male SHHFs acquire cardiac 

hypertrophy by 3 months of age and transition into dilated cardiomyopathy and heart failure 

(HF) at 18 months of age as a consequence of hypertension and hyperleptinemia (Carll et al., 

2011c). Rats were shipped after a 10-day recovery period to our Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC)-approved animal facility, 

housed individually in 42 × 21 × 20-cm Plexiglas cages with pine-shave bedding in a room 

(22°C ±1°C, 50% ± 5% relative humidity, 12-h light:dark cycle 0600:1800 h), and provided 

standard Purina rat chow (5001; Brentwood, MO) and water ad libitum. All studies conformed to 
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the guidelines of the US Environmental Protection Agency (EPA) Institutional Animal Care and 

Use Committee (IACUC). Three days later, rats were transferred to the EPA High Bay facility’s 

satellite animal holding room and maintained under the same conditions as previously stated but 

in smaller, 33 × 18 × 19-cm Plexiglas cages. Rats were weighed and assigned blindly to one of 

three exposure groups (clean filtered air, “Air”; whole diesel exhaust, “wDE”; and filtered diesel 

exhaust, “fDE”) while maintaining equivalent mean body weights per group. 

  Diesel exhaust exposure and generation. Rats were acclimated to exposure conditions in 

20 × 12.5 × 17-cm metal wire cages within the clean filtered air exposure chamber for 1 hour at 

two days preceding exposure. On the exposure day, rats were allowed to acclimate to the 

chambers for 20 min and then baseline data was recorded for the next 40 min. Rats were then 

exposed to whole diesel exhaust (wDE, target of 500 µg PM2.5/m
3), filtered diesel exhaust (fDE, 

target of 0 µg PM2.5 /m
3), or clean filtered air (Air) for 4 hours in whole body exposure 

chambers. Thereafter, DE exposures were stopped for a 1-hour recovery period in which clean 

filtered air was circulated through exposure chambers. Rats were returned to home cages 

immediately after recovery period. DE exposures were at ultrafine PM concentrations 

comparable to those found in traffic tunnels and (at brief moments) on roadways (Anselme, et 

al., 2007;  Zhu, et al., 2007) and NO2 and SO2 concentrations comparable to those observed in 

traffic tunnels or in cities within the U.S. and Europe (Danzon, 2000;  Svartengren et al., 2000). 

 DE was generated using a 4.8 kW (6.4 hp) direct injection single-cylinder 0.320 L 

displacement Yanmar L70 V diesel generator operated at a constant 3600 rpm on low sulfur 

diesel fuel (32ppm) as previously described  (Lamb, et al., 2012). Resistance heating elements 

provided a constant 3 kW load. Engine lubrication oil (Shell Rotella, 15W-40) was changed 

before each set of exposures. From the engine, the exhaust was mixed with clean air previously 
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passed through high-efficiency particulate air (HEPA) filters. Air dilution of wDE was adjusted 

periodically to maintain target PM2.5 mass concentration. The diluted DE was delivered to an 

isolated animal exposure room and was either delivered un-filtered to a Hazelton 1000 (984 L) 

exposure chamber (wDE) or diverted through a HEPA canister filter and delivered to a similar 

exposure chamber (fDE). The HEPA canister filter featured a 99.97% removal efficiency 

standard to 0.3 µm. Although the fDE chamber was relatively absent of PM, its concentrations of 

diluted combustion gases remained comparable to the unfiltered chamber (Table 2.1). Control 

animals were placed in a third chamber supplied with the same HEPA-filtered room air as that 

used to dilute DE. The chambers were operated at the same flow rate (424 L/min; resulting in 

approximately 25 air exchanges per hour), temperature, and pressure. Integrated 4 h filter 

samples (14.1 L/min) were collected daily from each chamber and analyzed gravimetrically to 

determine particle concentrations. Chamber concentrations of PM, oxygen (O2), carbon 

monoxide (CO), nitrogen oxides (NO and NO2), and sulfur dioxide (SO2) were measured as 

previously described (Lamb, et al., 2012). Chamber temperatures, relative humidity, and noise 

were also monitored, and maintained within acceptable ranges. 

 Radiotelemetry data acquisition and analysis. Radiotelemetry was used to track changes 

in CV and thermoregulatory function by continuously monitoring core body temperature, blood 

pressure, ECG, and activity in awake, unrestrained rats beginning at 1 day before inhalation 

exposure and continuing through exposure until euthanasia 24 hours after exposure. Data was 

monitored by remote receivers (Model RPC-1; Data Sciences International, Inc.) positioned 

under the home cages within the animal facility, and beside cages within exposure chambers. 

Arterial blood pressures (mean, systolic, diastolic, and pulse), heart rate, and QA interval were 

derived from pressure and ECG waveforms collected at a sample rate of 1000 Hz for 2 min of 
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every 10 min and automatically analyzed by computer software (DataART 3.01; Data Sciences 

International) as previously described (Carll, et al., 2010). QA interval provides an index of 

contractility determined by a measure of the aortic pre-ejection period. Specifically, QA interval 

is the delay between onset of left ventricular depolarization and ejection, which are respectively 

indicated by the initializations of the R-wave and the following increase in aortic pressure 

(Cambridge & Whiting, 1986). Averages were calculated for blood pressures on an hourly basis 

over the 4 hours of exposure (mid-inhalation, within exposure chambers), the roughly 40-minute 

baseline and 1-hour recovery periods (within exposure chambers), the 4-hour periods in home 

cages immediately pre- and post- exposure, and a home cage period from the day preceding 

exposure that was time-matched with exposure. 

  ECG waveforms were analyzed with computer software (ECGauto 2.5.1.35; EMKA 

Technologies, Falls Church, VA) that enabled visual arrhythmia identification and automated RR 

interval and HRV measures using an RR-only analysis platform. Additionally, ECG morphologic 

traits (duration, area, and amplitude of intervals and waves within each P-Q-R-S-T beat) were 

measured through this software’s ECG analysis platform. ECG landmarks (P, Q, R, S, and T 

waves) were identified through application of a library of 58 representative waveforms, which 

were collected and marked manually during a survey of each rat ECG within the present study. 

Several parameters were determined for each ECG waveform: PR interval; Q and R wave 

amplitudes; QRS duration; ST interval, amplitude, and area (negative area starting from S until 

intersection with iso-electric line); T wave amplitude and area; raw QT interval (from Q to peak 

of T); QTe interval (from onset of the Q wave to end of T wave); heart rate-corrected QT interval 

(using both Fridericia and Bazett’s corrections); interval from peak of T to end of T wave; and 

RR interval. The equation for Fridericia correction was ��� � �� � ����, whereas the 
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equation for Bazett’s correction was ��� � �� � √���. We present Fridericia-corrected QT 

interval as “QTc”. In both QT interval and QTc intervals, peak of T wave was used because it 

was more consistently detected by software than end of the T wave. 

  HRV analysis generated heart rate (HR) and time-domain measures, including mean time 

between adjacent QRS-complex peaks (RR interval), standard deviation of the RR interval 

(SDNN), square root of the mean of squared differences of adjacent RR intervals (RMSSD), 

triangular index, and percent of adjacent normal RR intervals differing by ≥15 ms (pNN15). 

pNN15 is a measure of parasympathetic tone comparable to pNN50 in humans. SDNN and 

triangular index represent overall HRV, whereas RMSSD represents parasympathetic influence 

over heart rate (Rowan et al., 2007). HRV analysis also provided frequency-domain parameters, 

including low frequency (LF: 0.200-0.750 Hz) and high frequency (HF: 0.750-2.00 Hz), and the 

ratio of these two frequency-domains (LF/HF). For frequency-domain analysis, the signal was 

analyzed with a Hanning window for segment lengths of 512 samples with 50% overlapping. LF 

is generally believed to represent a combination of sympathetic and parasympathetic tone, 

whereas HF indicates cardiac vagal (parasympathetic) tone, and LF/HF serves as an index of 

sympathovagal balance (Rowan, et al., 2007). 

  Arrhythmias were verified from time-matched blood pressure, and identified (while 

blinded to treatment group) as ventricular, supraventricular, junctional, and atrial premature 

beats, sinoatrial blocks, or AV blocks using the Lambeth Conventions (Walker et al., 1988) as a 

guideline and according to additional, more specific criteria (Carll, et al., 2010). Each AV block 

Mobitz II arrhythmia was marked by a non-conducted P-wave that lacked the following four 

features: (i) an RR interval less than twice the average of the preceding 3 RR intervals, (ii) 

progressive PR interval prolongation in the preceding three PQRST complexes, (iii) PR 
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shortening in the first subsequent PQRST complex, and (iv) PP interval shortening immediately 

prior to the dropped R wave. To facilitate statistical analysis of each arrhythmia type and allow 

the data to converge under the Poisson distribution, zero-values for each arrhythmia type within 

a sample interval were converted to 0.1. Arrhythmia frequencies were calculated over specific 

periods in home cages (pre-exposure and post-exposure, 6 hours each) as well as in exposure 

chamber (baseline, mid-exposure, recovery), normalized to adjust for time differences between 

periods and gaps in data, and presented as number of events per-hour of theoretically continuous 

ECG waveforms. 

  HRV and ECG morphologic analyses were conducted on ECG waveforms collected 

while rats resided in home cages at pre-exposure and post-exposure periods (both 2pm-8pm), 

which were time-matched to control for physiologic effects of circadian rhythm. ECG data 

collected within the exposure chamber (5 h 10 min total) was also analyzed according to the 

following periods: baseline (8:50am-9:30am), exposure (9:30am-1:30pm), and recovery 

(1:30pm-2:00pm). All 2-min ECG streams with less than 10 seconds of identifiable conduction 

cycles were excluded from calculation. For HRV analysis, thorough visual inspection was 

conducted to identify and exclude arrhythmias, artifacts, and 2-min ECG waveforms with less 

than 60 seconds of distinguishable R-waves. 

  Tissue collection and analysis. At approximately 24 hours after onset of the 4-hour 

inhalation exposure, rats were deeply anesthetized with an intraperitoneal injection of Euthasol 

(200 mg/kg Na pentobarbital and 25 mg/kg phenytoin; Virbac Animal Health, Fort Worth, TX). 

Whole blood was collected from the descending abdominal aorta in serum separator tubes and 

microcentrifuge tubes containing either buffered sodium citrate or K2EDTA (Becton, Dickinson, 

and Company, Franklin Lakes, NJ) as previously described (Carll et al., 2011a). Hearts were 
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excised, trimmed free of arterial tissue and fat, and weighed. Right tibia length was measured by 

caliper for heart weight normalization. The trachea was cannulated, and the lungs were lavaged 

with a total volume of 20 ml/kg of Ca+, Mg+, and phenol red-free Dulbecco’s phosphate-buffered 

saline (SAFC Biosciences, Lenexa, MD) that was divided into two equal aliquots and processed 

for cell differentials (Carll, et al., 2010). Lavage, serum, and plasma samples were collected, 

centrifuged, stored, and subsequently analyzed according to previously published procedures for 

the following biomarkers: lavage supernatants were analyzed for albumin, lactate 

dehydrogenase, N-acetyl-b-d-glucosaminidase, total antioxidant status, and total protein; 

supernatants from serum were analyzed for creatine kinase, C-reactive protein, total protein, and 

glutathiones peroxidase, reductase, and –S-transferase; and supernatants from plasma were 

assayed for angiotensin converting enzyme, albumin, blood urea nitrogen, creatinine, and total 

protein (Carll, et al., 2011a). Serum was also analyzed for α-hydroxybutyrate dehydrogenase, 

glucose, total cholesterol, and triglycerides (Sigma-Aldrich, St. Louis, MO) as well as alanine 

aminotransferase, aspartate aminotransferase, lactate dehydrogenase-1, myoglobin, high and low 

density lipoprotein cholesterol, and sorbitol dehydrogenase according to previous procedures 

(Carll, et al., 2010), while commercially available kits were used in analysis of serum for D-

Dimer, ferritin, and insulin (Kamiya Biomedical Company, Seattle, WA), lipoprotein (a), 

superoxide dismutase (SOD), manganese SOD, and copper-zinc SOD (Randox Life Sciences, 

Antrim, United Kingdom), and lipase (Genyzme Diagnostics, Framingham, MA). Lavage was 

also analyzed for gamma-glutamyl transferase (Fisher Diagnostics, Middletown, VA). 

  Statistics. The statistical analyses for all data in this study were performed using Prism 

version 4.03 (GraphPad Software, Inc., San Diego, CA). One-way analysis of variance 

(ANOVA) with Tukey post-hoc test was used to detect significant differences between groups in 
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biochemical endpoints and tissue weight. Repeated measures two-way ANOVA with Bonferroni 

post-hoc test was performed on (I) arrhythmia frequency data, which were collected at pre-, mid-

, and post-exposure periods (spanning approximately 6, 4, and 6 hours, respectively) and 

normalized by sampling duration; (II) HRV, ECG morphology, blood pressure, and blood 

pressure parameters during the exposure period, including exposure hours 1-4, baseline (40 min), 

and recovery periods (30 min); and (III) HRV, ECG morphology, and blood pressure to analyze 

for intra-group differences between time-matched periods (separated by exactly 24 hours) 

collected on the exposure day and on the previous day. Two-way ANOVA with Bonferroni post-

test was also used to analyze for inter-group differences in percent change in HRV and ECG 

parameters at post-exposure relative to the day before exposure. Blood pressure data from the 

day of exposure were analyzed both by treatment period and by individual hour for significant 

time-matched inter-group differences by two-way ANOVA with Bonferroni post-hoc test. P < 

0.05 was considered statistically significant. Linear regressions were performed to test for 

correlations between various physiologic endpoints. 

 
Results 

Physiological Responses during Inhalation Exposure. 

  Cardiac arrhythmia. There were no changes in the frequencies of any arrhythmia type 

during exposure when compared to other groups (during exposure) or to each group’s own pre-

exposure values (in home cages). 

  Heart rate and heart rate variability. There were no group differences in heart rate or 

heart rate variability at baseline (Table 2.2). All groups were upright and active at the beginning 

of the exposure and became recumbent and inactive during exposure to Air or DE. As would be 

expected with decreased activity, heart rate decreased from baseline at multiple hours of 
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exposure for the Air, fDE, and wDE groups (P < .05; Figure 2.1). LF/HF paralleled changes in 

heart rate, significantly declining from baseline for the Air (hours 2-3), fDE (hour 2), and wDE 

(hours 2-4) groups (P < .05). In contrast to Air or wDE, fDE significantly increased triangular 

index during hour 4 of exposure relative to baseline (P < .05). During the recovery period, while 

all rats remained in exposure chambers and were breathing clean filtered air, only the wDE-

exposed rats had a significant change in RMSSD, which decreased by 24% relative to baseline (P 

< .05). Simultaneously, LF/HF for only the DE-exposed groups significantly rebounded from 

their mid-exposure values (exceeding hours 1-4 for fDE and hours 2-4 for wDE; P < .05). 

  Hemodynamics and thermoregulation. There were no group differences in blood pressure 

at baseline (Table 2.2). At hour 2 of exposure, fDE decreased systolic BP relative to baseline 

(Figure 2.2; -8.5 mmHg, P < .05). In contrast, the Air group had increased pressure at hour 4 

relative to baseline (+9.0 mmHg in MAP, +9.5 mmHg in diastolic BP; P < .05) and the fDE-

exposed group (+12.2 mmHg in MAP, +13.2 mmHg in systolic BP, +11.7 mmHg in diastolic 

BP; P < .05). During the recovery period when all groups were provided clean filtered air within 

exposure chambers, the Air group still had significantly increased BP relative to baseline (+8.8 

mmHg in MAP, P < .05). Meanwhile, the wDE group also exceeded its own baseline diastolic 

pressure during recovery (+7.0 mmHg, P < .05). There was no such increase in the fDE-exposed 

group. There were no significant changes in pulse pressure, QA interval (an index of 

contractility), or core body temperature during exposure (P > .05). 

  ECG Morphology. There were no group differences in ECG morphology at baseline 

(Table 2.2). During hour 3 of exposure, fDE increased PR interval by 2.7 msec and decreased T-

wave amplitude by 25% relative to baseline, while wDE also prolonged PR by 2.0 msec from 

baseline (Figure 2.3; P < .05). At hour 4, fDE exposure prolonged PR interval relative to baseline 
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(+3.8 msec; P < .05) and relative to Air at the same time (+3.3 msec; P < .05). During recovery 

the fDE-exposed group had a significant increase in corrected QT interval (QTc) relative to its 

own baseline (+5.0 msec) as well as relative to Air (+6.9 msec), while it also continued to have 

significantly prolonged PR relative to baseline (+2.4 msec; all comparisons P < .05). Notably, 

among all rats, changes from baseline in PR during hour 4 and recovery correlated positively 

with the subsequent rate of post-exposure Mobitz II AV block in home cages (vs. hour 4 PR r2: 

0.41, P = 0.003; and vs. recovery PR r2: 0.22, P = 0.042). As well, the change from baseline in 

QTc during recovery significantly correlated with the change from baseline in PR during hour 4 

of exposure (r2: 0.42, P = 0.006) and with the change from baseline in T-amplitude during 

recovery (r2: 0.51, P = 0.002) and over the entire exposure period (r2: 0.35, P = .016). 

 

Physiologic Responses after Exposure (while in Home Cages) 

  Cardiac arrhythmia. Over the 6-hours following exposure while the animals were in 

home cages, the fDE group had an increased frequency of second degree Mobitz Type II AV 

block relative to (1) itself during the same time on the previous day while in home cages, (2) 

itself during the exposure period within chambers, and (3) the wDE group during the same post-

exposure period (Figure 2.4; P < .05). Notably, 77% of the fDE group’s post-exposure 

bradyarrhythmias occurred within the first 2 hours of this 6 hour period. After the first 6 hours of 

post-exposure, AV block arrhythmias were rare for all groups. 

