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ABSTRACT 

 

SHANNON Z. JONES: Novel Mechanisms of Regulating B cell responses During Adaptive 
Immunity                                                                                                                               

(Under the direction of Barbara J. Vilen) 

 

Initiation of the germinal center reaction during T-dependent adaptive immune 

responses gives rise to long-lived plasma cells (PCs) that produce high affinity, class 

switched antibodies. It also produces memory B cells to ensure a rapid, high affinity response 

to future pathogen exposure. Long-lived antibody and memory B cell responses underlie the 

success of vaccines and provide the host with durable, long-lasting protection from infectious 

disease.  Although, the formation and maintenance of memory B cells and plasma cells are of 

critical importance, the mechanisms regulating these processes are poorly understood. Our 

lab has been interested in understanding the role of dendritic cells in regulating the germinal 

center reaction and adaptive immune response.  We found that the formation of 

antigen/antibody immune complexes stimulate dendritic cells, through CD16 (FcgRIII), to 

secrete BAFF, a cytokine required initiation and maintenance of the germinal center as well 

as the formation of memory B cells. Specifically, our results indicate that DC-derived BAFF 

initially impacts the formation of T follicular helper cells, which are critical in seeding and 

initiating the germinal center response. Studies show that upon immunization with a T-
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dependent antigen, mice that lack CD16 expression, as well as mice lacking BAFF 

production by hematopoeitic cells, display reduced numbers of T follicular helper cells, and 

as consequence, reduced germinal center number and size.  Correlated with this deficit in 

germinal centers, these mice also display attenuated secondary immune responses, and fewer 

numbers of antigen-experienced memory B cells. This suggests that DCs and BAFF play a 

key role in germinal center dynamics and subsequent memory B cell formation and function. 

Collectively, our data highlight an additional role for BAFF in the initiation and maintenance 

of T-dependent adaptive immune responses. 
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CHAPTER 1 

Introduction  

 

1.1 Germinal Centers are the Hallmark of Adaptive Immunity  

T cell dependent adaptive immune responses generate high affinity, antigen-specific 

antibodies that provide the host with long-lived protection against recurring infection.  The 

ability of the immune system to generate such long-lasting responses is the basis for 

successful vaccination programs (1).  One of the most critical events in initiating the adaptive 

immune response is the formation of germinal centers (GCs).  Germinal centers are transient 

structures, located within B cell follicles of secondary lymphoid organs, where antigen-

activated B cells, proliferate, undergo affinity maturation, and give rise to memory B cells, 

and long-lived plasma cells (2). Dysregulation of cell proliferation, mutation, and 

differentiation within the germinal center can lead to various pathologies, including tumor 

development, autoimmunity, and immunodeficiency.  Therefore, understanding the 

mechanisms that regulate the survival, proliferation, and differentiation of B cells within the 

germinal center during T cell-dependent adaptive immune responses is of great importance.   

A.  Initiation of the germinal center response When naïve B cells bind antigen via the B 

cell receptor (BCR), they upregulate expression of the chemokine receptor, CCR7 and 

migrate to the outer T cell zones of secondary lymphoid organs, including the spleen and 

lymph nodes (3).   Once B cells have migrated, they engage in cognate interactions with 
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helper T cells (3) and can now choose one of two cell fates.  Specifically, these activated B 

cells can migrate into the extra-follicular space, under the influence of the G-protein coupled 

receptor, EBI-2 (4, 5), and differentiate into short-lived antibody secreting cells.  Most 

plasma cells generated during extra-follicular responses survive for approximately 3 days 

before undergoing apoptosis (6, 7).  Alternatively, activated B cells can move into the B cell 

follicle to establish germinal centers (8). The mechanisms responsible for this fate decision 

remain poorly understood, although several studies suggest that BCR affinity, BCR 

engagement, and co-stimulatory signals from helper T cells might all be involved (9-13).  

The initial germinal centers that are formed are oligoclonal, and are colonized on average, by 

one to three activated B cells within each follicle (14). Germinal center B cells differ from 

naïve B cells in many ways.  These cells are much larger and can be identified by their 

expression of Fas, or CD95, GL-7, binding to peanut agglutinin (PNA), and loss of surface 

IgD expression (15-17).  In the initial phase of the GC, there is extensive proliferation, or 

clonal expansion, but very little variation in the BCR. During this time, dark and light zones 

appear, which are thought to be sites of clonal expansion and selection, respectively (18). 

Intravital microscopy has shown that germinal center B cells can move between the dark and 

light zones (3).  During clonal expansion, the chemokine receptor, CXCR4, is 

downregulated, and germinal center B cells are no longer retained within the dark zone, by 

the chemokine, CXCL12 (3).  CXCL13 produced by follicular dendritic cell (FDCs) 

facilitates the trafficking of germinal center B cells to the light zone.  Thus, germinal center 

B cell migration can be bidirectional, depending on the concentration gradient of CXCL13 

and CXCL12 in each zone (19).  Germinal centers are now characterized as open structures, 
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including naïve follicular B cells that can enter the light zone (3), where they are tested for 

their ability to bind antigen by competing for surface antigen on FDCs.  

B.  Clonal Expansion, somatic hypermutation, and affinity maturation During the 

germinal center response, stromal FDCs and T cells generate the signals required for isotype 

switching, somatic hypermutation, memory B cell formation, and terminal differentiation 

into plasma cells (20). The affinity of serum antibody for foreign antigen increases over time, 

due to somatic hypermutations in the B cell receptor.  Most short-lived plasma cells in the 

extra-follicular foci are relatively unmutated.  In contrast, a high frequency of somatic 

hypermutations is evident in GC B cells (14, 21).  These B cells express the enzyme, 

activation-induced deaminase (AID), which deaminates cytidine residues in the VDJ and 

switch regions of the Ig gene, which leads to somatic hyper mutation and class switch 

recombination (22, 23). Clonal expansion of activated B cells followed by B cell receptor 

diversification, results in either retention of cells in the lymphoid organ and the formation of 

a second germinal center, or exit from the germinal center and entry into the long-lived 

memory B cell compartment (20).  Over time, the extra-follicular response wanes, while the 

long-lived plasma cells and memory B cells begin to appear. Finally, during the contraction 

of a primary immune response, long-lived plasma cells migrate to the bone marrow, while 

memory cells may enter into the periphery, as non-secreting, class-switched B cells.  

However a significant portion of the memory B cell pool remains within the secondary 

lymphoid organs, in close proximity to the marginal zone (24).  The antibody variable 

regions in most, but not all of long-lived PCs and memory cells display a high degree of 

mutations and show evidence of clonal selection, suggesting that these cells are derived from 

germinal centers (25, 26). The ultimate result of the germinal center is the generation of high-
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affinity, antigen-experienced B cells that will enter into circulation until re-encounter with 

antigen.  

C.  Factors that govern germinal center formation and maintenance.  Many factors 

govern the development and maintenance of the germinal center. Bcl-6 is highly expressed in 

germinal center B cells and is essential for their formation (27, 28).  Bcl-6 functions by 

binding to the regulatory regions of genes in GC B cells, ultimately inhibiting the DNA 

damage response and promoting rapid cell proliferation (29).  Another target of Bcl-6 is 

Prdm1, the gene encoding Blimp-1.  Suppression of Blimp-1 expression by Bcl-6 prevents 

plasma cell differentiation within the germinal center (30).  There is a large body of evidence 

indicating that signals from the BCR, from FDCs, and from T follicular helper (TFH) cells all 

contribute to germinal center B cell survival.  BCR signals support the survival of 

centrocytes (B cells undergoing selection within the light zone), since GC B cells that lack 

the BCR co-receptor, CD45, or the GTPase TC21, which links BCR signaling with PI3K 

activation, have increased rates of apoptosis (31).  TFH cells also provide proliferation, 

survival, and differentiation signals to GC B cells through CD40:CD40L interactions and the 

cytokines IL-4 and IL-21.  Although it is clear that CD40L is essential in mediating GC B 

cell survival, the cytokines and signals that are required for GC B cell differentiation into 

either long-lived plasma cells or memory B cells remain undefined. 

1.2 T follicular helper (TFH) cells 

T follicular helper (TFH) cells are the specialized subset of CD4+ T cells that are 

necessary for the initiation and GC maintenance, generation of memory B cells, and the 

development of plasma cells that arise from the GC reaction. TFH cells are characterized by 
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their constitutive expression of the transcription factor Bcl-6, as well as the expression of 

CXCR5, PD-1 and ICOS (32, 33).  The transcriptional repressor Bcl-6 is essential for TFH 

cell development, but it does not act alone in controlling TFH cell development.  A network of 

transcription factors is involved, including c-Maf, STAT3, Batf, and Bcl-6 all have roles in 

TFH cell differentiation and function (34, 35). It is postulated that Bcl-6 regulates TFH cell 

differentiation by repressing alternative differentiation pathways, including those of the Th1, 

Th2, or Th17 lineages (32).  Early Bcl-6 up-regulation occurs in the first division of activated 

CD4+ T cells, and is strongly induced by antigen presenting dendritic cells.  This first wave 

of Bcl-6 expression is observed within the first three days following antigen-priming at the B 

and T cell border and in the inter-follicular regions of lymph nodes in both mice and humans 

(36, 37). An additional wave of Bcl-6 expression coincides with CXCR5 induction and 

results in the development of a distinct BCL-6+CXCR5+ TFH cell population, independent of 

cognate B cell interactions (38).  In contrast to their induction, the maintenance of the TFH 

cell population in the follicle is dependent on cognate B cell interactions (37, 38).   

Once activated, TFH cells secrete IL-21, which has been shown to be the most potent 

cytokine involved in regulating plasma cell differentiation in mice and humans (39, 40). IL-

21 induction of plasma cell differentiation is STAT3 dependent (41), and involves the 

upregulation of Blimp-1, the master regulator of plasma cells (42, 43).  IL-21 is also 

important for optimal germinal center B cell proliferation.  The expression of Bcl-6 in GC B 

cells is somewhat reduced in the absence of IL-21 (44, 45).  In addition, IL-21 has been 

shown to be important for isotype switching to several IgG isotypes and it is suggested that 

IL-21 is the master regulator of class switching to IgG1 (46).  In addition to IL-21, TFH cells 

provide survival signals to GC B cells through additional pathways including CD40L, IL-4, 
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PD-1 and BAFF, which ultimately compete with death signals induced by Fas-FasL 

interactions (35).   

TFH cells are now defined as T cells that express the chemokine receptor CXCR5, 

localize to the follicles, and are specialized in providing help to germinal center B cells.  

Although TFH cells are one of the first identified T cell subsets, the nature of their formation 

and function has only recently begun to be defined.  Many of the cell surface molecules 

expressed by these specialized cells are critical for their interactions with B cells during the 

germinal center reaction.  CXCR5 is a defining molecule for T cells, which enables them to 

home to the B cell follicle. TFH cells migrate in response to CXCL13, produced by FDCs 

(35).  The migration of TFH cells into the follicle allows for the critical B cell-dependent 

phase of TFH cell differentiation to occur.  Activated B cells express ICOSL, and the 

expression of ICOSL by B cells is required for TFH cells.   ICOS-mediated PI3 kinase 

signaling is required for TFH cell differentiation, and for the production of IL-21 by TFH cells 

(47).  Global analysis of the gene expression profile in TFH cells has revealed that these cells 

are of a totally separate lineage from Th1 and Th2 cells (48).  For example, Bcl-6 is 

preferentially expressed by TFH cells, but not by Th1 or Th2 cells.   IL-21 is also preferentially 

expressed by TFH cells, and plays a critical role in regulation immunoglobulin production and 

germinal center formation (44, 49). 

 TFH cells provide germinal center B cells with survival and selection signals; therefore 

limiting the numbers of these cells is critical to prevent inappropriate B cell responses and 

the emergence of autoantibodies.  Little is known about the regulatory mechanisms that 

control these TFH cells.  A population of Foxp3+ follicular regulatory T cells have been 

identified that can exert suppressive effects on TFH cells and the germinal center response 
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(50, 51).  In response to immunization with T-dependent antigen, a potion of naïve regulatory 

T cells can express Bcl-6 (51).  Expression of Bcl-6 allows them to express CXCR5 and 

home to the B cells follicle and localize to the germinal center.  These T follicular regulatory 

cells control the germinal center reaction by limiting the number of TFH cells that are formed 

and by inhibiting the selection of non-antigen specific B cells, including those with self-

reactive B cell receptors (50).   

 Understanding mechanisms that regulate TFH cell differentiation and function is of 

great important for improved vaccine design, since nearly all approved human vaccines 

function on the basis of protective T-dependent immune responses.  In addition, TFH cells 

play important roles in common autoimmune diseases, such as systemic lupus erythematosus 

(SLE), since mice with expanded TFH populations and over-production of IL-21 develop 

lupus-like autoimmune disease (52).   

1.3  Formation and Maintenance of B cell memory 

The pool of quiescent, non-immunoglobulin secreting B cells that are produced 

during the germinal center reaction is largely composed of antigen specific, affinity-matured 

memory B cells. Some reported studies suggest that early memory B cell development can 

occur independent of a germinal center response (44, 53), although how well these germ-line 

BCR-expressing memory B cells compete with post-germinal center B cells during recall 

responses remains to be determined. Secondary responses resulting from re-challenge of 

memory B cells are faster, larger, and qualitatively different from primary responses (1).  The 

ability to mount a recall response can be maintained for decades in humans and through the 

majority of a rodent’s life (1).   
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 Many factors, such as antigen and cytokine availability, can affect the differentiation 

and survival of memory B cells.  The role of cognate antigen in memory B cell maintenance 

has been heavily debated.  It was originally shown that recall responses were attenuated over 

time after sorted memory B cells were transferred to naive recipients in the absence of 

antigen (54).  Based on this study, in addition to others, it was proposed that antigen 

containing immune complexes deposited on the surface of FDCs (via complement receptor 

and Fc receptors) was essential for memory cell maintenance (54, 55).  However, more 

recent studies by Shlomchik and colleagues have demonstrated that memory B cell survival 

and function is not dependent upon immune complex deposition on FDCs (56).  Rajewsky 

and colleagues have also demonstrated that there is no requirement for continued exposure to 

antigen to sustain memory B cells.  Specifically, the BCR of memory B cells can be altered 

to recognize an antigen that has never been encountered by the host and memory B cells 

would continue to persist (57). The basis of the controversy and conflicting data surrounding 

the factors required for memory B cell maintenance could result from the fact that there are 

multiple layers of B cell memory, with each layer consisting of multiple effector function.  

Sophisticated studies by Dogan et. al have demonstrated that the memory B cell compartment 

can be composed of several layers, consisting of an antigen-independent layer located outside 

of the B cell follicles, in the spleen, blood, and secondary lymphoid organs. It also consists of 

an antigen-dependent layer of proliferating centroblasts in GC-like structures that depend on 

the presence of antigen (58).  The authors have shown that after challenge, the IgG+ memory 

cells have an immediate effector and protective response (the hallmark of B cell memory).  

This subset seems to have little capacity to reinitiate a GC response.  In contrast, the IgM+ 

subset of B cell memory ensures the replenishment of the memory compartment, by its rapid 



 
9 

 

mobilization and immediate isotype switching to IgG.  In this model, the memory 

compartment is able to quickly neutralize the invading antigen, while continuing to replenish 

the memory pool.  Other studies have also confirmed a hierarchy of maturity with the 

memory B cell compartment in mice (59).  These studies demonstrated that there is a 

spectrum of memory B cells, consisting of a progression from more naïve-like to more 

memory-like properties. 

Although we understand the basic features of the adaptive immune response, the 

signals that are required for memory B cell formation and reactivation are still relatively 

unknown.  The mechanisms that regulate the quality and quantity of the memory population 

are also unclear.  To date, no single factor has been identified irrefutably as being essential 

for memory formation.  A recent study has hinted towards a role for IL-21 and BAFF in 

regulating memory B cell formation in humans (39).  However, there are contrasting studies 

in mice demonstrating that memory B cell survival is independent of BAFF (60).   

1.4 The role of BAFF in adaptive immunity 

The TNF family member, BAFF and its homologue, APRIL, are homotrimeric type II 

transmembrane proteins that are necessary for B cell homeostasis. It was previously believed 

that only cells of a myeloid origin produced BAFF. It is now known that in addition, non-

hematopoietic stromal cells can secrete BAFF and APRIL, which provide local niches to 

modulate the survival and function of B cells and plasma cells, especially in the bone marrow 

(61-63). BAFF producing cells include monocytes, macrophages, neutrophils, activated T 

and B cells, FDCs, stromal cells, astrocytes, osteoclasts, and epithelial cells (64, 65).  The 

expression of BAFF is increased in the presence of type one interferons, IL-10, and G-CSF, 
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CD40L, as well as by the activation of Toll-like receptors (TLR4 and TLR9) (64, 65). 

Although it can be found in a membrane bound form, BAFF is usually produced in soluble 

form as a result of furin cleavage (61, 65).  In myeloid cells, the binding of immune 

complexes also increases BAFF processing through an Fc receptor-dependent mechanism 

(66, 67).  Processed, soluble BAFF adopts a trimeric form, as seen with other TNF family 

members; but it is the only member capable of further assembly as a 60-mer (65).  BAFF has 

been shown to bind to three receptors, BCMA, BAFF-R (BR3), and TACI, all of which are 

expressed on B cells.  BCMA is preferentially expressed on plasma cells, plasmablasts and 

tonsillar germinal center B cells (65). TACI is expressed by all peripheral B cells, 

particularly marginal zone B cells and B-1 B cells (65). BR3 is the dominant BAFF receptor 

expressed on all mature murine and human B cells.  In mice, the expression of BAFF-R is 

initially low on newly formed immature B cells, but increases during B cell maturation.   

BAFF-R is the key receptor that is responsible for BAFF-mediated B cell survival, as mice 

deficient in BAFF-R display a phenotype similar to that of BAFF deficient mice (61).  

