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ABSTRACT

ROXANA TIRON: Strongly Nonlinear Internal Waves in Near Two-Layer

Stratifications: Generation, Propagation and Self-induced Shear Instabilities

(Under the direction of Roberto Camassa)

This thesis consists of three parts. In the first part, periodic travelling-wave solutions

for a strongly nonlinear asymptotic model of long internal wave propagation in an Euler

incompressible two-fluid system are derived and extensively analyzed. The class of waves

with a prescribed mean elevation, and zero-average momentum and volume flux is studied

in detail. We found that the domain of existence of these periodic waves contains that of

their Euler solution counterparts as a subset, and the agreement is good on the common

domain. Among other findings, the model predicts the existence of periodic waves of

substantially larger amplitudes than those of limiting solitary waves. This is relevant for

modeling realistic oceanic internal waves, which often occur in wavetrains with multiple

peaks.

The second part consists of optimizing a two-layer system to approximate a con-

tinuously stratified one. This work aims at extending the applicability of two-layer

asymptotic models. The strategy is validated by comparing long solitary wave numerical

solutions in continuous stratification against their two-layer asymptotic counterparts.
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The third part is a numerical study of the shear instability induced by internal solitary

waves in near two-layer stratifications. We emulate numerically the generation of solitary

wave in the experiments of [19], by using a variable density Navier Stokes solver [1]. We

validate the numerical code by comparison against strongly nonlinear model [7], optimally

adjusted for finite-width pycnocline developed in the second part. While the general

dynamical features reported in [19] emerge from the simulations, there are significant

discrepancies, which seem resolvable only by further laboratory work. Good agreement

is however obtained for the self-induced shear instability for large waves. To assess

whether this is an intrinsic property of the wave or an effect of the generation technique,

we study the evolution of stationary solutions of Euler equations, found with a variant

of the algorithm in [51]. We determine local stability characteristics and construct an

amplitude threshold for manifestation of the instability. We discuss the implication of

locally unstable shear for the global stability properties of traveling wave solutions.
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CHAPTER 1

General introduction

Internal waves are an important feature of geophysical fluid dynamics, as stratification

is an inherent component of near equilibrium states of ocean and atmosphere. In this

work we focus on internal waves of the type pertinent to the oceanic case.

Because of the relatively low viscosities and small differences in densities in these

environments, energy penalties paid by natural forcing agents such as tides and winds

in displacing fluid parcels from equilibrium are also relatively small, which can result

in internal wave motion of large amplitudes, as recent improvements in instrumentation

and observational techniques in the ocean are continuously revealing (Helfrich & Melville

[21]).

From the earliest in-situ observations (Helfrich & Melville [21]), it became evident

that these waves are not dispersive, since their typical amplitudes are too large with

respect to the overall vertical scale of the stratification. Furthermore, in the early 1960s

to 1970s, satellite imagery (recording scattering of radar signals from short surface waves

induced by the strong currents associated with internal wave motion) revealed that these

waves are in fact common occurrence in the near coastal waters. Thus, understanding

their generation, propagation and breaking is crucial in understanding the overall dy-

namics of coastal processes.



This thesis studies three problems concerning large amplitude wave propagation in

either two-layer or near two-layer density stratifications, each of which is essentially self

contained:

(1) existence of periodic solutions in two-layer fluids,

(2) extension of two-layer models, which offer analytical predictions, to continuously

stratified fluids,

(3) stability of large amplitude continuously stratified internal waves.

In order to proceed, it is necessary to assume a number of simplifications, while striving

to maintain all the relevant features of the phenomena which are the target of this

investigation.

Simplifying assumptions

We argue that an inviscid model suffices to capture the essential dynamics of internal

wave propagation in lab experiments (and, to a greater extent, in a stratified ocean)

since the scales associated with internal waves are large, and consequently the Reynolds

number is typically high (ranging from 105 for laboratory setups to 108 in the ocean). In

the lab, as in the ocean, the density stratification is the direct consequence of diffusing

quantities such as temperature and salinity. However, since the time scales associated

with diffusion processes are far larger than the time scale of internal wave propagation, we

also neglect diffusion. Finally, we restrict the upper surface (the “rigid lid” assumption)

arguing that the surface signature of the internal waves is typically 103 smaller than the

displacement of the pycnocline and moreover the scales associated with internal wave
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motion are greatly exceeding the scales of the surface (barotropic) waves - Vlasenko

et al. [53].

Organization

In the first part, Chapter 2, periodic travelling wave solutions for a strongly non-

linear model of long internal wave propagation in a two-fluid system are derived and

extensively analyzed, with the aim of providing structure to the rich parametric space of

existence for the parent Euler system. The waves propagate at the interface between two

homogeneous-density incompressible fluids filling the two-dimensional domain between

rigid planar boundaries. The class of waves with a prescribed mean elevation, chosen

to coincide with the origin of the vertical axis (parallel to the gravity direction), and

prescribed zero-average momentum and volume flux is studied in detail. The constraints

are selected because of their physical interpretation in terms of possible processes of

wave generation in wave-tanks, and give rise to a quadrature formula which is analyzed

in parameter space with a combination of numerical and analytical tools. The resulting

model solutions are compared with those computed numerically from the parent Euler

two-layer system with a boundary element method. It is found that the parametric

domain of existence of model periodic waves, determined analytically, contains the ex-

istence domain of their Euler solution counterparts as a subset. The model existence

domain in the amplitude-speed (A, c) parameter plane is determined by two functions

c(A) corresponding to infinite period limiting cases of fronts (conjugate states) and soli-

tary waves, respectively. The front boundary is exact and coincides with that of fronts

for Euler solutions, while the solitary-wave boundary is a close approximation to its Eu-

ler counterpart. A third functional relation between c and A indicates where the Euler
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solutions cease to exist within the model’s domain. This is found to be related to the

phenomenon of “overhanging” wave profiles, whereby the interface between the two fluids

becomes a multiply defined function of the horizontal coordinate. The model existence

domain is further partitioned in regions where the model is expected to provide accurate

approximations to Euler solutions based on analytical estimates from the quadrature.

The resulting predictions are found to be in good agreement with the numerical Euler

solutions, as exhibited by several wave properties, including kinetic and potential en-

ergy, over a broad range of parameter values, extending to the limiting cases of critical

depth ratio and extreme density ratios. In particular, when the period is sufficiently

long, model solutions show that for a given supercritical speed waves of substantially

larger amplitude than the limiting amplitude of solitary waves can exist, and are good

approximations of the corresponding Euler solutions. This finding can be relevant for

modeling field observations of oceanic internal waves, which often occur in wavetrains

with multiple peaks. Results concerning solitary wave solutions on background currents

of the strongly nonlinear model, which are essential in constructing the periodic solutions

are presented in Appendix A and B, respectively.

In the second part, Chapter 3, we construct an optimal two-layer approximation for

a continuously-stratified system. The motivation behind this endeavor is to extend the

use of two-layer asymptotic models (which are notably easier to explore analytically)

to more realistic stratifications, especially for wave motion of large amplitude. The

proposed strategy is validated by comparing traveling wave solutions of Euler equations in

continuous stratification, obtained with a variant of the algorithm proposed in Turkington

et al. [51] (described in detail in Appendix C) to solutions of the strongly nonlinear model

4



for long wave motion in a two-layer system Choi & Camassa [7]. The model furnishes

good estimates for global properties of the wave motion in continuous stratification - such

as phase speed, kinetic and potential energy, and displacement of the average density

isoline. In §3.5, we propose a strategy for the reconstruction of the eulerian velocity field.

The third part (Chapters 4 and 5) is concerned with the breaking mechanism of

internal solitary waves in a near two-layer continuous stratification. There is extensive

evidence that such waves break via shear instabilities Grue et al. [19], Helfrich & Melville

[21]. We first replicate numerically the experiments in Grue et al. [19]. The time evo-

lution of the solitary wave from a step function in density initial condition is simulated

using a variable density Navier Stokes solver described in Almgren et al. [1]. The numer-

ical code is validated by comparison against strongly nonlinear model Choi & Camassa

[7], adjusted for finite width pycnocline. While the numerical simulations capture the

general features of the actual experiments in Grue et al. [19], there are signicant dis-

crepancies, which seem resolvable only by further laboratory work. Good agreement is

however obtained for the self-induced shear instability for large waves. To assess whether

this phenomenon is an intrinsic property of the wave or an effect of the generation tech-

nique, we study the evolution of stationary solutions of Euler equations. We determine

local stability characteristics and construct an amplitude threshold for manifestation of

the instability. We conclude that the shear instability is indeed an inherent feature of

large amplitude waves in a near two layer stratification, independent of the generation

technique; we also present numerical evidence of the convective nature of the instability.

Finally, in Chapter 5, we briefly comment on the use the two layer approximation (opti-

mized for including the presence of a pycnocline of finite width as described in Chapter 3)
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to get an analytical handle on the study of the stability properties of solitary waves in

continuous stratification.
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CHAPTER 2

Nonlinear periodic waves in a two layer system

2.1. Introduction

In the following we focus on what is possibly the simplest set-up capable of supporting

internal wave motion of arbitrary amplitude, that of a two-layer inviscid and incompress-

ible fluid of homogenous densities between plates of infinite horizontal extent. Despite its

long history in the literature, it is only somewhat recently that attention has been paid,

by experimental and theoretical investigations (Grue et al. [19], Choi & Camassa [7]),

to the large amplitude motion that can be attained in this configuration. Among other

findings, these studies have shown that the long wave assumption in a two-layer system

makes it possible to develop models which can describe solitary wave motion of arbitrary

amplitude, and provide closed form solutions that compare favorably with laboratory

experimental data under appropriate circumstances (Camassa et al. [8]). While solitary

waves are of interest in many practical situations, e.g., in field studies (Duda et al. [12]),

a more extensive test of model fidelity is offered by the class of periodic travelling wave

motion, which includes that of solitary waves as a limiting case. In this study, we exam-

ine periodic wave train solutions for a class of long-wave asymptotic models developed

in Miyata [39, 40], Choi & Camassa [6, 7], and establish the parametric range where such

solutions can be considered valid approximations to those of the parent Euler equations.

This is carried out by a direct comparison with numerical computations of both two-layer



and continuous stratification solutions of the Euler equations, through a variety of wave

properties, such as wave profiles, fluids velocity, wave speed and amplitude, etc.

Unlike the case of a solitary wave, whose physical parameters can be linked in the

form of boundary conditions to a far-field reference configuration of the fluid, a periodic

travelling wave train admits a richer class of such parameters, generally related to the

invariants of motion. Unfortunately, the highly idealized nature of periodicity extending

for all space and time does not allow one to identify a preferred (minimal) set of pa-

rameters that determines a unique periodic wave train, given that the physical processes

necessary for its generation, as well as the physically necessary transition to far-field

reference states, are neglected in this idealization. This, of course, is an issue that tran-

scends the case of internal waves. The choice of the most convenient physical quantities

that determine a given wave train already presents itself in the study of periodic irro-

tational waves at the free surface of a single fluid layer. It is remarkable that for these

waves such questions appear to have been settled only relatively recently, and this only

in the context of waves symmetric around their crests (see Benjamin [3] for a proof of a

long-standing conjecture on this issue formulated in Benjamin & Lighthill [4]).

With this in mind, in deriving periodic travelling wave solutions to the asymptotic

model in Choi & Camassa [7], we first make the assumption that the mean thickness

of the fluid layers is prescribed at the outset. This choice makes the connection with

previous work on solitary waves somewhat more transparent and allows us to follow

easily the model’s solutions in the distinguished limits of infinitesimal wave amplitudes,

where the long wave critical speed is naturally defined from the general Euler internal

wave dispersion relation for a two-fluid system (Lamb [33]). We proceed, in §2.2 to solve
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by quadratures the system of four ordinary differential equations (ODE’S) resulting from

the travelling wave ansatz. In this process, we accumulate four integration constants,

which are constants of motion in the wave frame. Thus, at least within the realm of these

asymptotic models, the minimal number of physical invariant quantities determining a

unique period wave train is four. The phase speed of the wave can then be determined

by specifying some integral property of the wave (e.g., total horizontal momentum) in

the lab frame. In §2.3, we establish relationships between relevant physical quantities

associated with the periodic wave train and the four constants of integration in the

quadrature. A subset of these relationships can be chosen to determine the quadrature’s

constants. In particular, we show that two of these constants can be given a natural

physical interpretation in terms of volume fluxes in each layer, while the remaining two

integration constants can be determined, for instance, by seeking an a priori imposed

peak-to-trough amplitude and from the prescribed mean layer thickness.

We proceed, in §2.4, to construct a particular class of periodic waves which limits

correctly to the infinitesimal amplitude waves for the quiescent reference state. The final

result will be a two parameter family of periodic solutions (e.g., speed and amplitude

which determine the period). In particular, our approach allows us to deal with the

technical difficulties posed by the quadrature solution which in general leads to hyper-

elliptic integrals (as opposed to elliptic integrals as in the case of solitary waves). We

study the properties of the periodic solutions of this two parameter family in §2.5. In

an effort to establish the limitations on model’s validity range through its periodic trav-

elling wave solutions, §2.6 presents comparisons with numerically computed solutions of
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both two-layer and near two-layer continuously stratified periodic traveling wave Euler

solutions.

We remark that the choice of invariant physical quantities determining a periodic

travelling wave solution is by no means unique. In the literature, various alternatives

to the assumption of fixed mean level have been considered, and ultimately the issue of

which among these is preferable must be related to the physical process by which (locally)

periodic travelling wave trains are generated. We discuss some of these alternatives and

their connection to our primary choice in §2.7.

The study of the limiting cases of solitary waves and fronts is fundamental to our

construction of periodic solutions and it is interesting in its own right. However, to avoid

distraction from the main focus of periodic solutions in our constrained class, we relegate

the details of these studies to the appendices. In particular, in Appendix A we explore

new solitary wave solutions of the asymptotic model in Choi & Camassa [7]. These are

solitary waves on background uniform currents in each layer, which we found useful in

the systematic study of various classes of periodic travelling wave solutions of the model.

In Appendix B we present details of how such solitary waves can be used in studying the

properties of the class of periodic waves described in §2.4.

2.2. The model equations and travelling wave system

We search for periodic wave solutions to the long wave strongly nonlinear asymptotic

model (in the small parameter ε = H/L, where L is a typical horizontal scale of the

waves and H is the total thickness of the two layers) derived by Choi & Camassa [7] for
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Figure 2.1. Schematics of the two-fluid system with main notation definitions.

a system of two inviscid, irrotational1 fluid layers of constant densities under gravity (with

ρ1 < ρ2 for stable stratification) – see Figure 2.1. We define the interface displacement

between the two layers as the graph z = ζ(x, t) and choose the origin of our coordinate

systems so that the two fluid layers are bounded above and below at z = h1 and z = −h2

respectively. We denote by η1(x, t) = h1− ζ(x, t) and η2(x, t) = h2 + ζ(x, t), respectively,

the thicknesses of each layer.

We interpret h1 and h2 as the fluid layer thicknesses of a reference quiescent state

prior to wave generation and propagation, and assume that the mechanisms by which

waves are generated do not add mass to either layer, so that the periodic wave trains

we are seeking will have zero mean with respect to this state. We expect this to be the

case for most common wave generation setups in experiments, although this is by no

means assured, and there may be (small) departures from the zero mean assumption, for

instance due to spatial transients. As mentioned in the Introduction, it is easy to adapt

the model to different assumptions (as in the examples of §2.7), which can actually result

in a simplified process of finding periodic solutions.

1In fact, the asymptotic model can accommodate for weak horizontal vorticity in each layer consistently
with the long wave approximation.
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The set of model equations that governs the dynamics of a two layer system under

the long wave approximation is

η1t + (η1u1)x = 0 ,(2.1)

η2t + (η2u2)x = 0 ,(2.2)

u1t + u1u1x + gζx = − 1

ρ1

∂xPI +
1

η1

∂x

(
1

3
η3

1G1

)
,(2.3)

u2t + u2u2x + gζx = − 1

ρ2

∂xPI +
1

η2

∂x

(
1

3
η3

2G2

)
,(2.4)

where uk(x, t) denote the layer mean velocities

(2.5) uk(x, t) =
1

ηk

∫
[ηk]

uk(x, z, t)dz ,

where the layer domains [ηk] are defined as ζ ≤ z ≤ h1 and −h2 ≤ z ≤ ζ, for k = 1, 2

respectively, PI(x, t) is the pressure at the interface, and the nonlinear dispersive terms

are defined, respectively, by

(2.6) Gk (x, t) = ukxt + ukukxx − (ukx)
2 , k = 1, 2 .

The first pair is exact and is simply an expression of mass conservation per layer, while

the second pair corresponds to horizontal momentum balance and is accurate up to terms

in the long wave parameter asymptotics of order O(ε4).
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2.2.1. Traveling wave solutions. For a stationary wave moving from left to right

with constant speed c, we make the change of variable

X = x− ct ,

and consider

ζ(x, t) ≡ ζ(X) , uk(x, t) ≡ uk(X) , PI(x, t) ≡ PI(X) ,

hence

∂

∂t
= −c ∂

∂X
,
∂

∂x
=

∂

∂X
.

The equations of mass conservation and momentum for each layer therefore reduce to

a system of four ODE’s with respect to independent variable X. The system can be

integrated by quadratures, which introduces four integration constants that represent an

equal number of motion invariants.

Continuity.

Equations (2.1) and (2.2) become

(2.7) −cηkX + (ηkuk)X = 0 .

Integrating once with respect to X, we obtain

−cη1 + η1u1 = C1 ,(2.8)

−cη2 + η2u2 = C2 ,(2.9)

where C1 and C2 are manifestly the volume fluxes in the wave frame, in each layer.
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Momentum.

Eliminating the pressure between (2.3) and (2.4) and with the help of (2.8) and (2.9),

we obtain

(2.10) Γ (ζ) ζX =
ρ1

η1

(
1

3
η3

1G1

)
X

− ρ2

η2

(
1

3
η3

2G2

)
X

where

(2.11) Γ (ζ) =
ρ1C

2
1

η3
1

+
ρ2C

2
2

η3
2

− γ ,

and γ ≡ g(ρ2 − ρ1). In order to separate variables we integrate the third order ODE

(2.10) with two different integrating factors and eliminate the common second derivative

ζXX between the resulting equations.

2.2.2. First integral. We note that with the traveling wave ansatz, the dispersive

terms (2.6) become

(2.12) Gk = −cukXX + ukukXX − (ukX)2 = C2
k

[
−ηkXX

η3
k

+
η2
kX

η4
k

]
= −C

2
k

η2
k

[
ηkX
ηk

]
X

.

Thus, the terms in the RHS of equation (2.10) can be expressed as a total derivative

ρk
ηk

(
1

3
η3
kGk

)
X

=
ρkC

2
k

3

[
1

2

ζ2
X

η2
k

+ (−1)k+1 ζXX
ηk

]
X

, k = 1, 2 .(2.13)

From (2.13), integrating both sides of the equation (2.10) yields

(2.14) M (ζ)− C3 = A1 (ζ) ζ2
X +B1 (ζ) ζXX ,
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with

(2.15) M (ζ) =
1

2

ρ1C
2
1

η2
1

− 1

2

ρ2C
2
2

η2
2

− γζ ,

(2.16) A1 (ζ) =
ρ1C

2
1

6η2
1

− ρ2C
2
2

6η2
2

,

and

(2.17) B1 (ζ) =
ρ1C

2
1

3η1

+
ρ2C

2
2

3η2

,

respectively.

2.2.3. Second Integral. Another way of integrating equation (2.10) is to multiply it

by η1 and use

(2.18) η1 + η2 = H .

We obtain

(2.19) Γ (ζ) η1ζX =

[
ρ1η

3
1

3
G1 +

ρ2η
3
2

3
G2

]
X

− ρ2H

η2

[
1

3
η3

2G2

]
X

.

The second term at the RHS of this equation can be expressed as a total derivative by

using (2.13) again, and integrating both sides yields

(2.20) N (ζ)− C4 = A2 (ζ) ζ2
X +B2 (ζ) ζXX ,
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where

N(ζ) =
ρ1C

2
1

η1

+
ρ2C

2
2

η2

(
1− H

2η2

)
− γ

(
η1ζ +

ζ2

2

)
,(2.21)

(2.22) A2(ζ) =
ρ1C

2
1

3η1

+
ρ2C

2
2

3η2

(
1− H

2η2

)
,

(2.23) B2(ζ) =
ρ1C

2
1

3
+
ρ2C

2
2

3

(
H

η2

− 1

)
.

respectively.

2.2.4. Quadrature solution. By eliminating ζXX between equations (2.14) and(2.20)

we obtain

(2.24) ζ2
X =

(M(ζ)− C3)B2(ζ)− (N(ζ)− C4)B1(ζ)

A1(ζ)B2(ζ)− A2(ζ)B1(ζ)
,

with the identity

B2(ζ) =
ρ1C

2
1

3
+
ρ2C

2
2

3

η1

η2

= η1B1(ζ) ,

which yields the first order separable ODE for ζ

(2.25) ζ2
X = 3

ρ1C
2
1η2 + ρ2C

2
2η1 − γζ2η1η2 + 2C3η

2
1η2 − 2C4η1η2

ρ1C2
1η2 + ρ2C2

2η1

.

2.2.5. Invariance with respect to choice of coordinate system. By making the

traveling wave ansatz, we implicitly assume the translational invariance in horizontal

direction. However, the translational invariance in the vertical direction may not be
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immediately obvious, because of the presence of the ζ2 term in the numerator, which

depends on the choice of origin in the vertical. It is immediately clear from (2.8) and (2.9)

that the constants of integration C1, C2 are independent of the coordinate system – since

they are expressed in terms of the widths of the layers and the averaged velocities only.

This is not the case with the other two constants of integration C3 and C4. However, from

the definitions (2.14-2.23), observing that their RHS are invariant under z translations,

it follows that the constants C3 and C4 must transform according to

(2.26) C ′3 = C3 − γz0 , C ′4 = C4 − γz0
2h1 + z0

2
,

where z0 is the amount of vertical translation of the new coordinate z′ = z + z0. With

these rules, one can easily check that the quadrature (2.25) is frame invariant, because

so is the denominator, while the numerator’s translation dependent terms combine to

give frame independence,

−γζ ′2 + 2C ′3η1 − 2C ′4 = −γζ2 − γz2
0 − 2γz0ζ + 2C3η1 + 2γz0η1 − 2C4 − γz0(2h1 + z0)

= −γζ2 + 2C3η1 − 2C4 .

This essentially proves that the derivation of the quadrature is consistent with the phys-

ical requirements of frame independence.

2.2.6. Analysis of the quadrature. The quadrature (2.25) corresponds to the classi-

cal case of a particle in an unbounded potential well. The potential is a rational function
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h1−h2 ζ2
X

Figure 2.2. Potential for the quadrature (2.25). r1, . . . , r4 are the roots
of the quartic numerator while rd is the root of the denominator, always
located outside the physical domain.

of ζ with a quartic polynomial at the numerator (recall that η1 = h1−ζ and η2 = h2 +ζ)

(2.27) P (ζ) = ρ1C
2
1η2 + ρ2C

2
2η1 − γζ2η1η2 + 2C3η

2
1η2 − 2C4η1η2 ,

and a monomial at the denominator

(2.28) ρ1C
2
1η2 + ρ2C

2
2η1 .

The numerator is positive for large ζ, with lim
ζ→±∞

P (ζ) = +∞, while the denominator is

always positive inside the physical domain (consequently the corresponding root, rd say,

is outside the physical domain), since ρ1C
2
1η2 + ρ2C

2
2η1 > 0. For periodic solutions to

exist there needs to be two roots of the numerator P (ζ), with P > 0 between these roots.

Hence, generically there must be four real roots of the polynomial P (ζ) to have periodic

solutions. These roots can be ordered, r1 < r2 < r3 < r4 say, and periodic solutions

will vary between the trough position r2 and the crest position r3 – see Figure 2.2. This

structure – five real roots, four for numerator and one for denominator – give rise to
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hyperelliptic integrals, in contrast to the elliptic integrals that arise in the solitary wave

solutions, which correspond to the limiting situation of root collisions of P .

Unfortunately, manipulation of hyperelliptic integrals have not been completed to a

level comparable to their elliptic counterparts. We remark that a modicum of information

on the solutions of equation (2.25) can be obtained in terms of the twelve slotted, five

variable, Lauricella D multiple hypergeometric function, F
(5)
D Drociuk [11].

2.2.7. Physical interpretation of the quadrature. We now remark on the physical

properties of the solutions obtained by the quadrature expression (2.25). First, the shape

of the wave is described by a first order ODE that contains four constants of integration.

By a careful examination of the quadrature, we note that the phase speed of the wave is

no longer present, all the four integration constants being motion invariants in the wave

frame. In particular, two of these constants of integration are mass fluxes in the wave

frame for each layer, while the other two still have to be related to physical quantities.

These four parameters span all possible traveling wave solutions in the reference frame

where the wave motion is stationary. To connect the solution to a physical state of the

fluid, one has to define a lab frame, independent of each specific wave realization. For

instance, in laboratory experiments, in most circumstances (absent means of creating

an overall current for all fluid layers) this reference frame will naturally be that of a

stationary wave tank.

Second, in deriving the quadrature (2.25), we have not used any assumption of sym-

metry, yet this expression yields only symmetric wave shapes. Thus, we can infer that in

the framework of the asymptotic model in Choi & Camassa [7], long periodic waves are

symmetric up to O(ε4) corrections. We also note that, since the root of the denominator
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of the quadrature is, aside from special limits, always outside the physical domain, singu-

lar solutions with cusps (infinite derivative) can not exist, which is a desirable outcome as

such solutions would violate the assumptions underlying the derivation of the long wave

model. Degenerate limits of periodic waves thus occur only as limits to solitary waves or

fronts corresponding to root collisions in the numerator of the quadrature (2.25). The

only other degenerate limits correspond to the possibility of vanishing denominator in

the quadrature (2.25). This happens when the root of the denominator (2.28) limits to

either ζ = h1 or ζ = −h2 (from above or below, respectively), or this root migrates to

infinity, which can happen when the coefficient ρ2C
2
2 − ρ1C

2
1 of ζ vanishes. In the former

case, the potential becomes cubic, similar to the well known case of Korteweg-de Vries

(KdV) solutions, while in the latter case the potential is a quartic, which is more akin

to solutions of the modified-KdV-KdV (or Gardner) equation. We remark that the first

degeneracy necessarily occurs when either C1 = 0 or C2 = 0, as well as in the limit of

upper fluid density ρ1 = 0. The latter will be discussed below together with the other

physically extreme cases in the context of wave profile solutions.

2.3. Physical interpretation of the integration constants

The results of the previous section show that periodic wave solutions of the long wave

model depend on four parameters that are wave frame quantities, with the phase speed

of the wave not being present in the quadrature (2.25). However, in actual experimental

setups for the generation of any kind of internal waves, there would be an unambiguously

defined laboratory frame of reference. This compels us to consider the phase speed as

an additional degree of freedom, and thus conclude that periodic wave solutions of the

long wave model are a five parameter family. In general, we can expect some of these
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five parameters to be fixed by the details of the experimental setup for an entire family

of waves. For instance, in a closed wave tank, one would naturally try to create waves

with a wavemaker that achieves various amplitudes and periods, while the mean level

of the interface would stay close to that of the quiescent initial state. In addition, it is

easy to envision a wavemaking mechanism that conserves horizontal momentum, such

as the plunger used by Thorpe [49], because the horizontal component of the total force

is zero. Moreover, incompressibility in a closed tank implies that the total volume flux

in the lab frame has to be zero. The resulting wave class would thus be constrained

to satisfy fixed mean interface (located at z = 0, say), zero total horizontal momentum

and zero total volume flux. The first two constraints could be assumed to hold locally

per period box. These constraints restrict the five parameter family of periodic waves

to a two parameter family, e.g. amplitude and speed, with the period being functionally

dependent on these. Other constraints among the five degrees of freedom are possible,

regardless of the physical means of generating periodic waves on a given background

state, and have been used in the literature.

With this in mind, in the present section, we establish connections between conserved

quantities for periodic wave motion and the four constants of integration C1, . . . , C4 and

the phase speed c present in the quadrature (2.25). We will use the relations developed

here primarily to construct various classes of periodic waves in §2.4 and §2.7, as well as

to study the properties of these classes. We group these quantities in two categories:

properties that are invariant with respect to a Galilean change of reference frame, and

properties that depend on a particular inertial frame of reference.
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2.3.1. Reference frame invariant quantities. Let C denote the set of integration

constants {C1, C2, C3, C4} and R(ζ,C) denote the rational function in ζ in the RHS of

the quadrature (2.25), the potential function.

With the notations from §2.2.6, the amplitude (defined as distance peak to trough)

is

(2.29) A(C) = r3(C)− r2(C) ,

the period is given by the hyperelliptic integral

(2.30) L(C) =

∫ L/2

−L/2
dX =

∫ L/2

−L/2

dX

dζ
dζ =

∫ r3(C)

r2(C)

dζ√
R(ζ,C)

,

while the mean position of the interface is given by

(2.31) ζ̃(C) =
1

L(C)

∫ L/2

−L/2
ζdX =

1

L(C)

∫ L/2

−L/2

ζdX

dζ
dζ =

1

L(C)

∫ r3(C)

r2(C)

ζdζ√
R(ζ,C)

,

and, consequently, the mean depths of the layers are

h̃1(C) =
1

L(C)

∫ L/2

−L/2
η1dX = h1 − ζ̃ ,(2.32)

h̃2(C) =
1

L(C)

∫ L/2

−L/2
η2dX = h2 + ζ̃ .(2.33)

Thus, for instance, the requirement that the mean of the interface coincides with the

interface of the background state, which we assume with no loss of generality to be

located at the vertical origin of the coordinate system, can be met by imposing the
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integral constraint

(2.34) ζ̃(C) = 0 .

The mean potential energy for one layer is

(2.35) Vk(C) =
1

L(C)

∫ L/2

−L/2

∫
[ηk]

ρkgz dz dX , k = 1, 2 .

We obtain

V1(C) =
gρ1h

2
1

2
− gρ1

2L(C)

∫ r3(C)

r2(C)

ζ2dζ√
R(ζ,C)

,(2.36)

V2(C) = −gρ2h
2
2

2
+

gρ2

2L(C)

∫ r3(C)

r2(C)

ζ2dζ√
R(ζ,C)

.(2.37)

Finally, the total potential energy required for deforming the interface from the quiescent

state to the wave shape, averaged over the period, is

(2.38) V (C) =
γ

2L(C)

∫ r3(C)

r2(C)

ζ2dζ√
R(ζ,C)

.

2.3.2. Frame dependent quantities. In the following, we relate volume fluxes, mo-

menta2 and kinetic energy to the integration constants C and the phase speed and

determine how these quantities transform with change of frame of reference. We denote

by ·̂ quantities in the wave frame, frame where the motion is stationary. Two of the

integration constants in the quadrature, C1 and C2, have a clear physical interpretation,

namely volume fluxes in the wave frame in each layer. Indeed, the volume flux in the

2In deducing the relationships between these quantities and the quadrature constants we have not
assumed irrotationality of the motion. Thus, they can be used in determining classes of long periodic
waves under weak rotational approximations consistent with the model.
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wave frame for the layer k is, by virtue of continuity in each layer (2.8) and (2.9),

(2.39) Q̂k =

∫
[ηk]

(uk − c)dz = ukηk − cηk = Ck , k = 1, 2 .

We note that volume the fluxes in each layer are conserved solely in the wave frame, and

only the total volume flux is conserved in the lab frame. The total volume fluxes in the

wave frame and in the lab frame are, respectively,

Q̂(C1, C2) = C1 + C2 ,(2.40)

Q(c, C1, C2) = C1 + C2 + cH .(2.41)

Horizontal momentum per period in the layer k (in the lab frame) is given by

(2.42) Ik =
1

L

∫ L/2

−L/2

∫
[ηk]

ρkuk dz dX =
1

L

∫ L/2

−L/2
ρkηkuk dX , k = 1, 2 .

Integrating (2.8), (2.9) over the period after multiplication with ρk yields

Ik − cρkh̃k = ρkQ̂k , k = 1, 2 .

Thus, the mean horizontal momenta for the layer k in the wave frame and the lab frame,

respectively, are

Îk(Ck) = ρkCk ,(2.43)

Ik(c,C) = ρkCk + cρkh̃k(C) , k = 1, 2 ,(2.44)
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so that the mean total horizontal momenta in the wave frame and the lab frame are

Î(C1, C2) = ρ1C1 + ρ2C2 ,(2.45)

I(c,C) = ρ1C1 + ρ2C2 + c
(
ρ1h̃1(C) + ρ2h̃2(C)

)
,(2.46)

respectively. We remark that the above quantities are exact conservation laws for two-

layer Euler equations which derive simply from conservation of mass (and volume, by

incompressibilty). As such, they also hold exactly for the model, since mass is conserved

with no asymptotic errors (cf. equations (2.1),(2.2)). We further remark that in general,

for two-layer Euler periodic solutions even when expressed by a multiply-valued interface

function (such as the case of “overhanging” waves in §2.6), incompressibility implies that

the total flux is

(2.47) LQ =
I1
ρ1

+
I2
ρ2

,

which, together with the total horizontal momentum I = I1 + I2, provides a one-to-

one correspondence between constraints applied to total fluid domain-defined quantities

I,Q and layer-defined quantities I1, I2. In particular, this implies that when these total

quantities are chosen to be zero, so are the layer momenta I1 and I2 and vice-versa.

Next, we express the kinetic energy per period in terms of the quadrature constants

and the phase speed. Mean kinetic energy for the layer k is given by

(2.48) Tk =
ρk
2L

∫ L/2

−L/2

∫
[ηk]

(u2
k + w2

k) dz dX ,
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with u and w denoting the horizontal and vertical velocity components. We use the

asymptotic relationships for these components given in Camassa et al. [8], the horizontal

velocity in layer k being given by, up to asymptotic errors of order O(ε4),

(2.49) uk(X, z) = uk +

(
η2
k

6
− (zk + hk)

2

2

)
(uk)XX ,

with zk = (−1)kz, whereas the vertical velocity is given in the same asymptotics by

(2.50) wk(X, z) = −(uk)X(zk + hk) .

Carrying out the integration across the layer in (2.48) yields

(2.51) Tk =
ρk
2L

∫ L
2

−L
2

[
u2
kηk + (uk)

2
X

η3
k

3

]
dX ,

which, by using first (2.39) and subsequently (2.44), can be put in the form

Tk =
ρk
2L

∫ L
2

−L
2

[(
c+

Ck
ηk

)2

ηk +
C2
kζ

2
X

η4
k

η3
k

3

]
dX

=
ρkCk

2

1

L

∫ L
2

−L
2

[
c+

Ck
ηk

+
Ckζ

2
X

3ηk

]
dX +

c

2

(
ρkCk + cρkh̃k

)
=

ρkCk
2

1

L

∫ L
2

−L
2

[
c+

Ck
ηk

+
Ckζ

2
X

3ηk
− CkζXX

3

]
dX +

cIk
2

(2.52) =
ρkCk

2

1

L

∫ L
2

−L
2

uk(X, (−1)khk)dX +
cIk
2
, k = 1, 2 ,

where we have used periodicity to add the null term
∫ L

2

−L
2

ζXXdX to the first integral and

the asymptotic relation for velocity (2.49) again to write the first term of (2.52) in terms
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of the fluid velocity evaluated at the boundaries z = (−1)khk. Thus

ũk(c,C) =
1

L(C)

∫ L/2

−L/2

(
c+

Ck
ηk

+ Ck
ζ2
X

ηk

)
dX

= c+
1

L(C)

∫ r3(C)

r2(C)

Ck (3 +R(ζ,C))

3ηk
√
R(ζ,C)

dζ ,(2.53)

represents the mean value of the horizontal velocity at the boundaries over one period,

with accuracy of up to terms of order O(ε4). We recognize in the above expression

another conserved quantity for an irrotational periodic wavetrain, namely the mean

Eulerian velocity for the layer k, defined as

(2.54) ũk =
1

L

∫ L/2

−L/2
uk(X, z)dX ,

where z is any location within the layer k that does not intersect the interface. Indeed,

this quantity is invariant with z for a periodic and irrotational flow since its z derivative

is

1

L

∫ L/2

−L/2

duk(X, z)

dz
dX =

1

L

∫ L/2

−L/2

dwk(X, z)

dX
dX = 1/L [wk(−L/2, z)− wk(L/2, z)] = 0 .

Hence, the kinetic energy in the layer k in terms of the quadrature constants and the

phase speed is

(2.55) Tk(c,C) =
ρkQ̂kũk

2
+
cIk
2
,
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where Q̂k, the flux in the wave frame in the layer k, is given by (2.39), ũk, the mean

Eulerian velocity in the layer k, is given by (2.53) and Ik, the horizontal momentum in

the lab frame for the layer k, is given by (2.44).

We remark that the expression of the kinetic energy (2.55), being derived from an

asymptotic approximation to the velocity field, is in principle affected by the accuracy of

the asymptotic model. However, with this equation we retrieve the exact form deduced

by Klopman [28] for irrotational periodic wave trains in one layer fluids, building upon

previous work by Longuet-Higgins [34] who assumed that the lab frame was defined

as the frame for which the mean Eulerian velocity is zero. It is worth reporting here

the derivation for the general Euler equations for two layer fluids, without using the

asymptotic model, and show that they lead to our same expression. If the flow is both

irrotational and incompressible, a potential function and a stream function in the wave

frame, φ and ψ, can be defined; we have:

uk − c = (φk)X = (ψk)z ,

vk = (φk)z = −(ψk)X .

Hence, equation (2.48) becomes

Tk =
ρk
2L

[∫ L/2

−L/2

∫
[ηk]

((uk − c)2 + v2
k) dz dX(2.56)

+2c

∫ L/2

−L/2

∫
[ηk]

(uk − c) dz dX + c2
∫ L/2

−L/2

∫
[ηk]

dz dX

]
.
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Figure 2.3. Domain of integration D

The first term in equation above is now replaced by

∫∫
D

[
(uk − c)2 + v2

k

]
dz dX =

∫∫
D

[(φk)X(ψk)z − (φk)z(ψk)X ] dz dX(2.57)

=

∫∫
D∗
dφkdψk =

∫ (φk)2

(φk)1

dφk

∫ (ψk)2

(ψk)1

dψk

=

∫ L/2

−L/2
(φk)XdX

∫
[ηk]

(ψk)zdz

=

∫ L/2

−L/2
[(uk − c)]z=(−1)khk

dX

∫
[ηk]

(uk − c)dz

= L(ũk − c)Q̂k ,

where D∗ = [(φk)1, (φk)2] × [(ψk)1, (ψk)2] and D is specified in Figure 2.3. Thus, we

obtain

Tk =
ρk
2

[
(ũk − c)Q̂k + 2cQ̂k + c2h̃k

]
(2.58)

=
ρkũkQ̂k

2
+
c(ρkQ̂k + cρkh̃k)

2

(2.59) =
ρkũkQ̂k

2
+
cIk
2
.
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2.4. Periodic waves with zero total volume flux and horizontal momentum

We proceed with constructing the class of periodic waves we have alluded to in the

previous section, satisfying three constraints: fixed mean level of the interface, total

horizontal momentum in the lab frame zero and total volume flux in the lab frame

zero. These constraints leave two free parameters. For our purposes, we found that

the most advantageous choice to solve the system, and describe solution properties, is

to parametrize the family with amplitude A and phase speed c. We will first describe

how to determine particular solutions for prescribed amplitude and speed. We will then

determine the domain of existence of periodic wave solutions in the parameter space

(A , c) and study their limiting forms.