  Heart rate and heart rate variability. Within the first hour after animals were returned to 

home cages for post-exposure monitoring, LF/HF increased in each group relative to the 

corresponding hour on the prior day (P < .05). Meanwhile heart rate also had a trend of an 

increase for all groups (P > .05; Table 2.3). At hour 4 of post-exposure, both DE-exposed groups 
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decreased in heart rate from the preceding day, but only the wDE group’s change was 

statistically significant (wDE -38 beats/min, P < .05; fDE -37 beats/min, P > .05; Table 2.3). 

There was an apparent difference in heart rate between the DE groups and the Air group at hour 

4 of the prior day (Table 2.3; P = 0.22), but the post-exposure decreases in heart rate were 

roughly 2-3 times larger than these preexisting differences. LF/HF also appeared to decrease for 

both DE groups at hour 4 post-exposure, but these changes were not statistically significant 

(fDE: -32% and wDE: -31% from prior day; P > .05). 

  Hemodynamics, ECG morphology, and thermoregulation. In the first post-exposure hour 

in home cages, the Air group had an increased MAP relative to its own time-matched values 

from the prior day (+17.4 mmHg, P < .05) while the wDE group had a trend of similarly 

increased MAP (+17.3 mmHg; P > .05), which the fDE group lacked (+8.5 mmHg; P > .05). At 

4 hours post-exposure, no group significantly differed in BP from itself on the prior day. There 

were no significant post-exposure changes in pulse pressure, QA interval (an index of 

contractility), or body temperature. There were no significant post-exposure changes in ECG 

morphology. 

  Biochemical markers of cardiopulmonary and circulatory injury, oxidative stress, and 

inflammation. HDL cholesterol increased in the fDE-exposed group by 25% (P < .05; Table 2.4). 

There were no significant effects of DE inhalation on pulmonary inflammatory cells, pulmonary 

and circulating anti-oxidants, or cardiopulmonary markers of injury. There were trends of 

decreased plasma and serum glutathione S- transferase with wDE exposure (-29% and -21% 

from Air, respectively; P > .05), increased lactate dehydrogenase-1with exposure to fDE or wDE 

(+81% and +101% from Air, respectively; P > .05), and increased serum ferritin with fDE or 

wDE exposure (+23% and +12% from Air, respectively; P > .05). 
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Discussion 

We present evidence that a single four-hour exposure to diesel exhaust (DE) in a rat 

model of hypertension and mild (pre-heart failure) cardiomyopathy differentially alters cardiac 

rhythmicity, blood pressure, and autonomic modulation of the heart based on the DE constituents 

present. DE caused a decrease in blood pressure and concomitant PR prolongation during 

exposure regardless of the presence of particles, and these effects remained with exposure to DE 

gases alone. Only the filtered DE (fDE) group had increased HRV triangular index and T-wave 

flattening during exposure, as well as post-exposure QT prolongation and increased Mobitz II 

AV block arrhythmias. Collectively, changes in PR and BP and a unique increase in HRV and 

bradyarrhythmias within the fDE group suggest that DE gases cause parasympathetic (vagal) 

dominance. This was further evidenced by a post-exposure bradycardia in both DE groups. 

Meanwhile, the whole DE group’s less overt responses during exposure and significantly fewer 

arrhythmias thereafter (relative to fDE group) suggest that these specific effects of DE gases are 

partly inhibited either by physico-chemical interactions with DE particles or by competing 

autonomic impacts of the two constituents. In further support of the latter, HRV decreased and 

diastolic BP increased immediately after wDE exposure, indicating sympathetic excitation. 

Filtered DE caused a 3-hour PR prolongation upon exposure and a unique increase in 

second degree Mobitz type II AV block arrhythmias thereafter, indicating markedly impaired 

AV conduction. In contrast, wDE caused only a 1-hour PR prolongation and did not elicit any 

arrhythmia. There was a correlation between mid-exposure PR prolongation and post-exposure 

AV block arrhythmias, indicating that PR prolongation may by several hours precede (or perhaps 

even predict) air pollutant-induced AV block arrhythmias and that DE gases may promote 

spontaneous bradyarrhythmia through impaired conduction along the AV pathway. Although the 
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capacity for DE to elicit this specific type of arrhythmia in humans is unclear, these findings 

suggest that DE exposure may increase vulnerability to spontaneous cardiac arrhythmia.  

Increased vagal tone has been shown to prolong PR, cause nitric oxide-mediated 

vasodilation (Hotta et al., 2009;  Katz, 2006), increase HRV triangular index (Kouidi et al., 

2002), provoke AV block Mobitz II arrhythmia (Castellanos et al., 1974;  Hotta, et al., 2009;  

Massie et al., 1978), decrease heart rate, and inhibit sympathetic-mediated norepinephrine 

release and vasoconstriction (Katz, 2006;  Vanhoutte & Levy, 1980). We have previously shown 

that, relative to wDE, fDE causes PR prolongation and bradycardia, a more pronounced increase 

in HRV, and greater or equal susceptibility to provocation of arrhythmia, ventricular fibrillation, 

and cardiac arrest by a pro-arrhythmic drug (Hazari et al., 2011;  Lamb, et al., 2012). As well, 

Campen and colleagues found that fDE and wDE cause equally marked bradycardia in mice 

(2005). Fittingly, others have demonstrated by way of increased HRV that DE may cause 

parasympathetic dominance (Mills, et al., 2011a;  Peretz, et al., 2008a). Meanwhile, one study 

has found that DE decreases HRV in a rat model of advanced heart failure (Anselme, et al., 

2007), while another provides evidence that ultrafine PM may mediate this effect (Chuang et al., 

2005). The present study expands the body of research suggesting that gaseous exhaust can 

mediate several of DE’s effects on cardiac rhythmicity and autonomics (Table 2.5). Additional 

inhalation studies that examine the effect of DE particles alone (currently beyond the capacity of 

our inhalation facilities) are needed to disentangle the various effects of DE constituents. 

Exposure to filtered DE altered the ECG (i.e., QTc and T-wave amplitude), indicating 

changes in the spatiotemporal pattern of ventricular repolarization. These findings are not 

unprecedented; acute exposure to particle-free DE gases has been shown to decrease T-wave 

amplitude in two separate studies involving atherosclerotic mice and hypertensive rats, but not in 
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healthy controls (Table 2.5) (Campen, et al., 2005;  Lamb, et al., 2012). In humans, air pollutant 

exposure has also been associated with prolonged QTc and/or decreased T-wave amplitude 

(Henneberger et al., 2005;  Liao et al., 2010). Ventricular repolarization may be impeded by 

parasympathetic dominance (Conrath & Opthof, 2006;  Katz, 2006;  Murakawa et al., 1992), 

inflammation (Zhang et al., 2011), and myocardial ischemia (Channer & Morris, 2002). The 

inhalation of particle-free DE or one of its primary gases (NO2) has been shown to promote 

inflammation and pro-ischemic vascular effects (Campen et al., 2010;  Channell et al., 2012). 

Others have found that non-particulate components may mediate vehicular emissions-induced 

aortic remodeling in entirety (Lund et al., 2007) or pulmonary inflammatory signaling in part 

(Elder et al., 2004). On the other hand, some have demonstrated that particle filtration inhibits 

vascular effects of DE (Lucking, et al., 2011;  Mills, et al., 2011b). These discrepancies may 

point to the divergent vascular and cardiac effects of specific constituents of DE. 

Both DE groups had decreased blood pressure during exposure, suggesting mediation by 

DE gases. While the specific gases mediating this effect remain unclear, there is mounting 

evidence that inhaled NO remains in the blood up to 2 hours post-exposure (Knuckles, et al., 

2011). NO decreases blood pressure through vasodilation and facilitates parasympathetic control 

over cardiac function (Conlon & Kidd, 1999;  Yabe et al., 1998). In turn, parasympathetic 

activation inhibits stress-induced catecholamine release (Katz, 2006;  Vanhoutte & Levy, 1980). 

Conversely, clean air exposure increased blood pressure, likely due to stress-induced 

catecholamine release, which has been demonstrated under conditions similar to our control 

exposure (e.g., confinement)  (Morimoto et al., 2000). Incidentally, increased catecholamines 

decrease HDL cholesterol (Kjeldsen et al., 1992), while parasympathetic activation inhibits this 

effect (Benthem et al., 2001), perhaps explaining why air-exposed rats had decreased HDL (and 
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fDE-exposed rats had normal HDL) relative to naïve un-confined SHHF rats from a previous 

study (Carll, et al., 2011a). We have previously found ‘increases’ in HDL concomitant with 

similar parasympathetic-associated effects from PM (Carll, et al., 2010). The mechanisms 

underlying the hemodynamic and biochemical effects of DE gases may bear important 

implications for the cardiovascular risks of DE. 

Ultimately, our findings of altered CV function identify potentially disparate responses to 

the gaseous and particulate components of DE with equally relevant implications toward CV risk 

and autonomic balance. Increased sympathetic tone is a major putative mechanism of PM-

induced CV pathogenesis (Brook, 2008). Consistent with this prevailing hypothesis, inclusion of 

particles in DE caused a decrease in HRV and diluted the parasympathetic-associated effects of 

DE gases (AV conduction delay, Mobitz II AV block, HRV increase, BP decrease), suggesting 

increased sympathetic tone. There is some evidence that oxidative stress mediates particulate-

induced sympathetic excitation and decreased HRV (Rhoden et al., 2005), but this mechanism 

remains underexplored. Regardless, it is important to note that our data neither suggest 

inherently protective nor prove directly autonomic effects of DE particles. Meanwhile, the 

stimulation of pulmonary irritant receptors (e.g., C-fibers, TRPA1) is known to cause 

parasympathetic activation (and resulting cardiovascular reflexes, including bradycardia and 

hypotension) (Widdicombe & Lee, 2001). Although there is evidence that whole DE (Hazari, et 

al., 2011;  Wong et al., 2003) and several of its components, including SO2 (Wang et al., 1996) 

and particles (Deering-Rice et al., 2011) stimulate pulmonary irritant receptors, it remains 

unclear to what extent each component factors into physiologic reflexes. Our findings imply a 

predominant role for DE gases in pulmonary irritant reflexes and a potentially divergent mode 

for PM-induced autonomic effects; however, mechanistic studies are required to discern whether 
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the effects of fDE and wDE result from differing autonomic influences of components or other 

factors, such as physico-chemical interactions between particles and gases. For instance, particles 

could alter the dynamics of gas deposition, thereby modifying the stimulation of irritant receptor 

subgroups, which can mediate opposing physiologic reflexes (Widdicombe & Lee, 2001). 

The SHHF strain is derived from the SH rat, which we have recently shown has enhanced 

susceptibility to DE exposure (Lamb, et al., 2012). Yet, the effects of fDE that we report here on 

AV block arrhythmia and HRV were not seen in our companion study involving SH rats (Lamb, 

et al., 2012). Thus, the SHHF appears to be even more sensitive to the cardiophysiologic impacts 

of DE exposure, potentially stemming from its underlying pathology including more severe 

hypertension than the SH rat and more rapid myocardial remodeling (Carll, et al., 2011c). The 

10-week old SHHF rats used in the present study had a significant cardiac hypertrophy (tibia-

normalized heart weight 15% greater than 19-week old normotensive Wistar Kyoto [WKY] rats; 

P <.01) that was equivalent to 23-week old SH rats (Lamb, et al., 2012); Carll, unpublished 

data). Additionally, AV conduction rate (PR) seems to be slower in the SHHF than the SH rat, 

which itself has a longer PR interval than age-matched WKYs (Hazari, et al., 2009). Notably, PR 

duration correlates with age and arterial stiffness (Gosse et al., 2011). Despite being less than 

half the age of the SH rats used in our companion study (Lamb, et al., 2012), the SHHF rats 

herein had a baseline PR interval that was 5.2 msec longer. Further investigation is required to 

determine if aspects of cardiac and vascular remodeling mediate the SHHF’s heightened 

sensitivity to air pollutant exposure. Nevertheless, the parallels between the SHHF and 

hypertensive, hypertrophic humans, combined with our findings of enhanced responses in the 

SHHF relative to SH and WKY rats, further indicate that cardiovascular disease confers 

sensitivity to the effects of air pollution on cardiac conduction. 
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  In conclusion, the present findings demonstrate that DE gases trigger immediate 

cardiovascular responses in the rat (decreased BP, prolonged PR interval, increased HRV, altered 

repolarization, and AV block arrhythmia) suggesting mediation by increased parasympathetic 

tone. Inclusion of DE particles in whole diesel exhaust largely attenuated these responses, 

potentially stemming from atmospheric interactions of gases and particles and/or their opposing 

autonomic influences. Thus, toxic effects of concurrent exposure to two or more air pollutants 

may not follow conventional dose-response relationships. Collectively, our findings demonstrate 

that a single 4-hour diesel exhaust inhalation causes cardiovascular dysfunction, with differential 

effects between filtered and whole diesel exhaust. 
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Tables 

Table 2.1. Inhalation exposure characterization.  

Air fDE wDE 

PM2.5 (µg/m3) - 3 ±2 472 ±2 

PM2.5 number (n/cm3) - 1.4x103 ±9 2.1x106 ±3x103 

Number median diameter of PM (nm) 34 ±3 21 ±3 61 ±0 

Volume median diameter of PM (nm) 124 ±0 125 ±0 91 ±0 

O2 (%) 21.0 ±0.2 20.6 ±0.0 20.6 ±0.2 

CO (ppm) BDL 9.7 ±0.7 9.5 ±4.2 

NO (ppm) 0.1 ±0.0 10.0 ±0.8 10.3 ±1.9 

NO2 (ppm) 0.0 ±0.0 0.4 ±0.1 0.3 ±0.2 

SO2 (ppm) BDL 0.6 ±0.1 0.4 ±0.2 

    
Data represent mean values ± standard error (SE) generated from measurements made either 
continuously (concentrations of O2, CO, NO, NO2, SO2), once (PM2.5 mass concentration), six 
times (wDE PM2.5 number), or four times (fDE PM2.5 number) per exposure. Number median 
diameter was based on exposure day particle size distributions ± SE. Volume diameter was 
calculated from number-based mobility diameters and assumes spherical particles. Air indicates 
filtered air; fDE, filtered diesel exhaust; wDE, whole diesel exhaust; PM2.5, fine particulate 
matter; BDL, below detectable limit. 
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Table 2.2. Cardiovascular physiology during baseline period within exposure chamber. 
 

Heart Rate Variability Air fDE wDE 
Heart Rate (beats/min) 327 (6) 329 (8) 334 (8) 

RMSSD (msec) 3.2 (0.2) 3.0 (0.2) 3.4 (0.4) 
Tri. Index 1.11 (0.06) 1.12 (0.07) 1.12 (0.06) 

LF/HF 2.84 (0.60) 2.54 (0.21) 2.75 (0.24) 

Aortic Pressure 
MAP (mmHg) 168 (4) 163 (6) 162 (3) 

Systolic (mmHg) 201 (5) 193 (7) 192 (5) 
Diastolic (mmHg) 139 (4) 134 (5) 135 (2) 

ECG 
PR (msec) 49.0 (0.7) 49.4 (1.8) 51.3 (1.0) 

T amplitude (mV) 0.139 (0.021) 0.125 (0.008) 0.115 (0.010) 
QTc (msec) 65.0 (1.1) 63.1 (1.6) 64.6 (1.0) 

 
Data represent mean values and standard error (SE, in parentheses). Parameters were measured 
over 40 minutes of baseline while all rats were exposed to filtered air within exposure chambers 
and after a 20-minute acclimation period. No significant differences were found between groups. 
QTc: Fridericia-corrected QT-interval. 
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Table 2.3. Time-matched comparison of heart rate before and after exposure. 
 

Air fDE wDE 
Hour Before After Before After Before After 

1 299 (7) 325 (8) 307 (7) 334 (9) 335 (14)* 354 (9) 
2 287 (2) 299 (5) 305 (5) 311 (7) 316 (12) 308 (5) 
3 304 (8) 303 (8) 323 (13) 305 (8) 311 (6) 303 (4) 
4 331 (5) 320 (14) 352 (12) 315 (5)  344 (6) 306 (7)** 
5 320 (10) 319 (15) 338 (15) 354 (8) 326 (10) 330 (7) 
6 369 (12) 364 (10) 366 (15) 387 (6) 365 (14) 362 (6) 

 

Heart rate at post-exposure was compared to the time-matched period 24 hours before exposure 
(while in home cages). * denotes significant difference from Air group (P < .05). ** denotes a 
single group’s significant decrease from itself on prior day (P < .05). Values represent means 
(SEM)  
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Table 2.4. Circulating endogenous antioxidants and markers of cardiovascular risk and injury 

Air                   fDE                         wDE 
HDL cholesterol (mg/dl serum) 18.7 ±1.7 23.4 ±1.1 ** 21.3 ±0.7 

ferritin  (ng/ml serum) 194.7 ±13.9 239.6 ±15.0 218.5 ±18.2 
lactate dehydrogenase-1 (U/l serum) 88.9 ±19.2 161.1 ±32.4 178.8 ±49.4 

glutathione S-transferase (IU/µl plasma) 7.29 ±0.84 6.83 ±0.60 5.14 ±0.70 

 
       

 

Means + S.E. HDL: high-density lipoprotein. ** denotes significant difference from Air group (P 
< .05). See Methods section for other markers of cardiopulmonary toxicity, risk, inflammation, 
and antioxidants measured in serum, plasma, and bronchoalveolar lavage fluid. All measures 
were unaffected by exposure. U and IU denote units and international units, respectively. 
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Table 2.5. Prior evidence linking DE gases to alterations in cardiac rhythmicity, repolarization, 
and autonomic balance. 

Study Disease Model 
Exposures (PM 

conc.) Findings Interpretations 
Campen et 
al., 2005 

atherosclerosis: 
ApoE-/- mice on 

high fat diet) 

fDE and wDE                      
("low" - 500 µg/m3    

"high" - 3,600 
µg/m3) 

fDE and wDE equally 
↓heart rate & ↓T-wave 
area during exposure. 

filtration did not 
alter mid-
exposure effects 
of DE on cardiac 
rhythm and 
repolarization. 
 

