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Abstract

ROSEANNE M. CHENG: Tidal Disruption of a Star By a Massive Black Hole
Computed In Fermi Normal Coordinates.

(Under the direction of Charles R. Evans.)

We present a new numerical code constructed to obtain accurate simulations of encounters be-

tween a star and a massive black hole. We assume Newtonian hydrodynamics and self-gravity for the

star. The three-dimensional parallel code includes a PPMLR hydrodynamics module to treat the

gas dynamics and a Fourier transform-based method to calculate the self-gravity. The formalism for

calculating the relativistic tidal interaction in Fermi normal coordinates (FNC) allows the addition

of an arbitrary number of terms in the tidal expansion. We present the relevant post-Newtonian

terms for this code. Results are given for an n = 1.5 polytrope with comparisons between simulations

and predictions from the linear theory of tidal encounters. It is shown that the inclusion of the l = 3

tidal term will cause the center of mass of the star to deviate from the origin of the FNC. We consider

relativistic encounters for three different mass ratios, µ = 1.28× 10−3, 4.21× 10−4, 3.77× 10−5. We

show a relativistic suppression in the amount of energy deposited onto the star. We find that the

dimensionless function T2(η) (which characterizes the energy deposited into non-radial oscillations)

must not only be a function of the dimensionless disruption parameter, η, but also of a dimensionless

relativistic parameter Φp. We speculate on the source of the observed energy excess in the tidal en-

counter simulations from the linear theory. We find that the energy deposited into radial oscillations

is negligible and that the shock heating in the outer layers of the post-encounter star contributes a

significant amount. We estimate the new orbital parameters of the star after it passes by the black

hole.
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“Gin a body meet a body

Flyin’ through the air.

Gin a body hit a body,

Will it fly? And where?

Ilka impact has its measure,

Ne’er a ane hae I,

Yet a’ the lads they measure me,

Or, at least, they try.

Gin a body meet a body

Altogether free,

How they travel afterwards

We do not always see.

Ilka problem has its method

By analytics high;

For me, I ken na ane o’ them,

But what the waur am I?”

–James Clerk Maxwell, “Rigid Body Sings”
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Chapter 1

Introduction

Lurking in most large galaxies are supermassive black holes. They reside in active and dormant

galaxies and their presence is revealed only through the interaction with their surroundings. The

best diagnostic for the presence of a black hole in a nonactive galaxy would be the tidal disruption

of stars [1, 2]. There are many observable signatures associated with this process. When a star

disrupts near a black hole, some of the debris is ejected from the system and the rest that is bound

eventually accretes onto the black hole. The fate of the debris is dependent on the type of star and

the mass and spin of the black hole. If the star is known, then a study of its tidal disruption will

provide an independent means of measuring the mass of the black hole from the M −σ relation, the

empirical correlation between the stellar velocity dispersion σ of a galaxy bulge and the black hole

mass M at the center. From dynamical models of main-sequence stars, it is predicted that tidal

disruptions will occur once every 103-105 years for a non-spinning black hole of mass M . 108M�

[3, 4]. A more massive black hole would result in a capture orbit instead of tidal disruption. For

maximally spinning black holes, the upper limit on the mass of the black hole may be increased

[5]. This suggests that solar-type star tidal disruption rates are dependent on black hole spin for

M ≥ 108M�. In this thesis, we are concerned with the tidal disruption of white dwarfs through

close encounters with a massive black hole.

By simulating the tidal disruption mechanism with a computer, we are able to provide theoretical

models to match observation of tidal disruption candidates. A flare of optical, UV, and X-ray

emission will occur promptly upon disruption and as captured gas streams back to the black hole after

one final orbit [1]. X-ray observatories Chandra and XMM-Newton observed the first tidal disruption

event candidates [2, 6]. Since then, obervations made in the optical, ultraviolet, and X-ray reveal

many more available for study [7, 8, 9, 10, 11, 12]. Recently, the unusual detection of long duration

γ-ray bursts for Swift J164449.3+573451 suggest that more tidal disruption candidates associated

with jet production are possible [13, 14, 15]. It is also of interest to use simulations to explain other

possible observational signatures such as the supernova-like remnant structures associated with the

ejection of debris [16, 17], the electromagnetic signal coupled with a gravitational wave event [18], and

the thermonuclear runaway from the shock heating associated with severe compression [19, 20, 21].



The importance of including relativistic tidal effects in a computer simulation may be highlighted

by the recent unusual observations of Swift J1644+57. The Swift satellite detected a long duration

γ-ray burst and intense X-ray flares for several days followed by flares with significant decay [14]. A

precurser X-ray flare was also associated with these events. Typical GRBs reach similar luminosity,

but generally fall-off more rapidly. The detected X-ray luminosity ranged from 1045 − 4× 1048 erg

s−1, which suggests the release of gravitational energy by accretion of matter onto a black hole.

From the X-ray variability time-scale of the object, δtobs ∼ 100 s, Burrows et al. [14] set the limit

on the black hole mass to be 106 − 2× 107M�. The presence of a radio transient also suggests a jet

hitting surrounding gas. The properties of this event are different from the standard tidal disruption

events and AGN jets. Bloom et al. [13] note that the two peaks in the broadband spectral energy

distribution represent synchrotron and inverse Compton processes, similar to what is expected for

blazars [13]. They propose that Swift J1644+57 is a small-scale blazar fed by the disruption of a

solar-type star by a 106− 107M� black hole. Krolik and Piran propose a different scenerio –a white

dwarf is disrupted by a . 105M� intermediate mass black hole upon several successive encounters

[22]. A white dwarf has a greater density than a solar-type star and its presence may account for

the short timescales in the event. The series of flares are perhaps explained by the return of gas that

is stripped off of the white dwarf as it makes several encounters before disruption. Krolik and Piran

state that if this scenerio is correct then this event is the first indication of a black hole of mass

104 − 105M�. In this thesis, we show that modeling the disruption between a star and a black hole

with mass smaller than 106M� requires the inclusion of relativistic terms in the tidal interaction.

There are several interesting aspects of white dwarf – intermediate mass black hole encounters.

For mass ratios ∼ 10−6 and smaller, the Roche tidal radius is smaller than the Schwarzschild radius

and the white dwarf will be on a capture orbit. Therefore, in studying the tidal interaction, the

lower limit in mass ratio is ∼ 10−6. For non-disruptive encounters, the normal modes of the white

dwarf can be excited non-resonantly and several successive encounters may lead to additional mode

excitation and heating. In the regime where gravitational radiation is the dominant mechanism for

the evolution of the orbit, resonant passages may excite modes [23, 20]. Significant energy transfer

may lead to an increase in temperature such that a thermonuclear runaway produces a Type Ia

supernova.

Several theoretical treatments to the problem of uncovering the cause of extremely luminous

sources at the centers of galaxies indicate that the debris from a tidally disrupted star is the culprit.

In the absence of hydrodynamic forces, the amount of debris bound to the black hole depends on
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the change in the gravitational potential across the star [24, 1]. However, the nature of this problem

suggests that a full three-dimensional hydrodynamic treatment is necessary to determine the fate

of the disrupted star. Semi-analytic studies of the tidal interaction between close binaries provide

important details on the energy transfer during this process [25, 26, 27, 28]. Several numerical

methods have been used to model the disrupted star as it passes by the black hole on a parabolic

orbit. Several studies have implemented the affine model and results indicate that for orbits with

periastron much smaller the Roche tidal radius, the star will undergo severe compression and “pan-

cake” upon disruption [29]. Such encounters are interesting because of the possibility of triggering a

thermonuclear explosion. However, the main limitation of the affine model is that the star can only

be approximated as an ellipsoid. Using smooth particle hydrodynamics for tidal disruption adds

flexibility to solving the problem in that no approximations to the shape of the star are needed and

the full process is treated in a gridless manner [30]. This method is particularly useful in modeling

the fall-back of debris after a first encounter. Many works use Newtonian and relativistic versions

of the method [31, 32, 33, 34, 18, 35, 21]. The results of SPH methods are questionable because

of the production of spurious entropy in adding artificial viscosity to treat shock waves [36]. There

are a few comparisons of the SPH pancake mechanism simulations with one-dimensional finite dif-

ference methods (focusing on the compression orthogonal to the orbital plane) [18, 37]. Studies

using three-dimensional simulations with high-resolution shock-capturing techniques model the dis-

ruption in a coordinate system centered on the star. Newtonian hydrodynamics and self-gravity

is assumed for the star and a Newtonian quadrupole tide is used [38, 39, 40, 41]. A few studies

have implemented the effects of the black hole space-time [42, 43] and it is of interest to follow-up

these studies with higher resolution and a higher-order relativistic treatment to the black hole tidal

interaction. Recently, general relativistic hydrodynamic methods with adaptive mesh refinement

[44] and additionally with magnetohydrodynamics [45] have been applied to the disruption problem.

These methods are well-suited to modeling the accretion flare.

The purpose of this work is to study the disruption phase of the encounter, focusing on energy and

angular momentum deposition. We would like to be able to use these results as initial conditions in

subsequent computations of the fate of the post-disruption debris. In this thesis, we are interested in

the tidal disruption of white dwarfs by intermediate mass Schwarzschild black holes. In Chapter 2, we

begin by presenting the physics of tidal disruption in the Newtonian limit. We list the different phases

the star undergoes as it makes a close passage by the black hole. We introduce the linear theory of

tidal interactions. In Chapter 3, the relativistic treatment of the tidal interaction between the white

3



dwarf and the black hole is presented. We introduce the coordinate system for our calculations, the

Fermi normal coordinates (FNC). We use Newtonian hydrodynamics and self-gravity for the star

and set a cut-off in the combined self-gravity and tidal gravity metric expansion at stellar 1-PN.

This restricts the number of terms we may use for our calculation of the tidal acceleration. Using

a post-Newtonian formalism, we justify our use of retained terms in the expansion. In Chapter 4,

we present the numerical method for simulating tidal disruption. We use the piecewise parabolic

method with Lagrangian remap (PPMLR) for the hydrodynamics solver. We use a pseudo-spectral

method to solve Poisson’s equation. We calculate the relativistic tidal acceleration using a routine

to update the location of the FNC frame along the geodesic using the hydrodynamic time as the

proper time. Finally, we give the results of our numerical method in Chapter 5. We consider

encounters at the threshold of disruption and weaker. We choose intermediate mass black holes

to be M ∼ 103M�, 104M�, 105M�. We first present a validation of the numerical method using

a stellar equilibrium model. For our simulations with the tidal interaction, we use the relativistic

quadrupole and octupole terms. We note that the inclusion of the octupole term drives the center

of mass of the star off of the origin of the FNC frame. We compare the results for non-disruptive

encounters with the predictions from the linear theory. We give the amount of energy and spin-

angular momentum deposited onto the star and note a difference in the energy between Newtonian

and relativistic encounters. We summarize our work and present extensions in Chapter 6.

4



Chapter 2

Physics of Tidal Disruption From the Newtonian Viewpoint

In this chapter we consider the tidal disruption of a star by a black hole in the Newtonian limit.

We begin by introducing general assumptions about the process and introduce the dimensionless

disruption parameter η, which characterizes the types of encounters in terms of the mass of the star,

the large central mass (black hole), the radius of the star, and the distance of closest approach.

Then, we consider physical effects that may occur when a star passes too close to a massive black

hole. For the most part the star is assumed to be a polytrope, which allows its envelope structure to

be described by a single parameter n and serves as an approximation for a variety of objects (e.g.,

solar-type stars, white dwarfs, red giants, and neutron stars). In the second section, we discuss the

assumption of a polytropic equation of state and review solutions of the resulting equations of stellar

equilibrium. In the third section, we consider the consequences of a polytropic star in a Newtonian

tidal field. We find that the octupole tidal field causes the center of mass of an extended object

like a star to accelerate relative to the trajectory of a point mass. We discuss torques on the fluid

configuration. In the fourth section, we consider weak encounters where the star does not disrupt,

but may become (linearly) distorted. In this limit, we apply the linear theory of tidal interactions

and consider the amount of predicted total energy and (spin) angular momentum deposited onto

the star during the encounter. In the final section, we discuss disruptive encounters and the nature

of the resulting debris.

2.1 Overview of the process of tidal disruption

In the following, we describe how a star disrupts during an encounter with a heavy point mass

(black hole). In this chapter, we will refer to the central mass as a “black hole,” even though

we consider only Newtonian physics. We assume that far away from the black hole the star is in

spherical hydrostatic equilibrium, such that only the pressure forces and self-gravity of the gas are

in balance. If we consider encounters at the threshold of disruption, then roughly we can say that

at periastron the differential tidal acceleration across the star is comparable to or larger than its

self-gravity acceleration. It can also be said that tidal disruption occurs when the orbital timescale



of the star is less than or equal to the stellar pulsational timescale. Given these assumptions, an

encounter may be described by a dimensionless parameter η, the disruption parameter, such that

η =

(
R3
p

M

M∗
R3∗

)1/2

, (2.1.1)

where M∗, R∗, M , and Rp are the mass of the star, radius of the star, mass of the black hole, and

radius of periastron, respectively [26]. Tidal disruption occurs for η . 1. For η > 1, the star does

not disrupt completely, though it may be partially stripped. We may define the tidal radius for

η = 1 where RT = R∗(M/M∗)1/3. We may also characterize these encounters with a penetration

factor β = RT /Rp = η−2/3 [19].

A fraction of gas from a star that has been disrupted or partially disrupted will return to perias-

tron after a last orbit and then presumably settle into an accretion disk about the black hole. The

nature of this gaseous debris depends on the stellar structure of the star and on the detailed hydro-

dynamic forces and residual self-gravity as the debris expands. After disruption, nearly Keplerian

motion will cause the gas to spread within the orbital plane and compressional bounce and envelope

shocks cause some gas to rise out of the orbital plane. Escaping gas cools and loses all significant

self-gravity, effectively freezing into a distribution of Keplerian orbits. Eventually hydrodynamic

forces become important again as inclined orbits intersect near apastron and as the stream returns

to periastron. For very close encounters, gas from the star may accrete onto the black hole imme-

diately. The tidal disruption process may described in phases: disruption (with possible prompt

accretion), sheared motion of debris, accretion upon return to pericenter, and possible repetitions of

debris orbits and accretion. The focus of this thesis is on the disruption phase, although the results

of the analysis are important for modeling the rest of the process.

2.2 Polytropes

In this section, we discuss the assumption that the star can be modeled effectively as a poly-

trope. Using thermodynamic considerations, we derive expressions to quantify the thermodynamic

description of the star. This is important later for the computational diagnostics of the simulations.

We show how to obtain density and pressure profiles of a star in terms of its polytropic index n

using the Lane-Emden equation [46].
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2.2.1 Thermodynamic considerations

Consider a system in terms of pressure p, volume V , internal energy U , heat flux Q, entropy S,

and temperature T . Assume that it is hydrostatic, in equilibrium, and undergoes processes that are

reversible and adiabatic. Then, the heat flux is quasi-static and the entropy is constant [46, 47].

The first and second laws of thermodynamics are given by

dU = d̄ Q− pdV, d̄Q = T dS = 0. (2.2.1)

For a perfect (ideal) gas, the equation of state is given by

pV = RT , U = U(T ), (2.2.2)

with gas constant R = 8.314 × 107 erg/deg mol and one assumes that the internal energy is a

function of temperature only. The heat capacity at constant volume is Cv = (∂U/∂T )v = dU/dT

and at constant pressure is Cp = (d̄ Q/dT )p = Cv + R. Define the ratio of specific heats to be

γ = Cp/Cv = 1 + R/Cv. For monoatomic gases, γ = 5/3, and for diatomic gases, γ = 7/5. The

internal energy may be written as U = CvT = RT /(γ − 1). Then, we can rewrite the equation of

state for an ideal gas as

pV = RT = (γ − 1)U, p = (γ − 1)ρε, (2.2.3)

in terms of the internal energy U or the specific internal energy ε = U/M , where M is the molar

mass and ρ is the density.

Substituting the ideal gas equation of state into the combination of the first and second laws

in terms of specific quantities (heat per molar mass q = Q/M , specific volume τ = V/M , specific

entropy s = S/M), we obtain

d̄ q = 0 = dε+ pdτ = τdP + γ
p

ρ2
dρ or dp = γ

p

ρ
dρ (2.2.4)

and find that (
∂p

∂ρ

)
s

= γ
p

ρ
. (2.2.5)

An expression for the speed of sound in a perfect gas is given by the following [48]. If we assume
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small changes in the density and pressure and flow velocities smaller than the sound speed, then we

may derive an acoustic equation describing the propagation of sound waves using the conservation

of mass and momentum equation. Consider the small changes in the density and pressure to be

written as ρ = ρ0 + ∆ρ and p = p0 + ∆p. Then, the linearized conservation of mass equation may

be written as

∂ρ

∂t
= −ρ∂v

∂x
−→ ∂

∂t
(∆ρ) = −ρ0

∂v

∂x
. (2.2.6)

The linearized conservation of momentum equation may be written as

ρ
∂v

∂t
= −∂p

∂x
= −

(
∂p

∂ρ

)
s

(
∂ρ

∂x

)
−→ ρ0

∂v

∂t
= −

(
∂p

∂ρ

)
s

∂

∂x
(∆ρ) = −c2 ∂

∂x
(∆ρ), (2.2.7)

where we assume isentropic particle motion in the sound wave, ∆p = (∂p/∂ρ)s∆ρ, and c2 =

(∂p/∂ρ)s. Taking the partial time derivative of (2.2.6),

∂2

∂t2
(∆ρ) = −ρ0

∂2v

∂t∂x
, (2.2.8)

taking the partial time derivative of (2.2.7),

ρ0
∂2

∂x∂t
v = −c2 ∂

2ρ

∂x2
, (2.2.9)

and combining the two results we obtain a wave equation,

(
∂2

∂t2
− c2 ∂

2

∂x2

)
∆ρ = 0. (2.2.10)

The solutions are

∆ρ = ∆ρ(x± ct), (2.2.11)

where the disturbance propagates in the ±x direction with speed c of sound,

c2 =

(
∂p

∂ρ

)
s

=
γp

ρ
= γRT . (2.2.12)

Re-writing dp = (γp/ρ)dρ as [∂(ln p)/∂(ln ρ)]s = γ and integrating, and taking γ and s constant, we

obtain the polytropic equation of state,

p = κ(s)ργ , (2.2.13)
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for some κ that is a function of the specific entropy, s, which must be at least constant (adiabatic)

along stream lines in the fluid. For an isentropic gas (s = constant everywhere), we have p = κργ ,

with a universal constant κ.

2.2.2 Completely degenerate, ideal Fermi gas equation of state

In this thesis we will be primarily interested in examining tidal encounters of white dwarfs.

For an isolated white dwarf at T = 0, it is degeneracy pressure that supports the star against

gravitational collapse. Assume the pressure is just due to electrons which may be described by a

cold, degenerate equation of state [47]. We define the Fermi momentum of the electron in terms of

its Fermi energy EF , the speed of light c, and the mass of the electron me as EF = (p2
F c

2 +m2
ec

4)1/2.

We further define a dimensionless Fermi momentum as x = pf/(mec). The pressure of the gas is

given by [47]

pe =
mec

2

λ3
e

φ(x) = 1.42180× 1025φ(x) dyne cm−2,

φ(x) = 1
8π2

{
x(1 + x2)1/2(2x2/3− 1) + ln

[
x+ (1 + x2)1/2

]}
, (2.2.14)

and the total energy density is given by

εe =
mec

2

λ3
e

χ(x),

χ(x) = 1
8π

{
x(1 + x2)1/2(1 + 2x2)− ln

[
x+

(
1 + x2

)1/2]}
, (2.2.15)

where λe = ~/(mec) is the Compton wavelength of the electron. Consider the non-relativistic and

relativistic limits of the equation of state in terms of the dimensionless Fermi momentum. For

non-relativistic electrons, x� 1, we have that

φ(x) → 1
15π2

(
x5 − 5

14x
7 + 5

24x
9 · · ·

)
,

χ(x) → 1
3π2

(
x3 + 3

10x
5 − 3

56x
7 · · ·

)
. (2.2.16)

For relativistic electrons, x� 1, we have that

φ(x) → 1
12π2

(
x4 − x2 + 3

2 ln 2x · · ·
)
,

χ(x) → 1
4π2

(
x4 + x2 − 1

2 ln 2x · · ·
)
. (2.2.17)
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For the two limiting cases, the equation of state has a polytropic form, p = κργ , with (1) non-

relativistic electrons: ρ� 106g cm−3, x� 1, φ(x)→ x5/15π2,

κ =
32/3π4/3

5

~2

mem
5/3
u µ

5/3
e

=
1.0036× 1013

µ
5/3
e

, γ = 5
3 , (2.2.18)

and (2) extremely relativistic electrons: ρ� 106g cm−3, x� 1, φ(x)→ x4/12π2,

κ =
31/3π2/3

4

~c
m

4/3
u µ

4/3
e

=
1.2435× 1015

µ
4/3
e

, γ = 4
3 , (2.2.19)

where the numerical values are in cgs units and for atomic mass unit mu = 1.66057 × 10−24g and

mean molecular weight per electron µe. Thus, in the limit of extreme non-relativistic and ultra-

relativistic electrons, the ideal Fermi gas equation of state reduces to a polytropic form.

2.2.3 Stellar equilibrium

Consider the equations of hydrostatic equilibrium for a spherically symmetric, non-relativistic

star [47, 46] of mass M∗ and radius R∗. The mass interior to a radius r is given by

m(r) =

∫ r

0

ρ 4πr2dr,
dm(r)

dr
= 4πr2ρ. (2.2.20)

Consider a fluid element between r and r+dr with an area dA perpendicular to the radial direction.

The gravitational force exerted on the element dm due to the mass interior to r is equal to the net

outward pressure force on dm. Then, the equilibrium condition is

dp

dr
= −Gm(r)ρ

r2
. (2.2.21)

Consider the following quantities to obtain a virial theorem for the star. The gravitational potential

energy is given by

Ω = −
∫ M

0

Gm(r)dm(r)

r
=

∫ R

0

dp

dr
4πr3dr = −3

∫ R

0

p4πr2dr, (2.2.22)

where the pressure p at the surface of the star is zero. The internal energy is U =
∫ R

0
ρε4πr2dr =∫ R

0
[p/(γ − 1)]4πr2dr, using the ideal gas equation of state. It follows that the relationship between

the gravitational potential energy and the internal energy for a spherically symmetric ideal gas in
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hydrostatic equilibrium is given by

Ω = −3(γ − 1)U. (2.2.23)

Consider the thermal kinetic energy of this gaseous configuration. For a fluid element, there are dN

number of molecules and the kinetic energy for each molecule is 3kT /2. The total contribution for

the fluid element is then dET = 3kT dN/2 = 3(γ − 1)cV T dm/2, in terms of specific heat cv. The

internal energy of the fluid element is given by dU = cV T dm. Then, for the whole configuration,

the thermal kinetic energy is given by ET = 3
2 (γ − 1)U . In accordance with the virial theorem, it

follows that ET = − 1
2Ω.

Equilibrium configurations characterized by a polytropic equation of state are referred to as

polytropes. Substituting the adiabatic (polytropic) equation of state into the expression for Ω

(2.2.22),

Ω = −3(γ − 1)

5γ − 6

GM2
∗

R∗
. (2.2.24)

The total energy of the polytrope is then

Etot = U + Ω = −
(

3γ − 4

5γ − 6

)
GM2

∗
R∗

. (2.2.25)

We next show how to obtain the dimensionless envelope structure of the polytrope, characterized

by the polytropic index n, using the Lane-Emden equation [46]. By combining the hydrostatic

equilibrium conditions, (2.2.20) and (2.2.21), we obtain the fundamental equation

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (2.2.26)

Define the polytropic index n by γ ≡ 1 + 1/n. Consider the dimensionless Lane-Emden variables ξ

and θ(ξ) such that the radius of the star is

r = aξ, a =

[
(n+ 1)κ

4πG
ρ1/n−1
c

]1/2

, (2.2.27)

where constant κ is defined by the equation of state p = κργ . Consider another dimensionless

Lane-Emden variable, θ(ξ). The density and pressure radial profiles may be written in terms of this
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variable and are given by

ρ(ξ) = ρcθ(ξ)
n, p(ξ) = pcθ(ξ)

n+1, (2.2.28)

where ρc and pc are the central values. We re-cast the fundamental equation (2.2.26) in terms of ξ

and θ and obtain the Lane-Emden equation of index n,

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn. (2.2.29)

The boundary conditions at the origin are

θ
∣∣∣
ξ=0

= 1,
dθ

dξ

∣∣∣
ξ=0

= 0. (2.2.30)

To get the density and pressure profiles, we must solve the Lane-Emden equation. Except for a few

special n, this is done numerically. For n < 5, the solution decreases monotonically with the first

zero θ(ξ1) = 0 corresponding to the surface of the star,

R∗ = aξ1 =

[
(n+ 1)κ

4πG
ρ1/n−1
c

]
ξ1. (2.2.31)

The central density and pressure are

ρc = −
[
ξ

3

1

dθn/dξ

]
ξ=ξ1

ρ̄, pc = Wn
GM2

∗
R4∗

, (2.2.32)

where ρ̄ = M∗/(4πR3
∗/3) and Wn = [4π(n+ 1)[(dθn/dξ)ξ=ξ1 ]2]−1. The total mass at a distance ξ is

M∗(ξ) = −4πa3ρcξ
2dθ/dξ and for the entire star,

M∗ = −4π

[
(n+ 1)κ

4πG

]3/2

ρ(3−n)/2n
c

(
ξ2 dθn

dξ

)
ξ=ξ1

. (2.2.33)

We eliminate ρc from this equation using (2.2.31) to obtain the mass-radius relation for a polytrope,

GM
(n−1)/n
∗ R

(3−n)/n
∗ =

(n+ 1)κ

(4π)1/n

[
−ξ(n+1)/(n−1) dθn

dξ

](n−1)/n

ξ=ξ1

. (2.2.34)
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Rewriting, the constant κ in terms of M∗ and R∗ is given by

κ = NnGM
(n−1)/n
∗ R

(3−n)/n
∗ , Nn =

1

n+ 1

(
4π

0ω
n−1
n

)1/n

, (2.2.35)

where 0ωn = −ξ(n+1)/(n−1)
1 (dθn/dξ)ξ=ξ1 .

