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ABSTRACT
Kevin RaymondOlson Nonflammable&PerfluoropolyetheElectrolytesfor SaferLithium-Based
Batteries
(Under the direction of Joseph M. DeSimone)
The importance of batteries to sustainable energy is widely recognized. Litmum
batteries I IBs) not onlypower handheld electronics but also are increasingilygimplemented
in electric wvgerhiidcol easp padnidc aftsinnanrst t o st ore energ
sources, making sustainable energy a reality. Unfortunately, LIBsinoathighly flammable
solvent and can exhibit catastrophitbheBbemg | ur e,
787, Samsung Galaxy Notengverboardand Tesla battery fire3hus, realizing the full potential
of LIBs in largescale systemseqguires the developmeot nonflammable electrolytes.
Perfluoropolyether (PFPEjased electrolytes address many of the shortcomings of
conventional carbonateased electrolytes or polymer electrolytes such as poly(ethylene oxide).
PFPEbased electrolytesansport lithium more efficiently than conventional electrolytes, which
has important implications on losigrm battery performancFPEs make interesting electrolyte
solvents because they are nonflammable, nonvolatile, liquid across a broad tempenageyre r
chemically stable, and interact favorably with the anion of fluorinated salts. In this work, the
molecular underpinnings for ion transport in PFPE electrolytes will be established by
systematically probing how PFPE structure affects electrolyte mpeafoce including ionic
conductivity, diffusivity, and transference number. End group polarity, end group concentration,

and PFPE molecular weight all have important implicationslectrolyte performance.
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Chapter 1: Introduction to Lithium -lon Battery Electrolytes
1.1 Importance of Batteries in the Global Energy Landscape
As the worldwide population grows, nonrenewable eneegpurces such as fossil fuels
are being depleted. Furthermore, combustion of petroleum, fossil fuels, and coal releases carbon
dioxide and other greenhouse gases that contribute to global warhiihgse three fuel sources

account for over 80% of energgnsumption in the United States, as showigure1.1.3

Total = 97.4 quadrillion
British thermal units (Btu) Total = 10.2 quadrillion Btu

geothermal 2%
- solar 6%
— wind 21%

biomass waste 5%

biofuels 22% biomass
46%

wood 19%

hydroelectric 24%

Figurel.l U.S. energy consumption by source in 2016. Reprinted from3tef. |

In contrast, renewable energy sourcegch as wind and solar are sustainable and
environmentally friendly. This has led the United States to take urgent steps toward shifting its
energy usage to renewable sources. Following Executive Order 13693, the Department of Energy
must triple the fedeta gover nment sé renewabl e energy usag
30% renewable energy consumption by the year 2@Z&is mandate remains in effect despite

environmental policy changes made by the current administration in Executive Order 13783.)
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Figurel.2 Curent and projected federal government energy consumption. Reprinted frofh ref. |

A major issue with renewable energy sources is their intermittent nature. Solar energy is
only available whe the sun is shining, and wind energy is only available when the wind is
blowing. While fossil fuels can be stored ford@emand electricity production, sunshine and wind
cannot be captured. Instead, tlectricity generated by these energy sources mestared for
later use. Battery storage is one solution to this problem: excess electricity produced during peak
hours can be stored for use at a time when the energy source is less abundant.

Clearly, the emerging role of rechargeable batteries in aietyogoes beyond powering
portable electronic devices like smartphones and laptops. Aside from grid energy storage,
automobiles and aircraft are increasingly shifting toward electrification, reducing our dependence
on fossil fuels and cutting greenhouses gmissions. However, these developments can only be
realized with a rechargeable battery that is safe, has high energy densities, and delivers energy
quickly ondemand.

1.2 Development of Lithium-lon Batteries

Lithium is both the most electropositive8(04V vs. SHE) and lightest (6.94 amu) metal,

making it a desirable active material for highergy batteries. After initial demonstration of

primary (singleuse) batteries containing a metallic lithium anode in Fog@entists at Exxon



developed a secondafrechargeable) battery containing a lithium negative electrode and titanium
disulfide positive electrode.TiS, was already known to reversibly intercalate lithium,
theoretically allowing a battery to charge and discharge repeatedly. However, thaseshadte

not viable due to uneven plating of metallic lithium, resulting in dendrite formation and
catastrophic battery failure. A short time later, John Goodenough made his seminal contribution
to the battery, proposing lithium metal oxides with the fdamLiMxO. as positive electrode
materials® Scientists then demonstrated that carbonaceous secondary insertion materials could be
substituted for lithium as the negative electrode material, solving the issue of metallic dendrite
formation® The first lithum-ion battery (LIB) was commercialized by Sony in 1992. It contained

a graphite anode and LiCe@athode, the materials still found in the vast majority of LIBs téday.

As a culmination of these technological developments, LIBs exhibit long life cgolkdigh

power densities. Therefore, lithiiumon batteri es are ubiquitous
laptops, smartphones, and other handheld portable electtbitos lithiumvion battery market is

currently valued at about $30 billion and is projedtedrow to about $75 billion by 2025.

1.3 Principles of Lithium -lon Battery Operation

Q =

Cu

~

-

Separator

Anode Electrolyte Cathode
(graphite) (LiCo0,)
J

Figurel.3 Schematic of a lithiuaon batterycell. Reprinted withpermissiorfrom ref. [L0]. Copyright
(2013) America Chemical Society.



As shown inFigure 1.3, a lithiumion battery cell consists of an anode and a cathode
connected by an external circuit and separated internally by a sephatos swollen with
electrolyte. The electrolyte conducts the ionic component of these reactions),(lyiet it is
necessarily electronically insulating in order to avoid-del€harge and internal short circuiiise
current is forced through the external circuit where work is performed.

LIB cathodes ee typically composed of transition metal oxides like LiGa@d LiMrnpOs,
while anodes primarily consist of carbbased compounds such as grapHit€hese layered,
secondary insertion materials allow lithium ions to reversibly intercalate into thelécsbeée
structures upon charge and discharge. The half reactions that occur at the graphite anode and the
LiCoO> cathode are provided in Eqr.1) and (.2).

# oA o EP , B [ofed)
, ERTP ©, E A |, E#1 pg;

Commercial LIB electrolytes typically consist of a lithiumltdike LiPFs dissolved in a
mixture of small molecule alkyl carbonates such as ethylene carbonate (EC), dimethyl carbonate
(DMC), and diethyl carbonate (DE&).The separator consists of a thin, porous polyolefin,
generally a trilayer polypropylergolyethylenepolypropylene film for reasons that will be
discussed in further detail in Sectibrt.2.

In LIBs, alkyl carbonate solvent molecules are placed in contact with highly energetic
active materials. Alkyl arbonates are not thermodynamically stable at the operating potentials of
the electrodes. Fortunately, EC sacrificially reacts at electrode surfaces, forming a thin polymer
network known as the sokielectrolyte interphase (SEtjThe SEl is electronicaflinsulating and
impermeable to solvent molecules, preventing further breakdown of the electrolytis. Li

conductive through the SEI, enabling the desired galvanic reactions to occur within the electrodes.