Hazari et 
al., 2011 

hypertension: 
Spontaneously 
Hypertensive 

rats 

fDE and wDE                      
("low" - 150 µg/m3    

"high" - 500 
µg/m3) 

1 day post-exposure: 
low fDE ↑RMSSD & 
↑SDNN; high fDE 
↑LF/HF. wDE did not 
affect HRV. fDE ↑ 
sensitivity to drug-
induced ventricular 
fibrillation and cardiac 
arrest, but wDE did not. 
fDE ↑ sensitivity to 
drug-induced 
ventricular tachycardia 
equal to wDE. 
 

1 day after 
exposure, 
filtered DE 
exclusively 
caused 
autonomic 
imbalance and  
increased 
sensitivity to 
drug-induced 
fatal arrhythmia. 

Lamb et 
al., 2012 

hypertension: 
Spontaneously 
Hypertensive 

rats 

fDE and wDE                      
("low" - 150 µg/m3    

"high" - 500 
µg/m3) 

fDE but not wDE 
↓heart rate, ↑PR, ↓ST 
area and ↓T-wave  area 
during exposure. 

filtered DE 
exclusively 
caused 
parasympathetic 
activation, 
slowed AV 
conduction, and 
altered 
repolarization  
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Figures 

 

Figure 2.1 Change from baseline in heart rate and heart rate variability endpoints (mean + SE) 
during whole body exposure. 1, 2, 3, 4, and R represent hours 1-4 of exposure and post-exposure 
Recovery within the chamber, respectively. All measurements were taken from conscious rats 
temporarily housed within exposure chambers. Stars and diamonds respectively mark significant 
differences from baseline (in chambers) and the Air group (at the same hour), respectively (P < 
.05). See Table 2.2 for baseline values. 
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Figure 2.2 Change from baseline in blood pressure during whole body exposure (mean + SE). 1, 
2, 3, 4, and R represent hours 1-4 of exposure and post-exposure Recovery within the chamber, 
respectively. All measurements, including baseline, were taken from conscious rats temporarily 
housed within exposure chambers. Stars and diamonds respectively mark significant differences 
from baseline (in chambers) and the Air group (at the same hour), respectively (P < .05). See 
Table 2.2 for baseline values. 
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Figure 2.3 Change from baseline in ECG endpoints during whole body exposure (mean + SE). 
1, 2, 3, 4, and R represent hours 1-4 of exposure and post-exposure Recovery within the 
chamber, respectively. All measurements were taken from conscious rats temporarily housed 
within exposure chambers. Significant differences are indicated by stars (relative to baseline) and 
diamonds (relative to Air group at the same hour; P < .05). See Table 2.2 for baseline values. 
QTc: Fridericia-corrected QT-interval.   
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Figure 2.4 Filtered diesel exhaust induced AV block Mobitz II arrhythmia.  Hourly rate of 
Mobitz II AV block per rat, mean + SE (A); ECG waveform with representative second degree 
AV block Mobitz II arrhythmia following fDE exposure (B). “pre-”, “expo-”, and “post-” 
represent periods of ECG analysis conducted before (6 hours), during (4 hours), and after (6 
hours) inhalation exposure, respectively. Stars and brackets above standard error bars indicate 
significant differences between periods or groups (P < .05). Arrow indicates individual 
arrhythmia. Vertical grey lines behind ECG waveform indicate time in 50 msec intervals. 
  



 

 

 

 

CHAPTER 3 

DIESEL EXHAUST INHALATION INCREASES CARDIAC OUTPUT, 
BRADYARRHYTHMIAS, AND PARASYMPATHETIC TONE IN AGED HEART 

FAILURE-PRONE RATS 

 

Overview 

Acute air pollutant inhalation is linked to adverse cardiac events and death, and 

hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to 

exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic 

disturbance of normal cardiac function. To explore this putative mechanism, we examined 

cardiophysiologic responses to DE inhalation in a model of aged heart failure-prone rats without 

signs or symptoms of overt heart failure.  We hypothesized that acute DE exposure would alter 

heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent 

with autonomic imbalance, while increasing biochemical markers of toxicity.  Spontaneously 

Hypertensive Heart Failure rats (SHHF, 16 months) were exposed once to whole DE (4 h, target 

PM2.5 concentration: 500 µg/m3) or filtered air.  DE increased multiple heart rate variability 

(HRV) parameters during exposure.  In the 4 h after exposure, DE increased cardiac output, left 

ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular (AV) 

block arrhythmias while increasing electrocardiographic measures of ventricular repolarization 

(i.e., ST- and T-amplitudes, ST area, Tpeak-Tend duration).  DE did not affect heart rate relative 

to Air.  Changes in HRV positively correlated with post-exposure changes in bradyarrhythmia 

frequency, repolarization, and echocardiographic parameters.  At 24 hours post-exposure, DE-
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exposed rats had increased serum C-reactive protein and pulmonary eosinophils.  This study 

demonstrates that cardiac effects of DE inhalation are likely to occur through changes in 

autonomic balance associated with modulation of cardiac electrophysiology and mechanical 

function, and may offer insights into the adverse health effects of traffic related air pollutants. 

 

Introduction 

Exposure to combustion-derived air pollutants has been linked to adverse cardiovascular 

health outcomes, especially in individuals with preexisting cardiac disease.  Epidemiological 

studies suggest the involvement of multiple air pollutants, including fine and ultra-fine 

particulate matter (PM2.5 and UFP, with diameters < 2.5 µm and < 0.1 µm, respectively), 

nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) (Brook et al., 2004).  

Diesel engine exhaust (DE) is a major urban source of these pollutants, as well as volatile and 

semi-volatile organics, and carbonyls. Moreover, DE is an important contributor to vehicular 

emissions attendant to adverse clinical outcomes near roadways.  For instance, ischemic heart 

disease hospitalizations in eight European cities have been attributed to DE exposure (Le Tertre, 

et al., 2002), and increases in mortality have been shown to parallel increased traffic particle 

levels (Maynard et al., 2007). Clinical studies indicate that DE may impart toxicity by adversely 

altering cardiovascular function. Recent research has demonstrated that acute DE inhalation 

increases systolic blood pressure, impairs vasodilation, and/or enhances vasoconstriction in 

humans (Cosselman et al., 2012;  Mills, et al., 2011b).  In addition, Mills et al. (2007) found that 

DE exposure increased exercise-induced electrocardiographic ST depression (indicative of 

myocardial ischemia or altered cardiac repolarization) in volunteers with known coronary heart 

disease and prior myocardial infarction. 
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Investigations into the adverse health effects of short-term air pollutant exposure indicate that 

individuals with heart failure are a particularly susceptible subgroup (Dominici et al., 2006;  

Goldberg et al., 2003;  Pope et al., 2008).  For example, elevations in daily particulate matter 

(PM) concentrations have been associated with increased heart failure-related hospitalizations  

(Dominici et al., 2006; Pope et al., 2008) and mortality (Goldberg et al., 2000), and rising PM10 

levels increase the rate of new heart failure diagnoses and deaths in survivors of myocardial 

infarction (Zanobetti & Schwartz, 2007).  The multiple biochemical and physiological responses 

demonstrated within susceptible subgroups such as heart failure patients highlight several 

candidate mechanisms of toxicity, including changes in autonomic balance, electrophysiological 

properties, vascular function, hemostasis and thrombosis, and systemic inflammation (Anselme, 

et al., 2007;  Brook, 2008;  Campen, et al., 2005;  Lucking, et al., 2011;  Mills, et al., 2007;  

Peretz, et al., 2008a).  Yet, the mechanisms accounting for increased vulnerability of the failing 

heart to the effects of air pollution remain unclear. 

Evidence demonstrating that DE inhalation can alter cardiac dimensions and performance 

(key indices of normal mechanical function) is limited.  Yan et al. (2008) and Huang et al. 

(2010) found suggestions of such effects in rodents, but these studies were restricted to DE 

particles and used intra-tracheal instillation rather than inhalation.  Others demonstrated in rats 

with post-infarct heart failure that DE-induced spontaneous arrhythmia was associated with 

decreased heart rate variability (HRV) (Anselme, et al., 2007), indicating possible autonomic 

mediation of effects.  In contrast, DE exposure of younger healthier rats with minimal cardiac 

hypertrophy caused only modest changes in HRV and electrocardiography (Carll et al., 2012), 

demonstrating the importance of modeling susceptibility in animal studies. To further elucidate 

the impact of short-term DE exposure on cardiac function in heart failure and its relation to 
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autonomic nervous regulation, we examined the effects of a single inhalation exposure to DE on 

cardiac performance, ventricular chamber dimension, arrhythmia, repolarization, and HRV 

measures of autonomic modulation, as well as pulmonary and systemic injury and inflammation 

in an aged rat model prone to heart failure. 

 

Materials and Methods 

Animals and radiotelemetry implantation. Lean male spontaneously hypertensive heart 

failure (SHHF) rats (MccCrl-Leprcp; n = 20) were shipped at 6 weeks of age from Charles River 

Laboratories, (Kingston, NY) to the U.S. EPA’s AAALAC-approved animal facility, housed in 

pairs in 42 × 21 × 20-cm Plexiglas cages with pine-shave bedding in a room (22°C ±1°C, 50% ± 

5% relative humidity, 12-h light:dark cycle 0600:1800 h), and provided standard Purina rat chow 

(5001; Brentwood, MO) and water ad libitum.  At 15 months of age, 16 rats were implanted with 

radiotelemeters (model TA11CTA-F40; Data Sciences International, St. Paul, MN) for the 

purpose of recording ECG, heart rate (HR), core body temperature, and activity wirelessly as 

previously described (Lamb, et al., 2012). Lean male SHHFs acquire cardiac hypertrophy by 3 

months of age and transition into dilated cardiomyopathy and heart failure at 18 months of age 

(Carll, et al., 2011b).  All studies conformed to the guidelines of the US EPA Institutional 

Animal Care and Use Committee. Three weeks after surgery, rats were weighed, monitored by 

ECG, and omitted from telemetric monitoring if they differed from the mean body weight by 

more than 1 standard deviation (n=2) or if their cardiac electrograms were unsuitable for HRV 

analysis due to frequent arrhythmias (n=1) or a displaced lead (n=1). All rats were then 

habituated to 3 min of manual restraint on two consecutive days in preparation for 

echocardiographic assessments. All animals were assigned semi-blindly to one of two exposure 



 

59 
 

groups (clean filtered air, “Air”; or whole diesel exhaust, “DE”) while maintaining equivalent 

mean body weights per group. 

Diesel exhaust exposure and generation.  Rats were acclimated twice to exposure 

conditions within the clean filtered air chamber for 1 h on two separate days before exposure. On 

the exposure day, rats were allowed to acclimate to the chambers for 20 min and then baseline 

data were recorded for the next 30 min. Rats were then exposed to DE (target PM2.5 of 500 

µg/m3) or Air for 4 h in whole body exposure chambers.  Thereafter, DE exposures were stopped 

for a 30-min recovery period in which clean filtered air was circulated through exposure 

chambers.  Rats were returned to home cages immediately thereafter.  DE exposures were at 

UFP and NO2 concentrations comparable to those found in traffic tunnels and roadways within 

the U.S. and Europe (Anselme, et al., 2007;  Svartengren, et al., 2000;  Zhu, et al., 2007).  DE 

was generated using a 4.8 kW (6.4 hp) direct injection single-cylinder 0.320 L displacement 

Yanmar L70 V diesel generator operated at a constant 3600 rpm on low sulfur diesel fuel 

(32ppm) at a constant load of 3 kW as previously described (Carll, et al., 2012).  From the 

engine, the exhaust was mixed with clean air previously passed through high-efficiency 

particulate air (HEPA) filters.  Air dilution of DE was adjusted periodically to maintain target 

PM2.5 mass concentration. The diluted DE was delivered to a Hazelton 1000 (984 L) exposure 

chamber.  Control animals were placed in a second chamber supplied with the same HEPA-

filtered room air as that used to dilute DE.  The chambers were operated at the same temperature, 

pressure and flow rate (424 L/min; approximating 25 air exchanges per hour).  Chamber 

concentrations of PM, O2, CO, NO, NO2, and SO2 were measured as previously described (Carll 

et al., 2012).  Chamber temperatures, relative humidity, and noise were also monitored, and 

maintained within acceptable ranges (< 80 dB, 30-70%, and 73° ± 5° F). 
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Left ventricular (LV) echocardiography. One hour after the second exposure acclimation 

(1 day before DE or Air exposure), rats were held supine at 45° for no more than 3 minutes while 

being measured for baseline LV function and dimensions by trans-thoracic echocardiography 

(Nemio 30, Toshiba; Duluth, GA) using a 14-MHz linear array transducer (PLM 1204AT).  

Measures were repeated on the day of inhalation exposure, 1.5-2 h after cessation of DE 

exposure (1-1.5 h after removal from exposure chambers).  Handling, measurements, and data 

analyses were performed in random order with laboratory personnel blinded to treatment groups.  

Two-dimensional long-axis images of the LV were obtained in parasternal long- and short-axis 

views with M-mode recordings at the mid-ventricular level in both views.  At least three 

consecutive LV contraction cycles were used to determine heart HR, fractional shortening (FS), 

ejection fraction (EF), cardiac output, stroke volume (SV), internal LV diameter at the ends of 

diastole (EDD) and systole (ESD), and thickness of the posterior wall and the inter-ventricular 

septum (IVS).  End diastolic and end systolic volumes (EDV & ESV) were determined using the 

area-length method as validated previously (Joho et al., 2007).  LV dimensions were used to 

calculate FS ([EDD-ESD]/EDD), SV (EDV-ESV), and EF (SV/EDV). 

Radiotelemetry data acquisition and analysis.  Radiotelemetry was used to track changes 

in cardiovascular and thermoregulatory function by continuously monitoring ECG, core body 

temperature, and activity in awake, unrestrained rats beginning at 3 days before inhalation 

exposure and continuing through exposure until euthanasia 24 h after exposure.  Data were 

obtained as described previously (Carll, et al., 2012) and ECG waveforms were sampled at a rate 

of 1,000 Hz in 2-min streams every 10 min within home cages, and 1-min streams every 5 min 

within exposure chambers (DataART 3.01; Data Sciences International, Inc.).  ECG waveforms 

were analyzed with computer software (ECGauto 2.5.1.35; EMKA Technologies, Falls Church, 
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VA) that enabled user identification and exclusion of arrhythmias and artifacts from automated 

analysis of HRV and ECG morphology parameters as previously detailed (Carll, et al., 2012).  

ECG morphology parameters were based on P, Q, R, S, and T waves and included the following: 

intervals of PR, QRS, ST, QT, QTe (onset of Q to end of T), QTc (heart-rate corrected QT, using 

Fridericia correction), T-peak to T-end (Tp-Te), and amplitudes of Q, R, T-peak, and ST (mean 

amplitude between S and T-peak), relative to the iso-electric line (15 ms before Q). ST area was 

calculated as total negative area underneath the isoelectric line from S-nadir to T-peak. 

HRV analysis generated HR and time-domain measures, including mean time between 

adjacent QRS-complex peaks (RR interval), standard deviation of the RR interval (SDNN), 

square root of the mean of squared differences of adjacent RR intervals (RMSSD), triangular 

index, and percent of adjacent normal RR intervals differing by ≥15 ms (pNN15).  pNN15 is a 

measure of parasympathetic tone.  SDNN and triangular index represent overall HRV, whereas 

RMSSD represents parasympathetic influence over HR (Rowan, et al., 2007). HRV analysis also 

provided frequency-domain parameters, including low frequency (LF: 0.200-0.750 Hz) and high 

frequency (HF: 0.75-2.00 Hz), and the ratio of these two frequency-domains (LF/HF).  For 

frequency-domain analysis, the signal was analyzed with a Hanning window for segment lengths 

of 512 samples with 50% overlapping.  LF is generally believed to represent a combination of 

sympathetic and parasympathetic tone, whereas HF indicates cardiac vagal (parasympathetic) 

tone, and LF/HF serves as an index of sympathovagal balance (Rowan, et al., 2007). 

  Arrhythmias were identified while blinded to treatment group according to previously 

described criteria (Carll, et al., 2012).  To facilitate statistical analysis of each arrhythmia type 

and allow the data to converge under the Poisson distribution, zero-values for each arrhythmia 

type within a sample interval were converted to 0.1.  Arrhythmia frequencies were calculated 
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over specific periods in home cages (pre-exposure and post-exposure, 7 hours each) as well as in 

exposure chamber (baseline, mid-exposure, recovery), normalized to adjust for time differences 

between periods and gaps in data, and presented as number of events per-hour of theoretically 

continuous ECG waveforms.  Each premature beat was counted individually as a single event 

(e.g., 1 bigeminy = 2 ventricular premature beat [VPB] events), whereas atrioventricular (AV) or 

sino-atrial block arrhythmias were counted as one event regardless of duration or neighboring 

events. 

HRV and ECG morphologic analyses were conducted on ECG waveforms collected 

while rats resided in home cages at 3 days pre-exposure and immediately post-exposure (both 

1pm-8pm), which were time-matched to control for physiologic effects of circadian rhythm.  The 

post-exposure period of 1:30pm-2:30pm was excluded from HRV and arrhythmia analyses to 

allow animals to recover from handling during echocardiographic measurements.  To adjust for 

this gap in sampling, data collected at 1:00pm-1:30pm and 2:30-3:00pm were used to represent 

hour 1 and hour 2 post-exposure, respectively.  ECG data collected within the exposure chamber 

(5 h total) was also analyzed according to the following periods: baseline (7:50am-8:20am), 

exposure (8:20am-12:20pm), and recovery (12:20pm-12:50pm).  All ECG streams with less than 

10 seconds of identifiable conduction cycles were excluded from ECG parameter calculation and 

streams with less than 30 seconds of identifiable RR intervals were excluded from HRV analysis.  

Thorough visual inspection was conducted to identify and exclude arrhythmias and artifacts. 