Re-writing the fundamental equation (2.2.26) in terms of the self-gravitational potential Φ where

dp/dr = ρ(dΦ/dr), we have Poisson’s equation,

1

r2

d

dr

(
r2 dΦ

dr

)
= ∇2Φ = 4πGρ. (2.2.36)

We may write the solution for inside and outside the star as

Φ(ξ) =


−4πGa2ρcθ(ξ)− GM∗

R∗
, r < R∗,

−GM∗r , r ≥ R∗.
(2.2.37)

In Table 2.1, the first zero of the Lane-Emden equation and the relevant quantities for calculating

the central density and pressure are given for n=1.5, 2, and 3 polytropes [46, 49, 50].

n ξ1 (dθn/dξ)ξ=ξ1 −
[
ξ
3

1
dθn/dξ

]
ξ=ξ1

Remark

1.5 3.6537534 2.033013E-1 5.990705 (non-relativistic white dwarf)
2.0 4.35287460 1.272487E-1 1.140254E1
3.0 6.89684862 4.242976E-2 5.148248E1 (extreme relativistic white dwarf)

Table 2.1: Properties given for different polytropes. We give the first zero of the Lane-Emden
equation, ξ1, and dθn/dξ and ξ(dθn/dξ)

−1/3 evaluated at ξ1.

2.3 Newtonian star in a Newtonian tidal field

In the following, the tidal interaction between the black hole and a polytropic star is presented

within the Newtonian formulation. The mass moments and other integrals characterizing the fluid

star are introduced [51, 29]. We show the effects of tidal heating and tidal spin-up of the star. We

derive the deviation between the equation of motion for the center of mass of the star and the origin

of a coordinate system on a point-particle trajectory.
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2.3.1 Momentum equation in a coordinate system following the star

Assume that the star is a Newtonian fluid. Consider an inertial coordinate system (Xk, T ) with

origin fixed on the black hole (assuming the black hole is so massive its motion can be neglected).

The velocity of the material moving in the gravitational field of the black hole will be taken to be

Vk(T ). The density and pressure are ρ(Xk, T ) and p(Xk, T ). The convective derivative taken along

streamlines (Stokes time derivative) is given by

d

dT
=

∂

∂T
+ Vk

∂

∂Xk
. (2.3.1)

The continuity equation for the fluid in the black hole frame is written as

dρ

dT
+ ρ

∂Vk
∂Xk

=
∂ρ

∂T
+

∂

∂Xk
(ρVk) = 0 (2.3.2)

and the momentum equation is written as

ρ
dVk
dT

= ρ
∂Vk
∂T

+ ρVl
∂Vk
∂Xl

= − ∂p

∂Xk
− ρ ∂Φ∗

∂Xk
+ ρgtk, (2.3.3)

where Φ∗ is the star’s self-gravitational potential and gtk is the external black hole tidal acceleration

field.

Let X
(0)
k (T ) and V

(0)
k (T ) = dX

(0)
k /dT denote the position and velocity of the origin of a coordi-

nate system following the star (in a way to be described precisely below). Define

xk = Xk −X(0)
k (T ) vk = Vk − V (0)

k (T ), (2.3.4)

as positions and velocities relative to the origin of the moving system. We rewrite the continuity

and momentum equations in this frame (xk, t) by considering the following change of variables. Let

f = {xk, t} and g = {Xk, T}. The Jacobian matrix is

J =

 ∂f1
∂g1

∂f2
∂g1

∂f1
∂g2

∂f2
∂g2

 =

 ∂xk

∂Xk

∂t
∂Xk

∂xk

∂T
∂t
∂T

 =

 1 0

−V (0)
k 1

 . (2.3.5)

Then, the change of variables is the following,

∂

∂Xk
=

∂

∂xk
,

∂

∂T
=

∂

∂t
− V (0)

l

∂

∂xl
. (2.3.6)
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The continuity equation in a coordinate frame following the star is then

∂ρ

∂t
− V (0)

k

∂ρ

∂xk
+

∂

∂xk

[
ρ(V

(0)
k + vk)

]
=
∂ρ

∂t
+

∂

∂xk
(ρvk) = 0, (2.3.7)

where ∂V
(0)
k /∂xk = 0. This has the same form as the equation in the black hole frame. Similarly,

we apply the transformation to the momentum equation and get

ρ
∂vk
∂t

+ ρvl
∂vk
∂xl

= ρ
dvk
dt

= − ∂p

∂xk
− ρ∂Φ∗

∂xk
+ ρgtk − ρ

dV
(0)
k

dt
, (2.3.8)

where −ρdV (0)
k /dt is the coordinate acceleration term.

2.3.2 Relevant moments and tensors defined

Consider the following theorem, for any quantity Q(xk, t),

d

dt

∫
ρ Qd3x =

∫
ρ
dQ

dt
d3x. (2.3.9)

This may be proved by introducing Lagrangian coordinates, ξk, fixed to the fluid elements, where

xk = xk(ξl, t), dxk =
∂xk
∂ξl

dξl +
∂xk
∂t

dt, vk =
∂xk
∂ξl

ξ̇l +
∂xk
∂t

. (2.3.10)

The transformation between different volume elements, connected by Jacobian J is d3x = |∂xk/∂ξl| ≡

Jd3ξ. Then,

d

dt

(
∂xk
∂ξl

)
=

∂xk
∂ξm∂ξl

ξ̇m +
∂xk
∂t∂ξl

=
∂

∂ξl

(
∂xk
∂ξm

ξ̇m +
∂xk
∂t

)
=
∂vk
∂ξl

, (2.3.11)

where in the new coordinate system ξm and ξ̇m are independent, so that ∂ξ̇m/∂ξk = 0. We write

d

dt

∫
ρ Qd3x =

d

dt

∫
ρ QJd3ξ =

∫
Q
d

dt
(ρJ)d3ξ +

∫
dQ

dt
ρJd3ξ (2.3.12)

=

∫
Q

(
dρ

dt
J + ρ

dJ

dt

)
d3ξ +

∫
dQ

dt
ρJd3ξ

=

∫
Q

(
dρ

dt
+ ρ

d

dt
ln J

)
Jd3ξ +

∫
dQ

dt
ρJd3ξ =

∫
dQ

dt
ρJd3ξ,

where we have that

dρ

dt
= −ρ ∂vk

∂xk
, and

d

dt
ln J =

∂ξl
∂xk

d

dt

(
∂xk
∂ξl

)
=

∂ξl
∂xk

∂vk
∂ξl

=
∂vk
∂xk

. (2.3.13)
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The zeroth moment (Q = 1) is defined as

M∗ ≡
∫
V
ρd3x, (2.3.14)

over a volume V. Define the first mass moment and derivatives as

Dk ≡
∫
V
ρxkd

3x, Ḋk =

∫
V
ρvkd

3x, D̈k =

∫
V
ρ
dvx
dt

d3x. (2.3.15)

The moment of inertia tensor, or second mass moment, and its derivative are defined as

Iij ≡
∫
V
ρxixjd

3x, İij =

∫
V
ρ(xivj + vixj)d

3x. (2.3.16)

The moment of inertia I follows from taking the trace,

I ≡ Iii =

∫
V
ρr2d3x. (2.3.17)

Likewise we can define a third moment, or octupole moment tensor, as

Iijk =

∫
ρxixjxkd

3x. (2.3.18)

The fluid configuration may have angular momentum, which is described by the tensor,

Jij ≡ 1
2

∫
V
ρ(xivj − vixj)d3x. (2.3.19)

We see that ∫
V
ρxivjd

3x = 1
2 İij + Jij ,

∫
V
ρvixjd

3x = 1
2 İij − Jij , (2.3.20)

where Iij = Iji and Jij = −Jji [51, 29]. The kinetic energy tensor and kinetic energy are defined as

Tij ≡ 1
2

∫
V
ρvivjd

3x, T ≡ Tii = 1
2

∫
V
ρv2d3x. (2.3.21)

With all of this in hand, it is possible to make the following connection,

∫
V
ρxiẍjd

3x = 1
2 Ïij + J̇ij − 2Tij . (2.3.22)
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Next, we consider the gravitational effects. Define the self-gravitational potential as

Φ∗(x) ≡ −G
∫
V

ρ(x′)d3x′

|x− x′| (2.3.23)

and the self-gravitational potential energy as

Ω ≡ 1
2

∫
V

Φ∗ρd3x ≡ − 1
2G

∫
V

∫
V

ρ(x)ρ(x′)d3xd3x′

|x− x′| . (2.3.24)

This scalar quantity is a part of a more general self-gravitational energy tensor, given by

Ωij ≡ − 1
2G

∫ ∫
(xi − x′i)(xj − x′j)

|x− x′|3 ρ(x)ρ(x′)d3xd3x′. (2.3.25)

Then, we see that Ω = Ωii. Consider the spatial derivative of Φ∗,

∂iΦ
∗ = −G

∫
V

xi − x′i
|x− x′|3 ρ(x′)d3x′. (2.3.26)

Then, due to symmetry it is fairly easy to show that

−
∫
xi(∂jΦ

∗)ρd3x = −G
∫ ∫

xi(xj − x′j)
|x− x′| ρ(x)ρ(x′)d3xd3x′

= − 1
2G

∫ ∫
(xi − x′i)(xj − x′j)

|x− x′| ρ(x)ρ(x′)d3xd3x′

= Ωij . (2.3.27)

From the symmetry of Ωij it follows that

∫
xi(∂jΦ

∗)ρd3x =

∫
xj(∂iΦ

∗)ρd3x. (2.3.28)

Note that the gravitational self-force vanishes,

∫
(∂iΦ

∗)ρd3x = G

∫
xi − x′i
|x− x′|3 ρ(x)ρ(x′)d3xd3x′ = 0, (2.3.29)

as can be seen by the interchange of xk ↔ x′k. Then we have an important alternative expression

for the gravitational energy,

Ω = 1
2

∫
Φ∗ρd3x = −

∫
xi(∂iΦ

∗)ρd3x. (2.3.30)
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The gravitational self-potential tensor is defined as

Φ∗ij ≡ −G
∫

(xi − x′i)(xj − x′j)
|x− x′|3 ρ(x′)d3x′, (2.3.31)

where

Ωij = 1
2

∫
Φ∗ijρd

3x. (2.3.32)

With some work, we can show that the rate of change of gravitational energy is

Ω̇ =

∫
vi∂iΦ

∗ρd3x. (2.3.33)

We now consider the various fluid energies. The pressure moments are given by

Π =

∫
V
pd3x, Πi =

∫
V
pxid

3x, Πij =

∫
V
pxixjd

3x. (2.3.34)

We can show that the change in total internal energy is

U̇ =

∫
vk∂kpd

3x. (2.3.35)

Consider the effects of an external gravitational field. Let the external force density be f ti =

ρgti = −ρ∂iΦt. Then, we have the net force on the fluid and the moment of force tensor,

F ti =

∫
f ti d

3x =

∫
ρgtid

3x, F tij =

∫
xif

t
jd

3x =

∫
xig

t
jρd

3x. (2.3.36)

The rate at which work is done by the external force is

Ẇ t =

∫
vif

t
i d

3x =

∫
vig

t
iρd

3x. (2.3.37)

We have obtained the gravitational potentials and energies and energies associated with the fluid.

We will use these quantities in the following to calculate the rate of change of energy of the star

and will later include the work done by the external gravitational field and the acceleration of the

reference frame.
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2.3.3 Equation of motion for the origin of the coordinate system following the star

Consider the momentum equation (2.3.8) in the moving frame. We can integrate the momentum

equation over a comoving volume,

∫
V
ρ
dvk
dt

d3x =
���

���
�:0

−
∫
V

∂p

∂xk
d3x−

��
�
��
�*0∫

V
ρ
∂Φ∗

∂xk
d3x+ F tk −M∗V̇ (0)

k . (2.3.38)

Two of the terms vanish (as shown) because (1) the pressure at the surface of the fluid configuration

is assumed to vanish and (2) the gravitational self-force is zero, as we previously showed. Writing

in terms of the first moment, we find

∫
V
ρ
dvk
dt

d3x =
d

dt

∫
ρvkd

3x =
d2

dt2

∫
ρxkd

3x =
d2

dt2
Dk, (2.3.39)

Thus we have a relationship between the acceleration of the coordinate system, V̇
(0)
k , the net external

force, F tk, and the motion of the fluid configuration,

D̈k = F tk −M∗V̇ (0)
k . (2.3.40)

We are free to choose V̇
(0)
k . We may enforce the initial condition Dk = 0 and Ḋk = 0. If we take

the acceleration of the frame V̇
(0)
k to be equal to the external acceleration F tk/M∗, then the center of

mass does not accelerate in the coordinate frame {xk} and the frame following the star {xk} is the

center-of-mass (CM) frame. Alternatively, we might take V̇
(0)
k to be that of a point mass (original

center of mass) moving in the external potential. The forces applied to the extended body can drive

apparent acceleration of the CM. In our calculations we choose this latter case in considering the

relativistic tidal field in Chapter 3.

2.3.4 Tensor virial theorem

Consider the first moment of the momentum equation in a frame following the star, (2.3.8),

∫
V
xiρ

dvk
dt

d3x = −
∫
V
xi

∂p

∂xk
d3x−

∫
V
xiρ

∂Φ∗

∂xk
d3x+

∫
V
xig

t
kρd

3x−
∫
V
ρxiV̇

(0)
k d3x. (2.3.41)

Then, from previous definitions of moments and tensors, Subsection 2.3.2,

1
2 Ïik + J̇ik − 2Tik = Πδik + Ωik + F tik −DiV̇

(0)
k . (2.3.42)
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We may split this into antisymmetric and symmetric parts,

J̇ik = 1
2 (F tik − F tki)− 1

2

(
DiV̇

(0)
k −DkV̇

(0)
i

)
1
2 Ïik = 2Tik + Πδik + Ωik + 1

2 (Fik + Fki)− 1
2 (DiV̇

(0)
k +DkV̇

(0)
i ). (2.3.43)

In the center-of-mass frame (Di = 0) and without an external force (Fik = 0), the spin angular

momentum of the star is conserved (J̇ik = 0) and we have the following tensor virial theorem,

1
2 Ïik = 2Tik + Πδik + Ωik. (2.3.44)

2.3.5 Rate of change of energy of the star

We may contract the momentum equation in the frame following the star (2.3.8) with vk and

integrate

∫
ρvkv̇kd

3x = −
∫
vk∂kpd

3x−
∫
vk(∂kΦ∗)ρd3x+

∫
vkg

t
kρd

3x−
∫
vkV̇

(0)
k ρd3x

1
2

d

dt

∫
ρvkvkd

3x = −dU
dt
− dΩ

dt
+ Ẇ t − ḊkV̇

(0)
k

Ṫ + U̇ + Ω̇ = Ẇ t − ḊkV̇
(0)
k , (2.3.45)

and obtain the rate of change of energy of the fluid. The left hand side is the rate of change of total

energy of the fluid in the accelerated frame without external forces. The right hand side is the rate

at which work is done by the external gravitational field and a correction term if the accelerated

frame is not the center of mass frame. We obtain an expression for the work done by the tidal field,

Ẇ t, in the following. Let Φt(Xk, t) be the external potential from which gtk is derived,

gtk = − ∂

∂Xk
Φt = − ∂

∂xk
Φt = −∂kΦt. (2.3.46)

Then,

Ẇ t =

∫
ρvkg

t
kd

3x = −
∫
vk(∂kΦt)ρd3x = −

∫ (
dΦt

dt
− ∂Φt

∂t

)
ρd3x

= − d

dt

∫
Φtρd3x+

∫
∂Φt

∂t
ρd3x. (2.3.47)

20



The external gravitational energy of the star is given by Θ =
∫

Φtρd3x. Then, using the transfor-

mation of the partial derivative of the inertial frame time,

Ẇ t = −Θ̇ +

∫ [(
∂

∂T
+ V

(0)
k ∂k

)
Φt
]
ρd3x

= −Θ̇ + F tkV
(0)
k +

∫ (
∂Φt

∂T

)
ρd3x. (2.3.48)

With the equation of motion of the center of mass, (2.3.40), we have an expression for the work done

by the tidal field,

Ẇ t = −Θ̇− 1
2M∗

d

dt

(
V

(0)
k V

(0)
k

)
− D̈kV

(0)
k +

∫ (
∂Φt

∂T

)
ρd3x. (2.3.49)

Define the bulk kinetic energy of a star as seen in the inertial frame to be

T(0) = 1
2M∗V

(0)
k V

(0)
k . (2.3.50)

The time dependence of the total energy is then

d

dt
(T + U + Ω) +

d

dt
Θ +

d

dt
T(0) = − d

dt

(
Ḋkv

(0)
k

)
+

∫ (
∂Φt

∂T

)
ρd3x. (2.3.51)

If we choose the center-of-mass frame, then Dk = 0. If we further assume there is no intrinsic

variations in the external potential, e.g. ∂Φt/∂T = 0, then the total energy is conserved.

2.3.6 Tidal potential and tidal field

In the following, we will specify the form of the external force. In this section, we will assume

it derives from the potential of a heavy point mass and is time dependent. Expanding the tidal

potential Φt about some trajectory X
(0)
k (t),

Φt = Φ
(0)
t − g(0)

i xi + 1
2C

(0)
ij xixj + 1

6C
(0)
ijkxixjxk + 1

24C
(0)
ijklxixjxkxl + · · · ,

gtk = −∂kΦt = g
(0)
k − C

(0)
ki xi − 1

2C
(0)
kijxixj − 1

6C
(0)
kijlxixjxl + · · · , (2.3.52)
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where [R2
(0)(t) = X

(0)
k X

(0)
k ],

Φ
(0)
t = −GM∗

R(0)
, g

(0)
k = −GM∗X

(0)
k

R3
(0)

,

C
(0)
ij = ∂i∂jΦ

t
∣∣∣
(0)

=
GM∗
R5

(0)

(
δijR

2
(0) − 3X

(0)
i X

(0)
j

)
,

C
(0)
ijk = ∂i∂j∂kΦt

∣∣∣
(0)

=
GM∗
R7

(0)

(
15X

(0)
i X

(0)
j X

(0)
k − 3R2

(0)X
(0)
j δik − 3R2

(0)X
(0)
k δij − 3R2

(0)X
(0)
i δjk

)
,

etc. The net force is then

F
(0)
k =

∫
ρgtkd

3x = M∗g
(0)
k − C

(0)
ki Di − 1

2C
(0)
kijIij − 1

6C
(0)
kijlIijl + · · · . (2.3.53)

The first moment of the force density is

Fij =

∫
xig

t
jρd

3x = Dig
(0)
j − C

(0)
jk Iik − 1

2C
(0)
jklIikl + · · · . (2.3.54)

The rate of work done by the tidal field becomes

Ẇ t =

∫
ρvkg

t
kd

3x = Ḋkg
(0)
k − C

(0)
ki

∫
ρvkxid

3x− 1
2C

(0)
kij

∫
ρvkxixjd

3x+ · · · . (2.3.55)

Note that ∫
ρvkxid

3x = 1
2 İik + Jik, (2.3.56)

from above, and that the product C
(0)
ki Jik vanishes since Cki is symmetric and Jik is antisymmetric.

Define Mijk ≡
∫
ρvixjxkd

3x, where Mijk = Mikj . We see that

İijk =

∫
ρ(vixjxk + vjxixk + vkxixj)d

3x = Mijk +Mjik +Mkij . (2.3.57)

and

C
(0)
kijMkij = 1

3

(
C

(0)
kij + C

(0)
ijk + C

(0)
jik

)
Mkij = 1

3C
(0)
kij İijk. (2.3.58)

Then, the tidal gravitational work has the expansion,

Ẇ t = Ḋkg
(0)
k − 1

2C
(0)
ki İik − 1

6C
(0)
kij İijk + · · · . (2.3.59)
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We can also obtain an expansion for the external gravitational energy of the star,

Θ = M∗Φ
(0)
t −Dig

(0)
i + 1

2C
(0)
ij Iij + 1

6C
(0)
ijkIijk + · · · . (2.3.60)

2.3.7 Center of mass frame vs. point-particle frame

We may rewrite the equation of motion for the origin of a coordinate system following the star

(2.3.40) and substitute the net force (2.3.53) to get

M∗Ẍk + D̈k = gk − Cki(X)Di − 1
2Ckij(X)Iij − 1

6Ckijl(X)Iijl + · · · . (2.3.61)

For center of mass coordinates, we set Dk and its derivatives to be zero. Then,

M∗Ẍ
(0)
k = −GM∗

X
(0)
k

R3
− 1

2Ckij(X
(0))Iij − 1

6Ckijl(X
(0))Iijl + · · · , D̈k = 0. (2.3.62)

If we would like to use CM coordinates, then equation (2.3.62) must be integrated in time. Further-

more, the motion of the origin is affected not only by the external point potential but also by the

octupole and higher-order tides.

If the coordinate system follows a point particle trajectory, then the origin is not guaranteed to

be coincident with the center of mass. Then the equation of motion for the origin is

M∗Ẍ
(p)
k = −GM∗

X
(p)
k

R3
p

, (2.3.63)

and the mass moment evolves according to,

D̈k = −Cki(X(p))Di − 1
2Ckij(X

(p))Iij − 1
6Ckijl(X

(p))Iijl + · · · . (2.3.64)

We see that the center of mass will follow a trajectory that accelerates away from the point-particle

trajectory, gk(X) = GM∗Xk/R
3, because of the octupole tide and higher order corrections. Let ζk

be the difference in position of the center of mass and the point particle trajectory, ζk ≡ Xk −X(p)
k .

Then, the deflection of the center of mass from the origin of the coordinate system following the star

is given by the following,

ζ̈k = − 1
2Ckij(X)

1

M∗
Iij(t)− 1

6Ckijl(X)
1

M∗
Iijk(t). (2.3.65)
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2.3.8 Change in orbital angular momentum due to the spin-up of star and acceleration

of center of mass

We write the total angular momentum of the star in the black hole frame as

Jkl =

∫
d3Xρ(X, t)(XkVl −XlVk). (2.3.66)

We substitute Xk = xk +X
(0)
k (t) and Vk = vk + V

(0)
k (t) to obtain an expression accounting for the

spin angular momentum and the position and velocity of the center of mass with respect to the

origin of the point-particle frame. We have that

Jkl =

∫
d3xρ

[
(x+X(0))k(v + V (0))l − (x+X(0))k(v + V (0))l

]
=

∫
d3xρ(xivj − vixj) +

∫
d3xρ(xkV

(0)
l − xlV (0)

k )

−
∫
d3xρ(vkX

(0)
l − vlX

(0)
k ) +

∫
d3xρ(X

(0)
k V

(0)
l −X(0)

l V
(0)
k )

= Jkl +DkV
(0)
l −DlV

(0)
k − ḊkX

(0)
l + ḊlX

(0)
k +M∗(X

(0)
k V

(0)
l −X(0)

l V
(0)
k ),

where Jkl is the spin angular momentum in the point-particle frame (2.3.19) and Dl is the first

mass moment defined by (2.3.15). The time rate of change of the last term vanishes if we choose a

point-particle trajectory for the reference frame that does not change. The time rate of change of

total angular momentum is

J̇kl = ˙Jkl +
d

dt

(
DkV

(0)
l −DlV

(0)
k − ḊkX

(0)
l + ḊlX

(0)
k

)
, (2.3.67)

where the first term corresponds to the change in spin angular momentum of the star and the rest

corresponds to the change in orbital angular momentum.

2.4 Non-disruptive encounters

2.4.1 Regime of weak tidal interactions

Consider encounters of a star with a black hole characterized by η > 1. The tidal interaction

is weak and the star does not disrupt upon passing the black hole, but becomes distorted or and

excited into a set of pulsational modes. Gas may be tidally stripped off of the star. For non-

disruptive encounters, one may apply the linear, adiabatic theory of tidal interactions to compute
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the excitation of the non-radial oscillations of the perturbed star [26, 52, 27, 38].

Under this formalism, we assume that the star is initially spherically symmetric, static, and in

hydrostatic equilibrium. The tidal interaction induces a slight perturbation from the initial state. We

write the perturbed variable f ′ in terms of the initial state f and the pertubation δf as f ′ = f + δf

and obtain linearized versions of the equations of hydrodynamics and heat flow by neglecting all

powers above the first and products of the variations. We may express the perturbation variables

in terms of spherical harmonics and associate with each l,m a set of normal modes of oscillation,

representing a fundamental mode and overtones. Stars will pulsate in both pressure modes (p-modes)

and gravity modes (g-modes).

2.4.2 Energy and angular momentum deposited on the star

The amount of orbital energy deposited into oscillatory modes during a close periastron passage

depends upon two dimensionless parameters: the dimensionless envelope structure of the star, the

polytropic index n, and the dimensionless parameter characterizing the encounter, the disruption

parameter η [26]. We calculate the amount of energy removed from the orbit and deposited onto

the star as follows.

Consider a coordinate system centered on the star in the orbital plane. Let ρ be the density of

the star, ~v be the fluid velocity, and U be defined as U(~r, t) = −Φt = GM/|~r − ~R(t)|, where ~R(t) is

the relative orbit of the point mass, M . The rate at which energy is deposited onto the star is given

by

dE

dt
= Ẇ t =

∫
d3xρ~v · ~∇U =< ~v|~∇U > . (2.4.1)

Consider a linearized perturbation analysis on the effect of ~∇U on the equilibrium star. Let ρ be the

unperturbed stellar density. Express the fluid velocity in terms of a Lagrangian displacement ξ of the

fluid element from its unperturbed position as ~v = ∂ξ/∂t, where the Fourier transform of ξ may be

analyzed into normal modes. These normal modes satisfy a linear, self-adjoint eigenvalue equation

and may be written in terms of spherical harmonics. The amplitude of the tidal perturbation is of the

form Ulm ∼ GMrl/R(t)l+1, in terms of spherical harmonic indices l and m. The time dependence of

the perturbation in Ulm is fixed by Keplerian motion and the disruption parameter η (2.1.1), which

relates the duration of periastron passage to the hydrodynamic timescale of the star. Thus, for a

given encounter, η, the amplitude of tidally induced oscillations scales as Ulm. The energy deposited
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into oscillations of spherical harmonic index l is then

∆El =
GM2

∗
R∗

(
M

M∗

)2(
R∗
Rp

)2l+2

Tl(η), (2.4.2)

where Tl(η) is a dimensionless function and may be explicitly calculated using the normal modes for

a given polytrope of index n. The total energy is given by ∆E =
∑
l=2,3,... ∆El. The dimensionless

function Tl(η) is calculated for n = 3 polytropes in Press and Teukolsky [26] and for n = 1.5, 2, 3 in

Lee and Ostriker (1986) [27]. It is shown that the l = 2 f-mode dominate the tidal energy transfer.

