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ABSTRACT

YANG LIU: GENERALIZED FIDUCIAL INFERENCE FOR GRADED RESPONSE
MODELS.

(Under the direction of David Thissen)

Generalized fiducial inference (GFI) has been proposed as an alternative inferential frame-

work in the statistical literature. Inferences of various sorts, such as confidence regions for

(possibly transformed) model parameters, making prediction about future observations, and

goodness of fit evaluation, can be constructed from a fiducial distribution defined on the

parameter space in a fashion similar to those used with a Bayesian posterior. However, no

prior distribution needs to be specified. In this work, the general recipe of GFI is applied to

the graded response models, which are widely used in psychological and educational stud-

ies for analyzing ordered categorical survey questionnaire data. Asymptotic optimality of

GFI is established (Chapter 2), and a Markov chain Monte Carlo algorithm is developed for

sampling from the resulting fiducial distribution (Chapter 3). The comparative performance

of GFI, maximum likelihood and Bayesian approaches is evaluated via Monte Carlo simula-

tions (Chapter 4). The use of GFI as a convenient and powerful tool to quantify sampling

variability in various inferential procedures is illustrated by an empirical data analysis using

the patient-reported emotional distress data (Chapter 5).
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CHAPTER 1: INTRODUCTION

1.1 Overview

This research focuses on an application of generalized fiducial inference, an omnibus

statistical inference framework, to a general family of graded response models which has

been extensively used in psychological research for analyzing survey data with ordinal re-

sponse categories. Chapter 1 provides a brief literature review of various issues related to the

graded response model, and the rationale of generalized fiducial inference. Specifically, ex-

tant likelihood-based and Bayesian approaches for point estimation, interval estimation, test

scoring, and goodness of fit testing are summarized. Derivation of a fiducial distribution for

item parameters and related statistical properties are discussed in Chapter 2. The key result

of this part is a Bernstein-von Mises theorem that guarantees the asymptotic optimality of

the fiducial distribution. A Markov chain Monte Carlo algorithm is developed for sampling

from the fiducial distribution, which is described in Chapter 3. A Fortran implementation

of the sampler is available from the author upon request. In Chapter 4, a large-scale simu-

lation study is conducted to evaluate the comparative behavior of the proposed procedure

with existing likelihood-based and objective Bayesian approaches for various inferential prob-

lems. Finally, patient-reported emotional distress data from the Patient Report Outcomes

Measurement Information System (PROMIS) study are analyzed in Chapter 5 using gener-

alized fiducial inference. We emphasize that the uncertainty in parameter estimates due to

sampling variability should be taken into account in subsequent analyses; to this end, the

proposed framework serves as a theoretically sound but analytics-free tool. Detailed proofs

of the theorems and propositions are given in appendices.
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1.2 The graded response model

The graded response model (GRM; Samejima, 1969) has become a standard item re-

sponse theory (IRT) model for analyzing Likert-type response scales which have polytomous

categories coded in order (e.g., strongly disagree, disagree, neutral, agree, strongly agree).

Survey questionnaires including Likert items have been designed to measure many psycho-

logical constructs including personality attributes, attitudes, health-related outcomes, etc.

The GRM models responses to each item as an ordinal logistic regression (also known as

a proportional odds model) on one or more latent variables representing the underlying

constructs of interest. Heuristically, an item response is treated in the GRM as a discrete

realization of a continuous but latent propensity that is related to individual differences in

target constructs and also item characteristics. The relative position of a particular response

category on the latent continuum is gauged by the adjacent item difficulty/intensity param-

eters that are transformations of the slope and intercept parameters in the regression. The

GRM reduces to the two-parameter logistic (2PL; Birnbaum, 1968) model when there are

only two response categories.

In the current work, we focus our attention on a family of multidimensional logistic

GRM models including unidimensional, bifactor, and exploratory GRMs as special cases.

Our notation is more consistent with the mixed-effect modeling convention than the default

choice in the IRT literature. For a Kj-category ordinal item j and a single respondent i,

define the item response function (IRF), denoted fj(θj, k|zi), as the probability of endorsing

the kth category, i.e., Yij = k, k = 1, . . . , Kj, conditional on this particular person’s latent

variable values Zi = zi:

fj(θj, k|zi) = P{Yij = k|Zi = zi}

=


1− 1

1 + eαj1+βj
>zi

, k = 0;

1

1 + eαj,Kj−1+βj
>zi

, k = Kj − 1;

1

1 + eαjk+βj
>zi
− 1

1 + eαj,k+1+βj
>zi

, otherwise.

(1.1)
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In (1.1), αjk’s denote the intercept parameters and βj the slopes. We assume that all the

intercept parameters are freely estimated, while some slopes are fixed for model identification;

let θj be all free parameters that calibrate item j. The r-dimensional latent variables are

assumed to be standard normal, Zi ∼ N (0, Ir×r). Inference for models with unknown

covariance structure among latent dimensions (e.g., simple-structure models) is beyond the

scope of the present work.

For a test comprising m graded items, we assume conditional dependence among item

responses given the latent variable (e.g., McDonald, 1981), which implies the likelihood

function f(θ,yi) of an individual item response vector yi = (yij)
m
j=1:

f(θ,yi) =

∫
Rr

m∏
j=1

fj(θj, yij|zi)dΦ(zi), (1.2)

in which Φ(·) denotes the probability measure of an r-dimensional standard normal distribu-

tion. Further assume the sample is composed of n independent and identically distributed

(i.i.d.) item response vectors y = (yi)
n
i=1; the corresponding sample likelihood function is

fn(θ,y) =
n∏
i=1

f(θ,yi). (1.3)

1.2.1 Point estimation

In the frequentist framework, the gold standard maximum likelihood (ML) estimates of

item parameters are typically obtained by numerically maximizing Equation 1.3 via either

Newton-type (Bock and Lieberman, 1970; Haberman, 1988) or Expectation-Maximization

(EM; Dempster, Laird, and Rubin, 1977; Bock and Aitkin, 1981) algorithms. When the

latent dimensionality r is not high, the intractable expression in Equation 1.2 can be ef-

ficiently approximated by numerical integration; various types of quadrature systems have

been used—e.g., rectangular, Gauss-Hermite (Ralston, 1965, pp. 93-97; Bock and Aitkin,

1981), or adaptive (Schilling and Bock, 2005; Haberman, 2006) quadrature. When the latent
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dimensionality is high, however, approximation of the likelihood function based on tensor-

product quadrature suffers from the well-known “curse of dimensionality” that the number

of quadrature points grows exponentially fast. One solution given by Meng and Schilling

(1996) is to incorporate a Gibbs sampler for the E-step computation, resulting in a Monte

Carlo EM algorithm. Alternatively, Cai (2010a; 2010b) proposed approximation of the gra-

dient of the log-likelihood function by a Metropolis-Hasting sampler and locating its zero by

a Robbins-Monro-type search.

On the other hand, Bayesian methods based on stochastic approximations of the posterior

distribution (e.g., Albert, 1992; Patz and Junker, 1999; Bradlow, Wainer, and Wang, 1999;

Curtis, 2010; also see Edwards (2010) for its application in the GRM) are not affected as much

by increasing latent dimensionality. Such a complex sampling problem is usually addressed

by Markov chain Monte Carlo (MCMC) methods. However, it is commonly agreed that

Bayesian methods are less user-friendly than ML: Statistical expertise is required to specify

prior distributions and tune sampling algorithms. Even though the asymptotic optimality

of Bayesian posteriors can be guaranteed by the celebrated Bernstein-von Mises theorem

(e.g., Le Cam and Yang, 1986), erroneous results may be seen in finite-sample applications

resulting from improperly chosen prior distributions or ill-behaved samplers.

1.2.2 Confidence interval/set

Associated with ML estimation, confidence intervals (CIs) are most often constructed by

inverting the Wald test, with standard errors produced by suitable supplemental procedures

(e.g., Cai, 2008; Yuan, Cheng, and Patton, 2014). However, caveats on Wald-type intervals

have been raised in the statistical literature (e.g., Neale and Miller, 1997) because they rest

on a quadratic approximation to the log-likelihood: They are not invariant under nonlinear

transformations of parameters (the delta method is often used to obtain standard errors

for a reparameterized model; its performance depends on how quadratic the log-likelihood

function is with respect to the new parameterization). They may also cover values beyond

the boundary of the parameter space, and may have unsatisfying small sample behaviors.
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As a better alternative, CIs obtained by inverting the likelihood-ratio test have not yet been

available in the IRT literature; the procedure itself is computationally intensive, and might

not be suitable for multidimensional GRMs. Quantification of uncertainty for more complex

transformations of parameters, e.g., the problem of drawing simultaneous confidence band on

the item response functions (Thissen and Wainer, 1990) or information curves, are typically

handled by less rigorous methods such as the bootstrap.

Bayesian methods based on posterior sampling are extremely flexible in terms of making

inferences about arbitrary transformations of model parameters: One can apply the desired

transformation to each Monte Carlo draw from the posterior distribution, leading naturally

to a Monte Carlo sample of the transformed posterior. Moreover, we can save the random

draws and pass them to subsequent analyses via, e.g., multiple imputation; compared to

plugging in the point estimates, this accounts for the sampling variability in the initial

model estimation stage. But the arbitrariness in prior selection may exert unpredictable

influence on the finite-sample performance of Bayesian confidence sets, and thus they should

be used with caution.

1.2.3 Goodness of fit testing

The item response data matrix y = (yij)
n
i=1

m
j=1 can be reorganized as an m-way contin-

gency table, in which each dimension corresponds to the Kj response categories of an item

and each cell of the table corresponds to a response pattern yi = (yij)
m
j=1. Therefore, it is

natural to assess GRM model fit by means of residuals in contingency table cells, testing

whether the observed proportions are identical to the model-implied response pattern prob-

abilities. For a general discussion on GOF testing for contingency table data, see Rao (1973,

pp. 391-394) and more recently Haberman and Sinharay (2013). One salient feature of the

item response data is sparseness, i.e., very small expected proportions for some cells, as a

consequence of the number of cells,
∏m

j=1 Kj, increasing exponentially with the test length.

It is well-known that the asymptotic theory of residuals works poorly in sparse tables (e.g.,

Cochran, 1952). A simple workaround is to collapse the table in a systematic fashion such
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that the asymptotics are well suited to the resulting table of a smaller size; this has been

termed the limited information approach by some authors. Existing GOF testing proce-

dures in the IRT literature are mostly based on this rationale (e.g., Glas, 1988; Reiser, 1996;

Maydeu-Olivares and Joe, 2005, 2006; Cai, Maydeu-Olivares, Coffman, and Thissen, 2006;

Joe and Maydeu-Olivares, 2010; Cai and Hansen, 2013).

It is as important to identify the source of model misfit as to test the overall GOF of

item response models. In practice, model modifications and/or item level fine-tuning should

be performed before inferences can be safely drawn from the fitted GRM. When no a priori

information about the misfitting pattern is available, the source of misfit can be investigated

by exploring the fit of the IRT model in low-dimensional (typically two-way or three-way)

marginal subtables. For a comprehensive description of this approach, see Liu and Maydeu-

Olivares (2014). If there is information about a potential violation of an assumption (e.g.,

conditional dependence, differential item functioning, etc.), researchers may specify a less

restrictive model that reduces to the original model after imposing constraints, which turns

the examination of model fit into a nested model comparison problem.

On the Bayesian side, posterior predictive checking (PPC; Guttman, 1967; Rubin, 1984)

serves as a straightforward approach for detecting model misfit. When the model is correctly

specified and the sample size is large enough, the value of a test statistic T (y) computed with

the observed data set should be close to the same statistic computed from a predictive data

set conditional on the posterior distribution of IRT model parameters. Here, the distribution

of predictive data is a composite of the posterior distribution and the data-generating model,

and thus can be approximated stochastically by drawing model parameters from the posterior

and then simulating data conditional on these draws. For applications of PPC in IRT models,

see Sinharay (2005), Sinharay, Johnson, and Stern (2006), and Levy, Mislevy, and Sinharay

(2009).

To cater to the increasing prevalence of multidimensional GRMs, it is desirable to develop
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a comprehensive estimation and inference framework that is able to: a) deal with high-

dimensional latent traits, b) facilitate the assessment of uncertainty for various kinds of

inference based on the model, and c) avoid as much subjectivity and ambiguity as possible in

application. In the current research, generalized fiducial inference (GFI; Hannig, 2009, 2013)

for a general class of multidimensional GRMs is proposed as an alternative to the existing

full information methods. GFI satisfies most of the aforementioned desiderata. This recent

variant of Fisher’s (1930, 1932, 1935) fiducial inference is an interesting theoretical middle

ground between frequentist and Bayesian methods. Inferential procedures are based on a

probability distribution supported on the parameter space, namely a fiducial distribution,

which is derived using only the information contained in the data. Consequently, it inherits

all the flexibility of Bayesian methods, but requires no prior knowledge of model parameters.

1.3 Generalized fiducial inference

Fisher (1930) put forward the notion of fiducial probability in response to the method

of inverse probability (i.e., Bayesian inference, especially with a uniform prior), which in his

view was “fundamentally false and devoid of foundation”. His concerns were conveyed in

the following excerpt:

The peculiar feature of the inverse argument proper is to say something equivalent

to “We do not know the function Ψ specifying the super-population [i.e., the prior

distribution of model parameters θ], but in view of our ignorance of the actual values

of θ we may take Ψ to be constant.”. . . but however we might disguise it, the choice of

this particular a priori distribution for the θ’s is just as arbitrary as any other could

be.

He continued to point out that the claimed objectivity of the inverse probability cannot be

translated under reparameterization:

If we were, for example, to replace our θ’s by an equal number of functions of them,

θ′1, θ′2, θ′3, . . . , . . . all objective statements could be translated from the one notation to

the other, but the simple assumption Ψ(θ1, θ2, θ3, . . . ) = constant may translate into
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a most complicated frequency function for θ′1, θ′2, θ′3, . . .

He also summarized the major reason why inverse probability was popular—that is, quanti-

fying uncertainty with probability is intuitive and handy, and Bayes’ rule seemed to be the

only available tool at that time:

The underlying mental cause is. . . in the fact that we learn by experience, that science

has its inductive processes so that it is naturally thought that such inductions, being

uncertain, must be expressible in terms of probability. . . . The assumption was al-

most a necessary one seeing that no other mathematical apparatus existed for dealing

with uncertainties. . . . The introduction of quantitative variates [representing model

parameters], having continuous variation in place of simple frequencies as the obser-

vational basis, makes also a remarkable difference to the kind of inference which can

be drawn. . . . Inverse probability has, I believe, survived so long in spite of its unsatis-

factory basis, because its critics have until recent times put forward nothing to replace

it as a rational theory of learning by experience.

Fisher in his 1930’s article provided a template fiducial argument for a one-parameter

model Y ∼ Fθ, in which θ is the parameter and Fθ is the distribution function monoton-

ically decreasing in θ, based on a single observation Y = y. By the probability integral

transformation, Fθ(Y ) ∼ Uniform(0, 1), which is, in modern terminology, a pivotal quantity.

He transferred the pivotal distribution to the parameter space through function Fθ that is

considered a function of θ, equivalent to the operation of “de-pivoting” for the purpose of

obtaining CIs with an exact coverage (see e.g., Casella and Berger, 2002). The resulting

distribution, having density −dFθ/dθ, determines what Fisher called fiducial probability,

which in this case is the same as the correct coverage probability accumulated from repeated

samples. Later, Fisher illustrated this approach again with a Gaussian variance example

(Fisher, 1933), and generalized it to multidimensional parameters (Fisher, 1935).

In the 1935’s paper, Fisher claimed that his fiducial solution to the Behrens-Fisher prob-

lem is exact, which was later challenged by Bartlett; see Bartlett (1965) and Zabell (1992) for
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summaries of the dispute. Moreover, Fisher’s interpretation of fiducial probability had been

by no means cohesive: In his earlier work (Fisher 1930, 1933, and 1935), the fiducial prob-

ability was largely treated as the synonym of frequent coverage as in the Neyman-Pearson

repeated-sampling scheme (Neyman, 1934); however, a more epistemic view conceded to the

Bayesian camp (Fisher, 1945, 1955) was adopted, at about the same time when he threw a

heated polemic against Neyman. The confusion, according to Zabell (1992), was likely to

be traced to Fisher’s mixed understanding of the nature of probability: In his own writings,

probability is both “a frequency in an infinite hypothetical population” (Fisher, 1922) and

“a numerical measure of rational belief” (Fisher, 1930). As a consequence, fiducial inference

has been largely renounced by mainstream statisticians; it has been viewed as Fisher’s “one

great failure” (Zabell, 1992) or “the biggest blunder” (Efron, 1998).

Many attempts have been made to revitalize the idea of fiducial inference (see Hannig,

2009, for a historical review), among which there are two streams of research that are partic-

ularly relevant to the current dissertation. One is the notion of confidence distribution (CD;

e.g., Efron, 1998; Schwider and Hjort, 2002; Xie and Singh, 2013). Tying back to Fisher’s

first definition of fiducial probability, a CD for a single parameter θ (with or without the

presence of nuisance parameters) is defined such that its upper α quantile is the upper limit

of a one-sided 100(1 − α)% CI under the true model. In many practical problems, how-

ever, only asymptotic CDs can be found. Various existing inference tools are special cases

asymptotic CDs, such as Bayesian posterior distributions and bootstrap distributions, pro-

vided suitable regularity conditions are satisfied. The other branch of studies are rooted

in Fraser’s (1968) structural inference and the Dempster-Schafer calculus (e.g., Dempster,

1968, 2008; Shafer, 1976), including generalized fiducial inference (GFI; Hannig, 2009; 2013)

and inferential models (Martin, Zhang, and Liu, 2010; Martin and Liu, 2013). These works

retained Fisher’s idea of “finding solutions” of model parameters from the mathematical

formula that links data, parameters, and pivotal quantities, but incorporated additional ad-

justment to achieve desirable statistical properties. Specifically, Hannig (2009) provided a
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simple recipe to construct an asymptotic CD, namely the generalized fiducial distribution,

which is adaptable to a broad collection of statistical models.

In brief, the goal of GFI is to find a fiducial distribution on the parameter space capturing

all the information that the observed data conveys about model parameters. It is achieved

by a role-switching between data and parameters similar to that involved in the definition

of a likelihood function. Hannig’s (2009) fiducial argument operates on the data generating

equation (also known as the structural equation):

Y = g(θ,U), (1.4)

which describes the data Y as a function of the parameters θ ∈ Θ and random components

U having parameter-free distributions (i.e., pivotal quantities). For observed data Y = y,

the data generating equation can be considered as an implicit function relating θ to U.

Properly solving for θ from Equation 1.4, i.e., writing the parameters as a function of the

data and random components, transfers the known distribution of U to the parameter space

and produces a fiducial distribution.

From now on, lowercase letters are routinely used for realizations of random variables.

Let

Q(y,u) = {θ : g(θ,u) = y} (1.5)

be a set inverse of Equation 1.4 containing solutions of θ to Equation 1.4 for fixed y and u.

In general, Equation 1.5 may contain more than one element for some values of u, and may

be empty for others; in terms of finding a solution θ, they correspond to under-identified

and over-identified systems, respectively. Here, drawing analogy to solving a system of linear

equations might be helpful. When Equation 1.5 consists of multiple elements, it resembles

a linear system that has fewer equations than variables, and thus more than one solution is

admissible. In this case, preference for one value of θ or another cannot be decided from

the values of y and u per se. A general solution for such an under-identified system can be
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denoted v(Q(y,u)), in which v(·) is some user-defined selection rule that chooses a point

from the closure of Equation 1.5. On the other hand, when the set determined by Equation

1.5 is empty, it is similar to a linear system that has more equations than variables, in which

case conflict may arise and no solution can be found. This implies that no feasible parameter

value is able to recover y combined with the particular u. Because we assume the model is

correctly specified, and thus at least the true parameter values should be contained in the set

inverse, intuitively it means that this u value is not helpful to the inference of θ and should

be discarded. Therefore, we should always prevent this from happening, and one natural

workaround is to concentrate on the set of u such that Equation 1.5 is non-empty. Following

these heuristics, a fiducial distribution can be defined as

v(Q(y,U?)) | {Q(y,U?) 6= ∅}, (1.6)

in which U? is an independent and identically distributed (i.i.d.) copy of the data generat-

ing U. A (possibly vector-valued) random variable having the distribution determined by

Equation 1.6 is referred to as a generalized fiducial quantity (GFQ), denoted R.

Next, we discuss an illustrative example, namely, the binomial proportion problem (see

Dempster, 1966; Hannig, 2009). GFQ for the binomial proportion parameter is derived

following the generic recipe; the derivation is in many aspects similar to that of our main

problem described in the next chapter.

Example: Binomial proportion. Suppose Y1, . . . , Yn are independent and identically dis-

tributed (i.i.d.) Bernoulli(π) random variables with success probability π. The data gener-

ating equation for each Yi is

Yi = I{Ui ≤ π}, Ui ∼ Uniform(0, 1), (1.7)

in which I(·) denotes the indicator function. To make inference about π, we consider the set
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inverse of Equation 1.7:

Qi(yi, ui) =

[ui, 1], if yi = 1;

[0, ui), if yi = 0.
(1.8)

Equation 1.8 is one of the two segments of interval [0, 1] divided by the value of ui; see the

top panel of Figure 1.1 for a visualization.

π : [ ))[

0 1ui

Qi(0, ui) Qi(1, ui)

π : [ )) [

0 1u1 u2

Q1(0, u1) Q2(1, u2)

π : [ )[ [ [ ) )

0 1u1:n u2:n · · · us:n u(s+1):n · · · un:n

Q(y,u) 6= ∅

Figure 1.1: The binomial proportion example. The top panel shows the individual set inverse
function Qi(yi, ui) for yi = 0 and 1, respectively. The middle panel gives an example of empty
Q(y,u) = Q1(y1, u1) ∩ Q2(y2, u2), in which y1 = 0, y2 = 1, and u1 < u2. The bottom panel
displays a non-empty Q(y,u), in which the s =

∑n
i=1 yi smallest ui’s, denoted u1:n, . . . , us:n,

correspond to successes, and the rest correspond to failures.

Let Y = (Yi)
n
i=1, and S =

∑n
i=1 Yi ∼ Binomial(n, π). The set inverse function for Y,

denoted Q(y,u) in which u = (ui)
n
i=1, can be obtained by intersecting all individual set

inverse functions (Equation 1.8), because by definition the set inverse includes all values of π

that are consistent with all individual data generating equations (Equation 1.7). Formally,
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it can be written as

Q(y,u) =
n⋂
i=1

Qi(yi, ui) = [max
i:yi=1

ui, min
i:yi=0

ui). (1.9)

The set defined by Equation 1.9 can be empty; an example is given in the middle panel of

Figure 1.1. To obtain a non-empty intersection, we need maxi:yi=1 ui < mini:yi=0 ui, which

is illustrated in the bottom panel of Figure 1.1. Also let v(·) be a selection rule that yields

an element of Equation 1.9. Thereby we define the generalized fiducial distribution of π

following the generic recipe (Equation 1.6):

R
d
= v([max

i:yi=1
U?
i , min

i:yi=0
U?
i )) | {max

i:yi=1
U?
i < min

i:yi=0
U?
i }, (1.10)

in which U?
i ’s are i.i.d. copies of Ui’s as usual. The GFD defined by Equation 1.10 satisfies

the stochastic ordering: Us:n � R � U(s+1):n, in which � means “stochastically smaller than

or equal to”. More detailed discussion of this example, including the choice of selection rules

v(·), can be found in Hannig (2009).

A GFQ serves as a prospective probabilistic quantification for the plausibility of model

parameters after observing data, in contrast to the deterministic quantification given by

the likelihood function, and also to the posterior distribution obtained by updating the

prior knowledge of model parameters with the observed data. The fiducial probability of

event {R ∈ A ⊂ Θ} corresponds to the long-run proportion that parameter values in A

would be needed in order to reproduce the observed data y, over repeated data generation

from the model (i.e., generate U? from its parameter-free distribution). Here we ignore

for the sake of a simpler elucidation the fact that Q(y,u) is possibly set-valued, and this

can be taken as approximately correct in large samples (Hannig, 2013). The construction

and interpretation do not require any prior knowledge on the model parameters, which is

a marked logical difference from the Bayesian approach. Mathematically, however, GFQ is

closely attached to empirical Bayeisan inference: The fiducial density can be written in the

form of a Bayesian posterior with a data-dependent prior (see Hannig, 2009, Section 4.2,
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for a general discussion). A different connection between the two is established later for

our problem involving a marginal likelihood, similar to that given by Liu and Hannig (2014,

Remark 3).

GFQs defined by Equation 1.6 suffers from three major sources of non-uniqueness (Han-

nig, 2009): a) the choice of data generating equations, b) the choice of selection rules, and c)

conditioning on a set with probability 0 (i.e., the Borel paradox, see Proschan and Presnell

(1998) for detailed discussions). In the application of GFI to the GRM, we use a simple and

natural data generating equation that parallels the way graded item response data are typi-

cally simulated in Monte Carlo studies, and that is shown to lead to a fiducial distribution

that satisfies a Bernstein-von Mises theorem (and consequently an asymptotic CD); there-

fore, we do not feel pressed to explore other possible data generating equations. In addition,

c) does not apply to categorical data, so it will not be discussed either. For b), it can be

shown that the diameter of the set given by Equation 1.5 in our problem shrinks to 0 at the

rate 1/n, faster than the rate 1/
√
n at which GFQ approaches its normal limit as dictated

by the Bernstein-von Mises theorem. Non-informative and data independent selection rules

are recommended by Hannig (2009, Section 7) for finite sample applications.

In practice, Monte Carlo methods are frequently used when GFI is applied to complex

parameteric models, due to fact that exact computation of functionals of the fiducial distri-

bution, e.g., median and quantiles, are often intractable. The target distribution (Equation

1.6) can be approximated by simulating U? subject to the constraint Q(y,U?) 6= ∅ and

constructing the implied set inverse Q(y,U?) from each Monte Carlo draw of U?, which is

typically a quite involved truncated sampling problem in essence. Markov chain Monte Carlo

(MCMC; e.g., E, Hannig, and Iyer, 2009; Hannig and Lee, 2009) or sequential Monte Carlo

(SMC; e.g., Cisewski, and Hannig, 2012) approaches have been invoked to generate samples

from the target fiducial density; see Hannig, Lai, and Lee (2014) for a detailed discussion on

various computational issues of GFI.
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It has been demonstrated in applications that GFI not only offers asymptotically opti-

mal inference but outperforms ML and Bayesian approaches in small samples as well (e.g.,

Hannig, 2009; Cisewski and Hannig, 2012; Liu and Hannig, 2014). In the current work, we

show that GFI, again, when applied to the GRM, delivers added value over conventional

likelihood-based and Bayesian methods: We derive a Bernstein-von Mises theorem and some

other important properties that guarantees the asymptotic correctness of GFI; in the sim-

ulation study, we continue to see that GFI is well-behaved even in very extreme conditions

(small sample and skewed item parameters) where both ML and Bayesian approaches fail.

In the next chapter, we first look at some large sample properties of GFI in the family of

GRMs (Equation 1.1).
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CHAPTER 2: THEORY

In this chapter, we derive a generalized fiducial distribution of item parameters under

the family of multidimensional graded response models (GRMs; characterized by Equation

1.1). A Bernstein-von Mises theorem is established to justify the asymptotic correctness of

generalized fiducial inference (GFI) for making inferences about item parameters and their

transformations. We also discuss the consistency of the fiducial predictive distribution for

sample statistics whose distributions depend on the item parameters, which is applicable

to constructing predictive intervals for response pattern scores. We conclude this section

by discussing an easy-to-implement goodness of fit testing procedure, the fiducial predictive

check (FPC), analogous to the posterior predictive check (Guttman, 1967; Rubin, 1984) in

the Bayesian literature.