2.4.1. Periodic solutions for prescribed speed and amplitude. By requiring that

the total volume flux given by (2.41) and total horizontal momentum per period given

by (2.46) are zero, the resulting linear system relates the two constants of integration in

the quadrature C1 and C2 to the phase speed and mean heights

(2.60) Ck = −ch̃k k = 1, 2 .

Notice that it then follows from (2.44) that the mean horizontal momentum in each

layer is zero. By choosing the coordinate system at the level of the quiescent state, the

constraint of zero mean displacement of the interface implies

h̃k = hk , k = 1, 2 .

30



β
d

β
e

h
1

-h
  2

Mean level

α−Α

α

(a)

β
d

β
e

h
1

-h
  2

Mean level
α

α−Α

(b)

β
d

β
e

h
1

-h
  2

Mean level

α−Α

α

(c)

Figure 2.4. Schematic construction of constrained solutions with zero
momenta and mean elevation for given amplitude A and speed c. The
fluid is confined between the top and bottom walls at z = h1 and z = −h2,
respectively. The dark grey strip “highlights” the range of the interface
function ζ(X) between the roots at α and α−A, while the light grey strip
identifies the allowable range determined by root coalescence at α − A =
βe(A, c) and α = βd(A, c), corresponding to solitary waves of elevation
and depression, respectively. Solid curves depict travelling wave solution
profiles (only the right half for solitary waves). The location of the targeted
mean level is marked by the dashed horizontal line and the quartic function
P (ζ), shown by the dash-dot curve, varies according to the placement of
α in the allowable range from panel (a) to (c); (a) α = βe(A, c) + A,
(b) βe(A, c) < α < βd(A, c) and (c) α = βd(A, c). This construction is
based on the actual configuration given by h1/h2 = 1/3, ρ1/ρ2 = 0.99,
c/c0 = 0.55, A/h1 = 1.
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The constants C3 and C4 can be determined by seeking waves of amplitude A and

imposing the constraint of zero mean of interface displacement

A(c, C3, C4) = A ,

ζ̃(c, C3, C4) = 0 .

We first relate the two remaining constants of integration C3 and C4 to the position

of the crest and the position of the trough, which are given by the middle roots of the

quartic polynomial from the numerator of (2.25). By using (2.60) the quartic polynomial

can be written as

(2.61) P (ζ) = ρ1c
2h2

1η2 + ρ2c
2h2

2η1 − γζ2η1η2 + 2C3η
2
1η2 − 2C4η1η2 .

If α is the position of the crest (so α − A is the position of the trough) C3 and C4 are

functions of α since α and α − A must be roots of the polynomial P (ζ). By imposing

this condition and solving the resulting linear system, we have

(2.62) C3(α) =
c2ρ1h

2
1

2(h1 − α)(h1 − α + A)
− c2ρ2h

2
2

2(h2 + α)(h2 + α− A)
− γ

(
α− A

2

)
,

(2.63) C4(α) = C3(α)(A+ h1 − α) +
c2ρ1h

2
1

2(A+ h1 − α)
− c2ρ2h

2
2

2(A− h2 − α)
− γ

2
(A− α)2 .

With the explicit expressions for all the coefficients thus determined, the other two

roots of the quartic P (ζ) can in turn be determined in terms of explicit (albeit lengthy)

algebraic functions of α and A by solving the quadratic polynomial that results from
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factoring the roots α and α−A. Similarly, the mean of the interface becomes a function

of α through (2.62), (2.63) in (2.31) (suppressing for ease of notation the arguments C1

and C2 of the rational function R in the quadrature expression (2.25))

(2.64) ζ̃(α) =

∫ α

α−A

ζ dζ√
R(ζ, C3(α), C4(α))

/∫ α

α−A

dζ√
R(ζ, C3(α), C4(α))

.

Hence, the position of the crest of the periodic solution can be determined by finding

the root of the nonlinear equation

(2.65) ζ̃(α) = 0 .

Note that the denominator in (2.64) is a positive quantity, hence a necessary condition

for existence of a solution is for the integrand of the function in the numerator

(2.66) f(α) ≡
∫ α

α−A

ζ√
R(ζ, C3(α), C4(α))

dζ

to change sign in the interval (α − A,α), which implies α − A < 0 < α. This leads to

a criterion for existence of a solution satisfying all the requirements so far imposed, by

seeking the two limiting positions for the crest α when two roots of the polynomial (2.61)

collide. Let

(2.67) αmin(A, c) ≡ α(A, c)|r1(α;A,c)=r2(α;A,c) ,

and

(2.68) αmax(A, c) ≡ α(A, c)|r3(α;A,c)=r4(α;A,c) ,
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denote the α-range lower and upper limits, respectively, where the polynomial (2.61) has

double roots βe(A, c) = r1 = r2 = αmin(A, c) − A and βd(A, c) = r3 = r4 = αmax(A, c).

Notice that these would correspond to amplitude-A solitary waves of, respectively, eleva-

tion and depression. Notice also that these are not limiting forms of the class of periodic

waves that satisfy our requirements. Thus, the necessary condition for existence of a

periodic solution becomes

(2.69) βe(A, c) < 0 < βd(A, c) ,

– see Figure 2.4 for an illustration of the connection between the position of the crest α

and the roots in such an instance. Moreover, as α→ αmin(A, c), f(α)→ −∞, whereas as

α→ αmax(A, c), f(α)→∞. It follows that f(α) will have a zero for some α in the range

(αmin , αmax), so that the condition βe(A, c) < 0 < βd(A, c) is also sufficient for existence

of a periodic solution of mean zero. We remark that this argument does not guarantee

uniqueness of zeroes of f(α) and hence of periodic solutions of mean zero. This would

be guaranteed by the monotonicity of either ζ̃(α) or of the function f(α). Numerical

results confirm that both these functions are monotonic in the interval (αmin , αmax), but

a rigorous proof is still lacking. In Figure 2.5 we illustrate the dependence of the mean

of the interface on the position of the crest for one particular configuration.

2.4.2. Domain of existence. The considerations of the previous section allow us to

outline a strategy for determining periodic wave solutions of prescribed amplitude and

speed, namely, given an A and a c, we can check whether the double roots βe(A, c)

and βd(A, c) have opposite sign, which implies existence of the periodic train of that
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Figure 2.5. Dependence of f(α) given by (2.66) on the position of the
crest α. The configuration is: hr = 1/3, ρr = 0.99 and the parameters
speed and amplitude are c/c0 = 0.55, A/h1 = 1.

amplitude and speed satisfying the constraints of zero mean displacement, zero total

horizontal momentum and zero total volume flux. Of course, actual construction of the

periodic train would have to rely on a numerical root finding algorithm. Hence, it would

be desirable to know a priori and to determine analytically the portion of the (A, c)

quadrant where the sufficiency condition (2.69) holds.

To this end, we use the two families of solitary wave solutions of elevation and depres-

sion corresponding to βe(A, c) and βd(A, c), respectively. In fact, the limiting forms βd

and βe are nothing else than a generalization of the solitary waves (or fronts) solutions

derived in Choi & Camassa [7], which admit an explicit analytical representation. In

particular, the amplitude-speed relations of these families foliate the (A, c) quadrant and

their limiting front solutions provide a boundary of existence in this quadrant, with the

amplitude-speed relation given by an explicit quadratic expression. Notice that the quad-

rature is invariant with the change of the position of the coordinate system in the vertical

direction, as shown in §2.2.5. Hence, we can represent the family of solitary waves cor-

responding to the double roots βe(A, c) and βd(A, c), with a new parametrization (β , c),
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with respect to “artificial” height configuration h1 − β, h2 + β for β ∈ (−h2, h1). The

advantage of this new parametrization is that the polynomial at the numerator of the

quadrature can be expressed as a product of ζ2 times a quadratic polynomial, which pro-

vides the amplitude in closed form – see Choi & Camassa [7]. These “foliating” solitary

wave solutions would then span a domain in the parameter space (β , c), and this domain

can in turn be mapped easily in the parameter space (A , c).

Notice that in order to be useful for the construction of the periodic wave train that

satisfies our constraints, these solitary waves of elevation and depression corresponding to

double root βe and βd in the polynomial (2.61) must satisfy condition (2.60), and hence

they have prescribed fluxes in the wave frame. By imposing the boundary conditions at

infinity we obtain

(2.70) (uk|∞ − c)ηk|∞ = −chk , k = 1, 2

where uk|∞ can be interpreted as a current at infinity for the layer k in the lab frame while

ηk|∞ is the height of layer k at infinity, since ηk|∞ 6= hk. Thus, these foliating solitary

wave solutions are generalizations of the standard solitary waves in Choi & Camassa [7],

for which the background state has zero currents in the lab frame. In Appendix A, we

present an overview of this more general class of solitary waves, which are of independent

interest than the present focus on periodic waves.

The domain of existence in (β , c) of solitary waves with the prescribed fluxes (2.70)

can be found by fixing β and determining the range of speed c for which solitary waves

with property (2.70) exist. In Appendix B we present details for determining this range.

For fixed β, the dependence between the maximum interface displacement a (or signed
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amplitude, defined as difference between the zero level in the “artificial” parameters and

the peak of the wave) and speed c is given by

(2.71) a(c ; β) =
−q1(c ; β) + sgn(β0 − β)

√
∆(c ; β)

2
c ∈ [cmin(β), cf (β)] .

Here the functions q1(c; β), q2(c; β), ∆(c; β) are given by (B.6-B.8), with the speeds

cmin(β) and cf (β) corresponding to limiting speeds of solitary wave of zero amplitude

and front, respectively given by (B.10) and (B.11), and z = β0 is a constant level in the

physical domain z ∈ [−h2, h1] determined solely by the “hardware” parameters hk, ρk,

k = 1, 2 – see definition (B.13).

For fixed β, the sign of the maximum displacement a(c ; β) shows the polarity of

the class of solitary waves, with a(c ; β) > 0 corresponding to waves of elevation, and

a(c ; β) < 0 to depression, respectively, for all c ∈ [cmin(β), cf (β)]. In Appendix B we

show that if β < β0, then the corresponding maximum displacement branch a(c ; β) is

positive (elevation), and, conversely, if β > β0 then a(c ; β) < 0 (depression). Thus,

we can infer that the curves a(c ; β) with β < β0 correspond to the foliating family βe

whereas the curves a(c ; β) with β > β0 correspond to the foliating family βd. These

families span a domain in the (a, c)-semi-plane c > 0, bounded by a curve represented

parametrically by

a (cf (β) ; β) , cf (β) , β ∈ (−h2, h1) ,

which corresponds to front solutions. By eliminating β, we can obtain an explicit formula

for the front branch corresponding to a (cf (β)), with β ∈ (−h2, h1). Let hr ≡ h1/h2 and
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ρr ≡ ρ1/ρ2. When hr
√
ρr 6= 1, the front branch is given by

(2.72)

cf (a) =
√
Hg

(1 + hr)
√

1− ρr
(hr
√
ρr − 1)2

[
hr
√
ρr + 1−

√( a
H

)2

(hr
√
ρr − 1)2 + 4hr

√
ρr

]
,

whereas, for hr
√
ρr = 11

(2.73) cf (a) =
√
Hg

(1 + hr)
2

4hr

√
1−√ρr
1 +
√
ρr

[
1−

( a
H

)2
]
.

The curve cf (a) is symmetrical with respect to c axis. Returning to the original pa-

rameters A, c, for which A > 0, corresponds to “folding” the left half of the symmetric

domain in a, c plane on top of the right half – see Figure 2.6, by taking A = |a|. Thus,

for any point in the quadrant (A, c) with c ∈ [0, cf (A)] there are two foliating solitary

waves of opposite polarity. These waves define a window for the possible locations of

the crest and trough of a periodic wave of amplitude A that satisfies the flux condition

(2.60). Moreover, the zero mean of the interface condition necessarily requires the crest

location to be positive while the trough location must be negative, according to (2.69).

This condition selects a limiting foliating curve

(2.74) A(c; 0) = |a(c; 0)| , c ∈ [cmin(0), cf (0)] ,

when β = 0, which further restricts the allowable domain in the A, c plane. (For the

region above this curve the two β parameters corresponding to the two families of foliating

solitary waves have the same sign.) Notice that the curve a(c; 0) with c ∈ [c0, cm]

1We remark that this particular depth ratio, different than the critical depth ratio hr = 1/
√
ρr, is

associated with a mathematical degeneracy of the quadrature formula (2.25) to elliptic functions. This
situation does not seem to have any particular physical interpretation.
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Figure 2.6. (I.a), (II.a) and (III.a) The front branch that marks the do-
main of existence of foliating solitary waves (2.71). (I.b), (II.b) and (III.b)
Domain of existence for periodic waves of zero horizontal momentum and
zero flux (gray areas). The thicker curves correspond to foliating solitary
waves with β > 0 whereas thinner curves correspond to β < 0; contin-
uous curves correspond to foliating solitary waves of depression, dashed
curves to elevation. Periodic solutions can exist only in domains covered
by solitary wave curves with opposite polarities and opposite positions
(with respect to the mean level) of the interface at infinity.
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corresponds to the standard solitary waves asymptotic to layer thicknesses h1, h2. Here

c0 is the long wave critical speed for this configuration,

(2.75) c20 =
(1− ρr)hr

(ρr + hr)(hr + 1)
gH ,

and cm is the speed of the highest travelling waves Choi & Camassa [7]

(2.76) c2m =
1−√ρr
1 +
√
ρr
gH ,

with the corresponding maximum amplitude

(2.77) am =
hr −√ρr

(hr + 1)(
√
ρr + 1)

H .

Hence, the curve A(c; 0) corresponds to the infinite period limit to solitary waves

of the periodic waves in our class, i.e., total horizontal momentum zero, total volume

flux zero and mean zero. Indeed, these limiting solitary waves satisfy the mean zero of

the interface condition in the limit, because in the process of taking the mean the finite

mass is divided by an infinite period. We can represent this branch of the boundary as

a function of amplitude A, by inverting (2.74)

(2.78) csw(A) = c0

√
(h1 − sgn(β0)A)(h2 + sgn(β0)A)

h1h2 − (c20/g) sgn(β0)A
, A ∈ [0, Am] ,

with Am = |am| and β0 given by (B.13). The other boundary of the existence domain

A ∈ [|am| , H] ≡ [Am, H], being the front limit of each foliating solitary wave curve,

would correspond to the limit of our periodic waves to fronts.

40



Therefore, when the speed c increases with A fixed, A ∈ [0, Am], the periodic waves

limit to infinite period in the form of solitary waves. Conversely, when c increases with

A ∈ [Am, H], the periodic waves limit on fronts. The standard front limit of solitary

waves (Choi & Camassa [7]) corresponds to the single point (Am, cm) at the vertex of the

domain. Apart from this point, the front branch [Am, H] represents a new class of front

solutions. Notice that for fixed c ∈ [c0, cm] the domain of existence of periodic waves

in our class consists of waves whose amplitude is larger than solitary waves of the same

speed, and moreover a portion of the domain of existence consists of periodic waves of

amplitude bigger than the maximum amplitude of the solitary wave (which limits to a

front) for the same configuration.

We sketch the above discussion in Figure 2.6, for all three relevant cases: (I) hr <

√
ρr in which the solitary waves limiting branch corresponds to waves of depression,

(II) hr >
√
ρr, in which the limiting solitary waves are of elevation, (III) hr =

√
ρr – the

critical density ratio – in which the solitary waves branch vanishes and the boundary of

the domain of existence is marked only by the front branch. We remark, as shown in

Appendix A, that the branch of front solutions which forms the right boundary of the

existence domain is in fact exact for the parent two-layer Euler system, even though we

arrive at it from within the asymptotic model. This property provides a validation test

for the numerical solutions of two-layer Euler equations with large periods.

We also remark that the vertical and horizontal boundaries of the domain of existence

correspond to infinitesimal amplitude waves, and to the singular limit of infinitesimal

wave speed where the vanishing period shows that a neighborhood of the c = 0 axis is

clearly outside of the model’s validity regime. In fact, as we will see in the next section
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and should be intuitive now given that the wave amplitude spans the whole gap between

plates, the point (H, 0) is extremely singular, and in its neighborhood wavetrains of any

period can be found.

2.4.3. Extreme density limits. To complete this section, it is worth pointing out the

limiting cases of equal density layers and that of vanishing upper layer density. For the

first case, ρr = 1, the physics clearly can not support internal wave motion, and this is

reflected in the model by the fact the boundary of the domain of existence collapses to

zero, as the equation for the maximum speed (2.76) shows. For the second case, ρr = 0,

which occurs for ρ1 = 0 for a stably stratified fluid, the momentum equation governing

the lower layer (2.4) decouples from that of the first layer, thus reducing the system to

the single layer version (Su & Gardner [47], Green & Naghdi [18]). The effect of this

limit on the quadrature (2.25) is to make the potential a cubic since the root at the

denominator and a root of the quartic in the numerator collide at the upper boundary

of the physical domain h1. In the limit ρr → 0 the family of foliating solitary waves of

depression βd vanishes and the right boundary of the domain of existence consisting of

fronts degenerates to a branch of solitary waves that “scrape” the top wall with their

crests. The left/top boundary consisting of solitary waves when ρ1 6= 0 remains a branch

of solitary waves in the limit ρr → 0 and coincides with the “classic” solitary wave

solutions for the strongly nonlinear single layer model (Su & Gardner [47], Green &

Naghdi [18]).

Curiously, the existence of maximum amplitude value Am for ρ1 6= 0, which corre-

sponds to the intersection of the two boundary branches for the existence domain, retains

a meaning in the single layer case as the maximum amplitude of the solitary wave that
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would fit within the domain walls at z = −h2 and z = h1. This apparent maximum

amplitude contrasts the well known result that, for the single-layer case, the strongly-

nonlinear model solitary-wave solutions do not possess a limiting amplitude, just as for

the weakly nonlinear models such as KdV. Also, we remark that the degenerate front

branch consists entirely of “scraping” solitary waves, and that these could still be thought

of as fronts by cutting off half of the wave at the crest (at z = h1). Also notice that for

this degenerate front branch the dependence of the speed on amplitude becomes linear.

2.5. Properties of constrained periodic wave trains

Having determined the domain of existence in the A, c quadrant of our two-parameter

family of periodic waves, we now turn to the study of the dependence of other relevant

physical properties on these parameters.

2.5.1. Wave shapes. Determining a periodic wave solution for given amplitude and

speed is a root finding problem (2.65) which involves evaluation of a hyperelliptic inte-

gral – see (2.64). We use a Newton scheme, whose quadratic convergence is desirable

depending on a good initial guess (away from singularities injected into the integral by

double roots). Here again the family of foliating solitary waves on artificial parameters

becomes useful in identifying the position of the singularities.

Away from the critical depth ratio, when hr 6= √ρr ≡ hcritical, the maximum ampli-

tude Am of the solitary wave branch marks a threshold amplitude that separates two

regimes A < Am or A > Am. The properties of the periodic solutions in these two cases

are distinctively different.
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Figure 2.7. Wave profiles (half a period) along with the corresponding
distances between the crest and the double root βd and the trough and the
double root βe, respectively, for a configuration with hr <

√
ρr (h1/H =

1/6, h2/H = 5/6 and ρr = 0.97), for fixed amplitude (a) A = Am/2 and (b)
A = 2Am and phase speeds ranging from 10% to 90% of the corresponding
maximum speed (a) csw(A) and (b) cf (A), respectively. The dashed profiles
correspond to the limiting (a) solitary wave of amplitude A = Am/2 and
(b) front of amplitude A = 2Am; they are also depicted in the inserts where
the physical boundaries −h2, h1 are included.

To fix ideas, let us focus on the case hr < hcritical. For fixed amplitude A < Am,

as the phase speed increases, the position of the trough approaches the position of the

foliating solitary wave of depression βd while the distance between the trough and the

other double root βe remains bounded away from zero and set by the maximum speed

for the corresponding solitary wave limiting form of the same amplitude.

For fixed amplitude A > Am, with increasing phase speed the position of the crest

once again approaches βd, but the trough now also approaches the other double root

βe. However, we remark that for the configuration we are focusing on, hr < hcritical, the
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Figure 2.8. Same as in Figure 2.7 for a configuration with hr >
√
ρr

(h1/H = 1/1.2, h2/H = 0.2/1.2 and ρr = 0.97).
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Figure 2.9. Same as in Figure 2.7(b) for a configuration corresponding
to the critical case hr =

√
ρr (h1/H ' 0.24, h2/H ' 0.76 and ρr = 0.1).

The waves have fixed amplitude A = H/2 and phase speeds ranging from
10% to 90% of the corresponding maximum speed cf (H/2).

approach of the trough position to this double root βe occurs at a much slower rate than

the approach of the crest to the other double root βd.

For the other configuration hr > hcritical this happens in reverse. We illustrate these

observations in Figure 2.7 for a configuration with hr < hcritical, and in Figure 2.8 for

hr > hcritical, respectively.

For a configuration corresponding to the critical depth ratio hr =
√
ρr, when the

boundary of the domain of existence consists only of fronts, the position of the crest
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approaches the limiting position βd at a slightly faster rate than the position of the

trough approaches βe – see Figure 2.9.

We note that for large amplitudes, even when the pair speed/amplitude is away from

the boundary of the domain of existence, the hyperelliptic integrals involved in the root

finding process become nearly singular and consequently high precision computations are

necessary. We remark that the root finding in this situation could be handled analytically

via an asymptotic expansion in a small parameter representing the distance between roots

approaching the double root locations βd or βe. This analysis, however, involves some

subtleties that will be presented elsewhere.

2.5.2. Kinetic and potential energy. Once the quadrature solution is found, simple

expressions for kinetic and potential energy can be derived for the periodic wavetrain,

which allows us to examine how equipartition between these two forms of energy is lost as

amplitude increases. By using the fact that for our class of periodic waves the horizontal

momentum Ik in both layers k = 1, 2 is zero, the layer kinetic energy (2.55) in terms of

the mean Eulerian velocity (2.54) is

(2.79) Tk = −ρk
2
chkũk .

This expression (which is exact for Euler equations) shows that the mean Eulerian ve-

locity must be negative for periodic waves with zero horizontal momenta in both layers.

Notice that the model expression for the kinetic energy (2.55) does not immediately

show this property of sign definiteness. However, by replacing the integration constant

Ck given by (2.60) in the asymptotic relation (2.53), the mean Eulerian velocity in the
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layer k can be expressed as a sum of two integrals

ũk =
c

L

∫ L/2

−L/2

[
1− hk

ηk
− hkζ

2
X

3ηk

]
dX

=
c

L

∫ L/2

−L/2

[
1− hk

ηk

]
dx− c

L

∫ L/2

−L/2

hkζ
2
X

3ηk
dX ,(2.80)

with the second being manifestly negative definite. For the first integral, by using

Cauchy-Schwartz inequality, we obtain

(2.81)

(∫ L/2

−L/2

√
ηk

1√
ηk
dX

)2

≤
∫ L/2

−L/2
ηkdX

∫ L/2

−L/2

1

ηk
dX = hkL

∫ L/2

−L/2

1

ηk
dX ,

which implies that the first term in (2.80) is also negative

∫ L/2

−L/2

[
1− hk

ηk

]
dX ≤ 0 .

Thus, the quadrature expression for the mean kinetic energy for layer k, up to terms of

order O(ε4),

(2.82) Tk = c2
hkρk

2

[
1

L(C)

∫ α0

α0−A

3 +R(ζ,C)

ηk
√
R(ζ,C)

dζ − 1

]
,

is positive definite. Here the parameters C(α) are evaluated at α = α0, the position

of the crest – a root of the nonlinear equation (2.65) – and depend on the speed c and

the amplitude A (which determines the position of the root α0 − A of R(ζ,C) = 0

corresponding to the trough).

This expression of the kinetic energy, together with the expression for the potential

energy (2.38), allow us to test the resilience of the equipartition of energy for our class
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of periodic waves as the amplitude increases. This property is well known to hold for

infinitesimal amplitude waves Yih [54], and we show below, when direct comparisons

with Euler solutions are presented, that this property in fact depends strongly on period

for both model and Euler solutions, in agreement with the finding of Holyer [22] for the

different setup of doubly infinite depths.

2.5.3. Period dependence on speed and amplitude. Period average expressions

such as the kinetic energy evaluated in the previous section depend, of course, on know-

ing the length L of the period where the average is computed. This is determined through

the quadrature by (2.30), and is therefore linked to the process of root finding for our

class of solutions described above. Unfortunately, this prevents us from writing a simple

and explicit functional dependence of period on A and c, and to find the level sets of

L over the (A, c) domain we have to resort to numerical methods. To implement this,

we determine the periodic wave solutions at the nodes of a grid covering the existence

domain, then compute the corresponding period and construct the level sets by interpo-

lation. Notice that for determining the periodic solutions at each node, we need the two

limiting positions βe(A, c) and βd(A, c). This requires inversion of the function a(c; β)

given by (2.71), and the inversion can only be achieved numerically by solving the two

equations a(c; β) = A, and a(c; β) = −A.

A strategy for reducing the computational cost is to cover the domain of existence

with only one of the foliating family of solitary waves, βd when hr < hcritical or βe when

hr > hcritical, by taking into account the observations made in §2.5.1. These curves are

given in closed form by equation (2.71) and provide a good initial guess for the position

of the crest of periodic waves solutions. For constructing a constant period contour,
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Figure 2.10. Level sets of period (nondimensionalized with the total
height H) for a configuration with (a) hr <

√
ρr ( h1/H = 1/6, h2/H = 5/6

and ρr = 0.97), (b) hr >
√
ρr (h1/H ' 0.56, h2/H ' 0.44 and ρr = 0.5),

(c) hr =
√
ρr (h1/H ' 0.41, h2/H ' 0.58 and ρr = 0.5).

we: (i) determine solutions along the foliating solitary wave curves, by using parameter

continuation techniques for accelerating the root finding process; (ii) interpolate the

period as a function of speed c on these curves; (iii) determine for each curve the root

c corresponding to that particular period; finally (iv) perform a spline interpolation for

the (A, c) pairs found in the previous step.

In Figure 2.10(a)-(c) we present period isolines for three particular configurations

corresponding to hr < hcritical, hr > hcritical and hr = hcritical, respectively. There are

several interesting qualitative observations that can be made based on these numerical

results. First, notice that the period increases with the increase of phase speed, which is

in agreement with a general result for periodic waves in arbitrary stratification, proved
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by Yih [54]. Second, all period isolines wrap along the front line as the amplitude

increases, converging to a singular limit that corresponds to a steep front of amplitude

equal to the total depth of the fluid. Although this limit is mathematically attainable,

it is not of practical relevance since it lies outside of the domain of expected validity of

solutions with respect to the parent Euler system, as we are going to see in the following

section. Third, we note that away from critical depth ratio, we can identify two types

of isolines: those along which the phase speeds are sub-critical and those that contain

regions with super-critical speeds. On both sub- and super-critical isolines, the periodic

solutions approach one of the two limiting foliating families (βd for hr < hcritical or βe

for hr > hcritical) at a much faster rate than the other as the amplitude increases – see

Figure 2.11 for a configuration with hr > hcritical. However, on sub-critical isolines, we

can identify a region where both the position of the crest and the trough are nearly

symmetrical with respect to the (zero mean) z-axis, and lie away from the bounds given

by βd and βe. In these regions, the phase speed is comparable to the speed of waves of

infinitesimal amplitude.

Finally, we mention that a good approximation to the actual location of the bounding

roots α (for waves of depression) or α−A (for waves of elevation), respectively, for fixed

amplitude A and period L can be found for sufficiently large period waves by a simple

area criterion based on the effective wavelength λI (as defined by Koop & Butler [29]

through the area integral of solitary wave profiles) of limiting foliating solutions, based

on the closeness result illustrated by Figure 2.11 – see Appendix B, equation (B.19).

2.5.4. Limits of validity of the strongly nonlinear model. Our goal is to deter-

mine regions within the domain of existence of periodic solutions of the strongly nonlinear
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Figure 2.11. Distance between the crest of the periodic solution and the
corresponding foliating solitary wave βd − r3 along the constant period
contours (a) L/H = 3.25, (b) L/H = 16.67 for the configuration from
Figure 2.10(a).

model where we can expect good agreement with Euler solutions. We expect this agree-

ment to be satisfactory when the long wave assumption at the basis of the asymptotic

model is satisfied in each layer. Let dk = max(ηk) denote the maximum thickness of

layer k, (k = 1, 2) and λ a characteristic wavelength. A condition that would insure that

the long wave assumption holds in both layers is

max(d1, d2)/λ� 1 .

Thus, to establish a validity criterion we need an a priori estimate of a characteristic

horizontal length-scale as well as upper bounds for the thickness of each layer. Once

again, the limiting positions corresponding to the foliating solitary waves βd and βe

prove to be useful.

First, we focus on the quasilinear regime. For the region within the domain of

existence where βd/A > 1/2 and |βe|/A > 1/2, the position of the crest and trough

of the periodic wave solutions are far from the corresponding limiting positions and

quasi-symmetrical with respect to the interface, which translates in an almost-sinusoidal

wave shape. The maximum layer-thickness is therefore well approximated by d =
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Figure 2.12. Error in the speed of waves of infinitesimal amplitude of
the strongly nonlinear model with respect to Euler dispersion relation as a
function of the long wave parameter d/λ for the configurations from Figure
2.10.

max(h1 + A/2, h2 + A/2). Furthermore, the dispersion relation for infinitesimal waves

(relation (3.42) - Choi & Camassa [7]) offers a reasonable approximation for the depen-

dence of the period on the phase speed for periodic solutions, hence a good estimate for

the horizontal length scale is half the period of the infinitesimal waves with speed c. Note

that the dispersion relation of the two layer model no longer agrees with the dispersion

relation of Euler equations (Lamb [33], pag. 231) when the long wave parameter d/λ

is not sufficiently small – see Figure 2.12 for typical errors in speed of the model with

respect to Euler predictions. Thus, by using the discrepancy between Euler and model

dispersion relation, we can infer a threshold long wave parameter that isolates the region

of validity of the strongly nonlinear model from this first part of the domain.

For the region within the domain of existence where βd/A < 1/2 (or |βe|/A < 1/2),

the position of the crest (or the position of the trough) of periodic solutions approaches
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the limiting position βd (or βe). In this case, the maximum layer depth is well approx-

imated by d = max(h2 + βd, h1 − βd + A) (or d = max(h1 − βe, h2 + βe + A)) whereas

the characteristic horizontal length scale of the foliating solitary waves provides a good

estimate for the horizontal length scale of periodic solutions since the wave shapes are

comparable. Obvious candidates for a characteristic length-scale of solitary waves are

the effective wavelength λI and the ratio between the amplitude and the maximum slope

of the interface (λS = A/max [ζX ]). An analytical expression for the effective wavelength

in terms of elliptic functions has been derived in Choi & Camassa [7] in the case of soli-

tary waves with no currents at infinity. In Appendix A we report the relationships for

effective wavelength corresponding to solitary waves on general currents at infinity (see

Table 1) along with a strategy for computing the maximum slope of solitary waves and

fronts – see (A.26). We can thus define two long wave parameters based on the effective

wavelength

(2.83) εI = d/λI ,

and on the wavelength derived from maximum slope

(2.84) εS = d/λS .

The condition εS � 1 measures the local validity of the solutions and therefore is a much

more restrictive criterion than εI � 1, which is a an average of the steepness of the

profile with respect to the thickness of the layer. We thus expect that for εI � 1 and

εS ∼ O(1) to have a reasonable overall agreement with Euler solutions, while locally the
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Figure 2.13. Regions in the domain of existence where we can expect a
good agreement of the solutions of the strongly nonlinear model with Euler
solutions for the configurations from Figures 2.10(a) and (c), respectively.
The region at the left of the dashed line contains solutions with quasi-
sinusoidal wave shapes whereas for the region at the right the periodic
solutions approach the foliating family βd.

model predicted profile does not match the Euler solution. We note that in the limit

to fronts, however, the effective wavelength diverges to infinity, the only measure of a

characteristic horizontal length-scale being provided by the maximum slope criterion.

We summarize these ideas in Figure 2.13, where we depict the regions in the domain of

existence of periodic solutions where the long wave parameter is smaller than unity.

We remark that some of the validity regimes we have identified could follow the

classification of two-layer asymptotic models provided by Bona et al. [5], however we have

not pursued this analysis here and work strictly with our model within their “shallow-

shallow” configuration. In this context, it is worth mentioning that the strongly nonlinear

model seems to work rather well (but not always) even outside this configuration.

2.6. Validation of the model by comparison to Euler solutions

In this section, we compare periodic solutions of zero horizontal momentum in each

layer obtained by the strongly nonlinear model against numerical solutions of the full
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Euler system under the same constraints. As remarked above, because of equation (2.47),

this also implies that the layer horizontal momenta are zero, for both model and Euler

solutions. We first concentrate on the parent two-layer Euler system, using the algorithm

based on boundary integrals documented in Rus̊as [44], Grue et al. [19]. Convergence

properties of this algorithm have been extensively studied in these references and others.

We have performed further tests in the context of the present work within our constrained

class. We have adapted this algorithm to seek solutions of a prescribed mean elevation,

which requires a continuation search on the initial guesses for this iterative algorithm

(the details of this continuation procedure are not important here and will be reported

elsewhere). In particular, we focus here on the practical limitations of the asymptotic

model in view of the validity estimates of §2.5.4, by testing the model with this class

of periodic waves as well as their limiting forms of solitary waves and fronts, in various

parametric regimes. Of course, the two-layer setup is highly idealized. In order to assess

the relevance of this idealization, we next compare periodic solutions of Euler equations

for continuous (but still near two-layer) stratification, obtained with a variant of the

algorithm of Turkington et al. [51], by looking at relevant diagnostics such as wave

profile and fluid velocities.

2.6.1. Two-layer Euler system vs. strongly nonlinear model. For a given density

ratio ρr between the two layers, the subcritical and supercritical regimes (hr <
√
ρr and

hr >
√
ρr respectively) will have many similarities, with the sole exception being the

“polarity” of the waves. As pointed out before, this is reflected in the tendency of the

crests or troughs, respectively, to flatten first with increasing amplitude. The critical
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case on the other hand is special and deserves a separate study. Accordingly, in the next

two sections we report results from the subcritical and critical case only.

hr < hcritical.

First, we look at a subcritical configuration hr < hcritical ≡ √ρr, whose speed vs. am-

plitude chart is illustrated by Figure 2.10(a). The corresponding chart with several

constant-period curves computed with the full Euler two-layer system are reported in

Figure 2.14, where the regions of validity discussed in the previous section are identified

by shaded portions of the existence domain.

Some general features of the comparison between strongly nonlinear model and the

full Euler solutions emerge from this figure. First, both strongly nonlinear and Euler

models share the presence of two types of period isolines – isolines along which the phase

speeds are subcritical c < c0 and isolines that have a portion on which the phase speeds

are supercritical c > c0. As one can see from Figure 2.14, the agreement between model

and Euler predictions is in general superior in the region where the phase speeds are

supercritical (and the period is larger).

Next, the discrepancy between model and Euler period isolines amplifies with increas-

ing amplitude, this tendency being enhanced by decreasing period. While the model iso-

lines wrap on the right boundary of the existence domain (corresponding to the branch

of fronts) as the amplitude increases, Euler isolines reach a maximum amplitude and

overturn, which correspond to periodic wave profiles of the overhanging nature (multiple-

valued interface for given x-locations) reported in the literature in different setups (either

infinite depth fluids or front solutions, see e.g., Meiron & Saffman [37], Turner & Vanden-

Broeck [52], respectively). Prolonging the constant period isolines past the overturning
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seems to lead to periodic waves of smaller amplitude and larger speed with deeper over-

hangs, until this process terminates with a wave of a self-intersecting profile of extreme

form – see Figures 2.15(a)–(d). We remark that this process of termination by self inter-

section can only be conjectured at this point and may not apply to long period waves,

where we have not been able to achieve convergence of the Euler code. Moreover, this

process may not apply to the infinite depth case, see Turner & Vanden-Broeck [52]. We

further remark that both sub-critical and super-critical period isolines overturn in the

region of subcritical phase speeds, and that the size of the overturning region decreases

with increasing period. The phenomenon of overhanging periodic waves is connected

with the existence of a maximum amplitude, single valued Euler wave profile for a given

period. The envelope of constant period isolines for subcritical speeds defines a maxi-

mum amplitude boundary for single-valued solutions of two-layer Euler equations – see

the dashed-dotted curve in Figure 2.14(a). It is remarkable that the strongly nonlinear

model, for which all periodic solutions are naturally single valued, still manages to in-

form about this envelope through the setting of a threshold for model validity based on

the slope achieved along the proper foliating solutions (computed with (A.26)) in the

existence domain – see Figure 2.14(b).

Another important feature of the Euler solutions emerges from this plot, namely the

nonuniqueness of periodic waves of given amplitude and speed. As can be seen from

Figure 2.14(a), there exists a set of points in the parameters space (A , c) at the left of

the dashed-dotted curve, where at least two Euler solutions, one regular whose profile is

a single-valued graph of x and one multiple-valued of the overhanging type, move at the

same speed with the same amplitude (but with different periods).
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In Figure 2.16 we compare the Euler solutions against model predictions for the points

marked on Figure 2.14(a), while Figure 2.19 presents a comparison between model results

and Euler results for the mean kinetic and potential energy. In particular, one can clearly

see the equipartition of kinetic and potential energies for small amplitude waves for both

strongly-nonlinear and full Euler solutions.

The progressive breakdown of the strongly nonlinear model’s fidelity is captured

reasonably well from the effective wavelength criterion discussed in the previous section.

The condition εS � 1 isolates the level sets of period predicted by the model which best

match the Euler level sets. However, notice that the strongly nonlinear model performs

well even in regions where εS ∼ O(1) provided the long wave parameter based on effective

wavelength εI is much smaller than unity. Also notice that for all period isolines of the

model, the wave shapes are steepening and converging to a front of amplitude H with

the “effective” wavelength (hr/(hr + 1))L selected by mass conservation. This horizontal

length scale is a good estimate for the effective wavelength of both model and Euler wave

profiles – see Figures 2.17 and 2.18.

hr = hcritical.