A quick method for obtaining the results from the latter was given by Portegies Zwart and Meinen

(1993) [53]. We obtain Tl from the following polynomial,

log Tl(η) = A+ Bx+ Cx2 +Dx3 + Ex4 + Fx5, (2.4.3)

where x = log η. Table 2.2 gives the polynomial coefficients for the l = 2 and l = 3 contribution to

(2.4.3) for a polytrope of index n = 1.5.

n=1.5 l=2 l=3

A -0.397 -0.909
B 1.678 1.574
C 1.277 12.37
D -12.42 -57.40
E 9.446 80.10
F -5.550 -46.43

Table 2.2: Polynomial coefficients for fit of dimensionless function Tl(η) for l = 2, 3. These are given
for an n = 1.5 polytrope.

Along with energy, the black hole deposits angular momentum onto the star. A star that is

initally at rest will “spin-up” as it passes by the black hole. From studies in comparing the affine

model with the linear theory, it is found that although energy is transferred into the l = 2, m = −2

f-mode, which should possess angular momentum and vorticity, the star bulk rotates just enough to

cancel out the vorticity [28]. It is shown that the star may be modeled as an irrotational ellipsoid.

Thus, for weak encounters, we may assume that the energy, ∆E, and angular momentum, ∆L,

deposited onto the star are related by

∆E ' |Ω|√
15

∆L√
I∗|Ω|

, (2.4.4)

where I∗ = 1
3

∫
r2dM is the moment-of-inertia coefficient and Ω is the self-gravitational potential
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energy of the star [28]. Despite the relativistic treatment of the tidal field in our calculations (Chapter

3), the special coordinate system that we use allows us to apply the Newtonian linear perturbation

theory in the limit of weak encounters.

2.5 Disruptive encounters

In this section, we describe the situation where the star disrupts and make some estimates for

the debris that is released during this type of encounter. We will see in this analysis a dependence

on various dimensionless parameters.

2.5.1 Spread of energies

Consider the following quantities associated with the Newtonian parabolic orbit of the star. The

velocity at periastron is vp = (2GM/Rp)
1/2. The angular momentum is lp = M∗(2GMrp)

1/2. The

specific kinetic energy at periastron is εp = GM/Rp. The gravitational potential of the black hole

at periastron is |Φp| = GM/Rp. As discussed in Rees (1988) [1] and Evans and Kochanek (1989)

[32], the tides will raise on the star and as the bulge attempts to stay aligned with the direction of

the black hole the star will be torqued. The maximal surface velocity is v∗ = (2GM∗/R∗)1/2. The

maximal spin angular momentum is l∗ = M∗(2GM∗R∗)1/2. The specific binding energy of the star

is ε∗ = GM∗/R∗. The self-gravitational potential of the star at the stellar radius is |Φ∗| = GM∗/R∗.

We compare the quantities associated with the star and the orbit in terms of the mass ratio µ =

M∗/M , which we regard as small (µ� 1), and the disruption parameter η as

v∗
vp

= µ1/3η−1/3,
l∗
lp

= µ2/3η1/3,
ε∗
εp

= µ2/3η−2/3,
Φ∗
Φp

= (µη)2/3. (2.5.1)

The disruption of the star reduces the specific orbital energy, εp, by the specific binding energy,

ε∗. The variation in the specific energy of the released gas, ∆ε, depends on the change in the black

hole potential across the diameter of the star [1, 32, 54]. For a star at periastron, the gravitational

potential at Rp +R∗ and Rp −R∗ may be written as

ε± = − GM

Rp ±R∗
= −GM

Rp

(
1± R∗

Rp

)−1

= −GM
Rp

(
1∓ R∗

Rp

)
. (2.5.2)
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The spread of energies of the gas is then

∆ε =
GM

Rp

R∗
Rp

= εpµ
1/3 = ε∗µ

−1/3η2/3. (2.5.3)

Note that εp � ∆ε� ε∗.

Since the variation in the specific energy of the released gas is much larger than the specific

binding energy, in the absence of hydrodynamic forces, we estimate that roughly 50% of the star

(located from r = Rp to r = Rp +R∗) will become unbound during disruption while the other half,

from r = Rp−R∗ to r = Rp, will return to periastron after following a set of highly eccentric orbits.

The maximum velocity at infinity of the ejected debris may be given as vesc = (2∆ε)1/2.

2.5.2 Accretion rate

Once disruption occurs, the kinetic energy of the expanding debris is much larger than the adi-

abatically decreasing internal energy and diminishing self-gravitional energy. Thus, we can describe

the debris as locked into Keplerian trajectories and estimate a spread of energy of ' 2∆ε with a

mass distribution of dM/dε 'M∗/2∆ε [32]. The total energy of the most tightly bound gas can be

related to a semi-major axis am by ∆ε = −GM/(2am). Then,

am = −GM
2∆ε

= GM
Rp

2GM

(
Rp
R∗

)
=

R2
p

2R∗
. (2.5.4)

The minimum (Keplerian) period before return to the hole is then

τm =
2πa

3/2
m√

GM
=

π√
2GM

(
R2
p

R∗

)3/2

. (2.5.5)

We may write

dε

dτ
=
dε

da

da

dτ
= 1

3 (2πGM)
2/3

τ−5/3. (2.5.6)

The estimated rate at which mass returns to the black hole after one post-disruption orbit is

dM∗
dτ

=
dM∗
dε

dε

dτ
=
M∗
2

(
R∗
Rp

GM

Rp

)
1
3 (2πGM)

2/3
τ−5/3 = 1

3

M∗
τm

(
τ

τm

)−5/3

. (2.5.7)

Newtonian simulations of debris motion after disruption appear to confirm this expected τ−5/3

dependence [32, 34, 35].

In this chapter, we have presented the mechanism of tidal disruption in the Newtonian limit.
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We have shown our assumptions for the fate of the Newtonian star, modeled as a polytrope, which

undergoes tidal accelerations from a large central (point) mass. We show a difference in the equation

of motion for the center of mass of the star and the origin of a coordinate system on a point-particle

trajectory. In Chapter 3, we introduce a coordinate system on a point-particle trajectory for our

calculations of tidal disruption. We will show in Chapter 5 that the center of mass of the star does

indeed accelerate off of the origin of our coordinate system. As we have shown here, it is not a

relativistic effect, but due to the Newtonian octupole and higher-order terms in the expansion of the

tidal potential.
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Chapter 3

The Relativistic Tidal Field:
Fermi Normal Coordinates

If we assume Newtonian gravity and hydrodynamics are adequate to describe the star and it

moves non-relativistically in a Newtonian tidal field, then the formalism of the previous chapter is

adequate. The latter requirement holds as long as the minimum distance in the orbit is large enough

that relativistic effects or corrections can be ignored. In this thesis, we are concerned with relativistic

tidal interactions between a massive black hole and a white dwarf star. However, despite the need to

consider relativistic orbital and tidal effects, we will also show that it is possible to simultaneously

use Newtonian calculations for the star’s self-gravity and hydrodynamics. In principle, we could also

treat the self-gravity and hydrodynamics of the white dwarf with general relativity. However, this is

a small correction [O(10−4)] which we choose to ignore. Despite the fact that the first stellar post-

Newtonian correction is O(10−4), the tidal field involves a set of relativistic, orbital post-Newtonian

corrections that fall off less abruptly depending upon the depth of the encounter and the mass ratio

of the system.

In this chapter, we explain in detail the treatment of the relativistic tidal field. First, the

coordinate system for our calculations, Fermi normal coordinates, is introduced. We then show

the expansion of the metric in this coordinate system for a general spacetime. Second, the form

of the metric is specified to be the Schwarzschild black hole spacetime and the components of the

Riemann tensor in this spacetime are given. Third, we introduce geodesic motion on Schwarzschild

and show the relevant equations of motion of a point mass on a parabolic orbit (a marginally bound

orbit with zero kinetic energy at infinity). The parameterization and integration scheme, known as

the Darwin method, is presented. Next, we construct the Fermi normal frame along a parabolic

geodesic and show the form of the metric expansion up through quartic order in the distance from

the geodesic. We justify the usage of terms in this tidal potential with a post-Newtonian formalism.

In the fourth and fifth section of this chapter, we present simultaneous expansions of the metric in

terms of the self-gravity of the star and the tidal gravity. Finally, we show the fluid equations of

motion of the white dwarf in the relativistic tidal field and justify the retention of certain terms in

the tidal expansion.



3.1 Form of the metric in Fermi normal coordinates

In this section, we introduce the Fermi normal coordinates, which are used to calculate the

tidal encounter. We begin by presenting the metric expansion at an event using the local flatness

theorem. This notion of local flatness is then extended to events all along a timelike geodesic through

the adoption of Fermi normal coordinates. We show the form of the expansion of the metric in this

coordinate system for a general spacetime.

3.1.1 Metric expansion at an event

In curved spacetime, let P0 be an event and at that point define a coordinate system xa with

indices a = 0, 1, 2, 3 and coordinate basis vectors λa = ∂/∂xa. The metric defines an inner product

and, when acting on the basis vectors, its components are given as gab ≡ λa · λb. The local-

flatness theorem [55] states that in a local Lorentz frame at an event P0, the metric can be taken as

Minkowskian, ηab,

gab

∣∣∣
P

= ηab = diag(−1, 1, 1, 1). (3.1.1)

Furthermore, at P0, it is also possible to require that the derivatives of the metric vanish, gab,c

∣∣∣
P0

= 0.

From the definition of the connection coefficients in a coordinate basis [56],

Γabc = 1
2g
ad(gdb,c + gdc,b − gbc,d), (3.1.2)

the vanishing of the first derivatives of the metric at P0 implies that all of the connection coefficients

also vanish, Γabc = 0. However, in curved spacetime the derivatives of the connection will not be

zero in general. Thus, the metric at P0 is locally flat such that it appears Minkowskian up to terms

that are quadratic in the distance from P0,

gab = ηab +O(x2). (3.1.3)

The quadratic terms cannot all be made to vanish by a choice of coordinates and they represent the

tidal contributions of the gravitational field.

3.1.2 Metric expansion along a timelike geodesic

The view of local flatness at an event may be generalized to include the extended motion of a

freely-falling observer. Consider an arbitrary spacetime with coordinates xµ
′
. Consider further a
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timelike geodesic G in this spacetime described by xµ
′

= xµ
′
(τ) and parameterized by proper time τ .

Let Greek indices, including a prime (e.g., µ′), denote these arbitrary coordinates in this spacetime.

Let G have the tangent vector u = ∂/∂τ . The local-flatness theorem is extended by defining a second

coordinate system xa, the origin of which moves along the trajectory G [57, 55], with the following

Fermi conditions being enforced, at all times,

gab

∣∣∣
G

= ηab, Γabc

∣∣∣
G

= 0. (3.1.4)

Here Latin indices (a, b, c, ...) denote the four new coordinates, which span (0, 1, 2, 3), and subse-

quently we will take any index beginning with i (e.g., i, j, k...) to denote one of the three new spatial

coordinates (1, 2, 3). Let P0 be a single event on the geodesic G at τ = 0. Construct an orthonormal

tetrad λa = (λ0,λ1,λ2,λ3) at this point. Choose λ0 = u such that the tangent vector of the

geodesic is itself one of the basis vectors (and obviously timelike). Construct a basis all along G by

insisting that the tetrad λa is parallel-transported along G. This is already satisfied for λ0, since

∇uλ0 = ∇uu = 0, but the conditions must also be imposed on the spacelike vectors λi, such that

∇uλi = 0. Having defined the moving tetrad, each λi is used, at any constant time τ , to launch

spacelike geodesics from P(τ). The proper distance along the curve launched by λi becomes the

spatial coordinate xi. The proper time along G, τ , becomes the time coordinate x0 = τ . See Figure

3.1. This coordinate system xa = (x0, xi) is known as the Fermi normal coordinate (FNC) system.

In this coordinate system we have not only Γabc

∣∣∣
G

= 0 and gab,c

∣∣∣
G

(3.1.4), but also that all of the

time derivatives of the connection vanish, Γabc,0 = Γabc,00 = 0 and gab,c0 = gab,c00 = 0. Hence, it can

be shown [57, 55, 58] that the metric may be expanded in a power series in spatial distance of the

form

gab = ηab + 1
2gab,ij(τ)xixj + 1

6gab,ijk(τ)xixjxk + 1
24gab,ijkl(τ)xixjxkxl +O(x5), (3.1.5)

where only spatial derivatives of the metric appear and the derivatives of the metric are functions

of the FNC time coordinate τ only.

Furthermore, these coefficients may be obtained from the Riemann curvature of the spacetime

evaluated along G. The series expansion has been derived to quadratic order by Manasse and Misner

(1963) [57] and up to quartic order by Ishii, Shibata, and Mino (2005) [58]. Using the results obtained
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Figure 3.1: The Fermi normal coordinate system constructed along a geodesic G. The diagram above
displays only three dimensions (0, 1, 2) of the FNC system, xa = (x0, x1, x2, x3). The orthonormal
tetrad λa = (λ0,λ1,λ2,λ3) constructed at a point P is parallel transported along the timelike
geodesic G. Note that λ0 is the tangent vector of the geodesic itself. The spatial basis vectors λ1

and λ2 are orthogonal to each other and to λ0 all along G. Parallel transport of each λi along itself
defines spacelike geodesics and thus the spatial coordinates away from G.

by Ishii et al., the components may be written explicitly as

g00 = −1−R0i0jx
ixj − 1

3R0(i|0|j;k)x
ixjxk

− 1
12

(
R0(i|0|j;kl) − 4Rµ(kl|0|R|µ|ij)0

)
xixjxkxl + · · · ,

g0m = 1
3 (R0ijm +R0jim)xixj + 1

4Rm(ij|0|;k)x
ixjxk

+ 1
135

(
9Rm(ij|0|;kl) − 6R 0

m(ij R|0|kl)0 − 2R n
m(ij R|n|kl)0

)
xixjxkxl · · · ,

gmn = δmn + 1
6 (Rimnj +Rinmj)x

ixj

− 1
36 (Rinjm;k +Rinkm;j +Rjnim;k +Rknim;j +Rknjm;i +Rjnkm;i)x

ixjxk

+ 1
180

(
9Rm(ij|n|;kl) − 6R 0

m(ij R|n|kl)0 − 2R p
m(ij R|n|kl)p

)
xixjxkxl + · · · , (3.1.6)

where, as mentioned, the components of the Riemann tensor and its derivatives are evaluated along
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G and are only functions of time, x0 = τ . In the above, parentheses around indices indicate sym-

metrization of a tensor, defined by, for example,

A(ij) = 1
2 (Aij +Aji), (3.1.7)

A(ijk) = 1
6 (Aijk +Ajik +Ajki +Akji +Akij +Aikj) , (3.1.8)

and, more generally, by

A(α1···αl) = 1
l!

∑
l

Aαf(1)···αf(l)
, (3.1.9)

where the sum ranges over all permutations of the indices α1 · · ·αl. Vertical strokes, e.g., |n|, indicate

that that index is excluded from the symmetrization.

Thus, it is possible to express the expansion of the metric in the FNC if the Riemann tensor and

its derivatives in the FNC are known. This reverses the usual prescription that the Riemann tensor

be obtained by differentiation once the metric is known. Fortunately, what is only needed is the

Riemann tensor computed in some coordinate system (e.g., Rµ′α′ν′β′), which is then transformed

from this coordinate system to the FNC. The components of the FNC tetrad vectors in the original

coordinates are the elements of the Jacobian transformation matrix along G, λ µ′

a = ∂xµ
′
/∂xa

∣∣∣
G

.

The Riemann tensor and its covariant derivatives in the FNC frame may be obtained by projecting

the Riemann tensor and its covariant derivative in the original spacetime coordinates into the FNC

frame,

Rabcd = Rµ′α′ν′β′ λ
µ′

a λ α′

b λ ν′

c λ β′

d , (3.1.10)

Rabcd;e = Rµ′α′ν′β′;ρ′ λ
µ′

a λ α′

b λ ν′

c λ β′

d λ ρ′

e , (3.1.11)

Rabcd;ef = Rµ′α′ν′β′;ρ′σ′ λ
µ′

a λ α′

b λ ν′

c λ β′

d λ ρ′

e λ σ′

f . (3.1.12)

3.2 The Schwarzschild black hole and components of the Riemann tensor

Up to this point in the discussion, a completely arbitrary background spacetime and set of

coordinates xµ
′

have been assumed. It was shown that the existence of the FNC is independent of

the details of the spacetime. Since tidal encounters of stars passing by a black hole are of interest,

in this section we work out necessary details of the Schwarzschild black hole. The more general case

of a Kerr black hole may be considered at a later time. The coordinates are specified as standard
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Schwarzschild coordinates, xµ
′

= {t, r, θ, φ}. The Schwarzschild metric is given by

ds2 = −fdt2 + f−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (3.2.1)

where f(r) = 1− 2M/r. Using (3.1.2), the Christoffel symbols are given by

Γt
′

t′r′ =
M

r2f
, Γr

′

t′t′ =
Mf

r2
, Γr

′

r′r′ = − M

r2f
,

Γθ
′

r′θ′ =
1

r
, Γφ

′

r′φ′ =
1

r
, Γr

′

θ′θ′ = −rf,

Γφ
′

θ′φ′ = cot θ, Γr
′

φ′φ′ = −rf sin2 θ, Γθ
′

φ′φ′ = − sin θ cos θ. (3.2.2)

Note that the primes on the coordinates themselves have been dropped for brevity, but the primes

are retained on component labels to clearly distinguish them from the FNC frame components. The

components of the Riemann tensor [56] in a coordinate basis are given by

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓαµγΓµβδ − ΓαµδΓ
µ
βγ . (3.2.3)

Then, in the Schwarzschild spacetime,

Rt′r′t′r′ = −2M

r3
, Rt′θ′t′θ′ =

Mf

r
, Rt′φ′t′φ′ =

Mf sin2 θ

r
,

Rr′θ′r′θ′ = −M
rf
, Rr′φ′r′φ′ = −M

rf
sin2 θ, Rθ′φ′θ′φ′ = 2Mr sin2 θ. (3.2.4)

Other nonzero components follow from the symmetries Rµ′α′ν′β′ = −Rµ′α′β′ν′ = −Rα′µ′ν′β′ =

+Rν′β′µ′α′ . All other elements vanish.

Consider instead of the Schwarzschild coordinate basis the use of an orthonormal frame. The

standard tetrad, e µ′

(a) , are a set of vectors such that [59]

e(a) · e(b) = e µ′

(a) e ν′

(b) gµ′ν′ = η(a)(b). (3.2.5)

Here (a) labels the different tetrad vectors and µ′ denotes their Schwarzschild coordinate basis

components. From this, the dual elements e
(a)
µ′ can be defined such that

δ
(b)

(a) = e µ′

(a) e
(b)
µ′ , δµ

′

ν′ = e µ′

(a) e
(a)
ν′ . (3.2.6)
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Summing over the dual elements, the components of the metric in the coordinate basis may be

obtained by

gµ′ν′ = e(a)µ′e
(a)
ν′ = η(a)(b) e

(a)
µ′e

(b)
ν′ . (3.2.7)

Here the tetrad index (a) is lowered/raised with the Minkowski metric η(a)(b) and the coordinate

index µ′ is raised/lowered with the metric tensor gµ′ν′ ; i.e.,

e µ′

(a) = η(a)(b) g
µ′ν′e

(b)
ν′ . (3.2.8)

The standard tetrad in Schwarzschild then is given by

e µ′

(0) =
(
f−1/2, 0, 0, 0

)
, e µ′

(1) =
(

0, f1/2, 0, 0
)
,

e µ′

(2) =

(
0, 0,

1

r
, 0

)
, e µ′

(3) =

(
0, 0, 0,

1

r sin θ

)
. (3.2.9)

Then lowering the coordinate index gives

e(0)µ′ =
(
−f1/2, 0, 0, 0

)
, e(1)µ′ =

(
0, f−1/2, 0, 0

)
,

e(2)µ′ = (0, 0, r, 0) , e(3)µ′ = (0, 0, 0, r sin θ) . (3.2.10)

Raising the tetrad index of the standard tetrad gives

e(0)µ′ =
(
−f−1/2, 0, 0, 0

)
, e(1)µ′ =

(
0, f1/2, 0, 0

)
,

e(2)µ′ =

(
0, 0,

1

r
, 0

)
, e(3)µ′ =

(
0, 0, 0,

1

r sin θ

)
. (3.2.11)

Raising the tetrad index of the standard tetrad and lowering the coordinate index gives the dual

basis elements

e
(0)
µ′ =

(
f1/2, 0, 0, 0

)
, e

(1)
µ′ =

(
0, f−1/2, 0, 0

)
,

e
(2)
µ′ = (0, 0, r, 0) , e

(3)
µ′ = (0, 0, 0, r sin θ) . (3.2.12)

Using the tetrad and its components, the Riemann tensor in the Schwarzschild coordinate basis can
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be transformed to the standard tetrad basis by

R(a)(b)(c)(d) = Rα′β′µ′ν′ e
α′

(a) e β′

(b) e µ′

(c) e ν′

(d) , (3.2.13)

The non-zero components of the Riemann tensor in the standard tetrad are then found to be

R(0)(1)(0)(1) = −2M

r3
, R(0)(2)(0)(2) =

M

r3
, R(0)(3)(0)(3) =

M

r3
, (3.2.14)

R(1)(2)(1)(2) = −M
r3
, R(1)(3)(1)(3) = −M

r3
, R(2)(3)(2)(3) =

2M

r3
, (3.2.15)

where again symmetries of the Riemann tensor (e.g., R(0)(1)(0)(1) = R(1)(0)(1)(0) = −R(0)(1)(1)(0))

yield the remaining nonzero elements. We will also have need of the projections of the first and

second covariant derivatives of Rµ′α′ν′β′ [58]:

Q(a)(b)(c)(d)(e) = Rµ′α′ν′β′;σ′e
σ′

(a) e µ′

(b) e α′

(c) e ν′

(d) e β′

(e) ,

P(a)(b)(c)(d)(e)(f) = Rµ′α′ν′β′;σ′λ′e
σ′

(a) e λ′

(b) e µ′

(c) e α′

(d) e ν′

(e) e β′

(f) . (3.2.16)

These frame components have been computed with Mathematica and are a lengthy list. They are

not listed here for brevity.

3.3 Geodesic motion on Schwarzschild and the construction of the Fermi normal co-

ordinate frame

In this section, we present the equations of motion for a test body on a parabolic orbit in

Schwarzschild spacetime. We introduce the Darwin method which is used to integrate the equations

of motion and provides a parameterization of the geodesic in terms of a specific set of orbital

parameters and constants of motion. Next, we show how to obtain the Fermi normal coordinate

frame vectors using the formalism first developed by Manasse and Misner (1963) [57] and further

developed by Marck (1983) [60].

3.3.1 Darwin method for integrating the geodesic equations

The timelike geodesic equations may be obtained from the Lagrangian L defined by the line

element, 2L = gµ′ν′dx
µ′dxν

′
[56]. In the Schwarzschild spacetime, the coordinates t and φ are cyclic

variables and we define the following constants of motion in terms of the 1-form uµ′ = gµ′ν′u
ν′ ,
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where uµ
′

= dxµ
′
/dτ , as

−E = ut′ , L = uφ′ . (3.3.1)

Here E is the specific orbital energy and L is the specific angular momentum. If we consider geodesics

confined to the equatorial plane, θ = π/2, then there are only three first-order equations of motion

given by

dt

dτ
= ut =

E

f(r)
,

dφ

dτ
= uφ =

L

r2
,

(
dr

dτ

)2

= (ur)2 = E2 − V, (3.3.2)

where V ≡ f(1+L2/r2) is the effective potential for radial motion. For parabolic orbits, the specific

orbital energy is E = 1, which is the limit of motion bound to the black hole.

We obtain the equations for a general geodesic using the Darwin method, which parameterizes

an orbit in terms of the semi-latus rectum, p, and eccentricity, e [61, 62, 63]. This allows us to

consider bound orbits, though we can also specialize to e = 1, E = 1 (parabolic) motion. Let r1

represent periastron and r2 be apastron. Define p and e as

r1 =
pM

1 + e
, r2 =

pM

1− e . (3.3.3)

The specific energy and angular momentum may written in terms of these parameters by

E2 =
(p− 2− 2e)(p− 2 + 2e)

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
. (3.3.4)

Darwin defines a radial phase χ such that the orbital radius R is given by

R(χ) =
pM

1 + e cosχ
, (3.3.5)

where R(χ = 0) = r1 and R(χ = π) = r2. The proper time is obtained in terms of the new phase

angle by integrating

dτ

dχ
=

p3/2M

(1 + e cosχ)
2

(
p− 3− e2

p− 6− 2e cosχ

)1/2

(3.3.6)

and the azimuthal coordinate is related to χ by integrating

dφ

dχ
= p1/2 (p− 6− 2e cosχ)

−1/2
. (3.3.7)

Thus with the Darwin scheme, we obtain a complete reparameterization of the orbit, i.e., τ = τ(χ),
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Figure 3.2: Parabolic orbits with different orbital angular momentum. The plot above gives two
parabolic orbits (E = 1) with large (dotted line) and small (solid line) specific orbital angular
momentum L. Note that the precession of the orbit is much more noticeable with smaller L.

r = r(χ), and φ = φ(χ).

For parabolic orbits, define r1 = Rp and take r2 =∞. Rp is the periastron distance. Then,

pM = 2Rp, e = 1, E = 1, L2 =
p2M2

p− 4
. (3.3.8)

In Figure 3.2, parabolic orbits with different specific orbital angular momentum L are shown.