BCMA-deficient mice display no abnormalities in immune function, aside from impaired 

survival of long-lived plasma cells in the bone marrow (68).  TACI, in contrast, has emerged 

as a negative regulator of B cell activation and expansion, since B cell numbers are increase 

in TACI deficient mice.  In addition, TACI deficient mice also eventually develop SLE-like 

disease and lymphoid cancers (69).  

It has been well documented that BAFF has an important role in B cell homeostasis.  

For reasons that are not fully understood, this homeostasis requires BAFF that is produced by 

radio-resistant stromal cells, instead of bone marrow-derived cells (70).  BAFF and BR3 are 

known to play a fundamental role during the transition from immature T1 to T2 B cells and 
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therefore the generation of the mature B cell compartment in the spleen.  This was 

demonstrated by an almost complete lack of follicular and marginal zone B cells and by a 

block at the T1 cell stage in BAFF/BAFF-R deficient mice (71).  In these mice, the B-1 

compartment was unaffected, indicating that the development of this B cell subset is 

independent of BAFF and BAFF-R signaling.  In contrast, transgenic mice over-expressing 

BAFF display an increase in all B cell subsets (72). This suggests that all mature B cells 

express BAFF receptor on their surface and are capable of responding to BAFF. The 

expanded B cell compartment in BAFF Tg mice also corresponded with the onset of 

autoimmunity and lupus-nephritis like disease (72). Recent studies have demonstrated a role 

for BAFF in plasma cell survival, however, memory B cell survival is independent of BAFF 

(60, 73).  There is no current literature addressing whether BAFF plays a role in either 

plasma cell or memory cell differentiation. 

The role of BAFF in germinal center formation and maintenance has been 

controversial.  Given that BAFF-/- mice have a deficit in mature B cells, one would predict 

that the ability to form germinal centers would be compromised.  Surprisingly, BAFF and 

BAFF-R deficient mice have the ability to form germinal centers subsequent to challenge 

with antigen.  However, the kinetics of the germinal center reaction were altered in these 

mice (74).  Studies have shown that immunized BAFF-R deficient and BAFF deficient mice 

displayed normal numbers of germinal centers early on in the immune response; however, 

the germinal centers dissipated more rapidly than wild type mice (74).  There was also an 

increase in frequency of smaller germinal centers and decline in larger germinal centers, 

indicating the quickened dissipation of germinal center structures (64, 74).  The lack of 

germinal center stability was attributed the failure to develop a competent FDC reticulum and 
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lack of antigen stimulation (74). These results suggest that BAFF receptor signaling is 

required for germinal center maintenance and that BAFF is also required for the formation of 

the FDC reticulum and efficient antigen stimulation of B cells.   

A. An Emerging Role for BAFF in Modulating T cell responses  Although BAFF and its 

cognate receptors have a dominant role in B cell biology, it is now clear that either directly, 

or indirectly, BAFF can also modulate T cell function in vitro and in vivo. Several in vitro 

studies have confirmed the role of BAFF as a co-stimulatory and survival factor for activated 

T cells (75). In addition to providing survival signals, BAFF also impacts T cell activation.  

In the presence of suboptimal T cell receptor stimulation, BAFF enhances T cell proliferation 

and cytokine production (76-78). Neutralization of BAFF in vitro, using both TACI-Ig and 

BAFF-R-Ig, resulted in decreased T cell activation.  In addition, BAFF deficient mice show 

impaired T cell mediated graft rejection.  These studies suggest that physiological levels of 

BAFF are necessary for the generation of sufficient T cell responses.   BAFF may also play a 

role in stimulating T cell function during T cell mediated pathogenesis.  Studies by Mackay 

et al have shown that the over-expression of BAFF in BAFF Tg mice exacerbates the 

severity of Th1-mediated delayed-type hypersensitivity responses, by enhancing T cell 

proliferation and IFN-g production in lymph nodes (79).  Although a role for BAFF has been 

demonstrated in modulating Th1 responses, it remains to be determined whether BAFF is also 

involved in regulating other T cell subsets, including T follicular helper (TFH) cells.  

B.  BAFF and autoimmunity.  Elevated levels of soluble BAFF have been found in the sera 

and target organs of disease in mouse models of SLE, collagen induced arthritis, and 

chemically induced autoimmunity (80-82).  Similarly, high levels of serum BAFF have been 

found in a subpopulation of human patients with varying autoimmune diseases (83).  In many 
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studies, BAFF levels have been correlated with increased disease activity and titers of 

pathogenic autoantibodies (84). These studies provide a strong case for the pathogenic role of 

excess BAFF and APRIL in autoimmune disease.  

The pathogenic role of BAFF in autoimmunity is further evidenced by the therapeutic 

benefits of BAFF neutralization.  Studies have shown that lupus-prone mice treated with 

TACI-Ig and BAFF-R Ig displayed less proteinuria, and as a result, prolonged survival.  In 

vivo BAFF antagonism has also provided protection in murine models of other autoimmune 

diseases, including rheumatoid arthritis, multiple sclerosis, and Graves’ disease (63, 85-87).    

Neutralization using TACI-Ig and BAFF-R Ig is thought to have therapeutic effects, due to B 

cell depletion, similar to what has been observed with anti-CD20 immunotherapy 

(Rituximab).  Blocking BAFF may have some distinct advantages over B cell depletion using 

Rituximab. For example, BAFF receptor and CD20 expression overlap in many B cell 

subsets, but they also differ in other populations, including plasma cells, which express 

BCMA, but not CD20 (84).    B cell depletion using anti-CD20 therapy also results in 

elevated serum BAFF levels (88).  Therefore, newly generated immature B cells could be 

exposed to high levels of BAFF, which could cause another breakdown of immune tolerance 

and the resurgence of autoimmunity.  Therefore the risk of another breach in immune 

tolerance could be avoided by targeting BAFF in the treatment of SLE and other autoimmune 

disease.   

Treatment of lupus-prone mice with TACI-Ig and BAFF-R Ig resulted in the 

depletion of both follicular and marginal zone B cell subsets, but did not affect immature B 

cells or the B-1 B cell subset Interestingly, in vivo BAFF neutralization does not impact the 

survival of memory B cells in wild type mice (60).  However, the effects of BAFF 
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neutralization on memory B cell formation have not yet been addressed.  Elucidating the role 

of BAFF in maintaining memory B cell function will be especially important in regulating B 

cell memory formed to self-antigens, in the setting of autoimmune disease.   

1.5  Systemic Lupus Erythematosus (SLE) 

Systemic lupus erythematosus (SLE) is a complex, multi-organ autoimmune disease, 

affecting approximately 250,000 Americans, and is characterized by the production of 

autoantibodies to nuclear components (89-91).  Alternating periods of flares and remissions 

are associated with an increased burden of apoptotic cells, the formation and deposition of 

immune complexes, and subsequent inflammation (92).  Although the etiology of SLE 

remains unknown, multiple defects in immune regulation have been identified in lupus-prone 

mice and SLE patients.  These include, complement deficiencies, T cell receptor (TCR) 

signaling abnormalities, and defective cytokine secretion (89, 92-94).  These defects have 

been shown to contribute to the onset and pathogenesis of SLE (95).   It is likely that 

environmental factors act on genetically prone individuals to induce a breakdown in 

tolerance mechanisms that regulate autoreactive lymphocytes. Some of these environmental 

factors include exposure to air pollutants and cigarette smoke, heavy metal poisoning (96), 

and previous viral infections, including Epstein Barr virus (97, 98).  Hormonal influences 

have also been implicated, with SLE primarily affecting women (10:1 ratio). Genetic 

differences and environmental factors may interact in the pathogenic processes and also 

influence disease development and course.  Identification of these factors and their 

interaction is vital to understanding the disease and may also contribute to the identification 

of new treatment targets, and possibly aid in disease prevention.   
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1.6  IgG Fc Receptors  

IgG Fc receptors link innate and adaptive immune responses by their ability to 

mediate cellular interactions with antigen-antibody immune complexes.  Two general classes 

of IgG FcRs are now recognized by the presence of an activating ITAM motif within the 

cytoplasm, and the inhibitory receptor, characterized by an ITIM sequence (99-102). These 

two classes of receptors function in concert and are usually co-expressed on the cell surface.  

The co-engagement of both the activating and inhibitory signaling pathways set the 

appropriate thresholds, which ultimately balances protective and pathogenic effector 

responses after IgG immune complex engagement.   Imbalances between activating and 

inhibitory FcγR functions can contribute to autoimmunity and other pathologies in both mice 

and humans (103). 

A.  ITAM-containing, Activating Fc Receptors There are three different activating FcγRs 

expressed on murine effector cells: FcγRI (CD64), FcγRIII (CD16), and the recently 

described FcγRIV (also identified as CD16-2) (101).   All three receptors generate signals 

through the ITAM sequences found within a shared common γ chain subunit (FcγR).  

Expression of the common γ chain is critical for the assembly of the activating Fc receptors 

(100).  Common gamma chain knockout (Fcγ-/-) mice were shown to have significant defects 

in antibody-dependent effector responses, including ADCC, phagocytosis of immune 

complexes, and some inflammatory responses (104). In contrast, deletion of the individual 

activating Fc receptors showed less pronounced phenotypes, especially in responses 

involving IgG2a and IgG2b antibody isotypes (105). These activating Fc receptors are found 

on most effector cells, including macrophages, monocytes, dendritic cells, NK cells, mast 

cells, eosinophils, neutrophils, and are absent from lymphoid cells (100, 102, 104, 106, 107). 
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The only high-affinity Fcγ receptor in both humans and mice, FcγRI, binds IgG2a in mice, or 

IgG1 and IgG3 in humans, with an affinity of 108 – 109 M-1.  All other receptors have a 100-

1000 fold lower affinity, and show broader specificities (107).  IgG1 is the only isotype that is 

consistently assigned to an individual activating Fc receptor, FcγRIII.  The deletion of 

FcγRIII abrogates IgG1-mediated effector functions in many models of pathogenesis, 

including arthritis, glomerulonephritis, IgG-dependent anaphylaxis, IgG-mediated hemolytic 

anemia, and immunothrombocytopenia (108-112).  FcγRIV binds with intermediate affinity 

to IgG2a and IgG2b in vitro (103).   Studies have shown that even if several of activating Fc 

receptors with the same isotype specificity are present on the same cell surface, only those Fc 

receptors will be engaged that show the optimal affinity for the respective isotype.  

Therefore, IgG1 immune complexes will trigger only FcγRIII, since it is the only activating 

Fc receptor that can bind IgG1 (106). 

B.  FcγRIIb, the single ITIM-containing, inhibitory Fc Receptor  In contrast to the 

activating FcγRs, FcγRIIb (or CD32) contains an ITIM sequence that inhibits effector cell 

responses (102). In addition to its expression on B cells, where it is the only IgG Fc receptor, 

FcγRIIb is also expressed on neutrophils, macrophages and mast cells, and is absent on T and 

NK cells (101).  FcγRIIb expression on the surface of B cells is critical in setting BCR 

signaling thresholds and B cell effector functions. Signaling within the ITIM motif of 

FcγRIIb results in the recruitment of the phosphatases, SHIP and SHP-1, which prevents the 

recruitment of kinases such as BTK or PLCγ to the cell membrane, thereby diminishing 

events that are downstream of BCR activation such as intracellular calcium fluxes (107).  

The importance of FcγRIIb in modulating B cell activity and immune tolerance is supported 

by several studies in both mice and humans.  Studies using FcγRIIb-/- mice showed enhanced 
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B cell responses, autoimmunity, and augmented IgG-mediated inflammation, demonstrating 

the inhibitory role of FcγRIIb in immune responses (113).    

C.  Fc receptors mediate important effector functions in immune cells  Fcγ receptors play 

a significant role in vivo in maintaining peripheral tolerance, in augmenting T cells responses 

through antigen presentation, and in mediating antigen recognition and effector cell 

activation.  Although Fc receptors have many roles in linking innate and adaptive immunity, 

their role in promoting secondary adaptive immune responses has only recently began to 

emerge.  A recent study has shown that immune complex binding by Fc receptors enhances 

secondary antibody responses, although the precise mechanism by which this occurs is 

unknown (114).  Immune complex binding by Fc receptors can induce many effector cell 

functions, including cytokine production and phagocytic functions.  It remains unclear how 

these effector functions impact secondary immunity. 

1.7  The role of TGF-β  in maintaining peripheral immune tolerance  

The immune system has evolved to initiate robust responses to invading pathogens 

while maintaining tolerance to self-antigens.  Multiple mechanisms exist to ensure normal 

immunological function.  The removal of self-reactive B and T cells during development 

creates a repertoire within the periphery that will preferentially recognize and eliminate non-

self-antigens (115-117).  Although central tolerance mechanisms exist within the bone 

marrow and thymus to eliminate autoreactivity, there is clear evidence that self-reactive 

immune cells can enter the periphery and secondary lymphoid organs. Therefore, peripheral 

tolerance mechanisms must also exist to limit the activation of autoreactive lymphocytes.  

Regulatory T and B cells, and their secreted cytokines have been recently recognized as 
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essential components of peripheral tolerance (118, 119).   Transforming growth factor β 

(TGF-β) is one such regulatory cytokine with a critical role in regulating immune responses 

to self.   

TGF-βs are regulatory proteins with pleiotropic effects on cell proliferation, 

differentiation, migration and survival, which affect many biological processes, including 

development, carcinogenesis, fibrosis, wound healing, and immune responses (120).  The 

generation and analysis of TGF-β deficient mice established the role of the cytokine in 

inhibiting inflammation and autoimmunity, and has fostered an interest in this cytokine in 

immune regulation (121, 122).  The immunoregulatory role of TGF-β was demonstrated in 

null mice. TGF-β-/- mice that are born, die shortly after weaning as a result of severe 

inflammatory disease, with lymphocyte infiltration into multiple organs and autoimmune 

disease (122, 123).  The identification of the receptors for TGF-β s and the Smad proteins, as 

mediators of signaling, has also provided much needed information on the role of TGF-β s in 

regulating immune responses.   

TGF-β is an important regulator of B cells activity, as demonstrated by the phenotype 

of mice with a B cell specific inhibition of TGF-β signaling (124).  Secretion of TGF-β by 

regulatory cells inhibits B cell proliferation, induces apoptosis of immature or resting B cells, 

BCR activation, and isotype switching to most IgG isotypes.  Consistent with TGF-β 

mediated inhibition of IgG class switching, conditional deletion of TGF-β signaling in B 

cells, in vivo, resulted in elevated serum Ig.  These mice also developed enhanced IgG3 

responses to a normally weak antigen (124).  These studies implicate TGF-β in attenuating B 

cell responses to low affinity antigens.  Interestingly, titers of anti-DNA antibodies were also 

increased in mice lacking B cell derived TGF-β signaling, which suggests that TGF-β is an 
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important regulator of B cell tolerance to self-antigens in vivo (124).  In contrast to its 

inhibitory roles in immune function, TGF-β has a unique role in promoting switching to IgA 

and IgG2b in murine B cells and IgA in human B cells, in vitro (124-126). Upon optimal 

stimulation with antigen, and cytokine stimulation, the inhibitory activity of TGF-β subsides, 

and TGF-β can strongly promote IgA secretion.  TGF-β mediated IgA class switching is 

associated with increased transcription of alpha heavy chain transcripts.  The role of TGF-β 

in IgA production is further demonstrated in mice with a condition deletion of TGF-β 

signaling in B cells, where there is almost a complete absence of IgA within the serum (124).  

Thus, similar to T cells, TGF-β has both inhibitory and stimulatory effects on B cell function.  

The adaptive immune response gives rise to long-lived humoral responses that protect 

the host from recurring infection.  Although dendritic cells indirectly promote adaptive 

immunity through antigen presentation, it remains unclear whether DCs actively shape these 

responses.  The goal of the work described herein is to identify mechanisms by which DC 

cells may impact the long-lived plasma cell response and memory B cell formation that 

occurs during T cell-dependent adaptive immune responses. 
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CHAPTER 2 

CD16-mediated BAFF production promotes Bcl-6 expression  
 

2.1 Introduction 

The success of adaptive immune responses requires appropriate interactions between 

antigen specific B and T cells leading to germinal center (GC) responses (1, 2).  The 

specialized microenvironment provides sites for rapid expansion and mutation of antigen-

specific B cell clones, antibody isotype switching, and finally commitment to the plasma cell 

fate or memory B cell pool (3-5).  The formation of GCs and the emergence of memory B 

cells are subsequent to the production of antibody induced by T-independent formation of 

extrafollicular foci (2, 6), suggesting that early antibody responses may play a role in early 

GC events.  

The affinity matured memory B cells that emerge from the GC require T cell help. 

Recent studies have identified CD4+ follicular helper T cells (TFH) as critical effectors that 

provide help to B cells during the GC response (7, 8). The formation of TFH cells is 

dependent on the expression of Bcl-6 and the attenuation of Blimp-1, which inhibits the 

differentiation of other TH subsets (7, 9).  TFH cells are distinguished from other CD4+ 

subsets in that they express CXCR5, ICOS, PD-1, and IL-21.  TFH cells are important in 

forming and maintaining the GC.  Together with follicular dendritic cells, TFH cells provide 
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the proliferative and survival signals that are necessary to expand antigen-specific B cells and 

form the emerging germinal centers (10).   

In addition to regulating T cell effector function, Bcl-6 is also highly expressed in 

germinal center B cells and is essential for their formation (11, 12).  Bcl-6 binds to the 

regulatory regions of genes in GC B cells, ultimately inhibiting the DNA damage response 

and promoting rapid proliferation within the germinal center (13).  Another target of Bcl-6 is 

Prdm1, the gene encoding Blimp-1.  Suppression of Blimp-1 expression by Bcl-6 prevents 

plasma cell differentiation in the germinal center (14). Because Bcl-6 upregulation mediates 

several B and T cell effector functions that are critical for the germinal center reaction, the 

factors that promote Bcl-6 expression are of great interest. Mitogenic signals (including anti-

mu, LPS, PMA and ionomycin and CD40L) that promote B and T cell proliferation are 

known to induce Bcl-6 expression using in vitro culture systems (15).  Few studies have 

addressed the mechanisms that regulate Bcl-6 expression in vivo.  IL-21 signaling has been 

linked to Bcl-6 expression in CD4+ T cells and GC B cells, although the expression of Bcl-6 

was only marginally reduced in the absence of IL-21 (16, 17).  Thus, other factors exist to 

regulate Bcl-6 expression within B and T cells, germinal center formation, and other key 

events of the adaptive immune response.     