  Tissue collection and analysis. At approximately 24 hours after onset of the 4-hour 

inhalation exposure, rats were deeply anesthetized with an intraperitoneal injection of a sodium 

pentobarbital / phenytoin solution.  Tissue samples of blood, lung lavage fluid, heart, and lungs, 

were collected, processed, and analyzed as previously described (Carll, et al., 2012).  Heart 
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weight was normalized by right tibia length.  To examine for indications of cardiopulmonary 

inflammation, injury, oxidative stress, and risk, multiple biochemical markers were assayed. 

Lavage supernatants were analyzed for albumin, gamma-glutamyl transferase, lactate 

dehydrogenase, N-acetyl-b-d-glucosaminidase (NAG), total antioxidant status, and total protein 

(Carll, et al., 2010).  Serum supernatants were analyzed for creatine kinase, C-reactive protein 

(CRP), total protein, and glutathione peroxidase, reductase, and -S-transferase; and supernatants 

from plasma were assayed for angiotensin converting enzyme (ACE), albumin, blood urea 

nitrogen, creatinine, and total protein (Carll, et al., 2011a).  Serum was also analyzed for α-

hydroxybutyrate dehydrogenase, D-dimer, ferritin, glucose, insulin, lipoprotein (a), total 

cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, lactate 

dehydrogenase-1, lipase, high and low density lipoprotein cholesterol, myoglobin, sorbitol 

dehydrogenase, superoxide dismutase (SOD), manganese SOD, and copper-zinc SOD according 

to previous procedures (Carll, et al., 2012;  Carll, et al., 2010). 

Statistics. The statistical analyses for all data in this study were performed using Prism 

version 4.03 (GraphPad Software, Inc., San Diego, CA).  One-way analysis of variance 

(ANOVA) with Tukey post-hoc test was used to detect significant differences between groups in 

biochemical endpoints and tissue weight.  Repeated measures two-way ANOVA with Bonferroni 

post-hoc test was performed on (I) arrhythmia frequency data, which were collected at pre-, mid-

, and post-exposure periods (spanning approximately 4 hours each) and normalized by sampling 

duration; (II) HRV and ECG morphology parameters during the exposure period, including 

exposure hours 1-4, baseline (30 min), and recovery periods (30 min); and (III) HRV and ECG 

morphology to analyze for intra-group differences between time-matched periods (separated by 

exactly 24 hours) collected on the exposure day and on the previous day.  Two-way ANOVA 
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with Bonferroni post-test was also used to analyze for inter-group differences in change in HRV 

and ECG parameters at post-exposure relative to the day before exposure. P < 0.05 was 

considered statistically significant.  Linear regressions were performed to test for correlations 

between various physiologic endpoints. 

 

Results 

Physiological Responses to Exposure by Inhalation. 

  Heart rate, heart rate variability, and ECG morphology.  At pre-exposure and baseline 

no significant differences emerged between the groups for HR, HRV parameters, or ECG 

morphology (Table 3.2).  All rats in each group were active at the beginning of the exposure and 

became inactive during exposure to Air or DE.  As expected with decreased activity, HR 

decreased for both the Air and DE groups over the exposure period (Figure 3.1).  Also, HR 

increased for both groups during baseline measurements after transfer of animals to the exposure 

chamber (Table 3.2).  Only DE exposure altered HRV parameters significantly during exposure 

relative to baseline.  SDNN, RMSSD, triangular index, LF, HF, and pNN15 increased at hours 3 

and 4, and recovery, consistent with parasympathetic activation (P < 0.05).  The groups did not 

differ from each other in HR at any time during exposure; yet, DE exposure increased pNN15 (at 

hour 4) and triangular index (at recovery) relative to the Air group (all P < 0.05).  Exposure to 

DE did not affect any measures of ECG morphology relative to baseline or the Air group during 

the exposure period. 

  Cardiac arrhythmia. During exposure, the DE and Air groups did not differ from each 

other in their rates of second-degree AV block events or premature beats, including VPBs (P = 
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NS).  The rate of VPBs increased during mid-exposure to Air when compared to pre-exposure, 

baseline, and recovery (Supplemental Figure 3.1, P < 0.05). 

Physiological Responses after Exposure by Inhalation 

 Heart rate and heart rate variability. There were notable differences in HRV over the 

first four hours after animals were returned to home cages after inhalation exposure.  The DE 

group exceeded the Air group in change in triangular index and LF from pre-exposure (Figure 

3.2; all P < 0.05).  Change in SDNN was also higher in the DE group relative to Air during hours 

1-4 of post-exposure (Figure 3.2; P = 0.06). 

 ECG morphology.  Relative to air exposure, DE caused several differences in ECG 

morphology over the first four hours of post-exposure (in home cages).  The DE group exceeded 

the Air group in change from pre-exposure ST area, T amplitude, and Tp-Te (Figure 3.2; all P < 

0.05).  DE also exceeded Air in ST amplitude change (mean ±SE—2.0 ±7µV Air vs. 24.2 ±7µV 

DE; P = 0.04).  These alterations in T-wave and S-wave area, amplitude, and duration (Figure 

3.3) indicate that DE altered repolarization.  No other aspects of ECG morphology were affected 

by DE in the hours following exposure. All four measures of ventricular repolarization at post-

exposure (ST amplitude, ST area, T amplitude and Tp-Te) positively correlated with mid-

exposure HRV (Table 3.3; all P < 0.05), indicating a possible relationship between changes in 

repolarization and preceding autonomic imbalance.  Post-exposure triangular index also 

correlated with post-exposure Tp-Te (P = 0.03), and had a near-significant correlation with ST-

amplitude (Supplemental Figure 3.2; P = 0.07). 

 Cardiac Arrhythmia.  DE exposure increased the rate of Mobitz type II second-degree 

AV block events over the first 4 hours after removal of animals from exposure chambers.  The 

DE group’s rate of Mobitz II AV block events was increased relative to itself at all prior periods, 



 

66 
 

as well as relative to the Air group at post-exposure (Figure 3.4; P < 0.05).  Among the eight 

individual Mobitz II AV block events observed at post-exposure in the DE-exposed group, four 

happened among four rats within 1 h of return to home cages (1.5 h post-exposure), and the 

remaining half occurred in a single rat 4 h into the post-exposure period within home cages.  

Because most DE-exposed rats (4 of 6) had an AV block arrhythmia at hour 1 of post-exposure, 

we looked at this time point for associations with changes in HRV and ECG morphology. At 

hour 1 of post-exposure, AV block events among all rats positively correlated with change in 

RMSSD and SDNN, whereas AV block negatively correlated with heart rate (Supplemental 

Table 3.1; P < 0.05). 

 Echocardiography.  At pre-exposure LV systolic function in both groups was normal as 

indicated by mean ejection fraction (90%) and fractional shortening (54%).  DE exposure altered 

several measures of LV diameter, volume, and wall thickness concomitant with an increase in 

cardiac output (Figure 3.5).  At post-exposure, end-diastolic and end-systolic volumes (EDV and 

ESV) increased in the DE group relative to pre-exposure (178 µl and 34 µl, respectively), 

leading to an increase in stroke volume (144 µl) and cardiac output (39.4 ml/min) (Figure 3.5, P 

< 0.05).  These increases in LV volumes and output corresponded with LV wall thinning, 

including decreased posterior wall thickness at diastole (-13%) and systole (-10%) and decreased 

interventricular septal thickness at diastole (-11%) and systole (-10%) relative to pre-exposure 

(all P < 0.05).  At post-exposure, DE also increased stroke volume, cardiac output (body weight-

normalized and raw), and EDV while decreasing posterior wall thickness relative to Air (all P < 

0.05).  DE did not affect HR during echocardiographic measures (332 ± 14 bpm Air vs. 339 ± 7 

bpm DE; P = NS), but both groups decreased in HR relative to their own pre-exposure values 
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(Figure 3.5, P < 0.05).  All of the cardiac parameters that were affected by DE exposure also 

correlated with changes in HRV during the exposure period (Table 3.4, P < 0.05). 

Pulmonary and Systemic Markers of Inflammation and Injury 

  The air-exposed aged SHHF rats in this study had cardiac hypertrophy relative to 10-

week-old SHHF, 19-week-old WKY, and 15-month-old WKY rats (Figure 3.6; P < 0.05). 

Exposure to DE did not alter cardiac or lung weights (Supplemental Table 3.2).  DE exposure 

increased pulmonary eosinophils in aged SHHF rats (Supplemental Table 3.2, P < 0.05).  

Relative to the Air group, the DE group increased serum CRP (+6.5%; P = 0.01) and plasma 

total protein (+7%; P = 0.05).  Decreases in NAG and lipase of uncertain significance were 

evident in the DE group relative to Air control (P < 0.05).  There were no other significant 

changes in circulating or pulmonary biochemical or cellular endpoints. 

 

Discussion 

  In the present study, a single four-hour exposure to diesel exhaust (DE) by inhalation 

altered multiple cardiac endpoints in aged heart failure prone rats with cardiac hypertrophy but 

without overt signs or symptoms of heart failure.  Principal among these was DE-induced LV 

dilation, which may correspond with myocardial stretch and attendant electrophysiologic effects 

(Franz et al., 1992) and changes in cardiac repolarization.  This effect may bear particular 

implications for the mechanisms underlying air pollutant-induced hospitalizations for heart 

failure.  In the 16-month-old SHHFs of our current study, the absence of congestive symptoms at 

baseline, maintenance of normal LV ejection fraction (90%) and fractional shortening (relative to 

(Tamura, et al., 1999)), and elevated cardiac weight, indicate a state of compensated LV 

hypertrophy prior to exposure. Fractional shortening at baseline (FS: 53%) and dimensional 
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changes after DE exposure compared closely to conscious measurements in terminally senescent 

mice exposed to carbon black particles (Tankersley, et al., 2008).  In these mice, a 4-day 

inhalation exposure (PM2.5 = 400 µg/m3) caused LV dilation and evidence of myocardial stretch 

(increased gene expression of natriuretic peptides), while decreasing FS and activating proteases 

responsible for myocardial remodeling.  Similarly, others have demonstrated decreased 

contractility accompanied by increased LV volume and pressure after a single, high, 1-2 mg/kg 

intra-tracheal dose of DE particles (Huang et al., 2010; Yan et al., 2008).  Importantly, LV 

dilation can increase filling pressures and wall stress (Tkacova et al., 1997), which promotes 

parasympathetic reflexes (Wang et al., 1995), cardiac arrhythmia (Huang et al., 2009), and 

signaling pathways for LV remodeling (Force et al., 2002).  Given our observations, it seems 

increasingly plausible that repeat exposures could cause LV remodeling.  

The mechanisms that underlie DE-induced increases in cardiac output remain uncertain 

but may involve alterations in venous tone.  The increase in SV and LV volume concurrent with 

normal HR, EF, and FS indicate that DE increased ventricular preload.  Accordingly, Knuckles 

and colleagues (2008) previously found that DE enhances endothelin-1-induced constriction of 

veins (but not arterioles) through uncoupling of nitric oxide synthase (NOS).  Tankersley et al. 

(2008) found in restrained, conscious mice that PM-induced LV dilation was mediated by NOS 

uncoupling.  Importantly, physical restraint causes acute stress, which stimulates endothelin-1 

release (Treiber et al., 2000) and could trigger DE-enhanced venoconstriction.  Although we 

found no effects of DE on ACE, the observations of others (Ghelfi et al., 2010) implicate the 

renin-angiotensin system (RAS) as a mediator of DE-induced increases in cardiac output. Our 

findings merit further investigation to determine their mechanistic origins. 

 DE exposure in aged hypertrophic SHHFs within the current study led to robust increases 
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in HRV both during and after exposure.  These results are in contrast to our recent findings in 

similarly exposed young adult SHHF, normotensive Wistar Kyoto (WKY), and hypertensive 

(SH) rats (Carll et al., 2012; Lamb et al, 2012), in which there was little evidence of HRV 

effects.  Although this is our strongest evidence to date that DE exposure can cause a relative 

parasympathetic dominance over cardiac function, we have seen similar HRV effects with ozone 

inhalation (Farraj et al., 2012).  Likewise, Tankersley et al. (2004) saw marked increases in HRV 

with repeated (4-day) inhalation exposure to carbon particles in terminally senescent mice.  

Previous studies by us and others have shown exposure to DE or DE particles causes pulmonary 

irritant receptor activation (Deering-Rice, et al., 2011;  Hazari, et al., 2011;  Wong, et al., 2003), 

which is known to cause parasympathetic reflexes (Widdicombe & Lee, 2001).  The multiple 

effects of whole DE on arrhythmia and HRV in the aged SHHF rat vs. the minimal effects of this 

same exposure on young SHHF rats (Carll et al., 2012) supports epidemiologic evidence that age 

and progression of cardiac disease heighten susceptibility to air pollutant exposure (Brook et al., 

2004).  Moreover, these effects indicate that parasympathetic reflexes may factor into this 

susceptibility.  Increased parasympathetic neural input to the heart can provoke second-degree 

AV block (Drici et al., 2000;  Massie, et al., 1978).  We found correlations between post-

exposure second-degree AV block events and changes in HRV (Supplemental Table 3.1) that 

correspond with previous demonstrations of parasympathetic-mediated AV block (Castellanos, et 

al., 1974;  Drici, et al., 2000;  Massie, et al., 1978).  Beyond this effect, the clinical health 

implications of enhanced parasympathetic tone in response to DE exposure remain uncertain and 

unexplored. 

  The effects of DE that we observed on autonomic balance, bradyarrhythmia due to AV 

block, ventricular repolarization and LV dilation may interrelate (Figure 3.7).  Changes in HRV 
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and LV volume correlated, consistent with the known link between parasympathetic excitation 

and the activation of myocardial stretch receptors (Crawford, 2003).  Parasympathetic activation 

provokes a K+ channel (IKACh) that augments repolarizing currents, decreases spontaneous 

depolarization, increases HRV, and promotes AV block (Drici, et al., 2000;  Moreno-Galindo et 

al., 2011).  Likewise, the changes in spatiotemporal heterogeneity of repolarization that we 

observed may have resulted from several factors, including myocardial stretch (Tan et al., 2004;  

Xian Tao et al., 2006), autonomic mechanisms (Drici, et al., 2000;  Kanda et al., 2011;  Moreno-

Galindo, et al., 2011), inflammation (Zhang et al., 2011) or changes in heart rate, electrolyte 

balance, and metabolism (Channer & Morris, 2002).  Ultimately, our findings of altered 

repolarization, increased HRV, LV dilation, and AV block collectively suggest an important role 

for parasympathetic mechanisms in the adverse cardiophysiologic effects of DE.  

 Our findings of DE-induced ECG changes correspond with prior observations and bear 

notable implications for the health effects of DE exposure.  Rich and colleagues (2012) recently 

found in patients with prior coronary events that Tp-Te (a measure of the heterogeneity of 

transmural depolarization (Castro Hevia et al., 2006)]) increased with exposure to fine mode 

particles.  We similarly observed an increase in Tp-Te in the first 4 hours after DE exposure, 

suggesting that DE may desynchronize repolarization between the different regions or cell types 

of the ventricular myocardium.  Tp-Te prolongation has been demonstrated to correlate with 

post-infarct LV remodeling (Szydlo et al., 2010) as well as ventricular tachycardia and sudden 

cardiac death in patients with hypertrophic cardiomyopathy (Shimizu et al., 2002).  Similarly, 

the effects of DE on ST-area and ST- and T-wave amplitudes were not unprecedented.  Both 

elevation and depression of the ST-interval and T-wave may indicate myocardial ischemia 

(Channer & Morris, 2002).  Several researchers have reported decreased T-wave or ST-
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amplitudes with air pollutant exposure.  Such findings occurred with exposure to ambient 

particles in ischemic heart disease patients (Henneberger, et al., 2005), inhalation of DE in 

exercised coronary artery disease patients (Mills et al., 2007) and sedentary atherosclerotic mice 

(Campen et al., 2005), and inhalation of particle-free DE gases in young adult SH and SHHF rats 

(Lamb et al., 2012; Carll et al., 2012).  While these changes in repolarization may result from 

ischemia, they may also stem from alterations in transmembane K+ balance by myocardial 

stretch and parasympathetic activation as previously mentioned. 

  Unlike our previous findings in young-adult WKY, SH, and SHHF rats (Carll et al., 

2012; Lamb et al., 2012), DE increased markers of cardiopulmonary inflammation in aged SHHF 

rats suggesting that age and advancement toward heart failure mediate enhanced proclivity to 

these effects. The DE-induced increased in serum CRP is consistent with the findings of Rich 

and associates (2012), who along with the aforementioned observations of Tp-Te prolongation, 

recently noted positive correlations between CRP and particle concentrations within the 

preceding 2-4 days. The increase in pulmonary eosinophils was unexpected; however, similar 

effects of DE have been observed in healthy humans (Ghio et al., 2012).  The relationship 

between these findings and the changes in cardiac physiology require further study.  

 In summary, a single inhalation exposure to DE in aged heart failure-prone rats without 

evidence of heart failure caused LV dilation and changes in cardiac repolarization.  In light of 

our prior study (Carll et al., 2012), our findings demonstrate that age in a heart failure-prone rat 

strain confers overt susceptibility to the effects of air pollutant exposure on the occurrence of 

bradyarrhythmia, repolarization, and HRV.  Most of the observed physiologic changes correlated 

with increased HRV markers of parasympathetic influence, suggesting autonomic modulation 

played an important role in the observations.  The mechanism by which increased 
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parasympathetic influence may relate to such effects requires further study.  Taken together, 

these findings may provide new insight on the health effects of traffic related air pollutants. 
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Tables 
 
Table 3.1. Inhalation Exposure Characterization  

Air DE 

PM2.5 (µg/m3) 21 515 

PM2.5 number (n/cm3) 9.7x103 2.3x106 

Number median diameter of PM (nm) 96 58 

Volume median diameter of PM (nm) 184 89 

O2 (%) 20.7 ±0.0 20.2 ±0.0 

CO (ppm) 0.0 ±0.1 16.6 ±1.4 

NO (ppm) 0.06 ±0.00 15.9 ±1.2 

NO2 (ppm) 0.07 ±0.00 0.66 ±0.09 

SO2 (ppm) BDL BDL 

    
Data represent mean values ± standard deviation (SD) generated from measurements made either 
continuously (concentrations of O2, CO, NO, and NO2), once (PM2.5 mass concentration), or six 
times (DE PM2.5 number) per exposure.  Number median diameter was based on exposure day 
particle size distributions ± SD.  Volume diameter was calculated from number-based mobility 
diameters and assumed spherical particles.  Air indicates filtered air; DE, diesel exhaust; PM2.5, 
fine particulate matter; BDL, below detectable limit. 
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Table 3.2.  Heart rate variability and ECG morphology parameters prior to exposure to diesel 
exhaust (DE). 
 

