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ABSTRACT  

Kevin Raymond Olson: Nonflammable Perfluoropolyether Electrolytes for Safer Lithium-Based 

Batteries 

(Under the direction of Joseph M. DeSimone) 

  

The importance of batteries to sustainable energy is widely recognized. Lithium-ion 

batteries (LIBs) not only power handheld electronics but also are increasingly being implemented 

in electric vehicles and ñsmart-gridò applications to store energy from intermittent solar and wind 

sources, making sustainable energy a reality. Unfortunately, LIBs contain a highly flammable 

solvent and can exhibit catastrophic failure, as was brought to the publicôs attention by the Boeing 

787, Samsung Galaxy Note 7, hoverboard, and Tesla battery fires. Thus, realizing the full potential 

of LIBs in large-scale systems requires the development of nonflammable electrolytes. 

Perfluoropolyether (PFPE)-based electrolytes address many of the shortcomings of 

conventional carbonate-based electrolytes or polymer electrolytes such as poly(ethylene oxide). 

PFPE-based electrolytes transport lithium more efficiently than conventional electrolytes, which 

has important implications on long-term battery performance. PFPEs make interesting electrolyte 

solvents because they are nonflammable, nonvolatile, liquid across a broad temperature range, 

chemically stable, and interact favorably with the anion of fluorinated salts. In this work, the 

molecular underpinnings for ion transport in PFPE electrolytes will be established by 

systematically probing how PFPE structure affects electrolyte performance including ionic 

conductivity, diffusivity, and transference number. End group polarity, end group concentration, 

and PFPE molecular weight all have important implications on electrolyte performance.
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Chapter 1: Introduction to Lithium -Ion Battery Electrolytes 

1.1  Importance of Batteries in the Global Energy Landscape 

As the worldwide population grows, nonrenewable energy resources such as fossil fuels 

are being depleted. Furthermore, combustion of petroleum, fossil fuels, and coal releases carbon 

dioxide and other greenhouse gases that contribute to global warming.1,2 These three fuel sources 

account for over 80% of energy consumption in the United States, as shown in Figure 1.1.3 

 

 

Figure 1.1  U.S. energy consumption by source in 2016. Reprinted from ref. [3]. 

 

In contrast, renewable energy sources such as wind and solar are sustainable and 

environmentally friendly. This has led the United States to take urgent steps toward shifting its 

energy usage to renewable sources. Following Executive Order 13693, the Department of Energy 

must triple the federal governmentsô renewable energy usage within the next 8 years, achieving 

30% renewable energy consumption by the year 2025.4 (This mandate remains in effect despite 

environmental policy changes made by the current administration in Executive Order 13783.)
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Figure 1.2  Curent and projected federal government energy consumption. Reprinted from ref. [4].  

A major issue with renewable energy sources is their intermittent nature. Solar energy is 

only available when the sun is shining, and wind energy is only available when the wind is 

blowing. While fossil fuels can be stored for on-demand electricity production, sunshine and wind 

cannot be captured. Instead, the electricity generated by these energy sources must be stored for 

later use. Battery storage is one solution to this problem: excess electricity produced during peak 

hours can be stored for use at a time when the energy source is less abundant.5  

Clearly, the emerging role of rechargeable batteries in our society goes beyond powering 

portable electronic devices like smartphones and laptops. Aside from grid energy storage, 

automobiles and aircraft are increasingly shifting toward electrification, reducing our dependence 

on fossil fuels and cutting greenhouse gas emissions. However, these developments can only be 

realized with a rechargeable battery that is safe, has high energy densities, and delivers energy 

quickly on-demand. 

1.2  Development of Lithium-Ion Batteries 

Lithium is both the most electropositive (-3.04 V vs. SHE) and lightest (6.94 amu) metal, 

making it a desirable active material for high-energy batteries. After initial demonstration of 

primary (single-use) batteries containing a metallic lithium anode in 1970,6 scientists at Exxon 
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developed a secondary (rechargeable) battery containing a lithium negative electrode and titanium 

disulfide positive electrode.7 TiS2 was already known to reversibly intercalate lithium, 

theoretically allowing a battery to charge and discharge repeatedly. However, these batteries were 

not viable due to uneven plating of metallic lithium, resulting in dendrite formation and 

catastrophic battery failure. A short time later, John Goodenough made his seminal contribution 

to the battery, proposing lithium metal oxides with the formula LiMxO2 as positive electrode 

materials.8 Scientists then demonstrated that carbonaceous secondary insertion materials could be 

substituted for lithium as the negative electrode material, solving the issue of metallic dendrite 

formation.9 The first lithium-ion battery (LIB) was commercialized by Sony in 1992. It contained 

a graphite anode and LiCoO2 cathode, the materials still found in the vast majority of LIBs today.6  

As a culmination of these technological developments, LIBs exhibit long life cycles and high 

power densities. Therefore, lithium-ion batteries are ubiquitous in todayôs society, powering 

laptops, smartphones, and other handheld portable electronics.10 The lithium-ion battery market is 

currently valued at about $30 billion and is projected to grow to about $75 billion by 2025.11 

1.3  Principles of Lithium -Ion Battery Operation  

 

Figure 1.3  Schematic of a lithium-ion battery cell. Reprinted with permission from ref. [10]. Copyright 

(2013) American Chemical Society.  
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As shown in Figure 1.3, a lithium-ion battery cell consists of an anode and a cathode 

connected by an external circuit and separated internally by a separator that is swollen with 

electrolyte. The electrolyte conducts the ionic component of these reactions (Li+), yet it is 

necessarily electronically insulating in order to avoid self-discharge and internal short circuits: the 

current is forced through the external circuit where work is performed.  

LIB cathodes are typically composed of transition metal oxides like LiCoO2 and LiMn2O4, 

while anodes primarily consist of carbon-based compounds such as graphite.12 These layered, 

secondary insertion materials allow lithium ions to reversibly intercalate into the host electrode 

structures upon charge and discharge. The half reactions that occur at the graphite anode and the 

LiCoO2 cathode are provided in Eqn. (1.1) and (1.2).  

# ὼ Å ὼ ,É P ,É# ρȢρ 

,É#Ï/ ᴾὼ ,É ὼ Å ,É#Ï/ ρȢς 

Commercial LIB electrolytes typically consist of a lithium salt like LiPF6 dissolved in a 

mixture of small molecule alkyl carbonates such as ethylene carbonate (EC), dimethyl carbonate 

(DMC), and diethyl carbonate (DEC).13 The separator consists of a thin, porous polyolefin, 

generally a trilayer polypropylene-polyethylene-polypropylene film for reasons that will be 

discussed in further detail in Section 1.4.2 . 

In LIBs, alkyl carbonate solvent molecules are placed in contact with highly energetic 

active materials. Alkyl carbonates are not thermodynamically stable at the operating potentials of 

the electrodes. Fortunately, EC sacrificially reacts at electrode surfaces, forming a thin polymer 

network known as the solid-electrolyte interphase (SEI).14 The SEI is electronically insulating and 

impermeable to solvent molecules, preventing further breakdown of the electrolyte. Li+
 is 

conductive through the SEI, enabling the desired galvanic reactions to occur within the electrodes. 
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1.4  Electrolyte Hazards 

Unfortunately, the lithium-ion battery is plagued by safety hazards. Carbonate solvents, the 

main components of LIB electrolytes, are highly flammable and have low flash points.15 Dimethyl 

carbonate (DMC) has an HMIS flammability rating of 3 on a scale from 0 to 4, designating it as a 

material capable of ignition under almost all normal temperature conditions. This electrolyte 

flammability issue has resulted in several well-publicized, catastrophic battery failures causing 

systems like the Samsung Galaxy Note 7, Tesla, hoverboards, e-cigarettes, and the Boeing 

Dreamliner to burst into flames.  