2.1 A generalized fiducial distribution for item parameters

Following the general recipe introduced in Chapter 1, we derive a generalized fiducial

distribution for item intercepts and slopes given independent and identically distributed

(i.i.d.) responses to a collection of graded items. We start from the data generating equation

of a person’s response to an item under the GRM, and find the set inverse function of item

parameters corresponding to this particular data entry. Combining all individual set inverse

functions, we arrive at the set inverse for the entire item response data set, based on which

a fiducial distribution can be defined in the form Equation 1.6.

Conditional on the latent variable Zi, person i’s response to item j, i.e., Yij, follows

a multinomial distribution with probabilities P{Yij = k|Zi} = fj(θj, k|Zi), k = 1, . . . , Kj,

given by Equation 1.1 in the previous chapter, in which the free item parameters αj1, . . . , αj,Kj−1
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and βj are collected in θj. Similar to the binomial proportion example discussed in the pre-

vious chapter, the data generating equation (e.g., Hannig, 2009, Example 5) of the ordinal

Yij can be written as

Yij =

Kj−1∑
k=1

I{Uij ≤ fj(θj, k|Zi)} =

Kj−1∑
k=1

I{Aij ≤ αjk + βj
>Zi}, (2.1)

in which Uij ∼ Uniform(0, 1), Aij = logit(Uij) ∼ Logistic(0, 1), and Zi ∼ N (0, Ir×r). Here,

Aij and Zi can be identified as the pivotal component U in the general formulae (equations

1.4 to 1.6). Assume rj slopes are free (rj ≤ r), and thus the dimension of θj is qj = rj+Kj−1;

in the sequel, we only consider the case in which the fixed slopes are zero for simplicity1. The

set inverse function of Equation 2.1 is the following subset of the qj-dimensional parameter

space:

Qij(yij, aij, zi) = {θj ∈ Rqj : aij > αj1 + βj
>zi, if yij = 0;

aij ≤ αj,K−1 + βj
>zi, if yij = K;

αj,k+1 + βj
>zi < aij ≤ αjk + βj

>zi, otherwise.}

(2.2)

Geometrically, Equation 2.2 corresponds to the intersection of two half-spaces if k is a middle

category, and a single half-space if k = 0 or Kj − 1. A graphical illustration of Equation

2.2 for a three-category item is given in the left panel of Figure 2.1, in which the parameter

space is three dimensional (two intercepts and one slope).

The set inverse function for n i.i.d. responses to item j, denoted Y(j) = (Yij)
n
i=1, is given

1In practice, slopes might be fixed at values other than zero. The theoretical properties discussed in the
current work still apply after subtracting the inner product of those fixed slopes and the corresponding
normal variates from Aij ’s and substituting its distribution function for the standard logistic cumulative
distribution function (cdf).
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intercept 1

intercept 2

slope

intercept 1

intercept 2

slope

Figure 2.1: Set inverse functions for a single response entry Yij (left) and five i.i.d. re-
sponses (right) for a 3-category graded item. Colors of the wireframes indicate directions
of inequality signs, and arrows point into the corresponding half-spaces. On the left, the
purple-colored dashed line gives a boundary of the parameter space αj1 = αj2. On the right,
the intersection of all half-spaces is shown as the polytope surrounded by its purple-colored
edges and highlighted vertices

by the intersection of all individual set inverse functions (Equation 2.2):

Qj(y(j), a(j), z) =
m⋂
j=1

Qij(yij, aij, z) (2.3)

in which a(j) = (aij)
n
i=1 and z = (zi)

n
i=1 are realizations of the logistic and normal random

variables. We take the intersection for a reason similar to that discussed in the binomial

proportion example: Because the same intercept and slope parameters appear in the data

generating equations of all n responses (Yij)
n
i=1, the set inverse should contain values of those

item parameters that are consistent with all the equations. The right panel of Figure 2.1

depicts the set inverse for five responses to the same three-category item: A three-dimensional

closed polyhedron is obtained as the intersection of the corresponding half-spaces.

Finally, consider a sample of i.i.d. responses Y = (Yi)
n
i=1 = (Yij)

n
i=1

m
j=1 to a test of
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m graded items. Because we assume that items do not share parameters, the set inverse

function for the entire set of item response data

Q(y, a, z) =
m×
j=1

Qj(y(j), a(j), z) (2.4)

is a subset of the entire parameter space Θ ⊂ Rq1×· · ·×Rqm , in which× denotes the Cartesian

product. A generalized fiducial distribution can be constructed following the general recipe

(Equation 1.6):

v(Q(y,A?,Z?)) | {Q(y,A?,Z?) 6= ∅}, (2.5)

in which v(·) denotes some user-defined rule that selects one point from each item’s poly-

hedron. A? and Z? are i.i.d. copies of A and Z, respectively; again, the asterisks are used

to distinguish them from their data-generating counterparts. Note that both A? and Z? are

continuous random variables, and thus we do not differentiate Q(y,A?,Z?) from its closure:

i.e., the polyhedrons with attained boundaries. In the sequel, call a random variable follow-

ing the distribution given by Equation 2.5 a generalized fiducial quantity (GFQ), denoted

R.

In finite samples, the polyhedron implied by Equation 2.3 is not necessarily bounded;

for example, when n ≤ qj, it is certainly unbounded, because a bounded polytope on the

qj-dimensional space has at least qj +1 faces. We require a finite point being returned by the

selection rule: i.e., |v(Q(y, a, z))| <∞ for all y, a and z such that Q(y, a, z) is non-empty;

hence, infinity is not included in the support of the resulting fiducial distribution (Equation

2.5) in unbounded cases. Eventually, the polyhedrons become bounded as the sample size

tends to infinity; it is in fact a corollary of Theorem 2 which states a stronger property that

the diameter of the set inverse shrinks to zero at a fast rate.

In addition, it is plausible that the set inverse (Equation 2.4) touches the boundary of

the parameter space imposed by the ordering of item intercepts, i.e., ∂Θ = {θ : αjk =

αj,k+1 for some j and k}. In large samples, however, this almost never happens. In fact, if
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there exists more than one endorsement to a response category k of item j, e.g., y1j = y2j = k,

then αj,k+1 < min{A?1j − βj>Z?
1, A

?
2j − βj>Z?

2} ≤ max{A?1j − βj>Z?
1, A

?
2j − βj>Z?

2} ≤ αjk,

with a strict inequality attained almost surely by the continuous nature of the logistic and

normal variates. As long as the data-generating values of the item parameters are in the

interior of the parameter space, all the response patterns happen with a positive probability,

and thus the set inverse is eventually bounded away from ∂Θ with probability one.

Some extra notation is introduced. Let τjk(θj, zi) = αjk + βj
>zi be the linear regression

on the latent variable. Also set τj0(·, ·) = ∞ and τjKj
(·, ·) = −∞ by convention; with the

help of these notations, we simplify the IRF (Equation 1.1) to

fj(θj, k|zi) =
1

1 + e−τjk(θj ,zi)
− 1

1 + e−τj,k+1(θj ,zi)
, (2.6)

and the set inverse function (Equation 2.2) to

Qij(yij, aij, zi) = {θj ∈ Rqj : τj,k+1(θj, zi) < aij ≤ τjk(θj, zi)}. (2.7)

Consider y fixed for now. Each vertex of the possibly unbounded Rqj -polyhedronQj(y(j), a(j), z)

residing in the interior of Θ is the solution of a set of qj linear equations of form aij =

τjk(θj, zi), contributed from qj observations and some suitable choices of left/right bounds

depending on the responses of those selected observations2. Notationally, let Ij be a size-qj

sub-sample of observations. Also let kIj = (kij)i∈Ij be an index tuple of length qj, each

element of which kij ∈ {yij, yij + 1} indicates whether the right half-space aij ≤ τjyij(θj, zi)

or the left half-space τj,yij+1(θj, zi) < aij is selected for each i ∈ Ij3. Only a small fraction

of (Ij,kIj) pairs are needed to determine a vertex: It only happens when the qj boundary

hyperplanes of the selected half-spaces are finite and produce a non-singular linear system.

2If an observation contributes two equations, then the resulting vertex is on the boundary of Θ. This happens
with probability zero for sufficiently large n.

3Here, Ij is treated as an unordered set, while kIj is a qj-tuple, each element of which, i.e., kij , uniquely
maps onto an element i ∈ Ij .
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Suppose a fixed non-empty set inverse function Qj(y(j), a(j), z) has vj vertices; they can be

indexed by a collection of properly selected pairs Pj = {(I(l)
j ,kI(l)j

)}vjl=1. Pooling across all m

items in the test, write I =
⋃m
j=1 Ij, kI = (kIj)

m
j=1, and P =×m

j=1
Pj; P indexes all extremal

points of the set inverse Q(y, a, z) for the entire set of item response data.

We first consider selection rules that yield interior extremal points of Q(y,A?,Z?) and

are independent of A? and Z?, for which the resulting fiducial density has a closed-form

expression. Write the selected point V = (Vj)
m
j=1 = v(Q(y,A?,Z?)), in which Vj is the

selected vertex of polyhedron Qj(y(j),A
?
(j),Z

?). For each item j, let VIj ,kIj
be the solution

determined by a particular sub-sample Ij together with a particular combination of left/right

bounds kIj , and EIj ,kIj
be the event that VIj ,kIj

gives an interior vertex of Qj(y(j),A
?
(j),Z

?).

Also let VI,kI
= (VIj ,kIj

)mj=1, EI,kI
denote the event that VIj ,kIj

determines an extremal

point of Q(y,A?,Z?), and EP denote the event that all the extremal points are indexed by

P . The generic fiducial quantity (Equation 2.5) associated with a selected extremal point

of the set inverse function (Equation 2.4) is given in the following lemma; see Appendix A

for the derivation, which is similar in spirit to the proof of Lemma A.1 and B.1 in Hannig

(2013), the first part of Theorem 1 in E et al. (2009), and Lemma 1 in Liu and Hannig

(2014).

Lemma 1. Consider m graded items each of which is characterized by equation 2.6. Let

Θ ⊂ Rq1 × · · · × Rqm be the parameter space of item parameters θ, comprising all free item

intercepts and slopes. We observe i.i.d. ordinal item response data y = (yi)
n
i=1, in which

each response category of each item has more than one endorsement. Then, the density of

the GFQ corresponding to a selected extremal point, i.e., V | {Q(y,A?,Z?) 6= ∅}, can be
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written as4

gn(θ|y) ∝
∑
I

∑
kI

wI,kI
(y)

·
∫
Rnr

m∏
j=1

dIj ,kIj
(θj, zIj) ·

∏
i∈Ij

eτjkij (θj ,zi)

[1 + eτjkij (θj ,zi)]2

·
∏
i∈Icj

fj(θj, yij|zi)

 dΦ(z). (2.8)

In Equation 2.8, dIj ,kIj
(θj, zi) =

∣∣det(∂τjkij(θj, zIj)/∂θj)i∈Ij
∣∣, zIj = (zi)i∈Ij , Φ(·) denotes a

standard normal probability measure5, and

wI,kI
(y) = P{V = VI,kI

|EI,kI
}

∝
∑

P3(I,kI)

P{V = VI,kI
|EP} · P{EP} (2.9)

is contingent upon P{V = VI,kI
|EP}, i.e., the specific selection rule being used.

Remark 1. The connection between GFI and Bayesian inference can be seen from Equation

2.8. As a general notation, we put index set in subscript to denote the corresponding

4The sum on the right-hand side of Equation 2.8 is taken over all combinations of I and kI . Some of (Ij ,kIj )
pairs are not able to produce a vertex; in those cases, the Jacobian determinant dIj ,kIj

is zero, and thus the

corresponding summand in Equation 2.8 vanishes.

5Here, the dimensionality of the random variable is suppressed for succinctness.
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elements: e.g., zI = (zi)i∈I . Rewrite Equation 2.8 by splitting the integral into two parts—

one for zI , and the other for zIc :

gn(θ|y) ∝
∑
I

∑
kI

wI,kI
(y)

∫ m∏
j=1

dIj ,kIj
(θj, zi)

·
∏
i∈I

 ∏
j∈J(i)

eτjkij (θj ,zi)

[1 + eτjkij (θj ,zi)]2

∏
j /∈J(i)

fj(θj, yij|zi)

 dΦ(zI)

·
∫ ∏

i∈Ic

m∏
j=1

fj(θj, yij|zi)dΦ(zIc), (2.10)

in which J(i) = {j : i ∈ Ij} for i ∈ I. Note that the last line of Equation 2.10 is the

marginal likelihood function of the remaining observations Ic. We can multiply and divide

the right-hand side of Equation 2.10 by the likelihood of the vertex-determining observations

I, and then simplify it to

gn(θ|y) ∝ bn(θ,y)fn(θ,y). (2.11)

In Equation 2.11,

fn(θ,y) =

∫ n∏
i=1

m∏
j=1

fj(θj, yij|zi)dΦ(z), (2.12)

denotes the complete sample likelihood, and

bn(θ,y) =
∑
I

∑
kI

wI,kI
(y)

∫ m∏
j=1

dIj ,kIj
(θj, zIj)

∏
i∈I

 ∏
j∈J(i)

eτjkij (θj ,zi)

[1 + eτjkij (θj ,zi)]2

∏
j /∈J(i)

fj(θj, yij|zi)

 dΦ(zI)

/∫ ∏
i∈I

m∏
j=1

fj(θj, yij|zi)dΦ(zI). (2.13)

is a function of both the item parameters and data. Therefore, our fiducial distribution for

parameters, although obtained from a seemingly unrelated argument, can be conceived as
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the (empirical) Bayesian posterior computed from the data-dependent prior proportional to

Equation 2.13.

To simplify the proof of our main theorem (Theorem 1), we impose a further restriction

on the selection rules: Whenever I 6= I ′ but yI = yI′ and kI = kI′ , it is required that

wI,kI
(y) = wI′,kI′

(y); the common function value is denoted by wyI ,kI
(y). It implies that the

number of distinct values of wyI ,kI
(y) does not grow with the sample size, because yI and

kI have only finitely many patterns. A simple selection rule that satisfies such condition,

which is also recommended in actual computation, is to select with equal probability among

the interior vertices of each polyhedron Qj(y(j),A
?
(j),Z

?).

The next result implies that the fiducial density (Equation 2.8) is invariant under smooth

transformations, similar to the invariance of the Bayesian posterior derived from the Jeffreys

prior. This is a desirable property because inference about item parameters remains the

same when the model is re-parameterized. For example, researchers may be interested in

the alternative slope-difficulty or the standardized loading-threshold parameterizations of

the GRM model, and inference can be safely drawn about those transformed parameters

using the correspondingly transformed generalized fiducial distributions. Definitions of those

specific transformations are provided later in Chapter 4.

Proposition 1 (Invariance). Let θ = q(ξ) be a one-to-one and continuously differentiable

function onto the parameter space Θ. Denote the data generating equation corresponding to

Equation 2.8 by Y = g(θ,A,Z), and write g̃n(ξ|y) as the generalized fiducial distribution

computed from the data generating equation Y = g(q(ξ),A,Z). Then for any measurable

set B ⊂ Θ, ∫
B

gn(θ|y)dθ =

∫
q−1(B)

g̃n(ξ|y)dξ. (2.14)

2.2 A fiducial Bernstein-von Mises theorem

Now we are ready to expound our major theoretical result, a fiducial Bernstein-von

Mises theorem, which describes the asymptotic optimality and normality of the fiducial
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distribution and further implies the large-sample correctness of fiducial interval estimators

in the frequentist sense. In this section, we start with the introduction of some notation

and a heuristic description of the Bernstein-von Mises phenomenon. Then, we provide the

formal statement of the theorem (Theorem 1) based on the fiducial density (Equation 2.8)

that has been derived in Lemma 1. We conclude that the result is applicable regardless of

the selection rule being used, due to the fact that the diameter of the set inverse function is

a higher order term (Theorem 2).

Some standard notation is needed for the asymptotic theory. The (marginal) multi-

nomial likelihood for each response pattern yi is expressed as Equation 1.2. Let s(θ,yi) =

∂ log f(θ,yi)/∂θ be the single-observation score vector, and H(θ,yi) = ∂2 log f(θ,yi)/∂θ∂θ
>

be the single-observation Hessian matrix. Also define I(θ) = Covθ [s(θ,Yi)] which is usually

referred to as the Fisher information matrix. It can be verified by direct calculation that

Eθ [s(θ,Yi)] = 0,

I(θ) = Eθ
[
s(θ,Yi)s(θ,Yi)

>] = −Eθ [H(θ,Yi)] . (2.15)

Also let θ0 be the data-generating parameter values, I0 be a shorthand notation for I(θ0).

Loosely speaking, the Bernstein-von Mises phenomenon refers to the fact that in large

samples the random probability measure corresponding to the properly centered GFQ,

√
n(R − θ0), “converges” to a normal distribution, N (X,I−1

0 ), whose mean X is a ran-

dom quantity following a normal distribution with zero mean and the efficient covariance

matrix I−1
0 . It can be inferred that a proper central tendency measure (e.g., the median) of

the fiducial distribution is asymptotically equivalent to the ML estimator, and that CIs con-

structed from the fiducial distribution have the correct frequentist coverage asymptotically.

The appropriate mode of convergence involved in the foregoing heuristics is that the total

variation distance between the density of
√
n(R−θ0) and N (I−1

0 Sn,I−1
0 ) converges to zero
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in Pθ0-probability, in which the sample score function Sn satisfies

Sn =
1√
n

n∑
i=1

s(θ0,Yi)

∣∣∣∣
θ=θ0

d→ N (0,I0) (2.16)

by the Central Limit Theorem. I−1
0 Sn serves as a finite-sample “centering sequence” for

√
n(R − θ0) in place of the limiting version X in the heuristics. See Appendix B for the

proof of the theorem, which is similar in spirit to Ghosh and Ramamoorthi’s (2003, Theorem

1.4.2) proof of a Bayesian Bernstein-von Mises theorem.

Theorem 1 (Bernstein-von Mises). Suppose that item response data Y = (Yi)
n
i=1 are i.i.d.

with probability mass function f(θ0,yi). Let Θ ⊂ Rq be the parameter space as usual. Assume

that

(i) m ≥ r + 1;

(ii) For all θ,θ′ ∈ Θ such that θ 6= θ′, fθ 6= fθ′ for some response pattern;

(iii) θ0 is at the interior of Θ;

(iv) The Fisher information matrix I0 is positive definite.

Let ḡn(h|y) = gn(θ0 + h/
√
n|y)/

√
n be the fiducial density of

√
n(R − θ0), Hn be the

correspondingly rescaled parameter space, and φI−1
0 Sn,I−1

0
be the density of N (I−1

0 Sn,I−1
0 ).

Then, ∫
Hn

∣∣∣ḡn(h|Y)− φI−1
0 Sn,I−1

0
(h)
∣∣∣ dh Pθ0→ 0, (2.17)

Remark 2. Assumptions (ii) to (iv) are standard regularity conditions for establishing the

asymptotic optimality of the ML estimator. (i) ensures the existence of some neighborhood

of θ0 such that for θ outside the likelihood ratio statistic fn(θ,Y)/fn(θ0,Y) uniformly goes

to zero; this is similar to Assumption (v) in Ghosh and Ramamoorthi (2003). Also, for some

choices of Kj and r, (i) is implied by (ii).

Remark 3. As remarked in van der Vaart (2000, Section 10.2), the alternative “centering

sequence”
√
n(θ̂ − θ0), in which θ̂ is the ML estimator, can be used in place of I−1

0 Sn in
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Equation 2.17, because the the latter is a local linear approximation of the former at the

true parameter values θ0 and the two are asymptotically equivalent.

The next theorem dictates that the diameter of the set inverse Q(Y,A?,Z?) goes to 0

at the rate 1/n, higher than the rate 1/
√
n at which the fiducial distribution approaches its

normal limit. Consequently, different selection rules tend to give converged inference about

model parameters when the sample size is large enough.

Theorem 2. Suppose that assumptions (i)–(iv) of Theorem 1 hold. For any K > 0, define

ρK(y) = P ?{diamQ(y,A?,Z?) > K/n | Q(y,A?,Z?) 6= ∅}, (2.18)

in which P ? denotes the probability measure of the generated variates A? and Z?. Then, for

each ε > 0,

Pθ0{∃K,N > 0 : ρK(Y) < ε, ∀n > N} → 1, (2.19)

in which Pθ0 denotes the probability measure of Y under the true parameter values θ0.

Remark 4. We only establish the proof for unidimensional GRMs (i.e., r = 1), which is rele-

gated to Appendix C. We conjecture that a similar proof using more sophisticated geometric

argument can be established for multidimensional models.

2.3 Fiducial predictive inference

In this section, we discuss predictive inference using the derived fiducial distribution for

item parameters. In the extant literature, prediction is typically defined as making infer-

ences about future observations, or statistics computed from future observations, based on

their distributions conditional on the values already observed; such distributions are likely

to depend on unknown parameters that need to be estimated from the observed data (e.g.,

Aitchison and Dunsmore, 1975; Geisser, 1993). In the current discussion, we focus on con-

structing prediction intervals (PIs) for the target future data/statistics for the purpose of

quantifying prediction errors. We provide a general consistency theorem for predictive densi-

ties computed from any consistent distributions of model parameters under mild smoothness
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requirements for the target statistics. As a corollary of the fiducial Bernstein-von Mises

theorem, the GFQ is consistent; therefore, its use in predictive inference is justified. An im-

portant application of fiducial predictive inference is to obtain PIs for latent variable scores,

which quantify the precision of the measurement for the substantive construct(s) of inter-

est. With GFI, a Monte Carlo sample of the predictive distribution for each respondent’s

response pattern score is available as a by-product of the sampling algorithm described in

Chapter 3.

2.3.1 Consistency

The following proposition is applicable to the prediction for any test statistics T whose

density function h(t,θ0) with respect to some dominating measure µ depends on the data-

generating parameter values θ0. We claim that the predictive density :

hn(t|y) =

∫
Θ

h(t,θ)gn(θ|y)dθ (2.20)

derived from a consistent distribution defined on the parameter space with density gn(θ|y)

converges in total variation to the target density h(t,θ0) in Pθ0-probability, provided in some

small neighborhood of θ0 the density function h(t,θ) is continuous and dominated by an

integrable function.

Proposition 2 (Predictive consistency). Let {gn(θ|y)} be a consistent sequence of density

functions at θ0 in the sense that as n→∞,

∫
‖θ−θ0‖<δ

gn(θ|Y)dθ → 1 in Pθ0-probability. (2.21)

for all δ > 0. Let T be a statistic having density h(t,θ0) with respect to some dominating

measure µ. Assume that there exists some neighborhood of θ0, denoted N0, such that h(t,θ)

is continuous in θ for each fixed t, and that there also exists a measurable function e(t) such

that

sup
θ∈N0

h(t,θ) ≤ e(t), and

∫
e(t)µ(dt) <∞. (2.22)
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Then the predictive density, i.e., Equation 2.20, satisfies

∫
|hn(t|Y)− h(t,θ0)|µ(dt)→ 0 in Pθ0-probability. (2.23)

Remark 5. As a consequence of Theorem 1 and 2, the GFQ defined by Equation 2.5 with

any selection rule v(·) satisfies Equation 2.21, and thus can be used for making predictions

about statistic T. The proposition can be considered as an extension to Theorem 1 in Wang,

Hannig, and Iyer (2012).

Remark 6. We need the mild continuity requirement and Equation 2.22 to apply the Domi-

nated Convergence Theorem in the proof which is rather straightforward and can be found

in Appendix D. In applications of the GRM, those conditions are typically easy to check.

Remark 7. Proposition 2 can be used to check the compatibility of the calibrated GRM in

independent cross-validation samples. Statistics that are linear combinations of response

patterns, e.g., marginal response patterns, are often used for this purpose. In those cases,

the continuity of the target density is guaranteed by the continuity of the response pattern

likelihood function (Equation 1.2), and Equation 2.22 is trivially satisfied because this type of

statistics take only finitely many possible values. However, Proposition 2 cannot be applied

to probing the fit to the current data set; intuitively it is because the current data set has

already been used to obtain the predictive distribution, and thus its reuse in fit checking

leads to unresolved dependencies. More involved techniques, i.e., the fiducial predictive check

which is introduced in the next section, must be invoked in this scenario.

In practice, the predictive distribution (Equation 2.20) can be conveniently approxi-

mated by Monte Carlo simulations, especially when a sample from the consistent distribu-

tion gn(θ|y) is available and the test statistic T is some simple function of the data t(Y).

For easy reference, we provide the generic pseudo-code, i.e., Algorithm 1, for constructing

Monte Carlo percentile PIs.
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Algorithm 1 Monte Carlo PIs

1: generate θ(1), . . . ,θ(S) from distribution gn(θ|y).
2: for all s = 1, . . . , S do
3: if T = t(Y) then
4: generate A? = a(s), Z? = z(s).
5: compute y(s) = g(θ(s), a(s), z(s)), t(s) = t(y(s)).
6: else
7: generate T = t(s) from h(t,θ(s))
8: end if
9: end for

10: construct PIs with empirical percentiles of t(1), . . . , t(S).

2.3.2 Example: Response pattern scoring

Next, we discuss the use of fiducial predictive inference in the interval estimation of

response pattern scores. When the items are already calibrated and the parameters are

considered known, inference about individual pattern scores zi is a Bayesian problem and

can be obtained from the posterior density of Zi given yi:

p(zi,θ|yi) ∝ φ(zi)
m∏
j=1

fj(θj, yij|zi) (2.24)

evaluated at θ0, in which the standard normal density φ(·) serves as the prior density of

this Bayesian problem. Based on Equation 2.24 the posterior mean is typically used as a

point estimate of zi and often referred to as the expected a posteriori (EAP) score; interval

estimates of zi can be constructed by numerically computing the quantiles of the posterior or

by a normal approximation using the EAP score and the posterior standard deviation. The

resulting posterior intervals are asymptotically normal and efficient as a consequence of the

Bayesian Bernstein-von Mises theorem (e.g., Le Cam & Yang, 1986; van der Vaart, 2000),

given the true item parameter values satisfying some mild conditions. In the situation when

item parameters need to be simultaneously estimated from the data, we resort to making

predictive inference about the posterior (Equation 2.24) by substituting p(zi,θ|yi) for h(t,θ)

in Equation 2.20.

In order to use Proposition 2, the local behavior of the posterior density p(zi,θ|yi) in the
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neighborhood of θ0 must be checked. The continuity of the posterior density with respect

to θ is obvious from expression 2.24. Condition 2.22 is also satisfied due to the facts: a)

fj(θj, yij|zi) ≤ 1, b) the standard normal density is integrable, and c) there are only finitely

many patterns of yi for a fixed-length test, and thus the likelihood function values in a

neighborhood of θ0 are bounded from below. Then Proposition 2 guarantees the asymptotic

correctness of the corresponding predictive inference using Equation 2.20.

Next, we claim that the conditional distribution Z?
i | {Q(Y,A?,Z?) 6= ∅} is asymptoti-

cally equivalent to the fiducial predictive distribution (Equation 2.20), given fixed Yi = yi.

