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ABSTRACT

ERIC FRIEDLANDER: Mean-Field Methods in Large Stochastic Networks
(Under the direction of Amarjit Budhiraja)

Analysis of large-scale communication networks (e.g. ad hoc wireless networks, cloud com-

puting systems, server networks etc.) is of great practical interest. The massive size of such

networks frequently makes direct analysis intractable. Asymptotic approximations using fluid

and diffusion scaling limits provide useful methods for approaching such problems. In this dis-

sertation, I study such approximations in two different settings. In the first, I consider a rate

control problem for a weakly interacting particle system. I show that by considering an associ-

ated diffusion control problem, one can construct controls which are asymptotically optimal for

the finite particle system control problem. In the second, I consider a class of load balancing

mechanisms in a large cloud-storage network that uses a Maximum Distance Separable coding

scheme to store a large set of files. Fluid and diffusion approximations are developed for this

system and the long-time behavior of the network is studied.
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CHAPTER 1

Introduction

“All models are wrong but some are useful!” - George Box

Recent technological advances in the telecommunications industry have led to a boom in

the use of distributed processor networks, cloud-based marketplaces and storage networks,

and mobile and sensor networks. The ubiquity of such systems has prompted a significant

amount of research into useful models for these systems (Antunes et al., 2008; Bonald et al.,

2004; Gibbens et al., 1990; Gupta and Kumar, 2003; Ganesh et al., 2003). One of the main

difficulties in such modeling arises from the large size of the systems being considered. Models

for such systems typically take the form of continuous or discrete time Markov chains and the

networks of interest frequently have events (e.g. job arrivals, purchases, file requests, etc.)

which occur at a rate which scales with the size of the network. The resulting processes have

jumps which occur extremely quickly, and thus applying standard techniques to analyze these

models for large networks becomes intractable. In order to simplify, it is useful to consider

asymptotic approximations of such systems under a suitable scaling. Specifically, in many

settings, by speeding the system up and scaling the state space, one can establish tractable

approximations of the underlying system in the form of ordinary differential equations (ODE)

or stochastic differential equations (SDE). These limiting descriptions provide tractable model

simplifications for analyzing the underlying system. In this dissertation, I study two different

problem settings where such approximation methods can be developed.
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1.1 Summary of Thesis

1.1.1 Diffusion Approximations for Controlled Weakly Interacting Large Finite
State Systems with Simultaneous Jumps

We study a pure jump, weakly interacting, Markovian particle system in which jump rates

can be dynamically modulated by a controller. The stochastic system of interest describes the

state evolution of a collection of n particles where each particle’s state takes values in a finite

set X. By a weak interaction we mean that the jump rates for a typical particle depend on the

states of the remaining particles through the empirical distribution of particle states. System

dynamics will allow for multiple particles to change states simultaneously, but there will be a

fixed finite number of jump types. Such jump-Markov processes have been proposed as models

for ad hoc wireless networks (Antunes et al., 2008) of the following form. Consider a system

of n finite capacity servers (particles/nodes). Jobs of K different types, each with their own

capacity requirement, arrive at each node at rate λk, k = 1, . . . ,K and are admitted if there

is enough available capacity. All the jobs in the system of type k have exponential residence

time with mean τ−1
k . After an exponential holding time with mean γ−1

k a job of type k will

attempt to switch to another server which is chosen uniformly at random, and is admitted

if there is available capacity, otherwise the job is lost. The state of a particle describes the

number of various types of jobs being processed at the server. Under conditions, by classical

results, the stochastic process of particle state empirical measures converges to the solution

of a d-dimensional ODE (cf. (Kurtz, 1970)), where d = ∣X∣. This ODE captures the nominal

behavior of the system over time as n becomes large.

Taking a different perspective, the analysis of such ODE is a natural starting point for

system design. By studying the mapping between system parameters and solution sets of the

ODE one can identify parameter values that lead to desirable system behavior over time, at

least in the law of large number limit as determined by the solution of the ODE. However,

even when the system has been designed to reproduce a certain targeted nominal behavior the

actual stochastic process of interacting particles may deviate significantly from the behavior

determined by the ODE. It then becomes of interest to study dynamic control algorithms

that modulate controllable system parameters to nudge the stochastic process closer to its

2



desired nominal behavior. In general, adjusting system parameters incurs a cost and thus there

is a trade off between this and the cost for deviating from the nominal behavior. A natural

approach for analyzing this trade off is through an optimal stochastic control formulation where

the controller seeks to minimize a suitable cost function which accounts for both types of costs

noted above.

The goal of this work is to develop a systematic stochastic control framework for studying

optimal regulation of large, weakly interacting, pure jump Markov processes that arise from

problems in communication networks. Since the jump rates in the system are of O(n), and in

a typical system n is large, an exact analysis of this control problem becomes computationally

intractable and thus one seeks a suitable approximate approach. The basic idea is to consider

a sequence of networks indexed by n such that the given physical system is embedded in this

sequence for some fixed large value of n. A suitable asymptotic model, as n → ∞, is used

as a surrogate for the control problem in the n-th network. The asymptotic model taken

here is based on diffusion approximations which give the limit behavior of fluctuations of the

empirical measure process from its law of large number (LLN) limit. In an uncontrolled setting,

such diffusion limits can be derived from classical martingale problem techniques (Kurtz, 1971;

Joffe and Métivier, 1986) that are also the starting point here for developing an asymptotic

framework for the study of the optimal stochastic control problem. Diffusion approximation

methods have been used extensively in stochastic network theory, in particular they have been

very useful in the study of critically loaded stochastic processing networks (see (Kushner, 2013;

Harrison, 1988; Atar and Shifrin, 2014; Bell and Williams, 2001; Dai and Lin, 2008; Whitt,

2002; Budhiraja and Ghosh, 2012; Budhiraja et al., 2011) and references therein). In this

context, diffusion processes arise as approximations for a fixed number of centered renewal

processes with rates approaching infinity. Limit theorems and the scaling regime considered

in these works (number of nodes is fixed, traffic intensity approaches 1) is quite different from

the one where the number of nodes (particles) approaches infinity that is considered here. In

communication systems that motivate the study of such interacting processes, jumps correspond

to either an admission of a job to one of the n nodes in the system, transfer of a job from one

node to another node, or the completion/rejection of a job (and thus exit from the system). We

consider a formulation in which controls can make “small” adjustments to the rate values in

3



order to nudge the system toward its nominal state. Specifically, the overall rate of jumps in the

system is O(n) whereas the allowable rate controls will be O(√n). Although the magnitude

of control becomes negligible compared to the overall rate as n becomes large, in the diffusion

scaling such a control can lead to an appreciable improvement in performance (see Section 3.6

for some numerical results). In the LLN limit the controlled and uncontrolled systems both

converge to the same nominal behavior as expected, but the diffusion limit of the two systems

will in general differ in the drift coefficient. In particular, under suitable feedback controls

the centered and normalized controlled process will converge to a diffusion with a nonlinear

(in state) drift term whereas the uncontrolled process will converge to a time inhomogeneous

Gauss-Markov process. In terms of cost, one can consider various types of criteria, but for

simplicity we restrict ourselves to a finite time horizon cost where the running cost is a sum of

two terms. The first term is a continuous function, with at most polynomial growth, of the state

of the centered and normalized empirical measure, and the second is a finite convex function of

the (normalized) control.

Rather than attempting to look for an optimal control for the stochastic control problem

for a fixed value of n, i.e. for the n-th system, we instead focus on the more tractable goal of

asymptotic optimality. More precisely, we are interested in constructing a sequence of control

policies (indexed by n) such that the cost associated with the n-th system under the n-th control

policy converges to the smallest possible value as n → ∞. Analogous notions of asymptotic

optimality are routinely used in heavy traffic analysis of queuing networks (Kushner, 2013;

Harrison, 1988; Atar and Shifrin, 2014; Bell and Williams, 2001; Dai and Lin, 2008; Budhiraja

and Ghosh, 2012; Budhiraja et al., 2011), but in the current work they are introduced in a very

different asymptotic regime. The key ingredient in the approach is to formulate and analyze

a closely related stochastic control problem for diffusion processes. Roughly speaking, the

state process in the diffusion control problem is the asymptotic analogue of the centered and

normalized empirical measure process as n→∞. The control enters in the drift of the diffusion

process whereas the diffusion coefficient is a non-random function of time. Our main result,

Theorem 2, shows that the diffusion control problem is a good approximation of the control

problem for the n-th system, when n is sufficiently large. Specifically, this theorem says that

the value function associated with the control problem for the n-th system converges to the
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value function of the limit diffusion control problem. In addition, the result states that for any

ε > 0, there exists an ε-optimal continuous feedback control and that the cost incurred from

using such a control in the prelimit system will converge to the cost in the limit. What this

means is that instead of solving the original control problem, one can solve a diffusion control

problem. Using that solution in the original system will yield a near optimal solution if n is

large.

In Section 3.6, we will illustrate our approach through a numerical example. This example

is the controlled analogue of a model introduced in (Antunes et al., 2008), and one can approach

more general forms of this model along similar lines. The running cost function we consider

is quadratic in the normalized state and control processes. The corresponding limit diffusion

control problem in this case becomes the classical stochastic linear quadratic regulator (LQR)

with time dependent coefficients (see (Fleming and Rishel, 1976)). The optimal feedback control

for the diffusion control problem can be given explicitly by solving a suitable Riccati equation.

Our numerical results show that implementation of the control policy based on the optimal

feedback control for the limit LQR to a system with n = 10,000 leads to an improvement of up

to 15.5% on the cost for the uncontrolled system.

1.1.2 Load Balancing Mechanisms in Cloud Storage Systems

In the world of cloud-based computing, large data centers are often used for file storage.

These data centers consist of large networks of servers that are used to store even larger sets of

files. In order to improve reliability and retrieval speed, these files are often “coded”. By coded,

we mean that the file is broken down into smaller pieces which are stored on multiple servers.

Consider the situation in which there are four servers and one file. One can store the entire file

on one server but in such a configuration the file would be inaccessible if that server were to

fail. In order to improve reliability, one can replicate the file across all four servers but such a

method would require much more memory. Suppose we instead split the file into halves, A and

B, and then store A, B, A+B, A−B in each of the four servers, respectively. Then the original

file can be constructed from any two pieces. One can extend this idea to the case where equally

sized pieces of a file are stored across L servers and any k pieces can reconstruct the original file.
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This can be accomplished using the Maximum Distance Separable (MDS) code with parameters

(L,k) (Lin and Costello, 2004). The MDS code greatly improves reliability since L−k+1 servers

must fail before the file becomes irretrievable, while only requiring enough total memory to store

L/k files. Given a coding scheme, one can consider load balancing mechanisms to improve file

retrieval speed. In (Li et al., 2016), two routing schemes, called Batch Sampling (BS) and

Redundant Request with Killing (RRK), are considered. In BS routing, incoming jobs are

routed to the k shortest queues containing the file being requested, while in RRK routing jobs

are routed to all servers containing the requested file and then removed from the queue (killed)

once k pieces of the file have been returned. The paper (Li et al., 2016) formally calculates the

steady state (T → ∞) queue length distribution in the large system limit (n → ∞) and gives

simulation results for different values of L and k in both routing schemes. In this work we focus

primarily on BS routing.

We are interested in developing a rigorous limit theory for such load balancing schemes for

systems with MDS coding as n becomes large. Specifically, we establish law of large numbers

and diffusion approximations for such systems under an appropriate scaling, as n → ∞. Such

limit theorems provide useful model simplifications that can then be employed for approxi-

mate simulation of the large and complex n-server systems (see Section 4.5 for some numerical

results). These limit theorems are also the first steps towards making rigorous the program

initiated in (Li et al., 2016) of developing steady state approximations for such systems, with

provable convergence properties as n becomes large.

We consider a system with n servers on which I(n) files are stored using MDS coding with

parameters (L,k). A key assumption to our analysis is that the files are stored such that each

combination of L servers has exactly c files. We further assume that jobs arrive in the system at

rate nλ and request a file uniformly at random. This is another simplifying assumption on our

model that roughly says that all files are in equal demand. These structural assumptions imply

a convenient exchangeability property of the system which allows for the use of certain mean-

field approximation techniques. A single file request spawns k jobs which are then routed into

the k shortest queues within the set of L servers containing the file being requested. Each server

processes the jobs in their queue at rate k according to the first-in-first-out (FIFO) discipline

and processing times are mutually independent. Regarding each server as a “particle”, the
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above formulation describes an interacting particle system with simultaneous jumps. Note that

the symmetry structure introduced above implies that every time a file request arrives, it leads

to a selection of L servers uniformly at random (from which the k servers with shortest queues

are chosen). In particular this says that the well studied “Power-of-d” routing scheme (also

known as the “supermarket model”) is a special case of the scheme considered here on taking

L = d and k = 1. Direct analysis of such large and complex n-server systems is challenging even

by simulation methods as frequently the servers in networks of interest number in the hundreds

of thousands with arrival rates of file requests of similar order. The goal of this work is to

develop suitable approximate approaches to such systems.

Limit theorems of the form studied in this work can be used for model simplification and

for computing approximations for performance measures, e.g. through simulation methods.

Direct simulation of the underlying n-server system would in general be prohibitively expensive

for large n since the jumps in the system occur at rate proportional to n. The asymptotic

approximations given in this work (cf. Theorems 10 and 14) allow a system manager to simulate

performance metrics for the system at a coarser scale via numerical ODE solvers or Euler

discretizations for SDE (see Section 4.5 for an example). Although the systems considered

here are required to satisfy certain symmetry conditions (all files are equally sized and all jobs

are in equal demand), the simplified models given by the limiting ODE and SDE give useful

qualitative insights into the behavior of large storage networks employing these types of coding

schemes.

The results obtained here are useful in analyzing the long-time behavior of such systems as

well, e.g. in providing information on the rate at which the queue lengths decay in steady-state

and how such a decay is impacted by different values of L and k. We show that the ODE

system that determines the LLN behavior of the occupancy measure process has a unique fixed

point ū which is stable. Namely, starting from an arbitrary initial condition, the solution to the

ODE converges to this fixed point as t → ∞. We also show that the queue length distribution

corresponding to the fixed point has tails which decay super-exponentially extending this well

known property of the supermarket model (i.e. k = 1) to a general k < L. We give explicit upper

and lower bounds (cf. Theorem 11) on these tails which are sharp in the sense that they coincide

when k = 1. Finally, in Theorem 13, we prove an important interchange of limit property. In
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(Li et al., 2016), it has been shown that the queue length process Qn for the n-server system is

positive recurrent and, thus, has a unique invariant probability measure. This then implies that

the occupancy measure process has a unique invariant distribution. In this work we show that

this invariant measure converges to δū in probability, as n →∞. Roughly speaking, this result

says that the limits n → ∞ and t → ∞ can be interchanged and, in particular, the fixed point

of the ODE is a good approximation for the steady state behavior of the occupancy process for

large n.

1.2 Notation

The following notation will be used. We will use {Xt} and {X(t)} interchangeably for

stochastic processes. The space of probability measures on a Polish space S, equipped with the

topology of weak convergence, will be denoted by P(S). When S = N0 we will metrize P(S)

with the metric d0 defined as

d0(µ, ν) ≐
∞
∑
j=0

∣µ(j) − ν(j)∣
2j

, µ, ν ∈ P(N0).

For S valued random variables X, Xn, n ≥ 1, convergence in distribution of Xn to X as n→∞

will be denoted as Xn ⇒ X. The Borel σ-field on a Polish space S will be denoted as B(S).

The space of functions that are right continuous with left limits (RCLL) from [0, T ] to S will be

denoted as D([0, T ] ∶ S) and equipped with the usual Skorohod topology. Similarly C([0, T ] ∶ S)

will be the space of continuous functions from [0, T ] to S, equipped with the uniform topology.

We will usually denote by κ,κ1, κ2,⋯, the constants that appear in various estimates within

a proof. The values of these constants may change from one proof to another. Cardinality of a

finite set A will be denoted as ∣A∣. We will denote by B(r) the L1 ball of radius r centered at

the origin in some Euclidean space Rd. The Euclidean norm of a d-dimensional vector or a d×d

matrix will be denoted as ∥ ⋅ ∥. The linear span of a set A ⊂ Rd will be denoted as SpA. The

space of continuous (resp. continuous and bounded) functions from metric space S1 to S2 will be

denoted as C(S1 ∶ S2) (resp. Cb(S1 ∶ S2)). When S2 = R we sometimes abbreviate this notation

and write C(S1) and Cb(S1). For a bounded function f ∶ S→ R, ∥f∥∞ ≐ supx∈S ∣f(x)∣. The space

of real valued continuous functions defined on Rd whose first k ∈ N (resp. all) derivatives exist
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and are continuous will be denoted Ck(Rd) (resp. C∞(Rd)). We denote the subset of Ck(Rd)

of functions with compact support as Ckc(Rd). Similarly C1,2([0, T ] ×Rd) denotes the space of

functions from (0, T )×Rd to R that are once continuously differentiable in the time coordinate,

twice continuously differentiable in the space coordinate, and are such that the function and

its derivatives can be continuously extended to [0, T ] × Rd. The space of m × n-dimensional

matrices whose entries take values in a set S will be denoted Mm×n(S). For M ∈Mm×n(S), Mi,j

will the denote that entry of M which is in the i-th row and j-th column. The transpose of a

matrix M will be denoted as M ′ and trace of a square matrix M will be denoted as Tr(M). 1

and I will denote the vector of 1’s and the identity matrix, respectively, the dimension of which

will be context dependent. For a Polish space S we denote by M(S) the space of all locally

finite measures on S. This space will be equipped with the usual vague topology, namely, the

weakest topology such that for every f ∈ Cb(S) with compact support,

ν ↦ ∫
S
f(u)ν(du), ν ∈ M(S),

is continuous.

Let `2 = {(aj)∞j=0∣∑∞j=0 a
2
j < ∞} be the space of square summable real sequences. This space

is a Hilbert space with inner product

⟨x, y⟩2 =
∞
∑
j=0

xjyj .

We denote the corresponding norm as ∥ ⋅ ∥2. Similarly, `1 = {(aj)∞j=0∣∑∞j=0 ∣aj ∣ < ∞} and ∥ ⋅ ∥1

is the norm on this Banach space. The Hilbert-Schmidt norm of a Hilbert-Schmidt operator

A on `2 will be denoted ∥A∥HS (cf. Appendix B). We denote by I the identity operator. For

a Hilbert Space H, M2
T (H) will denote the space of all H-valued continuous, square integrable

martingales M ≡ {M(t)}0≤t≤T , such that M(0) = 0. For a real number a, (a)+ will denote the

positive part of a.
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CHAPTER 2

Background and Preliminaries

This chapter contains an introduction to some models used for a variety of communication

networks as well as some background on the techniques used to analyze them. In addition,

we review some of the related literature on communication networks and weakly interacting

particle systems. In Section 2.1, we present an overview of some of the relevant existing work

on weakly interacting particle systems in communication networks. These works describe some

of the ways in which weakly interacting particle systems are used in modeling communication

networks and why such models are useful. Specifically, weakly interacting particle systems

suggest simpler models through mean field approximations under certain symmetry conditions

on the system. The mean field techniques described are particularly useful for load balancing

problems. Section 2.2 is devoted to an overview of the existing relevant work in this area. In

Section 2.3, we present a LLN result which can be used to approximate the dynamics of a given

system through a set of ODE. Section 2.4 provides an introduction to methods for analyzing

the deviations around the LLN. Namely, we provide some of the basic approaches to proving

various Central Limit Theorems (CLT) of interest. These approximation techniques allow us

to analyze communication networks whose large size make this analysis otherwise intractable.

Section 2.5 provides an outline of topics in this dissertation

2.1 Weakly Interacting Particle Systems and Communication Networks

Weakly interacting particle systems are frequently used to model a variety of communica-

tion networks (e.g. large server networks, ad-hoc wireless networks, etc.). A typical model will

consist of a set of n particles (or nodes), each taking values in some state space (in this disser-

tation we mainly consider discrete state spaces). The evolution of these particles is described

in terms of a Markov process. Roughly speaking, a particle system is “weakly interacting” if
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the evolution of a typical particle’s state only depends on its own current state and the current

empirical measure of the states of all particles in the system. In other words, the dynamics

of a given particle only depends on the total number of particles in each state and not on the

state of any individual particle (other than itself). This property, together with certain natu-

ral symmetry conditions, implies the exchangeability of the system that makes these networks

well-suited for mean field approximations. More specifically, if one views the evolution of the

system through the empirical measure of particle states, then, under conditions, the system can

be approximated by a deterministic evolution equation in the space of probability measures,

referred to as the Mckean-Vlasov equation. Under conditions, one can also establish a CLT

that says that the appropriately scaled fluctuations from this nominal deterministic evolution

equation converge to a Gaussian process which is described through a linear SDE (Shiga and

Tanaka, 1985; Sznitman, 1991). These fluid and diffusion approximations can be used to ana-

lyze useful properties regarding the system (e.g. performance measures, stability, etc.). Below

we discuss several examples of such networks that have been studied in the literature.

In (Gibbens et al., 1990), the authors study a routing scheme used in telecommunication

networks called Random Alternative Routing. The authors analyze how this method performs

on calls routed along the edges of a complete graph with n nodes. In this setting, the “particles”

are the links between the nodes rather than the nodes themselves. Each link can handle a fixed,

maximum number of calls at a given time. A natural way to view the state of the system is

through the available capacity at each link. It is assumed that calls arrive at each link as a

Poisson process and are routed as follows. If a call attempts to use a link which does not have

available capacity, two more links are chosen uniformly at random and, if there is available

capacity at both, the call is routed through that path, otherwise the call is lost. The authors

derive a LLN approximation for the system (as n→∞) and show that the limit ODE has exactly

two fixed points. In addition, a diffusion approximation is presented and used to explore the

tunneling behavior between the two stable points.

The paper (Hunt and Kurtz, 1994) presents a method of analyzing large loss networks.

Specifically, the authors consider a network with J links. Each link j has Cj “circuits”. In

relation to (Gibbens et al., 1990), a circuit is analogous to a unit of capacity. The paper presents

a LLN limit for the system. The form of scaling in this paper is different than the one considered
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in (Gibbens et al., 1990), namely the paper considers the limit as the arrival/departure rates

and the available capacity go to infinity rather than as the number of links in the network

approach infinity.

In (Antunes et al., 2008), a general mathematical model for a class of communication

networks is studied. Consider a collection of particles (or nodes) each with a finite amount of

space (or capacity). Different types of jobs, each with its own capacity requirement, arrive from

the outside and are accepted only if there is sufficient capacity to meet the job’s requirement.

After an exponential holding time, jobs can either move to another particle or leave the system.

The evolution of the available capacity at all nodes in the system can be described through

a high dimensional pure jump Markov process. Similar to (Gibbens et al., 1990), the authors

present a LLN approximation of the empirical measure process associated with the system and

then show that the resulting deterministic system of ODEs has multiple stable points.

Weakly interacting particle systems are a tractable class of models since they can be often

approximated by simpler mean field models. One such approximation result, which is closely

related to the LLN results described above, has been established in (Graham, 2000) that studies

a class of routing schemes for large queuing networks. A sequence of infinite collections of

sequences of S-valued random variables is said to beQ-chaotic, whereQ is a probability measure

on S, if the joint probability law of any subcollection of sequences of k random variables

converges to Q⊗k for all k ≥ 1. Namely, the collection of random variables is asymptotically

i.i.d. with probability law Q. Consider a collection of n servers which process jobs at rate

µ from their own infinite buffer queues. Jobs arrive in the system at rate λn and each job

is immediately routed to the shortest of d randomly chosen queues. It is shown in (Graham,

2000) that, under exchangeability conditions and independence of initial conditions, this system

has a “Propagation of Chaos” (initial independence [i.e. chaos of particle states] propagates

to later time instants) property. Namely the queue length processes viewed as a collection of

D(R+ ∶ N0)-valued random variables are Q-chaotic for an appropriate probability measure Q

on D(R+ ∶ N0) where D(R+ ∶ N0) is the space of right continuous functions with left limits from

R+ to N0 equipped with the usual Skorohod topology.

In (Graham and Robert, 2009) an extension of chaoticity described in the previous para-

graph is presented for multi-class systems. Suppose that, if instead of the full collection being
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exchangeable, the random variables can be divided into K classes such that there is exchange-

ability within each class. Stated formally, a system is said to be Q1 ⊗⋯⊗QK-multi-chaotic if

the joint probability law of any collection of Km variables, such that m are selected from each

exchangeable group, converges to Q⊗m1 ⊗⋯⊗Q⊗mK . The authors establish such a multi-chaoticity

property for a class of queueing systems. Using this result they then analyze a model for data

transmission.

2.2 Load Balancing

Due to the need to properly design and maintain distributed processor networks and cloud-

based storage systems, mechanisms for an efficient allocation of jobs or file requests in such

networks has garnered quite a bit of attention in recent years. A typical model of interest

is described in terms of asystem of n processors or servers each maintaining its own FIFO

queue. A stream of jobs or file requests enters the system and are routed by a centralized

dispatcher into one or more of the queues. Ultimately the goal is to study how different routing

schemes impact various performance metrics of interest (e.g. mean delay time, queue length

distribution, etc.). This class of problems associated with different types of routing schemes is

frequently referred to as load balancing. In general, the large size of such networks precludes a

direct analysis of such systems so the performance is typically studied in a suitable asymptotic

regime. In many settings, by appropriately scaling the system and taking limits (e.g. as the

number of servers n tends to infinity), one can establish fluid or diffusion approximations for

the desired performance metrics. I now give a brief review of some relevant work but refer the

interested reader to (van der Boor et al., 2017) for a more in depth exposition.

The simplest load balancing scheme is random routing. Namely, when a job arrives in the

system, the dispatcher sends it to a server which is chosen uniformly at random. Consider the

expectation of the empirical measure of queue lengths πn under the stationary distribution. It

can be shown that as n → ∞, if the traffic intensity λ (i.e. the ratio of arrival and departure

rates) is less than one, the limiting expectation, which is a deterministic measure on N0 denoted

as ν, has an exponentially decaying tail (i.e. ν[k,∞) ∼ λk). The paper (Graham, 2000),

discussed in Section 2.1, and the papers (Vvedenskaya et al., 1996; Mitzenmacher, 2001) first
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analyzed the so-called Power-of-d routing scheme (also known as the Supermarket Model).

Under this scheme, at each instant of job arrival, the dispatcher polls d randomly chosen

servers and routes the jobs to the server with the shortest queue. The paper (Graham, 2000)

establishes a functional law of large numbers for πn on D([0, T ] ∶ S) in the Power-of-d routing

scheme using characterization results for nonlinear martingale problems. In (Graham, 2000;

Vvedenskaya et al., 1996; Mitzenmacher, 2001), it is shown that for d ≥ 2 the corresponding

measure ν has tails which decay hyperexponentially, namely ν[k,∞) ∼ λ(dk−1)/(d−1), which is

a vast improvement over the exponential rate for the setting where jobs are routed to servers

uniformly at random.

In (Eschenfeldt and Gamarnik, 2015), the authors consider another routing scheme known

as Join-the-Shortest Queue (JSQ) in which incoming jobs are simply routed into the shortest

available queue. This scheme corresponds to the Power-of-d upon taking d = n. However, since d

scales with n the asymptotic analysis is quite different. The authors establish fluid and diffusion

approximations for the empirical measure JSQ routing policy in the large-system limit under

a heavy-traffic scaling. It is shown that probability of having a queue of length larger than

one converges to zero as n→∞. Furthermore, the diffusion limit can be characterized through

a two-dimensional diffusion. It follows from this theorem that JSQ produces, asymptotically,

the minimal possible wait time. Namely, as the number of servers increases to infinity and

the traffic intensity approaches criticality, the proportion of servers with two of more jobs goes

to zero and thus all jobs which enter the system are routed to empty servers. The excellent

performance of JSQ is counterbalanced by an extremely high overhead cost. The dispatcher

must query every server each time a jobs arrives which may be costly in large networks in which

jobs are arriving extremely rapidly.

A different class of methods, known as pull based routing schemes have also been studied.

Here the dispatcher routes jobs based on information which it receives from the individual

servers. One basic example of such a method is the Join-the-Idle-Queue (JIQ) routing scheme.

In JIQ, each server notifies the dispatcher when it is empty. The dispatcher then routes incoming

jobs to empty servers or, if there are no empty servers, to a server according to some other

routing policy. In (Mukherjee et al., 2016b) it is shown that in a similar asymptotic regime

(i.e. heavy traffic and large n) JIQ produces the same diffusion limit as JSQ. The difference
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between push and pull based schemes is subtle, but by using pull based schemes one can reduce

communication overhead while maintaining low wait times. In the JIQ scheme each server

needs to communicate to the dispatcher when its buffer is empty. In practice this implies that

the number of communications between the dispatcher and the server is of the same order as

the total number of arrivals in the system and thus, in terms of communication costs JIQ and

JSQ are not very different. The authors of (Mukherjee et al., 2016b) also establish a useful

interchange of limits property showing that the steady-state behavior of the n-server system

converges to the unique fixed point of the limiting system under a fluid scaling.

While not discussed here we refer the interested reader to (Mitzenmacher, 2001; Bramson

et al., 2012; Stolyar, 2015; Graham, 2000; Mukherjee et al., 2016a, 2017) and references therein

for further work on load balancing. In the next two sections we summarize the basic LLN and

central limit theorems for pure jump Markov processes that are useful for studying asymptotics

of weakly interacting particle systems of the form considered in this work.

2.3 Law of Large Numbers

Typically, the first method employed when attempting to describe the evolution of the

systems of interest here, as their size becomes large, is to derive a LLN limit for the associated

empirical measure. This limit is given in terms of a system of coupled ODE and describes the

asymptotic behavior of the system under a fluid scaling. One of the classical works on such

limit theory is (Kurtz, 1970) which proves the following result (see Theorem 2.11 therein):

Theorem 1. Let E be a closed set in Rk and let, for n ∈ N, En = E ∩ 1
nN

k
0. Let {µn(t)}t≥0 be

a pure jump Markov process with state space En and infinitesimal generator An, defined as

Anf(x) = λn(x)∫
En

[f(z) − f(x)]γn(x, dz)

where λn ∶ En → R+ and γn is a transition probability kernel on En. Define

Fn(x) = λn(x)∫
En

(z − x)γn(x, dz). (2.1)

Suppose the following conditions are met:
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i) There exists a Lipschitz function F ∶ Rk → RK such that

lim
n→∞

sup
x∈En

∣Fn(x) − F (x)∣ = 0.

ii) limn→∞ µn(0) = x0 for some x0 ∈ E.

Let µ be the solution to the following ODE

µ̇(s) = F (µ(s)), µ(0) = x0.

Then for every δ > 0 and t > 0

lim
n→∞

P{sup
s≤t

∣µn(s) − µ(s)∣ > δ} = 0.

This theorem says that for a sequence of K-component jump Markov processes, if the

function Fn in (2.1) obtained from the generator of the process converges in a suitable manner,

then the sequence of processes converge to the solution of a system of ODE. To see how this

result applies to weakly interacting systems note that for a typical sequence of communication

networks considered in our work the n-th state process is n-dimensional. In particular the

dimension of the state space is increasing with n. In order to arrive at a sequence of processes

with a common state space we instead view the system through its empirical measure process

which will have a finite state space if each particle’s state space is finite. In our work we

will usually apply Theorem 1 (or a generalization in the case that the state space is countably

infinite) to this empirical measure process. In general, an empirical measure process constructed

from an n-dimensional Markov process may not itself be Markovian. However, under the

symmetry properties of the models considered in this work, the Markov property of the empirical

process will indeed hold which will allow the use of Theorem 1.

2.4 Diffusion Approximations

After obtaining a LLN of the form considered in Section 2.3, it is natural to consider the

fluctuations around this limit. More precisely, with µn and µ as in Theorem 1, we will be
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interested in the asymptotic behavior of the stochastic process Vn defined as

Vn(t) =
√
n(µn(t) − µ(t)), t ≥ 0.

Under conditions, this asymptotic behavior can be characterized in terms of a suitable diffusion

process. One natural approach for proving such a limit theorem is to describe the evolution of

the centered and scaled process Vn through a collection of appropriate time changed Poisson

processes (see e.g. (3.6) in Chapter 3). Using this description, one can give a semimartingale

representation for Vn of the following form

Vn(t) = Vn(0) + ∫
t

0
An(s, Vn(s))ds +Mn(t) + op(1)

where Mn is a local martingale with respect to a suitable filtration and An ∶ [0,∞) ×Rk → Rk

is a suitable map.

The first key step in proving the convergence to a diffusion process is to argue tightness of

(Vn,Mn). Next, one needs to argue that every weak limit point (V,M) satisfies a stochastic

equation of the form

V (t) = ∫
t

0
a(s, V (s))ds +M(t), M(t) = ∫

t

0
σ(s)dB(s), (2.2)

where a, σ are suitable maps, B is a Brownian motion with respect to a suitable filtration and

V is a continuous process adapted to the filtration. The final step is to argue the uniqueness

of solutions to the stochastic equation (2.2). This progression of arguments can be carried out

under quite general conditions on the model (see e.g. (Joffe and Métivier, 1986)).

2.5 Overview & Organization

This dissertation is organized as follows. In Chapter 3, we study a class of control problems

for models arising from ad hoc wireless networks that are described through certain weakly

interacting particle systems. In a typical setting of interest, a system is designed to produce

a desired nominal state trajectory. However, due to various approximations and sources of

randomness, the actual system performance may deviate significantly from the desired nominal
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state. We consider a formulation where the system manager, by adjusting various rates, can

nudge the actual stochastic system closer to the desired nominal state. However, exercising

control of rates incurs a cost and one needs to suitably balance this cost with the cost of

deviating from the desired behavior. Theory of stochastic control gives a natural framework for

analyzing such processes. For large systems, solving such stochastic control problems directly

is intractable. In this work, we instead consider an approximate approach. Specifically, we

introduce a diffusion control problem which approximates the control problem of interest under

a suitable scaling. Such diffusion control problems have been well studied and there exists an

extensive literature on numerical methods for finding solutions (see e.g. (Kushner and Dupuis,

2013)). Our main result (Theorem 2) shows how an analysis of this diffusion control problem

leads to construction of an asymptotically optimal control policy for the system of interest. A

paper (Budhiraja et al., 2018) has appeared in the Annals of Applied Probability.

In Chapter 4, we study a class of load balancing policies for a large cloud-storage system.