1.4 Electrolyte Hazards

Unfortunately, the lithiurrion battery is plagued by safety hazards. Carbonate solvents, the
main components of LIB electrolytes, are highly flammable and have low flash pdiitsethyl
carbonate (DMC) has an HMIS flammability rating of 3 on a scale from 0 to 4, designatirg it as
material capable of ignition under almost all normal temperature conditions. This electrolyte
flammability issue has resulted in several walblicized, catastrophic battery failures causing
systems like the Samsung Galaxy Note 7, Tesla, hoverboamigarettes, and the Boeing

Dreamliner to burst into flames.

1.4.1 Failure Rates

|t i's convenient here to distinguish betwe
referred to as a fibattery packo). A lvestt ery
electrical energy from chemical energy, as schematically showigime 1.3. A battery consists
of a stack of several cells, the wiring that interconnects them electrically, and the battery housing.
A rechargeable battery malso contain a temperature sensor to prevent overcharging of the
device.

The failure rate of a single lithiwion cell is about 1 in 10 million, generally considered
acceptable for use in handheld devices and other small applications. But fosdalge
applications, batteries may contain up to several thousands of cells, exacerbating failure rates of
the battery to more than 1 in 10 thous&hthdeed, it has been reported that a Tesla Model S
battery contains 8,256 cellsdditionally, these larger bi&@ries may store up to 1,000 times more
energy, increasing the likelihood that a single battery malfunction will result in significant property
damage, injury, or even fatality. Thus, the hazards associated with Hb@sed batteries are

unacceptable fdarge scale applications.



Because the safety hazards of the LIB itself have not been eliminated to this point, car
manufacturers currently use expensive engineering controls to circumvent the issue. For example,
both GM and Tesla Motors integrate sopbetied thermal management systems into their
batteries, relying on glycol coolant to prevent thermal runaway of the b&ttérRallistic
aluminum and titanium shielding on the underbody of the car is also employed to avoid battery
puncture, adding sigfitant mass to the ca? Addressing battery hazards at the source, rather than
engineering around them, would simultaneously reduce the mass and cost of batteries while
increasing consumer confidence in electric vehicles and grid stéfrage.

1.4.2 Failure Mechanism
In batteries, thermal runaway occurs when the heat of the system cannot be dissipated by
heat radiation and convection processes. The rise in temperature accelerates exothermic chemical
reactions over the desired galvanic ones, eventually leadingdontrolled heat generation.
Although the chemical reactions contributing to thermal runaway may occur in any order, it
roughly proceeds as follows, with each reaction releasing heat that fuels the following process:
1. Moderate initial overheating occur®i excessive currents, overcharging, or elevated
external temperatures.
2. The SEI layer decomposes due to either physical penetration or elevated temperatures
(above 68C), forming lithium carbonate and gaseous products.
3. Intercalated lithium reacts with aagic electrolyte to release flammable hydrocarbons
such as ethane and methane, pressurizing the cell. Though the temperature is above the
flash point of these gases, combustion does not occur because no oxygen is present in

the cell.



4. The polymer separatanelts, allowing the electrodes to contact each other and short

circuit the battery.

5. The metal oxide cathode breaks down and releases oxygen, enabling flammable alkyl

carbonates and hydrocarbons to combust.

6. Cell pressurization leads to venting, causingreash of flammable gas to emit from

the battery.

To improve battery safety, two mechanisms have been built into LIBs. First, the polymer
separator consists of a trilayered polypropylpobethylenepolypropylene film. The
polyethylene film melts at 13Q, and polypropylene melts at 1%& In the case of rapid heating,
the polyethylene film melts first, clogging the pores of the unmelted polypropylene film and
shutting down the batterin theory. Second, a safety vent is implemented to prevent uncontrolled
cell rupture under cases of extreme pressurization. Despite these protections, thermal runaway still
causes catastrophic failure in LIBs. Even wlhstructed battery cells fail, and small errors in

manufacturing, testing, and inspection increase theofatese failure$?23

1.5 Criteria for Evaluating Novel Battery Electrolytes
Significant research efforts have aimed to identify nonflammable electrolytes in order to
enhance the viability of LIBs for largscale application®:?® To assess novel electytd

performance, several parameters must be evaluated.

1.5.1 Flammability and Temperature Range

In modern LIBs, highly energetic active materials are placed in contact with volatile,
flammable carbonate solvents. Thermal decomposition, oxidation, and recifc¢herelectrolyte
are all exothermic reactions that can trigger thermal rundagulting in combustion processes

fueled by carbonate solvents. Replacing the electrolyte with a nonflammable material, such as a



polymer or oligomer, would dramaticalljnprove battery safety. Additional consideration should
be given to the fact that the electrolyte should be able to operate in a broad temperature range: a
battery electrolyte solvent that is crystalline or gaseous provides insufficient ion tradsport.

Sewral techniques may be used to evaluate the operating temperature range of an
electrolyte. To determine the lower temperature limit, crystallization and glass transition
temperatures can be identified by differential scanning calorimetry (DSC). Rheological
measurements can also be made to establish tt
viscosity is sufficiently low to transport ions efficiently.

Thermogravimetric analysis (TGA) is often used to establish an upper temperature limit by
means ofhe material 6s volatility or de®m@d thel at i on
temperature at which 5% mass loss is observed. Mass lossaniatyas a result adither direct
evaporation of the sample (low molecular weight systems) or by degradatiba backbone
followed by evaporation of the degraded components (nonvolatile or polymeric systems).

100
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Figurel.4 TGA curve showing determination of 95% degradation temperature.

A materi al 6s attéristicsmantbé évaluatgd usirig @ combination of flash

point and sustained burning measurements. Clogpdlash point measurements involve heating



a sealed cup of material to periodically increasing temperatures before applying a flame to the
sample ¢ test for a flash, as described in ASTM D3278. Sustained burning measurements test
whether a material continues to produce sufficient flammable vapor at a given temperature to burn
when the ignition source is removed, as described in ASTM D4206. Twoiaateay exhibit

the same flash point but different sustained burning characteristics.

Figurel.5 Smaltscale closedup apparatus for flash point and sustained burning measurements.

1.5.2 Electrochemical Stablity
Nonflammability is not necessarily indicative of a safe solvent under conditions of abuse

in an electrochemical environmefiElectrolytes must exhibit stability across an electrochemical
potential window that is larger than the operating potentiatlow of the anode and the cathode
( & 4'Atg prevent the exothermic reactions described in Settib2. If the highest occupied
molecular orbital (HOMO) of the electrolyte is above the Fermi energy of the cathode, the
eledrolyte will be oxidized; if the lowest unoccupied molecular orbital (LUMO) of the electrolytes
is below the Fermi energy of the anode, the electrolyte will be reduced. Although it is often
infeasible to design electrolytes that have such a large HQNVIKAO gap, electrolyte stability
fortunately depends on the formation of a stable SEI layer: electrolyte stability is kinetically, rather

than thermodynamically, controll&8.



Cyclic voltammetry can be used to evaluate the anodic and cathodic stabilityvana gi
electrolyte. Reduction and oxidation potentials are measured as the potential at which the current
density reaches a peelected cutoff valuk 0.2 mA/cnt for the example shown belo¥.The

electrochemical window is defined as the difference betweese tind potentials.
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Figure1l.6 Cyclic voltammogram of electrolyte showing electrochemical stability windReprinted
from ref. [27] with permission from Elsevier.