The posterior distribution (Equation 2.24) can be alternatively interpreted as the marginal

distribution of Z?
i when Z?

i and A?
i are generated such that θj

>Z̃?
ij,k+1 ≤ A?ij ≤ θj

>Z̃?
ijk

for all j, in which Z̃?
ijk is the random version of z̃ijk as appeared in Equation 2.8. De-

note by a subscript −i the components corresponding to all but the ith observation. Then

Z?
i | {Q(Y,A?,Z?) 6= ∅} is in fact the marginal distribution of Z?

i conditional on the event

that there exists some θ = (θj)
m
j=1 ∈ Q(Y−i,A

?
−i,Z

?
−i) such that θj

>Z̃?
ij,k+1 ≤ A?ij ≤ θj>Z̃?

ijk

for each j. The asymptotic equivalence follows as a corollary of Theorem 1 and 2. As a re-

sult, for observed response patterns, PIs for the corresponding scores can be obtained along

with sampling from the fiducial distribution of item parameters (the detailed algorithm is

relegated to Chapter 3). For patterns not present in the calibration sample, however, extra

Monte Carlo simulations using Algorithm 1 are necessary.

The joint consistency or asymptotic normality of the fiducial distribution in estimating

θ and z as both n and m tend to infinity is beyond the scope of the current work. We

conjecture that a more general fiducial Bernstein-von Mises theorem for item parameters

can be established as the dimension of the parameter space grows to infinity at a slow

enough rate, and that consequently interval estimators for both item parameters and response

pattern scores are both asymptotically correct.
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2.4 Goodness of fit testing with a fiducial predictive check (FPC)

As mentioned in the previous section, we are tempted to check the compatibility of the

fitted GRM to the observed item response data using a suitable test statistic T = t(Y)

via predictive simulations. In particular, we are interested in approximating the predictive

p-value:

p(y) =

∫
Pθ{t(Y) > t(y)}gn(θ|y)dθ (2.25)

after observing Y = y, in which Pθ{·} highlights the probability calculation under parameter

values θ. We call the resulting procedure a fiducial predictive check (FPC), inspired by the

posterior predictive check in Bayesian statistics. The pseudo-code is provided as Algorithm 2,

the structure of which closely resembles Algorithm 1. Note that the formula for a one-tailed

empirical p-value is given in Line 7 of Algorithm 1; whenever desired, two-tailed p-values can

be obtained in a similar manner.

Algorithm 2 Fiducial predictive check (FPC)

1: generate θ(1), . . . ,θ(S) from distribution gn(θ|y).
2: for all s = 1, . . . , S do
3: generate A? = a(s), Z? = z(s).
4: compute y(s) = g(θ(s), a(s), z(s)), t(s) = t(y(s)).
5: end for
6: compute the observed statistic t = t(y)
7: compute the empirical p-value p̂(y) = S−1

∑S
s=1 I{t(s) > t}

As pointed out by Bayarri and Berger (2000) and Robins, van der Vaart, and Ventura

(2000) in the context of Bayesian posterior predictive check, the p-value calculated from

Equation 2.25 is not always asymptotically uniform, because the observed data y are effec-

tively used in both computing the statistic and obtaining its predictive distribution. There

have been philosophical disputes among Bayesian statisticians about the necessity for a pos-

terior p-value to be uniform (see e.g., Bayarri and Berger, 1999; Gelman, 2013); however,

FPC is treated as a freqentist method in the current work, so we consider asymptotically

uniform p-values desirable. Two tweaks for Algorithm 2 are introduced next, both of which
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are based on the theoretical discussion traced to Robins et al. (2000).

2.4.1 The centering approach

Robins et al. considered a family of asymptotically normal test statistics t(Y), and

concluded that the predictive p-value (Equation 2.25) is uniform if and only if a) the density

gn(θ|y) satisfies a Bernstein-von Mises theorem, b) the asymptotic mean of t(Y) under

correctly specified model, denoted ν(θ), is constant in θ, and c) ∂ν(θ)/∂θ|θ=θ0 gives the

asymptotic covariance of
√
n[t(Y)− ν(θ0)] and the sample score function Sn. For checking

the fit of the GRM, a) follows from Theorem 1 and 2. When ν(θ) is non-constant but

continuous in θ, a simple workaround to fulfill b) is to use the centered statistic t̂(Y) = t(Y)−

ν(θ̃(Y)) in which Y is generated by parameter values θ, and θ̃(Y) is some asymptotically

normal and consistent estimator of θ computed from Y. As for practical choices of point

estimators, Robins et al. (2000) suggests the ML estimator or a one-step Newton-Raphson

approximation starting from the point estimates of the observed data. For the GRM, one

could alternatively use the computationally less demanding weighted least square estimators

(e.g., Muthén, 1978; Gunsjö, 1994; Maydeu-Olivares, 2006). Finally, c) is guaranteed for our

choices of test statistics, which is derived in Appendix E.

2.4.2 The partial predictive approach

This approach is based on Bayarri and Berger’s (2000) partial posterior predictive p-value,

which removes the dependency caused by a double-use of the observed data by replacing

gn(θ|y) in Equation 2.25 by a conditional version:

gn(θ|t,y) ∝ gn(θ|y)

fT (θ, t)
, (2.26)

in which fT (θ, t) is the density/likelihood function of the test statistic T evaluated at its

observed value t. Intuitively, the use of Equation 2.26 partials out the information of T = t

when constructing the predictive distribution, as though the analyses were based upon the

corresponding conditional model. Meanwhile, conditional on T = t the resulting partial

predictive p-value is subject to a usual predictive interpretation as discussed in the previous
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section. Robins et al. (2000) established the asymptotic uniformity of the partial predictive

p-value, assuming a Bernstein-von Mises theorem holds for the conditional model. In the cur-

rent work, we leave the rigorous proof of the asymptotic normality of the conditional model

as a topic for future investigation, and only discuss approximating the partial predictive

p-value using Monte Carlo simulations.

Taking advantage of Equation 2.26, i.e., the relationship between gn(θ|t,y) and gn(θ|y),

we could modify Algorithm 2 to adopt the technique of importance sampling (Bayarri and

Berger, 2000, Section 2.3), instead of implementing separately a direct Monte Carlo compu-

tation from gn(θ|t,y). By the importance sampling identity, the partial predictive p-value,

denoted p?(y), can be re-written as

p?(y) =

∫
Pθ{t(Y) > t(y)}gn(θ|t,y)dθ

=

∫
Pθ{t(Y) > t(y)}gn(θ|t,y)

gn(θ|y)
gn(θ|y)dθ

∝
∫
Pθ{t(Y) > t(y)}

fT (θ, t)
gn(θ|y)dθ. (2.27)

Let w(θ, t) = 1/fT (θ, t) be the sampling weight. We can modify accordingly the empirical

p-value calculation, i.e., Line 7 of Algorithm 2, i.e., to:

p̂?(y) =

∑S
s=1w(θ(s), t)I{t(s) > t}∑S

s=1w(θ(s), t)
. (2.28)

This importance sampling scheme is favored for the reason that the original Monte Carlo

sample from the fiducial distribution can be re-used for every test statistic T of interest;

however, it has two significant drawbacks. First, it requires evaluating the density function

fT (θ, t), which can be challenging or even numerically impossible for certain choices of T .

This is the case for our choice of bivariate fit diagnostics, and we resort to a normal ap-

proximation of the density function as a workaround. Second, it is well-known that when

the proposal density (gn(θ|y)) is dissimilar to the target one (gn(θ|t,y)), a few draws may
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vastly outweigh the rest (i.e., possess a much larger weight w(θ, t)), which consequently re-

sults in a sharp increase in approximation error. The degeneracy of sampling weights can be

monitored by the effective sample size (ESS):

Se =
[
∑S

s=1w(θ(s), t)]2∑S
s=1w(θ(s), t)2

. (2.29)

The reasoning behind Equation 2.29 is that the variance of an unweighted average of Se i.i.d.

random variables is identical to the weighted sum of S of them.

2.4.3 Choice of test statistics

We now discuss the choice of test statistics for testing sum-score-profile and bivariate fit

for the GRM.

Fit to the sum-score profile Following Sinharay et al. (2006), we consider assessing

model fit to the observed sum-score distribution (see also Ferrando and Lorenzo-seva, 2001;

Hambleton and Han, 2004; and Haberman and Sinharay, 2013). At each sum-score level l,

l = 0, . . . ,
∑m

j=1 Kj −m, the observed proportion of this particular level is used as the test

statistic:

Tl = tl(y) =
1

n

n∑
i=1

I{1>yi = l}. (2.30)

When the model is correctly specified, the mean of Tl, denoted νl(θ) is the model-implied

proportion at the sum-score level l:

νl(θ) =
∑
yi

I{1>yi = l}f(θ,yi). (2.31)

Expression 2.31 is directly involved in the centering approach, and also in the calculation of

the likelihood of Tl:

fTl(θ, t) ∝ νl(θ)nt[1− νl(θ)]n−nt, (2.32)

the reciprocal of which serves as the sampling weight in the partial predictive approach. In

practice, νl(θ) can be efficiently computed using the Lord-Wingersky recursive algorithm

35



(Lord and Wingersky, 1984; Thissen, Pommerich, Billeaud, and Williams, 1995).

When the sample size is small and/or the number of items is large, examining the entire

sum-score profile may not be feasible. In this case, we resort to conveniently constructed

score groups (e.g., equally spaced across the entire range), and compute observed proportions

in each group. The corresponding mean and likelihood of the test statistics have expressions

similar to equations 2.31 and 2.32.

Fit to bivariate margins For a pair of items j and k, the marginal lack of fit of the GRM

can be revealed by the bivariate cross-product statistic (e.g., Liu and Maydeu-Olivares, 2014):

Tjk = tjk(y) =
1

n

n∑
i=1

yijyik, (2.33)

which is grounded in a similar rationale as calculating the Spearman correlation for ranked

bivariate data. The mean of Tjk under correctly specified model can be written as

νjk =
∑
yi

yijyikf(θ,yi). (2.34)

The likelihood function of Tjk is not easily computed in practice. A normal approximation

to the likelihood is derived in Appendix E using the standard asymptotic normality result

for i.i.d. multinomial random variables.
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CHAPTER 3: COMPUTATION

In line with the general discussion in Chapter 1, sampling from the fiducial distribu-

tion (Equation 2.5) is isomorphic to truncated sampling of the random components A? and

Z?. A Gibbs sampler is developed in this chapter to produce a Markov chain that, by the

general theory of Gibbs sampling, approaches the equilibrium given by the target fiducial

distribution. We first introduce the general structure of the algorithm, followed by computa-

tional details involved at each stage. Some tuning aspects, i.e., choosing starting values and

avoiding heavy-tailedness, are discussed next. The computational time needed for various

combinations of sample sizes and test lengths is summarized in the end.

3.1 General structure

Throughout this chapter, consider the data y fixed. Recall that the generalized fiducial

distribution (Equation 2.5) is determined by the distribution of A? and Z? truncated to the

set Q(y,A?,Z?) 6= ∅. Algorithm 3 defines a Gibbs sampler for the truncated sampling of

A? and Z?. Starting from A? = a(0), Z? = z(0), and a large bounding box on the parameter

space (see the later discussion of starting the algorithm), the algorithm at each cycle updates

sequentially each component of A? and Z? conditional on the current values of all other

variates and the key restriction Q(y,A?,Z?) 6= ∅. The representation of the implied set

inverse must be updated after each conditional sampling step, in order to yield the desirable

truncation at the next conditional sampling step. As the number of cycles tends to infinity,

the generated Markov chain is stable around the joint distribution of A?,Z? | Q(y,A?,Z?).

At the end of each cycle, an extremal point of the updated set inverse is selected, which is

regarded as (approximately) an instance of the generalized fiducial having distribution.
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Algorithm 3 A Gibbs sampler

1: Starting values: A? = a(0) and Z? = z(0) (Algorithm 7)
2: for cycles s = 1, . . . , S do
3: for observations i = 1, . . . , n do
4: for items j = 1, . . . ,m do
5: Unlink observation i from the interior polytope Qj(y(j), a

(s−1)
(j) , z(s−1))

6: end for
7: for dimensions d = 1, . . . , r do
8: Update Z?

id = z
(s)
id (Algorithm 5)

9: end for
10: for items j = 1, . . . ,m do
11: Update A?ij = a

(s)
ij (Algorithm 4)

12: Update the jth polytope (Algorithm 6)
13: end for
14: end for
15: for items j = 1, . . . ,m do
16: Select with equal probability a vertex of Qj(y(j), a

(s)
(j), z

(s))
17: end for
18: end for

Remark 8. For each i, we need the operation of Line 5 in Algorithm 3 prior to executing

any updating steps about this particular observation. When neither half-space given by

observation i is interior, no extra computation is needed there. When i constitutes the

interior polytope, however, the unlinking step is computationally challenging. Currently,

Line 5 is achieved by intersecting the initial bounding box with the half-spaces for all but

the ith observations (i.e., repeatedly running Algorithm 6). Fortunately, we only need to

run the unlinking once for each combination of i and j.

3.2 Conditional sampling steps

3.2.1 Conditional sampling of A?
ij

Fix observation i and item j. The goal of this step is to obtain an updated A?ij such that

the implied half-spaces have a non-empty intersection with the interior polytope determined

by all but the ith observations evaluated at the current values of the corresponding random

components; the latter is readily available from Line 5 of Algorithm 3. Here, we only describe

the case when a middle category on the response scale is selected: i.e., 0 < yij < Kj−1. The

workaround we implement to reduce the impact of a heavy-tailed fiducial distribution (see
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the later discussion) amounts to augmenting the actual response scale with two “phantom”

extreme categories that have no endorsement in the observed data. This effectively renders

every actual response option a middle category, and thus the discussion here suffices.

For notational convenience, we use a superscript 0 to highlight the dependency solely on

the current values of random components at this particular sampling step, and a superscript

1 to denote the involvement of the updated one. Let a0
−i(j) and z0

−i be the current values

logistic and normal variates without the ith observation, a1
(j) be the logistic variates including

the updated ith component, and y−i(j) = (yi′j)i′ 6=i be the corresponding item responses to

the same item. The updated value a1
ij should yield a non-empty polytope: i.e.,

Qj(y(j), a
1
(j), z

0) = Qj(y−i(j), a
0
−i(j), z

0) ∩Qij(yij, a
1
ij, z

0) 6= ∅. (3.1)

Denoted V 0
−ij the collection of vertices of Qj(y−i(j), a

0
−i(j), z

0). Due to convexity, Equation

3.1 is further identical to the existence of at least one element of V 0
−ij being consistent with

each of the two updated half-spaces: i.e.,

a1
ij > τj,k+1(θj, z

0
i ) (3.2)

for some θj ∈ V 0
−ij, and

a1
ij ≤ τjk(θj, z

0
i ), (3.3)

for some θj ∈ V 0
−ij as well. It follows that A?ij = a1

ij should be generated from a stan-

dard logistic distribution truncated to [minθj∈V 0
−ij
τj,k+1(θj, z

0
i ),maxθj∈V 0

−ij
τjk(θj, z

0
i )]. An

implementation of the updating step is described in Algorithm 4.

39



Algorithm 4 Updating A?ij

1: set m =∞ and M = −∞
2: for θj ∈ V 0

−ij do
3: compute m1 = τj,k+1(θj, z

0
i )

4: if m1 < m then
5: m = m1

6: end if
7: compute m2 = τjk(θj, z

0
i )

8: if m2 > M then
9: M = m2

10: end if
11: end for
12: generate A?ij = a1

ij from the logistic distribution truncated to [m,M ]

Remark 9. Samples from truncated logistic distributions (Line 12) are obtained by an imple-

mentation of a slice sampler (Neal, 2003), which is by itself an MCMC algorithm; five cycles

are performed for each call of the sampler, which appears to behave well in a pilot study.

We also found that slice sampling outperforms the inverse cumulative distribution function

(cdf) approach when the truncation bounds are extreme.

3.2.2 Conditional sampling of Z?id

The conditional sampling of Z?
id is slightly more involved than that of A?ij, because a

single Z?
id is linked to multiple polytopes belonging to the items loading on latent dimension

d. Z?
id = z1

id should be sampled from a suitably truncated standard normal distribution

ensuring for each associated item that the updated interior polytope is not empty.

Fix i and d. Let z0
i,−d = (z0

ie)e 6=d be the current values of all but the dth dimension of the

normal variates, and θj,−d be the item parameters without the dth slope. Also write

τ djk(θj,−d, z
0
i,−d) = αjk +

∑
e 6=d

βjez
0
ie. (3.4)

For all items j loading on dimension d, the updated value z1
id should satisfy

βjdz
1
id < a0

ij − τ dj,k+1(θj,−d, z
0
i,−d) (3.5)
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for some θj = (βjd θj,−d
>)> ∈ V 0

−ij, and

βjdz
1
id ≥ a0

ij − τ djk(θj,−d, z0
i,−d) (3.6)

for some θj = (βjd θj,−d
>)> ∈ V 0

−ij as well. Let Jd be the collection of items that are

associated with Z?
id; equations 3.5 and 3.6 together yield the desirable truncation:

Z?
id ∈

⋂
j∈Jd

 ⋃
θj∈V 0

−ij

{z1
id : βjdz

1
id < a0

ij − τ dj,k+1(θj,−d, z
0
i,−d)}


∩

 ⋃
θj∈V 0

−ij

{z1
id : βjdz

1
id ≥ a0

ij − τ djk(θj,−d, z0
i,−d)}

 . (3.7)

Both equations 3.5 and 3.6 define one-sided intervals for z1
id, the direction of which is contin-

gent upon the sign of βjd for each vertex in V 0
−ij. As a consequence, Equation 3.7 might be an

interval or a union of disjoint intervals. The foregoing updating mechanism is summarized

as Algorithm 5.
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Algorithm 5 Updating Z?
id

1: set T = (−∞,∞)
2: for items j = 1, . . . ,m do
3: if βjd is fixed to 0 then
4: cycle the item loop
5: else
6: set Tj = ∅
7: for θj ∈ V 0

−ij do
8: if βjd = 0 then
9: cycle the vertex loop

10: else
11: compute m1 = [a0

ij − τ djk(θj,−d, z0
i,−d)]/βjd

12: compute m2 = [a0
ij − τ dj,k+1(θj,−d, z

0
i,−d)]/βjd

13: if βjd > 0 then
14: update Tj = Tj ∪ [m1,m2]
15: else
16: update Tj = Tj ∪ [m2,m1]
17: end if
18: end if
19: end for
20: end if
21: update T = T ∩ Tj
22: end for
23: generate Z?

id = z1
id from the standard normal distribution truncated to T

Remark 10. Again, the technique of slice sampling is used in Line 23 of Algorithm 5. As

mentioned earlier, the truncation T can be either a bounded interval, or a disjoint union

of bounded intervals. In the latter case, the sampling is done in three steps: a) computing

probabilities of the intervals under a standard normal distribution and normalizing to a total

sum of one; b) randomly selecting an interval with probabilities computed in step a); c) slice

sampling on the selected interval.

3.3 Updating interior polytopes

Inside the observation loop of Algorithm 3, all interior polytopes need to be renewed after

the logistic and normal variates are updated. This is geometrically a polytope-cutting prob-

lem: Cutting the old polytope formed by the rest of the observations, i.e., Qj(y−i(j), a
0
−i(j), z

0),

by the two new half-spaces τj,k+1(θj, z
1
i ) < a1

ij and τjk(θj, z
1
i ) ≥ a1

ij; the resulting intersection

is certainly non-empty due to the truncation enforced for A?ij’s and Z?
id’s.
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The updating algorithm requires an effective representation of the Rqj -polytopeQj(y−i(j), a
0
−i(j), z

0)

for each item j. It is well-known that a convex polytope is uniquely determined by its vertices;

for our problem, it suffices to record V 0
−ij. With a slight abuse of notation, we now consider

V 0
−ij as a set of doublets V = (θj, I), in which I indexes the observations that are used to solve

for θj. If a half-space, say τjk(θj, z
1
i ) ≥ a1

ij, is known to cut the polytope, vertices in V 0
−ij

can be partitioned into two groups by whether or not they are consistent with the cutting

half-space: Those satisfying τjk(θj, z
1
i ) ≥ a1

ij are still feasible, and the rest become infeasible.

In addition to vertices, we also track the edges of the old polytope, denoted E0
−ij. Each edge

connects a pair of vertices sharing qj − 1 observations, i.e., E = (V ,V ′), in which V = (θj, I),

V ′ = (θ′j, I
′), and |I ∩ I ′| = qj − 1; in other words, the shared observations determines this

particular edge. One advantage of keeping the edges is that new vertices introduced by the

cutting half-space can be easily obtained: An edge together with the cutting hyperplane

τjk(θj, z
1
i ) = a1

ij produce a vertex if and only if the edge connects a feasible-infeasible pair

of vertices, provided the resulting linear system is non-singular. In addition, the vertex and

edge lists need to be updated; entries that are no longer feasible should be removed, and

the new ones produced by the cutting half-space should be appended. A pseudo-code of

the polytope-cutting procedure is provided as Algorithm 6; in Line 12 of Algorithm 3, two

executions of Algorithm 6 are needed for the left and right half-spaces corresponding to a

single observation, respectively.
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Algorithm 6 Cutting Qj(y−i(j), a
0
−i(j), z

0) by τjk(θj, z
1
i ) ≥ a1

ij

1: for V = (θj, I) ∈ V 0
−ij do . check feasibility

2: if τjk(θj, z
1
i ) ≥ a1

ij then
3: cycle the vertex loop (V feasible)
4: else
5: remove V (V infeasible)
6: end if
7: end for
8: if all vertices are feasible then
9: terminate the program

10: end if
11: create empty vertex list V 1

ij and edge list E1
ij

12: for E = (V ,V ′) ∈ E0
−ij do . obtain new vertices

13: if both V and V ′ are feasible then cycle the edge loop
14: else if neither V nor V ′ is feasible then remove E
15: else
16: set I ′′ = (I ∩ I ′) ∪ {i}
17: calculate the new vertex determined by I ′′, denoted θ′′j
18: append V ′′ = (θ′′j , I

′′) to V 1
ij

19: in E , replace the infeasible vertex by V ′′
20: end if
21: end for
22: for V , V ′ ∈ V 1

ij do . obtain new edges
23: if |I ∩ I ′| = qj − 1 then
24: add (V ,V ′) to E1

ij

25: end if
26: end for
27: append V 1

ij to V 0
−ij

28: append E1
ij to E0

−ij

Remark 11. In terms of data structure, we recommend the use of linked lists (i.e., adjacent

units are concatenated via pointers) instead of arrays (i.e., adjacent units are stored in

consecutive memory locations) as containers of vertex and edge lists, for the reason that

the former eases removal and addition of elements to arbitrary locations in the list, which

appears frequently in Algorithm 6.

Remark 12. Recording edges facilitates finding new vertices, i.e., Line 16-19 of Algorithm

6; however, the algorithm may fail whenever the linear system determined by observations

(I∩I ′)∪{i} (Line 16) is singular. When Kj > 2, it could happen occasionally; it corresponds

44



to the case that the new half-space cuts the polytope exactly along the edge. In theory, this

loophole can be redressed by treating all vertices satisfying τjk(θj, z
1
i )−a1

ij = 0 as infeasible;

it follows that the edge being cut along is first removed in Line 14, and then added back in

Line 24 with the new observation included in the index set. In the presence of numerical

errors, a slacking constant ε > 0 should be used instead of the exact zero in practice; in the

current implementation of the algorithm, ε is chosen to be 10−10.

3.4 Starting values

The proposed sampler requires initial values of the logistic and normal variates, i.e.,

a(0) and z(0), which imply a non-empty and bounded polytope Qj(y(j), a
(0)
(j), z

(0)) for each

j. There is certainly more than one way to achieve this. Our algorithm, described in this

section, requires user-input of starting values θ(0) and factor score estimates z(0). The logistic

variates a(0) are subsequently generated using Algorithm 4, in which each interior polytope

comprises only one vertex θ
(0)
j ; the non-emptiness and boundedness of polytopes are ensured

by the truncated sampling.

The boundedness requirement is unnecessary in theory; for each fixed y the polytope

can be unbounded with positive probability. However, the sampling algorithm, especially

the polytope-updating part (Algorithm 6), only applies to bounded cases. As a result,

an arbitrarily specified initial bounding box is needed (similar configurations can be found

in Cisewski and Hannig, 2012, and Liu and Hannig, 2014). For the GRM, we define the

following bounding box for θj:

αj1 ≥ −M,αj,K−1 ≤M

αjk ≥ αj,k+1, for all k = 1, . . . , K − 2

−M ≤ βjd ≤M, for all d = 1, . . . , r. (3.8)

The parameter bound M is an important tuning parameter of the sampling algorithm; the

discussion about how to choose M in practice is deferred to Chapter 4 and 5. Based on the
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foregoing discussion, we outline the starting value program as Algorithm 7.

Algorithm 7 Starting values

1: for items j = 1, . . . ,m do
2: set V 0

−ij and E0
−ij to represent the initial bounding box

3: for observations i = 1, . . . , n do
4: generate A?ij = a

(0)
ij from Logistic(0, 1) truncated to [τj,k+1(θ

(0)
j , z

(0)
i ), τjk(θ

(0)
j , z

(0)
i )]

5: Update the jth polytope (Algorithm 6)
6: end for
7: end for

Remark 13. In practice, θ(0) can be provided by computationally economical limited in-

formation estimators, such as various weighted least square methods based on polychoric

correlations (e.g., Muthén, 1978; Gunsjö, 1994). Alternatively, one could use naive start-

ing values such as ordered constants for intercepts and 1 for slopes. z(0) can be generated

from the conditional distribution of the latent variables given y and θ(0) (i.e., the posterior

distribution (Equation 2.24) evaluated at θ(0) for each observed response pattern), or point

estimates (e.g., EAP) derived from such distribution. z(0) can also be generated from a

standard normal distribution unconditionally. The naive starting values are indeed nowhere

near the true item parameters and factor scores, nor the center of the fiducial distribution,

but they work reasonably well in our Monte Carlo experiments. From our experience, the

generated Markov chain appears stationary after about a thousand iterations, and the final

results are not significantly affected by the choice of initial status.

3.5 Heavy-tailedness and a workaround

The generalized fiducial distribution defined by Equation 2.5 is heavy-tailed. Although

Theorem 2 guarantees the boundedness of the polytopes when the sample size tends to

infinity, in finite samples, however, unbounded polytopes emerge with positive probability.

In fact, if the selection rule v(·) allows infinity, then the distribution does not even have a

finite mean. This peculiar feature of the fiducial distribution produces undesirable behavior

of the sampling algorithm in practice: The simulated Markov chain of item parameters may

sometimes hit the bounding box, which leaves spikes on the trace plot (see the left panel of

46



Figure 3.1 for an illustration).
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Figure 3.1: Trace plot for a slope parameter before (left) and after (right) implementing
the workaround. The data set used for illustration is composed of 50 observations and five
3-category items. The arbitrary bound M is set to 20, which is highlighted by the horizontal
dashed lines.

Liu and Hannig (2014) discussed a workaround that enforces a minimal number of lower

and upper bounds for the slope parameters implied by the constituting half-spaces, based on

the observation that a small number of such bounds is likely to induce unbounded polytopes.