In such networks, files are often “coded” across servers to increase both reliability and retrieval

speed. By coded, we mean that the file is broken down into smaller pieces which are stored

on multiple servers. In the model considered here, we consider a Maximum Distance Separable

(MDS) code. Namely, the files chunks are distributed across a set of L servers such that any

subset of size k is sufficient for reconstructing the original file. In this work we are interested

in developing a rigorous limit theory for such load balancing schemes for systems with MDS

coding as the number of servers becomes large and the arrival rate of file requests approaches

infinity. Specifically, we establish law of large numbers and diffusion approximations (cf. The-

orem 10 and Theorem 14) for such systems under an appropriate scaling, as n→∞. Such limit

theorems provide useful model simplifications that can then be employed for approximate sim-

ulation of the large and complex n-server systems. We also study the long-time behavior of the

system under fluid scaling. In Theorem 13, we establish a useful interchange of limits property.

Namely, that the steady-state distribution of the finite system converges to a dirac measure

concentrated at the fixed point of the limiting ODE. This fixed point will be the probability

measure representing the distribution on queue lengths in the network in the “steady state”.

We provide explicit upper and lower bounds on the tail decay of this fixed point (cf. Theorem
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11). The results of this work have been submitted for publication ((Budhiraja and Friedlander,

2017; Friedlander, 2018)).
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CHAPTER 3

Diffusion Approximations for Controlled Weakly Interacting Large Finite
State Systems with Simultaneous Jumps

In this chapter we study a pure jump, weakly interacting, Markovian particle system in

which jump rates can be dynamically modulated by a controller. The stochastic system of

interest describes the state evolution of a collection of n particles where each particle’s state

takes values in a finite set X. In many applications, the jump rate of such a system scales with

n and thus, for large n, the system jumps extremely quickly. Constructing and implementing

a control policy in such a system is intractable. The goal of this chapter is to provide an

approximate method for constructing asymptotically optimal control policies. In our main

result, Theorem 2, we show that, when n is sufficiently large, one can solve an associated

diffusion control problem instead of the control problem for the n-particle system. Specifically,

this theorem says that the value function associated with the control problem for the n-th system

converges to the value function of the limit diffusion control problem. The key ingredients in

the proof are Theorems 3, 7, and 9. Theorem 3 gives the lower bound, namely it shows that

the value function of the n-th system, asymptotically as n → ∞, is bounded below by the

value function of the diffusion control problem. The key steps in the proof are to establish

suitable tightness properties of the sequence of scaled state and control processes and the

characterization of the weak limit points. For the first step it is convenient to work with

the relaxed control formulation (cf. (Kushner, 2013; Borkar, 1989)) through which one can

view controls as elements of a tractable Polish space. The second step proceeds via classical

martingale problem techniques (cf. (Stroock and Varadhan, 2007; Ethier and Kurtz, 2009; Joffe

and Métivier, 1986)). Theorems 7 and 9 give the main steps needed for the complementary

upper bound. For this bound, the main idea is to show that for any fixed ε > 0, there exists an ε-

optimal continuous feedback control for the diffusion control problem (Theorem 9), and that any

such feedback control can be used to construct a sequence of control policies for the interacting
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particle system such that the associated costs converge to the cost under the feedback policy

for the diffusion control problem (Theorem 7). We begin, in Theorem 8, by arguing that for the

diffusion control problem the infimum over all admissible controls is the same as that over the

class of feedback controls. Proof of this proceeds via certain conditioning arguments and PDE

characterization results (cf. (Borkar, 1989)) that allow the construction of a feedback control

associated with any given admissible control such that the cost corresponding to the feedback

control is no larger than that of the given admissible control. The result says that one can find

an ε-optimal control in the space of feedback controls. Although any such control corresponds

to a natural collection of control policies for the sequence of n-particle systems, in order to

prove the convergence of associated costs, which once more is based on martingale problem

methods, we require additional regularity properties of the feedback control. The key step is

Theorem 9 that shows that for any feedback control g there exists a sequence of continuous

feedback controls {gn} for the limit diffusion control problem such that the associated sequence

of controlled diffusions converge weakly to the diffusion under the feedback control g. The proof

requires some estimates based on an application of Girsanov’s theorem which, in turn, relies on

the non-degeneracy of the diffusion coefficient. Although the controlled diffusion that describes

the asymptotic model is degenerate, we show that there is an equivalent formulation in terms

of a (d − 1)-dimensional controlled diffusion which is uniformly non-degenerate under suitable

assumptions. This equivalent representation, in addition to providing a feedback control of the

desired form, is also key in proving weak uniqueness for SDE describing limit state processes

associated with feedback controls.

The chapter is organized as follows. Section 3.1 presents the precise system of weakly

interacting pure jump processes considered here. We will also present key assumptions and the

main result of this chapter. Sections 3.1.1 and 3.1.2 describe the uncontrolled and controlled

systems, respectively. Assumptions which ensure convergence of the system to its fluid limit are

introduced for both cases. Section 3.1.2 also introduces the cost criteria that is considered in this

chapter. Section 3.1.3 presents the diffusion control problem that formally corresponds to the

limit as n→∞ of the control problem for the n-th system. The section also introduces the key

non-degeneracy assumption (Condition 3.1.5) that is needed in order to obtain weak uniqueness

of SDE with feedback controls and existence of near optimal continuous feedback controls. We
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also introduce our main assumptions on the controlled rate functions (Conditions 3.1.3 and

3.1.4). In Section 3.1.4 we present our main result, namely Theorem 2. In order to validate

the results of this chapter, we present a numerical example in Section 3.6. This example is the

controlled analogue of a model introduced in (Antunes et al., 2008). The running cost function

we consider is quadratic in the normalized state and control processes. The corresponding limit

diffusion control problem in this case becomes the classical stochastic LQR with time dependent

coefficients (see (Fleming and Rishel, 1976)). The remainder of the chapter is devoted to proof

of Theorem 2. In Section 3.2 we present a key tightness result which is used both in the proof

of the upper and lower bound. In Section 3.3 (see Theorem 3) we prove the lower bound that

was discussed earlier. In preparation for the proof of the upper bound, we introduce the class of

feedback controls in Section 3.4. Sections 3.4.1 and 3.4.2 describe such controls for the prelimit

system and the limit diffusion model, respectively. Section 3.4.3 constructs a sequence of

prelimit control policies from an arbitrary continuous feedback control for the diffusion control

problem such that the cost for the particle systems under the sequence of control policies

converges to the cost of the corresponding controlled diffusion. Finally in Section 3.5, we show

that the infimum of the cost for the limit diffusion over all admissible controls is the same

as that over the class of feedback controls and that there exist continuous feedback controls

which are ε-optimal. The results from sections 3.3, 3.4, and 3.5, (namely Theorems 3, 7, and

9) together give our main result, Theorem 2.

3.1 Problem Formulation and Main Results

In this section we will describe the basic control problem of interest and give a precise

mathematical formulation. We begin by introducing the uncontrolled pure jump Markov process

in Section 3.1.1 and recall a classical law of large numbers result for such systems. Section 3.1.2

will present the controlled system that we study and also our cost criteria. In Section 3.1.3

we will introduce our main assumptions on the controlled rate matrices and based on these

assumptions introduce a control problem for diffusion processes that can formally be regarded

as the limit of control problems considered in Section 3.1.2. Finally, in Section 3.1.4 we present

our main result. This result says in particular that a suitable near optimal diffusion control
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can be used to construct a sequence of control policies for the particle system in Section 3.1.2

that are asymptotically near optimal. For a numerical example that illustrates the application

of the result, we refer the reader to Section 3.6 where we present a model from communication

networks that is a controlled version of some models introduced in (Antunes et al., 2008) and

which falls within the framework considered here.

3.1.1 Weakly Interacting Jump Markov Process

Fix T ∈ (0,∞). All stochastic processes in this chapter will be considered on the time

horizon [0, T ]. Consider a system of n particles where the state of each particle takes values

in the set X = {1, . . . , d}. The evolution of the system is described by an n-dimensional pure

jump Markov process Xn(t) = {X1
n(t), . . . ,Xn

n(t)} where Xi
n(t) represents the state of particle

i at time t. The system allows multiple particles to change state at a given time, but restricts

such jumps to K transition types; in particular the k-th transition type can only affect at most

nk particles, k ∈ K ≐ {1, . . . ,K}. The jump intensity is state dependent, however the state

dependence is of the following specific form: Denoting for x ∈ Xn, the probability measure

{ 1
n ∑

n
i=1 1{xi}(m)}m∈X on X by {ζmn (x)}m∈X, the jump intensity at the instant t is a function of

ζn(Xn(t)). The set of jumps and the corresponding transition rates can be described in terms

of the subset Mn of Md×d(N0) consisting of all matrices with zeroes on the diagonal and with

sum of all entries at most n, as follows. To any k ∈ K we associate a map Ψk
n ∶ P(X)×Mn → R+

such that for x ∈ Xn, Ψk
n(ζn(x),Θ) = 0 if

∑
i,j

Θi,j > nk or
d

∑
j=1

Θi,j > nζin(x), i = 1, . . . , d. (3.1)

Roughly speaking, Ψk
n(ζn(x),Θ) will give the rate of type k jumps (associated with Θ) when

the system is in state x ∈ Xn. A type k jump associated with Θ ∈ Mn corresponds to Θij

particles simultaneously jumping from state i to state j, for all i ≠ j and i, j = 1, . . . , d. Thus

the first inequality in (3.1) says that at most nk particles change states under a jump of type k,

while the second inequality says that a jump of type k can occur only when there are enough

particles to participate in it. In terms of Ψk
n the overall rate of jumps of type k associated with
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Θ, when the system is in state x ∈ Xn, is given as

Ψk
n(ζn(x),Θ)

d

∏
m=1

( nζmn (x)
∑dj=1 Θm,j

)( ∑dj=1 Θm,j

Θm,1, . . . ,Θm,d
)

and such a jump takes a state x ∈ Xn to a state x̃ ∈ Xn where

nζmn (x̃) = nζmn (x) +
d

∑
i=1

Θi,m −
d

∑
j=1

Θm,j , m = 1, . . . , d.

A more convenient description of this system is given through the pure jump Markov process

{µn(t)} where µn(t) ≐ ζn(Xn(t)) represents the empirical measure of the particle states. We

will identify the space of probability measures, P(X), with the d-dimensional simplex, S ≐

{(x1, . . . , xd) ∈ Rd+∣∑di=1 xi = 1}. Similarly, we will identify Pn(X), the space of all µ ∈ P(X) such

that µ{j} ∈ 1
nN for all j ∈ X, with Sn = S ∩ 1

nN
d. Let, for k ∈ K,

∆k ≐ {(I, J) ∈ Nd0 ×Nd0 ∶ ∑
x∈X

Ix = ∑
x∈X

Jx ≤ nk, ∑
x∈X

∣Jx − Ix∣ > 0} ,

and for ν = (I, J) ∈∆k let

Φ(ν) = Φ(I, J) ≐
⎧⎪⎪⎨⎪⎪⎩

Θ ∈Mn∣
d

∑
j=1

Θi,j = Ii,
d

∑
i=1

Θi,j = Jj , i, j = 1,⋯, d
⎫⎪⎪⎬⎪⎪⎭
.

The jumps of {µn(t)} are described as follows. For each k ∈ K and ν = (I, J) ∈∆k the empirical

measure jumps from r ↦ r + 1
neν with rate

Γ̄ kn (r, ν) ≐ ∑
Θ∈Φ(ν)

Ψk
n(r,Θ)

d

∏
m=1

( nrm

∑dj=1 Θm,j
)( ∑dj=1 Θm,j

Θm,1, . . . ,Θm,d
)

where r = (rm)dm=1 ∈ Sn, eν ≐ ∑x∈X(Jx − Ix)ex and ex is the unit vector in Rd with 1 at the x-th

coordinate and 0 everywhere else. Thus a jump associated with k ∈ K and ν ∈ ∆k corresponds

to Ix particles in state x, x ∈ X, simultaneously jumping to new states such that Jy of the

particles end up in state y, y ∈ X. A succinct description of the evolution of the Markov process
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µn(t) is through its infinitesimal generator which is given as

L̄nf(r) = ∑
k∈K
∑
ν∈∆k

Γ̄ kn (r, ν) [f (r + 1

n
eν) − f(r)] , r ∈ Sn. (3.2)

We will make the following assumption on the asymptotic behavior of the rates.

Condition 3.1.1. For all k ∈ K and ν ∈∆k there exists a Lipschitz function r ↦ Γ k(r, ν) on S

such that

lim sup
n→∞

sup
r∈Sn

∣ 1
n
Γ̄ kn (r, ν) − Γ k(r, ν)∣ = 0 (3.3)

We now present a classical law of large numbers result that characterizes the limit, µ(t),

of the pure jump Markov process µn(t) as n→∞. For a proof we refer the reader to Theorem

2.11 of (Kurtz, 1970).

Proposition 1. Define,

F (r) ≐ ∑
k∈K
∑
ν∈∆k

Γ k(r, ν)eν , r ∈ S. (3.4)

Suppose that µn(0) → µ0 in probability and Condition 3.1.1 holds, then µn(t) → µ(t) uniformly

on [0, T ], in probability, where µ(t) is the unique solution of the ODE

µ̇(t) = F (µ(t)), µ(0) = µ0. (3.5)

3.1.2 Controlled System

In this chapter we will study a controlled version of the Markov process introduced in

Section 3.1.1. Roughly speaking, control action will allow perturbations of the rate function

Γ̄kn that are of O( 1√
n
). The goal of the controller is to minimize a suitable finite time horizon

cost. A precise mathematical formulation is as follows. Let

` ≐ ∑
k∈K

∣∆k∣, (3.6)
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Λ be a compact convex subset of R`, and Λn = 1√
n

Λ for n ∈ N. Λn will be the control set

in the n-th system. Let {Γ kn (r, u, ν) ∶ r ∈ Sn, u ∈ Λn, k ∈ K, ν ∈ ∆k} be a collection of non-

negative real numbers. More precisely, (r, u) ↦ Γ kn (r, u, ν) is a map from Sn×Λn to R+ for each

n ∈ N, k ∈ K, ν ∈ ∆k. These correspond to the controlled rates in the n-th system. We now

introduce the controlled stochastic processes associated with such controlled rates.

Fix n ∈ N and let (Ωn,Fn,Pn) be a probability space on which are defined unit rate

mutually independent Poisson processes {Nk,ν , k ∈ K, ν ∈ ∆k}. The processes {Nk,ν} will be

used to describe the stream of jumps corresponding to k ∈ K, ν ∈ ∆k. Let Un be a Λn-valued

measurable process representing the rate control in the system. Under control Un the state

process µn(⋅) is given by the following equation:

µn(t) = µn(0) +
1

n
∑
k∈K
∑
ν∈∆k

eνNk,ν (∫
t

0
Γ kn (µn(s), Un(s), ν)ds) . (3.7)

In order for such a control to be admissible it should satisfy suitable non-anticipative proper-

ties. More precisely, Un is said to be an admissible control if, with some filtration {Fnt } on

(Ωn,Fn,Pn), Un is {Fnt }-progressively measurable, µn is {Fnt }-adapted, and {Mn
k,ν , k ∈ K, ν ∈

∆k} defined below are {Fnt }-martingales

Mn
k,ν(t) ≐

1

n
(Nk,ν (∫

t

0
Γ kn (µn(s), Un(s), ν)ds) − ∫

t

0
Γ kn (µn(s), Un(s), ν)ds) (3.8)

with quadratic variation processes ⟨Mn
k,ν ,M

n
k′,ν′⟩t = δ(k,ν),(k′,ν′)

1
n2 ∫ t0 Γ kn (µn(s), Un(s), ν)ds

where δα,α′ equals 1 if α = α′ and 0 otherwise. We note that in general such a filtration

will depend on the control. We denote the set of all such admissible controls as An.

For a Un ∈ An, define the process

Vn(s) =
√
n(µn(s) − µ(s)) (3.9)

where, as above, µn is the state process under control Un. We consider a cost that is a function

of the suitably normalized control action and the centered and normalized state of the system

given through the process {Vn(⋅)}. Specifically, we consider for n ∈ N, xn ∈ Sn a “finite time
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horizon cost” associated with an admissible control Un ∈ An and initial condition xn as,

Jn(Un, vn) ≐ E∫
T

0
(k1(Vn(s)) + k2(

√
nUn(s)))ds (3.10)

where vn = √
n(xn − µ0), k2 ∈ C(Λ) is a nonnegative convex function, and k1 ∈ C(Rd) is a

nonnegative function with at most polynomial growth. I.e. there exists a p > 1 and Ck1 ∈ (0,∞)

such that k1(x) ≤ Ck1(1 + ∥x∥p) for all x ∈ Rd. Define the corresponding value function to be

Rn(vn) ≐ inf
Un∈An

Jn(Un, vn).

Computing an optimal control for the above problem for a given n is, in general, challenging

and computationally intensive. It is therefore of interest to consider approximate approaches.

In the next section we introduce some conditions on the controlled rate matrices that will

suggest a natural diffusion approximation for this control problem.

3.1.3 Diffusion Control Problem

We now introduce our main assumptions on the controlled rate matrices. The first two

conditions make precise the requirement that controlled rates are O( 1√
n
) perturbations of the

nominal values given through {Γk, k ∈ K}. In particular, the first condition will ensure that

the controlled pure jump Markov process will converge to the same limit as the uncontrolled

process µn in Section 3.1.1 under the law of large number scaling.

Condition 3.1.2. With {Γ k(r, ν), k ∈ K, ν ∈∆k, r ∈ S} as in Condition 3.1.1

lim sup
n→∞

sup
r∈Sn

sup
u∈Λn

∣ 1
n
Γ kn (r, u, ν) − Γ k(r, ν)∣ = 0. (3.11)

We next introduce a strengthening of Condition 3.1.2 that will play a key role in the proof

of tightness of the sequence {Vn} of controlled state processes.

Condition 3.1.3. There exists a C1 ∈ (0,∞) such that for every n ∈ N

sup
u∈Λn

sup
ξ∈Sn(y)

√
n ∣ 1

n
Γ kn ( 1√

n
y + ξ, u, ν) − Γ k (ξ, ν)∣ ≤ C1(1 + ∥y∥) (3.12)
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for all k ∈ K, ν ∈∆k, and y ∈ B(2√n) ⊂ Rd where Sn(y) = {ξ ∈ S ∶ 1√
n
y + ξ ∈ Sn}.

Taking y = 0 in (3.12) we see that Condition 3.1.3 implies that there exists a C2 ∈ (0,∞)

such that

sup
n≥1

sup
r∈Sn

sup
u∈Λn

1

n
Γ kn (r, u, ν) ≤ C2 (3.13)

for all k ∈ K, ν ∈∆k. Note also that Condition 3.1.3 implies Condition 3.1.2.

The next condition will identify the drift term in our limit diffusion control problem. Note

that any u ∈ Λ (or Λn) can be indexed by k ∈ K and ν ∈∆k and we will denote the corresponding

entry by uk,ν .

Condition 3.1.4. There exist, for each k ∈ K, ν ∈ ∆k, bounded functions hk1(ν, ⋅) ∶ S → R and

hk2(ν, ⋅) ∶ S → Rd such that for u ∈ Λ, ξ ∈ S, y ∈ Rd, with

Hk(y, ξ, u, ν) ≐ hk1(ν, ξ)uk,ν + hk2(ν, ξ) ⋅ y,

we have for all compact A ⊂ Rd,

lim sup
n→∞

sup
u∈Λ

sup
y∈A

sup
ξ∈Sn(y)

∣βnk (y, ξ, u, ν)∣ = 0 (3.14)

where for n ∈ N, k ∈ K, and ν ∈∆k, we define βnk (⋅, ⋅, ⋅, ν) ∶ Rd × S ×Λ→ R as

βnk (y, ξ, u, ν) ≐
√
n( 1

n
Γ kn ( 1√

n
y + ξ, 1√

n
u, ν) − Γ k(ξ, ν)) −Hk(y, ξ, u, ν),

if ξ ∈ Sn(y) and 0 otherwise.

Define η ∶ [0, T ] ×R` → Rd and β ∶ [0, T ] → Rd×d as

η(t, u) ≐ ∑
k∈K
∑
ν∈∆k

(hk1(ν,µ(t))uk,ν) eν and β(t) ≐ ∑
k∈K
∑
ν∈∆k

eν[hk2(ν,µ(t))]′ (3.15)

Note that

∑
k∈K
∑
ν∈∆k

Hk(y, µ(t), u, ν)eν = η(t, u) + β(t)y, t ∈ [0, T ], y ∈ Rd. (3.16)
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Let a ∶ [0, T ] → Rd×d be defined as

a(t) ≐ ∑
k∈K
∑
ν∈∆k

(Γ k(µ(t), ν))eνe′ν .

The d × d matrix a(t) will be the square of the diffusion coefficient for the limit controlled

diffusion process. Note that a(t) is a singular matrix since eν ⋅ 1 = 0 for all k ∈ K and ν ∈ ∆k.

Let Q = [q1 . . . qd], qk ∈ Rd, be a d×d orthogonal matrix (i.e QQ′ = Q′Q = I) such that qd = 1√
d
1.

Then, in view of the above observation,

Q′a(t)Q =
⎛
⎜⎜
⎝

α(t) 0

0 0

⎞
⎟⎟
⎠

(3.17)

where α(⋅) is a Lipschitz, nonnegative definite, (d − 1) × (d − 1) matrix valued function. Let

α1/2(t) be the symmetric square root of α(t). Since t ↦ α(t) is continuous so is t ↦ α1/2(t)

(see e.g. (Chen and Huan, 1997)). Define

σ(t) ≐ Q
⎡⎢⎢⎢⎢⎢⎣

α1/2(t) 0

0 0

⎤⎥⎥⎥⎥⎥⎦
Q′. (3.18)

The main goal of this paper is to show that an optimal control problem for certain diffusion

processes can be used to construct asymptotically near optimal control policies for the sequence

of controlled systems in Section 3.1.2. We now introduce this diffusion control problem. Let

(Ω,F ,P,{Ft}) be a filtered probability space with a d-dimensional {Ft}-Brownian motion

{Wt}. We refer to (Ω,F ,P,{Ft},{Wt}) as a system and denote it by Ξ. Denote the collection

of Ft-progressively measurable, Λ valued processes as A(Ξ). This collection will represent the

set of admissible controls for the diffusion control problem. The initial condition v0 for our

controlled diffusion process will lie in the set Vd−1 = {x ∈ Rd∣x ⋅ 1 = 0}. For U ∈ A(Ξ) and

v0 ∈ Vd−1, let V be the unique pathwise solution of

V (t) = v0 + ∫
t

0
η(s,U(s))ds + ∫

t

0
β(s)V (s)ds + ∫

t

0
σ(s)dW (s) (3.19)
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where η, β are as introduced in (3.15) and σ is as in (3.18). Define the cost associated with

U ∈ A(Ξ) and v0 ∈ Vd−1 as

J(U, v0) ≐ E∫
T

0
(k1(V (s)) + k2(U(s)))ds. (3.20)

The value function associated with the above diffusion control problem is

R(v0) ≐ inf
Ξ

inf
U∈A(Ξ)

J(U, v0),

where the outside infimum is taken over all possible systems Ξ.

Although the matrix σ(t) is singular for each t, the following condition will ensure that the

dynamics of V restricted to a certain (d − 1)-dimensional subspace is non-degenerate.

Condition 3.1.5. There exists a ∆∗ ⊂ ∪k∈K∆k such that Sp{eν ∶ ν ∈∆∗} equals Vd−1, and for

every ν ∈∆∗ there is a kν ∈ K such that ν ∈∆kν and

κ(T ) ≐ inf
ν∈∆∗

inf
0≤t≤T

Γ kν(µ(t), ν) > 0.

The following lemma shows that under Condition 3.1.5, α is uniformly non-degenerate on

compact sets.

Lemma 1. Under Condition 3.1.5, {α(t) ∶ t ∈ [0, T ]} is a uniformly positive definite collection,

namely, there exists a C(T ) ∈ (0,∞) such that x′α(t)x ≥ C(T )∥x∥2 for all x ∈ Rd−1 and 0 ≤ t ≤ T .

Proof. We first show that the matrix G = ∑ν∈∆∗ eνe
′
ν satisfies, for some CG ∈ (0,∞),

ξ′Gξ ≥ CG∥ξ∥2 (3.21)

for all ξ ∈ Vd−1. For this it satisfies to check that for any nonzero ξ ∈ Vd−1, ξ′Gξ > 0.

Suppose for some nonzero ξ ∈ Vd−1, ξ′Gξ = 0. Since ξ′Gξ = ∑ξ∈∆∗ ∣ξ ⋅ eν ∣2 and Sp{eν ∶ ν ∈

∆∗} = Vd−1, we must have ξ ⊥ Vd−1. But by assumption ξ is a nonzero element of Vd−1 which

is a contradiction. This proves (3.21).
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Now for x ∈ Rd−1, letting x̂ = ( x0 ) ∈ Rd,

x′α(t)x = x̂′Q′a(t)Qx̂ = (Qx̂)′a(t)(Qx̂).

Since 1 =
√
dqd and x̂d = 0,

Qx̂ ⋅ 1 = (q1x̂1 +⋯ + qdx̂d) ⋅ 1 = (q1x1 +⋯ + qd−1xd−1) ⋅ 1 = 0.

Thus y = Qx̂ ∈ Vd−1, and consequently for t ∈ [0, T ],

y′a(t)y = ∑
k∈K
∑
ν∈∆k

(Γ k(µ(t), ν))y′eνe′νy

≥ ∑
ν∈∆∗

(Γ k(ν)(µ(t), ν))y′eνe′νy ≥ κ(T )y′Gy ≥ κ(T )CG∥y∥2.

Thus

x′α(t)x ≥ κ(T )CG∥Qx̂∥2 = κ(T )CG∥x̂∥2 = κ(T )CG∥x∥2 (3.22)

and the result follows.

Since t↦ α(t) is Lipschitz, it follows from Lemma 1 that under Condition 3.1.5, t↦ α1/2(t)

is Lipschitz as well (see Theorem 5.2.2 in (Stroock and Varadhan, 2007)). Note from (3.22),

that x′α1/2(t)x ≥ (κ(T )CG)1/2∥x∥2 for all x ∈ Rd×d and t ∈ [0, T ]. In particular

sup
0≤t≤T

∥α−1/2(t)∥ < ∞. (3.23)

3.1.4 Main Result

We now present the main result of this chapter. In Section 3.4 we will show that for every

measurable function g ∶ [0, T ] × Rd → Λ there exists a system Ξ and a Ug ∈ A(Ξ) such that

the corresponding controlled diffusion process is a (time inhomogeneous) Markov process with
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generator

Lgf(t, x) ≐ ∇f(x) ⋅ [η(t, g(t, x)) + β(t)x] +
1

2
Tr(σ(t)D2f(x)σ′(t)), f ∈ C∞

c (Rd) (3.24)

where ∇ and D2 are the gradient and the Hessian operators, respectively. Furthermore, as we

will describe in Section 3.4, such a g also defines a control Ung in the n-th system, under which the

state process µgn is a time inhomogeneous Markov process (see (3.49)). We refer to Ug and Ung as

the feedback controls associated with g for the diffusion control problem and the n-th controlled

system, respectively. The following is the main result of this chapter. It says the following three

things: (i) The value functions of the n-particle control problem converge to that of the diffusion

control problem as n → ∞; (ii) For every ε > 0, there exists a continuous ε-optimal feedback

control for the diffusion control problem; (iii) A near optimal continuous feedback control for the

diffusion control problem can be used to construct a sequence of asymptotically near optimal

controls for the systems indexed by n.

Theorem 2. Suppose Conditions 3.1.3, 3.1.4, and 3.1.5 hold. Let xn ∈ Sn be such that vn =
√
n(xn − x0) → v0 as n→∞. Then

(i) Rn(vn) → R(v0) as n→∞.

(ii) For every ε > 0, there is a continuous gε ∶ [0, T ] ×Rd → Λ such that

J(Ugε , v0) ≤ R(v0) + ε.

(iii) For any continuous g ∶ [0, T ] ×Rd → Λ, Jn(Ung , vn) → J(Ug, v0) as n →∞. In particular,

with gε as in (ii),

R(v0) = lim
n→∞

Rn(vn) ≤ lim
n→∞

Jn(Ungε , vn) ≤ R(v0) + ε.

Proof. The above result will be proved in three parts. First in Theorem 3 we will show that

for all vn, v0 as in the statement,

lim inf
n→∞

Rn(vn) ≥ R(v0).
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Next, Theorem 7 shows the first statement in (iii). Finally in Theorem 9 we prove part (ii) of

the theorem.

Combining the above results we see that for each ε > 0

lim sup
n→∞

Rn(vn) ≤ lim
n→∞

J(Ungε , vn) = J(Ugε , v0) ≤ R(v0) + ε.

Since ε > 0 is arbitrary it follows immediately that lim supn→∞Rn(vn) ≤ R(v0) completing the

proof of part (i) and also the second statement in (iii).

Proof of Theorems 3, 7, and 9 are given in Sections 3.3, 3.4, and 3.5, respectively. Section

3.6 of the paper will present an example that is a controlled analogue of systems introduced

in (Antunes et al., 2008) as models for ad hoc wireless networks. We will verify Conditions

3.1.3-3.1.5 for this example and describe how results from Theorem 2 can be used to construct

a sequence of asymptotically near optimal control policies.

3.2 Tightness

In this section we prove a tightness result which will be needed in the proofs of Theorems 4

and 7. For u ∈ Λn, k ∈ K and ν ∈ ∆k, we extend the map r → Γkn(r, u, ν) to all of Rd by setting

Γkn(r, u, ν) = 0 if r /∈ Sn.

For Un ∈ An define Vn by (3.9) where µn is the controlled Markov process corresponding

to the system under control Un given as in (3.7). Define γn ∶ [0, T ] × Rd → Rd as γn(t, x) ≐

µ(t) + 1√
n
x, for x ∈ Rd, t ∈ [0, T ] and for φ ∈ C2(Rd), s ∈ [0, T ], u ∈ Λn, and y ∈ Rd define

Lnu(φ, s, y) ≐ ∑
k∈K
∑
ν∈∆k

Γ kn (γn(s, y), u, ν) [φ(y + 1√
n
eν) − φ(y)] −

√
nF (µ(s))∇φ(y). (3.25)

For i = 1, . . . , d define φi(y) ≐ yi and denote the i-th coordinate of eν and F by eiν and F i,

respectively. Let

bi,un (s, y) ≐ Lnu(φi, s, y) = ∑
k∈K
∑
ν∈∆k

Γ kn (γn(s, y), u, ν)
1√
n
eiν −

√
nF i(µ(s))

=
√
n ∑
k∈K
∑
ν∈∆k

eiν (
1

n
Γ kn (γn(s, y), u, ν) − Γ k(µ(s), ν))
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where the second equality follows from the definition of F in Proposition 1. Also, for i, j =

1, . . . , d let,

ai,j,un (s, y) ≐ Lnu(φiφj , s, y) − yibj,un (s, y) − yjbi,un (s, y)

= ∑
k∈K
∑
ν∈∆k

Γ kn (γn(s, y), u, ν)(
yi√
n
ejν +

yj√
n
eiν +

1

n
eiνe

j
ν)

− yi
√
nF j(µ(s)) − yj

√
nF i(µ(s)) − yibj,un (s, y) − yjbi,un (s, y)

= ∑
k∈K
∑
ν∈∆k

Γ kn (γn(s, y)), u, ν)
1

n
eiνe

j
ν .

We write bun = (b1,un , . . . , bd,un ) and aun = (ai,j,un )i,j=1,...,d.

Let

nK ≐ 2 max
k∈K

nk. (3.26)

The following Lemma gives a key bound needed for tightness.

Lemma 2. Suppose Condition 3.1.3 holds. Then there exists C3 ∈ (0,∞) such that for every

n ∈ N and t ∈ [0, T ]

(∥bUn(t)n (t, Vn(t))∥2 +Tr(aUn(t)n (t, Vn(t)))) ≤ C3(1 + ∥Vn(t)∥2)

almost everywhere for every Un ∈ An.

Proof. It follows from (3.13) that for y ∈ B(2√n) such that µ(t) ∈ Sn(y), u ∈ Λn, and i = 1, . . . , d

ai,i,un (t, y) = ∑
k∈K
∑
ν∈∆k

Γ kn (γn(t, y), u, ν)
1

n
eiνe

i
ν ≤ ∑

k∈K
∑
ν∈∆k

C2e
i
νe
i
ν ≤ C2`n

2
K,
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and from Condition 3.1.3

bi,un (t, y)2 =
⎛
⎝∑k∈K

∑
ν∈∆k

eiν
√
n( 1

n
Γ kn (γn(t, y), u, ν) − Γ k(µ(t), ν))

⎞
⎠

2

≤
⎛
⎝∑k∈K

∑
ν∈∆k

∣eiν ∣C1(1 + ∥y∥)
⎞
⎠

2

≤ (C1`nK(1 + ∥y∥))2

≤ 2C2
1`

2n2
K(1 + ∥y∥2).

The result now follows on noting that Vn(t) ∈ B(2√n) and µ(t) ∈ Sn(Vn(t)) a.s.

For n ≥ 1 and φ ∈ C2(Rd), let ψn ∈ C1,2([0, T ] ×Rd) be defined as

ψn(t, y) ≐ φ(
√
n(y − µ(t))), t ∈ [0, T ], y ∈ Rd.

Note that φ(x) = ψn(t, γn(t, x)). Using (3.7) and Dynkin’s formula,

φ(Vn(t)) = ψn(t, µn(t))

= ψn(0, µn(0)) + ∫
t

0
LnUn(s)ψn(s, µn(s))ds + ∫

t

0

∂

∂s
ψn(s, µn(s))ds +Mn,φ

t

(3.27)

where Mn,φ
t is a locally square-integrable martingale and for u ∈ Λn, (s, r) ∈ [0, T ] ×Rd,

Lnuψn(s, r) ≐ ∑
k∈K
∑
ν∈∆k

Γ kn (r, u, ν) [ψn (s, r + 1

n
eν) − ψn(s, r)]

= ∑
k∈K
∑
ν∈∆k

Γ kn (r, u, ν) [φ(
√
n(r − µ(s)) + 1√

n
eν) − φ(

√
n(r − µ(s)))] .

Also, since µ̇(t) = F (µ(t)),

∂

∂s
ψn(s, r) = −

√
nF (µ(s)) ⋅ ∇φ(

√
n(r − µ(s))).

This shows that the process Vn is a D-semimartingale in the sense of Definition 3.1.1 of (Joffe

and Métivier, 1986) with increasing function A(t) = t and the associated mapping Ln ∶ C2(Rd)×
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Rd × [0, T ] ×Ωn → R (in the notation of (Joffe and Métivier, 1986)) defined as

Ln(φ, y, t, ω) ≐ LnUn(t,ω)(φ, t, y),

where Lnu is defined as in (3.25). Furthermore,

bni (y, t, ω) ≐ bi,U
n(t,ω)(t, y), anij(y, t, ω) ≐ ai,U

n(t,ω)
n (t, y),

are the local coefficients of first and second order of the semimartingale Vn in the sense of

Definition 3.1.2 of (Joffe and Métivier, 1986). In particular, equation (3.27) combined with

(3.25) implies that

Mn
t ≐ Vn(t) − Vn(0) − ∫

t

0
bn(Vn(s), s, ω)ds (3.28)

is a d-dimensional locally square-integrable martingale.