 Because of its essential role in B cell survival and homeostasis (18), BAFF may have 

additional roles in the adaptive immune response. Although BAFF and its cognate receptors 

have a dominant role in B cell biology, it is now clear that either directly, or indirectly, BAFF 

can also modulate T cell function in vitro and in vivo (19). In addition to providing survival 

signals, BAFF also impacts T cell activation.  In the presence of suboptimal T cell receptor 

stimulation, BAFF enhances T cell proliferation and cytokine production (20-22). It is likely 
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that because of its effects on B and T cell function in vivo, BAFF can also impact the 

germinal center.  Previous reports have shown that the role of BAFF in the dynamics of the 

germinal center is complex and controversial. Relatively little is known about the role of 

BAFF in GC formation, generation of the B cell memory compartment, and plasma cell 

development. A single study using TACI-Fc to reduce serum BAFF levels, reported a 

complete lack of germinal centers in treated mice (23).  In complete contrast, a study using 

BCMA-Fc as a mechanism BAFF blockade, in vivo, show that germinal center formation is 

independent of BAFF (24).  Therefore, the role of BAFF in germinal center dynamics 

remains unclear.   

 During adaptive immune responses, DCs play an important role in activating T cells 

through their ability to present peptides.  In this study, we show that DCs actively shape early 

events in the adaptive immune response, by sensing a productive early antibody response and 

secreting BAFF.  We find that BAFF induces the expression of Bcl-6 in activated B cells 

thereby extinguishing the plasma cell program and committing the cells to the memory 

pathway.  Simultaneously, BAFF promotes the expression of Bcl-6 in activated CD4+ T cells, 

promoting TFH cell differentiation. Overall our studies define ICs sensed by DCs as critical 

initiators of the GC response and through their production of BAFF, they promote memory B 

cell differentiation. 



 
34 

 

2.2 Materials and Methods 

Animals 

All animals were maintained in an accredited animal facility at University of North Carolina. 

C57BL/6 (B6) and CD16-/- mice were bred in house and used at 8-10 weeks of age.  5-7 

week old B6-Ly5.2 congenic mice were purchased from NCI-Frederick.  OTII TCR 

transgenic mice were obtained from Jenny Ting at the University of North Carolina (UNC).  

BAFF-/- mice were obtained from Glenn Matsushima, also from UNC.   BAFF Tg mice were 

obtained from Dr. Jeffrey Rathmell of Duke University. 

Reagents and Antibodies 

Antibodies against mouse CD4, CD19, CD95, GL-7, ICOS, and PD-1 were purchased from 

Biolegend.  Anti-CXCR5, anti-B220, anti-IgG1, IgG2a, IgG2b, and IgG3 antibodies were 

purchased from BD Biosciences.  Anti-mouse Bcl-6 was purchased from Santa Cruz.  

Recombinant cytokines, IL-4 and IL-5 were purchased from Peprotech.  NP-OSu was 

purchased from Biosearch Technologies.  KLH and ovalbumin proteins were purchased from 

Sigma Aldrich.  The adjuvant, alum, was purchased from Thermo Scientific.  Anti-mu F(ab)2 

antibody was purchased from Jackson Immunoresearch.  Anti-mu (B7.6), anti-NP (H33L and 

B1-8), and AC-38 anti-idiotype antibodies were purified from hybridoma supernatants.  

H33L and B1-8 were kind gifts from Dr. Garnett Kelsoe (Duke University).  BR3-Fc and 

IgG-Fc were kind gives from Dr. Robert Benschop (Eli Lilly). B and T cell negative 

selection purification kits were purchased from StemCell Technologies.  Splenic DC 

purification kit was purchased from Miltenyi Biotec.  Streptavidin-alkaline phosphatase was 

purchased from Southern Biotech.   
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B cell purification 

Splenic B cells were isolated from B6 mice by negative selection (StemCell Technologies). B 

cells were 95-99% pure, as determined by flow cytometry (with fewer than 5% DCs and 

MFs).  

Bone marrow-derived DC (BMDC) cultures 

Bone marrow single-cell suspensions were prepared from the tibias and femurs of B6,  

CD64-/-, CD32-/-, CD16-/-, and BAFF-/-mice.  Following RBC lysis, cells were cultured in 

GM-CSF and IL-4 for 7 days in a 24 well low cluster dish.   

Splenic DC isolation 

CD11c+ cells were purified from the spleens of B6 mice at 8-10 weeks of age.   CD11c+ DCs 

were approximately 80% pure, as determined by flow cytometry.   

B cell and DC co-culture 

1.5 X 105 purified B6 B cells were co-cultured with 1 X 104 BMDCs or ex vivo DCs in a 96 

well plate for 7 days.  B cells were stimulated with IL-4, IL-5 and anti-mu.  Supernatants 

were harvested and IgM secretion was measured by ELISA.   

B6 B cell and  OTII T cell co-culture 

2 X 105 purified B6 B cells were co-culture with 2 X 105 T cells purified from OTII TCR 

transgenic mice.  Cells were cultured or 7 days in the presence of 100 µg ovalbumin (with or 

without 1 X104 B6 BMDCs).  Supernatants were harvested on day 7 and IgM was measured 

by ELISA. 
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Preparation of DC Conditioned Media (CM) 

2 X 104 BMDCs were cultured in a 96 well plate, in the presence of anti-mu (B7.6), 

conditioned media from antigen-stimulated B cells, IL-4 and IL-5. After seven days, 

supernatants from stimulated DCs were harvested.  C67BL/6 B cells were purified, and 

cultured with or without DC CM (20% of total volume), in a 96 well plate, with additional 

anti-mu (B7.6), IL-4 and IL-5. 

Total IgM ELISAs 

IgM levels from were detected using anti-mouse IgM (33-60) and biotin-labeled anti-mouse 

IgM (B7.6). 

CFSE-based Proliferation Assay 

B cell proliferation was assessed by the dilution of 5-carboxyfluorescein diacetate 

succinimidyl ester (CFSE) loaded cells as previously described (25). 

Bone Marrow Chimeras 

B6-Ly5.2 congenic mice (6-8 weeks of age) were lethally irradiated (1050 rads), and 

reconstituted with 8 X 106 bone marrow stem cells from either wildtype (B6) or BAFF-/- 

mice.  Reconstitution of the B cell compartment was assessed after 8 weeks, by flow 

cytometry. 

NP-KLH Immunization 

8-10 week old B6, BAFF-/- bone marrow chimeras, and CD16-/- mice were immunized i.p. 

with 100 µg NP-11-14-KLH precipitated in alum for induction of primary responses.  For 
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secondary immunization, mice were boosted (i.v. injection) with the same dose of soluble 

NP11-14-KLH at least 30 days post- primary immunization.  Mice were bled weekly for serum 

anti-NP levels.  Antibody levels were measured 4, 7, 14 days after boost to quantitate 

memory recall (secondary) responses.  Additional cohorts of B6 and CD16-/- mice were 

immunized s.c. with 100 µg NP-KLH precipitated in alum.  8 X 106 BAFF Tg or B6 BMDCs 

were adoptively transferred into immunized mice.  Inguinal lymph nodes were harvested at 

seven days post-immunization and assessed by flow cytometry. 

Memory B cell Enumeration 

B6 and CD16-/- mice (8-10 weeks of age), and B6 and BAFF-/- chimeras were immunized as 

described.  At 28 days post-immunization spleens were harvested from B6, CD16-/-, b6 

chimeras, and BAFF-/- chimeras.  Single-cell suspensions were prepared, and antigen specific 

memory B cells were enumerated by flow cytometry.  Antigen-specific, IgG+ memory B 

cells were detected using the AC-38 hybridoma and biotinylated anti-IgG cocktail 

(containing anti-IgG1, anti-IgG2a, anti-IgG2b, and anti-IgG3).  

T Follicular Helper Cell Enumeration 

B6 and CD16-/- mice (8-10 weeks of age), and B6 and BAFF-/- chimeras were immunized as 

described.  At day 7 post-immunization, the mice were sacrificed and spleens were harvested.  

Single cell suspensions were prepared, and CD4+, CXCR5+, PD-1+, and ICOS+ T cells were 

enumerated by flow cytometry.   
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NP ELISA 

Sera were tested for IgG anti-NP Abs (ELISA). Microtiter plates were coated with NP13-

conjugated BSA (Biosearch Technologies). Serially diluted serum samples were incubated 

overnight at 4oC. Anti-NP IgG levels were detected using an alkaline phosphatase conjugated 

goat anti-mouse IgG antibody (1/1000 dilution) followed by phosphatase substrate (Sigma-

Aldrich).  Optical density (OD) values were converted to concentration based on standard 

curves (generated using the H33L anti-NP hybridoma), using a four-parameter logistic 

equation (Softmax Pro 3.1 software; Molecular Devices). 

AID Real Time PCR 

Spleens were harvested from B6 and BAFF-/- chimeras seven days after NP-KLH 

immunization, and splenic B cells were isolated according to the Stem Cell Easy Sep 

protocol.  mRNA was isolated from 5-10 X 106 purified B cells using  TRIzol (Invitrogen) 

and chloroform.  cDNA from 500 ng of mRNA per sample was synthesized using 

Superscript VILO cDNA Synthesis Kit (Invitrogen).  DNA amplification was performed 

using FastStart Universal SYBR Green Master mix (Roche).  Primers for qRT-PCR were 

synthesized by IDT. The PCR protocol was 95° for 10 minutes, and 40 cycles at 95° for 15 

seconds and 60° for 1 minute.  Relative values were compared using the 2-ΔΔCΤ
 method. 18s 

rRNA was used as an internal control in all experiments.  

Germinal Center Staining and Counting 

Spleens were harvested from B6 or CD16-/- mice on days 7, 14, and 21 after NP-KLH 

immunization and flash frozen in OCT (Fisher).  Sections 6mm thick were fixed in 1:1 

MeOH/Acetone, blocked with 10% FBS in PBS plus 1:100 2.4G2, and stained with PNA-
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biotin (Sigma) and B220-APC (BD Pharmingen), and Streptavidin-Alexa488 (Invitrogen).  

Germinal centers were recognized as aggregates of PNA+ B cells.  The percent of total 

splenic area covered by germinal centers, as well as average number and average size of 

germinal centers were compared between B6 and CD16-/- mice.  

Architecture Staining for B6 and BAFF-/- Chimeras 

Spleens were prepared as above from naïve B6, B6 chimera, or BAFF-/- chimera mice.  

Sections of 8mm thickness were cut, fixed in MeOH/Acetone, blocked in Superblock 

(Pierce) plus 1:100 2.4G2, and stained with anti-B220-APC, anti-CD11b-PE, anti-CD11c-

PE, and Thy1.2-biotin (all BD Pharmingen), followed by Strepdavidin Alexa 488 

(Invitrogen).  

Statistics 

The one sample t test was used to compare levels of secreted IgM levels in anti-mu 

stimulated controls, and anti-mu stimulated B cells under various treatment conditions.  The 

one sample t test was also used to compare expression levels of Bcl-6 in B6 and BAFF-/- 

bone marrow chimeras. The student’s t test was used to compare levels of secreted IgM and 

IgG in immunized B6 mice, CD16-/- mice, and B6 and BAFF-/- bone marrow chimeras.  The 

unpaired t test was used to compare percentages of memory B cells, GC B cells, and  TFH 

cells.  Analyses were performed in GraphPad Prism. 
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2.3 Results 

2.3.1 Dendritic cells regulate Ig secretion from antigen stimulated B cells 

 During adaptive immune responses, the presentation of antigen to primed T cells 

promotes the differentiation of activated B cells into memory and plasma cells suggesting 

that dendritic cells (DCs) play an indirect role in humoral immune responses.  To address 

whether DCs play a more direct role in shaping the B cell response to foreign antigen, we co-

cultured bone marrow derived DCs (BMDCs) with ovalbumin-stimulated B cells from B6 

mice and antigen-pulsed OTII T cells ( Figure 2.1 A).  We found that BMDCs inhibited 98% 

of Ig secretion induced by ovalbumin stimulation.  Inhibition of Ig secretion required OTII T 

cells and was ovalbumin-specific as BSA did not promote Ig secretion.  Furthermore, B cells 

cultured with ovalbumin alone did not secrete a detectable amount of Ig.  Repression of Ig 

secretion was not unique to ovalbumin in that BMDCs also repressed 85% of anti-mu 

induced Ig where T cell help was provided in the form of recombinant IL-4 and IL-5 (Figure 

2.1 B). Similar to BMDCs, splenic CD11c+ ex vivo cells repressed 70% of anti-mu induced 

immunoglobulin (Figure 2.1 B).  B cell proliferation and viability were comparable to that of 

B6 B cells stimulated in the absence of DCs (data not shown). 

The binding of immune complexes (ICs) to Fc receptors on DCs can induce cytokine 

production (26).  In our in vitro model, IgG-ICs could form when secreted IgM binds to the 

anti-mu antibody (B7.6) used to stimulate the B cells in culture.  Since B7.6 is an IgG1 

antibody, the IgM/anti-mu containing ICs could ligate FcγRs on the DCs. To assess whether 

DCs secrete cytokines in response to Fc receptor ligation, we prepared DC conditioned 

medium (CM) by stimulating BMDCs for 7 days with the culture supernatant from anti-mu 
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(B7.6) or anti-mu (Fab)2 -stimulated B cells (Figure 2.1 C). We then tested whether these DC 

CMs repressed antigen-stimulated B cell Ig secretion. We found that DC CM containing the 

intact Fc portion significantly inhibited Ig secretion, indicating that DCs secrete a soluble 

factor(s) that represses B cell Ig secretion.  This is consistent with transwell data showing 

that DCs regulate Ig secretion in a contact-independent manner (data not shown).  In contrast, 

DC CM prepared using the anti-mu F(ab)2 was unable to inhibit IgM secretion in stimulated 

B cells (Figure 2.1 C).  This suggests that the binding of ICs to FcγRs on DCs inhibits IgM 

secretion. To determine which Fc receptors were responsible for the observed DC-mediated 

repression, we prepared a series of conditioned media, using BMDCs from B6, CD64  

(FcγRI-/-), CD32 (FcγRIIb)-/-, and CD16 (FcγRIII)-/- mice. The data show that CM from 

CD16-/- mice was unable to repress B cell Ig secretion, while CMs from B6, CD64-/-, and 

CD32-/- mice remained repressive (Figure 2.1 D). Thus, the binding of anti-mu/IgM 

containing ICs to CD16 induces the secretion of a soluble repressive factor(s) that limits the 

differentiation of B cells into antibody secreting cells.  

To discern whether DCs decreased Ig secretion by inhibiting the Ig transcriptional 

program, we measured the intracellular levels of XBP-1, IRF-4, and Bcl-6.  Coincident with 

reduced Ig secretion, we found that the levels of XBP-1 and IRF-4 were diminished two-fold, 

while Bcl-6 was increased 1.5-fold (Figure 2.1 E-G). This suggests that DCs block activated 

B cells from differentiating into plasma cells and may affect the PC/memory fate decision.  

Thus, the binding of IgG-ICs to CD16 induces the secretion of a soluble factor(s) that 

upregulates Bcl-6 and limits the differential of B cells into plasma cells.  
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2.3.2 Immunized CD16-/- mice have impaired secondary immune responses 

 Our transcription factor analysis suggests that the stimulation of DCs through CD16 

directs the differentiation of activated B cells away from plasma cell towards the memory B 

cell program, or germinal center. To address these possibilities, we measured primary and 

secondary antibody responses over time in B6 and CD16-/- mice following immunization and 

boost with NP-KLH. We found that immunized CD16-/- mice mounted an IgM and IgG 

primary antibody response that was comparable to B6 mice (Figures 2.2 A and C). In 

contrast, IgM levels during the secondary response of immunized CD16-/- mice were reduced 

2-fold, while the IgG antibody levels were 6-fold decreased (Figures 2.2 B and D).  

Collectively, these data suggest that immune complex binding and CD16 are critical for IgG 

and IgM production during secondary immune responses.  

2.3.3 CD16-/- mice have diminished numbers of memory B cells  

 Rapid, high titer secondary immune responses require the activation of memory B 

cells.  We reasoned that the defects observed in the recall response of CD16-/- mice are the 

result of defects in memory B cell formation.  To address whether CD16 plays a role in 

forming B cell memory, we enumerated CD19+, IgG+, AC-38-binding (idiotype positive) B 

cells 28 days following immunization.  As predicted, immunized B6 mice showed a 4-fold 

expansion of CD19+, IgG+ antigen specific memory B cells, as compared to unimmunized 

controls (Figure 2.3).  In contrast, CD16-/- mice showed very little expansion (1.5-fold) and 

compared to immunized B6 mice, the numbers of memory B cells were reduced by 59% 

(Figure 2.3). These results show that CD16 influences the secondary immune response prior 

to the formation of memory B cells. 
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2.3.4  Immunized CD16-/- mice exhibit defects in forming GCs 

 Memory B cells are a hallmark of a successful germinal center response.  Thus, the 

diminished numbers of memory cells could reflect the failure to form or maintain germinal 

centers (GCs). To assess whether loss of CD16 diminishes the entry of B cells into GCs, we 

enumerated GL-7+, CD95+ splenic B cells 7 days following immunization. As shown in 

Figure 2.4, immunized B6 mice showed a three-fold increase in the numbers of GC B cells, 

compared to unimmunized B6 mice.  However, CD16-/- mice showed only a two-fold 

increase in GC B cells, compared to unimmunized CD16-/- mice (Figure 2.4 A and B).  