1.5.3 Cyclability

The longterm stability of dattery can be assessed by measuring the capacity of the battery
over extended cyclin§ An ideal electrolyte should form a passivation layer that remains stable
despite electrode volume changes upon cycling, preventing further decomposition of the
electolyte and corresponding capacity loss. Many commercialized LIBs maintain at least 80% of

their capacity after 1,000 cyclés.
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Figurel.7 Battery capacity retention over extended cycling. Reprinted frori2@.

1.5.4 lonic Conductivity

The ionic conductivity of an electrolyte determines how quickly the energy stored in the

LI B can

wheren; is the concentration of charge carrieggs the ionic charge, ang is the ionic mobility.
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It is generally accepted that ionic conductivities on the orderdSkin? are necessary for most

high-power applicions®Al k y |
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lonic conductivity is determined experimentally using AC impedance spectroscopy, which

involves applying a small, sinusoidal potential to an electrochemical cell and measuring the current

response. Téaresulting AC current is shifted in phase from the excitation potential. Impédance

the ratio of voltage to curredtcan then be expressed as a complex function that contains feal (in

phase) and imaginary (eof-phase) components:

@]

O

o AR

% Al+O OBl

P&

whereZ is the impedancd; is the applied voltagéjs the measured currepnts equal to the square

root of-1, and(

I phaselsleft.
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The real component of agtion (1.4) corresponds to resistance, while the imaginary
component corresponds to reactance (which includes capacitance and inductance). Plotting the
imaginary vs. real components of the impedance produces a Nyquisisstown ifrigure1.8.3°
The impedance can be modeled by an equivalent circuit to extract the relevant sources of
resistance, capacitance, and inductance in the system. The (extrapeiaterbept of the Nyquist
plot correspnds to the bulk electrolyte resistance from which ionic conductivity may be

calculated.
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Figurel.8 Nyquist plot and equivalent circuit used to model d&&printed from ref[30].

1.5.5 Transference Number

For LIBs, only Li* intercalates into the electrode materials and participates in redox
reactions that ultimately result in work being performed. To gain an accurate representation of the
Aeffectived 1 onic c¢ onduotyte,ithe charge transporvaf thegredoxh r o u g
active Li" ion must be quantified. For an ideal solution, the cation transference nuf)hettfe

fraction of the total current carried by the cation:

s O (o}
_ 0 ©

pd

wherel, >, s andD denote the current, mobility, ionic conductivity, and diffusion coefficients,
and the subscripts ., ando represent the values for the cation, anion, totdl electrolyte,

respectively’* For nonideal solutions with ion aggregation, equatidn5) becomes invalid.
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Mobility of higherorder ion aggregates (e.g. triplets) must be considered, and negative
transference numbers gressible®

Electrolytes witht" << 1, in which the anion is more mobile thari,lexperience strong
polarization due to aniofsalt) enrichment and depletion near the electrode surfaces, impairing
long-term battery performance significantly. In fact, Dognd coworkers showed that electrolytes
with a unity transference number outperform systems with 10x higher ionic conductivity=but
0.2 because cells witfi near unity have higher energy densities and {peaker densitieé® In
most nonaqueous elealyted including commercialized alkyl carbonate solvént$is between
0.20 and 0.463

Several methods for the measurement of cation transference numbers in LIB electrolytes
exist. An insightful review of these methods is provided by Zugmann and Garefeience31.

The two methods used in this work for characterization of the transference duptdtentiostatic
polarization and pulsefield gradient nuclear magnetic resonance{§fgR)d are described here
briefly.

1.5.5.1 Potentiostatic Polarization Method for Measurement oft*

In the potentiostatic polarization method, a constant potential is applied to a symmetric cell
with nonblocking lithium electrodes, and the current response is measured over time. The initial
current arises from the flux of both caticared anions. Because anions do not participate in redox
reactions at the electrodes, anions (or more accurately, salts) build up near one electrode and are
depleted near the other. The salt concentration gradient creates a diffusion force that opposes the
migration force from the applied potential. The anion current vanishes when migration is exactly

counteracted by diffusion. Thus, the steathBte current is carried only by the cation, which

13



reversibly reacts at the electrode surfaces. Conceptuallyatiefdrence number is given by the

ratio between the steadyate (cation) current and the initial (total) current.
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Figure1.9 Chronoamperogram of LiRElectrolyte in ethylene carbonate/diethyl carboméatk an
applied voltage of 10 m\Reprinted from ref.35] with permission from Elsevier.

An additional correction must be applied because lithium is reactive with nearly all
electrolyte materials, creating a passivation layer that changes the celhoesistar the course
of the measurement. Accounting for changes in the electrode surface resistances over time, the
transference number is given by:

0 Yo 'OY
OY®n 0OY PSP

0
wherel, V,andR are the current, applied potential, and resistance and the subseniutss
denote the initial and steady state conditions, respecfi¥/&lye correction for changing resistance
is important, as evidenced Bygure 1.9 above: the simple ratio of steadtate to initial current

from the chronoamperogram is nearly 0.7, whergas known to be <0.4 for the given

electrolyte®®

1.5.5.2 PulsedField Gradient NMR (pfg-NMR) Method for Measuring t+
Nudear magnetic resonance can be used to measure thdiffsisiion coefficients of

different nuclei in an electrolyte. The pulse sequence for a plidddyradient NMR experiment

14



is given inFigure1.10. Similar to a standard 1BNMR experiment, the pfgpin echo experiment
begins with a 90rf pulse (pulse 1), shifting the bulk magnetization vector from thriz to the

X-y plane, perpendicular to the static field. Pulse 2 is an rf gradient pulse with an intensity that is
a linea function of position in the-direction. The rotation of the magnetization vector is different

at each spatial position in thedirection, canceling the net magnetization. Nuclear diffusion is
allowed to occur for a short period, and then a°1Bpulse (pulse 3) is applied to the sample to
invert the magnetization. The gradient pulse (pulse 4) is applied once again to refocus the

magnetizatior®

rf pulse

T T
e o —
.
| Observation Channel | 4\/\/\/\/\/

90°x 180°x Acquisition

gradient pulse

| Gradient Channel |

A

Figurel.10 Schematic representation of gfiMR pulse gquence.
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nuclear diffusion and b) with nuclear diffusidReprinted from ref[37].

In the absence ofutlear diffusion, the effects of pulses 2 and 4 exactly cancel each other

S

A

.

out and the full signal intensity is recovered, as shown schematic&iigtire1.11a3’ In contrast,

translational motion of a nucleus sas it to experience a different magnetic field strength during

pulses 2 and 4 due to the spatial dependence of gradient intensity. In the presence of nuclear

diffusion, the effects of pulses 2 and 4 on a nucleus do not exactly cancel each other cait and th

magnetization is not fully refocused.
(Figurel.11b andFigurel.12).
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Figurel.12 3C pfgNMR spectra ot*CCl,y Peak intensity decreases as gradient field strength increases.

Reprinted from ref.36] with permission from John Wiley and Sons.
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The amplitude of the attenuated sigiahas a function of gradierstrengthcan be fit to

obtain the diffusion coefficient of a given species using equati@j (

o0 © Yo P&
where 29 is thegigsyrtohmea ggnreatdiice nrtatsitor,ength, O i s
DNRi s the diffusion coefficient, @ is the inte

between pulse¥ Ultimately, determinatin of the cation §."MR) and anion D-N\MR) diffusion
coefficients enables calculation of the transference number.