For a configuration corresponding to the critical depth ratio, the domain of existence of

solutions of the strongly nonlinear model contains only sub-critical speeds c < c0, and

the only limiting forms of periodic waves consist of fronts. In this instance the quasi-

linear region (where the wave shapes are quasi-sinusoidal) occupies a larger portion of

the domain of existence– see Figure 2.20(a). As expected, the agreement of the strongly
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Figure 2.14. (a) Isolines of period (labeled with L/H) for the config-
uration from Figure 2.10(a); Continuous line - strongly nonlinear model,
dotted line & data points - Euler solutions. The dashed-dotted curve marks
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isolines, corresponding to the slope angle of approximately 40◦ degrees.
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Figure 2.16. Comparison between model (continuous line) and Euler
solutions (dashed line) corresponding to the points marked on Figure 2.14,
for (a) L/H = 3.25 and (b) L/H = 16.67, respectively.
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Figure 2.17. Waves shapes on an isoline of period L/H = 3.25. (a)
Model, (b) Euler (the dashed line reports the model predicted limiting
front with speed 0 and amplitude H from the left panel (a)).

nonlinear model with Euler is superior in the regions with εS � 1. Notice that when

the period increases, the isolines of period wrap along the front branch of the domain

60



(b)(a)

x/Hx/H

z
/H

Figure 2.18. Same as Figure 2.17 for L/H = 16.67.
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Figure 2.19. Mean kinetic energy (continuous - strongly nonlinear
model, circles - Euler solutions) and mean potential energy (dashed - stron-
gly nonlinear model, dots - Euler solutions) on two isolines of period from
Figure 2.14: (a) L/H = 3.25 and (b) L/H = 16.67, respectively. The
energies are nondimensionalized with γH2.

of existence of the strongly nonlinear model solutions, which confirms that the front

branch represents an actual branch of front solutions for the full Euler equations. We

remark that these fronts are not the “classical” fronts on uniform currents studied in

Dias & Vanden-Broeck [9]. In Figure 2.20(b)–(d), we compare the Euler wave shapes

corresponding to points on the front branch to front solutions of the strongly nonlinear

model, by matching the zero crossing points of the profiles. The agreement is quite

reasonable even when εS is order O(1).

2.6.2. Continuous stratification Euler system vs. strongly nonlinear model.

We complete the study of our class of periodic waves with a limited comparison of results
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Figure 2.20. (a) Isolines of period (labeled with L/H) for the config-
uration from Figure 2.10(c); Continuous line - strongly nonlinear model,
dotted line & data points - Euler solutions. The dashed curve corresponds
to βd/A = 1/2 whereas the shaded areas are the regions of validity of the
strongly nonlinear model – see Figure 2.13(b). (b)-(d) Dashed line – Euler
periodic solutions (half profile) with period L/H = 17.56 and with speed
and amplitude corresponding to the points marked in Figure 2.20(a), con-
tinous line – front solution of the strongly nonlinear model with the same
speed and amplitude. The profiles are aligned at the zero crossing points.

of the two-layer strongly nonlinear model with periodic wave solutions of Euler equations

with continuous stratification. Stationary periodic solutions for the latter are determined

by using an iterative scheme described in Turkington et al. [51]. This algorithm solves

the Dubreil-Jacotin-Long (DJL) equation through minimization of kinetic energy for

prescribed potential energy.
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The unperturbed continuous stratification consists of two layers of constant density,

separated by a thin diffused interface. Figure 2.21(a) displays the density field corre-

sponding to a periodic wave solution in the presence of sharp stratification (pycnoline

width relative to the height of the domain ∼ 0.03). Following the strategy outlined in §3,

we determine a two layer configuration which approximates the continuous stratification

by optimizing with respect to critical speed, mass and potential energy of a reference

equilibrium state. In Figure 2.21(b) we compare the isopycnal surface corresponding to

ρ(h2) from the Euler solution (ρ is the stratification of the equilibrium configuration,

h2 is the thickness of the bottom layer for the optimal two-layer approximation), ver-

sus the interface predicted by the strongly nonlinear model. Figure 2.21(c) compares

the self-induced horizontal shear at the maximum displacement of the pycnocline with

the horizontal velocity profiles predicted by the strongly-nonlinear model asymptotics,

through the reconstructed z-dependence of the velocity field provided by equation (2.49).

We remark that our implementation of the DJL solver, while allowing for the volume

flux to be set to zero, does not impose the constraint of zero horizontal momentum for

the resulting solution. However, for the solution shown here as well as for most of the

ones we have studied, the momentum evaluated diagnostically after their computation

turns out to be very close to zero.

2.7. Other classes of periodic waves

In this last section, we review a few alternatives of our choice of constraints as well as

models reported in the literature for periodic wave motion in a two-layer system of finite

depth. These alternatives, all share with our model the assumption of single-valuedness
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Figure 2.21. (a) Density field for a periodic wave in continuous strat-
ification. H = 77cm, period L/H = 8, ρr ∼ 0.977. (b) Wave profile
comparison. (c) Shear at the wave trough.

of the interface between the two layers, thereby excluding overhanging wave solutions.

With this functional assumption, the minimal number of quantities needed to determine

a unique wave train is five for all cases, just as in our study of the strongly nonlinear

model.

We remark that the majority of these alternative studies are aimed at the limiting

forms of periodic waves corresponding to solitary waves on zero currents at infinity, the

issue of the possible generation mechanisms of periodic wave trains thus being circum-

vented. These alternatives leave the mean position of the interface a priori undeter-

mined, and seek some other constraints fixing the five quantities that determine the

periodic wave-train. In the following, we show how to cast these different constraints in

the framework of the strongly nonlinear model.
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2.7.1. Periodic waves with prescribed fluxes, total flow force and Bernoulli

constants. We note that there appears to be no rigorous proof regarding the minimal

set of constants of motion for general symmetric periodic solutions of Euler equations in

two-layer systems. Such a proof has been provided in recent years by Benjamin [3] for

the one-layer case, addressing a long-standing conjecture by Benjamin & Lighthill [4]

based on a model of small-amplitude, long-wave periodic motion. Thorpe [49] presents

a similar construction for a two-layer (weakly nonlinear) system; in his approach five

wave-frame invariants generalizing those in Benjamin & Lighthill [4] would completely

characterize a periodic wave-train, viz., mass fluxes in each layer, Bernoulli constants in

each layer and total flow force.

In the following we use the fact that the Bernoulli constants, being related by conti-

nuity in pressure at the interface, are not independent, and only the difference between

them (which we will denote by R) can be regarded as a true motion invariant. Moreover,

in the periodic setting there is no reference state to which an asymptotic pressure head

can be related, thereby fixing (one of) the Bernoulli constants. An additional invariant

(the total flow-force S in our notation) can then be obtained by relating the flow force

to the Bernoulli constants. Thus, we retrieve the same count of constraints in the wave

frame as the one previously found with the strongly nonlinear model, viz., R ,S and the

wave frame volume fluxes in each layer Q̂1 and Q̂2. The phase speed, which defines the

lab frame of reference, can be viewed as an additional degree of freedom.
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Integrating (A.29) over the wave period at z = h1 and z = −h2 for each layer,

respectively, yields

R1 =
1

L

∫ L

0

p1|z=h1dX +
1

2
˜̂u2|z=h1 + ρ1gh1 ,(2.85)

R2 =
1

L

∫ L

0

p2|z=−h2dX +
1

2
˜̂u2|z=−h2 − ρ2gh2 ,(2.86)

where ˜̂u2|z=h = 1
L

∫ L
0

(û|z=h)2dX. We compute the integrals of the pressure at the two

walls (first terms in the RHS of the above relations), by integrating over one periodic

box domain the vertical momentum equation in the wave frame in each layer

(2.87) ρk(ûkv̂kX + v̂kv̂kz) = −pkz − ρkg , k = 1 , 2 .

By incompressibility, the kinematic condition at the interface (ζX ûk = v̂k) and the peri-

odicity of the motion shows that the LHS integrates to zero,

∫ L

0

∫
[ηk]

(ûkv̂kX + v̂kv̂kz)dz dX =

∫ L

0

∫
[ηk]

((ûkv̂k)X − v̂kûkX + v̂kv̂kz)dz dX

=

∫ L

0

∂

∂X

(∫
[ηk]

ûkv̂kdz

)
dX +

∫ L

0

(−ζX(ûkv̂k)|ζ + v̂2
k|ζ)dX = 0 .

The RHS for the bottom layer is

∫ L

0

∫ ζ

−h2

(−p2z − ρ2g)dz dX =

∫ L

0

(p2|z=−h2 − p2|ζ) dX − ρ2gh̃2L ,

while for the upper layer we have

∫ L

0

∫ h1

ζ

(−p1z − ρ1g)dz dX =

∫ L

0

(p1|ζ − p1|z=h1)dX − ρ1gh̃1L ,
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and therefore

∫ L

0

p2|z=−h2dX −
∫ L

0

p2|z=ζdX = ρ2gh̃2L ,(2.88) ∫ L

0

p1|z=ζdX −
∫ L

0

p1|z=h1dX = ρ1gh̃1L ,(2.89)

where h̃k is the mean depth of layer k. Summing up the above relations and using the

continuity of pressure across the interface yields

∫ L

0

(p2|z=−h2 − p1|z=h1)dX = (ρ1h̃1 + ρ2h̃2)gL .

The difference between equations (2.85) and (2.86) then provides a first motion invariant

R ≡ R2 −R1

(2.90) R = γζ̃ +
ρ2

2
˜̂u2|z=−h2 −

ρ1

2
˜̂u2|z=h1 ,

where ζ̃ is the mean position of the interface.

To determine a second motion invariant connecting the flow force to the Bernoulli

constants, we rewrite the wave-frame Bernoulli equation in each layer as

(pk + ρkû
2
k) + ρkv̂

2
k + (pk + ρkgz) + ρkgz = 2Rk , k = 1, 2 .

For the bottom layer, by multiplying the momentum equation (2.87) by (h2 + z) and

adding it to the Bernoulli equation we obtain

(2.91) (p2 + ρ2û
2
2) +

D [(h2 + z)v̂2]

Dt
+ [(h2 + z)(p2 + ρ2gz)]z + ρ2gz = 2R2 ,
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where D[·]/Dt ≡ û2∂X(·) + v̂2∂z(·) is the usual definition of material derivative.

In this equation, the integral of the second term in the LHS over the periodic box

domain for this bottom layer is zero. Indeed, we have, by completing derivatives and by

carrying out a z-integration,

∫ L

0

∫ ζ

−h2

[û2((h2 + z)v̂2)X + v2((h2 + z)v̂2)z] dz dX =

∫ L

0

∫ ζ

−h2

(û2(h2 + z)v̂2)Xdz dX−

−
∫ L

0

∫ ζ

−h2

û2X(h2 + z)v̂2 dz dX +

∫ L

0

(v̂2|ζ)2 η2 dX −
∫ L

0

∫ ζ

−h2

(h2 + z)v̂2v̂2z dz dX .

The second and last term of the above expression cancel by continuity, while the first

term can be rewritten by chain rule with integration to yield

∫ L

0

∂

∂X

(∫ ζ

−h2

û2(h2 + z)v̂2dz

)
dX −

∫ L

0

ζX û2|ζ v̂2|ζη2 dX +

∫ L

0

(v̂2|ζ)2 η2 dX = 0 ,

where the cancellation is due to periodicity (first term) and to the kinematic condition

at the interface (second and third term).

As to the other three terms in equation (2.91), carrying out the integration over the

period box domain, yields

(2.92)∫ L

0

∫ ζ

−h2

(p2 + ρ2û
2
2)dzdX +

∫ L

0

[
(ζ + h2)(p2|ζ + ρ2gζ) + ρ2g

ζ2 − h2
2

2

]
dX = 2R2h̃2L .

For the upper layer, by multiplying the momentum equation by (z − h1) and following

the same procedure, we obtain

(2.93)∫ L

0

∫ h1

ζ

(p1 + ρ1u
2
1)dzdX +

∫ L

0

[
(h1 − ζ)(p1|ζ + ρ1gζ) + ρ1g

h2
1 − ζ2

2

]
dX = 2R1h̃1L .
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By adding (2.92) and (2.93) and dividing by the period length we obtain for the total

flow force S

(2.94) S+
1

L

∫ L

0

Hp|ζdX+
g(ρ1h

2
1 − ρ2h

2
2)

2
+

3γ

2
ζ̃2+

g(ρ1h1 + ρ1h1)

2
ζ̃ = 2(h̃1R1+h̃2R2) ,

where we have defined the mean-square wave elevation

(2.95) ζ̃2 =
1

L

∫ L

0

ζ2(X)dX .

Using equations (2.85-2.88) we obtain

1

L

∫ L

0

p1|ζdX = R1 − ρ1

2
˜̂u2|z=h1 − ρ1gζ̃ ,(2.96)

1

L

∫ L

0

p2|ζdX = R2 − ρ2

2
˜̂u2|z=−h2 − ρ2gζ̃ .(2.97)

Continuity of pressure at the interface p1|ζ = p2|ζ = p|ζ , by adding the above relations

after multiplication with h̃1 and h̃2, respectively, yields

1

L

∫ L

0

Hp|ζdX = h̃1R1 + h̃2R2 − ρ1h̃1

2
˜̂u2|z=h1 −

ρ2h̃2

2
˜̂u2|z=−h2 − g(ρ1h̃1 + ρ2h̃2)ζ̃ ,

and by substituting the above relation in equation (2.94) we finally obtain the motion

invariant S ≡ S −R1h̃1 −R2h̃2

(2.98) S =
ρ1h̃1

2
˜̂u2|z=h1 +

ρ2h̃2

2
˜̂u2|z=−h2 +

3

2
(ρ1h̃1 + ρ2h̃2)ζ̃ − 3γ

2
ζ̃2 +

g(ρ1h̃
2
1 − ρ2h̃

2
2)

2

(where we have used the identities h1 = h̃1 + ζ̃ and h2 = h̃2 − ζ̃).
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The motion invariants R and S are defined in terms of period averages of kinematic

and geometric wave properties in the wave frame of reference, and do not contain ar-

bitrary pressure constants. Together with the two motion invariants provided by the

volume fluxes in the wave frame, this set of four invariants can be used to specify the

periodic wave train for Euler two-layer system.

Until this point we have defined motion invariants which are exact for the Euler equa-

tions. We now compute these quantities within the asymptotic approximation consistent

with strongly nonlinear model. First, we notice that layer-fluxes are exact within this

approximation, and correspond to the constants of integration C1, C2 in (2.25).

The remaining two motion invariants R and S, can be approximated for the strongly

nonlinear model and linked to the quadrature constants by using the asymptotic relations

for the horizontal velocity (2.49) and the equation for the mean of the interface (2.31),

while ζ̃2 can be expressed in terms of the quadrature constants by replacing the numerator

of the integrand in (2.31) with ζ2.

We remark that a systematic study of existence and uniqueness of solutions of the

strongly nonlinear model in the parameter space Q̂1, Q̂2, R and S seems difficult, given

that the constraints between these parameters and the integration constants of the quad-

rature (2.25) are defined nonlocally through singular integrals with variable limits of

integration.

2.7.2. Periodic waves with prescribed fluxes. Miyata [41] proposed the same stron-

gly nonlinear long wave model and studied a class of periodic waves that limit on solitary

waves on zero current at infinity. The position of the crest is located at fixed distance

h2 from the bottom wall, (thus at distance h1 = H − h2 from the top wall). The fluxes
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in each layer are set to zero in a particular frame of reference which is designated as the

“lab” frame, so that in the wave frame they are Q̂k = −chk, k = 1, 2, where c is the phase

speed. Thus, Miyata obtains a two parameter family of periodic solutions parametrized

by the phase speed c and amplitude A, which, in the limit of infinite period, recovers the

solitary wave solution with asymptotic behavior at infinity ηk → hk and zero current in

both layers.

These constraints (fixed position of the trough and zero volume fluxes in each layer)

yield a distinct class of waves with respect to the one we have concentrated on and

defined in §2.4 (waves of momentum zero in the frame for which the total volume flux is

zero).

While the total volume flux in the lab frame is zero for this particular class of waves,

(2.99) Q = η1u1 + η2u2 = 0 ,

the total horizontal momentum is different than zero.

Indeed, integrating this relation over one period after multiplication with ρk yields

−cρkh̃kL+ IkL = −chkρkL ,

where h̃k = 1/L
∫ L

0
ηk dX is the period average of the k-layer depth and Ik is the mo-

mentum per period in the lab frame. Thus

Ik = cρk(h̃k − hk) ,
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and therefore

(2.100) I1 + ρrI2(6= I1 + I2) = 0 .

Miyata derived his periodic solutions for the particular depth ratio hr ≡ h1/h2 = 1√
ρr

,

which is different than the critical case hr =
√
ρr. For this particular ratio, his periodic

solutions are expressible via elliptic functions.

We can cast Miyata’s solutions in our notation in the general case (for arbitrary

hr), by looking at the class of waves for which the position of the trough is not con-

strained. Again, the strongly nonlinear model yields solutions which are expressible via

hyperelliptic functions except for the particular case hr
√
ρr = 1, when the root in the

denominator for the quadrature (2.25) vanishes and the hyperelliptic integral associated

with the quadrature degenerates into an elliptic integral. In addition to generalizing

Miyata’s class of periodic waves, we will also determine their domain of existence follow-

ing a similar strategy as for our main constrained class of periodic solutions. We remark

that by not enforcing the mean position of interface constraint, the analysis is greatly

simplified for Miyata’s class with respect to that of our main class. Notice also that the

interpretation of the constants C1 and C2 as layer fluxes and the property of the root of

the denominator in the quadrature formula (2.25) remain the same for Miyata’s class.

Following the same procedure as in §2.4, the constants C3 and C4 can be determined

uniquely by imposing the conditions that 0 and −A are roots of the polynomial at the

numerator in (2.25)

(2.101) P (ζ) = ρ1c
2h2

1η2 + ρ2c
2h2

2η1 − γζ2η1η2 + 2C3η
2
1η2 − 2C4η1η2 .
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Figure 2.22. Limiting forms (solitary waves) for the the class of periodic
waves with constrained fluxes and position of the crest.

Thus

C3 =
c2

2

[
ρ1h1

h1 + A
− ρ2h2

h2 − A
]

+
γA

2
,(2.102)

C4 = C3h1 + c2
ρ1h1 + ρ2h2

2
.(2.103)

With all the constants Ci, i = 1, . . . , 4, thus determined, we can construct the periodic

solution from the quadrature (2.25), and determine the domain of existence of this class

of periodic waves in the parameter space c and A. We restrict our attention to the

case h1 < hcritical. Once again, there are two bounding curves for this domain, which

correspond to limiting cases of solitary waves with the prescribed fluxes. One limiting

branch consists of the “classic” solitary waves that satisfy the asymptotic condition,

ηk → hk and uk → 0 as |X| → ∞ – type I in Figure 2.22. The other limiting branch –

type II in Figure 2.22 – is given by solitary waves of opposite polarity superimposed on

different non-zero currents at infinity (since the position of the interface at infinity is in
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Figure 2.23. Domain of existence for periodic waves with prescribed
fluxes for h1 < hc. Branch I represents solitary waves on zero current,
asymptotic depth of upper layer h1. Branch II corresponds to solitary
waves on currents.

this case is (h1 + A, h2 − A)), which can be determined by imposing the flux condition

(u1 − c) η1 = (u1|∞ − c)(h1 + A) = −ch1 ,(2.104)

(u2 − c) η2 = (u2|∞ − c)(h2 − A) = −ch2 .(2.105)

Using the notation from Appendix A yields

(2.106) U1 =
c2h2

1

(h1 + A)2
, U2 =

c2h2
2

(h2 − A)2
.

The coefficients q1, given by (A.8), and q2, given by (A.9), respectively, in the quadratic

polynomial from the numerator of (A.7) become

q1(A, c) = −h1 + h2 − 2A+
c2

γ

[
ρ1h

2
1

(h1 + A)2
− ρ2h

2
2

(h2 − A)2

]
,(2.107)

q2(A, c) = −(h1 + A)(h2 − A) +
c2

γ

[
ρ1h

2
1(h2 − A)

(h1 + A)2
+
ρ2h

2
2(h1 + A)

(h2 − A)2

]
.
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For a given amplitude A we want to determine the velocity c of the solitary wave on the

current U1, U2 given by (2.106). That is equivalent to requiring that A is the root of the

equation

A2 + q1(A, c)A+ q2(A, c) = 0 ,

which determines the square of the phase speed c2,

(2.108) c(A)2 = γ

(
ρ1h1

(h1 + A)2
+

ρ2h2

(h2 − A)2

)−1

.

In order to select from the curve (A, c) given by equation (2.108) the part that corresponds

to actual solitary waves, we need to make sure that the second root of the equation

r2 + q1(A, c(A))r + q2(A, c(A)) = 0 ,

say B, satisfies the condition B > A. Thus, we need the condition

q1 = −(A+B) < −2A ,

Replacing equation (2.108) in (2.107) and imposing the above condition we obtain

− ρ2h1h2

(h2 − A)2
+

ρ1h1h2

(h1 + A)2
< 0 ,

which allows to conclude that relation (2.108) defines the branch II of the limiting solitary

waves for

A > am =
h2
√
ρr − h1√
ρr + 1

,
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where am is the maximum amplitude of the usual front for layer thicknesses (h1, h2),

see Figure 2.23 for a sketch of the existence domain. We remark that what we have

effectively done by looking at the solutions of Miyata’s class is to take a different con-

straint surface through the five-dimensional parameter space of periodic solutions, and

that the domain of existence on these surfaces coincide with our main class along the

segment of boundary corresponding to the classical solitary wave solutions terminating

in the maximum amplitude degenerate front solution (besides the straight boundary seg-

ments of zero amplitude and the artificial zero phase speed waves). We also remark that

the critical depth ratio case follows a similar fate as that of our main constrained class,

namely the classic solitary wave branch at the top of the existence domain shrinks to the

point (0, c0) and only the type II solutions survive.

2.7.3. Periodic waves with prescribed mean Eulerian velocities. [15] study the

two-layer Euler system numerically, and compute a class of periodic waves under the

constraint that the period average of the Eulerian wall-velocity (defined in the lab frame)

be zero for both top and bottom walls. Their other two constraints are to fix the position

of the crest and the period length (thus fixing five independent parameters, phase speed,

two mean-Eulerian wall-velocities, crest position and period). We first show that this

class of periodic waves is different than our main class. In fact, the kinetic energy

equation (2.55) with mean Eulerian wall-velocity zero in each layer yields

(2.109) Tk = c
Ik
2
,
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so that the horizontal momenta Ik must be nonzero, violating the constraint of our main

class defined in §2.4.

Similarly to the previous sections, we now use the strongly nonlinear model to find

how these different constraints relate to the quadrature constants Ci, i = 1, · · · 4. By

fixing the position of the crest of the wave, we specify one of the four roots in the

polynomial at the numerator (2.27), say r2, which constitutes a constraint among the

integration constants Ci, i = 1, . . . , 4, or P (r2,C) = 0, where P is the polynomial in

the numerator of (2.25). By fixing the period, we obtain another integral constraint

involving the constants Ci, i = 1, . . . , 4,

(2.110) L = L(C) ,

see relation (2.30). By using the asymptotic expressions (2.53) for the mean Eulerian

velocities and setting them to zero for both layers, we obtain two more integral constraints

for the constants C1, . . . , C4 involving the wave speed c (prescribed from the onset)

ũk(c,C) = 0 , k = 1, 2 .

We remark that, just as for the constraints of §2.7.1, it seems difficult to study analytically

the existence and uniqueness of this class of waves, even with the power afforded by the

strongly nonlinear model because of the nonlocal expression for of the physical quantities

in terms of the quadrature constants.

Among the class of periodic solutions that can be constructed for two-layer systems,

a special mention goes to those derived through weakly nonlinear, unidirectional models.

77



Funakoshi & Oikawa [15] also derived a KdV-mKdV equation for waves of small ampli-

tude, whence periodic solution of standard elliptic functional form derive. However, we

remark that this particular class of waves does not recover the correct asymptotic limit

of the dispersion relation (as evidenced by Fig. 9(b,c) on that paper).

In fact, an asymptotically consistent KdV-mKdV model is a particular case of a

unidirectional model that can be obtained from our strongly nonlinear model (Choi &

Camassa [7]). This reduction of degrees of freedom for the wave motion, from bi- to uni-

directional, has the effect of reducing the number of parameters that define a periodic

wave train from five to three. We can thus anticipate that the constraints that rely on

the definition of a lab-frame (through its connection to wave speed) for the full Euler

two-layer system as well as for the strongly nonlinear model will be violated, in general,

albeit possibly only by asymptotically small errors arising from the unidirectional limit

process.

The traveling wave solution ansatz in the unidirectional model in (Choi & Camassa

[7], Appendix A, equation (A 14)) results in the quadrature formula

(2.111) ζ2
X =

c3
4(c4 − c5)

ζ4 +
2

3

c1
c3
ζ3 +

2(c0 − c)
c3

ζ2 + C1ζ + C2

ζ +
c2c1 + (c0 − c)(2c4 − c5)

2c1(c5 − c4)
,

where C1 and C2 are constants of integration which are related to purely geometric wave

properties such as amplitude, period, and mean level, and c1, c2, c3, c4 and c5 “hardware”

constants determined by the densities and layer thicknesses (Choi & Camassa [7], Ap-

pendix A, equations (A 7a) and (A 7b)). The quadrature (2.111) has the same structure

as its bidirectional analog (2.25), but only two constants of integration are needed. While
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we have not extensively studied this class here, it is interesting to note that at least for

small-amplitude wavetrains, well within the range of validity of the unidirectional model,

its periodic solutions are in good agreement with those of the bidirectional model in the

constrained class of zero period-averaged momentum for each layer.

2.8. Discussion

We have presented a study of finite-depth periodic traveling wave solutions of a stron-

gly nonlinear model for internal wave propagation in two-layer inviscid, incompressible

fluid systems. Periodic solutions clearly constitute a much richer class than their limit-

ing forms, such as solitary wave solutions, which have been the main focus of previous

model investigations in both theory and experiments. In contrast with these limiting

forms, the lack of an asymptotic spatial reference state opens up additional parametric

freedom, and the distinction of which parameter subsets constitute solutions relevant for

physical situations becomes less clear. With our study we have provided some order in

the various results established in the literature on two-layer finite-depth periodic internal

wave solutions, by examining in detail the role of the physical constraints on such waves,

and by studying their transition to the limiting infinite-period forms. In particular, we

have shown how such solutions constitute a five parameter family, which we conjecture

holds for the general two-layer Euler periodic single-valued solutions of symmetric type.

Moreover, we have provided examples that show non-uniqueness within this family, as-

sociated with “overhanging” (multiple-valued) solutions of the Euler system.

In this work, we have chosen to focus on the particular parametric subset correspond-

ing to waves that generate no horizontal mean momentum in each layer, with respect

to some inertial reference frame defined to be that of the laboratory. Additionally, we
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impose that these waves maintain a prescribed period average interface height, which

can be thought of as that of an undisturbed reference state. We chose these constraints

with a past asymptotic temporal reference state in mind, in which the process of wave

generation proceeds from a quiescent state with well defined uniform layer thicknesses, in

closed (but long) domains with wave-generators that do not apply a net horizontal force.

While these conditions do not necessarily guarantee the exact enforcement of our choice

of constraints, it is plausible to assume that under these circumstances our two sets of

constraints can be approximately satisfied. True periodicity could be approximated by a

section of the wave train far from both the generation region and from the leading wave

region, where the displaced interface connects with the flat surface between undisturbed

fluids. (Other parametric subsets have been proposed in the literature for Euler and

weakly nonlinear systems. We looked at some of them in the context of our model in

§2.7.)

Several results have emerged from our study. First, we have identified analytically

the domain of existence of the periodic waves in the two-parameter space of amplitude

and speed. The boundary of this domain is represented by the limiting curves of speed

vs. amplitude of solitary waves and fronts. While the solitary wave branch is a long-wave

approximation to the corresponding full two-layer Euler branch (but practically indistin-

guishable from it as shown in the previous work of Camassa et al. [8]), the front branch

is exact and coincides with that of the full Euler system, as we show in Appendix A.

Thus, the domain of existence we have identified thanks to the model informs us on the

corresponding domain for the full Euler system, even though not every existing model
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solution within the domain can be expected to be a good approximation of an Euler

solution.

The numerical solutions of the full Euler two-layer system have also brought forth

the feature of overhanging periodic waves of higher speed than single valued waves of

the same amplitude, within the same class of constrained zero momenta and fluxes for

solutions for the strongly nonlinear model. Similar overhanging solutions of Euler equa-

tions have been the subject of previous studies, however most of these have concentrated

on the case of infinite thickness of either both or one fluid layer. In contrast, our study

has concentrated on finite depth of both layers, and in particular we locate the domain

of existence of overhanging periodic solutions for these configurations. Moreover, our

Euler solutions explore the transition from finite period to infinite period front solution

of the overhanging type. It is interesting to speculate that the point at which the enve-

lope of maximum amplitudes for given period intersects the boundary of the existence

domain along the front branch separates this branch between single valued front profiles

and overhanging ones similar to those found by Dias & Vanden-Broeck [9]. If so, it is

remarkable that the model maximum slope curves can offer an estimate of this transition

amplitude along the front branch.

By comparing with numerical solutions of the full Euler system, we have shown that

two model solutions are accurate approximations whenever certain criteria of asymptotic

accuracy based on definitions of “long-waveness” and departure from near-linear regimes

are satisfied. This first and most stringent application of these criteria excludes from

the existence domain the region where overhanging waves are found, and the model

predictions are very good approximations of the full Euler solution. It is remarkable
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that with a second criterion based on a nonlocal definition of effective wavelength the

model is still able to pick up with some accuracy the location of flattening crests and/or

troughs, even though the wave profile may fail to offer a good local approximation. In

particular, the Euler computations show that a portion of the existence domain from the

model needs to be removed as Euler solutions do not exist in this region. Euler periodic

waves of the constrained class we have studied have a (single valued regular) wave of

maximum amplitude for a given period. The envelope of all the constant period curves

in the (A, c) plane gives rise to a curve marking the boundary of existence of these Euler

periodic solutions. Here again the model is able to inform about the boundary of this

region by examining the maximum slope curve of its solutions in the existence domain.

A large portion of the existence domain is taken by periodic waves which are de

facto the spatially truncated version of solitary waves or fronts. These are not the

classic cases of such internal waves, which are asymptotic to quiescent states. Instead,

these infinite-period limiting waves are defined on background relative currents between

the two layers. This situation has not been given much attention in previous work,

presumably due to lack of physical interest for a velocity jump to be sustained over an

infinite interface. However, the length of this interface becomes finite when clipped in

the process of constructing periodic waves, thus justifying the more in-depth study of

such limiting cases presented in Appendix A and B.

A result of possible relevance in applications, where solitary waves rarely occur in

true solitary fashion and are more commonly members of wavetrains with multiple crests,

is exhibited by the supercritical speed region near the vertex of the existence domain.

There, for a fixed supercritical speed and relatively long period waves, there exist two
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different amplitude waves, with the larger one attaining an amplitude that can be sub-

stantially larger than the maximum wave front limit of the classic solitary wave branch.

Several future directions could stem from our study of the periodic solutions for the

two-layer strongly nonlinear model. Perhaps the one most physically relevant is the

modulated wavetrains that can be obtained perturbatively by allowing the quadrature

integration constants to be slowly varying functions of space and time. To this end,

asymptotics of the quadrature formula for nearly flat crests or troughs would have to

be established and are in progress. Such a study would be of relevance in geophysical

applications, where near-solitary wave trains are a common occurrence. On a more

mathematical level, the overhanging solutions and their model approximations provide

a starting point for continuation studies to explore the issue of multiplicity for this class

of two-layer Euler solutions, as well as their stability properties.
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CHAPTER 3

Optimal two-layer approximation for continuous density

stratification

3.1. Introduction

A rather ubiquitous density stratification encountered in geophysical applications

consists of two layers of constant density fluids separated by an intermediate, diffused

layer (the pycnocline) in which the density varies continuously. When the pycnocline is

thin, a two layer system describes wave motion supported by such configurations success-

fully, as comparisons between theory and experiments (e.g. in Grue et al. [19]) reveal.

Typically, the interface position of the two layer system is chosen at the inflection point

of the density profile, while the densities of the two layers are set by the extrema of the

density profile. As discussed in §2.1, the two layer system is by far the simplest configura-

tion supporting internal wave motion, and consequently both asymptotic and full Euler

models for wave motion in such a system have been developed and analyzed extensively.

In particular, asymptotic models that take advantage of typical long horizontal scale of

the motion with respect to the widths of the fluid layers, are notably much easier to

study than their full Euler counterparts. For instance, the two layer strongly nonlinear

model for long waves of arbitrary amplitude described in Miyata [39], Choi & Camassa

[7], reduces the full Euler system of partial differential equations to a system of evolution



equation for interface position, layer mean velocities and pressure at the interface, which

are evidently more amenable to analytical investigations.

For thick pycnoclines, the aforementioned modality of prescribing the two layer sys-

tem approximation for the continuous stratification is no longer satisfactory. Various

simplified models that take into consideration the presence of a pycnocline of finite

width have been studied (e.g. intermediate layer of constant density Rus̊as [44], Rus̊as

& Grue [43] or linear stratification Fructus & Grue [14], Fructus et al. [13]). How-

ever, studying time evolution and determining stationary solutions in the framework of

such models is substantially more difficult than the equivalent analysis using the two

layer models (in particular the asymptotic models for long waves). Thus, in the present

chapter, we aim to extend the two layer approximation to density stratifications with a

single finite-width pycnocline. The results of this chapter are relevant for the study in

Chapter 4, where the shear instability of solitary waves in near two-layer stratification

is considered. In this study, we assume the fluid to be inviscible, incompressible and

non-diffusive. Furthermore, we confine the upper surface by a rigid lid.

The chapter is organized as follows: in §3.2 we propose several models for constructing

two-layer approximations for an arbitrary continuous stratification. In §3.3 we outline

a simple strategy for comparing the performance of these models, in order to select the

optimal one among them, by studying the propagation of waves of infinitesimal amplitude

and of internal bores. We also explore the range of pycnocline thicknesses for which the

proposed models furnish reasonable estimates. In §3.4, in an effort to further validate

our strategy, we compare the solitary wave solutions of Euler equations in continuous

stratification (obtained by the fixed point iteration algorithm described in Appendix C)
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with solitary waves solutions of the strongly nonlinear long-wave model Choi & Camassa

[7], solutions available in closed form. Finally, In §3.5 we construct an approximation of

local fluid velocities, based on a long wave assumption.

3.2. Model

Let ρ(z) denote a continuous density stratification for which we aim to determine

an equivalent two-layer system. The two-layer system is fully determined by specifying

three quantities: the height of the bottom layer, z0 and the densities in each layer (ρ1

upper, ρ2 bottom) - see Figure 3.1 for general notation. Hence, we need three matching

criteria that would connect the two stratifications.

z

 

z

ρ

ρ

H

2 0

1

ρ

ρ(z)

Figure 3.1. Schematics of two layer system and its continous stratifica-
tion counterpart with the main notations.

Dispersion is a fundamental aspect of wave motion in stratified fluids, and thus fur-

nishes a natural criterion for selection of a two-layer system that would correctly capture

wave dynamics in continuous stratification. The most significant physical quantity that

characterizes dispersion in both two-layer and continuously stratified systems is the speed

of waves of infinitesimal amplitude and infinite wavelength – linearized long wave speed.

The linearized long wave speed for continuous stratification corresponds to the first

eigenmode (baroclinic mode) of the linearized Euler equations. Assuming sinusoidal
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waves propagating in the horizontal direction x, the stream function can be expressed as

ψ(x, z) = F (z)eik(x−ct) ,

with c being the phase speed of the wave whereas k is the wave number. The boundary

conditions are ψ(x, 0) = ψ(x,H) = 0 (no-slip at the vertical boundaries) and thus

F (0) = F (H) = 0. The equation for the amplitude F (that results from the linearization

of Euler equations) is

(ρF ′)
′ −
[
gρ′

c2
+ ρk2

]
F = 0 ,

or equivalently

(3.1) F ′′ − N(z)2

g
F ′ +

[
N(z)2

c2
− k2

]
F = 0 ,

with N(z) ≡
√
−ρ′g
ρ

being the Brunt-Väisälä frequency. We thus obtain a Sturm-

Liouville eigenvalue problem with the eigenvalue 1/c2, parametrized by k. The linearized

critical long wave speed is determined by the limit k → 0. Equation (3.1) becomes

(3.2) F ′′ − N(z)2

g
F ′ +

N(z)2

c2
F = 0 .

The first eigenvalue of equation (3.2) gives the linearized long wave speed (≡ ccont0 ).

The linearized long wave speed for a two layer system (Lamb [33]) with height of the

bottom layer z0, total height H and densities ρ1, ρ2 is

(3.3) ctwo layers0 =

√
gz0(H − z0)(ρ2 − ρ1)

ρ1z0 + ρ2(H − z0)
.
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Other relevant physical quantities that characterize a stratified configuration in qui-

escent state are the masses and potential energies of the two layers. In the following,

we define functions representing differences between the quantities that characterize the

continuous stratification and two layer configuration (mass in each layer, respectively

potential energies in each layer)

f1(z0, ρ1) ≡ ρ1 (H − z0)−
∫ H

z0

ρ(z)dz = ρ1 (H − z0) + r(z0)− r ,(3.4)

f2(z0, ρ2) ≡ ρ2z0 −
∫ z0

0

ρ(z)dz = ρ2z0 − r(z0) ,(3.5)

f3(z0, ρ1) ≡ ρ1

2
(H2 − z2

0)−
∫ H

z0

zρ(z)dz =
ρ1

2
(H2 − z2

0) +W (z0)−W ,(3.6)

f4(z0, ρ2) ≡ ρ2

2
z2
0 −

∫ z0

0

ρ(z)zdz =
ρ2

2
z2
0 −W (z0) ,(3.7)

where

r =

∫ H

0

ρ(z)dz

is the total cross-section mass for the continuous stratification,

W =

∫ H

0

zρ(z)dz

is the total cross-section potential energy for the continuous stratification (/g) and

r(z0) ≡
∫ z0

0

ρ(z)dz , W (z0) ≡
∫ z0

0

zρ(z)dz .

There are of course, multiple ways of prescribing the matching criteria. Since the

equivalent two-layer system should accurately capture small amplitude motion, we assert

that the linearized speed should be matched exactly. This allows elimination of one of
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the unknowns - for instance ρ2 in favor of ρ1 and z0. Let h0 ≡ (ccont0 )2/g. From (3.3) we

obtain

(3.8) ρ2(z0 , ρ1) =
(z0 − h0 −H)z0ρ1

(H − z0)(h0 − z0)
.