Definition 3.1. For x ∈ D([0, T ] ∶ Rd) let jT (x) ≐ sup0<t≤T ∥x(t) − x(t−)∥ be the maximum

jump size of x. We say a tight collection of D([0, T ] ∶ Rd)-valued random variables {Xn}n∈N is

C-tight if jT (Xn) ⇒ 0.

If Xn,X are D([0, T ] ∶ Rd)-valued random variables and Xn ⇒ X then P(X ∈ C([0, T ] ∶

Rd)) = 1 if and only if {Xn}n∈N is C-tight (Billingsley, 1999). Using Lemma 2, the following

Proposition follows directly from Lemma 3.2.2 and Proposition 3.2.3 of (Joffe and Métivier,

1986).

Proposition 2. Suppose Condition 3.1.3 holds. Define for n ∈ N, Vn through (3.9), where µn

is defined as in (3.7) for some Un ∈ An. Suppose Vn(0) = vn ∈ Rd and supn ∥vn∥ < ∞. Then

sup
n≥1

E sup
0≤t≤T

∥Vn(t)∥2 < ∞

and the sequence {Vn}n≥1 is a tight collection of D([0, T ] ∶ Rd)-valued random variables. Fur-

thermore the sequence is C-tight.
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Proof. Since bn and an are the local coefficients of the semimartingale Vn, the moment bound

is immediate from the properties of bun and aun established in Lemma 2 upon using Lemma 3.2.2

of (Joffe and Métivier, 1986). Using this moment bound and Lemma 2 once again, tightness

follows from verifying Aldous’ tightness criteria (cf. Theorem 2.2.2 in (Joffe and Métivier,

1986)) as in Proposition 3.2.3 of (Joffe and Métivier, 1986). Also note that {Vn} is C-tight

because jT (Vn) ≤ 1√
n
`1/2nK where ` and nK are as in (3.6) and (3.26), respectively.

Remark 3.2.1. Proposition 2 in particular says that under Condition 3.1.3 µn converges to µ

in D([0, T ] ∶ Rd).

3.3 Lower Bound

In this section we prove the following result.

Theorem 3. Suppose Conditions 3.1.3, 3.1.4, and 3.1.5 hold. Let vn, v0 be as in the statement

of Theorem 2. Then

lim inf
n→∞

Rn(vn) ≥ R(v0).

A key ingredient in the proof of Theorem 3 will be Theorem 4 which is presented below. In

order to formulate this we first begin with some notation. Note that the local martingale Mn

in (3.28) takes the following explicit form.

Mn(t) =
√
n ∑
k∈K
∑
ν∈∆k

eνM
n
k,ν(t), t ∈ [0, T ], (3.29)

where Mn
k,ν is as defined in (3.8). To see this, denote the right side of (3.29) as M̃n(t) and

then, using (3.7), we can write

µn(t) = µn(0) +
1

n
∑
k∈K
∑
ν∈∆k

eν ∫
t

0
Γ kn (µn(s), Un(s), ν)ds +

1√
n
M̃n(t).

37



From this and recalling the definition of µ from (3.7) and of Hk from Condition 3.1.4, we have

the following representation for Vn in terms of M̃n

Vn(t) =
√
n(µn(t) − µ(t))

= vn + ∑
k∈K
∑
ν∈∆k

eν ∫
t

0

√
n( 1

n
Γ kn (µn(s), Un(s), ν) − Γ k(µ(s), ν))ds + M̃n(t)

= vn + ∑
k∈K
∑
ν∈∆k

eν ∫
t

0
Hk(Vn(s), µ(s),

√
nUn(s), ν)ds + ∫

t

0
ϑn(s)ds + M̃n(t)

(3.30)

where the error term ϑn is given as

ϑn(s) = ∑
k∈K
∑
ν∈∆k

ϑnk,ν(s), ϑnk,ν(s) = eνβnk (Vn(s), µ(s),
√
nUn(s), ν),

and βnk is as in Condition 3.1.4. This proves (3.29).

Note that ϑn can be estimated as

∥ϑn(s)∥ ≤ θn(Vn(s)). (3.31)

where for y ∈ Rd

θn(y) ≐ (`)1/2nK sup
ξ∈Sn(y)

sup
u∈Λ
∑
k∈K
∑
ν∈∆k

∣βnk (y, ξ, u, ν)∣,

with ` and nK as in (3.6) and (3.26), respectively. Condition 3.1.4 then implies

sup
y∈A

θn(y) → 0, as n→∞ (3.32)

for all compact A. The above estimate will allow us to estimate the error term ϑn in (3.30).

In order to have suitable tightness properties of the control processes it will be convenient

to introduce the following collection of random measures. DefineM([0, T ]×Λ) valued random

variables mn as

mn(A ×B) = ∫
A

1B(
√
nUn(s))ds. (3.33)
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Note that mn can be disintegrated as mn
s (du)ds, where mn

s (du) = δ√nUn(s)(du) and δx is the

Dirac measure at the point x. Then for s ∈ [0, T ],

Hk(Vn(s), µ(s),
√
nUn(s), ν) = ∫

Λ
hk1(ν,µ(s))uk,νmn

s (du) + hk2(ν,µ(s)) ⋅ Vn(s).

Thus the state equation (3.30) can be rewritten as

Vn(t) = vn + ∫
t

0
ϑn(s)ds +Mn(t) + ∑

k∈K
∑
ν∈∆k

eν ∫
t

0
∫

Λ
hk1(ν,µ(s))uk,νmn

s (du)ds

+ ∑
k∈K
∑
ν∈∆k

eν ∫
t

0
hk2(ν,µ(s)) ⋅ Vn(s)ds.

(3.34)

Recall from Section 1.2 that M([0, T ] ×Λ) is the space of all finite measures on [0, T ] × Λ

equipped with the usual weak convergence topology.

Theorem 4. Suppose Conditions 3.1.3, 3.1.4, and 3.1.5 hold and let vn, v0 be as in Theorem

2. Then:

(i) Y n = {Vn,Mn,mn, ∫ ⋅0 ϑn(s)ds}n≥1 is a tight collection of D([0, T ] ∶ R2d)×M([0, T ] ×Λ)×

C([0, T ] ∶ Rd) valued random variables.

(ii) ∫ ⋅0 ϑn(s)ds converges to 0 in probability in C([0, T ] ∶ Rd).

(iii) (Vn,Mn)n≥1 is C-tight.

(iv) Suppose {Y n} converges weakly along a subsequence to Y = (V,M,m,0) defined on a

probability space (Ω∗,F∗,P∗). Then, P∗ a.s., the first marginal of m is the Lebesgue

measure on [0, T ]. Disintegrating m as

m(A ×B) = ∫
A
mt(B)dt, A ∈ B([0, T ]), B ∈ B(Λ),

define

Uk,ν(t) ≐ ∫
Λ
uk,νmt(du), t ∈ [0, T ], k ∈ K, ν ∈∆k. (3.35)

39



Let {Bd(t)} be a one-dimensional standard Brownian motion given on (Ω∗,F∗,P∗) that

is independent of Y . Let G○t = σ{Bd(s), V (s),M(s),m([0, s] ×B) ∶ s ≤ t,B ∈ B(Λ)} and

Gt be the P∗-completion of G○t . Then there is a d-dimensional {Gt}-Brownian motion

{W (t)},W = (W1, . . . ,Wd) such that the following equation is satisfied

V (t) = v0 + ∫
t

0
σ(s)dW (s) + ∑

k∈K
∑
ν∈∆k

eν ∫
t

0
∫

Λ
hk1(ν,µ(s))Uk,ν(s)ds

+ ∑
k∈K
∑
ν∈∆k

eν ∫
t

0
hk2(ν,µ(s)) ⋅ V (s)ds

= v0 + ∫
t

0
η(s,U(s))ds + ∫

t

0
β(s)V (s)ds + ∫

t

0
σ(s)dW (s).

(3.36)

Proof. Tightness of {mn} as M([0, T ] × Λ)-valued random variables is immediate since

mn([0, T ] × Λ) = T for all n and Λ is a compact set. C-tightness of {Vn} was proved in

Proposition 2.

In order to verify the tightness of {Mn}n≥1, we will use Theorem 2.3.2 of (Joffe and Métivier,

1986) (see Theorem 15 in Appendix). According to this theorem it suffices to verify condi-

tions [A] and [T1], given in Theorem 15, for the sequence of quadratic variation processes,

{∑k∈K∑ν∈∆k n⟨Mn
k,ν⟩}n≥1. Note that

∑
k∈K
∑
ν∆k

n⟨Mn
k,ν⟩(t) =

1

n
∑
k∈K
∑
ν∈∆k
∫

t

0
Γ kn (µn(s), Un(s), ν)ds.

Condition [A] and [T1] are now immediate on noting that Condition 3.1.3 implies (see (3.13))

1

n
Γ kn (µn(s), Un(s), ν) ≤ C2

almost surely for all n, k, ν, and s. Furthermore {Mn} is C-tight because jT (Mn) ≤ 1√
n
`1/2nK.

Finally, from (3.31), for δ > 0 we have that

P [ sup
0≤s≤T

∥∫
s

0
ϑn(u)du∥ > δ] ≤ P [ sup

0≤s≤T
θn(Vn(s)) >

δ

T
] .
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Since {Vn} is C-tight for every ε > 0, there exists some κ1 < ∞ such that

P [ sup
0≤s≤T

∥Vn(s)∥ > κ1] ≤ ε

for all n ∈ N. Recalling (3.32) we see that there exists an n0 > 0 such that

sup
y∶∥y∥≤κ1

θn(y) ≤ δ

T

for all n ≥ n0. Thus for all n ≥ n0

P [ sup
0≤s≤T

∥∫
s

0
ϑn(u)du∥ > δ]

≤ P [ sup
0≤s≤T

θn(Vn(s)) >
δ

T
, sup
0≤s≤T

∥Vn(s)∥ ≤ κ1] + P [ sup
0≤s≤T

∥Vn(s)∥ > κ1] ≤ ε.

Since ε > 0 is arbitrary we conclude that {∫ ⋅0 ϑn(s)ds} converges to 0 in probability in C([0, T ] ∶

Rd). This concludes the proof of (i), (ii) and (iii).

Consider now (iv). Let Y be as in the statement of the theorem, namely Y n converges

weakly along a subsequence to Y = (V,M,m,0). The property that the last component of Y

must be 0 is a consequence of (ii). For notational convenience we label the subsequence once

more by {n}. Recall the orthogonal matrix Q = [q1 q2 . . . qd] and function a ∶ [0, T ] → Rd×d

defined in Section 3.1.3 as well as the function α1/2 ∶ [0, T ] → R(d−1)×(d−1) introduced above

(3.18). Define (d − 1)- and 1-dimensional processes M̂n and Rn, respectively, as

⎛
⎜⎜
⎝

M̂n(t)

Rn(t)

⎞
⎟⎟
⎠
= Q′Mn(t). (3.37)

Note that

Rn(t) = q′dMn(t) = ∑
k∈K
∑
ν∈∆k

1√
d
1′eνM

n
k,ν(t) = 0

since 1′eν = 0 for all k ∈ K, ν ∈∆k.
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We now show that M is a {Gt}-martingale. The Burkholder-Davis-Gundy inequality (see

Theorem IV.48 of (Protter, 2005)) implies that there exists κ2 ∈ (0,∞) such that for i = 1, . . . , d

sup
n∈N

E sup
0≤t≤T

(Mn
i (t))4 ≤ sup

n∈N
κ2n

2 ∑
k∈K
∑
ν∈∆k

E[Mn
k,ν]2

T

= sup
n∈N

κ2 ∑
k∈K
∑
ν∈∆k

E( 1

n
Nk,ν (∫

T

0
Γ kn (µn(s), Un(s), ν)ds))

2

≤ sup
n∈N

κ2 ∑
k∈K
∑
ν∈∆k

E( 1

n
Nk,ν(nTC2))

2

< ∞,

(3.38)

where the first inequality on the last line is from (3.13). Thus {sup0≤t≤T ∥Mn(t)∥2}n≥1 is uni-

formly integrable. Let k ∈ N and H ∶ (Rd×Rd×R)k → R be a bounded and continuous function.

For 0 ≤ s ≤ t ≤ T and 0 ≤ t1 ≤ . . . ≤ tk ≤ s we let ξni = (Vn(ti),Mn(ti),mn
i (f)) and ξi =

(V (ti),M(ti),mi(f)) where mn
i (f) = ∫Λ×[0,ti] f(u)m

n
s (du)ds, mi(f) = ∫Λ×[0,ti] f(u)ms(du)ds

and f ∈ Cb(Λ). Then

E∗H(ξ1, . . . , ξk)[M(t) −M(s)] = lim
n→∞

EH(ξn1 , . . . , ξnk )[Mn(t) −Mn(s)] = 0

where the first equality follows from the uniform integrability property noted above, and the

second equality is a consequence of the martingale property of Mn (which is a consequence

of (3.38)). Combining this with the fact that Bd is a Brownian motion independent of Y , it

follows that M is a {Gt}-martingale.

We now define the process which will converge to the Brownian motion driving the limit

diffusion. Recall that the matrix α1/2 is invertible and the property (3.23). Define the (d − 1)-

dimensional processes Bn(t) = (Bn
i (t))d−1

i=1 as

Bn
i (t) =

d−1

∑
j=1
∫

t

0
α
−1/2
ij (s)dM̂n

j (s),

where M̂n is as in (3.37). Since Mn is a {Fnt }-martingale, both M̂n and Bn are {Fnt }-

martingales as well. From the estimate in (3.38) it follows that {sup0≤t≤T ∥Bn(t)∥2}n≥1 is

uniformly integrable. Also note that for integers 1 ≤ i, j ≤ d − 1, the cross quadratic varia-
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tion of Bn
i and Bn

j can be expressed as

⟨Bn
i ,B

n
j ⟩(t) =

d−1

∑
m1=1

d−1

∑
m2=1

∫
t

0
α
−1/2
im1

(s)α−1/2
jm2

(s)d⟨M̂n
m1
, M̂n

m2
⟩(s).

Note that for all t ∈ [0, T ]

⟨M̂n
m1
, M̂n

m2
⟩(t) = ⟨q′m1

Mn, q′m2
Mn⟩(t) =

d

∑
m3=1

d

∑
m4=1

qm3m1qm4m2⟨Mn
m3
,Mn

m4
⟩(t)

where

⟨Mn
m3
,Mn

m4
⟩(t) = ∑

k∈K
∑
ν∈∆k

em3
ν em4

ν

1

n
∫

t

0
Γ kn (µn(s), Un(s), ν)ds.

Thus

⟨Bn
i ,B

n
j ⟩(t) = ∫

t

0

⎛
⎝
Q′σ(s)−1 ∑

k∈K
∑
ν∈∆k

1

n
(Γ kn (µn(s), Un(s), ν)eνe′ν) (σ(s)′)−1Q

⎞
⎠
ij

ds

= ∫
t

0
(Q′σ(s)−1a(s)(σ(s)′)−1Q)

ij
ds + εnij(t) = tIij + εnij(t)

(3.39)

where I is the d × d identity matrix,

εn(t) = ∫
t

0
Q′σ(s)−1 ∑

k∈K
∑
ν∈∆k

( 1

n
Γ kn (µn(s), Un(s), ν) − Γ k(µ(s), ν)) eνe′ν(σ(s)′)−1Qds

and εnij is the (i, j)-th coordinate of εn. From Condition 3.1.3 and (3.23) we have that

E∥εn(t)∥ → 0 for all t as n→∞.

Also it is easy to see that (cf. Theorem 2.2 of (Kurtz and Protter, 1991))

Bn(⋅) ⇒ ∫ ⋅0 α−1/2(s)dM̂(s) ≐ B(⋅) in D([0, T ] ∶ Rd−1), where ( M̂
0
) = Q′M . Also since

{sup0≤t≤T ∥Bn(t)∥2}n≥1 is uniformly integrable, we have from (3.39) that

E∗ (H(ξ1, . . . , ξk)[B(t)B′(t) −B(s)B′(s) − (t − s)I])

= lim
n→∞

E (H(ξn1 , . . . , ξnk )[Bn(t)(Bn)′(t) −Bn(s)(Bn)′(s) − (t − s)I])

= lim
n→∞

E (H(ξn1 , . . . , ξnk )εn(t)) = 0.
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Combining this with the fact that Bd is independent of Y we see that B is a (d−1)-dimensional

continuous Gt-martingale with quadratic variation ⟨B⟩(t) = tI which implies, by Lévy’s theo-

rem, that B is a (d − 1)-dimensional {Gt}-Brownian motion. Since Bd is a Brownian motion

independent of Y , it follows that Ŵ ≐ (B,Bd)′ is a d-dimensional {Gt}-Brownian motion. Also

note that

M̂(t) = ∫
t

0
α1/2(s)dB(s). (3.40)

The final step of the proof is to show that V is a solution to (3.36) with W = QŴ . Note that

since Q is orthogonal, W is a d-dimensional {Gt}-Brownian motion as well. From the definition

of η and since eν ⋅ 1 = 0 for all k ∈ K, ν ∈∆k, Q′η takes the form

Q′η(t, u) =
⎛
⎜⎜
⎝

η̂(t, u)

0

⎞
⎟⎟
⎠
. (3.41)

Similarly, from the expression for β and from (3.18) it follows that

Q′β(t)Q =
⎛
⎜⎜
⎝

β̂(t) 0

0 0

⎞
⎟⎟
⎠
, Q′σ(t)Q =

⎡⎢⎢⎢⎢⎢⎣

α1/2(t) 0

0 0

⎤⎥⎥⎥⎥⎥⎦
. (3.42)

Also since Vn ⋅ 1 = 0 and v0 ⋅ 1 = 0, we have

Q′V =
⎡⎢⎢⎢⎢⎢⎣

V̂

0

⎤⎥⎥⎥⎥⎥⎦
, Q′v0 = [ v̂0

0
] . (3.43)

We first show that V̂ solves the (d − 1)-dimensional equation

V̂ (t) = v̂0 + ∫
t

0
η̂(s, u)ms(du)ds + ∫

t

0
β̂(s)V̂ (s)ds + ∫

t

0
α1/2(s)dB(s). (3.44)

Letting [ V̂n
0
] ≐ Q′Vn and using (3.34), we have,

V̂n(t) = v̂n + ∫
t

0
η̂(s, u)mn

s (du)ds + ∫
t

0
β̂(s)V̂n(s)ds + ∫

t

0
ϑ̂n(s)ds + M̂n(t)
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where [ v̂n0 ] = Q′vn and [ ϑ̂n
0
] = Q′ϑn. Note that (V̂n, M̂n,mn, ϑ̂n) ⇒ (V̂ , M̂ ,m,0). Without loss

of generality we assume that the convergence holds a.s.

Since mn →m, we have

∫
t

0
∫

Λ
hk1(ν,µ(s))uk,νmn

s (du)ds→ ∫
t

0
∫

Λ
hk1(ν,µ(s))uk,νms(du)ds

and thus

∫
t

0
η̂(s, u)mn

s (du)ds→ ∫
t

0
η̂(s, u)ms(du)ds. (3.45)

Similarly it follows that

∫
t

0
β̂(s) ⋅ V̂n(s)ds→ ∫

t

0
β̂(s) ⋅ V̂ (s)ds. (3.46)

Combining (3.45) and (3.46) with (3.40) we see that V̂ satisfies (3.44). Recalling the relation

between (v̂0, V̂ , η̂, β̂, α
1/2) and (v0, V, η, β, σ) we see that V = Q [ V̂

0
] is a solution of (3.36), where

W = QŴ . This proves (iv) and thus completes the proof of the theorem.

We now apply the above result to prove Theorem 3 which shows that the limit of the value

of the optimal control problem for the n-th system as n → ∞ can be bounded from below by

the value of the control problem for the limit diffusion.

Proof of Theorem 3. Let vn, v0 be as in the statement of the theorem. It suffices to show that

for any sequence of admissible controls {Un}, lim infn→∞ Jn(Un, vn) ≥ R(v0). Let Un ∈ An,

and mn be the corresponding relaxed control defined as in (3.33). From the previous theorem

we have that {(Vn,Mn,mn, ∫ ⋅0 ϑn(s)ds)}n≥1 is tight and thus every subsequence (also denoted

with the index n) has a further subsequence {(Vn` ,Mn` ,mn` , ∫ ⋅0 ϑn`(s)ds)} such that

(Vn` ,Mn` ,mn` ,∫
⋅

0
ϑn`(s)ds) ⇒ (V,M,m,0).

Furthermore, equation (3.36) holds for the limit point (V,M,m,0) with a {Gt}-Brownian motion

W where {Gt} is as in the statement of Theorem 4 and Uk,ν are defined as in (3.35). It follows
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from Fatou’s Lemma that

lim inf
`→∞

E∫
T

0
k1(Vn`(s))ds ≥ E∗∫

T

0
∫

Λ
k1(V (s))ds.

Another application of Fatou’s Lemma shows

lim inf
`→∞

E∫
T

0
∫

Λ
k2(u)mn`

s (du)ds ≥ E∗∫
T

0
∫

Λ
k2(u)ms(du)ds

≥ E∗∫
T

0
k2(U(s))ds

where the second inequality follows on using Jensen’s inequality, the relation (3.35), and the

assumed convexity of k2. Thus

lim inf
`→∞

Jn`(Un` , vn) = lim inf
`→∞

E∫
T

0
(k1(Vn`(s)) + k2(

√
n`U

n`(s)))ds

≥ E∫
T

0
(k1(V (s)) + k2(U(s)))ds

≥ R(v0),

where the last inequality follows on noting that U = (Uk,ν)k∈K,ν∈∆k ∈ A(Ξ) where Ξ =

(Ω∗,F∗,P∗,{Gt}). This completes the proof of the theorem.

3.4 Feedback Controls

In this section we will introduce feedback controls, Ung ∈ An and Ug ∈ A(Ξ), associated with

a measurable map g ∶ [0, T ] ×Rd → Λ and prove that whenever g is continuous and vn → v0, we

have, under suitable conditions,

Jn(Ung , vn) → J(Ug, v0). (3.47)

In Section 3.4.1 we introduce feedback controls for the n-th system, whereas in Section 3.4.2

we define feedback controls for the limit diffusion. For the latter case we argue, using the

non degeneracy of α(t) (under Condition 3.1.5), that there is a unique weak solution of the
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corresponding stochastic differential equation. Finally, in Section 3.4.3 we prove the convergence

in (3.47) when g is a continuous map.

3.4.1 Feedback Control in the n-th System

Given a measurable function g ∶ [0, T ] × Rd → Λ, define for all k ∈ K, ν ∈ ∆k, functions

Γ k,gn (⋅, ν) ∶ Sn × [0, T ] → R+ as

Γ k,gn (r, s, ν) ≐ Γ kn (r, 1√
n
g(s,

√
n(r − µ(s)), ν) . (3.48)

As with u ∈ Λ, g can be indexed by k ∈ K and ν ∈ ∆k with the corresponding entry denoted as

gk,ν . Define µgn through the right side of (3.7) by replacing Un(s) with

Ung (s) ≐
1√
n
g(s,

√
n(µgn(s) − µ(s))).

Then it can be checked that Ung ∈ An and µgn is a time inhomogeneous Markov process with

generator

Lng f(s, r) ≐
K

∑
k=1

∑
ν∈∆k

Γ k,gn (r, s, ν) [f (s, r + 1

n
eν) − f(s, r)] (3.49)

for s ∈ [0, T ], r ∈ Sn, f ∶ [0, T ] × Sn → R.

3.4.2 Diffusion Feedback Control

In this section we introduce feedback controls for the limit diffusion model. Fix v0 ∈ Vd−1.

Definition 3.2. Let g ∶ [0, T ] ×Rd → Λ be a measurable map. We say that the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV (t) = η(t, g(t, V (t)))dt + β(t)V (t)dt + σ(t)dW (t)

V (0) = v0

(3.50)

admits a weak solution if there exists a filtered probability space (Ω,F ,P,{Ft}) on which is

given an {Ft}-Wiener process W and an Ft-adapted continuous process V such that for all
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0 ≤ t ≤ T ,

V (t) = v0 + ∫
t

0
η(s, g(s, V (s)))ds + ∫

t

0
β(s)V (s)ds + ∫

t

0
σ(s)dW (s)

almost surely. We say that (3.50) admits a unique weak solution if whenever there are two sets

of such spaces and processes denoted as (Ωi,F i,Pi,{F it}, (W i, V i)), i = 1,2 then the probability

law of V 1 is the same as that of V 2.

Given a weak solution V associated with the system Ξ = (Ω,F ,P,{Ft},{Wt}) define Ug ≐

g(⋅, V (⋅)) ∈ A(Ξ). We refer to this control as the feedback control (for the limit diffusion)

associated with the map g.

Theorem 5. Under Condition 3.1.5 there is a unique weak solution of (3.50).

Proof. Suppose V is a weak solution of (3.50) on some system Ξ = (Ω,F ,P,{Ft},{Wt}). Recall

the definition of V̂ , η̂, and β̂ from Section 3.3 (cf. (3.41), (3.42), (3.43)). Let Q′W ≐ ( B
W ∗ ) and

note that B and W ∗ are independent standard (d − 1)- and 1-dimensional Brownian motions,

respectively. Define ĝ ∶ [0, T ] ×Rd−1 → Λ as ĝ(t, v) = g(t,Q ( v0 )) and let ( v̂0
0
) = Q′v0. Note that

V̂ is a solution of the (d − 1)-dimensional SDE

V̂ (t) = v̂0 + ∫
t

0
η̂(s, ĝ(s, V̂ (s)))ds + ∫

t

0
β̂(s)V̂ (s)ds + ∫

t

0
α1/2(s)dB(s). (3.51)

On the other hand if V̂ is a solution of the SDE (3.51) on some filtered probability space

(Ω,F ,P,{Ft}), where B is a (d−1)-dimensional {Ft} Brownian Motion, then as argued at the

end of Theorem 4, by a suitable augmentation of the space with a one-dimensional Brownian

motion Bd, Q [ V̂
0
] is a solution of the SDE (3.50), with Brownian motion W = Q [ BBd ]. Since

from (3.23) supv∈Rd ∫
T

0 ∥α(s)∥−1∥η̂(s, ĝ(s, v))∥2ds < ∞, a standard argument using Girsanov’s

theorem shows that (3.51) has a unique weak solution. From the one-to-one correspondence

between solutions of (3.51) and (3.50) noted above it now follows that there is a unique weak

solution for (3.50).

Recall the generator Lg in (3.24) associated with a measurable map g ∶ [0, T ] ×Rd → Λ.
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Definition 3.3. Given v0 ∈ Vd−1, a d-dimensional stochastic process V on some filtered proba-

bility space (Ω,F ,P,{Ft}) will be called a solution to the martingale problem associated with

(Lg, v0) if

φ(V (t)) − φ(v0) − ∫
t

0
Lgφ(s, V (s))ds

is a martingale for all φ ∈ C∞
c (Rd) and V (0) = v0 almost surely.

The first part of the following result is standard (cf. (Stroock and Varadhan, 2007)) whereas

the second part is immediate from Theorem 5.

Theorem 6. A process V is a weak solution of the SDE (3.50) if and only if it is the solution

to the martingale problem for (Lg, v0). In particular, under Condition 3.1.5, there is a unique

solution to the martingale problem for (Lg, v0).

3.4.3 Convergence Under Continuous Feedback Controls

Let g ∶ [0, T ] × Rd → Λ be a continuous function and V g be the unique solution to (3.50)

given on some system Ξ = (Ω,F ,P,{Ft},{Wt}). Define

V g
n (t) =

√
n(µgn(t) − µ(t)). (3.52)

Recall that Ug(t) = g(t, V g(t)) ∈ A(Ξ) and Ung (t) = 1√
n
g(t, V g

n (t)) ∈ An are the controls asso-

ciated with g for the limit diffusion and pre-limit system, respectively. In this section we will

show that V g
n converges in distribution to V g, in D([0, T ] ∶ Rd) and that Jn(Ung , vn) converges

to J(Ug, v0). Namely we prove the following result.

Theorem 7. Suppose Conditions 3.1.3, 3.1.4, and 3.1.5 hold, and let vn, v0 be as in Theorem

2, where xn = µgn(0). Then as n→∞:

(i) V g
n converges in distribution, in D([0, T ] ∶ Rd), to V g where V g is the unique solution to

the martingale problem for (Lg, v0).

(ii) Jn(Ugn, vn) → J(Ug, v0).
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Proof. First consider (i). From Proposition 2 we have that {V g
n } is C−tight in D([0, T ] ∶ Rd).

Since g is continuous, the operator Lg defined in (3.24) maps C∞
c (Rd) to Cb([0, T ] × Rd). In

view of this, the tightness of {V g
n }, the uniqueness established in Theorem 6, and Theorem

3.3.1 of (Joffe and Métivier, 1986), it suffices to show that for all φ ∈ C∞
c (Rd)

lim
n→∞∫

T

0
En∣Lng (φ, s, V g

n (s)) − Lgφ(s, V g
n (s))∣ds = 0 (3.53)

where Lg is an in (3.24) and Lng is defined by the right side of (3.25), replacing u with

1√
n
g(s,√n(s − µ(s))), namely

Lng (φ, s, y) ≐ ∑
k∈K
∑
ν∈∆k

Γ k,gn (γn(s, y), s, ν) [φ(y + 1√
n
eν) − φ(y)] −

√
nF (µ(s))∇φ(y)

for φ ∈ C∞
c (Rd), s ∈ [0, T ], y ∈ Rd where Γ k,gn is as in (3.48) (definition of Γ k,gn is extended to all

r ∈ Rd on setting Γ k,gn (r, s, ν) = 0 if r /∈ Sn). We note that Theorem 3.3.1 of (Joffe and Métivier,

1986) considers the setting of time-homogeneous diffusions, however the proof carries over to

the setting of time-inhomogeneous generators considered here with minor modifications.

We now fix φ ∈ C∞
c (Rd) and for all n ∈ N, k ∈ K, ν ∈ ∆k define functions ϕnk,ν,1 ∶ Rd → R+,

ϕnk,ν,2 ∶ [0, T ] ×Rd → R+, and Anj ∶ [0, T ] ×Rd → R+ for j = 1,2,3, as

ϕnk,ν,1(y) ≐ ∣φ(y + 1√
n
eν) − φ(y) −

1√
n
e′ν∇φ(y) −

1

2n
e′νD

2φ(y)eν ∣ ,

ϕnk,ν,2(s, y) ≐ ∣βnk (y, µ(s), g(s, y), ν)∣ ,

and

An1(s, y) ≐ ∑
k∈K
∑
ν∈∆k

Γ k,gn (γn(s, y), s, ν)ϕnk,ν,1(y),

An2(s, y) ≐ ∑
k∈K
∑
ν∈∆k

ϕnk,ν,2(s, y)∣e′ν∇φ(y)∣,

An3(s, y) ≐
1

2
∑
k∈K
∑
ν∈∆k

∣ 1
n
Γ k,gn (γn(s, y), s, ν) − Γ k(µ(s), ν)∣ ∣e′νD2φ(y)eν ∣
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for s ∈ [0, T ] and y ∈ Rd. Note that

Tr(a(t)D2φ) = ∑
k∈K
∑
ν∈∆k

Γ k(µ(t), ν)e′νD2φ(y)eν .

Adding and subtracting

1√
n
∑
k∈K
∑
ν∈∆k

Γ k,gn (γn(s, y), s, ν)e′ν∇φ(y) and
1

2n
∑
k∈K
∑
ν∈∆k

Γ k,gn (γn(s, y), s, ν)e′νD2φ(y)eν

from Lng (φ, s, y) − Lgφ(s, y), the triangle inequality yields

∣Lng (φ, s, V g
n (s)) − Lgφ(s, V g

n (s))∣ ≤ An1(s, V g
n (s)) +An2(s, V g

n (s)) +An3(s, V g
n (s)).

We now consider the three terms on the right side separately. First consider An1(s, V
g
n (s)).

It follows from Taylor’s theorem and the fact that all derivatives of φ are uniformly bounded

that there exists κ1 ∈ (0,∞) such that,

ϕnk,ν,1(V g
n (s)) ≤ 1

6
max
∥α∥=3

sup
x∈Rd

∥Dαφ (x)∥ × ∥ eν√
n
∥

3

≤ κ1

n3/2 ,

where the outside maximum is taken over all mixed derivatives of order 3. Then, since

1√
n
V g
n (s) + µ(s) ∈ Sn, (3.13) implies

An1(s, V g
n (s)) ≤ ∑

k∈K
∑
ν∈∆k

Γ k,gn (γn(s, V g
n (s)), s, ν) κ1

n3/2 ≤ κ2√
n
,

for all s ∈ [0, T ] and some κ2 ∈ (0,∞). It follows that

∫
T

0
En∣An1(s, V g

n (s))∣ds→ 0 as n→∞.

Now consider An2(s, V
g
n (s)). From Condition 3.1.4 it follows that for κ3 > 0, ε > 0,

Pn [ sup
0≤s≤T

∥V g
n (s)∥ ≤ κ3, ϕ

n
k,ν,2(s, V g

n (s)) > ε] → 0 as n→∞.
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Also the C-tightness of {V g
n } implies that

sup
n

Pn [ sup
0≤s≤T

∥V g
n (s)∥ > κ3] → 0 as κ3 →∞.

Combining these two observations we see that

ϕnk,ν,2(s, V g
n (s)) → 0 in probability as n→∞ for all s ∈ [0, T ]. (3.54)

Next, from Conditions 3.1.3, 3.1.4, and noting that h1, h2 are bounded functions, we see that

there is a κ4 ∈ (0,∞) such that for all k ∈ K, ν ∈∆k, n ≥ 1 and s ≥ 0

ϕnk,ν,2(s, V g
n (s)) ≤ κ4(1 + ∥V g

n (s)∥) a.s.

From Proposition 2,

sup
n

En sup
t≤T

∥V g
n (t)∥2 < ∞. (3.55)

Thus {ϕnk,ν,2(s, V
g
n (s))} is uniformly integrable over [0, T ]×Ω and so combining this with (3.54),

we have

∫
T

0
En∣ϕnk,ν,2(s, V g

n (s))∣ds→ 0 as n→∞.

Recalling the definition of An2 , it follows from the fact that all derivatives of φ are uniformly

bounded that there exists κ5 ∈ (0,∞) such that

∫
T

0
En∣An2(s, V g

n (s))∣ds ≤ κ5 ∑
k∈K
∑
ν∈∆k
∫

T

0
En∣ϕnk,ν,2(s, V g

n (s))∣ds→ 0 as n→∞.