CD16-/- had 50% fewer GL7+, CD95+, CD19+ B cells, when compared to immunized B6 

mice.  Furthermore, the immunized CD16-/- showed a reduction in the number of AC-38 

binding, antigen-specific B cells within the germinal center (Figure 2.5).  Taken together, our 

data indicate that the CD16-/- mice harbor defects in germinal center formation. 

 To determine the size and frequency of germinal centers, spleen tissue sections were 

stained with peanut agglutinin (PNA) and the B cell marker, B220.  The numbers of GCs per 

follicle were counted and the size of GC was measured in B6 compared to CD16-/- mice. We 

found that 7 days after immunization, GCs in the spleens of CD16-/- mice were 40% smaller 

than those in B6 mice and over the course of the next 2 weeks (day 14, 21) the GC size never 

reached that achieved in B6 mice (Figure 2.6 A and C).  On day 28, the GCs were 

significantly smaller in both B6 and CD16-/- mice indicating the small size observed in 

CD16-/- spleens was not due to delayed maturation (data not shown). Immunized CD16-/- 

mice also displayed fewer GCs within the B cell follicle at days 7 and 14, although this 

difference was not statistically significant. Figure 2.6 B).  These data suggest that CD16 is 
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also necessary to initiate the germinal center.  Our data implicate the importance of events 

early in germinal center formation in defining the memory B cell pool.   

2.3.5 Dendritic cells secrete BAFF in response to CD16 ligation 

Fc receptor activation induces DCs to secrete a number of cytokines (27, 28).  To 

define the underlying mechanism by which ICs, DCs, and CD16 regulate memory cell 

formation and GCs, we neutralized CM from DCs, using a panel of antibodies, whose 

cognate receptors are expressed on B cells. Neutralization with BR3-Fc, a decoy receptor for 

BAFF, showed a significant loss of repression, restoring antibody secretion to levels 

comparable to the control (Figure 2.7).  Furthermore, DCs from BAFF-/- deficient mice were 

unable to repress anti-mu induced Ig secretion. Finally, treatment of anti-mu stimulated B 

cells with rBAFF significantly decreased IgM secretion (Figure 2.7). This suggests that DC-

derived BAFF, induced by ICs, regulates B cell responses in vitro.       

2.3.6 BAFF-/- bone marrow chimeras also have reduced secondary responses  

Our data reported thus far suggest that activated B cells may rely on DCs and their 

ability to sense ICs and secrete BAFF to direct B cells towards the germinal center and into 

the memory B cell pool.  Although BAFF has been implicated in the survival of mature, 

naïve B cells, and plasma cells, it has not been implicated in regulating the formation of B 

cell memory. To assess whether BAFF produced by hematopoietic cells plays a role in 

adaptive immune responses, we examined primary and secondary immune responses of 

reconstituted B6 and BAFF-/- chimeras.  BAFF-/- mice lack mature peripheral B cells, while 

reconstituted BAFF-/- bone marrow chimeric mice have mature B cells (29), with all 

hematopoietic cells lacking BAFF production.  Although immunized BAFF-/- chimeras have 
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a comparable primary anti-NP response to that of B6 mice (29), their response to secondary 

immunization with NP-KLH has not been assessed. Similar to the CD16-/- mice, BAFF-/- 

chimeras displayed comparable levels of anti-NP IgG and IgM antibody levels to B6 during 

the primary response (2.8 A and C).  However, the BAFF-/- bone marrow chimeras showed 

an impaired secondary response to NP-KLH immunization, with approximately 2-fold less 

IgM and IgG production (Figures 2.8 B and D).  BAFF can induce class switching in 

activated B cells (30-32), hence the loss of IgG in the secondary response could reflect 

diminished AID expression.  Comparison of AID mRNA levels in B6 and BAFF-/- chimeras 

showed comparable levels of AID expression (Figure 2.9) Overall, the data indicate that 

BAFF derived from hematopoeitic cells is essential for secondary immune responses.   

Because we saw only a 50% decrease in antibody responses by the BAFF-/- chimeras, other 

factors may be involved in regulating secondary immune responses, and could contribute to 

the 6-fold decrease in the anti-NP response of the CD16-/- mice. 

2.3.7 Enforced expression of BAFF in DCs restores secondary responses in CD16-/- mice. 

The data suggest that activated B cells may rely on DCs to direct memory cell 

formation through their ability to sense ICs and secrete BAFF.  To directly assess DC-

derived BAFF was necessary for GC formation, we adoptively transferred (s.c.) BMDCs 

from BAFF transgenic mice into immunized CD16-/- mice to determine whether GC B cell 

(CD19+, GL-7+, CD95+) numbers were restored.  We previously established that 70% of 

subcutaneously injected BMDCs migrate to the inguinal lymph and that the magnitude of the 

subcutaneous anti-NP response was comparable to intraperitoneal immunization. Using this 

model, we found that immunized B6 mice showed a robust increase (4.8 fold) in GC B cells, 

as compared to the unimmunized control mice (Figure 2.10).  Consistent with the 
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intraperitoneal immunization model, CD16-/- mice displayed fewer GC B cells (2.3 fold), as 

compared to immunized B6 mice.  The transfer of BMDCs chronically expressing BAFF 

restored this defect. This effect was not due to increased numbers of DCs as BMDCs derived 

from B6 mice did not restore GC B cell numbers, as compared to immunized B6 mice 

(Figure 2.10).  Overall, these data indicate that BAFF from DCs restores GC B cell numbers 

in immunized CD16-/- mice. 

2.3.8 BAFF-/- chimeras have decreased formation of memory B cells and a delayed 

germinal center response 

To assess whether memory B cells formed in the absence of hematopoietic cell-derived 

BAFF, we enumerated antigen-specific CD19+, IgG+, and AC-38+ B cells on day 28, post-

immunization.  We found that there was a 4-fold increase in memory B cells in immunized 

B6 chimeras.  In contrast, BAFF-/- showed a significantly diminished increase in memory B 

cells and this level was reduced by 45% fewer memory B cells compared to immunized B6 

chimeras (Figure 2.11 A).  To determine whether BAFF also affects GC formation, we 

enumerated CD19+, GL-7+, and CD95+ B cells, seven days post-immunization.  Compared to 

B6 chimeras, those lacking BAFF displayed 30% fewer germinal center B cells (Figures 2.11 

B and C).  Thus, early in the primary response, the numbers of memory and GC B cells is 

impaired in BAFF-/- chimeras, much like the phenotype observed in the CD16-/- mice.  This 

implicates BAFF secretion by DCs in the entry of activated B cells into the GC. 

2.3.9  CD16-/- mice and BAFF-/- chimeras have reduced TFH cells 

The development of TFH cells is an important step in promoting B cell responses 

during adaptive immunity.  TFH cells co-express CXCR5, ICOS, and PD-1 allowing them to 
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properly home to GCs, to influence selection and survival (33).  Defects in the differentiation 

of this T cell subset could account for the reduced germinal size and memory B cell numbers 

in CD16-/- mice and BAFF-/- chimeras.  Further, our data indicate that in vitro, BAFF 

regulates Bcl-6.  To define whether BAFF affects TFH cells, B6 and CD16-/- mice were 

immunized with NP-KLH, sacrificed at day 7, and TFH cells were enumerated. CD16-/- mice 

had 54% fewer CD4+, CXCR5+, PD-1+ T cells, as compared to immunized B6 mice (Figure 

2.12 A and B). This was not a consequence of secondary effects due to CD16 deficiency 

since BAFF-/- chimeras also exhibited a 40% decrease in numbers of TFH cells (Figure 2.12 C 

and D).   

We predicted that if BAFF regulated the formation or maintenance of TFH cells, 

forced expression of BAFF in the DC population would restore the TFH cell pool.  Indeed, the 

adoptive transfer of BAFF transgenic BMDCs into immunized CD16-/- mice restored the 

number of TFH cells at seven days post-immunization to levels that were not statistically 

different from immunized B6 mice (Figure 2.13). This effect was not observed in immunized 

CD16-/- mice that received BMDCs from B6 mice, indicating that increased numbers of DCs 

alone does not enhance TFH cell numbers. Collectively, this suggests that BAFF, induced by 

ICs activating CD16 promotes the formation or maintenance of TFH cells.   

2.3.10 BAFF regulates the expression of Bcl-6 

The upregulation of Bcl-6 by CD4+ T cells promotes expression of CXCR5 and ICOS 

on TFH cells, while expression in activated B cells extinguishes the PC program and directs 

activated B cells toward memory B cell pathway.  ICOS has been shown to regulate Bcl-6 in 

TFH cells, but whether other factors impact Bcl-6 remains unclear.  We reasoned that since 
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BAFF increased Bcl-6 expression in our in vitro culture model, it might affect Bcl-6 

expression in the GC response.  We found that at day 7 post-immunization, Bcl-6 levels in 

CD4+ T cells of BAFF-/- chimeras were reduced by 43% (Figure 2.14 A).  BCl-6 expression 

in GC B cells in BAFF-/- chimeras was also reduced by a similar magnitude (Figure 2.14 B).  

Thus, the diminished numbers of TFH cells and GC B cells is coincident with reduced Bcl-6 

expression.  

To define whether constitutive expression of BAFF by DCs restores Bcl-6 levels, we 

adoptively transferred BAFF Tg BMDCs into immunized CD16-/- mice by subcutaneous 

expression. We found that at day 7 post-immunization, enforced expression of BAFF by DCs 

Bcl-6 expression was restored Bcl-6 comparable to that of immunized B6 mice (Figure 2.15 

A).  Constitutive expression of BAFF by DCs also restored the Bcl-6 levels in GC B cells 

(Figure 2.15 B).  The data show that in the absence of FcR stimulation and BAFF expression, 

Bcl-6 expression is reduced.  As a consequence GC size and memory B cell numbers are 

reduced.  This defect ultimately results in diminished recall responses. 
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2.4 Discussion 

Proper execution of an adaptive immune response requires T cells, antigen presenting 

cells, such as DCs, and B cells.  The current dogma is that DCs prime T cells to promote B 

cell Ig secretion.  In this paper, we highlight a novel role for DCs in sensing a productive 

immune response through Fc receptors, followed by secreting BAFF to direct B cells towards 

the seeding of a germinal center.  Our data show that BAFF is a critical factor in the 

formation of TFH cells and diminished numbers of TFH cells delay the number and size of 

newly forming germinal centers.  As a consequence, the number of memory B cells is 

reduced, leading to a significant reduction in antibody levels during recall responses. These 

findings place an important role on DCs in defining the fate of activated B cells and identify 

BAFF as an important mediator that initiates the B cell memory response.  Our studies 

indicate that DCs exert these regulatory effects through the sensing of a productive immune 

response via immune complex binding through Fc receptors. Upon Fc receptor activation, 

DCs secrete BAFF, which plays a critical role in initiating T follicular cell formation and 

subsequent germinal center formation.  We also demonstrate the requirement for Fc receptor 

ligation and subsequent BAFF production in memory B cell differentiation.  

Receptors for the Fc portion of IgG play a significant role in vivo in maintaining 

tolerance, augmenting T cells responses via antigen presentation, and in mediating effector 

cell activation during immune responses.  We’ve now identified an additional role for the Fc 

receptor, CD16, in regulating germinal center formation and subsequent secondary immune 

responses through the production of BAFF by myeloid cells.  Recent studies by Goins et al. 

support our findings, and also implicate Fc receptors in enhancing secondary immune 

responses. Although these studies linked Fc receptors and the enhancement of memory B 
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responses, the exact mechanism by which this occurs is still undefined.  Furthermore, these 

studies did not define the specific Fc receptor involved in this regulatory process, since Fcγ-/- 

mice lack CD64, CD16, and CD16-2. From our studies, we have concluded that expression 

of a single Fc receptor, CD16, and its activation by immune complexes is required for DCs to 

regulate B cell responses in vitro and in vivo.  Specifically, ligation of CD16 by immune 

complexes allows for the production of BAFF, which is critical for germinal center 

formation, TFH cell differentiation, and downstream B cell effector function. 

Although multiple Fc receptors are expressed on the surface of DCs, with varying 

affinities for IgG, our in vitro data suggest that only CD16 is critical in this mechanism.  The 

implication of only CD16 can most likely be attributed to the fact that it preferentially binds 

the immune complexes generated in our in vitro cultures, which were composed of IgG1.   

Several studies corroborate our findings and have reported the preferential binding of CD16 

to IgG1-containing immune complexes in both in vitro and in vivo systems (34-36). Because 

NP immunization results primarily in an IgG1 response, it is likely that CD16 predominantly 

binds the ICs formed in vivo to induce regulatory immune functions.  Although our work 

suggests that CD16 is indispensable for TFH cell generation and germinal center responses, it 

is possible that immune responses that generate antibodies of another isotype will implicate 

an additional Fc receptor.  

During T-dependent adaptive immune responses, B cells interact with TFH cells 

within the follicle and these cellular interactions are indispensable for germinal center 

formation and the production of class-switched, high affinity antibodies.  Consistent with 

their location in the B cell follicle, TFH cells upregulate the chemokine receptor, CXCR5, 

allowing for migration toward the ligand CXCL13, which expressed exclusively in the 



 
51 

 

follicle.  ICOS is also upregulated on TFH cells and is required for their development and 

expansion.  In addition, IL-21 has been reported to play a critical role in TFH cell formation 

and in B cell growth, survival, and class switching (17).  Although, TFH cell differentiation is 

dependent on the availability of IL-21 (37), other cytokines could also be important in 

regulating T follicular helper TFH cell fate.  We herein report that myeloid cell-derived BAFF 

also regulates T follicular helper differentiation.  We have found that mice that lack CD16 

expression and BAFF production by hematopoietic cells have reduced numbers of TFH cells, 

following immunization.  As a consequence, we also saw a temporal defect in germinal 

formation, and an additional defect in memory B cell differentiation.  This delay in germinal 

center formation and defect in secondary B cell responses were similar to defects seen in IL-

21R deficient mice immunized with T-dependent antigens (38), wherein there was a delay at 

post-immunization day 7 in germinal center formation and a significant reduction in total 

antigen specific memory B cells at day 35 post-immunization.  Thus, CD16 and BAFF 

appear to be as equally important as IL-21 in regulating TFH cell function and adaptive 

immune responses.  Most recently, Ettinger and colleagues have shown that BAFF and IL-21 

synergize to enhance the formation of memory B cells in humans (39).  Thus, it is possible 

that BAFF and IL-21 signaling integrate to contribute the adaptive immune responses and the 

generation of B cell memory 

Our studies provide evidence of a direct molecular mechanism by which BAFF 

signaling impacts TFH cell formation.  Upregulation of the transcription factor Bcl-6 is also a 

key requirement for TFH cell differentiation and germinal center initiation (40).  We propose 

that BAFF plays a role in promoting the formation of TFH cells and the seeding of the 

germinal center reaction, by impacting Bcl-6 expression in both B and T cells. It is possible 



 
52 

 

that BAFF/BAFF-R interactions lead to additional molecular changes that promote TFH cell 

differentiation.  A previous study has shown that BAFF-R signaling can induce NFkB 

activation and subsequent ICOSL expression in B cells, which is required for TFH cell 

formation (41).  Thus, signaling through the BAFF receptor may be necessary for the 

upregulation of cell surface receptors and molecules, such as CXCR5 and ICOS, that are 

required for the differentiation and function of TFH cells.  Overall, our results ultimately 

demonstrate that BAFF regulates T-dependent adaptive immune responses by initially 

impacting the differentiation of TFH cells immediately following antigen encounter. 

 BAFF has been established as a key cytokine in primary B cell survival and 

homeostasis.  However, recent studies have revealed a complex role for this cytokine in the 

germinal center reaction. A few conflicting studies have been published describing the role of 

BAFF in germinal center formation and maintenance.  In studies using BR3-deficient mice, 

Kalled and colleagues have shown BAFF is not required for the initiation of the GC 

response, however, it is necessary for the maintenance of established GCs (42). The authors 

also report an increase in small germinal centers and a decline in large germinal centers, 

indicating an overall dissipation (42, 43).  The authors attribute the lack of GC stability in 

BR3-deficient mice to failure of the mice to develop a mature FDC reticulum.  However, 

other factors may contribute to the effects of BAFF on germinal center maintenance. In stark 

contrast, Yan et. al showed that the BAFF-TACI interaction is critical for germinal center 

formation.  Specifically, they found that spleens from immunized, TACI-Fc-treated mice 

were devoid of germinal centers (23).  These conflicting results could be due to the fact that 

different immunizing antigens were used (sRBCs vs. NP-CGG), in addition to the fact that 

germinal center reactions were assessed at varying time points.  The observed differences 
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could also be attributed to the BAFF-depleting reagent that was used (BCMA-Fc vs. TACI-

Fc). The complete absence of germinal centers in immunized, TACI-Fc treated mice could 

implicate a role for APRIL, since both BAFF and APRIL can bind TACI in vivo.  The lack of 

GCs in immunized TACI-Fc mice might also implicate an additional, unidentified TACI 

ligand that regulates germinal center formation.  Similar to studies by Yan et al, our 

experiments reveal a role for both Fc receptors and BAFF production in initiating the 

germinal reaction.  We found that both CD16-/- and BAFF-/- chimeras had a delay in germinal 

center formation.  Germinal centers in immunized CD16-/- mice were also significantly 

smaller than those in immunized control.  Our data suggest that early events in the germinal 

center define are essential for formation of the memory B cell pool.   Because B cells in 

CD16-/- have a shorter duration in the germinal center, it is also likely that the length of the 

germinal center response is critical in forming high affinity, antigen-experienced memory B 

cells. 

 Although survival and maintenance of the mature B cell compartment is dependent 

upon BAFF production by radiation resistant stromal cells, our data suggest that certain 

aspects of the adaptive immunity rely on BAFF produced by hematopoietic cells. 