We thus rewrite the functions (3.4)-(3.7) as

f1(z0, ρ1) = ρ1 (H − z0) + r(z0)− r ,(3.9)

f2(z0, ρ1) =
(z0 −H − h0)z

2
0ρ1

(H − z0)(h0 − z0)
− r(z0) ,(3.10)

f3(z0, ρ1) =
ρ1

2
(H2 − z2

0) +W (z0)−W ,(3.11)

f4(z0, ρ1) =
(z0 −H − h0)z

3
0ρ1

(H − z0)(h0 − z0)
−W (z0) ,(3.12)

In the present study, we are investigating three matching strategies. For all of these

modalities, the first criterion is, as mentioned above, matched linearized speed. Addi-

tionaly, we match: (I) mass in each layer, (II) potential energy in each layer, (III) least

square fit for masses in the two layers and energies in the two layers. In all three cases,

we reduce the determination of the equivalent two-layer system problem to a nonlinear

equation for the position of the interface z0 (the width of the bottom layer). In most

cases, this nonlinear equation has multiple solutions. In §3.3 we will present prescriptions

for selecting only one of the roots in each instances, in the context of a specific density

stratification.

3.2.1. Matched mass in each layer. Matching mass in each layer amounts to solving

the nonlinear system of equations f1(z0, ρ1) = 0 , f2(z0, ρ1) = 0 (f1 , f2 given by (3.9),
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(3.10)) in the unknowns z0, ρ1. By eliminating ρ1 in favor of z0 from the first equation

ρ1(z0) =
(H − z0)(h0 − z0)r

H (z2
0 − (H + 2h0)z0 +Hh0)

,

we can reduce the system to a single equation in z0

(3.13) F1(z0) ≡ (z0 − h0 −H)z2
0r

H (z2
0 − (H + 2h0)z0 +Hh0)

− r(z0) = 0 .

Note that z0 = H is a solution.

3.2.2. Matched potential energy in each layer. We need to solve the nonlinear

system of equations: f3(z0, ρ1) = 0 , f4(z0, ρ1) = 0 (f3 , f4 given by (3.11), (3.12)) in the

unknowns z0, ρ1. By eliminating ρ1 in favor of z0 from the first equation,

ρ1(z0) =
2(H − z0)(z0 − h0)W

H (H2h0 −H(H + h0)z0 + (H − h0)z2
0)
,

we can reduce the system to a single equation in z0

(3.14) F2(z0) ≡ (z0 − h0 −H)z3
0W

H (H2h0 −H(H + h0)z0 + (H − h0)z2
0)
−W (z0) = 0 .

Note that z0 = H, z0 = 0 are solutions.

3.2.3. Least square fit for potential energies and masses. We define the residue

function

(3.15) S(z0, ρ1) =
f 2

1 (z0, ρ1) + f 2
2 (z0, ρ1)

2r2
+
f 2

3 (z0, ρ1) + f 2
4 (z0, ρ1)

2W
2 .

90



In order to minimize the residual S, we determine the critical points, thus solving the

system

(3.16)
∂S

∂z0

(z0 , ρ1) = 0,
∂S

∂ρ1

(z0 , ρ1) = 0 .

and select the local minima. We record here the partial derivatives of f1(z0, ρ1) -

f4(z0, ρ1):

∂f1

∂z0

= ρ(z0)− ρ1 ,

∂f1

∂ρ1

= H − z0 ,

∂f2

∂z0

=
(z3

0 − 2(H + h0)z
2
0 + (H2 + 5Hh0 + h2

0)z0 − 2Hh0(H + h0)) z0ρ1

(H − z0)2(h0 − z)2
− ρ(z0) ,

∂f2

∂ρ1

=
(H + h0 − z0)z

2
0

(H − z0)(z0 − h0)
,

∂f3

∂z0

= z0 (ρ(z0)− ρ1) ,

∂f3

∂ρ1

=
1

2

(
H2 − z2

0

)
,

∂f4

∂z0

=
(2z3

0 − 4(H + h0)z
2
0 + 2(H2 + 4Hh0 + h2

0)z0 − 3Hh0(H + h0)) z
2
0ρ1

2(H − z0)2(h0 − z)2
− z0ρ(z0) ,

∂f4

∂ρ1

=
(H + h0 − z0)z

3
0

2(H − z0)(z0 − h0)
,

where we have used

∂r

∂z0

= ρ(z0) ,
∂W

∂z0

= z0ρ(z0) .

In order to solve the system (3.16) we first solve the two corresponding root finding

problems in ρ1 for the entire range z0 ∈ (0 , H). Usually, we obtain several branches for
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both from which we select the ones that intersect - say ρ
(1)
1 (z0) and ρ

(2)
1 (z0). We define

(3.17) F3(z0) = ρ
(1)
1 (z0)− ρ(2)

1 (z0) .

The roots of the above equation determine the critical points of the the residual, from

which we will select the global minima.

3.3. Limits of validity

The strategy outlined above can be expected to suffer from several limitations, which

can be expected to become more prominent as the extra degrees of freedom of the con-

tinuously stratified fluids with respect to two-layer approximations become dynamically

accessible. We focus next on some of these limitations and on diagnostics to quantify

them.

3.3.1. Density stratification and resulting two layer approximations. In the

present section, we explore the performance and the limits of validity of the matching

strategies introduced above.

We use as benchmark for validation the antisymmetric density stratification

(3.18) ρ(z) = ρmin +
ρmax − ρmin

2

(
1 + tanh

[
ln 9

d
(zp − z)

])
,

where ρmin, ρmax are the densities below and above the pycnocline (unless the py-

cnocline is close to the upper or lower vertical boundaries), zp is the location of the

inflection point (the center) of the density stratification, whereas d is the thickness

of the pycnocline defined as usual (the distance between the vertical locations in the
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Figure 3.2. Density stratifications analyzed in the current section, cor-
responding to the general stratification (3.18), for the position of the in-
flection point zp at (a) 62 cm, (b) 47 cm, (c) 32 cm and (d) 17 cm and for
the widths of the pycnocline of 2 cm , 4 cm , 8 cm and 16 cm respectively.

density stratification corresponding to ρmin + 0.1∆ρ and ρmax + 0.9∆ρ respectively).

Note that ρ(zp) = ρmed ≡ 1/2(ρmin + ρmax). We fix the densities ρmin = 0.999 g/cm3,

ρmax = 1.022 g/cm3 and the total height of the fluid column H = 77 cm. This choice

of physical parameters is motivated by the experiments in Grue et al. [19], to which we

are going to refer extensively in Chapter 4. In the present study, we aim at monitoring

the effectiveness of the matching strategy for various relative thicknesses of the interme-

diate layer, with respect to the widths of the two layers situated above and below the

pycnocline. Thus, we study the two parameter family of the density profiles (3.18) in

the parameters d , zp. We consider four widths of the pycnocline: 2 cm , 4 cm , 8 cm and

16 cm and four positions of the center of the pycnocline: 62 cm , 47 cm , 32 cm and 17 cm

- see Figure 3.2 for the corresponding density profiles.

By matching either the masses in each layer or the potential energies in each layer,

the corresponding nonlinear equation for the height of the bottom layer z0 has two real
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Figure 3.3. Functions F1(z0), F2(z0) and F3(z0) corresponding to the
three matching conditions (3.13), (3.14) and (3.17) (matched mass in each
layer, matched potential energy in each layer, least square for mass and
potential energy in each layer, respectively), for the density stratifications
from Figure 3.2. The width of the pycnocline d varies between 2 cm and
16 cm whereas the inflection point of the continuos density stratification
is located at (a)-(c) zp = 62 cm, (d)-(f) zp = 47 cm, (g)-(i) zp = 32 cm and
(j)-(l) zp = 17 cm.

solutions (besides z0 = H for the matched masses strategy, and z0 = 0 , H for matched

potential energies). We select the root closest to the inflection point of the density
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Figure 3.4. Roots of the equations F1(z0) = 0 (blue), F2(z0) = 0 (green),
F3(z0) = 0 (red) as functions of the width of the pycnocline d, for the
density stratifications from Figure 3.2, with the inflection point of the
density stratification located at (a) zp = 62 cm, (b) zp = 47 cm, (c)
zp = 32 cm and (d) zp = 17 cm.

profile zp (which will translate in a better prediction for the speed of the conjugate

states, described in the following section). Note also that for zp = 17 cm the matching

modality corresponding to matched potential energy in each layer does not admit real

solutions – see Figure 3.3(k).

By using the third matching strategy we obtain three roots (see Figure 3.3). The

second root corresponds to a saddle point, and only the first and the third correspond

to points of local minimum of the residual S (3.15). In this instance, we select the

root corresponding to the global minimum which for the stratifications analyzed in this
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section corresponds to the root closest to the position of the inflection point of the density

stratification zp.

In Figure 3.4 we depict the roots as functions of the width of the pycnocline for the

four values of the inflection point of the density stratification.

3.3.2. Conjugate states. As already referenced in Chapter 2, Euler equations in two

layer systems admit front solutions (internal bore solutions), which represent an upper

bound for the amplitude of internal solitary waves. As solitary waves approach this

limit, they become very long and flat. The uniform flow at the peak of such flat waves

is said to be conjugate to the upstream flow. In fact, this upper bound together with

the speed of propagation are predicted exactly by the strongly nonlinear model proposed

by Miyata [40], Choi & Camassa [7]. (We have reported these formulas in Chapter 2,

relations (2.77) and (2.76).) Conjugate flows exist for any combination of densities ratios

ρr = ρ1/ρ2 of the two layers and depth ratios hr = h1/h2 , except when the depth ratio

becomes critical hc =
√
ρr.

On the other hand, to our knowledge, there is no analogous analytical prediction on

the existence of internal bore solutions in the case of continuously stratified flows. In

fact, there are density stratifications that do not seem to support conjugate flows, as

investigated by a series of numerical investigations (Lamb & Wan [31], Kubota [30]).

Lamb & Wan [31] have derived a numerical method for determining conjugate flows

for arbitrary stratifications. By imposing conservation of mass, horizontal momentum

and energy, they reduce the Euler equations to a nonlinear boundary value problem for

for the isopycnal displacement η(z), with the speed of propagation as the eigenvalue.

Furthermore, they have extensively analyzed the density stratification (3.18), and show

96



that it admits conjugate flow solutions except for a critical depth ratio zc, in perfect

analogy with two-layer systems.

In light of the above-mentioned facts, the conjugate states concept becomes a key

feature of our investigation. We conjecture that a continuous density stratification that

does not admit conjugate states cannot be approximated reasonably by a two-layer sys-

tem, since finite-amplitude effects such as narrowing of solitary wave solutions in such

stratifications for increasing amplitude are not correctly captured by the two layer sys-

tem. Conversely, for a continuous stratification that admits conjugate states, the speed

and amplitude of the bore solutions become relevant matching criteria.

We point out that the eigenvalue problem for determining the conjugate states can be

solved numerically via a standard shooting method, with relatively small computational

cost. Following the strategy outlined in Lamb & Wan [31], we compute the conjugate

flows in continuous stratification (3.18) for the parameters zp and d specified in the

previous sub-section, and compare against the two-layer predictions with the parameters

ρ1 , ρ2 and z0 chosen via the three proposed matching strategies. Figure 3.5 illustrates the

front speed dependence on the width of the pycnocline. We remark that better agreement

is achieved in general by employing the third strategy (least square fit for masses and

potential energy in each layer), except in the case (c) zp = 32 cm. This particular depth

is close to the critical depth of the continuous stratification, depth that does not support

a conjugate state. One can estimate the critical depth by interpolating the maximum

displacement of the conjugate states for various positions of the center of the pycnocline

zp, and subsequently determine the depth for which the maximum displacement is zero.
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For our stratification, the critical depth ranges between 38.714 cm for the pycnocline

thickness d = 2 cm and 38.645 cm for d = 16 cm.
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Figure 3.5. Black - speed corresponding to the conjugate state for strat-
ifications from Figure 3.2 (with the inflection point of the density strati-
fication located at (a) zp = 62 cm, (b) zp = 47 cm, (c) zp = 32 cm and
(d) zp = 17 cm, respectively ) as a function of the width of the pycnocline
d; blue - the two layer predictions with matched masses; green - matched
potential energies; red - least square fit for the masses and potential energy.

 

z0 zp

η 2 layer

ηmed

Figure 3.6. Schematics of the displacement of the average density isoline
ηmed and displacement of the interface of the two layer model η2 layer. z0

is the undisturbed position of the interface of the two layer system, zp is
the position of the pycnocline center, afferent to the continuous stratifica-
tion.
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Figure 3.7. Black - maximum displacement of the average density iso-
line corresponding to the conjugate state for stratifications from Fig-
ure 3.2 (with the inflection point of the density stratification located at
(a) zp = 62 cm, (b) zp = 47 cm, (c) zp = 32 cm and (d) zp = 17 cm, re-
spectively) as function of the width of the pycnocline d; black dot-dashed
- regular two-layer model; red - maximum displacement for the interface
corresponding to the conjugate state of the optimal two layer system. The
dashed black curve represents the maximum displacement of the density
isolines ρ(x, z) = ρ(z0) of the conjugate states in the continuos stratifi-
cations, with ρ(z) being the background stratification and z0 being the
interface position for the optimal two layer system.

In Figure 3.7 we compare the vertical displacement of the average density isoline

to the displacement of the interface predicted by the two layer model (see Figure 3.6

for a simple schematics). We also display for comparison the vertical displacement of

the density isolines for the continuous stratification corresponding to ρ(x, z) = ρ(z0).

Notice that the displacement of these isolines is close to the displacement corresponding

to the average density profile, for the entire range of pycnocline widths. Based on this

observation, we can construct an estimate of the average density isoline position for the

continuous stratification by simply translating the interface predicted by the two-layer

model z = ζ(x, t) in the vertical direction with zp − z0.
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3.3.3. Dispersion. We conclude the section by assessing how accurately the optimal

two-layer system that we have constructed captures the propagation of waves of infini-

tesimal amplitude and finite wave number.

In Figures 3.8-3.11 we compare the dispersion relation for the continuous density

stratification c = c(k) (L = 2π/k period, c phase speed) (which can be easily be com-

puted by solving the Sturm-Liouville problem (3.1) with zero boundary conditions, via

a standard shooting method) against the dispersion relation for the two-layer systems,

given by

(3.19) c = k

√
g(ρ2 − ρ1)

ρ1 coth(h1k) + ρ2 coth(h2k)
,

see Lamb [33]. Note that for periods comparable to the total height of the fluid H,

(a) (b)

(c) (d)

L (cm) L (cm)

c
(c

m
/s

)
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m
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Figure 3.8. Dispersion relation for infinitesimal waves (L, period as a
function of c, speed). Black - continuous stratification, black dashed -
regular two layer, red - optimal two layer approximation. The width of the
pycnocline d is (a) 2 cm, (b) 4 cm, (c) 8 cm and (d) 16 cm, whereas the
inflection point of the density stratification located at zp = 62 cm.
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Figure 3.9. Same as Figure 3.8, with the inflection point of the density
stratification located at zp = 47 cm.

(a) (b)

(c) (d)

L (cm) L (cm)

c
(c

m
/s

)
c

(c
m

/s
)

Figure 3.10. Same as Figure 3.8, with the inflection point of the density
stratification located at zp = 32 cm.

the optimal two-layer model fails to accurately capture the dispersion in the continuous

stratification, this effect being enhanced by increasing the pycnocline width d. However,

its prediction is always superior to the prediction of the regular two-layer model. We
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Figure 3.11. Same as Figure 3.8, with the inflection point of the density
stratification located at zp = 17 cm.

also point out that the agreement is excellent for L/H > 1, hence these strategies can

be used in conjunction with asymptotic models for long wave motion, such as Choi &

Camassa [7].

3.4. Validation

We test the performance of the optimal two-layer approximation described in the

previous section in the case of solitary wave solutions. We will compare fundamental

properties of the waves (wave speed, shape, kinetic and potential energy) in continuous

stratification (as solutions as full Euler system, using a variant of the algorithm con-

structed by Turkington et al. [51], as described in Appendix C) versus properties of the

waves in a two layer system (for which asymptotic solutions, in closed form are available

Choi & Camassa [7]).

We consider the density stratifications in Figure 3.2(a) (the center of the pycnocline

located at zp = 62 cm and widths of the pycnocline ranging between 2 cm and 16 cm).
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In Figures 3.12-3.15 we show the amplitude, kinetic energy and potential energy as

functions of the speed of the solitary wave solutions in continuous stratification versus

the two-layer approximations. The regular two-layer model over-predicts the speed of

propagation of the solutions in continuous stratification, even for narrow pycnoclines,

as evidenced in Figure 3.12(a). Note the excellent agreement of the integral properties

(kinetic and potential energy) as predicted by the optimal two-layer model with the

properties of the solutions in continuous stratification. An accurate estimate of the

potential energy is particularly useful in the context of determining specific solitary wave

solutions (e.g. waves of prescribed speed and amplitude) using the algorithm proposed

by Turkington et al. [51], since the potential energy is an input of the corresponding

iterative scheme.

By comparing the wave shapes of the solitary wave solutions against waves of same

amplitude obtained with the two-layer approximations, we observe that the optimal

two-layer approximation does not outperform the regular two-layer model, except in the

large amplitude regime – see Figures 3.17(I.a-III.a), 3.19(I.a-III.a), 3.21(I.a-III.a) and

3.23(I.a).

However, when matching for speed, we notice a much better performance of the

optimized two layer model. Finally, all solitary wave solutions in continuous stratification

exhibit the behavior referenced in §3.3.2: flattening for increasing amplitude – see Figures

3.16, 3.18, 3.20 and 3.22. In particular for d = 16 cm we have computed a solitary wave

solution close to the maximal amplitude which is bigger than the maximal amplitude

predicted by the optimized two layer model – see Figure 3.15(a). In this instance, we
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Figure 3.12. Properties of solitary wave solutions for the density strati-
fication (3.18) with H = 77 cm, the inflection point located at zp = 62 cm
and the thickness of the pycnocline d = 2 cm. (a) Speed versus the max-
imum displacement of the average density isoline. (b) Potential energy
versus speed. (c) Kinetic energy versus speed. Circles - Euler solutions in
continuous stratification, black dashed - regular two layer, red - equivalent
two layer least square for masses and potential energy in each layer. ρmed
is the average density for the continuous stratification.

cannot compare wave shapes for matched amplitude; nonetheless, the integral properties

of the waves are still well captured by the optimized two-layer model.
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Figure 3.13. Same as Figure 3.12, for the thickness of the pycnocline d = 4 cm.
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Figure 3.14. Same as Figure 3.12, for the thickness of the pycnocline d = 8 cm.
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Figure 3.15. Same as Figure 3.12, for the thickness of the pycnocline d = 16 cm.
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Figure 3.16. Density field for solitary wave solutions corresponding to
the points marked in Figure 3.12(a) (d = 2 cm).
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Figure 3.17. Comparison between the wave profiles of solitary wave so-
lutions in continuous stratification (corresponding to the points marked in
Figure 3.12(a)) and the two-layer approximations. Left - matched ampli-
tude; right - matched speed. Black - Euler solutions, black dashed - regular
two layer, red - equivalent two layer least square for masses and potential
energy in each layer.
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Figure 3.18. Density field for solitary wave solutions corresponding to
the points marked in Figure 3.13(a) (d = 4 cm).
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Figure 3.19. Comparison between the wave profiles of solitary wave so-
lutions in continuous stratification (corresponding to the points marked
in Figure 3.13(a)) and the two-layer approximations. Left - matched am-
plitude; right - matched speed. Black - Euler solutions, black dashed -
regular two layer, red - equivalent two layer least square fit for masses and
potential energy in each layer.
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Figure 3.20. Density field for solitary wave solutions corresponding to
the points marked in Figure 3.14(a) (d = 8 cm).
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Figure 3.21. Comparison between the wave profiles of solitary wave so-
lutions in continuous stratification (corresponding to the points marked in
Figure 3.14(a)) and the two-layer approximations. Left - matched ampli-
tude; right - matched speed. Black - Euler solutions, black dashed - regular
two layer, red - equivalent two layer least square for masses and potential
energy in each layer.

109



Figure 3.22. Density field for solitary wave solutions corresponding to
the points in Figure 3.15(a)(d = 16 cm).
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Figure 3.23. Comparison between the wave profiles of solitary wave so-
lutions in continuous stratification (corresponding to the points marked in
Figure 3.15) and the two-layer approximations. Left - matched amplitude;
right - matched speed. Black - Euler solutions, black dashed - regular
two layer, red - equivalent two layer least square for masses and potential
energy in each layer.
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3.5. Reconstruction of the velocity field from the two-layer approximation

In the current section, we estimate the velocity field induced by long wave motion in

continuously stratified fluid, based on the two-layer approximation we have discussed in

the previous section. As seen in above, when optimally selecting for the parameters of the

two-layer system, we obtain good estimates for the isopycnal displacement corresponding

to the average density and for the speed of propagation. Local velocities can be estimated

using the strongly nonlinear model (relationships of O(ε4) for long waves in a two layer

system provided by Camassa et al. [8], where ε = H/L is the long wave parameter with H

a typical vertical scale and L a typical horizontal scale). However, when the thickness of

the pycnocline is large, these estimates under-predict the fluid-velocity, since they cannot

capture the structure of the shear in the pycnocline region (the velocity predicted by the

two layer theory exhibits a jump across the interface). In the following, we include the

 

ζ(x)
α(x)

ρ(z)
η1(x)

η2(x)

h2

h1
x

z

Figure 3.24. Schematics of the three-layer system with main notations definitions.

effect of the finite pycnocline by assuming linear density stratification and shear in the

pycnocline region and imposing volume conservation; we reconstruct the velocity field

from the isopycnal displacement and the speed of propagation predicted by the two layer

model. We restrict our attention on the case of waves of permanent form, propagating
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with constant speed c. Nonetheless, this analysis is easily extendable to time dependent

wave evolution.

Let ζ(x, t) denote the displacement of the average density isoline, as predicted by the

two layer model – see Figure 3.24 for a simple schematics. For a stationary wave moving

from left to right with constant speed c, we make the change of variable

X = x− ct ,

and consider

ζ(x, t) ≡ ζ(X) , u(x, t) ≡ u(X) , w(x, t) ≡ w(X) ,

where u ,w are the horizontal and vertical fluid velocities. We place the coordinate

system at the level of the pycnocline center of the background stratification ρ(z), which

implies

ρ(0) = ρmed = (ρmin + ρmax)/2 .

We approximate the background density profile in the intermediate layer by using a

linear stratification that passes through the center of the pycnocline and has the same

slope as the continuous stratification in the quiescent state. The corresponding thickness

is thus given by

2α̃ =
ρmin − ρmax

2ρ′(0)
.

Let α(X) denote half the thickness of the pycnocline at location X. We allow the

pycnocline thickness to vary in the horizontal direction, however we assume that the

variation is slow and also that the thickness is smaller than any of the outer layers

widths. We thus assume α = α(εX) and α/H = δ � 1.
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Then, the density field is

ρ(X, z) =



ρmin − ρmax
2α(X)

z +
ρmin + ρmax

2
if z ∈ [ζ(X)− α(X) , ζ(X) + α(X)] ,

ρmin if z ∈ [ζ(X) + α(X), h1] ,

ρmax if z ∈ [−h2, ζ(X)− α(X)] .

We denote by

(3.20) η1(X) = h1 − ζ(X)− α(X) , η2(X) = h2 + ζ(X)− α(X) ,

the widths of the two layers of constant densities.

We approximate the horizontal velocity with a linear profile in the pycnocline region

z ∈ [ζ(X)− α(X) , ζ(X) + α(X)] ,

(3.21) upyc(X, z) =
u1(α(X))− u2(−α(X))

2α(X)
z +

u1(α(X)) + u2(−α(X))

2
,

where we have imposed continuity of the horizontal velocity at the two interfaces. In the

constant density layers, assuming irrotationality, we can connect the local velocities to

the layer-averaged velocities

uk(X) =

∫
[ηk]

uk(X, z)dz k = 1, 2 ,

by using the asymptotic relation derived in Camassa et al. [8].

Thus, we have accumulated three unknown functions dependent on X, that would

completely specify the density and local-velocity fields: the thickness of the pycnocline

α and the two layer-averaged velocities in the outer layers u1 and u2. We can relate the
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layer-averaged velocities to the thickness α by imposing volume conservation in the outer

layers

(3.22) (uk − c)ηk = −c(hk − α̃) , k = 1, 2 ,

which implies

(3.23) uk = c

(
1− hk − α̃

ηk

)
, k = 1, 2 .

Then, imposing continuity of the horizontal velocity at the two interfaces, we can express

the velocity in the pycnocline region as a function of the thickness of the pycnocline

only. Finally, imposing conservation of volume for the intermediate layer, we obtain

an equation involving only the thickness of the pycnocline α(X). In the following, we

deduce the above equation, as an algebraic equation in α(X), by taking advantage of the

scaling α/H ≡ δ � 1. We introduce the scaled independent variables

X∗ =
X

L
, z∗ =

z

H
, t∗ = t

U0

L
,

and the scaled dependent variables

u∗i =
ui
U0

, ρ∗i =
ρi
ρmed

, δα∗ =
α

H
,

where U0 ≡
√
gH.

The horizontal velocities in the constant density layers are

(3.24) u∗1(X
∗, z∗) = u∗1(X

∗) + ε2
(
η∗1(X∗)2

6
− (h∗1 − z∗)2

2

)
∂2
X∗u∗1(X

∗) +O(ε4) ,
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if z∗ ∈ [ζ∗ + δα∗, h∗1] , and

(3.25) u∗2(X
∗, z∗) = u∗2(X

∗) + ε2
(
η∗2(X∗)2

6
− (h∗2 + z∗)2

2

)
∂2
X∗u∗2(X

∗) +O(ε4) ,

if z∗ ∈ [−h∗2 , ζ∗ − δα∗] , respectively. Using relation (3.23), the second derivative of the

mean-layer velocities uk can be expressed as

(3.26)

∂2
X∗u∗k = c∗

[
(h∗k − δα̃∗)η∗k ′′

η∗k
2 − 2(h∗k − δα̃∗)η∗k ′2

η∗k
3

]
= c∗

[
(−1)k

h∗kζ
∗′′

η∗k
2 −

2h∗kζ
∗′2

η∗k
3

]
+O(δ) ,

recalling relation (3.20) that defines the outer layer widths.

By replacing (3.26) in (3.24)-(3.25) and discarding terms of order O(δε2), we thus

obtain the following asymptotic relation for the horizontal shear in the layers of constant

densities, rewritten in dimensional form,

(3.27) uk(X, z) = c

[
1− hk − α̃

ηk
+

(
η2
k

6
− (hk + (−1)kz)2

2

)(
(−1)khkζ

′′

η2
k

− 2hkζ
′2

η3
k

)]
,

which has an algebraic dependence on the thickness of the pycnocline α. Substituting

the velocities at the two interfaces

(3.28) uk|ηk
= c

[
1− hk − α̃

ηk
+ hk

(
(−1)kζ ′′

3
− 2ζ ′2

ηk

)]
, k = 1, 2 ,

in the formula for the inner layer velocity (3.21) yields a relation between the shear in the

pycnocline region that depends algebraically on the unknown width α. Finally, imposing
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volume conservation in the inner layer

∫ α(X)

−α(X)

(upyc(X, z)− c)dz = −2cα̃ ,

we obtain an algebraic, cubic, equation for α(X), which can be solved for any fixed X

location

(3.29) α

[
h1 − α̃
η1

− h1

(
ζ ′′

3
+

2ζ ′2

3η1

)
+
h2 − α̃
η2

+ h2

(
ζ ′′

3
− 2ζ ′2

3η2

)]
= 2α̃ .

In Figure 3.25 we present shear and density profiles for conjugate states for the strat-

ification (3.18) (with zp = 62 cm and pycnocline widths ranging from d = 4 cm to

d = 10 cm) constructed using the strategy described above. Note that when including

the effect of finite pycnocline, the agreement for the velocity between the smooth strat-

ification case and its linear approximation degrades with increasing effective thickness

of the pycnocline more visibly for the top layer (albeit while maintaining a superior

agreement with respect to the strictly two-layer prediction throughout). Nonetheless,

the maximum slope of the shear in the pycnocline region is very well captured.

Finally, in Figure 3.26 we present the shear profiles for an internal solitary wave

solution in continuous stratification at three horizontal locations along the wave profile,

compared against the two-layer predictions.
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Figure 3.25. Density and horizontal shear for conjugate states in a strat-
ification (3.18) with total depth of the fluid layer H = 77 cm, center
of the pycnocline located at zp = 62 cm, densities in the outer layers

ρmin = 0.999 g/cm2 , ρmax = 1.022 g/cm2 and thickness of the pycno-
cline (defined, as usual, as the distance between the vertical locations in
the density stratification corresponding to ρmin + 0.1∆ρ and ρmax + 0.9∆ρ
respectively) of 4 , 6 , 8 and 10 cm. Black - Euler solution in continuous
stratification, dashed - prediction of the strongly nonlinear model for op-
timized choice of parameters, red - predictions of the optimized two layer
model with correction that includes the presence of the finite width pycn-
ocline.
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Figure 3.26. Black - horizontal shear for a solitary wave solution in a
stratification (3.18) (with total depth of the fluid layer H = 77 cm, center
of the pycnocline located at zp = 62 cm, densities in the outer layers ρmin =

0.999 g/cm2 , ρmax = 1.022 g/cm2 and thickness of the pycnocline of 8 cm)
at (a) maximum displacement of the pycnocline, (b) at a distance X =
44 cm from the maximum displacement and (c) X = 79 cm respectively.
Black - Euler solution in continuous stratification, dashed - prediction of
the strongly nonlinear model for optimized choice of parameters, red -
predictions of the optimized two layer model with correction that includes
the presence of the finite width pycnocline.
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3.6. Discussion

We have constructed an optimal two-layer approximation for continuous stratification

with one pycnocline that accurately captures the speed of propagation of both disper-

sive waves and nonlinear solitary wave solutions (including internal bores). We use the

conjugate state concept to select the optimal two-layer configuration, among other pos-

sible choice for parameters. When choosing the optimal equivalent two-layer system, the

isopycnal displacement of the center of the pycnocline is very well approximated up to

thicknesses comparable to the widths of the two layers. Integral properties of the motion,

such as kinetic and potential energy are also very well predicted.

Local properties of the waves such as eulerian velocity are also of practical interest.

We note that the two-layer model provides a good estimate of layer averaged velocities,

but fails to describe the structure of the velocity field in the pycnocline region. In §3.5 we

construct the velocity field based on the long wave assumption, by taking into account

the effect of the finite pycnocline.

This study would be made more complete by assessing the influence of an asymmetry

of the density stratification. Moreover, a more accurate testing for the robustness of

the proposed model would be provided by the study of time evolution – which will be

investigated in future work.

The current investigation could be easily adapted to configurations with multiple

pycnoclines as well as to the case of a free (as opposed to rigid lid) upper surface.
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CHAPTER 4

Propagation of large amplitude internal waves and their

instabilities

4.1. Introduction

Recent progress in field measurements (Moum et al. [42]) as well as experiments

(Grue et al. [19], Fructus et al. [13]) have confirmed that in large amplitude regimes one

of the most common mechanisms of internal wave breaking is shear-instability. In this

work, we focus on the experiments of Grue et al. [19], which provided early evidence of

large-amplitude wave instabilities, identified by the authors to be of Kelvin-Helmholtz

type. For this set of experiments, the instabilities are only observed for near maximal

amplitude waves, despite the fact that a (parallel) shear stability theory would predict

that Kelvin-Helmholtz instability should be observable at wave amplitudes smaller than

those reported. However, for experiments, and to an even greater extent for their field

counterparts, an unambiguous determination of the onset of instability may be affected

by several unrelated causes, which motivates our effort to study numerically, and to

interpret analytically, the instabilities of large amplitude internal waves.

The study of Kelvin-Helmholtz instability onset and its ensuing evolution can be

pursued in the framework of the Euler equations for incompressible inviscid and stratified

fluid. This is because typical Reynolds numbers, from both the experimental and field



observation set-ups, are very large, and diffusion of stratifying agents such as salt and

heat is expected to take place on time scales much larger than those of the dynamics

of both the internal waves and their instabilities. Moreover, the spatial (vertical) scales

of free-surface internal-wave-induced motion is small in comparison to the internal wave

scales, which allows us to constrain the free surface by a rigid lid. Of course, the full

set of stratified Euler equations are not easily amenable to analytical investigations.

However, we can get fundamental help from the far simpler physical situation capable

of supporting internal wave motion – that of a two-layer fluid under gravity – which

we have studied in the previous chapters. In particular, for large amplitude waves, the

strongly nonlinear asymptotic model developed in Miyata [39, 40], Choi & Camassa

[6, 7] is in overall good agreement with the full Euler equations as well as experimental

data, and this can be used as a predictive tool for the onset of instabilities whenever

the underlying stratification is approximates that of a two layers. The purpose of this

investigation is thus to study numerically the instabilities of large amplitude internal

waves in stratification with narrow pycnoclines.

The chapter is organized as follows: in §4.2, we replicate numerically the experi-

ment in Grue et al. [19], by using an incompressible Euler (and Navier-Stokes) variable

density solver based on a conservative projection method for the time-dependent flows

in two-dimensions (VARDEN), described in detail in Almgren et al. [1]. We validate

the numerical scheme by comparison against the strongly nonlinear model and monitor

the correlation between the shear instability and amplitude regimes. We complement

this study, in §4.3, by initializing the evolution code with solitary wave solutions of Eu-

ler equations (found through a variant of the iterative scheme developed in Turkington
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et al. [51], which we present in Appendix C). By determining true travelling wave so-

lution for the continuously stratified Euler system, we can discern between instabilities

that are an intrinsic property of travelling wave dynamics and those that are induced by

the experimental generation technique in the course of evolution towards a true travelling

wave of a given amplitude.

4.2. Simulated wave tank

4.2.1. Experiments for generation and propagation of internal waves of large

amplitude Grue et al. [19]. The propagation and breaking of solitary waves in a near

two-layer stratification with narrow pycnocline were investigated experimentally in Grue

et al. [19]. The velocity field associated with the waves, the phase speed and the wave

profiles were measured using particle tracking velocimetry (PTV) and image analysis.

The experiments were performed in a stratification consisting of a layer of fresh water of

density ρ1 = 0.999 g/cm3 over a layer of brine of density ρ2 = 1.022 g/cm3. With respect

to the quiescent initial state and the pycnocline location, the depth of the (bottom) layer

of brine and that of (top) layer of fresh water were 62 cm and 15 cm, respectively. Salt

diffusivity and pouring techniques naturally generated a stratified interfacial region in

which the density varied smoothly between the two layers. The undisturbed interfacial

thickness of about 2 cm was used for most of the experimental runs; we use this thickness

for the majority of our numerical simulations as well. We assume that the thickness of

the pycnocline referred in Grue et al. [19] is defined, as usual, as the distance between

the two constant density profiles with densities given by ρ1 + 0.1∆ρ and ρ1 + 0.9∆ρ.

In all experiments, the waves were generated by releasing a volume of fresh water

trapped behind a gate. This volume was varied to obtain a single internal wave of desired
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amplitude. At the other end of the tank the waves were reflected by a vertical wall. The

measurements allowed the evaluation of the local Richardson number due to the wave

induced shear flow in the pycnocline region. Kelvin-Helmholtz instability was observed

only for the largest amplitude waves near the theoretical maximal amplitude set by the

initial equilibrium configuration.

4.2.2. Set-up for numerical experiments. We replicate numerically the experiments

mentioned above by using the same technique of Grue et al. [19] for initialization. More-

over, we mimic as closely as possible the measuring procedure of wave parameters they

reported in their paper. As argued before, we neglect diffusivity and viscosity as matter

of scales, and restrict the upper surface by a rigid lid. The computational domain is thus

a rectangular box (with length of the tank L = 1232 cm and height H = 77 cm, similar

to Grue et al. [19]), with slip boundary conditions for all four rigid walls. Of course, the

geometry of a real tank would have a third (width) dimension. Grue et al. [19] chose the

width (L = 50 cm) to minimize three dimensional effects from lateral boundary layers.

The skewed width/length aspect ratio then produced essentially two-dimensional (width-

independent) dynamics in all their lab experiments sufficiently far from the generation

region. In the numerical experiments, we simulate the gate by a step function in density

(see Figure 4.1). The fluid is initially at rest, and the smooth pycnocline is approximated

by a hyperbolic tangent function. Thus, initially, the center of the pycnocline is located

at

ζ(x, t = 0) =


H − h1 − hgate if x < Lgate

h2 if x > Lgate

,
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Figure 4.1. Numerical gate in the form of a step function.

where h2 = 62 cm, h1 = H − h2 = 15 cm and the density field is given by

ρ(x, z, t = 0) = ρ1 + 1/2(ρ2 − ρ1) (1 + tanh [ln(9)/d(ζ(x, t = 0)− z)]) .

where d = 2.1 cm is the thickness of the pycnocline. The step function eventually evolves

into a rightward-propagating depression wave. Its amplitude and speed of propagation

depends on the height hgate and the length Lgate of the gate. Following Grue et al. [19]’s

experimental techniques, we mimic their reconstruction of spatial wave profiles from two

time-series of the vertical position of the pycnocline, recorded at two fixed locations along

the tank, at half length x = 450 cm and at the end of the tank, x = 1050 cm, respectively.

The initial gate parameters for each wave realization were not reported in [19]. The

data in this reference focus on the resulting traveling waves for five typical relative

amplitudes (as measured at the x = 1050 cm recording location) a/h1 of 0.22, 0.36,

0.91, 1.23 and 1.51 respectively. Gate parameters assuring repeatability of realization

for these wave amplitudes were achieved by a trial-and-error procedure (Sveen, private

communication). Once again, we mimic this to obtain waves of comparable amplitudes.
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Figure 4.2. (a) Dependence of the amplitude of the wave at x = 1050 cm
on the height of added volume of fresh water hgate. (b) Dependence of the
amplitude of the wave on the volume of added volume of fresh water. ©
Lgate = 100 cm, • Lgate = 50 cm .

By fixing the length of the gate to Lgate = 100 cm and realizing a series of experiments for

hgate ranging from 5 cm to 55 cm, we determine numerically the dependence a|1050cm =

f (hgate). We can then determine, via interpolation, the heights of the gate that would

render the targeted amplitudes. While this procedure is effective, we see evidence of a

trailing nonlinear wave train close to the emanating traveling wave in some cases, also

noticeable in some of the laboratory data. To investigate the influence of the initialization

parameters, we perform a series of numerical experiments for the length of the gate

Lgate = 50 cm. In Figure 4.2 we show the dependence of amplitude (as measured at

X = 1050 cm) on the height of the gate (a) and on the added volume of fresh water (b).