. ]
° ] ] pay

For electrolytes containinfluorinated lithium salts, as is common in LIBsj NMR is
used to probe the cation diffusivity whitdf NMR can be used to probe the anion diffusivity.
Considering pff®NMR measures the diffusion of nuclei rather than free ions, this method is only

valid for ideal, dilute solutions in which no ion association occurs.

1.6 Current Research in LIB Electrolytes

No single electrolyte to date excels in all of the above cries@fe (nonflammable),
electrochemically stable, cyclable, highly conductive, and higinsference number. Each
electrolyte comes with its own compromises and therefore should be considered appropriate only
for certain applications. For example, the principal shortcomings of -enaddicule carbonate
based electrolytes are low transferenamber and poor safety. Yet because of their low cost, high
ionic conductivity, and broad electrochemical stability window, these electrolytes have been
deemed suitable for most smatlale applications requiring high energy density.

In a contrasting exanhpe , Xu and cowor kers Firescael nttol y
electrolyte for LIBs that exhibits a potenti al

window for water electrolysis but still well below the potential window of alkyl carbonate sslvent
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( & 4 . 3B Altholgh the small potential window yields low energy densities, several other LIB
electrolyte requi radmsSemisychnenflidmmablle 00D, ec
Waterin-salt electrolytes could be useful for larggale, sationary applications in which safety is
paramount but energy density requirements are less stringent.

Electrolyte safety remains at the forefront of battery research. Approaches range from
incorporating fluorinate and phosphafé flameretardant addities into alkyl carbonate
electrolytes to replacing the electrolyte entirely with nonvolatile polymer electrolytes or room
temperature ionic liquids (RTILS::*244 A brief review regarding additives and replacement

electrolytes is included below.

1.6.1 Electrolyte Additives
Zhang et.al. provided a thorough review of electrolyte additives to improve LIB
performance via interphase formation, salt stabilization, and flammability redécBiefly,
researchers have explored flanetardant additives for alkyl daonate electrolytes in order to
preserve the basic battery chemistries while improving safety. These additives may function in
three ways:
i.  Char formation, creating an insulating layer between condensed and gas phases to
prevent heat transfer and furthentbustion of the electrolyte.
ii. Radical scavenging, terminating chain reactions contributing topluzse
combustion.
iii. Inert dilution of flammable components until flash point is eliminated.
Phosphate and phosphazdrased additives typically act as type larhe retardants.
Unfortunately, flame retardance often comes at a cost to other electrolyte performance parameters

including reductive stability and ionic conductivity of the electrolyte in phospkarao&ining
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systemg’®4’ Fluorinecontaining additivebave also been studied extensively. These compounds
function as type iii additives, and flagloint elimination is only observed when the fluorinated
compound is the major componéhtAgain, the fluorinated additive tends to reduce ionic
conductivity of he electrolyte, resulting in a tradf between flammability and cell
performancé?®
1.6.2 Room-Temperature lonic Liquids (RTILS)

lonic liquids are a liquid mixture of anions and catioRgre1.13) in the absence of a
molecular soten® simply, they are molten salts. RTILs, which typically contain quaternary
ammonium cations, are a specific class of ionic liquids that have melting temperatures below room
temperaturé® Li*-containing ionic liquids often have significantly high meititemperatures
because of the small ionic radius of .Liror this reason, a majority of electrolytes consist of non

lithium-containing RTILs mixed with lithium salts rather than lithio@ased ILs.

RTILs are considered nonflammable due to their negligibfeor pressureS.They exhibit
ionic conduct i ¥9cmiaereom tespetaturgand teussfer&nteédnumbers as high
as &a'elowdver, there are several drawbacks to using RTILs as LIB electrolytes. Due to their
moisture sensitivity and higtiscosities (up to 5000 cPjthe cost of stringent purifiti@n and
manufacturing is highiurthermore, the lack of solvent molecules to act as sacrificial building
blocks for electrodelectrolyte interphase formation diminishes the kinetic metagialufi
RTILs.2*In fact, RTILs generate more heat in the presence of active electrode materials than small
mol ecul e al kyl carbonates despite the I oni c
stability window®® These findings led Kang Xu, author of dwexcellent review articles on
nonaqueous electrolytes, to concl ude:-scalet her e

application of RTIL in commérci al LI'B in the
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Figurel.13 Structure of) cations andb) anions for a set of representative ionic liquideprinted with
permission from ref.§0]. Copyright (201LAmerican Chemical Society.

1.6.3Polymer Electrolytes

Polymer electrolytes present the intriguing possibilityimmplementing a thin, flexible

membrane to serve as both the conductive medium and the electronic separator between electrode
materials in a battery. These materials consist of lithium salts dissolved either in a neat polymer
(Asol i d pol ymein cresklisked polgniery netvarks )swollen with plasticizing

solvents (fgel pFentoy amd cowoekere fost reportey theeabiliy)of PEO to
dissolve alkali metal salts in 1973, providing the basis for research in polymer elecffSjnes.
that time, the field of polymer electrolytes has bkegely dominated by studies of PE&ANd its

polyether analogs.
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AlthoughPEOexhibitsdi >10*Scm'above its melting temperatu
at room temperature hinders segmental nmstiaf polymer chains and impedes ionic conductton.
Numerous efforts have been made to mitigate t|
of copolymers? polymer blends! comblike structurez® and polymer brushe$.Despite these
elegant achitecturesionic conductivities greater than'1& cm' at room temperature are rare in

PEObased electrolytes, and electreglectrolyte compatibility is often sacrificed.

Singlei on conductors (also referredhehighoms fApo
low-ion content case, respectively) consist of lithium salts in which the anions are covalently
attached to a polymer backbone, as showrigure 1.14.5° This effectively immobilizes the
anions, enabling transferennambers of unity to be achieved. However, these materials suffer
from low lithium salt dissociatidi and dramatic increasesTgwith increasing ion content along
the polymer backborf®.For these reasons, ionic conductivities abové 3@m* have notbeen

realized in singléon conductors.

n n
T -
L™ X SO, Li*
Polymer Electrolyte Polyelectrolyte

Figurel.14 Comparison between polymer electrolyte aotlielectrolyte in which the anion is
covalently attached to thmolymer. Reprinted from ref.g0] with permision from Elsevier.
Gel polymer electrolytes were developed out of necessity in order to achieve sufficient
ionic conductivities in polymer electrolytes. Polymer networks plasticized with more than 60%
liquid electrolyte generally exhibit ionic conducties that are only-8 times lower than that of

the pure liquid electrolyt® Furthermore, thelectrochemical and thermal stability of gel polymer
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electrolytes is largely determinég the plasticizer molecule$hus, although ionic conductivities
on theorder of 1 S cm! are achievable, gel polymer electrolytaay still be flammable and

havesimilar electrochemical stability windowis that of nealiquid electrolytes$*

1.6.3.1 lon Solvation

Research in polymer electrolytes has overwhelmingly targeted ittierm ion for
solvation. Cation solvation is straightforward and can be accomplished by lone pairs of electrons
on heteroatoms. For example; i$ solvated via coordination toBether oxygens in the PEO
backbone, as shown Figure1.15.5% 67 Preferential coordination of heteroatoms téhinders its

mobility, leading to lowt* values®®

Figurel.15 Crystal structure of (PEGDICFsSGO; with CRSOs shaded. Dashed lines showoodination

to a lithium ion.From ref. p7]. Reprinted with permission from AAAS.