Specifically, TFH cell differentiation, germinal center initiation, and memory B cell formation 

all rely on hematopoietic stem cell-derived BAFF.  Our data suggest that although serum 

BAFF levels in BAFF-/- chimeras are comparable to B6 chimeras, high local concentrations 

of BAFF within the spleen are required for efficient germinal center formation and memory 

B cell formation. 

 Overall, our studies highlight a role for dendritic cell-derived BAFF in regulating 

multiple events during the adaptive immune response.   Activation of dendritic cells through 
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a CD16-mediated mechanism leads to BAFF production, which promotes Bcl-6 expression 

with B cells and germinal center formation.  BAFF also actively shapes the development of 

TFH cells by modulating Bcl-6 expression in CD4+ T cells. In addition to its role early in the 

germinal center response, BAFF also impacts memory B cell formation and subsequent recall 

responses. 
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Fig. 2.1 DCs secrete soluble factors that inhibit Ig secretion and PC programming. 

Fig. 2.1 DCs secrete soluble factors that inhibit Ig secretion.  (A.) Purified B6 B 

cells were co-cultured with OTII TCR Tg T cells, and either ovalbumin or BSA (+ B6 

BMDCs). Ovalbumin stimulated B cells secreted 1.2-2 µg/mL IgM.  n = 3 (B.) 

Purified B6 B cells were co-cultured with either B6 DMDCs or B6 ex vivo DCs in the 

presence of anti-mu, rIL-4, and rIL-5. Anti-mu stimulated B cells secreted 15-31 

µg/mL IgM.  n=5 (C. ) B6 B cells were cultured with DC CM (containing either anti-

mu with intact Fc or anti-mu F(ab)2) in the presence of additional anti-mu, rIL-4 and 

rIL-5. n=5  (D.).  Purified B6 B cells were cultured with DC CM from B6, CD64-/-, 

CD32-/-, or CD16-/- mice.  n=5. Culture supernatants were harvested after seven days.  

Total IgM levels were quantitated by ELISA.  * p < 0.05, one sample t test 
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Fig. 2. 1  DCs secrete soluble factors that inhibit Ig secretion. Purified B6 B cells 

were stimulated with anti-mu, rIL-4, and rIL-5 for 48 hrs (+ B6 DC DC). Cells were 

harvested permeabilized, and intracellular expression levels of (E.) IRF-4, (F.) XBP-1, 

and (G.) Bcl-6 were assessed by flow cytometry.  Data are representative of 3 individual 

experiments. 
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Fig. 2. 2 CD16-/- mice  have defective secondary immune responses.

Fig. 2. 2 CD16-/- mice  have defective secondary immune responses.  B6  and 

CD16-/- mice were immunized with 100 µg NP-11-KLH in alum (i.p).  Mice were 

bled weekly and primary antibody responses (A and C) were measured by ELISA.  

At 35 days post-immunization, the mice were boosted with 100 µg soluble NP-

KLH, and antibody secretion during the secondary immune response was assessed 

at days 4, 7, and 14 post-boost (B and D). n = 9 for each group.  *p < 0.05, 

Student’s t test 
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Fig. 2.3 Immunized CD16-/- mice have a diminished number of Ag-specific memory B cells.

Fig. 2.3 Immunized CD16-/- mice have fewer Ag-specific memory B cells.  (A. and B.)  

8-10 week old B6 and CD16-/- mice were immunized with NP-14-KLH.  At 28 days post-

immunization, spleens were harvested and CD19+, IgG+, AC-38-binding B cells were 

enumerated by flow cytometry. *p < 0.05, unpaired t test 
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Fig. 2.4 Immunized CD16-/- mice have a diminished number of GC B cells.

 

Fig. 2.4 Immunized CD16-/- mice have fewer GC B cells.  (A. and B.)  8-10 week old 

B6 and CD16-/- mice were immunized with NP-14-KLH precipitated in alum.  At 7 days 

post-immunization, spleens were harvested and CD19+, GL-7+, CD95+ B cells were 

enumerated by flow cytometry.  * p < 0.05, unpaired t test 
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Fig. 2.5 Immunized CD16-/- mice have a diminished number of Ag-specific B cells within the 

germinal center.

Fig. 2.5 Immunized CD16-/- mice have fewer Ag-specific B cells within the GC.  8-

10 week old B6 and CD16-/- mice were immunized with NP-14-KLH precipitated in 

alum.  At 7 days post-immunization, spleens were harvested and AC-38-binding, 

CD19+, GL-7+, CD95+ B cells were enumerated by flow cytometry.   * p < 0.05, **p < 

0.01, n.s:  not significant, unpaired t test 
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Fig. 2.6 Immunized CD16-/- mice have smaller GCs.

Fig. 2.6 Immunized CD16-/- mice have smaller GCs.  8-10 week old B6 and CD16-/- 

mice were immunized with NP-14-KLH.  At 7 days post-immunization, spleens were 

harvested, sectioned, immunofluorescently stained with anti-B220 (red) and anti-PNA 

(green) to assess germinal center number (B.) and size (C.) n= 7 * p < 0.05., n.s: not 

significant, unpaired t test 

 

 

 

 
 

C57BL/6 CD16
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Fig. 2.7 Dendritic cells secrete BAFF in response to CD16 ligation to inhibit Ig secretion.

Fig. 2.7  Dendritic cells secrete BAFF to inhibit Ig secretion.  (A.) Anti-mu 

stimulated B6 B cells were cultured with B6 DC CM neutralized with BR3-Fc or 

control antibody, IgG-Fc.  Purified B6 B cells were also cultured with from either 

B6 or BAFF-/- mice in the presence of additional anti-mu, rIL-4 and rIL-5. n=4. 

Finally, anti-mu stimulated B cells were cultured with 10 ng/mL rBAFF.  Culture 

supernatants were harvested after seven days.  Total IgM levels were quantitated by 

ELISA.  * p < 0.05, one sample t test 
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Fig. 2.8 BAFF-/- chimeras  have defective secondary immune responses.

Fig. 2.8 BAFF-/- chimeras  have defective secondary immune responses.  B6 

and BAFF-/- chimeras were immunized with 100 µg NP-11-KLH in alum (i.p).  

The mice were bled weekly and primary antibody responses (A and C) were 

measured by ELISA.  At 35 days post-immunization, the mice were boosted with 

100 µg soluble NP-KLH, and antibody secretion during the secondary immune 

response was assessed at days 4, 7, and 14 post-boost (B and D). *p < 0.05, 

Student’s t test 



 
64 

 

Fig. 2.9 BAFF-/- chimeras express comparable levels of AID.

 

murine Aicda 
forward 

5’‐GGGAAAGTGGCATTCACCTA‐3’  

murine Aicda 
reverse 

5’‐GAACCCAATTCTGGCTGTGT‐3’ 

murine 18s rRNA 
forward 

5’‐TCAAGAACGAAAGTCGGAGGTT‐3’ 

Murine 18s rRA 
reverse 

5’‐GGACATCTAAGGGCATCACAG‐3’ 

Table 2.1 Real Time RT-PCR primer sequences 

Fig. 2.9 BAFF-/- chimeras express comparable levels of AID.  B6 and BAFF-/- 

chimeras were immunized with 100 µg NP-11-KLH in alum (i.p).  At seven days 

post-immunization, B cells were purified from the spleen and RNA was isolated.  

Expression of AID were quantitated by real time RT-PCR.  n=3.  n.s:  not 

significant, one sample t test 

___ n.s. 



 
65 

 

Fig. 2.10  DC-derived BAFF restores GC response in immunized CD16-/- mice.

 

Fig. 2.10  DC-derived BAFF restores GC response in CD16-/- mice.   BMDCs were 

prepared from B6 and BAFF Tg mice.  B6 or BAFF Tg BMDCs were subcutaneously 

injected into CD16-/-
 mice, immunized with NP-14-KLH.  Inguinal lymph nodes were 

harvested seven days post-immunization, and assessed for the presence of CD19+, GL-

7+, CD95+ GC B cells by flow cytometry.   *p < 0.05, n.s:  not significant, unpaired t test 
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2.11 Immunized BAFF-/- chimeras have a diminished number of memory B cells and GC B 

cells.

2.11 Immunized BAFF-/- chimeras have fewer memory and GC B cells.  

Reconstituted B6 and BAFF-/- chimeras were immunized with NP14-KLH precipitated in 

alum.  (A).  At 28 days post-immunization, spleens were harvested and CD19+, AC-38 

binding, IgG+ memory B cells were enumerated by flow cytometry.  (B. and C.)  At 

seven days post-immunization, CD19+, GL-7+, CD95+ GC B cells were enumerated by 

flow cytometry. * p < 0.05, **p < 0.01, unpaired t test 
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2.12 Immunized CD16-/- mice and BAFF-/- chimeras have a diminished number of TFH cells.

2.12 Immunized CD16-/- mice and BAFF-/- chimeras have fewer TFH cells.  8-10 week 

old B6 and CD16-/- mice were immunized with NP-14-KLH precipitated in alum.  (A and 

B)  At 7 days post-immunization, spleens were harvested and CD4+, CXCR5+, an PD-1+ T 

cells were enumerated by flow cytometry. * p < 0.05, ** p < 0.01, unpaired t test 
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2.12 Immunized CD16-/- mice and BAFF-/- chimeras have fewer TFH cells.  

Reconstituted B6 and BAFF-/- chimeras were immunized with NP-14-KLH precipitated in 

alum.  (C and D)  At 7 days post-immunization, spleens were harvested and CD4+, 

CXCR5+, an PD-1+ T cells were enumerated by flow cytometry.* p < 0.05,    ** p < 0.01, 

unpaired t test 
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Fig. 2.13  DC-derived BAFF restores TFH population in immunized CD16-/- mice.

Fig. 2.13  DC-derived BAFF restores TFH population in CD16-/- mice.   BMDCs 

were prepared from B6 and BAFF Tg mice.  B6 or BAFF Tg BMDCs were 

subcutaneously injected into CD16-/-
 mice, immunized with NP-14-KLH.  Inguinal 

lymph nodes were harvested seven days post-immunization, and assessed for the 

presence of CD4+ TFH cells by flow cytometry.   * p < 0.05, n.s: not significant, 

unpaired t test 
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2.14 Immunized BAFF-/- chimeras also have reduced levels of Bcl-6 expression.

2.14 Immunized BAFF-/- chimeras also have reduced levels of Bcl-6.  Reconstituted 

B6 and BAFF-/- chimeras were immunized with NP-14-KLH precipitated in alum.  At 7 

days post-immunization, spleens were harvested and intracellular Bcl-6 expression 

was assessed by flow cytometry in CD4+ T cells (A.) and GC (CD19+, CD95+, GL-7+) 

B cells (B.)  n =4.  * p < 0.05, ** p < 0.01, n.s:  not significant, one sample t test 

 

B. 

 

A. 
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Fig. 2.15  DC-derived BAFF restores Bcl-6 expression in immunized CD16-/- mice.

Fig. 2.15  DC-derived BAFF restores Bcl-6 expression in CD16-/- mice.   BMDCs 

were prepared from B6 and BAFF Tg mice.  8 X 106 wild type or BAFF Tg BMDCs 

were subcutaneously injected into CD16-/-
 mice, immunized with NP-14-KLH.  Inguinal 

lymph nodes were harvested seven days post-immunization, and intracellular Bcl-6 

expression in CD4+ T cells (A.) and GC B cells (B.) was assessed by flow cytometry.  

n=5 *p <  0.05, **p < 0.01, one sample t test  

A. B. 
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CHAPTER 3 

 

BAFF is essential for memory B cell reactivation 
 

3.1 Introduction 

Antigen-specific recall responses initiated by memory B cells promote accelerated 

clonal expansion, rapid differentiation, and also give rise to high-affinity plasma cells as well 

as the replenishment of the memory B cell pool (1-3).   The cellular and molecular basis for 

the faster and more robust response after antigen re-exposure remains unclear.  Many studies 

have been aimed at understanding the intrinsic characteristics of memory B cells that enable 

robust secondary responses.  Studies have found that the class-switched, IgG B cell receptors 

(BCRs) of memory B cells have enhanced signal initiation and microclustering compared to 

the BCRs of naïve B cells (4). The cytoplasmic tails of the BCRs of memory B cells also 

contribute to the burst of clonal expansion associated with antigen re-encounter (5).  There is 

also evidence that there are significant changes in BCR signaling pathways of memory B 

cells.  CD22-mediated signaling inhibition is prevented in memory B cells, thus enhancing 

BCR activation. (6).  Increased affinity for antigen could also contribute to rapid reactivation 

of memory B cells and enhanced sensitivity to low doses of antigen that are otherwise unable 

to induce a primary immune response.   
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Much less is known about the extrinsic factors that promote the expansion of antigen-

experienced plasma and memory B cells during recall responses.  Circulating, high-affinity 

antibodies also contribute to memory B cell expansion, as rapid presentation of immune 

complexes to memory B cells is enhanced (1).  There is also some evidence that memory B 

cells require cognate interaction with antigen-specific T helper cells to initiate secondary 

immune responses (1, 7). When the initial priming antigen and antigen presented during 

recall responses are identical, memory TFH cells emerge and are reactivated preferentially 

over their naïve counterparts.  The organization and kinetics of this process remain poorly 

understood.  In addition, the specific role of TFH cells in enhancing secondary immune 

responses has not been well studied.   

There has also been recent evidence that memory B cells can re-initiate a GC reaction 

following antigen recall (8). The type of antigen appears to have an impact on the persistence 

of the primary-response GC, with particulate antigens (sRBCs) more likely than soluble 

antigens (NP-KLH), to sustain germinal centers (8). Whether the germinal centers observed 

during secondary responses are a continuation and re-expansion of a primary GC remains to 

be determined. More importantly, it remains to be seen whether these secondary germinal 

center structures support the replenishment of the memory B cell pool, the further 

diversification of affinity-matured BCRs, and the selection of B cell clones with higher 

affinities.  The role of additional extrinsic factors, including cytokine production, in 

promoting antigen recall responses also requires further investigation. IL-21 plays a role in 

the accumulation of memory B cells and plasma cells following secondary immunization (9); 

however, it is not the sole factor responsible for memory B cell reactivation.  Furthermore, 
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the mechanism by which IL-21 enhances memory B cell responses remains unclear; perhaps 

IL-21 synergizes with additional factors to promote memory B cell expansion. 

Although a role for BAFF in B cell survival and homeostasis is well defined, its 

impact on B cells during memory responses remains unclear.  Our studies reported herein 

demonstrate that during antigen recall responses, BAFF is essential for the expansion of 

memory B cells.  The reduction of serum BAFF levels by BR3-Fc treatment resulted in 

decreased secondary NP-specific antibody responses.  This deficit in secondary humoral 

responses was also associated with the failure of NP-specific memory B cells to expand into 

effector, antibody-secreting cells.  This defect in secondary immune responses was also 

associated with a reduction in germinal center B cells and TFH cells. 
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3.2 Materials and Methods 

Animals 

Animals were maintained in an accredited animal facility at University of North Carolina. 

C57BL/6 (B6) mice were bred in house and used at 8-12 weeks of age.  

Antibodies and Reagents  

Antibodies to CD19, CD4, GL-7, PD-1, and ICOS were purchased from Biolegend.  

Antibodies to murine IgG1, IgG2a, IgG2b, IgG3, and CXCR5 were purchased from BD 

Biosciences.  Streptavidin Alexa 488 and Streptavidin Alexa 647 were purchased from 

Invitrogen. Purified antibodies from the hybridomas H33L and B1-8 were obtained from Dr. 

Garnett Kelsoe of Duke University.  BR3-Fc and control antibody IgG-Fc were obtained 

from Dr. Robert Benschop of Eli Lilly.  NP-Osu was purchased from Biosearch 

Technologies, and KLH was purchased from Sigma Aldrich.  Alum was purchased from 

Pierce.   

NP-KLH immunization 

B6 mice (8-12 weeks of age) were immunized i.p. with 100 µg NP-14-KLH precipitated in 

alum for the induction of primary responses.  For secondary immunization, mice were 

boosted (i.v. injection) with 100 µg of soluble NP-14-KLH at least 30 days after the primary 

immunization. Antibody levels were measured 4, 7, and 14 days after boost to quantitate 

memory recall responses. 
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BR3-Fc Treatment 

Twenty-eight days following the initial NP14-KLH immunization, the mice were injected 

(i.v) with 5 mg/kg of either control IgG-Fc or BR3-Fc at bi-weekly intervals.  In vivo BAFF 

depletion was assessed by flow cytometry in the enumeration of CD19+ B cells. 

NP ELISA 

Sera were tested for IgG anti-NP antibodies by ELISA. Microtiter plates were coated with 5 

µg/mL NP13-conjugated BSA (Biosearch Technologies). Serially diluted serum samples were 

incubated overnight at 4oC. The anti-NP hybridoma, H33L was used as a standard for 

quantitation.  Anti-NP IgG levels were detected using an alkaline phosphatase-conjugated 

goat anti-mouse IgG antibody (1/1000 dilution) followed by phosphatase substrate (Sigma-

Aldrich).  Optical density (OD) values were converted to concentration based on standard 

curves, using a four-parameter logistic equation (Softmax Pro 3.1 software; Molecular 

Devices). 

NP ELISpot 

 Splenocytes from immunized mice were washed and transferred to plates coated with 10 

µg/mL NP13-conjugated BSA and incubated for 48 hrs (0.25 X 106 cells/well).  The ASCs 

were detected using biotinylated anti-IgM and IgG followed by streptavidin-horseradish 

peroxidase.  The plates were analyzed using an ImmunoSpot Analyzer and ImmunoSpot 

software package (Cellular Technology). 
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TFH Cell Enumeration 

B6 mice (8-10 weeks of age) were immunized and treated with BR3-Fc as described.  At day 

14 post-immunization, spleens were harvested, single cell suspensions were prepared, and 

CD4+, CXCR5+, PD-1+, and ICOS+ T cells were enumerated by flow cytometry.   