Note that the wave amplitude depends on both parameters of the gate, rather than on

just the added volume. The sensitivity of the amplitude and separation for trailing waves

on gate parameters is tested by generating two waves of relative amplitude a/h1 = 0.91

and a/h1 = 1.23 respectively, for a gate length Lgate = 50 cm and of the gate heights
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Figure 4.3. (a) Two wave profiles of same amplitude (as recorded at x =
1050 cm) a/h1 = 0.91 are shown for two numerical experiments with initial
conditions Lgate = 100 cm, hgate = 23.39 cm (dashed) and Lgate = 50 cm,
hgate = 32.37 cm (continuous). (b) Same as (a), for relative amplitude
a/h1 = 1.23, the height of the gate being in each case hgate = 33.3 cm and
hgate = 50.7 cm, respectively.

hgate = 32.37 cm and 50.767 cm respectively. As shown in Figure 4.3, the wave shape is

overall maintained except for slightly different height recovery a the trailing end.

4.2.3. Validation of the experiment. We present numerical results for the three

main types of results presented in Grue et al. [19]: wave profiles, horizontal velocity

profiles, and wave speeds. We have performed the majority of the numerical experiments

using a resolution of 128 points in the vertical direction. We have also performed runs at

resolutions of 256 and 512 for a large amplitude wave, in order to assess the convergence

of the numerical scheme. More detailed analysis of the resolution study are given in

§4.2.6.

In Grue et al. [19], the wave profile is reconstructed by multiplying the time series

measured at the location x = 1050 cm with the phase speed. We thus need an estimate

for the phase speed of the wave, which can be constructed using the other time series,
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measured at location 450 cm. In the following, we describe the strategy for obtaining

such an estimate.

The wave profile corresponds to a surface in the space (x, z, t), defined by ρ(x, z, t) =

ρmed. On such a surface we have

dρ

dt
=
∂ρ

∂x

dx

dt
+
∂ρ

∂z

dz

dt
+
∂ρ

∂t
= 0 .

For a curve z = constant, we obtain

∂ρ

∂x

dx

dt
+
∂ρ

∂t
= 0 .

Furthermore, the density field for an exact traveling wave satisfies ρ(x − ct, z, t) =

ρ(x, z, t), with c being the phase speed of the wave. Hence, the phase speed is

c = −∂ρ
∂t

/∂ρ
∂x

=
dx

dt
(z = constant , ρ = constant) .

Hence

c(t) =
dx

dt
(z = constant , ρ = constant) ,

represents the instantaneous speed of an isoline of density and thus it is an estimate

for the phase speed, its time variation quantifying the departure from the traveling wave

solution. We compute the speeds of points located on the wave profile, at multiple heights

between the maximum displacement and the wing of the wave, and take an average of

these values. We note that Grue et al. [19] have estimated the phase speed based on one

such vertical location, close to the inflection point of the wave profile.
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This phase speed estimate can be performed by using any constant density profiles

corresponding to densities in the range (ρ1, ρ2). In order to get a better estimate of

the phase speed, we extract isolines densities corresponding to the average ρmed and

to an additional density, ρopt = 1.0077 g/cm3. We note however that the wave is not

fully detached from the wake at the first wave recording position, 450 cm, and thus the

phase speed computed using the strategy outlined above does not completely capture

the dynamics of the wave. In order to obtain information on the wave evolution between

the two wave gate locations, and assess whether the wave detaches as a wave traveling

at constant speed, we extract wave profiles corresponding to the two densities mentioned

above for a series of time steps (tj). Hence, we can determine a more accurate measure

of the instantaneous phase speed of the wave, by taking a range of heights between the

maximum displacement and the front wing of the wave, computing speeds corresponding

to these heights (
(
xtj+1

− xtj
)
/(tj+1 − tj)), and taking the average across the range of

heights.

In Figure 4.4(a) we depict the instantaneous horizontal speed of points on the front of

the density isoline corresponding to ρmed. Note that the velocity profile flattens in time -

which is another indication that the wave is in the process of becoming a traveling wave,

but does not reach a purely traveling wave state before interacting with its reflection

from the tank’s end. We also show the phase speed estimate based on the two time

series. As expected, this estimate is not particularly accurate, since it represents a time

average of the wave speed between the two wave recording locations. In Figure 4.4(b) we

present the evolution in time of the instantaneous phase speed mentioned above, for the

two constant density profiles (corresponding to ρmed and ρopt, respectively). For a “pure”
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Figure 4.4. Phase speed evolution in time for a numerical experiment
with initial conditions hgate = 34.5 cm and Lgate = 100 cm. (a) Continuous
line - phase speed constructed from the two time series measured at 450 and
1050 cm, dashed lines - instantaneous speed for points on the front of the
constant density profile corresponding to ρmed at various time steps. (b)
Instantaneous wave speed evolution in time for the two constant density
profiles, corresponding to ρmed and ρopt. At time t = 47.1 s, the wave
interacts with the right vertical boundary, as evidenced in the insert, where
the isoline of density ρmed is depicted (continuous line).

traveling wave, these quantities should coincide and remain constant in time. Although

this is definitely the trend, their variation is still significant when the wave interacts with

the right boundary, as evidenced in the insert.

In an attempt to obtain traveling waves of permanent form, we carry out a series of

experiments with the same initial conditions in a tank of double length L = 2464 cm. We

look at yet another indicator of the wave tendency (or lack thereof) to become a traveling

wave – the evolution in time of its amplitude. As evidenced in Figure 4.5(a) (where we

present amplitude decay in time for the short tank experiments versus the double tank

experiments with the same initial conditions) the amplitude levels off in the tank of

double length, indicating that the solutions are much closer to being permanent-form

traveling waves.
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Figure 4.5. Reflection. (a) Amplitude decay in time for various initial
conditions in the tank of length L = 1232 cm versus L = 2464 cm. (b)
wave profiles at t1 = 50.6 s and t2 = 53.5 s for the largest amplitude wave.
(c) Time series at x = 1050 cm in the tank of length L = 1232 cm versus
L = 2464 cm, for the largest amplitude wave.

These experiments also allow us to determine the influence of wall reflection on the

time series measured at 1050 cm and also on the instantaneous wave profiles. Note the

time series profile is affected by reflection only in the trailing edge, as Figure 4.5(c) shows.

In Figure 4.5(b) two wave profiles corresponding to the average density are shown at the

times when reflection from the short tank end-wall begins to affect the front of the wave.

We can conclude the front of the wave shape reconstructed from the time series for the

experiments in the short tank is not affected by reflection, but at the same time the length

of the short tank is not sufficient for waves to completely evolve into permanent-form

traveling waves.
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Wave shapes comparison.

Given the agreement documented in [8] between the strongly nonlinear model [7] and the

experimental data of [19], we compare our results against the predictions of the strongly

nonlinear model. We remark that the strongly nonlinear model, for all solution computed

with the parameters of the experimental set-up, are practically indistinguishable from

two-layer numerical full Euler solutions.

In Figure 4.6, we show the wave profiles obtained from the numerical experiments

compared against on those predicted by the strongly nonlinear theory. When matching

for amplitude, we note a moderately good agreement on the leading edge of the waves, but

some evidence of trailing wave trains to the left, evidenced by the asymmetry in height

when comparing the left and right tails of the wave. This effect can be furthermore

enhanced by the reflection of the wave at the right boundary. We also note the clear

discrepancy in the largest amplitude wave, where the numerics were able to detect Kelvin-

Helmholtz instabilities in the form of roll-up to the left of the wave crest. We remark

that in the actual experiment of Grue et al. [19], instabilities have been observed in the

same amplitude regime. When matching for speed, we note the clear superiority of the

strongly nonlinear model with optimized choice of parameters. However, in the above

section we have concluded that the waves in the tank of length L = 1232 cm, for the entire

range of amplitudes explored, do not completely reach a permanent-form traveling wave

state. In Figure 4.7 we compare the waves generated from the same initial conditions,

but in the tank with double the length; the wave profiles are generated from time series

recorded at x = 2000 cm. Note that the trailing edge of the waves has recovered a height
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of the front edge (corresponding to that of the quiescent pycnocline), and the profiles

are closer to the prediction of the strongly nonlinear model.

- 20 - 10 0 10 20

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

0.00

- 20 - 10 0 10 20

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

0.00

- 20 - 10 0 10 20

- 0.4

- 0.3

- 0.2

- 0.1

0.0

- 20 - 10 0 10 20

- 0.4

- 0.3

- 0.2

- 0.1

0.0

- 20 - 10 0 10 20

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

- 20 - 10 0 10 20

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

- 20 - 10 0 10 20

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

- 20 - 10 0 10 20

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

- 20 - 10 0 10 20

- 1.5

- 1.0

- 0.5

0.0

- 20 - 10 0 10 20

- 1.5

- 1.0

- 0.5

0.0

x/h1 x/h1

z/
h

1
z/

h
1

z/
h

1
z/

h
1

z/
h

1

(I.a) (I.b)

(II.a) (II.b)

(III.a) (III.b)

(IV.a) (IV.b)

(V.a) (V.b)

Figure 4.6. Wave profiles corresponding to the average density isoline,
constructed from the time series at location x = 1050 cm, in the tank
of length 1232 cm, with phase speed computed based on time series at
x = 450 cm and x = 1050 cm. The amplitudes of the waves (a/h1) at
x = 1050 cm are (I) 0.22, (II) 0.36, (III) 0.91, (IV) 1.23 and (V) 1.51.
Continuous - experimental profile; Dashed - strongly nonlinear model, reg-
ular; Red - strongly nonlinear model, optimized. Left - the solutions of the
strongly nonlinear model for matched amplitude; right - matched phase
speed.
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Figure 4.7. Wave profiles corresponding to the average density isoline,
constructed from the time series at location x = 1050 cm, in the tank of
length 2464 cm, with phase speed computed based on time series at 450 cm
and 2000 cm. The initial conditions for (I)-(V) are the same as for the
waves in Figure 4.6. Continuous - experimental profile; dashed - regular
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Phase speed dependence on amplitude.
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Figure 4.8. Phase speed dependence on amplitude. Phase speed com-
puted from time series at locations 450 cm and 1050 cm for the short tank,
1050 cm and 2000 cm for the long tank. The amplitude corresponds to
the wave profile constructed from time series at location 1050 cm for the
short tank, 2000 cm for the long tank. © experiments in tank of length
1232 cm, simulation using 128 points in the vertical, � 256 and ∆ 512,
respectively; � experiments in tank of length 2464 cm using 128 points in
the vertical. Dashed - regular strongly nonlinear model; Red - optimal
strongly nonlinear model.

In Figure 4.8, we present the dependence of the phase speed on the amplitude, com-

pared against strongly nonlinear model predictions. As before, we notice the excellent

agreement with the optimal two layer model; furthermore, the double-tank data points

confirm that the wave, as recorded at x = 2000 cm, is closer to becoming a permanent-

form traveling wave. We also show numerical results for three resolutions of the evolution

code. We note that a resolution of 128 points in the vertical is sufficient for accurately

capturing the evolution of the wave front.
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Horizontal velocity profiles.
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Figure 4.9. Horizontal velocity profiles for a wave of intermediate ampli-
tude. (a) Horizontal velocity profile at maximum displacement of the pyc-
nocline at time 101.23 s (time when this point is located at X = 2000 cm);
(b) Horizontal velocity profile measured at the same time, at a station
located at X = 2106 cm. Black - the experimental profile; dashed line -
regular two layer model; red - optimal two layer model.
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Figure 4.10. Horizontal velocity profiles for a wave of large amplitude.
(a) Horizontal velocity profile at maximum displacement of the pycnocline
at time 100.139 s (time when this point is located at X = 2000 cm); (b)
Horizontal velocity profile measured at the same time, at a station located
at X = 2140 cm. Black - the experimental profile; dashed line - regular
two layer model; red - optimal two layer model.
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We show horizontal velocity profiles for a wave of moderate amplitude (1.23 at x =

1050 cm) and for a large amplitude wave (1.51 at x = 1050 cm) – see Figure 4.9 and

Figure 4.10, respectively. In both cases, comparison against the two layer model is

done for the maximum displacement of the pycnocline and for a point located in the

front of the wave (close to the inflection point of the wave profile). For the maximum

displacement of the pycnocline, we see very good agreement with the strongly nonlinear

model - both regular and optimized. For the front of the wave, the agreement with the

optimized two layer is noticeably better. We note the smoothing of the profile across

the interface that is due to its finite thickness; again this is consistent with smoothing

seen in the experimental data. We also note that in constructing the velocity profiles

from the predictions of the strongly nonlinear model, we have neglected the effect of the

finite pycnocline (which is negligible for the density stratification we are considering in

the current chapter). However, this effect is substantial for thicker pycnoclines, and can

easily be included by following the strategy outlined in Chapter 3, §3.5.

4.2.4. Convergence study. Even though second order convergence for the variable

density numerical scheme had been verified for smooth initial conditions, the order of

convergence reduces drastically when we start with non-smooth initial data. We can in-

fer the order of convergence from monitoring the variation of total energy in the system

– which should be conserved by an Euler scheme, in a potential force field such as our

configuration. In Figure 4.11 we present the variation of total energy (and its compo-

nents: kinetic - initially zero - and potential) for the three resolutions considered - 128,

256 and 512 grid points in the vertical direction (for a square grid), respectively. It can

be inferred that the order of convergence if approximately first order. We note that the
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Figure 4.11. Kinetic T , potential V and total E = T+V energies during
the evolution of large amplitude wave a/h1 = 1.51 for 128 (continuous),
256 (dashed), 512 (dotted) points in the vertical, respectively.

maximum values of the relative error among various resolutions are concentrated mostly

in the wake, as seen in Figure 4.12. We also monitor the time series at location 450 cm

Figure 4.12. Relative error in the density field at t = 39.45 s (for the
numerical experiment from Figure 4.19) between coarse (128) and medium
(256) grid and the medium and fine (512) grid, respectively.

and 1050 cm; the coarsest grid seems to be sufficient for accurately capturing the front

of the wave - as seen in Figure 4.13(a)-(d). In small to intermediate amplitude regimes,

the coarsest grid (128) captures accurately also the trailing edge (Figure 4.13(a),(b)),

whereas for large amplitude waves we notice significant differences in the trailing edge.

4.2.5. Effects that might justify observed differences with respect to Grue

et al. [19] experimental results. The discrepancy between the strongly nonlinear

model predictions and the numerical experiments (in particular for large amplitude, and

in the (shorter) tank of length 1232 cm) is more pronounced than the discrepancy noted

137



-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 10  15  20  25  30  35

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 40  45  50  55  60  65

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 35  40  45  50  55  60  65

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 10  15  20  25  30

t(s)

z
/
h

1
z
/
h

1

t(s)

(a) (b)

(c) (d)

Figure 4.13. (a), (b) Time series of the average density profile at 450 cm
and 1050 cm, respectively at resolutions 128 (continuous), 256 (dashed)
and 512 (dotted) for intermediate amplitude wave (a/h1 = 1.23); (c), (d)
large amplitude wave (a/h1 = 1.51).

in Grue et al. [19], where the experimental wave profiles are compared against full Euler

solutions in two layer system. As already remarked, any discrepancy cannot be attributed

to the asymptotic approximation of long-waves, since the model agreement with the full

Euler numerical solutions in two-layer systems is remarkable in all diagnostics as shown

in Camassa et al. [8]. We also note that in Grue et al. [19] the agreement of the phase

speed-amplitude dependence as predicted by the two-layer model when compared to

the experimental data was much noisier than the agreement with wave profiles. We

conjecture that one of the possible explanations for the discrepancy in the wave shapes

comparison lays in the way the phase speed of the wave is determined, given how sensitive

the time series reconstruction of the spatial wave profile is with respect to the phase speed

determination. Notice that in [19], the experimental wave shapes are compared against
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their two-layer counterparts by matching for amplitude exclusively – which is likely to

mask discrepancies in phase speeds, with the consequences shown above.

It is useful to summarize in a list some of the effects that might justify the aforemen-

tioned discrepancy in wave profiles between experiment and the two layer theory. These

effects could be consequences of physical phenomena neglected in the numerical results

presented so far. Whenever possible, we adapt our numerical implementation to account

for these phenomena and address their effects.

Initial condition. The initialization technique employed in our numerical experiment

differs slightly from that in Grue et al. [19], where the waves are created by adding a

volume of fresh water behind a gate which is not completely lowered to the bottom of the

tank. In order to let hydrostatic pressure equilibrate at the deep fresh water interface

to the left of the gate, a very small difference in height between free surfaces to the

left and the right of the gate must exist. Given the smallness of this height difference

(proportional to that of the layer densities) and the minimal impact of free surface effects

on internal waves, we believe that this effect has minimal influence on the traveling wave

propagation.

Free surface. The actual experiments in Grue et al. [19] are performed in a tank with

a free surface, whereas our numerical experiments bound the upper surface with a rigid

lid. However, the surface displacement induced by internal solitary waves is small by

comparison to the pycnocline deformation, and the pycnocline position is far from the

surface in our setup. We note that the Euler simulations used for validation in Grue

et al. [19] also employ the rigid-lid assumption.
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Three dimensional (3D) effects . The experiments in Grue et al. [19] have been

performed in a tank with width 0.5 m, whereas the numerical simulations are two-

dimensional (2D). The most important consequence of three-dimensionality is enhanced

dissipation through friction with the lateral walls. Nonetheless, the Euler results used

for validation in Grue et al. [19] were also 2D simulations.

Viscosity. We have tested the effects of bulk viscosity (considering a water viscosity of

µ = 0.01 Poise). We note that even though the evolution code allows for implementation

of no-slip boundary condition, high grid resolution is necessary to accurately resolve the

resulting thin boundary layers. The variant of the VARDEN code we have used in this

study does not support adaptive mesh refinement, which would be required to treat our

setup (where the aspect ratio of the tank is rather skewed in the horizontal direction).

As shown in Figure 4.14, viscosity alone does not affect either the wave shape nor the

manifestation of shear instability.
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Figure 4.14. Continuous lines - wave shapes constructed from the time
series at x = 450 cm and x = 1050 cm for two numerical experiments
with the same initial conditions (added volume of fresh water Lgate =
100 cm hgate = 50.203 cm): red curve - bulk viscosity µ = 0.01 Poise, black
curve - inviscid. The dashed curves correspond to the regular strongly
nonlinear model for (a) matched amplitude, (b) speed.

Details of the stratification. Changing the background stratification by using an error-

function density distribution for the pycnocline region, while keeping the thickness the

140



- 20 - 10 0 10 20

- 1.5

- 1.0

- 0.5

0.0

- 20 - 10 0 10 20

- 1.5

- 1.0

- 0.5

0.0

z
/
h

1
x/h1 x/h1

(a) (b)

Figure 4.15. Continuous lines - wave shapes constructed from the time
series at x = 450 cm and x = 1050 cm for two numerical experiments
with the same initial conditions (added volume of fresh water by Lgate =
100 cm hgate = 50.203 cm): red curve - error function background density
stratification, black curve - tangent hyperbolic density stratification. The
dashed curves correspond to the regular strongly nonlinear model for (a)
matched amplitude, (b) speed.

same, does not modify the wave shape substantially, as seen in Figure 4.15. As expected,

and a further validation of the numerical scheme, reducing the thickness of the pycnocline

by half results in a better agreement with the strongly nonlinear model. Moreover, as

expected from the two-layer limit, shear instability for thinner pycnoclines manifests

itself at lower amplitude waves than those reported in the experiments in Grue et al.

[19], as seen in Figure 4.16.
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Figure 4.16. Continuous lines - wave shapes constructed from the time
series at x = 450 cm and x = 1050 cm for two numerical experiments
with the same initial conditions (added volume of fresh water by Lgate =
100 cm, hgate = 32.3 cm): red curve - thickness of the pycnocline d = 1 cm,
black curve - d = 1 cm (wave IV in Figure 4.6). The dashed curves corre-
spond to the regular strongly nonlinear model for (a) matched amplitude,
(b) speed.
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4.2.6. Shear instability within the experiment.

Richardson number criteria.

Accurately predicting the self-induced internal wave shear flow at the pycnocline allows

us to develop a sufficient condition for the local stability properties of the flow, based

on the predictions of the strongly nonlinear model. First, we recognize that the effective

wavelength of the solitary wave is relatively large in comparison to the vertical length

scale, and correspondingly both the shear and stratification are slowly varying in the

horizontal direction. The first order approximation in these circumstances is therefore

that of a parallel shear.

The main measure of stability of parallel heterogeneous flows is the Richardson num-

ber, which measures the relative magnitude of the buoyancy effects of the density gradient

with respect to the inertial effects of shear velocity

(4.1) Ri(z) =
β(z)g

u′(z)2
,

where β(z) = −ρ′(z)/ρ(z) indicates the static stability of the density stratification (β < 0

implying static instability). As follows from Miles [38] and Howard [23] (which have

build on previous investigations of Taylor [48], Goldstein [17]), a sufficient condition for

spectral linear stability of a heterogenous parallel shear flow is Ri > 1/4 everywhere.

We can obtain a relatively good estimate of the Richardson number by using the

strongly nonlinear model (Appendix D) as shown by Figure 4.17, where the compar-

ison of this estimate against the Richardson number from a numerical experiment is

plotted against the horizontal location to the right of the wave’s maximum interface
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displacement. We can thus identify the regions with Ri < 1/4 as regions of potential

local instability in the flow field However, there are instances for which, even though

0 2 4 6 8 10

0.10

0.15

0.20

0.25

0.30

0.35

x/h1

R
i

Figure 4.17. Minimum Richardson distribution for half of the wave pro-
file of a large amplitude wave a/h1 = 1.51 (wave V in Figure 4.6). Red
-predictions using the optimal two layer approximation; dashed - regular
two layer approximation; dots - measured from the numerical wavetank
experiment experiment.

we identify regions of Richardson number under the 1/4 threshold within the flow field,

we do not observe formation of Kelvin-Helmholtz roll-ups ( see Figure 4.18 for such an

example). While for this particular wave Ri ≈ 0.15 at the peak of the wave, Grue et al.

[19] reported the Richardson number at the peak of the wave with the same amplitude

attained in the actual experiments to be 0.23 (hence falling into the window of potential

instability, though close to meeting the sufficient stability criteria Ri > 0.25).

Experimental observations of internal waves that do not exhibit shear instability but

have areas with Ri < 1/4 in their flow field have been reported in Troy & Koseff [50],

for small amplitude periodic waves in a smooth, tangent-hyperbolic density stratification
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Figure 4.18. Density field at time t = 45 s, for a numerical experiment
in which no shear instability has been observed. The amplitude (a/h1) of
the solitary wave constructed from the second time series is 1.23 (wave IV
in Figure 4.6). Regions in the flow field with Ri < 1/4 are marked with
red.

and in Fructus et al. [13] for large amplitude solitary waves in three layer stratification,

with the intermediate layer linearly stratified.

The fact that Ri < 1/4 is not a sufficient condition for spectral instability could in

fact explain our observations of lack of instability evidence in these regimes. We would

have to refer to the normal modes corresponding to each horizontal locations and see if

the flow supports normal growing modes. However, it might also be the case that what

we are seeing is an effect of the horizontal spatial variations of the shear flow. We are

going to address these issues in §4.3.

Influence of the resolution on the instability behaviour.

In good agreement with the experiments in Grue et al. [19], we observe the development

of Kelvin-Helmholtz roll-ups for waves of near-maximal amplitude; these rolls develop

behind the maximum displacement of the interface by the wave. In Figure 4.19 and

Figure 4.20, we present the density plots at times t = 39.45 s and t = 53.3 s, respectively,

for an experiment with initial conditions Lgate = 100 cm and hgate = 53.21 cm, in a tank of

length L = 1232 cm. These initial data yield a near-travelling wave of amplitude a/h1 =

1.51 (wave V in Figure 4.6). The results are presented for three vertical resolutions (with

square grids): N = 128, 256, 512. We notice that instability development within the

144



N = 256

N = 512

N = 128 (a)

(a)

(b)

(b)

(c)

(c)

Figure 4.19. Density plots at t = 39.45 s for initial condition Lgate =
100 cm, hgate = 53.21 cm at resolutions 128, 256 respectively 512.

numerical experiment is related to resolution. We therefore can assert that the order

N = 256

N = 512

N = 128 (a)

(b)

(c)

(a) (b) (c)

Figure 4.20. Same as in Figure 4.19, at time t = 53.3 s.

of the scheme is responsible for the noticeable differences in the wake. The reduction

of the convergence order due to the highly turbulent wake and the non-smooth initial

condition can translate in significant errors in capturing the onset and time evolution of

the instability episodes.

Influence of reflection on instability development.

In Figure 4.19, which refers to the 1232 cm-long tank, we can observe that the trailing

side of the wave has detached from the wake, the onset of shear instability occurring after
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this detachment. In order to determine whether the interaction with the right boundary

induces shear instability we perform an experiment in a longer tank, of length 1386 cm

and monitor the time of onset. These experiments are performed at 512 resolution. In

Figure 4.21 we show that the time of onset of instability in the longer tank is roughly

the same as in the shorter tank, hence the instability manifestation is not induced by

reflection of the wave at the right boundary.

(a.I)

(a.II)

(b.II)

(b.I)

Figure 4.21. Density plots for numerical experiments with the same ini-
tial condition Lgate = 100 cm, hgate = 53.21 cm. (a) Density plots at
t = 39.45 s (a.I) tank of length 1232 cm, (a.II) tank of length 1386 cm
(b) Density plots at t = 53.3 s (b.I) tank of length 1232 cm, (b.II) tank of
length 1386 cm.

We have seen how for the particular experimental set-up of [19], the trailing edge

does not fully recover the height of the quiescent state (as can be seen in Figure 4.21).

Thus, one cannot be sure that the wave in the simulated tank can be truly considered

as permanent form (solitary) traveling wave. This fact undermines the task of assessing

whether the shear instability development is an intrinsic property of the wave, or it is

rather linked to the initial condition (and hence generation mechanism). This motivates

us, next, to study the time evolution from initial data corresponding to a traveling wave

solution.
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4.3. Time evolution of solitary wave solutions

For sufficiently large amplitudes, solitary waves emerging from the experimental ini-

tialization process never fully develop into symmetric shapes and achieve traveling wave

form. While the highly fluctuating fluid motion in their wakes is traveling at a slower

group speed and is eventually left behind by the large waves, its upstream influence is

not clear and cannot be completely ruled out, as evidenced by the slightly asymmetric

shape of the precursor large wave. In order to assess whether the asymmetry originates

in the initial conditions or is related to an inherent instability of large waves, we seek

to initialize the evolution code with a permanent form solitary wave solution. For this,

we use the algorithm developed in Turkington et al. [51]. Our implementation of this

algorithm, adapted to handle relatively thin pycnoclines, is described in detail in Appen-

dix C. The boundary conditions for the evolution code are zero vertical velocity at the

top and bottom boundary and periodic in the horizontal direction. We initially perform

our study on a long periodic wave (near the solitary wave limit) with period L = 1232 cm

and large amplitude (a/h1 = 1.51).

4.3.1. Convergence study. Instabilities induced by lack of resolution. There

are two interconnected issues that we address in this section: one is the convergence of

the evolution code itself for large density gradients, and the second is the correctness

of the initialization (how far is the initial condition from a traveling permanent form

solution supported by the evolution code).

We have tested the order of convergence of the code both for initialization with

experimental setup and for solitary wave initialization. In the first instance, we obtain

order convergence of first order – due to the fact that the initial condition is not smooth.
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As described in the previous section, the coarsest resolution that we have used (N = 128

points in the vertical) manages to capture fairly well the front of the wave.

We have verified second order convergence of the evolution code in the case of smooth

initialization, by initializing the evolution code with a solitary wave solution obtained

with the iterative scheme ([51]) at resolution N = 1024, and running three time evolution

simulations at resolutions N = 256 , 512 and 1024 respectively. We have monitored the

infinite norm of the error in the velocity and density fields. The numerical error is

concentrated in the pycnocline region, where we register the highest gradients of density-

see Figure 4.22.
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Figure 4.22. Magnitude of the relative error in the density field after 5 s,
between two runs performed at resolutions 256 and 512, respectively, for
the time evolution of the solitary wave solution in continuous stratification
of amplitude a/h1 = 1.51.

One other indicator of the magnitude of the numerical error induced by the sharp

stratification is the total energy – this should be conserved in our setup (periodic bound-

ary conditions in horizontal direction, slip in the vertical). Figure 4.23 shows the variation

of the total energy for three resolutions N = 256, 512, 1024, respectively. We note that

the total energy decays (due to numerical diffusion) and that the resolution N = 1024

is satisfactory for the time scales we are interested in.

To address the second issue – namely how far the initial condition is from a stationary

solution – we monitor the wave amplitude, the phase speed (using the strategy outlined
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Figure 4.23. Variation of the total energy for the time evolution of the
solitary wave solution in continuous stratification of amplitude a/h1 = 1.51
(normalized with the energy at time t = 0 s).

in §4.2.3) and the potential and kinetic energy, respectively. All of these quantities should

be constants of motion for a stationary solution. As we see in Figure 4.24, the variation

of these quantities decreases with resolution.

We found evidence of shear instability for all the resolutions we have tested, as

noticeable in Figures 4.25 - 4.27, where we present several time snapshots of the density

field during the evolution of the wave. (The simulations presented are performed in the

wave frame, a frame of reference moving at the speed cit – the speed of the wave as

predicted by the iterative code.) Nonetheless, the magnitude of the roll-ups decreases

with increased resolution (to the point that there are not easy to identify visually, as the

insert (a) in Figure 4.27 shows), which can be interpreted as yet another confirmation of

convergence of the iterative code to actual traveling wave solutions of Euler equations.

Moreover, the instabilities are manifest only on the trailing side of the wave, a fact also

noticed in the experiments of Grue et al. [19], Fructus et al. [13].

In all three simulations, we have observed (qualitatively) three episodes of shear

instability: an initial episode triggered by numerical error (followed by a period in which
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Figure 4.24. Variation of (a) potential energy, (b) kinetic energy, (c)
amplitude, (d) phase speed – for the time evolution of the solitary wave
solution in continuous stratification of amplitude a/h1 = 1.51. Continuous
- resolution N = 256, dashed N = 512, dotted N = 1024. All quantities
are nondimensionalized with the corresponding quantities at time t = 0 s.

the wave travels at quasi-constant speed and amplitude), a second episode of instability

of smaller magnitude (which occurs roughly in the interval 30 − 40 s) and finally the

interaction with the turbulent wake created by the first episode, which wraps around the

periodic box – see Figure 4.25 (resolution N = 256), where the first two episodes are

clearly visible, and Figure 4.26 (resolution N = 512) where the second episode is barely

discernible in the density field (the insert (a) magnifies the region where growing modes

are detected).

We argue that the simulations, at all the resolutions we have tested, retain important

physical features of the actual phenomenon. Thus, the first episode of instability is
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t=20 s

Figure 4.25. Time snapshots of the density field during the propagation
of a large amplitude solitary internal wave a/h1 = 1.51. We show a sec-
tion of the computational domain, centered at the peak of the wave, with
dimension 3000 cm. Resolution 256.
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Figure 4.26. Same as Figure 4.25, resolution 512.
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Figure 4.27. Same as Figure 4.25, resolution 1024.

induced by numerical error in both the evolution code and the initial condition, which

can be viewed as an initial perturbation superimposed on the traveling wave solution

of the discrete operator associated with the evolution code. Simultaneously with the

growth in the unstable region of the wave, this perturbation is shed downstream (in the

wave-frame), and starts propagating in a stable region of the flow field. The shear in

this region on the downstream side of the wave decays to zero exponentially fast for

solitary waves, with the density stratification limiting to that of the quiescent state. The

perturbation therefore propagates mainly as a dispersive (weakly nonlinear for sufficiently

large time) wave train governed by the dispersion relations determined by the background

stratification. One can show that in the frame of reference of the wave, all normal modes

in this region are traveling from right to left, both their phase speed and group velocity

being thus bounded below by c0− c and above by c0 + c, where c0 is the critical speed in

the background stratification and c is the speed of the wave (with c > c0) - see Figure 4.28

for the two branches of the dispersion curves.
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Figure 4.28. The two branches of the dispersion relation for the back-
ground stratification. Continuous line - group velocity, dashed line - phase
speed, both in the frame of the wave, as function of the wave number.

We remark here that all time simulations for propagation of solitary wave solutions

(independent of whether they exhibit shear instabilities or not) exhibit a wake that is shed

behind the wave, which is visible in both the density and the velocity field. Its magnitude

decreases with resolution, indicating that the wake is a result of the initial perturbation

(localized in the region of maximum displacement) that is shed downstream. In fact, we

can identify qualitatively the superposition of normal modes of the background stratifi-

cation (see Figure 4.30) in the velocity field associated with the wake – see Figure 4.29.

For a rigorous quantitative comparison of the normal modes with the features in the

wake, knowledge of the initial perturbation is needed.

At the front of the wave train however, as shown in Figure 4.29(c), the fastest traveling

normal mode emerges.

Thus, we argue that the second episode of instability is triggered by the fastest trav-

eling normal mode of the background stratification (which travels with a group velocity

bounded above by c0 + c) and it is not part of the instability triggered by the initial

evolution of the perturbation.
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Figure 4.29. Horizontal velocity (in the lab frame) profiles during the
propagation of a large amplitude solitary internal wave a/h1 = 1.51 at
time t = 17.5 s at locations downstream from the peak of the wave (a)
X = 516 cm, (b) X = 566 cm and (c) X = 716 cm. In (c) the dashed
contour corresponds the fastest traveling normal mode of the background
stratification.
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Figure 4.30. Horizontal velocity profiles for normal modes of the back-
ground stratification with wavenumbers ranging from 0 (black) to 0.4 cm−1

light gray.

We test this conjecture by doubling the length of the computational domain – thus

initializing the evolution code with a long periodic wave solution of the iterative code,
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Figure 4.31. Horizontal pressure gradient px at time t = 50 s for two
waves of same amplitude a/h1 = 1.51, with periods L = 1232 cm, top and
L = 2464 cm, bottom.

with double the period and same amplitude and speed. We perform simulations at the

resolution N = 512. Since, for this resolution, the shear instability is not immediately

apparent in the density field, we monitor and display the horizontal pressure gradient. In

Figure 4.31 we show the horizontal pressure gradient at time t = 50 s for both the wave

of period L = 1232 cm and of period 2464 cm, respectively. Note that the wave with

period 2464 cm does not exhibit roll-up, as opposed to the wave of shorter period. In

fact, we can estimate the minimum time of travel of the aforementioned normal mode as

(c0 + c)/L, where L is the period. In particular, for the long wave of period L = 1232 cm

(taking into account that the critical speed c0 is ≈ 16 cm/s, whereas the speed of the

wave c is ≈ 20.4 cm/s) this estimate is ≈ 34 s which falls in the range 30− 40 s observed

in the simulations.

All numerical experiments we have performed suggest, apart from the convergence of

the stationary solution, some interesting stability properties of the flow. In the limit of

infinite period, the internal waves investigated seem to be globally linearly stable since the
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initial perturbation (after some growth in the unstable region located at the peak of the

wave) is advected away, leaving the wave in an equilibrium state, close to the unperturbed

solitary wave (in a norm appropriately defined to mode out translations, as appropriate

for orbital stability of traveling waves (see, e.g., Benjamin [2] for the analagous case of the

Korteweg-de Vries equation). For finite period, however, the dispersive train generated

by the first episode of instability wraps around the periodic box triggering subsequent

episodes of instability. One can then expect the traveling wave to relax to a state where

the dispersive wave trains no longer excite shear instabilities, by effectively reducing

the amplitude of the wave and simultaneously stirring the pycnocline region to a larger

thickness. Such a state would ultimately be dependent on the background stratification

only, thus indicating overall instability of the original wavetrain.

In the following section, in order to shed some light on these observations, we look

at the local spectrum of the flow.

4.3.2. Local stability analysis of the solitary wave solution. As argued before,

both the shear and the density stratification of the solitary wave have slow variation in

the horizontal direction, hence the first order approximation reduces to the case of a

parallel heterogeneous shear flow (slowly varying with the horzontal location).

Taylor-Goldstein stability equation.

Starting with Kelvin [27], a considerable body of work has been dedicated to the stability

of horizontal flows of incompressible fluid with piecewise-constant density and shear dis-

tribution – see Drazin & Howard [10], for an excellent review. Taylor [48] and Goldstein

[17] were the first to consider the stability of heterogeneous shear flow with smoothly

varying density and shear, from the perspective of normal modes. By linearizing the

157



Euler equations

ρ(ut + uux + wuz) = −px ,(4.2)

ρ(wt + uwx + wwz) = −pz − ρg ,(4.3)

ρt + uρx + wρz = 0 ,(4.4)

ux + wz = 0 ,(4.5)

with respect to small perturbation of the parallel basic flow with stratification ρ0(z)

and shear u0(z)

u = u0 + δu , w = δw , ρ = ρ0 + δρ , p = p0 + δp ,

and assuming that any perturbation can be decomposed in independent wave components

φ(x, z, t) = {δu , δw , δρ , δp} = φ̂(z)Exp [ik · x− ωt] ,

they derived a linear eigenvalue problem for the stability problem. They further conjec-

tured that the fastest growing component is two-dimensional, conjecture which has been

rigorously proven later by Squire [46]. The eigenvalue problem governing the stability of

parallel heterogeneous flows (often refer to as Taylor-Goldstein equation) is thus

(4.6) ψ′′ +

[
2u′0
u0 − c − β

]
ψ′ +

[
βg

(u0 − c)2
− k2

]
ψ = 0 ,

where ψ(z) is the magnitude of the perturbation stream function, β(z) = −ρ′0(z)/ρ0(z),

where k , c are the wave number phase speed of the perturbation, respectively. The
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boundary conditions, assuming a flow confined between two rigid walls at 0 and H, are

(4.7) ψ(0) = 0 , ψ(H) = 0 .

In this work, we focus on the initial value problem, hence we are interested in the

temporal evolution of a initial perturbation superimposed on the base flow. Hence, we

seek so solve equation (4.6) with boundary conditions (4.7), for real wave number k and

with the phase speed c = cR + icI as the eigenvalue, which can be complex. The flow is

unstable if cI > 0, and the associated normal mode has the rate of growth ωI = kcI . We

note that equation (4.6) becomes singular for c real and in the range of u0. Eigenvalues c

with this property correspond to singular neutral modes, and usually correspond to the

boundaries of linear stability.

We remark that the influence of viscosity on the stability properties is expected to be

minimal, slightly reducing the growth rates – as numerical investigations of viscous shear

flows have revealed. In fact, Maslowe & Thompson [36] have shown that the viscosity

effects on the maximum growth rates are very small for Reynolds number above 100

(recall that in our investigation typical Reynolds numbers are ≈ 105).