Pre-Exposure (home cages) Baseline (exposure chamber) 

Air DE   Air DE 
HRV mean (SE) mean (SE)   mean (SE) mean (SE) 

HR (beats/min) 277 (7.5) 282 (5)   355 (13) 334 (6) 
SDNN (msec) 10.5 (0.7) 9.9 (0.9)   8.1 (0.5) 8.0 (0.6) 
RMSSD (msec) 5.7 (0.9) 5.7 (1.4)   3.8 (0.8) 4.1 (1.1) 
Tri. Index 1.25 (0.04) 1.18 (0.04)   1.20 (0.08) 1.20 (0.05) 
LF/HF  0.92 (0.15) 1.15 (0.32)   1.42 (0.33) 1.17 (0.11) 

LF (msec2) 1.64 (0.58) 2.35 (0.74)   0.66 (0.16) 0.68 (0.21) 

HF (msec2) 2.30 (0.75) 2.8 (1.3)   0.78 (0.34) 0.93 (0.47) 
pNN15 (%) 5.7 (0.9) 5.7 (1.4)   1.6 (1.5) 2.3 (2.2) 

 
 ECG morphology   

PR (msec) 61.0 (1.8) 59.7 (2.3)   57.7 (1.9) 56.3 (1.7) 
T  amplitude (mV) 0.058 (0.011) 0.063 (0.089)   0.074 (0.021) 0.100 (0.013) 
QTc (msec) 80.1 (3.3) 78.3 (0.8)   83.3 (2.1) 80.9 (2.0) 
ST area (mV*msec) -0.92 (0.4) -0.93 (0.19)   -0.55 (0.45) -0.72 (0.18) 
Tp-Te (msec) 28.9 (3.1) 27.7 (1.7)   30.3 (4.1) 30.3 (2.0) 
 
 
   
Pre-exposure values represent an average over 4 hours time-matched with the first 4 h of post-
exposure within home cages.  Baseline values are averages from ECGs collected 30 min to 1 h 
after placement in exposure chamber but before initiating DE generation. QTc: Fridericia-
corrected QT interval. N = 5-6/group. 
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Table 3.3. Correlations between mid-exposure change in HRV and post-exposure change in ECG 
measures of ventricular repolarization.  ECG values were limited to hours 1-4 of post-exposure. 
 

HRV          
parameter  

Exposure 
hour  

ECG 
parameter 

Post-expo. 
 r P-value 

hour 

SDNN 
3   

 
Tp-Te 1  0.70  0.03 

Recovery   
 

Tp-Te 2  0.66  0.04 

      
 

ST area 2 0.62 0.06 

Triangular         
Index 

4   
 

Tp-Te 1-4  0.67  0.03 

 
    

ST 
amplitude 

1-4 
 

0.60 
 

0.06 

Tp-Te 4 0.74 0.01 
 

 
    

T amplitude 4 0.69 0.03 
ST 

amplitude 
4 0.66 0.04 

 
Recovery   

 
T amplitude 1-4  0.63  0.05 

 
  

 
Tp-Te 1-4  0.61  0.06 

    
T amplitude 2  0.67  0.03 

   
ST area 4  0.66  0.04 

   
Tp-Te 4 0.62 0.05 

 
Change in HRV during individual hours of exposure (relative to baseline) significantly correlated 
with a subsequent change in ECG during hours 1-4 of post-exposure.  “r” indicates Pearson 
correlation coefficient.  “Post-expo.” indicates post-exposure, when animals were monitored in 
home cages. N = 5-6/group. 
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Table 3.4. Correlations between mid-exposure change in HRV and post-exposure change in left 
ventricular function and dimensions.  
 

Echo 
Parameter  

HRV          
parameter  

Exposure 
hour  

r P-value 

PW (D)   RMSSD 3 
 

-0.60  0.05 

    
4 

 
-0.82  < 0.01 

  
  

R 
 -0.64  0.04 

 
  

 SDNN 3 -0.76  < 0.01 

 
  

  
4 -0.74  < 0.01 

   pNN15 4 -0.65  0.04 
PW (S)   SDNN 3   -0.71   0.02 

    
4 -0.76  < 0.01 

 
  

 RMSSD 4 
 

-0.82  < 0.01 
EDV    RMSSD 3   0.74   < 0.01 

   HF 3 0.63  0.04 

   pNN15 4 0.84  < 0.01 
ESV   pNN15 4   0.73   0.02 
SV   

 RMSSD 3   0.77   < 0.01 

   pNN15 4 0.71  0.02 

   HF 3 0.70  0.02 

   HF R 0.66  < 0.01 
Cardiac   

 RMSSD 3   0.65   0.03 
output   pNN15 4 0.65  0.04 

 
Changes in echocardiographic measures after the exposure period correlated with changes in 
HRV during exposure. Change was calculated as difference from baseline.  N = 6/group. 3, 4, 
and R represent the third and fourth hour of exposure and the recovery hour immediately 
following inside exposure chambers.  “r” indicates Pearson correlation coefficient.  PW (D) and 
PW (S), posterior wall thickness at end diastole and end systole, respectively; EDV, end diastolic 
volume; ESV, end systolic volume; SV, stroke volume. 
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Figure 3.1. Change from baseline in heart rate and HRV endpoints (mean +/- SE) during whole 
body exposure. 1, 2, 3, 4, and R represent hours 1 through 4 of exposure and Recovery (post-
exposure) within the chamber.  All measurements were taken from un-restrained conscious rats 
temporarily housed within exposure chambers.  Stars and diamonds mark significant differences 
from baseline (in chambers) and the Air group (at the same hour), respectively (P < 0.05). See 
Table 3.2 for baseline values. N = 6/group. 
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Figure 3.2. Change in HRV (left column) and ECG (right column) over the first 4 hours after 
removal from exposure chambers.  Data were collected within home cages at hours 1-4 of post-
exposure, excluding the first 30 minutes after echocardiography.  Stars and diamonds indicate P 
< 0.05 and P < .10, respectively. N = 5-6 / group. 
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Figure 3.3.  ECG waveforms before (gray) and after (black) DE exposure in a single rat.  Each 
waveform represents the average cardiac electrogram from a 2
intervals.  Data were collected from an individual rat within its home cage at hours 1
exposure, excluding the first 30 minutes after echocardiography. Horizontal time mark indicates 
20 ms interval. 
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ECG waveforms before (gray) and after (black) DE exposure in a single rat.  Each 
waveform represents the average cardiac electrogram from a 2-min ECG sampled at 10

vals.  Data were collected from an individual rat within its home cage at hours 1
exposure, excluding the first 30 minutes after echocardiography. Horizontal time mark indicates 

ECG waveforms before (gray) and after (black) DE exposure in a single rat.  Each 
min ECG sampled at 10-min 

vals.  Data were collected from an individual rat within its home cage at hours 1-4 of post-
exposure, excluding the first 30 minutes after echocardiography. Horizontal time mark indicates 
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Figure 3.4. Diesel exhaust increased hourly rate of Mobitz II AV block per rat (mean +/- SE) at 
post-exposure (A).  ECG waveform with representative second degree AV block Mobitz II 
arrhythmia (arrow) following DE exposure (B). Baseline, Exposure, and Recovery were all 
measured within exposure chambers. Stars and diamonds indicate significant differences 
between periods and groups, respectively (P < 0.05).  Vertical grey lines behind ECG waveform 
indicate time in 50 msec intervals. N = 6/group. 
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Figure 3.5. A single 4-hour exposure to diesel exhaust (500 µg/m3) increased left ventricular 
(LV) chamber volume, stroke volume, and cardiac output,  and decreased LV wall thickness in 
aged SHHF rats. The groups did not differ from each other in heart rate before or after exposure. 
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Echocardiographic measures of LV volume, thickness, and function were performed on 
conscious rats before and after exposure to filtered air or diesel exhaust. Stars and brackets 
indicate significant differences (P < 0.05). N = 6 to 8 / group. 
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Figure 3.6. Age and strain-dependent cardiac hypertrophy in SHHF rats.  Mean (+ SE) heart 
weight to tibia length ratio of 16-month-old air-exposed SHHF rats in this study compared to air-
exposed animals in similar studies within our laboratory (Carll et al., in press; Lamb et al., 
2012). Star and parentheses indicate all groups are significantly different from each other (P < 
0.05). 
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Figure 3.7. Proposed pathways accounting for electrophysiological effects of DE. cAMP: cyclic 
adenosine monophosphate,  If: hyper
sensitive K+ channel; IKs: delayed rectifier K
TREK-1: two-pore-domain potassium channel.  1
Crawford MH, 2003; Wang et al., 1995;  3
al., 2011;  5—Kanda et al., 2011;  6
and Belevych, 2003.   

85 

Proposed pathways accounting for electrophysiological effects of DE. cAMP: cyclic 
: hyper-polarization-activated current; IKACh: acetylcholine

: delayed rectifier K+ channel,  RARs: rapidly activated receptors,  
domain potassium channel.  1—Tan et al., 2004; Li et al., 2006;  2

Crawford MH, 2003; Wang et al., 1995;  3—Widdicombe & Lee, 2001;  4—Moreno
Kanda et al., 2011;  6—Wickman et al., 1998;  7—Drici et al., 2000;  8
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Supplemental Material 

 
Supplemental Table 3.1.  Correlations between changes in AV block Mobitz II events and HRV 
or HR at hour 1 of post-exposure. 
 

parameter slope r2 P-value 
RMSSD (msec) 

 
3.2 

 
0.45 

 
0.01 

SDNN (msec)  5.1  0.44  0.02 
heart rate (beats / min)  -55.8  0.44  0.02 

Linear regressions were based on mean HRV and total AV block events for each rat over the first 
hour of post-exposure within home cages (prior to echocardiography). N = 5-6 / group. 
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Supplemental Table 3.2.  Endogenous anti-oxidants and markers of cardiovascular risk and 
injury. 
 

            Air                        DE          P-value 
Broncho-alveolar lavage fluid    

eosinophils (#/ml) 0 (0) 45 (21)* 0.03 
neutrophils (#/ml) 707 (160) 651 (211) 0.84 
lymphocytes (#/ml) 789 (122) 687 (206) 0.69 
macrophages (#/ml) 11,282 (772) 12,431 (1,268) 0.46 
N-acetyl glucosaminidase 5.9 (0.3) 5.0 (0.2)* 0.03 
total anti-oxidant status 
(µg/L) 

113 (13) 144 (13) 0.11 

Serum    
C-reactive protein (µg/L) 216 (3) 230 (3)* 0.01 
lipase (U/L) 267 (23) 195 (18)* 0.02 
ALT (U/L) 107 (8) 152 (20) 0.06 
AST (U/L) 220 (12) 274 (32) 0.15 
GST (IU/L) 49 (4) 92 (26) 0.14 

Plasma    
total protein (g/dl) 4.7 (0.2) 5.1 (0.1)* 0.05 

TIMP-1 (pg/ml) 4,264 (941) 7,109 (899) 0.06# 

   
Organ Weights    

heart/tibia (g/cm) 0.285 (0.005) 0.277 (0.006) 0.35 
heart/body (g/kg) 3.37 (0.05) 3.32 (0.02) 0.34 
caudal lung lobe/tibia (g/cm) 0.081 (0.003) 0.085 (0.003) 0.44 

 
Values presented as means (SE). 4 of 9 DE-exposed rats had pulmonary eosinophilia. See 
Methods section for other markers of cardiopulmonary toxicity, risk, inflammation, and 
antioxidants measured in serum, plasma, and bronchoalveolar lavage fluid. U and IU denote 
units and international units, respectively. ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; GST, glutathione S-transferase; TIMP-1, tissue inhibitor of metalloproteinase 
1. * indicates significant difference from Air group.  N = 8-9 / group, except # indicates N = 
4/group. 
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Supplemental Figure 3.1.  Hourly rate of ventricular premature beats.  Stars indicate significant 
differences between periods or time-matched values of other group (P < 0.05). N = 6/group. 
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Supplemental Figure 3.2. Linear regression of HRV triangular index and ECG measures of 
ventricular repolarization after exposure.  Data are presented as mean change over hours 1-4 
after exposure relative to change from pre-exposure (72 hours prior) for each rat, regardless of 
exposure and excluding the first 30 minutes after echocardiography. N = 5 to 6 / group. 
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CHAPTER 4 

 
DIESEL EXHAUST-INDUCED CARDIAC DYSFUNCTION IS MEDIATED BY 

AUTONOMIC IMBALANCE IN HEART FAILURE-PRONE RATS 

 

Overview 

Short-term exposure to vehicular emissions is strongly associated with adverse cardiac 

events.  Diesel exhaust (DE) is a ubiquitous air pollutant hypothesized to provoke adverse 

cardiac events, in part, through defective co-ordination of the sympathetic and parasympathetic 

branches of the autonomic nervous system.  To investigate this putative mechanism, we 

examined cardiophysiologic responses to a single DE inhalation exposure (500 µg/m3, 4 h, 

whole-body) in young adult heart failure-prone rats and incorporated autonomic challenges and 

inhibition. These included post-DE sympathetic agonism (dobutamine, 320 µg/kg/min x 2 min 

i.v.) with and without parasympathetic ablation (vagotomy) and, separately, treadmill exercise 

and pretreatment with a sympathetic or parasympathetic inhibitor (atenolol or atropine; 5 mg/kg 

i.p. each).  Measures of cardiac function by left ventricular (LV) pressure, autonomic balance by 

heart rate (HR) and HR variability (HRV), electrocardiogram, and aortic pressure were 

performed.  Upon exercise recovery at 4 h post-exposure, HRV and HR changes indicated that 

DE increased parasympathetic influence.  At 21 h post-exposure, DE increased sympathetic 

influence during exercise recovery only in saline-pretreated rats.  DE impaired-contractility and 

decreased systolic blood pressure relative to Air-exposed rats during exercise recovery at 21 h 

post-exposure, and this effect was prevented only by sympathetic inhibition.  Intra-cardiac 
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pressures indicated DE impaired systolic and diastolic function and altered diastolic and 

chronotropic responses to dobutamine partly through impaired parasympathetic regulation. Thus, 

altered autonomic regulation of the heart, characterized by an early parasympathetic dominance 

and a delayed sympathetic dominance, mediates adverse cardiac effects of air pollution exposure. 

 

Introduction 

Exposure to combustion-derived air pollution has been consistently linked to near-road 

adverse clinical outcomes, especially in those with preexisting cardiac disease (Bell, et al., 2009;  

Brook, 2008;  Chiusolo, et al., 2011;  Mann, et al., 2002;  Pope et al., 2008). Multiple pollutants 

have been implicated in these observations, including fine and ultra-fine particulate matter 

(PM2.5 and UFP, with diameters < 2.5 µm and < 0.1 µm, respectively), nitrogen dioxide (NO2), 

carbon monoxide (CO), and sulfur dioxide (SO2).  Diesel engine exhaust (DE) is a major urban 

source of these pollutants, as well as volatile organics, and carbonyls, and it may thus contribute 

largely to pollutant-induced adverse cardiovascular outcomes (Krivoshto, et al., 2008;  Peretz, et 

al., 2008a). For instance, ischemic heart disease hospitalizations have been attributed, in part, to 

short-term DE exposure in eight European cities (Le Tertre, et al., 2002).  The physiologic and 

biochemical responses observed with DE exposures have highlighted several candidate 

mechanisms of toxicity, including autonomic imbalance, myocardial ischemia, and 

electrophysiological dysfunction—among others. 

Epidemiological studies have linked exposure to components of air pollution to 

autonomic imbalance and ischemia as reflected by alterations in heart rate variability (HRV) and 

ST-interval amplitude among other changes in the electrocardiogram (ECG). Our group and 

others have shown limited DE-induced changes in these endpoints in animal models of 
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cardiovascular disease (Anselme, et al., 2007;  Campen, et al., 2005;  Carll, et al., 2012;  Carll et 

al., in review;  Lamb, et al., 2012). The most profound ischemic effects of DE exposure reported 

to date were measured during exercise stress tests in coronary artery disease patients (Mills, et 

al., 2007).  Because physical exertion increases oxygen demand and provokes autonomic 

compensatory reflexes (including sympathetic activation during exercise and parasympathetic 

activation thereafter), exercise stress tests are common clinical tools for unmasking latent 

myocardial ischemia and autonomic imbalance as reflected within the ECG (Froelicher & Myers, 

2006;  Goldberger et al., 2006).  Myriad studies have demonstrated that, upon exercise stress 

test, increased cardiac arrhythmia and abnormal responses in heart rate (HR), HRV, and ECG 

correlate with cardiovascular disease and risk of cardiovascular death (Beckerman et al., 2005;  

Dewey et al., 2007;  Jae et al., 2006;  Watanabe et al., 2001). Meanwhile, cardiac dysfunction 

during and after exercise tests has been shown to predict adverse outcomes in patients with 

hypertrophic cardiomyopathy (Pelliccia et al., 2007). 