1.4.1  Failure Rates 

It is convenient here to distinguish between a ñbattery cellò and a ñbatteryò (sometimes 

referred to as a ñbattery packò). A battery cell is the basic electrochemical unit that derives 

electrical energy from chemical energy, as schematically shown in Figure 1.3. A battery consists 

of a stack of several cells, the wiring that interconnects them electrically, and the battery housing. 

A rechargeable battery may also contain a temperature sensor to prevent overcharging of the 

device. 

The failure rate of a single lithium-ion cell is about 1 in 10 million, generally considered 

acceptable for use in handheld devices and other small applications. But for large-scale 

applications, batteries may contain up to several thousands of cells, exacerbating failure rates of 

the battery to more than 1 in 10 thousand.16 Indeed, it has been reported that a Tesla Model S 

battery contains 8,256 cells. Additionally, these larger batteries may store up to 1,000 times more 

energy, increasing the likelihood that a single battery malfunction will result in significant property 

damage, injury, or even fatality. Thus, the hazards associated with lithium-based batteries are 

unacceptable for large-scale applications.  
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Because the safety hazards of the LIB itself have not been eliminated to this point, car 

manufacturers currently use expensive engineering controls to circumvent the issue. For example, 

both GM and Tesla Motors integrate sophisticated thermal management systems into their 

batteries, relying on glycol coolant to prevent thermal runaway of the battery.17,18 Ballistic 

aluminum and titanium shielding on the underbody of the car is also employed to avoid battery 

puncture, adding significant mass to the car.19 Addressing battery hazards at the source, rather than 

engineering around them, would simultaneously reduce the mass and cost of batteries while 

increasing consumer confidence in electric vehicles and grid storage.20 

1.4.2  Failure Mechanism 

In batteries, thermal runaway occurs when the heat of the system cannot be dissipated by 

heat radiation and convection processes. The rise in temperature accelerates exothermic chemical 

reactions over the desired galvanic ones, eventually leading to uncontrolled heat generation. 

Although the chemical reactions contributing to thermal runaway may occur in any order, it 

roughly proceeds as follows, with each reaction releasing heat that fuels the following process:21 

1. Moderate initial overheating occurs from excessive currents, overcharging, or elevated 

external temperatures. 

2. The SEI layer decomposes due to either physical penetration or elevated temperatures 

(above 68°C), forming lithium carbonate and gaseous products. 

3. Intercalated lithium reacts with organic electrolyte to release flammable hydrocarbons 

such as ethane and methane, pressurizing the cell. Though the temperature is above the 

flash point of these gases, combustion does not occur because no oxygen is present in 

the cell. 
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4. The polymer separator melts, allowing the electrodes to contact each other and short-

circuit the battery. 

5. The metal oxide cathode breaks down and releases oxygen, enabling flammable alkyl 

carbonates and hydrocarbons to combust. 

6. Cell pressurization leads to venting, causing a stream of flammable gas to emit from 

the battery. 

To improve battery safety, two mechanisms have been built into LIBs. First, the polymer 

separator consists of a trilayered polypropylene-polyethylene-polypropylene film. The 

polyethylene film melts at 130°C, and polypropylene melts at 155°C. In the case of rapid heating, 

the polyethylene film melts first, clogging the pores of the unmelted polypropylene film and 

shutting down the battery, in theory. Second, a safety vent is implemented to prevent uncontrolled 

cell rupture under cases of extreme pressurization. Despite these protections, thermal runaway still 

causes catastrophic failure in LIBs. Even well-constructed battery cells fail, and small errors in 

manufacturing, testing, and inspection increase the rate of these failures.22,23 

1.5  Criteria for Evaluating Novel Battery Electrolytes 

Significant research efforts have aimed to identify nonflammable electrolytes in order to 

enhance the viability of LIBs for large-scale applications.24,25 To assess novel electrolyte 

performance, several parameters must be evaluated. 

1.5.1  Flammability and Temperature Range 

 In modern LIBs, highly energetic active materials are placed in contact with volatile, 

flammable carbonate solvents. Thermal decomposition, oxidation, and reduction of the electrolyte 

are all exothermic reactions that can trigger thermal runaway,21 resulting in combustion processes 

fueled by carbonate solvents. Replacing the electrolyte with a nonflammable material, such as a 
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polymer or oligomer, would dramatically improve battery safety. Additional consideration should 

be given to the fact that the electrolyte should be able to operate in a broad temperature range: a 

battery electrolyte solvent that is crystalline or gaseous provides insufficient ion transport.13 

Several techniques may be used to evaluate the operating temperature range of an 

electrolyte. To determine the lower temperature limit, crystallization and glass transition 

temperatures can be identified by differential scanning calorimetry (DSC). Rheological 

measurements can also be made to establish the temperature range over which an electrolyteôs 

viscosity is sufficiently low to transport ions efficiently.  

Thermogravimetric analysis (TGA) is often used to establish an upper temperature limit by 

means of the materialôs volatility or degradation profile, characterized by the Td (5%)ðthe 

temperature at which 5% mass loss is observed. Mass loss may occur as a result of either direct 

evaporation of the sample (low molecular weight systems) or by degradation of the backbone 

followed by evaporation of the degraded components (nonvolatile or polymeric systems). 

 
Figure 1.4  TGA curve showing determination of 95% degradation temperature. 

A materialôs flammability characteristics can be evaluated using a combination of flash 

point and sustained burning measurements. Closed-cup flash point measurements involve heating 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0

2 0

4 0

6 0

8 0

1 0 0

T  (° C )

w
t 

%

T d  (5 % )



9 

a sealed cup of material to periodically increasing temperatures before applying a flame to the 

sample to test for a flash, as described in ASTM D3278. Sustained burning measurements test 

whether a material continues to produce sufficient flammable vapor at a given temperature to burn 

when the ignition source is removed, as described in ASTM D4206. Two materials may exhibit 

the same flash point but different sustained burning characteristics. 

 

Figure 1.5  Small-scale closed-cup apparatus for flash point and sustained burning measurements. 

1.5.2  Electrochemical Stability  

Nonflammability is not necessarily indicative of a safe solvent under conditions of abuse 

in an electrochemical environment.24 Electrolytes must exhibit stability across an electrochemical 

potential window that is larger than the operating potential window of the anode and the cathode 

(å4V)12 to prevent the exothermic reactions described in Section 1.4.2 . If the highest occupied 

molecular orbital (HOMO) of the electrolyte is above the Fermi energy of the cathode, the 

electrolyte will be oxidized; if the lowest unoccupied molecular orbital (LUMO) of the electrolytes 

is below the Fermi energy of the anode, the electrolyte will be reduced. Although it is often 

infeasible to design electrolytes that have such a large HOMO-LUMO gap, electrolyte stability 

fortunately depends on the formation of a stable SEI layer: electrolyte stability is kinetically, rather 

than thermodynamically, controlled.26  
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Cyclic voltammetry can be used to evaluate the anodic and cathodic stability of a given 

electrolyte. Reduction and oxidation potentials are measured as the potential at which the current 

density reaches a pre-selected cutoff valueð0.2 mA/cm2 for the example shown below.27 The 

electrochemical window is defined as the difference between these two potentials.  