Finally, consider An3(s, V
g
n (s)). It follows from Condition 3.1.3 and the boundedness of the

derivatives of φ that there exists a κ6 ∈ (0,∞) such that,

An3(s, V g
n (s)) ≤ κ6

K

∑
k=1

∑
ν∈∆k

∣ 1
n
Γ k,gn (γn(s, V g

n (s)), s, ν) − Γ k(µ(s), ν)∣ ≤ κ6C1√
n

(1 + ∥V g
n (s)∥).

52



Using the moment bound in (3.55) once more, we have that

∫
T

0
E∣An3(s, V g

n (s))∣ds→ 0.

This proves (3.53) and thus completes the proof of part (i).

Now consider (ii). By a similar argument as in Theorem 4

V g
n (t) = vn + ∫

t

0
b
Ung (s)
n (s, V g

n (s))ds +Mn(t) for all n ≥ 1

where Mn(t) is the local martingale in (3.29), with Mn
k,ν as in (3.8) with Un replaced by

Ung . Recall p and Ck1 introduced below (3.10). By a similar estimate as in (3.38) there exists

κ7 ∈ (0,∞) such that

sup
n∈N

E sup
0≤t≤T

∥Mn
i (t)∥2p ≤ sup

n∈N
κ7n

p ∑
k∈K
∑
ν∈∆k

E[Mn
k,ν]

p
T

= sup
n∈N

κ7 ∑
k∈K
∑
ν∈∆k

E( 1

n
Nk,ν (∫

T

0
Γ kn (µn(s), Un(s), ν)ds))

p

≤ sup
n∈N

κ7 ∑
k∈K
∑
ν∈∆k

E( 1

n
Nk,ν(nTC2))

p

< ∞

(3.56)

where C2 is as in (3.13). Also, from Lemma 2

∥bU
n
g (s)

n (s, V g
n (s))∥2p ≤ κ7(1 + ∥V g

n (s)∥2p). (3.57)

Combining these two inequalities implies there exists a κ8 ∈ (0,∞) such that

E sup
0≤s≤t

∥V g
n (s)∥2p ≤ κ8 (1 + ∫

t

0
E sup

0≤u≤s
∥V g

n (u)∥2pds) for all 0 ≤ t ≤ T.

Gronwall’s inequality then yields,

sup
n∈N

E sup
0≤t≤T

∥V g
n (t)∥2p ≤ sup

n∈N
κ8e

κ8T < ∞

and thus {supt≤T ∥V g
n (t)∥p} is uniformly integrable. Recalling the definition of Jn in (3.10),

it follows from this uniform integrability, part (i) of the theorem, the compactness of Λ, and
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growth condition on k1 (see below (3.10)) that

E∫
T

0
(k1(V g

n (t)) + k2(
√
nUng (t)))dt→ E∫

T

0
(k1(V g(t)) + k2(Ug(t)))dt,

upon noting that
√
nUng (t) = g(t, V g

n (t)), Ug(t) = g(t, V g(t)), and g is continuous. Thus we

have shown Jn(Ung , vn) → J(Ug, v0) which completes the proof of (ii).

3.5 Near Optimal Continuous Feedback Controls

In this section we give the final ingredient in the proof of Theorem 2, namely Theorem 9.

This result says that for every v0 ∈ Vd−1 and ε > 0 there is a continuous gε ∶ [0, T ]×Rd → Λ such

that Ugε is an ε-optimal control for the diffusion control problem, i.e. J(Ugε , v0) ≤ R(v0) + ε.

Recall from Section 3.1.4 that this result combined with Theorems 3 and 7 proved earlier will

complete the proof of Theorem 2. We begin with a result that says that for every v0 ∈ Vd−1, the

infimum of the cost J(⋅, v0) over all controls is the same as that over all feedback controls. The

proof is similar to Theorem 4.2 in (Borkar, 1989) which considers a time homogeneous setting,

and so we only provide a sketch.

Recall that for every measurable g ∶ [0, T ] ×Rd → Λ there is a (feedback) control Ug ∈ A(Ξ)

on some system Ξ. Denote the family of all such feedback controls as Afb. (This class depends

on the initial condition v0 in (3.50) but we suppress this in the notation). Throughout this

section we will assume that Conditions 3.1.3 – 3.1.5 hold.

Theorem 8. Fix v0 ∈ Vd−1. Then

R(v0) = inf
U∈Afb

J(U, v0).

Proof. Suppose U ∈ A(Ξ) is an admissible control on a system Ξ = (Ω,F ,P,{Ft},{Wt}). As

in Section 3.3 (cf. (3.33)) we denote the corresponding relaxed control by m. Let V (⋅) be

the corresponding unique pathwise solution to (3.19). It suffices to show that there exists an

admissible feedback control U∗ such that J(U∗, v0) ≤ J(U, v0). Define the probability measure

54



νv0 ∈ P([0, T ] ×Vd−1 ×Λ) as

∫[0,T ]×Vd−1×Λ
f(t, x, u)dνv0(t, x, u) =

1

T
E [∫

T

0
∫

Λ
f(t, V (t), u)mt(du) dt]

for all f ∈ Cb([0, T ] ×Vd−1 ×Λ). Disintegrate νv0 as

νv0(dt dx du) = βv0(dt, dx)π(t, x)(du)

where βv0 ∈ P([0, T ]×Vd−1) is the marginal distribution of νv0 on the first two coordinates and

π ∶ [0, T ]×Vd−1 → P(Λ) is the corresponding regular conditional law. Define g∗ ∶ [0, T ]×Rd → Λ

as g∗(t, x) = ∫Λ uπ(t,ΠVd−1(x))(du) where ΠVd−1 ∶ Rd → Vd−1 is the projection of Rd onto Vd−1.

Let Ug∗ be the feedback control associated with the map g∗ given on some system Ξ∗ and let V ∗

be the corresponding state process given as the solution of (3.50) with g replaced by g∗. Let for

t ∈ [0, T ], πt ≐ π(t, V ∗(t)). For (t, z) ∈ [0, T ] ×Vd−1, r ∈ (0,∞) and k̄r(v, u) ≐ k1(v) ∧ r + k2(u)

define

φr(t, z) = E∗ [∫
T

t
∫

Λ
k̄r(V ∗(s), u)πs(du)ds∣V ∗(t) = z] ,

Yr(t) = ∫
t

0
∫

Λ
k̄r(V (s), u)ms(du)ds + φr(t, V (t)).

It follows using the equivalent description of a weak solution of (3.50) in terms of a (d − 1)-

dimensional SDE with uniformly non-degenerate diffusion coefficient as in the proof of Theorem

5 and classical PDE results (cf. Section III.4.2 of (Bensoussan, 2011)) that φr solves the equation

∫
Λ
k̄r(x,u)π(t, x)(du) +

∂

∂t
φr(t, x) + (Lg∗φr)(t, x) = 0 (3.58)

where Lg∗ is the generator for V ∗ given by the right side of (3.24) with g replaced by g∗. From

the Itô-Krylov formula (cf. (Krylov, 2008)) we have

E[Yr(t)] −E[Yr(0)] = E∫
t

0
(∫

Λ
k̄r(V (s), u)ms(du) +

∂

∂t
φr(s, V (s))

+ (L̂U(s)φr)(s, V (s)))ds.
(3.59)
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where for u ∈ Λ, L̂u is the “controlled generator” defined as

L̂uφr(t, x) = ∇xφr(t, x)(η(t, u) + β(t)x) +
1

2
Tr(σ(t)D2φr(t, x)σ′(t)).

By the definition of π, and since u↦ L̂uφr(t, x) is linear we see that

∫
Λ
(L̂uφr)(s, x)π(s, x)(du) = (Lg∗φ)(s, x), (s, x) ∈ [0, T ] ×Vd−1.

From this it follows that

E∫
t

0
(∫

Λ
k̄r(V (s), u)ms(du) + (L̂U(s)φr)(s, V (s)))ds

= E∫
t

0
(∫

Λ
k̄r(V (s), u)π(s, V (s))(du) + (Lg∗φr)(s, V (s)))ds.

Thus (3.58) implies that the right hand side of (3.59) is 0 and thus E[Yr(t)] = E[Yr(0)] =

φr(0, v0) for all t ∈ [0, T ]. From the convexity of k2 we see that

φr(0, v0) = E∗ [∫
T

0
∫

Λ
k̄r(V ∗(s), u)πs(du)ds]

≥ E∗ [∫
T

0
k̄r(V ∗(s), g∗(s, V ∗(s))ds]

≐ Jr(Ug∗ , v0).

Using the monotone convergence theorem it now follows that

J(U, v0) = lim
r→∞

E[Yr(T )] = lim
r→∞

EYr(0)

= lim
r→∞

φr(0, v0) ≥ lim
r→∞

Jr(Ug∗ , v0) = J(Ug∗ , v0).

The result follows.

We will next show in Theorem 9 below that the above theorem can be strengthened in

that the class Afb can be replaced by the smaller class Acfb of all continuous feedback controls,

i.e. feedback controls for which that corresponding map g is continuous. Recall the orthogonal

matrix Q defined in Section 3.1.3. Fix v0 ∈ Vd−1 and let g∗ ∶ [0, T ]×Rd → Λ be a measurable map.
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Let Ug∗ be the corresponding feedback control given on some system Ξ = (Ω,F ,P,{Ft},{Wt})

and let V ∗ be the solution of (3.50) with g replaced by g∗ on the right side. Define the

(d − 1)-dimensional process V̂ ∗ such that V ∗ = Q ( V̂ ∗

0
) and the map ĝ∗ ∶ [0, T ] × Rd−1 → Λ as

ĝ∗(t, v) = g∗(t,Q ( v0 )) for v ∈ Rd−1. Then,

V̂ ∗(t) = v̂0 + ∫
t

0
η̂(s, ĝ∗(s, V̂ ∗(s)))ds + ∫

t

0
β̂(s)V ∗(s)ds + ∫

t

0
α1/2(s)dŴ (s) (3.60)

where η̂, β̂, and α are as in (3.41), (3.42), and (3.17), respectively. In addition, v0 = Q ( v̂0
0
)

and Q′W = ( ŴBd ). Define % ∈ P([0, T ] ×Rd−1) as

%(A) ≐ c̄∫
A
e−
(∥x∥2+t2)

2 dxdt (3.61)

for A ∈ B([0, T ] × Rd−1) where c̄ is a normalizing constant. We denote by B̄ the Lebesgue

σ-field on [0, T ]×Rd−1, namely the completion of B([0, T ]×Rd−1) with respect to the Lebesgue

measure.

Lemma 3. For each n ∈ N there exists a B̄-measurable function ĝn ∶ [0, T ] × Rd−1 → Λ and

compact sets An ∈ B([0, T ] ×Rd−1) such that ĝn is continuous and,

{(s, v) ∈ [0, T ] ×Rd−1 ∶ ĝ∗(s, v) ≠ ĝn(s, v)} ⊂ Acn and %(Acn) ≤
1

2n+1
. (3.62)

Proof. From Lusin’s theorem (cf. 2.24 of (Rudin, 1986)) for each n ∈ N there exists a continuous

function ĝ′n ∶ [0, T ]×Rd−1 → R` such that (3.62) is satisfied. Since Λ is a closed convex set, there

is a continuous map ΠΛ ∶ R` → Λ such that ΠΛ(u) = u for all u ∈ Λ. Define ĝn ∶ [0, T ]×Rd−1 → Λ

as ĝn(s, v) = ΠΛ(ĝ′n(s, v)). The result now follows on noting that

{(s, v) ∶ ĝn(s, v) = ĝ∗(s, v)} ⊃ {(s, v) ∶ ĝ′n(s, v) = ĝ∗(s, v)}.
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Let {vn} ⊂ Vd−1 be such that vn → v0 and let Ξn = (Ωn,Fn,{Fnt },Pn,{Wn}) be a system

on which the process V n is the unique (weak) solution to

V n(t) = vn + ∫
t

0
η(s, gn(s, V n(s)))ds + ∫

t

0
β(s)V n(s)ds + ∫

t

0
σ(s)dWn(s) (3.63)

where gn ∶ [0, T ] × Vd−1 → Λ is the continuous function defined as gn(s,Q ( v0 )) = ĝn(s, v), v ∈

Rd−1. We can extend gn continuously to [0, T ] ×Rd as before using the projection map ΠVd−1 .

Defining V̂ n as Q′V n = ( V̂ n
0

), we can write

V̂ n(t) = v̂n + ∫
t

0
η̂(s, ĝn(s, V̂ n(s)))ds + ∫

t

0
β̂(s)V̂ n(s)ds + ∫

t

0
α1/2(s)dŴn(s)

where Q′vn = ( v̂n0 ) and Ŵn is a (d − 1)-dimensional Brownian motion.

Theorem 9. Given v0 ∈ Vd−1, let V ∗ be as introduced in (3.60). Let vn, gn and {V n} be as

introduced above. Then V n ⇒ V ∗ as a sequence of C([0, T ] ∶ Rd)-valued random variables.

Proof. It suffices to show that V̂ n ⇒ V̂ ∗. Let G = Rd−1 ×Λ and define mn ∈ M([0, T ] ×G) as

mn(A ×B ×C) ≐ ∫
T

0
1A(s)1B(V̂ n(s))1C(ĝn(s, V̂ n(s)))ds,

where A ∈ B([0, T ]), B ∈ B(Rd−1), C ∈ B(Λ). Since u ↦ η̂(s, u) is a linear function and

∫ t0 ĝn(s, V̂ n(s))ds = ∫ t0 umn(ds dv du), V̂ n(t) can be expressed as

V̂ n(t) = v̂n + ∫
t

0
η̂(s, u)mn(ds dv du) + ∫

t

0
β̂(s)V̂ n(s)ds + ∫

t

0
α1/2(s)dŴn(s).

We can disintegrate mn as mn
t (dv du)dt, where mn

t (dv du) = δV̂ n(t)(dv)δĝn(t,V̂ n(t))(du) and δx

is the Dirac measure at the point x. From the boundedness of η̂, β̂, and α1/2, we get by a

standard application of Gronwall’s inequality that for some C ∈ (0,∞)

E[V̂ n(t)] ≤ C(1 + v̂n)eCt, for all n ∈ N, t ∈ [0, T ]. (3.64)

Using this moment bound and a similar bound on the increments of V̂ n we have that {V̂ n}

is a tight sequence of C([0, T ] ∶ Rd−1)-valued random variables. Now the tightness of {mn}

58



as a sequence of M([0, T ] ×G)-valued random variables is immediate since the first marginal

is the Lebesgue measure (i.e. mn([0, t) × G) = t for all t ∈ [0, T ]), {V̂ n} is tight, and Λ is

compact. Also, the tightness of {Ŵn} as a sequence of C([0, T ] ∶ Rd−1)-valued random variables

is immediate since Ŵn is a standard Brownian motion for each n. Therefore {V̂ n, Ŵn,mn} is

a tight collection of C([0, T ] ∶ R2(d−1)) ×M([0, T ] ×G)-valued random variables.

Suppose {V̂ n, Ŵn,mn} converges along a subsequence (also denoted {n}) to a process,

{V̂ , Ŵ ,m}. Let (Ω′,F ′,P′) be the probability space on which the limit processes are defined.

Then Ŵ is a P′-Brownian motion and using the continuity of η̂, β̂ and α1/2 we see that (V̂ , Ŵ ,m)

satisfy

V̂ (t) = v̂0 + ∫
t

0
η̂(s, u)dm(ds dv du) + ∫

t

0
β̂(s)V̂ (s)ds + ∫

t

0
α1/2(s)dŴ (s)

P′-almost surely.

Define F ′t = σ{V̂s, Ŵs,m([0, s] ×A) ∶ 0 ≤ s ≤ t,A ∈ B(G)}. It is easy to check that {Ŵt} is

a {F ′t}-martingale. Indeed, let k ∈ N and H ∶ (R2(d−1) ×R)k → R be a bounded and continuous

function. Define Zt ≐ (V̂t, Ŵt,m(t, f)) and Znt ≐ (V̂ n
t , Ŵ

n
t ,m

n(t, f)), where f ∈ Cb(G) and

ν(t, f) = ∫ t0 f(v, u)ν(ds dv du) for ν =m,mn. Then for s ≤ t ≤ T and 0 ≤ t1 ≤ . . . tk ≤ s,

E′H(Zt1 , . . . ,Ztk)[Ŵt − Ŵs] = lim
n→∞

EnH(Znt1 , . . . ,Z
n
tk
)[Ŵn

t − Ŵn
s ] = 0,

where the second equality uses the fact that Ŵn is a {Fnt }-Brownian motion and Znt is {Fnt }-

adapted. This proves that (Ŵt) is an {F ′t}-martingale.

Note that m,mn can be disintegrated as

m(ds dv du) =ms(dv du)ds, mn(ds dv du) =mn
s (dv du)ds.

We will now argue that for all t ∈ [0, T ],

∫
t

0
∫
G
ums(dv du)ds = ∫

t

0
ĝ∗(s, V̂ (s))ds a.s. P′. (3.65)
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Note that (3.65), the linearity of η̂ in u, together with the weak-uniqueness of solutions to (3.60)

(which was established in Section 3.4) completes the proof of the theorem.

Note that for any f ∈ Cb(Rd−1) we have ∫ t0 ∫G f(v)mn
s (dv du)ds = ∫

t
0 f(V̂ n(s))ds. Since

(mn, V̂ n) ⇒ (m, V̂ ), we have for any such f

∫
t

0
∫
G
f(v)ms(dv du)ds = ∫

t

0
f(V̂ (s))ds for all t ∈ [0, T ], a.s. P′.

Denote by m̂i
t, i = 1,2 the marginal of mt on its i-th coordinate. Then the above display can

be rewritten as

∫
t

0
∫
Rd−1

f(v)m̂1
s(dv)ds = ∫

t

0
f(V̂ (s))ds, for t ∈ [0, T ], a.s. P′, for every f ∈ Cb(Rd−1 ∶ R).

This shows that

m̂1
t (dv) = δV̂ (t)(dv), [λ⊗ P′] a.e. (t,w′) (3.66)

where λ is the Lebesgue measure on [0, T ].

Recall the definition of An from Lemma 3 and % from (3.61). Define Bn ≐ ∩∞m=nAn. Then

%(Bn) ≥ 1 − 1

2n
for all n ≥ 1

and ĝ∗(s, v) = ĝn(s, v) = ĝn+1(s, v) = . . . for all (s, v) ∈ Bn. Since {v̂n} is bounded we have from

the moment bound in (3.64) that for every ε > 0, there is a compact F ⊂ Rd−1 such that

sup
n∈N

sup
0≤t≤T

Pn[V̂ n(t) ∈ F c] ≤ ε
2
. (3.67)

Note that this says in particular that {v̂n} ⊂ F . For t ∈ [0, T ] and v ∈ Rd−1, let p(t, v, z) be the

transition probability density of the Gaussian random variable V̂ v
0 (t) given as the solution of

the SDE

V̂ v
0 (t) = v + ∫

t

0
β̂(s)V̂ v

0 ds + ∫
t

0
α1/2(s)dŴ (s).
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It is easy to see that there exists a function Ψ ∶ [0, T ] → R+ and κ ∈ (0,∞) such that

sup
v,z∈F

p(t, v, z) ≤ Ψ(t), t ∈ [0, T ], and ∫
T

0
e−κ/tΨ(t)dt < ∞. (3.68)

Using the boundedness of η̂ and α−1/2, Girsanov’s theorem, and the Cauchy-Schwarz

inequality we see that there exists a θ ∈ (0,∞) such that for any bounded measurable

f ∶ [0, T ] ×Rd−1 → R and t ∈ [0, T ]

En ∣∫
t

0
f(s, V̂ n(s))ds∣ ≤ θ [E′ (∫

t

0
f(s, V̂ vn

0 (s))2ds)]
1/2
. (3.69)

Since e−κ/sψ(s)1F (v)dvds is a finite measure on [0, T ]×Rd−1 that is absolutely continuous with

respect to %, we have for any ε > 0 a n0 ∈ N such that

∫
T

0
∫
Rd−1

1Bcn0
(s, v)e−κ/s1F (v)Ψ(s)dvds < ε2

4θ2
. (3.70)

Together with (3.68), (3.70) implies

E′∫
T

0
e−κ/s1Bcn0 (s, V̂

v
0 (s))1F (V̂ v

0 (s))ds < ε2

4θ2
(3.71)

for all v ∈ F . From (3.67), (3.69), and (3.71) we have

En∫
T

0
e−κ/2s1Bcn0 (s, V̂

n(s))ds < En∫
T

0
1F (V̂ n(s))e−κ/2s1Bcn0 (s, V̂

n(s))ds + ε
2

≤ θ [E′ (∫
T

0
1F (V̂ vn

0 (s))e−κ/s1Bcn0 (s, V̂
vn

0 (s))ds)]
1/2

+ ε
2

≤ ε.

(3.72)
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Denote by m̂n,i
t the marginal of mn

t on the i-th coordinate for i = 1,2. Then, for any n ≥ n0, t ∈

[0, T ], f ∈ C(Λ), and h ∈ C([0, T ])

∫
t

0
∫
G
e−κ/2sh(s)f(u)mn

s (dv du)ds = ∫
t

0
∫
Rd−1

e−κ/2sh(s)f(ĝn(s, v))m̂n,1
s (dv)ds

= ∫
t

0
∫
Rd−1

1Bn0 (s, v)e
−κ/2sh(s)f(ĝn0(s, v))m̂n,1

s (dv)ds

+ ∫
t

0
∫
Rd−1

1Bcn0
(s, v)e−κ/2sh(s)f(ĝn(s, v))m̂n,1

s (dv)ds,

where the second equality follows on noting that for (s, v) ∈ Bn0 , ĝn(s, v) = ĝn0(s, v) when

n ≥ n0. Thus

∣∫
t

0
∫
G
e−κ/2sh(s)f(u)mn

s (dv du)ds − ∫
t

0
∫
Rd−1

e−κ/2sh(s)f(ĝn0(s, v))m̂n,1
s (dv)ds∣

≤ 2∥f∥∞∥h∥∞∫
t

0
∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂n,1

s (dv)ds.
(3.73)

It follows from (3.72) that the expectation of (3.73) is bounded above by 2∥f∥∞∥h∥∞ε and thus,

letting n→∞

E′ ∣∫
t

0
∫
G
e−κ/2sh(s)f(u)ms(dv du)ds − ∫

t

0
∫
Rd−1

e−κ/2sh(s)f(ĝn0(s, v))m̂1
s(dv)ds∣

≤ 2∥f∥∞∥h∥∞ε.

Therefore, since ĝn0(s, v) = ĝ∗(s, v) on Bn0

E′ ∣∫
t

0
∫
G
e−κ/2sh(s)f(u)ms(dv du)ds − ∫

t

0
∫
Rd−1

e−κ/2sh(s)f(ĝ∗(s, v))m̂1
s(dv)ds∣

≤ 2∥f∥∞∥h∥∞ [ε +E′∫
t

0
∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂1

s(dv)ds] .

Since Bc
n0

is open, it then follows from (3.72)

E′∫
t

0
∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂1

s(dv)ds ≤ lim inf
n→∞

En∫
t

0
∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂n,1

s (dv)ds ≤ ε.
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Letting ε→ 0 we have for all t ∈ [0, T ], h ∈ C([0, T ]), f ∈ C(Λ) that

∫
t

0
∫
G
e−κ/2sh(s)f(u)ms(dv du)ds = ∫

t

0
∫
Rd−1

e−κ/2sf(ĝ∗(s, v))m̂1
s(dv)ds a.e. P′.

Combined with (3.66) this implies that

ms(dv du) = δV̂ (s)(dv)δĝ∗(s,V̂ (s))(du), [λ × P′] a.e. (s,w′).

This proves (3.65) and, as argued previously, completes the proof of the theorem.

3.6 Example

The following class of models is studied in (Antunes et al., 2008). Consider a system

consisting of n identical servers (nodes) of capacity C ∈ N and K different classes of jobs each

with its own capacity requirement Ak ∈ N, k ∈ {1, . . . ,K}. External jobs of type k arrive at

each server with rate λk. A job of type k remains at a given node for an exponential holding

time with mean γ−1
k before attempting to move to another randomly chosen node. If the server

has available capacity it accepts the job, otherwise the job is rejected and exits the system. If

not rejected first, a type k job remains in the system for an exponential amount of time with

mean τ−1
k before leaving the system. We make the usual assumptions of mutual independence,

in particular a.s. at most one job may arrive, switch nodes, or exit the system at a given time,

but note that such an event may correspond to the change in state of multiple servers.

For the discussion below, for simplicity, we consider the case where there are only two classes

of jobs. In the notation of the current paper, the state process Xn(t) = {X1
n(t), . . . ,Xn

n(t)} is

the pure jump Markov process where Xi
n(t) takes values in

X = {(j, i) ∈ N0 ×N0 ∶ jA1 + iA2 ≤ C}.

Let, as before, d = ∣X∣, S = P(X), and Sn = P(X) ∩ 1
nN

d. The empirical measure process,

µn(t) ∈ Sn, is a d-dimensional pure jump Markov process where µj,in (t) = 1
n ∑

n
k=1 1{Xk

n(t)}((j, i))

represents the proportion of nodes with exactly j and i jobs of type 1 and 2, respectively. We

suppose that µn(0) = xn a.s. for some deterministic xn ∈ Sn such that xn → x0 as n → ∞ and
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xj,i0 > 0 for all (j, i) ∈ X. Also suppose that vn ≐
√
n(xn − x0) → v0 as n→∞. The rate function

Γ̄kn associated with this system is described in (Antunes et al., 2008) but we present it below

in our notation for completeness. Jobs can enter or leave the system or switch nodes which

means that there are three transition types for each class of job. Thus the set K of different

jump types can be represented as K = {Ei, Li,Ci ∶ i = 1,2} where nEi = nLi = 1 and nCi = 2

for i = 1,2. Let for (j, i) ∈ X, êj,i = (δ(j,i),(k,`))(k,`)∈X be the d-dimensional vector which is 1 for

entry (j, i) and 0 for all other entries. The sets corresponding to the possible jumps of each

type are

∆E1 = {(êj,i, êj+1,i) ∶ (j, i) ∈ SE
1}, ∆E2 = {(êj,i, êj,i+1) ∶ (j, i) ∈ SE

2}

∆L1 = {(êj,i, êj−1,i) ∶ (j, i) ∈ SL
1}, ∆L2 = {(êj,i, êj,i−1) ∶ (j, i) ∈ SL

2}

∆C1 =∆L1 ∪ {(êj,i + êj′,i′ , êj−1,i + êj′+1,i′) ∶ (j, i, j′, i′) ∈ SC
1}

∆C2 =∆L2 ∪ {(êj,i + êj′,i′ , êj,i−1 + êj′,i′+1) ∶ (j, i, j′, i′) ∈ SC
2}.

where SE
1 = {(j, i) ∈ X ∶ (j + 1, i) ∈ X} and SE

2
, SL

1
, SL

2
, SC

1
, SC

2
are defined similarly.

Let r ∈ Sn. The rate of jumps corresponding to a job arriving at a node with j and i jobs of

classes 1 and 2, respectively, is equal to the number of nodes in this configuration multiplied by

the rate at which jobs enter the system. Namely, the rate Γ̄ kn (r, ν) when ν = (êj,i, êj+1,i) ∈∆k and

k = E1 is nrj,i ×λ1, and similarly Γ̄ kn (r, ν) = nrj,i ×λ2, ν = (êj,i, êj,i+1) ∈∆k, k = E2. The rate of

departures is given similarly but, since all jobs are processed simultaneously, we need to multiply

the processing rate by the number of jobs at a given node. Specifically, Γ̄ kn (r, ν) = j×nrj,i×τ1 for

ν = (êj,i, êj−1,i) ∈∆k, k = L1 and Γ̄ kn (r, ν) = i × nrj,i × τ2 for ν = (êj,i, êj,i−1) ∈∆k, k = L2. When

jobs attempt to change nodes there are two possible outcomes (successful and unsuccessful

switching) which we will consider separately. The case in which a job successfully switches

nodes is analogous to a job leaving the system but rates are multiplied by the proportion

of nodes in the configuration to which the job is switching. Thus for a job switching from

a node with j and i jobs to a node with j′ and i′ jobs (of types 1 and 2, respectively) we

have Γ̄ kn (r, ν) = j × nrj,i × γ1 × nrj
′,i′

n−1 where ν = (êj,i + êj′,i′ , êj−1,i + êj′+1,i′) ∈ ∆k, k = C1 and

Γ̄ kn (r, ν) = i × nrj,i × γ2 × nrj
′,i′

n−1 for ν = (êj,i + êj′,i′ , êj,i−1 + êj′,i′+1) ∈ ∆k, k = C2. Next consider

unsuccessful switches. Recall that if a job attempts to switch to a node at which there is not
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enough room, then the job is rejected from the system. The rate at which such jumps occur

is, again, analogous to the previous scenario except we instead multiply by the proportion of

nodes without enough room for the job attempting to move. Let rCi be the proportion of

nodes without enough room to accommodate a job of type i (i.e. nodes in states (i′, j′) with

(j′A1 + i′A2 +Ai > C)). Then Γ̄ kn (r, ν) = j ×nrj,i × γ1 × nrC1
n−1 for ν = (êj,i, êj−1,i) ∈∆k, k = C1 and

Γ̄ kn (r, ν) = i × nrj,i × γ2 × nrC2
n−1 for ν = (êj,i, êj,i−1) ∈∆k, k = C2.

With the above definition of Γ̄ kn , the generator of {µn(t)} is as given by (3.2). Γ k is defined

to be the limit of Γ̄ kn which is simply given as

Γ k(r, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j × rj,i × γ1 × rj
′,i′ for ν = (êj,i + êj′,i′ , êj−1,i + êj′+1,i′) ∈∆k, k = C1

i × rj,i × γ2 × rj
′,i′ for ν = (êj,i + êj′,i′ , êj,i−1 + êj′,i′+1) ∈∆k, k = C2

j × rj,i × γ1 × rC1 for ν = (êj,i, êj−1,i) ∈∆k, k = C1

i × rj,i × γ2 × rC2 for ν = (êj,i, êj,i−1) ∈∆k, k = C2

Γ̄ k1 (r, ν) otherwise

(3.74)

for r ∈ S. Clearly Γ k(⋅, ν) is Lipschitz for all k ∈ K, ν ∈ ∆k and (3.3) is satisfied so Condition

3.1.1 holds in this example. From Proposition 1 we then have that µn(t) → µ(t) uniformly on

[0, T ] where µ̇(t) = F (µ(t)) and F is as in (3.4), with Γ k as defined above.

Now suppose that the arrival rates λi, i = 1,2 can be modulated by exercising an additive

control with values in 1√
n
[−D,D], D < ∞, i = 1,2. One can also consider control of any of the

other parameters {τi, γi ∶ i = 1,2} but for simplicity we will only consider the control of the

arrival rates. Let

Λ = {u ∈ R`1 × {0}`−`1 ∣uj = u∗1 ∈ [−D,D], j = 1, . . . , ∣∆E1 ∣,

uk = u∗2 ∈ [−D,D], k = ∣∆E1 ∣ + 1, . . . , ∣∆E2 ∣}
(3.75)

where ` = ∑2
i=1 (∣∆Ei ∣ + ∣∆Li ∣ + ∣∆Ci ∣) and `1 = ∑2

i=1 ∣∆Ei ∣. The controls will take values in

Λn = 1√
n

Λ . For a u ∈ Λ or Λn let u∗1 refer to the value of the first ∣∆E1 ∣ coordinates and u∗2
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refer to the value of the next ∣∆E2 ∣ coordinates. Define the controlled rate function as

Γ kn (r, u, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

nrj,i × (λ1 + u∗1) for k = E1, ν = (êj,i, êj+1,i) ∈∆E1

nrj,i × (λ2 + u∗2) for k = E2, ν = (êj,i, êj,i+1) ∈∆E2

Γ̄ kn (r, ν) otherwise,

(3.76)

where u ∈ Λn. Since controls in Λn are O( 1√
n
), Condition 3.1.2 is easily seen to be satisfied for

the example.

From our assumption that xj,i0 > 0 for all (j, i) ∈ X, it follows that µj,it > 0 for all (j, i) ∈ X

and 0 ≤ t ≤ T . Using this and the form of Γ k given in (3.74), it is then easy to check that

Condition 3.1.5 is satisfied. Similarly our assumption on the initial conditions in Theorem 2 is

satisfied as well. Recalling the definitions of Γ kn and Γ k in (3.76) and (3.74), respectively, we

see that there exists a κ ∈ (0,∞) such that for all y ∈ B(2√n), u ∈ Λn, ξ ∈ Sn(y)

√
n( 1

n
Γ kn ( 1√

n
y + ξ, u, ν) − Γ k (ξ, ν)) ≤ κ(1 + ∥y∥)

and therefore Condition 3.1.3 is satisfied. For k ∈ K, ν ∈∆k define hk1(ν, ⋅) ∶ S → R as

hk1(ν, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rj,i for k = E1, ν = (êj,i, êj+1,i) ∈∆E1

rj,i for k = E2, ν = (êj,i, êj,i+1) ∈∆E2

0 otherwise
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and hk2(ν, ⋅) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 × ej,i for k = E1, ν = (êj,i, êj+1,i) ∈∆E1

λ2 × ej,i for k = E2, ν = (êj,i, êj,i+1) ∈∆E2

j × µ1 × ej,i for k = L1, ν = (êj,i, êj−1,i) ∈∆L1

i × µ2 × ej,i for k = L2, ν = (êj,i, êj,i−1) ∈∆L2

j × γ1 × (rj,i × ej′,i′ + rj
′,i′ × ej,i) for ν = (êj,i + êj′,i′ , êj−1,i + êj′+1,i′) ∈∆k, k = C1

i × γ2 × (rj,i × ej′,i′ + rj
′,i′ × ej,i) for ν = (êj,i + êj′,i′ , êj,i−1 + êj′,i′+1) ∈∆k, k = C2

j × γ1 × (rj,i × e1
C + rC1 × ej,i) for ν = (êj,i, êj−1,i) ∈∆k, k = C1

i × γ2 × (rj,i × e2
C + rC2 × ej,i) for ν = (êj,i, êj,i−1) ∈∆k, k = C2.

Defining Hk, βnk as in Condition 3.1.4 with hk1 and hk2 we see that (3.14) is satisfied and thus

Condition 3.1.4 holds for the example.