In addition to using treadmill stress tests, exercise can be mimicked using sympathetic 

agonists to unmask latent effects of exposure.  Our lab recently found in hypertensive rats that 

DE inhalation enhanced sympathetic, ischemic, and arrhythmic responses to dobutamine (Hazari 

et al., 2012).  It is unclear whether dobutamine-induced changes in cardiac function, specifically 

left ventricular pressure, cardiac contractility and lusitropy (cardiac relaxation), are also modified 

by DE exposure.  In addition, little is known about the contribution of the autonomic nervous 

system (ANS) to the potential adverse effects of DE. Thus, the following hypotheses were tested 

in the present study in heart failure-prone rats: 1) determine if DE exposure modifies the 

physiologic response to treadmill exercise, 2) determine if DE exposure alters dobutamine-

induced changes in cardiac function, and 3) by incorporating pharmacologic inhibitors of the 
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ANS during treadmill challenge as well as vagotomy during dobutamine challenge, determine if 

imbalance of the ANS mediates the adverse physiologic effects of DE exposure.  HR, HRV, 

arrhythmia, repolarization, left ventricular pressure, cardiac contractility and lusitropy, and blood 

pressure were all measured to assess the effects of exposure. 

 

Materials and Methods 

Diesel Exhaust Exposure and Generation. All animals were exposed to either whole diesel 

exhaust (DE, target of 500 µg PM2.5/m
3) or filtered air (Air) under conditions previously 

described (Carll, et al., 2012). DE exposures were at ultrafine PM and NO2 concentrations 

comparable to those found in traffic tunnels and roadways in the U.S. and Europe (Anselme, et 

al., 2007;  Svartengren, et al., 2000;  Zhu, et al., 2007). DE was generated using a 4.8 kW (6.4 

hp) direct injection single-cylinder 0.320 L displacement Yanmar L70 V diesel generator 

operated at a constant 3600 rpm on low sulfur diesel fuel (16 ppm) at a constant load of 3 kW as 

previously described (Carll, et al., 2012).  The exhaust was diluted with clean room air 

previously passed through high-efficiency particulate air (HEPA) filters adjusted periodically to 

maintain target PM2.5 mass concentration. The diluted DE was delivered to a Hazelton 1000 (984 

L) exposure chamber.  Control animals were placed in a second chamber supplied with HEPA-

filtered room air.  The chambers were operated at the same temperature, pressure and flow rate 

(424 L/min; approximating 25 air exchanges per hour).  Chamber concentrations of PM, O2, CO, 

NO, NO2, and SO2 were measured as previously described (Carll et al., 2012).  Chamber 

temperatures, relative humidity, and noise were also monitored, and maintained within 

acceptable ranges (< 80 dB, 30-70%, and 73° ± 5° F). 
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DE Exposure Study 1—Left Ventricular (LV) Pressure, Dobutamine Stress Test, & Vagotomy. 

Lean male rats of the spontaneously hypertensive heart failure strain (SHHF MccCrl-

Leprcp, Charles River Laboratories) were acquired (n=10; 7 weeks old). These rats acquire 

cardiac hypertrophy by 2 months of age and transition into dilated cardiomyopathy and overt 

heart failure (HF) at 18 months (Carll et al., 2011; Carll et al., 2012).  Rats (13.5 weeks old) were 

exposed by whole-body inhalation to either filtered air or DE (target PM2.5 concentration: 500 

µg/m3). At 20-24 h after exposure, rats were anesthetized with urethane (2 mg/kg i.p., Sigma) 

and prepared for LV pressure measurement by right carotid arterial catheterization with a 2-

French transducer (SPR-320, Millar Instruments).  The left jugular vein was cannulated in 

preparation for cardiac stress test by administration of a sympathomimetic (dobutamine).  The 

LV probe was connected via a Pressure Control Unit (Model 2000, Millar Instruments) to a 

receiver (Powerlab 4/30, ADInstruments) and a computer acquiring data at 1000 Hz.  Rats were 

observed for a 2-min aortic pressure baseline, the transducer was advanced into the LV for a 4 

min baseline, and the rats were then infused for 2 min (Infusion A) with freshly diluted 

dobutamine hydrochloride (320 µg/kg/min i.v., dissolved in 0.9% NaCl saline at a concentration 

of 640 µg/ml). Rats were observed for 12 min after infusion cessation, which pilot studies 

revealed as adequate time for recovery to resting heart rate and dP/dtmax. Animals then received 

bilateral vagotomy by suture occlusion of both right and left vagus nerves followed by a 

stabilization period (3 min), a second 2-min dobutamine infusion at the same dose (Infusion B), 

and a post-infusion observation period (2.5 min).  The transducer was then retracted for 

measurement of aortic pressure (2 min), after which the rats were euthanized by exsanguination.  

For details, see Supplemental Material.   Acquisition software (LabChart Pro version 7.3.2, 

ADInstruments) generated LV pressure parameters at end diastole (EDP) and end systole (ESP) 
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and the maximum upslope (dP/dtmax) and minimum downslope (dP/dtmin) of LV pressure per 

beat, indicative of contractility and relaxation rate (lusitropy), respectively. 

 

DE Exposure Study 2—Treadmill Stress Test & Pharmacologic Autonomic Inhibition 

Radiotelemetry implantation. Lean male SHHF rats were implanted with radiotelemeters 

transmitting ECG, aortic blood pressure (BP), and core body temperature (n = 24, 8 weeks old, 

telemeter model TL11M2-C50-PXT, Data Sciences International) by surgeons at Charles River 

Laboratory adhering to preoperative, anesthetic, and surgical procedures as described previously 

(Carll, et al., 2010). Rats were shipped after a 10-day recovery period to our AAALAC 

International-approved animal facility. Additional SHHF rats (n = 15, 11-12 weeks old) were 

implanted in our AAALAC International-approved animal facility at the U.S. Environmental 

Protection Agency (EPA) laboratory with radiotelemeters equipped for ECG, HR, and core body 

temperature measurements (model TA11CTA-F40, Data Sciences International) while adhering 

to preoperative, anesthetic, and surgical procedures described previously (Lamb et al., 2012). All 

rats were housed individually in 42 × 21 × 20-cm Plexiglas cages with pine-shave bedding in an 

animal holding room (22°C ± 1°C, 50% ± 5% relative humidity, 12-h light:dark cycle 0600:1800 

h), and provided standard Purina rat chow (5001; Brentwood, MO) and water ad libitum. All 

studies conformed to the guidelines of the US EPA Institutional Animal Care and Use 

Committee (IACUC).  After > 10 days of surgical recovery, rats were transferred to a satellite 

facility and maintained under the same conditions as previously stated but in 33 × 18 × 19-cm 

Plexiglas cages.  

Autonomic Inhibition and Treadmill Challenge. Rats were weighed and assigned blindly 

to one of six treatment groups (Air-Saline, Air-Atropine, Air-Atenolol, DE-Saline, DE-Atropine, 
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and DE-Atenolol) while maintaining equivalent mean body weights between groups. All animals 

were trained for treadmill challenge (Treadmill Simplex II, Columbus Instruments) on two 

subsequent days before telemeter data were collected for baseline treadmill challenges. Each 

challenge involved an initial 4-min run at 0° incline (Run A), a 20-min resting period, and a 

subsequent 5-min run at 25° incline (Run B) with a mild electric stimulus (1.47 mA at 2.9 Hz) at 

the rear of the treadmill to encourage consistent movement. For Run B, peak belt speed and 

incline were set to optimize ECG signal clarity and approach a peak heart rate response of 500 

beats per min (BPM) based on pilot study observations.  

Rats were placed in exposure chambers for a 2 h acclimation and returned 2 days later for 

a 5 h exposure to filtered air (baseline) with telemetry monitoring. At 3-5 h and 20-22 h after end 

of baseline, animals were subjected to treadmill challenges. Inhalation exposures began 48 h 

after baseline exposure.  At 1 h before inhalation exposure, atropine and atenolol were each 

dissolved into saline, twice sonicated and vortexed for 2 min each, maintained at 38° C. Rats 

(12-15 weeks old) were then weighed and injected i.p. with saline vehicle (0.9% NaCl, Sigma 

Inc.), atropine (5 mg/kg, Sigma), or atenolol (5 mg/kg, Sigma) at a volume of 2.5 ml/kg body 

weight, placed in exposure chambers immediately thereafter, and allowed 30 min to equilibrate.  

Animals were exposed whole body for 4 h to either filtered Air or whole DE (target PM2.5 

concentration of 500 µg/m3), followed by a 1 h wash-out period for both groups in which clean 

filtered air was circulated through exposure chambers. Treadmill challenges were repeated at 3-

5 h and 20-22 h after cessation of exposures.  For details, see Supplemental Material. 

Radiotelemetry data acquisition and analysis. Radiotelemetry was used to track changes 

in cardiovascular and thermoregulatory function by continuously monitoring ECG, BP, core 

body temperature, and activity in awake, unrestrained rats beginning at 3 days before inhalation 
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exposure and continuing through exposure until euthanasia 24 h after exposure.  Arterial BP 

(mean, systolic, diastolic, and pulse), heart rate, and aortic pre-ejection period (PEP) were 

derived from pressure and ECG waveforms sampled at a rate of 1,000 Hz in 2-min streams every 

10 min within home cages, and 1-min streams every 5 min within exposure chambers.  Treadmill 

ECG and BP waveforms were sampled continuously at 1,000 Hz. Parameters were automatically 

calculated using software (DataART 3.01; DSI) as previously described (Carll, et al., 2010). The 

aortic PEP (also referred to as QA interval) provides an index of contractility measured by the 

delay between onset of LV depolarization and ejection, which are respectively indicated by the 

initializations of the R-wave and the increase in aortic pressure (Cambridge & Whiting, 1986).  

ECG waveforms were analyzed with computer software (ECGauto 2.8.1.26; EMKA 

Technologies, Falls Church, VA) that enabled user identification and exclusion of arrhythmias 

and artifacts from automated HRV and ECG morphology analysis as previously detailed (Carll, 

et al., 2012). HRV analysis generated HR and time-domain measures, including mean time 

between adjacent QRS-complex peaks (RR interval), standard deviation of the RR interval 

(SDNN), square root of the mean of squared differences of adjacent RR intervals (RMSSD), and 

percent of adjacent normal RR intervals differing by ≥15 ms (pNN15). pNN15 is a measure of 

parasympathetic tone. SDNN represents overall HRV, whereas RMSSD represents 

parasympathetic influence over HR (Rowan, et al., 2007). HRV analysis also provided 

frequency-domain parameters, including low frequency (LF: 0.200-0.750 Hz) and high 

frequency (HF: 0.75-3.50 Hz), and the ratio of these two frequency-domains (LF/HF).  For 

frequency-domain analysis, the signal was analyzed with a Hanning window for segment lengths 

of 512 samples with 50% overlapping.  LF is generally believed to represent a combination of 

sympathetic and parasympathetic tone, whereas HF indicates cardiac vagal (parasympathetic) 
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tone, and LF/HF serves as an index of sympathovagal balance (Rowan, et al., 2007). 

  Measures of ECG, BP, and arrhythmia frequency were obtained during and after 

treadmill challenge occurring after sham air exposure and after subsequent exposure to either DE 

or Air.  Arrhythmias were analyzed and identified while blinded to treatment group according to 

previously described criteria (Carll, et al., 2012;  Carll, et al., in review).  HRV and ECG 

morphologic analyses were conducted on ECG waveforms collected during treadmill challenges. 

All 30-sec ECG streams with less than 5 identifiable conduction cycles were excluded from ECG 

parameter calculation and streams with less than 20 sec of identifiable RR intervals were 

excluded from HRV analysis.  Thorough visual inspection was conducted to identify and exclude 

arrhythmias and artifacts from HRV and ECG analyses. 

  Tissue collection and analysis. At approximately 24 h after termination of the 4-h 

inhalation exposure, rats were deeply anesthetized with an intraperitoneal injection of a sodium 

pentobarbital / phenytoin solution.  Tissue samples of blood, lung lavage fluid, heart, and lungs, 

were collected, processed, and analyzed as previously described (Carll, et al., 2012). Heart 

weight was normalized by right tibia length. To examine for indications of cardiopulmonary 

inflammation, injury, oxidative stress, and risk, multiple biochemical markers were assayed. 

Lavage supernatants were analyzed for albumin, gamma-glutamyl transferase, lactate 

dehydrogenase, N-acetyl-b-d-glucosaminidase, total antioxidant status, and total protein (Carll, 

et al., 2010).  Serum supernatants were analyzed for creatine kinase, C-reactive protein (CRP), 

total protein, and glutathione peroxidase, reductase, and -S-transferase; and supernatants from 

plasma were assayed for angiotensin converting enzyme (ACE), albumin, blood urea nitrogen, 

creatinine, and total protein (Carll, et al., 2011a).  Serum was also analyzed for α-

hydroxybutyrate dehydrogenase, D-dimer, ferritin, glucose, insulin, lipoprotein (a), total 
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cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, lactate 

dehydrogenase-1, lipase, high and low density lipoprotein cholesterol, myoglobin, sorbitol 

dehydrogenase, superoxide dismutase (SOD), manganese SOD, and copper-zinc SOD according 

to previous procedures (Carll, et al., 2012;  Carll, et al., 2010). 

Statistics. Statistical analyses of all data were performed using Prism version 4.03 

(GraphPad Software, Inc., San Diego, CA).  Repeated measures two-way ANOVA with 

Bonferroni post-hoc test was performed on LV pressure data for specific moments: immediately 

before Infusion A (Pre-Infusion), 12 min after Infusion A (Recovery), 2-3 min after bilateral 

vagotomy (Post-Vagotomy), the final 10 sec of Infusion A, and last 10 sec of Infusion B. As with 

autonomic inhibitors, brief bouts of exercise alter autonomic regulation of cardiovascular 

physiology (Chen et al., 2009). To control for these effects and test for effects of DE exposure, 

changes in physiologic parameters from pre-exposure treadmill to post-exposure treadmill were 

compared between groups pretreated with the same autonomic inhibitor (or saline) by two-tailed 

t-test.  To control for potential physiologic effects following containment in exposure chambers, 

treadmill data at 3-5 h and 20-22h after inhalation exposure were compared to challenges at 

corresponding times relative to sham exposure.  One-way analysis of variance (ANOVA) with 

Tukey post-hoc test was used to detect significant differences between groups in biochemical 

endpoints and tissue weight.  For all analyses, P < 0.05 was considered statistically significant. 

 

Results 

Study 1. Effects of DE Inhalation on LV Pressure and Autonomic Modulation. 

 Pre-Infusion. At 20-24 h after inhalation exposure, DE increased LV end diastolic 

pressure (DE 4.4±0.9 vs. Air 0.4±1.6 mmHg, P < 0.05), decreased contractility (dP/dtmax, P = 
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0.056; Figure 4.1-A), and slowed LV relaxation (dP/dtmin, P < 0.05; Figure 4.1-C). DE did not 

affect heart rate, arterial pressure, or LV systolic pressure before infusion (all P > 0.05).  

Dobutamine Infusion A. Dobutamine equally increased dP/dtmax for both groups (Figure 

4.1-B) such that the groups no longer differed in dP/dtmax at recovery (Figure 4.1-A).  

Dobutamine infusion abolished the difference between the Air and DE groups in dP/dtmin at 

recovery (Figure 4.1-C) by disproportionately increasing this parameter in the Air group during 

infusion (P < 0.05; Figure 4.1-D). Interestingly, DE-inhalation at Pre-Infusion had a similar 

effect on diastolic function as did dobutamine infusion in the Air group at Recovery (Figure 

4.1-C).  Heart rate (HR) increased by approximately 150 BPM for both groups during the first 90 

sec of infusion, but the Air exposed rats had a decline in HR shortly before the end of infusion 

such that the DE group exceeded the Air group at the last 10 sec of infusion (+44  BPM vs. Air, P 

< 0.05; Figure 4.1-F). 

Vagus Nerve Ablation and Dobutamine Infusion B. The Air and DE groups did not differ 

from each other in dP/dtmin, dP/dtmax, or HR during the recovery period after Infusion A (Figure 

4.1; P > 0.05).  HR and dP/dtmax returned to near-baseline values for both groups during this 

recovery period (Figure 4.1-A & 4.1-E), whereas the Air group continued to have elevated 

dP/dtmin relative to its own baseline (P < 0.05, Figure 4.1-C).  Vagotomy restored the difference 

between the Air and DE groups in dP/dtmin (P < 0.05; Figure 4.1-C) and increased HR and 

dP/dtmax for both groups (P < 0.05 each vs. Pre-Infusion and Recovery; Figure 4.1-A & 4.1-E).  

Notably, in contrast to the effects of Infusion A, dobutamine after vagotomy had equivalent 

effects on dP/dtmin and HR in the Air and DE groups (Figure 4.1-D & 4.1-F).  There were no 

significant differences between groups in HR or dP/dtmax during or after Infusion B, nor in 
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arterial pressure after infusion; nevertheless, the DE group appeared to recover from peak 

dP/dtmax more slowly than the Air group (see Supplemental Figure 4.4). 

 

Study 2.  Effects of DE inhalation on Cardiovascular Responses to Treadmill Exercise. 

 Prior to treatment, treadmill challenge caused a peak HR of approximately 500 BPM in 

all groups at both Run A and Run B, indicating a robust response relative to the normal resting 

heart rate in conscious rats of this strain and phenotype (roughly 325 BPM [Carll et al., 2012]). 

At treadmill challenge 3-5 h after exposure, the DE and Air groups differed from each other in 

their changes in HRV from pre-exposure during recovery from treadmill Run B (Figure 4.3); the 

DE-Atenolol group’s change in HR was 67 BPM less than Air-Atenolol (P < 0.05).  At this same 

point, the DE-Saline group exceeded the Air-Saline group in change from pre-exposure SDNN 

by 4.4 msec (P < 0.05).  Both the DE-Saline and DE-Atropine groups had a change in recovery 

RMSSD that exceeded their respective air controls (respectively, 1.22 and 0.63 msec greater, P < 

0.05 each). 