 
Figure 1.6  Cyclic voltammogram of electrolyte showing electrochemical stability window. Reprinted 

from ref. [27] with permission from Elsevier. 

1.5.3  Cyclability  

The long-term stability of a battery can be assessed by measuring the capacity of the battery 

over extended cycling.28 An ideal electrolyte should form a passivation layer that remains stable 

despite electrode volume changes upon cycling, preventing further decomposition of the 

electrolyte and corresponding capacity loss. Many commercialized LIBs maintain at least 80% of 

their capacity after 1,000 cycles.29 
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Figure 1.7  Battery capacity retention over extended cycling. Reprinted from ref. [28].  

1.5.4  Ionic Conductivity  

The ionic conductivity of an electrolyte determines how quickly the energy stored in the 

LIB can be delivered. The equation for ionic conductivity (ů) is given below: 

„ ὲὩ‘ ρȢσ 

where ni is the concentration of charge carriers, ei is the ionic charge, and µi is the ionic mobility. 

It is generally accepted that ionic conductivities on the order of 10-3 S cm-1 are necessary for most 

high-power applications.10 Alkyl carbonate electrolytes exhibit ů å 10-2 S cm-1. 

 Ionic conductivity is determined experimentally using AC impedance spectroscopy, which 

involves applying a small, sinusoidal potential to an electrochemical cell and measuring the current 

response. The resulting AC current is shifted in phase from the excitation potential. Impedanceð

the ratio of voltage to currentðcan then be expressed as a complex function that contains real (in-

phase) and imaginary (out-of-phase) components:  

ὤ‫
Ὁ

Ὅ
 ὤÅØÐὮʒ  ὤ ÃÏÓ• ὮÓÉÎʒ ρȢτ 

where Z is the impedance, E is the applied voltage, I is the measured current, j is equal to the square 

root of -1, and ű is the phase shift. 
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The real component of equation (1.4) corresponds to resistance, while the imaginary 

component corresponds to reactance (which includes capacitance and inductance). Plotting the 

imaginary vs. real components of the impedance produces a Nyquist plot, as shown in Figure 1.8.30 

The impedance can be modeled by an equivalent circuit to extract the relevant sources of 

resistance, capacitance, and inductance in the system. The (extrapolated) x-intercept of the Nyquist 

plot corresponds to the bulk electrolyte resistance from which ionic conductivity may be 

calculated. 

 
Figure 1.8  Nyquist plot and equivalent circuit used to model data. Reprinted from ref. [30].  

1.5.5  Transference Number 

For LIBs, only Li+ intercalates into the electrode materials and participates in redox 

reactions that ultimately result in work being performed. To gain an accurate representation of the 

ñeffectiveò ionic conductivity flowing through an electrolyte, the charge transport of the redox-

active Li+ ion must be quantified. For an ideal solution, the cation transference number (t+) is the 

fraction of the total current carried by the cation: 

ὸ
Ὅ

Ὅ
 
‘

‘
 
‗

‗

Ὀ

Ὀ Ὀ
ρȢυ 

where I, ,˃ ɚ, and D denote the current, mobility, ionic conductivity, and diffusion coefficients, 

and the subscripts +, -, and 0 represent the values for the cation, anion, and total electrolyte, 

respectively.31 For non-ideal solutions with ion aggregation, equation (1.5) becomes invalid. 
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Mobility of higher-order ion aggregates (e.g. triplets) must be considered, and negative 

transference numbers are possible.32 

Electrolytes with t+ << 1, in which the anion is more mobile than Li+, experience strong 

polarization due to anion (salt) enrichment and depletion near the electrode surfaces, impairing 

long-term battery performance significantly. In fact, Doyle and coworkers showed that electrolytes 

with a unity transference number outperform systems with 10x higher ionic conductivity but t+ = 

0.2 because cells with t+ near unity have higher energy densities and peak-power densities.33 In 

most nonaqueous electrolytesðincluding commercialized alkyl carbonate solventsðt+ is between 

0.20 and 0.40.13  

Several methods for the measurement of cation transference numbers in LIB electrolytes 

exist. An insightful review of these methods is provided by Zugmann and Gores in reference 31. 

The two methods used in this work for characterization of the transference numberðpotentiostatic 

polarization and pulsed-field gradient nuclear magnetic resonance (pfg-NMR)ðare described here 

briefly. 

1.5.5.1  Potentiostatic Polarization Method for Measurement of t+ 

In the potentiostatic polarization method, a constant potential is applied to a symmetric cell 

with non-blocking lithium electrodes, and the current response is measured over time. The initial 

current arises from the flux of both cations and anions. Because anions do not participate in redox 

reactions at the electrodes, anions (or more accurately, salts) build up near one electrode and are 

depleted near the other. The salt concentration gradient creates a diffusion force that opposes the 

migration force from the applied potential. The anion current vanishes when migration is exactly 

counteracted by diffusion. Thus, the steady-state current is carried only by the cation, which 
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reversibly reacts at the electrode surfaces. Conceptually, the transference number is given by the 

ratio between the steady-state (cation) current and the initial (total) current. 

 

Figure 1.9  Chronoamperogram of LiPF6 electrolyte in ethylene carbonate/diethyl carbonate with an 

applied voltage of 10 mV. Reprinted from ref. [35] with permission from Elsevier. 

An additional correction must be applied because lithium is reactive with nearly all 

electrolyte materials, creating a passivation layer that changes the cell resistance over the course 

of the measurement. Accounting for changes in the electrode surface resistances over time, the 

transference number is given by: 

ὸ
Ὅ Ўὠ ὍὙ

ὍЎὠ ὍὙ
 ρȢφ 

where I, ȹV, and R are the current, applied potential, and resistance and the subscripts 0 and SS 

denote the initial and steady state conditions, respectively.34 The correction for changing resistance 

is important, as evidenced by Figure 1.9 above: the simple ratio of steady-state to initial current 

from the chronoamperogram is nearly 0.7, whereas t+ is known to be < 0.4 for the given 

electrolyte.35 

1.5.5.2  Pulsed-Field Gradient NMR (pfg-NMR) Method for Measuring t+ 

Nuclear magnetic resonance can be used to measure the self-diffusion coefficients of 

different nuclei in an electrolyte. The pulse sequence for a pulsed-field gradient NMR experiment 
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is given in Figure 1.10. Similar to a standard 1D NMR experiment, the pfg-spin echo experiment 

begins with a 90° rf pulse (pulse 1), shifting the bulk magnetization vector from the z-axis to the 

x-y plane, perpendicular to the static field. Pulse 2 is an rf gradient pulse with an intensity that is 

a linear function of position in the z-direction. The rotation of the magnetization vector is different 

at each spatial position in the z-direction, canceling the net magnetization. Nuclear diffusion is 

allowed to occur for a short period, and then a 180° rf pulse (pulse 3) is applied to the sample to 

invert the magnetization. The gradient pulse (pulse 4) is applied once again to refocus the 

magnetization.36  

 
Figure 1.10  Schematic representation of pfg-NMR pulse sequence.  
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Figure 1.11  Schematic representation of pfg-NMR dephasing and signal recovery a) in the absence of 

nuclear diffusion and b) with nuclear diffusion. Reprinted from ref. [37]. 