In the current work, we propose a more efficient fix, which is naturally adapted to the

graded model. The idea is to introduce two “phantom” response categories outside the

actual response scale (from 0 to Kj − 1), coded as yij = −1 and Kj, in company with

two additional intercept parameters αj0 and αjK . This extra configuration converts the

actual extremal responses 0 and Kj − 1 into middle categories; therefore, the set inverse

(Equation 2.2) involves two-sided inequalities for all observable responses, and it follows

that each observation provides both lower and upper bounds for each slope parameter. No

endorsement of the phantom categories can be found in the observed data, so estimates of

the extra intercepts are not meaningful. Moreover, freely estimating αj0 and αjK increases

the dimension of the parameter space, and results in longer computation time. Therefore,
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we fix αj0 = M and αjK = −M in the current implementation, which has proved to perform

well in our pilot investigation.

3.6 Computational time

Factors affecting the computational time of the sampling Algorithm 3 are the sample size

n, test length m, and number of dimensions qj = rj +Kj − 1 of each polytope. In Table 3.1,

the average CPU time consumed by a single MCMC cycle (averaged across 1000 cycles) is

tabulated for different model sizes; the computations were carried out on a laptop computer

equipped with a quad-core 2.1GHz Intel Core i7-3687U processor and 8GB of RAM.

Table 3.1 shows that, as expected, the computational time increases approximately lin-

early as the sample size (n) or test length (m) increases, whereas the time needed grows at a

faster than linear rate as the number of response categories (K) or the latent dimensionality

(r) increases. n and m affect the dimensionality of the generated variates A? and Z?, and

thus we expect a linear complexity as the number of sampling and updating computations

conducted is in proportion to the dimension of the generated variables. K and r determine

the (maximum) dimension of the parameter space for each item, which is associated with

the size of the vertex and edge lists involved in the polytope cutting algorithm (Algorithm

6). For a p-dimensional simplex, i.e., a closed polytope with p+ 1 vertices, it is well-known

that the number of edges is
(
p+1

2

)
= p(p+ 1)/2; therefore, the computational time may grow

as a quadratic function of the dimension of the polytope. Indeed, the polytopes generated in

the sampling algorithm often have more vertices than simplexes. As a result, this intuitive

interpretation is not exact, but it does explain the observed super-linear complexity.
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Table 3.1: The average CPU time (in seconds) consumed by a single MCMC iteration under
different combinations of sample size n, test length m, latent dimensionality r (exploratory
model, minimally constrained), and number of categories K (Kj = K for all j)

n m
r = 1 r = 2 r = 3

K = 2 K = 3 K = 5 K = 2 K = 3 K = 5 K = 2 K = 3 K = 5

100 5 <0.01 <0.01 0.06 <0.01 0.02 0.15 0.02 0.06 0.43
100 10 <0.01 0.02 0.12 0.02 0.05 0.34 0.05 0.14 1.04
100 20 0.02 0.04 0.24 0.04 0.11 0.72 0.11 0.30 2.37
200 5 <0.01 0.02 0.10 0.02 0.04 0.25 0.04 0.09 0.70
200 10 0.01 0.04 0.20 0.04 0.09 0.57 0.09 0.22 1.61
200 20 0.03 0.07 0.41 0.08 0.19 1.19 0.20 0.48 3.40
500 5 0.02 0.04 0.25 0.04 0.10 0.54 0.09 0.21 1.31
500 10 0.04 0.08 0.45 0.09 0.21 1.20 0.21 0.48 2.92
500 20 0.07 0.17 0.91 0.18 0.43 2.48 0.50 1.05 6.50
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CHAPTER 4: MONTE CARLO SIMULATIONS

In this chapter, we report a large-scale Monte Carlo simulation study to evaluate the

finite sample behavior of the previously discussed implementation of GFI applied to uni-

dimensional and bifactor GRMs. Comparisons of GFI with existing likelihood-based and

Bayesian approaches are the foci of our attention; in particular, we are interested in their

performance in three types of inference: parameter recovery, test scoring, and checking

goodness of fit. For unidimensional GRMs, the simulation design is described in Section 4.1,

followed by displays and discussions of the results for the three types of inference (Section

4.2 to 4.4). The simulation design for bifactor models is introduced in Section 4.5, and the

parameter recovery results are presented in Section 4.6. A majority of the computations

involved in the simulation study were completed on the parallel computing cluster KillDevil

located at the University of North Carolina at Chapel Hill.

4.1 Unidimensional models: Simulation design

Graded response data were generated from unidimensional GRMs under a fully factorial

design involving three sample size levels, n = 100, 200, and 500, and two test length levels

m = 9 and 18. All items had five ordered response categories (Kj = 5 for all j). Results

were accumulated across 500 simulated data sets in each condition.

For m = 9, the true item parameters were determined by two factors: communality and

skewness. In the factor analysis literature, communality for each item measures the propor-

tion of variance explained by the latent variables. Under the logit parameterization of the

unidimensional GRM (Equation 1.1), the variance explained is calculated as approximately

the squared value of the standardized factor loading parameter (see e.g., Wirth and Edwards,
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2007):

λj =
βj/1.7√

1 + (βj/1.7)2
, (4.1)

in which βj is the unidimensional slope parameter for item j, and 1.7 is the constant to match

the standardized logistic and normal cdfs. Values 0.1, 0.5, and 0.9 were selected to represent

low, medium, and high levels of communality, respectively. Skewness refers to the degree to

which the intercept parameters αjk’s are centered around zero. Here, we also manipulated a

standardized version of the intercept, namely, the threshold parameter:

τjk =
αjk/1.7√

1 + (βj/1.7)2
, k = 1, 2, 3, 4. (4.2)

Values (−0.75 − 0.55 − 0.05 0.75)>, (−0.25 − 0.05 0.45 1.25)>, and (0.25 0.45 0.95 1.75)>

were used as symmetric, moderately skewed, and skewed threshold conditions, respectively.

The nine combinations of three communality and three threshold levels yielded the data

generating parameter values for all items in the test. The true parameter values under both

standardized loading-threshold and slope-intercept parameterizations are tabulated in Table

4.1. For m = 18, the first half of the items had the same parameter values as listed in Table

4.1; the second half had the same factor loading parameters, and threshold parameters with

the same absolute values but with reversed signs and ordering. We remark that the parameter

values considered here are more extreme than those used in many simulation studies (e.g.,

Forero and Maydeu-Olivares, 2009). Highly skewed or highly discriminating items are by no

means rare in practice, especially in health-related surveys; an example would be an item

about suicidal attempts in a scale measuring depressive symptoms.

A Fortran program that implements the proposed Gibbs sampler was used to obtain

Monte Carlo samples from the fiducial distribution of item parameters. We used (1.5 0.5 −

0.5 − 1.5)> as starting values for intercepts, and 1 for slopes. The starting values for the

normal variates z0 were generated from the standard normal distribution unconditionally,

and those for the logistic variates a0 were generated by Algorithm 7 described in the previous
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Table 4.1: Data-generating parameter values for the unidimensional GRM (m = 9)

Item Communality Skewness Loading λj
Thresholds

τj1 τj2 τj3 τj4

1 low symmetric 0.32 -0.75 -0.55 -0.05 0.75
2 low moderate 0.32 -0.25 -0.05 0.45 1.25
3 low skewed 0.32 0.25 0.45 0.95 1.75
4 medium symmetric 0.71 -0.75 -0.55 -0.05 0.75
5 medium moderate 0.71 -0.25 -0.05 0.45 1.25
6 medium skewed 0.71 0.25 0.45 0.95 1.75
7 high symmetric 0.95 -0.75 -0.55 -0.05 0.75
8 high moderate 0.95 -0.25 -0.05 0.45 1.25
9 high skewed 0.95 0.25 0.45 0.95 1.75

Item Slope βj
Intercepts Difficulties

αj1 αj2 αj2 αj4 δj1 δj2 δj2 δj4

1 0.57 1.34 0.99 0.09 -1.34 -2.37 -1.74 -0.16 2.37
2 0.57 0.45 0.09 -0.81 -2.24 -0.79 -0.16 1.42 3.95
3 0.57 -0.45 -0.81 -1.70 -3.14 0.79 1.42 3.00 5.53
4 1.70 1.80 1.32 0.12 -1.80 -1.06 -0.78 -0.07 1.06
5 1.70 0.60 0.12 -1.08 -3.01 -0.35 -0.07 0.64 1.77
6 1.70 -0.60 -1.08 -2.28 -4.21 0.35 0.64 1.34 2.47
7 5.10 4.03 2.96 0.27 -4.03 -0.79 -0.58 -0.05 0.79
8 5.10 1.34 0.27 -2.42 -6.72 -0.26 -0.05 0.47 1.32
9 5.10 -1.34 -2.42 -5.11 -9.41 0.26 0.47 1.00 1.84

chapter. Item parameters were restricted to the bounding box defined by Equation 3.8 with

M = 20. Small M relative to the magnitude of the true item parameters may reduce the

coverage of the resulting CIs; meanwhile, large M may increase the length of the CIs and

thus reduce the efficiency. The value M = 20 was selected after a pilot study, to strike a

balance between those two concerns.

In each replication of the simulation, the sampler was run for 60000 cycles. We visually

examined in a pilot study the resulting trace plots, and concluded that 60000 cycles are

sufficient for the generated Markov chain to attain stationarity. In addition, we burned in

the first 10000 to remove the influence of starting status, and used a thinning interval of 10

to reduce the auto-correlation of the generated Markov chain, as well as the use of computer
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storage space. As a result, inference was based on 5000 draws in each replication.

ML estimates were computed via the Bock-Aitkin EM algorithm using Mplus 7.0 (Muthén

and Muthén, 2012). The integral in the likelihood function was approximated using 49

equally spaced rectangular quadrature points on interval [−5, 5]. We adopted the default

convergence criteria and the maximum number of iterations provided by the software, and

the same starting values for item intercepts and slopes as in fiducial estimation. In small

sample conditions (n = 100 and 200), response data with unfilled item response categories

emerged occasionally, in which case the ML estimate for the associated intercept parameter

does not exist. In order to make the results comparable across all methods, we simulated

500 data sets with no missing response category for all items.

An objective Bayesian method was also considered for comparison. Motivated by Gel-

man’s (2006) recommendation on less informative priors for variance components in the

context of linear mixed effects modeling, we specified a standard Cauchy prior for each slope

parameter βj. A slightly more involved prior configuration was needed for intercept parame-

ters due to the order constraints. The four-dimensional prior distribution for (αj1 · · · αj4)>

was given by the joint distribution of all order statistics of four i.i.d. Cauchy random vari-

ables; a similar order-statistic approach was recommended by Curtis (2010). Again, a Cauchy

prior was used to reflect our lack of a priori knowledge of those intercept parameters in a

Bayesian sense1. In a pilot study, we also considered a wide uniform prior Uniform(−20, 20)

and a diffuse Gaussian prior N (0, 100); however, they both had substantially lower coverages

for large item slopes and extreme intercept parameters compared to the Cauchy, and thus

were dropped from the final simulation study. There might be other reasonable choices of

prior distributions; the topic of finding the best objective Bayesian approach deserves a care-

ful treatment on its own and should be addressed by future research. JAGS (Plummer, 2013)

and its R interface package rjags (Plummer, 2013b) were used for Bayesian estimation. The

1In the extant literature, the prior specification for intercept parameters have been treated in various ways:
For example, Edwards (2010) specified a unidimensional prior for the first intercept, and then put non-
negative priors on the consecutive intercept differences. A comprehensive comparison of different prior setup
is beyond the scope of the current work.
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JAGS code for fitting a unidimensional GRM can be found in Curtis (2010, Section 5). A

single Markov chain of 60000 cycles was generated with a burn-in period of 10000 and a

thinning interval of 10, which paralleled the sampler setup for fiducial estimation.

4.2 Unidimensional models: Parameter recovery

In this section, we describe the comparative behavior of fiducial, likelihood-based, and

Bayesian interval estimators in recovering the data generating values of item parameters.

Five types of parameters are of interest: namely, item slope βj, intercept αjk, loading λj

given by Equation 4.1), threshold τjk given by equation 4.2) and difficulty δjk:

δjk = −αjk/βj. (4.3)

The threshold and loading parameters are on a normalized scale and pertain to the notion

of explained variance (communality); they serve as the preferred metric in the literature of

item factor analysis. The kth difficulty parameters, k = 1, . . . , Kj − 1, is the latent variable

value at which response categories {0, . . . , k − 1} and {k, . . . , Kj − 1} are equally likely to

be endorsed. In the scenario of assigning partial credit in an educational test, δjk gauges

the difficulty to obtain an item score higher than or equal to k. The true values of these

parameters can be found in Table 4.1.

Two key evaluation criteria for interval estimators are coverage and length. Ideally,

we prefer intervals having coverage probabilities greater than or equal to the nominal level

(95% in the current study), and shorter in length. In practice, however, a trade-off between

coverage and length is typically observed. We always prioritize coverage over length when

comparing the performance of different intervals.

For fiducial and Bayesian methods, we constructed equi-tailed percentile CIs from the

fiducial or posterior distribution of model parameters: For a 95% nominal level, the lower

and upper confidence bounds for a particular item parameter are set to the 2.5 and 97.5 em-

pirical percentiles of a random sample from the corresponding marginal fiducial or posterior
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distribution. As discussed earlier, fiducial or posterior distributions for transformed param-

eters (i.e., threshold, loading, and difficulty parameters) were approximated by transforming

the Monte Carlo samples drawn from the original fiducial (posterior) distribution under the

slope-intercept parameterization.

For ML estimation, Wald-type CIs for item slopes and intercepts were obtained from

two types of standard errors resulting from two commonly used sample estimates of the

Fisher information matrix: i.e., the cross-product form (in Mplus , set estimator = MLF)

and the Hessian form (set estimator = ML). For transformed parameters, the Delta method

is used, which is the default method of Mplus. Other likelihood-based interval estimators

such as the profile-likelihood method, as well as resampling-based heuristic methods such as

bootstrapping, are not considered here.

Simulation results are summarized in Figure 4.1 to 4.6.

We observe that the fiducial percentile CIs always exhibit on-target coverage for all five

types of parameters of interest in all six sample size and test length conditions. Moreover,

they are at least as short as other interval estimators in most scenarios; for the difficulty

parameters of the low-communality items (items 1 to 3), the fiducial CIs are less efficient than

the cross-product-form Wald intervals when n = 100 and m = 9, and slightly less efficient

than the Bayesian intervals when n = 100 and m = 18. Consequently, we conclude that

GFI is the most reliable approach in recovering item parameters among the four candidates

being considered in the current work.

The Hessian-form Wald CI, having been regarded as the gold-standard interval estimator

associated with the ML estimation, is the most comparable alternative to the fiducial CI.

However, it is liberal (i.e., having significantly lower coverage than the nominal level) when

applied to the loading parameters of the high-communality items (item 7 to 9) in small

samples (n = 100 and 200). In those cases, the true parameter value (0.95) is very close to the

boundary of the parameter space (1), and the quadratic approximation to the log-likelihood

fails. Similar reasoning applies to the under-coverage for the difficulty parameters of the
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Figure 4.1: Empirical coverages and median lengths of the four types of interval estimators
(shown in different colors). Here, the sample size n = 100 and the number of items m = 9.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.

56



0.
90

0.
94

0.
98

C
ov

er
ag

e

0
2

4
6

M
ed

ia
n 

le
ng

thSlope

0.
85

0.
95

C
ov

er
ag

e

0
2

4
6

8
M

ed
ia

n 
le

ng
thIntercept

0.
90

0.
94

0.
98

C
ov

er
ag

e

0.
0

0.
2

0.
4

M
ed

ia
n 

le
ng

thLoading

0.
85

0.
95

C
ov

er
ag

e

0.
0

0.
4

0.
8

M
ed

ia
n 

le
ng

thThreshold

0.
85

0.
95

C
ov

er
ag

e

0
2

4
6

8
M

ed
ia

n 
le

ng
th

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9

Difficulty

ML Wald (cross−product) ML Wald (Hessian) Fiducial percentile Bayesian percentile

Figure 4.2: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 200 and the number of items m = 9.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.3: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 500 and the number of items m = 9.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.4: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 100 and the number of items m = 18.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.5: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 200 and the number of items m = 18.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.6: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 500 and the number of items m = 18.
Each row corresponds to one type of parameter, in which coverage is plotted in the upper
panel and median length in the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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low-communality items (item 1 to 3). When a small slope co-exists with a large intercept,

the resulting difficulty parameters tend to be large; the largest difficulty parameter involved

here is greater than 5, which is almost indistinguishable from infinity, i.e., the “bound” of

the parameter space, given that item difficulty is defined on the scale of a standard normal

latent variable. Furthermore, the Hessian-form Wald CI also yields slightly longer intervals

than the fiducial approach for extreme slope and intercept values when the sample size is

small.

The cross-product form Wald CIs, on the other hand, are too conservative (i.e., they have

significantly higher coverage than the nominal level) in small sample conditions, resulting

in substantially wider intervals than other candidate methods. The pattern is the most

salient when n = 100 and m = 18 (Figure 4.4), in which case the coverages are almost

always 1 and the intervals are on average three times as wide as its competitors. Note that

the unidimensional GRM is almost unidentified in this extreme condition: The number of

parameters is 18 × 5 = 90, which is likely to cause numerical difficulty in inverting the

cross-product information matrix; that may underlie the excessively conservative results.

The specific type of Bayesian CIs considered in the simulation study can be very liberal

for extreme intercept, threshold, and difficulty parameters when the test is short (m = 9) and

the sample size is small (n = 100): The coverage can be as low as 0.75 under the nominal

level 0.95. Although they improve as the sample size increases, coverage can still be less

than the nominal level when n = 500. The problem is significantly alleviated in longer tests

(m = 18). For other parameterizations of interest, however, the Bayesian method behaves

similarly to the fiducial and Hessian-form Wald methods. The observed inferior performance

in short tests and small samples might be traced to the particular prior distribution we used;

future research is encouraged to explore alternative prior configurations for improvement.

4.3 Unidimensional models: Response pattern scoring

Next, we compare the finite-sample behaviors of various types of asymptotically correct

prediction intervals (PIs) for latent variable scores.
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Recall that in a unidimensional GRM the latent variable Zi ∼ N (0, 1) is a random effect;

therefore, we often resort to the conditional distribution Zi|yi, i.e., Equation 2.24, which has

been referred to as the posterior distribution of Zi in Chapter 2, for making predictions for

response pattern scores. Ideally, all item parameters in the scoring model are known; this

can be regarded as approximately true when the parameters have been calibrated with high

accuracy and precision using a huge sample (e.g., in large-scale educational tests). Under

such circumstances, a natural 95% PI for each response pattern score is given by the interval

bounded between the 2.5 and 97.5 percentiles of the corresponding true posterior distribu-

tion. Since no closed-form expression is available for those percentiles, approximations via

numerical quadrature or Monte Carlo sampling are necessary; in the current experiment, the

quadrature approach was used. Alternatively, a Wald approach, i.e., treating the posterior

distribution as approximately normal, is also applicable: A symmetric PI is given by the pos-

terior mean (i.e., the EAP score) plus or minus the posterior standard deviation multiplied

by the normal quantile matching the nominal coverage probability. In the simulation study,

we only computed the percentile PIs under the true posterior, for the purpose of setting a

gold-standard reference for comparison.

We are interested primarily in the situation in which item parameters need to be simul-

taneously calibrated from the scoring sample. Constrained by the possibly rare population

being sampled from (e.g., people diagnosed with a certain type of psychological disorder),

available data for item calibration and scoring are often less than 500 in many psychological

applications of the GRM. In those cases, the plug-in method has been widely used: That is,

we first obtain some point estimates (usually the ML estimates) of the item parameters, and

subsequently evaluate the posterior distribution (Equation 2.24) at those estimated values.

We can construct percentile- or Wald-type PIs based on the plug-in posterior in a fashion

similar to those obtained from the true posterior. Both types of PIs were computed in the

simulation study; nevertheless, we note that the Wald approach is more popular in practice.

As discussed in Chapter 2, the fiducial distribution Z?
i | {Q(y,A?,Z?) 6= ∅} can be
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directly used to construct PIs for observed pattern scores. Monte Carlo samples from such

fiducial distributions for all individuals in the data set are byproducts of the Gibbs sampler,

from which percentile-based PIs can be easily computed. Predictive inference of response

pattern scores can likewise be obtained in the Bayesian framework: Monte Carlo samples of

Zi’s are readily available from the sampler, drawn from the posterior distribution with all

item parameters integrated out under the prior measure, and can be subsequently used for

constructing PIs.

Because the true latent variable values were generated from a continuous probability

distribution, we are not able to make comparisons of PIs at any particular score level.

Therefore, we assign those true values to 10 score groups separated by 9 equally-spaced

cutoff values from -2 to 2, and compute empirical coverages and median lengths by groups

for the first 50000 simulated observations—they constitutes all 500 simulated data sets when

n = 100, the first 250 when n = 200, and the first 100 when n = 500. Results are visualized

in Figures 4.7 to 4.12 for different sample size and test length conditions, respectively.
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Figure 4.7: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 100 and the number of items m = 9. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Figure 4.8: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 200 and the number of items m = 9. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Figure 4.9: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 500 and the number of items m = 9. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Figure 4.10: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 100 and the number of items m = 18. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Figure 4.11: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 200 and the number of items m = 18. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Figure 4.12: Empirical coverage (upper panel) and median length (lower panel) of the five types of prediction intervals (shown
in different colors) plotted against the true score groups. Here, the sample size n = 500 and the number of items m = 18. The
horizontal dashed line marks the nominal coverage probability 0.95.
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Because the data generating item parameter values are used in the computation, the

behavior of the true posterior percentile PIs, i.e., our reference approach, is not contingent

upon the sample size of the calibration sample. As expected, their coverages are almost

always on target, and their lengths are often the shortest. For extreme score groups, i.e.,

(−∞,−2) and (2,∞), even the true posterior distributions do not support adequate coverage

probability, due to the fact that the number of items is limited. In particular, the lowest

score groups are poorly recovered in short tests (m = 9; Figure 4.7 to 4.9), for the reason that

the true thresholds are skewed to the positive side (see Table 4.1) and thus little information

about the lower-end of latent variable scores can be garnered from the response patterns.

The plug-in intervals under-cover in small samples (when n = 100, the coverage can

be lower than 90%), because they fail to take into account the sampling variability of the

ML estimates, and thus, intuitively speaking, they are not as wide as what they should

be. In extreme score groups, the Wald approach fares worse than the percentile one, which

suggests that approximating the posterior distribution by a normal one is not appropriate

for those observations. As a consequence, we do not recommend the use of plug-in intervals

in small sample applications of the GRM, although that is the most widely adopted practice

in substantive research.

In terms of empirical coverage, fiducial and Bayesian percentile PIs are the closest to

the true posterior percentile ones, and thus are preferred over the plug-in PIs. Bayesian PIs

outperform fiducial ones in extreme score groups; however, when a small sample (n = 100)

combines with a short test (m = 9), Bayesian PIs slightly under-cover for most groups on

the positive half of the latent variable scale. Surprisingly, the Bayesian approach is well-

behaved in making predictive inference about extreme latent variable scores, even thought

the corresponding CIs for extreme intercept/threshold/difficulty parameters (see the previous

section) are poor. We also observe that the fiducial and Bayesian PIs are substantially wider

compared to the other candidates, which is anticipated as the result of properly accounting for

the sampling variability. Recently, Xie, Liu, Chang, and Chen (2014) studied the theoretical
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properties of predictive distributions, extending the findings of Lawless and Fredette (2005).

They established under extra regularity conditions that predictive densities obtained from

confidence distributions dominate the plug-in densities in terms of the average Kullback-

Leibler discrepancy from the target density. It is conjectured that our findings are subject

to an analogous theoretical interpretation.

4.4 Unidimensional models: Goodness of fit testing

In this section, we investigate the Type I error and power performance of the fiducial

predictive check (FPC) in identifying score group and bivariate model misfit of the unidimen-

sional GRM. For simplicity, we focus our attention on only one sample size and test length

combination, i.e., n = 200 and m = 18. The previously generated graded response data were

re-used to calculate the Type I error results; methods having empirical rejection rates close

to the nominal α-level are considered well-calibrated. To evaluate power, two alternative

data generating models similar to those studied by Liu and Maydeu-Olivares (2014) were

used. The first model is a three-dimensional simple-structure GRM with correlated latent

variables (factor inter-correlations = 0.3). Items 1, 4, . . . , 16 load on the first factor, items

2, 5, . . . , 17 load on the second factor, and items 3, 6, . . . , 18 load on the third factor. The

factor loadings have the same numerical values as tabulated in Table 4.1. As a result, all the

factors have matched loadings. The same threshold parameters were used as well; therefore,

the first factor is indicated by items having symmetric thresholds, the second by items having

moderately skewed thresholds, and the third by items having skewed thresholds. The second

model is a unidimensional GRM characterized by the same item parameters as listed in Ta-

ble 4.1 but a non-normal latent variable Zi ∼ 1
2
N (−1.5, 1) + 1

2
N (1.5, 1). In both cases, the

unidimensional GRM with a normal latent variable is misspecified, and a good fit checking

procedure should be able to reject the fitted model as often as possible.

To reduce the computational burden, we incorporated a further thinning interval of 10 to

the generated Markov chain in each replication; the fiducial predictive p-values thereby were

calculated based on 500 Monte Carlo samples using Algorithm 2. Both the centering (Section
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2.4.1) and partial (Section 2.4.2) approaches were implemented, and the extent to which they

are able to ensure asymptotically uniform p-values was empirically evaluated and compared.

In the centering method, we evaluate the expectations of the test statistics (under the null

model), i.e., Equation 2.31 for score-group fit statistics and Equation 2.34 for pairwise fit

statistics, at a mean and variance adjusted diagonally weighted least square estimator that

is available in Mplus (estimator = WLSMV). For the partial predictive approach, the efficient

sample size (ESS, Equation 2.29), were recorded in each replication; means and standard

deviations of ESS values were reported in addition to the empirical rejection rates.

In a test composed of 18 five-category items, the sum score ranges from 0 to 18× 4 = 72.

In the current simulation study, the score range was divided into 10 equi-width intervals,

and the score-group fit statistics (Equation 2.30), previously defined at individual sum-

score levels, were computed for the corresponding score groups instead; those statistics were

denoted T(1), . . . , T(10). For comparison, the reduced M2 statistic (Cai and Hansen, 2013),

denoted M?
2 , was also computed to probe the score-group fit. M?

2 statistic is a quadratic

form of all residual first and second moments (i.e., mean for each item, and cross-product

for each pair). The residual mean for each item j is defined as the discrepancy between the

observed and model-implied average scores:

êj =
1

n

n∑
i=1

yij −
∑
yi

yijf(θ̂,yi). (4.4)

Similarly, the residual cross-product for a pair of items j and k is defined as

êjk =
1

n

n∑
i=1

yijyik −
∑
yi

yijyikf(θ̂,yi), (4.5)

which is in fact the difference between equations 2.33 and 2.34 evaluated at the ML estimates

θ̂. The weight matrix of the quadratic form is a specific generalized inverse of the asymptotic

covariance matrix of the residual moments, and thus the resulting statistic follows asymp-

totically a chi-square distribution (Joe and Maydeu-Olivares, 2010). Cai and Hansen (2013)
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found that M?
2 statistic has a better calibrated Type I error performance than its predecessor

M2 (Maydeu-Olivares and Joe, 2006) when the test is long and the items are polytomous.

For bivariate fit assessment, we compared the FPC with two diagnostics recommended

by Liu and Maydeu-Olivares (2014): namely, the bivariate residual cross-product z-test,

and the bivariate Pearson’s X2-test with a method-of-moment correction. The former test

statistic is a standardized version of Equation 4.5 that has an asymptotic standard normal

distribution. The latter procedure amounts to computing Pearson’sX2 statistics for bivariate

marginal tables (i.e., a 5× 5 contingency table for two five-category items). Asymptotically,

the statistic follows a mixture of independent chi-square distributions under the null model,

which is further approximated by a scaled chi-square distribution having matched first and

second moments. In both methods, the Hessian-form estimate of the Fisher information

matrix is used. For ease of graphical presentation of the results, bivariate fit statistics were

computed only for item pairs in the first half of the test.