Very few efforts have been made to preferentially solvate the counterion of lithium salts.
Traditionally, anion solvation is achieved via hydrogen bonding. But, polymersexihabit
hydrogen bonding are usually quite stiff and cohesive, hindering the mobility of ions
significantly®® Lewis acidity is an alternative property that can be utilized to achieve anion

solvation. For example, Mehtat al. incorporated boroigontainirg rings into a polyether
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backbone, leading to elevated transference numbéi& 15) but moderate ionic conductivities
( E0%S cmb).’”®To our knowledge, boreoontaining polymers and additives are the only Lewis
acidic electrolytes that aim to fAtrapo, or so

1.6.3.2lon Transport

lonic conduction in amorphous materials wscvia two mechanisms: vehicular transport
and ion hopping? Vehicular transport refers to the-diffusion of Lifwi t hi n i dthe fivehi
molecules in its solvation shell. Considering that gel polymer electrolytes contain plasticizing
solvents, vehicar transport dominates ionic conduction in these matépidis.contrast, the
vehicular transport phenomenon is negligible in solid polymer electrolytes of high molecular
weight because chain entanglements constrain polymer diff(fsiorstead, ion hoppig
dominates Li transport, as shown iRigure 1.16.”® Above Ty, segmental motions of polymer
chains cause the coordination environment of o fluctuate away from its most stable
conformation, leading the ion to diffuse dowe thackbone toward lower free energy sft€Bhis

repetitive perturbation and diffusion of'lis the driving force for longange ion transport.

o’

)
<°A° v O
O----Li*--O

Lt Ly
".' “‘ O O ( E
o__ o) ™ (c')_)
0
J

Figurel.16 Lithium ion hopping facilitated bgegmental mitons of PEO chaing\dapted with
permission from ref.43]. Copyright (1988) American Chemical Society.
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1.6.4 Perfluoropolyether (PFPE) Materials

All perfluoropolyethers (PFPESs) containF; G-C, and GO bonds that provide this class
of materials its unique #mmal stability, low volatility, chain flexibility, and extreme chemical
resistancé>*PFPEs® chemical stability and | arge wuse
long-life lubricants in harsh applications such as aerospace, automotive, and industrial
manufacturing industried. Crosslinked PFPE networks have also been developed and
implemented as surface coatings for marine biofouling applicaffonigrofluidics/® and particle
replication mold€®Coi nci dent al | y, PF P E 6tremechemigalresistanbee r ma |
amorphous nature, and rpolarizability make it an intriguing solvent for LIB electrolytes as well.
1.6.4.1 Commercially Available Perfluoropolyethers

PFPE may be categorized into four families based on repeat unit structure, aaiszecim
in Table 1.1 below. The PFPEs studied herein belong to the second two product lines,

manufactured by Solvay and Exfluor Research Corporation.

Tablel.1 Molecular structures afommercially available PFPEs.

Product Line Manufacturer Repeat Unit Structure
Chemours . RAM-CFCF,0R
Krytox® (DuPon) Hexafluoropropylene Oxidg NééFs );
Demnum® Daikin Hexafluorooxetane RV(CFzCFzCFzO%R
m
Tetrafluoroethylene Oxide
Fomblin/Fluorolink® Solvay and Difluoromethylene | Rwcei-oforscro}/{er.o)crsmnr
Oxide "
CH#G Exfluor Tetrafluoroethylene Oxide RV(CFzCFN)“R
m
The # in AC#GOo refers to the number of carbons in the
triethylene glycolwhi ch contains six carbons, as AC6GO.
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Commercial PFPEs are available in a range of molecular weights with various non
functional and functional end groups useful $arface modificationSolvaygenerallyclassifies
its PFPEs as fiFombi DhE® bet wmehe0DArand 4000
for molecular weights below 2000 g/mol. A representative selection of commercially available
PFPE end groups is given irable 1.2. Although the designations in the table gpp the
Fluorolink® product line, the end groups shown are representative of those available in the other
product lines. In this work, PFPEs will often be referred to by their trade names, in which the trade
name consists of @ pr(egdRiuorblink® E1D &IOPFRE withdethaxylaged at i o
diol end groups).

Tablel.2 Selection of commercially available Fluorolink® end groups.

Designation End Group R
D10 Diol <~ CH,0H
E10 Ethoxylated Diol MCHzo\KCHZCHzO%H
i
F10 Phoghate \NV‘CH20<CHZCH20>:T—OH
OH
o
MD700 Methacrylate v CHZOJJ\N/\/°\”/§
H
o

1.6.4.2 Perfluoropolyether Synthesis

Perfluoropolyethers were first synthesized in the way that many great scientific discoveries
are madé by mistake. In 1953, Haszeldine reported an oily product when attempting to
photopolymerize éxafluoropropylené® He had unknowingly synthesized PFPE following the
photooxidation mechanism depictedrigurel1.17.

Krytox® and Demnum® were the first commercialized PFPE oils. Both are synthesized

via anionic ringopening plymerization of fluorinated monomers. Krytox® is synthesized by the
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basecatalyzed homopolymerization of hexafluoropropylene oxide (HFPO) using a fluoride source
such as cesium fluoride. The terminal acyl fluoride group is reacted by traditional chesricstri
yield functional end groups, or alternatively removed by fluorination to yield inert polyether
products ranging anywhere frome 2 ton = 508! Control over the polymerization is exerted by
solvent and temperature conditions.

Schemel.1 Synthesis of Krytox® vianionicROP of HFPO

C F, F, |
/ \ CsF E c/C\C/O (|::/C\o CE. F
FC—oO solvent 3 F, | \ﬂ/
FiC” CFs 0

n

Demnum® is synthesized via an analogous -opgning polymerization of
tetrafluorooxetan& Because the tetrafluorooxetane monomer is only partially fluorinated, the
final poly(perfluorotrimethylene oxide) material is obtained only after a subsequent fluorination
step and final end group conversfnThe subsequent fluorination is carried out by reacting

fluorine gas directly with the polymer at 2@or in the presenagf UV irradiation.

Schemel.2 Synthesis of Demnum®ia anionicROPof tetrafluaooxetane followed by fluorination (not

shown).

H F H
F.C—O CsF cz cz Cz )k
| —_— X Ne” Not >
n

F,C—CH, solvent
Solvay manufactures its Fomblin/Fluorlink® PFRBsthe photooxidation of flumated
olefins like tetrafluoroethylene (TFE) or hexafluoropropylene (HFP). Oxygen is added into the
liguid monomers at40°C and i rradi at ed w§ The mathanismifag this ( o< ¢
polymerization is welestablished and was summarized clearly by Bungaad® Several of the

important propagation and termination reactions are showigurel1.17. It should be noted that

although the mechanism below corresponds to the photooxidation of HFP, TFE photooxidation
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undergoes analagous reactions. The Fluorolink® materials discussed in this dissertation are

synthesized by the photooxidation of TFE.