In the absence of nuclear diffusion, the effects of pulses 2 and 4 exactly cancel each other 

out and the full signal intensity is recovered, as shown schematically in Figure 1.11a.37 In contrast, 

translational motion of a nucleus causes it to experience a different magnetic field strength during 

pulses 2 and 4 due to the spatial dependence of gradient intensity. In the presence of nuclear 

diffusion, the effects of pulses 2 and 4 on a nucleus do not exactly cancel each other out and the 

magnetization is not fully refocused. This ñblurringò of phases results in a loss of signal intensity 

(Figure 1.11b and Figure 1.12). 

 
Figure 1.12  13C pfg-NMR spectra of 13CCl4. Peak intensity decreases as gradient field strength increases. 

Reprinted from ref. [36] with permission from John Wiley and Sons. 

a) b) 
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The amplitude of the attenuated signal E as a function of gradient strength can be fit to 

obtain the diffusion coefficient of a given species using equation (1.7): 

Ὁ Ὡ Ў    ρȢχ 

where ɔ is the gyromagnetic ratio, g is the gradient strength, ŭ is the duration of the gradient pulse, 

Di
NMR is the diffusion coefficient, ȹ is the interval between gradient pulses, and Ű is the separation 

between pulses.38 Ultimately, determination of the cation (D+
NMR) and anion (D-

NMR) diffusion 

coefficients enables calculation of the transference number. 

ὸ
Ὀ

Ὀ Ὀ
 ρȢψ 

For electrolytes containing fluorinated lithium salts, as is common in LIBs, 7Li NMR is 

used to probe the cation diffusivity while 19F NMR can be used to probe the anion diffusivity. 

Considering pfg-NMR measures the diffusion of nuclei rather than free ions, this method is only 

valid for ideal, dilute solutions in which no ion association occurs. 

1.6  Current Research in LIB Electrolytes 

No single electrolyte to date excels in all of the above criteriaðsafe (nonflammable), 

electrochemically stable, cyclable, highly conductive, and high transference number. Each 

electrolyte comes with its own compromises and therefore should be considered appropriate only 

for certain applications. For example, the principal shortcomings of small-molecule carbonate-

based electrolytes are low transference number and poor safety. Yet because of their low cost, high 

ionic conductivity, and broad electrochemical stability window, these electrolytes have been 

deemed suitable for most small-scale applications requiring high energy density.  

In a contrasting example, Xu and coworkers recently developed a ñwater-in-saltò 

electrolyte for LIBs that exhibits a potential window of å 3 V, improving upon the 1.23 V potential 

window for water electrolysis but still well below the potential window of alkyl carbonate solvents 
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(å4.5 V).39 Although the small potential window yields low energy densities, several other LIB 

electrolyte requirements (nonflammable, ů å 10 mS cm-1, cycle life å 1,000, economical) are met. 

Water-in-salt electrolytes could be useful for large-scale, stationary applications in which safety is 

paramount but energy density requirements are less stringent. 

Electrolyte safety remains at the forefront of battery research. Approaches range from 

incorporating fluorinated40 and phosphate41 flame-retardant additives into alkyl carbonate 

electrolytes to replacing the electrolyte entirely with nonvolatile polymer electrolytes or room-

temperature ionic liquids (RTILs).25,42ï44 A brief review regarding additives and replacement 

electrolytes is included below. 

1.6.1  Electrolyte Additives 

Zhang et.al. provided a thorough review of electrolyte additives to improve LIB 

performance via interphase formation, salt stabilization, and flammability reduction.45 Briefly, 

researchers have explored flame-retardant additives for alkyl carbonate electrolytes in order to 

preserve the basic battery chemistries while improving safety. These additives may function in 

three ways: 

i. Char formation, creating an insulating layer between condensed and gas phases to 

prevent heat transfer and further combustion of the electrolyte. 

ii.  Radical scavenging, terminating chain reactions contributing to gas-phase 

combustion. 

iii.  Inert dilution of flammable components until flash point is eliminated. 

Phosphate and phosphazene-based additives typically act as type ii flame retardants. 

Unfortunately, flame retardance often comes at a cost to other electrolyte performance parameters 

including reductive stability and ionic conductivity of the electrolyte in phosphorus-containing 
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systems.46,47 Fluorine-containing additives have also been studied extensively. These compounds 

function as type iii additives, and flash-point elimination is only observed when the fluorinated 

compound is the major component.48 Again, the fluorinated additive tends to reduce ionic 

conductivity of the electrolyte, resulting in a trade-off between flammability and cell 

performance.49 

1.6.2  Room-Temperature Ionic Liquids (RTILs)  

Ionic liquids are a liquid mixture of anions and cations (Figure 1.13) in the absence of a 

molecular solventðsimply, they are molten salts. RTILs, which typically contain quaternary 

ammonium cations, are a specific class of ionic liquids that have melting temperatures below room 

temperature.50 Li+-containing ionic liquids often have significantly high melting temperatures 

because of the small ionic radius of Li+. For this reason, a majority of electrolytes consist of non-

lithium-containing RTILs mixed with lithium salts rather than lithium-based ILs.  

RTILs are considered nonflammable due to their negligible vapor pressures.43 They exhibit 

ionic conductivities as high as å10-2 S cm-1 at room temperature and transference numbers as high 

as å0.4.51 However, there are several drawbacks to using RTILs as LIB electrolytes. Due to their 

moisture sensitivity and high viscosities (up to 5000 cP),52 the cost of stringent purification and 

manufacturing is high. Furthermore, the lack of solvent molecules to act as sacrificial building 

blocks for electrode-electrolyte interphase formation diminishes the kinetic metastability of 

RTILs.24 In fact, RTILs generate more heat in the presence of active electrode materials than small 

molecule alkyl carbonates despite the ionic liquidsô larger thermodynamic electrochemical 

stability window.53 These findings led Kang Xu, author of two excellent review articles on 

nonaqueous electrolytes, to conclude: ñthere is no reason to be optimistic about the large-scale 

application of RTIL in commercial LIB in the foreseeable future.ò24 
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Figure 1.13  Structure of a) cations and b) anions for a set of representative ionic liquids. Reprinted with 

permission from ref. [50]. Copyright (2011) American Chemical Society. 

 

1.6.3 Polymer Electrolytes 

Polymer electrolytes present the intriguing possibility of implementing a thin, flexible 

membrane to serve as both the conductive medium and the electronic separator between electrode 

materials in a battery. These materials consist of lithium salts dissolved either in a neat polymer 

(ñsolid polymer electrolytesò) or in crosslinked polymer networks swollen with plasticizing 

solvents (ñgel polymer electrolytesò). Fenton and coworkers first reported the ability of PEO to 

dissolve alkali metal salts in 1973, providing the basis for research in polymer electrolytes.54 Since 

that time, the field of polymer electrolytes has been largely dominated by studies of PEO and its 

polyether analogs. 

a) 

b) 
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Although PEO exhibits ů > 10-4 S cm-1 above its melting temperature (å60ÁC), crystallinity 

at room temperature hinders segmental motions of polymer chains and impedes ionic conduction.55 

Numerous efforts have been made to mitigate the issue of PEOôs crystallinity, including synthesis 

of copolymers,56 polymer blends,57 comblike structures,58 and polymer brushes.59 Despite these 

elegant architectures, ionic conductivities greater than 10-3 S cm-1 at room temperature are rare in 

PEO-based electrolytes, and electrode-electrolyte compatibility is often sacrificed. 