3.3.2 FNC frame vectors

In the following we shall first construct the Fermi normal frame vectors and express them in

terms of Schwarzschild coordinate components. We enforce the condition ∇uλa = 0 where the

four-velocity is given by

uµ
′

=

(
E

f
, ur, 0,

L

r2

)
. (3.3.9)

The parallel transport condition may be written as

uν
′∇ν′λ µ′

a = 0 = uν
′
∂ν′λ

µ′

a + Γµ
′

α′β′u
α′λ β′

a . (3.3.10)
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We choose λ µ′

0 = uµ
′

to automatically provide one of the tetrad vectors. To find the spatial vectors,

we exploit the orthonormality condition λ µ′

a λ ν′

b gµ′ν′ = ηab (3.2.5). Assuming that the spatial

vector pointing out of the orbital plane is of the form λ µ′

2 = (0, 0, b2, 0), we obtain the component

b2 by computing λ µ′

2 λ µ′

2 gµ′ν′ = b22 gθ′θ′ = 1. It follows that b2 = 1/r and λ µ′

2 is orthogonal

to λ µ′

0 and λ µ′

2 can be shown to satisfy the parallel transport condition. We next construct two

vectors, λ̃ µ′

1 and λ̃ µ′

3 that make an orthonormal set with λ µ′

0 and λ µ′

2 . Define λ̃ µ′

1 = (c0, c1, 0, 0)

and using the orthonormality conditions we find that c0 = urr/(f
√
r2 + L2) and c1 = rE/

√
r2 + L2.

Similarly, we form λ̃ µ′

3 = (d0, d1, 0, d2) and find that d0 = ±EL/(f
√
r2 + L2), d1 = ±urL/

√
r2 + L2,

d3 = ±
√

(r2 + L2)/r2. We choose the plus sign and arrive at the following orthonormal set,

λ µ′

0 =

(
E

f
, ur, 0,

L

r2

)
, λ̃ µ′

1 =

(
urr

f
√
r2 + L2

,
rE√
r2 + L2

, 0, 0

)
,

λ µ′

2 =

(
0, 0,

1

r
, 0

)
, λ̃ µ′

3 =

(
EL

f
√
r2 + L2

,
urL√
r2 + L2

, 0,

√
r2 + L2

r2

)
. (3.3.11)

While these vectors are orthonormal, it may be shown that λ̃ µ′

1 and λ̃ µ′

3 do not satisfy the parallel

transport conditions for orbits on Schwarzschild. However, we can form two new vectors λ µ′

1 and

λ µ′

3 through a purely spatial rotation,

λ µ′

1 = λ̃ µ′

1 cos Ψ− λ̃ µ′

3 sin Ψ, λ µ′

3 = λ̃ µ′

1 sin Ψ + λ̃ µ′

3 cos Ψ, (3.3.12)

and seek to enforce the parallel transport conditions through an appropriate rate of frame precession

given by some Ψ(τ). Consider the expression for λ µ′

1 ,

λ µ′

1 =

(
urr cos Ψ− EL sin Ψ

f
√
r2 + L2

,
rE cos Ψ− urL sin Ψ√

r2 + L2
, 0,−

√
r2 + L2

r2
sin Ψ

)
. (3.3.13)

We obtain an expression for Ψ by substituting λ µ′

1 into the parallel transport equation (3.3.10).

By considering the φ′-component of the equation, the rotation angle is found, in a straightforward

manner, to satisfy the differential equation,

dΨ

dτ
=

EL

r2 + L2
. (3.3.14)

Thus, λa = (λ0,λ1,λ2,λ3) are an orthonormal set of vectors that are parallel transported along a

parabolic geodesic in the Schwarzschild spacetime.
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3.4 Construction of the Riemann tensor in FNC system and tidal tensor definitions

In this section, we give the components of the Riemann tensor relevant to calculating the tidal

field in the FNC system. We use the formalism of Marck (1983) and Ishii et al. (2005) [60, 58].

3.4.1 Riemann tensor in the FNC system

Using the Fermi normal frame derived in the previous section, we may project the Riemann

tensor and its covariant derivatives, as given in Schwarzschild coordinates, to the form given in Fermi

normal coordinates,

Rabcd = Rµ′α′ν′β′ λ
µ′

a λ α′

b λ ν′

c λ β′

d , (3.4.1)

Rabcd;e = Rµ′α′ν′β′;ρ′ λ
µ′

a λ α′

b λ ν′

c λ β′

d λ ρ′

e , (3.4.2)

Rabcd;ef = Rµ′α′ν′β′;ρ′σ′ λ
µ′

a λ α′

b λ ν′

c λ β′

d λ ρ′

e λ σ′

f . (3.4.3)

In the formalism of Marck (1983) and Ishii et al. (2005), the Riemann tensor is first transformed

into the standard tetrad by (3.2.13) and then transformed to the FNC frame by

Rabcd = R(a)(b)(c)(d)Λ
(a)
a Λ

(b)
b Λ (c)

c Λ
(d)
d . (3.4.4)

The transformation matrix Λ
(a)
a that accomplishes this second step is related to the standard tetrad

and the FNC tetrad λa by [58]

λ µ′

a = Λ (a)
a e µ′

(a) , Λ (a)
a = λ µ′

a e
(a)
µ′ (3.4.5)
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and its components are given by [60, 58]

Λ
(0)

0 = f−1/2, Λ
(1)

0 = f−1/2ṙ,

Λ
(2)

0 = 0 Λ
(3)

0 =
L

r
,

Λ
(0)

1 =
rṙ cos Ψ− L sin Ψ

[f(r2 + L2)]1/2
, Λ

(1)
1 =

r cos Ψ− Lṙ sin Ψ

[f(r2 + L2)]1/2
,

Λ
(2)

1 = 0, Λ
(3)

1 = −(r2 + L2)1/2 sin Ψ/r,

Λ
(0)

2 = 0, Λ
(1)

2 = 0,

Λ
(2)

2 = 1, Λ
(3)

2 = 0,

Λ
(0)

3 =
L cos Ψ + rṙ sin Ψ

[f(r2 + L2)]1/2
, Λ

(1)
3 =

Lṙ cos Ψ + r sin Ψ

[f(r2 + L2)]1/2
,

Λ
(2)

3 = 0, Λ
(3)

3 =
√

(r2 + L2) cos Ψ/r, (3.4.6)

with time-dependent rotation angle given previously (3.3.14). Calculating the components in the

Fermi normal coordinate frame in this manner is equivalent to performing only one transformation

using λ µ′

a and we have verified these results.

We define the following tidal tensors using the standard notation of [58]

Cij = R0i0j , Cijk = R0(i|0|j;k), Cijkl = R0(i|0|j;kl), Bijk = Rk(ij)0, Ak =
2

3
Bijkx

ixj , (3.4.7)

where Ak is the gravitomagnetic potential and xi are the coordinates in the FNC frame. The metric

can be re-expressed in terms of these tidal tensors, as in (3.1.6), as

g00 = −1− Cijxixj −
1

3
Cijkx

ixjxk − 1

12

(
Cijkl + 4C(ijCkl) − 4B(kl|n|Bij)n

)
xixjxkxl + · · ·

g0m =
2

3
Bijmx

ixj +
1

4
Rm(ij|0|;k)x

ixjxk

+
1

135

(
9Rm(ij|0|;kl) − 6R 0

m(ij R|0|kl)0 − 2R n
m(ij R|n|kl)0

)
xixjxkxl · · ·

gmn = δmn +
1

6
(Rimnj +Rinmj)x

ixj

− 1

36
(Rinjm;k +Rinkm;j +Rjnim;k +Rknim;j +Rknjm;i +Rjnkm;i)x

ixjxk

+
1

180

(
9Rm(ij|n|;kl) − 6R 0

m(ij R|n|kl)0 − 2R p
m(ij R|n|kl)p

)
xixjxkxl. (3.4.8)
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Figure 3.3: The spatial vectors of the rotated Fermi normal coordinate frame. The set

{λ̃ µ′

1 , λ µ′

2 , λ̃ µ′

3 } is not parallel-propagated along the geodesic. To construct the Fermi normal

frame, an inverse rotation Ψ of λ̃ µ′

1 and λ̃ µ′

3 must be performed in the orbital plane to obtain

the parallel-propagated vectors λ µ′

1 and λ µ′

3 .

3.4.2 Explicit components of the tidal tensors

The Riemann tensor and its covariant derivatives can be expressed as components either in the

FNC frame {λ0,λ1,λ2,λ3} or in the tilde frame {λ0, λ̃1,λ2, λ̃3}. The same statement holds for the

tidal tensors, which can be denoted by Cij , Cijk, Cijkl, and Bijk in the FNC frame and as C̃ij , C̃ijk,

C̃ijkl, and B̃ijk in the tilde frame. While the tilde frame is not parallel-propagated, it does provide

a simpler form for the tidal tensor components. Figure 3.3 shows the direction of the vectors of the

tilde frame along a parabolic trajectory. The coordinates in the tilde frame may be written in terms

of the FNC coordinates by

x̃1 = x1 cos Ψ + x3 sin Ψ, x̃2 = x2, x̃3 = −x1 sin Ψ + x3 cos Ψ. (3.4.9)

The coordinates in the FNC frame may be associated with alternative Cartesian coordinates by the

transformation: x1 = x, x3 = y, x2 = −z. The quadrupole and octupole tidal tensors for a parabolic

geodesic are as follows. The non-zero components of the quadrupole tidal tensor in the tilde frame

are

C̃ij = diag(C̃11, C̃22, C̃33) = diag

[
−M

(
3L2 + 2r2

)
r5

,
M
(
3L2 + r2

)
r5

,
M

r3

]
. (3.4.10)
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In contrast, the non-zero components of the quadrupole tidal tensor in the FNC frame are


M
r3

[
1− 3(L2+r2)

r2 cos2 Ψ
]

0 −Mr3
3(L2+r2)

r2 sin Ψ cos Ψ

0 M
r3

(
1 + 3L2

r2

)
0

−Mr3
3(L2+r2)

r2 sin Ψ cos Ψ 0 M
r3

[
1− 3(L2+r2)

r2 sin2 Ψ
]
 (3.4.11)

Likewise, the non-zero components of the octupole tidal tensor are simpler in the tilde frame,

C̃111 =
6M

r4

(
1 +

3L2

2r2

)
V −1

2

C̃131 = C̃311 = C̃113 =
4M

r4

L

r
ur
(

1 +
5L2

4r2

)
V −1

2

C̃122 = C̃212 = C̃221 = −3M

r4

(
1 +

7L2

3r2

)
V −1

2

C̃133 = C̃313 = C̃331 = −3M

r4

(
1 +

2L2

3r2

)
V −1

2

C̃322 = C̃232 = C̃223 = −M
r4

L

r
ur
(

1 +
5L2

r2

)
V −1

2

C̃333 = −3M

r4

L

r
urV −1

2 (3.4.12)
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where V2 =
√

1 + L2/r2. Again, the non-zero components of the octupole tidal tensor in the FNC

frame are more complicated and found to be,

C111 =
3M

4r4

[
3

(
1 +

7L2

3r2

)
cos Ψ + 5

(
1 +

L2

r2

)
cos(3Ψ)

− 6
L

r
ur
(

1 +
5L2

3r2

)
sin Ψ− 10

L

r
ur
(

1 +
L2

r2

)
cos(2Ψ) sin Ψ

]
V −1

2

C131 = C311 = C113 =
M

4r4

[L
r
ur
(

1 +
5L2

r2

)
cos Ψ + 15

L

r
ur
(

1 +
L2

r2

)
cos(3Ψ)

+ 18

(
1 +

11L2

9r2

)
sin Ψ + 30

(
1 +

L2

r2

)
cos(2Ψ) sin Ψ

]
V −1

2

C122 =
M

r4

[
− 3

(
1 +

7L2

3r2

)
cos Ψ +

L

r
ur
(

1 +
5L2

r2

)
sin Ψ

]
V −1

2

C133 =
M

4r4

[
3

(
1 +

7L2

3r2

)
cos Ψ− 15

(
1 +

L2

r2

)
cos(3Ψ)

+ 14
L

r
ur
(

1 +
5L2

7r2

)
sin Ψ + 30

L

r
ur
(

1 +
L2

r2

)
cos(2Ψ) sin Ψ

]
V −1

2

C322 = C232 = C223 = −M
r4

[L
r
ur
(

1 +
5L2

r2

)
cos Ψ + 3

(
1 +

7L2

3r2

)
sin Ψ

]
V −1

2

C333 =
3M

4r4

[L
r
ur
(

1 +
5L2

r2

)
cos Ψ− 5

L

r
ur
(

1 +
L2

r2

)
cos(3Ψ)

− 12

(
1 +

2L2

3r2

)
sin Ψ + 20

(
1 +

L2

r2

)
sin3 Ψ

]
V −1

2 . (3.4.13)

We have obtained the lengthy expressions for C̃ijkl and Cijkl in Mathematica and have omitted

reproducing them here for brevity. The non-zero components of Bijk in the rotated frame are given

by

B̃131 = B̃311 = −B̃232 = −B̃322 = −1

2
B̃113 =

1

2
B̃223 = −3LM

√
L2 + r2

2r5
. (3.4.14)

In the Fermi normal coordinate frame, they are

B113 = −1

2
B131 = −B223 =

1

2
B232 = −1

2
B311 =

1

2
B322 =

3LM
√
L2 + r2

r5
cos Ψ ,

B122 = −B133 = B212 = −2B221 = −B313 = 2B331 = −3LM
√
L2 + r2

2r5
sin Ψ. (3.4.15)

Finally, the gravitomagnetic potential is given as components in the FNC frame by

A1 = −2LM

r5

√
L2 + r2

{
x1x3 cos Ψ + sin Ψ

[
(x3)2 − (x2)2

]}
A2 =

2LM

r5
x2
√
L2 + r2(x3 cos Ψ− x1 sin Ψ)

A3 =
2LM

r5

√
L2 + r2

{
cos Ψ

[
(x1)2 − (x2)2

]
+ x1x3 sin Ψ

}
. (3.4.16)
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3.5 Combined gravity of the star and the external tidal field

In this section we consider how the star’s self-gravity and the black hole tidal field can be

combined, using a post-Newtonian expansion to reach a common level of approximation. The tidal

field is derived from the metric in FNC, which is suited to following test-body motion relative to the

chosen central geodesic in a small neighborhood. If the mass of a fluid is negligible, then fluid motion

in this small neighborhood may be computed also by simply using the tidal field. The equations for

the fluid are derived by using the FNC metric expansion in the conservation law

T ab ;b = 0 = T ab,b + ΓacbT
cb + ΓbcbT

ac. (3.5.1)

However, the star’s mass is, in general, not negligible and we must account for its self-gravity. The

form of the metric in (3.1.6) must be modified to account for both the gravity of the star and the

black hole tidal field. However, since it is the case that simultaneously (1) the self-gravity of the

star is weak and (2) the star never approaches too close to the horizon of the black hole (so that the

tidal field is also sufficiently weak), then to first approximation the combined gravitational field can

be taken as the linear superposition of the two fields. Note that since the Einstein field equations

are nonlinear, this superposition will not yield a consistent solution. Instead, this field will represent

a first-order solution in a perturbation calculation and at next order in iterating the Einstein field

equations an interaction, or correction term, must emerge. These issues are discussed in more detail

in this section where we consider how the self-gravity can be incorporated in the FNC approach and

what represents an adequate approximation for the gravitational field.

3.5.1 Physical scales associated with tidal encounters and dimensionless parameters

Consider a parabolic encounter with a pericentric radius Rp. Let the mass of the black hole be

M . In the weak-field and slow motion limit, the Cij = R0i0j term in g00 of (3.1.6) is dynamically

the most significant. We may write the typical magnitude of this term as

|R0i0jx
ixj | ∼ O

(
M

R3
p

L2

)
, (3.5.2)
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where L is the characteristic size of a region of interest following motion on the world line G. The

weakness of the black hole tidal field may be characterized by

M

R(t)
.
M

Rp
≡ δ2 � 1, (3.5.3)

which will hold for distant encounters. Furthermore, we will also assume that the domain for our

calculations (and hence the star) is small compared to the distance to the black hole so that

ν ≡ L
Rp
� 1. (3.5.4)

This requirement will be discussed further below. We see that the dominant tidal term is a leading

term in a simultaneous expansion in the small parameters δ and ν. At the same time, a star of

mass M∗ and radius R∗ can be assumed to have a weak gravitational field in its interior and near

environment such that

|h00| = |g00 + 1| . ε2 ≡ M∗
R∗

. (3.5.5)

If we assume that the tidal field and self-gravitational field can be added linearly, then these two

contributions will be of comparable strength (if we take L ' R∗) when a star is on the threshold of

tidal disruption. (In what follows we will restrict our attention to computational domains of size L

that are at most a few times R∗, and henceforth simply define L = R∗.) The balance of these terms

occurs when the previously defined tidal disruption parameter

η ≡
(
R3
p

M

M∗
R∗

)1/2

, (3.5.6)

is η ' 1. In this thesis, we will consider tidal encounters that are at the threshold of disruption

(η = 1) or weaker (η ∼ 2− 6). In both cases, we will consider η to be of order unity for the sake of

this discussion.

We use ε2 � 1 as the post-Newtonian expansion parameter for the weak field and slow motion

in the star’s near zone. Simultaneously, we use δ2 � 1 as the orbital post-Newtonian expansion

parameter for the maximum strength of the encounter (before disruption), which is also weak. In

general, these two parameters may not be of the same order of magnitude. They are related by the

binary mass ratio, µ ≡ M∗/M . In this study, we consider this mass ratio to be small, µ � 1, and

confine our interest to the range µ = 10−5 − 10−3. This corresponds to black holes with masses
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in the range M = 103 − 105M�. In terms of the encounter strength η, the stellar and orbital

post-Newtonian parameters are related by

δ2 = ε2µ−2/3η−2/3. (3.5.7)

We see that for small mass ratios, the orbital velocity in the black hole frame, ∼ δ, may be much

larger than the sound speed within the star, ∼ ε. This difference in the strengths of the black hole

field and the internal field of the star is related to the difference between the size of the star, R∗,

and the inhomogeneity scale, R(t) & Rp. We have that

R∗
Rp

= ν = µ1/3η−2/3, (3.5.8)

and see that we will also have ν � 1.

3.5.2 Superposition of the fields and an approximation for white dwarfs

The metric for the tidal field (3.4.8) is a simultaneous power series expansion in the size of the

region, ν = R∗/Rp, and the black hole field strength at periastron, δ2 = M/Rp. Schematically, the

expansion can be written as a double sum,

g00 = −1 +

∞∑
m=2

∑
n=0

g
[n,m]
00

(
M

Rp

)(
M

Rp

)n(
R∗
Rp

)m
,

g0i =

∞∑
m=2

∑
n=0

g
[n,m]
0i

(
M

Rp

)3/2(
M

Rp

)n(
R∗
Rp

)m
,

gij = δij +

∞∑
m=2

∑
n=0

g
[n,m]
ij

(
M

Rp

)(
M

Rp

)n(
R∗
Rp

)m
, (3.5.9)

over tidal multipoles, m, and orbital post-Newtonian corrections, n, though not all powers of δ2 will

be present.

In contrast, if we consider an isolated star (e.g., a white dwarf), the gravitational field represented
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in a post-Newtonian expansion in powers of ε will have terms of the following sizes [56],

g00 = −1− 2Φ∗ +O
[(

M∗
R∗

)2
]

+ · · · ,

g0i = O
[(

M∗
R∗

)3/2
]

+ · · · ,

gij = δij +O
(
M∗
R∗

)
+ · · · . (3.5.10)

Here, the Newtonian potential Φ∗ is displayed and the next order terms in each metric component are

the first post-Newtonian. While not explicitly displayed here, their form for a fluid configuration is

well known [64]. The strength of the gravitational field for a typical field white dwarf (Mwd ' 0.6M�

) is ε2 ' 10−4, and so the stellar 1-PN corrections are of size 10−4 smaller than the Newtonian

potential.

In this thesis we consider the Newtonian self-gravitational field of the star and Newtonian hydro-

dynamics as an adequate treatment for our purposes. This introduces fractional errors on the order

of 10−4. Using this assumption, we consider the superposition of the tidal field and self-gravitational

field while retaining all necessary terms without making errors larger than those already made by

neglecting the (stellar) 1-PN corrections. A set of relativistic corrections in the tidal field are re-

tained because the small mass ratio µ yields a difference between orbital PN parameter δ and stellar

PN parameter ε, with typically δ � ε.

For a star in an external tidal field, we cannot simply add the stellar gravitational field to the

tidal field because the Einstein field equations are nonlinear. However, if both the stellar field and

the tidal field are weak, the combined field can be taken to be the superposition plus a (higher order)

interaction expansion [65]. The form of the combined fields is

g00 = −1− 2Φ∗ + htidal
00 + hint

00 +O
(
M2
∗

R2∗

)
,

g0i = htidal
0i + hint

0i +O
[(

M∗
R∗

)3/2
]
,

gij = δij + htidal
ij + hintij +O

(
M∗
R∗

)
, (3.5.11)

where the hint
µν is the interaction field. The interaction terms arise from the nonlinearity of the
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Einstein field equations. We expect the term hint
00 in g00 to be of order

hint
00 ∼ Φ∗h

tidal
00 ∼ O

(
M∗
R∗

M∗
R∗

η−2

)
. (3.5.12)

Since we consider η ≡ O(1) for this discussion, then hint
00 ∼ O(ε4) and it is at the level of already

neglected (stellar) 1-PN corrections. Likewise, the interaction terms in g0i and gij can be no larger

than the respective neglected (stellar) 1-PN corrections. Thus, we are able to neglect the nonlinear

interaction field as long as we neglect the first post-Newtonian corrections to the star’s internal

gravity and hydrodynamics. We therefore superimpose linearly the Newtonian self-gravitational

field and the tidal field expressed previously in the FNC system. We set the cutoff of terms in the

FNC tidal field to be those that are in order of magnitude size at or below the terms we have already

neglected.

We now show that some parts of the metric in (3.5.11) can be ignored and that some of the terms

we retain represent interesting (orbital) relativistic corrections. In Figure 3.4, we show schematically

the relevant acceleration terms which correspond to the terms in the expansion of the metric. This

is given for the range in mass ratio µ = 10−5 − 10−3. Any terms less than (stellar) 1-PN and the

motion of the black hole are negligible.

Consider the tidal terms in the g00 expansion. The quadrupole tidal term (3.4.11) has a Newto-

nian term and a δ2 correction,

Cijx
ixj = O

(
M

Rp

R2
∗

R2
p

)
& O

(
M

Rp

M

Rp

R2
∗

R2
p

)
= O

(
ε2η−2

)
& O

(
ε4µ−2/3η−8/3

)
. (3.5.13)

We see that the first term (denoted as α0PN
l=2 ) is the same size as the Newtonian stellar potential.

For mass ratios µ . 10−3, the post-Newtonian correction (denoted as α1PN
l=2 ) is several orders of

magnitude larger than (stellar) 1-PN (ε4 ∼ 10−8) and is therefore an important term. The octupole

tidal term (3.4.13) has a Newtonian term, and δ2 and δ4 corrections,

Cijkx
ixjxk = O

(
M

Rp

R3
∗

R3
p

)
& O

(
M

Rp

M

Rp

R3
∗

R3
p

)
& O

(
M

Rp

M2

R2
p

R3
∗

R3
p

)
= O

(
ε2µ1/3η−8/3

)
& O

(
ε4µ−1/3η−10/3

)
& O

(
ε6µ−1η−4

)
.

(3.5.14)
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Figure 3.4: Acceleration terms in the metric of combined self- and tidal gravity fields. The formalism
for calculating the relativistic tidal interaction in Fermi normal coordinates allows the addition of
an arbitrary number of terms in the tidal expansion. However, the use of Newtonian hydrodynamics
and self-gravity [WD (0PN)] limits the number. The diagram above gives the number of relevant
post-Newtonian terms [T (l=2,0-PN), T (l=2,1-PN), ... ] in the tidal expansion. Any accelerations
multiplied by the radius of the star that are smaller than that of (stellar) 1PN and the motion of
the black hole are negligible.

51



We see that the first term (denoted as α0PN
l=3 ) is one or two orders of magnitude smaller than

the Newtonian stellar potential. The first (denoted as α1PN
l=3 ) and second (denoted as α2PN

l=3 ) post-

Newtonian corrections are larger than (stellar) 1-PN for mass ratios of µ . 10−3 and µ . 10−4. The

l = 4 has a Newtonian term and several δ corrections,

R0(i|0|j;kl)x
ixjxkxl = O

(
M

Rp

R4
∗

R4
p

)
& O

(
M

Rp

M

Rp

R4
∗

R4
p

)
& · · ·

= O
(
ε2µ2/3η−10/3

)
& O

(
ε4η−4

)
& · · · . (3.5.15)

The first term (denoted as α0PN
l=4 ) is significant for mass ratios µ > 10−6. The post-Newtonian

correction is too small. The next term in the tidal expansion of g00 is

C(ijCkl)x
ixjxkxl = O

(
M2

R2
p

R4
∗

R4
p

)
& · · ·

= O
(
ε4η−4

)
& · · · , (3.5.16)

and is at the cutoff and is too small to retain. The next term is

B(kl|n|Bij)nx
ixjxkxl = O

(
M2

R2
p

M

Rp

R4
∗

R4
p

)
& · · ·

= O
(
ε6µ1/3η−2/3

)
& · · · , (3.5.17)

and is also too small. The significance of g00 metric terms for different mass ratio can be seen in

the corresponding acceleration terms in Figure 3.4. For the other components of the metric, g0i and

gij , we should consider the acceleration terms directly and we address this in the next section.

3.5.3 Fluid equations of motion

We now obtain the fluid equations of motion for a self-gravitating star in a relativistic tidal field.