Oz
~CFp=CF+ — 3 ~CF,-CF-0-0- (1)
CFy CFy
I
HFP
~CFy-CF-0-0+ —— ~CF,~CF-0-0-CF-CF+  (2)
CF4 CF; CFy
HFP
~~CFp=CF-O+ —» ~ CF,~CF-O-CF,-CF+ (3)
CF3 CF, CF,
I o
2~CFp-CF-0-0» —2» 2~CF,~CF-O- (4)
CF, CFy
,.02
2~ CF,=CF-0-0+ —— ~CF,-CF-0-0-CF-CF~~ (5)
CF3 CFy CF3
"
~~CFp-CF-O+ —» ~CF* + CF3C—F (6)
CF,
Q
~~CFp=CF-O+ ——»=. ~CF;-C-F + CFy (7)
CF3
~CF-CFy O+ —» ~CF* + CFp°0 (8)
CF3 CF,
11 0
~Q-CF-O» —» ~0-C-F + CFy (9)
CF3
v

Figure1l.17 Important propagation artdrmination reactions irhé photooxidatiorf HFP with oxygen.
Reprinted with permission from rg84]. Copyright (1999) American Chemical Society.

When fluorinatedolefins are irradiated, the resulting radical reacts with oxygen at a
diffusion-limited rate (reaction 1). Disproportionation of the resulting peroxy radical forms an
alkoxy radical (reaction 4), which occurs more quickly than HFP addition to the pexdicgalr
(reaction 2). Thus, HFP addition to an alkoxy radical is the dominant propagation reaction. Above
-50°C, i -scission takes place, forming difluoromethylene radicals (reaction 6). The result is
random insertion of difluoromethylene oxide units within the hexafluoropropylene oxide
backbone. Temperature, feedstock ratio of reactants, solvent, and monomer atanerdn all

be adjusted to obtain the desired molecular weight and ratio between hexafluoropropylene oxide

and difluoromethylene oxide repeat uriits.
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Finally, direct fluorination may be employed to convert hydrogenated ethers to their
perfluorinated devatives. Three commercially viable methods exist to date: electrochemical
fluorination, oxidative fluorination with cobalt trifluoride, and liquid phase fluorinatfoBach
method relies on the same basic mechanism, in which proton abstraction frdsoraygalds an
alkyl radical, which then reacts with a fluoride source to produce the perfluorinated molecule.
However, several direct fluorination methods require the starting material to be soluble in the same
medium as the perfluorinated product, whighare unless the starting material is already partially
fluorinated®®

Exfluor solved this issue with a method to generate a large excess of fluorine radicals
relative to the nonfluorinated substrate under vigorous stirring. The Btfagow method
involves slow addition of the nonfluorinated substrate and excess fluorine to a halogenated solvent
(the DeSimone group has also performed fluorinations in liquid and supercritigel‘®@nzene
is added in small quantities, reacting spontaneously withifiedo generate high concentrations
of fluorine radicals. Though it makes use of toxic, explosive fluorine gas, the Ekfigomw
method produces perfluorinated ethers in higher yields and better purities than electrochemical or
cobalt trifluoridebased diect fluorination$® The low molecular weight perfluorinated glycols

di scussed in this work are synthesized by Exf

Schemel.3 Direct fluorination of a polyether to its pkrérinated PFPE analog.

FzIHe
CH2CHZO>W — CFZCFZO%
n n

1.6.4.3 Perfluoropolyether Electrolyte Properties
Importantly,Wonget al.recently discovered that PFPE oligomers dissolve the commonly

studied lithum bis(trifluoromethane)sulfomaide (LiTFSlor LiIN(SO:CFs)2) salt® PFPE/LITFSI
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electolytes exhibit ionic conductivity £ 10°® Scm! at room temperature withearunity
transference numberg 00.91), the highest knowtfivalues reported for a polymer electrolyte in
which lithium salt is dissolved in a polymer solvdiigure 1.18). It was proposed that the
perfluorinated polymer backbone solvates the highly fluorinated “T&sdn freeing Li" for
higher mobility.

If correct, this feature would be unique from the vast majority of polymer electrolytes that
coordinate to Li. Ani on sol vation may occur via the
perfluoroalkyl chains to segregate in order to minimize energetically unfavorable interactions of
the highly nonpolarizable fluorine atoms with other elem&titéis fluorous effect has been used
as an alternative to covalent immobilization in applications such as microdrraysss
spectrometry? and fluorous soligphase extractioft

Temperature (°C)
100908070 6050 40 30 2

3 a a A

' Ls

-
o

T
o
(=]

2
|}

e

[=2]

Conductivy, o (S cm-1)
—
=
o
Addal
| )
: S
'
L3 4equiny souasajsuel |

—
<
(=1}
T
| ]
o o
o N

v L] L] v v
2.6 2.8 3.0 3.2 3.4
Temperature (1000/K)

Figure1.18 Temperature dependenakionic conductivity and transference number of PFREtmlyte
with 9.1 wt.% LiTFSI.Reprinted with permission from reB9.

Wong and coworkers studied LIN(SCFs)2 solubility in PFPEs of varying molecular
weight with diol and methyl carbonate endogps. This maximum salt concentration was

expressed as the molar ratio of lithium ieaperfluoroetherepeat un (rmax).
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PEO electrofte salt concentrations are often expressethagdefined as I[i *]/[ether) because
the ethepxygen atoms known to be responsible for solvating lithium. Therefosggis constant
for PEO of varying molecular weighin contrast,rmax decreases expentially with increasing
PFPE molecular weighF{gure1.19a).

Because PFRBPMC dissolves significantly more salt than PFBIBI, it was proposed
that end groups play an important role in dissolving lithium s@le LiTFSI solubility was
normalized as the ratio of lithium ions per end grdgf), where the end group is either hydroxyl
or methyl carbonateF{gure 1.19%). Rnax was consistent over a range of molecular weights,

indicatingthat end groups do contribute to lithium salt solvation in PFPE electrolytes.
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Figure1.19 Solubility limit of LIN(SO.CFs).in Fluorolink D18Diol and D1GDMC as a function of
PFPE molecular weight, expressedjsnaxandb) Rnax Reprinted with permission from reB9].
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PFPE was found to form miscible blends with low molecular weight PEO up to a
composition of about 30 wt.% PE@s shown irFigure1.20.%* Wonget al. prepared electrolytes
based on physical blends of PRl PEO mixed with LITFSI salt, and the complex ternary phase
interactions altered the miscibility between PFPE and PE®.shown inFigure1.21, the ionic
conductivity exhibited by PFPE/PEO blends readh&d* S cm' at room temperature, although
the transference number was significantly reduceff @3% PEO dramatically affected the
conductive behavior of the electrolyte: oligoer coordination to Liresulted in higher lithium

salt solubility and conductivity but lowé.