Single-ion conductors (also referred to as ñpolyelectrolytesò or ñionomersò in the high- or 

low-ion content case, respectively) consist of lithium salts in which the anions are covalently 

attached to a polymer backbone, as shown in Figure 1.14.60 This effectively immobilizes the 

anions, enabling transference numbers of unity to be achieved. However, these materials suffer 

from low lithium salt dissociation61 and dramatic increases in Tg with increasing ion content along 

the polymer backbone.62 For these reasons, ionic conductivities above 10-4 S cm-1 have not been 

realized in single-ion conductors. 

 
Figure 1.14  Comparison between polymer electrolyte and polyelectrolyte in which the anion is 

covalently attached to the polymer. Reprinted from ref. [60] with permission from Elsevier. 

Gel polymer electrolytes were developed out of necessity in order to achieve sufficient 

ionic conductivities in polymer electrolytes. Polymer networks plasticized with more than 60% 

liquid electrolyte generally exhibit ionic conductivities that are only 2-5 times lower than that of 

the pure liquid electrolyte.63 Furthermore, the electrochemical and thermal stability of gel polymer 
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electrolytes is largely determined by the plasticizer molecules. Thus, although ionic conductivities 

on the order of 10-3 S cm-1 are achievable, gel polymer electrolytes may still be flammable and 

have similar electrochemical stability windows to that of neat liquid electrolytes.64 

1.6.3.1  Ion Solvation 

Research in polymer electrolytes has overwhelmingly targeted the lithium ion for 

solvation. Cation solvation is straightforward and can be accomplished by lone pairs of electrons 

on heteroatoms. For example, Li+ is solvated via coordination to 3-7 ether oxygens in the PEO 

backbone, as shown in Figure 1.15.65ï67 Preferential coordination of heteroatoms to Li+ hinders its 

mobility, leading to low t+ values.68  

 
Figure 1.15  Crystal structure of (PEO)3LiCF3SO3 with CF3SO3

- shaded. Dashed lines show coordination 

to a lithium ion. From ref. [67]. Reprinted with permission from AAAS. 

Very few efforts have been made to preferentially solvate the counterion of lithium salts. 

Traditionally, anion solvation is achieved via hydrogen bonding. But, polymers that exhibit 

hydrogen bonding are usually quite stiff and cohesive, hindering the mobility of ions 

significantly.69 Lewis acidity is an alternative property that can be utilized to achieve anion 

solvation. For example, Mehta et al. incorporated boron-containing rings into a polyether 
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backbone, leading to elevated transference numbers (t+Ғ0.75) but moderate ionic conductivities 

(ˋҒ10-6 S cm-1).70 To our knowledge, boron-containing polymers and additives are the only Lewis-

acidic electrolytes that aim to ñtrapò, or solvate, anions.  

1.6.3.2  Ion Transport  

Ionic conduction in amorphous materials occurs via two mechanisms: vehicular transport 

and ion hopping.71 Vehicular transport refers to the co-diffusion of Li+ within its ñvehicleòðthe 

molecules in its solvation shell. Considering that gel polymer electrolytes contain plasticizing 

solvents, vehicular transport dominates ionic conduction in these materials.25 In contrast, the 

vehicular transport phenomenon is negligible in solid polymer electrolytes of high molecular 

weight because chain entanglements constrain polymer diffusion.72 Instead, ion hopping 

dominates Li+ transport, as shown in Figure 1.16.73 Above Tg, segmental motions of polymer 

chains cause the coordination environment of Li+ to fluctuate away from its most stable 

conformation, leading the ion to diffuse down the backbone toward lower free energy sites.74 This 

repetitive perturbation and diffusion of Li+ is the driving force for long-range ion transport. 

 

Figure 1.16  Lithium ion hopping facilitated by segmental motions of PEO chains. Adapted with 

permission from ref. [73]. Copyright (1988) American Chemical Society. 
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1.6.4  Perfluoropolyether (PFPE) Materials 

All perfluoropolyethers (PFPEs) contain C-F, C-C, and C-O bonds that provide this class 

of materials its unique thermal stability, low volatility, chain flexibility, and extreme chemical 

resistance.75,76 PFPEsô chemical stability and large use temperature range make them appealing 

long-life lubricants in harsh applications such as aerospace, automotive, and industrial 

manufacturing industries.77 Crosslinked PFPE networks have also been developed and 

implemented as surface coatings for marine biofouling applications,78 microfluidics,75 and particle 

replication molds.79 Coincidentally, PFPEôs unique thermal stability, extreme chemical resistance, 

amorphous nature, and non-polarizability make it an intriguing solvent for LIB electrolytes as well.  

1.6.4.1  Commercially Available Perfluoropolyethers 

PFPEs may be categorized into four families based on repeat unit structure, as summarized 

in Table 1.1 below. The PFPEs studied herein belong to the second two product lines, 

manufactured by Solvay and Exfluor Research Corporation. 

Table 1.1  Molecular structures of commercially available PFPEs. 

Product Line Manufacturer  Repeat Unit Structure 

Krytox® 
Chemours 

(DuPont) 
Hexafluoropropylene Oxide 

 

Demnum® Daikin Hexafluorooxetane 
 

Fomblin/Fluorolink® Solvay 

Tetrafluoroethylene Oxide 

and Difluoromethylene 

Oxide  

C#G1 Exfluor Tetrafluoroethylene Oxide 
 

                                                 
1 The # in ñC#Gò refers to the number of carbons in the molecule. For example, Exfluor designates perfluorinated 

triethylene glycol, which contains six carbons, as ñC6Gò. 
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Commercial PFPEs are available in a range of molecular weights with various non-

functional and functional end groups useful for surface modification. Solvay generally classifies 

its PFPEs as ñFomblinÈò for molecular weights between 2000 and 4000 g/mol and ñFluorolinkÈò 

for molecular weights below 2000 g/mol. A representative selection of commercially available 

PFPE end groups is given in Table 1.2. Although the designations in the table apply to the 

Fluorolink® product line, the end groups shown are representative of those available in the other 

product lines. In this work, PFPEs will often be referred to by their trade names, in which the trade 

name consists of ñproduct lineò + ñdesignationò (e.g. Fluorolink® E10 for PFPE with ethoxylated 

diol end groups). 

Table 1.2  Selection of commercially available Fluorolink® end groups.  

Designation End Group R  

D10 Diol  

E10 Ethoxylated Diol 
 

F10 Phosphate 

 

MD700 Methacrylate 

 

1.6.4.2  Perfluoropolyether Synthesis 

Perfluoropolyethers were first synthesized in the way that many great scientific discoveries 

are madeðby mistake. In 1953, Haszeldine reported an oily product when attempting to 

photopolymerize hexafluoropropylene.80 He had unknowingly synthesized PFPE following the 

photooxidation mechanism depicted in Figure 1.17. 

Krytox® and Demnum® were the first commercialized PFPE oils. Both are synthesized 

via anionic ring-opening polymerization of fluorinated monomers. Krytox® is synthesized by the 
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base-catalyzed homopolymerization of hexafluoropropylene oxide (HFPO) using a fluoride source 

such as cesium fluoride. The terminal acyl fluoride group is reacted by traditional chemistries to 

yield functional end groups, or alternatively removed by fluorination to yield inert polyether 

products ranging anywhere from n = 2 to n = 50.81 Control over the polymerization is exerted by 

solvent and temperature conditions. 

Scheme 1.1  Synthesis of Krytox® via anionic ROP of HFPO. 