Statistical analysis 

The student’s t test was used to compare Ig secretion following the boost in IgG-Fc control-

treated and BR3-Fc-treated mice.  The unpaired t test was used to compare ELISpot results, 

GC B cell and TFH cell numbers in IgG-Fc and BR3-Fc treated mice.  Statistical analyses 

were performed with GraphPad Prism. 
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3.3 Results  

3.3.1 BAFF is required for memory B cell reactivation 

 Our studies thus far show that CD16-/- mice and BAFF-/- bone marrow chimeras fail 

to mount secondary immune responses, as indicated by reduced antibody levels following 

boost with antigen, as compared to immunized B6 mice.  This defect in secondary immunity 

has been attributed to a reduction in memory B cell formation during the primary immune 

response.  Alternatively, the reduced levels of anti-NP antibody during recall responses could 

result from the failure of the existing antigen specific memory B cells to expand and secrete 

antibody after secondary antigen exposure due to the lack of localized BAFF production.  To 

assess the role of BAFF in memory B cell reactivation, wild type B6 mice were immunized 

with the T-dependent antigen NP-KLH and subsequently dosed with a 5 mg/kg dose of BR3-

Fc to reduce serum BAFF levels.  BR3-Fc treatment was initiated at 28 days post-

immunization to allow for a normal primary immune response to NP-KLH immunization.  

By day 28 post-immunization, the primary response has contracted (10), and only the role of 

BAFF in memory B cell expansion and antigen recall was assessed.  Following the bi-weekly 

dosing of B6 mice with BR3-Fc, we found that the percentage of CD19+ B cells was 

decreased by 50%, indicating that the mature B cell compartment was sensitive to the 

reduction of serum BAFF levels (Figure 3.2). No significant changes in B cell numbers were 

found in IgG-Fc treated mice (Figure 3.2).   Following the final dose of BR3-Fc, the mice 

were boosted with soluble NP-KLH and antibody responses were assessed by ELISA. We 

found that BR3-Fc treated mice had 2-fold lower anti-NP IgG antibody responses when 

compared to the IgG-Fc-treated control mice at 14 days post-boost (Figure 3.3).  We also 

observed a slight, but not statistically significant, decrease in anti-NP IgM levels in the BR3-
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FC injected mice at 7 days post-boost (Figure 3.3).  In addition, the BR3-Fc treated mice 

displayed 50% fewer anti-NP IgG antibody secreting effector cells at 14 days post-boost, as 

indicated by an ELISpot assay (Figure 3.4).  Overall, these results suggest that BAFF is 

necessary for the expansion of memory B cells and robust humoral responses during re-

encounter with antigen. 

3.3.2 BR3-Fc treated mice have reduced germinal center B cells and TFH cells 

 Studies have shown that activated B cells can re-enter germinal center structures in 

secondary immune responses (8).  Thus, it is possible that the failure to secrete antibody 

during recall responses could result in the lack of germinal center re-formation or re-

utilization.  To assess germinal center B cell responses following antigen boosting, spleens of 

immunized, BR3-Fc treated mice were sectioned and analyzed by immunofluorescence for 

the presence of germinal centers.  We found that BR3-Fc treated mice did indeed show 

clustering of PNA+, B220+ B cells, indicative of germinal center structures (data not shown).  

However, in contrast to IgG-Fc treated control mice, BR3-Fc treated mice displayed germinal 

centers of a smaller size, most likely due to a reduction in the numbers of mature B cells 

(data not shown).  In addition, the absolute number of CD19+, CD95+, GL-7+ germinal center 

B cells was reduced by approximate 55% at 14 days post-boost in the BR3-Fc treated mice, 

compared to control mice, as indicated by flow cytometric analysis (Figure 3.5).   Because 

germinal center formation requires proper TFH cell function and maintenance, we assessed 

the numbers of CXCR5+,  PD-1-/-, CD4+ T cells within the spleens of immunized B6 mice 14 

days post boost. Corresponding with a change in germinal centers, we also found that the 

reduction in BAFF serum levels resulted in a 40% reduction in CXCR5+, CD4+ B cells 

(Figure 3.6).  No changes in PD-1 or ICOS expression were observed.  Taken together, these 
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data suggest that the presence of BAFF in secondary immune responses influences germinal 

center responses and CXCR5 upregulation of CD4+ T cells during secondary immune 

responses. 

Our results demonstrate that BAFF is a required factor for memory B cell reactivation 

during secondary immune responses.  This suggests that BAFF is necessary for plasma cell 

differentiation from activated memory B cells after re-encounter with antigen.  In addition to 

fewer anti-NP ASCs following the boost in BR3-Fc injected mice, we also found that there 

were fewer GC B cells and TFH cells present in the spleens of BAFF-depleted mice.  Overall, 

these data suggest that BAFF has a novel role in productive B and T cell responses upon 

antigen recall responses. 
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3.4 Discussion 

During the secondary immune response, re-encounter with antigen results in the 

expansion of memory B cells into effector antibody-secreting cells and the generation of 

additional memory B cells. Our studies indicate that BAFF has many regulatory roles in 

adaptive immunity, including modulating the expansion of B cells during secondary immune 

responses.  This expansion results in a robust antibody response that protects the host from 

secondary infection by the pathogen.  Our data indicate that BAFF is critical for memory B 

cell expansion and antibody responses following re-encounter with antigen.  As a result of in 

vivo BAFF reduction, IgG antibody responses are significantly attenuated following the boost 

with NP-KLH. 

The exact mechanism by which BAFF regulates memory B cell reactivation and 

secondary immunity remains unclear.  Because there is some literature to suggest that naïve 

B cells can participate in secondary immune responses (11), it is possible that the depletion 

of naïve B cells from the BR3-Fc treatment is indirectly responsible for the lack of secondary 

responses. Alternatively, BR3-Fc treatment could directly inhibit the BCR activation of 

memory B cells once they have encountered antigen. There is also some evidence of 

signaling cross-talk between the BAFF receptor and the BCR and of BAFF enhancing BCR 

signaling (12).  Thus, loss of BAFF signaling may also interfere with the threshold of B cell 

receptor activation and memory B cell function.  

It has also been proposed that germinal centers contribute to secondary immune 

responses (8).  Studies have also shown germinal centers can be reutilized by newly activated 

B cells (13).  Our studies would suggest that BAFF inhibition by BR3-Fc treatment might 
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disrupt the seeding of secondary germinal centers and TFH cell function during secondary 

immune responses, thereby preventing the rapid antibody response that is required to 

neutralize the intruding pathogen.  Recent studies have shown that memory TFH cells reside 

in close proximity to IgG memory B cells, which surround contracted germinal centers in the 

spleen (7).  These studies propose that the close proximity of memory B and TFH cells 

contribute to the rapid kinetics of secondary immune responses.  It is also possible that 

additional factors such as BAFF are required for the localization of memory B cells and TFH 

cells during antigen re-encounter.  Our studies show that BAFF is required for the 

upregulation of the chemokine receptor CXCR5 on CD4+ T helper cells.  Thus, BAFF may 

promote the homing of memory TFH cells into the B cell follicle, which allows for successful 

memory B cell activation.  Because B cells are required for TFH cell maintenance (14), the 

lack of CXCR5-expressing helper T cells could also be the product of partial B cell depletion 

resulting from BR3-Fc treatment.  Future studies are required to further delineate the direct 

role of BAFF in TFH cell function during secondary immune responses.   

Our studies show that BR3-Fc treatment results in a reduction in total TFH cell 

numbers during antigen recall.  This would suggest that B cell depletion by in vivo BAFF 

neutralization also directly impacts T cell maintenance and the generation of T cell memory.  

Perhaps the reduced secondary responses following BR3-Fc treatment is also a result in the 

loss of function of memory T cells.  Numerous reports have indicated that B cells can 

regulate CD4+ memory T cell responses.  In one study, using infection with 

Heligmosomoides polygyrus as a model, B cells were required to maintain and reactivate 

antigen-specific memory T helper cells (15).   Similar results were found in a model of 

LCMV infection where LCMV-specific memory CD4+ T cells failed to survive in B cell-
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deficient mice (16).  Combined, these studies indicate that B cells have a role in establishing 

and maintaining antigen-specific memory T cell populations.  Thus, failure to mount robust 

antibody responses could not only reflect the inability to activate memory B cells in the 

absence of BAFF, but also failure to activate antigen-specific memory T cells as a result of 

partial B cell depletion. 

 The role of BAFF in memory B cell activation has vast implications in the regulation 

of memory to self-antigens in the setting of autoimmune disease.  Our studies show that anti-

BAFF immunotherapy has the potential to prevent autoreactive memory B cell activation in 

response to recognition of self-antigens.  BAFF is known to provide a survival mechanism 

for autoreactive B cells, and BAFF over-expression has been linked to autoimmunity (17).   

Specifically, BAFF transgenic mice develop lupus-like disease as they age (18). In addition, 

high serum levels of BAFF have been found in a select group of SLE patients (17, 19).  This 

clearly demonstrates a pathogenic role for BAFF initiating and sustaining autoimmune 

diseases. Our data reported herein demonstrate that the reduction of serum BAFF levels in 

vivo by BR3-Fc treatment results in the failure to reactivate memory B cells during secondary 

immune responses.  Although previous reports have shown that memory B cell survival is 

independent of BAFF (20, 21), previous studies have not addressed the role of BAFF during 

antigen recall.  Our data indicate that BAFF is indispensable in the activation of memory B 

cells during re-exposure to antigen in secondary immune responses.  Thus, anti-BAFF 

therapies to treat autoimmune disease may contribute to the amelioration of disease by 

preventing memory B cell responses to self-antigen.   
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 Fig. 3. 1  Reduction of serum BAFF levels by BR3-Fc treatment in B6 mice. 

   

 

 

  

 

 

 

 

 

 

 

Fig. 3. 2  Treatment with BR3-Fc results in reduced numbers of CD19+ B cells in B6 mice. 

Fig. 3. 1  Reduction of serum BAFF levels by BR3-Fc treatment in B6 mice. 8-12 week 

old female B6 mice were immunized with  100 µg NP-14-KLH (i.p.).  At 28 days post-

immunization, mice were treated with 5 mg/kg of the control antibody, IgG-Fc, or the BAFF 

depleting reagent, BR3-Fc.  Mice were boosted one week after the 2nd dose of BR3-Fc.  Mice 

were bled 4, 7, and 14 days following boost with NP-KLH.  Serum anti-NP levels were 

assessed by ELISA. 
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Fig. 3. 2  Treatment with BR3-Fc results in fewer CD19+ B cells in B6 mice.   8-12 

week old female B6 mice were immunized with 100 µg NP-14-KLH (i.p.).  At 28 days 

post-immunization, mice were treated with 5 mg/kg of the control antibody, IgG-Fc, or 

the BAFF depleting reagent, BR3-Fc.  CD19+ B cells were enumerated by flow 

cytometry. **p < 0.01, n.s: not significant, unpaired t test 
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Fig. 3.3 BAFF is required for memory B cell reactivation in secondary immune responses.

 

Fig. 3.3 BAFF is required for memory B cell reactivation. 8-12 week old B6 mice were 

immunized with 100 µg NP-14 KLH (i.p.).  28 days post-immunization mice were dosed 

with 5 mg/kg IgG-Fc or BR3-Fc at bi-weekly intervals. Following BR3-Fc treatment, both 

cohorts of mice were boosted with soluble NP-14-KLH.  Serum IgM (A.) and IgG (B.) 

anti-NP levels were measure by ELISA 4, 7, and 14 days post-boost.  n=8 mice per 

treatment group. *p < 0.05, Student’s t test 

A. B. 
* 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Fig. 3.4 BAFF is required for memory B cell expansion in response to re-encounter with 

antigen.

Fig. 3.4 BAFF is required for memory B cell expansion.   8-12 week old B6 mice 

were immunized with 100 µg NP-14 KLH (i.p.).  28 days post-immunization mice were 

dosed with 5 mg/kg IgG-Fc or BR3-Fc at bi-weekly intervals. Following BR3-Fc 

treatment, both cohorts of mice were boosted with soluble NP-14-KLH.  Anti-NP ASCs 

were enumerated at day 28 post-immunization and 14 days, post-boost by ELISpot. *p < 

0.05, unpaired t test 
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Fig. 3. 5  BR3-Fc treated mice have fewer GC cells, 14 days post-boost.

Fig. 3. 5  BR3-Fc treated mice have fewer GC cells, 14 days post-boost.  8-12 week 

old B6 mice were immunized with 100 µg NP-14-KLH (I.p.).  At 28 days post-

immunization, the mice were treated with 5 mg/kg of the control antibody, IgG-Fc, or 

the BAFF depleting reagent, BR3-Fc.  Following treatment with IgG-Fc or BR3-Fc, 

mice were boosted with 100 µg soluble NP-14-KLH.  CD19+, GL-7+, CD95+ GC B 

cells were enumerated by flow cytometry 14 days post-boost.  *p < 0.05, **p ≤ 0.01, 

unpaired t test 
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Fig. 3. 6  BR3-Fc treated mice have fewer CD4+, CXCR5+ TFH cells 14 days post-boost.

 

Fig. 3. 6  BR3-Fc treated mice have fewer cells 14 days post-boost.  8-12 week old B6 

mice were immunized with  100 µg NP-14-KLH (I.p.).  At 28 days post-immunization, mice 

were treated with 5 mg/kg of the control antibody, IgG-Fc, or the BAFF depleting reagent, 

BR3-Fc.  Following treatment with IgG-Fc or BR3-Fc, mice were boosted with 100 µg 

soluble NP-14-KLH.  14 days following the boost, CD4+, CXCR5+ T follicular helper cells 

were enumerated by flow cytometry.  *p < 0.05, **p ≤ 0.01, unpaired t test 
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CHAPTER 4 
 

B cells secrete cytokines to regulate antigen-induced Ig secretion 
 

 4.1  Introduction 

 The production of high-affinity, antigen-specific antibodies during the adaptive 

immune response is critical in the host’s survival during infection.  The proper contraction of 

antibody production by activated B cells is also important in preventing inappropriate 

immune responses, which could lead to excess inflammation and, in extreme instances, 

malignancies and autoimmunity.  Several regulatory mechanisms have been described that 

contribute to the regulation of B cell activation thresholds, including immune complexes 

binding FcγRIIb  on the B cell surface.  FcγRIIb , along with other inhibitory receptors such 

as PD-1, CD-5, and CD22, belong to the family of ITIM-containing immune inhibitory 

receptors.  Fc receptor ligation on the surface of B cells results in SHIP phosphatase 

recruitment and attenuated BCR signaling (2, 3).  Studies in FcγRIIb -/- mice have 

demonstrated its role in enhancing humoral immunity.  However, the absence of FcγRIIb  

does not result in uncontrolled antibody production, indicating the presence of additional 

regulatory mechanisms.  Other mechanisms of immune regulation include the generation of 

regulatory T and B cells, whose main function is to secrete regulatory cytokines that dampen 

the immune response.  There is a large body of evidence demonstrating the role of regulatory 

T cells and their production of TGF-β in modulating T helper cell responses, and in some 
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cases, the function of activated B cells (4-6). Although they are mostly characterized by their 

production of immunoglobulins and their role in secondary antigen presentation, B cells are 

also capable of additional immunoregulatory functions. Regulatory IL-10-producing B cells 

can suppress CD4+ T cell responses and can prevent the induction of autoimmune disease in 

several mouse models (7).  Although there is emerging evidence of a key role for regulatory 

B cells in regulating T cell responses and maintaining tolerance, little is known about the role 

of antigen-stimulated B cells in actively regulating effector function of newly emerging naive 

B cells and antibody secretion via autocrine mechanisms.  It also remains unclear whether B 

cells secrete other regulatory cytokines, in addition to IL-10. 

Our data reported herein support a model in which antigen-stimulated B cells, 

independent of Fc receptor ligation, secrete the soluble regulatory factors TGF-β and CD40L, 

which negatively impact effector functions of newly stimulated B cells in vitro.  We propose 

that the production of regulatory cytokines by B cells functions as a feedback mechanism that 

limits Ig production following a productive immune response.  In addition, our studies 

suggest the production of TGF-β and CD40L by B cells also plays a role in the maintenance 

of tolerance to self-antigens, as B cells from lupus-prone mice fail to regulate Ig secretion.  

Overall, our studies demonstrate that in addition to immunoglobulin production and antigen 

presentation, B cells have an important role in regulating antigen-induced B cell responses. 
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4.2  Materials and Methods 

Animals 

Animals were maintained in an accredited animal facility at University of North Carolina. 

C57BL/6 (B6), FcγRIIb -/-, B6.lpr, and MRL/lpr mice were bred in house and used at 10-12 

weeks of age.  OTII TCR transgenic mice and B6 Mertkd were obtained from Jenny Ting and 

Glenn Matsushima, from the University of North Carolina.  

B and T cell purification 

Splenic B cells were isolated from B6, FcγRIIb -/-, MRL/lpr, Mertkd, and B6.lpr mice by 

negative selection (StemCell Technologies). B cells were 95-99% pure, as determined by 

flow cytometry (with fewer than 5% DCs and MFs).  In some experiments, marginal zone 

(MZ) B cells were depleted by the addition of biotinylated anti-CD9.  Splenic T cells were 

isolated from OTII TCR transgenic mice by negative selection (StemCell Technologies).  T 

cells were 90-99% pure, as determined by flow cytometry.   

Antibodies and Reagents 

Recombinant murine IL-4 and IL-5 were purchased from Peprotech. Monoclonal antibodies 

54.1 (3-83 idiotype), Y-12 (anti-Sm), and 33-60 and B7.6 (anti-mu) were purified from 

hybridoma culture supernatants.  Streptavidin microbeads were purchased from Miltenyi. 

Whole ovalbumin protein was purchased from Sigma Aldrich.  Neutralizing antibodies (anti-

TGF-β  and anti-CD40L) were purchased from R&D Systems. 
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Preparation of B cell conditioned media (CM) 

2 X 105 purified B cells were stimulated with 30 µg/mL anti-mu (B7.6 complexed to 

streptavidin microbeads), rIL-4 and rIL-5 (10 ng/mL). After seven days of culture, 

supernatants were harvested, and stored at -20oC for future use. 