To visualize the Type I error behavior of the test statistics of interest, we plot their

empirical rejection rates against nominal α-levels, i.e., the empirical cdf of the p-values,

ranging from 0 to 0.2. The diagonal line on the plot corresponds to a uniform p-value.

Liberal and conservative statistics correspond to the upper- and lower-diagonal regions on

the plot, respectively.
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Figure 4.13: Type I error results for score-group goodness of fit tests. In each panel, the x-axis is the nominal α-level, and the
y-axis is the empirical rejection rate pooling across 500 replications. The diagonal solid line indicates empirical rejection equal
to the nominal level, and the dashed lines give a 95% normal approximation confidence band. Different statistics are displayed
in different colors. The numbers shown on the lower-right corner are the means and standard deviations (in parenthesis) of ESS
associated with the partial FPC approach.
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Figure 4.14: Type I error results for bivariate goodness of fit tests. In each panel, the x-axis is the nominal α-level, and the
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Figure 4.13 shows the results for score-group goodness of fit tests. The reference proce-

dure, i.e., the M?
2 test, is slightly liberal. Cai and Hansen (2013) showed that the limited

information M2 statistic under-performs when first- and second-order marginal contingency

tables are sparse. The same rationale applies to the M?
2 statistic, and that may cause the

observed liberality in the current simulation study, in which the data-generating item pa-

rameter values are extreme and likely to produce sparse lower-order margins. The centering

FPC approach works reasonably well in all but the last score groups, i.e., using statistic

T(10), in which it rejects slightly more than the nominal level. The partial FPC procedures

yield on-target Type I errors in the middle score groups (from T(3) to T(9); T(2) is acceptable

when α is small), but become unacceptably liberal in the extreme groups (T(1) and T(10)).

The ESS values associated with the sampling weights are on average greater than 300 in

most score groups; they tend to vary more in the extreme groups than in the middle ones,

which may contribute to the inflated Type I error rates.

Results for bivariate goodness of fit tests are presented in Figure 4.14. The residual

product z-test over-rejects for those pairs involving high-communality items (i.e., items 7, 8,

and 9). In addition, in very few cases (≤ 10 for each pair) we obtain negative asymptotic

variance for the bivariate residual cross-product due to numerical error, which leads to an

undefined test statistic; these cases were excluded when computing empirical rejection rates.

The p-value obtained from Pearson’s X2-test, although less liberal, has a significant deviation

from uniformity: It tends to over-reject for small α-levels (< 0.05), and then suddenly switchs

to under-reject as α increases. The unsatisfying behaviors of the two reference methods

are likely traceable to the sparseness of the two-way marginal tables resulting from the

combination of the small sample size and extreme true parameter values. The centering

FPC is less prone to such effects; it yields empirical rejection rates close to the nominal

α-level for all 36 pairs of items plotted in Figure 4.14. The partial FPC approach, on the

other hand, is conservative for some pairs of items. The ESS values are always below 100,

which indicates that those weighted Monte Carlo samples used to calculate the p-values are
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noticeably degenerate; this may be the leading cause of the conservativeness.

We briefly summarize the Type I error results. We found that traditional goodness of fit

testing procedures associated with the ML estimation may not work well in small sample-

size conditions. The partial FPC approach works reasonably well in assessing score-group

fit when observed proportions in middle score groups are used as a test statistics, but over-

rejects when it is applied to proportions in extreme score groups. For bivariate fit assessment,

the partial approach suffers from noticeable degeneracy of sampling weights, and is overly

conservative. Based on the Type I error results, we recommend the centering FPC method,

whose rejection of the correctly specified models is well-controlled by the designated α-level

of the test.

Similar graphical tables are reported in the two conditions when the unidimensional

GRM is misspecified. Inasmuch as the fitted model is wrong, we anticipate small p-values

from fit checking procedures; in other words, they ought to reject substantially more than

the nominal level. The more powerful the test is, the more the empirical cdf of the p-value

climbs above the line indicating uniformity.
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Figure 4.15: Power results for score-group goodness of fit tests: True model = 3-dimensional. In each panel, the x-axis is the
nominal α-level, and the y-axis is the empirical rejection rate pooling across 500 replications. The slanted solid line indicates
empirical rejection equal to the nominal level, and the slanted dashed lines give a 95% normal approximation confidence band.
The horizontal dashed line indicates the maximum power 1. Different statistics are displayed in different colors. The numbers
displayed in each panel are the means and standard deviations (in parenthesis) of ESS associated with the partial FPC approach.
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Figure 4.16: Power results for bivariate goodness of fit tests: True model = 3-dimensional. Items are reordered so that those
loaded on the same factor are grouped together; panels associated with these within-factor pairs are highlighted with a light-gray
background. In each panel, the x-axis is the nominal α-level, and the y-axis is the empirical rejection rate pooling across 500
replications. The slanted solid line indicates empirical rejection equal to the nominal level, and the slanted dashed lines give a
95% normal approximation confidence band. The horizontal dashed line indicates the maximum power 1. Different statistics are
displayed in different colors. The numbers displayed in each panel are the means and standard deviations (in parenthesis) of ESS
associated with the partial FPC approach.
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When the data were generated from a three-factor model, the M?
2 test has the highest

power to reject the fitted unidimensional model (see Figure 4.15). Because M?
2 incorporates

all bivariate residual cross-product moments in its computation, it is sensitive to under- and

over-fit to residual “correlations” among item responses, which is, in an intuitive sense, what

differentiates a multidimensional factor analytic model from a unidimensional one. For FPC,

the centering and partial approaches exhibit disparate patterns: The centering approach has

moderate power in the middle groups (i.e., statistics T(5) and T(6)) and very little power

otherwise; meanwhile, the partial approach has moderate power in more extreme groups

(i.e., statistics T(2), T(3), T(8), and T(9)) and little power elsewhere. Note that the partial

FPC also rejects substantially more than the nominal level for T(1) and T(10); however, the

inflated Type I error rates in those cases should be taken into account.

Results for bivariate tests are tabulated in Figure 4.16. All testing procedures under

investigation tend to reject more within-factor pairs (highlighted by the gray background)

than between-factor ones, and the power increases as the slopes increase. This pattern

is similar to that observed in Liu and Maydeu-Olivares (2014). For within-factor pairs,

the power of the centering FPC maintains at roughly the same level regardless of the true

threshold values involved in the pair, while the power of the other three methods increases

as the thresholds become more extreme. As a result, the centering FPC is preferred for

symmetric items (items 1, 4, and 7), and the partial FPC and the z-test are preferred for

skewed items (items 3, 6, and 9); the X2-test, however, always has the lowest power for

detecting within-factor pairs. For between-factor pairs, the residual z-tests outperform the

X2-test and both FPC approaches. The proposed FPCs are under-powered for detecting

between-factor pairs in general, especially the centering approach that is non-responsive to

any of those pairs.
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T(1) 192 (126) T(2) 261 (144) T(3) 445 (60) T(4) 448 (49)

T(5) 391 (72) T(6) 419 (57) T(7) 440 (54) T(8) 444 (68)

T(9) 271 (136) T(10) 186 (121) M2
*
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Figure 4.17: Power results for score-group goodness of fit tests: True model = mixture. In each panel, the x-axis is the
nominal α-level, and the y-axis is the empirical rejection rate pooling across 500 replications. The slanted solid line indicates
empirical rejection equal to the nominal level, and the slanted dashed lines give a 95% normal approximation confidence band.
The horizontal dashed line indicates the maximum power 1. Different statistics are displayed in different colors. The numbers
displayed in each panel are the means and standard deviations (in parenthesis) of ESS associated with the partial FPC approach.
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Figure 4.18: Power results for bivariate goodness of fit tests: True model = mixture. In each panel, the x-axis is the nominal
α-level, and the y-axis is the empirical rejection rate pooling across 500 replications. The slanted solid line indicates empirical
rejection equal to the nominal level, and the slanted dashed lines give a 95% normal approximation confidence band. The
horizontal dashed line indicates the maximum power 1. Different statistics are displayed in different colors. The numbers
displayed in each panel are the means and standard deviations (in parenthesis) of ESS associated with the partial FPC approach.
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Finally, we summarize the simulation results for data generated from a unidimensional

GRM model in which the latent variable is a mixture of two independent normal variates;

graphical tables are presented as Figure 4.17 and 4.18.

Among all score-group fit diagnostics of interest, only statistics T(2) and T(9) are recog-

nizably responsive to the misspecified latent variable distribution; in particular, the partial

FPC is more powerful than the centering FPC. This is attributable to the shape of the latent

variable distribution in the data generating model: The distribution has two modes located

at the low and high ends of the standard normal scale, respectively, so the observed propor-

tion of extreme score groups are under-estimated when a standard normal latent variable

is fitted. We also observe that the M?
2 test rejects even less than the nominal level. The

fact that M?
2 and the observed score profile combine information in the full item response

contingency table differently might be the main source of the differential power, which itself

has little to do with the comparison between likelihood-based and fiducial inference. Fu-

ture investigations focusing on the latter comparison are encouraged: For example, statistics

based on a summary of univariate and bivariate margins should be developed for FPC, and

their performance should be compared with M2.

For pairwise tests, the power to reject the fitted model increases as the true slope values

associated with the pair increase. For the low-slope items in the current simulation, the

generating model is almost indistinguishable from the independence model, which makes

irrelevant the latent variable distribution; that explains why misspecified latent variable

distribution is seldom identified for low-slope pairs. The partial FPC is the most powerful

procedures, followed by the bivariate z-test; in contrast, the centering FPC and the X2-test

do not reject much more than the nominal α-level.

For power performance, different test statistics summarize information in different ways;

consequently, for a specific type of data generating model differing from the fitted one, some

diagnostics might be more sensitive than others. In the current work, we only consider

misfitting the dimensionality or the shape of the latent variable distribution, which are
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alternative models to the unidimensional GRM that have been widely used in practice.

Both types of overall model misspecifications can be detected by test statistics based on

the sum score profile; in contrast, the M?
2 statistic fails to identify the incorrectly specified

latent variable distribution. Therefore, the former approach is preferred. At the item pair

level, however, no clear winner can be found among the candidates being investigated. The

centering FPC rejects most of the fitted models for within-factor pairs under the three-

dimensional alternative, but rejects no more than the nominal level for between-factor pairs

and under the mixture alternative. The partial FPC, despite its decent power to detect

the mixture model, is also not able to identify between-factor pairs. The z-test has some

power to detect most pairs under both alternative models; however, it suffers from an inflated

Type I error, and occasionally the statistic cannot be computed due to a negative asymptotic

variance estimate.

4.5 Bifactor models: Simulation design

In the final part of this chapter, we compare fiducial and likelihood-based interval esti-

mators in recovery of bifactor model parameters. We considered a fully crossed design with

two levels of sample size, n = 200 and 500, and two levels of test length, m = 9 and 18;

under each condition, 500 data set were simulated. The data generating model has a general

latent variable that loads on all items in the test and three secondary latent variables each of

which links to one-third of the items; the four latent variables are orthogonal to each other.

Each item has Kj = 3 categories.

Similar to the previous simulation study with unidimensional GRMs, we converted item

parameters to the standardized scale and manipulated the values. The standardized factor

loading vector under a multidimensional GRM model can be expressed as

λj =
βj/1.7√

1 + βj>βj/1.72
, (4.6)

extending the previous expressions (Equation 4.1). In the data-generating model, the load-

ing/slope vector for each item j has only two non-zero elements, corresponding to the related
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primary and secondary latent variables for that item. In our simulation study, the two de-

sign factors that determine the true loading parameters are: a) communality λj
>λj, and

b) relative impact of the general factor, measured by the proportion of common variance

explained by the common factors. Values 0.1, 0.5, and 0.9 were chosen to represent low,

medium, and high communality levels. The weak, moderate, and strong general factors ex-

plain 25%, 50%, and 75% of the common variance, respectively. Similar to Equation 4.2, the

multidimensional version of the threshold parameter is defined as

τjk =
αjk/1.7√

1 + βj>βj/1.72
, k = 1, 2. (4.7)

The threshold parameters used in data generation were (−1.25 0.25)> for odd items, and

(−0.25 1.25)> for even items.

In addition to the standardized and the original slope-intercept parameterization, we

are also interested in a multidimensional generalization of the item difficulty parameter

that is interpreted somewhat differently from the unidimensional version of Equation 4.3.

In a unidimensional GRM, the difficulty parameter δjk = −αjk/βj can be alternatively

explained as the solution of zi to the equation αjk + βjzi = 0, which pins down the center

of the corresponding logistic curve, i.e., 1/(1 + e−αjk−βjzi) = 1/2. When βj is r-dimensional,

however, the corresponding linear equation αjk+βj
>zi = 0 determines an (r−1)-dimensional

linear subspace, in which there are infinitely many values that maps onto a 50% probability.

In this case, we compute the distance from the origin of the latent variable space to the

subspace, and consider it an overall measure of item intensity (see, e.g., Reckase, 2009). The

formula for such distance, which is subsequently referred to as the item difficulty parameter,

can be straightforwardly derived using geometry:

δjk = inf{‖zi‖ : αjk + βj
>zi = 0} = − αjk√

βj>βj
. (4.8)

Table 4.2 shows the data generating values of the five types of parameters for the first
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nine items; these values were repeated twice in the 18-item conditions.

Table 4.2: Data-generating parameter values for the bifactor GRM (m = 9)

Item Communality General
Loading Thresholds

factor λj1 λj2 λj3 λj4 τj1 τj2

1 low strong 0.27 0.16 0.00 0.00 -1.25 0.25
2 low moderate 0.22 0.00 0.22 0.00 -0.25 1.25
3 low weak 0.16 0.00 0.00 0.27 -1.25 0.25
4 medium strong 0.61 0.35 0.00 0.00 -0.25 1.25
5 medium moderate 0.50 0.00 0.50 0.00 -1.25 0.25
6 medium weak 0.35 0.00 0.00 0.61 -0.25 1.25
7 high strong 0.82 0.47 0.00 0.00 -1.25 0.25
8 high moderate 0.67 0.00 0.67 0.00 -0.25 1.25
9 high weak 0.47 0.00 0.00 0.82 -1.25 0.25

Item
Slope βj Intercepts Difficulties

βj1 βj2 βj3 βj4 αj1 αj2 δj1 δj2

1 0.49 0.28 0.00 0.00 2.24 -0.45 -3.95 0.79
2 0.40 0.00 0.40 0.00 0.45 -2.24 -0.79 3.95
3 0.28 0.00 0.00 0.49 2.24 -0.45 -3.95 0.79
4 1.47 0.85 0.00 0.00 0.60 -3.01 -0.35 1.77
5 1.20 0.00 1.20 0.00 3.01 -0.60 -1.77 0.35
6 0.85 0.00 0.00 1.47 0.60 -3.01 -0.35 1.77
7 4.42 2.55 0.00 0.00 6.72 -1.34 -1.32 0.26
8 3.61 0.00 3.61 0.00 1.34 -6.72 -0.26 1.32
9 2.55 0.00 0.00 4.42 6.72 -1.34 -1.32 0.26

The candidate interval estimators in this section are fiducial percentile CIs, the Hessian-

form, and the cross-product-form ML Wald CIs. The Gibbs sampler for fiducial estimation

was configured similarly to the unidimensional runs, with an exception that the parameter

bound in the initial bounding box (Equation 3.8) was set to M = 50. Again, the value of

M was selected to ensure desirable coverage while retaining efficiency; a larger value of M ,

implying less shrinkage for parameters, was specified for the fitted bifactor model due to

the concern that it is not as well-identified as the unidimensional model. ML estimates and

standard errors were computed using the software Mplus 7.0 with the same quadrature and

convergence settings. Note that although the latent variable is four dimensional in the fitted
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model, the effective dimensionality for each item is only two; the software implemented by

default an automatic dimension reduction strategy (see Gibbons and Hedecker, 1992; Cai,

2010c) so that the numerical integration was conducted on a two-dimensional space.

4.6 Bifactor models: Parameter recovery

We computed empirical coverage probabilities and median lengths of the three type of

interval estimators for all seven types of parameters, and tabulated them in Figure 4.19 to

4.22.

There were identification issues when fitting the bifactor GRM with ML estimation: For

short tests (m = 9), there were 20 replications for which the Hessian matrix of the log-

likelihood is non-positive-definite when n = 200, and 19 such replications when n = 500;

for long tests (m = 18), there were 59 such replications when n = 200, and 13 such repli-

cations when n = 500. In those cases, Wald-type intervals with the Hessian-form standard

errors cannot be computed. Not only does the poor identification lead to numerically ill-

conditioned Hessian matrices, it also reduces the coverage of the resulting interval estimators.

For high-communality items (items 7, 8, and 9), both types of Wald CIs have low coverage

for intercept and slope parameters; in the small-sample conditions, the coverage can be even

lower than 0.8. Their performance slightly improves when the sample size increases to 500,

but the empirical coverage probabilities are still significantly lower than the nominal 95%

level. The Hessian-form intervals have low coverage for large loading parameters and small

difficulty parameters, which is similar to what has been observed in the unidimensional sim-

ulations, and is conjectured to be ascribed to the failure of the quadratic approximation to

the log-likelihood function when the true values approach the boundary. Across all the con-

ditions and parameterizations under investigation, the cross-product-form standard errors

are uniformly larger than the Hessian-form ones, and thus in most cases fare ineffective.

In comparison, fiducial CIs are able to maintain on-target coverages for most parameters

of interest. They can be slightly liberal for large factor loading values (e.g., both primary

and secondary loadings for item 7, 8 and 9); but even in those cases, the coverages are almost
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Figure 4.19: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 200 and the number of items m = 9.
Each row corresponds to one type of parameters, in which coverage are plotted in the upper
panel and median length on the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.20: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 500 and the number of items m = 9.
Each row corresponds to one type of parameters, in which coverage are plotted on the upper
panel and median length on the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.21: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 200 and the number of items m = 18.
Each row corresponds to one type of parameters, in which coverage are plotted on the upper
panel and median length on the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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Figure 4.22: Empirical coverage and median length of the four types of interval estimators
(shown in different colors). Here, the sample size n = 500 and the number of items m = 18.
Each row corresponds to one type of parameters, in which coverage are plotted on the upper
panel and median length on the lower panel, and parameters belonging to different items are
separated by vertical dotted lines. The two horizontal dashed lines on the coverage panel
gives a 95% normal-approximation confidence band for the nominal level 0.95.
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always higher than those of the Wald CIs. However, the good coverage is accompanied with

a noticeable cost of efficiency: For instance, wider intervals are resulted for the slopes and

intercepts of items 4, 5, and 6 when the tests are short, and those of items 7, 8, and 9 when

the tests are long.

4.7 Conclusion

We conclude that GFI is able to offer reliable statistical inference in extreme situations,

i.e., the combination of small sample sizes and extreme true parameter values, where con-

ventional likelihood-based and Bayesian approaches may fail. This suggests that GFI is

particularly useful in substantive studies when a large calibration sample is not practical

(e.g., sampling from a clinical population) and/or some of the items of interest have very

low endorsement rates (e.g., suicidal attempt items in a depression scale). Methodologists

have long been hesitant to calibrate items with extremely low endorsement rates, because

they are likely to cause troubles in the numerical search of the ML solution. Even if the ML

estimates and standard errors can be obtained, inferences thereof are less trustworthy based

on our simulation results, especially when the calibration sample is not large. Now, with the

aid of the proposed Gibbs sampler, well-calibrated fiducial CIs for extreme item parameters

are obtainable in very small samples, and thus those low-endorsement items can be more

appropriately handled.

Item parameters control the sparseness of the univariate margin. Together with the Type

I error results of FPC, we conjecture that GFI is in general less affected by the sparseness

of the item response contingency table, which has been identified as the major source of

the discrepancy between the empirical performance and asymptotic theory of conventional

ML-based inference procedures. The higher-order asymptotic properties of the fiducial dis-

tribution, which has yet been fully established, may serve as the theoretical base for such an

observation.

Although the proposed implementation of GFI has been applied to unidimensional and

bifactor GRMs with a certain degree of success, there are limitations to be addressed by
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future research.

Better mechanisms to determine an optimal value of the parameter bound M involved in

Equation 3.8 is a potential topic for future research. It is a crucial tuning parameter required

by the sampling algorithm, and we found in our pilot study that it does exert an influence

on the results when the sample size is relatively small compared to the magnitude of the

data-generating parameter values. A practical recommendation based on our experience is to

run the sampler with multiple choices of M values from high to low, and select the smallest

one before the interval estimates start to vary. In some scenarios, it might also be reasonable

to allow different M values for different items.

We should also explore other choices of test statistics to be used in junction with the

flexible FPC framework. It has been observed in the power simulations that the current

choices of statistics may have low power to detect certain types of model misspecification

at both the global and pairwise scope. For example, an score-group statistic based on all

bivariate margins, analogous to the M2 and M?
2 statistics, may be more powerful for revealing

misspecified dimensionality of the latent variable. For item pairs, the importance weights

calculated in the partial FPC tend to concentrate on very few Monte Carlo draws, and thus

may trigger the unstable performance. It could be induced by the normal approximation

of the statistic’s likelihood (see Appendix E), or by the specific choice of test statistic, i.e.,

the cross-product moment (Equation 2.33). Thorough investigations at both theoretical and

empirical levels should be conducted in order to resolve this problem.
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CHAPTER 5: EMPIRICAL EXAMPLE

In this chapter, ordinal response data from the Patient Reported Outcomes Measure-

ment Information System (PROMIS; Irwin, Stucky, Langer, Thissen, DeWitt, Lai, Varni,

Yeatts, and DeWalt, 2010) study of chronic illness are analyzed using the proposed imple-

mentation of generalized fiducial inference (GFI). Several interesting inferential examples

are presented, including goodness of fit assessment and interval/set estimation for complex

transformations of parameters, all of which are derived straightforwardly from a Monte Carlo

sample of the fiducial distribution generated by the proposed Gibbs sampler. We illustrate

that GFI, similar to Bayesian inference, is more flexible and straightforward than traditional

likelihood-based methods in terms of accounting for the variability of parameter estimation—

an important part of many inferential procedures which has long been ignored in practice.

GFI does not require prior specification, which circumvents the subjective judgment involved

in Bayesian analysis.

The data set comprises 455 complete responses to 22 short-form items that are designed

to measure three aspects of emotional distress: anger (6 items), anxiety (8 items), and

depression (8 items). Although the proposed method is able to handle missing data in a

natural fashion, we applied listwise deletion in order to mimic the scenario of small-sample

calibration. All items have five response categories. The common response scale ranges form

0 to 4: 0 = never, 1 = almost never, 2 = sometimes, 3 = often, and 4 = almost always. The

items stems are tabulated in Table 5.1.

A unidimensional GRM was fitted as the base model. It has been repeatedly observed

that anger, anxiety and depression are highly correlated; as a result, the one-dimensional

latent variable is likely to reflect a general dimension of emotional distress. However, items
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measuring the same symptomatology tend to co-vary more than can be explained by the over-

all emotional distress latent variable. The global and local fit of the unidimensional model

was checked using the fiducial predictive check (FPC). Next, we used a three-dimensional

exploratory item factor analysis (EIFA) to investigate the underlying factor structure of the

scale. Similar to Liu and Hannig (2014), we constructed confidence intervals (CIs) for rotated

factor loadings and factor intercorrelations, which are implicitly defined transformations of

item slopes. Finally, we fit a bifactor model with a primary dimension on which all items

load and three secondary dimensions for the items of the three subscales. Using the bifactor

model, we discuss inferential examples including drawing bivariate confidence contours for a

pair of item parameters and confidence bands (CBs) for functional transformations of item

parameters.

All the models were fitted by the same Fortran program that has been used in the

simulation study. Parameter estimates from the default limited information estimator in

Mplus (i.e., estimator = WLSMV) were obtained in advance and set as the initial parameter

values θ(0); the corresponding factor score estimates (i.e., save = fscores) were used as the

starting values for the normal variates z(0). Item parameters were restricted to the bounding

box (Equation 3.8) with M = 50; the starting Algorithm 7 was then executed to produce

a(0), which completes the initialization stage of the sampler. For each model of interest, a

total of 60000 Markov chain Monte Carlo cycles were obtained; after burning in the first

10000 cycles to reduce the impact of starting values, we recorded 1/10 of the rest 50000

Monte carlo samples by thinning. Therefore, all the statistical procedures discussed in the

sequel, unless specifically indicated, are based on 5000 draws.

5.1 A unidimensional model

First, a unidimensional GRM was fitted to all 22 emotional distress items, and the model

fit was checked in sum-score profile and bivariate marginal tables by both centering and

partial FPCs. For fit to sum-score levels, we split the entire score range into 10 groups and

computed the observed proportion in each group as test statistics; the results are shown in
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Table 5.1: PROMIS emotional distress short-form items

Label Item stem

Ang1 I felt fed up.
Ang2 I felt mad.
Ang3 I felt upset.
Ang4 I was so angry I felt like throwing something.
Ang5 I was so angry I felt like yelling at somebody.
Ang6 When I got mad, I stayed mad.
Anx1 I worried about what could happen to me.
Anx2 I was afraid that I would make mistakes.
Anx3 I felt nervous.
Anx4 I felt like something awful might happen.
Anx5 I felt scared.
Anx6 I worried when I went to bed at night.
Anx7 I thought about scary things.
Anx8 I felt worried.
Dep1 I felt alone.
Dep2 I felt like I couldnt do anything right.
Dep3 I felt everything in my life went wrong.
Dep4 I felt sad.
Dep5 I thought that my life was bad.
Dep6 I could not stop feeling sad.
Dep7 I felt lonely.
Dep8 I felt unhappy.

Figure 5.1. We also examined model fit to each pair of items with the bivariate cross-product

statistic (Equation 2.33); a graphical summary of results can be found in Figure 5.2.

It is anticipated that there exist residual associations among the items that measure the

same domain; however, both the centering and partial FPCs based on the observed sum-

score profile do not suggest model misfit (see Figure 5.1). The smallest p-value, i.e., 0.02, is

observed for the lowest score group when the centering FPC is used. Although the numerical

value is less than 0.05, it is likely to be a false positive case out of the multiple hypothesis tests

displayed in Figure 5.1. It has been discovered in the simulation study that the sum-score

profile approach is not particularly sensitive to the multidimensional alternative model, even

when the true factors are distinct (correlation = 0.3). For the emotional distress scale, we

expect much higher inter-correlations among the three domains (which is confirmed later by
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the EIFA); therefore, the non-significant results might be attributed to the further dampened

power of the testing procedures.
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Figure 5.1: Fiducial predictive p-values for the sum-score group fit of a unidimensional GRM.
The predictive p-values are plotted against the score groups. The centering and partial FPCs
are shown in different colors; the numbers in the plot are the efficient sample sizes (ESS’)
associated with partial predictive p-values. The horizontal dashed line marks the nominal
α-level 0.05.