 

 Demnum® is synthesized via an analogous ring-opening polymerization of 

tetrafluorooxetane.82 Because the tetrafluorooxetane monomer is only partially fluorinated, the 

final poly(perfluorotrimethylene oxide) material is obtained only after a subsequent fluorination 

step and final end group conversion.83 The subsequent fluorination is carried out by reacting 

fluorine gas directly with the polymer at 200°C or in the presence of UV irradiation. 

Scheme 1.2  Synthesis of Demnum® via anionic ROP of tetrafluorooxetane followed by fluorination (not 

shown). 

 

Solvay manufactures its Fomblin/Fluorlink® PFPEs by the photooxidation of fluorinated 

olefins like tetrafluoroethylene (TFE) or hexafluoropropylene (HFP). Oxygen is added into the 

liquid monomers at -40°C and irradiated with UV light (ɚ<300 nm).83 The mechanism for this 

polymerization is well-established and was summarized clearly by Bunyard et al.84 Several of the 

important propagation and termination reactions are shown in Figure 1.17. It should be noted that 

although the mechanism below corresponds to the photooxidation of HFP, TFE photooxidation 
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undergoes analagous reactions. The Fluorolink® materials discussed in this dissertation are 

synthesized by the photooxidation of TFE. 

 

Figure 1.17  Important propagation and termination reactions in the photooxidation of HFP with oxygen. 

Reprinted with permission from ref. [84]. Copyright (1999) American Chemical Society. 

When fluorinated olefins are irradiated, the resulting radical reacts with oxygen at a 

diffusion-limited rate (reaction 1). Disproportionation of the resulting peroxy radical forms an 

alkoxy radical (reaction 4), which occurs more quickly than HFP addition to the peroxy radical 

(reaction 2). Thus, HFP addition to an alkoxy radical is the dominant propagation reaction. Above 

-50°C, -̡scission takes place, forming difluoromethylene radicals (reaction 6). The result is 

random insertion of difluoromethylene oxide units within the hexafluoropropylene oxide 

backbone. Temperature, feedstock ratio of reactants, solvent, and monomer concentration can all 

be adjusted to obtain the desired molecular weight and ratio between hexafluoropropylene oxide 

and difluoromethylene oxide repeat units.84 
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Finally, direct fluorination may be employed to convert hydrogenated ethers to their 

perfluorinated derivatives. Three commercially viable methods exist to date: electrochemical 

fluorination, oxidative fluorination with cobalt trifluoride, and liquid phase fluorination.85 Each 

method relies on the same basic mechanism, in which proton abstraction from a carbon yields an 

alkyl radical, which then reacts with a fluoride source to produce the perfluorinated molecule. 

However, several direct fluorination methods require the starting material to be soluble in the same 

medium as the perfluorinated product, which is rare unless the starting material is already partially 

fluorinated.86  

Exfluor solved this issue with a method to generate a large excess of fluorine radicals 

relative to the nonfluorinated substrate under vigorous stirring. The Exfluor-Lagow method 

involves slow addition of the nonfluorinated substrate and excess fluorine to a halogenated solvent 

(the DeSimone group has also performed fluorinations in liquid and supercritical CO2).
87 Benzene 

is added in small quantities, reacting spontaneously with fluorine to generate high concentrations 

of fluorine radicals. Though it makes use of toxic, explosive fluorine gas, the Exfluor-Lagow 

method produces perfluorinated ethers in higher yields and better purities than electrochemical or 

cobalt trifluoride-based direct fluorinations.88 The low molecular weight perfluorinated glycols 

discussed in this work are synthesized by Exfluorôs direct fluorination method. 

Scheme 1.3  Direct fluorination of a polyether to its perfluorinated PFPE analog.  

 

1.6.4.3  Perfluoropolyether Electrolyte Properties 

Importantly, Wong et al. recently discovered that PFPE oligomers dissolve the commonly 

studied lithium bis(trifluoromethane)sulfonamide (LiTFSI or LiN(SO2CF3)2) salt.89 PFPE/LiTFSI 
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electrolytes exhibit ionic conductivity ̀  Ғ 10-6 S cm-1 at room temperature with near-unity 

transference numbers (t+ Ó 0.91), the highest known t+ values reported for a polymer electrolyte in 

which lithium salt is dissolved in a polymer solvent (Figure 1.18). It was proposed that the 

perfluorinated polymer backbone solvates the highly fluorinated TFSI- anion, freeing Li+ for 

higher mobility.  

If correct, this feature would be unique from the vast majority of polymer electrolytes that 

coordinate to Li+. Anion solvation may occur via the ñfluorous effect,ò the tendency of 

perfluoroalkyl chains to segregate in order to minimize energetically unfavorable interactions of 

the highly nonpolarizable fluorine atoms with other elements.90 This fluorous effect has been used 

as an alternative to covalent immobilization in applications such as microarrays,91 mass 

spectrometry,92 and fluorous solid-phase extraction.93 

 

Figure 1.18  Temperature dependence of ionic conductivity and transference number of PFPE electrolyte 

with 9.1 wt.% LiTFSI. Reprinted with permission from ref. [89]. 

Wong and coworkers studied LiN(SO2CF3)2 solubility in PFPEs of varying molecular 

weight with diol and methyl carbonate end groups. This maximum salt concentration was 

expressed as the molar ratio of lithium ions to perfluoroether repeat units (rmax). 



30 

ὶ
ὒὭ

ὅὊὅὊὕ ὅὊὕ
 ρȢω 

PEO electrolyte salt concentrations are often expressed as rmax (defined as [Li+]/[ether]) because 

the ether oxygen atom is known to be responsible for solvating lithium. Therefore, rmax is constant 

for PEO of varying molecular weight. In contrast, rmax decreases exponentially with increasing 

PFPE molecular weight (Figure 1.19a). 

Because PFPE-DMC dissolves significantly more salt than PFPE-Diol, it was proposed 

that end groups play an important role in dissolving lithium salts. The LiTFSI solubility was 

normalized as the ratio of lithium ions per end group (Rmax), where the end group is either hydroxyl 

or methyl carbonate (Figure 1.19b). Rmax was consistent over a range of molecular weights, 

indicating that end groups do contribute to lithium salt solvation in PFPE electrolytes. 
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Figure 1.19  Solubility limit of LiN(SO2CF3)2 in Fluorolink D10-Diol and D10-DMC as a function of 

PFPE molecular weight, expressed as a) rmax and b) Rmax. Reprinted with permission from ref. [89]. 
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PFPE was found to form miscible blends with low molecular weight PEO up to a 

composition of about 30 wt.% PEO, as shown in Figure 1.20.94 Wong et al. prepared electrolytes 

based on physical blends of PFPE and PEO mixed with LiTFSI salt, and the complex ternary phase 

interactions altered the miscibility between PFPE and PEO.95 As shown in Figure 1.21, the ionic 

conductivity exhibited by PFPE/PEO blends reached Ғ 10-4 S cm-1 at room temperature, although 

the transference number was significantly reduced to Ғ 0.3.95 PEO dramatically affected the 

conductive behavior of the electrolyte: oligoether coordination to Li+ resulted in higher lithium 

salt solubility and conductivity but lower t+. 

 

 
Figure 1.20  Photographs of fully cured PFPE/PEG films. Labels are readable for optically transparent or 

hazy samples only (vertical label: mass ratio PFPE/PEG). Reprinted with permission from ref. [94]. 