We use the relevant terms in the tidal expansion of the metric with the limit at stellar 1-PN. For a

perfect fluid, the stress-energy tensor is given by

T ab = (ρ+ ρε+ p)uaub + pgab, (3.5.18)

where the rest (baryon) energy density is ρ and the specific energy is ε. We define the spatial velocity

in terms of the four-velocity components as vi ≡ dxi/dt = ui/u0 where u0 = dt/dτ and ui = dxi/dτ .
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Writing out the components of the stress-energy tensor,

T 00 = ρ

(
1 + ε+

p

ρ

)
(u0)2 + pg00,

T i0 = ρ

(
1 + ε+

p

ρ

)
(u0)2vi,

T ij = ρ

(
1 + ε+

p

ρ

)
(u0)2vivj + pgij , (3.5.19)

where the specific internal energy ε is approximately the same order as the stellar potential, ε ∼

p/ρ ∼ Φ∗ ∼ ε2. Expanding the velocity constraint, uau
a = −1 = gabu

aub = g00(u0)2 + 2g0i(u
0)2vi+

gij(u
0)2vivj . Then, (u0)2 = 1 + v2 + 2(2h00), where 2h00 denotes the terms in the metric expansion

of order O
(
ε2
)
. In our calculations we consider Newtonian hydrodynamics. We have that the

stress-energy tensor at the stellar 1-PN cutoff is

T 00 = ρ+O(ρε)

T i0 = ρvi +O(ρε3)

T ij = ρvivj + δijp+O(ρε4). (3.5.20)

Consider the b = i case of the conservation equation (momentum equation),

T ia;a = T ia,a + ΓibaT
ba + ΓaabT

ib = 0. (3.5.21)
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The connection coefficients written in terms of the combined metric for the self-gravity and the tidal

gravity are,

Γi00 = 1
2g
iν(g0ν,0 + g0ν,0 − g00,ν)

= − 1
2 2h00,i − 1

2 4h00,i − 1
2 6h00,i + 3h0i,0 − 1

2 2hij 2h00,j ,

Γi0j = 1
2g
iν(g0ν,j + gjν,0 − g0j,ν) = 1

2 ( 3h0i,j + 2hij,0 − 3h0j,i),

Γijk = 1
2g
iν(gjν,k + gkν,j − gjk,ν)

= 1
2 ( 2hij,k + 4hij,k + 2hik,j + 4hik,j − 2hjk,i − 4hjk,i)

− 1
2 ( 2hil 2hjl,k + 2hil 2hkl,j − 2hil 2hjk,l),

Γ0
00 = 1

2g
0ν(g0ν,0 + g0ν,0 − g00,ν)

= − 1
2 ( 2h00,0 + 4h00,0 + 6h00,0)− 1

2 3h0i 2h00,i − 1
2 2h00 2h00,0 − 1

2 3h0i 2h00,i,

Γ0
0i = 1

2g
0ν(g0ν,i + giν,0 − g0i,ν) = − 1

2 ( 2h00,i + 4h00,i + 6h00,i) + 1
2 2h00 2h00,i,

Γ0
ij = 1

2g
0ν(giν,j + gjν,i − gij,ν) = − 1

2 ( 3hi0,j +3 hj0,i − 2hij,0), (3.5.22)

where Nhab denotes the terms in the combined metric expansion of the order O
(
εN
)
. Before

substituting the components into the combined metric, consider the size of the g0i and gij terms.

The first term in g0i is the gravitomagnetic term and we have that

Bijkx
ixjxk = O

[(
M

Rp

)3/2
R2
∗

R2
p

]
& O

[(
M

Rp

)5/2
R2
∗

R2
p

]
& · · ·

= O
(
ε3µ−1/3η−7/3

)
& O

(
ε5µ−1η−3

)
& · · · , (3.5.23)

where the first part is (denoted α1
GM) and the second term (denoted α2

GM) is smaller by a factor of

δ2. The successsive terms in g0i are smaller by a factor of R∗/Rp. We will show in the following

that only the α1
GM term is significant. Consider the first term in gij

(Rimnj +Rinmj)x
ixj = O

(
M

Rp

R2
∗

R2
p

)
& O

(
M2

R2
p

R2
∗

R2
p

)
& · · ·

= O
(
ε2η−2

)
& O

(
ε4µ−2/3η−8/3

)
& · · · . (3.5.24)

We will show below that these two terms (denoted β1 and β2) and successive terms may be neglected.
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Substituting the combined metric, we can re-express the connection coefficients in terms of orders,

Γi00 = O
(
α0PN
l=2

1

L

)
& O

(
α1PN
l=2

1

L

)
& O

(
α0PN
l=3

1

L

)
& O

(
α1PN
l=3

1

L

)
& O

(
α2PN
l=3

1

L

)
& O

(
α0PN
l=4

1

L

)
& · · ·

Γi0j = O
(
α1

GM

1

L

)
& O

(
β1 ε

L
)

& · · ·

Γijk = O
(
β1 1

L

)
& O

(
β2 1

L

)
&

O
(

(β1)2 1

L

)
& · · ·

Γ0
00 = O

(
α0PN
l=2

ε

L
)

& O
(
α0PN
l=3

ε

L
)

&

O
(
α0PN
l=4

ε

L
)

& · · ·

Γ0
0i = O

(
α0PN
l=2

1

L

)
& O

(
α1PN
l=2

1

L

)
& O

(
α0PN
l=2

1

L

)
& O

(
α1PN
l=2

1

L

)
& O

(
α0PN
l=3

1

L

)
& O

(
α1PN
l=3

1

L

)
& O

(
α2PN
l=3

1

L

)
& O

(
α0PN
l=4

1

L

)
& · · ·

Γ0
ij = O

(
α1

GM

ε

L
)

& O
(
β1 ε

L
)

& · · · (3.5.25)

The first term in the momentum equation (3.5.21) may be further expanded as,

T ia,a = (ρvi) × O
( ε
L
)

& ρvivj × O
(

1

L

)
& δijp × O

(
1

L

)
. (3.5.26)

For the next term,

ΓibaT
ba = Γi00T

00 + Γi0jT
0j + Γij0T

j0 + ΓijkT
jk, (3.5.27)
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we have for a cut-off at stellar 1-PN,

ΓibaT
ba = ρ×O

(
α0PN
l=2

1

L

)
& ρ×O

(
α1PN
l=2

1

L

)
&

ρ×O
(
α0PN
l=3

1

L

)
& ρ×O

(
α1PN
l=3

1

L

)
&

ρ×O
(
α2PN
l=3

1

L

)
& ρ×O

(
α0PN
l=4

1

L

)
&

ρvi ×O
(
α1

GM

1

L

)
.

For the next term,

ΓaabT
ib = Γ0

00T
i0 + Γ0

0jT
ij + Γjj0T

i0 + ΓjjkT
ik, (3.5.28)

we have for a cut-off at 1PN,

ΓaabT
ib = ρvi ×O

(
α0PN
l=2

1

L

)
& ρvi ×O

(
α0PN
l=3

1

L

)
&

ρvi ×O
(
α0PN
l=4

1

L

)
& ρvi ×O

(
α1

GM

1

L

)

We have substituted the terms in the combined metric into the momentum equation and we see

that there are several terms in the tidal expansion that are significant. We have Newtonian tidal

terms for l = 2, 3, 4 that are relevant. Although we have a cut-off at stellar 1-PN, we have the

following post-Newton terms: the first correction (1-PN) to l = 2, the second (1-PN) and third

(2-PN) corrections to l = 3. We also have the gravitomagnetic term that is significant. Note that

this corresponds with the acceleration terms in Figure 3.4.

Finally, the equations of motion of the fluid can be given in the approximation. We find that

[58]

ρ
∂vi
∂τ

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
− ρ ∂

∂xi
(Φ∗ + Φtidal) + ρ

[
vj

(
∂Aj
∂xi
− ∂Ai
∂xj

)
− ∂Ai

∂τ

]
, (3.5.29)

where Φ∗ is the self-gravity potential and Φtidal is given by

Φtidal = 1
2Cijx

ixj+ 1
6Cijkx

ixjxk+ 1
24

[
Cijkl + 4C(ijCkl) − 4B(kl|n|Bij)n

]
xixjxkxl+O(x5). (3.5.30)

In this chapter, we have introduced the coordinate frame for our calculations, Fermi normal

coordinates. We have explicitly given the tidal tensors to calculate the tidal field. We have considered
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how the star’s self-gravity and the black hole tidal field can be combined. By neglecting terms smaller

than stellar 1-PN, we are able to ignore the interaction between the two fields and superpose them

linearly. We have shown that there are several post-Newtonian terms in the tidal field that are

relevant despite the fact that we consider only Newtonian hydrodynamics and stellar self-gravity

for our calculations. We justified the various tidal terms used in the numerical method described in

Chapter 4.
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Chapter 4

Numerical method

In this chapter, we give the numerical method for calculating the tidal disruption of a star by

a Schwarzschild black hole. We assume that the star is a Newtonian fluid and use the piecewise

parabolic method with Lagrangian remap (PPMLR) to solve the hydrodynamic equations. We also

assume that the self-gravity is Newtonian and solve Poisson’s equation for the gravitational field of

the star. We calculate the relativistic tidal interaction using a routine to update the location of the

FNC frame along the geodesic using the hydrodynamic time as the proper time. From the location

and proper time, we calculate the tidal accelerations due to the black hole using the formalism of

Chapter 3.

4.1 Overview of the numerical method

The numerical method for calculating the tidal interaction between a black hole and a self-

gravitating star consists of three modules. The main module is the hydrodynamics solver which

evolves the density, pressure, and velocities of the fluid as it undergoes accelerations from pressure

gradients, its own self-gravity, and the tidal interaction with the black hole. The self-gravity and

tidal modules provide added acceleration terms incorporated into the hydrodynamics solver.

The simulated star evolves over hydrodynamic time, τ . We consider this to also be the proper

time for the Fermi normal coordinate frame with origin assumed to be a point along the chosen

geodesic. Using the proper time along the geodesic, we are able to obtain the location of the FNC

frame from the black hole. We use this information to calculate the tidal accelerations.

4.2 PPMLR hydrodynamics

In this section, we present the numerical method for calculating the hydrodynamics of the fluid

star. We begin with an overview of the Newtonian hydrodynamic equations. We give the relevant

equations for our calculations and present the hydrodynamic solver for our numerical method.



4.2.1 Newtonian hydrodynamic equations

We apply fluid dynamics to macroscopic phenomena by assuming that the fluid is a continuous

medium where the individual elements are large enough to contain a large number of atoms or

molecules. The fluid elements are assumed to be very small compared to the overall volume, but

large compared to the intermolecular spacings. The state of a moving fluid is characterized by five

quantities, the three components of velocity, the pressure, and the density. For an ideal fluid, a

complete system of five equations consists of the three momentum (Euler) equations, the equation

of continuity, and the equation of state.

The behavior of the fluid may be understood using either a Eulerian or Lagrangian description. In

the Eulerian description, we observe the fluid from a fixed laboratory frame. The physical properties

of the fluid are regarded as field quantities, ~f(~r, t), where ~f may be the velocity ~v and ~r and t are

independent variables. In the Lagrangian description, the motion of a fluid element is followed. The

position vector ~r(~ξ, t) is a function of a Lagrangian variable ~ξ, which may denote different physical

properties, and time t. These two descriptions are linked by the convective derivative, taken following

the motion of a particular fluid element, given by

d

dt
=

∂

∂t
+ ~v · ~∇, (4.2.1)

where ~v(~r, t) ≡ d~r/dt = ~̇r and ~r is the Eulerian position variable.

Consider the equations of hydrodynamics in the Eulerian description. We first derive the equation

of continuity. The mass of fluid flowing in unit time through an element d~f of the surface bounding

a volume is

−∂M
∂t

= − ∂

∂t

∫
ρdV =

∮
ρ~v · d~f. (4.2.2)

The differential form of the continuity equation is then,

∂ρ

∂t
+ ~∇ · (ρ~v) =

∂ρ

∂t
+ ρ~∇ · ~v + ~v · ~∇ρ = 0. (4.2.3)

Consider the momentum equation. The total force acting on some volume in a fluid is

−
∮
Pd~f = −

∫
~∇ ·PdV, (4.2.4)
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where P is the pressure tensor. The equation of motion can then be written as

ρ
d~v

dt
= −~∇ ·P + ρ~g, (4.2.5)

where g is the total body or external force per unit mass. In order to obtain the conservative form

of this equation, we rewrite the left-hand side as

ρ
d~v

dt
= ρ

∂~v

∂t
+
(
ρ~v · ~∇

)
~v

=
∂

∂t
(ρ~v)− ~v ∂ρ

∂t
+
(
ρ~v · ~∇

)
~v

=
∂

∂t
(ρ~v) + ~v~∇ · (ρ~v) +

(
ρ~v · ~∇

)
~v

=
∂

∂t
(ρ~v) + ~∇ · (ρ~v~v).

Then,

∂

∂t
(ρ~v) + ~∇ · (ρ~v~v + P) = ρ~g (4.2.6)

For pressures that are purely isotropic, the pressure tensor is of the form

P = P I, (4.2.7)

where I is the identity tensor and ~∇ ·P = ~∇P . Consider the conservation of energy equation. The

change in energy of a unit volume of fluid with time is

∂

∂t

(
1

2
ρv2 + ρε

)
.

The first quantity is

∂

∂t

(
1

2
ρv2

)
=

1

2
v2 ∂ρ

∂t
+ ρ~v · ∂~v

∂t

= −1

2
v2~∇ · (ρ~v)− ~v · ~∇P − ρ~v · (~v · ~∇)~v

= −1

2
v2~∇ · (ρ~v)− ρ~v · ~∇

(
1

2
v2 + w

)
+ ρT~v · ~∇s. (4.2.8)

To write the second quantity, consider the thermodynamic relation

dε = Tds− pdV = Tds+
P

ρ2
dρ
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and the definition of the enthalpy, w = ε+ P/ρ, such that

d(ρε) = εdρ+ ρdε = wdρ+ ρTds.

Then, the second quantity is

∂(ρε)

∂t
= w

∂ρ

∂t
+ ρT

∂s

∂t
= −w~∇ · (ρ~v)− ρT~v · ~∇s. (4.2.9)

The conservation of total energy equation is then

∂

∂t

(
1

2
ρv2 + ρε

)
= −

(
1

2
v2 + w

)
~∇ · (ρ~v)− ρ~v · ~∇

(
1

2
v2 + w

)
= −~∇ ·

[
ρ~v

(
1

2
v2 + w

)]
. (4.2.10)

Integrating and applying Gauss’ law, we have the integral form,

∂

∂t

∫ (
1

2
ρv2 + ρε

)
dV = −

∮
ρ~v

(
1

2
v2 + w

)
· dσ

= −
∮
ρ~v

(
1

2
v2 + ε

)
· dσ −

∮
p~v · dσ. (4.2.11)

We would like to have the hydrodynamic equations in the Lagrangian description. Define the

Lagrangian mass coordinate ξ = m and Lagrangian time t′ in one dimensional Cartesian coordinates

as

m = m(r, t) =

∫ r

dr′ρ(r′, t), t′ = t. (4.2.12)

Using these equations, we express a coordinate transformation from the Eulerian frame (r, t) to the

Lagrangian frame (m, t′). The Jacobian matrix is

J ij =

 ∂m
∂r

∂t′

∂r

∂m
∂t

∂t′

∂t

 =

 ρ 0

−ρV 1

 , (4.2.13)

where J = |J ij | = ρ. Then, we may transform the partial derivatives as

∂

∂r
= ρ

∂

∂m
,

∂

∂t
= −ρV ∂

∂m
+

∂

∂t′
. (4.2.14)
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We may also define a volume coordinate τ such that

τ = r, dτ = dr. (4.2.15)

Then, we have the following partial derivatives,

∂

∂r
=

∂

∂τ
= ρ

∂

∂m
,

∂

∂τ
= ρ

∂

∂m
,

∂τ

∂m
=

1

ρ
. (4.2.16)

Transforming the Eulerian forms of the continuity (4.2.3), momentum (4.2.6), and energy (4.2.10)

equations, we obtain the Lagrangian continuity equation,

∂τ

∂t
− ∂v

∂m
= 0, (4.2.17)

the Lagrangian momentum equation,

∂v

∂t
+

∂p

∂m
= g, (4.2.18)

and the Lagrangian energy equation,

∂E

∂t
+

∂

∂m
(vp) = vg, (4.2.19)

in one dimension, with total energy E = ε+ 1
2v

2.

4.2.2 Riemann problem

A conservation law with piece-wise constant data having a single discontinuity is known as a

Riemann problem. For our calculations, this occurs at every zone interface in our computational

domain in solving the hydrodynamic equations. The fluid variables are discretized on the domain

and appear as piece-wise constant across the interface. The Riemann problem for our equations is

non-linear and we present the solver for our code below.

4.2.3 Godunov method

In this subsection we present the Godunov method, as discussed more generally in [66]. Consider

a hyperbolic conservation law of the form

∂q

∂t
+

∂

∂x
f(q, t) = 0, (4.2.20)
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where q is the vector of conserved quantities and f is the flux function. Let the ith grid cell be

defined by

Ci = (xi−1/2, xi+1/2) (4.2.21)

with cell-average value of q(x, tn),

Qni ≈
1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) ≡ 1

∆x

∫
Ci

q(x, tn)dx, (4.2.22)

where ∆x = xi+1/2 − xi−1/2. The conservative update is

Qn+1
i = Qni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)
, (4.2.23)

where

Fni−1/2 ≈
1

∆t

∫ tn+1

tn

f(q(xi−1/2,t, t))dt, (4.2.24)

is an approximation to the average flux along x = xi−1/2. We assume that the average flux is defined

by a numerical flux function F , where

Fni−1/2 = F
(
Qni−1, Q

n
i

)
. (4.2.25)

Then, (4.2.23) becomes

Qn+1
i = Qni −

∆t

∆x

[
F
(
Qni , Q

n
i+1

)
−F

(
Qni−1, Q

n
i

)]
. (4.2.26)

Note that the sum of the flux differences cancels out except for the fluxes at the boundary. Therefore,

over the full domain, there is exact conservation except for the fluxes at the boundaries.

We may compute the integral of (4.2.24) exactly by replacing q(x, t) by q̃n(x, t). Let Q∗i−1/2 =

q∗(Qni−1, Q
n
i ) be the solution to the Riemann problem at xi−1/2. We define the numerical flux Fni−1/2

as

Fni−1/2 =
1

∆t

∫ tn+1

tn

f(q∗(Qni−1, Q
n
i ))dt = f(q∗(Qni−1, Q

n
i )). (4.2.27)

Then, the Godunov method may be defined as (1) solving the Riemann problem at xi−1/2 to ob-

tain q∗(Qni−1, Q
n
i ), (2) defining the flux Fni−1/2 = F(Qni−1, Q

n
i ) by (4.2.27), (3) applying the flux-

differencing formula (4.2.23).
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4.2.4 PPMLR algorithm

The hydrodynamics solver is a version of Virginia Hydrodynamics-1 (VH-1) [67] for parallel

processors (MPI) and written in C. The hydrodynamics calculation is performed for one time step

using the piecewise parabolic method (PPM) in Lagrangian coordinates by Woodward and Colella

[68]. The method is an extension of Godunov’s first-order method by taking into account the correct

domain of dependence of zone edges in calculating the conservative fluxes. The method consists of

the interpolation of hydrodynamic variables across the domain, the calculation at the zone edges of

the solution to the initial value problem using characteristic equations and Riemann solvers, and the

use of these solutions to calculate effective fluxes in conservative form. The results are then mapped

onto a fixed Eulerian grid using a Lagrangian remap step (PPMLR).

In our calculations, we consider a finite volume domain where cell centers are denoted by j and

cell faces by j + 1/2. We assume that the conserved quantities U = (τ, v, E) are mass-weighted

averages at time tn,

Unj =
1

∆mj

∫ mj+1/2

mj−1/2

U(m, tn)dm, mj+1/2 =
∑
k≤j

∆mk, (4.2.28)

where ∆mj is the amount of mass contained in the jth zone. Define rnj+1/2 = r(mj+1/2, t
n) as a

separate dependent variable given by

rnj+1/2 − rnj0+1/2 =
∑

j0≤k≤j
τmk ∆mk (4.2.29)

We apply a conservative update method to calculate Un+1
j , the average values for the conserved

quantitites at time tn+1 = tn + ∆t. The known quantities at time step tn are the mass increments

∆mj and mass-weighted averages τnj , unj , and Enj . In PPMLR, pressure p is interpolated instead

of the total energy in order to obtain a better-behaved solution near shocks. The average value

of the pressure in the zone is evaluated from the averages of the conserved quantities and is a

second-order-accurate value.

Next we shall give the interpolation parabola for the fluid variables. Consider the linear advection

equation

∂a

∂t
+ c

∂a

∂ξ
= 0, a(ξ, 0) = a0(ξ). (4.2.30)

Let ξj+1/2 be the boundary between zones j and the j + 1. We assume that the average value anj of
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the solution between ξj+1/2 and ξj−1/2 at time tn is known,

anj =
1

∆ξj

∫ ξj+1/2

ξj−1/2

a(ξ, tn)dξ, ∆ξj = ξj+1/2 − ξj−1/2. (4.2.31)

We calculate an+1
j , the average value of the solution at time tn+1 = tn+∆t such that ∆t satisfies the

stability condition u∆t ≤ minj ∆ξj . First, construct a piecewise polynomial interpolation function

a(ξ) such that

anj =
1

∆ξj

∫ ξj+1/2

ξj−1/2

a(ξ)dξ (4.2.32)

and that no new extrema appear in the interpolation function than the ones that already exist for

anj . Using the exact solution to the advection equation (4.2.30), a(ξ, tn + ∆t) = a(ξ− c∆t), we have

an+1
j =

1

∆ξj

∫ ξj+1/2

ξj−1/2

a(ξ − c∆t)dξ. (4.2.33)

We define the interpolating polynomial as

a(ξ) = aL,j + x[∆aj + a6,j(1− x)], x =
ξ − ξj−1/2

∆ξj
, (4.2.34)

where ξj−1/2 ≤ ξ ≤ ξj+1/2, limξ→ξj−1/2
= aL,j , limξ→ξj+1/2

= aR,j , and

∆aj = aR,j − aL,j , a6,j = 6[anj −
1

2
(aL,j + aR,j)]. (4.2.35)

The formula for the value of aj+1/2 at the zone faces is given by [68]

aj+1/2 = anj +
∆ξj

∆ξj + ∆ξj+1

(
anj+1 − anj

)
+

1∑2
k=−1 ∆ξj+k

×
{ 2∆ξj+1∆ξj

∆ξj + ∆ξj+1

[
∆ξj−1 + ∆ξj
2∆ξj + ∆ξj+1

− ∆ξj+2 + ∆ξj+1

2∆ξj+1 + ∆ξj

]
(anj+1 − anj )

−∆ξj
∆ξj−1 + ∆ξj
2∆ξj + ∆ξj+1

δaj+1 + ∆ξj+1
∆ξj+1 + ∆ξj+2

∆ξj + 2∆ξj+1
δaj

}
, (4.2.36)

where

δmaj = min(|δaj |, 2|anj − anj−1|, 2|anj − anj−1|)sgn(δaj), (4.2.37)

if (anj+1 − anj )(anj − anj−1) > 0 and 0 otherwise. The value at the zone faces aj+1/2 will be assigned

to variables aL,j and aR,j (the left and right faces of cell j) for most values of j. There are a few
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exceptions that require the following conditions,

aL,j → anj , aR,j → anj if (aR,j − anj )(anj − aL,j) ≥ 0, (4.2.38)

aL,j → 3anj − 2aR,j if (aR,j − aL,j)
(
anj − 1

2 (aL,j + aR,j)
)
> 1

6 (aR,j − aL,j)2

aR,j → 3anj − aL,j if − 1
6 (aR,j − aL,j)2 > (aR,j − aL,j)

(
anj − 1

2 (aR,j + aL,j)
)
.

For the Lagrangian hydrodynamic equations, we use the same algorithm above for the advection

equation to interpolate profiles for τ, u, p as functions of the mass coordinate m on the grid. We then

solve the Riemann problem at the zone faces to calculate the time-averaged pressures and velocities.

In the final step we make a conservative update of the quantities by applying the forces implied by

the time-averaged pressures and velocities at the zone faces.

Consider the time-averaged pressures and velocities at the edges of the zones. In smooth regions,

ūj+1/2 and p̄j+1/2 approximate time averages to the solution of the equations in characteristic form

du± dp/C = gdt along dm = ±Cdt, (4.2.39)

where C = (γpρ)1/2 [69]. We consider the two domains of dependence for a zone interface during

the time step by tracing the paths of sound waves arriving at the interface at the end of the time

step. The interpolated variable within each domain of dependence is replaced by its mass-weighted

average (uj+1/2,L and uj+1/2,R, and pj+1/2,L and pj+1/2,R). From Colella and Woodward [68], this

facilitates the computation of the nonlinear interaction of the two domains of dependence. The

quantities ūj+1/2 and p̄j+1/2 are the interaction of these averaged states and may be obtained by

solving the Riemann problem.

The Riemann solver will calculate the time-averaged pressures p̄j+1/2 and velocities ūj+1/2 at

the edges of zones given the input states uj+1/2,L and uj+1/2,R and pj+1/2,L and pj+1/2,R. We may

then apply the same procedure as the Godunov method to obtain the numerical fluxes with the

difference that the left and right states input states to the Riemann problem are the averages over

only the parts of each zone which are in the domain of dependence.

We now show how to calculate the input states for the Riemann solver [68]. The averages of the
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interpolation functions are

faj+1/2,L(y) =
1

y

∫ ξj+1/2

ξj+1/2−y
a(ξ)dξ, (4.2.40)

faj+1/2,R(y) =
1

y

∫ ξj+1/2

ξj+1/2+y

a(ξ)dξ, (4.2.41)

for positive y. We may write

faj+1/2,L(y) = aR,j −
x

2

[
∆aj −

(
1− 2

3
x

)
a6,j

]
, for x =

y

∆ξj
, (4.2.42)

faj+1/2,R(y) = aL,j+1 −
x

2

[
∆aj+1 −

(
1− 2

3
x

)
a6,j+1

]
, for x =

y

∆ξj+1
. (4.2.43)

First consider the absence of body forces (g = 0). Define the average values of the dependent variables

over the region between mj+1/2 and the point where the ± characteristic through (mj+1/2, t
n+1)

intersects the line t = tn,

a+
j+1/2 = faj+1/2,L(∆tCnj A

n
j ), (4.2.44)

a−j+1/2 = faj+1/2,R(∆tCnj+1A
n
j+1), (4.2.45)

where a±j+1/2 = (τ±j+1/2, u
±
j+1/2, p

±
j+1/2) and

Anj =
rnj+1/2 − rnj−1/2

rnj+1/2 − rnj−1/2

. (4.2.46)

Then, the input states for the Riemann problem are aj+1/2,L = a+
j+1/2 and aj+1/2,R = a−j+1/2. For

body forces (g 6= 0),

pj+1/2,L = p+
j+1/2 + ∆tC+

j+1/2g
n
j ,

pj+1/2,R = p−j+1/2 + ∆tC−j+1/2g
n
j+1. (4.2.47)

Note that in VH-1, the body forces are treated differently. Instead, the left and right input states

of the velocity are modified,

uj+1/2,L = uj+1/2,L + 1
2∆tgnj ,

uj+1/2,R = uj+1/2,R + 1
2∆tgnj+1. (4.2.48)
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We now give the Riemann solver for our calculations. From the Rankine-Hugoniot relations, we

obtain the following nonlinear equations [68]

p̄j+1/2 − pj+1/2,L

WL
+ (ūj+1/2 − uj+1/2,L) = 0,

W 2
L =

(
γp+

j+1/2

τ+
j+1/2

)[
1 +

γ + 1

2γ

(
p̄j+1/2

pj+1/2,L
− 1

)]
,

p̄j+1/2 − pj+1/2,R

WR
+ (ūj+1/2 − uj+1/2,R) = 0,

W 2
R =

(
γp−j+1/2

τ−j+1/2

)[
1 +

γ + 1

2γ

(
p̄j+1/2

pj+1/2,R
− 1

)]
, (4.2.49)

which are finite difference approximations to the characteristic equations. We use Newton’s method

with a fixed number of iterations to solve for p̄j+1/2 and ūj+1/2.