Numerical implementation.

We solve equation (4.6), with boundary conditions (4.7), by employing a shooting method

as follows: for fixed wave number k, we integrate from the center of the pycnocline

location zp to left and right by imposing continuity of both the eigenfunction (ψL(zp) =

ψR(zp) = ψp, with ψp a normalization constant for the eigenfunction) and its derivative

in the center ( ψ′L(zp) = ψ′R(zp) = ψ′p). We thus define two functions depending on the

slope of the eigenfunction ψ′p and on the eigenvalue c. We determine the eigenvalue c and
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the slope of the eigenfunction by imposing the boundary conditions (4.7), and by solving

the corresponding nonlinear system. Our strategy follows closely the one reported in

Hazel [20], who was the first to investigate numerically the stability of a class of parallel

shear flows with smooth density stratification and shear. We point out that in this case

the integration is done from the boundaries inwards. We choose to integrate from the

center outwards in order to control the magnitude of the eigenfunction.

In order to locate numerically all unstable modes, we search within a domain of the

complex c plane, which we isolate by applying the result of Howard [23] (often referred to

in the literature as the semicircle theorem). The theorem states that the complex wave

velocity of any unstable mode must lie inside the semicircle in the upper half-plane of

the complex c plane which has as diameter the range of the horizontal shear. We have

determined numerically one unstable branch for all configurations investigated.
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Local spectrum of the solitary wave solution.

In this section we present detailed spectrum calculations for the large amplitude wave

a/h1 = 1.51. We compute local unstable spectrum for a series of horizontal locations in

between the point of maximum displacement of the wave and the end of the region of

potential instability Ri < 1/4 (noting that both the horizontal velocity and the density

stratification are symmetric with respect to the point of maximum displacement) – see

Figure 4.32, where we show the general setup, and Figure 4.33, where we show a contour

plot of the Richardson number for the area of potential instability.

X=0 cm X= 134.75 cm

Figure 4.32. Density field for a solitary wave solution of amplitude
a/h1 = 1.51. Marked with red the area of Ri < 1/4. Local spectrum
calculations are performed for locations in between X = 0 cm (peak of the
wave) and X = 134.75 cm.

0.078

0.25

Figure 4.33. Contour lines of the Richardson number in the region of
potential instability (half of the region represented) for the wave a/h1 =
1.51 - see Figure 4.32.
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Figure 4.34. (a) Horizontal velocity profiles, (b) density profiles for a
wave of amplitude a/h1 = 1.51, for equidistant 8 locations in between
X = 0 cm (peak of the wave) and X = 134.75 cm.

We construct the branch of unstable normal modes, for a given combination of density

stratification ρ0(z) and shear u0(z), by a parameter continuation technique in the wave

number k, extending the the eigenvalue search close to the real axis, where the eigenvalue

problem becomes singular – see Figure 4.35 for the unstable branches in the complex

plane c = cR + icI corresponding to eight equidistant horizontal locations across the

region of potential local instability. All the stability computations are performed in the

frame of reference of the wave (moving at horizontal speed cwave with respect to the lab

frame).

In Figure 4.36 we show the growth rates and the phase speed of the unstable modes

for the eight combinations of shears and density stratifications shown in Figure 4.34.

Note that the phase speed of the normal modes is negative, and moreover it decreases

for increasing k, which implies that the group velocity (dωR/dk) is also negative.

162



Figure 4.35. Unstable branches in the complex c plane for 8 equidistant
locations in between X = 0 cm (peak of the wave) and X = 134.75 cm, for
the solitary wave solution in Figure 4.32. Black - X = 0 cm, light gray -
X = 134.75 cm.

(a) (b)

Figure 4.36. (a) Growth rates and (b) phase speed for 8 equidistant
locations in between X = 0 cm (peak of the wave) and X = 134.75 cm, for
the solitary wave solution in Figure 4.32. Black – X = 0 cm, light gray –
X = 134.75 cm; d = 2 cm represents the thickness of the pycnocline.

Next, we illustrate the dependence of the unstable spectrum on the horizontal location

across the region of local instability. First, we note that the normal mode that would be

first visible in the evolution of a perturbed initial state is the mode corresponding to the

maximum growth rate. We expect this to be the case as long as the horizontal extent

of the area of local instability is larger than the periods associated with these modes,
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which is the case for most of the waves considered in this analysis. From Figure 4.37 we

can infer that the wave number associated with the most unstable mode does not vary

significantly along the wave profile. Furthermore, in Figure 4.38, we can see that the

Figure 4.37. Wave number corresponding to the maximum growth un-
stable mode along the wave profile. The dashed lines mark the range of
the region of potential local instability, Ri < 1/4.

period of the self-induced shear instability for an actual wave evolution falls in the range

predicted by the local eigenvalue calculation (12.69 cm to 14.27 cm).

(a) (b)

Figure 4.38. Portion of the horizontal pressure gradient px evidencing
self-induced shear instability for a wave of amplitude a/h1 = 1.51 at
t = 11 s for a numerical simulation at resolution (a) 512, (b) 1024. Super-
imposed on each plot, a grid with spatial resolution of 10 cm, to evidence
the wavelength of the perturbation.

In Figure 4.39 we show the variation of the growth rate associated with the most

unstable normal mode in the horizontal direction. Note that the horizontal range of
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potential local instability (Ri < 1/4) almost coincides with the range of actual local

instability. Finally, in Figure 4.40 we show the phase speed and the group velocity

Figure 4.39. Maximum growth rate along the wave profile. The dashed
lines mark the range of the region of potential local instability, Ri < 1/4.

Figure 4.40. Dashed - phase speed, continuous - group velocity asso-
ciated with the maximum growth rate along the wave profile. The thin
dashed lines mark the range of the region of potential local instability,
Ri < 1/4.

associated with the most unstable mode, which is negative at all horizontal locations in

the region of local instability. This fact explains at first order the behavior described in
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§4.3.1 – namely the initial perturbation located at the peak of the wave grows and it

is advected away from the pocket of instability, with the wave reaching a state of equi-

librium afterwards. Relatively recent advancements in the stability theory of spatially

varying flows as presented in Huerre & Monkewitz [24, 25], Huerre [26], based on slowly

varying asymptotics WKBJ analysis, support this veiwpoint. This approach assumes

scale separation, i.e., the stream-wise variation of the flow must be slow over a typical

wavelength of the perturbation, so that the local dispersion relation can be used in the

global stability analysis of the flow, as a leading-order approximation. We note that the

flow under consideration in this chapter meets these requirements.

The foundation of Huerre & Monkewitz [24, 25], Huerre [26] approach lies on the

fundamental distinction between absolute and convective instability. A parallel shear

flow is said to be convectively unstable if the growing wave train generated by an initial

perturbation is advected away. Conversely, the flow is said to be absolutely unstable if

the instability contaminates the entire medium. This distinction seems trivial in the case

of strictly parallel stationary flows, which are frame invariant – a simple change of frame

of reference renders a convectively unstable parallel flow in an absolutely unstable one.

However, when considering spatially developing stationary flows, these concepts become

relevant, since the frame of reference in which the flow is stationary is singled out. The

main conjecture of the theory is that a necessary (although not sufficient) condition for

the existence of time-periodic intrinsic oscillations (or self-sustained global modes) is the

existence of a pocket of absolute instability somewhere in the flow field.

The flow considered here has a pocket of convective instability (confirmed by the

negative group velocity of the local spectrum in the region of local instability), being
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locally stable outside this region. Thus, in the framework of the above-described theory,

this flow does not support self-sustained global modes – a conjecture supported by the

numerical simulations.

We conclude this section by mentioning that the term convective is extensively used

in the literature to qualify another mechanism of wave breaking that occurs when the

fluid velocity approaches the phase speed of the wave, or equivalently zero in the frame

of reference of the wave (see for instance Holyer [22]). The waves investigated in this

work do not exhibit this property and thus throughout the remainder of this chapter we

employ the term convective only in the context described in the paragraph above.

Ability of the evolution code to accurately capture linear growth of the shear instability.

In order to test the ability of the evolution code to capture instabilities, we simulate

the time evolution of a parallel shear constructed with the density stratification and the

shear from the maximum displacement of the pycnocline (for the wave with amplitude

a/h1 = 1.51) perturbed with monochromatic perturbation of wave number close to the

maximum growth rate mode

ψ(x, z, 0) = ψ̂0 sech2

[
ln 9

d
(zp − z)

]
cos kx ,

where d and zp are the thickness and the center of the pycnocline , kd ≈ 0.8 whereas

ψ̂0 is the magnitude of the perturbation. We study the behavior of the instability by

tracking a constant density isoline contained in an window of length comparable to the

wavelength of the perturbation, monitoring the trajectory of the maximum displacement

point – see Figures 4.41 and 4.42. We perform the simulation in the lab frame where
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Figure 4.41. Right - density field at time t = 4.45 s for the parallel shear
from the maximum displacement of the wave of amplitude a/h1 = 1.51,
perturbed with monochromatic perturbation of wave number kd = 0.8.
Left - portion of the density field (marked on the image at right) at time
t4 = 2.79 s, t5 = 3.35 s, t6 = 3.8 s and t7 = 4.45 s; black line - average
density isoline.

Figure 4.42. Density isolines corresponding to the average density for
t1 = 1.12 s, t2 = 1.17 s, t3 = 2.23 s, t4 = 2.79 s, t5 = 3.35 s, t6 = 3.8 s and
t7 = 4.45 s.

the phase speed of growing normal modes (and hence the horizontal excursion of the

the density isolines in the initial stage of linear growth) is relatively small (≈ 1 cm/s).

From this trajectory, we are able to estimate the growth rate and the phase speed of the

perturbation. In Figure 4.43 we compare the phase speed of the perturbation and its

growth rate against the predictions of the Taylor-Goldstein stability theory. Note that

while the comparison for growth rate is excellent, the phase speed comparison is less
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(a) (b)

Figure 4.43. (a) Continuous - phase speed of the perturbation con-
structed from the average density isoline trajectory for the simulations
described in Figure 4.41, dashed - estimate from the stability calculation.
(b) Data points - maximum displacement of the average density isoline at
t1 = 1.12 s, t2 = 1.17 s, t3 = 2.23 s, t4 = 2.79 s, t5 = 3.35 s, t6 = 3.8 s
and t7 = 4.45 s; dashed line A(t1)e

ωI(t−t1), where A is the displacement
registered at t = t2 and ωI is the growth rate estimate from the stability
calculation.

satisfactory, in particular after 2.5 s, albeit we can identify nonlinearity in the growth at

around 3 s, as evidenced in the shapes of the average density isolines – see Figure 4.42.

4.3.3. Simple envelope equation for instability. We remark that in our numerical

simulations (both the generation experiment and the evolution of the solitary wave so-

lution) and in the experimental observations of Grue et al. [19] and Fructus et al. [13],

Kelvin-Helmholtz billows develop after the point of maximum displacement of the wave,

while no growth is observed in the front of the wave. We argue that while the convective

character of the instability is partly responsible for this asymmetry, it does not explain

it entirely. In the following, to illustrate this point, we use the local spectrum calcula-

tion developed in the previous section to construct a simple envelope equation for the

perturbation evolution in the unstable region, and compare it qualitatively to numerical

simulations.

We follow the strategy outlined in Troy & Koseff [50]. They performed experiments

of generation and propagation of long progressive internal waves of small amplitude in a
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near two-layer background stratification, given by a tangent hyperbolic density profile.

They proposed a Richardson number criteria for breaking, based on the local stability

properties of the flow, which compared well to the experimental observations. In the

following, we briefly review the main features of their construction. The small amplitude

regime and the long wave assumption allowed them to accurately model both the shear

and the density stratification along the wave, with coincident tangent hyperbolic profiles

(i.e. aligned in the pycnocline region, and with the same thicknesses). Detailed numerical

stability computations for these type of shears have been performed by Hazel [20], under

the Boussinesq approximation (i.e. neglecting the inertial terms in the stability equation

(4.6)). Under this approximation, the growing normal modes are stationary in the frame

of reference corresponding to the average of the shear (which in the case of periodic waves

corresponds to the lab frame). Thus, in the wave frame the normal modes are advected in

the opposite direction of the propagation of the wave, at constant phase speed coinciding

with the phase speed of the wave. We note here that the group velocity of the unstable

normal modes in this instance coincides with the phase speed. Furthermore, Hazel [20]

results confirmed that the criteria Ri < 1/4 is both a necessary and sufficient condition

for existence of growing normal modes, thus the horizontal extent of the regions with

Ri < 1/4 is a reasonable estimate for the region of local instability (a result which we

have verified in large amplitude regime, in the section above). Thus, Troy & Koseff [50]

constructed an estimate of the time of travel of the perturbation in the unstable region

(say Tw) based on the length of the area of local instability and the speed of propagation

of instability. Next, they proposed the following model equation modeling the growth of
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a perturbation

At + cAX − ωI(X)A = 0 ,

where c is the speed of propagation of the wave, ωI is the growth rate associated with

the fastest growing normal mode and X = x − ct (x being the lab frame coordinate).

Thus a perturbation that enters the unstable region, will grow in the interval Tw (time

of exit from the unstable region) to an amplitude

A = A0e
ωITw ,

where A0 is the magnitude of the perturbation as it enters the region of local instability

and ωI is the average (over the horizontal extent of the region of local instability) of the

maximum growth rate. Finally, they proposed the following criteria for instability

A/A0 � 1 , or, equivalently, ωITw � 0 ,

which they expressed in terms of the Richardson number, by fitting the growth rate from

the stability calculation of Hazel [20] in terms of the Richardson number across the wave

profile.

In the large amplitude regime investigate in this chapter, we note that both the phase

speed and the group velocity of the normal mode varies considerably along the unstable

region (within 10% of the speed of propagation of the wave). Following the reasoning

in Troy & Koseff [50], while attempting to include the span-wise variation of both the

phase speed and of the growth rate of the most unstable mode, we propose the following

envelope equation for the evolution of a monochromatic perturbation with wave number
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close to the maximum growth rate normal mode (as predicted by the local stability

analysis)

(4.8) At + cR(X)AX − ωI(X)A = 0 ,

where A(X, t) is the amplitude of the perturbation, cR(X) is the phase speed correspond-

ing to the maximum growth rate at location X and ωI(X) is the maximum growth rate

at location X. While Troy & Koseff [50] were interested only with an estimate of growth

at the end of the unstable region, we monitor also the growth of the perturbation within

this region.
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Figure 4.44. Amplification factor (A/A0) for a perturbation initiated at
the right boundary of the instability region. Black - taking into account the
spatial variation of the phase speed and growth rate of the most unstable
local mode, dashed - approximating the local phase speed with the phase
speed of the wave, dotted - approximating the local growth rate with the
growth rate at the maximum displacement.

We solve equation (4.8) by the method of characteristics. We denote the length of

the region of local instability by L̃, and place the coordinate system at the point of

maximum displacement of the pycnocline. Then the time of travel of a perturbation
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across the instability region is

Tw = F (L̃/2)− F (−L̃/2) ,

where

F (X) =

∫
1

cR(X)
dX .

The characteristic curve initiating at the right boundary of the instability region is

parametrized by {[X(s) = s , t(s) = F (s) − F (L̃/2)] : −L̃/2 < s < L̃/2}, and the

amplitude of the perturbation along this characteristic is

(4.9) A(X, t(X)) = A0(L̃/2)Exp

[∫ X

eL/2
ωI(s)

cR(s)
ds

]
, X ∈ [−L̃/2 , L̃/2] .

In Figure 4.44, we show the amplification factor A/A0 for the wave of amplitude

a/h1 = 1.51, computed by (i) taking into consideration the spatial variation of both the

local group velocity and local growth rate, (ii) by approximating the group velocity with

the wave speed and (iii) by approximating both the group velocity and the growth rate

with the corresponding values at the peak of the wave. Not that (i) predicts the smallest

amplification rates across the unstable region.

The amplification factor at the peak of the wave predicted by this simple model for

the large amplitude wave a/h1 is substantial (104), hence for a perturbation entering the

unstable region from the front of the wave, we expect to see appreciable growth at this

particular point. However, as shown in Figure 4.45, no significant growth is noticeable at

point of maximum displacement, and practically no growth is detected in the front of the
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Figure 4.45. Portion of the horizontal pressure gradient px during the
time evolution of a wave of amplitude a/h1 = 1.51, seeded with a per-
turbation of magnitude 10−5 in the stream function, initially located at
distance X = 616 cm from the maximum displacement, in front of the
wave. Snapshots at times 26 , 28 , 30 , 32 , and 40 s, respectively.

wave, even if the perturbation, initially of (non-dimensional) magnitude 10−5, traverses

the entire region of local instability.

4.3.4. Amplitude threshold for manifestation of shear instability. In this final

section we explore the stability properties of waves of various amplitudes on the same

background stratification as the large amplitude wave (a/h1 = 1.51) investigated in the

section above, in an effort to determine a threshold amplitude for the manifestation

of instability. We focus on the stability properties at the peak of the wave, where
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the shear is maximal (and thus, when the flow is locally unstable, the growth rates

of the unstable normal modes are maximal). We found that for all the locally unstable

waves investigated, the group velocity of the unstable modes at this particular location is

negative, suggesting that the flows under consideration can only be convectively unstable.

Under this assumption, we construct an estimate of the amplification of a perturbation

that traverses the region of local instability (4.9) by taking the growth rate at the peak

as an upper bound for the growth rate across the region of local instability. Tw, the time

of travel of the perturbation in the unstable region, is approximated by LRi/cR, where

LRi is the length of the pocket with Ri < 1/4 (which as shown in the previous section,

is a good estimate for the extent region of local instability), and cR is the phase speed

of the fastest growing mode at the peak of the wave.

We remark that Fructus et al. [13] constructed a similar estimate by considering

only half of the pocket of Ri < 1/4, based on the assumption that the shear instability

originates at the center of the wave. While our numerical experiments revealed that the

local growth rates are inhibited in the front of the wave, this is expected to be a first

order (in the long wave parameter) correction. Thus we argue that considering the full

extent of the area of local instability offers a more robust estimate for the amplification

factor.

In order to isolate an amplitude range for which we expect to identify local instability

within the flow field, we first evaluate the minimum Richardson number at the peak of

the wave. We thus identify a minimal amplitude amin/h1 ≈ 0.76 – see Figure 4.46, which

also shows that the two-layer approximation (see relation (D.9), Appendix D) furnishes

a reasonable estimate of the minimum Richardson number at the peak of the wave, in
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particular in large amplitude regimes. We first bracket the threshold amplitude amin with
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Figure 4.46. Minimum Richardson number at the peak of the wave as
function of amplitude. Thick - continuos stratification, thin - prediction
using the two-layer approximation. The circles mark waves of amplitudes
a/h1 0.73 , 0.79 respectively. The dashed line marks the critical Richardson
number Ri = 0.25.

two amplitudes ( (I) and (II) in Figure 4.46) and evaluate the corresponding spectrum

at the peak. We are able to detect an unstable branch of normal modes only for the

amplitude (II) – 0.79, and thus confirm again the the Ri < 1/4 is a good indicator of local

instability. We next evaluate the unstable spectrum for a series of waves of amplitudes

a > amin.

In Figures 4.47 and 4.48 we display the maximum growth rate and the phase speed

of the maximum growing normal mode, both corresponding to the peak location. Fig-

ure 4.49 depicts areas with Ri < 1/4 for several of the waves investigated whereas

Figure 4.50 shows the dependence of the length of these areas on the amplitudes. As a

side note, we remark on the fact that the height associated with the points that limit

the horizontal extent of the pockets of Ri < 1/4 has a weak dependence on amplitude,
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Figure 4.47. Maximum growth rate at the peak as a function of am-
plitude. The dashed lines marks the amplitude amin, corresponding to
Ri = 0.25.

Figure 4.48. Phase speed of the maximum growing modes at the peak
as a function of amplitude.

suggesting a critical height. (Further investigation is needed to elucidate what precisely

selects this particular level.)

Finally, in Figure 4.51 we depict the dependence of the amplification factor on the

amplitude of the wave. For waves of amplitude amin/h1 < a/h1 < 0.9 the amplification

factor is less than 10, thus we do not expect shear instability to manifest. Another

factor that might inhibit shear instability development is when the length of the area of
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instability becomes comparable to the the optimum instability wavelength. Note however

that in our case, this happens when a/h1 < 0.8, amplitude range excluded already by

the criterion based on the amplification factor.
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Figure 4.49. Regions with Richardson number smaller than 1/4 for
waves of amplitudes a/h1 0.79 , 0.98 , 1.14 , 1.23 , 1.48 and 1.51 respectively.
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Figure 4.50. Dependence of the length of the area of local instability on
the amplitude

To demonstrate the effectiveness of the threshold for the manifestation of shear in-

stability identified above, we have performed numerical simulations for the evolution

of several waves with amplitudes marked in Figure 4.51 (a/h1 of 1.023 , 1.14 and 1.23

respectively – see Figures 4.52–4.54). In all instances, we use an initial perturbation
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Figure 4.51. Amplification factor as a function of amplitude.

of non-dimensional magnitude 10−3 with wave number close to the optimum instability

wave number

(4.10) ψ(x, z, 0) = ψ̂0 sech2

[
ln 9

d
(zp − z)

]
cos kx ,

where zp is the center of the pycnocline at the maximum displacement, d = 10 cm and

ψ̂0 the magnitude of the perturbation.

Recall that the wave of amplitude a/h1 = 1.23 generated from the step initial condi-

tion in density does not exhibit shear instability during its evolution – see Figure 4.18,

§4.2.6. However, as shown in Figure 4.54 , we can detect shear instability when perturb-

ing with a sufficiently large perturbation.
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(a)

(b)

Figure 4.52. Portion of the horizontal pressure gradient for the evolution
of a wave of amplitude a/h1 = 1.023, perturbed with a monochromatic
perturbation (4.10) of non-dimensional amplitude 10−3 at (a) t = 0 s and
(b) t = 5 s.

(a)

(b)

Figure 4.53. Same as Figure 4.52, a/h1 = 1.14

(a)

(b)

Figure 4.54. Same as Figure 4.52, a/h1 = 1.23
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4.4. Discussion

We have studied numerically the shear instability of solitary waves of large amplitude

in a near-two layer stratification, with parameters from laboratory experiments reported

in Grue et al. [19]. We have validated the evolution code used for simulating the gen-

eration and propagation of the waves considered, by emulating the experiments in Grue

et al. [19], and comparing against solutions of the strongly nonlinear model, optimally

adjusted to include the effect of a finite-width pycnocline. While the main dynamical fea-

tures in Grue et al. [19] where successfully captured, there are some discrepancies in the

wave shapes (in particular in the large amplitude regime) which so far are unaccounted

for.

The numerical simulations of the generation experiments captured shear instability

development in the same amplitude regime as in Grue et al. [19]. In order to identify

whether the shear instability is an inherent property of the waves of large amplitude or is

induced by the experimental generation, we have also studied the propagation of solitary

wave solutions of Euler equations (obtained with a variant of the algorithm presented

in Turkington et al. [51], which we describe in Appendix C). A resolution study for a

wave of large amplitude has demonstrated the convergence of both the evolution code

and of the initial condition. It has also revealed a interesting stability property of the

flow: the numerical error induced a first episode of shear instability, the resulting Kelvin-

Helmholtz billows being advected from the region of maximum displacement, leaving the

wave in a state of equilibrium. Thus, no global self-sustained instability emerged.

In order to elucidate this, we have performed a local spectral stability analysis of the

steady solution. The stability analysis revealed that the waves are locally unstable in
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a finite region around the point of maximum displacement whose horizontal extent is

very well approximated by Ri < 1/4 criterion. The phase speed and the group velocity

associated with the unstable local modes are negative in the frame of reference of the

wave, confirming that the flow is convectively unstable, and thus precluding the existence

of a global self-sustained mode. Furthermore, the wave number associated with the

optimally growing normal modes was found to be almost constant across the region of

local instability, and consistent with the wave numbers observed in numerical simulations.

We next constructed a simple amplitude equation for the growth of a monochromatic

perturbation (associated with the optimally growing normal modes) across the region

of local instability. We have concluded that this simple model does not fully explain

the marked front-back asymmetry in growth observed in our numerical simulations (and

laboratory experiments such as Grue et al. [19], Fructus et al. [13]). Thus, the growth

rates seem severely inhibited in front of the wave; conversely, they seem enhanced in the

back of the wave. An extension to the next order in the long wave parameter would be

necessary in order to assess whether the linear theory can capture this effect. However,

it is unclear whether this analysis would shed some light on the the physical mechanism

responsible for this asymmetry, which is without doubt a consequence of the spatial

variation of the flow.
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CHAPTER 5

On the use of the strongly nonlinear two-layer model for the

spectral stability study of internal solitary waves in continuous

stratification

While in Chapter 4 we have investigated numerically the shear instability of solitary

waves on a specific background density stratification with narrow pycnocline (which we

selected for referencing to actual experiments reported in Grue et al. [19]), the current

chapter is aimed at stratifications with wider pycnoclines. The analysis presented here is

rather limited, the scope of this chapter being mainly to suggest some possible avenues

for a systematic study of linear stability of long solitary waves in density stratifications

with one pycnocline.

We consider the class of prototype density profiles defined by

(5.1) ρ(z) = ρmin +
ρmax − ρmin

2

(
1 + tanh

[
ln 9

d
(zp − z)

])
,

where ρmin, ρmax are the densities below and above the pycnocline, zp is the location of

the inflection point (the center) of the density stratification, whereas d is the thickness

of the pycnocline defined as usual (the distance between the vertical locations in the

density stratification corresponding to ρmin + 0.1∆ρ and ρmax + 0.9∆ρ respectively). As

in Chapter 3, we fix the densities ρmin = 0.999 g/cm3, ρmax = 1.022 g/cm3 and the total



height of the fluid column H = 77 cm and aim to study the two parameter family spanned

by the thickness of the pycnocline d and the position of the center of the pycnocline zp.

We are considering only two configurations, that support solitary waves of depression

(zp = 62 cm) and elevation (zp = 17 cm) respectively, with varying pycnocline thickness.

As shown in Chapter 3, solitary waves in background density stratifications such

as (5.1) are well described (up to relatively thick pycnoclines ≈ 8 cm) by the strongly

nonlinear two-layer model Choi & Camassa [7] when optimally choosing for the two-layer

system parameters (density in the two layers and the position of the interface). Thus, the

two-layer approximation predicts very well integral quantities such as the displacement of

the isoline corresponding to the average density and the speed of propagation. However,

for studying the spectral stability properties of the flows, we need accurate predictions

for the local velocities. In §3.5, we suggested a method for constructing the velocity field

for long solitary waves in such stratifications based on the strongly nonlinear model Choi

& Camassa [7].

In the subsequent development, we want to assess how accurately this approximation

of the velocity field captures the local spectral properties of solitary waves. For this we

are investigating the linear stability at the maximum displacement of front solutions in

continuous stratification, fronts which are limiting forms for the solitary waves branch.

The horizontal velocity and density profiles corresponding to the conjugate state are

computed using the method outlined in [31] (briefly described in §3.3.2). The shears as-

sociated with the limiting fronts are maximal for the corresponding solitary wave branch,

thus we conjecture that if locally unstable, the front is the most unstable (in terms of
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associated growth rates) of the entire branch of solitary waves. Conversely, when stable,

the entire branch of solitary waves is stable.

First, in order to determine a range of pycnocline widths for which we expect local

instability, we monitor the minimum Richardson number across the pycnocline with

respect to the 0.25 threshold. As shown in Figure 5.1, the conjugate states are locally

stable for pycnocline widths bigger than ≈ 9 cm for zp = 62 cm and than ≈ 8 cm for

zp = 17 cm. Note also that the prediction of the two layer model (with optimal choice

of parameters and velocity field reconstructed to include the effect of the finite width

pycnocline) are reasonably accurate.

Furthermore, the range of pycnocline widths for which local instability can occur is

in the range of validity of the optimal two layer approximation described in Chapter 3.

(a) (b)

Figure 5.1. Continuous - minimum Richardson number at the maximum
displacement of front solutions in density stratification (5.1) for (a) zp =
62 cm and (b) zp = 17 cm. Dashed - Richardson number computed based
on the optimal two layer approximation, with the shear and density across
the pycnocline region approximated with linear profiles.

The spectrum calculations suggest that the necessary condition for existence of un-

stable normal modes Ri < 0.25 is also a sufficient condition – see Figure 5.2, where the

growth rates of the unstable local modes are shown for the configuration with zp = 62 cm
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and various pycnocline widths. Note that for d = 9 cm the minimum Richardson number

corresponding to the conjugate state is 0.247024 (very close to the 0.25 threshold) and the

associated growth rates are very small. Given that the optimal two-layer approximates

very well the minimum Richardson number, one can thus estimate, based on this ap-

proximation, a minimum amplitude for which the corresponding solitary wave is locally

unstable at the maximum displacement, and also determine the horizontal extent of the

area of local instability for solitary waves of amplitudes above this minimal amplitude.

d = 4 cm

d = 6 cm

d = 8 cm
d = 9 cm

Figure 5.2. Growth rates at the maximum displacement of front solu-
tions in density stratification (5.1) for zp = 62 cm and various widths of
the pycnocline.

The phase speeds of the unstable modes for the conjugate states are negative in

the frame of reference of the front and decreasing with the wave number for both the

configuration with zp = 62 cm and zp = 17 cm, as evidenced in Figure 5.3. This obviously

implies that the group velocities are also negative. Thus the flow is locally convectively

unstable, in the sense defined in §4.3.2. An interesting avenue for future research is to

investigate whether the convective character of the shear instability holds for solitary

waves of amplitudes smaller than the maximal amplitude defined by the front.

186



(a) (b)

Figure 5.3. (a) Phase speed of normal unstable modes for conjugate
state corresponding to the background density stratification (5.1) with
zp = 62 cm: continuous - d = 4 cm and dashed - d = 6 cm; (b) same as
(a) for zp = 17 cm.
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Figure 5.4. Black continuous - horizontal velocity and density profiles
for conjugate states in density stratification (5.1) with zp = 62 cm and
d = 6 cm. Red - optimal two layer approximation, Dashed - approximation
using tangent hyperbolic profile with thickness d = 6 cm.

Finally, we note that by using the optimal two layer prediction and assuming linear

density and velocity in the pycnocline region when reconstructing the horizontal velocity

profiles, the growth rates of the unstable modes are over-predicted – see Figure 5.5(a).

We argue that this is due to the fact that the optimal two-layer approximation, while

capturing the maximum slope of the density and velocity profile accurately, does not

predict correctly the thickness of the pycnocline. The predicted phase speed is almost

constant as opposed to the phase speed corresponding to the conjugate state normal
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(a) (b)

Figure 5.5. Black continuous - (a) growth rates, (b) phase speeds of
normal unstable modes for the conjugate state corresponding to the back-
ground density stratification (5.1) with zp = 62 cm with d = 6 cm; Red -
spectrum calculation by approximating the density and horizontal veloc-
ity in the pycnocline region with a linear profile; Dashed - approximating
the density and horizontal velocity with tangent hyperbolic profiles with
thickness d = 6 cm – see Figure 5.4.

modes – see Figure 5.5(b). This can be attributed to the departure from antisymmetry

that the actual shear and density profiles corresponding to the conjugate state exhibit –

see Figure 5.4, as opposed to the linear approximation which is antisymmetric.

Thus, in order to be able to use the optimal two layer approximation for studying the

unstable spectrum, better approximations for the horizontal velocity structure across the

pycnocline are needed. Nonetheless, the optimal two layer predictions for the minimum

Richardson number across the pycnocline are excellent. Since the criterion Ri < 1/4 for

the class of density and shear profiles considered is a good indicator of existence of local

unstable spectrum, the optimal two layer can be used to infer an amplitude threshold for

locally unstable solitary waves and determine the horizontal extent of the area of local

instability.
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APPENDIX A: Solitary waves on uniform layer currents

Closed form solutions for solitary waves in the most physically common situation of

fluid at rest at infinity can be found for the strongly nonlinear model Choi & Camassa

[7]. In this appendix, we want to extend the analysis to the situation of layers of inviscid

fluid in relative uniform motion. This setup is admittedly less likely to have physical

relevance, as a (constant) velocity jump cannot be sustained indefinitely as |x| → ∞

by real viscous fluids, however this investigation is relevant in the discussion of various

classes of periodic waves, where velocity jumps occur locally within the period.

Recently, it came to our attention that solitary wave solutions on relative currents

have been studied in laboratory experiments Gavrilov [16] where some comparison with

analytic solutions based on a strongly nonlinear two-fluid model Makarenko & Maltseva

[35] are reported.

Conditions of existence

In the following we will show that solitary wave solutions exist only for certain com-

binations of currents in the two layers. Throughout this Appendix, we shall work in the

frame of reference of the waves, i.e., that of an observer who sees the wave profile as con-

stant in time. We will thus study the two parameter family of solitary wave solutions on

a given reference state (given by the “hardware” parameters of heights and densities of

the undisturbed layers h1 , h2 and ρ1, ρ2, respectively), parametrized by the uniform cur-

rents at infinity in each of the two layers û1|∞ , û2|∞. We introduce the non-dimensional

parameters ρ ≡ ρ1/ρ2 , h ≡ h1/h2 , and note the relationships between the total height
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H = h1 + h2 and the widths of the layers

(A.1) h1 =
hH

1 + h
and h2 =

H

1 + h
.

First, we determine the quadrature form for arbitrary currents û1|∞, û2|∞ and subse-

quently determine the conditions which these currents must satisfy for solitary wave

solutions to exist. We can integrate directly the ordinary differential equations corre-

sponding to mass conservation (2.8), (2.9) and the two second order differential equations

(2.14) and (2.20), by using the boundary conditions ζ|±∞ = 0, ζX |±∞ = 0, ζXX |±∞ = 0,

respectively. We obtain the four integration constants in the quadrature as

C1 = h1û1|∞ ,(A.2)

C2 = h2û2|∞ ,(A.3)

C3 =
1

2

ρ1C
2
1

h1
2 −

1

2

ρ2C
2
2

h2
2

,(A.4)

C4 =
ρ1C

2
1

h1

+
ρ2C

2
2

h2

(
1− H

2h2

)
.(A.5)

Notice that the quadrature coefficients depend exclusively on the squares of the currents

in the wave frame û2
1|∞ and û2

2|∞, so for ease of notation we will use

(A.6) U1 ≡ û2
1|∞ , U2 ≡ û2

2|∞ ,

and suppress the dependence on these parameters as functional arguments, whenever

this can be done safely without generating confusion.
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The quadrature becomes

(A.7) ζ2
X = 3γ

ζ2 [ζ2 + q1(U1, U2)ζ + q2(U1, U2)]

ρ1h2
1U1η2 + ρ2h2

2U2η1

,

where

q1(U1, U2) =
1− h
1 + h

H +
1

1− ρ
ρU1 − U2

g
,(A.8)

q2(U1, U2) = − h

1 + h
H2 +

1

(1− ρ)(1 + h)

ρU1 + hU2

g
H .(A.9)

First, we observe that the root of the denominator in (A.7)

(A.10) a∗(U1, U2) =
h

1 + h

ρhU1 + U2

U2 − ρh2U1

H ,

is, in general, outside the physical domain except the limiting cases U1 = 0 or U2 = 0,

when a∗ equals h1 or −h2 respectively. The roots of the quadratic ζ2 + q1(U1, U2)ζ +

q2(U1, U2) determine whether a solitary wave solution exists: the discriminant has to be

positive

(A.11) ∆(U1, U2) ≡ q1(U1, U2)
2 − 4q2(U1, U2) > 0 ,

and the roots

(A.12) a−(U1, U2) ≡ −q1(U1, U2)

2
−
√

∆(U1, U2)

2
,
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and

(A.13) a+(U1, U2) ≡ −q1(U1, U2)

2
+

√
∆(U1, U2)

2
,

must have the same sign, since they cannot straddle the origin when the quartic has

positive coefficient for the fourth power ζ4 – see Figure A.1 for possible configurations.

For the two roots to be of the same sign, we must have

(A.14) q2(U1, U2) > 0 .

If these conditions are satisfied, the amplitude given by

a(U1, U2) = a+(U1, U2) if a− < a+ < 0

or

a(U1, U2) = a−(U1, U2) if 0 < a− < a+ ,

needs to be in the physical domain range

(A.15) a(U1, U2) ∈ (−h2, h1) ,

which imposes another constraint on the choice of parameters U1 and U2.

Next, we study the domain of existence of solitary waves in the quadrant for positive

U1 and U2 by looking at the behavior of the roots a−, a+ on lines

U2(κ) = κU1 , with κ ∈ [0,∞) .
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a− a+ a− a+

P (ζ) P (ζ)

ζ ζ

(a) (b)

Figure A.1. Possible configurations for root positions of the quartic nu-
merator of the quadrature (A.7).

The locus of the roots of the quadratic polynomial ζ2 + q1(U1, κU1)ζ + q2(U1, κU1) is

a hyperbola in the semi-plane (U1, ζ) given by

ζ2 +
ρ− κ
g(1− ρ)

U1ζ +
H(hκ+ ρ)

g(1− ρ)(1 + h)
U1 +

H(1− h)

1 + h
ζ − H2

(1 + h)2
= 0 ,

which degenerates into a parabola for κ = ρ – see Figure A.2. The hyperbola has two

branches, with vertices corresponding to vanishing of the discriminant ∆. Thus, to the

merging of the two roots a± into a nonzero double root, gives rise to a front solution,

i.e., a solution whose profile ζ(X) joins the asymptotic level as |X| → ∞ of ζ = 0 and

ζ = a+ = a− (sometimes referred to as conjugate states in internal wave literature). The

two vertices are

(U
(1)
1 (κ), ζ(1)(κ)) =

(
(1− ρ)

(
√
ρ−√κ)2

(κ− ρ)2
gH ,

h
√
κ−√ρ

(1 + h)(
√
κ+
√
ρ)
H

)
,(A.16)

(U
(2)
1 (κ), ζ(2)(κ)) =

(
(1− ρ)

(
√
ρ+
√
κ)2

(κ− ρ)2
gH ,

h
√
κ+
√
ρ

(1 + h)(
√
κ−√ρ)

H

)
,(A.17)

when κ 6= ρ. When κ = ρ the vertex of the corresponding parabola is given by

(U
(1)
1 (κ), ζ(1)(κ)) =

(
(1− ρ)

4ρ
gH,

(h− 1)

2(1 + h)
H

)
.
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We now show that only one of the hyperbola branches has a portion located inside the

physical domain which corresponds to solitary wave solutions. Indeed,

ζ(2)(κ) > h1 for κ > ρ ,

and

ζ(2)(κ) < −h2 for κ < ρ ,

respectively.