We now introduce the following finite time horizon cost

Jn(Un, vn) = E∫
T

0
(∥Vn(t)∥2 + α∥

√
nUn(t)∥2)dt, Un ∈ An, (3.77)

where α ∈ (0,∞). The cost function penalizes both the deviation from the nominal behavior

and exercising rate control. Note that this cost function satisfies the condition introduced below

(3.10). We have thus verified all the conditions needed for Theorem 2 and from this result it

follows that a near optimal continuous feedback control for the diffusion control problem can be

used to construct an asymptotically optimal sequence of control policies for this system. The

diffusion control problem here takes the same form as (3.20) with η and β as in (3.15) and σ

as in (3.18) with cost given as

J(U, v0) = E∫
T

0
(∥V (t)∥2 + α∥U(t)∥2)dt, U ∈ A(Ξ). (3.78)

This is the classical stochastic linear-quadratic regulator problem which has been well studied

(cf. (Fleming and Rishel, 1976)). Replacing [−D,D] with R in the definition of the control set
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in (3.75), the optimal control for the limit stochastic LQR is given in feedback form as follows

u∗(s, y) = −B′(s)K∗(s)V (s)

where B is defined in terms of {hk1, k ∈ K} via the relation η(t, u) = B(t)u and K∗ solves

an appropriate Riccati equation (see (Fleming and Rishel, 1976)). For implementing this

feedback control for the prelimit system we truncate u∗ suitably; such a modification, in

practice, has little to no effect for large n. We construct Ung as in Section 3.1.4, by taking

Ung (t) =
√
nu∗(t, Vn(t)).

We now present our numerical results. The above control policy was implemented (for

α = .01 and .001) on ntrials = 128 different realizations of the stochastic process with the following

parameters n = 10,000, T = 10,C = 6,A1 = 1,A2 = 1, λ1 = 1, λ2 = 1, τ1 = 1, τ2 = 1, γ1 = 1, γ2 = 1.

We also simulate 128 realizations of the corresponding uncontrolled system. Table 3.1 shows

the averaged cost over the 128 simulations for the controlled and uncontrolled systems. The

control policy based on the optimal feedback control for the stochastic LQR leads to a reduction

in cost of 12.7% for α = .01 and 15.5% for α = .001. The deviations from the nominal values

Table 3.1. Cost over 128 Simulations

Uncontrolled Controlled with α = .01 Controlled with α = .001

Deviation Cost 8.9556 8.1271 7.5649

Control Cost 0 .01 × 25.37 .001 × 256.8

Total Cost 8.9556 8.3809 7.8217

under the controlled and uncontrolled systems are computed by calculating the average,

1

ntrials

ntrials

∑
i=1
∫

T

0
∥Vn(s)∥2ds

for the two systems and the cost of exercising control is computed by the average,

α × 1

ntrials

ntrials

∑
i=1
∫

T

0
∥
√
nUn(t)∥2ds.

The deviations are smaller for the controlled system as expected. In general, one can achieve

higher reduction in such deviations by decreasing the parameter α in the cost function. In
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practice the tuning parameter α suitably balances the cost of deviating from the nominal values

and the cost for exercising control.

69



CHAPTER 4

Load Balancing Mechanisms in Cloud Storage Systems

In this chapter we are interested in developing a rigorous limit theory for a class of models

used for the analysis of load balancing schemes in large cloud storage networks. We consider a

system of n-serves storing a set of I(n) = c(nL) files using an MDS coding scheme with parameters

L and k. Namely, each file is broken down into L chunks with each chunk being 1
k -th the size of

the original file. In addition, any subset of k chunks is sufficient for reconstructing the original

file. Each server maintains its own FIFO queue and processes jobs at rate k. A stream of file

requests arrive in the system at rate nλ. Each file request chooses a file uniformly at random

and the files are distributed such that this request corresponds to the selection of L randomly

chosen servers. A centralized dispatcher then routes the file request into the k shortest queues

out of the L which are chosen. The evolution of the collection of queue lengths can be modeled

as a continuous time Markov chain. The transition rates in the system scale with n and so,

for large n, the state process of interest is jumping extremely quickly making a direct analysis

intractable. In order to provide model simplifications we consider the behavior of the system

as the number of queues approaches infinity. Under a suitable scaling we establish asymptotic

approximations in the form of ODE and SDE. These continuous processes provide a more

tractable means of analyzing the original system. For example, simulating the original system

can take quite a long time for large n since every event in the system much be accounted for and

such events are occurring extremely quickly. The limiting ODE and SDE can be discretized on

a much coarser scale via numerical ODE solvers and Euler discretizations leading to a massive

improvement in simulation time.

The starting point of our analysis is to consider, as the state descriptor, the empirical

measure of the n queue lengths rather than the individual values of the queue lengths. Thus

the state space for our system will be the space Pn(N0) of probability measures on N0 that

assign weights in 1
nN0 to sets in N0 rather than the space Rn+. With this formulation the state
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processes for all n-server systems can be regarded as taking values in a common space S ≐ P(N0)

(the space of probability measures on N0). It follows from our symmetry assumptions that the

state-evolution of the n-server system describes a pure-jump Markov process with values in

P(N0) and thus one can bring to bear the theory of weak convergence of Markov processes to

study scaling limits as n becomes large. In particular, in Theorem 10 we prove a law of large

numbers for the empirical measure process (πn(t))0≤t≤T as n→∞. We show that πn converges

to a deterministic function π in D([0, T ] ∶ S), where D([0, T ] ∶ S) is the space of functions from

[0, T ] to S that are right continuous and have left limits, equipped with the usual Skorohod

topology. We then show that the limiting ODE system the characterizes the limit π has a fixed

point π̄ which is stable. Namely, starting from an arbitrary initial condition, the solution to

the ODE converges to this fixed point as t → ∞. Instead of working with π̄, it will instead

be convenient to work with ū = (ūi)i∈N0 where ūi = ∑∞j=i π̄j for each i ∈ N0. Intuitively, ūi

represents the proportion of queues with length at least i. We also show that the queue length

distribution given by the fixed point has tails which decay super-exponentially extending this

well known property of the supermarket model (i.e. k = 1) to a general k < L. We give explicit

upper and lower bounds (cf. Theorem 11) on these tails which are sharp in the sense that they

coincide when k = 1. An important interchange of limits property is then established. In (Li

et al., 2016), it has been shown that queue length process Qn for the n-server system is positive

recurrent and, thus, has a unique invariant probability measure. This then implies that the

occupancy measure process has a unique invariant distribution. We show that this invariant

measure converges to δū in probability, as n → ∞. Roughly speaking, this result says that the

limits n →∞ and t →∞ can be interchanged and, in particular, the fixed point of the ODE is

a good approximation for the steady state behavior of the occupancy process for large n.

Next we consider the fluctuation process Xn ≐ √
n(πn − π). This process can be regarded

as taking values in the space of signed measures on N0, however for an asymptotic analysis it is

convenient to view it as taking values in the Hilbert space of square summable real sequences,

`2. The study of the asymptotics of these fluctuations is the subject of Theorem 14 which shows

that Xn ≐ √
n(πn − π) converges in D([0, T ] ∶ `2) to a `2-valued diffusion process.

A basic assumption in our analysis of the fluctuations around the law of large number

limit (see statement of Theorem 14) is a uniform (in n) bound on the second moment of the

71



empirical measure at time 0. This condition is not very stringent as in practice one may

consider systems starting from empty or with finitely many jobs (independent of n). We argue

that these integrability properties at time 0 propagate through to any finite future time T .

Tightness of the scaled fluctuation processes Xn which is shown by establishing, uniform in n,

second moment bounds (on Xn) and by employing criteria for tightness of Hilbert space-valued

semimartingales (cf. (Joffe and Métivier, 1986), (Métivier, 1982)), relies on these integrability

properties. Another ingredient in the proof of tightness is a suitable Lipschitz property of the

map F introduced in (4.4) that enables the use of a Gronwall argument. For this argument one

needs a Lipschitz estimate in the `2 norm, however, it is not clear that F , as a map from `2 to

`2, is Lipschitz. We instead restrict attention to a smaller space

VM ≐ {r ∈ `2 ∶ ri ≥ 0,
∞
∑
i=0

ri = 1,
∞
∑
i=0

iri ≤M}

and argue that for each M , the map F is Lipschitz from VM to `2. This ‘local’ Lipschitz

property plays an important role in the proof of Proposition 6.

For characterization of limit points in the proof of the central limit theorem, one needs to

argue that the associated stochastic differential equation (SDE) in `2 (see (4.14)) has a unique

weak solution in an appropriate class of processes. It turns out that arguing this uniqueness

among adapted processes with paths in C([0, T ] ∶ `2) (the space of continuous functions from

[0, T ] to `2) is not straightforward due to a lack of suitable regularity of the function G intro-

duced in (4.19). In particular, once more, the Lipschitz property of the map x↦ G(x,π) (for a

fixed π ∈ P(N0)) from `2 to itself is not immediate. The key observation here is that this map

is Lipschitz when restricted to the space

˜̀
2 ≐ {x ∈ `2 ∶

∞
∑
j=0

j2x2
j < ∞,

∞
∑
j=0

xj = 0}.

This observation, together with the property that the limit points X of Xn = √
n(πn − π).

satisfy X(t) ∈ ˜̀
2 for all t ≥ 0 almost surely, is key to the characterization of the limit points as

the unique solution of the SDE (4.14) in a suitable class (see Proposition 4).
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The chapter is organized as follows. In Section 4.1 we give a precise mathematical formu-

lation of our model and a statement of our main results. Specifically, Theorem 10 provides

the convergence in probability of the empirical measure process in D([0, T ] ∶ S) to the unique

solution of the ODE defined in (4.7). The fixed point of the limiting ODE system is given in

(4.12). Theorem 11 gives explicit upper and lower bounds on the rate of decay for the tail of

the queue length distribution determined by (4.12). In Theorem 12 we show that (4.12) is, in

fact, a stable fixed point of the ODE (3.5) and Theorem 13 presents the interchange of limits

property discussed earlier. In Theorem 14, we give the main diffusion approximation result.

This result says that the sequence of centered and scaled processes Xn, defined in (4.13), con-

verges to the unique solution (in a suitable class) of the `2-valued SDE, driven by a cylindrical

Brownian motion, given in (4.14). In Section 4.1.1 we record the corollaries of these results for

the special setting of power-of-d schemes. The remainder of the chapter is devoted to proofs

of the above results. In Section 4.2 we give a convenient representation of the state processes

through a countable number of time-changed unit rate Poisson processes. Such Poisson rep-

resentations have been used extensively (cf. (Kurtz, 1980; Kang et al., 2014; Anderson and

Kurtz, 2015)) in the study of diffusion approximations for pure jump processes. Using this we

obtain a semimartingale decomposition (see (4.23)) that is central to our analysis. Section 4.3

is devoted to the study of asymptotic behavior under the LLN scaling. In Section 4.3.1 we

prove tightness of the sequence of state processes {πn}n∈N (see Proposition 5) and the proof of

Theorem 10 is completed in Section 4.3.2. In Section 4.3.3 we prove a lemma which will be

needed in the proof of Theorems 12 and 13. Proofs of Theorems 11, 12, and 13 are then given in

Sections 4.3.4, 4.3.5, and 4.3.6, respectively. Section 4.4 proves Theorem 14. In Section 4.4.1 we

prove the propagation of integrability properties that was discussed earlier and in Section 4.4.2

(see Proposition 6) we prove the key tightness property for the sequence of processes {Xn}n∈N

which relies on the Lipschitz property of F , in the `2 norm, on VM (Lemma 14). Theorem

14 is then proved in Section 4.4.3. Finally, in Section 4.5, we present some numerical results.

In particular, we use our results to give numerical confidence intervals for several performance

measures of interest and compare the results to those obtained from a direct simulation of the

corresponding n-server systems.
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4.1 Model Description and Main Result

We consider a system with n servers each with its own infinite capacity queue. In all, there

are I(n) equally sized files stored over the n servers. Each file is stored in equally sized pieces at

L servers such that any k pieces can reconstruct the original file. The files are distributed such

that each combination of L servers has exactly c files. This, in particular, implies I(n) = c(nL).

Jobs arrive from outside according to a Poisson process with rate nλ and request one of the

I(n) files uniformly at random. Such a request corresponds to selection of one of the (n
L
) sets of

L servers, uniformly at random, which is the set of servers containing the pieces of the requested

file. The job is then routed to the k shortest queues among this set of L servers. Each server

processes queued jobs according to the first-in-first-out (FIFO) discipline. Processing times at

each server are mutually independent and exponentially distribution with mean k−1.

Let Qn(t) = {Qni (t)}ni=1 where Qni (t) represents the length of the i-th queue at time t and

let πn(t) = {πni (t)}i∈N0 where πni (t) represents the proportion of queues with length exactly i

at time t. This can explicitly be written as

πni (t) =
1

n

n

∑
j=1

1{Qnj (t)=i}. (4.1)

It will be convenient to work with the process un(t) = {uni }i∈N0 where uni (t) represents the

proportion of queues with length at least i. Namely, uni (t) = ∑∞j=i πnj (t). We will assume for

simplicity that Qn(0) = qn is nonrandom and thus πn(0) and un(0) are nonrandom as well.

We identify P(N0) with the infinite dimensional simplex S = {s ∈ R∞
+ ∣∑∞i=0 si = 1} and let

Sn = 1
nN

∞
0 ∩S. The spaces S and Sn can be identified with subsets of Ū = {u ∈ R∞

+ ∣1 = u0 ≥ u1 ≥

. . . ≥ 0} and Ūn = {u ∈ Ū ∣ui = ri/n, ri ∈ Z}, respectively, each endowed with the product metric,

ρ(x, y) ≐
∞
∑
j=1

∣xj − yj ∣
2j

.

The identification map ι ∶ S → Ū is defined as ι(p)j ≐ ∑∞k=j pk, j ∈ N0, p ∈ S. Note that for

pn, p ∈ S, d0(pn, p) → 0 if and only if ρ(ι(pn), ι(p)) → 0. Additionally, note that πn(t) ∈ Sn

and un(t) ∈ Ūn for all t ∈ [0, T ]. Let Σ = {` = (`i)Li=1 ∈ NL0 ∣`1 ≤ `2 ≤ ⋯ ≤ `L} and for ` ∈ Σ

define ρi(`) ≐ ∑Lj=1 1{`j=i}, i ∈ N0. Roughly speaking, Σ will represent the set of possible states
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for L selected queues arranged by non-decreasing queue length. Note that each file will be

stored at L servers and that at any given time t the queue lengths of these L servers (up to a

reordering) will correspond to an element in Σ. We will refer to the elements of Σ as “queue

length configurations”. Given a configuration ` ∈ Σ, ρi(`) gives the number of queues of length

i (among the L selected). From the above description of the system it follows that the empirical

measure process, πn(t), is a continuous time Markov chain with state space Sn and generator

Lnf(r) = nλ

(n
L
) ∑`∈Σ

(
∞
∏
i=0

( nri
ρi(`)

)) [f (r + 1

n
∆`) − f(r)]

+ k
∞
∑
i=1

nri [f (r + 1

n
(ei−1 − ei)) − f(r)] ,

(4.2)

for f ∶ Sn → R where

∆` ≐
k

∑
i=1

e`i+1 −
k

∑
i=1

e`i (4.3)

and for y ∈ N0, ey ∈ `2 is a vector with 1 at the y-th coordinate and 0 elsewhere. Here we use the

standard conventions that 00 = (0
0
) = 0! = 1, and (a

b
) = 0 when a < b. The above generator can

be understood as follows. A typical term in the second expression corresponds to a jump as a

result of a server, with exactly i jobs queued, completing a job. The term in the square brackets

gives the change in value of f as a result of such a jump and the prefactor knri corresponds

to the fact that servers process jobs at rate k and there are in all nri queues (prior to the

jump) with exactly i jobs. The first expression in (4.2) corresponds to a jump resulting from

an arrival of a job to the system. Typically, such an arrival makes a request for L servers with

queue length configuration `1 ≤ `2 ≤ ⋯ ≤ `L and results in the jump 1
n∆`. The sum in (4.3) only

goes up to k (instead of L) since only the smallest k queues are affected by such a jump. Since

prior to the jump, there are nri queues with exactly i jobs, the overall rate associated with the

configuration ` = {`1 ≤ `2 ≤ ⋯ ≤ `L} ∈ Σ equals

nλ

(n
L
)
(
∞
∏
i=0

( nri
ρi(`)

)) .
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In our setting the first entry in an element of `2 will typically correspond to the number of

empty queues and thus we refer to it as the “0-th” coordinate and any r ∈ `2 will correspond

to a vector of the form (r0, r1, . . .). For notational convenience, for r ∈ `2 we set r−1 ≐ 0.

The main results in this chapter provide scaling limits for πn. We first present the law of

large numbers which describes the nominal state of the system for large n. Define, for r ∈ `1,

F (r) ≐ λL!
∞
∑
j=0

ζ̄δ(j, r)ej + k
∞
∑
j=0

[rj+1 − rj]ej + r0e0 (4.4)

where

ζ̄δ(j, r) ≐ ζ̄(j − 1, r) − ζ̄(j, r)

and, adopting the convention that ∑ai=b xi = 0 for a < b,

ζ̄(j, r) ≐
k−1

∑
i1=0

(∑j−1
m=0 rm)

i1

i1!

L−i1
∑
i2=1

[i2 ∧ (k − i1)]
(rj)i2
i2!

(∑∞m=j+1 rm)L−i1−i2

(L − i1 − i2)!
. (4.5)

For j ≥ 0, the quantities k[rj+1 − rj] in (4.4) roughly represent the rate at which the j-th

coordinate of the state changes (in the limit) as a result of job-completions while the quantity

λL!(ζ̄(j − 1, r) − ζ̄(j, r)) represents a similar quantity as a result of job-arrivals. The various

terms in (4.5) can be interpreted as follows. An arrival to a queue with j jobs implies that a

queue length configuration vector ` = {`1 ≤ `2 ≤ ⋯ ≤ `L} was selected which has the property

that at least one of the k smallest `i’s equals j, or equivalently, exactly i1 (i1 = 0,1, . . . , k−1) of

the smallest L selected are less than j, i2 (i2 = 1, . . . L− i1) of these are equal to j, and L− i1− i2

are greater than j. The three ratios in (4.5) are contributions from these three types of queues.

The term [i2 ∧ (k − i1)] is from the fact that only the smallest k of the L queues are affected.

Also observe that for some cζ ∈ (0,∞)

ζ̄(j, r) ≤ cζrj for all j ∈ N0 and r = (rj)∞j=0 ∈ S. (4.6)

Thus the infinite sum in (4.4) is well defined since ∑∞j=0 rj = 1 and consequently F is a well

defined map from S to `1. A similar estimate shows that F is a well defined map from `1 to `1

and ∑∞j=0 Fj(r) = 0 for all r ∈ `1.

76



Consider the system of ODEs

π̇(t) = F (π(t)), π(0) = π0 (4.7)

where F is defined in (4.4) and π0 ∈ S. The solution of the equation is a continuous map

π ∶ [0, T ] → S such that

π(t) = π0 + ∫
t

0
F (π(s))ds, t ∈ [0, T ] (4.8)

where the integral on the right side is the classical Bochner integral which is well defined since,

from (4.4) and (4.6),

sup
0≤s≤T

∥F (π(s))∥1 ≤ sup
r∈S

∥F (r)∥1 < ∞. (4.9)

Equation (4.7) will characterize the law of large number limit of πn.

The following result on the wellposedness of (4.7) will be shown in Section 4.3.2.

Proposition 3. Let π0 ∈ S. Then there exists a π ∈ C([0, T ] ∶ S) that solves (4.7). Furthermore,

if π, π̃ are two elements of C([0, T ] ∶ S) solving (4.7) with π(0) = π̃(0) = π0, then π = π̃.

The next theorem gives a law of large numbers for the sequence {πn}n∈N. Recall we take

πn(0) to be nonrandom.

Theorem 10. Suppose that πn(0) → π0, in S, as n → ∞. Then πn → π, in probability, in

D([0, T ] ∶ S) where π is the unique solution of (4.7) in C([0, T ] ∶ S).

Proof of Theorem 10 will be given in Section 4.3.2.

We now consider the long-time behavior of πn. Following (Li et al., 2016), let f ≡ f (L,k) ∶

[0,1] → R be defined as

f(x) ≐
k

∑
i=1

( L

L − k + i)(
L − k + i − 2

i − 1
)(−1)i−1xL−k+i.

The following lemma gives a representation for ζ̄ in terms of f .

Lemma 4. Fix r ∈ S and let u = ι(r), i.e. um = ∑∞i=m ri, m ∈ N0. Then, for j ∈ N0

L!ζ̄(j, r) = f(uj) − f(uj+1). (4.10)
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Proof of this lemma will be give in Section 4.3.3. It follows from Lemma 4 and Theorem

10 that the law of large number limit of un solves the following ODE,

u̇j(t) = λ[f(uj−1(t)) − f(uj(t))] − k[uj(t) − uj+1(t)], u(0) = g ∈ Ū . (4.11)

Consider the queue length distribution ū = (ūm)m∈N0 defined recursively through,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ūm+1 = λf(ūm)
k for m ∈ N0

ū0 = 1
(4.12)

We will see in Theorem 12 that ū is the unique fixed point of (4.11). The following result shows

that the vector (ūm)m∈N0 which, roughly speaking, represents the steady state distribution of

the queue lengths for large n, decays super-exponentially in m with rate determined by L and

k.

Theorem 11. Suppose ū satisfies (4.12). Then the following upper and lower bounds hold:

i) ūm ≤ λ
(L/k)m−1
L/k−1 for all m ∈ N0.

ii) ūm ≥ λ
(L−k+1)m−1

L−k for all m ∈ N0.

We note that the bounds are tight in the sense that when k = 1 the upper and lower bounds

agree. Proof of this theorem is given in Section 4.3.4. Since f is a polynomial it is easy to see

that f(x) = O(xL−k+1) as x → 0. Intuitively, it makes sense that the queue length distribution

should have an upper bound of the form λ
(L−k+1)m−1

L−k . Indeed, we can establish an upper bound

of this form for large m, however due to the higher order terms in f the bound will not hold

for small m. In fact, the threshold for a large enough m will depend on L and k. Furthermore,

the coefficient of xL−k+1 in f depends on L and k and, using its form, it can be shown that the

upper bound (for large m) will be of the form a
(L−k+1)m−1

L−k where a depends on L and k. Recall

that the routing scheme considered here corresponds to the well-known “Power-of-d” or super

market model when L = d and k = 1. The above result reduces to results in (Graham, 2000)

and (Vvedenskaya et al., 1996) in this case.
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Following (Vvedenskaya et al., 1996), define

vj(u) =
∞
∑
i=j
ui, u ∈ Ū .

Let U ≐ {u ∈ Ū ∣v1(u) < ∞} and note that this can be identified with the space of probability

measures on N0 with finite first moment. The space U is endowed with the topology inherited

from Ū . We now characterize the long time behavior of the law of large number limit. Note

that ū ∈ U . The next theorem shows that ū is the unique fixed point in U for the system defined

by (4.11) and this fixed point is, in fact, stable.

Theorem 12. Suppose λ < 1 and u is a solution to (4.11) with g ∈ U . Then

i) u(t) ∈ U for all t.

ii) For each j ∈ N0, limt→∞(uj(t) − ūj) = 0 and thus limt→∞ ρ(u(t), ū) = 0. In particular, ū

is the unique fixed point of (4.11) in U .

The proof of this theorem will be given in Section 4.3.5.

From Proposition 1 of (Li et al., 2016) the process Qn is positive recurrent and, thus, has

a unique invariant distribution L̃n ∈ P(Nn0). Note that L̃n can be identified with a measure

Ln ∈ P(Ūn) which is an invariant measure for un. Furthermore, for any t ≥ 0, un(t) can be

mapped to Q̃n(t) ∈ N0 which is equal (up to a relabeling) to Qn(t). Due to symmetry, Qn and

Q̃n must have the same invariant distribution. Therefore Ln is the unique invariant measure for

un. The following result shows that this invariant measure converges, as n → ∞, to the Dirac

measure concentrated at ū.

Theorem 13. Let Ln be the unique invariant distribution for the process un. Then Ln ⇒ δū.

Furthermore, we have

lim
n→∞

lim
t→∞

Eun(t) = ū.

Proof of Theorem 13 is given in Section 4.3.6.
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We now study the fluctuations of πn from its law of large number limit. Consider

Xn(t) =
√
n[πn(t) − π(t)], t ∈ [0, T ]. (4.13)

where πn is the state process introduced in (4.1) and π is the unique solution of (4.7) in

C([0, T ] ∶ S).

We will show that, under conditions, Xn converges in distribution in D([0, T ] ∶ `2) to a

stochastic process that can be characterized as the solution of a stochastic differential equation

(SDE) of the following form.

dX(t) = G(X(t), π(t))dt + a(t)dW (t), X(0) = x0. (4.14)

The equation is again interpreted in the integrated form,

X(t) = x0 + ∫
t

0
G(X(s), π(s))ds + ∫

t

0
a(s)dW (s), t ∈ [0, T ]. (4.15)

In the above equations, a is a measurable map from [0, T ] to the space of Hilbert-Schmidt

operators from `2 to `2 such that ∫ T0 ∥a(t)∥2
HSdt < ∞, where ∥ ⋅ ∥HS denotes the Hilbert-Schmidt

norm (see Appendix B), and W is a `2-cylindrical Brownian motion. Precise definitions are

given in Appendix C, but roughly speaking, W can be identified with an iid sequence {βi}i∈N0 of

standard real Brownian motions over [0, T ] and the stochastic integral ∫ t0 a(s)dW (s) represents

a `2-valued Gaussian martingale M(t) given as

Mi(t) =
∞
∑
j=0
∫

t

0
Aij(s)dβj(s), t ∈ [0, T ], i ∈ N0, (4.16)

where Aij(s) = ⟨ei, a(s)ej⟩2, s ∈ [0, T ], i, j ∈ N0. We refer the reader to Chapter 4 of (Da Prato

and Zabczyk, 2014) for construction and properties of the stochastic integral in (4.15). The

Hilbert-Schmidt and integrability property of a ensure that the infinite sum in (4.16) converges.

The operator a(t) is determined from the system parameters and the law of large number limit
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π in Theorem 10 as the symmetric square root of the following non-negative trace class operator

Φ(t) ≐ λL!∑
`∈Σ

∆`∆
T
`

∞
∏
i=0

πi(t)ρi(`)
ρi(`)!

+ k
∞
∑
i=1

(ei−1 − ei)(ei−1 − ei)Tπi(t). (4.17)

The trace class property of Φ(t) and the integrability of the squared Hilbert-Schmidt norm of

a(t) are shown in Lemma 17. Define the space ˜̀
2 ⊂ `2 as

˜̀
2 ≐ {x ∈ `2 ∶

∞
∑
j=0

j2x2
j < ∞,

∞
∑
j=0

xj = 0}. (4.18)

In (4.14) G is a map from ˜̀
2 × S to `2 defined as

Gi(x, r) ≐
∂

∂u
Fi(r + ux)∣

u=0
i ∈ N0, u ∈ R. (4.19)

One of the difficulties in the analysis is that G as a map from `2 × S to `2 is not well behaved

and we need to restrict attention to the smaller space ˜̀
2 × S in order to get unique solvability

of (4.14). Note that under the condition ∑∞j=0 j
2x2
j < ∞, the series ∑∞j=0 ∣xj ∣ < ∞ and thus the

series ∑∞j=0 xj is convergent. Additionally, the right side of (4.19) is well defined for every x ∈ ˜̀
2

and r ∈ S, since for each j ∈ N0 and r ∈ `1 with ∑∞i=0 ri = 1, r ↦ Fj(r) is a polynomial in

(r0, r1, . . . , rj+1) given as

Fj(r) = λL![ζ̄(j − 1, r) − ζ̄(j, r)] + k(rj+1 − rj)

where

ζ̄(j, r) =
k−1

∑
i1=0

(∑j−1
m=0 rm)

i1

i1!

L−i1
∑
i2=1

[i2 ∧ (k − i1)]
(rj)i2
i2!

(1 −∑jm=0 rm)
L−i1−i2

(L − i1 − i2)!
.

Also, from (4.4) and (4.5) it is easily checked that there is a c ∈ (0,∞) such that for all x ∈ ˜̀
2

and r ∈ S

∣Gi(x, r)∣ ≤ c [∣xi−1∣ + ∣xi∣ + ∣xi+1∣ + (ri−1 + ri)
∞
∑
m=0

∣xm∣] .

This in particular implies that G(x, r) ≐ (Gi(x, r))i∈N0 ∈ `1 ⊂ `2 for all (x, r) ∈ ˜̀
2 × S.

The following result shows the well-posedness of (4.15). The definition of an `2-cylindrical

Brownian motion is given in Section C.
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Proposition 4. There exists a filtered probability space (Ω,F ,P,{Ft}) on which is given a `2-

cylindrical Brownian motion W and a continuous {Ft}-adapted process (X(t))0≤t≤T with sample

paths in C([0, T ] ∶ `2) that satisfies the integral equation (4.15) and is such that X(t) ∈ ˜̀
2 ⊂ `2

for all t ∈ [0, T ] almost surely. Furthermore if {X̃t}0≤t≤T is another such process then X̃t = Xt

for all t ∈ [0, T ], almost surely.

The above result establishes weak existence and pathwise uniqueness of (4.15). By a stan-

dard argument (cf. (Ikeda and Watanabe, 1989, Section IV.1)) it follows that (4.15) has a

unique weak solution. We can now present our main result on fluctuations of πn. Recall that

Xn(0) = √
n(πn(0) − π0) is deterministic.

Theorem 14. Suppose supn∈N∑∞j=0 j
2πnj (0) < ∞ and πn(0) → π0 in S as n →∞. Let π be the

unique solution of (4.7) and, with Xn defined as in (4.13), Xn(0) → x0 in `2. In addition,

suppose that

sup
n∈N

∞
∑
j=0

j2(Xn
j (0))2 < ∞. (4.20)

Then Xn ⇒ X in D([0, T ] ∶ `2) where X is the unique weak solution to (4.14) given by Propo-

sition 4.

Proposition 4 and Theorem 14 will be proved in Section 4.4. In Section 4.5 we will de-

scribe how Theorems 10 and 14 can be used for numerical computation of various performance

measures using simulation of diffusion processes.

4.1.1 Supermarket Model

Consider a system of n servers, each with its own queue. Jobs arrive in the system according

to a Poisson process with rate nλ. When a job enters the system, d servers are chosen uniformly

at random and the job is routed to the shortest of the d selected queues. All servers process jobs

according to the FIFO discipline. Service times are mutually independent and exponentially

distributed with mean 1. This model has been well studied and is known as Power-of-d routing or

the “Supermarket Model” (see (Vvedenskaya et al., 1996; Mitzenmacher, 2001; Graham, 2000)).

The model is a special case of the system considered in the current chapter, corresponding to
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L = d and k = 1. Theorems 10 and 14 then provide, as corollaries, the following law of large

numbers and central limit theorem for the Power-of-d routing scheme.

Define by πnd the empirical measure process of queue lengths in the Power-of-d system. For

r ∈ `1, define

Fd(r) ≐ λ
⎡⎢⎢⎢⎢⎣

d

∑
i=1

(d
i
)rij−1

⎛
⎝

∞
∑
m=j

rm
⎞
⎠

d−i

−
d

∑
i=1

(d
i
)rij

⎛
⎝

∞
∑

m=j+1

rm
⎞
⎠

d−i⎤⎥⎥⎥⎥⎦
ej +

∞
∑
j=0

[rj+1 − rj]ej .

The following is a direct corollary of Theorem 10.

Corollary 1. Suppose that πnd (0) → πd(0), in S, as n → ∞. Then πnd → πd, in probability, in

D([0, T ] ∶ S) where πd is the unique solution in C([0, T ] ∶ S) to the following ODE

π̇d(t) = Fd(πd(t)), πd(0) = π0.

Remark 4.1.1. This result has been established in (Graham, 2000) (see Theorem 3.4 therein).

In particular, it is easy to verify that vm(t) ≐ ∑∞j=m(πd(t))j is the same function as in (3.9) of

(Graham, 2000) (see also (Vvedenskaya et al., 1996)).

Our second corollary studies the fluctuations of πnd from its law of large number limit.

Consider

Xn
d (t) =

√
n[πnd (t) − πd(t)], t ∈ [0, T ].

Analogous to a(t) introduced in (4.14), let ad(t) be the symmetric square root of the following

non-negative operator

Φd(t) ≐ λ
∞
∑
j=0

(ej+1 − ej)(ej+1 − ej)T
⎛
⎜
⎝

d

∑
i=1

(d
i
)[(πd)j(t)]i

⎛
⎝

∞
∑

m=j+1

(πd)m(t)
⎞
⎠

d−i⎞
⎟
⎠

+
∞
∑
j=1

(ej−1 − ej)(ej−1 − ej)T (πd)j(t).
(4.21)

Analogous to G in (4.19), let Gd be a map from ˜̀
2 ×S to `2, where ˜̀

2 is as in (4.18), defined as

(Gd)i(x, r) ≐
∂

∂u
(Fd)i(r + ux)∣

u=0
i ∈ N0, u ∈ R. (4.22)
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In the special case that d = 2, this function simply reduces to

(G2)i(x, r) = 2λ
∞
∑
m=i

[xi−1rm + ri−1xm − xirm+1 − rixm+1] + (xi+1 − xi).

The following result is immediate from Theorem 14.

Corollary 2. Suppose supn∈N∑∞j=0 j
2(πnd )j(0) < ∞ and πnd (0) → π0 in S as n → ∞. Also,

suppose Xn
d (0) =

√
n[πnd (0) − π0] → x0 in probability in `2 and that

sup
n∈N

∞
∑
j=0

j2((Xn
d )j(0))2 < ∞.

Then Xn
d ⇒ Xd in D([0, T ] ∶ `2) where Xd is the unique weak solution to (4.14) with values in

˜̀
2, with G replaced by Gd defined by (4.22) and a(t) replaced by ad(t) which is given as the

symmetric square root of the operator Φd(t) in (4.21).

4.2 Semimartingale Representation

In this section we write the state processes using compensated time-changed Poisson pro-

cesses to give a semimartingale representation for the system. Let {N`, ` ∈ Σ} and {Di, i ∈ N0}

be collections of mutually independent unit rate Poisson processes. The process N` will be used

to represent the stream of jobs requesting files which are stored at servers with queue length

configuration (immediately before the time of arrival of the request) ` = (`1, . . . , `L). Similarly

Di will represent the stream of jobs completed by servers whose queue length (immediately

before the time of completion) is equal to i. From the form of the generator in (4.2) we see

that the state process πn can be expressed as,

πn(t) = πn(0) + 1

n
∑
`∈Σ

∆`N`

⎛
⎝∫

t

0

nλ

(n
L
)

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds

⎞
⎠
+ 1

n

∞
∑
i=1

(ei−1 − ei)Di (k∫
t

0
nπni (s)ds) .