Copyright (2008) American Chemical Society. 
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Figure 1.21  Ionic conductivity of PFPE (black), PFPE/PEG (red), and PEG (blue) electrolytes at 

LiN(SO2CF3)2 concentration r=0.026. Reprinted with permission from ref. [95]. Copyright (2015) 

American Chemical Society. 
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Chapter 2: Perfluoropolyether Electrolytes with Oligoether End Groups2 

2.1 Introduction  

Rechargeable batteries are crucial for accommodating growing energy needs in our 

society.1,2 State-of-the-art lithium-ion (Li-ion) batteries are not only incorporated into portable 

consumer electronic devices and zero-emission vehicles, but also are of interest for electricity 

storage in smart grid applications.3 Large-scale use of these batteries has been hindered by the 

flammability of the electrolyte, which consists of small molecule alkyl carbonates mixed with a 

lithium salt.4 Numerous efforts have been made to address this safety concern, including the 

implementation of cooling systems, external circuitry for disconnecting the battery at high 

potentials caused by overcharging, and ñredox shuttleò molecules for dissipating charge and 

eliminating thermal runaway.5,6 However, continual reports of catastrophic battery failures 

highlight the need for an intrinsically nonflammable Li-ion battery. 

Perfluorinated small molecules have been investigated as nonflammable electrolyte 

alternatives to enhance the safety of Li-ion batteries for potential large-scale applications, but they 

often exhibit low ionic conductivities due to low lithium salt solubility in the solvent.7 Therefore, 

similar to phosphate-based additives, fluorinated small molecules have commonly been explored 

as flame-retardant additives for conventional alkyl carbonate solvents rather than as neat 

electrolyte solvents.8 Although safety characteristics are enhanced with these additives, the 

                                                 
2 This chapter previously appeared as an article in Polymer. The original citation is as follows: Olson K, Wong DHC, 

Chintapalli M, Timachova K, Janusziewicz R, Daniel W, Mecham S, Sheiko S, Balsara NP, DeSimone JM. (2016). 

Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications. Polymer. 

100(25):126-133. 
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fluorinated solvent often must be the major component in order to observe nonflammability.9,10 

Furthermore, electrolyte-electrode interfacial performance is sacrificed in some cases.11 

Polymer electrolytes have also been investigated as nonflammable electrolytes for Li-ion 

batteries. Poly(ethylene oxide) (PEO) is by far the most studied polymer electrolyte due to its 

ability to solvate lithium salts via coordination of ether oxygens to the lithium cation.12ï14 PEO is 

nonflammable and exhibits high ionic conductivity at elevated temperatures, but it is crystalline at 

room temperature (melting temperature å60ÁC).15 Ion transport occurs via a hopping mechanism 

in polymer electrolytes, which is closely coupled to segmental motions of the polymer chain. Thus, 

PEO exhibits room-temperature ionic conductivities that are far below the levels necessary for 

practical use.15 In addition, PEO exhibits poor oxidative stability and low Li-ion mobility due to 

the cationôs coordination to backbone oxygens.16,17  

We recently reported that perfluoropolyether (PFPE), a perfluorinated analog of PEO, 

dissolves the commonly studied salt lithium bis(trifluoromethane)sulfonamide (LiTFSI) and 

enables the transport of lithium ions.18 PFPEs are a unique class of fluoropolymers that remain 

liquids over a wide temperature range [glass transition temperature (Tg) <ï80°C], are 

nonflammable, and can be chemically tailored to enhance lithium salt solubility.  

In addition to the safety enhancement provided by polymer electrolytes and fluorinated 

solvents, we have proposed that the highly fluorinated PFPE backbone solvates the fluorinated 

anion of lithium salts, a feature that is distinctive from other polymer and small molecule 

electrolytes that primarily interact with the lithium cation.8,19ï21 Perfluoroalkyl chains tend to 

segregate in order to minimize energetically unfavorable interactions between highly 

nonpolarizable fluorine atoms and other elements.22 This ñfluorous effectò is a powerful tool for 

molecular adsorption and aggregation in applications such as fluorous solid phase extraction,23 
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immobilization of biomolecules on microarrays,24 and peptide self-association,25,26 among others. 

We propose that this fluorous effect causes the PFPE backbone and the highly fluorinated anion 

of lithium salts to interact significantly. 

High transference numbers are achievable in electrolytes that solvate the fluorinated anion 

of lithium salts, hindering its mobility (rather than that of the Li-ion). Indeed, we previously 

measured near-unity transference numbers in PFPE/LiTFSI electrolytes, providing evidence that 

the PFPE backbone solvates the fluorinated anion.18 However, the conductivity (ů) of the 

electrolyteðapproximately 2.5x10-6 S cm-1 at 30°Cðmust be improved for practical applications, 

and efforts to accomplish this require establishing the underpinnings of ion transport in the PFPE 

electrolyte system. 

Quantifying the factors that govern ion transport in liquid mixtures is challenging due to 

the interplay of many factors such as ion solvation, electrostatic coupling, local dynamics in the 

vicinity of ions, and the glass transition temperature.27ï29 Herein, we report on the synthesis and 

characterization of a new series of ethoxylated PFPE electrolytes. We elucidate the effect of 

molecular structure, viscosity, and glass transition temperature on ionic conductivity within the 

PFPE electrolyte platform.  

2.2 Materials and Sample Preparation 

Perfluoropolyether Fluorolink E10 was obtained from Solvay-Solexis. Lithium 

bis(trifluoromethane)sulfonamide (LiTFSI), triethylamine, and methyl chloroformate were 

obtained from Sigma-Aldrich. 1,1,1,3,3-pentafluorobutane was obtained from MicroCare 

Corporation. PFPE and LiTFSI were dried at 90°C under vacuum for at least 24 hours prior to use. 

PFPE and LiTFSI were mixed together and stirred at room temperature for at least 24 hours. Salt 

solubility limits were determined as the point at which the solution visibly changed from 
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transparent to translucent, which has been shown to agree with quantitative measurements 

(inductively coupled plasma mass spectrometry) for these systems.18  

2.3 Experimental 

2.3.1 Synthesis of DMC-terminated PFPE 

Fluorolink E10 (30 g, 0.025 mol) and triethylamine (7 mL, 0.05 mol) were dissolved in 

300 mL 1,1,1,3,3-pentafluorobutane at 0°C under stirring conditions and nitrogen atmosphere. 

Methyl chloroformate (3.9 mL, 0.05 mol) was added dropwise over 3 minutes, after which the 

mixture was heated to 20°C and stirred for 18 hours. The resulting mixture was gravity filtered, 

washed with water 3x, and washed with brine once. The organic layer was isolated, dried using 

magnesium sulfate, gravity filtered, and evaporated under reduced pressure. The product was 

filtered again using a 0.45 micron syringe filter, yielding the final PFPEE10-DMC product as a faint 

yellow, transparent liquid. Yield: 85%. 1H NMR (600 MHz, 25°C, (CD3)2CO): 3.54-4.31 ppm (m, 

22H). IR (neat): 2885 (C-H), 1751 (C=O), 1183 (C-H), 1067cm-1 (C-O). 