The (transverse) axis of this hyperbola is the line

q1(U1, κU1) = 0 ,

while one asymptote is a horizontal line that goes through the center of the hyperbola.

whose height is at

ζc(κ) = − 1

D

∣∣∣∣∣∣∣∣
0

H

2g

hκ+ ρ

(1− ρ)(1 + h)
ρ− κ

2g(1− ρ)

H(h− 1)

2(1 + h)

∣∣∣∣∣∣∣∣ ,

with

D =

∣∣∣∣∣∣∣∣
0

ρ− κ
2g(1− ρ)

ρ− κ
2g(1− ρ)

1

∣∣∣∣∣∣∣∣ ,
hence

ζc(κ) =
H

1 + h

hκ+ ρ

κ− ρ .

Thus, the center will be outside of the physical domain, since ζc(κ) > h1 for κ > ρ ,

or ζc(κ) < −h2 for κ < ρ , which implies the whole branch corresponding to the second
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ζ

U1

ζc ζ = − q1(U
1)

2

h1

−h2

U
(1)
1

U
(2)
1


ζ

U1

ζc ζ = −
q1(U1)

2h1

−h2

U
(1)
1

U
(2)
1

(a) (b)
ζ

U1

h1

−h2

U
(1)
1

ζ = −q1(U1)
2

(c)

Figure A.2. Roots of the quadratic ζ2 + q1ζ+ q2 for (a) κ < ρ, (b) κ > ρ
and (c) κ = ρ. Thicker segments mark the amplitude of solitary wave
solutions.

vertex (A.17) is. We remark that this second branch of solutions could still be useful

for constructing weak solutions of the quadrature, which could then be interpreted as

gravity currents. Such a study is worth pursuing but lies outside of the main focus of

this paper and will be left for future work.

The first branch has a portion in the physical domain, since a+(0, 0) = h1, a−(0, 0) =

−h2 and ζ(1)(κ) ∈ (−h2, h1) . However, only a segment of this branch corresponds to

solitary wave solutions, namely the segment for which the condition

q2(U1, κU1) ≥ 0 ,
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holds. We infer that solitary wave solutions exist for

U1 ∈ [U1min(κ) , U1max(κ)] ,

with U1min(κ) root of equation q2(U1, κU1) = 0 ,

(A.18) U1min(κ) =
(1− ρ)h

(1 + h)(ρ+ hκ)
gH ,

and

(A.19) U1max(κ) = U
(1)
1 (κ) = (1− ρ)

(
√
ρ−√κ)2

(κ− ρ)2
gH .

The amplitudes of the solitary waves along the line U2 = κU1 for U1 ∈ [U1min(κ),

U1max(κ)] vary between zero and

(A.20) amax(κ) = ζ(1)(κ) =
h
√
κ−√ρ

(1 + h)(
√
κ+
√
ρ)
H ,

having the sign given by the sign of amax(κ). We thus have

(A.21) a(U1, κU1) =
−q1(U1, κU1)− sgn(h

√
κ−√ρ)

√
∆(U1, κU1)

2
.

We remark that in the limiting case κ = 0 (which implies U2 = 0) the locus of the roots

becomes a degenerate hyperbola, i.e., two straight crossing lines – see Figure A.4. The

intersection point of the two lines is given by

(U
(1)
1 , ζ(1)) = (U

(2)
1 , ζ(2)) = ((1/ρ− 1)gH ,−h2) .
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ζ

U1

h1


ζ = − q1(U

1)
2

ζ

R(ζ)

+

(a) (b)

(1/ρ− 1)gH

a− = a∗ = −h2

a

Figure A.3. (a) Roots of the quadratic ζ2 + q1ζ + q2 for U2 = 0. (b) The
potential becomes a cubic polynomial since a− = a∗.

ζ

U2

h1

−h2

ζ = −
q1(U2)

2

ζ

R(ζ)

(a) (b)

= a∗ =
(1− ρ)gH

a+
a−

0

Figure A.4. (a) Roots of the quadratic ζ2 + q1ζ + q2 for U1 = 0. (b) The
potential becomes a cubic polynomial since a+ = a∗.

Note that for this degenerate case the whole segment including end points is populated

by true solitary waves (not limiting to fronts), since the root of the denominator (A.10)

becomes a∗ = a− = −h2 , so that the quadrature potential collapses to a cubic. Hence

the solitary wave of maximum amplitude in this case is not a front, rather a solitary

wave whose maximum depression (trough) touches the bottom wall. Conversely, when

κ→∞ (which implies U1 = 0) the locus of the roots is the degenerate hyperbola

ζ2 +
1

g(1− ρ)
U2ζ +

Hh

g(1− ρ)(1 + h)
U2 +

H(h− 1)

1 + h
ζ − H2h

(1 + h)2
= 0
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with the intersection point located at

(U
(1)
2 , ζ(1)) = (U

(2)
2 , ζ(2)) = ((1− ρ)gH , h1) .

The root of the denominator becomes in this instance a∗ = a+ = h1 hence the solitary

wave of maximum amplitude is a solitary wave with the peak touching the top wall.

Domain of existence

We now can construct the domain in the parameter space (U1 , U2) for which traveling

wave solutions exist – see Figure A.5. The curve ∆(U1, U2) = 0 is a parabola in the plane

(U1 , U2) tangent to the axis U2, U1 at the points

A = (0, (1− ρ)gH) and B = ((1/ρ− 1) gH, 0) ,

and corresponds to front-like solutions. The domain in the plane (U1, U2) to the left of

the parabola (so that ∆(U1, U2) > 0 and roots are real) contains the origin. At the right

of the parabola ∆(U1, U2) the roots are complex. Note that the curve ∆(U1, U2) = 0 does

not have explicit dependence on the ratio of the heights. We can determine an explicit

formula for this branch

(A.22) U2(U1) =
(√

1− ρ
√
gH +

√
ρ
√
U1

)2

, U1 ∈ (0, (1/ρ− 1)gH) .

The amplitude of the corresponding fronts, by equation (A.16), is

(A.23) af (U1) = h1 −
√

ρ

1− ρ

√
U1

gH
H .
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The line q2(U1, U2) = 0, which corresponds to the limiting amplitude zero, is tangent

to the parabola at the point

C =

(
1− ρ
ρ

(
h

1 + h

)2

gH , (1− ρ)

(
1

h+ 1

)2

gH

)
,

and should correspond to the critical speed determined by the parent Euler system for

infinitesimal amplitude waves on relative layer currents. The region in the (U1, U2) plane

for which the roots have the same sign is delimited by this line, and does not contain the

origin. We can conclude that the domain of existence for solitary waves is the domain

in the plane (U1, U2) delimited by the arc of parabola ÂCB, the line q2(U1, U2) = 0 and

the two axes. The line q1(U1, U2) = 0, which corresponds to roots equal and of opposite

sign in the quadrature, intersects q2(U1, U2) = 0 through the point C. This line divides

the domain of existence in two sub domains. For q1 > 0 we have a− < a+ < 0, which

corresponds to solitary waves of depression, with amplitude given by a+, whereas for

q1 < 0 we have 0 < a− < a+, which corresponds to solitary waves of elevation, with

amplitude given by a−– see Figure A.1.

We note that when ρh2U1 − U2 = 0 the denominator of the quadrature (A.7) de-

generates into a constant. This equation corresponds to a line in the plane (U1, U2)

on which the solitary wave solutions are given by elementary functions (combination of

exponentials) rather than elliptic functions.

In Table 1 we summarize the analytical formulas for the wave shape and the effective

wavelength for solitary wave solutions, for all possible relationships between the non-

dimensional parameters κ, h and ρ. We also emphasize the afore-mentioned degeneracies

of the elliptic functional form of solutions to elementary functions along the line ρh2U1−
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Figure A.5. Domain of existence for solitary waves on uniform current
for (a) h <

√
ρ, (b) h =

√
ρ, (c) h >

√
ρ . Region I corresponds to solitary

waves of elevation (q1 < 0). Region II corresponds to solitary waves of
depression (q1 > 0).

U2 = 0 (cases (v) and (vi)) and when either U1 or U2 is zero (case (vii)). In Table 2 we

present closed form expressions for the wave shape of the front solutions.

Relation to solutions of full Euler two-layer system

In the neighborhood of the points A and B, on the front branch, the height of one

of the two layers becomes infinitesimally small. Thus, this regime should rightly belong

to the deep water configuration setup, for which a different asymptotic scaling from the

shallow water approximation becomes necessary. We can in fact assess the validity of
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Case X(ζ)/ Effective wavelength

(i)
√
κ < min(h

√
ρ,
√
ρ

h
) , µX =

2√
a+ − a∗

[
a∗(a+ − a−)

a−a+

Π(φ, α2, k) +
a− − a∗
a+

F (φ, k)

]
,

a∗ < a− < a+ < 0 . λI =
2

µa+

[
√
a+ − a∗(F (δ, k)− E(δ, k)) +

√
a+|a∗|
a−

]
,

k2 = a−−a∗
a+−a∗ , sinφ =

√
a+−ζ
a−−ζ , sin δ =

√
a+

a−
.

(ii) h
√
ρ <
√
κ <

√
ρ

h
, µX =

2√
a∗ − a−

[
a∗(a+ − a−)

a−a+

Π(φ, α2, k) +
a∗(a− − a∗)

a−a+

F (φ, k)

]
,

a− < a+ < 0 < a∗ . λI =
2

µa+

[√
a∗ − a−(F (δ, k)− E(δ, k)) +

√
a+a∗
a−

]
,

k2 = a+−a∗
a−−a∗ , sinφ =

√
(a∗−a−)(a+−ζ)
(a∗−a+))(a−−ζ) , sin δ =

√
a+(a∗−a−)
a−(a∗−a+)

.

(iii)
√
ρ

h
<
√
κ < h

√
ρ , µX =

2√
a+ − a∗

[
a∗(a− − a+)

a−a+

Π(φ, α2, k) +
a+ − a∗
a+

F (φ, k)

]
,

a∗ < 0 < a− < a+ . λI =
2

µa−

[
√
a+ − a∗(F (δ, k)− E(δ, k)) +

√
a−|a∗|
a+

]
,

k2 = a−−a∗
a+−a∗ , sinφ =

√
(a+−a∗)(a−−ζ)
(a−−a∗)(a+−ζ) , sin δ =

√
a−(a+−a∗)
a+(a−−a∗) .

(iv)
√
κ > max(h

√
ρ,
√
ρ

h
) , µX =

2√
a∗ − a−

[
a∗(a− − a+)

a−a+

Π(φ, α2, k) +
a+ − a∗
a+

F (φ, k)

]
,

0 < a− < a+ < a∗ . λI =
2

µa−

[√
a∗ − a−(F (δ, k)− E(δ, k)) +

√
a∗a−
a+

]
,

k2 = a+−a∗
a−−a∗ ,sinφ =

√
a−−ζ
a+−ζ , sin δ =

√
a−
a+
.

(v)
√
κ = h

√
ρ <

√
ρ

h
, τX =

1√
a−a+

log

 (a− − a+)ζ(√
a−(a+ − ζ) +

√
a+(a− − ζ)

)2

 ,
a− < a+ < 0 , a∗ = +∞ . λI =

2

τa+

log

√|a+| −
√|a−|√|a+| −
√|a−| .

(vi)
√
κ = h

√
ρ >

√
ρ

h
, τX =

2

a−a+

tanh−1

[
a+(a− − ζ)

a−(a+ − ζ)

]
,

0 < a− < a+ , a∗ = −∞ . λI =
2

τa−
tanh−1

√
a−
a+

.

(vii) a∗ = a− ≤ a ≡ a+ < 0 , µX =
1√|a|
[

log
a

ζ
+ 2 log

(
1 +

√
1− ζ

a

)]
, λI =

2

µ
√|a| .

0 < a ≡ a− ≤ a+ = a∗ .

Table 1. Formulas for wave shapes and the effective wavelength of soli-
tary wave solutions on uniform currents. (i) - (vi) The solutions are
parametrized by U1 and κ with U2 = κU1. The roots a− , a+ , a∗ are given
by relations (A.12), (A.13) and (A.10), respectively.

µ2 = 3g(1−ρ)
h2
2U1|ρh2−κ| , τ

2 = 3g(1−ρ)
h1h2

2U1(ρ+κh)
. F ,E ,Π are elliptic integrals of first,

second and third kind. (vii) The solutions correspond to the cases U1 = 0
and U2 = 0, respectively.

each solitary wave solution in the domain of existence (see in particular Figure A.5), by
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Case X(ζ)

(i)
√
κ < min(h

√
ρ,
√
ρ

h
) , µX =

1

a

[
−Xf (ζ, a, a∗) +Xf (

a

2
, a, a∗)]

]
.

a∗ < a < 0 .

(ii) h
√
ρ <
√
κ <

√
ρ

h
, µX =

1

a

[
−Xf (−ζ,−a,−a∗) +Xf (−a

2
,−a,−a∗)]

]
.

a < 0 < a∗ .

(iii)
√
ρ

h
<
√
κ < h

√
ρ µX =

1

a

[
Xf (ζ, a, a∗)−Xf (

a

2
, a, a∗)]

]
.

a∗ < 0 < a .

(iv)
√
κ > max(h

√
ρ,
√
ρ

h
) , µX =

1

a

[
Xf (−ζ,−a,−a∗)−Xf (−a

2
,−a,−a∗)]

]
.

0 < a < a∗ .

(v)
√
κ = h

√
ρ <

√
ρ

h
, τX =

1

a
log

ζ

a− ζ .
a < 0 , a∗ = +∞ ,√
κ = h

√
ρ >

√
ρ

h
,

0 < a , a∗ = −∞ .

Table 2. Formulas for wave shapes of front solutions on uniform currents.
The solutions are parametrized by κ. U2 = κU1 with U1 given by (A.19).
The roots a = a− = a+ and a∗ are given by the relations (A.20) and

(A.10), respectively. µ2 = 3g(1−ρ)
|ρh2

1−κh2
2|
, τ 2 = 3g(1−ρ)

h1h2
2U1(ρ+κh)

, Xf (x, y, z) = (y −
z)1/2 log

[
(y−z)1/2+(x−z)1/2

(y−z)1/2−(x−z)1/2

]
− (−z)1/2 log

[
(x−z)1/2+(−z)1/2

(x−z)1/2−(−z)1/2

]
.

computing the associated long wave parameter based on maximum slope – see relation

(2.84) (or on effective wavelength – see relation (2.83)).

The maximum slope of the wave profile is achieved at the inflection point ζI , which

thus satisfies the equation

(A.24) ζXX(ζI) = 0 .

The second derivative ζXX can be computed by differentiating relation (A.7) while mak-

ing use of the chain rule. Let R(ζ) denote the rational function at the LHS of (A.7). We
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obtain

(A.25) ζXX(ζ) =
1

2

∂R

∂ζ
.

With the second derivative ζXX now defined by the RHS of (A.25), equation (A.24)

becomes a quadratic equation in the case of fronts or cubic equation in the case of

solitary waves, respectively, with ζI being its root in the interval (0, a). The maximum

slope can thus be determined by

(A.26) max ζX =
√
R(ζI) .

The boundary of the domain of existence consisting of fronts represents in fact actual

front solutions of Euler equations. [15] have derived relationships between speed and

amplitude for front solutions of Euler equations (no assumption of constant currents at

infinity) by using conservation of mass, of horizontal momentum and the continuity in

pressure at the interface (which in fact is equivalent to the conservation of energy).

Below, following [15], we derive the current-amplitude relations for front (conjugate

states) solutions for the Euler system, and show that we obtain the same relations as the

ones derived from the strongly nonlinear model.

We fix the heights of the layers at +∞ be h1, h2 and the densities in each layer. Let

the currents at infinity in the wave frame be denoted by û1|∞, û2|∞ and û1|−∞, û2|−∞ at

±∞, respectively. We are looking for front solutions of amplitude a, that is, the heights

at −∞ are h1−a, h2+a. Therefore, the five quantities û1|∞, û2|∞, û1|−∞, and û2|−∞ and

a are the free parameters. We have four constraints: mass conservation in each layer,
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continuity of pressure at the interface and horizontal momentum conservation. Thus the

fronts constitute a one parameter family of solutions. Mass conservation implies

(h1 − a)û1|−∞ = h1û1|∞ ,

(h2 + a)û2|−∞ = h2û2|∞ .

We can thus express the currents in the wave frame at −∞ in terms of the currents at

+∞,

û1|−∞ =
h1

h1 − aû1|∞ ,(A.27)

û2|−∞ =
h2

h2 + a
û2|∞ .(A.28)

The Bernoulli law (conservation of energy) in layer k is

(A.29) Rk = pk + ρk((ûk)
2 + (v̂k)

2)/2 + ρkgz ≡ const .

We apply this at the interface in each layer to obtain, using again the notation defined

by (A.6) modified in an obvious manner,

P−I +
ρ1U

−
1

2
+ ρ1ga = P+

I +
ρ1U

+
1

2
,(A.30)

P−I +
ρ2U

−
2

2
+ ρ2ga = P+

I +
ρ2U

+
2

2
,(A.31)
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where P−I and P+
I are the pressures at the interface at ±∞, respectively. By substracting

these two relations we have

(A.32) U−2 − U+
2 + ρ(U+

1 − U−1 ) + 2 a g(1− ρ) = 0 ,

which by using (A.27)–(A.28) can be written as

(A.33)
ρ(a− 2h1)

(h1 − a)2
U+

1 −
(a+ 2h2)

(h2 + a)2
U+

2 + 2g(1− ρ) = 0 .

For the conservation of the horizontal momentum we use the invariance of the “flow

force” (horizontal momentum flux)

(A.34) S =

∫ h1

−h2

(p+ ρû2)dz .

At −∞ the flow force is

(A.35) S− =

∫ a

−h2

(p2 + ρ2U
−
2 )dz +

∫ h1

a

(p1 + ρ1U
−
1 )dz .

By using the Bernoulli law (A.29) and again equations (A.27)–(A.28) we can write the

above equation as

S− =

∫ a

−h2

(
R2 − ρ2gz +

ρ2U
−
2

2

)
dz +

∫ h1

a

(
R1 − ρ1gz +

ρ1U
−
1

2

)
dz

= R2(a+ h2) +R1(h1 − a) +
(ρ1 − ρ2)ga

2

2
+
ρ2gh

2
2

2
−

− ρ1gh
2
1

2
+

ρ1U
+
1 h

2
1

2(h1 − a)
+

ρ2U
+
2 h

2
2

2(h2 + a)
.(A.36)
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The flow force at +∞ is

(A.37) S+ = R2h2 +R1h1 +
ρ2gh

2
2

2
+
ρ1gh

2
1

2
+
ρ1U

+
1 h1

2
+
ρ2U

+
2 h2

2
.

The horizontal momentum conservation implies S− = S+ hence from (A.36) and (A.37)

we obtain

(A.38) R2 −R1 +
(ρ1 − ρ2)ga

2
+

ρ1h1

2(h1 − a)
U+

1 −
ρ2h2

2(h2 + a)
U+

2 = 0 .

Continuity in pressure at the interface at +∞ implies

R2 −R1 =
ρ2U

+
2

2
− ρ1U

+
1

2
,

hence we can write (A.38) as

(A.39)
ρU+

1

h1 − a +
U+

2

h2 + a
+ (ρ− 1)g = 0

We have obtained a system of two equations (A.33) and (A.39) for three unknowns

U+
1 , U+

2 and a. Solving for U+
1 and U+

2 as functions of a yields

U+
1 =

g(h1 − a)2(1− ρ)

ρH
,(A.40)

U+
2 =

g(a+ h2)
2(1− ρ)

H
.(A.41)

Because a < h1, a can be eliminated from the first equation to give

a = h1 −
√

ρH

(1− ρ)g
U+

1 ,(A.42)

206



which is identical to the amplitude formula from the quadrature (A.23). By replacing

this in the second equation we obtain an explicit expression for the front branch in the

parameter space U+
1 , U+

2

U+
2 (U+

1 ) =

(√
Hg(1− ρ) +

√
ρ
√
U+

1

)2

,

which is identical to the formula from the quadrature (A.22).
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APPENDIX B: Solitary waves in “artificial” parameters

The domain of existence in the parameter space (β , c) of solitary waves with the

prescribed fluxes (2.70) can be found by fixing β and determining the range of speeds c

for which solitary waves with property (2.70) exist.

From (2.70), with ηk|∞ = hk + (−1)kβ, we can determine the current at infinity in

the wave frame in each layer

û1|∞ = − ch1

h1 − β ,(B.1)

û2|∞ = − ch2

h2 + β
.(B.2)

Note that for obtaining the range of phase speeds c for fixed β, we can mirror the

discussion in Appendix A by shifting the heights of the asymptotic level as |X| → ∞

(B.3) h1 ≡ h1 − β , h2 ≡ h2 + β , h ≡ (h1 − β)/(h2 + β)) ,

and study solitary waves on currents parametrized by

(B.4) U1 =
c2h2

1

(h1 − β)2
,

on a line in the parameter space (U1 , U2) given by

(B.5) U2 = κU1 with κ =
h2

2(h1 − β)2

h2
1(h2 + β)2

.
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Thus, by using (B.1 - B.5), the relationships (A.7 - A.9) from Appendix A become

q1(c ; β) = −h1 + h2 + 2β +
c2

γ

[
ρ1h

2
1

(h1 − β)2
− ρ2h

2
2

(h2 + β)2

]
,(B.6)

q2(c ; β) = −(h1 − β)(h2 + β) +
c2

γ

[
ρ1h

2
1(h2 + β)

(h1 − β)2
+
ρ2h

2
2(h1 − β)

(h2 + β)2

]
.(B.7)

The discriminant of the quadratic form ζ2 + q1ζ + q2 is

(B.8)

∆(c ; β) = H2 − 2H

γ

[
ρ1h

2
1

(h1 − β)2
+

ρ2h
2
2

(h2 + β)2

]
c2 +

1

γ2

[
ρ1h

2
1

(h1 − β)2
− ρ2h

2
2

(h2 + β)2

]2

c4 ,

whereas the root at the denominator (A.10) becomes

(B.9) a∗(β) =
ρrh

2
r(h2 + β) + h1 − β

1− ρrh2
r

,

where hr = h1/h2 and ρr = ρ1/ρ2.

Based on the results in Appendix A, and by using (B.1 - B.5) we can infer that

solitary waves solutions with the property (2.70) for fixed β exist for

c ∈ [cmin(β), cf (β)] ,

where relationships (A.18) and (A.19) for the speed of the limiting cases of solitary and

front solutions turn into

(B.10) cmin(β) =

√
γ(h1 − β)3(h2 + β)3

ρ1h2
1(h2 + β)3 + ρ2h2

2(h1 − β)3
,
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and

(B.11) cf (β) =
√
g(1− ρr)H (h1 − β)(h2 + β)√

ρrh1(h2 + β) + h2(h1 − β)
,

respectively. The corresponding maximum amplitude is given by equation (A.20) modi-

fied by the new β-shifted asymptotic heights

(B.12) af (β) =
(h1 − β)2 − hr√ρr(h2 + β)2

(hr
√
ρr − 1)β + hr

√
ρrh2 + h1

.

As in Appendix A, the polarity of the family of solitary waves parametrized by β is given

by the sign of the amplitude of the front (B.12). We thus have, from (B.12),

af (β) < 0 for β < β0 and af (β) > 0 for β > β0 ,

with

(B.13) β0 =
H

1 + hr

hr −
√
hr
√
ρr

1 +
√
hr
√
ρr

.

The amplitude of the foliating family of solitary waves parametrized by β is therefore

(B.14) a(c ; β) =
−q1(c ; β) + sgn(β0 − β)

√
∆(c ; β)

2
, c ∈ [cmin(β), cf (β)] .

We can eliminate β from (B.12) as root of the quadratic equation that is in the range

[−h2, h1],

(B.15) βf (a) = −a
2

+
h1(
√
ρr + 1)

1− hr√ρr −
√
a2(1− hr√ρr)2 + 4H2hr

√
ρr

2(1− hr√ρr) ,
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and substituting in (B.11) we obtain an explicit formula for the amplitude-speed relation

for the front branch subject to restriction hr
√
ρr 6= 1

cf (a) =
√
Hg

(1 + hr)
√

1− ρr
(hr
√
ρr − 1)2

(
hr
√
ρr + 1−

√( a
H

)2

(hr
√
ρr − 1)2 + 4hr

√
ρr

)
.

For the special depth ratio hr
√
ρr = 1 the above expression becomes invalid. In this case

the dependence of af on β is linear and equation (B.12) becomes

(B.16) af (β) = h1 − h2 − 2β ,

with the maximum speed (B.11) for this case being

(B.17) cf (β) =
√
Hg

(1 + hr)
2

hr

√
1−√ρr
1 +
√
ρr

(h1 − β)(h2 + β)

H2
.

The front branch amplitude-speed relation in this special case hr
√
ρr = 1 is therefore

(B.18) cf (a) =
√
Hg

(1 + hr)
2

4hr

√
1−√ρr
1 +
√
ρr

(
1−

( a
H

)2
)
.

In order to emphasize the special cases hr =
√
ρr and hr = 1/

√
ρr and the associated

degeneracies, we present in Figure B.1 the functions af (β), cf (β) and cf (a) for two fixed

depth ratios hr < 1 and hr > 1, respectively, and varying density ratios ρr ∈ (0, 1).

We note that the front branch cf (a) is symmetric with respect to c axis; the level β

corresponding to af = 0 is given by β0.

Finally, we note how a simple geometric construction based on the effective wave-

length can give an approximate relation speed-amplitude relation for given period, based
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Case I: hr < 1
af

√
ρr = hr

√
ρr = hr

√
ρr = hr

cf

af

cf

β0

(−h2 , H )

(h1 , H )

−H H

Case II: hr > 1

h2 − h1

2

h2 − h1

2

cf
cf

af

β0

af

(−h2 , H )

(h1 , H )

−H H

Figure B.1. Amplitude and speed of the front as functions of β; speed
of the front as function of amplitude for values of ρr ∈ (0, 1).
(I) Depth ratio fixed hr < 1. The thicker curve corresponds to

√
ρr = hr,

critical depth ratio. In this particular instance β0 = 0.
(II) Depth ratio fixed hr > 1. The thicker curve corresponds to hr

√
ρr = 1.

In this instance, the front branch c(A) becomes a parabola.

on the observation that actual periodic solutions are very close to their limiting foliat-

ing solution if the period is sufficiently large. In fact, equating the area in the strip of

height β and width L to the area under the solitary wave profile 2AλI , gives, because

the fast exponential decay of solitary waves, the position β and speed c corresponding

to a mean-zero period-L wave in the constrained class. For a configuration of periodic

waves approaching solitary waves of depression, this is determined by

(B.19)
βL

2
=

2

µ(β,A)

[√
a∗(β)− a−(β,A) (F (δ, k)− E(δ, k)) +

√
Aa∗(β)

a−(β,A)

]
,
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β

h1

−h2

A

L

βL

2AλI

Figure B.2. Sketch of the approximation for periodic wave solutions close
to their solitary wave limit. The crest position β of a periodic solution for
given amplitude A and period L can be determined by equating the area
under the foliating solitary wave profile with the area above the mean level
over a period L.

where the modulus and argument of the elliptic functions depend on β and A through

k2 =
A+ a∗(β)

a∗(β)− a−(β,A)
,m2 =

a−(β,A)

A

a∗(β) + A

a−(β,A)− a∗(β)
, sin δ =

1

m
,

a∗(β) is given by (B.9), whereas

a−(β,A) = A− q1(c(β,A); β) ,

with q1 given by (B.6). We can obtain an explicit dependence of c on β and A by

imposing that ζ = −A is a root of the quadratic ζ2 + q1(c; β)ζ + q2(c; β) and thus obtain

a linear equation in c2. This construction is illustrated in Figure B.2.
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APPENDIX C: Implementation of the TEW algorithm for

computing solitary internal waves solutions in continuously

stratified fluid

In the current appendix, we first briefly review the computational method for de-

termining fully nonlinear solitary wave solutions of Euler equations in continuous strat-

ification presented in Turkington et al. [51] (TEW algorithm), and then describe our

numerical implementation (the Fortran codes are included). While we have not modified

the structure of the original algorithm, we propose an improved diagnostic for conver-

gencevwhich becomes necessary when highly converged solutions are sought.

Furthermore, in this work (Chapters 3 and 4 of this thesis) we are interested in solitary

wave solutions in stratifications with narrow pycnoclines. As observed in Turkington

et al. [51] the convergence of the algorithm is greatly reduced in this particular limit. We

remark that Lamb [32] has also observed slow converge rates of the TEW algorithm when

the minimum Richardson number approaches the 0.25 threshold, being able to compute

converged solutions with Richardson number as low as Rimin ≈ 0.23. For Richardson

number under 0.23 however, his implementation failed to converge; Lamb attributed this

convergence failure to the intrinsic instability of the solutions sought. While we do not

necessarily disprove this conjecture, by adjusting some of the parameters that control the

convergence of the scheme, we are able to determine converged solutions in stratifications

with narrow pycnoclines that have regions with Richardson number as low as ≈ 0.07.
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TEW Algorithm

Variational principle. The method described in Turkington et al. [51] relies on a vari-

ational formulation for the Dubreil Jacotin-Long (DJL) equation which governs the mo-

tion of steady flow in a continuously-stratified, inviscid, incompressible and non-diffusive

fluid. Assuming that there are no close isopycnal surfaces, Turkington et al. [51] expressed

the DJL equation in terms of a single unknown function η(x , z), which represents the

vertical displacement of the isopycnal surface passing through the point (x , z) from its

undisturbed level at ±∞. The resulting nonlinear eigenvalue problem is

(C.1) Mη =
λη

H
ρ(z − η) in D ,

where D = {{(x, z) ∈ R2 : −∞ < x < ∞ , 0 < z < H}} denotes the fluid domain, ρ(z)

is the background stratification, M denotes the quasilinear operator

Mη := −(ρ(z − η)ηx)x − (ρ(z − η)ηz)z − 1

2
|∇η|2ρ′(z − η) ,

whereas the eigenvalue parameter is defined by

(C.2) λ =
gH

c2
,

with c being the phase speed of the wave. The boundary conditions for the vertical

displacement are

(C.3) η = 0 on ∂D , η → 0 as x→ ±∞ .
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The equation (C.1) admits a variational formulation as follows. Let the objective and

constraint functionals, respectively, be defined as

(C.4) E(η) =

∫
D

1

2
|∇η|2ρ(z − η)dx dz ,

and

(C.5) F (η) =

∫
D

f(z , η)dx dz ,

with

f(z , η) =
1

H

∫ η

0

[ρ(z − η)− ρ(z − ξ)] dξ .

Then a pair (η , λ) (with η satisfying the boundary conditions (C.8)) that satisfies the

condition

E(η)→ min subject to F (η) = A > 0 ,

is a solution of equation (C.1). It is straightforward to verify that if η is a minimizer and

λ the associated Lagrange multiplier then (C.1) holds, since

E ′(η) = Mη , F ′(η) = − η

H
ρ′(z − η) ,

where prime denotes the functional derivative in η.

Note that c2E represents the kinetic energy of the wave in the lab frame whereas

gHF (η) represents the potential energy of the wave disturbance. Thus the physical

interpretation of the variational principle mentioned above is quite appealing: a solitary
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wave solution minimizes the kinetic energy of the admissible variations for a prescribed

potential energy.

Semilinear form of the eigenvalue problem. The first step in the numerical solu-

tion of (C.1) consists in a change of variable that transforms the quasilinear eigenvalue

problem (C.1) in η into a semilinear eigenvalue problem in φ, which in turn can be solved

numerically via a constrained-optimization technique. Thus by setting

(C.6) φ = s(z)− z(z − η) with s(z) =

∫ z

z0

√
ρ(ξ)dξ .

the eigenvalue problem (C.1) becomes

(C.7) −∆φ+ s′′(z)− s′′(s−1(s(z)− φ)) = −2λ

H

[
z − s−1(s(z)− φ)

]
s′′(s−1(s(z)− φ)) ,

with boundary conditions

(C.8) φ = 0 on ∂D , φ→ 0 as x→ ±∞ .

The objective and constraint functionals become

(C.9) E(φ) =

∫
D

[
1

2
|∇φ|2 + e(z , φ)

]
dx dz ,

and

(C.10) F (φ) =

∫
D

f(z , φ)dx dz ,
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where

(C.11) e(z , φ) =

∫ φ

0

[
s′′(z)− s′′(s−1(s(z)− ξ))] dξ ,

and

(C.12) f(z , φ) = − 2

H

∫ φ

0

[
z − s−1(s(z)− ξ)] s′′(s−1(s(z)− ξ))dξ .

The semilinear eigenvalue problem (C.7) can be written in terms of the functional deriva-

tives of f and e

(C.13) −∆φ+ eφ(z , φ)− λfφ(z , φ) = 0 .

We record here the functional derivatives of f and e which are going to be useful in the

subsequent development. Thus

eφ = s′′(z)− s′′(s−1(s(z)− φ)) ,

fφ = − 2

H

[
z − s−1(s(z)− φ)

]
s′′(s−1(s(z)− φ)) ,

eφφ =
s′′′(s−1(s(z)− φ))

s′(s−1(s(z)− φ))
,

fφφ = − 2

H

s′′(s−1(s(z)− φ))

s′(s−1(s(z)− φ))
+

2

H

[
z − s−1(s(z)− φ)

] s′′′(s−1(s(z)− φ))

s′(s−1(s(z)− φ))
,

We also record the bounds

(C.14) a = max[eφφ(z , φ)]− ,
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(C.15) b = max[fφφ(z , φ)]− ,

Finally, at the basis of the minimization technique lays the assumption that the objective

functional E is convex, which Turkington et al. [51] enforced by requiring

a < (π/H)2 .

It is important to mention here that the above condition is not a necessary condition

for convexity; furthermore it is not met in the case of many of the stratifications with

narrow pycnoclines considered throughout this thesis.

Iterative scheme. Turkington et al. [51] introduced a globally convergent iterative al-

gorithm that solves the semilinear problem (C.7) by casting it in the form of a quadratic

programming subproblem. In the following, we succinctly present their strategy, empha-

sizing the steps which are relevant to our numerical implementation. The convergence

of the iterative scheme relies upon the convexity of two functionals: F + βE and E

respectively. β is chosen such that

(C.16) β(π2/H2 − a)− b > 0 ,

with a, b given by (C.14)-(C.15). Then by choosing

(C.17) α = max[eφφ(z , φ)]+ ,

E can be split as

E = E+ − E− ,
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with

E+ =

∫ [
1

2
|∇φ|2 +

α

2
φ2

]
dx dz ,

convex and quadratic and

E− =

∫ [α
2
φ2 − e(z , φ)

]
dx dz ,

convex.

Thus, with the above notation, the iterative algorithm is described as follows. Let

φ0 be an initial condition satisfying F (φ0) = A. The iterative step φk → φk+1 consists

in solving the problem

E+(φ)−E−(φk)−〈E ′−(φk), φ−φk〉 → min over F (φk)+ 〈F ′(φk)+βE ′(φk), φ−φk〉 ≥ A ,

where 〈· , ·〉 denotes the inner product

〈u , v〉 =

∫
D

uv dz dx .

The explicit construction of the iterative scheme is reducible to the following three

parts:

(1) Solve the two elliptic boundary value problems ( in vk and wk)

(−∆ + α)vk = αφk − eφ(z, φ) in D , vk = 0 on ∂D ,(C.18)

(−∆ + α)wk = fφ(z, φ) in D , wk = 0 on ∂D .(C.19)
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(2) Evaluate the four integrals

S1 =

∫
D

fφ(z, φk)wk dx dz ,(C.20)

S2 =

∫
D

fφ(z, φk)(φk − vk) dx dz ,(C.21)

S3 =

∫
D

[|∇(φk − vk)|2 + α(φk − vk)2
]
dx dz ,(C.22)

F (φk) =

∫
D

f(z , φk) dx dz ,(C.23)

(3) Define

µk+1 = max

[
0,
A− F (φk) + S2 + βS3

S1 + 2βS2 + β2S3

]
,(C.24)

φk+1 = vk + µk+1
[
wk + β(φk − vk)] ,(C.25)

λk =
µk

1− βµk .(C.26)

Numerical implementation

In our implementation of the TEW algorithm the Poisson problems (C.18), (C.19)

are solved by a FFT method as follows. First, the infinite strip domain D is truncated

assuming periodicity in the horizontal direction. The period is chosen large enough so to

ensure adequate decay at the horizontal boundaries. Taking advantage of the homoge-

neous boundary conditions at the top and bottom boundaries, we mirror the domain in

the vertical direction, imposing periodic boundary conditions in both directions on the

resulting domain. The equations are thus solved in Fourier space, the ensuing method

having order of convergence four.
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The integral (C.22) can be rewritten by using integration by parts and relation (C.18)

as follows

S3 =

∫
D

(φk − vk) [−∆(φk − vk) + α(φk − vk)] dx dz =∫
D

(φk − vk) [eφ(z , φk)−∆φk
]
dx dz .

and the laplacian ∆φk in the integrand is evaluated with a nine point stencil. For

evaluating the integrals (C.20-C.23), we use a fourth order Simpson rule.

The integrands themselves involve the transformation function s and its inverse (see

(C.6) for the definition) for which two discretized look-up tables with 1, 000, 000 uni-

formly spaced points are pre-computed. For determining the inverse we use a quadratic

interpolation scheme.

The computational domain is scaled such that z ∈ [0 , 1]. The computational results

referred to through the remainder of this Appendix pertain to the class of stratifications

(C.27) ρ(z) = ρmin +
ρmax − ρmin

2

(
1 + tanh

[
ln 9

d
(zp − z)

])
,

with ρmin = 0.999 g/cm3, ρmax = 1.022 g/cm3 and the total height of the fluid column

H = 77 cm, the thickness of the pycnocline d and position of the center of the pycnocline

zp.

Stopping criterion

The iterative scheme stopping criterion suggested in Turkington et al. [51] ( 5 · 10−3

in the L2 norm of the relative error in the eigenfunction φ) is not sufficient for our

purposes. In fact, for stratifications with narrow pycnoclines, we found this criterion to be
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sometimes misleading, suggesting convergence in instances in which other tests indicate

that the numerical solution is not in fact a traveling wave solution – see Figure C.1 where

the mass flux (a quantity that is conserved by a truly stationary solution) is shown for

a solution with infinite norm of the relative error in φ of 10−5.
Q

x/H
-3 -2 -1 0 1 2 3

Figure C.1. Non-dimensionalized mass flux
∫ H

0
ρU(z)dz/

∫ H
0
ρ(z)cdz for

a solution with infinite norm of the relative error in φ of 10−5, in back-
ground stratification (C.27) with d = 2 cm and zp = 15 cm. The resolution
of the scheme is 512 discretization points in the vertical.