By adding and subtracting the compensators of the Poisson processes one can write the

state process as a semimartingale. Namely,

πn(t) = πn(0) +An(t) +Mn(t) (4.23)
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where

An(t) ≐ ∑
`∈Σ

∆`∫
t

0

λ

(n
L
)

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds + k

∞
∑
i=1

(ei−1 − ei)∫
t

0
πni (s)ds (4.24)

and

Mn(t) ≐ ∑
`∈Σ

1

n
∆`N`

⎛
⎝
nλ

(n
L
) ∫

t

0

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds

⎞
⎠
− ∑
`∈Σ

∆`
λ

(n
L
) ∫

t

0

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds

+
∞
∑
i=1

1

n
(ei−1 − ei)Di (k∫

t

0
nπni (s)ds) − k

∞
∑
i=1

(ei−1 − ei)∫
t

0
πni (s)ds.

(4.25)

From (4.46) and (4.73), it follows that for some cζ ∈ (0,∞)

Anj (t) ≤ ∫
t

0

⎛
⎝
λ

(n
L
)
cζn

L[πnj−1(s) + πnj (s)] + k[πnj+1(s) + πnj (s)]
⎞
⎠
ds

for all t ∈ [0, T ], n ∈ N, and j ∈ N0. Thus, there exists a κ ∈ (0,∞) such that

∞
∑
j=0

Anj (t)2 ≤ κ
∞
∑
j=0
∫

t

0
[πnj−1(s)2 + πnj+1(s)2 + πnj (s)2]ds ≤ 3κt

for all t ∈ [0, T ]. Consequently both Mn(t) and An(t) take values in `2. A similar argument

shows that An(t) in fact takes values in `1.

Similarly, using (4.23) and (4.8) for π(t), we can express Xn as a semimartingale through

the equation

Xn(t) =Xn(0) + Ān(t) + M̄n(t) (4.26)

where

Ān(t) =
√
n [An(t) − ∫

t

0
F (π(s))ds] (4.27)

and M̄n(t) = √
nMn(t). We note that there is a natural filtration {Fnt }0≤t≤T on the probability

space where the processes N`, Di, and πn are defined such that An, Mn, πn, Xn, M̄n, Ān

are RCLL processes adapted to the filtration and Mn, M̄n are {Fnt }-local martingales.

4.3 Fluid Limit

In this section we present the proof of Theorem 10. First, in Section 4.3.1, we use the semi-

martingale representation from Section 4.2 to prove a key tightness property (see Proposition
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5). Then, in Section 4.3.2, we prove the unique solvability of (4.7) and complete the proof of

Theorem 10 by proving convergence of πn to the unique solution of (4.7) in C([0, T ] ∶ S).

4.3.1 Tightness

In this section we prove tightness of {(πn,Mn)}n∈N. We first recall the notion of C-tightness.

Definition 4.1. Let (Z, dZ) be a Polish space. For z ∈ D([0, T ] ∶ Z) let

jT (z) ≐ sup
0≤t≤T

dZ(z(t), z(t−)).

We say a tight sequence of D([0, T ] ∶ Z)-valued random variables {Zn}n∈N is C-tight if jT (Zn) ⇒

0.

If Zn, Z are D([0, T ] ∶ Z)-valued random variables and Zn ⇒ Z then P(Z ∈ C([0, T ] ∶ Z)) = 1

if and only if {Zn}n∈N is C-tight (Ethier and Kurtz, 2009). The following proposition proves

the C-tightness of {πn}n∈N and convergence of Mn to the zero process.

Proposition 5. Suppose that πn(0) → π0, in S, as n → ∞. Then {(πn,Mn)}n∈N is a C-tight

sequence of D([0, T ] ∶ S × `2)-valued random variables. Furthermore, Mn ⇒ 0 in D([0, T ] ∶ `2).

Proof. We first prove the second statement by arguing that E sup0≤s≤T ∥Mn(s)∥2
2 → 0 as n→∞.

For this, from Doob’s inequality, it suffices to show E∣⟨Mn⟩(T )∣ → 0 as n→∞ where

⟨Mn⟩(s) ≐
∞
∑
j=0

⟨Mn
j ⟩(s), s ∈ [0, T ].

From (4.25) and observing

∞
∑
i=1

⟨ej , (ei−1 − ei)(ei−1 − ei)T ej⟩2π
n
i (s) = πnj+1(s) + πnj (s)

it follows that

⟨Mn
j ⟩(t) =

λ

n(nL)
∫

t

0
Z(j, nπn(s))ds + k

n
∫

t

0
[πnj+1(s) + πnj (s)]ds. (4.28)
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where

Z(j, nπn(s)) = ∑
`∈Σ

⟨ej ,∆`∆
T
` ej⟩2

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
). (4.29)

The `-th term in the sum on the right side of (4.29) is the contribution from jobs that request

servers with queue length configuration `. A fixed ` ∈ Σ will make non-zero contribution to

⟨ej ,∆`∆
T
` ej⟩2 if j or j−1 is one of the k-smallest coordinates in `. Thus, for a fixed ` ∈ Σ, the `-

th term in (4.29) is nonzero only if j or j−1 is a member of the set (`1, . . . , `k). The contribution

from all such `’s in the sum (4.29) can be counted as follows. Suppose 0 ≤ i1 ≤ k − 1 servers

are selected among those with queue length less than j − 1. This corresponds to (n∑
j−2
m=0 π

n
m(s)

i1
)

different choices of servers. In addition suppose i2 ≤ L− i1 and i3 ≤ L− i1− i2 servers are selected

among those with queue length equal to j −1 and j, respectively. This corresponds to (nπ
n
j−1(s)
i2

)

and (nπ
n
j (s)
i3

) choices, respectively. It follows that L − i1 − i2 − i3 servers must be selected which

have queue length larger than j which corresponds to (n∑
∞

m=j+1 π
n
m(s)

L−i1−i2−i3
) possible choices. Since

jobs are only routed to the k shortest servers,

⟨ej ,∆`∆
T
` ej⟩2 = [i2 ∧ (k − i1) − i3 ∧ (k − i1 − i2)+]2. (4.30)

It follows that for x ∈ nSn

Z(j, x) =
k−1

∑
i1=0

(∑
j−2
m=0 xm
i1

)
L−i1
∑
i2=0

(xj−1

i2
)
L−i1−i2
∑
i3=0

[i2 ∧ (k − i1) − i3 ∧ (k − i1 − i2)+]2(xj
i3

)( ∑
∞
m=j+1 xm

L − i1 − i2 − i3
),

(4.31)

where, recall that we adopt the convention that for a < b, ∑ai=b xi = 0.

Note that for non-negative integers a, b, a ≥ b

(a
b
) ≤ a

b

b!
. (4.32)
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This fact, combined with (4.31) and recalling the fact that πn(s) ∈ S for s ∈ [0, T ], gives the

following bound on Z(j, nπn(s)):

Z(j, nπn(s)) ≤
k−1

∑
i1=0

(n∑j−2
m=0 π

n
m(s))i1

i1!

L−i1
∑
i2=0

(nπnj−1(s))i2

i2!

×
L−i1−i2
∑
i3=0

k21{i2∨i3>0}
(nπnj (s))i3

i3!

(n∑∞m=j+1 π
n
m(s))L−i1−i2−i3

(L − i1 − i2 − i3)!

≤ nL
k−1

∑
i1=0

L−i1
∑
i2=0

L−i1−i2
∑
i3=0

k21{i2∨i3>0}(πnj−1(s))i2(πnj (s))i3

≤ cZnL(πnj−1(s) + πnj (s)).

(4.33)

for some cZ ∈ (0,∞). Using (4.33) in (4.28) gives

E∣⟨Mn⟩(t)∣ ≤ E
RRRRRRRRRRR

2λ(n −L)!L!cZn
L

n × n!
∫

t

0

∞
∑
j=0

πnj (s)ds
RRRRRRRRRRR
+E

RRRRRRRRRRR

2k

n
∫

t

0

∞
∑
j=0

πnj (s)ds
RRRRRRRRRRR

≤ ∣2λ(n −L)!L!cZn
L

n × n!
t∣ + ∣2k

n
t∣ .

(4.34)

Thus E∣⟨Mn⟩T ∣ → 0 and consequently E sup0≤s≤T ∥Mn(s)∥2
2 → 0 as n → ∞. It follows that

Mn ⇒ 0 in D([0, T ] ∶ `2) which completes the proof of (ii).

The tightness of {πn}n∈N in D([0, T ] ∶ S) follows as in the proof of Theorem 3.4 of (Graham,

2000). Namely, it suffices to show tightness of {Qn1}n∈N in D([0, T ] ∶ N) (cf. (Sznitman, 1991)).

However, this tightness is an immediate consequence of the fact that the jumps of Qn1 can be

embedded in a Poisson process with rate λL + k.

Finally in order to show that {πn}n∈N is C-tight it suffices to show that

jT (πn) ≐ sup
0≤t≤T

d0(πn(t), πn(t−)) → 0 as n→∞.

There are two types of jumps, those corresponding to incoming jobs and those corresponding

to jobs being processed. When a job arrives in the system, the dispatcher assigns it to k

different servers causing the queue length of each of the k chosen servers to increase by one. It

follows that the jump size of such an event can be bounded by 2k
n . When a job is processed,

the corresponding queue length will drop by 1 and so the jump size of such an event can be

bounded by 2
n . Therefore jT (πn) ≤ 2+2k

n → 0 which completes the proof.
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4.3.2 Convergence

In this section we provide the proof of Theorem 10. Since we have already proved tightness

of {πn}n∈N in Section 4.3.1, all that remains is to prove uniqueness of solutions of (4.7) in

an appropriate class and to characterize the limit of any weakly convergent subsequence as

the unique solution to (4.7). We first present the following Lipschitz property for the map

F ∶ S → `1, defined in (4.4), that will give uniqueness of the solutions to (4.7). We remark that

in the proof of Theorem 14 we will need a stronger Lipschitz property of F in the `2 norm. This

Lipschitz property is not immediate on the space S but, as shown in Lemma 14, is satisfied on

a smaller class VM .

Lemma 5. The map F is a Lipschitz function from S to `1. Namely, there exists an C1 ∈ (0,∞)

such that for any r, r̃ ∈ S,

∥F (r) − F (r̃)∥1 ≤ C1∥r − r̃∥1. (4.35)

Proof. Let r, r̃ ∈ S and, for i1 ∈ N0 and j, i2 ∈ N, define Rj,i1,i2(r, r̃) as

Rj,i1,i2(r, r̃) ≐
⎛
⎝

j−1

∑
m=0

rm
⎞
⎠

i1 ⎛
⎝

∞
∑

m=j+1

rm
⎞
⎠

L−i1−i2

ri2j −
⎛
⎝

j−1

∑
m=0

r̃m
⎞
⎠

i1 ⎛
⎝

∞
∑

m=j+1

r̃m
⎞
⎠

L−i1−i2

r̃i2j . (4.36)

Note that for any a, b, c, ã, b̃, c̃ ∈ R+,

abc − ãb̃c̃ = ab(c − c̃) + a(b − b̃)c̃ + (a − ã)b̃c̃. (4.37)

Combining (4.36), (4.37), and the fact that r, r̃ ∈ S, we have

∣Rj,i1,i2(r, r̃)∣ ≤ ∣ri2j − r̃i2j ∣ + r̃i2j

RRRRRRRRRRRRR

⎛
⎝

∞
∑

m=j+1

rm
⎞
⎠

L−i1−i2

−
⎛
⎝

∞
∑

m=j+1

r̃m
⎞
⎠

L−i1−i2RRRRRRRRRRRRR

+ r̃i2j

RRRRRRRRRRRRR

⎛
⎝

j−1

∑
m=0

rm
⎞
⎠

i1

−
⎛
⎝

j−1

∑
m=0

r̃m
⎞
⎠

i1RRRRRRRRRRRRR
.

(4.38)

For any a, b ∈ R and i ∈ N, (ai − bi) = (a − b)∑ij=1 a
i−jbj−1. Thus, if a, b ∈ [0,1] and i ≤ L,

∣ai − bi∣ ≤ ∣a − b∣L. This inequality along with (4.38) implies there exist κ1, κ
′
1 > 0 such that for
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all i1, i2 ≤ L, i2 > 0,

∣Rj,i1,i2(r, r̃)∣ ≤ κ′1
⎛
⎝
∣rj − r̃j ∣ + r̃i2j

∞
∑

m=j+1

∣rm − r̃m∣ + r̃i2j
j−1

∑
m=0

∣rm − r̃m∣
⎞
⎠

≤ κ1(∣rj − r̃j ∣ + r̃j∥r − r̃∥1).

(4.39)

The definition of F (see (4.4)) and the triangle inequality imply,

∥F (r) − F (r̃)∥1 ≤ λL!
∞
∑
j=0

∣ζ̄δ(j, r) − ζ̄δ(j, r̃)∣ + k
∞
∑
j=0

∣(r − r̃)j+1 − (r − r̃)j ∣. (4.40)

Noting that

ζ̄δ(j, r) − ζ̄δ(j, r̃) = [ζ̄(j − 1, r) − ζ̄(j − 1, r̃)] − [ζ̄(j, r) − ζ̄(j, r̃)],

it follows that

∞
∑
j=0

∣ζ̄δ(j, r) − ζ̄δ(j, r̃)∣ ≤ 2
∞
∑
j=0

∣ζ̄(j, r) − ζ̄(j, r̃)∣ ≤ κ2

∞
∑
j=0

k−1

∑
i1=0

L−i1
∑
i2=1

∣Rj,i1,i2(r, r̃)∣ (4.41)

where the second inequality follows from the the definitions of ζ̄ and R. Combining (4.41) with

(4.40) and applying (4.39) yields, for some κ3 > 0,

∥F (r) − F (r̃)∥1 ≤ κ2λL!
∞
∑
j=0

k−1

∑
i1=0

L−i1
∑
i2=1

∣Rj,i1,i2(r, r̃)∣ + 2k
∞
∑
j=0

∣rj − r̃j ∣

≤ κ3

∞
∑
j=0

[∣rj − r̃j ∣ + r̃j∥r − r̃∥1] + 2k∥r − r̃∥1

and thus with C1 ≐ 2(κ3 + k), (4.35) is satisfied for all r, r̃ ∈ S which proves the result.

Using the above Lipschitz property of F we can now complete the proof of Proposition 3.

Proof of Proposition 3. Existence of a π ∈ C([0, T ] ∶ S) that solves (4.7) will be shown below

in the proof of Theorem 10. We now argue uniqueness. Suppose π and π̃ are two elements of

C([0, T ] ∶ S) satisfying (4.7) with π(0) = π̃(0) = π0. The Lipschitz property of F proved in
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Lemma 5 implies, for all t ∈ [0, T ]

∥π(t) − π̃(t)∥1 = ∥∫
t

0
[F (π(s)) − F (π̃(s))]ds∥

1
≤ ∫

t

0
∥F (π(s)) − F (π̃(s))∥1ds

≤ C1∫
t

0
∥π(s) − π̃(s)∥1ds.

The result follows.

We now proceed to the proof of Theorem 10.

Proof of Theorem 10. From Proposition 5 we have that {πn}n∈N is a C-tight sequence of

D([0, T ] ∶ S)-valued random variables.

Note from (4.23) that for all j ∈ N0,

πn(t) = πn(0) + V n(t) +Mn(t) + ∫
t

0
F (πn(s))ds (4.42)

where

V n(t) ≐ An(t) − ∫
t

0
F (πn(s))ds.

From the definition of An in (4.24) we see that

Anj (t) = ∫
t

0

⎛
⎝∑`∈Σ

⟨∆`, ej⟩2
λ

(n
L
)

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
) + k[πnj+1(s) − πnj (s)]

⎞
⎠
ds. (4.43)

By a similar argument (see comments given below (4.45)) used to obtain the representation in

(4.31),

∑
`∈Σ

⟨∆`, ej⟩2

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
) = [ζ(j − 1, nπn(s)) − ζ(j, nπn(s))] (4.44)

where for x ∈ nSn

ζ(j, x) ≐
k−1

∑
i1=0

(∑
j−1
m=0 xm
i1

)
L−i1
∑
i2=1

[i2 ∧ (k − i1)](
xj
i2

)(∑
∞
m=j+1 xm
L − i1 − i2

). (4.45)

One can interpret ζ(j, x) as the rate at which jobs are being routed into queues of length j when

the system is in state x. Recall that any incoming job corresponds to the selection of L queues.

The term on the right side of (4.45) then sums over all possible queue length configurations
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of this selection. In particular, i1 represents the number of queues with lengths less than j, i2

corresponds to the queues of length equal to j, and L − i1 − i2 are the queues of length greater

than j. Since we are routing jobs to the k shortest queues the rate must be multiplied by the

factor [i2 ∧ (k − i1)] rather than i2. From our convention that x−1 = 0, we see that ζ(−1, x) = 0.

In addition, recalling the conventions that for a < b, ∑ai=b xi = 0 and that (0
0
) = 1 we see ζ(0, x)

is well defined. Combining (4.43), (4.44), and (4.45) gives the following representation for Anj

Anj (t) =
λ

(n
L
) ∫

t

0
[ζ(j − 1, nπn(s)) − ζ(j, nπn(s))]ds + k∫

t

0
[πnj+1(s) − πnj (s)]ds. (4.46)

For each fixed j, i1 ∈ N0 and i2 ∈ N with i1, i2 ≤ L we have

(n∑
j−1
m=0 π

n
m(s)

i1
)[i2 ∧ (k − i1)](

nπnj (s)
i2

)(n∑
∞
m=j+1 π

n
m(s)

L − i1 − i2
)

= nL
(∑j−1

m=0 π
n
m(s))

i1

i1!
[i2 ∧ (k − i1)]

(πnj (s))i2

i2!

(∑∞m=j+1 π
n
m(s))L−i1−i2

(L − i1 − i2)!
+ R̂n(j, i1, i2, s)

(4.47)

where

sup
i1,i2≤L

∣R̂n(j, i1, i2, s)∣ ≤ κ1n
L−1πnj (s)

and thus, from the definition of ζ and ζ̄ in (4.45) and (4.5),

∣ζ(j, nπn(s)) − n!

(n −L)! ζ̄(j, π
n(s))∣ ≤ κ2n

L−1πnj (s) ∀ s ∈ [0, T ]. (4.48)

Furthermore, using the definition of An in (4.46) and F in (4.4), (4.48) implies

sup
0≤t≤T

∥V n(t)∥2 = sup
0≤t≤T

∥An(t) − ∫
t

0
F (πn(s))ds∥

2
≤ κ3

n
. (4.49)

Also from Proposition 5, Mn ⇒ 0 in D([0, T ] ∶ `2). Combining these observations with the

tightness of πn, we have subsequential convergence of (πn,Mn, V n) to (π,0,0), in distribution,

in D([0, T ] ∶ S × `2 × `2) for some C([0, T ] ∶ S)-valued π. By appealing to the Skorohod

representation theorem we can assume that this convergence holds a.s. Noting that r ↦ Fj(r)

is a continuous map from S to R for each j ∈ N0 we have that Fj(πn(s)) → Fj(π(s)) as n→∞

for all j ∈ N0 and s ∈ [0, T ]. Thus, upon sending n → ∞ in (4.42), (4.9) and the dominated
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convergence theorem imply that almost surely,

πj(t) = (π0)j + ∫
t

0
Fj(π(s))ds, for all t ∈ [0, T ], j ∈ N0.

This shows that π satisfies (4.7). The result now follows from the uniqueness property shown

in Proposition 3.

4.3.3 Proof of Lemma 4

The result will follow upon verifying,

L!ζ̄(m,r) =
k

∑
`=1

`−1

∑
i1=0

(L
i1
) (1 − um)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)ri2muL−i1−i2m+1 (4.50)

and, for ` = {1, . . . , k},

∞
∑
j=m

`−1

∑
i1=0

(L
i1
) (1 − uj)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)(rj)i2uL−i1−i2j+1 =

L

∑
j=L−`+1

(L
j
)ujm(1 − um)L−j . (4.51)

These equations can be interpreted as follows. Suppose the occupancy measure is in state r.

Roughly speaking, a typical term in the outside summation on the RHS of (4.50), denoted

as pm(`), corresponds to the probability that the `-th largest out of L randomly selected

queues is of length m. Then (4.50) states that the rate of jobs being routed into queues

of length m is equal to the sum ∑k`=1 pm(`). Recall that a file request will correspond to a

queue length configuration a1 ≤ a2 ≤ ⋯ ≤ aL, where aj corresponds to the length of the j-

th largest queue. A typical term in the outside summation on the LHS of (4.51), denoted

p̃`(j), corresponds to the probability that a` = j . Terms in the summation on the RHS

of (4.51), denoted qm(j), correspond to the probability that aj−1 < m ≤ aj . The expression

(4.51) then states that ∑∞j=m p̃`(j) = ∑Lj=L−`+1 qm(j). Once these equalities are established the

remainder of the argument follows as in Appendix B of (Li et al., 2016) which argues that
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∑k`=1∑Lj=L−`+1 qm(j) = f(um). Combining this fact with (4.50) and (4.51) then gives,

L!ζ̄(m,r) =
k

∑
`=1

pm(`) =
k

∑
`=1

⎡⎢⎢⎢⎢⎣

∞
∑
j=m

p̃`(j) −
∞
∑

j=m+1

p̃`(j)
⎤⎥⎥⎥⎥⎦
=

k

∑
`=1

⎡⎢⎢⎢⎢⎣

L

∑
j=L−`+1

qm(j) −
L

∑
j=L−`+1

qm+1(j)
⎤⎥⎥⎥⎥⎦

= f(um) − f(um+1)

which proves the result.

We now prove the two equalities. First consider (4.50). By rearranging and collecting

combinatorial terms we can write

L!ζ̄(m,r) =
k−1

∑
i1=0

L−i1
∑
i2=1

[i2 ∧ (k − i1)](
L

i1
)(L − i1

i2
) (1 − um)i1 ri2muL−i1−i2m+1 . (4.52)

Note that the RHS in (4.52) can be written as

k−1

∑
i1=0

L−i1
∑
i2=1

[i2∧(k−i1)]
∑
`=1

(L
i1
)(L − i1

i2
) (1 − um)i1 ri2muL−i1−i2m+1

=
k−1

∑
i1=0

(L
i1
) (1 − um)i1

L−i1
∑
i2=1

(i1+i2)∧k
∑

`=i1+1

(L − i1
i2

)ri2muL−i1−i2m+1 .

(4.53)

We then exchange the order of summations as follows

k−1

∑
i1=0

(L
i1
) (1 − um)i1

L−i1
∑
i2=1

(i1+i2)∧k
∑

`=i1+1

(L − i1
i2

)ri2muL−i1−i2m+1

=
k−1

∑
i1=0

k

∑
`=i1+1

(L
i1
) (1 − um)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)ri2muL−i1−i2m+1

=
k

∑
`=1

`−1

∑
i1=0

(L
i1
) (1 − um)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)ri2muL−i1−i2m+1 .

(4.54)

Combining (4.52), (4.53), and (4.54) gives (4.50).

We now prove (4.51). Fix ` ∈ {1, . . . , k} and note that

L

∑
j=L−`+1

(L
j
)ujm(1 − um)L−j =

`−1

∑
i1=0

(L
i1
)(1 − um)i1uL−i1m . (4.55)
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Then, applying the binomial theorem to uL−i1m = (rm + um+1)L−i1 , (4.55) becomes

`−1

∑
i1=0

(L
i1
)(1 − um)i1uL−i1m =

`−1

∑
i1=0

(L
i1
)(1 − um)i1

L−i1
∑
i2=0

(L − i1
i2

)ri2muL−i1−i2m+1 (4.56)

which, by breaking up the summation indexed by i2, can be rewritten as

`−1

∑
i1=0

(L
i1
)(1 − um)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)ri2muL−i1−i2m+1

+
`−1

∑
i1=0

(L
i1
)(1 − um)i1

`−i1−1

∑
i2=0

(L − i1
i2

)ri2muL−i1−i2m+1 .

(4.57)

Now consider the second term in (4.57). By relabeling the indices we get

`−1

∑
i1=0

(L
i1
)(1 − um)i1

`−i1−1

∑
i2=0

(L − i1
i2

)ri2muL−i1−i2m+1

=
L

∑
i1=L−`+1

(L
i1
)ui1m+1

L−i1
∑
i2=0

(L − i1
i2

)(1 − um)i2rL−i1−i2m

=
L

∑
i1=L−`+1

(L
i1
)ui1m+1(1 − um+1)L−i1

(4.58)

where the second equality follows from the binomial theorem. It then follows from (4.55)-(4.58)

that for any m′ >m

L

∑
j=L−`+1

(L
j
)ujm(1 − um)L−j

=
m′

∑
j=m

`−1

∑
i1=0

(L
i1
)(1 − uj)i1

L−i1
∑

i2=`−i1
(L − i1

i2
)ri2j u

L−i1−i2
j+1 +

L

∑
j=L−`+1

(L
j
)ujm′(1 − um′)L−j .

The result then follows upon sending m′ →∞.

4.3.4 Proof of Theorem 11

It is proved in Lemma 5 of (Li et al., 2016) that f(x) ≤ kxL/k and thus (i) is immediate

from (4.12).
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We now verify (ii). From (4.12) it suffices to show that f(x) ≥ kxL−k+1 for x ∈ [0,1]. Since

both sides of the inequality evaluate to zero at x = 0, it is equivalent to show

h(x) ≐ 1

k

f(x)
xL−k+1

≥ 1 for x ∈ (0,1]. (4.59)

Note that f(1) = k (cf. Lemma 2 of (Li et al., 2016)), and thus h(1) = 1. It follows that

h′(x) ≤ 0, x ∈ (0,1] is sufficient for verifying (4.59). Taking the derivative of h gives

h′(x) = 1

k

xf ′(x) − (L − k + 1)f(x)
xL−k+2

. (4.60)

Denoting xf ′(x) − (L − k + 1)f(x) as w(x), we note that in order to show h′(x) ≤ 0 one must

only verify w(x) ≤ 0. One can verify (cf. (68) and (69) of (Li et al., 2016)) that w can be

expressed as follows

w(x) ≐
k−1

∑
`=0

(k − 1

`
)(−1)` 1

L − k + `
`

L − k + ` + 1
xL−k+`+1.

Therefore

w′′(x) = xL−k−1
k−1

∑
`=0

(k − 1

`
)`(−x)` = −(k − 1)xL−k(1 − x)k−2

and so w′′(x) ≤ 0 for all x ∈ [0,1]. Noting that w′(0) = 0, it follows that w′(x) ≤ 0 for all

x ∈ (0,1] and since w(0) = 0, w(x) ≤ 0 for x ∈ (0,1]. This verifies (4.59).

4.3.5 Proof of Theorem 12

In this section we present the proof of Theorem 12. Namely, for every g ∈ U , the solution u

of (4.11) satisfies u(t) ∈ U for all t ≥ 0 (Lemma 10), and there is a unique fixed point to (4.11)

in U defined by (4.12) which is asymptotically stable. The argument follows along the lines

of the proof of Theorem 1 of (Vvedenskaya et al., 1996) (cf. Lemmas 1-7 therein). The key

difference is that the the term λ[f(ui−1) − f(ui)] appears in the differential equation instead

of λ[u2
i−1 − u2

i ]. As we will see, this difference can be handled using the properties of f shown
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in Lemma 2 of (Li et al., 2016). Specifically, we will use the facts that f(0) = 0, f(1) = k, f is

strictly increasing, convex, and differentiable with derivative bounded by L.

We first consider a truncated version of (4.11). Fix K ∈ N, c ≥ 0, and consider the following

boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡj(t) = λ[f(sj−1(t)) − f(sj(t))] − k[sj(t) − sj+1(t)], j = 1, . . . ,K

s0(t) = 1

sj(0) = gj , j = 1, . . . ,K

(4.61)

with

sK+1(t) = c. (4.62)

The following two lemmas giving monotonicity and uniqueness properties for the truncated

system will be used to extend the same properties to the full system in Lemma 11.

Lemma 6. Suppose s is a solution to (4.61)-(4.62) with initial conditions satisfying

1 = g0 ≥ g1 ≥ . . . ≥ gK ≥ gK+1 = c. (4.63)

Then

1 = s0(t) ≥ s1(t) ≥ . . . ≥ sK(t) ≥ sK+1(t) = c (4.64)

for all t ≥ 0.

Proof. Since solutions to (4.61)-(4.62) depend continuously on the initial conditions we can take

the inequalities in (4.63) to be strict, without loss of generality. Let t0 be the first time that an

equality appears in (4.64). Since s0 > sK+1, then there exists an i ∈ {1, . . . ,K} such that either

si−1(t0) > si(t0) = si+1(t0) or si−1(t0) = si(t0) > si+1(t0). In the former case, since f is strictly

increasing, ṡi(t0) = λ[f(si−1(t0))−f(si(t0))] > 0 and ṡi+1(t0) = k[si+2(t0)−si+1(t0)] ≤ 0 if i <K

and si+1(t0) = 0 if i =K, both of which contradict the assumption that si(t) > si+1(t) for t < t0.

The latter case follows from a similar argument.
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Lemma 7. Let {s(1)i }Ki=0 and {s(2)i }Ki=0 solve (4.61) and be such that s
(1)
i (0) ≥ s(2)i (0) for all

i = 1,2, . . . ,K. If, in addition, s
(1)
K+1(t) ≥ s(2)K+1(t) for all t ≥ 0 then s

(1)
i (t) ≥ s(2)k (t) for all

i = 1,2, . . . ,K,K + 1 and all t ≥ 0.

Proof. Again, assume without loss of generality that the inequalities are strict. I.e. s
(1)
i (0) >

s
(2)
i (0) for all i = 1,2, . . . ,K and s

(1)
K+1(t) > s

(2)
K+1(t), for all t ≥ 0. Suppose the first time equality

appears is at time t0. If j ∈ {1, . . . ,K} is the largest index such that s
(1)
j (t0) = s(2)j (t0) then,

since f is strictly increasing,

ṡ
(1)
j (t0) − ṡ(2)j (t0) = λ[f(s(1)j−1(t0)) − f(s

(2)
j−1(t0))] + k[s

(1)
j+1(t0) − s

(2)
j+1(t0)]

≥ k[s(1)j+1(t0) − s
(2)
j+1(t0)] > 0

which contradicts the assumption s
(1)
j (t) > s(2)j (t) for t < t0.

Note that Lemma 7, in particular, shows that there is a unique solution to (4.61)-(4.62).

We now consider the full system (4.11). In the following lemma we show that the full system

can be constructed as the limit of the sequence of truncated systems defined through (4.61).

Lemma 8. Let g ∈ Ū .

i) There exists a unique solution to (4.11) in Ū .

ii) This solution can be obtained as the limit as K →∞ of solutions to the truncated systems

(4.61)-(4.62) associated with c = 0.

Proof. Part (i) follows immediately from Lemma 4 and Proposition 2.1 of (Budhiraja and

Friedlander, 2017). Let sK(t), K = 1,2, . . . denote solutions to (4.61) with sKK+1(t) = 0. It

follows from Lemma 6 that sK+1
K+1(t) ≥ sKK+1(t) = 0 and from Lemma 7 that for fixed t and i ≤K,

sK+1
i (t) ≥ sKi (t). It follows that limK→∞ s

K
i (t) = si(t) exists, s(t) ∈ Ū , and si satisfies (4.11)

which proves (ii).

Lemma 9. Let u be a solution to (4.11) taking values in Ū . Then the following estimate holds

for all t,

uj(t) ≤
j

∑
i=0

ui(0)(λkt)j−i
(j − i)! , j ∈ N0. (4.65)
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Proof. The lemma follows from using an inductive argument. Note that the inequality is im-

mediate for j = 0. Suppose now that (4.65) holds for j −1, for some j ≥ 1. Then, since f(0) = 0,

f(1) = k, and f is convex on [0,1], it follows from (4.11) that

u̇j(t) ≤ λf(uj−1(t)) ≤ λkuj−1(t).

Since (4.65) holds for j − 1 by our inductive hypothesis we have, by integrating over t on both

sides of the above inequality, that (4.65) also holds for j. The result follows.

Lemma 10. Let u be a solution to (4.11) taking values in Ū . If u(0) ∈ U , then u(t) ∈ U for all

t ≥ 0. Furthermore, v1(u(t)) ≤ exp(λkt)[1 + v1(u(0))].

Proof. This follows immediately from the estimate (4.65).

The following monotonicity property of the full system (4.11) is an immediate consequence

of Lemma 7 and part (ii) of Lemma 8.

Lemma 11. Let u(1) and u(2) be a solutions to (4.11) in Ū with u
(1)
j (0) ≥ u(2)j (0) for all j ∈ N0.

Then u
(1)
j (t) ≥ u(2)j (t) for all j = N0 and all t ≥ 0.

With the above lemmas we can now complete the proof of Theorem 12.

Proof of Theorem 12. Part (i) of the theorem was shown in Lemma 10.

Now consider part (ii). Suppose gi ≤ ūi, i ∈ N0. Then from Lemma 11, it follows that

v1(u(t)) ≤ ∑∞i=1 ūi < ∞. If instead, gi ≥ ūi, i ∈ N0 then from (4.12) and noting that ū0 = 1 and

f(1) = k, we have that ū1 = λf (L,k)(1)/k = λ. Thus, from Lemma 11 once more, u1(t) ≥ λ for

all t ≥ 0, from which it follows that

v̇1(u(t)) = λf(1) − ku1(t) = k(λ − u1(t)) ≤ 0.

Therefore, in both cases v1(u(t)) is uniformly bounded in t. Assume for now that we are in

one of these two cases.

We now prove that

∫
∞

0
∣uk(t) − ūk∣dt < ∞ (4.66)
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for each k. Noting that f has derivative bounded by L (cf. Lemma 2 of (Li et al., 2016)) it will

then follow that, for each of these two cases we have the desired convergence

lim
t→∞

∣uk(t) − ūk∣ = 0, for all k ∈ N0. (4.67)

From this, convergence for an arbitrary initial condition will follow on noting that from Lemma

11, u−(t) ≤ u(t) ≤ u+(t) where u− and u+ are the solutions to (4.11) with u−k(0) = gk ∧ ūk and

u+k(0) = gk ∨ ūk. Finally, we prove (4.66) using an inductive argument. It is clear that (4.66)

holds for k = 0. Now suppose (4.66) is true for k − 1, for some k ≥ 1. Then

v̇k(u(t)) = λf(uk−1(t)) − kuk(t) = λ[f(uk−1(t)) − f(ūk−1)] − k[uk(t) − ūk]

and thus

vk(u(t)) − vk(g) = ∫
t

0
(λ[f(uk−1(s)) − f(ūk−1)] − k[uk(s) − ūk])ds.