From Colella and Woodward [68], to produce a well-behaved Eulerian method, all interpolations

for both the Lagrangian step and the remap must be performed in the volume coordinate r rather

than in the mass coordinate. The finite difference approximation to the fundamental conservation

laws may then be written as

rn+1
j+1/2 = rnj+1/2 + ∆tūj+1/2,

τn+1
j =

rn+1
j+1/2 − rn+1

j−1/2

∆mj
,

un+1
j = unj

∆t

∆mj
(p̄j−1/2 − p̄j+1/2) +

∆t

2

(
gnj + gn+1

j

)
,

En+1
j = Enj +

∆t

∆mj

(
p̄j−1/2 − p̄j+1/2

)
+

∆t

2

(
unj g

n
j + un+1

j gn+1
j

)
, (4.2.50)

where p̄j+1/2 and ūj+1/2 the time-averaged pressures and velocities at the edges of zones. Note that

in our calculations we do not calculate gn+1 so instead we have

un+1
j = unj

∆t

∆mj
(p̄j−1/2 − p̄j+1/2) + ∆tgnj ,

En+1
j = Enj +

∆t

∆mj

(
p̄j−1/2 − p̄j+1/2

)
+ ∆tunj g

n
j . (4.2.51)

4.2.5 Numerical tests

In this subsection, we present results of applying the hydrodynamics solver to a set of standard

test problems. For all of these tests, we use γ = 1.4. The first test is known as the one-dimensional

Sod shock tube problem [70], which has a known analytical solution [71]. We used 1024 zones and
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a Courant number of 0.5. In the left panel of Figure 4.1, we give the density along x = [0, 1] at a

final time t = 0.05. We initialize the domain into two regions: Region I from x = [0, 0.5] and Region

II from x = [0.5, 1]. The velocity of the gas in both regions is initially zero and we have the density

and pressure for Region I and II,

ρI = 1.0, pI = 1.0, ρII = 0.125, pII = 0.1. (4.2.52)

We may compare the results in the left panel in Figure 4.1 with [71]. The next three tests are from

Woodward and Colella [72]. The second test is for two one-dimensional interacting blast waves. We

used 1024 zones and a Courant number of 0.8. In the right panel of Figure 4.1, we give the density

along x = [0, 1] at final time t = 0.04. The domain is initially divided into three regions: Region I

from x = [0, 0.1], Region II from x = [0.1, 0.9], and Region III from x = [0.9, 1.0]. Initially, the gas

is stationary and has density and pressure in the three regions as

ρI = 1.0, pI = 1000.0, ρII = 1.0, pII = 0.01, ρIII = 1.0, pIII = 100.0. (4.2.53)

The velocity of the gas in all three regions is zero. We may compare the results in the right panel

of Figure 4.1 with that of [72].
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Figure 4.1: Density profiles for 1D tests: Sod shock tube and two interacting blast waves. The time
given in the left panel is t = 0.05 and the right panel is t = 0.04. We compare the left results with
[71] and the right results with [72].

The third test is a two-dimensional Mach 3 wind tunnel with a step. We used 480 zones along

x = [0, 3], 160 zones along y = [0, 1], and a Courant number of 0.8. In Figure 4.2 we give the 2D
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Figure 4.2: 2D density profile for Mach 3 wind tunnel with a step. The time given is t = 4.0. We
compare the results with [72].
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Figure 4.3: 2D density profile for the double Mach reflection of a strong shock test. The time given
is t = 0.2. We compare the results with [72].

density profile at a final time t = 4.0. The step is defined to be at x = [0.6, 3] and y = [0, 0.2]. The

rest of the domain is initialized to

ρ = 1.4, p = 1.0, vx = 3.0, vy = 0. (4.2.54)

The inner boundary in the x-direction has an inflow condition with the above variables. At the

step, at x = 0.6 and y ≤ 0.2, the outer boundary is a solid wall condition. For y > 0.2, the outer

boundary at the end of the domain is a zero-gradient outflow condition. The boundary condition

for the y-direction at the edges of the domain as well as the step at x ≥ 0.6 and y = 0.2 are solid

wall conditions. We compare the results in Figure 4.2 with [72]. The fourth test is a double Mach

reflection of a strong shock. We used 480 zones along x = [0, 4.0], 160 zones along y = [0, 1.0], and a

Courant number of 0.8. In Figure 4.3 we give the 2D density profile at a final time t = 0.2. Instead

of modeling the wedge, we set up an appropriate boundary treatment to model the shock wave [73].
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We define two sets of initial conditions: post-shock

ρpost = 0.8, ppost = 116.6, vx,post = 8.25 cos(30o), vy,post = −8.25 sin(30o) (4.2.55)

and pre-shock,

ρpre = 0.8, ppre = 116.6, vx,pre = 8.25 cos(30o), vy,pre = −8.25 sin(30o). (4.2.56)

Define a point on the x-axis as x0 = 1/6. We initialize the domain to have a post-shock region

defined for all x < x0 + y/
√

3. We initialize the rest to be the pre-shock region. The inner boundary

in the x-direction uses the post-shock variables as the inflow condition. The outer boundary in the

y-direction uses the pre-shock variables in the ghost-zone region. For the y-direction, if x < x0 then

the inner boundary condition is an inflow condition with the post-shock variables, otherwise it is a

solid wall condition. We define the location of the shock front as xs = x0 + (1 + 20t)/
√

3. The outer

boundary then has post-shock variables for the ghost zones at x < xs and the pre-shock variables

otherwise. We compare the results in Figure 4.3 with [72].

4.3 Pseudo-spectral Poisson solver

In this section, we present our numerical method for solving for the Newtonian self-gravitational

potential of the star. This method is based on that of Broderick and Rathore [74] and we present

an extension for cell-centered data.

4.3.1 Overview of the method

We add accelerations for a self-gravitating fluid to the hydrodynamics solver using the grav-

itational potential obtained in a separate calculation. The Poisson equation for a 3D Cartesian

grid,

∇2Φ(x, y, z) = 4πGρ(x, y, z), (4.3.1)

is solved with parallel, partial-sum, discrete sine transforms and an image-mass treatment of the

boundary. For homogeneous boundary conditions, this may be solved directly using a discrete sine

transform (DST) method. To obtain the appropriate solution for the self-gravity of the star, we

must specify inhomogeneous boundary conditions. The physical solution will only vanish at infinity

and, in general, Φ will be non-zero at the edge of the computational domain. In order to use DSTs,
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we convert the inhomogenous boundary condition into a homogeneous one with the introduction of

a boundary mass, ρB . Poisson’s equation may then be written as

∇2Φ = 4πG (ρ+ ρB) = 4πGρtotal. (4.3.2)

Thus, we obtain the solution to Poisson’s equation by applying a three-dimensional discrete sine

transform to a source which includes the density of interest and boundary image mass, integrate to

obtain the spectral amplitudes, then compute the inverse transform for Φ with proper asymptotic

fall-off built in.

4.3.2 Sine transforms

1D Discrete sine transform

The grid consists of cell-centered data. For data that behave as odd functions at the boundary,

the type-II DST may be implemented. Let I be the number of zones in the x-direction. Let i and l

denote the number of basis functions in the real and frequency domain where kl = (l+ 1)/(I∆) and

xi = (i+ 1/2)∆ for grid spacing ∆. The discrete sine transform of a function f may be defined [75]

as

f̂(kl) =

I−1∑
i=0

f(xi) sin (πklxi) , (4.3.3)

with inverse

f(xi) =
2

I

I−2∑
l=0

f̂(kl) sin (πklxi) +
(−1)i

I
f̂(kI−1), (4.3.4)

3D Discrete sine transform

Let I, J,K be the number of zones in the x-,y-, and z-direction. Let i, j, k and l,m, n denote

the number of basis functions in the real and frequency domain. The 3D discrete sine transform of

a function f may be defined, as a three-step partial sum, as

uljk =

I−1∑
i=0

fijk sin

[
π(i+ 1/2)(l + 1)

I

]
,

vlmk =

J−1∑
j=0

uljk sin

[
π(j + 1/2)(m+ 1)

J

]
,

f̂lmn =

K−1∑
k=0

vlmk sin

[
π(k + 1/2)(n+ 1)

K

]
, (4.3.5)
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with inverse

wlmk =
2

K

K−2∑
n=0

f̂lmn sin

[
π(k + 1/2)(n+ 1)

K

]
+

(−1)k

K
f̂lm,K−1

yljk =
2

J

J−2∑
m=0

wlmk sin

[
π(j + 1/2)(m+ 1)

J

]
+

(−1)j

J
wl,J−1,k

fijk =
2

I

I−2∑
l=0

yljk sin

[
π(i+ 1/2)(l + 1)

I

]
+

(−1)i

I
yI−1,j,k. (4.3.6)

4.3.3 Spectral integration

Consider the 3D Poisson equation in finite difference form,

∇2Φijk = (Φi+1,jk − 2Φijk + Φi−1,jk)/(∆xi)
2

+(Φi,j+1,k − 2Φijk + Φi,j−1,k)/(∆yj)
2

+(Φij,k+1 − 2Φijk + Φij,k−1)/(∆zk)2

= 4πGρijk.

Substituting the inverse transform, one obtains the solution

Φ̂lmn = −4πG
ρ̂lmn
κ2
lmn

, (4.3.7)

where

κ2
lmn =

2

(∆xi)2

[
1− cos

(
π(l + 1)

I

)]
+

2

(∆xj)2

[
1− cos

(
π(m+ 1)

J

)]
+

2

(∆xk)2

[
1− cos

(
π(n+ 1)

K

)]
.
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This may be shown in one dimension upon considering the second-derivative of the inverse transform

Φi+1 − 2Φi + Φi−1 =
2

I

I−2∑
l=0

Φ̂l

{
sin

[
π(i+ 1 + 1/2)(l + 1)

I

]
− 2 sin

[
π(i+ 1/2)(l + 1)

I

]
+ sin

[
π(i+ 1/2− 1)(l + 1)

I

]}
+

1

I
ΦI−1

[
(−1)i+1 + (−1)i + (−1)i−1

]
=

2

I

I−2∑
l=0

Φ̂l

{
− 2 sin

[
π(i+ 1/2)(l + 1)

I

]
+2 sin

[
π(i+ 1/2)(l + 1)

I

]
cos

[
π(l + 1)

I

]}
+

1

I
ΦI−1(−4)(−1)i

=
2

I

I−2∑
l=0

Φ̂l sin

[
π(i+ 1/2)(l + 1)

I

]{
−2

(
1− cos

[
π(l + 1)

I

])}
+ΦI−1(−4)(−1)i

=
2

I

I−1∑
l=0

Φ̂l sin

[
π(i+ 1/2)(l + 1)

I

]
(−2)

{
1− cos

[
π(l + 1)

I

]}
.

4.3.4 Image mass boundary condition

Initially, there is a non-zero distribution of mass in the center of the computational domain. If

we solve Poisson’s equation with this distribution, the resulting potential will fall off faster than it

should in order to be zero at the edge of the domain. We add image mass to the boundary faces in

order to obtain a more appropriate large r behavior, consistent with O(1/r) fall off at infinity. The

image mass is constructed using the multipole expansion,

ΦB(~x) = −
lmax∑
l=0

l∑
m=−l

4πG

2l + 1
r−(l+1)QlmYlm(~x), (4.3.8)

where

Qlm =

∫
d~x′r

′lY ∗lm(~x′)ρ(~x′).

Let n = 0 be the innermost cell in the computational domain. For cell-centered data, the Dirichlet

boundary condition is specified at the cell edge at n = −1/2. For second-order boundary conditions,

we write the value of the potential at the boundary to be

Φ−1/2 =
1

2
(Φ−1 + Φ0), (4.3.9)
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where Φ−1 is outside the computational domain, i.e., a ghost zone. For homogeneous boundary

conditions,

Φ−1/2 = 0 −→ Φ−1 = −Φ0. (4.3.10)

In order to obtain ρB , consider the discretized Poisson equation applied to the innermost cell n = 0

with the substitution of the value of the potential at the boundary in terms of the ghost zone,

∇2Φ0 =
1

(∆x0)2
(Φ1 − 2Φ0 + Φ−1)

=
1

(∆x0)2

[
Φ1 − 2Φ0 + (2Φ−1/2 − Φ0)

]
.

Applying the homogeneous boundary condition,

4πG
(
ρ0 + ρB0

)
=

1

(∆x0)2

(
Φ1 − 2Φ0 + Φ−1 + 2Φ−1/2

)
,

we obtain the expression for ρ0 and ρB0 , where

ρB0 = − 2Φ−1/2

4πG(∆x0)2
, (4.3.11)

where Φ−1/2 = ΦB(~x).

In the following we give the moments of the multipole expansion of the potential (4.3.8) up to

l = 5 for Cartesian coordinates. For l = 0,

Y00 =
1

2

√
1

π
, −Φl=0 =

G

r

∫
d3~x′ρ(~x′),

for l = 1,

Y10 =
1

2

√
3

π

z

r
, Y11 = −

√
3

2π

(x+ iy)

2r

−Φl=1 =
Gx

r3

∫
d3~x′ρ(~x′)x′ +

Gy

r3

∫
d3~x′ρ(~x′)y′ +

Gz

r3

∫
d3~x′ρ(~x′)z′, (4.3.12)
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for l = 2,

Y20 = −
√

5

π

(
r2 − 3z2

)
4r2

, Y21 = −
√

15

2π

z(x+ iy)

2r2
, Y22 =

√
15

2π

(x+ iy)2

4r2
,

−Φl=2 =
G
(
r2 − 3z2

)
4r5

∫
d3~x′ρ(~x′)

(
r′2 − 3z′2

)
+

3G
(
x2 − y2

)
4r5

∫
d3~x′ρ(~x′)

(
x′2 − y′2

)
+

3Gxz

r5

∫
d3~x′ρ(~x′)x′z′ +

3Gyz

r5

∫
d3~x′ρ(~x′)y′z′ +

3Gxy

r5

∫
d3~x′ρ(~x′)x′y′, (4.3.13)

for l = 3,

Y30 =

√
7

π

(
5z3 − 3r2z

)
4r3

, Y31 =

√
21

π

(
r2 − 5z2

)
(x+ iy)

8r3
,

Y32 =

√
105

2π

z(x+ iy)2

4r3
, Y33 = −

√
35

π

(x+ iy)3

8r3
,

−Φl=3 =
Gz
(
3r2 − 5z2

)
4r7

∫
d3~x′ρ(~x′)z′

(
3r′2 − 5z′2

)
+

3Gx
(
r2 − 5z2

)
8r7

∫
d3~x′ρ(~x′)x′

(
r′2 − 5z′2

)
+

3Gy
(
r2 − 5z2

)
8r7

∫
d3~x′ρ(~x′)y′

(
r′2 − 5z′2

)
+

15Gz
(
x2 − y2

)
4r7

∫
d3~x′ρ(~x′)z′

(
x′2 − y′2

)
+

15Gxyz

r7

∫
d3~x′ρ(~x′)x′y′z′ +

5Gx
(
x2 − 3y2

)
8r7

∫
d3~x′ρ(~x′)x′

(
x′2 − 3y′2

)
+

5Gy
(
3x2 − y2

)
8r7

∫
d3~x′ρ(~x′)y′

(
3x′2 − y′2

)
, (4.3.14)
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for l = 4,

Y40 =
1√
π

3
(
3r4 − 30r2z2 + 35z4

)
16r4

, Y41 =

√
5

π

3
(
3r2z − 7z3

)
(x+ iy)

8r4
,

Y42 = −
√

5

2π

3
(
r2 − 7z2

)
(x+ iy)2

8r4
, Y43 = −

3
√

35
π z(x+ iy)3

8r4
,

Y44 =

√
35

2π

3(x+ iy)4

16r4
,

−Φl=4 =
G
(
3r4 − 30r2z2 + 35z4

)
64r9

∫
d3~x′ρ(~x′)

(
3r′4 − 30r′2z′2 + 35z′4

)
+

5Gx
(
3r2 − 7z2

)
8r9

∫
d3~x′ρ(~x′)x′zz′

(
3r′2 − 7z′2

)
+

5Gy
(
3r2 − 7z2

)
8r9

∫
d3~x′ρ(~x′)y′zz′

(
3r′2 − 7z′2

)
+

5G
(
r2 − 7z2

) (
x2 − y2

)
16r9

∫
d3~x′ρ(~x′)

(
r′2 − 7z′2

) (
x′2 − y′2

)
+

5Gxy
(
r2 − 7z2

)
4r9

∫
d3~x′ρ(~x′)x′y′

(
r′2 − 7z′2

)
+

35Gz
(
x3 − 3xy2

)
8r9

∫
d3~x′ρ(~x′)z′

(
x′3 − 3x′y′2

)
+

35Gz
(
y3 − 3x2y

)
8r9

∫
d3~x′ρ(~x′)z′

(
y′3 − 3x′2y′

)
+

35G
(
x4 − 6x2y2 + y4

)
64r9

∫
d3~x′ρ(~x′)

(
x′4 − 6x′2y′2 + y′4

)
+

35Gxy(x2 − y2)

4r9

∫
d3~x′ρ(~x′)x′y′(x′2 − y′2) (4.3.15)
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and for l = 5,

Y50 =

√
11

π

(
15r4z − 70r2z3 + 63z5

)
16r5

,

Y51 = −
√

165

2π

(
r4 − 14r2z2 + 21z4

)
(x+ iy)

16r5
,

Y52 = −
√

1155

2π

z
(
r2(x+ iy)2 − 3z2

(
x2 + ixy − y2

))
8r5

,

Y53 =

√
385
π

(
r2 − 9z2

)
(x+ iy)3

32r5
,

Y54 =
3
√

385
2π z(x+ iy)4

16r5
, Y55 = −

3
√

77
π (x+ iy)5

32r5
,

−Φl=5 =
Gz
(
15r4 − 70r2z2 + 63z4

)
64r11

∫
d3~x′ρ(~x′)z′

(
15r′4 − 70r′2z′2 + 63z′4

)
+

15Gx
(
r4 − 14r2z2 + 21z4

)
64r11

∫
d3~x′ρ(~x′)x′

(
r′4 − 14r′2z′2 + 21z′4

)
+

15Gy
(
r4 − 14r2z2 + 21z4

)
64r11

∫
d3~x′ρ(~x′)y′

(
r′4 − 14r′2z′2 + 21z′4

)
+

105Gz
(
r2 − 3z2

)
(x2 − y2)

16r11

∫
d3~x′ρ(~x′)z′(x′2 − y′2)

(
r′2 − 3z′2

)
+

105Gxy
(
2r2z − 3z3

)
16r11

∫
d3~x′ρ(~x′)x′y′

(
2r′2z′ − 3z′3

)
+

35G
(
r2 − 9z2

) (
x3 − 3xy2

)
128r11

∫
d3~x′ρ(~x′)

(
r′2 − 9z′2

) (
x′3 − 3x′y′2

)
+

315Gz
(
x4 − 6x2y2 + y4

)
64r11

∫
d3~x′ρ(~x′)z′

(
x′4 − 6x′2y′2 + y′4

)
+

315Gxyz(x2 − y2)(x′2 − y′2)

4r11

∫
d3~x′ρ(~x′)x′y′z′

+
63G

(
x5 − 10x3y2 + 5xy4

)
128r11

∫
d3~x′ρ(~x′)

(
x′5 − 10x′3y′2 + 5x′y′4

)
+

63G
(
5x4y − 10x2y3 + y5

)
128r11

∫
d3~x′ρ(~x′)

(
5x′4y′ − 10x′2y′3 + y′5

)
. (4.3.16)

We have taken this expansion to l = 5 as we expect the distortion of the star to be at most to

l = 3. As we will see later in our test problem, this is a sufficient number of multipole moments for

our second-order method to converge appropriately.

We may write a parallel code for the Poisson solver by noting that the three-dimensional trans-

form (4.3.5) and its inverse (4.3.6) are computed in one dimension at each step. One step of the

partial sum may be computed along one dimension while data in another dimension is scattered

across the processors. We then apply a transpose of the data and transform the other dimension.
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4.3.5 Numerical test: distorted density fields with analytical solutions

To test the Poisson solver, a density function with an analytical solution for Φ is chosen. The

order of the derivative at which this function is discontinuous should be one higher order than the

order of desired convergence for the method [76]. Our method is likely no better than second-

order convergent since the boundary condition is derived using a second-order approximation for the

Laplacian. We consider test densities of the form

ρ = rl
(
1− r2

)3
Pl(cos γ), for r < 1, (4.3.17)

and ρ = 0, otherwise. The solution should converge to fourth-order. Consider the following densities

and analytically derived potentials,

ρ0 =
(
1− r2

)3
P0(cos γ),

Φi0 = − π

630

(
35r8 − 180r6 + 378r4 − 420r2 + 315

)
P0(cos γ), Φo0 = − 64π

315r
P0(cos γ),

ρ1 = r
(
1− r2

)3
P1(cos γ),

Φi1 = π

(
− r

9

22
+

2r7

9
− 3r5

7
+

2r3

5
− r

6

)
P1(cos γ), Φo1 = − 64π

3465r2
P1(cos γ),

ρ2 = r2
(
1− r2

)3
P2(cos γ),

Φi2 = π

(
−r

10

26
+

2r8

11
− r6

3
+

2r4

7
− r2

10

)
P2(cos γ), Φo2 = − 64π

15015r3
P2(cos γ),

ρ3 = r3
(
1− r2

)3
P3(cos γ),

Φi3 = π

(
−r

11

30
+

2r9

13
− 3r7

11
+

2r5

9
− r3

14

)
P3(cos γ), Φo3 = − 64π

45045r4
P3(cos γ),

ρ4 = r4
(
1− r2

)3
P4(cos γ),

Φi4 = π

(
−r

12

34
+

2r10

15
− 3r8

13
+

2r6

11
− r4

18

)
P4(cos γ), Φo4 = − 64π

109395r5
P4(cos γ),

ρ5 = r5
(
1− r2

)3
P5(cos γ),

Φi5 = π

(
−r

13

38
+

2r11

17
− r9

5
+

2r7

13
− r5

22

)
P5(cos γ), Φo5 = − 64π

230945r6
P5(cos γ).

We perform the following tests which should result in at least second-order convergence:

1. For each l, solve for the density, ρl, using the associated analytical solution, Φol , to construct

the image mass.

2. Same as (1), but using the multipole expansion Φmpl to construct the image mass.

3. Consider the sum of the densities, ρtot =
∑
l clρl, where cl is chosen so that the l = 0 density
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Figure 4.4: Test density and analytical potential for Poisson solver. We obtain an analytical solution
to a density ρtot =

∑
l clρl where cl is chosen so that ρl=0 does not contribute significantly.

does not contribute significantly. Solve for the density, ρl, using the associated analytical

solution, Φol , to construct the image mass.

4. Consider the sum of the densities, ρtot =
∑
l clρl, where cl is chosen so that the l = 0 density

does not contribute significantly. Solve for the density, ρl, using the multipole expansion, Φmpl ,

to construct the image mass.

Computing for cos γ = {x/r, y/r, z/r} will yield the same results. In the following, we have results

of Test 4 for cos γ = x/r with constants cl given by

c0 = 0.75, c1 = 0.5, c2 = 0.75, c3 = 1.0, c4 = 1.0, c5 = 1.0. (4.3.18)

We show the density and analytical potential for this test problem in Figure 4.4.
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Figure 4.5: Relative error between the analytical and computed gravitational potential. Results are
given in the xy-plane.
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Figure 4.6: Relative error in the x-derivative of the gravitational potential. Results are given in the
xy-plane.
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Figure 4.7: L2 error between the analytical and computed solution. Results are given for different
zones, N , in one direction where N3 is the total number of zones in the computational domain. The
Poisson solver method exhibits second order convergence.

The L2, or root-mean-square error, is defined as

Err[fanalytical, fcomputed] =

√
1

IJK

∑
ijk

|fanalytical
ijk − fcomputed

ijk |2. (4.3.19)

In Table 4.1 and Figure 4.7, we show that the method exhibits second order convergence for the L2

error between the analytically computed solution to the self-gravitational potential.

N3 L2

163 3.56531726783 E-3
323 7.61089631365 E-4
643 1.88954840925 E-4
1283 4.71658287748 E-5
2563 1.17893020983 E-5
5123 2.94715758706 E-6

Table 4.1: Second-order convergence of Poisson solver. We give the L2 error between the analytical
and computed solution to the self-gravitational potential.