In contrast, the bivariate tests suggest a clear pattern of symptom-specific clustering of

items (see Figure 5.2): The bivariate covariance for items measuring the same domain tend to

be significantly under-estimated by the fitted unidimensional model, while the cross-domain

associations are likely to be over-estimated. The direction of misfit, which is shown by color

codes in Figure 5.2, is determined differently for the two methods of FPC. For the centering

approach, a positive residual after subtracting the asymptotic mean of the test statistic

indicates under-estimation, and similarly a negative residual indicates over-estimation. For

the partial approach, the direction is determined by which tail of the fiducial predictive

distribution the observed test statistic falls into. We conclude that Figure 5.2 indicates the

existence of three factors for anger, anxiety, and depression items, respectively; however, we

also notice that the depression items (i.e., the third diagonal block) show less severe misfit,
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and thus the corresponding factor is relatively weak. In addition to the obvious diagonal

blocks of within-domain pairs, items Anx2 (“I was afraid that I would make mistakes”) and

Dep2 (“I felt like I couldn’t do anything right”) also exhibit a significantly positive residual

dependency, which is identified by both the centering and partial FPC. This particular pair

of items was also found by Liu and Thissen (2014) using their score test of local dependence.

They explained that since both items are related to “making mistakes”, the correlation is

higher than can be explained by a general factor of emotional distress.

5.2 A three-dimensional exploratory model

Our bivariate fit diagnostics suggest that the scale has three underlying dimensions; next,

we used a three-dimensional EIFA to examine such a structure. In EIFA, the standardized

loading-threshold parameterization is often reported, for the reason that it is on a scale that

facilitates the computation of variance/covariance of test items explained by the common

factors. In addition, analytic rotation methods are often applied (see Browne, 2001, for a

review) to the estimated factor loadings to obtain more interpretable patterns of item-factor

dependency. Our goal in this section is to obtain point estimates and CIs for rotated factor

loadings and factor inter-correlations.

The EIFA amounts to the minimally constrained model for a given number of factors.

Here, the fitted three-factor EIFA model was parameterized as Equation 1.1 with β1 =

(β11 0 0)>, β2 = (β21 β22 0)>, and βj = (βj1 βj2 βj3)> for j = 3, · · · , 22. Then the

(multidimensional) unrotated factor loadings λ1, . . . ,λ22 can be calculated by Equation 4.6.

Let Λ = (λ1 · · · λ22)> be the unrotated factor loading matrix. A well-known property of the

exploratory model is rotational indeterminancy. Let Q be a 3 × 3 oblique rotation matrix

that is invertible and the inverse is normalized, i.e., Q−1Q−> has unity on the diagonal.

Define the rotated factor loadings Λ̃ = ΛQ, and the factor inter-correlations Φ = Q−1Q−>.

Then, rotational indeterminancy refers to the fact that

ΛΛ> = ΛQQ−1Q−>Q>Λ> = Λ̃ΦΛ̃>. (5.1)
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Equation 5.1 implies that for all eligible rotation matrices Q the rotated and unrotated

solutions fit the data equally well; however, a properly selected rotation matrix may greatly

simplify the pattern of the loading matrix and thus ease the interpretation. In particular,

we select the Q matrix that minimizes the Crawford-Ferguson Quartimax criterion of simple

structure (Crawford and Ferguson, 1970). The constrained optimization problem can be

solved by a gradient projection algorithm, which has been implemented in the R package

GPArotation (Bernaards and Jennrich, 2005). Consequently, the resulting rotated factor

loadings Λ̃ and correlation matrix Φ are implicit non-linear transformations of the unrotated

loadings Λ. For maximum likelihood (ML) estimation, the Delta-method standard errors for

the rotated ML solutions can be obtained via implicit differentiation; see Jennrich (1973) for

details. With GFI, however, the fiducial distribution of the rotated solutions can be easily

approximated by applying the transformation given in Equation 4.6 and then the rotation

algorithm to each Monte Carlo sample from the marginal fiducial distribution of item slopes.

In the rotation algorithm, the sign and order of the factors are not identified, because

altering them does not affect the value of the criterion function being minimized. In order

to harmonize the orientation of the resulting factors across the 5000 Monte Carlo samples,

we apply a matching procedure similar to that described by Asparouhov and Muthén (2012)

in the context of Bayesian EIFA. Specifically, the sum of the rotated factor loadings related

to each factor is constrained to be greater than zero in order to identify the sign. As for

ordering, we select the particular permutation of the three factors such that the correspond-

ingly permuted factor loading matrix has the least sum of squared differences from the one

obtained from the fiducial median of the unrotated loadings.

The fiducial densities, point estimates, and confidence intervals for rotated factor loadings

and factor inter-correlations are tabulated in Figures 5.3 and 5.4.

As expected, the quartimax rotation of three factors corresponds with with the three

subsets of items measuring anger, anxiety, and depression, respectively. Occasionally, we

observe items with cross-loadings. For example, items “I felt upset” (Ang6) and “I was
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afraid that I would make mistakes” (Anx2) also load on the third factor dominated by

depression items. Some of the weaker cross-loadings might not be significantly different from

0 after the false coverage-statement rate (FCR; Benjamini and Yekutieli, 2005) is controlled.

We recommend adjusting for FCR in practice (see Liu and Hannig, 2014, for a detailed

description of the procedure); however, it is omitted here for simplicity. In addition, items

“I felt alone” (Dep1) and “I felt lonely” (Dep7) have very strong loadings (fiducial median

≈ 0.9) on the third factor, and thus their fiducial densities are highly skewed. Our simulation

findings suggest that fiducial percentile CIs are more reliable than the Wald-type CIs when

the parameters are close to the boundary; thus, we are confident in the reported intervals.

The factor inter-correlations are moderately high, with the CIs covering the range 0.5–

0.7; this implies that anger, anxiety, and depression are likely to co-occur. Motivated by the

high correlation estimates among the three factors, we continue to distinguish the proportion

of individual differences in general emotional distress shared by all three symptomatology

domains from those domain-specific granularities. This leads naturally to our next analysis:

i.e., fitting a bifactor model with a general factor on which all items load, and three domain-

specific factors for the anger, anxiety, and depression items, respectively.

5.3 A bifactor model

The point estimates (fiducial median) and the confidence limits (percentile CI) of all

slope and intercept parameters in the bifactor GRM are in 5.2. Interestingly, the pair of

items “I felt alone” (Dep1) and “I felt lonely” (Dep7) are the only significant indicators of

the depression-specific dimension; the two item stems are almost identical (“alone” versus

“lonely”). This phenomena has been referred to as “theta-theft” in the existing literature1:

i.e., a latent variable is defined by a small subset of locally dependent items which are

similar to each other in construct-irrelevant aspects (Thissen and Steinberg, 2010, p.131).

For the current analysis, it implies that the particular secondary dimension only captures the

wording similarity of the two locally dependent items above and beyond the general emotional

1In the IRT literature, the Greek letter θ has been commonly used to denote latent variables, which is
different from our notation Z in the current work.
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distress, and that, with those two items in the analysis, the construct of depression itself is

almost indistinguishable from the macro-level construct of emotional distress.
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Figure 5.2: Fiducial predictive p-values for the bivariate goodness of fit of a unidimensional
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over-estimation.
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Figure 5.3: Fiducial median and 95% fiducial percentile CIs for rotated factor loadings in the
three-factor EIFA. The tabular layout has a row for each item; item stems are listed in the
leftmost column. The three columns of graphics correspond to the three factors, dominated
by anger, anxiety, and depression items, respectively. Within each cell, the estimated fiducial
density is shown in the background; the fiducial median (dot) and the percentile CI (interval)
are superimposed. The 0 points on the factor loading scale are shown by vertical dashed
lines.
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the three-factor EIFA. The tabular layout resembles a correlation matrix. Within each cell,
the estimated fiducial density is shown in the background; the fiducial median (dot) and the
percentile CI (interval) are superimposed. The 0 points on the correlation scale is highlighted
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Table 5.2: Fiducial point and interval estimates for item slopes and intercepts under the bifactor GRM

Item
Primary slope Secondary slope Intercept 1 Intercept 2 Intercept 3 Intercept 4

L M U L M U L M U L M U L M U L M U

Ang1 1.40 1.70 2.05 0.91 1.20 1.55 -0.02 0.28 0.56 -1.40 -1.07 -0.77 -3.82 -3.31 -2.85 -6.12 -5.29 -4.52
Ang2 1.74 2.10 2.54 1.27 1.68 2.14 1.35 1.74 2.18 -0.79 -0.42 -0.08 -4.75 -4.02 -3.43 -7.88 -6.66 -5.65
Ang3 1.92 2.25 2.64 0.68 0.99 1.31 0.81 1.15 1.47 -0.87 -0.53 -0.22 -4.58 -3.94 -3.41 -6.43 -5.56 -4.79
Ang4 1.52 1.92 2.40 1.44 1.90 2.43 -0.79 -0.42 -0.06 -2.30 -1.83 -1.41 -5.00 -4.26 -3.57 -6.84 -5.78 -4.84
Ang5 1.79 2.27 2.84 1.75 2.24 2.88 0.24 0.67 1.07 -1.65 -1.14 -0.74 -4.76 -3.89 -3.23 -7.60 -6.30 -5.28
Ang6 1.29 1.59 1.98 0.99 1.30 1.65 -0.64 -0.33 -0.04 -2.15 -1.76 -1.42 -4.45 -3.86 -3.32 -6.21 -5.34 -4.56

Anx1 1.90 2.29 2.77 1.33 1.68 2.08 -0.31 0.05 0.40 -2.02 -1.59 -1.21 -4.56 -3.91 -3.37 -6.51 -5.60 -4.82
Anx2 1.37 1.65 1.95 0.49 0.72 0.98 0.24 0.48 0.73 -1.05 -0.79 -0.52 -3.55 -3.12 -2.70 -5.50 -4.77 -4.14
Anx3 1.46 1.78 2.15 1.19 1.53 1.90 0.22 0.53 0.83 -1.45 -1.08 -0.77 -4.88 -4.20 -3.62 -7.27 -6.19 -5.27
Anx4 1.71 2.12 2.59 1.49 1.88 2.36 -0.75 -0.38 -0.05 -2.80 -2.29 -1.87 -5.94 -5.07 -4.33 -8.05 -6.81 -5.75
Anx5 1.95 2.45 3.04 1.80 2.30 2.93 -1.12 -0.67 -0.27 -3.09 -2.52 -2.00 -6.72 -5.60 -4.70 -9.79 -8.08 -6.72
Anx6 1.53 1.90 2.31 1.19 1.59 1.98 -1.40 -1.02 -0.68 -2.98 -2.49 -2.05 -5.33 -4.57 -3.91 -6.59 -5.64 -4.82
Anx7 1.19 1.51 1.87 1.22 1.57 1.97 -0.73 -0.42 -0.12 -2.13 -1.75 -1.39 -4.63 -4.00 -3.44 -6.04 -5.19 -4.45
Anx8 1.60 1.97 2.41 1.49 1.88 2.31 0.05 0.38 0.73 -2.05 -1.65 -1.26 -5.06 -4.34 -3.73 -7.43 -6.29 -5.37

Dep1 3.28 4.33 6.69 1.22 2.12 4.02 -2.74 -1.54 -0.92 -6.45 -4.02 -3.07 -12.83 -8.28 -6.46 -15.79 -10.30 -7.97
Dep2 2.04 2.47 2.99 -0.49 -0.04 0.42 -1.34 -0.98 -0.67 -2.98 -2.48 -2.05 -5.27 -4.50 -3.86 -7.04 -6.00 -5.11
Dep3 2.81 3.56 4.79 -1.51 -0.53 0.13 -2.31 -1.67 -1.15 -4.57 -3.46 -2.73 -7.66 -5.81 -4.70 -10.12 -7.70 -6.22
Dep4 1.99 2.39 2.81 -0.16 0.24 0.64 -0.01 0.28 0.58 -1.81 -1.46 -1.14 -5.03 -4.33 -3.74 -7.37 -6.32 -5.39
Dep5 2.33 2.85 3.52 -0.89 -0.32 0.22 -1.81 -1.36 -0.97 -3.48 -2.86 -2.35 -6.02 -5.05 -4.28 -9.09 -7.48 -6.24
Dep6 1.71 2.08 2.52 -0.23 0.16 0.55 -1.80 -1.45 -1.12 -3.16 -2.69 -2.27 -5.25 -4.53 -3.90 -7.22 -6.11 -5.16
Dep7 3.09 4.10 8.27 1.34 2.29 5.59 -2.87 -1.42 -0.82 -7.04 -3.58 -2.64 -15.00 -7.76 -5.96 -18.69 -9.68 -7.44
Dep8 2.45 2.93 3.52 -0.20 0.18 0.58 0.11 0.45 0.81 -1.89 -1.48 -1.11 -5.78 -4.93 -4.21 -8.16 -6.98 -5.95

L: Fiducial 2.5 percentile
M: Fiducial median (highlighted in bold)
U: Fiducial 97.5 percentile
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The highest fiducial density regions (at nominal coverage levels 75%, 90%, and 95%) for

each item’s primary and secondary factor loading pairs are displayed in Figures 5.5 to 5.7.

To obtain the contours on each two-dimensional parameter space, we used the R package

ks (Duong, 2014) to estimate a two-dimensional density by kernel smoothing from the 5000

fiducial samples. We selected the bandwidth by the plug-in method (Wand and Jones, 1994)

using function Hpi() in the ks package. The implementation relies on the optimizer nlm(),

which was found to be very inefficient when the number of data points is large. As a result,

a further thinned sample of 500 Monte Carlo draws was extracted for bandwidth selection,

while the entire sample was still used for the subsequent density estimation.
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Figure 5.5: Two-dimensional confidence regions for the primary and secondary loadings of
anger items. The points are 500 draws selected via a further thinning interval of 10. The
three contours shown on each panel are the 75%, 90%, and 95% highest fiducial density
regions. The fiducial medians are highlighted by green crosses, and the numerical values are
also shown in green text. The diagonal dashed line indicates that an item contributes evenly
to the primary and secondary factors.

We are able to visualize the relative contributions of primary and secondary factors to
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each item on those bivariate plots: The primary one dominates if the point cloud is below

the diagonal line. This is the case for the anger item “I felt upset” (Ang7), the anxiety item

“I was afraid that I would make mistakes” (Anx8), and all but the two locally dependent

depression items. For the “alone/lonely” pair that governs the depression dimension, the

point clouds are non-elliptical. In those cases, a normal approximation, which produces

ellipses, is likely to yield contours of a completely different shape, affected by the downward

tail trailing along the vertical direction.

In Figures 5.8 to 5.12, we demonstrate drawing CBs for functional transformations of

item parameters, in order to account for the sampling variability induced by parameter

estimation.

We first consider the marginal expected score curve, defined for each item j = 1, . . . , 22

on each latent dimension d = 1, . . . , 4 as

s(zid,θj) =

Kj−1∑
k=1

k

∫
R3

fj(θj, k|zi)dΦ(zi,−d), (5.2)

in which zi,−d is a three-dimensional vector corresponding to all but the dth dimensions.

For the sake of succinctness, the expected score function has been preferred over the item

response function in visualizing item characteristics of ordinal items. In computation, the

three-dimensional integral in Equation 5.2 needs to be approximated by quadrature; the

quadrature grid being used here amounts to an outer product of three identical lists of

21 equally-spaced points from −3 to 3. The effective dimension of integration is in fact

two, because each item only has two non-zero slopes. On each secondary dimension in the

fitted bifactor model, the marginal expected score curve for those items not loading on this

particular dimension is flat (its level depends on the primary slope and the intercepts), and

thus are not shown in Figures 5.9 to 5.11.

For fixed zid, Equation 5.2 is just a single transformed parameter, and then its 95%

fiducial CI can be computed as usual. Pooling across all zid ∈ R, we obtain the pointwise

CB, the green dashed lines in Figures 5.8 to 5.11. A 95% pointwise CB only ensures that at
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each level of zid the true marginal expected score is covered 95% of the time over repeated

sampling; sometimes, however, an extended statement for all possible values of zid is also in

demand. Here, a procedure adapted from Thissen and Wainer (1990) is used to construct

simultaneous CBs, the yellow dashed lines in Figures 5.8 to 5.11. Note that equation 5.2

depends on six free item parameters, denoted θj: four intercepts and two slopes. In order

to determine a simultaneous CB for each curve, we first calculate a six-dimensional kernel

density estimate (again, using the R package ks) from the 5000 fiducial draws of θj, each

of which is a point defined on the six-dimensional parameter space. Next, we selected the

draws enclosed in the 95% highest density region, and set the lower (upper) confidence limit

at each zid level to the minimum (maximum) value of Equation 5.2 among the selected θj

values. Because the true six-dimensional parameter vector falls in the 95% highest fiducial

density region (approximately) 95% of the time over repeated sampling, the entire true

marginal expected score curve is then covered by the simultaneous CB in at least those 95%

replications.
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Figure 5.6: Two-dimensional confidence regions for the primary and secondary loadings of
anxiety items. The points are 500 draws selected via a further thinning interval of 10. The
three contours shown on each panel are the 75%, 90%, and 95% highest fiducial density
regions. The fiducial medians are highlighted by green crosses, and the numerical values are
also shown in green text. The diagonal dashed line indicates that an item contributes evenly
to the primary and secondary factors.
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Figure 5.7: Two-dimensional confidence regions for the primary and secondary loadings of
depression items. The points are 500 draws selected via a further thinning interval of 10.
The three contours shown on each panel are the 75%, 90%, and 95% highest fiducial density
regions. The fiducial medians are highlighted by green crosses, and the numerical values are
also shown in green text. The diagonal dashed line indicates that an item contributes evenly
to the primary and secondary factors.
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Figure 5.8: Fiducial median and 95% confidence bands (CBs) of the marginal expected score curve for general emotional distress.
Pointwise and simultaneous CBs are shown in different colors.
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Figure 5.9: Fiducial medians and 95% confidence bands (CBs) of the marginal expected score curve for anger. Only items in the
anger subscale are shown here. Pointwise and simultaneous CBs are shown in different colors.
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Figure 5.10: Fiducial medians and 95% confidence bands (CBs) of the marginal expected score curve for anxiety. Only items in
the anxiety subscale are shown here. Pointwise and simultaneous CBs are shown in different colors.
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Finally, we study the impact of sampling error in reliability analysis. Various methods

have been proposed to quantify the reliability of a scale in the context of item response theory

(IRT). A popular method is to compute the Fisher information matrix with respect to the

latent variables zi while treating the item parameters θ as known; for easy reference, we

denote it by J (zi,θ). Also let f(θ,yi|zi) =
∏22

j=1 fj(θj, yij|zi) be the conditional likelihood

of an individual response pattern yi. It can be verified by direct calculation that

J (zi,θ) =− Eθ
[

∂2

∂zi∂zi>
log f(θ,yi|zi)

]
=

22∑
j=1

4∑
k=0

1

fj(θj, yij|zi)

{
eτjk(θj ,zi)

[1 + eτjk(θj ,zi)]2
− eτj,k+1(θj ,zi)

[1 + eτj,k+1(θj ,zi)]2

}2

βjβj
>.

(5.3)

The inverse of J (zi,θ) gives the asymptotic covariance matrix for the ML estimates of the

latent variables. Most often in practice, however, item parameters need to be calibrated,

and thus the plug-in versions of information/asymptotic covariance matrix evaluated at the

point estimates are subject to sampling variability.

For the four-dimensional model being fitted here, the 4×4 asymptotic covariance matrix

J (zi,θ) is defined for each four-dimensional vector zi ∈ R4. For each dimension d, we define

the marginal standard error function as following:

υd(zid,θ) =

√∫
σ2
d(zi,θ)dΦ(zi,−d), (5.4)

in which σ2
d(zi,θ) is the dth diagonal element of J (zi,θ)−1, and the integral is taken with

respect to the remaining three dimensions. υd(zid,θ) gauges the average precision of the

scale at each level zid of a particular dimension d. Again, numerical integration is needed in

the actual computation of Equation 5.4; because the previous dimension reduction trick is

no longer applicable, we reduce the number of quadrature points to 11 on each dimension.

The fiducial median and 95% pointwise CB for the marginal standard error functions are
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shown in Figure 5.12. In principle, simultaneous CBs can be obtained in a fashion similar to

what we have done for expected score curves; however, the total number of item parameters

involved in the calculation of equations 5.3 and 5.4 are 22×6 = 132, and we are not aware of

any existing software that is able to handle such a high-dimensional kernel density estimation

problem.

We observe in Figure 5.12 that the depression-specific latent variable is poorly measured

at all levels; this is anticipated because the dimension is only effectively indicated by the

“longly/alone” pair. The general dimension is often more precisely assessed compared to

the domain-specific dimensions, for the reason that all 22 items provide information about

individual differences in emotional distress symptoms. Because all threshold parameters are

skewed to the high end of the latent variable scale, the measurement error at negative zid

levels are high.
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Figure 5.12: The fiducial median and 95% confidence bands (CBs) for marginal standard error curves for the four dimensions.
Pointwise CBs are shown in colored dashed lines. Note that the lower-right panel for depression has a different y-axis from the
rest.
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5.4 Summary

This analysis of the PROMIS emotional distress data shows that GFI offers a powerful

and omnibus toolkit to address various inferential problems based on the GRM. Making

use of the Monte Carlo sample generated by the proposed Gibbs sampling algorithm, we

are able to check the compatibility of the model to the data, construct CIs for implicitly

defined functions of model parameters, and draw CBs for functional transformations. Some

of the analyses are novel: for example, calculating simultaneous CBs for item expected

score curves (each of which depends on six item parameters) and CBs for marginal standard

errors functions of the test (which depends on all 132 item parameters). The same level of

flexibility can be achieved by adopting the full Bayesian framework, but at the cost of prior

specification. For the PROMIS emotional distress domains, no a priori information about

model parameters is available, making it difficult to specify a reasonable subjective prior.

Moreover, the calibration sample is not large enough. From our experience in the reported

simulation study (Chapter 4), the small-sample performance of non-informative Bayesian

methods is inferior to GFI.

There are several limitations in the presented analyses.

First, we did not correct for the false discovery rate (FDR; Benjamini and Hochberg,

1995; Thissen, Steinberg, and Kuang, 2002) when conducting multiple hypothesis tests,

nor the false coverage-statement rate (FCR; Benjamini and Yekutieli, 2005) when reporting

multiple CIs/CBs. Our goal has been to illustrate the use of GFI instead of studying the

scale itself, and thus we do not feel pressed to do so. Furthermore, all the p-values and

confidence bounds are computed empirically based on only 5000 draws, which is too few to

control the Monte Carlo error after applying the adjustment. For example, if we consider 100

tests, then the smallest p-value will be compared to 0.05/100 = 0.0005; the estimated 0.0005

quantile of a 5000 Monte Carlo sample is almost the minimum. In applied research, we do

suggest correcting for FDR/FCR in order to justify the validity of the results. If necessary,

a longer Markov chain should be obtained to reduce the Monte Carlo error in approximating
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extreme quantiles of the fiducial distribution.

Second, the R package ks for non-parametric estimation of multidimensional density

functions can only handle up to six-dimensional data, which barely suffices in the simulta-

neous CB calculation for marginal expected score curves in a bifactor model. Apart from

the dimensionality limit, it calls R’s optimizer nlm() when determining the smoothing band-

width, which lessens its efficiency2. It is necessary to write a separate program in higher level

computer languages such as Fortran or C, in order to make the proposed method applicable

in larger-scale problems.

Finally, our goodness of fit tests based on the sum-score profile fail to detect the misfit

of a unidimensional model, whereas the bivariate tests clearly indicate an underlying three-

dimensional structure. Li and Cai (2012) remarked based on their simulation results that

misspecified latent dimensionality does not damage the fit to sum-score profile so much

as it does to bivariate margins. They revealed that an overall fit statistic summarizing

the residuals in bivariate subtable cells has a much higher power than another statistic

summarizing the residuals at sum-score levels, whereas the comparative power is reversed

when the generating model remains unidimensional but has a misspecified distribution. Both

the simulations reported in Chapter 4 and the current data example seem to confirm their

findings. We acknowledge that perhaps there is no single diagnostic that is able to identify

all types of discrepancies between the true and fitted models, because different diagnostics

combine information in different manners. Practically, we recommend choosing test statistics

in line with a priori information of plausible misfitting mechanisms. As a topic for future

research, fit diagnostics that are sensitive to alternative data generating models should be

developed and incorporated into FPC.

2There is an option to switch to optim(), but there is no speed gain from our experience.
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CHAPTER 6: DISCUSSION AND CONCLUSION

We have derived generalized fiducial inference (GFI) for a family of multidimensional

graded response models (GRM). It has been rigorously established that GFI for the GRM

yields asymptotically correct inference in the frequentist sense, equivalent to likelihood-

based and Bayesian methods that have been extensively studied in the literature (Chapter

2). Furthermore, we have shown by Monte Carlo simulations (Chapter 4) that GFI using

the proposed Gibbs sampler (Chapter 3) is reliable for parameter recovery, scoring, and

goodness of fit testing, even in situations when the sample size is too small and/or the data

generating parameters are too extreme for likelihood-based and Bayesian counterparts to

behave well. The usefulness and flexibility of the proposed method have been illustrated

with an empirical example (Chapter 5). We conclude that GFI is a preferred inferential

framework for calibrating ordinal items in small samples, and that sampling variability,

which is a more salient issue in small-sample data analyses, can be gauged easily with a

Monte Carlo approximation of the fiducial distribution.

There are several remaining challenges to be addressed by future research.

First, theoretical interpretations of the superiority of GFI over normal approximation in

small samples should be sought. It has been conjectured that GFI has more favorable higher-

order asymptotic properties. Some preliminary investigation of a higher-order expansion of

the fiducial distribution function can be found in Pal Majumder and Hannig (2015), in

which an ingenious “shrinkage argument” (Ghosh and Bickel, 1990) was exploited to derive

conditions under which the fiducial probability coincides with the coverage probability up

to a certain order. Their results might not be directly applicable to the current GRM

application; however, a similar theoretical justification may establish more solid grounds for
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the use of the current work in small samples.

Second, effort should be devoted to improve the efficiency of the sampling algorithm. We

believe that a more efficient algorithm would facilitate the dissemination of the proposed

method, which has been demonstrated to outperform existing ones under certain circum-

stances. The combinatorial and computational mathematics of the polygon cutting problem

should be studied in order to alleviate the computational burden presented in the current

implementation of the updating stage (Section 3.3 of Chapter 3). Alternative Monte Carlo

methods such as sequential Monte Carlo (SMC; Doucet, De Freitas, and Gordon, 2001) has

been successfully used for GFI in the context of other models (e.g., linear-normal mixed

effect models; Cisewski and Hannig, 2012); as a non-iterative method, SMC may be more

efficient than the Gibbs sampler.

Finally, the application of GFI to other popular item response models should be explored.