2.3.2 Polymer Characterization  

Gel permeation chromatography (GPC) measurements were performed on an Agilent 

Technologies 1260 Infinity LC system equipped with a DAWN HELEOS II multi-angle static 

light-scattering detector and OptiLab T-rEX refractometer from Wyatt Technologies. The sample 

(~30 mg/mL in tetrahydrofuran) was eluted through a 3 micron MIXED-E PLgel column (300 mm 

x 7.5 mm) at 1 mL/min for 60 minutes. A monodisperse 18 kDa polystyrene sample and 

monodisperse poly(ethylene glycol) samples of varying molecular weight were used as standards. 

A 600 MHz Ultra-Shield Bruker NMR instrument was used for NMR analysis. 

Quantitative 13C NMRs were obtained by increasing the d1 relaxation delay time until the relative 

intensity of all peaks remained constant, indicating full relaxation of all carbons. The 13C{1H, 19F} 
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NMR was obtained at a frequency of 150.9028 MHz with relaxation delay d1 = 50 seconds, 512 

scans, 1H decoupling offset = 4 ppm, and 19F decoupling offset = -86 ppm. 

2.3.3 Electrolyte Physical Properties Characterization.  

Differential scanning calorimetry (DSC) thermograms were recorded using a TA 

Instruments DSC Q200 on samples that were prepared in air with a temperature range from -150°C 

to 100°C using a heat/cool/heat method at a heating rate of 10°C/min and cooling rate of 5°C/min. 

Glass transition temperatures (Tgs) were determined using the average from the midpoint method 

on the cooling cycle and second heating cycle thermogram. Thermogravimetric analysis (TGA) 

was run using a Perkin Elmer Pyris 1 TGA apparatus under nitrogen from 25°C to 550°C with a 

heating rate of 10°C/minute. 

An ARES-G2 Rheometer (TA Instruments), equipped with a cone plate (50 mm diameter; 

0.0202 radian cone angle), was used to measure viscosity at 25°C as a function of shear rate, which 

was ramped from 5x10-5 to 50 s-1. The viscosity was modeled using Bingham analysis, which is 

commonly used to describe viscoplastic materials that exhibit a nonzero shear stress at zero shear 

rate.30 

2.3.4 Characterization of Ion Transport 

Electrolyte conductivity was measured in a stainless steel liquid cell using AC impedance 

spectroscopy. Impedance measurements were performed using a Bio-Logic VMP3 potentiostat, 

with 20 mV as the input signal amplitude, and 1 to 106 Hz as the frequency range. The minimum 

in a Nyquist plot of the impedance was used to determine the bulk resistance of the electrolyte, 

and the geometric factor of the liquid cell, described elsewhere, was used to calculate the 

conductivity.31 The temperature of the electrolyte was controlled using a home-built heating 
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chamber. All conductivity measurements were performed in an argon glove box, as the liquid cell 

was not hermetically sealed. 

2.4 Results and Discussion 

PFPE is a random copolymer of tetrafluoroethylene oxide and difluoromethylene oxide. 

Dihydroxyl-terminated Fluorolink D10 (herein, ñPFPED10-Diolò), and its ethoxylated Fluorolink 

E10 analog (herein ñPFPEE10-Diolò) are shown in Figure 2.1. Here, 2q is the total number of EO 

repeat units in a single PFPEE10 chain, m is the number of tetrafluoroethylene oxide repeat units, 

and n is the number of difluoromethylene oxide repeat units. 

 
Figure 2.1  Structure of PFPED10-Diol compared to its ethoxylated PFPEE10-Diol analog. The slash 

between perfluoroether repeat units denotes that it is a random copolymer. 

Mass spectrometry indicates that on average, the number of repeat units in a single PFPEE10 

chain are q=2, m=5, and n=4, whereas m and n were previously reported as 7 and 3, respectively, 

for PFPED10.
18 We attribute the difference between the m and n values of PFPEE10 and PFPED10 to 

batch-to-batch variation in the industrial synthesis rather than a systematic change between the 

two analogs. 

To our knowledge, there is no precedent for studying a material with perfluoroether, 

ethylene oxide (EO), and methyl carbonate moieties covalently bound in a single polymer chain. 

Incorporating all of these functionalities into a pure electrolyte is appealing because EO and methyl 

carbonate contribute to lithium salt solvation and enhance conductivity,32 while perfluoroether 
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provides thermal stability and high transference of Li-ions.18 As shown in Figure 2.2, PFPEE10-

Diol (Structure 1) was functionalized with methyl carbonate end groups to form DMC-terminated 

PFPE (herein, ñPFPEE10-DMCò, Structure 2) in order to enhance electrode-electrolyte 

compatibility and lithium salt solubility in the polymer. This reaction is analogous to our 

previously reported functionalization of PFPED10 with DMC end groups.18 

 

Figure 2.2.  Synthesis of DMC-terminated PFPEE10. 

Chain coupling was unexpectedly observed during the synthesis of PFPEE10-DMC from 

PFPEE10-Diol that was not seen with the analogous PFPED10 system. Figure 2.3 shows the 

molecular weight distribution of the PFPE samples, measured using gel permeation 

chromatography (GPC) in tetrahydrofuran (THF). Each subsequent peakôs number-average 

molecular weight (Mn) was measured to be slightly less than a multiple of the Mn of the first peak, 

which is consistent with the expected loss of end groups during chain coupling (peaks at elution 

time t=13.3, 13.6, 14.2, and 15.2 min corresponding to Mn=1.46, 2.60, 3.80, and 5.10 kDa, 

respectively, for PFPEE10-DMC). Coupling in PFPEE10-Diol itself was observed to a lesser extent, 

while no coupling was observed in PFPED10-Diol and PFPED10-DMC. Therefore, a small degree 

of coupling occurs during the industrial synthesis of PFPEE10-Diol. To our knowledge, this 

coupling phenomenon in the PFPE Fluorolink E10 has not previously been reported in the 

literature. 
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During the addition of DMC end groups to PFPEE10-Diol, we hypothesize that chain 

coupling increases significantly through the formation of carbonate linkages, as in structures 2-5 

of Figure 2.4. To reject the possibility that ether linkages are formed under our reaction conditions, 

triethylamine was added to the PFPEE10-Diol in the absence of methyl chloroformate. No chain 

coupling was observed, providing support for the proposed carbonate linkages. 

 

 

Figure 2.3  Comparative GPC chromatograms (light scattering intensity I vs. elution time t) of PFPEE10 

and PFPED10 oligomers, demonstrating coupling in the E10 derivatives only. The numbers above each 

peak correspond to the numbered structures shown in Figure 2.4. 
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Figure 2.4  Proposed structures of coupled products with carbonate linkages. Elution peaks for each 

numbered compound are shown in Figure 2.3. 

To support this hypothesis, we used the relative abundanceðdetermined by GPCðof 

products 2-5 and the corresponding number of carbons in each coupled product (assuming 

carbonate linkages, see Table 2.1) to calculate the theoretical number of carbons in an average 

polymer chain. We then used quantitative 13C NMR spectroscopy and integration methods to 

determine the relative ratios of terminal methoxy (OCH3) to carbonyl (C=O) carbons in an average 

PFPEE10-DMC chain. This ratio, as shown in Figure 2.5, was determined by NMR to be 2.0 : 2.9, 

which is in good agreement with the theoretical integration ratio of 2.0 : 2.7 based on the GPC 

results and proposed structures. There are more than two carbonyl carbons per chain, supporting 

the presence of carbonate linkages. If chain coupling did not occur through carbonate linkages, the 

only carbonyl groups in the polymer would be end groups, and the aforementioned ratio would be 

exactly 2.0 : 2.0.  






























































































































































































