We show the error in the xy-plane in the gravitational potential (Figure 4.5) and the derivative

of the potential in the x-direction (Figure 4.6).
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4.4 Tidal module

In this section, we give the numerical method to calculate the tidal interaction due to the black

hole. We compute the tidal interaction with the l = 2 and l = 3 tidal terms. We use a fourth-order

Runge-Kutta method to integrate the first-order geodesic equations, parameterized using the Darwin

method, from Chapter 3. We choose the periastron distance, Rp and the type of encounter η and

obtain the initial values for the semi-latus rectum p, the eccentricity e, the specific orbital energy E,

and specific orbital angular momenum L. Thus, the following equations are integrated with respect

to proper time: for the radial phase,

dχ

dτ
=

[
p3/2M

(1 + e cosχ)
2

(
p− 3− e2

p− 6− 2e cosχ

)1/2
]−1

, (4.4.1)

and the FNC frame rotation angle,

dΨ

dτ
=

EL

r2 + L2
. (4.4.2)

From the radial phase, we have the orbital radius as a function of proper time,

R[χ(τ)] =
pM

1 + e cosχ(τ)
. (4.4.3)

Using R(τ) and Ψ(τ), we compute the tidal acceleration using the tidal tensors Cij and Cijk and

the tidal potential Φtidal (3.5.30) at each time step. The accelerations due to the quadrupole term

are then

∂

∂x
Φtidal
l=2 = C11x+ C13y, (4.4.4)

∂

∂y
Φtidal
l=2 = C13x+ C33y, (4.4.5)

∂

∂z
Φtidal
l=2 = C22z, (4.4.6)

and the octupole term are

∂

∂x
Φtidal
l=3 = 1

2

(
C111x

2 + 2C131xy + C133y
2 + C122z

2
)
, (4.4.7)

∂

∂y
Φtidal
l=3 = 1

2

(
C131x

2 + 2C133xy + C333y
2 + C322z

2
)
, (4.4.8)

∂

∂z
Φtidal
l=3 = C122xz + C322yz. (4.4.9)
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In this chapter, we have given the principal parts of the numerical method. We now apply the

method to calculate the relativistic tidal interaction between a white dwarf and a Schwarzschild

black hole in the next chapter.
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Chapter 5

White Dwarf–Intermediate Mass Black Hole Encounters

We now apply the analytic and numerical method outlined in previous chapters to tidal inter-

actions between a white dwarf and an intermediate mass black hole (M ∼ 103− 105M�). With this

method, we study encounters at the threshold of disruption and weaker encounters that partially

strip the star or excite it into oscillations. In the first section, we first present the initial models of

the white dwarf for the simulations. We then describe a control simulation for the encounters –a star

in hydrostatic equilibrium. Next we present the results for encounters in the regime of weak tidal

interactions (η = 4 − 6). We also examine stronger, disruptive encounters with η = 1 − 3. These

results are compared with predictions from the linear theory. We focus on the amount of energy

and spin angular momentum deposited on the star. We show a difference in the energy deposition

for relativistic encounters and the predicted amount according to the linear theory.

5.1 Initial models

The simulated white dwarf star is assumed to be a polytrope and at rest. We solve the 1D Lane-

Emden equation of polytropic index n to obtain the initial density and pressure radial profiles for

the star. The results are then mapped onto a 3D Cartesian grid. We consider an n = 1.5 polytrope

with properties [50]

ξ1 = 3.6537,
dθ

dξ

∣∣∣
ξ=ξ1

= −0.2033,

[
ξ

3

1

dθ/dξ

]
ξ=ξ1

= −5.9907 (5.1.1)

and equation of state p = κρ1+1/n. The central density and pressure may be expressed as [46]

ρc = −
[
ξ

3

1

dθ/dξ

]
ξ=ξ1

ρ̄, ρ̄ =
3M∗
4πR3∗

,

pc = W
GM2

∗
R4∗

, W =

[
10π

(
dθ

dξ

)2 ∣∣∣
ξ=ξ1

]−1

= 0.7701.

The fundamental radial pulsation period is given by Π = 2π
√
R3∗/(αM∗), where α = 2.712 for an

n = 1.5 polytrope [52], with specific heat ratio γ = 5/3. We choose a mass M∗ and a radius R∗ for



the star and then obtain values for the constant κ, the central density ρc, and the central pressure

pc.

CGS

M∗ 0.64M�
R∗ 8.62× 108 cm
L∗ 3.44× 1050 g cm2/s
I∗ 9.67× 1049 g cm2

Φ∗ 1.10× 10−4

ρc 2.84× 106 g/cm
3

pc 1.51× 1023ergs/cm
3

τ0 10.5 s
Eg −1.08× 1050 ergs
Eint 5.37× 1049 ergs
Etot −5.37× 1049 ergs

Table 5.1: Properties of the star in CGS units: mass of the star, M∗; radius of the star, R∗; spin
angular momentum scale, L∗ =

√
GM3∗R∗; moment of inertia, I∗ = 1

3

∫
xixiρd; dimensionless stellar

potential, Φ∗ = (G/c2)M∗/R∗; central density, ρc; central pressure, pc; fundamental radial oscillation
period of the star, τ0; gravitational energy, Eg; internal energy, Eint; total energy, Etot = Eg +Eint.

µ 1.28× 10−3 4.21× 10−4 3.77× 10−5

M∗ 1.28× 10−3 M 4.21× 10−4 M 3.77× 10−5 M
R∗ 11.7 M 3.84 M 0.344 M
L∗ 1.56× 10−4 M2 1.69× 10−5 M2 1.36× 10−7 M2

I∗ 1.78× 10−2 M3 6.35× 10−4 M3 4.56× 10−7 M3

Φ∗ 1.10× 10−4 1.10× 10−4 1.10× 10−4

ρc 1.15× 10−6 M−2 1.06× 10−5 M−2 1.33× 10−3 M−2

pc 6.80× 10−11 M−2 6.28× 10−10 M−2 7.85× 10−8 M−2

τ0 4.25× 103 M 1.40× 103 M 1.25× 102 M
Eg −1.20× 10−7 M −3.96× 10−8 M −3.54× 10−9 M
Eint 6.02× 10−8 M 1.98× 10−8 M 1.77× 10−9 M
Etot −6.02× 10−8 M −1.98× 10−8 M −1.77× 10−9 M

Table 5.2: Properties of the star in black hole mass units for different mass ratios, µ = M∗/M ,
where µ = 1.28× 10−3, 4.21× 10−4, and 3.77× 10−5.

In our work, we choose the mass Mwd = 0.64M� and radius Rwd = 8.62 × 108 cm. We use

an n = 1.5 polytrope model instead of a full realistic white dwarf equation of state. For a non-

relativistic completely degenerate white dwarf equation of state (2.2.18) [47], we have that κ =

1.0036× 1013/µ
5/3
e = 3.1611× 1012, if the mean molecular weight per electron is µe = 2. If we use

this for the polytropic model, the radius in terms of mass is then given by R∗ = 1.1167×1020M
−1/3
∗ .

For Mwd = 0.64M�, Rwd,polytrope = 1.030×109cm. In comparison with our models, there is a 16.3%

difference in radius. We also have a difference in the polytropic constant where κwd = 2.6444× 1012

for our models. We note that the central density is ρc ∼ 106g/cm3, which is the upper limit for

reasonably treating the white dwarf as being non-relativistic.
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Figure 5.1: Trajectories of the FNC frame for two mass ratios in the black hole frame. The encounter
strength is η = 1 and the mass ratios are µ = 1.28× 10−3 and µ = 3.77× 10−5. The orbital motion
is counter-clockwise. The star marks on the trajectory indicate the radial distances at periastron
(center) Rp and at r = 2Rp. The diamond mark on the trajectory is the location of the FNC frame
at τ = 1.70τ0. This is also indicated by the arrow. The ratio of radius of star to periastron distance
is much larger for the mass ratio µ = 1.28 × 10−3 (R∗/Rp = 0.107) than for µ = 3.77 × 10−5

(R∗/Rp = 0.034) for encounter strength η = 1. After the star passes the black hole, the FNC frame
is rotated from its original orientation by an angle ϕ. This is slight for the µ = 1.28× 10−3 case and
much more pronounced for the µ = 3.77× 10−5 case. Plotted along with the relativistic trajectory,
for reference, is the Newtonian parabolic orbit with the same periastron distance.

The properties of the white dwarf used in our simulations are given in CGS units in Table 5.1.

We simulate encounters between a white dwarf and a black hole with mass ratios µ ≡ M∗/M =

1.28× 10−3, 4.21× 10−4, and 3.77× 10−5. In Table 5.2, the properties of the star are given in terms

of black hole mass for the three different cases.

We let the duration of the encounters be equal to ten fundamental radial oscillations of the star,

with the star reaching periastron at τ = 0. The motion of the orbit is obtained using the Darwin

method given in Section 3.3.1. The Schwarzschild black hole coordinates are {t′, r′, θ′, φ′}. Each

encounter is initialized such that at periastron, r = Rp, the radial phase is χ = 0. In the FNC frame,

the star is at the origin and we can consider the black hole to be orbiting about it with an angle

Ψ(τ). We are allowed to choose initial values for Ψ and φ′ arbitrarily. We calculate the precession of

the frame, ϕ, using the change in the frame rotation angle ∆Ψ = Ψf −Ψi and the azimuthal angle

∆φ = φf − φi during the encounter such that ϕ = ∆φ−∆Ψ.

In Figure 5.1, plots of the trajectories of the FNC frame for η = 1 encounters are given (for
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µ η L[M ] Rp[M ] Ri[M ] ∆χ ∆φ ∆Ψ ϕ

1.28× 10−3 1 14.8 107.5 1167 5.050 5.128 5.083 4.479e-02
- 2 18.6 170.6 1120 4.679 4.725 4.697 2.792e-02
- 3 21.2 223.6 1086 4.399 4.433 4.411 2.115e-02
- 4 23.4 270.9 1060 4.164 4.190 4.173 1.733e-02
- 5 25.2 314.3 1041 3.956 3.978 3.964 1.482e-02
- 6 26.7 354.9 1027 3.769 3.788 3.775 1.300e-02

4.21× 10−4 1 10.3 51.2 555.4 5.049 5.216 5.120 9.638e-02
- 2 12.9 81.3 532.8 4.678 4.776 4.716 5.949e-02
- 3 14.7 106.6 516.7 4.397 4.469 4.424 4.490e-02
- 4 16.2 129.1 504.7 4.162 4.218 4.181 3.672e-02
- 5 17.4 149.8 495.6 3.954 4.001 3.970 3.134e-02
- 6 18.5 169.2 488.8 3.767 3.807 3.779 2.746e-02

3.77× 10−5 1 5.0 10.2 109.0 5.037 6.103 5.497 6.068e-01
- 2 6.1 16.3 104.9 4.664 5.229 4.890 3.396e-01
- 3 6.9 21.3 101.8 4.382 4.778 4.530 2.475e-01
- 4 7.5 25.8 99.6 4.146 4.452 4.253 1.986e-01
- 5 8.0 30.0 97.9 3.938 4.188 4.020 1.675e-01
- 6 8.5 33.8 96.6 3.750 3.961 3.816 1.455e-01

Table 5.3: Parameters for different types of encounters. For each mass ratio µ and encounter
strength η, the following are given: the specific orbital angular momentum L = 2R2

p/(Rp−2M), the
periastron distance Rp, the initial orbital distance of the star at the beginning of the simulation Ri,
the total change of radial phase ∆χ, azimuthal ∆φ, frame rotation ∆Ψ, and the total precession of
the frame ϕ = ∆φ−∆ψ during the encounter.

mass ratios µ = 1.28 × 10−3 and µ = 3.77 × 10−5) in the black hole frame. The ratio of radius of

star to periastron distance is much larger for the mass ratio µ = 1.28× 10−3 (R∗/Rp = 0.107) than

for µ = 3.77 × 10−5 (R∗/Rp = 0.034) for encounter strength η = 1. At time τ = 1.7τ0, the star

has passed the black hole and we see that because the frame is parallel transported, the black hole

will cause a slight precession ϕ relative to the distant stars. This frame precession is larger for the

µ = 3.77 × 10−5 orbit, which is considerably more relativistic in that the periastron is closer and

the apsidal precession of the orbit is more noticeable. Plotted along with the relativistic trajectory

is the Newtonian parabolic orbit with the same periastron distance, for comparison. In Table 5.3,

the specific orbital angular momentum, periastron, starting radius on the orbit, and total changes

in angles for the encounter are given for different mass ratios and encounter strengths.

An atmosphere surrounding the star (ρatm, patm), as well as minimum values for the density

and pressure (ρfloor, pfloor), must be specified because PPMLR may only be applied to non-zero

hydrodynamic variables. We specify these values by first considering the sound speed at the center

of the star, cs =
√
γpc/ρc, and choosing the sound speed of the atmosphere to be the virial velocity at

2R∗, catm =
√
M∗/(2R∗). We choose the atmospheric density to be ρatm = ρc×10−15 and it follows

that the atmospheric pressure is patm = c2atmρatm/γ. We set the floor density to be ρfloor = ρc×10−25
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and obtain the floor pressure using the sound speed of the atmosphere, pfloor = c2atmρfloor/γ.
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Figure 5.2: Stellar equilibrium model. In the top panel we plot the normalized central density,
dividing the central density ρ(τ) by the initial central density ρ0

c . In the next panel, we plot the
fractional change in total energy using the total energy Etot(τ) and the initial total energy E0

tot. In
the bottom panel, we plot the change in total z-component of the spin angular momentum using the
spin angular momentum Lz(τ), the initial spin angular momentum L0

z , and the maximal break-up
spin angular momentum L∗. Results are given for three different resolutions: ∆A, ∆B , ∆C .

For all of the simulations, an evenly-spaced Cartesian grid is implemented with 1283, 2563, or
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5123 zones. The computational domain for stellar equilibrium and non-disruptive encounters has

a length of four times the radius of the star, L = 4R∗. For partial and completely disruptive

encounters, the domain is taken to be larger, L = 8R∗, in order to follow gas that streams off of

the star. We use α = A,B,C to denote the resolution, ∆α, for each simulation: ∆A = R∗/32,

∆B = R∗/64, ∆C = R∗/128. Solid wall or (most often) zero gradient outflow boundary conditions

are implemented. The number of computer processors used for each simulation is set to the number

of zones in one direction. Thus, at our highest resolution we are using 512 processors.

5.2 Numerical validation of entire code

We test our code by using stellar equilibrium as the control simulation. One may identify

three main sources of error in the stellar equilibrium simulation. The first is the discretization error

due to mapping the 1D Lane-Emden radial profiles onto a 3D Cartesian grid. The second is due

to the nature of the PPM algorithm. Any gradient in density and pressure, even in hydrostatic

equilibrium, is viewed by the method as a set of discontinuities or small shocks. This has the effect

of generating small spurious increases in entropy. This effect is reduced with higher resolution. The

third source of error is due to the accuracy of the Poisson solver in obtaining the self-gravitational

field, which also is improved with higher resolution. The overall effect of these errors is to generate

small amplitude oscillations of the star in various modes, particularly in the fundamental radial

mode. These oscillations tend to damp in amplitude over time. In comparing the use of solid wall

and outgoing boundary conditions, simulations with outgoing boundary conditions have a slight

advantage in providing less feedback, although the differences are slight.

In the top panel of Figure 5.2, we show the central density versus time for three equilibrium

simulations of 1283, 2563, and 5123 zones, and with a domain size of L = 4R∗ (∆A, ∆B , and ∆C) and

with outgoing boundary conditions. The models are computed for a period of ten radial oscillations.

The dominant behavior is an oscillation in the fundamental radial mode. Note the average decrease

over time and the improvement with higher resolution. This downward drift in density is attributed

to the spurious entropy generation at the “shock” at each zone interface. We set the lower limit

for simulations of physical interest to 32 zones across the radius of the star (e.g.,∆A). Total energy

and spin-angular momentum conservation at different resolutions is exhibited in the next panels of

Figure 5.2. Note the improvement in normalized error with increase in resolution.
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5.3 Tidal encounter results
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Figure 5.3: Weak tidal encounters. In the top panel, we give the normalized central density for each
tidal encounter simulation by subtracting from it the normalized central density for the equilibrium
simulation and adding unity (ρηc/ρ

0
c − ρequilc /ρ0

c + 1). In the next panel, we give the total energy
deposited on the star for each tidal encounter simulation subtracted by the change in total energy
for the equilibrium simulation (Eηtot−Eequil

tot ) and divide by the magnitude of the initial total energy
|E0
tot|. In the bottom panel, we give the total z-component of the spin angular momentum deposited

on the star for each tidal encounter simulation subtracted by the change in total z-component of
the spin angular momentum for the equilibrium simulation (Lηz − Lequilz ). Results are given at the
highest resolution, ∆C .
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In this section, we present the results of tidal interactions between a white dwarf and a black

hole in the non-disruptive limit (η = 4, 5, 6) and at the threshold of disruption (η = 1, 2, 3). The

amount of CPU time for each type of simulation at different resolutions is given in Table 5.4.

model L[R∗] Resol. Np Processor hours Wall clock (hr)

η = 1 8 ∆A 256 2.6× 103 10.4
8 ∆B 512 6.5× 104 127.0

η = 2 8 ∆A 256 9.8× 102 3.8
8 ∆B 512 4.6× 104 89.7

η = 3 8 ∆A 256 3.0× 103 11.6
8 ∆B 512 4.5× 104 87.5

η = 4 4 ∆A 128 2.4× 102 1.9
4 ∆B 256 3.3× 103 12.8
4 ∆C 512 5.9× 104 115.5

η = 5 4 ∆A 128 1.4× 102 1.1
4 ∆B 256 3.0× 103 11.6
4 ∆C 512 6.2× 104 121.2

η = 6 4 ∆A 128 3.1× 102 2.4
4 ∆B 256 2.7× 103 10.7
4 ∆C 512 5.8× 104 113.6

equilibrium 4 ∆A 128 5.8× 101 0.45
4 ∆B 256 1.7× 103 6.5
4 ∆C 512 4.7× 104 92.6

Table 5.4: Wall clock time for simulating stellar equililbrium and η = 1 − 6 encounters. We use
l = 2 and l = 3 tidal terms in the relativistic tidal field. Results are given for different resolutions
where Np denotes the number of processors and L denotes the length of the computational domain
in terms of the radius of the star.

5.3.1 Weak tidal encounters

We apply the numerical method first to η = 4, 5, 6 encounters, during which the star does not

disrupt, with a WD-BH mass ratio µ = 1.28 × 10−3. We use 1283, 2563, and 5123 zones for a

domain size of L = 4R∗ (∆A, ∆B , and ∆C). We implement solid wall boundary conditions in order

to calculate the change in total energy and spin angular momentum in a straightforward manner.

We consider the tidal expansion up through the octupole (l = 3) tidal term. We will calculate

the effects of l = 4 in a future study. We have made attempts to see the gravitomagnetic effect

in these simulations. At the resolutions so far considered, these effects are too small to see. The

top panel of Figure 5.3 gives the normalized central density for each weak encounter. The weak

tidal interaction perturbs the star, causing it to oscillate but not disrupt. The next panel gives the

fractional change in total energy and the bottom panel gives the fractional change in spin-angular

momentum deposited onto the star for these weak encounters.
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Figure 5.4: Deflection of the center of mass off of the origin of the FNC. Results are given for
simulations of η = 4, 5, 6 encounters with mass ratio µ = 1.28 × 10−3 using only the quadrupole
(l = 2) tidal term (dotted red line) and simulations with both quadrupole (l = 2) and octupole (l = 3)
tidal terms. The top two panels are plots of the position of the x-coordinate and y-coordinate of
the center of mass. The bottom two panels are plots of the x-velocity and y-velocity of the center of
mass. Note that the inclusion of the octupole term causes the center of mass of the star to deflect.
The resolution of the grids in these simulations is ∆C .

In our code, we track the position and velocity of the center of mass. We compare simulations

where we used only the quadrupole (l = 2) tidal term with simulations where we used both the
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Figure 5.5: Conservation of total angular momentum for Newtonian simulations. The change in
orbital and spin angular momentum (top) and the change in total angular momentum (bottom)
during a Newtonian simulation of an η = 4 encounter and mass ratio of µ = 1.28 × 10−3. Results
are given for three different resolutions (∆A,∆B ,∆C).

quadrupole (l = 2) and octupole (l = 3) tidal terms. In Figure 5.4, we see that the inclusion of the

octupole tidal term causes the center of mass of the star to accelerate away from the origin of the

FNC system in the x- and y- directions, in accordance with theoretical expectations.

We relate the change in orbital angular momentum due to the spin-up of the star and the

acceleration of the center of mass in a straightforward manner by considering a Newtonian tidal
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interaction. From (2.3.67), we have that the change in total angular momentum about the z-axis is

given by

d

dt
Ltot
z =

d

dt
Lspin
z +

d

dt
Lorb
z . (5.3.1)

Given a conservative central force, the total angular momentum, Lztot, will be conserved. Any

change in the spin angular momentum of a fluid object must be compensated by a (negative) change

in orbital angular momentum. The change in orbital angular momentum can be found from

d

dt
Lorb
z =

d

dt

(
DxV

(0)
y −DyV

(0)
x − ḊxX

(0)
y + ḊyX

(0)
x

)
, (5.3.2)

where X
(0)
k (τ) and V

(0)
k (τ) are the position and velocity of the origin of the moving coordinate

system as seen in the black hole frame and Dk and Ḋk are the first mass moment and its derivative

defined by

Dk ≡
∫
V
ρxkd

3x, Ḋk =

∫
V
ρvkd

3x. (5.3.3)

In the following, we consider a strictly Newtonian simulation of an η = 4 encounter and mass

ratio of µ = 1.28 × 10−3 (Newtonian orbit and Newtonian quadrupole and octupole tide). In

Figure 5.5, we give the change in orbital and spin angular momenta (top) and the change in total

angular momentum (bottom) during the Newtonian simulation. Results are given for three different

resolutions (∆A,∆B ,∆C). We see that the spin up of the star is accompanied by a matching decrease

in the orbital angular momentum. This is expected analytically. Thus, the calculation represents

a considerable test of the sensitivity of the simulations, since it is the l = 2 tide that is primarily

responsible for the spin up and it is the l = 3 tide that is responsible for the deflection of the fluid

center of mass relative to the FNC frame center.

5.3.2 Complete and partial disruptions

For η ≤ 3 encounters, gas streams off the star and out of the computational domain. We track

the amounts of mass and energy that leave the grid and include these in our estimate of the total

energy and angular momentum deposited onto the star. Furthermore, these simulations are modeled

with a larger computational domain, L = 8R∗, than the weak encounters in order to contain as much

gas streaming off of the star as possible.

In Table 5.5, the amount of mass and energy, normalized by their initial values, is given for

η = 1 − 4 encounters with mass ratio µ = 1.28 × 103. For comparison, we have the amount of
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η Resol. Moutflow/M∗ Eoutflow/(Etot)0 ∆Erel.
l=2,3/(Etot)0

1 ∆B 7.62282e-01 1.43009 2.417811
2 ∆B 1.02146e-01 1.00925e-01 4.91648e-01
3 ∆B 4.81726e-05 1.78255e-05 2.87480e-02
4 ∆C 8.51158e-11 4.10234e-11 2.06173e-03
4∗ ∆C 0 0 2.12101e-03

Table 5.5: Mass/energy outflow for η = 1−4 encounters. We consider a mass ratio µ = 1.28×10−3.
The values are normalized by the initial mass M∗ and the initial total energy E0

tot. Also given is the
amount of normalized energy deposited onto the star at τ = 5τ0 in the simulation using a quadrupole
and octupole tide. We compare the use of outflow and solid wall boundary conditions for η = 4
where the asterisk denotes solid wall boundary conditions.

normalized energy deposited onto the star at τ = 5τ0 in the simulation using a quadrupole and

octupole tide. We compare the use of outflow and solid wall boundary conditions for η = 4. We

note that the mass and energy outflow decreases with increasing η and at η = 4 the amount leaving

the domain is negligible enough to use solid wall boundary conditions.

We see the result of including the octupole tidal term in Figure 5.6. Density contour plots in

the xy-plane are given for an η = 3 encounter with mass ratio µ = 1.28× 10−3 simulated with only

the quadrupole term (left panel) and with both the quadrupole and octupole term (right panel).

The contour lines are given for log10 ρ from −11 to −5 in steps of 0.5. Note that with the inclusion
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Figure 5.6: Asymmetrical star with octupole tidal term. Contour plots of density of the star in the
xy-plane at τ = 1.7τ0 for an η = 3 encounter and mass ratio µ = 1.28 × 10−3. The contour lines
are given for log10 ρ from −11 to −5 in steps of 0.5. Results are given for simulations with only
quadrupole (l = 2) tidal terms (left) and quadrupole (l = 2) and octupole (l = 3) tidal terms (right).
The resolution of the grids in these simulations is ∆B . The effect of the octupole tidal term has in
driving a deflection of the center of mass is evident in the asymmetrical tidal lobes.
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Figure 5.7: A snapshot of an η = 3 encounter in the black hole and FNC frame. The time is
τ = 1.7τ0 and the mass ratio is µ = 3.77× 10−5. The contour lines are given for log10 ρ from −8 to
−2 in steps of 0.5. The quadrupole and octupole tidal terms have been included in the calculation.
The arrow in the left panel (black hole frame) is the azimuthal coordinate φ′ and the arrow in the
right panel (FNC frame) gives the direction from the black hole to the origin of the FNC.

of the octupole term, the star is asymmetrical. The black arrow represents the direction from the

black hole to the origin in the FNC coordinate system. Consider the results of an η = 3 encounter

with a mass ratio µ = 3.77 × 10−5 and both the quadrupole and octupole terms in the tidal field,

as shown in Figure 5.7. The contour lines are given for log10 ρ from −8 to −2 in steps of 0.5. Note

that the star is more asymmetrical for a mass ratio µ = 1.28× 10−3 than for µ = 3.77× 10−5. This

agrees with the analysis from the previous chapter (see Figure 3.4) where the octupole term has

more relative importance for mass ratios µ ∼ 10−3 than µ ∼ 10−5. We give density contour plots

from τ = 0 (at periastron) to τ = 2.2τ0 in Figure 5.9.

The star is tidally disrupted when η = 1. In Figure 5.8, plots are given for η = 1, 2, 3 encounters

with mass ratio µ = 1.28×10−3 with grid resolution ∆B . Inspecting the normalized central density,

we see that for η = 2 and η = 3, the star is only partially stripped and what is left of the core

oscillates violently. We give density contour plots for η = 1 from τ = 0 (periastron) to τ = 1.6τ0 in

Figure 5.10.

We calculate the vorticity, (~∇×~v)z in the star. Contour plots in the xy-plane are given in Figure

5.11 and 5.12 for η = 3 and η = 1 encounters with mass ratio µ = 3.77 × 10−5. We note that the

core of the star remains irrotational. This agrees with the discussion found in Kochanek (1992) [28].
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Figure 5.8: Partial and complete disruptions. In the top panel, we give the normalized central
density for each tidal encounter simulation by subtracting from it the normalized central density
for the equilibrium simulation and adding unity (ρηc/ρ

0
c − ρequilc /ρ0

c + 1). In the next panel, we give
the total energy deposited on the star for each tidal encounter simulation subtracted by the change
in total energy for the equilibrium simulation (Eηtot − Eequil

tot ) and divide by the magnitude of the
initial total energy |E0

tot|. In the bottom panel, we give the total z-component of the spin angular
momentum deposited on the star for each tidal encounter simulation subtracted by the change
in total z-component of the spin angular momentum for the equilibrium simulation (Lηz − Lequilz ).
Results are given at the highest resolution, ∆C .
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Figure 5.9: Density contours of an η = 3 encounter and mass ratio µ = 3.77× 10−5. The simulation
begins at τ = −5τ0, reaches periastron at τ = 0, and ends at τ = 5τ0. The contour lines are given
for log10 ρ from −8 to −2 in steps of 0.5.
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Figure 5.10: Density contours of an η = 1 encounter and mass ratio µ = 3.77×10−5. The simulation
begins at τ = −5τ0, reaches periastron at τ = 0, and ends at τ = 5τ0. The contour lines are given
for log10 ρ from −8 to −2 in steps of 0.5.