In the current work, we only focus on a family of GRMs in which the covariance structure

of the latent variables is known, e.g., exploratory models. In practice, however, simple

structure models (also known as independent cluster models) and general two-tier models

(i.e., replacing the general factor in a bifactor model by multiple factors with unconstrained

covariance structure) might be preferred over exploratory models for estimation efficiency

and ease of interpretation. In addition, it is also of interest to derive GFI for un-ordered

polytomous item response models such as Bock’s nominal response model (Bock, 1972),

and models with categorical latent variables such as cognitive diagnostic models (Rupp,

Templin, and Henson, 2010) and latent class models (Lazarsfeld and Henry, 1968). We have

observed in our simulation study that GFI is more reliable than ML in the presence of model

identification difficulties, which renders it a promising alternative for many psychometric

models in which ML estimator has been known to be ill-behaved.
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APPENDIX A: BASIC PROPERTIES

A.1 Calculating the fiducial density

Proof of Lemma 1. We start with the following fundamental probability calculation:

P {V ≤ θ, Q(y,A?,Z?) 6= ∅}

=
∑
P

P

V ≤ θ,
⋂

(I′,kI′ )∈P

EI′,kI′

⋂
(I′,kI′ )/∈P

Ec
I′,kI′


=
∑
P

∑
(I,kI)∈P

P

VI,kI
≤ θ,

⋂
(I′,kI′ )∈P

EI′,kI′

⋂
(I′,kI′ )/∈P

Ec
I′,kI′

,V = VI,kI


=
∑
I

∑
kI

P {VI,kI
≤ θ, EI,kI

,V = VI,kI
}

=
∑
I

∑
kI

P {VI,kI
≤ θ, EI,kI

}P {V = VI,kI
|EI,kI

} . (A.1)

The last line of Equation A.1 holds because selection rules are assumed to be independent of

the logistic and normal variates, and subsequently independent of VI,kI
. Equation 2.9 shows

that P {V = VI,kI
|EI,kI

} = wI,kI
(y) does not depend on θ; therefore, the remaining task is

to derive the expression of P {VI,kI
≤ θ, EI,kI

} and then differentiate with respect to θ.

Consider a single item first. When VIj ,kIj
= θ′j, EIj ,kIj

means that for all i ∈ Ij,

τjkij(θ
′
j, zi) = A?ij, and that θ′j should not conflict with the half-spaces of the other observa-

tions: i.e., for all i ∈ Icj , τj,yij+1(θ′j, zi) ≤ A?ij < τjyij(θ
′
j, zi). Thus, conditional on Z? = z, we

have

P
{

VIj ,kIj
≤ θj, EIj ,kIj

| Z? = z
}

=

∫
θ′j≤θj

dIj ,kIj
(θ′j, zIj)

∏
i∈Ij

eτjkij (θ′j ,zi)

[1 + eτjkij (θ′j ,zi)]2

∏
i∈Icj

fj(θ
′
j, yij|zi)dθ′j, (A.2)

in which the determinant and the first product are due to the change of variables from

(A?ij)i∈Ij to VIj ,kIj
(the standard logistic density ψ(x) = ex/(1+ex)2), and the second product

corresponds to the logistic probabilities of those inequalities that the other observations
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should satisfy.

Due to the conditional independence assumption,

P {VI,kI
≤ θ, EI,kI

}

=

∫
Rnr

m∏
j=1

P
{

VIj ,kIj
≤ θj, EIj ,kIj

| Z? = z
}
dΦ(z)

=

∫
Rnr

∫
θ′≤θ

m∏
j=1

dIj ,kIj
(θ′j, zIj)

eτjkij (θ′j ,zi)

[1 + eτjkij (θ′j ,zi)]2

∏
i∈Icj

fj(θ
′
j, yij|zi)

 dθ′dΦ(z).

(A.3)

Equation 2.8 is established by substituting Equation A.3 back into Equation A.1, switching

the order of integration, and differentiating with respective to θ.

A.2 The invariance property

Proof of Proposition 1. Let an(θ,y) be the right-hand side of equation 2.8, and similarly

ãn(ξ,y) be the unnormalized version of g̃n(ξ|y). It suffices to show

∫
B

an(θ,y)dθ =

∫
q−1(B)

ãn(ξ,y)dξ. (A.4)

for every measurable setB on the parameter space. Let τI,kI
(θ, zI) = (τjkij(θj, zi))i∈Ij ,j=1,...,m.

Then the Jacobian determinant |det (∂τI,kI
(θ, zI)/∂θ)| = ∏m

j=1 dIj ,kIj
(θj, zIj). Also write

RI,kI (θ,y, z) =
m∏
j=1

∏
i∈Ij

eτjkij (θj ,zi)

[1 + eτjkij (θj ,zi)]2

∏
i∈Icj

fj(θj, yij|zi)

 . (A.5)

By our differentiability assumption and the multivariate chain rule,

∣∣∣∣det

(
∂τI,kI

(q(ξ), zI)

∂ξ

)∣∣∣∣ =

∣∣∣∣det

(
∂τI,kI

(q(ξ), zI)

∂q(ξ)

)∣∣∣∣ · ∣∣∣∣det

(
∂q(ξ)

∂ξ

)∣∣∣∣ . (A.6)
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Hence, we have

∫
B

an(θ,y)dθ

=
∑
I

∑
kI

wI,kI
(y)

∫
Rnr

∫
B

∣∣∣∣det

(
∂τI,kI

(θ, zI)

∂θ

)∣∣∣∣RI,kI
(θ,y, z)dθdΦ(z)

=
∑
I

∑
kI

wI,kI
(y)

∫
Rnr

∫
q−1(B)

∣∣∣∣det

(
∂τI,kI

(q(ξ), zI)

∂q(ξ)

)∣∣∣∣RI,kI
(q(ξ),y, z)

∣∣∣∣det

(
∂q(ξ)

∂ξ

)∣∣∣∣ dξdΦ(z)

=
∑
I

∑
kI

wI,kI
(y)

∫
Rnr

∫
q−1(B)

∣∣∣∣det

(
∂τI,kI

(q(ξ), zI)

∂ξ

)∣∣∣∣RI,kI
(q(ξ),y, z)dξdΦ(z)

=

∫
q−1(B)

ãn(ξ,y)dξ. (A.7)
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APPENDIX B: A BERNSTEIN-VON MISES THEOREM

Proof of Theorem 1. We start from re-expressing the fiducial density in Equation 2.10. Re-

call that we require wI,kI
(y) = wI′,kI′

(y) = wyI ,kI
(y) whenever yI = yI′ and kI = kI′ ;

therefore, the key observation is that the (outer) sum over index sets I in Equation 2.10 can

be reduced to a finite sum over sub-sample response patterns yI . Recall that I =
⋃m
j=1 Ij,

which has at least maxj qj and at most
∑m

j=1 qj elements. Let Gn =
(

n∑m
j=1 qj

)
be the to-

tal number of size-
∑m

j=1 qj sub-samples. Also let pn(yI) = G−1
n

∑
I I{YI = yI}. By the

standard theory of U -statistics, pn(yI)
Pθ0→ π0(yI), in which π0(yI) is determined by the

data-generating parameter values θ0, and π0(yI) = 0 if |I| < ∑m
j=1 qj. Then the fiducial

density (Equation 2.8) can be written as

gn(θ|y) ∝ bn(θ,y)fn(θ,y), (B.1)

In Equation B.1, fn(θ,y) is the sample likelihood, and

bn(θ,y) = Gn

∑
yI

pn(yI)

[∑
kI

wyI ,kI
(y)byI ,kI

(θ)

]
, (B.2)

in which

byI ,kI
(θ) =

∫ m∏
j=1

dIj ,kIj
(θj, zIj)

·
∏
i∈I

 ∏
j∈J(i)

eτjkij (θj ,zi)

[1 + eτjkij (θj ,zi)]2

∏
j /∈J(i)

fj(θj, yij|zi)

 dΦ(zI)

/∫ ∏
i∈I

m∏
j=1

fj(θj, yij|zi)dΦ(zI). (B.3)

Equation B.2 is a repetition of Equation 2.13. Also let

an(θ,y) = fn(θ,y)bn(θ,y) (B.4)
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be the right-hand side (RHS) of Equation B.1.

Next, we consider the local parameter h =
√
n(θ − θ0). Some short-hand notation is

introduced for conciseness: Let bn,h = bn(θ0 + h/
√
n,y)/Gn, an,h = an(θ0 + h/

√
n,y), and

fn,h = fn(θ0 + h/
√
n,y)/

√
n; also let bn,0 =

∑
yI
π0(yI)[

∑
kI
wyI ,kI

(y)byI ,kI
(θ0)], an,0 =

an(θ0,y), and fn,0 = fn(θ0,y). Using this new notation, the fiducial density of the local

parameter can be written as

ḡn(h|y) ∝ an,h = bn,hfn,h. (B.5)

For each yI and kI , byI ,kI
(θ) is continuous in θ (it is in fact differentiable). In addition, we

know that pn(yI)→ π0(yI) in Pθ0-probability, and that wyI ,kI
(y) is bounded. Consequently,

|bn,h − bn,0| converges to 0 in Pθ0-probability.

We also consider the Taylor series expansion of log fn,h at the true parameter θ0:

log
fn,h
fn,0

= h>Sn +
1

2n

n∑
i=1

h>H(θ0,yi)h +Rn,h. (B.6)

Here, some comments are made for each term of Equation B.6. a) The sequence {Sn} is

tight by the convergence result given by Equation 2.16; hence, for each ε > 0, there exists

a compact set Kε ⊂ Rq such that P (Kε) > 1 − ε and Sn ∈ Kε for all n. If we restrict the

consideration to Kε, then the first term of Equation B.6 is bounded for each h. b) By the

(Uniform) Law of Large Numbers, the second term converges to h>I0h in probability (the

convergence is uniform for h in compact sets). c) The remainder term has the following

form:

Rn,h =
n∑
i=1

∑
|t|=3

f (t)(θ̄,Yi)

t!

(
h√
n

)t

. (B.7)

In Equation B.7, t = (t1, . . . , tq) is a q-tuple of nonnegative integers serving as a multi-index:

|t| =
∑q

s=1 ts, ht = ht11 · · ·htqq , t! = q!
t1!···tq !

, and f (t) = ∂|t|f
∂t1θ1···∂tq θq

, where h1, . . . , hq and

θ1, . . . , θq are the coordinates of h and θ, respectively. θ̄ lies between θ0 and θ0 + h/
√
n.

Now we proceed to the proof of Theorem 1, i.e., Equation 2.17. By an argument similar
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to Ghosh and Ramamoorthi (2003), it suffices to show for each ε > 0 that

∫
Hn

∣∣∣∣an,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh Pθ0→ 0 (B.8)

To see this, let Dn =
∫
Hn
an,hdh/fn,0. The left-hand side (LHS) of Equation 2.17 can be

bounded by

D−1
n

∫
Hn

∣∣∣∣an,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh +

∫
Hn

∣∣∣D−1
n bn,0e

h>Sn− 1
2
h>I0h − φI−1

0 Sn,I−1
0

(h)
∣∣∣ dh.

(B.9)

Notice that Equation B.8 implies |Dn − bn,0
∫
Hn
eh
>Sn− 1

2
h>I0hdh| Pθ0→ 0. We also know that

De
1
2
Sn
>I−1

0 Sn ≤
∫
Hn

eh
>Sn− 1

2
h>I0hdh ≤ D′e

1
2
Sn
>I−1

0 Sn , (B.10)

for some suitable constants D and D′, because the local parameter space Hn satisfies Θ −

θ0 ⊂ Hn ⊂ Rq. It follows that D−1
n is Op(1), and that the first integral in Equation B.9

converges to zero in probability. Further let T1,n be the integral in Equation B.10, and

T2,n = |D−1
n bn,0− T−1

1,n |; then, the second integral of Equation B.9 can be written as T1,nT2,n.

The sequence {T1,n} is tight by Equation B.10, so for each η > 0 there exists an Lη such

that P (T1,n ≤ Lη) > 1− η for all n. Moreover, T2,n

Pθ0→ 0 by Equation B.8. Fix ε, η > 0, we

have

P (T1,nT2,n > ε) ≤ P (T1,nT2,n > ε, T1,n ≤ Lη) + P (T1,n > Lη) ≤ P (T2,n > ε/Lη) + η,

(B.11)

which can be made less than 2η for large enough n. Therefore, T1,nT2,n

Pθ0→ 0. Because both

integrals in Equation B.9 converge to 0 in probability, Equation 2.17 is established.

For the remaining part of the proof, we partition the domain of integration of Equation

2.17 into four regions (for n large enough), and establish the desired convergence on each
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part. The four regions are:

A1,n = {h : ‖h‖ < B log n} ∩Hn, for some large number B > 0;

A2,n = {h : B log n ≤ ‖h‖ < δ
√
n} ∩Hn, for some small number δ > 0;

A3,n = {h : δ
√
n ≤ ‖h‖ ≤ B′

√
n} ∩Hn, for another large number B′ > 0;

A4,n = {h : ‖h‖ > B′
√
n} ∩Hn.

In terms of the constants, we first choose δ and B to ensure the convergence on A2,n. The

convergence on A1,n holds for any B > 0, so it also holds for the particular B that we select.

Then we consider region A4,n and select B′. Finally we show that the integral convergences

for h/
√
n in any compact sets excluding 0, from which the convergence on A3,n follows.

Region A2,n Because the likelihood function is three times continuously differentiable

with respect to θ, and also because there are finitely many (i.e.,
∏m

j=1Kj) individual patterns

of yi, the remainder term (Equation B.7) of the Taylor expansion (Equation B.6) has the

following bound for each δ > 0 and ‖h‖ ≤ δ
√
n:

|Rn,h| ≤M(δ)
‖h‖3

n3/2
≤M(δ)δ3, (B.12)

as a result of the multinomial theorem and the Cauchy-Schwarz inequality, in which M(δ)

is a constant multiple of |max|t|=3,yi
sup‖θ−θ0‖≤δ f

(t)(θ,yi)|. Since M(δ) ↓ as δ ↓ 0, Equation

B.12 allows us to choose δ small enough such that |Rn,h| < 1
4
h>I0h for all h ∈ A2,n. Then
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for such δ,

∫
A2,n

∣∣∣∣an,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh
≤
∫
A2,n

an,h
fn,0

dh +

∫
A2,n

bn,0e
h>Sn− 1

2
h>I0hdh

≤ sup
h∈A2,n

bn,h

∫
A2,n

fn,h
fn,0

dh + bn,0

∫
A2,n

eh
>Sn− 1

2
h>I0hdh

≤
(

sup
h∈A2,n

bn,h + bn,0

)∫
A2,n

eh
>Sn− 1

4
h>I0hdh + op(1). (B.13)

In the last line of Equation B.13, the parenthesized term is bounded due to the continuity

of function byI ,kI
(θ), the boundedness of wyI ,kI

(y), the boundedness of set A2,n, and our

selection of δ. The op(1) term comes from the uniform convergence of the second term in

the Taylor expansion (Equation B.6). Also notice that

∫
A2,n

e−
1
4
h>I0hdh ≤ Ce−C

′B logn(δ
√
n−B log n)q ≤ C ′′nq/2−C

′B, (B.14)

where C, C ′, and C ′′ are constants. By selecting B large enough, Equation B.14 implies∫
A2,n

e−
1
4
h>I0hdh → 0. Finally, an argument using tightness similar to equations B.10 and

B.11 shows that the RHS of Equation B.13 converges to 0 in probability.

Region A1,n The convergence on A1,n can be established similarly. Fix an arbitrary

B > 0. For the particular δ we have selected,

sup
h∈A1,n

|Rn,h| ≤M(δ) sup
h∈A1,n

‖h‖3

n3/2
≤M(δ)B3 log3 n

n3/2
= o(1), (B.15)
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in which M(δ) is the same as in Equation B.12. Then

∫
A1,n

∣∣∣∣an,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh ≤∫
A1,n

bn,h
∣∣eRn,h − 1

∣∣ eh>Sn− 1
2
h>I0hdh

+

∫
A1,n

|bn,h − bn,0|eh
>Sn− 1

2
h>I0hdh + op(1).

(B.16)

In Equation B.16, the op(1) term is again due to the uniform convergence of the second

term in Equation B.6. Equation B.15 implies that suph∈A1,n
|eRn,h − 1| → 0; together with

|bn,h − bn,0|
Pθ0→ 0 and the boundedness of A1,n, both integrals on the RHS of Equation B.16

converges to 0 in probability (the tightness argument needs to be used again).

Region A4,n Assume for a moment that there exists a large number B′ such that

sup
‖θ−θ0‖>B′

min
yi

f(θ,yi) < f(θ0,y
◦
i )

2/f(θ0,y◦i ), (B.17)

in which y◦i is the least plausible individual response pattern under θ0. Also write pn(y◦i ) be

the observed proportion of yi; pn(y◦i )
Pθ0→ f(θ0,y

◦
i ). Then, on region A4,n defined by such a

B′,

P

{
minyi f(θ,yi)

pn(y◦i )

f(θ0,y◦i )
< 1

}
≥ P

{
pn(y◦i ) >

f(θ0,y
◦
i )

2

}
→ 1. (B.18)

Therefore, we have

fn,h
fn,0
≤
[

minyi f(θ,yi)
pn(y◦i )

f(θ0,y◦i )

]n
≤ ρn + op(1) (B.19)

for some 0 < ρ < 1. Also note that this likelihood ratio bound is not affected if finitely many

observations are removed from fn,h, which is the case after dividing by the denominator of

each summand of bn,h. As a result,

∫
A4,n

∣∣∣∣an,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh ≤∫
A4,n

bn,hfn,h
fn,0

dh + bn,0

∫
A4,n

eh
>Sn− 1

2
h>I0hdh

≤ Kρn + bn,0

∫
A4,n

eh
>Sn− 1

2
h>I0hdh + op(1), (B.20)
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in which K is a constant. Equation B.20 results from the fact that: a) The numerator of

Equation B.3 is integrable with respect to the Lebesgue measure on the parameter space,

which contributes to the constant K; b) pn(yI)
Pθ0→ π0(yI), so the latter also contributes to K

while the difference of the two is merged into the op(1) term. The second term on the RHS

of Equation B.20 converges to zero by a similar tightness argument and the tail estimate of

a multivariate normal distribution. These altogether shows that the LHS of Equation B.20

converges to zero in probability.

Now we prove the result stated by Equation B.17; we denote the RHS of Equation B.17

by η.

First, consider the parameter subspace of αjk and βj for each j and k. Let Ljk =

‖(αjk βj>)>‖, and djk = (αjk βj
>)>/Ljk ∈ Rr+1 be a unit directional vector, in which

the coordinates corresponding to fixed slopes are set to 0. Also introduce the partition

djk = (xjk ej
>)> separating the direction of the intercept parameter, i.e., the first coordinate

xjk, from those of the slopes. Then, we write

τjk(θj,Z
?
i ) = αjk + βj

>Z?
i = Ljk(xjk + ej

>Z?
i ), (B.21)

in which xjk + ej
>Z?

i ∼ N (xjk, 1 − x2
jk). For fixed djk, define Hε

jk(y) = {zi ∈ Rr :

(−1)I{y≥k}(xjk + ej
>zi) ≥ ε} for ε ≥ 0.

Now pool across multiple items. A direct consequence of Lemma 2, which is presented

soon, is that Rr ⊂ ⋃r+1
j=1 H

0
jk(yij) for properly selected (yij)

r+1
j=1 (recall that we assume m > r,

so there are sufficient items). Then, for any ε > 0, the following bound can be established

for the likelihood of an individual response pattern in which the first r + 1 items have the
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selected pattern (yij)
r+1
j=1:

f(θ,yi) =

∫
Rr

m∏
j=1

fj(θj, yij|zi)dΦ(zi)

≤
r+1∑
j=1

∫
H0

jk(yij)

fj(θj, yij|zi)dΦ(zi)

≤
r+1∑
j=1

∫
Hε

jk(yij)

fj(θj, yij|zi)dΦ(zi) +
r+1∑
j=1

Φ{H0
jk(yij)\Hε

jk(yij)}

≤
r+1∑
j=1

1

1 + eεLjk
+

r+1∑
j=1

Φ{H0
jk(yij)\Hε

jk(yij)} (B.22)

In the last line of Equation B.22, each summand of the second term can be made smaller

than η
2(r+1)

by choosing a proper ε; this result can be strengthened to hold uniformly for all

directions djk on Rr+1, as a consequence of Lemma 3. In addition, since there are only finitely

many intercept parameters, we can choose a large enoughB′ (i.e., θ is sufficiently distant from

θ0) such that 1

1+e
εLjk

< η
2(r+1)

for all j and k. Consequently, for each θ satisfying ‖θ−θ0‖ >

B′, we are able to find an individual response pattern yi such that the corresponding value of

Equation B.22 can be bounded by the desired number η, which establishes the result stated

by Equation B.17. The two lemmas required in the foregoing proof are presented next.

Lemma 2. Consider a sequence of affine hyperplanes {z ∈ Rr : ai
>z = bi}ki=1. Let half-

space Hi be either ai
>z ≥ bi or ai

>z ≤ bi. There exists some choice of {Hi}ki=1 such that

Rr ⊂ ⋃k
i=1Hi, if and only if ai’s are linearly dependent.

Proof. (⇐) Suppose ai’s are linearly dependent. There exists an ai that can be written as

a non-trivial linear combination of the others. Without loss of generality, let a1 be such a

vector:

a1 =
k∑
i=2

ciai, (B.23)

in which at least one ci is non-zero. If
∑k

i=2 cibi ≥ b1, then for i = 2, . . . , k set Hi = {z :
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ai
>z ≥ bi} when ci ≤ 0 and Hi = {z : ai

>z ≤ bi} when ci > 0. It follows that

k⋂
i=2

Hc
i ⊂ {z :

k∑
i=2

ciai
>z >

k∑
i=2

cibi} ⊂ {z : a1
>z ≥ b1}. (B.24)

By letting H1 be the RHS of Equation B.24, we have Rr ⊂ ⋂k
i=1Hi. A similar argument can

be used to establish the statement when
∑k

i=2 cibi < b1.

(⇒) Suppose the ai’s are linearly independent, which implies that the set of equations

{ai>z = bi}ki=1 has at least one solution, denoted z′. Consider the k-dimensional subspace

spanned by the coordinate system {ai}ni=1 with an origin at z′. For each i, the half-space Hi

corresponds to either the positive or negative side of vector ai, depending on the direction

of the inequality. No matter how we choose the Hi’s, there will be one out of 2k “orthants”

corresponding to
⋂k
i=1 H

c
i left uncovered, which proves the “only if” part.

Lemma 3. Let Zx ∼ N (x, 1 − x2) be a one-parameter family of normal random variables

with x ∈ [−1, 1]. Given any η ∈ (0, 1/2), there exists an ε > 0 such that supx∈[−1,1] P (|Zx| ≤

ε) < η.

Proof. By symmetry, supx∈[0,1] P (|Zx| ≤ ε) = supx∈[−1,1] P (|Zx| ≤ ε), so we only need to

consider non-negative x’s in the proof. Note that for all ε ∈ [0, 1) and x > ε,

P (Zx ≤ ε) = Φ

(
ε− x√
1− x2

)
↓ 0, (B.25)

as x ↑ 1, due to the monotonicity of the functions involved. Now fix an η ∈ (0, 1/2). Equation

B.25 implies there exists an x′ ∈ (1/2, 1) such that P (Zx′ ≤ 1/2) < η. Then for all x ∈ (x′, 1]

and ε ∈ (0, 1/2], we have

P (|Zx| ≤ ε) ≤ P (Zx ≤ ε) ≤ P (Zx′ ≤ ε) < η. (B.26)

For x ∈ [0, x′], the variance of Zx is bounded from below by 1− x′2. We select ε′ such that
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P (|Zx′ − x′| ≤ ε′) < η. Then by Anderson’s inequality,

P (|Zx| ≤ ε′) ≤ P (|Zx − x| ≤ ε′) ≤ P (|Zx′ − x′| ≤ ε′) < η. (B.27)

The statement follows by setting ε = min{1/2, ε′}.

Region A3,n Let K−0 be any compact subset of Θ which is bounded away from θ0. By

a well-known application of Jensen’s inequality:

Eθ0 log
f(θ,Yi)

f(θ0,Yi)
≤ logEθ0

f(θ,Yi)

f(θ0,Yi)
= 0. (B.28)

In fact, the inequality in Equation B.28 is strict by the model identification assumption (ii)

of Theorem 1. Because K−0 is compact, there exists a positive number κ such that

sup
θ∈K−0

Eθ0 log
f(θ,Yi)

f(θ0,Yi)
< −κ, (B.29)

by the continuity of the LHS function. Moreover, by the Uniform Law of Large Numbers,

sup
θ∈K−0

∣∣∣∣∣ 1n
n∑
i=1

log
f(θ,Yi)

f(θ0,Yi)
− Eθ0 log

f(θ,Yi)

f(θ0,Yi)

∣∣∣∣∣ Pθ0→ 0. (B.30)

Therefore, supθ∈K−0

∏n
i=1 f(θ,Yi)/

∏n
i=1 f(θ0,Yi)

Pθ0→ 0, which implies

sup
h∈A3,n

fn,h
fn,0

Pθ0→ 0, (B.31)
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because h ∈ A3,n implies ‖θ − θ0‖ ∈ [δ, B′]. It follows that

∫
A3,n

∣∣∣∣bn,hfn,hfn,0
− bn,0eh

>Sn− 1
2
h>I0h

∣∣∣∣ dh
≤
∫
A3,n

∣∣∣∣bn,hfn,hfn,0

∣∣∣∣ dh + bn,0

∫
A3,n

eh
>Sn− 1

2
h>I0hdh

≤ sup
h∈A3,n

∣∣∣∣fn,hfn,0

∣∣∣∣ ∫
A3,n

bn,hdh + bn,0

∫
A3,n

eh
>Sn− 1

2
h>I0hdh.

(B.32)

Equation B.32 converges in probability to 0 due to the integrability of bn,h, the tail estimates

of a multivariate normal distribution, and the tightness of Sn. The proof is now complete.
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APPENDIX C: NON-UNIQUENESS DUE TO SELECTION RULES

Proof of Theorem 2. Recall that V = v(Q(y,A?,Z?)), i.e., an extremal point of the non-

empty set inverse function Q(y,A?,Z?), has density gn(θ|y)1. Take δ > 0. For each fixed

y, ρK(y), defined by Equation 2.19, can be bounded by

ρK(y) = P ?{diamQ(y,A?,Z?) > K/n | Q(y,A?,Z?) 6= ∅}

= P ?{diamQ(y,A?,Z?) > K/n, ‖V − θ0‖ ≤ δ | Q(y,A?,Z?) 6= ∅}

+ P ?{diamQ(y,A?,Z?) > K/n, ‖V − θ0‖ > δ | Q(y,A?,Z?) 6= ∅}

≤ P ?{diamQ(y,A?,Z?) > K/n | ‖V − θ0‖ ≤ δ}

+ P ?{‖V − θ0‖ > δ | Q(y,A?,Z?) 6= ∅}. (C.1)

Theorem 1 implies that for Y generated from Pθ0 , P
?{‖V − θ0‖ > δ | Q(Y,A?,Z?) 6= ∅},

as a measurable function of Y, converges to 0 in Pθ0-probability: i.e.,

P ?{‖V − θ0‖ > δ | Q(Y,A?,Z?) 6= ∅} =

∫
‖θ−θ0‖>δ

gn(θ|Y)dθ
Pθ0→ 0. (C.2)

1The definitions of V and gn(θ|y) are conditional on Q(y,A?,Z?) 6= ∅. In the sequel, when V appears in
the conditioning, the notation automatically implies conditioning on Q(y,A?,Z?) 6= ∅ as well.
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Hence, we focus on the first term in Equation C.1. This term can be further bounded by:

P ?{diamQ(y,A?,Z?) > K/n | ‖V − θ0‖ ≤ δ}

=
∑
I

∑
kI

P ?{diamQ(y,A?,Z?) > K/n,V = VI,kI
| ‖V − θ0‖ ≤ δ}

=
∑
I

∑
kI

P ?{diamQ(y,A?,Z?) > K/n | ‖V − θ0‖ ≤ δ,V = VI,kI
}

· P ?{V = VI,kI
| ‖V − θ0‖ ≤ δ}

=
∑
yI

∑
kI

P ?{diamQ(y,A?,Z?) > K/n | ‖V − θ0‖ ≤ δ,V = VI,kI
}

·

 ∑
I′:yI′=yI

P ?{V = VI′,kI′
| ‖V − θ0‖ ≤ δ}


≤
∑
yI

∑
kI

P ?{diamQ(y,A?,Z?) > K/n | ‖VI,kI
− θ0‖ ≤ δ,V = VI,kI

}

=
∑
yI

∑
kI

∫
P ?{diamQ(y,A?,Z?) > K/n

| ‖VI,kI
− θ0‖ ≤ δ,V = VI,kI

,Z?
I = zI}dΦ(zI)

(C.3)

The first sum over index sets I in the third line of Equation C.3 can be collapsed into a

finite sum over all patterns of yI (i.e., the fourth equation), for the reason that sub-samples

I and I ′ having the same response pattern yI = yI′ are exchangable under our requirement

of the selection rules. Note that the event being conditioned on in the integrand of the last

line of Equation C.3 happens with a positive probability almost surely under the probability

measure of Z?; to simplify notation, write Eδ
yI ,kI

(zI) = {‖VI,kI
− θ0‖ ≤ δ,V = VI,kI

,Z?
I =

zI} as that event. Because there are only finitely many combinations of yI and kI , it suffices

to prove that for each ε > 0 and some δ > 0,

Pθ0

{
∃K,N > 0 :

∫
P ?{diamQ(Y,A?,Z?) > K/n | Eδ

yI ,kI
(zI)}dΦ(zI) < ε, ∀n > N

}
→ 1.