1k PFPE/550 PEG 1k PFPE/750 PEG 4k PFPE/550 PEG 4k PFPE/750 PEG

iy e e [ ——
50/50 50/50 - PFPE/SSO pEG | i PFPE/?SO i - -

70/30 e SR - -

Figure1.20 Photographs of fully cured PFPE/PEG films. Labels are readable for optically transparent or

hazy samples only (vertical label: mass ratio PFPE/PR&)rinted with permission from reD4].
Copyright(2008 American Chemical Society.
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Figurel.21 lonic conductivity of PFPE (black), PFPE/PEG (redjd PEG (blue) electrolytes at
LiIN(SO.CFs)2 concentration=0.026. Reprinted with permission from red5]. Copyright(2015)

American Chemical Society.
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Chapter 2: Perfluoropolyether Electrolytes with Oligoether End Groupg
2.1Introduction

Rechargeable batteriemre crucial for accommodating growing energy needs in our
society!? Stateof-the-art lithiumrion (Li-ion) batteries are not only incorporated into portable
consumer electronic devices and zemoission vehicles, but also are of interest for electricity
storage in smart grid applicatioAd.argescale use of these batteries has been hindered by the
flammability of the electrolyte, which consists of small molecule alkyl carbonates mixed with a
lithium salt* Numerous efforts have been made to address #fétysconcern, including the
implementation of cooling systems, external circuitry for disconnecting the battery at high
potentials caused by overcharging, and Aredo
eliminating thermal runawa® However, catinual reports of catastrophic battery failures
highlight the need for an intrinsically nonflammableidmn battery.

Perfluorinated small molecules have been investigated as nonflammable electrolyte
alternatives to enhance the safety ofdn batteriesdr potential largescale applications, but they
often exhibit low ionic conductivities due to low lithium salt solubility in the solvdriterefore,
similar to phosphatbased additives, fluorinated small molecules have commonly been explored
as flameretardant additives for conventional alkyl carbonate solvents rather than as neat

electrolyte solvent8 Although safety characteristics are enhanced with theditvas, the

2This chapter previously appeared as an artickoiymer The original citation is as follow€Ison K, Wong DHC,
Chintapalli M, Timachova K, Janusziewicz R, Daniel W, Mecham S, Sheiko S, Balsara NP, DeSimon@L&)l. (2
Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications. Polymer.
100(25):126133.
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fluorinated solvent often must be the major component in order to observe noafidity©
Furthermore, electrolytelectrode interfacial performance is sacrificed in some ¢ases.

Polymer electrolytes have also been investigated as nonflammable electrolytegfor Li
batteries. Poly(ethylene oxide) (PEO) is by far the most stymbédner electrolyte due to its
ability to solvate lithium salts via coordination of ether oxygens to the lithium Cgt{6iREO is
nonflammable and exhibits high ionic conductivity at elevated temperatures, but it is crystalline at
room temperature (meli ng t e mp e t°on tramsport 8cubs Ai€3 hopping mechanism
in polymer electrolytes, which is closely coupled to segmental motions of the polymer chain. Thus,
PEO exhibits roortemperature ionic conductivities that are far below the levelsseang for
practical usé? In addition, PEO exhibits poor oxidative stability and lowidn mobility due to
the cationo6s coordi ¥dtion to backbone oxygens

We recently reported that perfluoropolyether (PFPE), a perfluorinated analog of PEO,
dissolvesthe commonly studied salt lithium bis(trifluoromethane)suwdfoide (LiTFSI) and
enables the transport of lithium iofSPFPEs are a unique class of fluoropolymers that remain
liquids over a wide temperature range [glass transition temperafige<i 80°C], are
nonflammable, and can be chemically tailored to enhance lithium salt solubility.

In addition to the safety enhancement provided by polymer electrolytes and fluorinated
solvents, we have proposed that the highly fluorinated PFPE backbone soleafiesrihated
anion of lithium salts, a feature that is distinctive from other polymer and small molecule
electrolytes that primarily interact with the lithium catfoif.?* Perfluoroalkyl chains tend to
segregate in order to minimize energetically unfalte interactions between highly
nonpolarizable fluorine atoms and other eleméhfshi s fAf |l uorous effecto i

molecular adsorption and aggregation in applications such as fluorous solid phase exXfraction,
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immobilization of biomolecws on microarray&,and peptide selissociatiorf>?among others.
We propose that this fluorous effect causes the PFPE backbone and the highly fluorinated anion
of lithium salts to interact significantly.

High transference numbers are achievable ictelytes that solvate the fluorinated anion
of lithium salts, hindering its mobility (rather than that of theidr). Indeed, we previously
measured nearnity transference numbers in PFPE/LITFSI electrolytes, providing evidence that
the PFPE backbone Isates the fluorinated anidf.However, the conductivity(j of the
electrolyté approximatel\2.5x10° S cm!at 30°G must be improved for practical applications,
and efforts to accomplish this require establishing the underpinnings of ion transport in the PFPE
electrolyte system.

Quantifying the factors that gewn ion transport in liquid mixtures is challenging due to
the interplay of many factors such as ion solvation, electrostatic coupling, local dynamics in the
vicinity of ions, and the glass transition temperat!é.Herein, we report on the synthesisian
characterization of a new series of ethoxylated PFPE electrolytes. We elucidate the effect of
molecular structure, viscosity, and glass transition temperature on ionic conductivity within the

PFPE electrolyte platform.

2.2 Materials and Sample Preparation

Perfluoropolyether Fluorolink E10 was obtained from Solgmjexis. Lithum
bis(trifluoromethane)sulfomaide (LiTFSI), triethylamine, and methyl chloroformate were
obtained from Sigm&ldrich. 1,1,1,3,3pentafluorobutane was obtained from MicroCare
Corporaion. PFPE and LiTFSI were dried at 90°C under vacuum for at least 24 hours prior to use.
PFPE and LiTFSI were mixed together and stirred at room temperature for at least 24 hours. Salt

solubility limits were determined as the point at which the solutigiblyi changed from
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transparent to translucent, which has been shown to agree with quantitative measurements
(inductively coupled plasma mass spectrometry) for these systems.
2.3 Experimental
2.3.1Synthesis of DMCterminated PFPE

Fluorolink E10 (30 g, 0.025 mojnd triethylamine (7 mL, 0.05 mol) were dissolved in
300 mL 1,1,1,3,39entafluorobutane at 0°C under stirring conditions and nitrogen atmosphere.
Methyl chloroformate (3.9 mL, 0.05 mol) was added dropwise over 3 minutes, after which the
mixture was heatetb 20°C and stirred for 18 hours. The resulting mixture was gravity filtered,
washed with water 3x, and washed with brine once. The organic layer was isolated, dried using
magnesium sulfate, gravity filtered, and evaporated under reduced pressure. ot waxl
filtered again using a 0.45 micron syringe filter, yielding the final RIPEMC product as a faint
yellow, transparent liquid. Yield: 85%4 NMR (600 MHz, 25°C, (CE).CO): 3.544.31 ppm (m,
22H). IR (neat): 2885 (€&1), 1751 (C=0), 1183 (&1), 1067cm (C-O).
2.3.2Polymer Characterization

Gel permeation chromatography (GPC) measurements were performed on an Agilent
Technologies 1260 Infinity LC system equipped with a DAWN HELEOS Il ranltle static
light-scattering detector and OptiLabrEX refracbmeter from Wyatt Technologies. The sample
(=30 mg/mL in tetrahydrofuran) was eluted through a 3 micron MI@EBLgel column (300 mm
X 7.5 mm) at 1 mL/min for 60 minutes. A monodisperse 18 kDa polystyrene sample and
monodisperse poly(ethylene glycol) saeybf varying molecular weight were used as standards.

A 600 MHz UltraShield Bruker NMR instrument was used for NMR analysis.
Quantitative**C NMRs were obtained by increasing the d1 relaxation delay time until the relative

intensity of all peaks remain@dnstant, indicating full relaxation of all carbons. TH&{*H, °F}
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NMR was obtained at a frequency of 150.9028 MHz with relaxation delay d1 = 50 seconds, 512

scans!H decoupling offset 4 ppm, and®F decoupling offset =86 ppm.