 At treadmill challenge 20-22 h post-exposure, the DE- and Air- groups significantly 

differed in their HRV and/or HR responses only during the recovery period for Run A (Figure 

4.4). Specifically, the DE-Saline group’s changes in HR and LF/HF from pre-exposure treadmill 

were 32 BPM and 0.99 units greater than those of the Air-Saline group (P < 0.05). As well, the 

DE-Saline group’s change in RMSSD was lower than that of the Air-Saline group, but this 

difference was only marginally significant (P = 0.07). In saline-treated rats, DE inhalation 

prolonged PEP relative to Air (P < 0.05). At this same time point, the DE-Atropine group had a 

significantly lower change in systolic BP than Air-Atropine (Figure 4.5), and the saline-

pretreated groups had a similar trend (P = 0.12).  In contrast, atenolol pretreated rats did not have 
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any significant changes in HRV, BP, or PEP at 24 h post-exposure. There were no significant 

effects of DE or Air exposure on arrhythmia frequency, HR-increase, or HR-decrease during 

treadmill challenges. There were no clear effects of DE or autonomic inhibitors on biochemical 

measures of cardiopulmonary injury, inflammation, or oxidative stress. 

 

Discussion 

  We demonstrate that a single inhalation exposure to an environmentally relevant 

concentration of DE impairs cardiac performance, in part, through altered autonomic balance.  

DE exposure in hypertensive heart failure-prone rats caused changes in intra-cardiac pressures 

indicative of LV systolic and diastolic dysfunction at rest.  DE exposure decreased contractility 

approximately one day after exposure as evidenced by changes in two indicators: decreased 

dP/dtmax during LV pressure assessments and, separately, increased pre-ejection period (PEP) 

after treadmill challenge.  This decrement was in part mediated by sympathetic dominance, as 

evidenced by inhibition of DE-induced PEP prolongation and HRV decrements with a 

sympathetic antagonist (atenolol).  In addition, DE increased end diastolic pressure and impaired 

LV relaxation (dP/dtmin).  Impairments in LV ejection and relaxation and increased filling 

pressure can promote pulmonary edema and heart failure (Katz, 2006).  As such, these effects 

alone offer insight into epidemiological findings that short-term air pollution exposure increases 

heart failure-related hospitalizations and deaths (Dominici, et al., 2006;  Goldberg, et al., 2000;  

Pope, et al., 2008) and complement our recent observation that DE causes LV dilation in aged 

SHHF rats (Carll, et al., in review). DE changed diastolic and HR responses to sympathomimetic 

administration and altered autonomic reflexes to exercise recovery, suggesting an impaired 

ability to compensate to physiologic stress.  Exercise challenges can unmask cardiac pump 
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dysfunction and autonomic imbalance with strong predictive ability of adverse cardiovascular 

outcomes and death (Dewey, et al., 2007;  Duncker et al., 2005;  Pelliccia et al., 2007).  The 

effects of DE indicate an early enhancement of parasympathetic activation shortly after exposure 

followed by increased sympathetic influence one day later.  Notably, sympathetic antagonism in 

DE-exposed rats prevented the DE-induced decline in contractility as evidenced by the reversal 

of the effects on PEP and systolic BP after exercise.  Thus, the data reveal that short-term DE 

exposure induces an early increase in parasympathetic influence followed by a late sympathetic 

dominance that may mediate contractile and diastolic dysfunction. Ultimately, this study 

indicates that a predominance of sympathetic influence over the heart may cause air pollutant-

induced cardiac dysfunction, and that β-adrenergic blockade bears important therapeutic 

potential for mitigating these effects. 

The relative responses of DE- and air-exposed rats to dobutamine infusion and vagotomy 

indicated that DE caused a loss of parasympathetic modulation of cardiac function.  DE exposure 

impaired pre-dobutamine LV lusitropy comparable to the effects of dobutamine in air-exposed 

rats at infusion recovery.  Vagotomy (occlusion of the nerve fibers responsible for 

parasyampathetic cardiovascular regulation) did not alter the DE group’s lusitropy, whereas it 

restored the Air group to pre-infusion dP/dtmin.  Finally, vagotomy caused both the Air and DE 

groups to have the same responses in lusitropy to dobutamine infusion, indicating their prior 

differences may have been vagal-mediated.  Further supporting this, and in concordance with our 

recent findings (Hazari, et al., 2012), DE exposure abolished inhibitory chronotropic responses to 

dobutamine infusion that were otherwise evident in the Air group.  The absence of similar 

reflexes in air-exposed rats following vagotomy appears to confirm that this effect was 

parasympathetic in origin.  Thus, responses to both dobutamine and vagotomy demonstrated that 
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DE impaired normal parasympathetic function, thereby enabling increased sympathetic influence 

and impeding cardiovascular function. 

Several aspects of our study indicate a major role for the parasympathetic branch in DE-

induced autonomic imbalance.  DE-induced decrements in contractility at 1 day post-exposure 

were preceded by an increase in parasympathetic tone shortly after exposure.  The changes in 

HRV and HR that we observed at 3-5 h post-DE accord with our previous evidence of 

parasympathetic dominance during acute exposure to DE (Carll, et al., in review), residual oil fly 

ash PM (Farraj, et al., 2011) or ozone (Farraj et al, 2012) in rat models of hypertension or heart 

failure.  Atropine’s inability to prevent parasympathetic dominance at treadmill challenge 3-5 h 

post-exposure (8-10 h post-injection) may relate to the drug’s relatively short half-life (2-4 h) 

(Gyermek, 1998) and does not rule out the possibility of parasympathetic antagonism occurring 

during exposure, when vagal responses to DE are usually most pronounced (Carll, et al., 2012;  

Carll, et al., in review).  Regardless, atropine inhibited sympatho-excitation at 1 day post-DE, 

suggesting that air pollutant-induced parasympathetic activation may later lead to sympathetic 

dominance.  

We observed changes in LV function and HRV that suggest a central role for the 

autonomic nervous system and may stem from the complex relationships between oxidative 

stress, nitric oxide (NO), and autonomic balance.  Anti-oxidant treatment can prevent PM-

induced changes in HRV (Rhoden, et al., 2005), whereas air pollutant exposure has been 

repeatedly associated with systemic and cardiac oxidative stress and increased sympathetic 

influence (Brook, 2008).  Sympathetic activation increases the release of catecholamines, which 

promote oxidative stress and mediate cardiac disease progression (Dhalla et al., 2000).  

Interestingly, both sympathetic and parasympathetic inhibition have been found to decrease air 
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pollutant-induced cardiac oxidative stress (Rhoden, et al., 2005), which is a key cause of 

contractile dysfunction and cardiomyocyte injury and death (Dhalla, et al., 2000).  Air pollutant 

exposure may also promote cardiac dysfunction through NO synthase uncoupling (Knuckles, et 

al., 2008;  Tankersley, et al., 2008), which impairs NO homeostasis and promotes oxidative 

stress via superoxide production.  NO is a presynaptic modulator of parasympathetic 

neurotransmission that can suppress cardiomyocyte contractile responses to β-adrenergic 

receptor (βAR) activation.  When increased in the brain’s autonomic regulatory site, NO causes 

short term parasympathetic-associated physiological reflexes later followed by evidence of 

sympatho-excitation among hypertensive rats, the latter of which may be mediated by superoxide 

production (Danson & Paterson, 2006).  Further studies are necessary to disentangle the 

interactions between oxidative stress, NO, and autonomic balance in air pollutant cardiotoxicity. 

DE exposure caused an early vagal dominance that may relate to the triggering of 

pulmonary irritant receptors, including the transient receptor potential ankyrin 1 (TRPA1) 

channel, which activate sensory nerves (C-fibers) (Hazari, et al., 2011), thereby causing acute 

parasympathetic cardiovascular reflexes (Widdicombe & Lee, 2001).  We have previously 

shown that both (A) the inhibition of TRPA1 channels prior to DE exposure and (B) the 

administration of a sympathetic antagonist 1 day after DE exposure prevent DE-enhanced 

sensitivity to a pro-arrhythmic drug (Hazari, et al., 2012).  Meanwhile, others have found that a 

3-day PM2.5 inhalation exposure in mice decreases cardiac vagal neuron excitability and HRV, 

indicating that air pollutant exposure can compromise the parasympathetic counterbalance to 

sympatho-excitation through induced neuroplasticity (Pham et al., 2009).  Importantly, the 

parasympathetic branch suppresses sympathetic influence over the heart through a number of 

mechanisms, including presynaptic inhibition of sympathetic neurons, inhibition of 
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catecholamine release, and decreased firing rates of the sino-atrial and atrioventricular 

pacemaker nodes (Katz, 2006).  In contrast, the parasympathetic branch has relatively minimal 

effects on vascular tone, which is disproportionately mediated by sympathetic input in humans 

(Chong & Michel, 2012) and Spontaneously Hypertensive rats (Friberg et al., 1988).  Our 

observation that DE decreased both HRV and systolic BP suggests that sympathetic dominance 

may have resulted from diminished parasympathetic regulation of the heart rather than increased 

sympathetic cardiovascular regulation.  Decreased vagal tone and increased sympathetic 

influence over the heart have been found to correspond with heart failure exacerbation and 

predict arrhythmia and sudden cardiac death in humans (La Rovere et al., 1994;  Nolan et al., 

1998).  Thus, a deterioration of parasympathetic influence bears critical implications for cardiac 

health. 

In summary, our findings here demonstrate that DE-induced cardiac dysfunction is 

mediated in part by autonomic imbalance. These findings highlight the utility of treadmill 

exercise tests and dobutamine infusion as tools to unmask latents effects of air pollution 

exposure and imply that evidence toward the putative mechanism of autonomic-mediated air 

pollution cardiotoxicity may elude conventional measures due to their dependency upon uniform 

physiological conditions or autonomic stimuli. Additionally, our study indicates that β-

adrenergic blockade can prevent DE-induced sympatho-excitation and LV dysfunction, perhaps 

by accommodating a deterioration in parasympathetic function.  Ultimately, the potential for β-

adrenergic blockade to mitigate the adverse cardiac effects of air pollutant exposures deserves 

further investigation and should be factored into clinical and epidemiological studies.  
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Tables 

Table 4.1. Inhalation Exposure Characterization  

Air DE 

PM2.5 (µg/m3) 1.9 (0.3) 502 (2.8) 

Volume median diameter of PM (nm) 184 89 

O2 (%) 20.9 ( 0.0) 20.3 (0.1) 

CO (ppm) < 0.5 33.1 (2.3) 

NO (ppm) < 0.5 23.4 (1.8) 

NO2 (ppm) < 0.5 3.8 (0.22) 

SO2 (ppm) < 0.5 < 0.5 

Temperature (°F) 73.9 (1.3) 71.7 (0.8) 

Humidity (%) 43.8 (2.6) 56.1 (1.2) 

    
Data represent mean values (standard error in parentheses) generated from measurements made 
daily either continuously (concentrations of O2, CO, NO, and NO2), once (PM2.5 mass 
concentration), or six times (DE PM2.5 number) per exposure over 4 exposure days per group.  
Volume diameter was calculated from number-based mobility diameters and assumed spherical 
particles.  Air indicates filtered air; DE, diesel exhaust; PM2.5, fine particulate matter. 
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Figures 

 
Figure 4.1. LV pressure measurements of contractility (dP/dtmax), lusitropy (dP/dtmin), and heart 
rate 1 day after DE exposure.  Panels A, C, and E: raw 10-sec means (±SE) before dobutamine 
(Pre-Infusion), 12-min after termination of initial infusion (Recovery), and after vagus nerve 
occlusion (Post-Vagotomy).  Panels B and D: change from pre-infusion to final 10 sec of 
infusion.  Panel E: change from peak heart rate during infusion to final 10 sec of infusion.  Stars 
indicate differences between Air and DE groups, letters indicate differences from Pre-Infusion 
(a) or Recovery (b), and diamonds indicate differences from Infusion A (P < 0.05). N = 5/group. 
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Figure 4.2. Changes in HR and HRV during recovery from treadmill run B at 3-5 h post-
exposure relative to run B at 3-5 h post-sham exposure. Stars indicate differences between Air 
and DE groups (P < 0.05).  Values represent group means over 3 min, N = 5-6 / group. 

Heart Rate

-50
-40
-30
-20
-10

0
10
20
30
40

S
al

in
e

A
tr

op
in

e

A
te

no
lo

l

�

∆∆ ∆∆
 f

ro
m

 p
re

-i
n

ha
la

ti
o

n
(b

ea
ts

/m
in

)

SDNN

-4

-3

-2

-1

0

1

2

S
al

in
e

A
tro

pi
ne

A
te

no
lo

l

�

∆∆ ∆∆
 f

ro
m

 p
re

-i
nh

al
at

io
n

(m
se

c)
LF/HF

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

S
al

in
e

A
tro

pi
ne

A
te

no
lo

l

∆∆ ∆∆
 f

ro
m

 p
re

-i
n

ha
la

ti
on

RMSSD

-1.5

-1.0

-0.5

0.0

0.5

�
S

al
in

e

A
tro

pi
ne

A
te

no
lo

l

�

∆∆ ∆∆
 f

ro
m

 p
re

-i
nh

al
at

io
n

(m
se

c)
Air DE



 

110 
 

 
 
Figure 4.3.   Changes in HR and HRV during recovery from treadmill run A at 20-22 h post-
exposure relative to run A at 20-22 h post-sham exposure. Stars indicate differences between Air 
and DE groups (P < 0.05).  Values represent group means over 2 min, N = 5-6 / group. 
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Figure 4.4.  Changes in systolic and diastolic aortic pressures and pre-ejection period (an index 
of contracitility) during recovery from treadmill run B at 20-22 h post-exposure relative to run B 
at 20-22 h post-sham exposure. Stars indicate differences between Air and DE groups (P < 0.05).  
Values represent group means over 3 min, N = 4 / group. 
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Supplemental Figure 4.1.  Study 1 Regimen.
Responses to Dobutamine Infusion and Vagotomy.
-4 min until 22.5 min.  Animals were exposed whole
µg/m3 and challenged 1 day later.
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Supplemental Material 
 
 
 
 
 
 
 
 
 

Study 1 Regimen. The Effects of DE Inhalation on Cardiovascular 
Responses to Dobutamine Infusion and Vagotomy.  Left ventricular pressure was measured from 
4 min until 22.5 min.  Animals were exposed whole-body to DE at a PM concentration of 500 

and challenged 1 day later. 

 

The Effects of DE Inhalation on Cardiovascular 
Left ventricular pressure was measured from 
body to DE at a PM concentration of 500 
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Supplemental Figure 4.2.  Study 2 Regimen. Effects of DE Inhalation on Cardiovascular 
Responses to Treadmill Exercise.  ECG and blood pressure were measured by radiotelemetry.  
Animals were pre-treated with an autonomic inhibitor or saline control 30 min before whole-
body exposure to clean air or DE at a PM concentration of 500 µg/m3 and challenged 3-5 h and 
20-22 h later.  Sham exposure to Air for both groups occurred 3 days before actual exposure. 
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Supplemental Figure 4.3.  Treadmill challenge regimen.  For Run A, belt speed increased by 1 
m/min in 10 sec increments from 5 to 22 m/min, followed by 30 sec periods at 22 m/min and 
then 18 m/min, after which the treadmill was stopped for a 2
returned to home cages for 10 min. Run B regimen involved a 3
subsequent belt speed increases by 1 m/min every 15 seconds from 5 m/min to a 30
m/min period, and then speed was decreased to 10, 9
intervals.  Belt speeds and inclines were set to optimize ECG signal clarity at pea
responses > 500 bpm based on pilot study observations.
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Treadmill challenge regimen.  For Run A, belt speed increased by 1 
m 5 to 22 m/min, followed by 30 sec periods at 22 m/min and 

then 18 m/min, after which the treadmill was stopped for a 2-min recovery, and animals were 
returned to home cages for 10 min. Run B regimen involved a 3-min “pre-run” stationary period, 

t belt speed increases by 1 m/min every 15 seconds from 5 m/min to a 30
m/min period, and then speed was decreased to 10, 9-8, 7-6, and 5 m/min in the ensuing 30
intervals.  Belt speeds and inclines were set to optimize ECG signal clarity at pea

500 bpm based on pilot study observations. 
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Treadmill challenge regimen.  For Run A, belt speed increased by 1 

m 5 to 22 m/min, followed by 30 sec periods at 22 m/min and 
min recovery, and animals were 

run” stationary period, 
t belt speed increases by 1 m/min every 15 seconds from 5 m/min to a 30-sec 15 

6, and 5 m/min in the ensuing 30-sec 
intervals.  Belt speeds and inclines were set to optimize ECG signal clarity at peak heart rate 

7

Run A (0° tilt)

Run B (25° tilt)
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Supplemental Figure 4.4.  Changes in an index of contractility during first 60 sec of 
dobutamine infusions A and B.  Points indicate 1-sec averages ± standard error. 
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CHAPTER 5 

IMPLICATIONS AND CONCLUSION 

 

Implications 

 This research was conducted to investigate the toxicological mechanisms underlying 

epidemiologic findings that acute exposure to ambient air pollution increases adverse cardiac 

events and related mortality, especially in humans with preexisting cardiac conditions (Brook et 

al., 2008).  Heart failure-prone rats of the SHHF strain were incorporated into several studies to 

determine (1) if short-term exposure to diesel exhaust (DE) promotes changes in autonomic 

balance and cardiac function, (2) if physiologic stress tests can unmask latent cardiac and 

autonomic effects of DE exposure, (3) whether autonomic changes are associated with adverse 

cardiac effects, and (4) if changes in autonomic regulation of cardiac function mediate adverse 

cardiac effects of DE exposure.   

 

Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood 
pressure, and autonomic balance in heart failure-prone rats. 
 

The initial characterization study in young adult SHHF rats revealed that acute DE 

inhalation of either particle-free DE or whole-DE can affect cardiovascular physiology during or 

shortly after exposure by (i) altering ventricular repolarization, (ii) impeding atrioventricular 

(AV) nodal conduction, (iii) increasing the frequency of spontaneous AV block 

bradyarrhythmias, (iv) increasing heart rate variability (HRV) and/or decreasing heart rate (HR), 
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and (v) decreasing blood pressure.  Alone, these effects are consistent with dominance of the 

parasympathetic nervous system and indicate a potential for adverse cardiac events, including 

fatal arrhythmia and myocardial ischemia.  In comparison between whole DE and filtered DE 

groups, the effects appeared to be primarily mediated by DE gases and may have been partly 

counteracted by the presence of particulate matter, as the whole DE-exposed group had fewer 

significant responses and had HRV indications of a transient sympathetic excitation.  The 

increased adverse effects of particle-free DE compared to whole DE deserves additional 

investigation, particularly given the increasing use of exhaust filters on new diesel-burning on-

road vehicles.  Although the public health implications of these results are unclear, the data 

provide evidence that air pollution alters autonomic regulation of cardiac function and promotes 

arrhythmia. 