Thus, apart from monitoring convergence in the relative error in the eigenfunction φ

and the eigenvalue λ as suggested in Turkington et al. [51], we also monitor the residual

of the DJL equation in the transformed variable φ (C.13). An estimate of this residual

can be constructed inside the iterative loop. Thus by subtracting φk from relation (C.25)

and applying the operator (α−∆) we obtain

(α−∆)(φk+1 − φk) =
µ

λ

[
(α−∆)(vk + λwk) + (α−∆)φk

]
,
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which, by using relations (C.18) and (C.19) we can rewrite as

(α−∆)(φk+1 − φk) =
µk+1

λk+1

[−∆φk + eφ(z , φk)− λk+1fφ(z , φk)
]
,

We recongnize in the RHS of the above relation the residual of equation (C.13). As shown

in Figure C.2, for the case from Figure C.1, the magnitude of the residual is substantial

when the relative error in φ suggests convergence.
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Figure C.2. Dashed - relative error in φ, continuous - residual for the
case from Figure C.1.

Order and rate of convergence

We have monitored the convergence of the eigenvalue λ (C.2) by fixing a threshold

for the residual and looking at the relative convergence of λ as the discretization of the

system was refined. As expected based on the fourth order construction of all portions

of the numerical scheme, the order of convergence was found to be four. The rate of

convergence however is strongly dependent on the parameters α and β, parameters that

control the convexity of the functionals involved in the iterative scheme. We note that
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choosing α substantially bigger than the estimate provided by relation (C.17) greatly

accelerates convergence. We thus used α ≈ 200 in the majority of the numerical results

presented.

The rate of convergence is also smaller when the sought solutions are strongly non-

linear: as exemplified in Figure C.3 where we show (a) the residual versus the number

of iterations for three numerical solutions in the stratification (C.27) with d = 2 cm

and zp = 65 cm, for three values of the parameter A and (b) the corresponding wave

profiles. The minimum Richardson number corresponding to the largest amplitude wave

with A = 3.2 · 10−3 is 0.076.
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Figure C.3. (a) Residual versus the number of iterations for three nu-
merical solutions in the stratification (C.27) with d = 2 cm and zp = 65 cm,
for A = 3.2 · 10−3, 2 · 10−3 and 10−3 (from black to light gray). (b) the
corresponding isolines of density corresponding to the average density.
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Numerical codes

Main code

program IterFFT

!*******************************************************

! Iterative Algorithm Turkington,Wang and Eydeland (1990)

! Solves the 2 Helmholtz equations in Fourier space

! homogeneous boundary conditions in vertical direction

! periodic boundary conditions in horizontal direction

!********************************************************

implicit none

include ’FFTinput.f’

integer nx,ny

parameter(nx=ngridx-1)

parameter(ny=2*(ngridy-1))

integer kx,ky

integer jiter

!Scalar quantities

double precision hdom

double precision pi,g

double precision hy,hs,ymin,ymax,smin,smax

integer k

integer iloc

double precision fl,fc,fr,fac
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double precision tempy

double precision diff,normtemp

double precision t,rhot,rhoprimet

integer iter

double precision S1,S2,S3,S4

double precision temp1,temp2,part1,part2,den

double precision miu,eig,cphys

double precision alphanew,betanew

double precision temp,massflux,aux,res

double precision miuold,cold

double precision errmiu,erreig,errc

!Dimensioned by nfit

double precision yy(nfit+2),stemp(nfit+2)

double precision ytemp(nfit+2),ss(nfit+2)

double precision prho(nfit+2)

!Dimensioned by ngridx

double precision work(ngridx)

!Dimensioned by ngridy

double precision y(ngridy),sy(ngridy)

double precision etareadx(ngridx),etaread(ngridy)

double precision seta(ngridy),sdp(ngridy)

!Dimensioned by ngridx X ngridy

double precision ,dimension(:,:),allocatable :: eta,phi
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double precision v(ngridx,ngridy),w(ngridx,ngridy)

double precision shift(ngridx,ngridy),sinvshift(ngridx,ngridy)

double precision sdpsinvshift(ngridx,ngridy)

double precision ephi(ngridx,ngridy),fphi(ngridx,ngridy)

double complex ,dimension(:,:),allocatable:: cRHS

double precision temparray(ngridx,ngridy),laplphi(ngridx,ngridy)

double precision DLANGE,DNRM2

external DLANGE,DNRM2

double precision ,dimension(:,:),allocatable :: rho,psi

double precision phiold(ngridx,ngridy)

pi=4.d0*datan(1.d0)

g=981.d0

write(*,*)’dx, dy : ’,dx,dy

hdom = d - c

write(*,*)’alpha,beta: ’,alpha,beta

write(*,*)’maxiter: ’,maxiter

!*******************************************************

! Setting up the grid in the vertical direction

!*******************************************************

do ky = 1, ngridy

y(ky)= c + dble(ky-1)*dy

end do

!*******************************************************
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! Reading the look up tables for s, s inverse and the integral of density

!*******************************************************

open(11, FILE= ’ytempss.dat’)

open(12, FILE= ’yystemp.dat’)

open(13, FILE= ’prho.dat’)

write(*,*)’Reading data files...’

do k=1,nfit+1

read(12,*)yy(k),stemp(k)

read(11,*)ytemp(k),ss(k)

read(13,*)prho(k)

end do

read(11,*)ytemp(nfit+2),ss(nfit+2)

read(13,*)prho(nfit+2)

close(11)

close(12)

close(13)

write(*,*)’Done reading data files’

ymax=ytemp(nfit+1)

ymin=ytemp(1)

smax=ss(nfit+1)

smin=ss(1)

hy = (ymax-ymin)/dble(nfit)

hs= (smax-smin)/dble(nfit)
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!*******************************************************

!Determine the s values at the grid points

!*******************************************************

do ky=1,ngridy

iloc = int((y(ky)-ymin)/hy)

fl=ss(iloc+1)

fc=ss(iloc+2)

fr=ss(iloc+3)

fac=(y(ky)-ytemp(iloc+2))/hy

sy(ky)=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

end do

! close(20)

!*******************************************************

! Initialize eta

! eta is the vertical displacement defined as rhoinf( y-eta(x,y) ) = rho(x,y)

! a good initial guess accelerates the convergence

!*******************************************************

allocate(eta(ngridx,ngridy))

allocate(phi(ngridx,ngridy))

if(input.eq.’new’)then

open(21, FILE=inputeta)

do ky=1,ngridy

read(21,*)(etareadx(kx),kx=1,ngridx)
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eta(1:ngridx,ky)=etareadx(1:ngridx)

end do

else

open(21,FILE=inputeta)

do kx=2,ngridx

read(21,*)(etaread(ky),ky=1,ngridy)

eta(kx,1:ngridy)=etaread(1:ngridy)

end do

end if

close(21)

!*******************************************************

! Compute phi = s(y)-s(y-eta)

!*******************************************************

do kx=1,ngridx

do ky=1,ngridy

tempy=y(ky)-eta(kx,ky)

iloc=int((tempy-ymin)/hy)

fl=ss(iloc+1)

fc=ss(iloc+2)

fr=ss(iloc+3)

fac=(tempy-ytemp(iloc+2))/hy

seta(ky)=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

phi(kx,ky)=sy(ky)-seta(ky)
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phi(kx,ky)=sy(ky)-seta(ky)

end do

end do

!Compute the inf norm of phi to use as loop iterating criteria

normtemp=DLANGE(’m’,ngridx,ngridy,phi,ngridx,work)

!*******************************************************

! Compute (sdp) s’’(y)=rhoinf’(y)/(2* Sqrt(rhoinf) )

!*******************************************************

do ky=1,ngridy

t=dtanh(lambda*(y0-y(ky)))

rhot=rho1+0.5d0*rhodiff*(1.d0+t)

rhoprimet=-0.5d0*lambda*rhodiff*(1.d0-t**2)

sdp(ky)=0.5d0*rhoprimet/dsqrt(rhot)

end do

!*******************************************************

! Iterative Loop

!*******************************************************

iter=0

diff=10.d0

res=10.d0

open(200, FILE= ’FFTconv.test’)

write (200,*)’# itercphysmueigAmpres’

miuold=0.d0
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cold=0.d0

do while (res.gt.tol.and.iter.lt.maxiter)

iter=iter+1

write(*,*)’Iteration ’,iter

do kx=1,ngridx

do ky=1,ngridy

!****** Compute shift=s(y)-phi

shift(kx,ky)=sy(ky)-phi(kx,ky)

!**** Interpolate to get sinvshift=sinverse(s(y)-phi)

iloc=int((shift(kx,ky)-smin)/hs)

fl=yy(iloc+1)

fc=yy(iloc+2)

fr=yy(iloc+3)

fac=(shift(kx,ky)-stemp(iloc+2))/hs

sinvshift(kx,ky)=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

!******* Compute s’’(sinvshivt)

t=dtanh(lambda*(y0-sinvshift(kx,ky)))

rhot=rho1+0.5d0*rhodiff*(1.d0+t)

rhoprimet=-0.5d0*lambda*rhodiff*(1.d0-t**2)

sdpsinvshift(kx,ky)=0.5d0*rhoprimet/dsqrt(rhot)

!******* Compute ephi & RHS 1st Helmholtz equation

ephi(kx,ky)=sdp(ky)-sdpsinvshift(kx,ky)

v(kx,ky)=-alpha*phi(kx,ky)+ephi(kx,ky)
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!******* Compute fphi & RHS 2nd Helmholtz equation

fphi(kx,ky)=-2.d0/hdom*(y(ky)-sinvshift(kx,ky))*sdpsinvshift(kx,ky)

w(kx,ky)=-fphi(kx,ky)

end do

end do

!***************** First Helmholtz equation

! Copy real matrix in complex matrix extended

allocate(cRHS(nx,ny))

cRHS(1:nx,1:ngridy-1)=dcmplx(v(1:nx,1:ngridy-1),0.d0)

cRHS(1:nx,ngridy+1:ny)=dcmplx(- v(1:nx,ngridy-1:2:-1),0.d0)

! Solve the Helmholtz problem

call helm(nx,ny,cRHS,alpha,b-a,2*hdom)

! Extract real part of complex matrix

v(1:nx,1:ngridy)=real(cRHS(1:nx,1:ngridy))

v(ngridx,1:ngridy)=v(1,1:ngridy)

! Extract imaginary part of complex matrix to compute norm

! temparray(1:nx,1:ngridy)=dimag(cRHS(1:nx,1:ngridy))

! temparray(ngridx,1:ngridy)=temparray(1,1:ngridy)

!write(*,*)’img’,DLANGE(’M’,ngridx,ngridy,temparray,ngridx,work)

!write(*,*)’mag v’,DLANGE(’M’,ngridx,ngridy,v,ngridx,work)

!write(*,*)’mag ephi’,DLANGE(’M’,ngridx,ngridy,ephi,ngridx,work)

!***************** Second Helmhotz equation

! Copy real matrix in complex matrix extended
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cRHS(1:nx,1:ngridy-1)=dcmplx(w(1:nx,1:ngridy-1),0.d0)

cRHS(1:nx,ngridy+1:ny)=dcmplx(- w(1:nx,ngridy-1:2:-1),0.d0)

! Solve the Helmholtz problem

call helm(nx,ny,cRHS,alpha,b-a,2*hdom)

! Extract real part of complex matrix

w(1:nx,1:ngridy)=real(cRHS(1:nx,1:ngridy))

w(ngridx,1:ngridy)=w(1,1:ngridy)

! Extract imaginary part of complex matrix to compute norm

! temparray(1:nx,1:ngridy)=dimag(cRHS(1:nx,1:ngridy))

! temparray(ngridx,1:ngridy)=temparray(1,1:ngridy)

!write(*,*)’img’,DLANGE(’M’,ngridx,ngridy,temparray,ngridx,work)

!write(*,*)’mag w’,DLANGE(’M’,ngridx,ngridy,w,ngridx,work)

!write(*,*)’mag fphi’,DLANGE(’M’,ngridx,ngridy,fphi,ngridx,work)

!************** Integral S 1

temparray=fphi*w

call simpson9(ngridx,ngridy,temparray,dx,dy,S1)

write(*,*)’S1’,S1

!************** Integral S 2

temparray=fphi*(phi-v)

call simpson9(ngridx,ngridy,temparray,dx,dy,S2)

write(*,*)’S2’,S2

!************** Integral S 3

!call laplacian2(ngridx,ngridy,phi,dx,dy,laplphi)
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! Copy real matrix in complex matrix extended

cRHS(1:nx,1:ngridy-1)=dcmplx(phi(1:nx,1:ngridy-1),0.d0)

cRHS(1:nx,ngridy+1:ny)=dcmplx(- phi(1:nx,ngridy-1:2:-1),0.d0)

call laplacian(nx,ny,cRHS,b-a,2*hdom)

! Extract real part of complex matrix

laplphi(1:nx,1:ngridy)=real(cRHS(1:nx,1:ngridy))

laplphi(ngridx,1:ngridy)=laplphi(1,1:ngridy)

! Extract imaginary part of complex matrix to compute norm

!temparray(1:nx,1:ngridy)=dimag(cRHS(1:nx,1:ngridy))

!temparray(ngridx,1:ngridy)=temparray(1,1:ngridy)

!write(*,*)’img’,DLANGE(’M’,ngridx,ngridy,temparray,ngridx,work)

temparray=(phi-v)*(-laplphi+ephi)

call simpson9(ngridx,ngridy,temparray,dx,dy,S3)

write(*,*)’S3’, S3

!********** Integral S 4

do kx=1,ngridx

do ky=1,ngridy

t=dtanh(lambda*(y0-sinvshift(kx,ky)))

rhot=rho1+0.5d0*rhodiff*(1.d0+t)

part1=(y(ky)-sinvshift(kx,ky))/hdom * rhot

iloc = int((y(ky)-ymin)/hy)

fl=prho(iloc+1)

fc=prho(iloc+2)
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fr=prho(iloc+3)

fac=(y(ky)-ytemp(iloc+2))/hy

temp1=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

iloc = int((sinvshift(kx,ky)-ymin)/hy)

fl=prho(iloc+1)

fc=prho(iloc+2)

fr=prho(iloc+3)

fac=(sinvshift(kx,ky)-ytemp(iloc+2))/hy

temp2=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

part2=(temp2-temp1)/hdom

temparray(kx,ky)=part1+part2

end do

end do

call simpson9(ngridx,ngridy,temparray,dx,dy,S4)

write(*,*)’S4’,S4

!compute eigenvalue

miu=(Amp-S4+S2+beta*S3)/(S1+2*beta*S2+(beta**2)*S3)

if(miu.lt.0.d0) then

miu=0.d0

write(*,*)’ !!!!!!!!! zero miu’

end if

errmiu=dabs((miu-miuold)/miu)

eig=miu/(1.d0-beta*miu)
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miuold=miu

cphys=dsqrt(g*hdom/eig)

errc=dabs((cphys-cold)/cphys)

cold=cphys

den=1.d0-beta*miu

write(*,*)’1-beta*miu’,den

write(*,*)’miu ’,miu

write(*,*)’eig’,eig

write(*,*)’speed’,cphys

phiold=phi

!update phi

phi=v+miu*(w+beta*(phi-v))

temparray=0.d0

phiold=phi-phiold

do kx=2,ngridx-1

do ky=2,ngridy-1

aux=phiold(kx+1,ky)+phiold(kx-1,ky)+&

phiold(kx,ky-1)+phiold(kx,ky+1)-4.d0*phiold(kx,ky)

temparray(kx,ky)=alpha*phiold(kx,ky)-aux/(dx**2)

end do

end do

res=DLANGE(’M’,ngridx,ngridy,temparray,ngridx,work)

write(*,*)’Max value of (alpha-lap)*(phi-phiold)/den’,res/den
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! evaluate infinite norm for convergence check

temp1=DLANGE(’m’,ngridx,ngridy,phi,ngridx,work)

diff=dabs(temp1-normtemp)

normtemp=temp1

write(*,*)’relative error max norm phi’,diff/normtemp

write(*,*)’relative error Amp-S4 ’,Amp-S4

!call convexitycheck(ngridx,ngridy,sinvshift,rho1,rho2,lambda,y0,&

alphanew,betanew)

deallocate(cRHS)

write (200,*)iter,errc,errmiu,dabs((Amp-S4)/Amp),res/den

end do

write(200,*)’#’,cphys*scalvel

close(200)

!*******************************************************

! Write to data files

allocate(rho(ngridx,ngridy))

allocate(psi(ngridx,ngridy))

do kx=1,ngridx

do ky=1,ngridy

shift(kx,ky)=sy(ky)-phi(kx,ky)

iloc=int((shift(kx,ky)-smin)/hs)

fl=yy(iloc+1)

fc=yy(iloc+2)

239



fr=yy(iloc+3)

fac=(shift(kx,ky)-stemp(iloc+2))/hs

sinvshift(kx,ky)=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

eta(kx,ky)=y(ky)-sinvshift(kx,ky)

temp1=y(ky)-eta(kx,ky)

t=dtanh(lambda*(y0-temp1) )

rho(kx,ky)=rho1+0.5d0*rhodiff*(1.d0+t)

psi(kx,ky)=eta(kx,ky)*cphys!-cphys*y(ky)

end do

end do

open(20,FILE=’FFTeta.’//gridtype)

open(50,FILE=’FFTphi.’//gridtype)

open(30,FILE=’FFTrho.’//gridtype)

open(40,FILE=’FFTpsi.’//gridtype)

do ky=1,ngridy

write(20,505)(eta(kx,ky),kx=1,ngridx)

write(30,505)(rho(kx,ky),kx=1,ngridx)

write(40,505)(scal*psi(kx,ky),kx=1,ngridx)

write(50,505)(phi(kx,ky),kx=1,ngridx)

end do

close(20)

close(30)

close(40)
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close(50)

! compute the mass flux for each section

call velu(ngridx,ngridy,psi,temparray,dy)

open(60,FILE=’FFTmass.flux’)

iloc = int((hdom-ymin)/hy)

fl=prho(iloc+1)

fc=prho(iloc+2)

fr=prho(iloc+3)

fac=(hdom-ytemp(iloc+2))/hy

temp1=0.5d0*((fac**2)*(fl-2.d0*fc+fr)-fac*(fl-fr)+2.d0*fc)

temp1=temp1*cphys

do kx=1,ngridx

massflux=0.d0

do ky=1,ngridy

massflux=massflux+rho(kx,ky)*(temparray(kx,ky)-cphys)

end do

temp=rho(kx,1)*(temparray(kx,1)-cphys)+&

rho(kx,ngridy)*(temparray(kx,ngridy)-cphys)

massflux=massflux - 0.5d0*temp

massflux=dy*massflux

write(60,*)dx*dble(kx-1),massflux+temp1

end do

close(60)
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501 format(2049(D30.20,1x),1x)

502 format(4097(D30.20,1x),1x)

503 format(8193(D30.20,1x),1x)

504 format(16385(D30.20,1x),1x)

505 format(20481(D30.20,1x),1x)

deallocate(eta)

deallocate(phi)

deallocate(rho)

deallocate(psi)

stop

end

!*******************************************************

subroutine helm(nx,ny,RHS,alpha,L,h)

! external

implicit none

include ’fftw3.f’

integer nx,ny

double complex RHS(nx,ny)

double precision alpha,L,H

integer*8 plan,info

! internal

integer kx,ky,k

double precision tempx,tempy,temp
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double precision fx(nx),fy(ny),pi

pi=4.d0*datan(1.d0)

! precompute the wave number multipliers

fx(1)=0.d0

do kx=2,nx/2+1

fx(kx)=(2.d0*pi*dble(kx-1)/L)**2

fx(nx-kx+2)=fx(kx)

end do

fy(1)=0.d0

do ky=2,ny/2+1

fy(ky)=(2.d0*pi*dble(ky-1)/h)**2

fy(ny-ky+2)=fy(ky)

end do

!*******************************************************

! 2D FFT transform

! solve periodic Helmholtz problem for each line

!*******************************************************

call dfftw plan dft 2d(plan,nx,ny,RHS,RHS,&

FFTW FORWARD,FFTW ESTIMATE)

call dfftw execute(plan)

call dfftw destroy plan(plan)

do ky=1,ny

! Solve the 1D poisson problem
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tempy=fy(ky)

do kx=1,nx

tempx=fx(kx)

RHS (kx,ky)=-RHS(kx,ky)/(tempx+tempy+alpha)

end do

end do

! Invert FFT

call dfftw plan dft 2d(plan,nx,ny,RHS,RHS,&

FFTW BACKWARD,FFTW ESTIMATE)

call dfftw execute(plan)

call dfftw destroy plan(plan)

temp=dble(nx*ny)

!Normalize (multiply by 1/(nx*ny)

call ZLASCL(’G’,’N’,’N’,temp,1.d0,nx,ny,RHS,nx,info)

return

end

!*******************************************************

subroutine simpson9(ngridx,ngridy,A,dx,dy,S)

!************ ngridx, ngridy - odd numbers

implicit none

integer ngridx,ngridy

double precision A(ngridx,ngridy)

double precision dx,dy,S
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integer kx,ky

S=0.d0

do kx=2,(ngridx-1),2

do ky=2,(ngridy-1),2

S=S+16.d0*A(kx,ky)

S=S+4.d0*(A(kx-1,ky)+A(kx+1,ky)+A(kx,ky-1)+A(kx,ky+1))

S=S+(A(kx-1,ky-1)+A(kx-1,ky+1)+A(kx+1,ky-1)+A(kx+1,ky+1))

end do

end do

S=dx*dy/9.d0*S

return

end

!*******************************************************

subroutine laplacian(nx,ny,RHS,L,h)

! external

implicit none

include ’fftw3.f’

integer nx,ny

double complex RHS(nx,ny)

double precision L,H

integer*8 plan,info

! internal

integer kx,ky,k
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double precision tempx,tempy,temp

double precision fx(nx),fy(ny),pi

pi=4.d0*datan(1.d0)

! precompute the wave number multipliers

fx(1)=0.d0

do kx=2,nx/2+1

fx(kx)=(2.d0*pi*dble(kx-1)/L)**2

fx(nx-kx+2)=fx(kx)

end do

fy(1)=0.d0

do ky=2,ny/2+1

fy(ky)=(2.d0*pi*dble(ky-1)/h)**2

fy(ny-ky+2)=fy(ky)

end do

!*******************************************************

! 2D FFT transform

!*******************************************************

call dfftw plan dft 2d(plan,nx,ny,RHS,RHS,&

FFTW FORWARD,FFTW ESTIMATE)

call dfftw execute(plan)

call dfftw destroy plan(plan)

do ky=1,ny

tempy=fy(ky)
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do kx=1,nx

tempx=fx(kx)

RHS (kx,ky)=-RHS(kx,ky)*(tempx+tempy)

end do

end do

! Invert FFT

call dfftw plan dft 2d(plan,nx,ny,RHS,RHS,&

FFTW BACKWARD,FFTW ESTIMATE)

call dfftw execute(plan)

call dfftw destroy plan(plan)

temp=dble(nx*ny)

call ZLASCL(’G’,’N’,’N’,temp,1.d0,nx,ny,RHS,nx,info)

return

end

!*******************************************************

subroutine convexitycheck(ngridx,ngridy,sinvshift,rho1,rho2,&

lambda,y0,alpha,beta)

implicit none

integer ngridx,ngridy

double precision sinvshift(ngridx,ngridy)

double precision rho1,rho2,lambda,y0

double precision alpha,beta,t

integer kx,ky
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double precision rhodiff,emax,emin,fmax,fmin

double precision pi,dy,y,rhot,rhoprimet,rhodpt

double precision epp, fpp,a,b

rhodiff= rho2 -rho1

pi = 4.d0*datan(1.d0)

emax = -1.d20

emin= 1.d20

fmax = -1.d20

fmin= 1.d20

dy=1.d0/dble(ngridy-1)

do kx=1,ngridx

do ky=1,ngridy

y=dy*dble(ky-1)

t=dtanh(lambda*(y0-sinvshift(kx,ky)))

rhot=rho1+0.5d0*rhodiff*(1.d0+t)

rhoprimet=-0.5d0*lambda*rhodiff*(1.d0-t**2)

rhodpt= -rhodiff*(lambda**2)*t*(1-t**2)

epp = -(0.5d0*rhoprimet/rhot)**2+0.5d0*rhodpt/rhot

fpp = -(rhoprimet / rhot) + 2.d0 *epp* (y-sinvshift(kx,ky))

emax=max(epp,emax)

emin=min(epp,emin)

fmax=max(fpp,fmax)

fmin=min(fpp,fmin)
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end do

end do

a=abs(min(0.d0,emin))

b=abs(min(0.d0,fmin))

alpha=emax

beta=b/(pi**2-a)

write(*,*)’a,b’,a,b

write(*,*)’alpha,beta’, alpha, beta

write(*,*)’emax,emin’, emax, emin

write(*,*)’fmax,fmin’, fmax, fmin

write(*,*)’piˆ2-a’, pi**2-a

return

end

!*******************************************************

subroutine velu(ngridx,ngridy,psi,vel,dy)

!******** computes the horizontal velocity order 2 formulas

implicit none

integer ngridx, ngridy

double precision psi(ngridx,ngridy)

double precision vel(ngridx,ngridy)

double precision ddy,dy

integer kx,ky

ddy=2.d0*dy
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do kx=1,ngridx

vel(kx,1) = -(3.d0* psi(kx,1)-4.d0*psi(kx,2)+psi(kx,3))/ddy

vel(kx,ngridy) = (3.d0* psi(kx,ngridy)-4.d0*psi(kx,ngridy-1)&

+psi(kx,ngridy-2))/ddy

do ky=2,ngridy-1

vel(kx,ky)=(psi(kx,ky+1)-psi(kx,ky-1))/ddy

end do

end do

return

end

!*******************************************************

subroutine laplacian2(ngridx,ngridy,A,dx,dy,laplacian)

implicit none

integer ngridx,ngridy

double precision A(ngridx,ngridy),laplacian(ngridx,ngridy)

double precision dx,dy

integer kx,ky

do kx=2,ngridx-1

do ky=2,ngridy-1

laplacian(kx,ky)=1.d0/(6.d0*dx**2)*(A(kx-1,ky-1)+A(kx-1,ky+1)&

+A(kx+1,ky-1)+A(kx+1,ky+1)+&

4.d0*(A(kx,ky-1)+A(kx,ky+1)+A(kx-1,ky)+A(kx+1,ky))&

-20.d0*A(kx,ky))
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end do

end do

do kx=2,ngridx-1

laplacian(kx,1)=1.d0/(6.d0*dx**2)*(A(kx-1,ngridy-1)-A(kx-1,2)-&

A(kx+1,ngridy-1)+A(kx+1,2)+&

4.d0*(-A(kx,ngridy-1)+A(kx,2)+A(kx-1,1)+A(kx+1,1))-20.d0*A(kx,1))

laplacian(kx,ngridy)=1.d0/(6.d0*dx**2)*(A(kx-1,ngridy-1)-A(kx-1,2)&

+A(kx+1,ngridy-1)-A(kx+1,2)+&

4.d0*(A(kx,ngridy-1)-A(kx,2)+A(kx-1,ngridy)+A(kx+1,ngridy))&

-20.d0*A(kx,ngridy))

end do

do ky=2,ngridy-1

laplacian(1,ky)=1.d0/(6.d0*dx**2)*(A(ngridx-1,ky-1)&

+A(ngridx-1,ky+1)+A(2,ky-1)+A(2,ky+1)+&

4.d0*(A(1,ky-1)+A(1,ky+1)+A(ngridx-1,ky)+A(2,ky))&

-20.d0*A(1,ky))

laplacian(ngridx,ky)=1.d0/(6.d0*dx**2)*(A(ngridx-1,ky-1)&

+A(ngridx-1,ky+1)+A(2,ky-1)+A(2,ky+1)+&

4.d0*(A(ngridx,ky-1)+A(ngridx,ky+1)+A(ngridx-1,ky)+A(2,ky))&

-20.d0*A(ngridx,ky))

end do

laplacian(1,1)=0.d0

laplacian(ngridx,1)=0.d0
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laplacian(ngridx,ngridy)=0.d0

laplacian(1,ngridy)=0.d0

return

end

integer ngridx,ngridy !number of nodes in x,y direction

! Coarse

! parameter(ngridx=2049)

! parameter(ngridy=129)

!Medium

! parameter(ngridx=4097)

! parameter(ngridy=257)

!Fine

parameter(ngridx=8193)

parameter(ngridy=513)

!Finest

! parameter(ngridx=16385)

! parameter(ngridy=1025)

character(len=6)::gridtype

parameter(gridtype=’fine’)

double precision tol !tolerance for relative error inside loop

integer maxiter,printiter !maximum number of iterations

parameter(tol=1.d-16)
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parameter(maxiter= 3)

parameter(printiter= 200)

double precision scal

! parameter(scal=77.d0*dsqrt(77.d0))

parameter(scal=1.d0)

double precision scalvel

! parameter(scalvel=dsqrt(77.d0))

parameter(scalvel=1.d0)

integer nfit !number of points in s table

parameter(nfit=1000000)

!*******************************************************

! Parameters depending on the density profile

!*******************************************************

!!!!!!!!!!! For the profile rho=rho1+rhodiff/2(1+tanh(lambda(y0-y)))

double precision rho1,rho2,rhodiff,y0,lambda

parameter(rho1 = 0.999d0) !asymptotic value first layer

parameter(rho2 = 1.022d0) !asymptotic value second layer

parameter(rhodiff = rho2- rho1)

parameter(y0=62.0d0/77.d0) !position of the pycnoclyne

parameter(lambda=80.d0)!thickness of the pycnoclyne

!*******************************************************

! Parameters that control the convergence

!*******************************************************
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double precision alpha,beta

parameter(alpha =200.0d0)

parameter( beta = 0.001d0)

!*******************************************************

! Amp is the objective functional - the potential energy of the wave

!*******************************************************

double precision Amp

parameter( Amp=3.2d-3)

!*******************************************************

! a,b,c,d - domain frontiers

! dx - step in x direction

! dy - step in y direction

! hdom - height of the domain

!*******************************************************

double precision a,b,c,d,dx,dy

parameter(a=-8.d0)

parameter( b=8.d0)

parameter( c=0.d0)

parameter( d=1.d0)

parameter (dx=(b-a)/dble(ngridx-1))

parameter (dy=(d-c)/dble(ngridy-1))

! read the ngridy per line input files - old or ngridx -new

character(len=3)::input
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parameter(input=’new’)

! the input eta file name

character(len=30)::inputeta

parameter(inputeta=’eta.fine’)

Code for generating the inversion table

PROGRAM TABLE

!*******************************************************

C nfit - size of table

C all double precision variables

!*******************************************************

implicit none

integer nfit

parameter (nfit= 1000000)

integer i,j,k,key

double precision rho1,rho2,rhodiff,rhomid

double precision lambda, y0

double precision yy(nfit+2),ss(nfit+2)

double precision ymin,ymax,smin,smax

double precision yl,yr,sl,sr,yp,sp

double precision ytemp(nfit+2),stemp(nfit+2)

double precision hy,hs,prho(nfit+2)

double precision s1,s2,s3,y1,y2,y3
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double precision temp

double precision ps,pr,ymid

double precision templ,tempm,tempr

double precision temp2l,temp2m,temp2r

!*******************************************************

C rho1 density of top layer

C rho2 density of lower layer

C y0 height of center of interface

C lambda density profile parameter

C determining thickness

C ymin¡y0 ¡ymax

!*******************************************************

rho1 = 0.999d0

rho2 = 1.022d0

rhomid = 0.5d0 * (rho1 + rho2)

rhodiff = rho2 - rho1

y0 = 62.d0/77.d0

lambda =20.0d0

!*******************************************************

C Creating y, s gridding C

!*******************************************************

ymin=0.d0

ymax=2.d0
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hy=(ymax-ymin)/dble(nfit)

ytemp(1)= ymin

do i=2,nfit+1

ytemp(i)= ytemp(i-1) + hy

end do

!*******************************************************

C compute the integral from ymin to y

C evaluate integral from ymin to y0

C s = integralyminˆy - integralyminˆy0

C use Simpson rule order 3

!******************************************************

ss(1)=0.d0

prho(1)=0.d0

ps=0.d0

pr=0.d0

do i=2,nfit+1

ymid=0.5d0*(ytemp(i-1)+ytemp(i))

temp2l= rho1+ 0.5d0 * rhodiff *

1(1.d0 + dtanh(lambda*(y0-ytemp(i-1))))

templ = dsqrt(temp2l)

temp2m= rho1+ 0.5d0 * rhodiff *

1(1.d0 + dtanh(lambda*(y0-ymid)))

tempm = dsqrt(temp2m)
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temp2r= rho1+ 0.5d0 * rhodiff *

1(1.d0 + dtanh(lambda*(y0-ytemp(i))))

tempr = dsqrt(temp2r)

ps = ps + (templ+4.d0*tempm+tempr)

pr = pr + (temp2l+4.d0*temp2m+temp2r)

ss(i) = ps

prho(i) = pr

end do

C Evaluate the s integral from ymin to y0

key=int((y0-ymin)/hy)

ymid=5.d-1*(ytemp(key+1)+y0)

temp2l= rho1+ 0.5d0 * rhodiff *

1(1.d0 + dtanh(lambda*(y0-ytemp(key+1))))

templ = dsqrt(temp2l)

temp2m= rho1+ 0.5d0 * rhodiff *

1(1.d0 + dtanh(lambda*(y0-ymid)))

tempm = dsqrt(temp2m)

temp2r= rhomid

tempr = dsqrt(temp2m)

temp=(y0-ytemp(key+1))/hy

ps = templ+4.d0*tempm+tempr

ps=temp*ps+ss(key+1)

do i=1,nfit+1
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ss(i) = hy/6.d0*(ss(i)-ps)

prho(i)=hy/6.d0*prho(i)

end do

!*******************************************************

C Regridding values in s-direction

C New evenly spaced s values are stored in stemp.

C inversion based on points in stemp are stored in yy

C Quadratic interpolation

!*******************************************************

smin=ss(1)

smax=ss(nfit+1)

hs=(smax-smin)/dble(nfit)

stemp(1)= smin

do i=2,nfit+1

stemp(i)= stemp(i-1) + hs

end do

yy(1)=ymin

yy(nfit+1)=ymax

key = 1

do j=2,nfit

sp=stemp(j)

do i=key,nfit+1

if (ss(i).lt.sp) then
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key=i

else

goto 351

endif

end do

351 continue

C quadratic interpolation

s1=ss(key-1)

s2=ss(key)

s3=ss(key+1)

y1=ytemp(key-1)

y2=y1+hy

y3=y2+hy

temp=y1*(sp-s2)*(sp-s3)/((s1-s2)*(s1-s3))

temp=temp+y2*(sp-s1)*(sp-s3)/((s2-s1)*(s2-s3))

temp=temp+y3*(sp-s1)*(sp-s2)/((s3-s1)*(s3-s2))

yy(j)= temp

end do

open(91, FILE = ’ytempss.dat’, STATUS = ’Unknown’)

open(92, FILE = ’yystemp.dat’, STATUS = ’Unknown’)

open(93, FILE = ’prho.dat’, STATUS = ’Unknown’)

do i=1,nfit+2

write(91,1001) ytemp(i),ss(i)
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write(92,1001) yy(i),stemp(i)

write(93,1002) prho(i)

end do

1001 format(d20.16,1x,d20.16)

1002 format(d20.16)

close(91)

close(92)

close(93)

STOP

END
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APPENDIX D: Approximation for Richardson number based

on the strongly nonlinear model

In the current Appendix, we deduce a simple approximation for the Richardson num-

ber along the profile of a solitary wave in a continuous stratification with thin pycnocline,

using the predictions of the strongly nonlinear model Choi & Camassa [7]. We assume

that the pycnocline thickness d is constant along the wave profile.

In the following discussion, we fix the location X = x − ct along the wave profile.

Richardson number is defined as

(D.1) Ri(z) =
β(z)g

u′(z)2
,

where β(z) = −ρ′(z)/ρ(z) . First we approximate the derivative of the horizontal velocity

u and of the density ρ by u′(z) ≈ ∆u

d
and ρ′(z) ≈ −∆ρ

d
, respectively, where ∆u is the

jump in velocity across the interface, ∆ρ = ρ2 − ρ1, the difference between the densities

of the two layers and d the thickness of the pycnocline. We also approximate the density

inside the pycnocline by the average value ρmed. We thus have

(D.2) Ri ≈ gd∆ρ

ρmed(∆u)2
.

The asymptotic relation for the horizontal velocity at the interface is

(D.3) uk|z=ζ = c

[
1− hk

ηk

(
1 +

ηkXXη
2
k

3
− 2hk(ηkX)2

3

)]
, k = 1, 2 ,
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where ζ is the interface displacement, ηk are the widths of the two layers layers (see §2.2,

Figure 2.1 for notations) and c is the phase speed of the wave. The velocity jump at the

interface is therefore

(D.4) ∆u = u2 − u1 = c

[
h1

η1

(
1− ζXXη

2
1

3
− 2h1ζ

2
X

3

)
− h2

η2

(
1 +

ζXXη
2
2

3
− 2h2ζ

2
X

3

)]
.

ζX can be expressed in terms of interfacial displacement and the speed c by using the

quadrature formula for the interface ζ (Choi & Camassa [7])

(D.5) ζ2
X =

3ζ2

c2
c2ρ1η2 + c2ρ2η1 − g(ρ2 − ρ1)η1η2

ρ1h2
1η2 + ρ1h2

2η1

= F (ζ) ,

from where we obtain

(D.6) ζXX =
1

2

∂F (ζ)

∂ζ
.

By replacing (D.5) and (D.6) in (D.4) we can express the velocity jump across the

interface (D.4) solely in terms of the displacement of the interface and thus obtain the

Richardson number at any X location of the wave profile only in terms of the interfacial

displacement

(D.7) Ri(X) =
gd∆ρ

ρmed∆u(ζ(X))2
.

By neglecting O(ε2) correction terms in the formula for horizontal velocity (D.3) (where

ε = H/L, the long wave parameter), the velocity jump at the interface ∆u can be written
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as

∆U(ζ) = c

(
h1

η1

− h2

η2

)
,

and thus

(D.8) Ri(X) =
gd∆ρ

ρmed

[
(h1 − ζ(X))(h2 + ζ(X))

cHζ(X)

]2

.

This approximation is legitimate because we already have neglected the variation of the

width of the pycnocline along the wave profile, which induces a more significant error.

Finally, the minimum Richardson number along the wave profile is located at the

maximum displacement of the pycnocline (ζ = a), where the velocity jump is maximum.

By substituting the phase speed of the solitary wave in terms of the wave amplitude a

(Choi & Camassa [7])

c2

c20
=

(h1 − a)(h2 + a)

h1h2 − (c20/g)a
,

with c0 being the critical speed, we obtain the Richardson at the maximum displacement

of the pycnocline in terms of the amplitude of the wave

(D.9) Rimin(a) =
g d∆ρ

ρmedH2c20

[
h1h2 − (c20/g)a

]
(h1 − a)(h2 + a) .
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