2.3.3Electrolyte PhysicalProperties Characterization.

Differential scanning calorimetry (DSC) thermograms were recorded using a TA
Instruments DSC Q200 on samples that were prepared in air with a temperature rangjgdr@m
to 100°C using a heat/cool/heat method at a heatiegof 10°C/min and cooling rate of 5°C/min.
Glass transition temperaturélgg) were determined using the average from the midpoint method
on the cooling cycle and second heating cycle thermogram. Thermogravimetric analysis (TGA)
was run using a Perkin lBer Pyris 1 TGA apparatus under nitrogen from 25°C to 550°C with a
heating rate of 10°C/minute.

An ARES G2 Rheometer (TA Instruments), equipped with a cone plate (50 mm diameter;
0.0202 radian cone angle), was used to measure viscosity at 25°C as a ffrsitiear rate, which
was ramped from 5x10to 50 s'. The viscosity was modeled using Bingham analysis, which is
commonly used to describe viscoplastic materials that exhibit a nonzero shear stress at zero shear
rate3°
2.3.4Characterization of lon Transport

Electrolyte conductivity was measured in a stainless steel liquid cell using AC impedance
spectroscopy. Impedance measurements were performed using.agigio/MP3 potentiostat,
with 20 mV as the input signal amplitude, and 1 tdH9 as the frequencyange. The minimum
in a Nyquist plot of the impedance was used to determine the bulk resistance of the electrolyte,
and the geometric factor of the liquid cell, described elsewhere, was used to calculate the

conductivity®! The temperature of the electradytvas controlled using a horbeilt heating

46



chamber. All conductivity measurements were performed in an argon glove box, as the liquid cell

was not hermetically sealed.

2.4Results and Discussion

PFPE is a random copolymer of tetrafluoroethylene oxide angbdiiinethylene oxide.
Dihydroxy-t er mi nat ed FIl uor olpibDiko IDA)0, (ered eiitnsg dtPHEEXE
E10 anal og etcbDeokdDh & FigUeR.h beren? is the total number of EO
repat units in a single PFRD chain,mis the number of tetrafluoroethylene oxide repeat units,

andn is the number of difluoromethylene oxide repeat units.

HO—CH2—CF2—0~<CF2CF20>—/L<CFZO>70F2—CH2—OH
m n

PFPED10'DiOI

HO{CHZCHZ O}CHz—CF2—0~<CFZCF20>7L<CF20>7CF2—CH2—0<<CH2CHZO)H
q m n q

PFPEg4o-Diol
Figure2.1 Strucure of PFPEi¢-Diol compared to its ethoxylated PRREDIol analog.The slash

between perfluoroether repeat units denotes that it is a random copolymer.

Mass spectrometry indicates that on average, the number of repeat units in a single PFPE
chain areg=2, m=5, andn=4, whereasn andn were previously reported as 7 and 3, respectively,
for PFPB10.18 We attribute the difference between thandn values of PFPEoand PFPEio to
batchto-batch variation in the industrial synthesis rather than a sySteokange between the
two analogs

To our knowledge, there is no precedent for studying a material with perfluoroether,
ethylene oxide (EO), and methyl carbonate moieties covalently bound in a single polymer chain.
Incorporating all of these functionaés into a pure electrolyte is appealing because EO and methyl

carbonate contribute to lithium salt solvation and enhance conduétivityile perfluoroether
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provides thermal stability and high transference efohis® As shown inFigure 2.2, PFPE1¢-
Diol (Structurel) was functionalized with methyl carbonate gmdups to form DM&erminated
PFPE (her earDMC o0 i P FSPtE) unc order ® enhance electredkectrolyte
compatibility and lithium salt solubtlf in the polymer. This reaction is analogous to our
previously reported functionalization of PRREwith DMC endgroups:®

H0<CHZCHZO)CHZ—CF2—0<CFZCF20)7L<CF20>'CF2—CH2—0<CHZCH20)H
q m n q

1

)OJ\ Triethylamine
Cl o/ 1,1,1,3,3-pentafluorobutane
(o) o

\0)1\0<CH2CH20)CHZ—CF2—0<CF20F20>7L(CF20>'CFZ—CH2—0<CH2CH20%LO/
q m n q

2
Figure2.2. Synthesis of DM@erminated PFPd&o..

Chain coupling was unexpectedly observed during the synthesis oEREREC from
PFPE10-Diol that was not seen with the analogous PHBPBEystem.Figure 2.3 shows the
molecular weight distribution of the PFPEansples, measured using gel permeation
chromatography (GPC) in tetrahydrof-average ( THF
molecular weightNln) was measured to be slightly less than a multiple o¥hef the first peak,
which is consistent with the exgted loss of engroups during chain coupling (peaks at elution
time t=13.3, 13.6, 14.2, and 15.2 min correspondingviiz-1.46, 2.60, 3.80, and 5.10 kDa,
respectively, for PFREo-DMC). Coupling in PFPEgeDiol itself was observed to a lesser extent,
while no coupling was observed in PRREDiol and PFPE1c-DMC. Therefore, a small degree
of coupling occurs during the industrial synthesis of RE#Biol. To our knowledge, this
coupling phenomenon in the PFPE Fluorolink E10 has not previously been repoitesl

literature.
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During the addition of DMC endroups to PFP&eDiol, we hypothesize that chain
coupling increases significantly through the formation of carbonate linkages, as in stridures
of Figure2.4. To reject the pssibility that ether linkages are formed under our reaction conditions,
triethylamine was added to the PFEREDIoI in the absence of methyl chloroformate. No chain

coupling was observed, providing support for the proposed carbonate linkages.

1009 —— PFPEpy,-Diol
= =+ PFPEpy-DMC
——  PFPEgy-Diol
- =+ PFPEg,-DMC
0.75+
I (AU)
0.50-
0.25-
[
[
[
s
’
4
0.00 - ; . T

Figure2.3 Comparative GPC chromatograntiglft scattering intensity vs. elution time) of PFPE1o
and PFPEso oligomers, demonstrating coupling in the E10 derivatives only. The numbers above each
peak corresponatithe numbered structures showrrigure2.4.

49



Figure2.4 Proposed structures of coupled products with carbonate linkages. Elution peaks for each
numbered compound are showrFigure?2.3.

To support this hypothesis, we used the relative abundategrmined by GP& of
products2-5 and the corresponding number of carbons in each coupled product (assuming
carbaate linkagesseeTable 2.1) to calculate the theoretical number of carbons in an average
polymer chain. We then used quantitatt’& NMR spectroscopy and integration methods to
determine the relative ratios of terminal meth¢®¢Hs) to carbonyl (C=0) carbons in an average
PFPE10DMC chain. This ratio, as shown kigure2.5, was determined by NMR to be 2.0 : 2.9,
which is in good agreement with the theoretical integration ratio of 2.0 : 2.7 baskd G#*€C
results and proposed structures. There are more than two carbonyl carbons per chain, supporting
the presence of carbonate linkages. If chain coupling did not occur through carbonate linkages, the
only carbonyl groups in the polymer would be gnduyps, and the aforementioned ratio would be

exactly 2.0: 2.0.
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