B6 B cell and OTII T cell co-culture 

2 X 105 purified B6 B cells were co-cultured with 2 X 105 T cells purified from OTII TCR 

transgenic mice.  Cells were cultured for 7 days in the presence of 100 µg ovalbumin.  

Supernatants were harvested on day 7, and IgM was measured by ELISA, or stored at -20oC 

for future use.   

Total IgM ELISAs 

IgM levels from B6 mice were detected using anti-mouse IgM (33-60) and biotin-labeled 

anti-mouse IgM (B7.6). 

Neutralization of B cell CM 

B cell CM were pre-incubated with anti-TGF-β, anti-CD40L , or isotype control antibodies 

(54.1 and Y-12) for one hour prior to addition to purified B cells and cultured with anti-mu 

stimulated B cells for seven days. Supernatants were harvested, and secreted IgM was 

quantitated using ELISA. 

Statistics 

The one sample t test was used to compare secreted IgM levels in anti-mu stimulated controls 

and treatment groups.  Statistical analyses were performed using Graph Pad Prism. 
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4. 3 Results 

4.3.1 Antigen-stimulated B cells secrete repressive factors 

B cells primarily function in antigen-specific adaptive immune responses by secreting 

high-affinity antibodies to neutralize invading pathogens.  Few studies have addressed the 

role of B cells in directly regulating B cell effector responses, including the production of 

immunoglobulin.  It is unclear whether B cells produce factors during antigen stimulation 

that negatively regulate B cell responses through a feedback mechanism.  To assess whether 

B cells possess the ability to regulate Ig secretion through an autocrine mechanism, wild type 

B6 B cells were stimulated with anti-mu, rIL-4, and rIL-5 for seven days to mimic a T-

dependent, adaptive immune response.  After 7 days, supernatants from the stimulated B 

cells (B cell conditioned media (CM)) were harvested and tested for repressive capabilities.  

Subsequently, additional B6 B cells were purified, stimulated with anti-mu, and cultured with 

the B cell CM.  We found that anti-mu stimulated B cells cultured with B cell CM showed a 

95% reduction in Ig secretion compared to the anti-mu stimulated control B cells (Figure 

4.1).  We also found that while Ig secretion was significantly inhibited by culture with B cell 

CM, cell proliferation and viability remained unaffected (data not shown). 

4.3.2 The production of regulatory factors by activated B cells is independent of Fc 

receptor ligation 

Because B cells express the inhibitory Fc receptor FcγRIIb, which negatively 

regulates B cell activation, it is possible that the B cell CM inhibits Ig production through an 

Fc-dependent mechanism, involving immune complex binding by FcγRIIb .  To test this, B 

cells were purified from FcγRIIb -/- mice, stimulated with anti-mu and rIL-4/5, and cultured 

with B cell CM from B6 mice.  The repressive ability of the CM was independent of Fc 
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receptor ligation since Ig secretion of B cells from FcγRIIb deficient mice was also inhibited 

by the B cell CM (Figure 4.1).  Furthermore, CM prepared from wild type B cells using anti-

mu F(ab)2  also inhibited Ig production (Figure 4.1), indicating that the presence of the Fc 

portion of antibody is not required for B cell-mediated repression of Ig secretion.    

4.3.3  Ovalbumin-stimulated B cells secrete factors that negatively impact Ig secretion 

To confirm that the mechanism by which B cells auto-regulate Ig production is not 

unique to anti-mu stimulation, an in vitro culture system was designed to stimulate B cells 

using bona fide antigen and T cell help.  Purified wild type B6 B cells were stimulated with 

ovalbumin protein in the presence of OTII T cells, which express an ovalbumin-specific T 

cell receptor (TCR).  In the presence of ovalbumin and antigen-specific T cells, B6 B cells 

proliferated (Figure 4.2) and secreted Ig, indicating a productive immune response to 

ovalbumin stimulation.  Conditioned media from these stimulated B cells was harvested and 

tested for its repressive abilities (OVA B cell CM).  Freshly isolated B6 B cells were 

ovalbumin-stimulated and cultured with the OVA B cell CM.  We found that Ig secretion 

was inhibited by 60% (Figure 4.2), indicating that these repressive effects of the B cell CM 

are not unique to anti-mu B cell stimulation, but also impact B cells stimulated with bona 

fide antigen. 

4.3.4 CD9 expressing B cells secrete soluble factors that inhibit Ig secretion 

During the process of B cell development in bone marrow, naive B cells differentiate 

and migrate to different microenvironments, so that peripheral lymphoid tissues contain 

mature B cell subsets with varying phenotypes and functions (8).  Although the majority of B 

cells in the spleen are located in the follicular (FO) area, B cells of slightly larger size are 
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located in the marginal zone and are more readily activated (9, 10). Because B cells with an 

origin similar to the marginal zone have been ascribed regulatory functions (11), we wanted 

to identify the B cell subset secreting the regulatory factors.  Studies have shown that 

regulatory B cells play a major role in maintaining immune tolerance and that the function of 

these B cells is dysregulated in SLE patients (12). To identify the B cell subset, we purified B 

cells from B6 mice and subsequently depleted the marginal zone subset using an anti-CD9 

antibody.  Marginal zone depletion was confirmed by flow cytometry, as demonstrated by 

the near absence of CD21high, CD23low, CD19+ B cells (13).  The remaining B cells were then 

anti-mu stimulated and CM was harvested after seven days.  We found that B cells stimulated 

with CM from marginal zone-depleted B cells failed to inhibit Ig secretion (Figure 4.3), 

demonstrating that the source of the repressive factors was the marginal zone subset.  

Because B cells of the B-1 subset and some plasma cells also express CD9, we cannot rule 

out the contribution of these B cell subsets in regulation Ig secretion (13). 

4.3.5 Ag-stimulated B cells secrete TGF-β and CD40L, which regulate Ig production 

 We have now identified a novel mechanism by which B cells secrete soluble factors 

that regulate Ig production, independent of Fc receptor ligation. We next wanted to identify 

the soluble factors secreted by B cells upon stimulation.  We began by neutralizing the CM 

with a panel of antibodies against cytokines that are secreted by B cells and are known to 

have regulatory roles in the immune response.  Ig secretion by stimulated B cells cultured 

with CM neutralized with either anti-TGF-β or anti-CD40L alone remained inhibited (Figure 

4.4 A).  We found that when the B cell CM was neutralized with both anti-TGF-β and anti-

CD40L, Ig secretion by the B cells was fully restored to levels similarly observed in anti-mu 

stimulated controls (Figure 4.4 A). These results were not due to non-specific antibody 
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binding because restoration of Ig secretion was not observed when CM treated with isotype 

controls.  These results indicate that B cells secrete TGF-β  and CD40L, which limit Ig 

production by other antigen-stimulated B cells.  Furthermore, when B cells were cultured 

with both recombinant TGF-β and CD40L combined, Ig secretion was reduced to 90% of the 

anti-mu stimulated controls (Figure 4.4), while proliferation remained unaffected (data not 

shown). 

4.3.6 B cells from lupus-prone mice fail to repress Ag-induced Ig secretion 

Our studies suggest that B cells secrete TGF-β  and CD40L, which negatively 

regulate Ig secretion by other antigen-stimulated B cells. It is also possible that these 

regulatory factors may play a role in maintaining tolerance to self-antigen and preventing 

activation of self-reactive B cells, as previous studies in our lab have shown that CD40L 

prevents TLR-activation of Sm-specific B cells (14).  Furthermore, DCs and MFs from 

lupus-prone mice fail to secrete regulatory factors in response to LPS stimulation (15).  If 

TGF-β and CD40L play a significant role in maintaining tolerance, one would predict that B 

cells from autoimmune-prone mouse models, in which tolerance has been breached, would 

show decreased production of these regulatory cytokines.  To test whether these factors have 

a role in immune tolerance to self-antigen, B cell CM were prepared from the lupus-prone 

mouse model MRL/lpr and from mouse models with known clearance defects and an 

increased propensity for autoimmunity (B6.lpr and Mertkd).  We found that compared to CM 

from wild-type mice, B cell CM from MRL/lpr, Mertkd, and B6.lpr mice failed to inhibit IgM 

production by anti-mu stimulated B6 B cells (Figure 4.5).  B cells cultured with these CM 

secreted levels of IgM that were comparable to anti-mu stimulated controls.  These data 

suggest that B cells from lupus-prone mice fail to secrete the regulatory products.  Failure to 
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maintain tolerance to self in these lupus-prone mouse models could be partially attributed to 

the lack of TGF-β  and CD40L production by antigen stimulated B cells. 



 
106 

 

4.4 Discussion 

 Robust B cell activation is critical in providing the host with protective humoral 

immunity against invading pathogens.  Tightly regulated B cell activation and subsequent 

antibody production allows for the effective neutralization of foreign antigen, while 

maintaining unresponsiveness to self-antigens.  Mechanisms to induce proper contraction of 

the immune response must also exist to prevent uncontrolled antibody responses and 

inflammation. Dysregulation of B cell responses can lead to several pathological conditions, 

including lymphoid cancers, autoimmunity, and immunodeficiency.  Historically, the 

activation of ITIM-containing inhibitory cell surface receptors, including FcγRIIb , has been 

recognized as an essential mechanism in regulating BCR signaling thresholds and B cell 

proliferation and Ig secretion (16).  However, additional mechanisms must exist, as FcγRIIb-/- 

mice can still attenuate BCR-derived antibody responses (1).  In summary, we have found 

that antigen-stimulated B cells, predominantly of the marginal zone subset, produce the 

regulatory factors TGF-β and CD40L, which negatively impact Ig secretion in vitro.  These 

data suggest that B cells themselves have an active role in regulating BCR-derived immune 

responses. Our data also highlight the importance of these regulatory cytokines produced by 

B cells in models of autoimmunity because B cells from lupus prone mice fail to secrete 

factors that regulation Ig secretion. 

 In addition to immunoglobulin production and providing co-stimulation to T cells, it 

has been well documented that B cells can also secrete cytokines and chemokines in response 

to antigen and other stimuli (17, 18).  Although it has been known for decades that B cells 

can secrete cytokines, the idea that B cell-derived cytokines are involved in regulating 

various components of the adaptive immune response is relatively new. The role of TGF-β  
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and CD40L production by marginal zone B cells in regulating adaptive immune responses in 

vivo has yet to be determined. Marginal zone B cells are strategically located in the periphery 

of the B cell follicle and are the first cells to encounter antigen from the bloodstream (19).  

As a result of their location, marginal zone B cells are more readily activated than follicular 

B cells and do not require T cell help (8, 19). MZ B cells preferentially secrete antibodies of 

the IgM and IgG3 isotypes, while follicular B cells preferentially secrete IgG1 or other Ig 

isotypes after stimulation, reflecting the role of MZ B cells in the primary T-independent 

response (19). Because our studies show that the CD9+ marginal zone B cells are the 

predominant producers of TGF-β and CD40L, it is possible that the primary function of B 

cell-derived TGF-β and CD40L in vivo is to modulate T-independent, extra-follicular 

antibody responses. Conditional knockout of TGF-β signaling in B cells results in 

exaggerated IgG3 responses, which is indicative of its role in T-independent B cell responses 

(20-22). Additional studies in our lab show that mice containing a conditional knockout of 

the TGF-β receptor on B cells have an expanded population of CD138+ pre-plasma cells at 3 

days post-immunization, thus supporting the role of TGF-β  in regulating the early extra-

follicular events in the adaptive immune response.  

The role of CD40L in regulating B cell responses and in the maintenance of immune 

tolerance also requires further investigation.  Several studies have demonstrated that CD40 

signaling by CD40L-expressing T cells promotes germinal center formation, isotype 

switching, affinity maturation, and the formation of long-lived plasma cells and B cell 

memory (23, 24).  The role of CD40-CD40L ligand interactions in inducing T-dependent 

immunity is well established; however, CD40 can also have an opposing function in 

regulating B cell responses.  Studies have shown that excessive signaling by CD40 can 
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impede the ability of B cells to differentiate to long-lived plasma cells (25).  Similarly, 

enhanced CD40 signaling attenuates long-lived immunity by inducing antigen-specific B 

cells to differentiate to short-lived plasma cells at the expense of germinal center formation 

and induction of B cell memory (26).  Studies have also shown that the administration of a 

CD40 agonist along with a T-dependent antigen ablates long-lived humoral immunity in 

favor of short-lived extra-follicular plasma cells (23, 26). Thus, enhanced CD40 signaling 

may also impact extra-follicular B cell responses, similar to TGF-β. 

Because B cell CM from lupus-prone mice fail to inhibit Ig secretion in vitro, TGF-β 

and CD40L also contribute to the maintenance of immune tolerance by preventing 

autoantibody production.  Our lab has previously demonstrated a role for CD40L in 

maintaining immune tolerance by preventing polyclonal activation of autoreactive B cells 

during TLR-induced innate immune responses (14).  Our current studies reported herein also 

implicate CD40L in an additional role of regulating BCR-derived immune responses to self-

antigen.  The role of TGF-β preventing autoimmunity has been highlighted in several studies 

using TGF-β  mice, which succumb to severe systemic autoimmune disease shortly after birth 

(27).  In several other mouse models of autoimmunity, autoantibody production originates 

from B cells that reside outside of the follicle.  In MRL/lpr mice, for example, anti-DNA 

antibody production occurs in extrafollicular sites (28-30). Furthermore, AM14 rheumatoid 

factor-positive B cells on the MRL/lpr background can be activated by self-antigen, 

independently of T cell help and outside of germinal centers (31).  Because our in vitro 

studies suggest that lupus-prone mice fail to secrete repressive factors, one should consider 

that the inappropriate extrafollicular antibody responses observed in lpr deficient (MRL/lpr 

and B6.lpr) mice are a result of the failure to secrete repressive factors. 
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Further studies are required to link increased apoptotic burden resulting from the lack 

of Fas(lpr) or Mer expression to decreased production of regulatory factors by activated B 

cells, as indicated from our studies in Mertkd and B6.lpr mice.  There is a demonstrated 

relationship between failure to clear apoptotic debris and the development of autoimmunity 

in humans (32).  It is also believed that the increased availability of apoptotic cells caused by 

Mer and lpr mutations in mice could contribute to the induction of autoreactive B cell 

responses (33, 34).  It has been demonstrated that similar to defective Mer function (35), lpr 

mutations induce the activation of autoreactive marginal zone and peritoneal B-1 B cells by 

an antigen-specific mechanism (36). The similar outcomes of Mer and Fas (lpr) defects could 

be explained by the observations that both proteins have roles in apoptotic cell clearance 

(36). The increased activation of MZ B cells and the B1-subset in Mertkd and B6.lpr mice 

could be attributed to both the increased apoptotic burden and a subsequent lack of TGF-β 

production by marginal zone B cells.  Perhaps the increased apoptotic burden triggers 

production of TGF-β  by marginal zone B cells.  If TGF-β and CD40L do indeed negatively 

regulate extrafollicular IgM responses by marginal zone B cells, the lack of TGF-β 

production will lead to enhanced T-independent extrafollicular antibody responses that 

should promote non-pathologic clearance of the burden of apoptotic debris.  Additional 

studies are required to further define the link between apoptotic clearance and the secretion 

of regulatory factors by B cells.  

TGF-β is a well-known immunosuppressive cytokine, mainly produced by Foxp3+ T 

regulatory cells and is critical in limiting pro-inflammatory responses (4, 37). Our studies 

identify an additional source of TGF-β, and highlight a novel role for B cells in regulating 

BCR-derived humoral immune responses.   It is not surprising that B cells are able to 
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regulate humoral immune responses by an autocrine mechanism involving TGF-β because 

members of the TGF-β  family of proteins usually act in an autocrine or paracrine manner 

because the biological half-life of TGF-β  is very short (38).  Thus, the close proximity of 

activated TGF-β -secreting B cells within extrafollicular sites to newly emerging, naïve B 

cells is critical in maintaining tolerance and preventing unnecessary activation of additional 

B cells. There is increasing evidence to suggest that cytokines produced by B cells are also 

involved in mediating T cell responses.  One group has shown that Foxp3-expressing T 

regulatory cells proliferate in response to co-culture with resting B cells (39).  Thus, B cells 

may provide an additional source of TGF-β, which is likely to promote regulatory T cell 

expansion. Additional studies have also reported that B cell co-culture can induce anergy in 

both CD4+ and CD8+ T cells (40, 41).  Perhaps TGF-β derived from B cells has multiple 

functions in maintaining immune tolerance: first, to limit Ig production during extrafollicular 

responses; second, to suppress effector T cell function by inducing anergy; third, by 

enhancing the development and maintenance of regulatory T cells.  Overall, our studies 

highlight the importance of B cell derived cytokines in regulating B cell effector function in 

vitro.  Future studies are aimed at addressing the role of TGF-β and CD40L in regulating 

various elements of adaptive immunity in vivo, particularly extrafollicular responses. 
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4.1  Repression of Ig by B6 B cell CM is independent of CD32.

4.1  Repression of Ig by B6 B cell CM is independent of CD32.  B cells were purified 

from B6 and CD32-/- mice and stimulated with anti-mu (in addition to rIL-4 and rIL-5).  

B cells were also cultured with CM from B cells stimulated with either anti-mu with 

intact Fc, or anti-mu F(ab)2.  IgM secretion was measured by ELISA.  anti-mu 

stimulated controls secreted 15-31 µg/mL IgM.  n=4 * p< 0.05, one sample t test 

______ * 
____ * 

______ * 
____ * 
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4.2  OVA-stimulated B6 B cells also secrete factors, which repress Ig secretion.

4.2  OVA-stimulated B6 B cells also secrete inhibitory factors.  Purified B6 B cells were 

antigen stimulated with 100 µg/mL ovalbumin in the presence of OTII TCR Tg T cells.  CM 

from these B cells were harvested and cultured with freshly isolated B6 B cells, stimulated 

with ovalbumin (in the presence of OTII T cells.  Ovalbumin-stimulated B cells secreted an 

average of 1.2-2 µg/mL of IgM.  n=3 * p< 0.05, one sample t test 

_____ *  
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4.3  MZ B cells secrete factors that inhibit Ig secretion.