Note that since vk(u(t)) ≤ v1(u(t)) we must have that vk(u(t))−vk(g) is uniformly bounded in

t. From the inductive assumption and appealing again to the boundedness of the first derivative

of f it follows that supt∈[0,∞) ∫
t

0 λ[f(uk−1(s))−f(ūk−1)]ds < ∞. Therefore (4.66) is satisfied for

k which completes the proof.

4.3.6 Proof of Theorem 13

Note that Ln is a probability measure on the set Ū which is a compact set in the product

topology. Thus, {Ln}n∈N is a tight sequence in P(Ū). Let {Lnk}k∈N be a weakly convergent

subsequence with limit point L. Suppose unk(0) is distributed according to Lnk (we write

unk(0) ∼ Lnk). Then unk(t) ∼ Lnk for all t ≥ 0. By a minor modification of the proof of

Theorem 2.2 of (Budhiraja and Friedlander, 2017) it follows now that unk ⇒ u in D([0, T ],U)

where u solves the ODE (4.11) a.s. Theorem 2.2 of (Budhiraja and Friedlander, 2017) proves

such a result for the case where the initial occupancy measure u(0) is deterministic. However,

the extension to the case where the initial conditions are stochastic is straight forward. Since at
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any time t, unk(t) ∼ Lnk , it follows that u(t) ∼ L. From the fact that ū is the unique fixed point

of (4.11) it follows now that L = δū and thus δū must be the limit point of every convergent

subsequence. This completes the proof of the first statement in Theorem 13. The second

statement is immediate on noting that for all k ∈ N0, Eunk(t) → ∫U ukdLn(u) as t→∞.

4.4 Diffusion Approximation

In this section we prove Theorem 14. Section 4.4.1 presents some moment estimates on

πn which will be used in the proof of Theorem 14. Section 4.4.2 then proves tightness of the

sequence of centered and scaled state processes {Xn}n∈N. Section 4.4.3 completes the proof of

Theorem 14 by proving unique solvability of the SDE (4.14) (Theorem 4) and characterizing

limit points of Xn as this unique solution.

4.4.1 Moment Bounds

The following elementary lemma will be useful in the proof of Lemma 13.

Lemma 12. For all t ≥ 0, k ∈ N, and n ∈ N, limm→∞Emk sup0≤s≤t π
n
m(s) = 0.

Proof. Fix n ∈ N. Note that file requests arrive at rate nλ. Let N be a Poisson process

representing the total flow of such file requests. Also let m∗ = sup{m ∶ πnm(0) > 0} be the length

of the largest queue at time 0. Note that since the system consists of n queues, m∗ must be

finite for any fixed n. Then for m >m∗,

Emk sup
0≤s≤t

πnm(s) = E sup
0≤s≤t

1{N(t)≥m−m∗}m
kπnm(s) +E sup

0≤s≤t
1{N(t)<m−m∗}m

kπnm(s)

≤mkP(N(t) ≥m −m∗).

Thus, from Markov’s inequality, for m >m∗

Emk sup
0≤s≤t

πnm(s) ≤mke−(m−m
∗)enλt(e−1).

The result follows.
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In the next lemma we will we establish two key moment bounds that will be needed in the

tightness proof (see proof of Proposition 6).

Lemma 13. Suppose supn∈N∑∞j=0 j
2πnj (0) ≐ cπ(0) < ∞. Then

sup
n∈N

E sup
0≤t≤T

⎛
⎝
∞
∑
j=0

jπnj (t)
⎞
⎠

2

< ∞ (4.68)

and

sup
n∈N

E∫
T

0

∞
∑
j=0

j2πnj (t)dt < ∞. (4.69)

Proof. Since πn(t) = πn(0) +An(t) +Mn(t), we can write for fixed K ∈ N

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jπnj (t)
RRRRRRRRRRR

2

≤ 3
RRRRRRRRRRR

K

∑
j=0

jπnj (0)
RRRRRRRRRRR

2

+ 3E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jAnj (t)
RRRRRRRRRRR

2

+ 3E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jMn
j (t)

RRRRRRRRRRR

2

. (4.70)

Using (4.44), for K ∈ N, we can write

K

∑
j=0

j∑
`∈Σ

⟨∆`, ej⟩2

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
) =

K

∑
j=1

j [ζ(j − 1, nπn(s)) − ζ(j, nπn(s))]

=
K−1

∑
j=0

ζ(j, nπn(s)) −Kζ(K,nπn(s))
(4.71)

and

k
K

∑
j=0

j[πnj+1(s) − πnj (s)] = −k
⎛
⎝
K

∑
j=1

πnj (s) −KπnK+1(s)
⎞
⎠
. (4.72)

Using similar bounds as in (4.33), for some cζ ∈ (0,∞)

ζ(j, nπn(s)) ≤ cζnLπnj (s). (4.73)

The above bound implies that for some κ1 ∈ (0,∞), for all n,K ∈ N

E sup
0≤t≤T

⎡⎢⎢⎢⎢⎣

λ

(n
L
) ∫

t

0

K

∑
j=1

ζ(j − 1, nπn(s)) + k∫
t

0

K

∑
j=0

πnj (s)ds
⎤⎥⎥⎥⎥⎦

2

≤ E
⎡⎢⎢⎢⎢⎣

⎛
⎝
cζn

L λ

(n
L
)
+ k

⎞
⎠
T

⎤⎥⎥⎥⎥⎦

2

≤ κ1.
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Combined with (4.46), (4.71), and (4.72), the above estimate gives, for all n,K ∈ N,

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jAnj (t)
RRRRRRRRRRR

2

≤ κ2 (1 +KE [ sup
0≤t≤T

(πnK(t) + πnK+1(t))]) . (4.74)

We now consider E sup0≤t≤T ∣∑Kj=0 jM
n
j (t)∣2. Since ∑Kj=0 jM

n
j (t) is a martingale, Doob’s

inequality implies that

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jMn
j (t)

RRRRRRRRRRR

2

≤ 4E ⟨
K

∑
j=0

jMn
j ⟩ (T ) = 4E

K

∑
j1=0

K

∑
j2=0

j1j2⟨Mn
j1 ,M

n
j2⟩(T ). (4.75)

The diagonal terms (j1 = j2) in the above sum are given by (4.28). We now consider the off-

diagonal terms. Fix 0 ≤ j1 < j2 ≤ K and note that in order to compute ⟨Mn
j1
,Mn

j2
⟩(T ) we must

expand

Z(j1, j2, nπn(s)) ≐ ∑
`∈Σ

⟨ej1 ,∆`∆
T
` ej2⟩2

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
). (4.76)

Similar to (4.29), the `-th term in (4.76) is the contribution from jobs that request servers with

queue length configuration `. A fixed ` ∈ Σ will make non-zero contribution to ⟨ej1 ,∆`∆
T
` ej2⟩2

if (j1 or j1 − 1) and (j2 or j2 − 1) are among the k-smallest coordinates in `. That is, for a fixed

` ∈ Σ, the `-th term is nonzero only if (j1 or j1−1) is a member of the set (`1, . . . , `k) and (j2 or

j2−1) is also a member. The contribution from all such `’s in the sum (4.76) can be counted in

a method analogous to the one used to obtain (4.31). Namely, we count the number of choices

of servers with queue length less than j1 − 1, equal to j1 − 1, equal to j1, between j1 and j2 − 1,

equal to j2 − 1, equal to j2, and larger than j2. One must be careful in the cases j2 − 1 = j1 and

j2 − 1 = j1 + 1. In both cases there are no servers with length between j1 and j2 − 1. In the first

case above (j2 − 1 = j1), we must also be careful not to double count. To ensure this we include

an indicator function 1{j2>j1+1} in the upper index of the binomial coefficient corresponding to

the selection of servers with queue length equal to j2 − 1. Combining these observations we see
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that for x ∈ nSn,

Z(j1, j2, x) = ∑
`∈Σ

⟨ej1 ,∆`∆
T
` ej2⟩2

∞
∏
i=0

( xi
ρi(`)

)

=
k−2

∑
i1=0

(∑
j1−2
m=0 xm
i1

)
k−i1−1

∑
i2=0

(xj1−1

i2
)
k−i1−i2−1

∑
i3=0

[i2 − i3](
xj1
i3

)

×
k−i1−i2−i3−1

∑
i4=0

(∑
j2−2
m=j1+1 xm

i4
)
L−∑4

n=1 in

∑
i5=0

(xj2−11{j2>j1+1}
i5

)

×
L−∑5

n=1 in

∑
i6=0

[(1{j2=j1+1}(i3 − i5) + i5) ∧ (k −
4

∑
n=1

in)
+
− i6 ∧ (k −

5

∑
n=1

in)
+
]

× (xj2
i6

)(∑
∞
m=j2+1 xm

L −∑6
n=1 in

).

(4.77)

For j1 > j2 we define Z(j1, j2, x) ≐ Z(j2, j1, x). The contribution to ⟨Mn
j1
,Mn

j2
⟩(T ), for j1 ≠ j2,

from completed jobs is given by the following term:

∞
∑
i=1

⟨ej1 , (ei−1 − ei)(ei−1 − ei)T ej2⟩2π
n
i (s) = −1{j1=j2−1}π

n
j2(s) − 1{j1−1=j2}π

n
j1(s). (4.78)

This follows on noting that if a job is completed from a queue of length j then its queue length

become j − 1. This implies that the contribution is zero unless j1 = j2 − 1 or j1 − 1 = j2 which

results in the above expression. Combining (4.77) and (4.78) gives, for j1, j2 ∈ N0,

⟨Mn
j1 ,M

n
j2⟩(T ) = λ

n(nL)
∫

T

0
Z(j1, j2, nπn(s))ds

+ k
n
∫

T

0
[1{j1=j2}[π

n
j1(s) + π

n
j1+1] − 1{j1=j2−1}π

n
j2(s) − 1{j1−1=j2}π

n
j1(s)]ds,

(4.79)

where, by convention, Z(j, j, x) ≐ Z(j, x). Referring to the definition of Z in (4.77), note that

for j2 > j1 + 1, Z(j1, j2, x) = 0 unless (i2 or i3) are greater than zero and (i5 or i6) are greater

than zero. In the case that j2 = j1 +1, Z(j1, j2, x) = 0 unless (i2 or i3) are greater than zero and

(i3 or i6) are greater than zero. Therefore (4.32) implies there exists a c̃Z ∈ (0,∞) such that for

r ∈ Sn and j1 < j2,

Z(j1, j2, nr) ≤ c̃ZnL[rj1rj2 + rj1−1rj2 + rj1rj2−1 + rj1−1rj2−1 + 1{j2=j1+1}rj1]. (4.80)
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Combining this with (4.33) and (4.79), we have for some κ′3, κ3 ∈ (0,∞) and all n,K ∈ N

K

∑
j1=0

K

∑
j2=0

j1j2⟨Mn
j1 ,M

n
j2⟩(T )

≤ κ
′
3

n

⎡⎢⎢⎢⎢⎣
∫

T

0

K

∑
j1=0

K

∑
j2=0

(j1 + 1)(j2 + 1)πnj1(t)π
n
j2(t)dt + ∫

T

0

K+1

∑
j=1

j(j + 1)πnj (t)dt
⎤⎥⎥⎥⎥⎦

≤ κ3

n

⎡⎢⎢⎢⎢⎣
∫

T

0

⎛
⎝
K

∑
j=0

j2πnj (t) + (K + 1)2πnK+1(t)
⎞
⎠
dt + 1

⎤⎥⎥⎥⎥⎦
.

(4.81)

Recalling πn(t) = πn(0) +An(t) +Mn(t) we have that for all K,n ∈ N

E∫
T

0

K

∑
j=0

j2πnj (t)dt = ∫
T

0

K

∑
j=0

j2πnj (0)dt +E∫
T

0

K

∑
j=0

j2Anj (t)dt + ∫
T

0
E

K

∑
j=0

j2Mn
j (t)dt

≤ E∫
T

0

K

∑
j=0

j2Anj (t)dt + κ4,

where κ4 = cπ(0)T and the last inequality follows on using the fact that Mn
j (t) is a martingale.

Thus, from (4.46), for some κ5 ∈ (0,∞) and all K,n ∈ N

E∫
T

0

K

∑
j=0

j2πnj (t)dt ≤
κ5

nL
E∫

T

0

K

∑
j=1

j2∫
t

0
[ζ(j − 1, nπn(s)) − ζ(j, nπn(s))]dsdt

+ κ5E∫
T

0

K

∑
j=1

j2∫
t

0
[πnj+1(s) − πnj (s)]dsdt + κ5.

(4.82)

Using the fact that for any a0, . . . , aK ∈ R

K

∑
j=1

j2[aj−1 − aj] =
K

∑
j=1

[(j − 1)2aj−1 − j2aj + (2j − 1)aj−1] = −K2aK +
K

∑
j=1

(2j − 1)aj−1

and

K

∑
j=0

j2[aj+1 − aj] =
K

∑
j=0

[(j + 1)2aj+1 − j2aj − (2j + 1)aj+1] = (K + 1)2aK+1 −
K

∑
j=0

(2j + 1)aj+1
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in (4.82) we have that, for some κ6 ∈ (0,∞) and all K,n ∈ N

E∫
T

0

K

∑
j=0

j2πnj (t)dt ≤
κ5

nL
E∫

T

0
∫

t

0

K

∑
j=0

(2j − 1)ζ(j − 1, nπn(s))dsdt

+ κ5E∫
T

0
∫

t

0
(K + 1)2πnK+1(s)dsdt + κ5

≤ κ6E∫
T

0
[K2 sup

0≤s≤t
πnK+1(s) + sup

0≤s≤t

K

∑
j=0

jπnj (s)]dt + κ6

(4.83)

where the second inequality follows from (4.73). Thus it follows from (4.75) and (4.81) that for

some κ7 ∈ (0,∞)

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jMn(t)
RRRRRRRRRRR

2

≤ κ3

n

⎡⎢⎢⎢⎢⎣
∫

T

0
E

K

∑
j=0

j2πnj (t)dt + γnKT + 1

⎤⎥⎥⎥⎥⎦

≤ κ7

n

⎡⎢⎢⎢⎢⎣
1 + γnK + ∫

T

0
E sup

0≤u≤s

RRRRRRRRRRR

K

∑
j=0

jπnj (u)
RRRRRRRRRRR

2

ds

⎤⎥⎥⎥⎥⎦
, (4.84)

where γnK = E(K2 sup0≤s≤T π
n
K+1(s)). Combining (4.70), (4.74), (4.84), and using the fact that

∣∑∞j=0 jπ
n
j (0)∣ ≤ cπ(0),

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jπnj (t)
RRRRRRRRRRR

2

≤ κ8
⎛
⎝

1 +E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jAnj (t)
RRRRRRRRRRR

2

+E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jMn
j (t)

RRRRRRRRRRR

2⎞
⎠

≤ κ9
⎛
⎝

1 + γnK + 1

n
∫

T

0
E sup

0≤s≤t

RRRRRRRRRRR

K

∑
j=0

jπnj (s)
RRRRRRRRRRR

2

ds
⎞
⎠
.

By Gronwall’s lemma (since the above inequality also holds for all T1 ≤ T ), there is a κ10 ∈ (0,∞)

such that for all n,K ∈ N

E sup
0≤t≤T

RRRRRRRRRRR

K

∑
j=0

jπnj (t)
RRRRRRRRRRR

2

≤ κ10 (1 + γnK) .

Sending K → ∞ and recalling from Lemma 12 that for each fixed n, as K → ∞, γnK → 0 we

have for all n

E sup
0≤t≤T

RRRRRRRRRRR

∞
∑
j=0

jπnj (t)
RRRRRRRRRRR

2

≤ κ10

where κ10 is independent of n. This proves (4.68). Finally, (4.69) follows from (4.68) upon

sending K →∞ in (4.83).
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4.4.2 Tightness

We now proceed with the proof of tightness of {(Xn, M̄n)}n∈N. Let for M ∈ R+,

VM ≐ {r ∈ S∣
∞
∑
i=0

iri ≤M} ,

where VM is equipped with the topology inherited from `2. We begin by establishing the

following Lipschitz property for F on VM .

Lemma 14. The map F is a Lipschitz function from VM to `2 for each M ∈ R+. Namely, there

exists an C(M) ∈ (0,∞) such that for any r, r̃ ∈ VM ,

∥F (r) − F (r̃)∥2 ≤ C(M)∥r − r̃∥2. (4.85)

Proof. Fix M ∈ R+. Let r, r̃ ∈ VM and, for i1 ∈ N0 and j, i2 ∈ N, recall Rj,i1,i2(r, r̃) from (4.36).

Using (4.37) and the fact that r, r̃ ∈ S, we have

(Rj,i1,i2(r, r̃))2 ≤ 3[ri2j − r̃i2j ]2

+ 3r̃2i2
j

⎡⎢⎢⎢⎢⎣

⎛
⎝

∞
∑

m=j+1

rm
⎞
⎠

L−i1−i2

−
⎛
⎝

∞
∑

m=j+1

r̃m
⎞
⎠

L−i1−i2⎤⎥⎥⎥⎥⎦

2

+ 3r̃2i2
j

⎡⎢⎢⎢⎢⎣

⎛
⎝

j−1

∑
m=0

rm
⎞
⎠

i1

−
⎛
⎝

j−1

∑
m=0

r̃m
⎞
⎠

i1⎤⎥⎥⎥⎥⎦

2

.

By an argument similar to the one used to derive (4.39) and an application of the Cauchy

Schwartz inequality we have the following inequality for all i1, i2 ≤ L, i2 > 0,

(Rj,i1,i2(r, r̃))
2 ≤ κ1 ([rj − r̃j]2 + (j + 1)r̃j∥r − r̃∥2

2) . (4.86)
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Using arguments analogous to those in the proof of Lemma 5 we have

∥F (r) − F (r̃)∥2 ≤ κ2λL!
⎛
⎝
∞
∑
j=0

k−1

∑
i1=0

L−i1
∑
i2=1

[Rj,i1,i2(r, r̃)]2⎞
⎠

1/2

+ 2k
⎛
⎝
∞
∑
j=0

(r − r̃)2
j

⎞
⎠

1/2

≤ κ3
⎛
⎝
∞
∑
j=0

[[rj − r̃j]2 + (j + 1)r̃j∥r − r̃∥2
2]
⎞
⎠

1/2

+ 2k∥r − r̃∥2

≤ κ4∥r − r̃∥2
⎛
⎝

1 +
∞
∑
j=0

jr̃j
⎞
⎠

1/2

+ 2k∥r − r̃∥2.

(4.87)

Since r, r̃ ∈ VM , (4.87) gives

∥F (r) − F (r̃)∥2 ≤ κ4(M + 1)1/2∥r − r̃∥2 + 2k∥r − r̃∥2

and thus with C(M) ≐ κ4(M + 1)1/2 + 2k, (4.85) is satisfied for all r, r̃ ∈ VM which proves the

result.

Recall the process Xn introduced in (4.13) and M̄n defined below (4.27). The following

proposition gives tightness of {(Xn, M̄n)}n∈N.

Proposition 6. Suppose that {πn}n∈N is as in the statement of Theorem 10 with

supn∈N∑∞j=0 j
2πnj (0) < ∞. Let Xn(0) = √

n(πn(0) − π0) and suppose that (4.20) is satisfied.

Then {(Xn, M̄n)}n∈N is a C-tight sequence of D([0, T ] ∶ (`2)2)-valued random variables.

Proof. We will make use of Theorem 17 in the Appendix. We first prove that {M̄n}n∈N is

tight. In order to show that condition (A) in Theorem 17 is satisfied for {M̄n}n∈N it suffices

(cf. Theorem 2.3.2 in (Joffe and Métivier, 1986)) to show that the condition is satisfied for the

real-valued process ⟨M̄n⟩(t) ≐ ∑∞j=0⟨M̄n
j ⟩(t). Fix ε ∈ (0, T ] and N ∈ [0, T − ε]. Let τn ≤ N be a

sequence of {Fnt }-stopping times. Then, (4.44) and (4.73) imply that for θ ∈ [0, ε]

∣⟨M̄n(τn + θ)⟩ − ⟨M̄n(τn)⟩∣

=
RRRRRRRRRRR

∞
∑
j=0

[∫
τn+θ

τn
∑
`∈Σ

⟨∆`, ej⟩2
λ

I(n)
∞
∏
i=0

(nπ
n
i (s)

ρi(`)
) + k∫

τn+θ

τn
[πnj+1(s) − πnj (s)]ds]

RRRRRRRRRRR
≤ κ1

∞
∑
j=0
∫

τn+θ

τn
[πnj (s) + πnj−1(s) + πnj+1(s)]ds

≤ κ1ε.
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Proof of (A) is now immediate.

We next show that {M̄n}n∈N satisfies condition (T1) in Theorem 17. For this we will apply

Theorem 16. We first verify {M̄n(t)}n∈N satisfies (a) of Theorem 16 for all t ∈ [0, T ]. It follows

from (4.34) that

sup
n∈N

E⟨M̄n⟩(T ) = sup
n∈N

nE⟨Mn⟩(T ) ≤ κ2. (4.88)

This, combined with Doob’s inequality, implies for each N ∈ N

sup
n∈N

N

∑
i=0

E sup
0≤t≤T

∣M̄n
i (t)∣ ≤ N + sup

n∈N

N

∑
i=0

E( sup
0≤t≤T

M̄n
i (t))2 ≤ N + κ3.

Using Markov’s inequality, part (a) of Theorem 16 follows.

We now verify condition (b) in Theorem 16 for {M̄n(t)}n∈N for each fixed t ∈ [0, T ]. Note

that ⟨M̄n
j ⟩(t) = n⟨Mn

j ⟩(t) and thus, from (4.28) and (4.33),

⟨M̄n
j ⟩(t) ≤ κ4∫

t

0
(πnj−1(s) + πnj (s) + πnj+1(s))ds. (4.89)

It follows from (4.89) and the Cauchy-Schwartz inequality that

∞
∑
j=N

E(M̄n
j (t))2 =

∞
∑
j=N

E⟨M̄n
j (t)⟩ ≤ κ5E∫

t

0

∞
∑

j=N−1

πnj (s)ds

≤ κ5
⎛
⎝

∞
∑

j=N−1

1

j2

⎞
⎠

1/2

∫
t

0
E
⎛
⎝

∞
∑

j=N−1

j2(πnj (s))2⎞
⎠

1/2

ds.

(4.90)

From (4.69),

sup
n∈N

E∫
T

0

∞
∑
j=0

j2(πnj (s))2ds ≤ sup
n∈N

E∫
T

0

∞
∑
j=0

j2πnj (s)ds ≐ κ6 < ∞. (4.91)

Using this observation in (4.90) we have

∞
∑
j=N

E(M̄n
j (t))2 ≤ κ7

⎛
⎝

∞
∑

j=N−1

1

j2

⎞
⎠

1/2

∫
t

0
E
⎛
⎝

∞
∑

j=N−1

j2πnj (s)
⎞
⎠

1/2

ds ≤ κ8
⎛
⎝

∞
∑

j=N−1

1

j2

⎞
⎠

1/2

.
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From Markov’s inequality we now see that for any δ > 0

lim
N→∞

sup
n∈N

P
⎛
⎝

∞
∑
j=N

(M̄n
j (t))2 > δ

⎞
⎠
= 0

which verifies part (b) of Theorem 16. Thus we have shown that {M̄n(t)}n∈N is a tight sequence

of `2-valued random variables for all t ∈ [0, T ]. From Theorem 17 it now follows that {M̄n}n∈N

is a tight sequence of D([0, T ] ∶ `2)-valued random variables.

We will now argue that {Xn}n∈N is a tight sequence of D([0, T ] ∶ `2)-valued random vari-

ables. Again, via Theorem 17, it suffices to show that {Xn(t)}n∈N is tight for every t ∈ [0, T ]

(which will follow from verifying conditions (a) and (b) in Theorem 16) and that {Xn}n∈N

satisfies condition (A) of Theorem 17. We first show that, for all t ∈ [0, T ], condition (a) in

Theorem 16 holds for {Xn(t)}n∈N. Namely we show that for each N ∈ N and t ∈ [0, T ]

lim
A→∞

sup
n∈N

P
⎛
⎝
N

∑
j=0

∣Xn
j (t)∣ > A

⎞
⎠
= 0. (4.92)

Fix ε > 0. From Lemma 13, there is a M ∈ (0,∞) such that

sup
n∈N

E
⎛
⎝

sup
0≤t≤T

∞
∑
j=0

jπnj (t)
⎞
⎠
≤ Mε

2
. (4.93)

Let Bn
M ≐ {sup0≤t≤T ∑∞j=0 jπ

n
j (t) ≤M}. Then for t ∈ [0, T ] and N ∈ N

P
⎛
⎝
N

∑
j=0

∣Xn
j (t)∣ > A

⎞
⎠
≤ P

⎛
⎝

sup
0≤t≤T

∞
∑
j=0

jπnj (t) >M
⎞
⎠
+ P

⎛
⎝
N

∑
j=0

∣Xn
j (t)∣ > A,Bn

M

⎞
⎠

≤ ε
2
+ P

⎛
⎝
N

∑
j=0

∣Xn
j (t)∣ > A,Bn

M

⎞
⎠
.

(4.94)

The Cauchy-Schwartz inequality yields

N

∑
i=0

∣Xn
j (t)∣ ≤

√
N

⎛
⎝
N

∑
j=0

∣Xn
j (t)∣2

⎞
⎠

1/2

≤
√
N∥Xn(t)∥2. (4.95)

Furthermore, from (4.23) and the triangle inequality,

∥Xn(t)∥2 ≤ ∥Xn(0)∥2 + ∥Ān(t)∥2 + ∥M̄n(t)∥2. (4.96)
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The definition of Ān in (4.27) gives

∥Ān(t)∥2 =
√
n∥An(t) − ∫

t

0
F (π(s))ds∥

2
.

The moment bound (4.68) proved in Lemma 13 implies

sup
n∈N

E sup
0≤t≤T

RRRRRRRRRRR

∞
∑
j=0

jπnj (t)
RRRRRRRRRRR

2

≐ κ7 < ∞. (4.97)

and thus, for some κ8 ∈ (0,∞),

sup
0≤t≤T

RRRRRRRRRRR

∞
∑
j=0

jπj(t)
RRRRRRRRRRR

2

≤ κ8 (4.98)

as well. From (4.49) and the Lipschitz property proved in Lemma 14, with M ≥ κ7 ∨ κ8 on the

set Bn
M ,

∥Ān(t)∥2 ≤
√
n∫

t

0
∥F (πn(s)) − F (π(s))∥2ds +

κ9√
n
≤ C(M)∫

t

0
∥Xn(s)∥2ds +

κ9√
n
.

Thus, from (4.96) and Gronwall’s lemma, on the set Bn
M , for all n ≥ 1

sup
0≤t≤T

∥Xn(t)∥2 ≤ κ10 (
1√
n
+ ∥Xn(0)∥2 + sup

0≤t≤T
∥M̄n(t)∥2) eC(M)T . (4.99)

From (4.88) and Doob’s inequality

sup
n∈N

E sup
0≤t≤T

∥M̄n(t)∥2
2 < ∞. (4.100)

Also by assumption, Xn(0) → x0 in `2. Thus for the given ε > 0, we can find α0 such that for

all α ≥ α0

P( sup
0≤t≤T

∥Xn(t)∥2 ≥
α√
N
,Bn

M) ≤ ε
2
.

Therefore from (4.94) and (4.95) we have that for all A ≥ α0√
N

,

sup
n∈N

P
⎛
⎝
N

∑
j=0

∣Xn
j (t)∣ > A

⎞
⎠
≤ ε

2
+ ε

2
= ε.
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Since ε > 0 is arbitrary we get (4.92). Thus, we have verified part (a) of Theorem 16 for

{Xn(t)}n∈N, for each t ∈ [0, T ].

We next consider part (b) of Theorem 16. Namely, we show that for every δ > 0 and

t ∈ [0, T ],

lim
N→∞

sup
n∈N

P
⎛
⎝

∞
∑
j=N

(Xn
j (t))2 > δ

⎞
⎠
= 0.

For this it suffices to show that

sup
n∈N

E sup
0≤t≤T

∞
∑
j=0

j2(Xn
j (t))2 < ∞. (4.101)

Recalling that Xn
j (t) =Xn

j (0) + Ānj (t) + M̄n
j (t) for each j ∈ N, it follows that

E sup
0≤t≤T

∞
∑
j=0

j2(Xn
j (t))2 ≤ 3 sup

n∈N

∞
∑
j=0

j2(Xn
j (0))2 + 3 sup

n∈N
E sup

0≤t≤T

∞
∑
j=0

j2(Ānj (t))2

+ 3 sup
n∈N

E sup
0≤t≤T

∞
∑
j=0

j2(M̄n
j (t))2.

(4.102)

Using the definitions of Ān, An, and F in (4.27), (4.46), and (4.4), respectively, we can write

(Ānj (t))2 ≤ κ11

⎧⎪⎪⎨⎪⎪⎩
∫

t

0
n [(n −L)!

n!
ζ(j, nπn(s)) − ζ̄(j, π(s))]

2

ds

+ ∫
t

0
n [(n −L)!

n!
ζ(j − 1, nπn(s)) − ζ̄(j − 1, π(s))]

2

ds

+ ∫
t

0
n [πnj (s) − πj(s)]

2
ds + ∫

t

0
n [πnj+1(s) − πj+1(s)]

2
ds

⎫⎪⎪⎬⎪⎪⎭
.

(4.103)

From (4.48) and in a similar manner as in (4.41) we have

n [(n −L)!
n!

ζ(j, nπn(s)) − ζ̄(j, π(s))]
2

≤ κ12 {(πnj (s))2 + n [ζ̄(j, πn(s)) − ζ̄(j, π(s))]2}

≤ κ13

⎧⎪⎪⎨⎪⎪⎩
(πnj (s))2 + n

k−1

∑
i1=0

L−i1
∑
i2=1

Rj,i1,i2(πn(s), π(s))2
⎫⎪⎪⎬⎪⎪⎭
,
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where Rj,i1,i2 is as in (4.36). By (4.86) and the Cauchy Schwartz inequality we now have,

nRj,i1,i2(πn(s), π(s))2 ≤ κ14

⎡⎢⎢⎢⎢⎣
(Xn

j (s))2 + πj(s)(
∞
∑
m=0

∣Xn
m(s)∣)

2⎤⎥⎥⎥⎥⎦

≤ κ14 [(Xn
j (s))2 + πj(s)(

∞
∑
m=0

1

m2
)

∞
∑
m=0

m2(Xn
m(s))2] .

Therefore

n [(n −L)!
n!

ζ(j, nπn(s)) − ζ̄(j, π(s))]
2

≤ κ15 {(πnj (s))2 + (Xn
j (s))2 + πj(s)

∞
∑
m=0

m2(Xn
m(s))2} .

Combining this estimate with (4.103) and (4.91) yields

E
∞
∑
j=0

j2(Ānj (t))2 ≤ κ16E
⎧⎪⎪⎨⎪⎪⎩
∫

t

0

∞
∑
j=1

j2 [(Xn
j−1(s))2 + (Xn

j (s))2 + (Xn
j+1(s))2

+(πj(s) + πj−1(s))
∞
∑
m=0

m2(Xn
m(s))2]ds} + κ16

≤ κ17E∫
t

0

⎛
⎝

1 +
∞
∑
j=1

j2πj(s)
⎞
⎠
⎛
⎝
∞
∑
j=1

j2(Xn
j (s))2⎞

⎠
ds + κ17.

(4.104)

Additionally, it follows from (4.89) and (4.69) that,

E sup
0≤t≤T

∞
∑
j=0

j2M̄n
j (t)2 ≤ κ′18E

∞
∑
j=0

j2⟨M̄n
j ⟩T ≤ κ18∫

T

0

⎡⎢⎢⎢⎢⎣
1 +E

∞
∑
j=0

j2πnj (s)
⎤⎥⎥⎥⎥⎦
ds ≤ κ19.

Therefore, from (4.20), (4.102), and (4.104), for all t ∈ [0, T ],

E sup
0≤t≤T

∞
∑
j=0

j2(Xn
j (t))2 ≤ κ20 + κ20∫

T

0

⎛
⎝

1 +
∞
∑
j=1

j2πj(t)
⎞
⎠
E sup

0≤s≤t

⎛
⎝
∞
∑
j=1

j2(Xn
j (s))2⎞

⎠
dt.

From (4.69) and Fatou’s lemma, ∫ T0 ∑
∞
j=1 j

2πj(s)ds < ∞ and thus by Gronwall’s lemma

sup
n∈N

E sup
0≤t≤T

∞
∑
j=0

j2(Xn
j (t))2 ≤ κ19e

κ20 ∫ T0 (1+∑∞j=1 j2πj(s)) < ∞.

This proves (4.101) and verifies part (b) of Theorem 16 for {Xn(t)}n∈N for each t ∈ [0, T ]. Thus

{Xn(t)}n∈N is a tight sequence of `2-valued random variables for every t ∈ [0, T ].
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We now show that condition (A) of Theorem 17 holds for {Xn}n∈N. Since Xn(t) =Xn(0)+

Ān(t) + M̄n(t) and we have shown the condition is satisfied by {M̄n}n∈N, it suffices to show

that the condition holds for {Ān}n∈N. Let N,η, ε, θ > 0, N ≤ T − θ, and suppose {τn}n∈N is a

family of stopping times such that τn ≤ N . From the definition of Ān (cf. (4.27)) and (4.49) we

have that

∥Ān(τn + θ) − Ān(τn)∥2
≤ ∫

τn+θ

τn

√
n ∥F (πn(t)) − F (π(t))∥2 dt +

κ21√
n

(4.105)

where κ21 is independent of the choice of τn and N . Fix n0 ∈ N such that η − κ21√
n0

> 0 and let

η′ = η − κ21√
n0

. Recall κ7, κ8 introduced in (4.97) and (4.98), and Bn
M introduced below (4.93).

Select M ∈ (0,∞) large enough that M > κ7 ∨ κ8 and (4.93) holds. Then for all n ≥ n0,

P{∥∫
τn+θ

τn

√
n[F (πn(t)) − F (π(t))]dt∥

2
> η′}

≤ P{∥∫
τn+θ

τn

√
n[F (πn(t)) − F (π(t))]dt∥

2
> η′,Bn

M} + P
⎧⎪⎪⎨⎪⎪⎩

sup
0≤t≤T

∞
∑
j=0

jπnj (t) >M
⎫⎪⎪⎬⎪⎪⎭

≤ P{∥∫
τn+θ

τn

√
n[F (πn(t)) − F (π(t))]dt∥

2
> η′,Bn

M} + ε
2
.

(4.106)

It follows from the Lipschitz property of F proved in Lemma 14 that

P{∫
τn+θ

τn

√
n ∥F (πn(t)) − F (π(t))]∥2 dt > η′,Bn

M} ≤ P{C(M)∫
τn+θ

τn
∥Xn(t)∥2 dt > η′,Bn

M} .