In Figures 5.11 and 5.12, it is apparent that vorticity is present only in the outer layers of the star,

where shocks have broken the isentropic initial state. The contour lines are given for |(~∇×~v)z| from

0 to 0.1 in steps of 0.01.

5.3.3 Comparison with linear theory

We next compare the amount of energy and angular momentum deposited onto the star by the tidal

interaction in our full simulations with the predictions of linear theory. We make these comparisons

for all of the encounter strengths (η = 1 − 6) considered in this thesis. For these comparisons, we
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Figure 5.11: Vorticity contours of an η = 3 encounter and mass ratio µ = 3.77×10−5. The simulation
begins at τ = −5τ0, reaches periastron at τ = 0, and ends at τ = 5τ0. The contour lines are given
for |(~∇× ~v)z| from 0 to 0.1 in steps of 0.01.
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Figure 5.12: Vorticity contours of an η = 1 encounter and mass ratio µ = 3.77×10−5. The simulation
begins at τ = −5τ0, reaches periastron at τ = 0, and ends at τ = 5τ0. The contour lines are given
for |(~∇× ~v)z| from 0 to 0.1 in steps of 0.01.

measure the deposited energy and angular momentum at a time of five radial oscillations after the

star passes periastron. Each model is computed with three different resolutions (∆A,∆B ,∆C). As

mentioned above, for η = 4 − 6, the star does not disrupt and solid wall boundary conditions are

used. For η ≤ 3, the star is partially or fully disrupted and we measure the energy that leaves the

grid and include it in our analysis.

According to the theoretical analysis of Press and Teukolsky [26] and Lee and Ostriker [27], the

103



µ 1.28× 10−3 4.21× 10−4 3.77× 10−5

η Resol. ∆Elinear
l=2,3 ∆Etot

1 ∆A 5.647e-08 1.452e-07 4.814e-08 5.693e-09
1 ∆B 5.647e-08 1.454e-07 4.823e-08 5.707e-09
2 ∆A 7.818e-09 2.995e-08 9.869e-09 1.078e-09
2 ∆B 7.818e-09 2.958e-08 9.851e-09 1.069e-09
3 ∆A 8.651e-10 1.764e-09 5.744e-10 4.941e-11
3 ∆B 8.651e-10 1.730e-09 5.638e-10 4.850e-11
4 ∆A 8.076e-11 1.635e-10 5.302e-11 4.213e-12
4 ∆B 8.076e-11 1.248e-10 4.018e-11 3.045e-12
4 ∆C 8.076e-11 1.240e-10 4.108e-11 3.027e-12
5 ∆A 6.899e-12 4.560e-11 1.517e-11 1.328e-12
5 ∆B 6.895e-12 9.355e-12 3.015e-12 2.129e-13
5 ∆C 6.895e-12 8.454e-12 2.687e-12 1.830e-13
6 ∆A 5.558e-13 3.732e-11 1.224e-11 1.065e-12
6 ∆B 5.558e-13 1.177e-12 3.899e-13 2.830e-14
6 ∆C 5.558e-13 3.993e-13 1.256e-13 7.144e-15

Table 5.6: Deposited energy ∆Etot onto the star for relativistic encounters. We use both l = 2 and
l = 3 contributions to the tidal field. Results at the end of the simulation, τ = 5τ0, are given for
different resolutions (∆A, ∆B , ∆C). The amount of energy ∆Elinear

l=2,3 predicted by linear theory is
also given.

µ 1.28× 10−3 4.21× 10−4 3.77× 10−5

η ∆ < ∆E > < ∆L > < ∆E > < ∆L > < ∆E > < ∆L >

1 ∆B 1.450e-07 8.100e-06 4.823e-08 8.349e-07 5.700e-09 3.700e-09
2 ∆B 2.940e-08 1.800e-05 9.851e-09 1.938e-06 1.060e-09 1.500e-08
3 ∆B 1.740e-09 2.825e-06 5.650e-10 3.015e-07 4.860e-11 2.320e-09
4 ∆C 1.270e-10 2.000e-07 4.100e-11 2.130e-08 3.100e-12 1.425e-10
5 ∆C 9.000e-12 1.450e-08 2.900e-12 1.500e-09 1.980e-13 9.350e-12
6 ∆C 7.000e-13 1.050e-09 1.900e-13 1.120e-10 1.400e-14 6.300e-13

Table 5.7: Average energy and angular momentum deposited onto the star. Results are given
for the highest resolutions (∆B , ∆C) for different encounters η = 1 − 6 and mass ratios µ =
1.28× 10−3, 4.21× 10−4, 3.77× 10−5.

amount of energy deposited onto the star into non-radial oscillations is given by

∆E =

(
GM2

∗
R∗

)(
MBH

M∗

)2 ∑
l=2,3,...

(
R∗
Rp

)2l+2

Tl(η), (5.3.4)

for spherical harmonic index l and dimensionless functions Tl, which are functions of η alone [26].

We use Tl for an n = 1.5 polytrope that have been computed previously by others [27, 53].

Table 5.6 gives the amount of energy deposited onto the star at the end of the simulation (τ = 5τ0)

for Newtonian (quadrupole tide only) and relativistic (quadrupole and octupole tide) encounters.

Results for different resolutions (∆A, ∆B , ∆C) are tabulated. Also given is the amount of energy

predicted by linear theory. After the encounter, the amount of total energy and angular momentum
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Figure 5.13: Comparison between full simulations and linear theory. Results of encounters η = 1−6
are shown for different resolutions ∆A, ∆B , and ∆C . In the top panel, we compare the total energy
deposited on the star with the predictions from the linear theory for mass ratio µ = 1.28×10−3. The
solid line indicates amount of energy deposited into both the l = 2 and l = 3 non-radial modes. The
dotted line gives only the l = 3 contribution. The next panel gives the average amount of deposited
energy onto the star divided by the prediction from linear theory. We give results for different mass
ratios µ = 1.28× 10−3, 4.21× 10−4, 3.77× 10−5. The bottom panel is a plot of the normalized ∆Lz
versus ∆E for mass ratio µ = 1.28× 10−3. The solid line is the proportionality given by [28].

deposited onto the star will oscillate about a new value and we give the average in Table 5.7.

We compare the predicted total energy due to the l = 2 and l = 3 modes with the change in
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total energy in the simulations with mass ratio µ = 1.28× 10−3 in the top panel of Figure 5.13. It is

shown that the dominant contribution to (5.3.4) is due to the l = 2 mode, as expected. We compare

this result with previous studies using an affine and hydrodynamic model [28, 38]. We see a clear

convergence with linear theory as weaker encounters are considered (η = 4, 5), though our numerical

results for η = 6 are not (yet) sufficiently resolved to include as further confirmation. We note that

the results of our simulations for η ≤ 3 indicate that close tidal encounters deposit more energy

than linear theory would predict and this has consequences for increasing the tidal capture cross

section. Nonlinear effects are apparent in the energy deposition into the fundamental radial mode,

which does not occur in linear theory. We consider the average amount of deposited energy divided

by the prediction from linear theory for mass ratios µ = 1.28× 10−3, 4.21× 10−4, and 3.77× 10−5

in the second panel of Figure 5.13. We note a suppression in the energy with decreasing mass ratio

for encounters η ≤ 3. We recognize that for η ≥ 3 the star is completely or partially disrupted and

gas leaves the domain, which affects the accuracy of our energy measurement.

We consider the relation between the amount of spin angular momentum and total energy de-

posited onto the star. After the encounter, the l = 2, m = −2 f-mode is strongly excited (along with

the other l = 2 and l = 3 modes at lower amplitudes). This mode will contain both angular momen-

tum and vorticity. As we have seen, however, the star remains largely irrotational. This is especially

true in the weak encounter limit where nonlinear effects like shock heating near the surface can be

neglected and the encounter is adiabatic. In order for vorticity to be conserved, the star emerges

from the encounter with also a net bulk rigid rotation superimposed with the nonradial oscillation

that is just sufficient to cancel vorticity (see Figures 5.11 and 5.12). Kochanek has analyzed the

post-encounter as an irrotational ellipsoid, and found, to lowest order, the proportionality between

∆Etot and ∆Lz is

∆Etot =
|Eg|√

15

∆Lz√
I∗|Eg|

, (5.3.5)

[28]. In the bottom panel of Figure 5.13, this relationship between ∆Etot and ∆Lz is plotted (solid

line) against simulation data of the normalized spin angular momentum and energy deposited onto

the star. Each point represents a single simulated encounter with mass ratio µ = 1.28× 10−3.

5.3.4 Relativistic encounters

We calculate a derived dimensionless function T2 using the average amount of energy deposited

onto the star during the simulation with (5.3.4). We compare this result with the prediction from
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µ 1.28× 10−3 4.21× 10−4 3.77× 10−5

η T linear
2 T relativistic

2

3 4.984e-01 1.004 9.905e-01 9.525e-01
4 1.472e-01 2.316e-01 2.272e-01 1.920e-01
5 3.070e-02 4.007e-02 3.923e-02 2.994e-02
6 5.126e-03 6.462e-03 5.329e-03 4.390e-03

Table 5.8: Dimensionless function T2 from linear theory and simulations. We consider T2 analytically
( µT

linear
2 ) and calculated from the average energy deposited onto the star for relativistic encounters

η = 3 − 6 with different mass ratios µ = 1.28 × 10−3, 4.21 × 10−4, and 3.77 × 10−5. The values
decrease with decreasing mass ratio.

the linear theory [27, 53] in Table 5.8 for η = 3 − 6 and µ = 1.28 × 10−3, 4.21 × 10−4, and

3.77× 10−5. For Newtonian encounters, the derived T2 from simulation should be the same for any

mass ratio. We see that for relativistic encounters, T2 decreases with decreasing mass ratio. This

suggests a suppression in T2 due to relativistic effects. The predicted energy deposition in the linear

theory (5.3.4) is derived from the assumption that the interaction is Newtonian. The dimensionless

parameter Tl(η) is defined in terms of a part, Qnl, that is only dependent on the structure of the

star and its non-radial eigenmodes, and a part, Knlm, that depends only on the orbit, [26],

Tl(η) = 2π2
∑
n

|Qnl|2
l∑

m=−l
|Knlm|2,

Qnl =

∫ 1

0

r2drρlrl−1[ξRnl + (l + 1)ξSnl],

Knlm =
Wlm

2π

∫ ∞
−∞

dτ

(
Rp
R(τ)

)l+1

exp{i[ωnτ +mΦ(τ)]},

Wlm = (−1)(l+m)/2

[
4π

2l + 1
(l −m)!(l +m)!

]1/2/[
2l
(
l −m

2

)
!

(
l +m

2

)
!

]
, (5.3.6)

where ξRnl and ξSnl are the radial and poloidal components of the normal modes of a spherical star, ωn

are the eigenfrequencies associated with these normal modes, and Φ is the true anomaly. We estimate

the difference in Tl for a relativistic orbit by considering the order of the correction to Knlm. We will

consider the quadrupole contribution only since it is the dominant term in the tidal field. The New-

tonian quadrupole is of the order O(M/R3
p) such that |Kn2m| ∼ O(M/R3

p) and
∑2
m=−2 |Knlm|2 ∼

O(M/R3
p)

2. The relativistic quadrupole has an additional correction such that |Kn2m| ∼ O(M/R3
p)+

O[(M/R3
p)(M/Rp)] and

∑2
m=−2 |Kn2m|2 ∼ O(M/R3

p)
2 +O[(M/R3

p)
2(M/Rp)] + · · · . Thus, the rel-

ative percentage change between the overlap integral for a Newtonian encounter and the corrected

one for a relativistic encounter is of order |Knlm −KR
nlm|/|Knlm| ∼ O(M/Rp). In the overlap inte-

gral for Knlm, the M/Rp correction has a sharper time dependence from the 1/R(τ)5 dependence
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and the phase factor Φ(τ) rotates further and more rapidly in a relativistic orbit, due to apsidal ad-

vance. Thus, T2 should not only be a function of η but also of a relativistic dimensionless parameter,

Φp = M/Rp, such that T rel.
2 (η,Φp).

5.3.5 Energy deposited into radial oscillations

After the encounter with the black hole, the star is observed to oscillate in a set of radial modes.

This occurs for all encounters below the threshold of disruption and we see the presence of the

fundamental radial mode in plots of time dependence of central density in Figures 5.3 and 5.8. In

simulations by Khoklov, Novikov, and Pethick (1993) [38, 39], as in ours, there is an excess in the

amount of deposited total energy from that predicted by linear theory. Khoklov et al. attributed

this to the non-linearity of the non-radial oscillations and to the excitation of radial modes, which

do not occur in linear theory. To examine this idea, we simulated models that were deliberately

set into radial oscillation in order to quantify how much increase in energy might be due to radial

oscillations and to compare the results to our tidal encounters simulations.

We generate radially radial pulsating models by introducing a simple scaling of the Lane-Emden

density profile as an initial condition. Consider a homologous mapping of the star that takes the

original radius R∗ to R′∗ = R∗/λ, where λ is a scaling parameter. The range in radius r′ = aξ′ for

the new configuration is r′ = [0, R′∗]. We write the new density profile as ρ̄(r′) = ρ̄cθ(ξ
′)n for some

ρ̄c. The total mass of the new configuration is

M = 4π

∫ R′∗

0

ρ̄(r′)(r′)2dr′ = 4π

∫ R∗/λ

0

ρ̄(r/λ)
r2

λ3
dr = 4π

∫ R∗/λ

0

ρ(λr′)λ3r′2dr′. (5.3.7)

If new density profile is derived from the initial profile by

ρ̄ = λ3ρ(λr′), (5.3.8)

where ρ(λr′) = ρcθ(ξ = r′λ/a)n, then the mass is unaffected by the homologous transformation.

We compute models with parameter range λ = [0.9, 0.95, 0.98, 0.995, 1.005, 1.02]. For these mod-

els we plot the normalized central density versus time and the change in total energy relative to the

control simulation λ = 0 in the top two panels of Figure 5.14. In the bottom panel of Figure 5.14, we

find that the normalized change in central density versus normalized change in λ is consistent with

the initial density profile (5.3.8) such that δρ/ρ ∼ 3δλ/λ. We compare the change in total energy

between radial pulsation and equilibrum models, ∆Eλtot−∆Eλ=0
tot , with the difference in the amount
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Figure 5.14: Radial pulsation models: the normalized central density and change in total energy
from equilibrium model; normalized change in central density versus normalized change in λ; change
in total energy between radial pulsation and equilibrum model, ∆Eλtot − ∆Eλ=0

tot and amount of
total energy deposited onto star during tidal encounter ∆E subtracted by the predicted amount by
linear theory ∆Elinear

l=2,3 versus the amplitude of the normalized change in central density. In the top
two panels, the normalized central density and change in total energy is given for radial pulsation
models λ = [0.9, 0.95, 0.98, 0.995] with resolution ∆B . In the bottom left panel we show the relation
between the central density and parameter λ consistent with the initial conditions for mode such
that δρ/ρ ∼ 3δλ/λ. We compare these models with those of tidal encounters η = 2−6 in the bottom
right panel. The fit parameters are m = 1.86 and c = −7.71. The observed energy excess in tidal
encounters is in general an order of magnitude or two higher than can be explained by excitation of
the fundamental radial mode.
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of total energy deposited onto star during tidal encounter ∆E and the prediction by linear theory

∆Elinear
l=2,3 in the bottom right panel of Figure 5.14. These values are functions of the amplitude of

oscillation of the normalized central density. For the tidal encounters, we extract the amplitude by

subtracting from unity the average value of the normalized central density after the encounter. The

fit parameters are m = 1.86 and c = −7.71. Note that the points from right to left are encounters

η = 2 − 6. The right two points (η = 2, 3) are partially disruptive encounters and we expect a

behavior different from the other three points. We conclude that the amount of energy associated

with the excitation of the fundamental radial mode is small compared to the excess energy we see

deposited onto the star in our simulations and to the predictions of linear theory. Excitation of

radial oscillations appears to be a minor contributor to the tidal energy deposition for η = 4− 6. It

can be of order 14%− 22% for η = 2 and 3. See Table 5.9.

5.3.6 Energy deposited by to shock heating

η ∆E ∆Eradial/∆E ∆Eshock/∆E

2 2.1581e-8 0.2277 0.5388
3 8.7489e-10 0.1395 1.5234
4 4.6235e-10 0.0031 0.2607

Table 5.9: Energy excess due to radial oscillations and shock heating. The energy excess between the
total energy deposited onto the star during the simulation and that predicted by linear theory is given
by ∆E = ∆Etot−∆Elinear

l=2,3 . We consider the contributions to this excess due to the energy deposited

into radial oscillations and shock heating for encounters η = 2− 4 and mass ratio µ = 1.28× 10−3.

We next consider the change in total energy of the star due to shock heating during the encounter.

After passing by the black hole, the star is observed to expand and we can relate the change in

density to a change in the energy of the configuration. We apply this assumption to non-disruptive

encounters and partially-disruptive encounters, focusing on the expansion of the remaining core. We

can do this approximately by assuming that the new configuration, with lowered central density, is

another polytropic model with the same polytropic index n and with the original mass, M∗. Then,

given M∗ (unchanged) and ρc, we can determine a new value of κ using (2.2.33)

M∗ = −4π

[
(n+ 1)κ

4πG

]3/2

ρ(3−n)/2n
c

(
−ξ2 dθn

dξ

)
ξ=ξ1

, (5.3.9)

for an n = 1.5 polytrope. Indeed, this can be solved for κ in terms of the central density, ρc,

κ(ρc) =
2 22/3

5
GM2/3π1/3

(
−ξ2 dθn

dξ

)−2/3

ξ=ξ1

ρ−1/3
c . (5.3.10)
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Then, the radius can be derived from κ and ρc by

R(κ, ρc) =

√
5

8π
κ ξ1ρ

−1/6
c . (5.3.11)

Finally, we can estimate the change in total energy by calculating the total energy of the polytrope

using the new radius (2.2.25),

E
′

tot(R) = −
(

3γ − 4

5γ − 6

)
GM2

∗
R

, (5.3.12)

where γ = 5/3. Using the time evolution of central density (Figures 5.3 and 5.8) which shows the

post-encounter new average density for encounters η = 2− 6, the above analysis leads to estimated

amounts of energy deposited via shock heating. These are compared in Table 5.9 with the amount

of energy observed to be deposited in the simulations in excess of the predictions of linear theory.

While not a perfect match, the effects of shock heating are order of magnitude correct. We conclude

that shock heating of the outer layers of the post-encounter star is the most likely repository of the

excess deposited energy.

5.4 Estimates of return orbit after first encounter

< ∆E > (erg)
η µ = 1.28× 10−3 Rp (cm) Ra (cm) 1− e T (s)

2 2.629e+49 1.260e+10 3.202e+12 7.840e-03 4.970e+04
3 1.556e+48 1.651e+10 5.430e+13 6.080e-04 3.452e+06
4 1.135e+47 2.000e+10 7.442e+14 5.376e-05 1.750e+08
5 8.046e+45 2.321e+10 1.050e+16 4.421e-06 9.279e+09
6 6.258e+44 2.621e+10 1.350e+17 3.883e-07 4.278e+11

η µ = 4.21× 10−4 Rp (cm) Ra (cm) 1− e T (s)

2 2.676e+49 1.825e+10 9.576e+12 3.805e-03 1.470e+05
3 1.535e+48 2.391e+10 1.673e+14 2.859e-04 1.070e+07
4 1.114e+47 2.897e+10 2.305e+15 2.514e-05 5.475e+08
5 7.877e+45 3.362e+10 3.259e+16 2.063e-06 2.910e+10
6 5.161e+44 3.796e+10 4.974e+17 1.526e-07 1.735e+12

η µ = 3.77× 10−5 Rp (cm) Ra (cm) 1− e T (s)

2 3.219e+49 4.081e+10 8.912e+13 9.154e-04 1.246e+06
3 1.476e+48 5.348e+10 1.945e+15 5.500e-05 1.269e+08
4 9.415e+46 6.478e+10 3.049e+16 4.250e-06 7.876e+09
5 6.013e+45 7.517e+10 4.773e+17 3.150e-07 4.879e+11
6 4.252e+44 8.489e+10 6.751e+18 2.515e-08 2.595e+13

Table 5.10: The change in orbit due to the loss of orbital energy during the encounter. We give the
amount of energy deposited onto the star (taken from the orbit) and the periastron Rp of the initial
parabolic orbit. We give the apastron Ra, eccentricity e, and period of return T of the new elliptical
orbit. Results are given for encounters η = 2− 6 and mass ratios µ = 1.28× 10−3, 4.21× 10−4, and
3.77× 10−5.
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We calculate the amount of energy taken from the orbit and deposited onto the star in the

simulations. The star is assumed to be initially on a marginally bound (parabolic) orbit and, after

the encounter, it will be on a highly elliptical orbit. We estimate the amount of energy taken from

the orbit and deposited onto the star with Newtonian considerations. Initially, the star is on a

parabolic orbit with orbital energy E = 0 and eccentricity e = 1. Orbital energy decreases when

energy is deposited onto the star and the result is an elliptical orbit with E < 0 and e < 1, where

ε =
1

2
ṙ2 +

l2

2mr2
− GM

r
< 0, (5.4.1)

in terms of specific orbital energy ε and angular momentum l, and

r1 = a(1− e), r2 = a(1 + e), a =
r1 + r2

2
, (5.4.2)

where r1 is periastron, r2 is apastron, and a is the semi-major axis. At periastron and apastron, we

write the specific energy equation in terms of the amount deposited onto the star, ∆ε = ∆Etot/M∗ <

0, and taken from the orbit as

∆ε =
l2

2mr2
− GM

r
, (5.4.3)

and solve for r to obtain

r =
1

2

−GM
∆ε
±
√

(
GM

∆ε
)2 − 4

(
− l2

2∆ε

)2
 . (5.4.4)

The semi-major axis is then,

a = −GM
2∆ε

. (5.4.5)

From Kepler’s third law we write the return period as

τ = 2π(GM)−1/2a3/2. (5.4.6)

We take periastron of the elliptical orbit r1 = Rp to be the same as that of the initial parabolic

orbit. The new eccentricity is then

e = 1−Rp/a. (5.4.7)

We give results for encounters η = 2−6 and mass ratios µ = 1.28×10−3, 4.21×10−4, and 3.77×10−5
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in Table 5.10.

In this chapter, we have given results of applying the numerical method to tidal interactions

between a white dwarf and an intermediate mass black hole. We compare our tidal encounters

against stellar equilibrium simulations of the same star. We compare our results to semi-analytical

calculations from linear theory and the affine model in the regime of weak tidal interactions. In

our simulations, we show a relativistic suppression in the amount of energy deposited onto the star.

We speculate on source of the observed energy excess in the tidal encounter simulations from linear

theory and find that the energy deposited into radial oscillations is negligible and that the shock

heating in the outer layers of the post-encounter star contributes a significant amount. Using the

amount of energy deposited onto the star, we estimate parameters of the post-encounter orbit.
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Chapter 6

Conclusions

In this thesis we have presented a new numerical method to simulate the tidal disruption of

a star by a massive black hole. We have applied this method to white dwarf encounters with an

intermediate mass Schwarzschild black hole. The formalism for calculating the tidal interaction in

Fermi normal coordinates (FNC) allows the addition of an arbitrary number of terms in the tidal

interaction. By assuming Newtonian stellar self-gravity and hydrodynamics, the number of terms is

limited and we justify the use of these terms in this thesis.

We have given an analysis of the tidal disruption of a star by a black hole in the Newtonian

limit. We present our assumptions for the Newtonian star that is used in our calculations and

discuss the consequences of an interaction with a Newtonian tidal field. This analysis is applied to

the results of simulations of the relativistic tidal interaction. We show in detail the formalism we

use for the relativistic treatment in Fermi normal coordinates, where we may expand the metric

for a general spacetime. We give the fluid equations of motion of the white dwarf and in the tidal

field of a Schwarzschild black hole and give the number of significant terms we may use in the tidal

expansion, derived from this formalism. The Newtonian hydrodynamic equations are solved using

the piecewise parabolic method with Lagrangian remap (PPMLR) and we use a pseudo-spectral

method for Poisson’s equation for theNewtonian gravitational field of the star. We present a routine

to calculate the relativistic tidal interaction between the white dwarf and the black hole in the FNC

frame along a geodesic. The new results from this method include a comparison of the amount of

spin-angular momentum and total energy deposited onto the star with the linear theory and the

affine model, the inclusion of the octupole tidal term which drives the center of mass of the star off

of the FNC origin and produces asymmetrical tidal lobes on the star, and measuring the relativistic

correction for the dimensionless parameter associated with energy deposition, T2.

This work is the first to include the Ishii et al. formalism for the relativistic tidal field in FNC.

It is the first to compute the l = 3 tidal term and its affect in driving the CM of the star off of

the initial trajectory. As far as we know, it is the first to see a relativistic suppression of the tidal

heating. We note an excess in the amount of energy deposited onto the star from the prediction of

linear theory in our simulations. Using radial pulsation models, we find that the energy deposited



into radial oscillations is neglible. We estimate that the shock heating in the outer layers of the

post-encounter star contributes a significant amount to this excess. We would like to see the effects

of the gravitomagnetic and l = 4 terms in the tidal expansion and will address this in the future

with higher resolution studies.

An extension of this work would be determining the orbital parameters of the debris from the

disrupted star. This could be calculated by considering the outflow of gas from the computational

domain during the encounter. We would like to understand the prompt hydrodynamic effects of

the disruption phase and compute the mass distribution in phase space of captured debris. This

understanding will allow an estimate of the accretion flare that occurs as the debris returns to the

hole.

The method may be applied to a variety of stars such as main sequence stars and red giants. By

including post-Newtonian corrections to the hydrodynamics and self-gravity, more compact objects,

such as a neutron star, may be considered. A similar formalism to the work in this thesis may be

to Kerr black holes. We would like to include a Kerr metric derivation of the FNC frame and Kerr

orbital motion. We would then be able to compute the effects of black hole spin on the disruption

of the star.
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