 

Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic 
Tone in Aged Heart Failure-Prone Rats 
 

To further investigate the cardiophysiologic effects of DE and associated changes in 

autonomic influence, an additional study was conducted in aged adult SHHF rats with normal 

cardiac function at pre-exposure.  Echocardiography in conscious rats 1.5 h after inhalation 

exposure revealed that DE caused left ventricular (LV) dilation and increased cardiac output.  

Additionally, electrocardiographic (ECG) data indicated that DE altered ventricular 

repolarization, increased AV block bradyarrhythmias, and markedly increased several HRV 

measures of parasympathetic cardiac regulation during and/or shortly after exposure.  These 

effects in aged SHHF rats were more pronounced than observed in the prior study involving 

whole DE exposure in young adult SHHFs, suggesting that age and progression toward heart 

failure confer added susceptibility to the cardiovascular impacts of air pollutant exposure.  If 
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sustained, increased venous return, LV dilation, and increased cardiac output can promote 

myocardial remodeling and eventual heart failure through volume overload.  Appropriately, 

myriad epidemiologic studies have demonstrated positive correlations between heart failure 

morbidity and mortality and exposure to air pollution (Bell, et al., 2009;  Chiusolo, et al., 2011;  

Colais et al., 2012;  Dominguez-Rodriguez et al., 2011;  Dominici, et al., 2006;  Goldberg, et al., 

2003;  Mann, et al., 2002;  Pope, et al., 2008).  The echocardiographic evidence of LV dilation 

and increased cardiac output indicate potential increases in LV pressure and complement the 

findings of Tankersley and associates (2004 & 2008), which collectively involved PM-induced 

LV dilation, impaired systolic function, molecular evidence of increased myocardial stretch, and 

parasympathetic activation in a mouse model of terminal senescence.  The observations also 

accord with recent findings that DE inhalation enhances venoconstriction in mice (Knuckles et 

al., 2008), which can acutely augment venous return of blood to the heart thereby increasing 

cardiac output and LV volumes.  In addition, this study introduced a new putative mechanism of 

air pollutant-induced parasympathetic activation and altered cardiac repolarization, as LV 

dilation can activate myocardial stretch receptors that cause parasympathetic reflexes (Crawford, 

2003;  Wang, et al., 1995) and alter ion channels directly responsible for repolarization (Tan, et 

al., 2004;  Xian Tao, et al., 2006).  Thus, the findings justify further investigations into air 

pollutant-induced LV dilation, including its causes, its mechanistic link to the autonomic effects 

of air pollutants, and its downstream effects on cardiac function. 

 

Treadmill Stress Test after Diesel Exhaust Particulate Intra-tracheal Instillation Reveals a Time-
dependent Shift from Parasympathetic to Sympathetic Dominance—a pilot study. 
 

The prior studies revealed that the aged (16 month-old) SHHF rat was a more useful 

model than young adult SHHFs for demonstrating autonomic-associated cardiovascular effects 
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of DE exposure.  Nevertheless, the aged SHHF rat was difficult to reliably obtain for further 

mechanistic investigation.  Thus, a pilot study was performed to determine if physiologic stress 

tests in young adult SHHFs could reveal autonomic and cardiovascular effects of DE exposure 

that were unapparent in sedentary rats.  These rats were intra-tracheally instilled with diesel 

exhaust particles (DEP, n=4) or saline vehicle (n=4) and observed both at rest and during 

treadmill challenge.  At rest, young adult SHHFs  had increased HRV in the first 10 hours after 

exposure (Appendix Figure 4 & 5).  These effects were recapitulated during treadmill challenge 

at 3 hours post-exposure (Appendix Figure 2), indicating that DEP causes a short-term 

parasympathetic dominance.  At 1 day post-instillation, DEP tended to decrease HRV during 

treadmill challenge, suggesting sympathetic excitation (Appendix Figure 3).  Similar effects 

indicating sympatho-excitation were not apparent while rats were at rest in their home cages in 

this pilot study or our previous studies (Carll et al., 2012; Carll et al., in review), indicating that 

the treadmill challenge could reveal latent autonomic effects of air pollutant exposure.  

Moreover, at 1 day post-exposure to DE, treadmill challenge provided the first evidence of 

sympathetic dominance within the research conducted toward this dissertation. 

 

Acute Diesel Exhaust Inhalation Exposure Causes Autonomic-Mediated Cardiac Dysfunction in 
Heart Failure-Prone Rats. 
 

Subsequently, treadmill challenge was used to determine if inhalation exposure of young 

adult SHHFs to DE at equivalent concentrations as the prior inhalation studies could provoke a 

similar pattern of autonomic imbalance as the instillation/treadmill study.  An additional stress 

test was implemented involving the i.v. administration of a sympatho-mimetic (dobutamine) in 

order to mimic the effects of exercise on autonomic balance and cardiovascular function.  This 

latter challenge also involved more direct determinations of cardiac function in anesthetized rats 



 

120 
 

(relative to conscious ECG or aortic blood pressure) through measures of left ventricular (LV) 

pressure.  LV pressures before challenge indicated that DE impaired LV relaxation (lusitropy), 

decreased contractility, and increased LV filling pressures—key determinants of cardiac output.  

To the author’s knowledge, this is the first study to demonstrate decrements in systolic and 

diastolic function after a single inhalation of DE.  Several groups have demonstrated in rodents 

that longer or much higher exposures to DE, DE particles, or non-vehicular PM can impair 

contraction and relaxation of the heart (Huang, et al., 2010;  Lord et al., 2011;  Tankersley, et al., 

2008b;  Wold et al., 2012;  Yan, et al., 2008).  Much like the previous instillation study, 

treadmill challenge revealed that DE inhalation increased parasympathetic influence over the 

heart at 3-5 h post-exposure, whereas, 1 day later, it revealed that DE caused sympathetic 

dominance, impaired contractility, and decreased systolic blood pressure.  Responses to 

dobutamine challenge complemented these findings, as heart rate at the final 10 sec of 

dobutamine infusion was elevated in the DE group relative to the Air group, suggesting impaired 

parasympathetic reflexes to sympathetic stimulation.  Additionally, dobutamine had the same 

effect on lusitropy in the Air group as did DE exposure at pre-infusion, suggesting that the DE 

group’s impairments in lusitropy were mediated by sympathetic dominance.  Therefore, the 

treadmill and dobutamine stress tests were useful for revealing DE-induced cardiac dysfunction 

and imbalance of the autonomic nervous system. 

 The following experiments were conducted to more directly determine whether the 

autonomic effects of DE mediate cardiac dysfunction.  Pharmacologic inhibitors of sympathetic 

(atenolol) or parasympathetic (atropine) influence over cardiac function were administered 

immediately before DE inhalation.  HRV and HR measurements during treadmill stress tests at 1 

day post-exposure revealed that sympathetic and parasympathetic inhibition both abolished DE-
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induced sympathetic dominance.  Because DE caused parasympathetic dominance at treadmill 

challenge 3-5 h post-exposure, and administration of a parasympathetic inhibitor prevented 

subsequent sympatho-excitation, the findings also suggested that parasympathetic blockade 

during DE exposure may prevent subsequent sympatho-excitation.  Yet, only sympathetic 

inhibition prevented decrements in contractility and blood pressure, indicating that the effects of 

DE on cardiac function may be primarily mediated by a relative dominance of sympathetic 

regulation—either through diminished parasympathetic or increased sympathetic output to the 

heart.  In addition, after the initial post-exposure dobutamine challenge, surgical vagotomy was 

performed and followed by a second infusion.  Vagotomy revealed that the dobutamine-induced 

increases in lusitropy for the Air group were likely parasympathetic-mediated reflexes to 

sympathetic agonism, while the DE group’s diminished lusitropic responses to infusion as well 

as to vagotomy were likely due to a pre-established deterioration in parasympathetic function.  

This was further supported by a lack of chronotropic inhibitory responses to dobutamine for the 

DE group before vagotomy and for the Air group after vagotomy.  Thus, DE abolished the 

impact of vagotomy on lusitropic and chronotropic responses to dobutamine, whereas 

sympathetic inhibition prevented DE-induced changes in post-exercise measures of contractility, 

systolic blood pressure, and HR.  Collectively, these findings correspond with demonstrations by 

others that air pollutant exposure can diminish parasympathetic output to the heart (Pham et al., 

2009), and suggest that this effect results in sympathetic dominance, consequently, cardiac 

dysfunction. 

 While the investigations herein did not examine the role of NO in the cardiovascular 

effects of DE, it should be noted that both NO and the autonomic nervous system can modulate 

each other upstream of changes in cardiac or vascular function (Katz et al., 2006; Danson & 
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Paterson, 2006).  Interestingly, observations of both DE-enhanced venoconstriction and PM-

induced cardiac dilation appear to involve mediation, at least in part, by the uncoupling of nitric 

oxide (NO) synthase, which promotes superoxide production and oxidative stress (Tankersley et 

al., 2008; Knuckles et al., 2008).  Others have noted that autonomic inhibition prevents PM 

exposure-induced oxidative stress, and conversely, administration of an anti-oxidant can prevent 

PM-induced autonomic imbalance and adverse cardiac effects (Rhoden et al., 2005).  Of 

additional consideration with respect to the physiologic effects reported here, DE exposure 

appears to increase circulating nitrates through the inhalation of NO (Knuckles et al., 2011).  

Further studies are necessary to disentangle the interactions between oxidative stress, NO, and 

autonomic balance in air pollutant cardiotoxicity. 

 

Conclusion 

 The multiple studies toward this dissertation consistently indicated that diesel exhaust 

exposure caused an early parasympathetic predominance over cardiac function.  Such findings 

are frequently neglected in literary reviews of air pollutant exposure’s effects on autonomic 

balance and cardiac function.  Nevertheless, myriad human studies have reported air pollutant-

induced increases in HRV (Peretz, et al., 2008a) (Mills, et al., 2011a;  Pope et al., 1999;  

Riediker, 2007;  Riediker et al., 2004;  Routledge et al., 2006;  Yeatts et al., 2007).  While at 

least one of these studies noted an increase in supraventricular arrhythmias in association with 

increased HRV, the health implications of air pollutant-induced elevated HRV and 

parasympathetic dominance remain largely unacknowledged and underexplored.  Interestingly, 

the findings of the present research also contrast with findings that DE exposure in humans 

increases blood pressure (Cosselman, et al., 2012).  Discrepancies in blood pressure and HRV 
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responses between studies may stem from differences between rodents and humans in 

cardiovascular and thermoregulatory responses to toxins (Rowan, et al., 2007;  Watkinson et al., 

2001;  Watkinson & Gordon, 1993); differences in study design, underlying disease of subjects, 

conditions, and exposures (i.e., engine load modifies emission toxicity (McDonald et al., 2011)); 

or a divergence in unidentifiable covariates. 

The results herein suggest that the parasympathetic effects of air pollution exposure may 

precipitate sympathetic dominance over cardiac function.  Increased sympathetic influence over 

cardiac function is closely associated with adverse cardiac outcomes.  To this end, the 

effectiveness of β-adrenergic receptor blockers on the prevention of cardiac disease and related 

deaths provide a compelling case in point (Go et al., 2008;  Ram, 2010).  The vascular effects 

that would likely accompany air pollutant-induced sympathetic activation (e.g., hypertension) are 

also of significant public health concern. Interestingly, the absence of hypertensive responses to 

DE indicates that central sympathetic excitation did not occur.  This seems especially likely 

given that the parasympathetic branch has relatively minimal effects on vascular tone, which is 

disproportionately mediated by sympathetic input in humans (Chong & Michel, 2012) and 

Spontaneously Hypertensive rats (Friberg, et al., 1988).  Of additional note, traditional β-

blockers such as atenolol (a β1-adrenergic receptor antagonist) do not cause vasodilation and 

have been deemed ineffective in the prevention of hypertension-associated cardiovascular 

disease progression (Ram, 2010).  Thus, the DE-induced decrements in contractility and systolic 

BP which atenolol prevented were probably not the result of hypertensive reflexes to exposure.  

Ultimately, the present research indicates that DE-induced impairments in cardiac function may 

depend upon enhanced sympathetic stimulation of the β1-adrenergic receptor, which is likely a 

result of impaired parasympathetic inhibition of sympathetic input to the heart.  Direct 
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examinations of sympathetic and parasympathetic nerve activation and norepinephrine spillover 

rates may enable a more definitive understanding of the autonomic effects of air pollutant 

exposure. 

 Several questions persist about the basis for autonomic imbalance in air pollutant-induced 

cardiac toxicity.  Firstly, the findings of more pronounced parasympathetic-associated effects of 

filtered DE on cardiovascular physiology indicate that the filtration of particles may enhance the 

autonomic and cardiac effects of DE.  Additional studies are required to test this theory.  

Meanwhile, the involvement of oxidative stress and/or myocardial stretch in the activation of 

autonomic reflexes to air pollutant exposure remains largely unexplored.  Although Rhoden and 

colleagues (2005) demonstrated a link between oxidative stress and autonomic reflexes, they did 

not assess cardiac function to determine whether the inhibition of either oxidative stress or 

autonomic reflexes prevented adverse physiologic effects.  Likewise, myocardial stretch receptor 

inhibition has been shown to prevent cardiac arrhythmias (Hansen et al., 1991) and stretch-

mediated activation of the hypertrophic pathway (Scimia et al., 2012) and thus could be readily 

incorporated into air pollution exposure studies.  The influence of myocardial ischemia and 

systemic hypoxia on autonomic control of the heart also deserves study in the context of air 

pollutant exposure.  For instance, hypoxia causes an immediate decrease in cardiac 

norepinephrine turnover and heart rate and a subsequent rebound increase in norepinephrine and 

heart rate upon return to normoxic conditions (Hirakawa & Hayashida, 2002;  Johnson et al., 

1983).  Myocardial ischemia also causes a cascade of compounds that activate cardiac 

nociceptors (pain receptors), including adenosine, bradkyinin, lactate, serotonin, prostaglandins, 

and other substances, some of which are known to affect autonomic balance (Horst, 2000).  

Finally, it is unclear to what extent autonomic imbalance may mediate the adverse cardiac effects 
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of long-term exposures to air pollutants.  Wold and colleagues (2012) recently demonstrated that 

long-term inhalation exposure to particulate matter (PM) in mice causes myocardial remodeling 

and impairs contractile function.  From the present findings of short-term effects of DE exposure, 

it is conceivable that repeated exposures could bear autonomic-mediated adverse effects on 

cardiac function.   

Thus, the findings within this dissertation introduce many new questions about the 

etiology of autonomic-mediated cardiac effects of air pollutant exposure.  As well, this research 

enhances understanding of the impact of diesel exhaust constituents, the role of disease in 

conferring susceptibility to diesel exhaust, and the mechanisms by which exposure to diesel 

exhaust causes adverse cardiovascular health effects.  While decreasing exposure to air pollution 

remains the most assured means of harm prevention, there may be promise for β-adrenergic 

blockade in inhibiting the adverse cardiac effects of air pollutants,. Taken together, the findings 

in this dissertation may contribute to both therapeutic and air quality control strategies for 

mitigating the health effects of air pollution exposure.



 

Figure A.1. Study Regimen: Treadmill stress test after intra
exhaust particles (DEP; 500 µg/kg) or saline vehicle (1 ml/kg) in adult SHHF rats. Treadmill 
challenges occurred at 21 hours pre
consisted of 2 consecutive runs separated by 25 min of rest. ECG was monitored by 
radiotelemetry during treadmill (continuous) or while in home cages (2 of every 15 min).  Rats 
were trained 4 times before data collection on the treadmill.
 
 
 
  

 

 

 
 
 

APPENDIX 
 
 
 

Study Regimen: Treadmill stress test after intra-tracheal instillation (IT) of diesel 
g/kg) or saline vehicle (1 ml/kg) in adult SHHF rats. Treadmill 

challenges occurred at 21 hours pre-IT, 3 hours post-IT, and 24 hours post-IT.  Each challenge 
consisted of 2 consecutive runs separated by 25 min of rest. ECG was monitored by 
radiotelemetry during treadmill (continuous) or while in home cages (2 of every 15 min).  Rats 
were trained 4 times before data collection on the treadmill.  

 

tracheal instillation (IT) of diesel 
g/kg) or saline vehicle (1 ml/kg) in adult SHHF rats. Treadmill 

.  Each challenge 
consisted of 2 consecutive runs separated by 25 min of rest. ECG was monitored by 
radiotelemetry during treadmill (continuous) or while in home cages (2 of every 15 min).  Rats 
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Figure A.2.  Effects of DEP IT on autonomic regulation of the heart during treadmill challenge 
at 3 h post-IT.  Trends in SDNN suggested parasympathetic activation at this time.  All values 
are from 2nd of 2 consecutive treadmill runs and presented as change in means (± S.E) relative to 
pre-IT. n=4/group. 
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Figure A.3. Effects of DEP IT on autonomic regulation of the heart during treadmill challenge at 
24 h post-IT.  Trends in SDNN suggested potential sympathetic activation at this time.  All 
values are from 2nd of 2 consecutive treadmill runs and presented as change in means (± S.E) 
relative to pre-IT. n=4/group. 
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Figure A.4. Effects of DEP IT on autonomic regulation of the heart in home cages.  Gray bars 
represent missing data for treadmill challenges.  Group means (± S.E), n=4/group. 
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Figure A.5. Effects of DEP IT on autonomic regulation of the heart in home cages.  Gray bars 
represent missing data for treadmill challenges.  Group means (± S.E), n=4/group.  Stars indicate 
significant differences between groups (P < 0.05).  DEP significantly increased RMSSD at 6 h 
and 9 h post-IT, indicating parasympathetic excitation. 
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