(4.107)

Recall from (4.99) that for some C̃(M) ∈ (0,∞) on the set Bn
M

C(M) sup
0≤t≤T

∥Xn(t)∥2 ≤ C̃(M)(1 + sup
0≤t≤T

∥M̄n(t)∥2).

Thus from (4.107), Markov’s inequality, and (4.100) we have

P{∫
τn+θ

τn

√
n ∥F (πn(t)) − F (π(t))]∥2 dt > η′,Bn

M} ≤ P{θC̃(M)(1 + sup
0≤t≤T

∥M̄n(t)∥2) > η′}

≤ θC̃(M)(1 +E sup0≤t≤T ∥M̄n(t)∥2)
η′

≤ θC̃(M)κ22

(4.108)
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Combining (4.106) and (4.108) gives, whenever θ ≤ δ,

sup
0≤θ≤δ

P{∥∫
τn+θ

τn

√
n[F (πn(t)) − F (π(t))]dt∥

2
> η′} ≤ C(M)κ22δ +

ε

2
.

Selecting δ small enough that the first term on the RHS is less than ε/2 we have,

sup
0≤θ≤δ

P{∥∫
τn+θ

τn

√
n[F (πn(t)) − F (π(t))]dt∥

2
> η′} ≤ ε

2
+ ε

2
= ε. (4.109)

Therefore, combining (4.105) and (4.109), gives

sup
n≥n0

sup
0≤θ≤δ

P{∥Ān(τn + θ) − Ān(τn)∥2
> η} ≤ ε

which shows that condition (A) of Theorem 17 is satisfied for {Ān}n∈N. Therefore, as dis-

cussed earlier, {Xn}n∈N is a tight sequence of D([0, T ] ∶ `2)-valued random variables and thus

{(Xn, M̄n)}n∈N is a tight sequence of D([0, t] ∶ (`2)2)-valued random variables.

Finally, the C-tightness of {(Xn, M̄n)}n∈N is immediate from the estimate

jT (Xn) = jT (M̄n) ≤ 2 + 2k√
n
, n ∈ N

which follows as in the proof of Proposition 5.

4.4.3 Convergence

In this section we give the proofs of Proposition 4 and Theorem 14. Since we have shown

tightness of {(Xn, M̄n)}n∈N in Section 4.4.2, all that remains in order to complete the proof of

Theorem 14 is to characterize the weak limit points of this sequence of processes. This will be

argued by showing that the limit point of any weakly convergent subsequence of {Xn}n∈N will

be a solution to the SDE (4.14) and that uniqueness holds for (4.14) in an appropriate class,

which will also prove Proposition 4. We begin by establishing a uniform integrability property

for the sequence {M̄n}n∈N.

Lemma 15. Suppose {πn}n∈N satisfies conditions in Proposition 6. Then the sequence

{sup0≤t≤T ∑∞j=0 ∣M̄n
j (t)∣2}n∈N is uniformly integrable.
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Proof. It follows from the Cauchy-Schwartz and Burkholder-Davis-Gundy inequalities that

sup
n∈N

E sup
0≤t≤T

⎛
⎝
∞
∑
j=0

∣M̄n
j (t)∣2

⎞
⎠

2

≤ sup
n∈N

(
∞
∑
m=0

1

m2
)
∞
∑
j=0

E sup
0≤t≤T

j2∣M̄n
j (t)∣4 ≤ κ1 sup

n∈N

∞
∑
j=0

j2E[M̄n
j ](T )2.

(4.110)

Recalling the definition of Mn from (4.25), for each j, E[M̄n
j ](T )2 can be written as

E[M̄n
j ](T )2 = E

⎧⎪⎪⎨⎪⎪⎩
∑
`∈Σ

1

n
⟨ej ,∆`∆

T
` ej⟩2N`

⎛
⎝
nλ

(n
L
) ∫

T

0

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds

⎞
⎠

+ 1

n
[Dj (k∫

T

0
nπnj (s)ds) +Dj+1 (k∫

T

0
nπnj+1(s)ds)]}

2

The first term in the expectation on the RHS of the above equation corresponds to the stream of

incoming jobs assigned to queues of length j. From (4.29), (4.30), (4.33), and the independence

of N`,N`′ for ` ≠ `′ we have

E
⎛
⎝∑`∈Σ

1

n
⟨ej ,∆`∆

T
` ej⟩2N`

⎛
⎝
nλ

(n
L
) ∫

T

0

∞
∏
i=0

(nπ
n
i (s)

ρi(`)
)ds

⎞
⎠
⎞
⎠

2

≤ κ2E∫
T

0
[πnj (s) + πnj−1(s)]ds.

Similarly,

E( 1

n
[Dj (k∫

T

0
nπnj (s)ds) +Dj+1 (k∫

T

0
nπnj+1(s)ds)])

2

≤ κ3E∫
T

0
[πnj (s) + πnj+1(s)]ds.

Combining these estimates and using (4.69)

sup
n∈N

∞
∑
j=0

j2E[M̄n
j ](T )2 ≤ κ4 sup

n∈N
E∫

T

0

∞
∑
j=1

j2(πnj−1(s) + πnj (s) + πnj+1(s)) < ∞

which, in view of (4.110), gives the desired uniform integrability.

The following lemma together with (4.101) shows that any weak limit point X of {Xn}n∈N

satisfies X(t) ∈ ˜̀
2 for all t ∈ [0, T ], a.s.

Lemma 16. Let zn, z be D([0, T ] ∶ `2)-valued random variables such that

sup
0≤t≤T

∥zn(t) − z(t)∥2 → 0 in probability as n→∞.
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Suppose that supn∈NE sup0≤t≤T ∑∞j=0 j
2(znj (t))2 < ∞. Then sup0≤t≤T ∑∞j=0 j

2(zj(t))2 < ∞ almost

surely and sup0≤t≤T ∣∑∞j=0 z
n
j (t) −∑∞j=0 zj(t)∣ → 0 in probability.

Proof. Let κ = supn∈NE sup0≤t≤T ∑∞j=0 j
2[znj (t)]2. Note that

sup
n∈N

E sup
0≤t≤T

∞
∑
j=0

∣znj (t)∣ ≤
⎛
⎝
∞
∑
j=1

1

j2

⎞
⎠

1/2 √
κ < ∞.

Also, by Fatou’s lemma E sup0≤t≤T ∑∞j=0 j
2(zj(t))2 ≤ κ and so we have sup0≤t≤T ∑∞j=0 ∣zj(t)∣ < ∞

almost surely as well. Now

E
⎡⎢⎢⎢⎢⎣

sup
0≤t≤T

RRRRRRRRRRR

∞
∑
j=0

znj (t) −
∞
∑
j=0

zj(t)
RRRRRRRRRRR
∧ 1

⎤⎥⎥⎥⎥⎦

≤ E
⎡⎢⎢⎢⎢⎣

sup
0≤t≤T

RRRRRRRRRRR

m

∑
j=0

znj (t) −
m

∑
j=0

zj(t)
RRRRRRRRRRR
∧ 1

⎤⎥⎥⎥⎥⎦
+E

⎡⎢⎢⎢⎢⎣
sup

0≤t≤T

RRRRRRRRRRR

∞
∑

j=m+1

znj (t)
RRRRRRRRRRR
∧ 1

⎤⎥⎥⎥⎥⎦
+E

⎡⎢⎢⎢⎢⎣
sup

0≤t≤T

RRRRRRRRRRR

∞
∑

j=m+1

zj(t)
RRRRRRRRRRR
∧ 1

⎤⎥⎥⎥⎥⎦
≡ Tm1 (n) + Tm2 (n) + Tm3 (n).

Then for κ1 ∈ (0,∞)

(Tm2 (n))2 ≤
⎛
⎝

∞
∑

j=m+1

1

j2

⎞
⎠
κ1 and (Tm3 (n))2 ≤

⎛
⎝

∞
∑

j=m+1

1

j2

⎞
⎠
κ1.

The result now follows on first sending n→∞ and then m→∞.

The following result that shows that Φ(t) is a trace class operator will be useful in char-

acterizing the martingale term in the limiting diffusion. Note that, from the definition (4.17),

Φ(t) is a non-negative operator.

Lemma 17. For each t ∈ [0, T ], Φ(t) is a non-negative trace class operator. Denote by a(t)

the non-negative square root of Φ(t). Then ∫ T0 ∥a(s)∥2
HSds < ∞.

Proof. We first show that Φ(t) is a trace class operator. Since Φ(t) is non-negative (and hence

self-adjoint) it suffices to show
∞
∑
j=0

⟨ej ,Φ(s)ej⟩2 < ∞
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Using an argument similar to that used in the derivation of (4.31) one can write ⟨ej ,Φ(s)ej⟩2,

as

⟨ej ,Φ(s)ej⟩2 = λL!Z̄(j, π(s)) + k(πj(s) + πj+1(s)) (4.111)

where the definition of Z̄ is analogous to Z, given as,

Z̄(j, π(s)) ≐
k−2

∑
i1=0

(∑j−1
m=0 πm(s))

i1

i1!

L−i1
∑
i2=0

πj−1(s)i2
i2!

L−i1−i2
∑
i3=0

[i2 ∧ (k − i1)+ − i3 ∧ (k − i1 − i2)+]2

× πj(s)
i3

i3!

(∑∞m=j+1 πm(s))L−i1−i2−i3

(L − i1 − i2 − i3)!
.

(4.112)

Using arguments as in (4.33) and (4.80) it is easy to see that there exists cZ̄ ∈ (0,∞) such that

for all j ∈ N0,

Z̄(j, π(s)) ≤ cZ̄(πj−1(s) + πj(s)). (4.113)

From (4.111) and (4.113) it follows that there exists a κ1 ∈ (0,M) such that,

∞
∑
j=0

⟨ej ,Φ(t)ej⟩2 ≤ κ2

∞
∑
j=0

[πj−1(t) + πj(t) + πj+1(t)] ≤ 3κ1.

Therefore, Φ(t) is a trace class operator. Finally, note that

∫
T

0
∥a(s)∥2

HSds = ∫
T

0

∞
∑
j=0

⟨a(s)ej , a(s)ej⟩2ds = ∫
T

0

∞
∑
j=0

⟨ej ,Φ(s)ej⟩2ds ≤ 3κ1T

which completes the proof.

We now proceed with the proofs of Proposition 4 and Theorem 14.

Proof of Proposition 4. The existence of a (X(t))0≤t≤T as in the statement of Proposition 4 will

be proved as part of Theorem 14. We now consider the second statement in Proposition 4 and

let (X(t))0≤t≤T , (X̃(t))0≤t≤T be two {Ft}-adapted processes solving (4.15) with sample paths

in C([0, T ] ∶ `2) such that X(t) ∈ ˜̀
2 and X̃(t) ∈ ˜̀

2 for all t, almost surely. In order to show that

X(t) = X̃(t) for all t ∈ [0, T ] almost surely it suffices to show the following Lipschitz property
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on G: There exists a C ∈ (0,∞) such that for all x, x̃ ∈ ˜̀
2,

sup
0≤t≤T

∥G(x,π(t)) −G(x̃, π(t))∥2 ≤ C∥x − x̃∥2. (4.114)

Note from (4.4), (4.5), and (4.19) that for j ∈ N0 and (x, r) ∈ ˜̀
2 × S,

Gj(x, r) = λL![ξ1
j−1(x, r)− ξ1

j (x, r)+ ξ2
j−1(x, r)− ξ2

j (x, r)+ ξ3
j−1(x, r)− ξ3

j (x, r)] +kξ4
j (x) (4.115)

where

ξ1
j (x, r) ≐

k−1

∑
i1=0

i1
(∑j−1

m=0 rm)
i1−1

i1!

L−i1
∑
i2=1

[i2 ∧ (k − i1)]
(rj)i2
i2!

(∑∞m=j+1 rm)L−i1−i2

(L − i1 − i2)!
j−1

∑
m=0

xm,

ξ2
j (x, r) ≐

k−1

∑
i1=0

(∑j−1
m=0 rm)

i1

i1!

L−i1
∑
i2=1

i2[i2 ∧ (k − i1)]
(rj)i2−1

i2!

(∑∞m=j+1 rm)L−i1−i2

(L − i1 − i2)!
xj ,

ξ3
j (x, r) ≐

k−1

∑
i1=0

(∑j−1
m=0 rm)

i1

i1!

L−i1
∑
i2=1

(L − i1 − i2)[i2 ∧ (k − i1)]
(rj)i2
i2!

(∑∞m=j+1 rm)L−i1−i2−1

(L − i1 − i2)!
∞
∑

m=j+1

xm,

and

ξ4
j (x) = [xj+1 − xj].

Also, let ξi ≐ (ξij)∞j=0 for i = 1,2,3,4. Using the triangle inequality, it suffices to show that

(4.114) holds with G replaced with ξi, i = 1,2,3,4. Since π(t) ∈ S for all t ∈ [0, T ]

sup
0≤t≤T

∥ξ1(x,π(t)) − ξ1(x̃, π(t))∥2
2 ≤ κ′1 sup

0≤t≤T

∞
∑
j=0

πj(t)2
⎡⎢⎢⎢⎣

j−1

∑
m=0

xm −
j−1

∑
m=0

x̃m
⎤⎥⎥⎥⎦

2

≤ κ′1 sup
0≤t≤T

∞
∑
j=0

jπj(t)∥x − x̃∥2
2

≤ κ1∥x − x̃∥2
2,

(4.116)

where the last inequality is from (4.98). Also,

sup
0≤t≤T

∥ξ2(x,π(t)) − ξ2(x̃, π(t))∥2
2 ≤ κ2

∞
∑
j=0

[xj − x̃j]2 = κ2∥x − x̃∥2
2.
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Using the fact that ∑∞m=0 xm = ∑∞m=0 x̃m = 0 and the calculation in (4.116)

sup
0≤t≤T

∥ξ3(x,π(t)) − ξ3(x̃, π(t))∥2
2 ≤ κ′3 sup

0≤t≤T

∞
∑
j=0

πj(t)2
⎡⎢⎢⎢⎢⎣

∞
∑

m=j+1

xm −
∞
∑

m=j+1

x̃m

⎤⎥⎥⎥⎥⎦

2

= κ′3 sup
0≤t≤T

∞
∑
j=0

πj(t)2
⎡⎢⎢⎢⎣

j

∑
m=0

x̃m −
j

∑
m=0

xm
⎤⎥⎥⎥⎦

2

≤ κ3∥x − x̃∥2
2.

Finally,

∥ξ4(x) − ξ4(x̃)∥2
2 ≤

∞
∑
j=0

[xj − x̃j]2 +
∞
∑
j=0

[xj+1 − x̃j+1]2 ≤ 2∥x − x̃∥2
2.

Combining the above Lipschitz estimates for ξi, i = 1,2,3,4, we have (4.114) and the result

follows.

We now proceed to the proof of Theorem 14.

Proof of Theorem 14. From Proposition 6 {(Xn, M̄n)}n∈N is C-tight in D([0, T ] ∶ (`2)2). Sup-

pose (X,M̄) is a weak limit of a subsequence of {(Xn, M̄n)}n∈N (also indexed by {n}) given

on some probability space (Ω,F ,P). Let m ∈ N and H ∶ (`2 × `2)m → R be a bounded and

continuous function. For s ≤ t ≤ T and 0 ≤ t1 ≤ . . . ≤ tm ≤ s we let ξni = (Xn(ti), M̄n(ti)) and

ξi = (X(ti), M̄(ti)). Then, for all j ∈ N0,

EH(ξ1, . . . , ξm)[M̄j(t) − M̄j(s)] = lim
n→∞

EH(ξn1 , . . . , ξnm)[M̄n
j (t) − M̄n

j (s)] = 0

where the first equality comes from the uniform integrability property proved in Lemma 15 and

the second comes from the fact that M̄n is a martingale for each n ∈ N. It follows that M̄ is a

{Ft}-martingale where Ft = σ{X(s), M̄(s), s ≤ t}.

As was shown in (4.79),

⟨M̄n
i , M̄

n
j ⟩(t) = n⟨Mn

i ,M
n
j ⟩(t)

= λ

(n
L
) ∫

t

0
Z(i, j, nπn(s))ds − k∫

t

0
1{i=j+1}π

n
i (s)

− k∫
t

0
1{i+1=j}π

n
j (s)ds + k∫

t

0
1{i=j}(πnj (s) + πnj+1(s))ds

(4.117)
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(see (4.31) and (4.77) for definition of Z). Using similar arguments as in (4.77), we have the

estimate

⟨ei,Φ(s)ej⟩2 = λL!Z̄(i, j, π(s)) − k1{i+1=j}πj(s) − k1{i=j+1}πi(s) + k1{i=j}(πj(s) + πj+1(s)),

where for i < j,

Z̄(i, j, π(s)) ≐
k−2

∑
i1=0

(∑i−2
m=0 πm(s))i1

i1!

k−i1−1

∑
i2=0

πi−1(s)i2
i2!

k−i1−i2−1

∑
i3=0

[i2 − i3]
πi(s)i3
i3!

×
k−i1−i2−i3−1

∑
i4=0

(∑j−2
m=i+1 πm(s))

i4

i4!

L−∑4
n=1 in

∑
i5=0

πj−1(s)i51{j>i+1}
i5!

×
L−∑5

n=1 in

∑
i6=0

[(1{j=i+1}(i3 − i5) + i5) ∧ (k −
4

∑
n=1

in)
+
− i6 ∧ (k −

5

∑
n=1

in)
+
]

× πj(s)
i6

i6!

(∑∞m=j+1 πm(s))L−∑
6
n=1 in

(L −∑6
n=1 in)!

,

for i > j, Z̄(i, j, π(s)) ≐ Z̄(j, i, π(s)), and for i = j, Z̄(j, j, π(s)) ≐ Z̄(j, π(s)), where Z̄(j, r) is

defined in (4.112). Using arguments similar to those used in (4.47) and (4.48) one can write

∣Z(i, j, nπn(s)) − n!

(n −L)! Z̄(i, j, πn(s))∣ ≤ κ1n
L−1.

It follows from this, (4.117), (4.111), and the fact that πn → π in probability that

sup
0≤t≤T

∣⟨M̄n
i (t), M̄n

j (t)⟩ − ∫
t

0
⟨ei,Φ(s)ej⟩2ds∣ → 0

in probability. A similar argument as in Lemma 15 shows that {⟨M̄n
i , M̄

n
j ⟩t}n∈N is uniformly

integrable for each t ∈ [0, T ] and i, j ∈ N0. Applying the above convergence and uniform

integrability properties,

EH(ξ1, . . . , ξm)[⟨M̄i, M̄j⟩t − ⟨M̄i, M̄j⟩s − ∫
t

s
⟨ei,Φ(u)ej⟩2du]

= lim
n→∞

EH(ξn1 , . . . , ξnm)[⟨M̄n
i , M̄

n
j ⟩t − ⟨M̄n

i , M̄
n
j ⟩s − ∫

t

s
⟨ei,Φ(u)ej⟩2du] = 0.
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Also from Lemma 15 and Fatou’s lemma E sup0≤t≤T ∑∞j=0 ∣M̄j(t)∣2 < ∞. Thus we have that

M̄ ≐ (M̄j)j∈N0 is a collection of square integrable {Ft}-martingales with

⟨M̄i, M̄j⟩(t) = ∫
t

0
⟨ei,Φ(s)ej⟩2ds, t ∈ [0, T ].

From Theorem 8.2 of (Da Prato and Zabczyk, 2014) it now follows that there is a `2-cylindrical

Brownian motion {(Wt(h))0≤t≤T ∶ h ∈ `2} on some extension (Ω̄, F̄ , P̄,{F̄t}) of the filtered

probability space (Ω,F ,P,{Ft}) such that

M̄(t) = ∫
t

0
a(s)dW (s). (4.118)

Recall the representation of Xn in terms of Ān and M̄n from (4.26). We now argue that

together with Xn and M̄n, Ān(⋅) converges to ∫ ⋅0 G(X(s), π(s))ds in D([0, T ] ∶ `2), in distribu-

tion, as n→∞ (along the chosen subsequence). The definition of Ān in (4.27) and the estimate

in (4.49) imply that

sup
0≤t≤T

∥Ān(t) − ∫
t

0

√
n[F (πn(s)) − F (π(s))]ds∥

2
≤ κ2√

n
. (4.119)

For r, r̃ ∈ S such that (r − r̃) ∈ ˜̀
2, the i-th component of F (r) − F (r̃) can be written

[F (r) − F (r̃)]i = ∫
1

0

∂

∂u
Fi(ru + (1 − u)r̃)du

= ∫
1

0
Gi((r − r̃), ru + (1 − u)r̃)du

= Gi(r − r̃, r̃) + ∫
1

0
[Gi((r − r̃, ru + (1 − u)r̃) −Gi(r − r̃, r̃)]du.

Therefore, observing that cGi(x, r) = Gi(cx, r) for c ∈ R and (x, r) ∈ ˜̀
2 × S and noting from

(4.101) that Xn(s) ∈ ˜̀
2 for every s ∈ [0, T ] almost surely, we can write

√
n[F (πn(s)) − F (π(s))]i = Gi(Xn(s), π(s)) +Rni (s) (4.120)

where

Rni (s) = ∫
1

0
[Gi(Xn(s), πn(s)u + (1 − u)π(s)) −Gi(Xn(s), π(s))]du.
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Thus
√
n[F (πn(s)) − F (π(s))] = G(Xn(s), π(s)) +Rn(s)

where Rn(s) ≐ (Rni (s))i∈N0 . We now show that ∫ T0 ∥Rn(s)∥2ds → 0 in probability as n → ∞.

Since ∑jm=0X
n
m(s) = −∑∞m=j+1X

n
m(s), it follows from (4.37) that for r, r̃ ∈ S

∥ξi(Xn(s), r) − ξi(Xn(s), r̃)∥2
2

≤ κ′3
∞
∑
j=0

⎛
⎝

j

∑
m=0

∣Xn
m(s)∣

⎞
⎠

2 ⎡⎢⎢⎢⎢⎣
[r − r̃]2

j + r̃j
⎛
⎝

j−1

∑
i=0

[r − r̃]i
⎞
⎠

2

+ r̃j
⎛
⎝

∞
∑
i=j+1

[r − r̃]i
⎞
⎠

2⎤⎥⎥⎥⎥⎦

≤ κ3
⎛
⎝
∞
∑
j=0

j2∣Xn
j (s)∣2

⎞
⎠

∞
∑
j=0

[jr̃j∥r − r̃∥2
2 + [r − r̃]2

j]

for i = 1,2,3. The triangle inequality, (4.115), and the observation that sup0≤s≤T ∑∞j=0 jπj(s) < ∞

(see (4.98)) then implies that

∥G(Xn(s), πn(s)u + (1 − u)π(s)) −G(Xn(s), π(s))∥2
2 ≤ κ3

⎛
⎝
∞
∑
j=0

j2∣Xn
j (s)∣2

⎞
⎠
∥πn(s) − π(s)∥2

2.

Since sup0≤s≤T ∥πn(s) − π(s)∥2 → 0 in probability and, from (4.101),

supn∈NE sup0≤s≤T ∑∞j=0 j
2∣Xn

j (s)∣2 < ∞, it follows that

sup
0≤u≤1

sup
0≤s≤T

∥G(Xn(s), πn(s)u + (1 − u)π(s)) −G(Xn(s), π(s))∥2 → 0

in probability, as n→∞ and thus

∫
T

0
∥Rn(s)∥2ds→ 0, in probability. (4.121)

In view of (4.119), (4.120), and (4.121) it now suffices to show that, along the subsequence

(Xn, M̄n,∫
⋅

0
G(Xn(s), π(s))ds) ⇒ (X,M̄,∫

⋅

0
G(X(s), π(s))ds)

in D([0, T ] ∶ (`2)3). By appealing to the Skorohod representation theorem we can assume

without loss of generality that (Xn, M̄n) converges almost surely in D([0, T ] ∶ (`2)2) to (X,M̄).
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From (4.101) and Fatou’s lemma we also have

sup
0≤t≤T

∞
∑
j=0

j2(Xj(t))2 < ∞ a.s.

Also, since ∑∞j=0X
n
j (t) = 0 for all t ∈ [0, T ] and n ∈ N, by Lemma 16 and (4.101), we have that

∑∞j=0Xj(t) = 0 for all t ∈ [0, T ] almost surely as well. It then follows that Xn(t),X(t) ∈ ˜̀
2 for

all t ∈ [0, T ] almost surely for all n ∈ N. From the Lipschitz property in (4.114) it now follows

that, as n→∞,

∫
T

0
∥G(Xn(s), π(s)) −G(X(s), π(s))∥2ds ≤ C ∫

T

0
∥Xn(s) −X(s)∥2ds→ 0, (4.122)

which proves the desired convergence. Together with (4.26) and the representation (4.118) we

now have that the limit point (X,M̄) satisfies

X(t) = x0 + ∫
t

0
G(X(s), π(s))ds + ∫

t

0
a(s)dW (s)

almost surely for all t ∈ [0, T ]. Since X(t) ∈ ˜̀
2 for all t ∈ [0, T ] almost surely, this in particular

proves the existence part of Proposition 4. Finally the uniqueness part of Proposition 4 (which

was established earlier in this section) now says that Xn converges in distribution along the full

sequence to the unique weak solution of (4.14) with values in ˜̀
2. The result follows.

4.5 Numerical Results

In this section, we present some simulation results comparing the pre-limit n-server system

with results of the corresponding law of large number and central limit approximations. We

consider a system with n = 10,000 servers. For all combinations of L and k in the set {(L,k) ∈ N×

N ∶ 2 ≤ L ≤ 5, k < L}, we simulate 1,000 realizations of both the n-server system and the diffusion

approximation given through Theorem 14 using parameters T = 10, λ = .9, and c = 1. Note that

since the limiting processes are infinite dimensional we must truncate to a finite dimensional

approximation in order to perform simulations. In our numerical approximations, we truncate

to the first 20 coordinates. All computations were performed in Matlab. A numerical ODE

solver (ode45) was used to compute the ODE corresponding to the law of large number limit.
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The limit diffusion was simulated using Euler’s method with step sizes of .1. The realizations of

the diffusion were used to create 95% confidence intervals for the following metrics at time T ; the

number of empty queues, the number of “large” queues (queues with more than 5 jobs), and the

mean queue length. The coverage rates (i.e. the proportion of the n-server system simulations

which fall within the 95% confidence interval estimated by the diffusion approximation) can

be found in Tables 4.1, 4.2, and 4.3. As is seen in these results, the diffusion approximation

L
2 3 4 5

k

1 95.1% 96.3% 97.7% 95.9%
2 - 96.5% 95.3% 95.6%
3 - - 96.8% 97.5%
4 - - - 97.1%

Table 4.1. Empty Queue Coverage Rate

L
2 3 4 5

k

1 97.1% 100% 100% 100%
2 94.9% 95.6% 100%
3 - - 96.7% 96.4%
4 - - - 95.0%

Table 4.2. Large Queue Coverage Rate

L
2 3 4 5

k

1 95.2% 94.8% 94.8% 95.4%
2 94.7 92.9% 94.9%
3 - - 96.8% 95.1%
4 - - - 94.8%

Table 4.3. Mean Queue Length Coverage
Rate

based confidence intervals, in general, contain approximately 95% of the n-server simulated

observations, as desired.

The goal of this paper was to develop reliable approximations of the n-server system that are

much quicker to simulate. Table 4.4 presents the average time (in seconds) required to simulate

one trial of the finite system (left) and diffusion approximation (right). As is seen from these

tables, the time required to simulate the diffusion approximations is substantially smaller than

for the underlying n-server jump-Markov process. In addition, increasing n will further increase

the amount of time required to simulate the n-server system. Indeed, n = 10,000 is a small

number compared to the size of typical data centers and server farms that have machines which

number in the hundreds of thousands.
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L
2 3 4 5

k

1 22.6 23.8 25.4 19.2
2 - 39.1 38.0 33.1
3 - - 44.5 45.5
4 - - - 57.4

(a) Average Time for Finite System

L
2 3 4 5

k

1 .29 .50 .79 .79
2 - 2.4 3.7 4.6
3 - - 6.0 10.0
4 - - - 16.3

(b) Average Time for Limit Diffusion

Table 4.4. Average Simulation Times
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APPENDIX A: TIGHTNESS CRITERIA

In this appendix we collect several tightness criteria that are used in this dissertation.

A.1 Conditions [A] and [T1] of (Joffe and Métivier, 1986)

For the sake of the reader’s convenience we present Theorem 2.3.2 and Conditions [A] and

[T1] of (Joffe and Métivier, 1986) in a form that are used to prove Theorem 4 and Proposition

6. Let {Mn} be a sequence of Rk-valued processes which are RCLL (right continuous with

left limit) square-integrable local martingales, defined on their own filtered probability space

{(Ωn,Fn, (Fnt ),Pn)}. Consider the following two conditions for a sequence of k-dimensional

RCLL processes {Xn}, with Xn defined on (Ωn,Fn, (Fnt ),Pn).

[A] For each ε > 0, η > 0 there exists a δ > 0 and n0 ∈ N with the property that for every family

of stopping times {τn}n∈N (τn being an Fn-stopping time on Ωn) with τn ≤ T − δ,

sup
n≥n0

sup
θ≤δ

Pn{∥Xn
τn −X

n
τn+θ∥ ≥ η} ≤ ε.

[T1] For every t in some dense subset of [0, T ], {Xn
t }n∈N is a tight sequence of Rk valued

random variables.

Theorem 15 (Theorem 2.3.2 of (Joffe and Métivier, 1986) originally in (Rebolledo, 1979)).

Let ⟨Mn⟩ ≐ ∑ki=1⟨Mn
i ,M

n
i ⟩ be the predictable quadratic variation process associated with the

k-dimensional local martingale Mn. Then if the sequence {⟨Mn⟩}n∈N of R-valued stochas-

tic processes satisfies condition [A], the same condition holds for the sequence {Mn}n∈N of

Rk-valued stochastic processes. Futhermore if {⟨Mn⟩}n∈N satisfies [T1] then the same con-

dition holds for {Mn}n∈N. In particular if {⟨Mn⟩}n∈N satisfies [A] and [T1], the sequence

{{⟨Mn
i ,M

n
i ⟩, i = 1, . . . , k}}n∈N and {Mn}n∈N are tight in D([0, T ] ∶ Rk).
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A.2 Criterion for Tightness of Hilbert Space-Valued Random Variables

The following theorem gives sufficient conditions for tightness of a sequence of random vari-

ables taking values in a (possibly infinite-dimensional) Hilbert space. For a proof see Corollary

2.3.1 of (Kallianpur and Xiong, 1995).

Theorem 16. Let H be a separable Hilbert Space with inner product ⟨⋅, ⋅⟩ and complete orthonor-

mal system {ei}∞i=1. Suppose {Yn}n∈N is a sequence of H-valued random variables satisfying the

following conditions:

a) For each N ∈ N, limA→∞ supn∈N P (max1≤i≤N ⟨Yn, ei⟩2 > A) = 0

b) For every δ > 0, limN→∞ supn∈N P (∑∞j=N ⟨Yn, ej⟩2 > δ) = 0.

Then {Yn}n∈N is a tight sequence of H-valued random variables.

A.3 Aldous-Kurtz Criterion for Tightness of RCLL Processes

The following theorem gives a criterion for tightness of a sequence of RCLL processes with

values in a Polish space, see (Kurtz, 1981).

Theorem 17. Let S be a Polish Space and {Yn}n∈N be a sequence of D([0, T ] ∶ S)-valued RCLL

{Fnt }-adapted satisfying the following conditions:

(T1) {Yn(t)}n∈N is tight for every t in a dense subset of [0, T ].

(A) For each ε > 0, η > 0 and N ∈ [0, T − ε] there exists a δ > 0 and n0 with the property that

for every collection of stopping times (τn)n∈N (τn being an Fnt ≐ σ{Yn(s) ∶ s ≤ t}-stopping

time) with τn ≤ N ,

sup
n≥n0

sup
0≤θ≤δ

P{d(Yn(τn + θ), Yn(τn)) ≥ η} ≤ ε,

where d(⋅, ⋅) is the distance on S.

Then {Yn}n∈N is tight in D([0, T ] ∶ S).
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APPENDIX B: HILBERT-SCHMIDT AND TRACE CLASS OPERATORS

We collect here some elementary facts about trace class and Hilbert-Schmidt operators. We

refer the reader to (Reed and Simon, 1980) for details. For a separable Hilbert space H (with

inner product ⟨⋅, ⋅⟩ and norm ∥ ⋅ ∥), let L(H) be the collection of all bounded linear operators on

H. An operator A ∈ L(H) is called non-negative if ⟨u,Au⟩ ≥ 0 for all u ∈ H. Such an operator

is called trace class if for some CONS {ei} in H, ∑i⟨Aei, ei⟩ < ∞ in which case the quantity is

finite (and is the same) for every CONS {ei}. An operator A ∈ L(H) is called Hilbert-Schmidt

if there exists a CONS {ei} in H such that ∑j⟨Aej ,Aej⟩ = ∑j ∥Aej∥2 < ∞. In that case, this

quantity is the same for all CONS {ei} and its square root is called the Hilbert-Schmidt norm

of A, denoted as ∥A∥HS. For a non-negative operator A ∈ L(H), there is a unique non-negative

B ∈ L(H) referred to as the non-negative square root of A such that B2 = A. If A is a trace

class operator, then B is a Hilbert-Schmidt operator.
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APPENDIX C: CYLINDRICAL BROWNIAN MOTION

In this appendix we present the definition of a cylindrical Brownian motion (CBM) and in-

troduce the stochastic integral with respect to a CBM. A collection of continuous real stochastic

processes {(Wt(h))0≤t≤T ∶ h ∈ `2} given on a filtered probability space (Ω,F ,P,{Ft}) is called

a `2-cylindrical Brownian motion if for every h ∈ `2, (Wt(h))0≤t≤T is a {Ft}-Brownian motion

with variance ∥h∥2
2 and for h, k ∈ `2

⟨W (h),W (k)⟩t = ⟨h, k⟩2t, 0 ≤ t ≤ T.

For a measurable map a from [0, T ] to the space of Hilbert-Schmidt operators from `2 to `2

such that ∫ T0 ∥a(s)∥2
HSds < ∞, we denote by ∫ t0 a(s)dW (s) the `2-valued martingale defined as

the limit of
n

∑
i=1

n

∑
j=1

φi∫
t

0
⟨φi, a(s)φj⟩2dWs(φj)

as n → ∞ where {φi}i∈N is a complete orthonormal system (CONS) in `2. For the fact that

the limit exists and is independent of the choice of CONS, we refer the reader to Chapter 4 of

(Da Prato and Zabczyk, 2014).
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