4.3  MZ B cells secrete factors that inhibit Ig secretion.  Splenocytes from B6 mice 

were depleted of marginal zone B cells by the addition of anti-CD9.  Purified, 

marginal zone depleted B cells were stimulated with anti-mu, rIL-4 and rIL-5. CM 

were harvested seven days after culture.  n=3  *p<0.05, n.s:  not significant, one 

sample t test 
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4.4  Ag-stimulated B cells secrete TGF-β and CD40L, which repress Ig secretion.

4.4  Ag-stimulated B cells secrete TGF-β  and CD40L (A).  B6 B cell CM were 

neutralized with 10 µg/mL of anti-CD40L and anti-TGF-β for 1 hour at room 

temperature. Neutralized supernatants were added to freshly isolated B6 B cells, and 

cultured for 7 days, with additional anti-mu, rIL-4 and rIL-5. n=4.  (B) B6 B cells were 

cultured with rCD40L (200 ng/mL) and/or rTGF-β (100 pg/mL) for 7 days with anti-

mu, rIL-4, and rIL-5. Total IgM secretion was measured by ELISA. anti-mu stimulated 

controls secreted 15-31 µg/mL IgM. n=4 *p<0.05, **p  < 0.01, n.s: not significant, one 

sample t test 

A. 
B. 
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4.5.  B cells from lupus-prone mice fail to secrete factors that repress Ig secretion.

4.5.  B cells from lupus-prone mice fail to secrete repressive factors.  B cells 

were purified from either B6, MRL/lpr, Mertkd, or B6.lpr mice and stimulated with 

anti- mu, rIL-4, and   rIL-5 for 7 days.  B6 CM were harvested and cultured with B6 

B cells, in the presence of additional anti-mu, rIL-4 and rIL-5.  n=4.  ** p < 0.01, 

n.s:  not significant, one sample t test 
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CHAPTER 5 

 

Final Discussion 
 

5.1 Summary model 

Memory B cells and long-lived plasma cells generated from germinal centers provide 

durable protection from infectious disease and are essential for the maintenance of human 

health.  Plasma cells that develop in response to infection or vaccination secrete high levels 

of protective, high-affinity immunoglobulin (Ig) that persist for decades.  Upon re-encounter 

with pathogen, memory B cells quickly respond and differentiate into plasma cells, which 

enhance the pre-existing titers of antigen-specific antibody.  Although critical for host 

survival, the factors that govern these processes are not completely understood.  It is 

important to understand how germinal center initiation and the differentiation of memory B 

cells and plasma cells are regulated, as dysregulation at any step in B cell activation can be 

detrimental to the health of the host. 

 Using both in vitro and in vivo models, we have now identified novel mechanisms 

that regulate B cells during T-dependent immune responses.  We have found that dendritic 

cells sense the products of a productive immune response in the form of immune complexes 

(IC) and upon IC binding by Fc receptors, will secrete factors that influence critical events 

through the low-affinity IgG Fc receptor, CD16, and are induced to secrete the cytokine 

BAFF.  Our studies show that DC-derived BAFF is required for Bcl-6 expression within the 
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germinal center, which is essential for TFH cell maintenance and for the proper seeding and of 

the adaptive immune response.   Specifically, dendritic cells can bind IgG1-containing ICs 

initiation of the germinal center reaction. Our results from in vitro experiments indicate that 

the production of BAFF by DCs negatively regulates Ig production.  This result may seem 

paradoxical at first, given that BAFF is known to promote B cell responses.  We propose that 

BAFF serves to shut off plasma cell programming, by downregulating key transcription 

factors (XBP-1 and IRF-4), while promoting the formation of non Ig-secreting memory B 

cells.  We have also identified roles for BAFF in the reactivation of memory B cells during 

secondary immune responses.  Overall, our studies indicate that BAFF is not only essential 

for B cell survival and homeostasis (1), but it is also critical for key events during adaptive 

immunity, including memory B cell responses. 

5.2 The role of additional Fc receptors in mediating adaptive immune responses  

 Our current studies highlight CD16 activation and BAFF production by DCs in 

regulating germinal center responses and memory B cell formation in response to 

immunization with the soluble protein antigen NP-KLH.  However, additional studies are 

required to determine if this mechanism also promotes germinal center formation and B cell 

memory in response to infection.  Immunization of mice with NP-KLH results in a primarily 

IgG1-mediated antibody response (2).   In contrast, bacterial and viral models of infection can 

produce antibodies of varying antigen specificities and IgG isotypes. For example, LCMV 

infection results in a primarily IgG2a-mediated response. It is possible that infections that 

give rise to antibodies of differing isotypes will highlight the role of additional Fc receptors.  

Preliminary studies with collaborators have demonstrated that B6 and CD16-/- mice mount 

comparable primary and secondary immune responses to LCMV infection, suggesting that 
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CD16 does not play a role in B cell memory responses to LCMV.  Because this infection 

results in a primarily IgG2a mediated response, and CD16 preferentially binds IgG1, it is 

likely that other Fc receptors, particularly CD64, are involved.  Alternatively, in the LCMV 

infection model, additional mechanism may exist (i.e. IFN-α production) to promote BAFF-

induced memory B cell responses.  Thus, future experiments are being designed to address 

the role of CD16 and additional Fc receptors in regulating secondary immune responses to 

infection.  

5.3 Additional factors that induce memory B cell formation by BAFF 

 It must also be considered that the mechanisms by which BAFF regulates B cell 

memory and reactivation may require the priming of B cells by additional factors.  Without 

additional levels of regulation, every B cell encountering BAFF would enter the memory B 

cell pool.  Preliminary studies in our lab demonstrate that repression of B cell Ig secretion in 

vitro by BAFF requires the presence of TGF-b in culture.  TGF-b has been implicated by 

other studies in our lab (Chapter 4) as a regulator of B cell responses in vitro.  Perhaps the 

production of additional cytokines, including TGF-β may also impact BAFF secretion by 

antigen presenting cells.  TGF-β signaling in macrophages is known to induce BAFF 

production (3).  In addition to immune complex binding by Fc receptors, other factors may 

also enhance BAFF production by DCs, that overall, impact B cell responses and adaptive 

immunity. 
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 5.4 Anti-BAFF therapies in the treatment of autoimmune disease 

Historically, the treatment of autoimmune diseases such as SLE has been challenging 

because a balance must be maintained between the efficacy of immunosuppressive agents 

and the adverse side effects of immune suppression.  Our studies have vast implications in 

using anti-BAFF pharmacotherapies to treat SLE and other autoimmune diseases.  BAFF has 

been previously linked to autoimmune-related pathologies in mice and humans.  Studies have 

demonstrated that mice over-expressing BAFF have expanded B cell populations, which 

contribute to spontaneous germinal center development, increased autoantibody titers, 

elevated numbers of effector T cells, and immunoglobulin deposition within the kidney (4).  

BAFF-Tg mice develop a severe autoimmune disease that is similar to SLE and Sjogren’s 

syndrome in humans (4, 5). Thus, it is clear that BAFF overproduction in mice has a 

pathogenic role in autoimmunity by enhancing the survival and activation of autoreactive B 

cells. Additionally, increased levels of BAFF have also been detected in patients with various 

autoimmune conditions, and a correlation with disease progression has frequently been 

observed (6). It remains unclear whether the increased levels of BAFF found in human 

patients are a primary cause of autoimmunity or the result of increased production of pro-

inflammatory cytokines (such as IFN-α), which are known to promote BAFF production (7, 

8).  Our studies would suggest that BAFF has a causative role in the clinical manifestations 

of SLE.  Ongoing studies in our lab show that increased BAFF production by dendritic cells 

and macrophages, induced by pathogenic immune complexes, results in the migration of 

inflammatory cells into target organs and increased disease manifestation in lupus-prone 

mice. Our data reported herein would also suggest that in addition to increased B cell 

survival, excessive BAFF promotes the formation of autoreactive memory B cells, 
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reactivation of those B cells in response to self-antigen during secondary immune responses, 

and finally, the propagation of autoantibody production.  Thus, BAFF may have multiple 

roles in initiating the breakdown in immune tolerance.  

 Within the last year, a BAFF-neutralizing monoclonal antibody, belimumab 

(Benlysta®), received FDA approval as the first new therapeutic to treat SLE in over 50 

years (9, 10).  Its success has been attributed to the depletion of self-reactive B cells, which 

require BAFF for survival.  Depletion of B cells in Benlysta®-treated SLE patients occurs 

predominantly in the naïve and transitional populations, and maximum depletion is reached 

at 6-8 months after starting therapy (6).  In light of our data, the success of anti-BAFF 

therapies could also be attributed to the failure to reactivate memory B cells that respond to 

self-antigens, as well the failure to generate additional self-reactive memory B cells.  

Because autoreactive B cells are chronically exposed to antigen (DNA, histones, Sm, etc.), 

reactivation of self-reactive memory B cells presents a challenge in the treatment of 

autoimmune disease. Studies have shown that memory B cell survival is independent of 

BAFF (11); however, our studies demonstrate that the formation and reactivation of memory 

B cells is dependent on BAFF.  Our work highlighting the importance of BAFF in memory B 

cell formation in mice is supported by studies by Ettinger et al. demonstrating that BAFF and 

IL-21 can synergize to promote the reactivation of human memory B cells (12). Although 

memory B cells can persist following BAFF depletion, our studies herein demonstrate that 

their reactivation is prevented, which may contribute to amelioration of disease in SLE 

patients.  Furthermore, the formation of additional autoreactive memory B cells will also be 

prevented as a consequence of anti-BAFF therapy.  Because BAFF is critical for human 

memory B cell formation and expansion, one must also consider potential side effects of 
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Benlysta® therapy, such as failure to form memory in response to foreign antigens and 

vaccination.  It is likely that any vaccinations (i.e., influenza vaccination) occurring after 

Benlysta® treatment has been initiated may fail to give rise to immunological memory.  

Future studies are needed to assess vaccine efficacy in Benlysta®-treated patients.  

5.5 BAFF may improve vaccine efficacy 

 Most modern, successful vaccines have been developed to neutralize pathogens that 

possess few antigenic variations and cause acute infections, followed by long-term protective 

immunity (13, 14).  Unfortunately, there are several instances where a primary infection does 

not lead to protective immunity, such as infections with highly variable pathogens, including 

dengue virus, influenza virus, HIV-1, and Mycobacterium tuberculosis (15-17).   For 

unknown reasons, clearance of respiratory syncytial virus (RSV) infection is not followed by 

protective immune memory: re-infection with the same virus can occur multiple times (18).  

Other pathogens such as Staphylococcus aureus can evade the immune system and suppress 

the development of protective immunity in the infected host.  It remains unclear why 

infections by these pathogens fail to yield protective immunity and why vaccines that target 

these pathogens have also failed.  In light of our data, the failure to induce protective 

immunity and memory following some infections could occur if immune evasion by the 

pathogen results in failure to form immune complexes and promote BAFF secretion.  

However additional studies are required to determine if Fc binding and BAFF production 

modulates the immune response in these infections.  

 Because of its role in B cell homeostasis, germinal center maintenance, and the 

generation of TFH cells as well as antigen-specific memory B cells, one would also 
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hypothesize that BAFF can be used to improve vaccine strategies.  Indeed, a few studies have 

demonstrated a beneficial role of BAFF in enhancing vaccine protection.  One specific study 

has shown that soluble recombinant BAFF enhanced vaccination against infectious bursal 

disease (IBDV) in chickens (19).  The administration of soluble BAFF has also improved the 

efficacy of an HIV DNA vaccine in mice (20).  An additional study has shown that the 

transient over-expression of BAFF resulted in increased antigen-specific antibody responses 

upon immunization with heat-killed Pseudomonas aeruginosa (21).  Further, over-expression 

of BAFF also enabled immune protection following a lethal secondary challenge with P. 

aeruginosa in mice.  Protective immunity was also improved when BAFF was administered 

four weeks after immunization, demonstrating that the temporary over-expression of BAFF 

can also augment an ongoing immune response following initial exposure to antigen. It is 

important to note that these studies used transient doses of BAFF, as long-term 

administration of BAFF would likely result in autoantibody production and autoimmunity.  

Together these data imply that BAFF may be considered as a molecular vaccine adjuvant that 

could support the induction of antigen-specific protective immune responses to infections in 

which there are currently no successful vaccine regimens. Many experimental vaccines and 

monoclonal antibodies directed against Pseudomonas have been tested in preclinical trials, 

but only a few have reached clinical phases and none has obtained FDA approval (22). BAFF 

may represent an advance towards successful vaccination programs for Pseudomonas 

infection.  Interestingly, the expression of CD16 is also required for protective immunity 

against P. aeruginosa (23).  Thus, both BAFF and CD16 seem to be important key factors in 

mediating immune responses against Pseudomonas infection. Based on our studies, one 
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would predict that by modifying BAFF levels in vivo, memory B cell formation during T-

dependent immune responses could also be modulated to improve vaccine efficacy.  

5.6 The immune system as a target organ system of toxicant action 

There is increasing evidence that chronic exposure to certain toxicants at levels too 

low to be overtly toxic can harm human health by modulating the function of the immune 

system.  Many compounds, including metals, pharmacological agents, and pesticides, are 

able to alter immune function (24).  Additionally, the ability of toxicants to alter host 

resistance to a variety of bacterial and viral challenges suggest that there is a possible role of 

toxicants in increasing morbidity and mortality due to increased susceptibility to infection. 

This increased susceptibility may be the consequence of failure to induce immunological 

memory and protection following pathogen exposure. In addition, toxicant exposure may 

also adversely affect responses to immunization and the ability to initiate secondary immune 

responses. Several compounds have been shown to inhibit T-dependent secondary immune 

responses, including tetraethyl lead, methyl mercury, aflatoxin B1, and 2, 3, 7, 8-

Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) (24).  Although these toxic effects on 

secondary immunity have been observed, the mechanisms of action are still relatively 

undefined. Lead has been shown to inhibit antibody responses by impairing T cell function, 

similar to the effects of both dioxin and aflatoxin (25-27).  Perhaps lead and toxicants with 

similar mechanisms of action impair recall responses indirectly by dampening overall 

antibody production.  Lack of Ig secretion would result in decreased immune complex 

formation and according to our studies, a deficit in DC-derived BAFF production.  Thus 

these toxicants may disrupt secondary immune responses by inhibiting IC-induced BAFF 

production.  A single study has also implicated lead in downregulating the expression of 
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CD16 (28).  This study in conjunction with our data implies that lead may exert its 

immunotoxic effects by limiting IC binding by CD16 and subsequent BAFF production. 

Because of the effects of lead, aflatoxin, and other toxicants on T cell function, one 

would also predict an additional role in modulating other events in the adaptive immune 

response, including germinal center initiation, B and T cell memory generation, and isotype 

switching. More recent studies have further documented the role of toxicant exposure in the 

impairment of secondary immunity and have begun to elucidate the mechanism by which this 

impairment occurs.  Some particular chemicals have generated renewed interest in their 

immunotoxic potential, including lead, dioxin, and fluorinated compounds. A few recent 

studies have demonstrated that dioxin exposure suppresses the formation of germinal centers 

induced by NP-CGG immunization, as well as the high-affinity antibody response (29).  The 

authors assert that the suppression of germinal center formation was most likely due to the 

inhibition of B and T cell proliferation (29).  Perhaps TCDD exposure also results in reduced 

BAFF levels, which, according to our data, could also explain the defect in germinal center 

formation observed in our studies.  Subsequent studies by Lawrence et al. have demonstrated 

that TCDD exposure also impacts long-term immune memory.  Specifically, the authors 

showed that activation of the aryl hydrocarbon (Ah) receptor by TCDD results in a 

diminished secondary immune response to influenza infection (30).  The authors attribute 

this defect to the failure to generate functional CD8+ memory T cells.  Alternatively, the 

effects of dioxin exposure on secondary immune responses could also reflect the impairment 

of the DC’s ability to bind immune complexes and secrete BAFF. Perfluorinated compounds 

(PFCs), such as PFOA and PFOS, can also impact secondary immune responses. Recently, 

the effects of PFC exposure on T-dependent immunity and responses to vaccination have 
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generated much interest (31).  Ongoing studies are necessary to address additional roles of 

environmental toxicants in modulating immune responses.  

Many environmental toxicants that affect the immune system in humans are 

immunosuppressive; however, other chemicals can be pro-inflammatory and contribute to 

autoimmunity. Although genetic predisposition may be a contributing factor for the 

development of spontaneous autoimmune disease, the incomplete concordance in SLE in 

twin studies would suggest that exogenous factors are also important in disease development 

(32, 33).  There are a number of chemicals that clearly impact the immune system and can 

contribute to the exacerbation of autoimmune disease, including organic solvents, such as 

trichloroethylene (TCE), mercury, vinyl chloride, organic solvents, silica, and ultrafine 

particles (34).  Many epidemiological reports and case studies have found that chronic, low-

level exposure to the organic solvent TCE is linked to various autoimmune diseases 

including SLE, scleroderma, bullous pemphigoid, diabetes, and immune-mediated hepatitis 

(35-40). Even if overt disease is not diagnosed, signs of immune activation are evident, 

including increased T cell numbers and elevated levels of serum autoantibody (41, 42).  In 

addition to human studies, mice chronically exposed to TCE showed increased incidence of 

autoimmune hepatitis (43) and increased production of antinuclear antibodies, indicative of 

lupus (44).  Although alterations in T cell function have been implicated in the mode of 

action, the mechanisms by which these chemicals induce autoimmunity remain unclear. 

Perhaps toxicant exposure can modulate BAFF expression and contribute to pathologies 

found in SLE patients.  Future studies are required to address the use of increased serum 

levels of BAFF as a biomarker of toxicant exposure, potentially leading to the onset of the 

breakdown of immune tolerance subsequent autoimmunity. 
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