(C.4)

138



So fix yI , kI , and δ for the rest of the proof. Also note that conditional on Eδ
yI ,kI

(zI), the

remaining observations i /∈ I are independent.

To proceed, we sequentially project the set inverse Q(y,A?,Z?) onto J =
∑m

j=1Kj −

m subspaces, each of which spanned by an intercept parameter αjk and the free slopes

in βj (for the same j). For each projection, we find a bounding random variable for its

diameter; then, the sum of constructed bounds across all projections serves as a upper

bound, up to a constant multiplier depending on the dimension of the parameter space, for

the diameter of the set inverse. We prove the result stated in equation C.4 with the diameter

of Q(y,A?,Z?) replaced by the constructed bound. In order to establish the desired property

for the bounding variables, we allocate the rest observations (i.e., not in I) to each projection,

and subsequently use the standard theory for order statistics of i.i.d. random variables. In

particular, we rearrange those observations to fill a growing three-dimensional array indexed

by a triplet of indices s, j, and k: The last dimension of the array k = 1, · · · , Kj − 1 is

filled first2, then j = 1, . . . ,m, and finally s; therefore, only the first dimension indexed by

s = bn/Jc grows as the sample size increases. Notationally, elements corresponding to an

observation in the array are denoted by a subscript [sjk]3.

Fix V = VI,kI
= θ for now. For each item j, let β̃j be the collection of the rj free

slopes. Also for each k = 1, . . . , Kj − 1, let θjk = (αjk, β̃j
>)>. θjk is uniquely determined

by a properly selected size-(rj + 1) subset of Ij, denoted Ijk, which can be determined from

the fixed combination of yI and kI
4. Now intersecting the half-space of a new observation

[sjk] in the three-dimensional array with those of observations Ijk, the resulting intersection

on the subspace of θjk can be either bounded (i.e., a simplex) or unbounded. The following

lemma provides sufficient and necessary conditions for the (un)bounded case:

2Each item may have different numbers of response categories, so it is in fact a “ragged” array.

3For example, if I = {1, . . . ,∑m
j=1 qj} is the first

∑m
j=1 qj observations in the sample, then [sjk] corresponds

to the observation i =
∑m

j=1 qj + (s− 1)J +
∑j−1

j′=1(Kj′ − 1) + k.

4Only one half-space is selected for each i ∈ Ijk, which is not reflected in our notation for succinctness.
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Lemma 4. Consider p + 1 half-spaces: Hi = {x ∈ Rp : ni
>x ≤ bi}, i = 1, . . . , p + 1, in

which ni’s are considered fixed. Then, the following statements are equivalent:

(i)
⋂p+1
i=1 Hi is bounded for all choices of bi’s, i = 1, . . . , p + 1, such that the intersection is

not empty;

(ii)
⋂p+1
i=1 Hi is a bounded simplex for some choices of bi’s, i = 1, . . . , p+ 1;

(iii) For all c ∈ Rp, there exists i ∈ {1, . . . , p+ 1} such that ni
>c > 0;

(iv) There exists i ∈ {1, . . . , p + 1} such that nj’s, j 6= i, are linear independent, and that

ni = −∑j 6=i γjnj with γj > 0 for all j 6= i.

Proof. (i) ⇒ (ii). We can always make the intersection non-empty by choosing bi > 0 for all

i = 1, . . . , p + 1. In this case,
⋂p+1
i=1 Hi must contain some neighborhood of 0. So (i) ⇒ (ii)

is trivial.

(ii) ⇒ (iii). Fix bi’s, i = 1, . . . , p + 1, such that
⋂p+1
i=1 Hi is a bounded simplex. Take

x0 ∈
⋂p+1
i=1 Hi; i.e., ni

>x0 ≤ bi for all i = 1, . . . , p+1. If there exists c ∈ Rp such that c>ni ≤ 0

for all i, then ni
>x0 + λni

>c ≤ bi for all i and all λ > 0. This implies x0 + λc ∈ ⋂p+1
i=1 Hi for

all λ > 0, which contradicts the boundedness.

(iii) ⇒ (i). On each direction c, choose i such that ni
>c > 0. For every possible value

of the corresponding bi, there exists some λ0 > 0 such that for all λ > λ0, ni
>(λc) > bi, i.e.,

λci /∈ Hi. So
⋂p+1
i=1 Hi is always bounded.

(iii) ⇒ (iv). Let Ci be the convex cone defined by all but the ith normal vectors. (iii)

implies −ni
>c < 0 for all c ∈ CN

i = {c : ni
>c ≤ 0, for all j 6= i}, i.e., the normal cone

(denoted by a superscript N) of Ci. Hence, −ni ∈ (CN
i )N = Ci.

(iv) ⇒ (iii). For c ∈ CN
i , (iv) implies ni

>c > 0. For c /∈ CN
i , there exists some j 6= i

such that nj
>c > 0.

Let z̃ij be the elements of zi associated with β̃j. For each i ∈ Ijk, write nijk =

ωijk(δijk z̃ij
>)> as the normal vector of the corresponding (rj +1)-dimensional half-space, in

which ωijk = ±1 and δijk ∈ {0, 1} are determined by the item response yij. Similar notation

is defined for observations in the array: Let Z̃?
[sjk] be the elements of Z?

[sjk] associated with
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β̃j, and N?
[sjk] = ω[sjk](δ[sjk] Z̃?

[sjk]
>)> be the corresponding (random) normal vector; the ran-

dom variables ω[sjk] = ±1 and δ[sjk] ∈ {0, 1} depend on this observation’s response to item

j, which is denoted y[sjk] for simplicity. For each j and k, Lemma 4 implies that observation

[sjk] produces a bounded intersection if there exist positive real numbers (γi)i∈Ijk such that

ω[sjk]Z̃
?
[sjk] = −

∑
i∈Ijk

γiωijkz̃ij, (C.5)

and

ω[sjk]δ[sjk] = −
∑
i∈Ijk

γiωijkδijk. (C.6)

Conditioning on Vj = VIj ,kIj
= θj, the intersection cannot be empty, which introduces a

truncation to A?[sjk], i.e., the associated logistic variate for observation [sjk] and item j:

(−1)I{y[sjk]≥k
′}(A?[sjk] − αjk′ − β̃j>Z̃?

[sjk]) ≥ 0 for all k′ = 1, . . . , Kj − 1. (C.7)

Fix j and k. When equations C.5 and C.6 hold, let θi[sjk] = (αijk β
i
jk
>)>, i ∈ Ijk, be

the vertex on the subspace of θjk determined by observations Ijk \ {i} together with the

new observation [sjk], which is random due to its dependency on A?[sjk] and Z?
[sjk]. Also let

I ijk = Ijk \ {i} for some i ∈ Ijk, δIijk = (δijk)i∈Iijk , and treat z̃Iijk = (z̃ij)i∈Iijk as an rj × rj
matrix throughout this part of derivation. A geometric illustration of these notations for

r = 1 is shown in Figure C.1.

Applying the formula for inverting a partitioned matrix, we have

 z̃Iijk δIijk

Z̃?
[sjk]

> δ[sjk]


−1

=


z̃−1
Iijk

+
z̃−1
Iijk
δIijkZ

?
[sjk]

>z̃−1
Iijk

δ[sjk] − Z̃?
[sjk]

>z̃−1
Iijk
δIijk

−z̃−1
Iijk
δIijk

δ[sjk] − Z̃?
[sjk]

>z̃−1
Iijk
δIijk

−Z?
[sjk]

>z̃−1
Iijk

δ[sjk] − Z̃?
[sjk]

>z̃−1
Iijk
δIijk

1

δ[sjk] − Z̃?
[sjk]

>z̃−1
Iijk
δIijk


. (C.8)
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θjk: determined
by Ijk = {1, 2}

θ2
[sjk]: determined

by [sjk] and 1

θ1
[sjk]: determined

by [sjk] and 2

Observation 1

Observation 2

Observation [sjk]

‖θ2
[sjk] − θjk‖

‖θ1
[sjk] − θjk‖

Figure C.1: Illustration of notation used in the proof of Theorem 2. Here, r = 1, and j and
k are fixed. Ijk = {1, 2}, which determines the fixed vertex θjk (shown as a red dot). The
line corresponding to the new observation [sjk] intersects with those of observations 1 and
2, respectively, and produces two new vertices θ2

[sjk] and θ[sjk]1 (shown as red circles). The

sum of ‖θ1
[sjk] − θjk‖ and ‖θ2

[sjk] − θjk‖ (highlighted in blue) gives an upper bound of the
diameter of the plotted triangle.

It follows that the elements of θi[sjk] − θjk can be expressed as following:

β̃i[sjk] − β̃j =
z̃−1
Iijk
δIijk(A?[sjk] − β̃j>Z̃?

[sjk] − αjk)
Z̃?

[sjk]
>z̃−1

Iijk
δIijk − δ[sjk]

, (C.9)

and

αi[sjk] − αjk = −z̃ij
>(β̃i[sjk] − β̃j), for all i ∈ I ijk such that δijk = 1. (C.10)
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Define

Ū?
[sjk] =

∑
i∈Ijk

∥∥∥z̃−1
Iijk
δIijk

∥∥∥(1 +
∑

i′∈Iijk
‖z̃i′j‖2

)
∣∣∣Z̃?

[sjk]
>z̃−1

Iijk
δIijk − δ[sjk]

∣∣∣
 |A?[sjk] − β̃j>Z̃?

[sjk] − αjkδ[sjk]| (C.11)

If both equations C.5 and C.6 are satisfied, the random variable defined by Equation C.11

gives an upper bound for ‖θi[sjk] − θ‖. Also define

U?
[sjk] =


Ū?

[sjk], if equations C.5) and C.6 hold;

∞, otherwise.

(C.12)

which is a random variable that is defined on the extended real line.

Pooling across all observations in the array, we have

diamQ(y,A?,Z?) ≤ C
m∑
j=1

Kj−1∑
k=1

min
t≤s

U?
[tjk], (C.13)

in which C is a constant determined by the dimension of the parameter space. It follows

that

∫
P ?{diamQ(y,A?,Z?) > K/n | Eδ

yI ,kI
(zI)}dΦ(zI)

≤
∫
P ?


m∑
j=1

Kj−1∑
k=1

min
t≤s

U?
[tjk] >

K

Cn

∣∣∣∣ Eδ
yI ,kI

(zI)

 dΦ(zI)

≤
m∑
j=1

Kj−1∑
k=1

∫
P ?

{
min
t≤s

U?
[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
dΦ(zIjk),

(C.14)
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in which K ′ = K
CJ

. Now fix ε, δ > 0. It suffices to prove for each summand of Equation C.14:

Pθ0

{
∃K ′, N > 0 :

∫
P ?

{
min
t≤s

U?
[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
dΦ(zI) < ε, ∀n > N

}
→ 1.

(C.15)

For each plausible response y[1jk], we assume the existence of a growing sub-collection of

{1, . . . , s}, Ts(y[1jk]) = {t : t ≤ s, y[tjk] = y[1jk]}, satisfying

|Ts(y[1jk])|/n→ ρ(y[1jk]), as n→∞ for some 0 < ρ(y[1jk]) < 1. (C.16)

Because there are only finitely many y[1jk] values, we write ρ0 = miny[1jk] ρ(y[1jk]). Within

each sub-collection, U?
[tjk], t ∈ Ts(y[1jk]), are i.i.d.. Let ϕjk(u,θjk,yIjk , z̃Ijk , y[1jk]) be the

density of U?
[1jk] conditional on Eδ

yI ,kI
(zI). We intend to find a set Bjk ⊂ Rr2j such that

P{Z̃?
Ijk

/∈ Bjk} < ε/2, and also a κ > 0 such that for every z̃Ijk ∈ Bjk, there exists a

particular y[1jk] for which

inf
{
ϕjk(u,θjk,yIjk , z̃Ijk , y[1jk]) : 0 ≤ u ≤ η, ‖θ − θ0‖ ≤ δ

}
≥ κ (C.17)

for some η > 0. Assume for a moment that equations C.16 and C.17 holds. Then we can

construct a sequence of i.i.d. non-negative random variables {Xn}, whose density function

is constantly equal to κ within [0, η]. By the delta method and the standard result for i.i.d.

uniform order statistics, nmini≤nXi
d→ W/κ, in which W ∼ Exp(1). Fix K ′ such that

P (W/κ > K ′) < ε/4. By the Portmanteau Lemma, there exists an n1 such that for all

n > n1, P{nmini≤bρ0n/2cXi > K ′} ≤ P{W/κ > K ′} + ε/4 ≤ ε/2. Also take n2 such that

K ′/n2 < η, and n3 such that |Ts(y[1jk])|/n > ρ0/2 for all y[1jk]. Thus, for every zIjk ∈ Bjk,
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there exists a particular y[1jk] such that along the corresponding subsequence Ts(y[1jk]):

P ?

{
min
t≤s

U?
[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
≤ P ?

{
min

t∈Ts(y[1jk])
U?

[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
≤ P

{
min

i≤bρ0n/2c
Xn > K ′/n

}
≤ ε/2 (C.18)

for all n > max{n1, n2, n3}. It follows that for all these large n’s,

∫
P ?

{
min
t≤s

U?
[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
dΦ(zIjk)

≤
∫
Bjk

P ?

{
min
t≤s

U?
[tjk] > K ′/n

∣∣∣∣ Eδ
yI ,kI

(zI)

}
dΦ(zIjk) + ε/2

≤ ε, (C.19)

When Y is considered random, the probability that Equation C.16 holds for all plausible

y[1jk] goes to 1, because the data generating parameter values θ0 is assumed to be in the

interior of the parameter space (and thus ρ0 > 0 is determined solely by θ0). This implies

the intended results (Equation C.15).

Let ϕ̄jk(u,θjk,yIjk , z̃Ijk , y[sjk]) be the density of Ū[sjk] conditional on Eδ
yI ,kI

(zI), and

Cjk(yIjk , z̃Ijk , y[sjk]) = {Z̃?
[sjk] = −

∑
i∈Ijk

γiωijkz̃ij,

δ[sjk] = −
∑
i∈Ijk

γiωijkδijk,

γi > 0 for all i ∈ Ijk}. (C.20)

Then ϕjk(u,θjk,yIjk , z̃Ijk , y[sjk]) = ϕ̄jk(u,θjk,yIjk , z̃Ijk , y[sjk])P{Cjk(yIjk , z̃Ijk , y[sjk])|Eδ
yI ,kI

(zI)}.

Next, we find lower bounds for the two parts on the RHS, respectively.
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First, fix a y[sjk] ensuring equations C.5 and C.6 hold. For easy reference, let

σjk(yIjk , z̃Ijk , Z̃
?
[sjk], y[sjk]) =

∑
i∈Ijk

∥∥∥z̃−1
Iijk
δIijk

∥∥∥(1 +
∑

i′∈Iijk
‖z̃i′j‖2

)
∣∣∣Z̃?

[sjk]
>z̃−1

Iijk
δIijk − δ[sjk]

∣∣∣ (C.21)

and

µjk(θjk, Z̃
?
[sjk], y[sjk]) = β̃j

>Z̃?
[sjk] + αjkδ[sjk]. (C.22)

Then we rewrite Equation C.11 as Ū[sjk] = σjk(yIjk , z̃Ijk , Z̃
?
[sjk], y[sjk])|A?[sjk]−µjk(θjk, Z̃?

[sjk], y[sjk])|,

whose density function is

ϕ̄jk(u,θjk,yIjk , z̃Ijk , y[sjk])

=

∫
ψ̄(µjk(θjk, z̃[sjk], y[sjk]) + u/σjk(yIjk , z̃Ijk , z̃[sjk], y[sjk]))

σjk(yIjk , z̃Ijk , z̃[sjk], y[sjk])
dΦ(z̃[sjk])

+

∫
ψ̄(µjk(θjk, z̃[sjk], y[sjk])− u/σjk(yIjk , z̃Ijk , z̃[sjk], y[sjk]))

σjk(yIjk , z̃Ijk , z̃[sjk], y[sjk])
dΦ(z̃[sjk]) (C.23)

in which ψ̄(·) is the standard logistic density conditional on Equation C.7. By the theory of

multivariate normal random variables, we can find

B1
jk = {z̃Ijk ∈ Rr2j : λ ≤ ‖z̃ij‖ ≤ L, for all i ∈ Ijk;

λ′ ≤ x>z̃Ijk
>z̃Ijkx ≤ L′, for all x ∈ Rrj , ‖x‖ = 1} (C.24)

with properly defined λ, λ′, L, and L′ such that P ?{Z̃?
Ijk
∈ B1

jk} > 1 − ε/4. Also for fixed

D′ > 0 and D > δ > 0, define

Gjk(z̃Ijk) = {z̃[sjk] ∈ Rrj : δ′ ≤
∣∣∣z̃[sjk]

>z̃−1
Iijk
δIijk − δ[sjk]

∣∣∣ ≤ D′ for all i ∈ Ijk,

‖z̃[sjk]‖ ≤ D}. (C.25)

146



Note that Z̃?
[sjk]

>z̃−1
Iijk
δIijk − δ[sjk] ∼ N (−δ[sjk], δIijk

>z̃−>
Iijk

z̃−1
Iijk
δIijk), in which the variance is uni-

formly bounded from above and below for all z̃Ijk ∈ B1
jk. It follows that

inf
z̃Ijk∈B

1
jk

P ?{Gjk(z̃Ijk)} > 0. (C.26)

Thus, by restricting the integrals on the RHS of Equation C.23 to Gjk(z̃Ijk), we are able to

obtain an uniform lower bound of ϕ̄jk(u,θjk,yIjk , z̃Ijk , y[sjk]) for all z̃Ijk ∈ B1
jk.

Our final task is to find B2
jk ⊂ Rr2j such that P{Z̃?

Ijk
∈ B2

jk} > 1 − ε/4, and that

P{Cjk(yIjk , z̃Ijk , y[1jk])|Eδ
yI ,kI

(zI)} has a uniform lower bound for all z̃Ijk ∈ B2
jk. Here, we

only prove the statement for r = 1, and we conjecture that an extended argument can be

established for r > 1.

When r = 1, |Ijk| = 2; without loss of generality, let Ijk be the first two observations.

We fix j and k, and for simplicity denote the two normal vectors corresponding to the

first two observations by n1 = ω1(δ1 z1)> and n2 = ω2(δ2 z2)>, in which ω1, ω2 = ±1

and δ1, δ2 ∈ {0, 1}. We now discuss cases for different combinations of ω1, ω2, δ1 and δ2

values, and establish in each case that the joint probability of Z?
[sjk] = −γ1ω1z1− γ2ω2z2 and

δ[sjk] = −γ1ω1δ1 − γ2ω2δ2, γ1, γ2 > 0, is uniformly bounded from below for (z1 z2)> ∈ B2
jk =

{(z1 z2)> : |z1 − z2| ≥ λ′, |z1| ≤ L, |z2| ≤ L} for every λ′, L > 0.

Case 1: ω1 = 1, ω2 = 1, δ1 = 1, and δ2 = 1. Set ω[sjk] = −1 and δ[sjk] = 1, which

happens with positive probability provided the data-generating parameter values are in the

interior of the parameter space. Then, N?
[sjk] = −γ1n1 − γ2n2 implies γ1 + γ2 = 1 and

Z?
[sjk] = −γ1z1 − γ2z2, i.e., Z?

[sjk] falls in the line segment between −z1 and −z2. For all

(z1 z2)> ∈ B2
jk, P{min{−z1,−z2} ≤ Z?

[sjk] ≤ max{−z1,−z2}} > Φ(L)− Φ(L+ λ′).

Case 2: ω1 = 1, ω2 = −1, δ1 = 1, and δ2 = 1. In this case, the constraints are

ω[sjk]δ[sjk] = −γ1 + γ2 and ω[sjk]Z
?
[sjk] = −γ1z1 + γ2z2. When ω[sjk] = 1 and δ[sjk] = 1,

γ2 = 1 + γ1. It follows that Z?
[sjk] = γ1(z2 − z1) + z2, which is greater than z2 when z2 > z1

and less than z2 when z2 < z1. Then, both P{Z?
[sjk] < z2} and P{Z?

[sjk] > z2} are uniformly

greater than 1−Φ(L) for all (z1 z2)> ∈ B2
jk. When ω[sjk] = 1 and δ[sjk] = 0, we have γ2 = γ1,
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and thus Z?
[sjk] = γ1(z2−z1); given (z1 z2)> ∈ B2

jk, it only restricts the sign under a standard

normal measure. Other combinations of ω[sjk] and δ[sjk] values can be dealt with in a similar

fasion.

Case 3: ω1 = 1, ω2 = 1, δ1 = 1, and δ2 = 0. It requires ω[sjk] = −1, δ[sjk] = 1, and

γ1 = 1. So Z?
[sjk] = z1 +γ2z2, which is greater than z1 when z2 > 0, and smaller than z1 when

z2 < 0. Similar as before, both P{Z?
[sjk] < z1} and P{Z?

[sjk] > z1} are uniformly greater than

1− Φ(L) for all (z1 z2)> ∈ B2
jk.

All other combinations of ω1, ω2, δ1 and δ2 values are reflections of the three cases having

been discussed. Also note that δ1 and δ2 cannot be both zero, otherwise no vertex is deter-

mined from the two observations. Altogether we have shown that P{Cjk(yIjk , z̃Ijk)|Eδ
yI ,kI

(zI)}

is uniformly bounded from below for z̃Ijk ∈ B2
jk. The proof is now complete for r = 1.
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APPENDIX D: PREDICTIVE INFERENCE

Proof of Proposition 2. Fix ε > 0. Using the result expressed in Equation 2.22, the domi-

nated convergence theorem, and the fact that continous functions are uniformly continuous

in compacta, we could select δ > 0 such that
∫

sup‖θ−θ0‖≤δ |h(t,θ)− h(t,θ0)|dµ < ε. Then

∫
|hn(t|Y)− h(t,θ0)|dµ ≤

∫ [∫
Θ

|h(t,θ)− h(t,θ0)|gn(θ|Y)dθ

]
dµ

=

∫
Θ

[∫
|h(t,θ)− h(t,θ0)|dµ

]
gn(θ|Y)dθ

=

∫
‖θ−θ0‖≤δ

[∫
|h(t,θ)− h(t,θ0)|dµ

]
gn(θ|Y)dθ

+

∫
‖θ−θ0‖>δ

[∫
|h(t,θ)− h(t,θ0)|dµ

]
gn(θ|Y)dθ

≤ ε+ 2

∫
‖θ−θ0‖>δ

gn(θ|Y)dθ. (D.1)

By Equation 2.21, Pθ0

{∫
‖θ−θ0‖>δ gn(θ|Y)dθ ≤ ε

}
→ 1 as n → ∞, which concludes the

proof.
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APPENDIX E: FIDUCIAL PREDICTIVE CHECK

E.1 Asymptotic covariance with the sample score function

As discussed earlier, the probability for each individual response pattern yi is given by

f(θ,yi), i.e., Equation 1.2. Denote by f(θ) be the collection of all
∏m

j=1Kj response pattern

probabilities, and p the observed counterpart. Then np ∼ Multinomial(n, f(θ)). Also let

D(θ) = diag(f(θ)) be a diagonal matrix, and ∆(θ) = ∂f(θ)/∂θ> be the Jacobian matrix.

With these matrix notations, the sample score function evaluated at the data-generating

parameters θ, previously expressed in Equation 2.15 and 2.16, can be rewritten as

Sn =
√
n∆(θ)>D(θ)−1p = ∆(θ)>D(θ)−1

√
n[p− f(θ)], (E.1)

in which the last equality is because of the fact that D(θ)−1f(θ) = 1, and 1>∆(θ) = 0 for

any θ. Also write the Fisher information matrix as

I(θ) = ∆(θ)>D(θ)−1∆(θ). (E.2)

Test statistics of interest in the current work are all linear combinations of the observed

proportions in p; we express it generally as T = b>p, in which b is a constant vector. It

follows that ∂ν(θ)/∂θ> = b>∆(θ). Next, we verify that the asymptotic covariance between

√
nT and Sn is given by b>∆(θ).

By the multivariate Central Limit Theorem,

√
n[p− f(θ)]

d→ N (0,Γ(θ)) (E.3)
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under the data-generating model, in which Γ(θ) = D(θ)− f(θ)f(θ)>. It follows that

√n[T − ν(θ)]

Sn

 =

 b>

∆(θ)>D(θ)−1

√n[p− f(θ)]

d→N

0,

 b>Γ(θ)b b>Γ(θ)D(θ)−1∆(θ)

∆(θ)>D(θ)−1Γ(θ)b ∆(θ)>D(θ)−1Γ(θ)D(θ)−1∆(θ)


 ,

(E.4)

in which the asymptotic covariance is ∆(θ)>D(θ)−1Γ(θ)b = ∆(θ)>b = ∂ν(θ)/∂θ.

The foregoing conclusion holds for centered statistics T − ν(θ̃) as well, provided the

estimator θ̃ satisfies

√
n(θ̃ − θ) = [∆(θ)>W∆(θ)]−1∆(θ)>W[p− f(θ)] + op(1), (E.5)

in which W is some constant weighted matrix. Equation E.5 can be established for a

general class of weighted least square estimators (see Maydeu-Olivares, 2006), including the

ML estimator (with W = D(θ)−1). It follows that

√
n[T − ν(θ̃)] =

√
n[T − ν(θ)]−√n[ν(θ̃)− ν(θ)]

=
√
nb>

{
I− [∆(θ)>W∆(θ)]−1∆(θ)>W

}
[p− f(θ)] + op(1).

(E.6)

The asymptotic covariance between
√
n[T − ν(θ̃)] and Sn is then

∆(θ)>D(θ)−1Γ(θ)
{
I− [∆(θ)>W∆(θ)]−1∆(θ)>W

} >b = ∆(θ)>b,

obtained via a similar computation as before.
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E.2 Normal approximation of the likelihood

By the asymptotic normality of the observed response-pattern proportions (Equation

E.3),
√
nb>[p− f(θ)]

d→ N (0,b>Γ(θ)b). (E.7)

The likelihood of T = b>p can then be approximated by the density function of N(b>f(θ),b>Γ(θ)b/n).
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